Database
Systems

A Pragmatic Approach

A TEXTBOOK INTRODUCTION
TO DATABASE SYSTEMS THEORY
AND PRACTICE

Elvis C. Foster with Shripad V. Godbole

Apresse

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOrsS..........ccesissmssmsmssmmss s ————— Xxvii
o = £ XXiX
Acknowledgments........ccucemmmmsssnssmmssssnssmmssssnssssssssnssssssssnssnnsssnnnnns XXXV
Part A: Preliminary TOPICS.....cccccummmmmmmmmmmmmmmnnnnnnnnsnnnssnnnns 1
Chapter 1: Introduction to Database Systems..........cccceunssnennnrsssnnns 3
Chapter 2: The Database System Environmentccuucemnniinnnes 13
Part B: The Relational Database Modelcu...n. 29
Chapter 3: The Relational Modelcccuvnnmmmmmmnnnnnemsssssssssssnnnnns 31
Chapter 4: Integrity Rules and Normalizationccccussennnrsssnnns 57
Chapter 5: Database Modeling and DeSign.......cccussesmsssasssssasssssanss 83
Chapter 6: Database User Interface Design.........ccuseenmmsssannnsnnans 119
Chapter 7: Relational Algebra...........ccusemmnnsssnnnnnnssssssnsssssssssnennss 129
Chapter 8: Relational Calculusccuseeemmmsssennnnnssssnsnnsssssnsnnnnsss 149
Chapter 9: Relational System — a Closer LOOK..........oceeemmennnnnns 163
Part C: The Structured Query Languagecuusseeeeenna 169
Chapter 10: Overview of SQL.......ccccccmrrerssssssssssnnssssssssssssssssnnnnnas 171
Chapter 11: SQL Data Definition Statements...........ccceurvisnennrinans 177
Chapter 12: SQL Data Manipulation Statements..........cccceeennnnnnns 219
Chapter 13: SQL Views and System Securityccucccmmmmssnnnnsnssns 259

v

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS AT A GLANCE

Chapter 14: The System Catalogcccinrnssnnmmnnsssssnnnsssssnnnnnnsns 279
Chapter 15: Some Limitations of SQL............cccusmmsemssnssnssasssannns 291
Part D: Some Commonly Used DBMS SuiteS......ccureeuns 299
Chapter 16: Overview of Oracle........cccocersmmmssnsssssnsssssssssssnsssnns 301
Chapter 17: Overview of DB2........cccceuurnimmsssssnssssssnmssssssssssssssssnnas 311
Chapter 18: Overview of MS SQL Server..........cccimmsmmnnmssssnsssnsans 321
Chapter 19: Overview of MySQLc.ccccunsummmmssmsssssnnssssnsssssnnsssnns 335
Chapter 20: Overview of Delphi.......ccccccnnnmmmesssnnmnnmmmmsssssssnnns 345
Part E: Advanced TOPICSccuuneemmmmemmmmmmmnmnnnnnnnnnnnnnnnnas 353
Chapter 21: Database Administrationccccceermmnnnnnnnnssssssnnnns 355
Chapter 22: Distributed Database Systems.........ccuscenrrssssnnnsnsans 367
Chapter 23: Object Databasescccusermsssmsrsssnsssssnsssssnsssssnnsssnns 379
Chapter 24: Data Warehousingcccusssessssssssssnsssssssnsssssssnnsssssns 387
Chapter 25: Weh-Accessible Databases..........cccimnmemnnmssssnnnnnnans 403
Part F: Final Preparations.........cccccceemmmmmmmnnnnnnnnnnnnnnnnnas 413
Chapter 26: Sample Exercises and Examination Questions 415
Part G: AppendiCesuuusssssssssssnnnnnnnnnnnnnnsnnnnnsnnnnnsnnnnns 447
Appendix 1: Review Of Tre€sccvrrsmssssssssssnsssssssssssssssssnsssssssssnns 449
Appendix 2: Review of Hashing.........cccusmrnssemsnsssnsssssssssssnsssssanas 451
Appendix 3: Review of Information Gathering Techniques......... 493
INA@X.ciiieiiiessimsssnssss s s s 509

vi

www.it-ebooks.info

http://www.it-ebooks.info/

PART A

Preliminary Topics

This preliminary division of the course is designed to cover some fundamentals.
The objectives are

e todefine and provide a rationale for database systems;

e toidentify the many objectives, advantages, and desirable
features of a database system;

e todiscuss the salient features of a database system
environment.

The division consists of two chapters:
e Chapter 1 — Introduction to Database Systems

e Chapter 2 — The Database System Environment

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction to Database
Systems

Welcome and congratulations on your entry to this course in database systems. The fact
that you are in this course means that you have covered several fundamental topics in
programming, data structures, user interface, and software engineering. Now you want

to learn about databases — their significance, the underlying theoretical principles that
govern them, how they are constructed, and their management. You are at the right place.
This chapter addresses the first issue: the significance of database systems.

Topics covered include the following:

e Definition and Rationale

e Objectives of a Database System

e Advantages of a Database System

e Approaches to Database Design

e Desirable Features of a Database System
e Database Development Life Cycle

e Summary and Concluding Remarks

1.1 Definitions and Rationale

A database system (DBS) is a computerized record keeping system with the overall
purpose of maintaining information and making it available whenever required. The
database typically stores related data in a computer system.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO DATABASE SYSTEMS

A database management system (DBMS) is a set of programs that allow for the
management of a database. Starting in chapter 2 and extending to subsequent chapters,
we will cover several of the critical functions of a DBMS. Some of the more obvious ones

are the following:

e Data definition (relation, dependencies, integrity constraints,
views, etc.)

e Data manipulation (adding, updating, deleting, retrieving,
reorganizing, and aggregating data)

e Data security and integrity checks

e Programming language support
Components of a DBS include:

e Hardware and operating system

e DBMS

e Database

e Related software systems and/or applications

e Endusers

End users communicate with the software systems/applications, which in turn,
communicate (through the programming interface) with the DBMS. The DBMS
communicates with the operating system (which in turn communicates with the
hardware) to store data in and/or extract data from the database. Figure 1-1 illustrates.

Operating System

4 DBMS \

Software
s e | | e e
\Datab_ase/

]

(Yo ON©)
(oY oNeoXe]

Software Software
< Sen < o Spen [

- /

Figure 1-1. Simplified Representation of a DBS

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO DATABASE SYSTEMS

Databases are essential to software engineering; many software systems have
underlying databases that are constantly accessed, though in a manner that is transparent
to the end user. Figure 1-2 provides some examples. Companies that compete in the
marketplace need databases to store and manage their mission critical and other
essential data.

Software Category

Database Need

Operating Systems

A sophisticated internal database is needed to keep track of various resources of the computer
system including external memory locations, internal memory locations, free space management,
system files, user files, etc. These resources are accessed and manipulated by active jobs. A job
is created when a user logs on to the system, and is related to the user account. This job can in
turn create other jobs, thus creating a job hierarchy. When you consider that in a multi-user
environment, there may be several users and hundreds to thousands of jobs, as well as other
resources, you should appreciate that underlying an operating system is a very complex
database that drives the system.

Compilers

Like an operating system, a compiler has to manage and access a complex dynamic database
consisting of syntactic components of a program as it is converted from source code to object
code.

Information
Systems

Information systems all rely on and manipulate internal databases, in order to provide mission
critical information for organizations. All categories of information systems are included.
Commmon categories include (but are not confined to) decision support systems (DSS),
executive information systems (EIS), management information systems (MIS), Web information
systems (WIS), enterprise resource planning systems (ERPS), and strategic information systems
(SIS).

Expert Systems

At the core of an expert system is a knowledge base containing cognitive data which is accessed
and used by an inference engine, to draw conclusions based on input fed to the system.

CAD, CAM and CIM
Systems

A computer-aided design (CAD), computer-aided manufacturing (CAM), or computer-integrated
manufacturing (CIM) system typically relies on a centralized database (repository) that stores
data that is essential to the successful operation of the system.

Desktop All desktop applications (including hypermedia systems and graphics software) rely on resource

Applications databases that provide the facilities that are made available to the user. For example, when you
choose to insert a bullet or some other enhancement in a MS Word document, you select this
feature from a database containing these features.

CASE and RAD Like desktop applications, computer-aided software engineering (CASE) tools and rapid

Tools application development (RAD) tools rely on complex resource databases to service the user
requests and provide the features used.

DBMS Suites Like CASE & RAD tools, a DBMS also relies on a complex resource databases to service the

user requests and provide the features used. Additionally, a DBMS maintains a very sophisticated

meta database (called a data dictionary or system catalog) for each user database that is created
and managed via the DBMS.

Figure 1-2. Illustrations of the Importance of Database

In this course you will learn how to design, implement and manage databases. In so
doing, you will be exposed to various database technologies and methodologies that are
common in the software engineering industry.

1.2 Objectives of a Database System

There are several primary and secondary objectives of a database system that should
concern the computer science (CS) professional. Whether you are planning to design,
construct, develop and implement a DBS, or you are simply shopping around for a DBMS,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO DATABASE SYSTEMS

these objectives help you to develop an early appreciation for the field; they should
also provide useful insight into where the course is heading. As you will soon see, these
objectives are lofty, and it is by no means easy to achieve them all.

The primary objectives of a database system include the following:

e Security and protection — prevention of unauthorized users;
protection from inter-process interference

e Reliability — assurance of stable, predictable performance
e Facilitation of multiple users

e Flexibility — the ability to obtain data and effect action via
various methods

e Ease of data access and data change

e Accuracy and consistency

e (Clarity — standardization of data to avoid ambiguity
e Ability to service unanticipated requests

e Protection of intellectual Investment

e Minimization of data proliferation — new application needs may be
met with existing data rather than creating new files and programs

e Availability — data is available to users whenever it is required
Among the significant secondary objectives of a database system are the following:

e Physical data independence — storage hardware and storage
techniques are insulated from application programs

e Logical data independence — data items can be added or
subtracted or the overall logical structure modified without
existing programs being affected

¢ Control of redundancy

e Integrity controls — range checks and other controls must
prevent invalid data from entering the system

e (Clear data definition — a data dictionary is usually kept
e Suitably friendly user interface

e Tunability — easy reorganizing the database to improve
performance without changing the application programs

e Automatic reorganization of migration to improve performance

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO DATABASE SYSTEMS

Clarification on Data Independence

Data independence is an important concept that needs further clarification: Data
independence is the immunity of application programs to changes in structure and
access strategy of data. It is necessary for the following reasons:

o Different applications and users will need to have different logical
views (interpretation) of data.

e The tuning of the system should not affect the application programs.

Physical data independence implies that the user's view is independent of physical
file organization, machine or storage medium. Logical data independence implies that
each user (or application program) can have his/her (its) own logical view and does not
need a global view of the database.

1.3 Advantages of a Database System

A database system brings a number of advantages to its end users as well as the company
that owns it. Some of the advantages are mentioned below:

e Redundancy can be reduced.

¢ Inconsistencies can be avoided.

e Data can be shared.

e Standards can be enforced.

e Security restrictions can be applied.

¢ Integrity can be maintained.

¢ Conflicting requirements can be balanced.

e Improved performance due to speed of processing, reduction in
paperwork, etc.

e Maintenance and retrieval of data are very easy — no complicated
application program needed.

e Isnotsolely dependent on the high level language (HLL)
programming for use.

e Logical views of data stored can be easily created.

e Record structures can change without any adverse effect on data
retrieval (due to data independence).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO DATABASE SYSTEMS

1.4 Approaches to Database Design

Analysis of the management of data via computerized systems reveals five approaches
that have been pursued over the past forty years:

e Instant small system — uses one file
e File processing systems — involve many files

e Other non-relational systems e.g. hierarchical, inverted, and
network approaches

e Relational databases (the focus of this course) — pioneered
by prominent individuals such as Edgar Codd, Ronald Fagin,
Christopher Date, among others

e Object databases — a contemporary approach (also discussed
later in the course)

Since the 1970s, relational databases have dominated the field of database systems.
With the advancement of object databases (notably since the 1990s), relational databases
continue to maintain dominance. Later in the course, you will understand why this
dominance is likely to continue. For now, we assert that relational databases will be
around for a long time in the foreseeable future, and they will be complemented (rather
than challenged) by object databases.

1.5 Desirable Features of a DBS

Contemporary database systems must live up to de facto standards set by the software
engineering industry. Roughly speaking, a well-designed database system must exhibit
the following features (more specific standards will be discussed later in the course):

e Provide most (at least 70%) of the advantages mentioned earlier
e Meetmost (at least 70%) of the objectives mentioned earlier

e Provide for easy communication with other systems

e Be platform independent

e Have a friendly user interface

e Be thoroughly documented

1.6 Database Development Life Cycle

You are no doubt familiar with the software development life cycle (SDLC). For the
purpose of review, it is presented in Figure 1-3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO DATABASE SYSTEMS

SDLC Phase Related Deliverable(s)

Investigation & Analysis Initial System Requirements; Requirements Specification
Design (Modeling) Design Specification

Development (Construction) Actual Software; Product Documentation

Implementation

Management Enhanced Software; Revised Documentation

Figure 1-3. Software Development Life Cycle

As mentioned earlier (section 1.1), databases do not exist in a vacuum, but are
usually part of a software system. A database development life cycle (DDLC) may therefore
be perceived from two perspectives:

It may be viewed as being identical and concurrent with the
SDLC. At each phase in the SDLC, consideration is given to the
database as an integral part of the software product.

If we consider that in many cases, the database has to be
constructed and implemented, and managed as a separate
resource that various software systems can tap into, then we may
construct a similar but different life cycle for the database as
illustrated in Figure 1-4.

DDLC Phase Related Deliverable(s)

Database Investigation & Analysis Initial Database Requirements

Database Modeling Database Model

Database Designing Database Design Specification

Database Development Actual Database

Implementation Actual Database in Use

Management Enhanced Database; Revised Database Design Specification

Figure 1-4. Database Development Life Cycle

Note:
1.

Applying basic investigation skills that you would have
acquired in your software engineering course covers the
database investigation and analysis phase. This course
assumes that you have acquired those skills. The course
therefore concentrates on the other phases.

With experience, the database modeling and database
designing phases can be merged into one phase. This will be
further clarified in chapters 3 through 5.

Once the database is in implementation phase, management
of it becomes an ongoing experience, until the database
becomes irrelevant to the organization.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO DATABASE SYSTEMS

1.7 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

e Adatabase system is a computerized record keeping system with
the overall purpose of maintaining information and making it
available on demand.

e The DBMS is the software that facilitates creation and
administration of the database.

e The DBSis made up of the hardware, the operating system,
the DBMS, the actual database, the application programs and the
end users.

e There are several primary and secondary objectives of a DBS,
which are of importance to the CS professional.

e A DBS brings a number of significant advantages to the business
environment.

e There are five approaches to constructing a DBS. Three of them
are traditional and are no longer used. The two contemporary
approaches are the relational approach and the object-oriented
approach. For various reasons, the relational approach is
fundamental to a course in database systems.

e Instriving to acquire a DBS, it is advisable to aspire for a
minimum or 70% of the objectives and advantages. Additionally,
one should strive for platform independence, user-friendliness,
and thorough documentation.

e The database development life cycle outlines the main activities
in the useful life of a DBS.

Interested? We have just begun to touch the surface. There is a lot more to cover.
Most successful software systems are characterized by carefully designed databases. In
fact, it is safe to say that the efficacy of the software system is a function of its underlying
database. So stay tuned: the next chapter provides more clarification on the database
environment.

1.8 Review Questions

1. Whatis a database system?
Why are database systems important?
What is a database management system (DBMS)?

What are the objectives (primary and secondary) of a DBS?

g~ N

What is data independence, and how important is it?

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO DATABASE SYSTEMS

What are the advantages of a DBS?
What are the possible approaches to acquiring a DBS?

How do database systems relate to software engineering?

© © N @

Compare the software development life cycle to the database
development life cycle.

1.9 References and/or Recommended Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York, NY:
Addison-Wesley, 2002. See chapter 1.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park, CA:
Addison-Wesley, 2004. See chapter 1.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5" ed. Reading, MA: Addison-Wesley, 2007. See chapter 1.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, NJ: Prentice Hall, 2002.
See chapter 1.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern Database
Management 8" ed. Upper Saddle River, NJ: Prentice Hall, 2007. See chapters 1&2.

[Lewis, 2002] Lewis. Phillip M., Arthur Bernstein and Michael Kifer. Databases and
Transaction Processing: An Application Oriented Approach. New York, NY: Addison-Wesley,
2002. See chapter 1.

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See chapter 1.

[Pratt, 2002] Pratt, Phillip J. and Joseph J. Adamski. Concepts of Database Management
4" ed. Boston, Massachusetts: Course Technology, 2002. See chapter 1.

[Riccardi, 2003] Riccardi, Greg. Database Management With Web Site Development
Applications. Boston, MA: Addison-Wesley, 2003. See chapter 1.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7™ ed. Boston, MA: Course Technology, 2007.
See chapter 1.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, New Jersey: Prentice Hall, 1997. See chapter 1.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

The Database System
Environment

This chapter discusses the environment of a database system. Topics covered include:

Levels of Architecture

Inter-level Mappings

Database Administrator

Database Management System
Components of the DBMS Suite
Front-end and Back-end Perspectives
Database System Architecture

Summary and Concluding Remarks

2.1 Levels of Architecture

In [Date, 2004], Christopher Date describes three levels of architecture of a database
system, namely, the external level, the conceptual level, and the internal level. These levels
are illustrated in Figure 2-1; we will briefly discuss each.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

External Level Conceptual Level

External View 1 Entity 1 Entity n

External-Conceptual
Mapping

External View n I AN
Entity 2 Entity n + 1
Conceptual-Internal Mapping
n\ternal Level \

)

Figure 2-1. Levels of DBS Architecture

2.1.1 External Level

The external level is concerned with individual user views. It therefore varies according to
users’ perspectives. The external level is defined by the external schema.

Typically, the database is accessed through its external schema. The application
programmer uses both the host language and the data sublanguage (DSL) to create a user
interface that end users use to access the system:

e The DSLis the language that is concerned specifically with
database objects and operations. To illustrate, SQL (structured
query language) is the industry’s standard DSL. Other examples
of data sub-languages are QUEL and KQL (knowledge query
language). These languages will be further discussed later in
the course.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

e The hostlanguage is that which supports the DSL in addition to
other non-database facilities such as manipulation of variables,
computations and Boolean logic. Host languages are typically
high level languages (HLL); examples include COBOL, C, C++,
Java, Pascal, RPG-400, etc.

Typically, the sublanguage consists of a data definition language (DDL), a data
manipulation language (DML), and a data control language (DCL). These components
are not necessarily distinct entities, but are typically part of a single coherent product.

The above-mentioned facilities allow users to define assorted logical views of data in
the database. In summary, the external schema is the user interpretation of the database,
but facilitated by the DSL.

2.1.2 Conceptual Level

The conceptual level is an abstract representation of the entire information content of

the database; it also referred to as the logical or community user view. It is defined by
means of the conceptual schema, which includes definition of each of the various types of
conceptual records.

The conceptual schema includes defining the structure of the database, security
constraints, operational constraints and integrity checks. It represents a closer picture of
how data will be actually stored and managed, and is the level that most technical user
will relate.

The conceptual schema must adhere to the data independence requirement. Also,
it must be comprehensive since it represents the realization of the entire database design.

2.1.3 Internal Level

Also called the storage view, the internal level is the low level representation of the
database. It is one level above the physical level, which deals with pages, cylinders and
tracks on the storage device.

The internal level is defined by the internal schema, which addresses issues such as
record types, indexes, field representation, physical storage sequence of records, data
access, etc., and written in the internal DDL.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

2.2 Inter-level Mappings

Continuing from the previous section, the literature also describes two levels of mappings
that connect the three schemas (again, see [Date, 2004]). Figure 2-1 illustrates the
different schemas and their interrelationships with respect to the DBMS. From the figure,
observe that there are two levels of mapping — the external-conceptual mapping and the
conceptual-internal mapping:

e The conceptual-internal mapping specifies how conceptual
records are represented at the internal level. If changes are made
at the internal level, this mapping must be updated. Traditionally,
the database administrator (DBA) maintains this mapping in
order to preserve data independence (the DBA is discussed in the
next section). In contemporary systems, the DBMS automatically
updates and maintains this mapping, transparent to the user.

e The external-conceptual mapping specifies how external views
are linked to the conceptual level. In effect, this is achieved by
application programs and logical views via the host language and
the DSL.

It must be borne in mind that these levels are abstractions that facilitate
understanding of the DBS environment. As an end user, you will most likely not visibly
observe these levels of architecture. However, if as a software engineer, you find yourself
on a software engineering team that is constructing or maintaining a DBMS (a huge
undertaking), knowledge of these abstractions becomes critical.

2.3 The Database Administrator

The database administrator (DBA) has overall responsibility for the control of the system
at the technical level. Some of the functions of the DBA include:

e Defining the conceptual schema (i.e. logical database design)
¢ Defining the internal schema (i.e. physical database design)

e Liaising with users and identifying / defining views to facilitate
the external schema

e Defining security and integrity checks
e Defining backup and recovery procedures
e Monitoring performance and responding to changing requirements

In many organizations, the tendency is to include these functions in the job
description of the software engineer. This is quite rational and prudent, since good
software engineering includes good database design. However, large corporations that
rely on company database(s) on an on-going basis, usually employ the services of one or
more DBAs. Because of the importance of having reliable databases, DBAs are among the
highest paid information technology (IT) professionals.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

2.4 The Database Management System

The database management system (DBMS) is the software that facilitates management
of the database. When a user issues a request via some DSL (for example SQL), it is the
DBMS that interprets the request, executes the appropriate instructions and responds to

the user.

Functions of the DBMS include the following:

Data definition (relation, dependencies, integrity constraints,
views, etc.)

Data manipulation (adding, updating, deleting, retrieving,
reorganizing, and aggregating data)

Data security and integrity checks

Management of data access (including query optimization),
data recovery and concurrency

Maintenance of a user-accessible system catalog (data dictionary)

Support of miscellaneous non-database functions (e.g. utilities
such as copy)

Programming language support

Transaction management (either all updates are made or
none is made)

Backup and recovery services

Communication support (allow the DBMS to integrate with
underlying communications software)

Support for interoperability including open database
connectivity (ODBC), Java database connectivity (JDBC), and
other related issues

Optimum efficiency and performance are the hallmarks of a good DBMS. To
illustrate the critical role of the DBMS, consider the steps involved when an application
program accesses the database:

1.

Program-A issues a request to the DBMS (expressed in terms
of sub-schema language);

DBMS looks at Program-A sub-schema, schema and physical
description (these information are stored in tables);

DBMS determines which files must be accessed, which
records are needed and how access is done;

DBMS issues instruction(s) (reads or writes) to the
operating system;

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

5. Operating system causes data transfer between disk storage
and main memory;

6. DBMS issues moves to transfer required fields;

7. DBMS returns control to Program-A (possibly with a
completion code).

Figure 2-2 provides a graphic representation, but bear in mind that these steps are
carried out automatically, in a manner that is transparent to the user.

Program A Program A Subschema

@ DBMS @ Database
Schema

System Buffer — >

© \o

©

- "
Operating System Physical Database

Database
Description

Figure 2-2. Steps Involved When Application Programs Access a Database

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

2.5 Components of DBMS Suite

The DBMS is actually a complex conglomeration of software components working
together for a set of common objectives. For the purpose of illustration, we may represent
the essential components of the DBMS as the following:

e DBMS Engine

e Data Definition Subsystem

e User Interface Subsystem

e Application Development Subsystem
e Data Administration Subsystem

e Data Dictionary Subsystem

e Data Communications Manager

e Utilities Subsystem

These functional components (illustrated in Figure 2-3) are not necessarily tangibly
identifiable, but they exist to ensure the acceptable performance of the DBMS.

[Data Definition Subsystem]<—>
[User Interface Subsystem] <«—>
Application Development Subsystem] ¢ >
<+—> Operating System
110
[Data Administration Subsystem] Requests T
inistration Subsy: «—>]
DBMS
Engine
- 1/0 Operation
[Data Dictionary Subsystem]4_,
[Data Communications Manager]) ,
[Utilities Subsystem]4_, Database

Figure 2-3. Functional Components of a DBMS

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

2.5.1 The DBMS Engine

The DBMS engine is the link between all other subsystems and the physical device
(the computer) via the operating system. Some important functions are as follows:

e Provision of direct access to operating system utilities and
programs (e.g. I/O requests, data compaction requests,
communication requests etc.)

e Management of file access (and data management) via the
operating system

e Management of data transfer between memory and the system
buffer(s) in order to effect user requests

e Maintenance of overhead data and metadata stored in the data
dictionary (system catalog)

2.5.2 Definition Tools Subsystem

The data definition subsystem (DDS or its equivalent) consists of tools and utilities for
defining and changing the structure of the database. The structure includes relational
tables, relationships, constraints, user profiles, overhead data structures, etc.

The DDL (data definition language) is used to define all database objects that make
up the conceptual schema (relations, relationships, constraints, etc.). The DML (data
manipulation language) is used to facilitate manipulation (insert, remove, update, find,
query etc.) of data. The DML usually includes a query language. The DCL (data control
language) is used to set up control environments for data management by the end user.
As mentioned earlier, the DDL, DML and DCL comprise the DSL.

2.5.3 The User Interface Subsystem

The user interface subsystem (UIS or its equivalent) allows users and programs to access
the database via an interactive query language such as SQL and/or the host language.
The traditional interface is command based; however in recent times menus and graphical
user interfaces (GUI) have become more prevalent. Of course, it is not uncommon for
a product to provide the user with all three interfaces (for example Oracle). Other more
sophisticated DBMS suites may use natural language interface.

The user interface may also include a DBMS-specific programming language
(e.g. FoxPro, Scalable Application Language, and Oracle’s PL/SQL). These languages pertain
only to the DBMS in which they are used. Additionally, the DBMS may support multiple
high level languages such as C++, Java, etc., thus making it more flexible and marketable.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

As an example, suppose that a file, Student has fields {ID#, SName, FName, Status, DOB,...}for each record.
Two possible SQL queries could be:

SELECT ID#, SNAME, FNAME FROM STUDENT WHERE SNAME ="BELL";
SELECT ID#, SNAME, DOB FROM STUDENT WHERE DOB >= 19660101

A more detailed study of SQL will be covered later in the course.

2.5.4 Application Development Subsystem

The application development subsystem (ADS or its equivalent) contains tools for
developing application components such as forms, reports, and menus. In some cases,
it may be merged with the user interface subsystem. Typically, this subsystem provides a
graphical user interface (GUI), which is superimposed on an underlying host language.
The suite may include an automatic code generator (as in Delphi and Team Developer),
or seamless access of the compiler of the host language (as in Oracle).

Other facilities that may be included such as:

e Reportwriter
e Project manager
e Menu builder

e Graphic data interpreter

2.5.5 Data Administration Subsystem

The data administration subsystem (DAS) consists of a collection of utilities that facilitate
effective management of the database. Included in this subsystem are facilities for backup
and recovery, database tuning, and storage management. It is typically used by DBAs as
well as software engineers.

2.5.6 Data Dictionary Subsystem

Also called the system catalog in many systems, the data dictionary (DD) contains
information on the database structure as well relationships among database objects. It is
automatically created and maintained by the DBMS.

The system catalog contains all metadata for the database. It can be queried using
the same commands used to manipulate source data; it is therefore of inestimable value
to the DBAs and software engineers. More will be said about the system catalog later in
the course.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

2.5.7 Data Communications Manager

Traditionally, a separate system that is linked to the DBMS, the data communications
manager (DCM) caries out functions such as:

e Handling communication to remote users in a distributed
environment

e Handling messages to and from the DBMS
¢ Communication with other DBMS suites

Modern systems tend to have this subsystem as an integral part of the DBMS suite.
In short, the data communications manager ensures that the database communicates
effectively with all client requests in a client-server-based environment. Typically, the
server-based portions of the DBMS will be running on machines designated as servers in
the network. All other nodes are then deemed as client nodes that can request database
services from a server. There may be several database servers in the network; also, a node
may act as both a server and a client (provided the essential software components are in
place).

2.5.8 Utilities Subsystem

Utilities are programs that perform various administrative tasks. The utilities subsystem
consists of various utility programs that are applicable to the database environment.
Examples of utilities are as follows:

e Load routines to create initial version of a database from non-
database files

e Copy routines for duplicating information

e Reorganization routines to reorganize data in the database
e File deletion routine(s)

e Statistics routines to compute and store file statistics

e Backup and recovery utilities

e Other utilities (that might have been) developed by application
programmers

2.6 The Front-end and Back-end Perspectives

A DBS can be perceived as a simple two-part structure:

e The Front-end consists of end users, applications and a
programming interface.

e The Back-end consists of the actual DBMS and the database.

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

The front-end system may be on a different machine from the back-end system and
the two connected by a communication network. For example, we may have a front-end
system in Delphi or Java NetBeans, and a back-end system in Oracle, Sybase, MySQL, or
DB2. Figure 2-4 illustrates.

Ve
3 End Users
'?" A
[1°}
2 _< \ 4
‘%u’,: Application Programs
12}
3 Programming Environment
N—
o 4 Programming Environment
Q
g DBMS
[1°}
=
o
(72]
<
a
[1°3
g <
Database
-

Figure 2-4. Front-end / Back-end Perspective

2.7 Database System Architecture

There may be added benefits of using different machines for the back-end and

front-end system. Figures 2-5 - 2-7 show three possible configurations. Please note

also that various network topologies are applicable to any computer network (network
topology is outside of the scope of this course; however, it is assumed that you are familiar
with such information).

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

Applications

A

Programming

End Users elacs
Programming Database
Interface DBMS
Remote Access
Figure 2-5. Back-end and Front-end Running on Different Machines
Applications
End User
Programming
Interface
o o Programming
Interface
o o Database
o o DBMS
Applications
End User Programming
Interface

Figure 2-6. One Back-end, Multiple Front-ends

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

End Users End Users

Front-end Front-end
Back-end Back-end
_\ \
Database Database

Communications
Network

End Users

Front-end

Back-end

Database

Figure 2-7. Distributed System Where Each Machine has both Front-end and Back-end

Discuss: What are some of the advantages of using distributive processing in a
DBS environment?

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * THE DATABASE SYSTEM ENVIRONMENT

2.8 Summary and Concluding Remarks

Here is a summary of what has been covered in this chapter:

A database system can be construed as having three levels of
architecture: the external, the conceptual and the internal. These
levels are seamlessly interlinked by the DBMS.

The external level constitutes all the external views that end users
have of the database.

The conceptual level relates to the logical structure of
the database.

The internal level relates to the physical structure of the files
making up the database.

The DBA is the official responsible for the planning, construction,
Implementation and administration of the database.

The DBMS is the software that facilitates creation and
administration of the database.

A database system can be construed as being comprised of a
front-end system and a back-end system. The back-end system
relates to the actual creation and administration of the database.
The front-end system relates to the creation and administration of
the user interface through which end users access the system.

By applying the principle of separating front-end from back-end,
we can conceive of various database architectures.

With this background, we are now ready to move ahead and learn more about the
relational database model. You will learn the foundations of the model, and why it is
so important.

2.9 Review Questions

26

1.

With the use of a diagram, explain the different levels of
architecture of a database system.

Explain the acronyms DSL, DML, DCL, and DDL. How are
they all related?

What are the primary functions of the DBA?
What are the main functions of the DBMS?

With the aid of an appropriate diagram, explain how the
DBMS ensures that requests from end-users are satisfactorily
addressed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © THE DATABASE SYSTEM ENVIRONMENT

6. Discuss the functional components of a DBMS. Use an
appropriate diagram to illustrate.

7. Explain the concept of front-end and back-end systems,
and show how they add flexibility to the implementation of
distributed database systems.

2.10 References and/or Recommended Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York, NY:
Addison-Wesley, 2002. See chapter 2.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park, CA:
Addison-Wesley, 2004. See chapter 2.

[Elmasri, 2007] Elmasri, Ramez and Shamkanf B. Navathe. Fundamentals of Database
Systems 4" ed. Reading, MA: Addison-Wesley, 2004. See chapter 2.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, NJ: Prentice Hall, 2002.
See chapter 1.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern Database
Management 8" ed. Upper Saddle River, NJ: Prentice Hall, 2007. See chapters 1&2.

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See chapter 2.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 5" ed. Boston, MA: Course Technology, 2002. See chapter 1.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See chapter 1.

27

www.it-ebooks.info

http://www.it-ebooks.info/

PART B

The Relational Database
Model

The next seven chapters will focus on the relational database model. As pointed
out in chapter 1, there are other approaches to database design, but the relational
model reigns supreme: it is superior to other traditional approaches; it remains a
strong, viable alternative to or complement of (depending on your perspective)
the more contemporary object-oriented model. Even if your choice is to construct
an object database, a working knowledge of the relational model will still be
required. For these and other reasons, mastery of the relational model is essential
to good database administration and software engineering. The objectives of this
division are

e to clearly define, describe and discuss the relational
database model;

e todiscuss how databases are planned, represented and
implemented;

e todiscuss the theory, rationale, and practical
ramifications of normalization;

e todiscuss important database integrity rules;

e todiscuss relational algebra and relational calculus as the
foundations to modern database languages;

e todiscuss the standards to which database management
systems ought to attain.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapters to be covered include:

Chapter 3 — The Relational Model

Chapter 4 — Integrity Rules & Normalization
Chapter 5 — Database Modeling and Design
Chapter 6 — Database User Interface Design
Chapter 7 — Relational Algebra

Chapter 8 — Relational Calculus

Chapter 9 — Relational System — a Closer Look

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

The Relational Model

This chapter introduces you to the fundamental principles and concepts upon which
subsequent chapters will be built. Discussion advances under the following captions:

e Basic Concepts

e Domains

e Relations

e Relational Database System

¢ Identifying, Representing and Implementing Relationships
e Relation-Attributes List and Relationship List

e Non-relational Approaches

e Summary and Concluding Remarks

3.1 Basic Concepts

The relational model is by far the most widely used model for database design. The model
owes its success to the fact that it is firmly founded on mathematical principles (set theory
and linear algebra) which have been tested and proven; like the underlying principles, the
model itself has been tested and proven oven the years. Before we can proceed, there are
some fundamental concepts to be introduced (Figure 3-1):

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

Entity: An object, concept or thing about which data is stored. Examples include PurchaseOrder, Person,
Course, Department, Program, Student. Entities are implemented as two-dimensional tables and ultimately files.

Attributes: Some qualities associated with the entity; e.g. Order#, OrderDate and Iltem# of entity PurchaseOrder;
Dept# & DeptName of entity Department. Two synonymous terms for attributes are elements and properties ; they
correspond to columns of a table and are ultimately implemented as fields of a record.

Entity Set: A set of related entities.

Relationship: An inherent mapping involving two or more entities. Relationships are represented in relations.
Relation: A two-dimensional (tabular) representation of entities and relationships. A binary relation contains two
attributes; an n-ary relation contains n attributes. A binary relationship involves an association between two entities;
an n-ary relationship involves an association among n entities. For a more formal definition, see section 3.3.

Tuples: Correspond to rows of the table, or records of a file.

Primary Key: An attribute or combination of attributes for which values uniquely identify tuples in the relation. The
primary key is chosen from a set of candidate keys.

Candidate Keys: There may be more than one potential keys of a relation. Each is called a candidate key.
Alternate Key: A candidate key that is not the primary key.

Foreign Key: An attribute (or combination of attributes) that is primary key in another relation.

Domain: A pool of all legal values from which actual attribute values are drawn.
Cardinality: Number of tuples in a relation. The cardinality varies with time.

Degree: Number of attributes in a relation; also called the arity. Degree is also used to describe the number of entities
implied by a relationship.

Figure 3-1. Basic Concepts

Figure 3-2 provides a list of commonly used relational terms and their informal
equivalents:

Formal Relational Term Informal Equivalents

Entity Object conceptualized as a table, implemented as a file
Relation As for entity

Tuple Conceptualized as a row, implemented as a record
Attribute Conceptualized as a column, implemented as a field
Cardinality Conceptualized as the number of rows

Degree Conceptualized as the number of columns

Domain Conceptualized as a pool of legal values

Figure 3-2. Relational Terms and their Informal Equivalents

Figure 3-3 illustrates how the terms are applied. Observe that the idea of entity and
relation seem to be similar. This will be clarified later. For now, assume that similarity.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

< » Degree25

Entity/Relation: Supplier -
S_Number | S _Name S_Phone S_City Contact ’%
S001 ABC Co. 305 123 4567 New York Bruce Jones @
S002 Jones Inc. 876 843 4869 Mandeville Larry Gross
S003 Intellorg 309 123 4567 Detroit Sam Ross
S004 MCS Inc. 876 123 4567 Kingston Althea Foster &
8005 Hitek 978 123 4567 Lancaster Scott Xavier g
S025 LM Software 308 123 4567 Miami Farhsworth Jones >

Phone Nos. Domains
Alpha Codes

Entity/Relation: Inventoryltem

Item# Item Name Weight (Kg) Quantity on Hand
1001 Crank Shaft 50,75 35

1002 Head Lamp 1.52 120

1003 Pistons 0.75 130

Entity/Relation: SupplierOfitem
S_Number Item# Default Quantity
S001 1001 026
S001 1003 230
S025 1001 010
S025 1002 090
S025 1003 320

Figure 3-3. Illustrating Basic Terms

3.2 Domains

A domain is a named set of scalar values from which attribute values are drawn. Scalar
values are non-decomposable (atomic) values.

Each attribute of a relation must be defined on an underlying domain. The attribute
values must come from the underlying domain (as illustrated in Figure 3-3).

Domains are conceptual; they may not be (and usually are not) actually stored in
the database. Rather, the subsets of the domains containing actual attribute values are
stored. Domains are analogous to data types in high level programming languages such
as Pascal, C++, Java, etc.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

A composite domain is a combination of simple domains. Whether a composite
domain is used or is replaced by its constituent simple domains, is a design decision that
should follow thoughtful consideration.

Example 1: Date is an excellent illustration of a composite domain, as explained below:

Date is a combination of

Year which has range 0 .. 9999
Month which has range 1 .. 12
Day which hasrange 1 .. 31

Thus domain therefore has a total of 12 * 31 * 10,000 values, but not all values are valid dates.

There can therefore be composite attributes. Composite domains are analogous
to Pascal records and C++ structures. Few systems support composite domains and
composite attributes.

Significance of Domains

An understanding of domains is critical for the following reason: If attributes of different
relations (entities) come from the same domain, then comparisons can be made;
otherwise, comparisons are meaningless.

Example 2: The following illustrations should emphasize the importance of domains:

/l Referring to figure 3.3 and using SQL statements on relations Inventoryltem and SupplierOfltem:

// The following SQL statement 1s valid:
SELECT * FROM SupplierOfitems SI, Supplier S WHERE SLS_Number = §.5_Number;

/* The following SQL statement is not a valid SQL statement since attempt is being made to compare
attributes (Weight and DefaultQuantity) defined on different domains:*/
SELECT * FROM SupplierOfitems SI, InventoryItem I WHERE SI DefaultQuantitty = I Weight;

3.3 Relations

A relation R on a collection of domains D1, D2, . .. Dn (not necessarily distinct) consists
of two parts — a heading and a body.

The heading consists of a fixed set of attributes, or more precisely,
attribute-domain pairs,

{(A1:D1), (A2:D2), .. . (An:Dn)}

such that each attribute corresponds to exactly one domain and n is the degree
of the relation. Another term used to describe the heading of a relation is the predicate of
the relation.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

The body consists of a time-varying set of tuples where each tuple consists of a set of
attribute-value pairs

{(A1:Vi1), (A2:Vi2), ... (An:Vin)} (i=1...m)

where m is the number of tuples (cardinality) in the set. The body of the relation is also
sometimes referred to as the proposition of the relation. The proposition defines a set of
tuples whereby for each row in the relation, the respective attributes take on legal values
from their respective domains.

Observe that the definition of a relation appears to be similar to that of an entity.
There are two subtle differences:

e The term relation as used, belongs to the field of relational
systems. We talk about relations because we are discussing the
relational model. Entities on the other hand, describe identifiable
objects and/or situations.

e Entity, as defined does not account for relationships. Relation
on the other hand, accounts for entities as well as relationships.
Thus in the relational model, we represent entities as relations
and (M:M) relationships (between entities) as relations. A binary
relation for instance, has two attributes. If both attributes are
foreign keys and they both constitute the primary key, this binary
relation actually represents a many-to-many relationship
between two referenced relations; otherwise it is (a relation that
can be construed as) an entity. This point will become clear as
we proceed.

The foregoing underscores the point that entities can be construed as special
kinds of relations. In designing a database, the software engineer or database designer
commences by identifying entities during the requirements specification. After further
analysis, these entities are eventually implemented by normalized relations.

Note: A unary relation differs from a domain in the sense that former is dynamic and
the latter static.

3.3.1 Properties of a Relation

Based on the relational model, all relations have the following properties:
e No duplicate tuples (records)
e Records are unordered
e Attributes are unordered

e Attribute values are atomic

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

The first and last properties are constraints that both end users and software engineers
should be cognizant of, since they have to manage data contained in the database; they are
also of interest to the database designer. The second and third properties on the surface
are immaterial to end users as well as software engineers; they are usually enforced by the
DBMS in a manner that is transparent to the end user. However, when the DBMS is written,
concern has to be given to accessing of records. Further, DBMS suites are typically written to
give the illusion that the attributes of a relation are ordered.

3.3.2 Kinds of Relations

A database will consist of various types of relations, some of them at different stages of the
system. The common categories of relations are mentioned below:

1. Base Relations are named and permanently represented in
the database. They make up the conceptual schema of the
database; they form the foundation of the database.

2. Views (virtual relations) are derived from named (base)
relations. A view stores the definition of the virtual relation
(derived from base relations), but stores no physical data. It is
simply a logical (conceptual/external) interpretation of data
stored in base relations. SQL views and System i logical files
are good examples of views.

3. Snapshets are named, derived relations. They differ from
logical views in that they are represented in terms of definition
as well as physically stored data. From the perspective of the
end user, a snapshot relation is typically (but not necessarily)
read-only. To illustrate, consider two systems — System-A
and System-B — which both need to access a database table,
Table-X. Suppose that System-A has update rights to Table-X,
but System-B does not. Table-X is therefore stored in
System-A’s database; a duplicate version for read-only
purposes, is stored in System-B, and is periodically updated
(without user interference) from System-A.

4. Query Results: Queries are typically entered at a command
prompt (they may be also embedded in high level language
programs or stored in special query files). Results may be
directed to screen, printer, or a named relation. An important
principle to note is that a query when executed always results
in a new relation. This principle will be elucidated later in the
course.

5. Intermediate Results: The DBMS may create an intermediate
relation to assist in furnishing a final answer to a complex
query request. This will also be elucidated later in the course.

6. Temporary Relations are named relations that are destroyed
at some point in time.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

3.4 Relational Database System

A relational database system (RDBS) is a collection of time-varying normalized relations,
managed through an appropriate user interface, and with desirable constraints and
features that enhance the effective, efficient management of the database. These
desirable features and constraints will be discussed (see chapter 9) as we progress
through the course. The term normalized relations will be fully clarified in chapter 4; for
now, just consider it to mean that the relations are designed to promote efficiency and
accessibility.

The relations are conceptualized as tables and ultimately implemented as files.
Each relation contains one and only one record type. Each relation has a primary key
(chosen from a set of candidate keys). In many cases, the primary key is obvious and can
be identified intuitively. In situations where this is not the case, the database designer,
based on principles to be discussed in the next chapter, typically takes decision about the
primary key.

Each record type is made up of atomic attributes. This means that each attribute is
defined on a single domain, and can only have a value from that domain. Moreover, when
data is loaded into the database, each record from any given table has a unique primary
key value.

Superimposed on the database is a user interface that facilitates access of the
database by end users. The database and the user interface are designed to ensure that
certain objectives are met (section 1.2) and established standards are conformed to.

Steps in Building a Relational Database System
In constructing a RDBS, the following steps may be pursued:

a. Identify entities

b. Identify relationships

c. Eliminate unnecessary relationships

d. Develop entity-relationship diagram (ERD), object-
relationship diagram (ORD) or some equivalent model

e. Normalize the database

f. Revise E-R diagram, O-R diagram, or the equivalent model used
g. Design the user interface

h. Proceed to development phase

Note that these steps are to be pursued within the context of a software engineering
project. Accordingly, this course assumes that the reader is familiar with steps a-d, and h.
The rest of this chapter will review steps b-d, while providing some (additional) insights
probably not covered in your (introductory) software engineering course. Chapters 4
and 5 will focus on steps e and f; step g is covered in chapter 6, and step h is covered in
chapters 10-14.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

3.5 Identifying, Representing, and Implementing
Relationships

As mentioned earlier, a relationship is an inherent mapping involving two or more
relations. In planning a relational database, it is very important to know how to
identify and represent relationships. Of course, the ultimate objective is successful
implementation of the model. Let us take some time to discuss these issues:

3.5.1 Identifying Relationships

To identify relationships, you have to know what a relationship is (review section 3.1) and
what types of relationships there are. There are six types of relationships:

e One-to-one (1:1) Relationship

e One-to-many (1:M) Relationship

e Many-to-one (M:1) Relationship

e Many-to-many (M:M) Relationship
e Component Relationship

e Subtype Relationship

The first four types of relationships are referred to as traditional relationships
because up until object model (for database design) gained preeminence, they were
essentially the kinds of relationships that were facilitated by the relational model. Observe
also, that the only difference between a 1:M relationship and an M:1 relation is a matter
of perspective; thus, a 1:M relationship may also be described as an M:1 relationship (so
that in practice, there are really three types of traditional relationships). Put another way:

IfR1. R2 are two relations and there is a 1:M relationship between R1 and R2. an alternate way
of describing this situation is to say that there is an M:1 relationship between R2 and R1.

For traditional relationships, to determine the type of relationship between two
relations (entities) R1 and R2, ask and determine the answer to the following questions:

e How many records of R1 can reference a single record of R2?
e How many records of R2 can reference a single record of R1?

To test for a component relationship between any two relations R1 and R2, ask and
determine the answer to the following questions:

e Is(arecord of) R1 composed of (arecord of) R2?

e Is(arecord of) R2 composed of (a record of) R1?

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © THE RELATIONAL MODEL
For a subtype relationship, the test is a bit more detailed; for relations R1 and R2, ask
and determine the answer to the following questions:
e Is(arecord of) Rl also a (a record of) R2?
e Is(arecord of) R2 also a (a record of) R1?

Possible answers to these questions are always, sometimes, or never. The
possibilities are shown below:

R1 always R2. R2 always R1

R1 always R2, R2 sometimes R1

R1 always R2. R2 never R1

R1 sometimes R2. R2 always R1

R1 sometimes R2. R2 sometimes R1
R1 sometimes R2, R2 never R1

R1 never R2. R2 always R1

R1 never R2, R2 sometimes R1

R1 never R2, R2 never R1

R1 and R2 are synonymous
R1 is a subtype of R2
Makes no sense

R2 is a sub-type of R1
Inconclusive

Makes no sense

Makes no sense

Makes no sense

No subtype relationship

yusuuuuuuy

3.5.2 Representing Relationships

Having identified the entities and relationships, the next logical question is, how do

we represent them? Four approaches have been used: database hierarchies, simple
networks, complex networks, the entity-relationship model and the object-relationship
model. The first three approaches are traditional approaches that have made way for the
more reputed latter two approaches. We will therefore start by discussing the latter two
approaches.

The Entity-Relationship Model

The popular answer to this challenge of database representation is the entity-relationship
diagram (ERD or E-R diagram). Figure 3-4a shows the symbols used in an ERD, while
Figure 3-4b provides an illustration based on the Crows-Foot notation. In the diagram,
the convention to show attributes of each entity has been relaxed, thus avoiding clutter.
Note also that relationships are labeled as verbs so that in linking one entity to another,
one can read an entity-verb-entity formulation. If the verb is on the right or above the
relationship line, the convention is to read from top-to-bottom or left-to-right. If the verb
is on the left or below the relationship line, the convention is to read from bottom-to-top
or right-to-left.

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

Or

Entity
—
L

1:M Relationship

Crow's

—<
>— o 3

M:1 Relationship Foot

Notation

Or J

1:1 Relationship

B is a subtype of A
B is a component of A

M:M Relationship

(11

Alternate relationship symbol for 1:M, M:1, and
M:M relationships (Chen’s Notation)

Note: The original Crow’s Foot notation uses the triangular shaped “crow’s foot.” However, the more
square-on appearance has been introduced here because as you will soon realize, in the absence of a
good CASE tool, it is easier to draw using a typical text editor.

Figure 3-4a. Symbols Used in E-R Diagrams

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

Purchases Machine p—
) £
P oice Pl-Contains g
S 7
L 5
Sends Receives PurchaseOrder
— Supplier - - Supports
Supplied By o Usedin Project
g
@
3 £
Wareh b Stores Inventoryltem =) &
3 g
2
| I-Contains
3 Employee
EmployeePersonalinfo ——
y
Z H EmployeeE mentHistory
4] °) o
5 g 3
T |]
EmployeeAcademicLog a g
Q g
w
o
EmployeePublications
EmployeeExtraCurricular —
] L Depart
D-Situated
MNote:

1. Attributes are not shown. For complex databases, including attributes on the ERD is impractical.
2. There can be relationships involving more than two entities, but only binary relationships are included in this ERD.

Figure 3-4b. Partial ERD for Manufacturing Firm

www.it-ebooks.info

41

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

The ERD is normally used to show binary relationships but can also show n-ary
relationships. In many cases, E-R diagrams show only binary relationships. For example,
a possible ternary relationship not shown in Figure 3-4b is Supplier-Schedule (linking
Supplier, InventoryItem and Project). The reason for this is the following principle:

or may not be required.

All relationships of degree greater than 2 can be decomposed to a set of binary relationships. This may

The proof for this principle is beyond the scope of this course. However, we shall revisit
it later, and provide additional clarifications. For now, a simple illustration will suffice:
Figure 3-5 shows how the ternary Supplier-Schedule relationship may be broken down
into three binary relationships. Since care must be taken in applying this principle, it will be

further discussed in the next chapter.

Supplier-Schedule
Supplier Project
Inventoryltem
Decomposes to:
SupplierOfProjects
Supplier Project
Inventoryltem »
ItemSupplierMap ProjectltemMap

Figure 3-5. Decomposing a Ternary Relationship

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

The Object-Relationship Model

As you are aware, or will soon learn (from your software engineering course), there are,
broadly speaking, two alternate paradigms for software construction: the functional
approach (which is the traditional approach) and the object-oriented (OO) approach. In
an object-oriented environment, the comparative methodology for the E-R diagram is the
object-relationship diagram (ORD or O-R diagram). The concept of an ORD is similar to
that of an ERD, and the diagrams are also similar, but there are a few exceptions:

¢ Inthe OO paradigm, the object type replaces the entity (type) of
the relational model. Like the entity, an object type is a concept
or thing about which data is stored. Additionally, the object type
defines a set of operations, which will be applicable to all objects
(instances) of that type.

e The symbol used to denote an object type is similar to an
entity symbol, except that it has two extended areas — one for
the attributes of the object type, and the other for its defined
operations.

e The preferred diagramming convention is the UML
(Unified Modeling Language) notation.

e Depending on the OO development tool, there might be
additional notations regarding the cardinality (more precisely,
multiplicity) of the relationships represented.

A full treatment of the OO approach is beyond the scope of this course. You are
no doubt familiar with using UML diagrams in your OO programming courses. For a
quick review of the fundamentals, please see references [Lee, 2002] and [Martin, 1993].
However, in the interest of comprehensive coverage, an overview of the approach is
provided in chapters 5 and 23.

Database Tree

A database tree (hierarchy) is a traditional alternative, which used to be employed prior to
the introduction or the E-R model; it was successfully employed in a system called RAMIS
(the original acronym stands for “Random Access Management Information System”).

A database tree (hierarchy) is a collection of entities and 1:M relationships arranged such
that the following conditions hold:

e Theroot has no parent
e Each subsequent node has a single parent

Figure 3-6 illustrates a database hierarchy. Observe that it looks like a general tree
(review your data structures). Except for the root (node A), each node has a parent node
that it references. Note also that all the relationships are 1:M relationships (traditionally
referred to as parent-child relationships).

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

A
M M
B C
] [] M
D E F

Figure 3-6. Example of a Hierarchy (Tree)

Database Networks

The database network approach is another traditional approach that is no longer
employed. In the interest of historical context, a brief overview is provided here. A simple
database network is a collection of entities and 1:M relationships arranged such that

any member can have multiple parents, providing that the parents are different entities.
Figure 3-7 illustrates the approach. It was successfully employed in a DBMS called the
CODASYL system (the original CODASYL acronym stands for “Conference on Data
Systems Languages”).

A 1 B
L]
1 11
D — C
||

Figure 3-7. A Simple Network

A complex database network is a collection of entities and relationships, at least
one of the relationships being an M:M relationship. Figure 3-8 illustrates. The complex
network can be reduced to a simple network by replacing all M:M relationships with M:1
relationships. The technique for replacing M:M relationships will be discussed in the
upcoming subsection.

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

Figure 3-8. Complex Network

3.5.3 Multiplicity of Relationships

It is customary to indicate on the ERD (or ORD), the multiplicity (also called the
cardinality) of each relationship. By this we mean, how many occurrences of one entity
(or object type) can be associated with one occurrence of the other entity (or object type).
This information is particularly useful when the system is being constructed. Moreover,
violation of multiplicity constraints could put the integrity of the system is question,
which of course is undesirable. Usually, the DBMS does not facilitate enforcement of
multiplicity constraints at the database level. Rather, they are typically enforced at the
application level by the software engineer.

Several notations for multiplicity have been proposed, but the Chen notation (first
published in 1976, and reiterated in [Chen, 1994]) is particularly clear; it is paraphrased
here: Place beside each entity (or object type), two numbers [x,y]. The first number (x)
indicates the minimum participation, while the second (y) indicates the maximum
participation.

An alternate notation is to use two additional symbols along with the Crow’s Foot
notation: an open circle to indicate a participation of zero, and a stroke (|) to indicate a
participation of 1. The maximum participation is always indicated nearest to the entity (or
object type) box.

For convenience, you could also use the Chen’s notation for multiplicity, along
with the Crow’s Foot notation for representing the relationships. The Chen notation
is preferred because of its clarity and the amount of information it conveys. Figure 3-9
provides an illustrative comparison of the two notations.

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © THE RELATIONAL MODEL

Employee | Employee | [o,M] Meaning:
An employee could have
zero or many dependents; a
! dependent has one and only
<> one associated employee.
- M
Z T\
| Dependent | | Dependent | [11]
| Department | | Department | [1,M] -
Meaning:
0 A department could have one
1 or many employees; an
employee belongs to one and
<> only one department.
M
AN
Employee | | Employee [1,1]

Figure 3-9. Illustrating Multiplicity Notations

3.5.4 Implementing Relationships

Assuming the E-R model, relationships can be implemented by following a set of
guidelines as outlined below:

To implement a 1:M relationship, store the primary key of one as a foreign key of the other (foreign key
must be on the “many side™). Figures 3.13 and 3.14 illustrate (there is a M:1 relationship between
Suppliers and Locations: there are others that you should identify).

To implement an M:M relationship, introduce a third intersecting (1:M) relation. The new relation is
usually keyed on all the foreign keys (or a surrogate #). Also, the original relations/entities form 1:M
relationships with the intersecting relation (figure 3.10 illustrates).

To implement a subtype relationship. introduce a foreign key in the subtype. which is the primary
key in the referenced super-type. Further, make the foreign key in the subtype, the primary key of
that subtype. In the case of multfiple inherifance (where a subtype has more than one super-types).
make the introduced foreign keys in the subtype, candidate keys, one of which will be the primary
key. Figures 3.11 and 3.12 illustrate this strategy.

To implement a component relationship. introduce in the component relation, a foreign key that is
the primary key in the sunmary relation. This foreign key will form part of the primary key (or a
candidate key) in the component relation. Figures 3.11 and 3.12 illustrate this strategy.

To implement a 1:1 relationship, introduce a foreign key in one relation (preferably the primary relation)
such that the primary key of one is an attribute in the other. Then enforce a constraint that forbids
multiple foreign keys referencing a single primary key. Altemately, treat the 1:1 relationship as a
subtype relationship (but ignore enforcing inheritance).

A surrogate 15 an atonuc attnbute duced either lly the DBMS, or manually by the database
designer. It is used to uniquely identify each tuple in the relation. This will be further clarified in chapter 5

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

The foregoing strategies should underscore forcefully in your mind, the importance
of foreign keys in database design. In fact, foreign keys are referred to as the “glue” that
holds the database together. We shall revisit this concept in the next chapter.

In many textbooks and database environment, you will see and/or hear the
term parent-child relationship. This is a rather lame term, borrowed from preexisting
hierarchical database systems, to describe 1:1 and 1:M relationships. In a parent-child
relationship, the parent relation is the referenced relation; the child relation is the
referencing relation. Throughout this course, these terms are avoided because they are
rather confusing, and do not accurately describe several scenarios involving 1:1 and/or
1:M relationships. Alternately, we will use no euphemism for 1:1 and 1:M relationships;
instead of parent relation, we'll say the referenced relation; instead of child relation, we
say primary relation or referencing relation.

Machine

—
L1

Machine

Is replaced with:

L] Project

MapMP

)

A

Primary Key

Primary Key

Project

Q,

A

Primary Key

Figure 3-10. Implementing M:M Relationships

www.it-ebooks.info

47

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

Related-Project

CollegeMember

Member-Code

Surname P

First-Name

Birth-Date
Student Employee
Major Job-Title
GPA < ——| Salary-Grade

StudentEmployee

EmployeePersonallnfo

EmployeeEmploymentHistory

EmployeeAcademicLog

EmployeePublications

EmployeeExtraCurricular

EmployeeDependentsLog

Note: The top three entities include attributes of the entities via the UML convention. With the right modeling
tools, you would include attributes for each entity. However, this clutters the diagram, particularly as the
system becomes larger and more complex. For practical reasons therefore, this practice is not followed here.
See section 3.6 for further clarification on this.

Figure 3-11. Illustrating Subtype and Component Relationships

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

Relation Attributes

College Member MemberCode, Surname, First-Name, BirthDate, ...

Student MemberCode, Major, GPA, ...

Employee MemberCode, JobTitle, SalaryGrade, ...

StudentEmployee MemberCode, Related-Project

EmployeePersonalinfo MemberCode, Address, Telephone, ...

EmployeeEmploymentHistory MemberCode, JobSequence, Organization, ...

EmployeeAcademicLog MemberCode, LogSequence, Institution, Period-Attended, Award, ...

EmployeePublications MemberCode, PublCode, Title, Book-Journal-Flag, ...

EmployeeExtraCurricular MemberCode, ActivityCode, Activity-Description, ...

Note:

1. Primary key attributes and foreign key attributes are in italics.

2. This is not a comprehensive RAL. For several of the relations included, there are additional attributes to be added
(indicated by the three periods in the attributes column).

Figure 3-12. Illustrating the Implementation of Subtype and Component Relationships

3.6 The Relation-Attributes List and
Relationship List

In large, complex information systems projects, it is often impractical to attempt to
develop and maintain ERDs, unless they are automatically generated and maintained by
computer-aided software engineering (CASE) tools (more on these in chapter 5). Even
when maintained by CASE tools, an ERD for such a project could become large, spanning
several pages. Reading and interpretation then becomes difficult.

To circumvent the above challenges, a Relation-Attribute List (RAL) and a Relationship
List (RL) may be constructed and maintained. The former maintains information on
all relations of the system and the latter maintains information on all relationships
implemented in the system. Figures 3-13 and 3-14 illustrate partial RAL and RL for the
database model of Figure 3-4b. As you examine these figures, please note the following:

e Inpractice, the format of the RL shown in Figure 3-14b is used as
the final list over the format shown in Figure 3-14a (the format
used in Figure 3-14a can be deduced by simply identifying all
possible relationships among entities; hence, it may contain
optional relationships and is therefore useful as a first draft).

e Therevised RL of Figure 3-14b has been stripped of all M:M
relationships (review section 3.5.4 on treating M:M relationships).

e Therelations PurchaseInvSummary and PurchaseInvDetail of
Figure 3-13, are used to replace the M:M relationship between
Purchaselnvoice and InventoryItem in Figure 3-4b. Similarly,
the relations PurchaseOrdSummary and PurchaseOrdDetail
are used to replace the M:M relationship between
PurchaseOrder and Inventoryltem in Figure 3-4b.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

¢ Inconstructing the RAL and RL, it is sometimes useful to use the
RL to refine the RAL and vice versa. In particular, once you have
identified all the (mandatory) relationships, you may use this along
with the principles outlined in section 3.5.4 to refine the RAL.

e Remember, the model of Figure 3-4b, RAL of Figure 3-13, and the
RL of Figure 3-14 do not represent a comprehensive coverage of
the database requirements of a manufacturing firm; neither are

they intended to be. Rather, they serve as useful illustrations.

Relation Attributes

Customer Cust#, Cust-Name, Address,... Reference Person, ...

Supplier Supph, SuppIName, Address, SupplLock, ...

Machine Mach#, Mach-Description, ...

Project Proj#, ProjName, ProjManagerEmp#, ...

Warehouse Whousett, WhouseName, WhouseSize, WhouseLoc#, ...

Inventoryltem Itemt, ltemName, ...

Location Loc#, LocationName, DistanceFromHQ, ...

Department Dept#, DeptName, DeptLock, ...

Employee Emp#, EmpName, EmpProj#, EmpDept#, DOB,...

PurchaseOrdSummary OrderRef, Order#, OrderDate, OrderSupph#, OrderStatus, ...

PurchaseOrdDetail PODOrderRef, Orderltemi, OrderQuantity, OrderUnitPrice

PurchaselnvSummary PurchaseRef, Invoice#, InvSuppHt, InvOrderRef, InvDate, InvAmount,
InvStatus, ...

PurchaselnvDetail PIDPurchaseRef, PIDIten#, PIDItemQuantity, PIDItemUnitPrice

SalelnvSummary SaleRef, Slinvoice#, SaleDate, SaleCustt, InvoiceStatus, SaleAmount, ...

SalelnvDetail SIDSaleRef, Saleltent, Quantity, UnitPrice

MachineUsage MUMach#, MUlterm##

MachProjects MPMachi#, MPProj#

ProjSupp PSSupph, PSProj#

ItemProj IPltemt, IPProj#

Suppltems SISuppit, Slitemt

Stock SWhouse#, Sltemit

ItemStruct ISThisltemi, ISCompltemt

EmployeePersonallnfo EPIEmp#, MaritalStatus, Address, Telephone, Email, ...

EmployeeEmploymentHistory EHEmp#, EHJobSequence, Organization, Title, ...

EmployeeAcademicLog ALEmp#, ALLogSequence, Institution, PeriodAttended, Award, ...

EmployeePublications EPEmp#, PublCode, Title, BookJournalFlag, ...

EmployeeExtraCurricular EXEmp#, EXActivityCode, ActivityDescription, ...

Note:

1. Primary key attributes and foreign key attributes are in italics.

2. This is not a comprehensive RAL. For several of the relations included, there are additional attributes to be
added (indicated by the three periods in the attributes column). Also, additional relations would be required in
order to have a comprehensive model (indicated by the three periods in the previous row).

3. For each relation, an effort is made to keep attribute names unique (to the entire database), even if the
attribute is a foreign key. For instance, in the relation Employee, the attribute EmpDept# is a foreign key that
references Dept# in the relation Department. This convention applies for all foreign keys.

4. The attributes OrderRef (in PurchaseOrdSummary relation), PurchaseRef (in PurchaselnvSummary
relation) and SaleRef (in SalelnvSummary relation) are examples of surrogates. Surrogates will be more
thoroughly discussed in chapter 5.

Figure 3-13. Partial Relation-Attributes List for a Manufacturing Firm’s Database

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

Relationship Name

Participating Relations

Type Comment

SuppliedBy Supplier, Inventoryltem M:M Mandatory
Purchases Customer, Inventoryltem M:M Mandatory
Uses Machine, Inventoryltem M:M Mandatory
Used-In Inventoryltem, Project M:M Mandatory
M-Used-In Machine, Project M:M Mandatory
Stores Warehouse, Inventoryltem M:M Mandatory
Contains Inventoryltem, Inventoryltem M:M Mandatory
Assigned Employee, Project M:1 Mandatory
Belongs Employee, Department M:1 Mandatory
D-Situated Location, Department 1:M Mandatory
W-Situated Warehouse, Location 1:1 Mandatory
S-Situated Supplier, Location 11 Mandatory
Sends Supplier, Purchaselnvoice M:M Mandatory
I-Contains Purchaselnvoice, Inventoryltem M:M Mandatory
RequestedOn PurchaseOrder, Inventoryltem M:M Mandatory
Receives Supplier, PurchaseOrder 1:M Mandatory
Supports Supplier, Project M:M Mandatory
SupplierSchedule Supplier, Inventoryltem, Project M:M Optional

ComposedOf Employee, EmployeePersonallnfo, Comp | Mandatory

EmployeeEmploymentHistory,
EmployeeAcademicLog,
EmployeePublications,
EmployeeExtraCurricular

www.it-ebooks.info

Figure 3-14a. Relationships List for a Manufacturing Firm’s Database

51

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

Named Relation Referenced Relations Type [Comment
SalelnvSummary Customer M:1 Implements relationship Purchases
SalelnvDetail SalelnvSummary M:1 Implements relationship Purchases
Inventoryltem M:1 Implements relationship Purchases
PurchaselnvSummary Supplier M:1 Implements relationships Sends and I-Contains
PurchaelnvDetail PurchaselnvSummary M:1 Implements relationship I-Contains
Inventoryltem M:1 Implements relationship I-Contains
MachineUsage Machine M:1 Implements relationship Uses
Inventoryltem M:1 Implements relationship Uses
MachProjects Machine M:1 Implements relationship M-Used-In
Project M:1 Implements relationship M-Used-In
PurchaseOrdSummary Supplier M:1 Implements relationships Receives and
RequestedOn
PurchaseOrdDetail PurchaseOrdSummary M:1 Implements relationship RequestedOn
Inventoryltem M:1 Implements relationship RequestedOn
Supplier | Location | 11 | Implements relationship S-Situated
Suppltems Supplier M:1 Implements relationship SuppliedBy
Inventoryltem M:1 Implements relationship SuppliedBy
ProjSupp Supplier M:1 Implements relationship Supports
Project M:1 Implements relationship Supports
ltemProj Project M:1 Implements relationship UsedIn
Inventoryltem M:1 Implements relationship UsedIn
Stock Warehouse M:1 Implements relationship Stores
Inventoryltem M:1 Implements relationship Stores
ItemStruct Inventoryltem M:1 Implements relationship Contains
Inventoryltem M:1 Implements relationship Contains
Employee Project M:1 Implements relationship Assigned
Department M:1 Implements relationship Belongs
Warehouse | Location [11 T Implements relationship W-Situated
Department [Location [1:1 T implements relationship D-Situated
EmployeePersonalinfo Employee M:1 Implements relationship ComposedOf
EmployeeEmploymentHistory Employee M:1 Implements relationship ComposedOf
EmployeeAcademicLog Employee M:1 Implements relationship ComposedOf
EmployeePublications Employee M:1 Implements relationship ComposedOf
EmployeeExtraCurricular Employee M:1 Implements relationship ComposedOf

Figure 3-14b. Refined Relationships List for a Manufacturing Firm's Database

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

3.7 Non-Relational Approaches

Prior to development of the relational model, the following approaches used to be employed:
e Inverted List Approach: Exemplified by DATACOM/DB

e Hierarchical Approach: Exemplified by Information Management
System (IMS) database and the Random Access Management
Information System (RAMIS)

e Network Approach: Exemplified by Conference on Data Systems
Languages (CODASYL) initiative and Integrated Database
Management System (IDMS) initiative

The strengths of the relational approach when compared to these approaches are its
sound mathematical base, its flexibility, robustness, and simplicity.

In recent times, the object oriented (O0O) model has been challenging the relational
model on performance and efficiency for certain scenarios. Nonetheless, we expect that
the two technologies will continue to peaceably coexist; huge investments have been
made in relational database systems, and it is not likely that these will be abandoned.
What is more likely to happen is that systems will be built based on relational databases,
with object oriented user interfaces superimposed.

3.8 Summary and Concluding Remarks

Let us summarize what we have covered in this very important chapter:

¢ Therelational database model is based on a number of
fundamental concepts relating to the following: entity, entity set,
relation, relationship, tuple, candidate key, primary key, alternate
key, foreign key, domain, cardinality, degree.

e A domain is a named set of scalar values from which attribute
values are drawn.

e Arelation consists of a heading and a body. The heading consists
of atomic attributes defined on specific domains. The body
consists of a set of attribute-values pairs, where each attribute has
avalue drawn from its domain.

e Inadatabase system, you are likely to find any combination of the
following types of relations: base relations, logical views, snapshots,
query results, intermediate results, and temporary relations.

e Arelational database system (RDBS) is a collection of time-varying
normalized relations, managed through an appropriate user
interface, and with desirable constraints and features that enhance
the effective, efficient management of the database.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

¢ Arelationship is an inherent mapping involving two or more
relations. There are six types of relationships: one-to-one (1:1)
relationship, one-to-many (1:M) relationship, many-to-one (M:1)
relationship, many-to-many (M:M) relationship, component
relationship, and subtype relationship.

e AnE-Rdiagram (ERD) is a graphical representation of a database
model. It is important to know how to represent relations/entities
and relationships on the ERD.

e Itisimportant to know how to implement the various types of
relationships in the actual database design.

e The relation-attributes list (RAL) and relationship list (RL) are
two useful alternatives to the E-R diagram, especially for large,
complex systems.

e Database approaches that preexisted the relational approach
include the inverted-list approach, the hierarchical approach and
the network approach.

e A contemporary alternative to the relational approach is the
object-oriented approach. However, given the efficacy of both
approaches, it is more likely that they will complement each other
in the future, rather than compete against each other.

Take the time to go over this chapter more than once if you need to, and make
sure that you are comfortable with the concepts covered. In the upcoming chapter, we
will build on the information covered in this chapter, as we discuss integrity rules and
normalization. These two topics form the foundation for the rest of the course.

3.9 Review Questions

1. Clarify the following terms:
e Entity
e Attributes
e Entity set
e Relation
e Relationship
e Tuples
e Primarykey
e Candidate key
e Foreign key

° Domain

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " THE RELATIONAL MODEL

e Cardinality
e Multiplicity
e Degree

Develop an illustrative data model to explain how these concepts
are related.

2. Give the formal definition of a relation. Explain the different
kinds of relations that may be found in a database.

3. Outline the steps to be observed in constructing a relational
database system.

4. What are the types of relationships that may exist among
information entities? For each, explain how it is identified,
and how it is implemented.

5. Think about a problem that requires a small database system
(requiring six to twelve entities or object types). Do the
following:

e Identity all required entities (object types).
e Identify relationships among the entities (object types).
e Develop an ERD or ORD.

e Propose a relation-attributes list (RAL) and a relationship list
(RL) to represent your model.

3.10 References and/or Recommended Readings

[Bruegge, 2002] Bruegge, Bernard and Allen H. Dutdt. Object-Oriented Software
Engineering: Conquering Complex and Changing Systems. Upper Saddle River, NJ:
Prentice Hall, 2002.

[Chen, 1994] Chen, Peter. “The Entity-Relationship Model - Toward a Unified View of
Data,” In Readings in Database Systems 2™ ed., pages 741-754. San Francisco, CA: Morgan
Kaufmann, 1994.

[Chen, 2007] Chen, Peter. http://bit.csc.1lsu.edu/~chen/display.html

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3* ed. New York: Addison-Wesley,
2002. See chapters 3 and 11.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
California: Addison-Wesley, 2004. See chapters 3 and 6.

[Edward, 1992] Edward, David. Information Modeling: Specification and Implementation.
Eaglewood Cliffs, NJ: Prentice Hall, 1992. See chapters 2-4.

[Elmasri, 2007] Elmasri, Ramez and Shamkanf B. Navathe. Fundamentals of Database
Systems 5™ ed. Reading, Massachusetts: Addison-Wesley, 2007. See chapters 3 and 7.

55

www.it-ebooks.info

http://bit.csc.lsu.edu/~chen/display.html
http://www.it-ebooks.info/

CHAPTER 3 ' THE RELATIONAL MODEL

[Foster, 2010] Foster, Elvis C. Software Engineering — a Methodical Approach.
Bloomington, IN: Xlibris Publishing, 2010. See chapter 10.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, New Jersey: Prentice Hall,
2002. See chapters 2 and 3.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern
Database Management 8" ed. Upper Saddle River, New Jersey: Prentice Hall, 2007.
See chapters 3 and 4.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein and Philip M. Lewis. Database
Systems: An Application-Oriented Approach 2™ ed. New York: Addison-Wesley, 2005.
See chapters 3 and 4.

[Kroenke, 2004] Kroenke, David M. Database Processing: Fundamentals, Design
and Implementation 9" ed. Upper Saddle River, New Jersey: Prentice Hall, 2004.
See chapters 2 and 3.

[Lee, 2002] Lee, Richard C. and William M. Tepfenhart. Practical Object-Oriented
Development With UML and Java. Upper Saddle River, NJ: Prentice Hall, 2002.

[Lewis, 2002] Lewis. Phillip M., Arthur Bernstein and Michael Kifer. Databases and
Transaction Processing: An Application Oriented Approach. New York: Addison-Wesley,
2002. See chapters 4 and 5.

[Martin, 1993] Martin, James and James Odell. Principles of Object-Oriented Analysis and
Design. Upper Saddle River, New Jersey: Prentice Hall, 1993. See chapters 6 and 7, and
appendix A.

[Martin, 1995] Martin, James. Client/Server Databases: Enterprise Computing. Upper
Saddle River, New Jersey: Prentice Hall, 1995. See chapter 3.

[Riccardi, 2003] Riccardi, Greg. Database Management With Web Site Development
Applications. Boston, Massachusetts: Addison-Wesley, 2003. See chapters 3 and 4.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, Massachusetts: Course Technology, 2007. See chapters 2 and 3.

[Silberschatz, 2006] Silberschatz, Abraham, Henry F. Korth and S. Sudarshan. Database
Systems Concepts 5 ed. New York, New York: McGraw-Hill, 2006. See chapters 2 and 6.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, New Jersey: Prentice Hall, 1997. See chapter 2.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Integrity Rules and
Normalization

In order to design high quality databases, you need to be cognizant of the fundamental
integrity and normalization rules. We will discuss these rules in this chapter. Sub-topics
to be discussed include:

e Fundamental Integrity Rules
e Foreign Key Concept

e Rationale for Normalization
e Functional Dependence and Non-loss Decomposition
e First Normal Form

e Second Normal Form

e Third Normal Form

¢ Boyce/Codd Normal Form

e Fourth Normal Form

e Fifth Normal Form

e Other Normal Forms

e Summary and Concluding Remarks

4.1 Fundamental Integrity Rules

Two fundamental integrity rules that the database designer must be cognizant of are the
entity integrity rule and the referential integrity rule.

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

Entity Integrity Rule: The entity integrity rule states that no component of the
primary key in a base relation is allowed to accept nulls. Put another way, in a relational
model, we never record information about something that we cannot identify. Three
points are worth noting here:

e Therule applies to base relations.
e Therule applies to primary key, not alternate keys.
e The primary key must be wholly non-null.

Referential Integrity Rule: The referential integrity rule states that the database
must not contain unmatched foreign key values. By unmatched foreign key value, we
mean a non-null foreign key value for which there is no match in the referenced (target)
relation. Put another way, if B references A then A must exist. The following points should
be noted:

e Therule requires that foreign keys must match primary keys, not
alternate keys.

e Foreign key and referential integrity are defined in terms of
each other. It is not possible to explain one without mentioning
the other.

4.2 Foreign Key Concept

The concept of a foreign key was introduced in the previous chapter. Let us revisit this
concept, by introducing a more formal definition:

Attribute FK of base relation R2 is a foreign key if and only if (denoted iff from this point) it satisfies the
following conditions:

a. Each value of FK is either wholly null or wholly non-null.

b. There exists a base relation, R1 with primary key PK such that each non-null value of FK is identical
to the value of PK in some tuple of R1.

We will use the notation R1 > R2 to mean, the relation R1 references the relation R2.
In this case, R1 is the referencing (primary) relation and R2 is the referenced relation.
Since R1 is the referencing relation, it contains a foreign key. We will also use the notion
R1{A, B, C, ...} to mean, the relation R1 contains attributes A, B, C, and so on. Where
specific examples are given, the relation-name will be highlighted or placed in upper
case; attribute-names of specific examples will not be highlighted when stated with the
related relation; however, they will be highlighted when reference is made to them from
the body of the text.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

Based on the definition of a foreign key, the following consequential points should
be noted:

1. The foreign key and the referenced primary key must be
defined on the same domain. However, the attribute-names
can be different (some implementations of SQL may require
that they be identical).

2. The foreign key need not be a component of the primary key
for the host (holding) relation (in which case nulls may be
accepted, but only with the understanding that they will be
subsequently updated).

3. Ifrelations Rn, R(n-1), R(n-2) R1 are such that
Rn > R(n-1) > R(n-2) > R2 > R1 then the chain Rn to R1
forms a referential path.

4. Arelation can be both referenced and referencing. Consider
the referential path R3 > R2 > R1. In this case, R2 is both a
referenced and a referencing relation.

5. We can have a self-referencing relation. Consider for example,
the relation Employee{Emp#, EmpName MgrEmployee#}
with primary key [Emp#]where attribute MgrEmp# is a
foreign key defined on the relation Employee. In this case we
have a self-referencing relation.

6. More generally, a referential cycle exists when there is a
referential path from Rn to itself: Rn > R(n-1) > R1 > Rn

7. Foreign-to-primary-key matches are said to be the “glue”
that holds the database together. As you will see, relations are
joined based on foreign keys.

Deletion of Referenced Tuples

Now that we have established the importance of foreign keys, we need to address a
question: How will we treat deletion of referenced tuples? Three alternatives exist.

e Restrict deletion to tuples that are not referenced.
e Cascade deletion to all referencing tuples in referencing relations.

e Allow the deletion but nullify all referencing foreign keys in
referencing relations.

The third approach is particularly irresponsible, as it could quite quickly put the
integrity of the database in question, by introducing orphan records. Traditionally, DBMS
suites implement the restriction strategy (and for good reasons). The cascading strategy
has been surfacing in contemporary systems, as an optional feature. It must be used with
much care, as it is potentially dangerous when used without discretion.

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

4.3 Rationale for Normalization

Normalization is the process of ensuring that the database (conceptual schema) is
defined in such a manner as to ensure efficiency and ease of data access. Normalization
ensures the following:

e Data integrity

e Control of redundancy

e Logical data independence

e Avoidance of modification anomalies

The following problems can be experienced from having un-normalized files
in a system:

e Dataredundancy that leads to the modification anomalies
e Modification anomalies which include:

v Insertion anomaly: Data cannot be inserted when it is
desirable; one has to wait on some future data, due to
organization of the data structure

v" Deletion anomaly: Deletion of some undesirable aspect(s)
of data necessarily means deletion of some other desirable
aspect(s) of data

v' Update anomaly: Update of some aspect(s) of data
necessarily means update of other aspect(s) of data

e Inefficient file manipulation; lack of ease of data access

e Inhibition to the achievement of logical data independence

¢ Compromise on the integrity of data

e Pressure on programming effort to make up for the poor design

Figure 4-1 indicates the six most commonly used normal forms. The hierarchy is
such that a relation in a given normal form is automatically in all normal forms prior to it.
Thus a relation in the second normal form (2NF) is automatically in the first normal form
(1NF); arelation in the third normal form (3NF) is in 2NF and so on. Edgar Frank Codd
defined the first three normal forms in the early 1970s; the Boyce-Codd normal form
(BCNF) was subsequently deduced from his work. The fourth and fifth normal forms
(4NF and 5NF) were subsequently defined by Ronald Fagin in the late 1970s.

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

A

| 5NF Relations Increased 5NF Relations Fewer

| 4NF Relations | Requirements ANF Relations Relations
| BCNF Relations | | BCNF Relations |
| 3NF Relations | | 3NF Relations |
2NF Relations | 2NF Relations |

Reduced More

1NF Relations Requirements | 1NF Relations | v Relations

Figure 4-1. Normal Forms

The normalization procedure involves decomposing relations into other relations of
repeatedly higher normal forms. The process is reversible. Moreover, normalization must
be conducted in a manner that ensures that there is no loss of information.

4.4 Functional Dependence and Non-loss
Decomposition

Before discussion of the normal forms, we need to define and clarify two fundamental
concepts: functional dependence and non-loss decomposition.

4.4.1 Functional Dependence

Given a relation, R{A, B, C, ...}, then attribute B is functionally dependent on attribute
A, written A > B (read as “A determines B”) if and only if (denoted iff from this point
onwards) each value of A in R has precisely one B-value in R at any point in time.
Attributes A and B may or may not be composite.

An alternate way to describe functional dependence (FD) is as follows: Given a value
of attribute A, one can deduce a value for attribute B since any two tuples which agree on
A must necessarily agree on B.

Example 1:

In relation Employee {Emp#, S-Name, F-Name, Address, ...}, the following FD holds:
Emp# - S-Name, F-Name, Address

From definition of primary key, all attributes of a relation are functionally dependent on
the primary key. This is precisely what is required; in fact, an attribute (or group of attributes)
qualifies as a candidate key iff all other attributes of the entity are dependent on it.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

We need to further refine our concept of FD by introducing another term — full
functional dependence: Attribute B is said to be fully functionally dependent on attribute
A ifitis functionally dependent on A and not functionally dependent on any proper
subset of A.

As a spinoff from the definition of functional dependence, please note the following:

1. FD constraints have similarities with referential constraints,
except that here, reference is internal to the relation.

2. FDs help us to determine primary keys.

3. Each FD defines a determinant in a relation: the attribute(s)
on the right are dependent on the attribute(s) on the left; the
attribute(s) on the left constitute(s) a determinant.

4.4.2 Non-loss Decomposition

Suppose we have a relation RO as follows: RO{Suppl#, SuplName, Item#, temName,
Quantity, SuplStatus, Location}

Functional dependencies of RO are illustrated in Figure 4-2; they may also be listed
as follows:

e [Suppl#, Item#] > {Quantity, SuplName, SuplStatus, Location,
ItemName}

e Suppl# > {SuplName, SuplStatus, Location}

° Item# > [temName

Quantity . | »| SupiName
Suppl # »| SuplStatus
| Location
ltem #]
| ItemName

Figure 4-2. FD Diagram for Relation RO
Storing RO this way causes duplication. The reason is that R0 is not sufficiently
normalized. As an alternate, we could have the following:
R1{Supl#, SuplNam, Location, SuplStatus}
R2{Item#, [temName}
R3{Supl#, Item#, Quantity}

R1, R2, and R3 constitute (an example of) a non-loss decomposition (NLD) of RO.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

Here is a formal definition of an NLD:

If R is a relation and P1, P2, Pn are projections on R such that
P1JOIN P2 JOIN JOIN Pn=R.
then P1. P2. ... Pn constitutes a non-loss decomposition of R.

Notice that we have glided into two new terms, projection and join. These will be
formerly treated later in the course. Suffice it now to say that a projection on a relation
is an extraction (into a new relation) of some attributes of the relation; a join requires
at least two relations and may be construed as the opposite of a projection: If you can
project R into P1 and P2, then you may be able to join P1 and P2 to yield R.

Given this definition, we need to address the following questions:

1. How do we find non-loss decompositions?

2. When should we replace a relation by a non-loss
decomposition?

3. What are the advantages?

Heath’s theorem (of [Heath, 1971]) addresses questions (1) and (2). The answer to
the third question is stated in section 4.3 above. Heath'’s theorem is stated below:

If we have a relation R{A. B, C. ...} and if A=>B and B> C, then projections
P1{A, B} and P2{B, C} constitute a non-loss decomposition of R.

Example 2: Proof of Heath’s Theorem:

We wish to show that RO {A, B, C} =P1 {A, B} JOIN P2 {B, C}.

Let P1 {A, B} and P2 {B, C} be projections of RO {A, B, C}
Assume further that A B,C are single attributes.

Suppose that (a, b, ¢) 15 a tuple in RO,
Then (a, b) 15 i P1 and (b, ¢) 15 in P2.
So(a,b,c)ismmPlJOINPZ (1)

Suppose that (a, b, ¢) 15 in P1 JOIN P2.

Then (a, b, c1) 1s m RO for some value c1

and (al, b, c¢) 15 1n RO for some value al.

But B > C therefore b = ¢ so that ¢l must be ¢.
Therefore (a, b, ¢)isinRO (2)

‘We have shown any tuple (a,b,c) that 1s in RO 15 also mn P1 JOIN P2, and that any tuple (a,b,¢) that is in P1
JOIN P2 1s also in RO. Therefore R0 = P1 JOIN P2.

www.it-ebooks.info

63

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

Corollary of Heath’s Theorem

An important corollary from Heath’s theorem is as follows:

If P1, P2. ... Pn is a non-loss decomposition of R and relations P1, P2, ... Pn all share a candidate key.
then there is no reduction in data duplication.

Example 3: The following example illustrates the importance of the
above-mentioned corollary:

Suppose that a relation Student{SID, SName, Grade, Dept} is decomposed into $1{SID, SName} and

$2{SID, Grade, Dept}.

Assume further that SID 1s the primary key (or at least a candidate key) of Student. Note that SID also oceurs in
$1 and S2. It should be obvious that there 1s no point in proceeding with this decomposition as 1t simply
compounds the duphication problem (SID would now be stored in two relations rather than one, to no avail)

Also, decomposition of Student mnto S3{SID, SName} and S4{Grade, Dept} makes no sense,

Conclusion

Based on Heath's theorem and its corollary, we can assert with confidence, the following
advice:

e Decompose only when there is a non-loss decomposition such
that the resulting relations do not share a candidate key.

e Do not decompose if each resulting relation does not have a
primary key.

4.5 The First Normal Form

A relation R is in the first normal form (1NF) iff it is a flat file i.e. it has no repeating groups. no
duplicate records, no null values in the primary key.

Put another way. a relation is in 1NF iff all its underlying simple domains (hence attributes) are
atomic. i.e. for every tuple in the relation. each attribute can have only one type of value.

By definition, all relations are in 1NE This is by no means coincidental, but by
design: we defined a relation to consist of atomic attributes, and subject to the entity
integrity constraint and the referential integrity constraint. However, as you will soon see,
having relations in 1NF only is often not good enough.

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

Example 4:

Many accounting software systems on the market will have a file defined as follows:
EndOfMonth {Acct¥, Dept, Ball, Bal2, ... Ball3}

Naote:

1. Ball ... Ball3 are defined on the same domain and therefore constitute a vast amount of space wasting.

2. The only tume that Ball ... Ball3 are all non-null 1s after Bal13 is known (calculated).

3. At the end of each accounting period, this file must be cleared and re-initialized for the next accounting
period.

Exercise: How can these problems be solved?

Problems with Relations in 1NF Only

Relation RO of the previous section is in 1NF only. However it is undesirable to store it as
is due to a number of problems. In the interest of clarity, the relation is restated here:
RO{Supl#, SuplName, Item#, ItemName, Quantity, SuplStatus, Location}

Functional dependencies of RO as illustrated in Figure 4-2 are as follows:

e FDI: [Suppl#, Item#] > {Quantity, SuplName, SuplStatus,
Location, ItemName}

e FD2: Suppl# > {SuplName, SuplStatus, Location}
e FDa3: Item# - [temName
The following data anomalies exist with RO (and most relations in 1NF only):

¢ Replication of data: Every time we record a supplier - item pair,
we also have to record supplier name and item name.

e Insertion anomaly: We cannot insert a new item until it is
supplied; neither can we insert a new supplier until that supplier
supplies some item.

e Deletion anomaly: We cannot delete an item or a supplier
without destroying an entire shipment, as well as information
about a supplier’s location.

e Update anomaly: If we desire to update a supplier’s location or
item name, we have to update several records, in fact, an entire
shipment, due to the duplication problem.

Insertion, deletion update anomalies constitute modification anomalies, caused by
duplication of data due to improper database design.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

4.6 The Second Normal Form

A relation is in the second normal form (2NF) iff it is in INF and every non-key attribute is fully
functionally dependent on the primary key.

By non-key attribute, we mean that the attribute is not part of the primary key.
Relation RO (of the previous section), though in 1NF is not in 2NF, due to FD2 and
FD3. Using Heath'’s theorem, we may decompose relation R0 as follows (note that the
abbreviation PK is used to denote the primary key):

R1{Supl#, Sname, Location, SuplStatus} PK[Suppl#]
R2{Item#, Itemname} PK[Item#]
R3{Supl#, Item#, Qty} PK[Supl#, Item#]

We then check to ensure that the resulting relations are in 2NF (and they are).
So based on the definition of 2NF, and on the authority of Heath’s theorem, we would
replace RO with R1, R2, and R3. Please note the consequences of our treatment of R0 so far:

1. The problems with relations in 1NF only have been addressed.
2. Bydecomposing, we have introduced foreign keys in relation R3.

3. JOINing is the opposite of PROJecting. We can rebuild relation
RO by simply JOINing R3 with R1 and R3 with R2, on the
respective foreign keys.

4. From the definition of 2NF, two observations should be
obvious: Firstly, if you have a relation with a single attribute
as the primary key, it is automatically in 2NF. Secondly, if you
have a relation with attributes and n-1 of them form the
primary key, the relation is also in 2NF.

Problems with Relations in 2NF Only

In this example, relations R2 and R3 are in 2NF (in fact they are in 3NF), but we still
have potential problems with R1: What if we have a situation where there may be several
suppliers from a given location? Or what if we want to keep track of locations of interest?
In either case, we would have modification anomalies as described below:

¢ Insertion anomaly: We cannot record information about a
location until we have at least one supplier from that location.

e Deletion anomaly: We cannot delete a particular location without
also deleting supplier(s) from that location.

e Update anomaly: If we wish to update information on a location,
we have to update all supplier records from that location.

These problems can be addressed if we take the necessary steps to bring R1 into the
third normal form (3NF). But first, we must define what 3NF is.

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

4.7 The Third Normal Form

A relation is in the third normal form (3NF) iff it is in 2NF and no non-key attribute is fully
functionally dependent on other non-key attribute(s).

Put another way, a relation is in 3NF iff non-key attributes are mutually independent and fully
functionally dependent on the primary key. (Two or more attributes are mutually independent if none
of them is functionally dependent on any combination of the other.)

Put another way. a relation is in 3NF iff it is in 2NF and every non-key attribute is non-fransitively
dependent on the primary key. (Non-transitivity implies mutual independence.)

Transitive dependence refers to dependence among non-key attributes. In particular,
if A>Band B - C, then C is transitively dependent on A (i.e. A-> C transitively).

In the previous section, relation R1 is problematic because it is not in 3NF. If it is
desirable to store additional information about the locations as indicated in the previous
section, then we must be smart enough to discern that location is to be treated as an
entity with attributes such as location code, location name (and perhaps others). Using
Heath’s theorem, we may therefore decompose R1 as follows:

R4{Supl#, Sname, LocationCode} PK[Supl#]
R5{LocationCode, LocationName} PK[LocationCode]

We now check to ensure that the relations are in 3NF (and they are). Again, please
take careful notice of the consequences of our actions to this point:

1. The problems with relations in 2NF only have been addressed.

2. Again, by decomposing, we have introduced a foreign key in
relation R4.

3. We can rebuild relation R1 by simply JOINing R4 with R5 on
the foreign key.

4. From the definition of 3NE, it should be obvious that if you
have a relation with one candidate key and » mutually
independent non-key attributes, or only one non-key
attribute, it is in 3NE.

Problems with Relations in 3NF Only

Relations R2, R3, R4, and R5 above are all in 3NF. However, it has been found that
3NF-only relations suffer from certain inadequacies. It is well known that 3NF does not
deal satisfactorily with cases where the following circumstances hold:

e There are multiple composite candidate keys in a relation.

e The candidate keys overlap (i.e. have at least one attribute in
common).

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

For these situations, the Boyce-Codd normal form (BCNF) provides the perfect
solution. As you shall soon see, the BCNF is really a refinement of 3NE. In fact, where the
above-mentioned conditions do not hold, BCNF reduces to 3NF.

4.8 The Boyce-Codd Normal Form

Simply, Boyce-Codd normal form (BCNF) requirement states:

A relation is in BCNF iff every deferminant in the relation is a candidate key.

A determinant is an attribute (or group of attributes) on which some other attribute(s)
is (are) fully functionally dependent. Examination of R2, R3, R4, and R5 above will quickly
reveal that they are in BCNF (hence 3NF). We therefore need to find a different example
that illustrates the importance of BCNE.

Consider the situation where it is desirous to keep track of animals in various zoos,
and the assigned keepers for these animals. Let us tentatively construct the relation R6 as
shown below:

R6{Zo0, Animal, Keeper}

Assume further that that a keeper works at one and only one zoo. We can therefore
identify the following FDs:

e [Zoo, Animal] > Keeper
e Keeper > Zoo

Given the above, we conclude that [Zoo, Animal] is the primary key. Observe
that R6 is in 3NF but not in BCNE, since Keeper is not a candidate key but is clearly a
determinant. Using Heath’s theorem, we may decompose R6 as follows:

R7{Animal, Keeper} PK[Animal]
R8{Keeper, Zoo} PK[Keeper]

As on previous occasions, let us examine the consequences of
our action:

1. Byachieving BCNFE we benefit from further reduction in data
duplication, and modification anomalies.

2. Afurther advantage is that we can now store dangling records.
In our example, a keeper can be assigned to a zoo even before
he/she is assigned an animal.

3. One possible drawback with BCNF is that more relations have
to be accessed (joined) in order to obtain useful information.
Again referring to the example, R7 must be joined with R8 in
order to derive Zoo-Animal pairs.

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

Observe: The principle of BCNF is very simple but profound. By being guided by it,
you can actually bypass obtaining 1NE, 2NF and 3NF relations, and move directly into
a set of BCNF relations. Adopting this approach will significantly simplify the analysis
process. Moreover, in most practical situations, you will not be required to normalize
beyond BCNE. This approach will be further clarified in the next chapter.

4.9 The Fourth Normal Form

The fourth normal form (4NF) relates to the situation where mutually independent, but
related attributes form a relation and the inefficient arrangement causes duplication and
hence modification anomalies. Consider the database file, CTT-Schedule, representing
course-teacher-text combinations in an educational institution. Assume the following:

a. A course can be taught by several teachers.
b. A course can require any number of texts.

c. Teachers and texts are independent of each other i.e. the same
texts are used irrespective of who teaches the course.

d. Ateacher can teach several courses.

Figure 4-3 provides some sample data for the purpose of illustration.

Course Teacher Text

Calculus | Prof A Text 1
Calculus | Prof B Text1

Calculus Il Prof B Text 2
Calculus I Prof B Text 3
Calculus Il Prof C Text 2
Calculus Il Prof C Text 3

Figure 4-3. CTT-Schedule File

Note that the theory so far, does not provide a method of treating such a situation,
except flattening the structure (by making each attribute part of the primary key) as
shown below:

R9{Course, Teacher, Text} PK[Course, Teacher, Text]

Since R9 is keyed on all its attributes, it is in BCNE Yet, two potential problems are
data redundancy and modification anomalies (the former leading to the latter). In our
example, in order to record that Calculus II is taught by both Professor B and Professor C,
four records are required. In fact, if a course is taught by p professors and requires n texts,
the number of records required to represent this situation is p*n. This is extraordinary,
and could prove to be very demanding on storage space.

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

Relation R9, though in BCNE is not in 4NF, because it has a peculiar dependency,
called a multi-valued dependency (MVD). In order to state the 4NF, we must first
define MVD.

4.9.1 Multi-valued Dependency

A multi-valued dependency (MVD) is defined as follows:

Given a relation R(A, B. C). the MVD A -» B (read “A multi-determines B™) holds iff every B-value
matching a given (A-value, C-value) pair in R depends only on the A-value and is independent of the C-
value.

Further. given R(A B C), A -» B holds iff A -» C also holds. MVDs always go together in pairs like
this. We may therefore write A -» B/C.

Please note the following points arising from the definition of an MVD:
1. For MVD, at least three attributes must exist.
2. FDs are MVDs but MVDs are not necessarily FDs.

3. A -» Breads “A multi-determines B” or “B is multi-dependent
onA’

Let us get back to R9: Course -» Text/Teacher. Note that Course is the pivot of
the MVD. Course -» Teacher since Teacher depends on Course, independent of Text.
Course -» Text since Text depends on Course, independent of Teacher.

4.9.2 Fagin’s Theorem

Fagin’s theorem (named after Ronald Fagin who proposed it) may be stated as follows:

Relation R{A, B, C} can be non-loss decomposed into projections R1{A. B} and R2{A, C} iff the
MWVDs A -» B/C both hold.

Note that like Heath’s theorem, which prescribes how to treat FDs, Fagin’s theorem
states exactly how to treat MVDs. With this background, we can proceed to defining the 4NF:

A relation is in 4NF iff whenever there exists an MVD, say A -» B. then all attributes of R are also
functionally dependent on A.

Put another way. R{A. B. C...} is in 4NF iff every MVD satisfied by R is implied by the candidate key
of R.

Put another way, R{A. B. C...} is in 4NF iff the only dependencies are of the form
[candidate key] = [other non-key attribute(s)].

Put another way, R{A. B. C ...}is in 4NF iff it is in BCNF and there are no MVD's (that are not FDs).

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION
In the current example, R9 is not in 4NF. This is so because although it is in BCNE,
an MVD exists. Using Fagin’s theorem, we may decompose it as follows:
R10{Course, Text} PK[Course, Text]
R11{Course, Teacher} PK[Course, Teacher]

Note: Fagin’s theorem prescribes a method of decomposing a relation containing
an MVD that is slightlydifferent from the decomposition of an FD as prescribed by Heath’s
theorem: Figure 4-4 clarifies this.

If the relation contains MVD A ->> B/C then decompose as follows:
B < A > C

Decompose < » Decompose

Figure 4-4. Treating MVDs

4.10 The Fifth Normal Form

So far we have been treating relations that are decomposable into two other relations.
In fact, there are relations which cannot be so decomposed, but can be decomposed
into n other relations where n > 2. They are said to be n-decomposable relations (n > 2).
The fifth normal form (5NF) is also commonly referred to as the projection-join normal
form (PJNF) because it relates to these (n > 2) projections (of a relation not in 5NF) into
decompositions that can be rejoined to yield the original relation.

Recall the SupplierSchedule relationship (linking suppliers, inventory items and
projects) mentioned in section 3.5; it is represented here as outlined below:

SupplierSchedule{Suppl#, Item#, Proj#} PK[Suppl#,
Item#, Proj#]

The relation represents a M:M relationship involving Suppliers, Items, and Projects.
Observe the following features about the relation:

1. SupplierSchedule is keyed on all attributes and therefore by
definition, is in BCNE By inspection, it is also in 4NF.

2. Itis not possible to decompose this relation into two other
relations.

3. Ifthere are S suppliers, N items and J projects, then
theoretically, there may be up to S*N*J records. Not all of these
may be valid.

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

4. Ifwe consider S suppliers, each supplying N items to J
projects, then it does not take much imagination to see that a
fair amount of duplication will take place, despite the fact that
the relation is in 4NE

Let us examine a possible decomposition of SupplierSchedule as shown in Figure 4-5.
If we employ the first two decompositions only, this will not result in a situation that
will guarantee us the original SupplierSchedule. In fact, if we were to join these two
decompositions (SI and IP), we would obtain a false representation of the original
relation. The third projection (PS) is absolutely necessary, if we are to have any guarantee
of obtaining the original relation after joining the projections.

SupplierSchedule

Suppl# Item# Proj#

S1 11 P1

S1 11 P2

S1 12 P1

S2 11 P1

Projection S| Projection IP Projection PS
Suppl# Item# Item# Proj# Proj# Suppl#
S1 11 11 P1 P1 $1
S1 12 11 P2 P1 S2
S2 11 12 P1 P2 $1

!

| JOIN over Item# |

A 4 A

Suppl# | Iltem# Proj# JOIN over Proj# and Supl#

S1 11 P1 |

S1 11 P2

S1 12 P1

S2 11 P1 y

S2 11 P2 Original Supplier-Schedule
Spurious tuple

Figure 4-5. Illustrating Possible Decompositions of Supplier-Schedule

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

Note: The first join produces SupplierSchedule plus additional spurious tuples. The
effect of the second join is to eliminate the spurious tuples. To put it into perspective,
SupplierSchedule is subject to a (time independent)
3-decomposable (3D) constraint, namely:

Ir (5, 1)isin SI

and (i, pyisinlP

and (p, s) is in PS

then (s, i, p) is in SupplierSchedule

This is an example of a join dependency (JD) constraint.

4.10.1 Definition of Join Dependency

Ajoin dependency (JD) constraint may be defined as follows:

Relation R satisfies the JD P1. P2. ... Pniff R =P1 JOIN P2 JOIN ... JOIN Pn
where the attributes of P1 ... Pn are subsets of the attributes of R.

Relations that are in 4NF, but not in 5NF (such as SupplierSchedule) suffer from
duplication, which in turn leads to modification anomalies. These problems are directly
related to the presence of the JD constraint(s) in such relations. Fagin’s theorem for
5NF relations provides the solution.

4.10.2 Fagin’s Theorem

Fagin’s theorem for the fifth normal form (5NF) states:

A relation R is in SNF (also called PINF) iff every JD in R is a consequence of the candidate keys of R

In layman's terms if a relation R is in 4NF and it is n-decomposable mto P1, P2 .. Pn, such that
R =P1JOIN P2 ... JOIN Pn wheren > 2,
such relation 1s not in SNF. It may therefore be decomposed to achieve SNF relations.

Put another way, a relation R is in SNF iff it is in 4NF and it is not decomposable, except the decompositions are
based on a candidate key of R, and the minumum number of projections is 3.

Now examine relation SupplierSchedule. SupplierSchedule is not in 5NF because
ithas a JD (i.e. the JD constraint) that is not a consequence of its candidate key. In other
words, SupplierSchedule can be decomposed, but this is not implied by its candidate key
[Supl#, Item#, Proj#].

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

Note: For most practical purposes, you only have to worry about 5NF if you are try-
ing to implement an M:M relationship involving more than two relations. Once in 5NE,
further decompositions would share candidate keys and are therefore to no avail (recall
corollary of Heath'’s theorem). Notwithstanding this, other normal forms have been
proposed, as will be discussed in the upcoming section.

4.11 Other Normal Forms

The field of Database Systems is potentially a contemptuous one. Indeed, there are
accounts of former friends or colleagues becoming foes over database quibbles

(in Figure 4-7 of section 4.12, the current author relates a personal experience he had as
a young software engineer on a project of national importance). Various individuals have
proposed several database theorems and methodologies, but they have not all gained
universal acceptance as have the normal forms of the previous sections. Two additional
normal forms that have been, and will no doubt continue to be the subject of debate are
the domain-key normal form (DKNF) and the sixth normal form (6NF). Without picking
sides of the debate on these two normal forms, this section will summarize each.

4.11.1 The Domain-Key Normal Form

The domain-key normal form (DKNF) was proposed by Ronald Fagin in 1981. Unlike the
other normal forms which all relate to FDs, MVDs and JDs, this normal form is defined in
terms of domains and keys (hence its name). In his paper, Fagin showed that a relation
DKNF has no modification anomalies, and that a relation without modification
anomalies must be in DKNE He therefore argued that a relation in DKNF needed no
further normalization (at least, not for the purpose of reducing modification anomalies).
The definition of DKNF is as follows:

A relation is in DKNF if every constraint on the relation is a logical consequence of the definition of
its keys and domains.

This definition contains three important terms that need clarification:

e A constraint is used to mean any rule relating to static values of
attributes. Constraints therefore include integrity rules, editing
rules, foreign keys, intra-relation references, FDs and MVDs, but
exclude time-dependent constraints, cardinality constraints and
constraints relating to changes in data values.

e Akeyisaunique identifier of a row (as defined in Chapter 3).
e Adomainis a pool of legal attribute values (as defined in Chapter 3).

The implication of the DKNF is clear: If we have a relation that contains constraint(s)
that is (are) not a logical consequence of its (candidate) key and domains, then that

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

relation is not in DKNE and should therefore be further normalized. The DKNF as
proposed by Fagin, therefore represents an ideal situation to strive for.
Unfortunately, a number of problems arise from consideration of DKNF:

e Any constraint that restricts the cardinality of a relation
(i.e. the number of tuples in the relation) will render it in violation
of DKNE. (It was perhaps for this reason that Fagin excluded
from his definition of constraints, time-dependent constraints
or constraints relating to data values.) However, there are many
relations for which such constraints are required.

e There is no known algorithm for converting a relation to DKNE.
The conversion is intuitive and for this reason described as artistic
rather than scientific.

e Notall relations can be reduced to DKNF (relations with
cardinality constraints fall in this category).

e Itisnot precisely clear as to when a relation can be reduced to DKNE

For these reasons, the DKNF has been compared by Date (see [Date, 2006]) to a
“straw man... of some considerable theoretical interest but not yet of much practical ditto.”

4.11.2 The Sixth Normal Form

A sixth normal form (6NF) has been proposed by C. J. Date in [Date, 2003], after several
years of exploitation, expounding, and research in the field of database systems. It relates
to so-called temporal databases. Date wrote a whole book on the subject; a summary
of the essence is presented in this sub-section. Date defines a temporal database as a
database that contains historical data as well as, or instead of current data. Temporal
databases are often read-only databases, or update-once databases, but they could be
used otherwise. In this sense, a temporal database may be considered as a precursor to a
data warehouse (discussed in Chapter 24).

For the purpose of illustration, assume that we are in a college or university setting
and desire to store the relation Course as defined below:

Course {CourseNo, CourseName, CourseCred}

Suppose further that we desire to show different courses at the time they existed
in the database. To make our analysis more realistic, let us also make the following
additional assumptions:

e The primary key is CourseNo; for any given course, the attribute
CourseNo cannot be changed.

e For any given course, the attribute CourseName may be changed
any point in time.

e For any given course, the attribute CourseCred may be changed
any point in time.

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

We may be tempted to introduce a timestamp on each tuple, and therefore modify
the definition of Course as follows:

Course {CourseNo, CourseName, CourseCred, EffectiveDate}

Figure 4-6 provides some sample data for the Course relation. By introducing
the attribute EffectiveDate, we have actually introduced a new set of concerns as
summarized below:

1. If we assume that the FD CourseNo -> {CourseName,
CourseCred, EffectiveDate} is (still) in vogue, then Course
is in 5NF. However, in this case, if the CourseName or
CourseCred of a given Course tuple changes at a given
effective date, there is no way of showing what it was before,
unless we create a new course and assign a new CourseNo.
In either case, this clearly, is undesirable.

2. Suppose we assume the FDs CourseNo -» CourseName and
[CourseNo, EffectiveDate] > CourseCred.Then, the relation is
not in 2NF, and therefore needs to be decomposed into two
decompositions:

CourseDef {CourseNo, CourseName} and
CourseTimeStamp {CourseNo, EffectiveDate, CourseCred}

Both of these relations would now be in 5NE. However, if we
now desire to change the CourseName of a course for a given
effective date, we cannot represent this in the current schema.

3. We could introduce a surrogate (say CourseRef) into relation
Course, and key on the surrogate, while ignoring the FDs
stated in (1) and (2) above. In this case, Course would be in
violation of 3NF, and if we attempt to decompose, we would
revert to the situation in case (2) above.

CourseNo CourseName CourseCred EffectiveDate
CS120 Introduction to Computer Science 3 1990
CS120 Introduction to Computer Science 4 2005
CS140 Computer Programming | 3 1990
CS140 Computer Programming | 4 2005
CS145 Computer Programming I 3 1990
CS145 Computer Programming |l 4 2005
CS130 Pascal Programming 3 1990

Figure 4-6. Sample Data for the Course Relation

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION
The reason for these problems can be explained as follows: The relation Course as
described, defines the following predicate:

e Each course is to be accounted for (we say Course is under
contract).

e Each course has a CourseName which is under contract.
e Each course has a CourseCred which is under contract.

The predicate involves three distinct propositions. We are attempting to use the
timestamp attribute (EffectiveDate) to represent more than one proposition about the
attribute values. This, according to Date, is undesirable and violates the sixth normal form.

We now state Date’s theorem for the sixth normal form (6NF):

A relation R is in 6NF iff it satisfies no non-trivial JDs at all. (A JD is trivial iff at least one of its
projections is over all of the attributes of the relation.)

Put another way, a relation R is in 6NF iff the only JDs that it satisfies are trivial ones.

Note: 6NF as defined, essentially refines 5NE It is therefore obvious from the

definition that a relation in 6NF is necessarily in 5NF also.

Let us now revisit the Course relation: With the introduction of the timestamp
attribute (EffectiveDate), and given the requirements of the relation, there is a non-trivial
JD that leads to the following projections:

CourseInTime {CourseNo, EffectiveDate} PK [CourseNo,
EffectiveDate]

CourseNamelInTime {CourseNo, CourseName, EffectiveDate}
PK [CourseNo, EffectiveDate]

CourseCredInTime {CourseNo, CourseCred, EffectiveDate}
PK [CourseNo, EffectiveDate]

Observe that the projection CourseInTime is strictly speaking, redundant, since it
can be obtained by a projection from either CourseNameInTime or CourseCredInTime.
However, in the interest of clarity and completeness, it has been included.

This work by C. J. Date represents a significant contribution to the field of database
systems, and will no doubt be a topical point of discussion in the future.

7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

4.12 Summary and Concluding Remarks

This concludes one of the most important topics in your database systems course.
Take some time to go over the concepts. Figure 4-7 should help you to remember the

salient points.

Heath's Theorem:

Fagin's Theorem:

Fagin's Theorem:

Date's Theorem:

Heath's Theorem:

Heath's Theorem:

| Un-normalized relations |

Flatten — no repeating groups, no nulls, no
duplicate tuples

| INF Relations |

v

Decompose so that every non-key attribute is fully functionally

dependent on the primary key

2NF Relations

v

Decompose so that no full functional
dependence exists among non-key attributes

| 3NF Relations |

v

Decompose so that every determinant is a
candidate key

v

BCNF Relations

Decompose so that no MVDs exist (except
they be FDs also)

v

| 4NF Relations |

Decompose & eliminate JDs

| 5NF Relations |

v

Decompose & eliminate all non-trivial JDs

v

| 6NF Relations |

< Codd

< Codd

< Codd

< Boyce/Codd

< Fagin

< Fagin

< Date

Figure 4-7. Summary of Normalization

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

Traditionally, it has been widely accepted that for most databases, attainment of 3NF
is acceptable. This course recommends a minimum attainment of BCNFE. Recall that as
stated earlier (in section 4.8), BCNF is really a refinement of 3NE and the normalization
process can bypass 2NF and 3NF, and go straight to BCNE In rare circumstances, it may
be required to proceed to 5NF or 6NF, which is the ultimate.

Normalization is a technique that must be mastered by database designers. It improves
with practice and experience, and ultimately becomes almost intuitive. As your mastery
of normalization improves, you will find that there is a corresponding improvement in
your ability to design and/or propose database systems for various software systems.
However, be aware that the converse is also true: failure to master fundamental principles
of database design will significantly impair one’s ability to design quality software systems.
Notwithstanding this, be careful not to be antagonistic about your views, as informed as they
may be. In this regard, Figure 4-8 summarizes a practical experience of the author.

Between 1987 and 1990, | was part of the software engineering team that investigated, designed, developed and

implemented two huge strategic information systems (though I did not know the correct term at the time) for the Central

Bank of Jamaica — an Economic Management System (EMS) and a Bank Inspection System (BIS). Both projects were

immensely successful. | have warm memories of them, but | relate two not-so-warm experiences as a word of caution to

young database systems enthusiasts:

= | soon found a niche for myself and distinguished myself as a database design expert. However, | often ran into
confrontations with my then supervisor (who subsequently became my consulting partner on a number of other
major projects) for finding faults with the database design proposed by the project team. Looking back, | was brash
and tactless, and often created enemies by my rash comments.

= On one occasion, my brash, tactless approach almost shattered the relationship with my best friend, Ashley. We
along with three others were hired by the central bank, and placed on the project, after a regional search. That was
special. Ashley and | had distinguished ourselves as outstanding software engineers and database experts. For that
reason, we were asked to design a sub-system together. We soon had conflicts over the design approach to be
taken. Ashley had one idea; | had another idea, and the two of us would not agree. Realizing that our friendship was
heading south over the conflict, | backed off and allowed Ashley’s proposal to be accepted, but later tweaked its
implementation when he was not paying attention. Looking back, we were both being silly: The most prudent
proposal should have been a merge of the two ideas.

Figure 4-8. Database Quibbles almost got me in Trouble

4.13 Review Questions

1. State the two fundamental integrity rules and explain their
significance.

2. Whatis a foreign key? Illustrate using an appropriate example.
How should foreign keys be treated?

3. Clarify the following: functional dependence; non-loss
decomposition; Heath'’s theorem. Provide examples that will
illustrate the significance of these terms.

4, State the normal forms covered in this Chapter. For each
normal form, state it, explain in your own words what it
means, provide an example of a relation that conforms to it
and one that does not.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 INTEGRITY RULES AND NORMALIZATION

4.14 References and/or Recommended Readings

[Codd, 1972] Codd, Edgar F. “Further Normalization of the Database Relational Model.”
Database Systems, Courant Computer Science Symposia Series 6. Eaglewood Cliffs,
NJ: Prentice Hall, 1972.

[Codd, 1974] Codd. Edgar F. “Recent Investigations into Relational Data Base Systems.”
Proc. IFIP Congress, Stockholm, Sweden, 1974.

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York: Addison-
Wesley, 2002. See Chapter 13.

[Date, 2003] Date, Christopher J., Hugh Darwen and Nikos A. Lorentzos. Temporal
Databases and the Relational Model. San Francisco, CA: Morgan-Kaufmann, 2003.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
California: Addison-Wesley, 2004. See Chapters 11-13, 23.

[Date, 2006] Date, Christopher J. Database Debunking. http://www.dbdebunk.com/page/
page/621935.htm (accessed June 2006)

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5 ed. Reading, MA: Addison-Wesley, 2007. See Chapters 10 and 11.

[Fagin, 1977] Fagin, Ronald. “Multi-valued Dependencies and a New Normal Form for
Relational Databases.” ACM TODS 2, No. 3, September 1977.

[Fagin, 1979] Fagin, Ronald. “Normal Forms and Relational Database Operations.” Proc.
1979 ACM SIGMOD International Conference on Management of Data. Boston, MA,
May-June 1979.

[Fagin, 1981] Fagin, Ronald. “A Normal Form for Relational Databases that is Based on
Domains and Keys.” ACM TODS 6, No. 3, September 1981.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, NJ: Prentice Hall, 2002.
See Chapter 3.

[Heath, 1971] Heath. L. J. “Unacceptable File Operations in a Relational Database.” Proc.
1971 ACM SIGFIDET Workshop on Data Description, Access, and Control. San Diego, CA.,
November 1971.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern
Database Management 6™ ed. Upper Saddle River, NJ: Prentice Hall, 2002. See Chapters 5.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein and Philip M. Lewis. Database Systems: An
Application-Oriented Approach 2™ ed. New York, NY: Addison-Wesley, 2005. See Chapter 6.

[Kroenke, 2005] Kroenke, David M. Database Processing: Fundamentals, Design and
Implementation 9" ed. Upper Saddle River, NJ: Prentice Hall, 2004. See Chapter 4.

[Lewis, 2002] Lewis. Phillip M., Arthur Bernstein and Michael Kifer. Databases and
Transaction Processing: An Application Oriented Approach. New York, NY: Addison-
Wesley, 2002. See Chapter 8.

80

www.it-ebooks.info

http://www.dbdebunk.com/page/page/621935.htm
http://www.dbdebunk.com/page/page/621935.htm
http://www.it-ebooks.info/

CHAPTER 4 " INTEGRITY RULES AND NORMALIZATION

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See Chapters 10, 13, 14.

[Ozsu, 1991] Ozsu, M. Tamer, and Patrick Valduriez. Principles of Distributed Database
Systems. Eaglewood Cliffs, NJ: Prentice Hall, 1991. See Chapter 2.

[Pratt, 2002] Pratt, Phillip J. and Joseph J. Adamski. Concepts of Database Management
4" ed. Boston, Massachusetts: Course Technology, 2002. See Chapter 5.

[Riccardi, 2002] Riccardi, Greg. Database Management With Web Site Development
Applications. Boston, MA: Addison-Wesley, 2003. See Chapter 7.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapter 5.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See Chapter 3.

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Database Modeling
and Design

Some database systems textbooks make much ado about having separate chapters for
database modeling and database design. In this course, we will not, and the reason will
become clear shortly. All discussions in chapters 3 and 4 contribute to database modeling
and design. In particular, ERDs and normalization are paramount to a logical database
model and design. In this chapter, we will clarify the roles of database modeling and
database design, and then take a more detailed look at some approaches in these areas.
The chapter proceeds under the following captions:

e Database Model and Database Design

e The E-R Model Revisited

e Database Design With the E-R Model

e The Extended Relational Model

e Database Design With the Extended Relational Model
e The UML Model

e Database Design With the UML Model

e Innovation: The Object/Entity Specification Grid

e Database Design Using Normalization Theory

e Database Model and Design Tools

¢ Summary and Concluding Remarks

5.1 Database Model and Database Design

Database modeling and database design are closely related; in fact, the former leads to the
latter. However, it is incorrect to assume that the path from database modeling to database
design is an irreversible one. To the contrary, changes in your database model will affect
your database design and vice versa. This course therefore purports that you can work on
your database model and your database design in parallel, and with experience, you can
merge both into one phase. For the purpose of discussion, let us look at each phase.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.1.1 Database Model

The database model is the blueprint for the database design. Database modeling is
therefore the preparation of that blueprint. In database modeling, we construct a
representation of the database that will be useful towards the design and construction of
the database. Various approaches to database modeling have been proposed by different
authors; the prominent ones are:

e The Entity-Relationship (E-R) Model
e The Object-Relationship (O-R) Model
e The Extended Relational Model

The E-R and O-R models were introduced in chapter 3 (sections 3.5.1 and 3.5.2).
Chapter 3 also introduced the Relation-Attributes List (RAL) and the Relationship List
(RL section 3.6) as an alternative to the E-R model in situations where E-R modeling is
impractical. We will revisit the E-R model later in this chapter, and then introduce the
extended relational model.

5.1.2 Database Design

The database design is the (final) specification that will be used to construct the actual
database. Database designing is therefore the preparation of this specification. In
preparing the database specification, the database model is used as input. As such, the
guidelines given in chapter 3 (section 3.5.4) on implementing relationships are applicable.
Five approaches to database design that will be discussed later in this chapter are:

e Database Design via the E-R Model

e Database Design via the Extended Relational Model

e Database Design via the UML Model

e Database Design via the Entity/Object Specification Grid

e Database Design via Normalization Theory

5.2 The E-R Model Revisited

Recall that in chapter 3, the similarity and differences between an entity and a relation
were noted. If we assume the similarity, then the E-R model can be construed as merely a
specific interpretation of the relational model.

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

In order to unify the informal E-R model with the formal relational model, Codd
introduced a number of conventions specific to the E-R model. These are summarized
in Figure 5-1 and illustrated in Figure 5-2. Note that the model displayed in the figure
represents only a section of the (partial) database model introduced in chapter 3
(review Figure 3-4b). Figure 5-2a employs the Chen notation, while Figure 5-2b employs
the Crow’s Foot notation. In both cases, the attributes of entities have been omitted,
except for primary key attributes (as mentioned in chapter 3 and emphasized later in this
chapter, there are more creative ways to represent attributes). Figure 5-3 illustrates the
representation of super-type and subtype relationships.

= A weak entity is one that cannot exist by itself. For instance, if employees have dependents then Dependents is a
weak entity and Employee is a regular entity. On the E-R diagram, weak entities are represented by double lines.

= Relationships may be represented by either Chen'’s notation, or the Crow’s Foot notation.

= If Chen’s notation is used to represent relationships, then the following apply:
+ The double diamond indicates a relationship between weak and regular entity.
The name of the relationship is written inside the diamond.
+ A double relationship line represents total participation; a single relationship line represents partial participation.
For instance, if all dependents must have a reference employee, participation is total on the part of dependents;
however, all employees need not have dependents, so that participation is partial on the part of employees.

= Entity Types are used to distinguish entities. An entity can be a subtype of another entity that is a super-type. For
instance, in an organization, the entity Programmer would be a subtype of the entity Employee, the super-type. All
properties of a super-type apply to its subtype; the converse does not hold. Figure 5.3 illustrates how subtypes and
super-types are represented.

= Implementation of relationships can be realized as discussed in chapter 3. Furthermore, the fundamental integrity
rules (section 4.1) must also be upheld.

Figure 5-1. E-R Model Conventions

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Supplier

Department
1 M
SUEmp# * SuppSched
@ M M M M M
Employee Project Inventoryltem
1 1 M M
EmpDep -
M
Dependent

Note: Only primary key attributes are shown.

Figure 5-2a. Partial E-R Diagram for Manufacturing Firm (Chen'’s Notation)

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

ItemStruct

Department
L J
SuppSched
DeptEmp
ProjWork @ Suppltems
SENTE +
Employee Project j
EmpDep ProjMgr
h CHWED
M M
Dependent
Inventoryltem
[[

Note: Only attributes that constitute the primary keys are shown.

Relationship Classification

DeptEmp 1:M; total participation on the Employee side.
EmpDep 1:M; total participation on Dependent side
ProjWork M:M

ProjMgr 1M

ItemStruct M:M

Suppltems M:M

SuppSched MM; can be replaced as shown in chapter 4

Figure 5-2b. Alternate Partial E-R Diagram for Manufacturing Firm (Crow’s Feet

Notation)

www.it-ebooks.info

87

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Employee
A A
Programmer Engineer Q Q0 Accountant
A
SystemProgrammer ApplicationProgrammer

Figure 5-3. Example of Type Hierarchy

5.3 Database Design via the E-R Model

Database design with the E-R model simply involves following the rules established in
chapter 3 on implementing relationships (section 3.5.4). These rules tell you exactly
how to treat the various kinds of relationships; take some time to review them. We may
therefore construct a procedure for database design via the E-R model as follows:

Identify all entities and their related atiributes.

Classify the entities (weak versus strong).

Identify all relationships among the entities.

Classify the relationships (mandatory versus optional); decide on which optional relationships will be retained and

which ones will be eliminated.

Construct an ERD or the equivalent (review chapter 3).

6. Refine the model.

7. Using the guidelines for implementing relationships (section 3.5.4), construct a final set of relations, clearly indicating
for each relation, its atfributes, candidate key(s), and primary key. The RAL and RL of chapter 3 (section 3.6) may be
employed.

8. By consistently following this procedure, you will obtain a set of relations that will be normalized to at least the Boyce-Codd

normal form (BCNF). You can then apply your normalization theory until you achieve the desired level of normalization.

B

<

Note: The illustrations given in chapter 3 (figures 3.4b, 3.13 and 3.14) are applicable here.

Figure 5-4. Database Design Procedure Using the E-R Model

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.4 The Extended Relational Model

Even with the conventions above, the E-R model was found lacking in its treatment of
certain scenarios. Recognizing this, Codd and Date introduced an alternate extended
relational model (which for convenience will be abbreviated as the XR model), the
essence of which is described here (for more details, see [Date, 1990] and [Date, 2004]).

The XR model makes no distinction between entities and relations; an entity is a
special kind of relation. Structural and integrity aspects are more extensive and precisely
defined than those of the E-R model. The XR model introduces its own special operators
apart from those of the basic relational model. Additionally, entities (and relationships)
are represented as a set of E-relations and P-relations.

The model includes a formal catalog structure by which relationships can be made
known to the system, thus facilitating the enforcement of integrity constraints implied by
such relationships.

Asyou will see later in the course, it turns out that the XR model forms the basis of
how the system catalog is handled in most contemporary DBMS suites. We shall therefore
spend a few moments to look at the main features of the model.

5.4.1 Entity Classifications
Under the XR model, the following entity classifications hold:
¢ Kernel entities
e Characteristic entities
e Designative entities
e Associative entities
e Sub-type/super-type entities

Kernel Entities: Kernel entities are those entities that have independent existence.
They are what the database is really about. For example, in an inventory system, kernel
entities might be Purchase Order, Receipts of Goods (Invoice), Inventory Item,
Department and Issuance of Goods (to various departments). Referring to the example
used in the previous section, kernel entities would be Suppliers, Inventoryltems,
Projects, Employees, and Departments.

Characteristic Entities: Characteristic entities describe other entities. For instance
(referring to Figure 5-2b), Dependent is a characteristic of Employee. Characteristics are
existence-dependent on the entity they describe.

Designative Entities: An entity, regardless of its classification, can have a property
(attribute) whosefunction is to designate (reference) some other entity, thus implementing
a 1:M relationship. For instance (referring to Figure 5-2b), Employee is designative of
Department, and Project is designative of Employee (due to relationship ProjMgr). Put
another way, a designation is the implementation of an M:1 relationship. The designating
entity is the entity on the “many-side” of a 1:M relationship. Note that a characteristic entity
is necessarily designative since it designates the entity on which it is existence-dependent.
Note however, that a designative entity is not necessarily characteristic. Entities Project,
Employee, and Dependent amplify these points (see Figure 5-2).

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Associative Entities: Associative entities represent M:M relationships among two or
more entities. For example, from Figure 5-2b, the relationships ProjWork, SuppSched,
Suppltems, and ItemStruct would be implemented as associative entities. In a college
database with kernel entities Program and Course (among others of course), and a M:M
relationship between them, the associative entity representing the relationship could
be ProgramStructure, which would include foreign keys referencing Program and
Course respectively. Note that the associative entity is the intersecting relation in the
implementation of a M:M relationship (review chapter 3, section 3.5.4).

Subtype/Super-type Entities: If we have two entities E1 and E2, such that a record
of E1 is always a record of E2, and a record of E2 is sometimes a record of E1, then E1 is
said to be a subtype of E2. The existence of a subtype implies the existence of a super-
type: To say that E1 is a subtype of E2, is equivalent to saying that E2 is the super-type of
El. For illustration, review Figure 5-3.

5.4.2 Surrogates

Recall that the concept of a surrogate was first introduced in chapter 3 (section 3.5.4).

In understanding the X-R model, the role of surrogates is very important; we therefore
revisit the concept here. Surrogates are system controlled primary keys, defined to avoid
identification of records (tuples) by user-controlled primary keys. They are also often
used to replace composite primary keys. Two consequences of surrogates arise (both of
which can be relaxed with a slight deviation from the XR model which does not enforce
surrogates, E-relations and P-relations as mandatory):

e Primary and foreign keys can be made to always be
non-composite.

e Foreign keys always reference corresponding E-relations
(more on this shortly).

Surrogates provide two significant benefits:

e Insome traditional DBMS suites, composite primary keys are not
allowed; surrogates are therefore imperative.

e Even if allowed by the DBMS, composite primary keys are
sometimes cumbersome; surrogates are useful replacements in
these circumstances.

To demonstrate the usefulness of surrogates in simplifying database model and
ultimate design (with respect to avoiding cumbersome composite primary keys), let us
suppose that we want to track purchase orders and their related invoices. The related
entities that we would need to track are Supplier, InventoryIltem, PurchaseOrder and
Purchaselnvoice. These are not all included in Figure 5-2; however they are represented
in figure 3-4b of chapter 3 (please review). By following through on the E-R model, or
by applying normalization principles of chapter 4, we may construct a tentative set of
normalized relations as illustrated in Figure 5-5a. Notice how potentially cumbersome
the composite keys would be, particularly on relations PurchaseOrdDetail and
PurchaselnvDetail. However, by introducing surrogates as illustrated in Figure 5-5b, we
minimize the need to use complex composite keys.

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Supplier {Suppl#, SuppName, Address, E-mail, ContactPerson, Telephone, ...}
PK [Supplier#]

Inventoryltem {ltem#, ItemName, QuantityOnHand, LastPrice, AveragePrice, ...}
PK [ltem#]

PurchaseOrdSummary {Order#, OrderDate, OrderSuppl#, OrderStatus, OrderEstimate, ...}
PK [Order#, OrderDate, OrderSuppl#] /* Assuming order numbers may be repeated after a cycle of several years */

PurchaseOrdDetail {PODOrder#, PODOrderDate, PODOrderSuppl#, PODItemi#, OrderQuantity, ...}
PK [PODOrder#, PODOrderDate, PODOrderSuppl#, PODItem#]

PurchaselnvSummary {Invoice#, InvOrder#, InvOrderDate, InvSuppl#, InvDate, InvAmount, InvStatus, InvDiscount,
InvTax, InvAmountDue, ...}
PK [Invoice#, InvoiceDate, InvOrder#, InvOrderDate, InvSuppl#]

PurchaselnvDetail {PIDInvoice#, PIDInvoiceDate, PIDInvOrder#, PIDInvOrderDate, PIDInvSuppl#, PIDItem#,
PIDItemQuantity, PIDItemUnitPrice}
PK [PIDInvoice#, PIDInvoiceDate, PIDInvOrder#, PIDInvOrderDate, PIDInvSuppl#, PIDItem#]

Note: Foreign keys are italicized.

Figure 5-5a. Model to Track Purchase Orders and Invoices (without Surrogates)

Supplier {Suppl#, Supp-Name, Address, E-mail, Contact-Person, Telephone, etc.)
PK [Supplier#]

Inventoryltem {ltem#, Item-Name, Quantity-On-Hand, Last-Price, Average-Price, etc.}
PK [Item#]

PurchaseOrdSummary {OrderRef, Order#, OrderDate, OrderSuppl#, OrderStatus, OrderEstimate, ...}
PK [OrderRef] /* OrderRef is a surrogate. Alternately, we may define Order# to be non-repeatable */

PurchaseOrdDetail {PODOrderRef, PODItem#,, OrderQuantity}
PK [PODOrderRef, PODItem#] / * or introduce a surrogate, PODCode, and make it the PK */

PurchaselnvSummary {PurchaseRef, Invoice#, InvOrderRef, InvDate, InvAmount, InvStatus, InvDiscount, InvTax,
InvAmountDue, ...}
PK [PurchaseRef] /* PurchaseRef is a surrogate */

PurchaselnvDetail {PIDPurchaseRef, PIDltem#, PIDItemQuantity, PIDItemPrice}
PK [PIDPurchaseRef, PIDItem#] /* or introduce a surrogate, PIDCode, and make it the PK */

Note: Foreign keys are italicized.

Figure 5-5b. Alternate Model to Track Purchase Orders and Invoices (with Surrogates)

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.4.3 E-Relations and P-Relations

The original XR model specification prescribes the use of E-relations and P-relations.
The database would contain one E-relation for each entity type — a unary relation

that lists surrogates for all tuples of that entity (type). To illustrate, let us revisit the
manufacturing firm’s partial database (Figure 5-2) of previous discussions: Suppose for
a moment that the Supplier relation contains two tuples, the InventoryItem relation
contains three tuples, and the Department relation contains three tuples. A possible
internal representation of the E-relations for this scenario is illustrated in Figure 5-6a. An
“E” is inserted in front of the original relation name (for example E-Supplier) to denote
the fact that this is an E-relation being represented. The percent sign (%) next to the
attributes (for example Suppl%) are used to denote the fact that these attributes are really
surrogates.

In addition to the E-relations concerned with tuples, a special binary E-relation
would be required to link so-called E-relations to the original relations. We will call
this the host E-relation. It is illustrated in Figure 5-6b. This would allow users to relate
to the database using relation names that they are familiar with; translation would be
transparent to them.

Properties (attributes) for a given entity type are represented by a set of P-relations.
The P-relation stores all property characteristics and values of all tuples listed in the
corresponding E-relation. Properties can be grouped together in a single n-ary relation,
or each property can be represented by P-relation, or there can be a convenient number
of P-relations used; the choice depends on the designer. In the interest of simplicity,
let us assume the third approach; let us assume further, that there is a P-relation for
each E-relation. A convenient possible representation for the E-relations of Figure 5-6a
is illustrated in Figure 5-6¢. A “P” is inserted in front of the original relation name (for
example P-Supplier) to denote the fact that this is a P-relation being represented. Notice
also that each P-relation contains a foreign key that ensures that each tuple is referenced
back to its correspondent in the associated E-relation.

Carrying on with the assumption that there is a P-relation for each E-relation: In
addition to the basic P-relations, a special P-relation would be required to store the
characteristics of each property (to be) defined in the database. Let us call this the host
P-relation. It is represented in Figure 5-6d. By including this relation, we allow users
the flexibility of adding new properties to a relation, modifying existing properties in a
relation, or deleting pre-existent properties from a relation. These changes are referred to
as structural changes to a relation; they will be amplified later in the course (chapter 11).

E-Supplier: Suppl%

E-Inventoryltem: Iltem%

E-Department: Dept%

SE1 IE1 DE1
SE2 IE2 DE2
IE3 DE3

Figure 5-6a. Illustrating E-relations

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

DATABASE MODELING AND DESIGN

E-Host:

Relation E-relation
Department E-Department
Inventoryltem E-Inventoryltem
Supplier E-Supplier

Figure 5-6b. Illustrating the Host E-relation

P-Supplier:
Suppl% Suppl# SuppName Address
SE1 S1 Smithsonian 11 Sydney Way ...
SE2 S2 Bruce Jones Inc. 14 Maple Street ...
P-Inventoryltem:
ltem% ltem# ltemName
IE1 11 HP 500 Printer
IE2 12 Epson 1070 Printer
IE3 13 Xerox Laser Printer
P-Department:
Dept’% Dept# DeptName
DE1 D1 Design
DE2 D2 Research
DE3 D3 Synthesis

Figure 5-6c. Illustrating The P-relations
P-Host:
Property E-relation Type Length
Dept# E-Department Number 04
DeptName E-Department Character 40
Item# E-Inventoryltem Character 08
DeptName E-Inventoryltem Character 30
Suppl# E-Supplier Character 08
SupplName E-Supplier Character 40
Address E-Supplier Character 45

Figure 5-6d. Illustrating the Host P-relation

www.it-ebooks.info

93

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

As you will later see (in chapter 14), it is application of this methodology that assists
in the implementation of sophisticated system catalogs that characterize contemporary
DBMS suites. However, with this knowledge, you can actually model and design
databases to mirror E-relations and P-relations as described. One obvious advantage
is that if you used one P-relation instead of one for each E-relation, then in accessing
the database for actual data, you would be accessing fewer relations (in fact just one
relation) than if you had used another approach (such as the E-R model). The flip side to
this advantage is that this relation would be extremely large for a medium sized or large
database; this could potentially offset at least some of the efficiency gained from just
having to access one relation for data values.

5.4.4 Integrity Rules

With this set-up, accessing and manipulating data in the database is accomplished by the
DBMS through the E and P relations. For this reason, additional integrity rules must be
imposed. The complete list of integrity rules follows:

1. Entity integrity rule (review section 4.1)
2. Referential rule (review section 4.1)

3. XR Model Entity Integrity: E-relations accept insertions and
deletions but no updates (surrogates don’t change)

4. Property Integrity: A property cannot exist in the database
unless the tuple (entity) it describes exists

5. Characteristic Integrity: A characteristic entity (tuple) cannot
exist unless the entity (tuple) it describes exists

6. Association Integrity: An association entity (tuple) cannot
exist unless each participating entity (tuple) also exists

7. Designation Integrity: A designative entity (tuple) cannot exist
unless the entity (tuple) it designates also exists

8. Subtype Integrity: A subtype entity (tuple) cannot exist except
there be a corresponding super-type entity (tuple)

The following rules apply to subtypes and super-types:

1. All characteristics of a super-type are automatically
characteristics of the corresponding subtype(s), but the
converse does not hold.

2. Allassociations in which a super-type participates are
automatically associations in which the corresponding
subtype(s) participate, but the converse does not hold.

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

3. All properties of a given super-type apply to the
corresponding subtype(s), but the converse does not hold.

4. A subtype of a kernel is still a kernel; a subtype of a
characteristic is still a characteristic; a subtype of an
association is still an association.

Exercise

Model and design a database using the E-R model. Repeat the exercise using the X-R model.
Implement both databases and compare their performance.

5.5 Database Design via the XR Model

The following approach, developed by Date and outlined in [Date, 1990], employs the
basic XR method,but relaxes the requirement that surrogates, E-relations and P-relations
are mandatory. The (partial)database model represented in Figure 5-2 will be used for the
purpose of illustration.

Before proceeding, we now introduce a notation that has become necessary: The
notation R.A will be usedto mean attribute A in relation (or entity) R. For instance,
Department.Dept# denotes attribute Dept# in the relation Department. The database
design approach involves seven steps as summarized in Figure 5-7 and clarified in the
upcoming subsections.

Determine kernel entities.

Determine characteristic entities.

Determine Designative entities.

Determine associations.

Determine subtypes and super-types.

Determine component entities.

Determine properties of each entity.

Construct a relation-attribute list (RAL) for each relation.

By consistently following this procedure, you will obtain a set of relations that will be normalized to at least the Boyce-Codd
normal form (BCNF). You can then apply your normalization theory until you achieve the desired level of normalization.

©CoN>OR®WND~

Figure 5-7. Database Design Procedure Using the XR Model

5.5.1 Determining the Kernel Entities

The first step involves determining the kernel entities. As mentioned, earlier, kernels are
the core relations. In the example, the kernels are Department, Employee, Supplier,
Project, and InventoryItem. Each kernel translates to a base relation. The primary key of
each could be the user controlled ones, or surrogates may be introduced.

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.5.2 Determining the Characteristic Entities

The second step involves determining and properly structuring the characteristic entities.
As mentioned above, a characteristic entity is existence-dependent on the entity it
describes. One characteristic exists in the example, namely Dependent. Characteristics
also translate to base relations. The foreign key in Dependent would be DepnEmp#,
which would reference Employee.Emp#. Notice that we did not use the attribute name
Emp# as the foreign key in Dependent, but DepnEmp#. This decision is based on the
following principle:

It is good design practice to define each attribute so that it is unique to the database (even if the
attribute is a foreign key).

It should be noted that not all DBMS products support this principle (some require
that a foreign key must have the same name as the attribute it references). You should
therefore check to ascertain whether the product you are using supports it (Oracle and
DB2 both do). Two strong arguments can be given in defense of this principle:

e Simply, it makes good sense and leads to a cleaner, more elegant
database design.

e Itavoids confusion when queries involving the joining of multiple
relations are constructed and executed on the database. This will
become clearer in division C (particularly chapter 12) of the text.

Moving on to data integrity, we would require the following integrity constraints on
the Dependent relation:

e Null FKs not allowed

e Deletion is cascaded from the referenced to the referencing
records

e Update cascaded from the referenced to the referencing records
Two alternatives exist for choice of primary key:

a. The foreign key combined with the attribute that distinguishes
different characteristics within the target entity
(e.g. [Emp#, DepnName]);

b. Introduce a surrogate (e.g. DepnRef). The surrogate could
be defined in such as way as to allow you to key solely on it;
or it could be defined to allow you to key on the foreign key,
combined with it (e.g. [Emp#, DepnRef]).

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.5.3 Determining the Designative Entities

This third step involves identifying and properly structuring the designative entities.
As mentioned earlier, a designation is a 1:M or 1:1 relationship between two entities. In
the example, designations are ProjMgr, DeptEmp, and EmpDep. However, EmpDep is a
characteristic (that has already been identified above).

From the theory established in chapter 3 (section 3.5.4), a designation is implemented
by the introduction of a foreign key in the relation for the designating entity. Following
this principle, we would introduce foreign key, EmpDept# in relation Employee (where
EmpDept# references Department.Dept#), and foreign key, ProjManagerEmp# in
relation Project (where ProjManagerEmp# references Employee.Emp#).

Integrity constraints for designations would typically be:

e Null FKs allowed in the designating entity if the participation
is partial

e Null FKs not allowed in the designating entity if the participation
is full

e Deletion of referenced records restricted

e Update of referenced records restricted (although for some
practical purposes, update could be cascaded)

Typically, the foreign key in a designative entity is a non-key attribute. Consequently,
there are normally no keying issues. However, there could be exceptions to this
observation (for instance in the case where an intersecting relation is introduced to
implement a M:M relationship).

5.5.4 Determining the Associations

Step 4 involves identification and implementation of all associations. As mentioned
earlier, associations are the implementation of M:M relationships. They translate to
base relations. In the example, associations are ProjWork, SuppItems, ItemStruct,
and SuppSched. Again relying on the theory established in chapter 3 (section 3.5.4)
on the implementation of M:M relationships, we would introduce four base relations
for the four associations — ProjWork, SuppItems, ItemStruct, and SuppSched.
However, as established in chapter 4 (section 4.10), SuppSched should be replaced
with three relations, namely SuppItems{Suppl#, Item#}, ItemProj{ltem#, Proj#}, and
ProjSupp{Proj#, Suppl#}. Additionally, and in keeping with the principle of having
unique attribute names for the entire database, we will change the foreign key attribute
names to names that are unique but easily traceable to the attributes they reference.
Integrity constraints for associations would typically be:

e Null FKs not allowed
e Deletion of referenced records restricted

e Update of referenced records restricted

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Two alternatives exist for choice of primary key:
a. Keyon the aggregation of the foreign keys.

b. Introduce a surrogate and key on it.

5.5.5 Determining Entity Subtypes and Super-types

The fifth step relates to identifying and properly implementing subtype-super-type
relationships among the entities. Care should be taken here, in not introducing subtype-
super-type relationships where traditional relationships would suffice (review section 3.5).
Each entity type translates to a base relation. Each base relation will contain attributes
corresponding to properties of the entities that apply within the type hierarchy. Again
being guided by principles established in chapter 3 (section 3.5.4), each subtype will
share the primary key of its super-type. Further, the primary key of a subtype is also the
foreign key of the said subtype. The illustrations provided in chapter 3 (Figures 3-11 and
3.12) are also applicable here.

No subtype-super-type relationship appears in the model of Figure 5-2. However,
in Figure 5-3, there are a few: Programmer, Engineer and Accountant are subtypes
of Employee; SystemProgrammer and ApplicationProgrammer are subtypes of
Programmer. Note also that in a subtype, except for the primary key (which is also a
foreign key), no additional attributes of the super-type need to be repeated, since they
are inherited. However, additional attributes may be specified (in the subtype). For
example (still referring to Figure 5-3), the Programmer entity may contain the attribute
ProgLanguage to store the programmer’s main programming language; this would not
apply to Employee.

For subtypes, integrity constraints on foreign (primary) keys may be:

e Nulls not allowed
e Deletion of referenced records restricted (in super-type)

e Deletion of referencing records allowed (in subtype but not in
super-type)
e Update cascaded from the super-type

5.5.6 Determining Component Entities

Component entities were not discussed in Date’s original work on the database design
via the XR model. However, in the interest of comprehensive coverage, this sub-section
has been added. As mentioned in the previous sub-section, care should be taken in

not introducing component relationships where traditional relationships would suffice
(review section 3.5). Each entity type translates to a base relation. Each base relation will
contain attributes corresponding to properties of the entities that apply within the type
hierarchy. Again being guided by principles established in chapter 3 (section 3.5.4), each
component will include a foreign key, which is the primary key in the summary relation.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Further, this foreign key will form part of the primary key (or a candidate key) in the
component relation. For examples, please refer to figures 3-11 and 3.12 of chapter 3.
For components, integrity constraints on foreign (primary) keys may be:

e Null FKs not allowed
e Deletion of referenced records restricted (in summary)

e Deletion of referencing records allowed (in component but not in
summary)

e Update cascaded from the summary

5.5.7 Determining the Properties

The final step in this (modified) XR approach is to carefully determine the properties in
each relation (entity). This is actually easy, but in order to avoid mistakes, you must be
diligent:

e Except for associations, in your initial system investigation (which
would be part of the required software engineering or systems
analysis), you would have identified the basic properties for each
identified entity. That is your starting point.

e Next, go through steps 1-3, 5, and 6 above, and observe the
guidelines for dealing with characteristics, designations, subtypes
and components. These steps tell you when and where to
introduce foreign keys.

e Next, observe step 4 above for treating associations.

By following this procedure, you will be able to confidently determine the properties
for each relation in the database; in fact, you will end up with a list that is identical or very
similar to the one provided in Figure 5-5 above. This finalized list is illustrated in Figure 5-8.
As you examine the figure, please note the following:

1. All primary key and foreign key attributes are italicized.

2. The principle of having each attribute with a unique attribute
name (including foreign keys) has been followed.

3. The database specification is presented via a Relation-
Attributes List (RAL) — a technique introduced in chapter 3
(section 3.6).

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Relation | Properties (Attributes) | Comment
Kernels:
Department Dept# The primary key
DeptName
Employee Emp# The primary key
EmpName
EmpDept# References Department.Dept#
Supplier Supplit The primary key
SuppIName
Project Proj The primary key
ProjName
ProjManagerEmp# References Employee.Emp#
Inventoryltem ltemit The primary key
ltemName
Characteristics:
Dependent DepnRef Surrogate and primary key
DepnName
DepnEmp# References Employee.Emp#
Associations:
Suppltems SISuppl# References Supplier.Suppl#
Slitemi References Inventoryltem.ltem#
SIRef Surrogate and primary key
ltemProj IPltemit References Inventoryltem.ltem#
IPProj# References Project.Proj#
IPRef Surrogate and primary key
ProjSupp PSProj# References Project.Proj#
PSSuppl# References Supplier.Suppli#
PSRef Surrogate and primary key
ProjWork PWEmp# References Employee.Emp#
PWProj# References Project.Proj#
PWRef Surrogate and primary key
ItemStruct ISThisltemit References Inventoryltem.ltem#
ISCompltem# References Inventoryltem.ltem#
ISRef Surrogate and primary key

Note: Primary key attributes and foreign keys are italicized.

Figure 5-8. Partial Database Specification for Section of Manufacturing Firm’s Database

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

With this additional information, you can now revisit the database specification of
chapter 3 (Figures 3-4b, 3-13 and 3-14) and revise it accordingly (left as an exercise for you).
In so doing, please observe that while the ERD of Figure 5-2 is similar to that of Figure 3-4b,
they are not identical; they highlight different aspects of a manufacturing environment, with
various areas of overlap. By examining both figures, you should come away with a better
sense of what a database model and specification for such an environment would likely entail.
The key is to apply sound information gathering techniques (as learned in your software
engineering course and summarized in appendix 3), coupled with your database knowledge.

5.6 The UML Model

An alternate methodology for database modeling is the Unified Modeling Language (UML)
notation. UML was developed by three contemporary software engineering paragons —
Grady Booch, James Rumbaugh and Ivar Jacobson. These three professionals founded
Rational Software during the 1990s, and among several other outstanding achievements,
developed UML for the expressed purpose of being a universal modeling language. Although
UML was developed, primarily for object-oriented software engineering (OOSE), it is quite
suitable for database modeling. Figure 5-9 provides a description of the main symbols

used in UML. Note that with UML comes a slight change in the database jargon (“entity” is
replaced with “object type”), consistent with the fact that UML is primarily for OOSE.

The object symbol indicates the name of the object type, the attributes of the object type, and
the operations defined on the object. However, since there are alternate ways of accounting
for attributes (review section 3.6, and see section 5.8), we will de-emphasize the inclusion of
attributes on the object type symbol. Additionally, to avoid cluttering, we will forego the
inclusion of operations defined on the object. With this convention, the object type symbol is
similar to the entity symbol.

Object Type

02 is a subtype of O1. Conversely, O1 is a super-type of 02.

01 is a subtype of 02. Conversely, 02 is a super-type of O1.

2
02 and 03 are aggregations of O1. They exist
independent of O1.

0 <>

3

2
02 and 03 are components of O1. They do not

0
exist independent of O1.

B
|

3

Role1 Role2
A line connecting two object types represents a relationship (also called an
association in OOSE terminology); the multiplicity (cardinality) of this
[x1.y1] [x2,y2] relationship is indicated by a pair of integers next to each object type (lowest
value is indicated first, and an asterisk is sometimes used to mean “many”).
The role that each object plays in the relationship is also indicated next to the
object type. This convention is similar, but not identical to the Chen notation.

H

Figure 5-9. Symbols Used in UML Notation for Database Modeling

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Note that the UML notation makes a distinction between a component relationship
and an aggregation relationship. In the case of the component relationship, the
constituent object types are existence dependent on a main object type. In the case of an
aggregation relationship, the constituent object types are existence independent of the
aggregation object type. Figure 5-10 illustrates the UML diagram for the (partial) college
database model that was introduced in chapter 3 (Figure 3-11). Notice that except for the
StudentEmployee object type, which has been omitted, the information represented is
essentially similar to what was represented in Figure 3-11. The only difference here is that

the appropriate UML symbols have been used.

CollegeMember

A

Student

1.1
Enrolled-in

Facilitates
10.7]

P

Employee

Belongs [1.1]

Employs

1.7

Department

EmployeePersonallnfo

EmployeeEmploymentHistory

EmployeeAcademicLog

EmployeePublicationsLog

EmployesExtraCurricular

EmployeeDependentsLog

Figure 5-10. UML Diagram for a Partial College Database Model

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Let us examine another example: Suppose that you were hired at a large marketing
company that needs to keep track of its sales of various products and product lines over
time. Suppose further that the company operates out of various offices strategically
located across the country and/or around the world. How would you construct a database
conceptual schema that would allow the company to effectively track its sales? One way to
solve this problem is to employ what is called a star schema — a central relation (or object
type) is connected to two or more relations (or object types) by forming a M:1 relationship
with each. Figure 5-11 illustrates such a schema for the marketing company. The central
relation (often referred to as the fact table) is SalesSummary. The surrounding relations
(often referred to as dimensional tables) are Location, TimePeriod, ProductLine, and
Product. Each forms a 1:M relationship with SaleSummary, the central relation. Notice
that consistent with the theory, SalesSummary has a foreign key that references each of
the referenced relations (object types). Finally, observe also that in this illustration, the
attributes for each relation (object type) have been included in the diagram.

Location 0,4 [0,%| TimePeriod
LocCode [1.1] .1 TmCode
LocName TmYear
LocCity SalesSummmary TmMonth
LocState SS_TmCode TmCommment
Primary Key [LocCode] ggflﬁiécozie Primary Key [TmCode]
SS_PrdCode
SS_SaleUnits
11,1 | SS_SaleAmount 1.1
0,7 SS_ReferenceNo 0,7
Product ProductLine
Primary Key [SS_ReferenceNo]
PrdCode PLCode
PrdName Alternate Key [SS_TmCode, PLName
PrdDescription SS_LocCode, SS_PLCode, PLDescription
SS_PrdCode]
Primary Key [PrdCode] Primary Key [PLCode]
Note: The attribute SaleSummary.SS_ReferenceNo has been introduced as a surrogate, to avoid
having a composite primary key. Also observe that attributes S§_TmCode, SS_LocCode, SS_PLCode,
and SS_PrdCode are foreign keys that have already been introduced.

Figure 5-11. UML Diagram for Tracking Sales Summary for a Large Marketing Company

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.7 Database Design via the UML Model

Database design with the UML model is somewhat similar to database design with the
E-R model. The points of divergence relate to the differences in notation between the
two approaches as well as the semantic jargon used. The rules that prescribe bow to treat
various types of relationships (section 3.5.4) are still applicable. However, in order to be
consistent with object-oriented (OO) terminology, you would replace the term relation
(or entity) with the term object type. With this in mind, we may construct a procedure for
database design via the UML model as follows:

1. Identify all object types and their related attributes.

2. Identify all relationships among the object types.

3. Classify the relationships (mandatory versus optional); decide on which optional relationships will be retained and
which ones will be eliminated.

4. Construct an O-R diagram using UML notation or the equivalent (review chapter 3).

5. Refine the model.

6. Using the guidelines for implementing relationships (section 3.5.4), construct a final set of object types, clearly
indicating for each object type, its attributes, candidate key(s), and primary key. | you do not have the appropriate
database modeling and design tools, construct an object-type-attributes list (OAL) similar to the RAL of chapter 3, and
a RL (review section 3.6).

7. By consistently following this procedure, you will obtain a set of object types that will be normalized to at least the Boyce-
Codd normal form (BCNF). You can then apply your normalization theory until you achieve the desired level of
normalization

Note: The illustrations given in chapter 3 (figures 3.4b, 3.11, 3.12, 3.13, and 3.14) are applicable here.

Figure 5-12. Database Design Procedure Using the UML Model

Note: Due to the inherent behavior of typical OO software products, introducing
primary keys and foreign keys into object types (implemented as classes) as we
have prescribed, may be unnecessary. In a purely OO environment, these links are
automatically introduced by the OO software and implemented as pointers — a feature
called encapsulation; however, they are internal and cannot be tracked by the user. For
this reason, many OO pundits argue that normalization and data independence run
counter to inheritance and encapsulation. The debate as to when to use an OO database
versus a relational database and vice versa, is likely to be ongoing for some time into the
foreseeable future. It will be revisited in chapter 23.

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

5.8 Innovation: The Object/Entity Specification Grid

This section introduces an innovative approach to database design specification that has
been successfully used by the author on a number of major projects. The approach may
be construed as an extension of the UML model, but is applicable to any database model.
As mentioned in chapter 3 (section 3.6), for large complex projects (involving
huge databases with tens of entities or object types), unless a CASE or RAD tool which
automatically generates the ORD or ERD is readily available, manually drawing and
maintaining this important aspect of the project becomes virtually futile. Even with a
CASE tool, perusing several pages of O-R (E-R) diagram may not be much fun. In such
cases, an object/entity specification grid (O/ESG) is particularly useful. In a relational
database environment, the term entity specification grid (ESG) is recommended; in an
object-oriented environment, the term object specification grid (OSG) is recommended.
The O/ESG presents the specification for each object type (or entity) as it will be
implemented in a database consisting of normalized relations. The conventions used for
the O/ESG are shown in Figure 5-13; a summary of these conventions follows:

e Each object type (or entity) is identified by a reference code, a
descriptive name, and an implementation name (indicated in
square brackets).

e For each object type (or entity), the attributes (data elements) to
be stored are identified.

e Each attribute is specified by its descriptive name, the
implementation name indicated in square brackets, a physical
description of the attribute (as described below), and whether the
attribute is a foreign key.

e For physical description, the following letters will be used to
denote the type of data that will be stored in that attribute,
followed by a number which indicates the maximum length of
the field: (A) alphanumeric, (N) numeric, or (M) memo. This is
specified within square braces. For instance, the notation [Dept#]
[N4] denotes a numeric attribute of maximum length 4 bytes.

In the case of an attribute that stores a memo (M), no length is
indicated because a memo field can store as much information
as needed. If a real number value is being stored with a decimal
value, two numbers will be used: the first number will indicate
the length for the whole number part and the second number will
indicate the field length of the decimal part (e.g. [N(9,2)]).

e Anattribute that is a foreign key is identified by a comment
specifying what object type (or entity) is being referenced. The
comment appears in curly braces.

e For each object type (or entity) a comment describing the data to
be stored is provided.

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

e Anitemized specification of indexes to be defined (starting with
the primary key) is provided for each object type (or entity).

e Each operation to be defined on an object type (or entity) will be
given a descriptive name and an implementation name, indicated
in square brackets.

Reference Number — Descriptive Name [Implementation Name]
Attributes:

[* ltemized specification of all attributes of this object type (or entity) */
Comments:

[* A brief description of the storage purpose of this object type (or entity) */
Indexes:

[* ltemized specification of anticipated indexes, starting with the primary key */
Valid Operations:

/* Itemized list of operations to be defined on this object type (or entity) */

Figure 5-13. O/ESG Conventions

Figure 5-14 provides an illustration of O/ESG for four of the object types (or entities)
that would comprise the manufacturing firm'’s database of earlier discussion (review
Figure 5-7). In actuality, there would be one for each object type (or entity) comprising
the system.

E1 - Department [RMDepartment_BR]

Attributes:

01. Department Number [Dept#] [N4]

02. Department Name [DeptName] [A35]

03. Department Head Employee Number [DeptHeadEmp#] [N7] {Refers to E2.Emp#}

Comments:

This table stores definitions of all departments in the organization.
Indexes:

1. Primary Key Index: RMDepartment_NX1 on [01]; constraint RMDepartment_PK.
2. RMNXDepartment2 on [02]

Valid Operations:

1. Maintain Departments [RMDepartment_MO]

1.1 Add Departments [RMDepartment_AQ]

1.2 Update Departments [RMDepartment_UO]

1.3 Delete Department [RMDepartment_ZO]

2. Inquire on Departments [RMDepartment_IQ]

Figure 5-14. Partial O/ESG for Manufacturing Environment

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

E2 - Employee [RMEmployee_BR]

Attributes:

01. Employee Identification Number [Emp#] [N7]

02. Employee Last Name [EmpLName] [A20]

03. Employee First Name [EmpFName] [A20]

04. Employee Middle Initials [EmpMInit]] [A4]

05. Employee Date of Birth [EmpDOB] [N8]

06. Employee’s Department [EmpDept#] [N4] {Refers to E1.Dept#}
07. Employee Gender [EmpGender] [A1]

08. Employee Marital Status [EmpMStatus] [A1]

09. Employee Social Security Number [EmpSSN] [N10]

10. Employee Home Telephone Number [EmpHomeTel] [A14]
11. Employee Work Telephone Number [EmpWorkTel] [A10]

Comments:
This table stores standard information about all employees in the organization.

Indexes:

1. Primary Key Index: RMEmployee_NX1 on [01]; constraint RMEmployee_PK.
2. RMEmployee_NX2 on [02, 03, 04]

3. RMEmployee_NX3 on [09]

4. RMEmployee_NX4 on [10] or [11]

Valid Operations:

1. Manage Employees [RMEmployee_MO]
1.1 Add Employees [RMEmployee_AO]

1.2 Update Employees [RMEmployee_UO]

1.3 Delete Employees [RMEmployee_ZO

2. Inquire on Employees [RMEmployee_|O]
3. Report on Employees [RMEmployee_RO]

E3 — Supplier [RMSupplier BR]

Attributes:

01. Supplier Number [Suppl#] [N4]

02. Supplier Name [SupplName] [A35]

03. Supplier Contact Name [SupplContact] [A35]

04. Supplier Telephone Numbers [SupplPhone] [A30]
05. Supplier E-mail Address [SuppEmail] [A30]

Comments:
This table stores definitions of all employee classifications.

Indexes:

1. Primary Key Index: RMSupplier_NX1 on [01]; constraint RMSupplier_PK.
2. RMSupplier_NX2 on [02]

3. RMSupplier_NX3 on [04]

Valid Operations:

1. Manage Suppliers]RMSupplier_MQ]
1.1 Add Suppliers [RMSupplier_AQ]

1.2 Update Suppliers [RMSupplier_UQ]
1.3 Delete Suppliers [RMSupplier_Z0]

2. Inquire on Suppliers [RMSupplier_IO]
3. Report on Suppliers [RMSupplier RO]

Figure 5-14. Partial O/ESG for Manufacturing Environment (continued)

www.it-ebooks.info

107

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

E4 - Project [RMProject_BR]

Attributes:

01. Project Number [Proj#] [N4]

02. Project Name [ProjName] [A15]

03. Project Summary [ProjSumm] [M]

04. Project's Manager [ProjManagerEmp#] [N7] {References E2.Emp#}

Comments:

This table stores definitions of all company projects.
Indexes:

1. Primary Key Index: RMProject_NX1 on [01]; constraint RMProject_PK.
2. RMProject_NX2 on [02]

Valid Operations:

1. Manage Projects [RMProject_MQ]

1.1 Add Projects [RMProject_AO]

1.2 Update Projects [RMProject_UQ]

1.3 Delete Projects [RMProject_Z0]

2. Inquire on Projects [RMProject_IO]

3. Report on Projects [RMProject_RO]

Figure 5-14. Partial O/ESG for Manufacturing Environment (continued)

5.9 Database Design via Normalization Theory

Although this is seldom done, you can actually use the normalization theory as discussed
in chapter 4 to design the basic conceptual schema (involving the structure of the base
relations) of a relational database. In practice, normalization is used as a check-and-balance
mechanism to acceptability of a database’s conceptual schema. As such, normalization can
(and should) be applied to each of the database design approaches discussed.

This section looks at two sample database design problems, and shows how the
normalization theory can be used to solve them.We will advance the discussion by using
two problem scenarios that will hopefully identify with.

5.9.1 Example: Mountaineering Problem

Suppose that we wish to record information about the activities of mountaineers in a
relational database. Let us make the assumption that a climber can only begin one climb
per day. Figure 5-15 illustrates an initial set attributes (with suggested implementation
names in square brackets) for the database.

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Begin Date [BDATE]
End Date [EDATE]
Climber Name [CNAME]
Climber Address [CADDR]
Name of Mountain [MNAME]
Height of Mountain [MHGHT]
Country of Mountain [CTRYNM]
District of Mountain [DIST]

Figure 5-15. Attributes for the Mountaineering Problem

How may we obtain an appropriate conceptual schema for the mountaineering
problem? We may approach this problem in one of two ways:

e The Pragmatic Approach: Identify related attributes that form data
entities, normalize these entities, then identify and rationalize
relationships among the entities.

e The Classical (theoretical) Approach: Start out by creating
one large 1NF relation involving all attributes, progressively
decompose into relations of higher normal forms until the given
requirements are met.

In the interest of illustrating application of the theory of normalization, we shall
pursue the second approach. However, please bear in mind that in most real life
situations, you will be advised to employ the pragmatic approach. Several of the cases in
chapter 26 (for instance, assignments 1 and 2) provide an excellent opportunity for you to
do this.

Step 1 — Create a large 1NF Relation

We introduce three new attributes: Climber Identification [CID#|, Mountain
Identification [MTN#], and Country Code [CTRYCD)]; store all attributes as relation M as
shown in Figure 5-16. The figure also states the observed functional dependencies.

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Relation M:

Primary Key [BDATE & CID#]
Begin Date [BDATE]
End Date [EDATE]
Climber Identification [CID#]
Climber Name [CNAME]
Climber Address [CADDR]
Mountain Identification ~[MTN#]
Name of Mountain [MNAME]
Height of Mountain [MHGHT]
Country Code [CTRYCD]
Country of Mountain [CTRYNM]
District of Mountain [DIST]

Functional Dependencies:

FD1: [BDATE, CID#] - EDATE, CNAME, CADDR, MTN#, MNAME, MHGHT, CTRYCD, CTRYNM,
DIST

FD2: CID# - CNAME, CADDR

FD3: CTRYCD - CTRYNM

FD4: MTN# - MNAME, MHGHT, DIST, CTRYCD, CTRYNM

Figure 5-16. Revised Initial 1NF Relation for the Mountaineering Problem

Step 2 — Obtain 2NF Relations

The second step is to obtain a set of 2NFrelations. Because of this FD2, the relation can be
non-loss decomposed via Heath'’s theorem to obtain:

Relation M1: {CID#, CNAME, CADDR} PK [CID#]

Relation M2: {BDATE, CID#, EDATE, MTN#, MNAME,
MHGHT, CTRYCD, CTRYNM, DIST} PK [CID#, BDATE]

Step 3 — Obtain 3NF Relations

Next, we seek to obtain 3NF relations. Based on FD3 and FD4, relation M2 is not in 3NE.
Again applying Heath'’s theorem for non-loss decomposition, we obtain the following
relations:

Relation M3: {CTRYCD, CTRYNM} PK [CTRYCD]

Relation M4: {MTN#, MNAME, MHGHT, CTRYCD, DIST} PK
[MTN#]

Relation M5: {BDATE, CID#, MTN#, EDATE} PK
[CID#, BDATE]

Step 4 — Obtain BCNF (and higher order) Relations

Next, we seek to obtain relations of higher order normal forms. Observe that relations M1,
M3, M4, and M5 are in BCNF, 4NF and 5NF.

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Note: We could have forgone steps 1-3 and gone straight for BCNF relations by
simply observing the FDs shown in Figure 5-16, and decomposing via Heath’s theorem.
As your confidence in database design grows, you will (hopefully) be able to do this.

5.9.2 Determining Candidate Keys and then Normalizing

In many cases, the database designer may be faced with the problem where basic
knowledge of data to be stored is available, but it is not immediately clear how this
partial knowledge will translate into a set of normalized relations. For instance, you
may be able to identify an entity (or set of entities), but are not sure what the primary
key(s) to this (these) entity (entities) will be. With experience, you will be able to resolve
these challenges intuitively. However, what do you do in the absence of that invaluable
experience? The relational model provides a theoretical approach for dealing with this
problem, as explained in the following example.

Suppose that it is desirable to record the information about the performances of
students in certain courses in an educational institution environment. Assume further,
that a set of functional dependencies have been identified, but it is not sure what the final
set of normalized relations will be and how they will be keyed. Figure 5-17 illustrates a
summary of the information (assumed to be) known in the case. As usual, we start off by
assuming that the relation shown (StudPerfDraft) is in 1NF.

Relation StudPerfDraft:

Course [C]
Teacher [T]
Hour [H]
Room [R]
Student [S]
Grade [G]

Functional Dependencies:
FDI:[H,R] > C
FD2:[H,T] > R
FD3:[C,S] 2> G
FD4:[H,S] 2> R
FD5:C>T

Figure 5-17. Initial INF Relation for the Student Performance Problem

Step 1 — Determine the Candidate Key

Having assumed that StudPerfDraft is in 1NF, our next step is to determine a candidate
key of the relation. We do this by chasing the explicit and implicit dependencies. Any FD
that ends up determining all attributes (directly or indirectly) constitutes a candidate key.
The technique is referred to as computing closures.

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

The closure of an FD. denoted FD'. is the set of all implied dependencies.

We shall examine each explicit FD in turn and determine all the attributes that it
determines (explicitly or implicitly), bearing in mind that any attribute or combination
of attributes that is a determinant, necessarily determines itself. Hence, we conclude the
following:

e HR->CHR- CTHR

e HT->HTR->HTRC

e (CS->CSG->CSGT

e HS-> HSR-> CHSR - CHSRG - CHSRGT
e C->CT

From this exercise, observe that [H,S] is the only candidate key; it is therefore the
primary key (PK).

Step 2 — Obtain 2NF Relations

The next step is to obtain 2NF relations. We may rewrite the initial relation as follows:
StudPerfDraft {H, S, C, T, R, G} with PK [H,S]

Observe that StudPerfDraft is in 2NF.

Step 3 — Obtain 3NF Relations

Step 3 is to obtain 3NF relations. StudPerfDraft is not in 3NF due to FD5 (C >T). To
resolve this, decompose via Heath’s Theorem to obtain:
R1{H, S, C, R, G} with PK [H,S] and R2 {C ,T} with PK [C].

Step 4 — Obtain BCNF Relations

Our fourth step is to obtain a set of BCNF relations. Observe that R2 is in BCNF but R1 is
not, due to FD3 ([C,S] > G). To resolve this, decompose via Heath’s theorem to obtain:

R3 {C, S,G} with PK [C,S] and R4 {H, S, C, R} with PK [H,S].

R3 is now in BCNF but R4 is not, due to FD1 ([H,R] > C). Decompose via Heath’s
theorem to obtain:

R5 {H, R, C} with PK [H,R] and R6 {H, S, R} with PK [H,S].

We now have R2, R3, R5, and R6 all in BCNF. Additionally, note that all the FDs
have been resolved, except for FD2 ([H,T] > R). This may be resolved by introducing the
relation R7 as follows:

R7 {H, T, R} with PK [H, T].

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

Step 5 - Obtain Higher Order Normalized Relations

There are no MVDs or JDs, therefore relations R2, R3, R5, R6 and R7 are in 4NF and 5NF.
Note:

1. This is a rather trivial example; a college database is a much
more complex system than the representation presented
here. Moreover, questions may be raised as to the veracity
of some of the FDs stated (for instance FD5). However, the
representation succeeds in providing the application of the
normalization theory, and that was the sole intent.

2. Relation R6 fulfills FD4 ([H,S] > R), and R?7 fulfills FD2
([H, T] > R). Strictly speaking, R7 may be considered
redundant, since we can determine what teacher is in a room
at a given time by accessing R5 and R2.

5.10 Database Model and Design Tools

At this point you must be wondering, how in the world are you supposed to model and
design a complex database, and keep track of all the entities and relationships? The good
news is, there are various tools that are readily available, so there’s no need to panic. The
standard general purpose word processors (such as MS Office, Word Perfect, Open Office,
etc.) are all fortified with graphics capabilities so that if you spend a little time with any
of these products, you will figure out how to design fairly impressive database model/
design diagrams. Better yet, there is a wide range of CASE tools and/or modeling tools
that you can use. Figure 5-18 provides an alphabetic list of some of the commonly used
products. While some of the products in the list are quite impressive, the list is by no
means comprehensive, so you do not have to be constrained by it. Some of the products
are available free of charge; for others, the parent company offers free evaluation copies.

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * DATABASE MODELING AND DESIGN

Product Parent Company Comment

ConceptDraw CS Odessa Supports UML diagrams, GUI designs, flowcharts, ERD,
and project planning charts.

DataArchitect theKompany.com Supports logical and physical data modeling. Interfaces

with ODBC and DBMSs such as MySQL, PosigreSQL,
DB2, MS SQL Server, Gupta SQLBase, and Oracle. Runs
on Linux, Windows, Mac OS X, HP-UX, and Sparc Solaris

platforms.

Database Design Tool (DDT) | Open Source A basic tool that allows database modeling that can
impart or export SQL.

Database Design Studio Chilli Source Allows modeling via ERD, data structure diagrams, and

data definition language (DDL) scripts. Three products
are marketed: DDS-Pro is ideal for large databases; DDD-
Lite is recommended for small and medium-sized
databases; SQL-Console is a GUI-based tool that
connects with any database that supports ODBC.

DBDesigner 4 and fabFORCE.net This original product was developed for the MySQL
MySQL Workbench database. The replacement version, MySQL Workspace
is targeted for any database environment, and is currently
available for the Windows and Linux platforms.

DeZign Datanamic Facilitates easy development of ERDs and generation of
corresponding SQL code. Supports DBMSs including
Oracle, MS SQL Server, MySQL, IBM DB2, Firebird,
InterBase, MS Access, PostgreSQL, Paradox, dBase,
Pervasive, Informix, Clipper, Foxpro, Sybase, SQLite,
ElevateDB, NexusDE, DBISAM.

Enterprise Architect Sparx Systems Facilitates UML diagrams that support the entire software
development life cycle (SDLC). Includes support of
business modeling, systems engineering, and enterprise
architecture. Supports reverse engineering as well.

ER Creator Model Creator Allows for the creation of ERDs, and the generation of
Software SQL and the generation of corresponding DDL scripts.
Also facilitates reverse engineering from databases that
support ODBC.
ER Diagrammer Embarcadero Similar to ER Creator

Figure 5-18. Some Commonly Used Database Planning Tools

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

DATABASE MODELING AND DESIGN

Product

Parent Company

Comment

ERWin Data Modeler

Computer Associates

Facilitates creation and maintenance o data structures for
databases, data warehouses, and enterprise data
resources. Runs on the Windows platform. Compatible
with heterogeneous DBMSs

MagicDraw

No Magic

A relatively new product that has just been introduced to
the market. Appears to be similar to Enterprise Architect.

Oracle Designer

Oracle

Supports design for Oracle databases.

Oracle JDeveloper

QOracle

Supports UML diagramming.

Power Designer

Sybase

Supports UML, business process modeling, and data
modeling. Integrates with development tools such as
.NET, Power Builder (a Sybase Product), Java, and
Eclipse. Also integrates with the major DBMSs.

SmartDraw

SmartDraw

A graphics software that facilitates modeling in the related
disciplines of business enterprise planning, software
engineering, database modeling, and information
engineering (IE). Provides over 100 different templates
(based on different methodologies) that you can choose
from. Supported methodologies include UML, Chen
Notation, IE Notation, etc.

TogetherSoft

Borland

Provides UML-based visual modeling for various aspects
of the software development life cycle (SDLC). Allows
generation of DDL scripts from the data model. Also
supports forward and reverse engineering for Java and
C++ code.

Toolkit for Conceptual
Modeling (TCM)

University of Twente,
Holland

Includes various resources for traditional software
engineering methodologies as well as object-oriented
methodologies based on the UML standards.

Visio

Microsoft

Facilitates modeling in support of business enterprise
planning, software engineering, and database
management.

Visual Thought

CERN

Similar to Visio but is free

xCase

Resolution Software

A database modeling tool that supports all aspects of the
database development life cycle (DDLC): it supports ERD
design, documentation, SQL code generation, logical and
physical migration across multiple DBMS platforms, and
data analysis.

Figure 5-18. Some Commonly Used Database Planning Tools (continued)

5.11 Summary and Concluding Remarks

It is now time to summarize what we have covered in this chapter:

e Adatabase model is a blueprint for subsequent database design.
It is a representation of the database. We have looked at three
database models: the E-R model, the XR model and the UML
model.

e Database design involves preparation of a database specification,
which will be used to construct the database. We have discussed
database design via the E-R model, the XR model, the UML
model, the O/ESG, and normalization theory.

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

You are now armed with all the requisite knowledge needed to design quality
databases. However, you will likely find that a review of this and the previous two
chapters, along with practice, may be necessary until you have gained mastery and
confidence with the concepts, principles and methodologies. The next chapter discusses

DATABASE MODELING AND DESIGN

The E-R model is the oldest model for relational databases that
has been discussed. It involves the use of certain predefined
symbols to construct a graphical representation of the database.

Database design via the E-R model involves following eight steps
that lead to a normalized database specification.

The XR model is an alternate model that compensates for the
weaknesses in the E-R model. It involves grouping information
entities into different predefined categories that will assist in the
design phase.

Database design via the XR model involves following nine steps
that lead to a normalized database specification.

The UML model is similar to the E-R model. However, it requires
taking an object-oriented approach, and employs different
notations from the E-R model.

Database design via the UML model involves following seven
steps that lead to a normalized database specification.

The O/ESG methodology describes an efficient way of developing
a comprehensive, normalized database specification.

Database design via normalization theory describes a
rudimentary approach to database design that relies on mastery
of the principles of normalization.

the design of the user interface for a database system.

5.12 Review Questions

1.

116

Describe in your own words (with appropriate illustrations)
the approach to database design based on the following (in
each case, describe approach, then outline the advantages
and disadvantages from your perspective):

e TheE-R Model

e TheX-RModel

e The UML Model

e The O/ESG Methodology

e Normalization Theory

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

2. The following are three software systems for which a database
is to be designed:

e AnInventory Management System
e ALab Scheduling System for users of a computer lab
e A Bookshop Manager System for an educational institution

For each system, develop a database specification based

on at least three of the five approaches above. Compare the
database specifications derived. Compare the methodologies.
Which one(s) are you most comfortable with and why?

3. How important are surrogates in the design of a database?
By considering an appropriate example, demonstrate how
surrogates may be used in database design.

4. Compare the UML database model with the E-R model. What
are the similarities? What are the differences? You may use
appropriate illustrations in your response.

5.13 References and/or Recommended Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3 ed. New York, NY:
Addison-Wesley, 2002. See chapters 13-15.

[Date, 1986] Date, Christopher J. Relational Database: Selected Writings. Reading, MA:
Addison-Wesley, 1986.

[Date, 1990] Date, Christopher J. Introduction to Database Systems 5" ed. Menlo Park, CA:
Addison-Wesley, 1990. See chapter 22.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park, CA:
Addison-Wesley, 2004. See chapters 12-14.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5" ed. Reading, MA: Addison-Wesley, 2007. See chapters 7, 10 and 11.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, NJ: Prentice Hall, 2002.
See chapter 3.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern
Database Management 8" ed. Upper Saddle River, NJ: Prentice Hall, 2007. See chapters 5.

[Jensen, 1992] Jensen, C. S. and L. Mark. “Queries on Change in Extended Relational
Model”” IEEE Transactions on Knowledge and Data Engineering Vol. 4 Issue 2, April 1992.
pp. 192-200.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein and Philip M. Lewis. Database Systems: An
Application-Oriented Approach 2" ed. New York: Addison-Wesley, 2005. See chapter 4.

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © DATABASE MODELING AND DESIGN

[Kroenke, 2006] Kroenke, David M. Database Processing: Fundamentals, Design and
Implementation 10h ed. Upper Saddle River, NJ: Prentice Hall, 2006. See chapters 3-6.

[Lee, 2002] Lee, Richard C. and William M. Tepfenhart. Practical Object-Oriented
Development With UML and Java. Upper Saddle River, NJ: Prentice Hall, 2002. See chapter 8.

[Lewis, 2002] Lewis, Phillip M., Arthur Bernstein and Michael Kifer. Databases and
Transaction Processing: An Application Oriented Approach. New York, NY: Addison-
Wesley, 2002. See chapter 8.

[Martin, 1993] Martin, James and James Odell. Principles of Object Oriented Analysis and
Design. Eaglewood Cliffs, NJ: Pretence Hall, 1993. See chapters 6 and 7.

[Pratt, 2002] Pratt, Phillip J. and Joseph J. Adamski. Concepts of Database Management
4™ ed. Boston, MA: Course Technology, 2002. See chapters 5 and 6.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See chapters 4, 6 and 9.

[Rumbaugh, 1991] Rumbaugh, James, et. al. Object Oriented Modeling And Design.
Eaglewood Cliffs, NJ: Pretence Hall, 1991. See chapter 4.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See chapter 3.

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Database User
Interface Design

This chapter covers the essentials of good database user interface design. A properly
designed database system typically includes a user interface that facilitates end users
accessing the system. The chapter presumes that you are familiar with basic software
engineering principles as well as user interface design principles as covered in your
undergraduate degree. The chapter is therefore a summary that includes:

¢ Introduction

¢ Deciding on the User Interface

e Steps in the User Interface Design

e User Interface Development and Implementation

e Summary and Concluding Remarks

6.1 Introduction

At this stage we have settled on all relations (and attributes). Remember, we implement
relations, tuples and attributes as files, records and fields.

Designing the user interface to facilitate user access is the next step. The user
interface should facilitate at least the following basic functions: data insertion, data
update, data deletion, and information retrieval (query and print). This is important, as
itis not acceptable to give end users direct, unfettered access to the database; were this
to be done, the integrity of the system would be compromised in very short order. What
is more desirable is to provide the end users with a user friendly, controlled environment
that gives users all the privileges and functionalities that they need and nothing more.

The user interface will consist of menus from which user operations can be accessed.
Depending on the software development tool used, it will be constructed from various
building blocks, and there will be various categories of user interface objects (review your
software engineering notes).

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

The system must also facilitate various user (external) views through logical
interpretation of objects. This must be developed using the DBMS and/or whatever
software development tool is being used. Note that if the O/ESG methodology
(discussed in section 5.8) is employed, you will be well on your way with the user
interface specification.

Example: By the way of illustration, let us revisit the O/ESG for the partial database
specification of the manufacturing firm, discussed in the previous chapter (section 5.8).
Figure 6-1 shows a repeat of the O/ESG for the Employee entity. According to the
figure (adopting the conventions from section 5.8), this entity could be implemented
as a relational table named RMEmployee_BR. The user interface should anticipate and
support various logical views on this relational table. Following are some examples:

¢ Employees arranged by Name
¢ Employees arranged by Telephone Numbers
¢ Employees arranged by Departments

e Employees arranged by Social Security Number

E2 - Employee [RMEmployee BR]

Attributes:

01. Employee Identification Number [Emp#] {N7}

02. Employee Last Name [EmpLName] {A20}

03. Employee First Name [EmpFName] {A20}

04. Employee Middle Initials [EmpMInitl] {A4}

05. Employee Date of Birth [EmpDOB] N8

06. Employee’s Department [EmpDept#] {N4} Refers to E1.Dept#
07. Employee Gender [EmpGender] {A1}

08. Employee Marital Status [EmpMStatus] {A1}

09. Employee Social Security Number [EmpSSN] {N10}

10. Employee Home Telephone Number [EmpHomeTel] {A14}
11. Employee Work Telephone Number [EmpWorkTel] {A10}

Comments:

This table stores standard information about all employees in the organization.
Indexes:

1. Primary Key Index: RMEmployee_NX1 on [01]; constraint RMEmployee_PK.
2. RMEmployee_NX2 on [02, 03, 04]

3. RMEmployee_NX3 on [09]

4. RMEmployee_NX4 on [10] or [11]

Valid Operations:

1. Manage Employees [RMEmployee_MQ]

1.1 Add Employees [RMEmployee_AO]

1.2 Update Employees [RMEmployee_UQ]

1.3 Delete Employees [RMEmployee_Z0Q]

2. Inquire on Employees [RMEmployee_|O]

3. Report on Employees [RMEmployee_RO]

Figure 6-1. Excerpt from the Partial O/ESG for Manufacturing Environment

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

6.2 Deciding on User Interface

User interfaces can be put into three broad categories — menu-driven interface,
command interface and graphical user interface (GUI). Figure 6-2 compares the
approaches in terms of relative complexity of design (COD), response time (RT),
and ease of use (EOQU).

Command entry interfaces are the oldest type; they typify traditional operating
systems, compilers and other software development tools. Up until the mid-1990s,
menu driven interfaces were the most frequently used, dominating the arena of business
information and application system. Since the late 1980s, graphical interfaces have
become very popular, and clearly dominate user interfaces of the current era. Of course,
the approaches can be combined.

. Command Menu Graphical
High RT % Low RT
LOWEOU - - - - —m - m e m e e e - > High EOU
Menu Graphical Command
LowCOD L » Highcop

Note: If more traditional programming languages are used instead of RAD & CASE tools, graphical user
interfaces are far more difficult to construct than command-based interfaces.

Figure 6-2. Comparison of User Interface Categories

6.3 Steps in User Interface Design

How you design the user interface will depend to a large extent on the type of user
interface your software requires, It will also depend on the intended users of the software
(experts, knowledgeable intermittent, or novices).

6.3.1 Menu or Graphical User Interface

If the user interface is to be menu driven or graphical, the following steps are
recommended (assuming object-oriented design):

1. Put system objects (structures and operations) into logical
groups. At the highest level, the menu will contain options
pointing to summarized logical groups.

2. For each summarized logical group, determine the
component sub-groups where applicable, until all logical
groups have been identified.

3. Leteach logical group represent a component menu.

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

6.

For each menu, determine options using an object-oriented
strategy to structure the menu hierarchy (object first,

operation last).

Design the menus to link the various options. Develop a menu
hierarchy tree or a user interface topology chart (UITC).

Program the implementation.

Figure 6-3 illustrates a partial user interface topology chart (UITC) for a college/
university administrative information system (CUAIS). The UITC displays the main user
interface structure for the system; it is fully discussed in [Foster, 2010]; however, it is
intuitive enough for you to understand it. The CUAIS project is also described in
[Foster, 2010]; like the UITC, a full discussion is not necessary here.

Programs & Courses

Infrastructure & Resource Management

Divisions

Departments
Dormitories

Exam Schedules
Course Schedules

Public Relations & Alumni Management Course Evaluation

Program Evaluation

: : Employee Personal
Curriculum & Academic Management Employee Academic

Employee Work History

Employee Beneficiaries
Employee Extra Curricular

Human Resource Management

Student Personal
Educational History
Academic Qualification

Academic Performance
Financial Matters

Recruitment
Immigration Issues

Discinline & Other Issues

Investments
Payables & Receivables

Student Finance @
Budget & Expenditure

Assets & Liabilities

Payroll

Acquisition & Inventory Management
Circulation
Classification & Cataloguing

c
u .
A Student Affairs Management
|
S
Financial Management
Library Management
Document Ad hoc Module
Cafeteria Services Management
Figure 6-3. Partial UITC for a CUAIS Project
122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

A. Curriculum & Academic Add Academic Program

Management Menu Modify Academic Programs
Remove Academic Programs
Inquire on Academic Programs
Report on Academic Programs

\4

Add Program Evaluations
Modify Program Evaluations
Remove Program Evaluations
Inquire on Program Evaluations
Report on Program Evaluations

Add Employees
Modify Employees
Remove Employees
Archive Employees
Inquire on Employees
Report on Employees

B. Human Resource Management Menu

C. Student Affairs Management Menu Add Students

Modify Students Personal

Record Students Academic
Record Students Non-academic
Modify Students Academic

Inquire on Students Non-academic
Inquire on Student Academic
Report on Students Non-academic
Report on Students Academic

D. Financial Management Menu Add Investments
Modify Investments
Inquire on Investments
Report on Investments

Add Budget & Expenditure
Modify Budget & Expenditure
Inquire on Budget & Expenditure
Report on Budget & Expenditure

Figure 6-3. Partial UITC for a CUAIS Project (continued)

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

6.3.2 Command-Based User Interface
If the user interface is command-driven, the following steps are recommended:

1. Develop an operations-set i.e. a list of operations that will
be required.

2. Categorize the operations — user operations as opposed to
system operations.

3. Develop a mapping of operations with underlying database
objects.

4. Determine required parameters for each operation.

5. Develop a list of commands (may be identical to operations
set). If this is different from the operations set, each command
must link to its corresponding system operations.

6. Define a syntax for the command.

7. Develop a user interface support for each command (and by
extension each operation). This interface support must be
consistent with the defined command syntax.

8. Program the implementation of each operation.

6.4 User Interface Development and
Implementation

Designing, constructing and implementing the user interface really belongs to the realm
of software engineering, not database systems. However, as you are aware (and as has
been emphasized in this course), the two fields are closely related. In order to construct
the user interface, you will need to have an appropriate set of software development
tools. Of course, development and testing of the user interface must proceed according to
established software development standards.

The software development tool used to develop the user interface will depend to a
large extent on the user requirements (another software engineering matter). Figure 6-4
provides some possible scenarios.

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

Scenario Solution Alternative

1. ltis desirable to have front-end and Use a DBMS suite that provides facilities for both front-end and back-
back-end based on the same DBMS. end systems. Oracle, DB2 and Informix are excellent examples.

2. Front-end and back-end can be based | The alternative of an object-oriented RAD tool, superimposed on a
on different software development relational or object database has become the norm. Products such as
tools. DB2, Oracle, Informix, Sybase and MS SQL Server are good

candidates for back-end systems. DB2, Oracle, and Informix are
regarded as universal databases, supporting both relational and object
databases. With respect to the front-end system, your choice of
development tool will depend on whether or not web access is critical.
3. Front-end must support web access. Products such as Cold Fusion, Poet Software, Delphi, WebSphere,
etc. are very popular.
4, Front-end need not support World Wide | Earlier versions of Delphi, C++ Builder, Visual Basic, etc. will suffice.
Web (WWW) access.
5. Apurely object oriented environmentis | The product Rational Rose comes readily to mind.
desired.

Figure 6-4. Possible Scenarios for User Interface

It must be emphasized that user interface design and development can and often occur
independent of database design and development. This is one of the potent results of data
independence (review sections 1.2 and 2.9): the user interface applications are immune
to structural and/or physical changes in the database. In fact, as mentioned in section 2.9,
the user interface (which is part of the front-end system) may reside on a different machine
(with a different operating system) from the actual database (which is part of the back-end
system). So in addition to data independence, we can have platform independence.

Two prominent protocols that facilitate platform independence between
database and user interface are open database connectivity (ODBC) and Java database
connectivity (JDBC).

Open Database Connectivity: ODBC is an open standard application programming
interface (API) for accessing a database. A software product that desires to access an
external database must include in its suite, an ODBC driver for that database. The ODBC
driver converts the database objects into a generic format that is understood by the
software. The target DBMS must also support ODBC. This facilitates communication
and transfer of data among heterogeneous databases, irrespective of the platform that
they reside on. Microsoft is a strong proponent of ODBC; in fact, the ODBC software is
typically bundled with the Windows operating system (under Control Panel Ȥ
Administrative Tools). ODBC is also supported by other leading operating systems (Unix,
Linux, Windows, System i, etc.).

Java Database Connectivity: JDBC is a Sun Microsystems product that allows Java
programs to access heterogeneous databases, irrespective of their platforms. This API is
included in J2SE and J2EE releases. JDBC cooperates with the ODBC protocol; as such, a
program running JDBC can reach ODBC-accessible databases.

ODBC and JDBC may be considered as subsets of the wider set of protocols
described as Common Object Request Broker Architecture (CORBA). CORBA will be
further discussed in chapter 22 (section 22.6). For the purpose of illustration, Figure 6-5
provides a summary of the steps you would take in order to configure an Oracle database
server to be accessed from Delphi 7.0 (or some later version) through ODBC (assuming a
Windows environment).

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

1. Install Oracle DBMS Server on the database server. This installation will automatically include installation of
Oracle’s ODBC driver.
2. Install Oracle DBMS Client on client machine(s). This typically includes components such as Oracle Net Manager,
Network Transport, and Oracle ODBC Driver.
Install front-end system (e.g. Delphi) on client machine(s).
4. On each client machine:
a. Configure the Network Client Access file (Oracle C:\Oracle\ora10g\network\admin\tnsnames) to include a
service that connects to the database on the DB Server.
b. Configure ODBC (via the Control Panel) to connect to the DB server through the client service
established in 4a.
5. Inyour front-end system (Delphi), select Database from the main menu; then select from the list, the DB service
name established in 4b, and log on the foreign DB server.
6. From this point, you can now create front-end (Delphi) datasets and data sources that connect to the foreign DB
server through the (local) Service name established above.

id

Figure 6-5. Accessing an Oracle Database from Delphi via ODBC

6.5 Summary and Concluding Remarks

Here is a summary of what we have covered in this chapter:

e The user interface for a database system should provide the end
users with a user friendly, controlled environment that gives
users all the privileges and functionalities that they need and
nothing more.

e Inplanning the user interface, you must first decide what type of
interface will be provided. The interface may be command-based,
menu-driven, or GUI-based.

e Next, you should design the user interface using established
principles of user interface design.

e The final step is the development and implementation of the
user interface. Features that the user interface will provide will
influence the tools used in developing the user interface. For
instance, if the database is to be accessible from the WWW, then
the tools used must facilitate such capability.

So now you know how to design a database and a user interface for that database.
Later in the course, you will learn Structured Query Language (SQL), the universal
database language. In preparation for this, the next two chapters discuss the relational
algebra and relational calculus respectively — two subjects areas that will enhance your
appreciation of SQL.

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATABASE USER INTERFACE DESIGN

6.6 Review Questions

1. What are the types of user interfaces which may be
constructed for end users of a database system? How do they
compare in terms of efficiency and convenience?

2. Outline the steps to be taken in the construction of a user
interface for end users of a database system.

3. Referring to revision question 2 of the previous chapter,
propose a user interface model for any (or all) of the following:

¢ AnInventory Management System
e ALab Scheduling System for users of a computer lab
e A Bookshop Manager System for an educational institution

4. Identify four different scenarios for development of a user
interface for a database system. Recommend an appropriate
software development tool for each scenario.

6.7 References and/or Recommend Readings

[Carroll, 2002] Carroll, John. Human-Computer Interaction in the New Millennium.
Reading, MA: Addison-Wesley, 2002.

[Foster, 2010] Foster, Elvis. Software Engineering — A Methodical Approach. Bloomington,
IN: Xlibris Publishing, 2010. See chapters 6, 11, and 12.

[Raskin, 2000] Raskin, Jef. The Human Interface: New Directions for Designing Interactive
Systems. Reading, MA: Addison-Wesley, 2000.

[Shneiderman, 2005] Shneiderman, Ben. Designing the User Interface: Strategies for
Effective Human-Computer Interaction 4® ed. Reading, MA: Addison-Wesley, 2005.

[Sommerville, 2001] Sommerville, lan. Software Engineering, 6™ ed. Reading,
Massachusetts, Addison-Wesley, 2001. See chapter 15.

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Relational Algebra

One of the reasons for the success and longevity of the relational model is that it is firmly
grounded on mathematical principles (of linear algebra and set theory), which are well
known and well documented. The (normalized) relational tables are by design, organized
in such a way as to promote and facilitate manipulation of data to yield meaningful
information. As mentioned earlier in the course (chapter 2), data manipulation relates to
the addition, update, deletion, retrieval, reorganization, and aggregation of data. It turns
out that the first three aspects are far more straightforward than the latter three.

In this and the next chapter, the focus is on the latter three aspects of data
manipulation — retrieval, reorganization and aggregation. The intent is to expose you to
the underlying database theory that had to be developed in order to have DBMS suites
that support these data manipulation requirements. As you will soon come to appreciate,
mastery of SQL (which is mandatory, if you intend to do well in this field) or any database
language is greatly enhanced by an understanding of the fundamental underlying theory.
The ecture proceeds under the following sub-topics:

e Introduction

e Basic Operations of Relational Algebra

e Syntax of Relational Algebra

e Aliases, Renaming and the Relational Assignment
e Other Operations

e Summary and Concluding Remarks

7.1 Introduction

Relational algebra consists of a collection of operations on relations. Each operation
produces new relation(s) from one or more already existing relation(s).
Through relational algebra, we can achieve the following objectives:

e Defining a scope for retrieval
e Defining a scope for update

¢ Defining virtual information

129

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Earlier in the course, it was mentioned that every DBMS has a data sublanguage
(DSL). Typically, the DSL is based on relational algebra, relational calculus (to be
discussed in the next chapter), or a combination of both. It is therefore imperative for you

RELATIONAL ALGEBRA

Defining snapshot data for snapshot relations

Defining access rights i.e. data for which authorization of some
kind is to be granted

Defining integrity constraints apart from those that are part of the

relational model

to have a good grasp of this topic.

The relational algebra is said to be prescriptive — you specify precisely how an
activity is to be carried out. In so doing, there are certain operations that you will learn

to use.

7.2 Basic Operations of Relational Algebra

There are eight basic relational algebra operations with which you need to become

familiar; they are informally described below:

1.

130

Union (UNION): The union of relations R1 and R2 builds a
relation R3 consisting of tuples in either R1 or R2 inclusive.
Corresponding attributes of R1 and R2 must be defined on the
same domain.

Difference (MINUS): The difference of relation R1 and
relation R2 is a new relation R3, with tuples appearing in R1,
but not in R2. Corresponding attributes from R1 and R2 must
be defined on the same domain.

Restriction (RESTRICT): A restriction extracts specified
tuples from a specified relation R1, by imposing some
condition on the relation. The resulting relation R2, has only
the specified tuples. RESTRICT is replaced by the SELECT in
modern systems, the latter usually being more powerful than
the original.

Product (PRODUCT): The Cartesian product of two
relations R1 and R2 is a third relation R3, consisting of the
concatenation of every tuple in R1 with every tuple R2.

Projection (PROJECT): A projection extracts specified
attributes from a specified relation R1 into a new relation R2.

Join (JOIN): The join of two relations R1 and R2 builds a new
relation R3, such that the tuples from R1 and R2 satisfy some
specified condition. However, in the unqualified form, it is
generally used to mean natural join. A more generic form of
the JOIN operation is discussed in section 7.3.5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

The natural join (implied by the notation R1 JOIN R2)
assumes that there is an attribute or combination of attributes
that is common to both R1 and R2 (same attribute name and
characteristics). Let us denote the common attribute(s) in

R1 and R2 as Z. The natural join creates a relation R3, where
every tuple from R1 is concatenated with every tuple from R2,
provided that R1.Z = R2.Z. Finally, a projection is performed
on the result in the previous step to yield a single copy of each
attribute (thus removing either R1.Z or R2.Z) in the

final result.

7. Intersection (INTERSECT): The intersection builds a relation
R3, from two specified relations R1 and R2, where R3 has tuple
that exist in both R1 and R2. Corresponding attributes of R1
and R2 must be defined on the same domain.

8. Division (DIVIDE BY): Division takes a relation R1 of degree
m+n and a second relation R2 of degree n and produces a
third relation R3 of degree m, where all the n attribute values
appearing in R2 also appear in R1, concatenated with the
other m attribute values.

7.2.1 Primary and Secondary Operations

The operations may be classified into primary operations and secondary operations:
Primary operations include UNION, DIFFERENCE, SELECT, PROJECT, and PRODUCT.
Secondary operations include JOIN, INTERSECT, and DIVIDE BY. Secondary operations
are derivable from the primary operations.

7.2.2 Codd’s Original Classification of Operations

Codd’s original classifications placed the operations in two broad categories as follows:
Traditional operations included UNION, INTERSECT, DIFFERENCE, and PRODUCT.
Special operations included RESTRICT, PROJECT, JOIN, and DIVIDEBY.

7.2.3 Nested Operations

The output of each operation is another relation; likewise, the input to each operation is

a set of one or more relations. We say that the relational operation is closed on relational
algebra. Since each operation produces a new relation as output, we can nest operations
so that the output of one forms the input to another. This will become clear in the ensuing
examples.

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

7.3 Syntax of Relational Algebra

We shall use as frame of reference for this and the next few chapters, a section of a college
database, as defined in Figure 7-1. Some sample data is provided in Figure 7-2.

Student {Stud#, Sname, Fname, Sex, Addr, Spgm#, Hall#, DoB ...}

Primary Key [Stud#]
Spgmi# references Program.Pgmi#
Hall# references Hall.Hall#
Program {Pgm#, Pgmname ...}
Primary Key [Pgm#]
Hall {Hall#, Hallname ...}
Primary Key [Hall#]

Dept {Dept#, Dname, Dhead#, DDiv#}

Primary Key [Dept#]
Dhead# references Staff.Staff#
DDiv# references Division.Div#
Staff {Staff#, Staffname ...}
Primary Key [Staff#]
Course {Crs#, Crsname ...}
Primary Key [Crs#]

Pgm_Struct {PSPgm#, PSCrs#, PSCrsSeqn)
Primary Key [PsPgm#, PsCrs#]
PSPgm# references Program.Pgm#
PSCrst# references Course.Crs#

Division {Div#, Divname, Divhead# ...}
Primary Key [Div#]

Divhead# references Staff.Staff#

Note: In order to demonstrate how the natural join works, the recommended convention of keeping attribute
names unique for the database (even if the attribute is a foreign key) has been deliberately relaxed for
Student.Hall#.

Figure 7-1. Cross Section of a College Database

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Student:

Stud# Sname Fname Spgm# Hall# DoB
100 Foster Bruce BSC1 Chan 1978
105 Jones Bruce BSC2 Chan 1970
110 James Enos BSC1 Urv 1966
115 James Yvonne BSC1 Mars 1970
120 Douglas Henry BSC2 Urv 1970
125 Henry Suzanne BSC2 Urv 1968
130 Lambert Cecille BSC5 Mars 1978
Program:

Pgm# Pgmname

BSC1 Bachelor of Science in MIS

BSC2 Bachelor of Science in Computer Science

BSC3 Bachelor of Science in Electronic Engineering

BSC4 Bachelor of Science in Mathematics

BSC5 Bachelor of Science in Computer Science & Mathematics

BSC6 Bachelor of Science in Computer Science & Electronics

BSC7 Bachelor of Science in Chemistry

BSC8 Bachelor of Science in Physics

Dept:

Dept# Dname Dhead# DDiv#
MTH Department of Mathematics $10 D01
CSC Department of Computer Science S15 D01
PHY Department of Physics S05 D01
MGT Department of Management Studies S20 D01
MSC Department of Music S30 D02
Course:

Crs# Crsname

CS100 Introduction to Computer Science

CS210 Data Structures

CS220 Visual Programming

CS330 Software Engineering

CS360 Database Systems

M100 Calculus |

M110 Mechanics

M200 Calculus Il

M210 Linear Algebra

Figure 7-2. Sample Data for a Cross-section of a College/University Database[Showing
only attributes relevant to the examples discussed]

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Hall:

Hall# Hallname

Chan Chancellor Hall

Len Lenheim Hall

Mars Mary Seacole Hall

Urv Urvine Hall

Staff:

Staff# Staffname

S05 Prof. Christine Farr

S10 Dr. Paul Phillips

S15 Dr. Scott Foster

S20 Prof. Hans Gaur

S25 Dr. Bruce Lambert

S30 Dr. Carolyn Henry

S35 Dr. Enid Armstrong

S40 Dr. Calvin Golding

Pgm_Struct:

PSPgm# PSCrsi# PSCrsSeqn

BSC1 M100 01

BSC1 M200 02

BSC1 CS100 03

BSC1 CS210 04

BSC1 CS220 05

BSC2 CS100 01

BSC2 CS210 02

BSC2 CS220 03

BSC2 [M100 [16

Division:

Div# DivName Divhead#
D01 Division of Pure & Applied Sciences S25
D02 Division of Arts & Humanities S30
D03 Division of Education & Psychology S35

Figure 7-2. Sample Data for a Cross-section of a College/University Database[Showing
only attributes relevant to the examples discussed] (continued)

In the interest of clarity, two commonly used notations have been adopted, both
with slight modifications. They are the Ullman notation [Garcia-Molina, 2002] and the
Date notation [Date, 2004]. Bear in mind however, that the syntactical implementation of
relational algebra will vary from one product to another. What is important therefore, is
that you understand the concepts discussed. The BNF (Backus-Naur Form) conventions
shown in Figure 7-3 will be assumed. Additionally, several of the examples will
contain clarifying comments that conform to how comments are made in the C-based
programming languages (e.g. // this is a comment, /* and so is this */). Use of the BNF
notation and C-based comments will continue through chapter 8 as well.

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

u= This symbol means ‘is defined as’
<> Required input supplied by the user are enclosed in angular brackets
Optional items are enclosed in square brackets
ItemA | IltemB Choice: ItemA or ItemB may be chosen by the user
{.} Repetition: Items enclosed within curly braces may be repeated zero to n times. The contemporary
convention is to use the curly braces to indicate user choice; however, to avoid confusion, that
convention will not be used; we will stick to the more traditional convention as specified.

Figure 7-3. BNF Notations

7.3.1 Select Statement

Based on the Ullman notation, the SELECT statement is of the form

SelectStatement ::=

SELECT <Condition> (<RelationalExpression=)

Condition ::=
[NOT] <Attribute1> Theta <Attribute2 | Literal> {AND | OR <Condition>}

RelationalExpression ::=

<RelationName=> | <SelectStatement> | <ProjectStatement™ | <ProductStatement> |
<ThetaJoinStatement> | <UnionStatement> | <IntersectStatement> | <MinusStatement™> |
<DivisionStatement=>

Note:

1. Thetarepresents a valid Boolean operator i.e. any of the
following: =, >, <, <>, <=, >=

2. Arelational expression is either a relation or an expression
that results in the creation of a relation.

3. Acondition is an expression that evaluates to true or false.
Complex conditions may be built by using brackets and
connectors AND, OR, NOT as in normal Boolean logic.

Example 1: To select all students enrolled in program B.Sc. in MIS, the following
statement (based on the Ullman notation) would apply:

SELECT Spgm# = ‘BSC1” (Student)

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

An alternate syntax of the SELECT statement as described in [Date, 2004] follows:

Select ::=
<RelationalExpression> [WHERE <Condition>]

Condition ::=
[NOT] <Attribute1> Theta <Attribute2 | Literal> {AND | OR <Condition>}

RelationalExpression ::=

<RelationName> | <SelectStatement> | <ProjectStatement™> | <ProductStatement™ |
<ThetaJoinStatement> | <UnionStatement> | <IntersectStatement> | <MinusStatement> |
<DivisionStatement=>

As you will soon see, this syntax is much closer to the actual implementation in SQL.
Examplelb: To select all students enrolled in program B.Sc. in MIS, the following

statement (based on the Date notation) would apply:

Student WHERE Spgm# = ‘BSC1’

7.3.2 Projection Statement

Based on the Ullman notation, the PROJECT statement is of the form

Project ::=
PROJ <Attribute> {.<Attribute>} (<RelationalExpression=>)

Attribute ::=
<AttributeName> | <Relation.AttributeName>

Example 2a: The following are two projections on the relation Student

// To extract attributes Stud#, Spgm# only from relation Student:
PROJ Stud#, Span# (Student)

/* To extract attributes Stud#, Spgm# only from the selection of students enrolled in B.Sc. in MIS: */
PROJ Stud#, Spgm# (SELECT Spam# = ‘BSC1’ (Student))

// Note: Do not mix the notations like this (Ullnan-Date):
PROJ Stud#, Spgm# (Student WHERE Spgm# = ‘BSC1")

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Based on the Date notation, the alternate syntax of the PROJECT statement that is
much closer to the SQL implementation is as follows:

Project ::=
<Attribute> {.<Attribute>} FROM <RelationalExpression>

Attribute ::=
<AttributeName> | <Relation. AttnbuteName>

Example 2b: With this syntax, the above two projections would be written as follows:

// To extract attributes Stud#, Spgn# only from relation Student:
Stud#. Spgm# FROM Student

/* To extract attributes Smd#, Spgn# only from the selection of students enrolled in B.Sc. in MIS: */
Stud#, Spgm# FROM Student WHERE Spgm# = ‘BSC1”

[/ Note: Do not mix the notations like this (Date-Ullman):
Stud#. Spgm# FROM (SELECT Span# = ‘BSC1" (Student))

7.3.3 Natural Join Statement

The Ullman notation and Date notation essentially agree on the format of the natural
join. The natural join statement is of the form

JoinStatement ::=
<RelationalExpression> JOIN <RelationalExpression> {JOIN <RelationalExpression=>}

Example 3: To join Student with Hall on the foreign key Hall#:

Student JOIN Hall

/* This statement produces a relation with each tuple of the relation Student concatenated with a given tuple
of the relation Hall. The concatenatad tuples from each of the two input relations (Student and Hall) agree
on the attribute value of Hall%. The final result eliminates one of the two columns Student.Hall# and
Hall.Hall#, since their values are identical. */

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Please note:

1. The natural join is realized by the join logical file in an IBM
System i environment (supported by the operating system),
as well as query and open query. However, generally, the
RDBMS provides the facility to create complex logical views
involving joins of several relations.

2. Onmodern systems, the designer is allowed to clearly
define the foreign key constraint at (or subsequent to) the
point of creation of the table Student. In more sophisticated
environments (for example, DB2 and Oracle), the foreign key
name could be different from the referenced attribute, so long
as its characteristic features are the same (as mentioned in
previous chapters, it is good design practice to use distinct
attribute names in different relations). In such cases, an
equijoin (to be clarified shortly) would normally take the place
of a natural join.

3. The operating system or DBMs traverses both relations and
joins on matching keys i.e. the foreign key in the first relation
is used to reference the primary key in the second relation.

4. The natural join is associative. Moreover, in specifying it,
itis not necessary to identify the participating attributes,
since they would have been identified when the foreign key
constraint is defined.

Example 4: To obtain a list showing Sname and Hallname combinations:

/* We first must link Sname from relation Student to Hallname from relation Hall, via a natural
join. Then project on the required attributes. The solution follows: */

PROJ Sname. Hallname (Student JOIN Hall) /* Based on Ullman notation, or */

Sname, Hallname FROM Student JOIN Hall /* Based on Date notation */

7.3.4 Cartesian Product

Both the Ullman notation and the Date notation essentially agree on the format of the
Cartesian (or cross) product. The PRODUCT statement is of the form

ProductStatement ::=
<RelationalExpression> TIMES <RelationalExpression=

The resulting virtual relation has all tuples of the first relation concatenated with all
tuples of the second relation.

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Example 5a: We desire to have a list showing combinations of department name

and name

of the related department head: Two solutions are possible. Firstly we can take

a cartesian product of Dept and Staff, followed by a selection, followed by a projection.

Secondly,

we could take an equijoin, followed by a projection. The second solution is

clarified in the next sub-section (example 5b).

Solution 1

[*or#*/

Solution 2

PROJ Dname, Staffname (SELECT Dhead# = Staff# (Dept TDMES Staff)) /* Based on Ullman notation */

Dname, Staffname FROM (Dept TIMES Staff) WHERE Dhead# = Staff# /* Based on Date notation */

: Specifies an equijoin, followed by a projection. See example 5b below.

Please note:

1.

This example illustrates that a natural join is equivalent to
a Cartesian product followed by a selection. Proof of this
principle is not necessary for this course. However, the
principle can be easily illustrated as in Figure 7-4.

Dept

Dept# Dname Dhead#

D1 Mathematics S1

D2 Computer Science S2

D3 Music S3

Staff

Staff# Staffi

S1 Bruce

S2 Henry

S3 Jacobson

Dept TIMES Staff

Dept# Dname Dhead# Staff# Staffname

D1 Mathematics S1 S1 Bruce

D1 Mathematics S1 S2 Henry

D1 Mathematics S1 S3 Jacobson

D2 Computer Science S2 S1 Bruce

D2 Computer Science S2 S2 Henry

D2 Computer Science S2 S3 Jacobson

D3 Music S3 S1 Bruce

D3 Music S3 S2 Henry

D3 Music S3 S3 Jacobson

Dept TIMES Staff WHERE D-Head# = Staff# is equivalent to Dept JOIN (Dhead# =

Staff#) Staff

Dept# Dname Dhead# Staff# Staffi

D1 Mathematics S1 St Bruce

D2 Computer Science S2 S2 Henry

D3 Music S3 S3 Jacobson
Figure 7-4. Illustrating That a Join is Obtained by a Cross Product Followed by a Selection

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

2. [Ifthere is at least one pair of matching keys in both relations,
a natural join (if matching attribute names are identical) or an
equijoin (if matching attribute names have different names)
is preferred to a cross product. The match must be between a
foreign key (in the primary relation) and a primary key (in the
referenced relation).

3. The Cartesian product, as defined in the relational model,
is associative. However its mathematical counterpart (from
which it is drawn) is not. The reason for this is partly due to
the fact that in the definition of a relation, no emphasis is
placed on the order of the attributes (review section 3.3.1).

7.3.5 Theta-Join

The Theta-join is presented in some texts as the general case of the JOIN operation. The
BNF form for the theta-join based on Ullman’s notation is as follows:

ThetaJoinStatement ::=

SELECT <Condition> (<RelationalExpression=> TIMES <RelationalExpression=)
Condition ::=

[NOT] <Attribute]1> Theta <Attiibute2 | Literal> {AND | OR <Condition>}

The BNF form for the theta join based on Date’s notation is as follows:

ThetaJoinStatement ::=

<Relational Expression> TIMES <RelationalExpression> WHERE <Condition>
Condition ::=

[NOT] <Attribute1> Theta <Attribute2 | Literal> {AND | OR <Condition>}

An alternate notation for representing this has been described by [Russell, 2006], and
is particularly clear; it is paraphrased below:

ThetaJoinStatement ::=

<RelationalExpression> JOIN (<Condition>) <RelationalExpression>
Condition ::=

[NOT] <Attribute1> Theta <Attribute2 | Literal> {AND | OR <Condition>}

Incidentally, this latter notation is really a simplification of the Ullman notation, and
is fully reconcilable with either the Date or Ulman notation, bringing additional clarity to
the specification of the theta-join. This is illustrated in example 5b. Moreover, as you
will see in chapter 12, the ANSI version of the SQL join is comparable to this notation; we
will therefore refer to it as the ANSI join notation.

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Observe that both the Ullman notation and the Date notation convey the point that
ajoin is really a cross product followed by a selection; the Russell notation implies it.
In each of the three cases, the result is a set of tuples from the cross product of the first
relation with the second relation that satisfy the given condition. Moreover, with this
definition, we can bring further clarity to the equijoin and the natural join as follows:

The equijoin is simply the specific case where theta (the
operator) is the equal operation. It is applicable in situations
where matching attributes do not have identical names; typically,
one attribute (or combination of attributes) constitutes a foreign
key in one relation, while the other attribute (or combination of
attributes) constitutes a candidate key in the other relation.

The natural join is a special case of the equijoin, where the
attributes compared from both relations are not just defined on
the same domain, but have the same name. Further, the natural
join will eliminate one of the two (sets of) identical attributes
from the final result.

Example 5b: Let us revisit the problem in example 5a — constructing a list showing
combinations of department name and name of the related department head. This
second solution involves an equijoin.

Solution 1:

Solution 2:

/{ Based on Ullman notation:
PROJ Dname, Staffname (SELECT Dhead# = Staff# (Dept TIMES Staff))

// Based on Date notation:
Dname, Staffname FROM (Dept TIMES Staff) WHERE Dhead# = Staff#
// Based on the Ullman notation combined with the ANSI notation:

PROJ Dname, Staffname (Dept JOIN (Dhead# = Staff¥) Staff))

// Based on the Date notation combined with the ANSI notation:
Dname, Staffname FROM Dept JOIN (Dhead# = Staff¥) Staff

7.3.6 Union, Intersection, Difference Statements

The UNION, INTERSECT and MINUS statements are similarly represented in Ullman’s
notation as well as Date’s notation. The respective syntax forms are as follows:

<Relational Expression> UNION <RelationalExpression>
<RelationalExpression> INTERSECT <Relational Expression>

<Relational Expression> MINUS <RelationalExpression=

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Note:

1. These are binary operations and in each case, both relations
must have corresponding attributes that are defined on the
same domain.

2. Union and intersect are associative, but minus is not.

7.3.7 Division Statement
The DIVIDEBY statement is of the form

R1 DIVIDEBY R2

In this format, relation R1 contains [m + n] attributes and relation R2 has » attributes.
The operation of division is as follows:

e Every attribute of R2 must be an attribute of R1.
e The resulting relation will have remaining attributes of R1.

e Atuple occurs in R1 DIVIDEBY R2 if it occurs in R1, concatenated
with every tuple in R2.

Example 6: Figure 7-5 provides two illustrations that should help you gain insight
into the division operation. The first demonstrates how the division operation works; the
second demonstrates that the division operation is the opposite of the Cartesian product
operation.

Figure 7.5a: Basic Division Operation Figure 7.5b: Division is the Opposite of the Cartesian Product

R1 R2 R1 R2 R4

F1 |F2 |F3 F2 | F3 F1 | F2 F3 | F4 F3 | F4

A D [3 D [3 A B X |Y X Y

C H |7 H [2 A C X z X z

B H [2 Y |4

B Y |4 — R3 R5

B D |3 | R3 | F1 |F2 |F3 | F4 F1 | F2

C |Y |4 | F1 | A B |[X |Y A B

A H |7 |A | A B |X |Z A C

A Y |4 B A |C | X |Y

A H [2 A |C |[X |Z

R4 = R3 DIVIDEBY R1 =R2

R3 =R1 DIVIDEBY R2 | | R3 =R1 TIMES R2 R5=R3 DIVIDEBY R2 = R1

Figure 7-5. Illustrating the Division Operation

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

A formal definition of division is as follows:

A relation R1 of degree (mrtn). divided by a relation R2 of degree n. gives a relation R3 of degree m.

Consider the m attributes as X and the n aftributes as Y. Then R1 consists of pairs (x.y). and R2 consists of y
where x € X andy € Y. So R1(x.y) DIVIDEBY R2(y) = R3(x) where (x.y) appears in R1 for all values of y in
R2.

This definition has been recently refined in (the latest editions of) Date’s classic
text on database system [Date, 2004]. If you need additional information on the subject
matter, Date’s text is recommended. However, since mastery of this is scarcely applicable
(if at all) at this level (in any event, division is a secondary operation), no further
discussion will take place.

7.4 Aliases, Renaming and the Relational
Assignment

In addition to the basic operations, three additional (advanced) operations defined on
relations are

e Alias Operation
e Rename Operation

e Assignment Operation

7.4.1 The Alias Operation

Aljasing is giving an alternate name to a relation. The format is:

<Relation> ALIASES <RelationalExpression>

Example 7:

Department ALTASES Dept

Aliasing is used when it is desirable to refer to different tuples in the same relation,
or when it is desirable to use a more convenient relation name in an application. Later
in the course, as you learn SQL (in an Oracle environment), you will see that aliases are
implemented as synonyms in Oracle.

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Example 8: Suppose that we need to find all students who share birthdays with at
least one other student. The solution is obtained by taking the cross product of Student
and itself, and then searching for matches on DoB:

// Solution based on Ullman Notation:

Stud2 ALIASES Student

SELECT (Student.Stud# <= Smd2 Stud#) AND (Student. DoB = Stud2 . DoB) (Student TIMES Smd2)
// Solution based on Date Notation:

Stud2 ALIASES Student

Student TIMES Stud2 WHERE Student. Sud# <= Smid2. Stud# AND Student. DoB = Smd2. DoB

7.4.2 The Assignment Operation

The assignment operator is a colon followed by an equal sign (:=), and is used to have the
system remember the results of other operation(s), which may be required for later use.
The format of the assignment is:

<Relation>: = <RelationalExpression=

The example in the upcoming subsection illustrates how relational assignments are
done.

7.4.3 The Rename Operation

The RENAME operation renames specified attributes of a specified relation R1, into a
new relation R2. We have established that it is desirable to have unique attribute names
in each relation. Further, in the case of nested operations, it is a good habit to have an
unambiguous way of referring to attributes of the results of an inner expression, from an
outer expression. The RENAME operation is ideal for these situations. The format of the
RENAME operation (based on Date’s notation) is:

<RelationalExpression= RENAME <Attribute> AS <Attribute>
{. <Attribute> AS <Attribute>}

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

As with selection, brackets may be used to avoid ambiguity. Ullman’s notation has
been omitted here; though slightly different in syntax, its result is similar.

Examples 9: The following examples illustrate the use of renaming and relational
assignment:

Student RENAME Hall# AS StudHall#

Pgm_Struct RENAME PSPgm# AS Program#, PSCrs# AS Course#

/* Referring to the previous example (Example 8). the solution could be as follows: */
// Solution based on Ullman Notation:

Stud2 ALIASES Student

Stud3: = Smd2 RENAME Stud# AS Stud#2. DoB AS DoB2

SELECT (Stud# <= Stud#2) AND (DoB = DoB2) (Student TIMES Stud3)

I/ Solution based on Date Notation:

Stud2 ALIASES Student

Stud3: = Smd2 RENAME Stud# AS Stud#2. DoB AS DoB2

Student TIMES Stud3 WHERE Stud# <= Stud#2 AND DoB = DoB2

7.5 Other Operators

Other operations to facilitate computation usually exist. A brief summary of some of the
common additional operators is provided here (based on Date’s notation). These will be
further clarified, once the student is exposed to a DSL such as SQL (which we will discuss
later in the course).

Extend: The EXTEND operator takes a relation as input, and returns a replica of it
with one additional column (attribute), as defined by the user. The BNF notation for the
syntax is

EXTEND <RelationalExpression> ADD <ScalarExpression= AS <NewAttribute>
[WHERE <Condition>]

Example 10: List courses in program “BSC1’; with an additional descriptive column

EXTEND Pgm _Struct ADD ‘Bachelor of Science in MIS® AS MyPgm
WHERE PSPam# = ‘BSC1"

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

Aggregate: The aggregate operations are used to summarize (aggregate) the values
of a column of a relation. The standard operators are COUNT, COUNTD, SUM, SUMD,
AVGD, MAX, MIN. COUNT, SUM and AVG return numeric values; MAX and MIN return
alphanumeric or numeric values, depending on the column in question. COUNTD,
SUMD, and AVGD avoid duplicate values for that column. Each operator is specified with
a column (attribute) as follows:

<AggregateOperator™ (<Attribute>)

Note: The aggregate operations are typically used in a scenario where data is
grouped.

Grouping: By grouping data from a relation, we can derive summarized information
for the purpose of analysis. Grouping and aggregation usually go together. For the
purpose of discussion, let us assume that the relational algebra syntax for defining a
group is as follows:

<Relational Expression> GROUPBY <AttributeList>

where <Attribute List> is simply a list of attributes, with the comma as the separator.
Grouping is normally embedded as part of some larger relational algebra expression.
With the above notation, we can extract summary information from relations as in the
following example.

Example 11: Produce a list showing the academic program and corresponding
number of courses for each program:

// Solution based on Ullman Notation:
PROJ PSPgm#, COUNT (Nbr) ((EXTEND Pgm_Struct ADD (1)AS Nbr)
GROUPBY PSPzm#)

// Solution based on Date Notation:
PSPgn#, COUNT (Nbr) FROM ((EXTEND Pgmn_Struct ADD (1)AS Nbr)
GROUPBY PSPam#)

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

7.6 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

The relational algebra is said to be prescriptive — you specify
precisely how an activity is to be carried out.

The eight basic operations of relational algebra are UNION,
MINUS, RESTRICT, PRODUCT, PROJECT, JOIN, INTERSECT and
DIVIDE BY. Each operation follows a specific syntax.

In addition to the basic operations, other relational operations
include ALIASES, RENAME, EXTEND and GROUP BY.

The next chapter discusses relational calculus as an equivalent alternative to
relational algebra.

7.7 Review Questions

1. Whyisrelational algebra important?

2. Briefly describe the basic operations of relational algebra.

3. Using the college database described in this chapter, practice
writing relational algebra statements that will yield certain
desirable results.

4. The following is an abridged specification of tables
comprising a music database:

Musicians {MNO, MNAME, DOB, MCOUNTRY} Primary key [MNO]
Compositions {CNO, TITLE, MNO. CDATE} Primary key [CNO]
Ensembles {ENO, ENAME. ECOUNTRY. MNO-MGR} Primary key [ENO]

Performances {PNO, PDATE. CNO, CITY. PCOUNTRY, ENO} Candidate keys [PDATE, ENO]. [FNO]

EnsembleMembers {ENO. MNO, INSTRUMENT} Primary key [ENO, MNO]

Write relational algebra statements to realize the following:

a. Registered musicians from CUB or CAN (where “CUB”
and “CAN” are abbreviated codes for Cuba and Canada
respectively).

b. Give the ENO of every ensemble that includes a VIOLIN
or GUITAR player.

c. Give the ENO of every ensemble that includes a VIOLIN
player but not a GUITAR player.

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © RELATIONAL ALGEBRA

d. Listall compositions (CNO and TITLE) by DAVID
FOSTER.

e. Listall performances (PNO, CNO, MNO, & PCOUNTRY)
of compositions that have been performed in the country
of origin.

7.8 References and/or Recommended Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York, NY:
Addison-Wesley, 2002. See Chapter 4.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapter 7.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5" ed. Reading, MA: Addison-Wesley, 2007. See Chapter 6.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, NJ: Prentice Hall, 2002.
See Chapter 5.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein and Philip M. Lewis. Database Systems:
An Application-Oriented Approach 2" ed. New York, NY: Addison-Wesley, 2005.
See Chapter 5.

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See Chapter 11.

[Russell, 2006] Russell, Gordon. Database eLearning. http://www.grussell.org/
(accessed July 2006).

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See Chapter 4.

148

www.it-ebooks.info

http://www.grussell.org/
http://www.it-ebooks.info/

CHAPTER 8

Relational Calculus

This chapter discusses relational calculus as an alternate way of manipulating relations in
a database. The partial college database, introduced in the previous chapter (Figures 7-1
and 7-2) will be used as a frame or reference. It must be constantly borne in mind that
relational algebra and relational calculus are mutual equivalents; most DBMS suites will
implement one or the other, or aspects of both, depending on what is convenient to the
developers. The chapter proceeds under the following subtopics:

e Introduction

e Calculus Notations and Illustrations

e Quantifiers, Free and Bound Variables

e Substitution Rule and Standardization Rules
e Query Optimization

e Domain Related Calculus

¢ Summary and Concluding Remarks

8.1 Introduction

In relational calculus, we simply specify what is required, not how to obtain the required
relation(s). Relational algebra, on the other hand, provides a collection of explicit
operations in SELECT, JOIN, PROJECT etc., which can be used to tell the system how to
derive desired relation(s).

Example 1: Suppose that we are interested in obtaining a list of program names and
associated course names for the Bachelor of Science in MIS.

The stepwise relational algebra solution can be described as follows:
a. Take the equijoin of relation Pgm_Struct, Program, and Course
b. Select tuples with Pgn# = “BSC1°

¢. Take a projection on attributes Pgmname and Crsname

The relational calculus formulation can be described as follows:

Get Pemname and Crsname from Pgm_Struct, Program. Course such that there exists a program structure tuple
(PSP. PCS) in Pgm_Struct, a program P in Program. and course(s) C in Course, where PSP =P, PSC =C and
PSP ="BsCI’

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

In relational calculus, the user describes what is required; the system is left to decide
how to service the user's request. Relational calculus is therefore said to be descriptive,
while relational algebra is said to be prescriptive. As you shall see, this distinction is only
superficial. More fundamentally, relational calculus and relational algebra are mutual
equivalents: any algebra formation has a calculus equivalent and vice versa. Relational
calculus is derived from a branch of mathematics called predicate calculus. It uses the
idea of tuple variable (range variable). A tuple variable refers to a row of a relation at any
given time. The relation is called the range. The Ingres language QUEL is similar to the
original relational calculus language ALPHA, introduced by Codd.

Referencing an attribute is done by the following notation:

<TupleVariable. AttributeName™> | <AttributeName>

Example 2a:

Let PS be a tuple of relation Pgm_Struct.
Then PS.PSPzm# refers to the value of the attribute PSPgm# in relation Pgm_Struct for some tuple PS.

Tuple variables may be implicit or explicit in SQL, as illustrated below:
Example 2b:

SELECT Pgm_Struct. PSPgn## FROM Pgm_Struct WHERE Pgm_Struct. PSPam# = 'BSC17;
/I 15 equivalent to
SELECT PS.PSPgm# FROM Pgm_Struct PS WHERE PS.PSPgm# = 'BSC1':

Tuple variables may also be implicit or explicit in QUEL, as illustrated below:
Example 2c:

RANGE OF PS is Pgm_Struct

RETRIEVE (PS.PSPam#) WHERE PS.PSPam# = BSC1'

I/ 1s equivalent to

RETRIEVE (Pgm_Struct.PSPgm#) WHERE Pgm_Struct. PSPgm# = BSC1'

Relational calculus of this sort is sometimes referred to as tuple calculus. An
alternate domain calculus, based on domains, has been developed by Lacroix and
Pirotte [Lacroix, 1977]. Query by example (QBE) is a language developed on this (domain
calculus). This course focuses on the former, and not the latter.

150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

8.2 Calculus Notations and lllustrations

As in the previous chapter, the BNF notation for expressing syntactical components of a
language will be employed. In the examples that will follow to the end of the chapter, the
semicolon is used to punctuate the calculus statements in the interest of clarity. However,
bear in mind that the original QUEL language did not require such punctuations. The
salient syntactical components of relational calculus are as follows:

1. Relational Operators include =, <, >, <=, >=, =>, <> while connectives include
AND, NOT, OR

RelationalOperator ::= = | <|<=|>|>=|=>| <>
Connective ::= AND | OR | NOT

2. Comparisons are done variable-with-variable, attribute-with-
literal or attribute-with-attribute, separated by operators.

Comparison::= <CompFormatl= | <CompFonmat2> | <CompFormat3=
CompFormatl ::= <Variable> <Operator> <Variable>

CompFormat2 ::= <Attribute> <Operator> <Attribute>

CompFormat3 ::= <Attribute> <Operator> <Literal>| <ScalarExpression=

Attribute ::=<TupleVariable. AttributeName> | <AttributeName>

Note: A comparison evaluates to true or false (similar to a
relational algebra condition). The implication operator (=>)
works as follows: P => Q means if condition P holds, then so
does condition Q. Two alternate interpretation are as follows:

e IfPistrue, sois Q; otherwise P is false.
e Either Qis true or P is false, i.e. P => Q means Q or P'.

3. DeMorgan’s Law for logical expressions is applicable:

(PANDQANDR...))=P'ORQ'ORR'...
(PORQORR...)=P' AND Q'ANDR'...

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

4. Boolean Expressions can be derived by combination of
comparisons using connectors AND, OR, NOT:

BooleanExpression::= [NOT] <Comparison=> {<Connector> <BooleanExpression=>}
Connector::= AND | OR

Note: Boolean expressions may be bracketed in the interest of
clarity. This is necessary in situations where there are nested
expressions.

5. Range Definition is as follows:

RangeDefinition::= RANGE OF <TupleVariable> IS <Relation> | (<RelationalExpression=)

6. Relational Expression: A tuple calculus relational expression
is of the following form:

RelationalExpression ::= <TargetList> [WHERE <WFF=];
TargetList ::= [<Attribute> =] <Attribute> [AS <Atwribute>] | <TupleVariable> {,<TargetList>}

Note:

e Where the tuple variable alone is specified, all attributes
associated with the variable are implied (remember that a
tuple variable is defined on a relation which has attributes).

e Therelational expression defines a projection on attributes
in the target list from the Cartesian product of all referenced
relations (from the target list). The WFF (well formed
formula) dictates a selection from the Cartesian product.

7. Well-Formed Formula (WFF): A well-formed formula (WFF)
is of the following form:

WEFF ::= <Comparison> | NOT <WFF> | <Comparison> AND <WFF> |
<Comparison> OR. <WFF> | If <Comparison> Then <WFF> |
EXISTS <Variable> (<WFF>) | FORALL <Variable> (<WFF>)

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

Example 3: List all students, (names and ID#) who share surname with other
students.

Solution using QUEL:

RANGE OF Y IS Student:
RANGE OF X IS Student;
RETRIEVE (X.Sname, X.Smd#) WHERE (X.Stud# <= Y.Stud#) AND (X.Sname = Y .Sname);

Note: The QUEL verb RETRIEVE describes retrieval. The pure calculus follows the
RETRIEVE verb. Also note that the original QUEL did not use a semicolon to punctuate
statements. It is done here simply to improve readability.

Example 4a: List all programs (showing Pgm#) that include the course M100.

RANGE of PS is Pgm_Struct;
(PS. PSPam#) WHERE PS.PSCrs# = "M100"

Example 4b: List all programs (showing Pgm# and PgmName) that include the
course M100.

RANGE OF PS is Pgm_Stuct:
RANGE OF P IS Progran:
(PS. PSPgmy#, P.PgmName) WHERE (PS.PSPam# = P.Pgm# AND PS.PSCrs# = M100').

Example 5: List all program codes and related course codes.

RANGE OF PS IS Pgm_Struct:
(PS.PSPam#, PS.PSCrs#):

Example 6: List all program names and related course names.

RANGE OF PS IS Pgm_Struct;

RANGE OF P IS Program;

RANGE OF C IS Course:

(P.Pgmname, C.Crsname) WHERE (EXISTS PS (PS.PSPan# = P.Pamn# AND PS.PSCrs# = C.Crs#)).

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

Example 7: We could rewrite the solution to example 4 as follows:

RANGE OF PS IS Pgm_Struct:
M100PGM = PS.PSPgm# WHERE PS.PSCrs# = 'M100",

8.3 Quantifiers, Free and Bound Variables

Carrying on, we need to introduce two quantifiers, and clarify what is meant by free
and bound variables. The mathematical notations will be introduced, followed by the
relational calculus notations. The mathematical notations are indicated in Figure 8-1:

Existential Quantifier: Universal Quantifier:
ax: There exists x VX: For all x
For some x For any x
For at least 1 x For each x

Figure 8-1. Quantifiers

Additionally, if P(x) is a condition in tuple variable x, then
¢ (3x) (P(x)) means Ix satisfying P(x)

¢ (Vx)(P(x)) means all variables in range of x satisfies
the condition P(x)

As expressed in the previous section, the relational calculus notations for the
universal and existential quantifiers as follows:

FORALL <Tuple-Variable> <WFF>
EXISTS <Tuple-Variable> <WFF>

8.3.1 Well-Formed Formula

Based on the notation given in the previous section, a WFF may be clarified as follows:
a. Asimple comparison (condition) is a WFF
b. IfFisaWFE so are NOT (F) and (F)

c. IfF1, F2 are WFF then so are (F1 AND F2), (F1 OR F2) and (If
F1 THEN F2)

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS
d. [Ifthe tuple variable x occurs freely in a WEF F then 3x (F) and
Vx (F) are WFFs
e. Nothingelse

In layman’s terms, a WFF is a simple or complex comparison involving attributes and
scalar values. As can be confirmed from the forgoing sections and examples, WFFs are
necessary for constructing appropriate data retrieval statements from the database.

8.3.2 Free and Bound Variables

A tuple variable is bounded if it occurs with either an existential or universal quantifier.
Consider the scenario below:

Vp (p.grade ="Good") is equivalent to Va(q.g@rade ="'Good")

This is an example of a bound occurrence of tuple variable p. The condition on p is
either true or false, even if a particular value of p is not substituted. Note also that p can
be replaced by g. Now consider the following:

p.zrade ='Good' is not equivalent to q.grade ='Good’

This is an example of a free occurrence of variable p. The variable occurs in a simple
condition (comparison) — when a particular value of p is substituted we can have a
difference. Note that p cannot be replaced by g.

The following are some rules for free and bound variables:

a. All occurrences of variables in a simple condition
(comparison) are free.

b. Any free/bound occurrence in WFF F is also free/bound in
NOTE, (F).

c. Any free/bound occurrence in WFF F1, F2 is free/bound in
(F1) AND (F2) as well as (F1) OR (F2).

d. Everyfree occurrence of x in F is bound in 3x (F) or Vx (F); the
occurrence of other variables are not affected.

e. Atuple variable cannot be both free and bound in the same
statement.

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

So to paraphrase and summarize, a tuple variable is bound in an expression if it is
associated with a quantifier; once bound, it remains in this state for the expression. Here
is another illustration:

EXISTS P (PS.Pgm# = P.Pam#)

In this expression. P is bound and PS is free.

Example 8: The example below should further clarify the correct usage of bound and
free variables.

RANGE OF P is Program: RANGE OF PS IS Pam_Struct:
PS PSPan¥, P.Pgmmame WHERE (PS.PSPgn# = P.Pgm#) AND EXISTS PS (PS.PSCrs# = M100%:

/* This is unacceptable because PS is used to mean two different things (both bound and free). The statements
should be replaced by the following: */

RANGE OF P is Program; RANGE OF PS IS Pgm_Struct; RANGE OF PS2 IS Pem_Struct;
PS.PSPgn#, P.Pgmname WHERE (PS.PSPgm# = P.Pgm#) AND EXISTS PS2 (PS2.PSCrs# = M100") AND
(PS2.PSPam# = PS.PSPgm#);

Example 9: List surname of students with DoB after 1975 (assuming the date format
of YYYYMMDD).

RANGE OF S IS Student:
S.Sname WHERE S.DoB > 19751231

Example 10: Find programs (names) that do not include course M100.

RANGE OF PS IS Pgm_Struct:
RANGE OF P IS Program;
P.Pgmname WHERE EXISTS PS (PS.PSCrs# <= M100' AND PS.PSPa# = P.Pan#):

Example 11: List courses (code and name) that occur in all disciplines programs).

RANGE OF C IS Course;
RANGE OF P IS Program:
RANGE OF PS IS Pagm_Stuct:
RANGE OF PS2 IS Pgm_Struct;

C.Crs#, C.Crsname WHERE FORALL P EXISTS PS
((PS.PSPam# = P.Pgm#) AND EXISTS PS2 ((PS2.PSCrs# = PS.PSCrs#) AND (PS2.PSPan# < PS PSPgm#))
AND (PS.PSCrs# = C.Crs#)):

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

Example 12: Give the name of all programs with course M100.

RANGE OF P IS Prograny.
RANGE OF PS IS Pgin_Struct;
P.Pgmname WHERE EXISTS PS (PS PSPan# = P.Pam# AND PS.PSCrs# = "M100):

Example 13: Give the names of department heads that are not division heads.

RANGE OF SIS Staff:

RANGE OF D IS Dept:

RANGE OF DV IS Division;

S.Staffname WHERE EXISTS D EXISTS DV (D.Dhead# = 5.5taffé AND D.DDiv# = DV.Div#
AND D.Dhead# <= DV.Divhead#):

8.4 Substitution Rule and Standardization Rules

It is sometimes necessary to introduce “dummy” (apparently redundant) tuple variables,
in conformance with an old rule that forbids retrieval of a quantified (bounded)
variable(s). Further, for many data sub-languages (including SQL), if x and y are tuple
variables and W is a WFF involving x and y, then

x.attribute WHERE (3y) (W(x.y)) is equivalent to x attribute WHERE W(x.y)

This rule often simplifies the database query statement by avoiding the use of the
existential quantifier, and will become clear when we discuss SQL later in the course.

Additionally, due to the limitation of some DBMS suites in their support of relational
calculus notations, it is often useful to apply certain substitution and standardization
rules. These are mentioned below (Figure 8-2):

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

Substitution Rule for Quantifier:

If x is free in WFF F Then

Vx (F(x)) = vy (F(y)) and
x (F(x)) =3y (Fy)

Standardization Rules WFFs:
Let x, y be tuple variables and let A,B be WFFs

(A)'=

(x=) =>x<>y

(AorB) <=>A'ANDB'

(AANDB)'<=>A'ORB'

(VX (A) <=> 3x (A)

(I (A)) <=> Vx (A)

4c. Vx (A) <=> (Ix)' (A)'

5. IfAthenB <=>(A) orB

6. Ifx does notoccurin A, Then A AND Vx (B) <=> ¥x (A AND B)
7. If x does not occur in B. Then (3x (A) or B) <=>3x (A OR B)

1.
2.
3a.
3b.
4a.
4b.

Figure 8-2. Substitution and Standardization Rules

8.5 Query Optimization

We have stated that every relational calculus expression has a relational algebra
equivalent and vice versa. Query optimization involves the transformation from calculus
to algebra to optimized algebra. The rules for conversion are outlined in Figure 8-3:

Eal e

Take the Cartesian product of all relations used

Select the required tuples

Project on desired attributes

Optimize by

= taking selection (restriction) first (before product);

= replacing cross product(s) with natural join(s) or equijoin(s) where possible;

= taking the projection on the result.

Apply quantifiers from right to left as follows:

= For the quantifier "EXIST RX" (where RX is a tuple variable that ranges some relation R), project the current
intermediate result to eliminate all attributes of R.

= For the quantifier "FORALL RX" (where RX is a tuple variable that ranges some relation R), divide the current
intermediate result by the (possibly restricted) relation associated with RX.

Figure 8-3. Query Optimization Rules

158

www.it-ebooks.info

http://www.it-ebooks.info/

Example 14: Replace the calculus specification in example 12 with an algebra

specification.

CHAPTER 8 © RELATIONAL CALCULUS

The non-optimized algebra solution follows:

// Rule 1:
R1:=Pgm_Struct TIMES Program;

// Rule 2 (via Ullmman Notation):

R2:=SELECT (PSCrs# = ‘M 100> AND (PSpgm# = Pgm#) (R1));
// Rule 2 (via Date Notation):

R2 :=R1 WHERE PSCrs# = ‘M100> AND PSpgm# = Pgm#;

// Rule 3 (via Ullman Notation):
R3:=PROJ Pgmname (R2);
// Rule 3 (via Date Notation):
R3:=Pgmname FROM R2;

The optimized algebra solution follows:

// Based on Ullman notation and Russell notation combined:

// Based on Date notation and Russell notation combined:

// Based on Date notation :

PROJ Pgmname (SELECT Crs# ='M100'(Pgm_Struct) JOIN (PSPgm# = Pgm#) Program);

Pgmname FROM ((Pgm_Struct WHERE PSCrs# = ‘M100’) JOIN (PSPgm# = Pgm#) Program);

Pgmname FROM (Pgm_Struct WHERE PSCrs# = ‘M100’) TIMES Program) WHERE PSPgm# = Pgm#;

The two solutions are illustrated in Figure 8-4. Note that existential quantifiers are

ignored in the translation process as long as the quantified variables are not implicated

as part of retrieved attribute-list (hence the rule towards the beginning of the previous

section). Also recall that existential qualifiers can effectively replace universal quantifiers.

Program |

elejo8

Cartesian Product

Select Crs# = 'M100'

Project on Pamname

Figure 8-4a. Graphical Representation of Non-optimized Solution to Example 12

www.it-ebooks.info

159

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

Program Pgm_Struct

Select Crs# ='M100'

Join

Project on Pgmname

Figure 8-4b. Graphical Representation of Optimized Solution to Example 12

8.6 Domain Oriented Relational Calculus

Domain related relational calculus involves the manipulation of domain variables
instead of tuple variables (these must be defined similar to tuple variables). It supports an
additional form of comparison called the membership condition. A member condition
takes the form

R(A:V {,A:V}) where

Ris arelation, A is an attribute, V is a domain variable or a scalar value (also called
a literal). The condition evaluates true iff 3 a tuple in R having specified values for the
specified attribute.

Example 15:

Pgm_Struct (PSPgm#: 'BSC1', PSCrs#: 'M100')
is a membership condition that evaluates true if 3 a tuple in relation Pgm_Struct satisfying the condition
PSPgm# = "BSC1' and PSCrs# ='M100'".

Example 16:

Pgm_Struct (PSPgm# : Ref Pgm)
evaluates to true if 3 a tuple in Pgm_Struct satisfying the condition PSPgm# = Ref Pgm
where Ref_Pgm is some domain variable.

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

Query-by-Example (QBE) is an attractive implementation of domain calculus by
Microsoft Access. The user simply completes a table on the screen in order to make a
query request. Further discussion of domain calculus is omitted from this course. Suffice
it to say that domain calculus has its advantages in more complicated comparisons and
is particularly useful when one is willing to concentrate on domain variables rather then
tuple variables.

8.7 Summary and Concluding Remarks

It's now time to summarize what we have covered in this chapter:

e Relational calculus is said to be descriptive, meaning, you
describe precisely the activity required. The chapter concentrated
on tuple calculus, i.e., calculus related to the manipulation of
tuple variables.

e There are a number of standard relational calculus notations
that allow you to succinctly describe data to be retrieved from
relational tables. Retrieval statements essentially involve
manipulating tuple variables using well-formed formulas (WFFs).
A WEFF is essentially a simple or complex condition.

e WFFs often involve the use of free and bound variables. The rules
for these must be strictly followed.

e Query optimization is the process of obtaining the most efficient
relational algebra equivalent for a relational calculus statement. In
so doing, the basic rules for query optimization must be observed.

e Domain oriented calculus is calculus related to the manipulation
of domain variables. It is an alternative to tuple calculus.

The language QUEL very closely resembled the relational calculus. The more
contemporary SQL represents exhibits both relational calculus and relational algebra
features.

8.8 Review Questions

1. Whyisrelational calculus important? Explain why relational
algebra is said to be prescriptive, and relational calculus is
said to be descriptive. Provide an example to illustrate.

2. Describe the salient components of relational calculus.

3. Using the college database described in this chapter, practice
writing relational calculus statements that will yield certain
desirable results.

4. Explain the concept and process of query optimization. Use
an appropriate example to illustrate.

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © RELATIONAL CALCULUS

8.9 References and/or Recommended Readings

[Codd, 1971] Codd, Edgar F. “A Data Base Sub-language Founded on the Relational
Calculus.” Proc. 1971 ACM SIGFIDET Workshop on Data Description, Access and Control.
San Diego, CA, November 1971.

[Codd, 1972] Codd, Edgar F. “Relational Completeness of Database Sub-languages.”
In Data Base Systems: Courant Computer Science Symposia Series 6. Eaglewood Cliffs,
NJ: Prentice Hall, 1972.

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York, NY:
Addison-Wesley, 2002. See Chapter 4.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapter 8.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5™ ed. Reading, MA: Addison-Wesley, 2007. See Chapter 6.

[Kuhns, 1967] Kuhns, J.L. “Answering Questions by Computer: A Logical Study.” Report
RM-5428-PR. Santa Monica, CA: Rand Corporation, 1967.

[Lacroix, 1977] Lacroix M. and A. Pirotte. “Domain-Oriented Relational Languages.”
Proc. 3rd International Conference on very Large Data Bases. October 1977.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, New Jersey: Prentice Hall, 1997. See Chapter 4.

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Relational System — a
Closer Look

We have covered much ground in our study of database systems. We have also
established the importance of the relational model and its significant contribution to the
field of database systems. We now pause to conduct a more enlightened discussion of
this contribution and its effect on the field. This rather short chapter proceeds under the
following subtopics:

e The Relational Model Summarized
e Ramifications of the Relational Model

e Summary and Concluding Remarks

9.1 The Relational Model Summarized

Figure 9-1 summarizes the salient features of the relational model that have been
established so far.

1. Data structure supporting the following:
= Domains
= Normalized relations
= Attributes (including candidate/primary keys) which comprise the structure of the normalized relations
= Rows (tuples) of time dependent data for each relation

2. Data integrity rules which include:
= Entity integrity rule
= Referential integrity rule

3. Data manipulation features which include support of the following:
= Relational algebra and/or relational calculus
= Relational assignment
= Entry, maintenance and deletion of data

4. Desirable features as discussed in chapters 1 and 2

Figure 9-1. Salient Features of Relational Model

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © RELATIONAL SYSTEM — A CLOSER LOOK

The above features define the minimum requirements of a relational system. Other
desirable features of a database system discussed in chapters 1 and 2 are still important.
As it has turned out, meeting those standards was (and is) not easy. For years, they have
eluded, and continue elude software engineering firms aspiring to construct and market
DBMS suites. As you will soon see, the standards bar has been raised even higher for
contemporary products.

9.2 Ramifications of the Relational Model

The relational model has very far-reaching implications, and makes very stringent
demands on the software engineering industry, to deliver DBMS products that meet a
minimum set of standards. Let us briefly look at some of these ramifications.

9.2.1 Codd’s Early Benchmark

In 1982, Edgar F. Codd (referred to by many as the father of database systems), in a paper
entitled “Relational Database: A Practical Foundation for Productivity” (see [Codd, 1982]),
proposed that a system could be regarded as relational if it supported at least, the
following:

e Relational databases

e The operations RESTRICT, PROJECT and (natural) JOIN, without
requiring any prior definition of access paths to support these
operations

Codd further asserted the following:
e The operations may be supported explicitly or implicitly.

e The system must internally optimize user requests for desirable
performance.

Based on those minimum requirements, DBMS suites were classified in one of four
categories: tabular, minimally relational, relationally complete, and fully relational. These
classifications are clarified in Figure 9-2.

Category Requirement

Tabular The system supports tabular data structure only, but not set-level operations.
Minimally Relational The system is tabular and supports the operations RESTRICT, PROJECT, and JOIN.
Relationally Complete The system is tabular and supports all of the operations of relational algebra.

Fully Relational The system supports all aspects of the model including domains and integrity rules.

Figure 9-2. Categorization of DBMS Suites

Not many products were able to survive the rigors of that benchmark. Interestingly,
three of the products that survived the test are still doing well in the industry today; they
are Oracle, DB2 and INGRES.

164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * RELATIONAL SYSTEM — A CLOSER LOOK

9.2.2 Revised Definition of a Relational System

In 1985, Codd, in a paper captioned “Is Your DBMS Really Relational?” (see [Codd, 1985]),
revised the definition of a relational system. Christopher Date later made some important
recommendations about the revised model. The revised model with its recommendations
is presented here (Figure 9-3).

1. Structural features include:
= Relations including base relations, views, queries, and snapshots

= Attributes which comprise the structure of the normalized relations
= Domains

= Primary keys

= Foreign keys

= Queries

= User defined data types
= Rows (tuples) of time dependent data for each relation

2. Integrity features including:
= Entity integrity rule
Referential integrity rule
Primary key inheritance rules
Type inheritance and conversion rules (user defined)
User-defined integrity rules
Ensure closure and uniqueness of attributes

3. Manipulation features including:

= Entry, maintenance and deletion of data
= Theta-select

= Projection on certain attributes, while omitting others
= Theta-join and natural join

= Quter join (discussed in chapter 12)

= Divide

= Union

= Intersection

= Difference

= Relational assignment

= Rename

= Extend

= Summarize

4. Desirable features including those mentioned in chapters 1 and 2

Figure 9-3. Codd’s Revised Definition of a Relational System

Additionally, Codd proposed 12 rules for determining how relational a DBMS
product is. With these 12 rules added to the redefined model, a DBMS is considered to
be fully relational if it satisfies all structural, integrity and manipulative features, and
fulfills the 12 rules. Christopher Date subsequently proposed a zero-rule that essentially
summarized Codd’s 12 rules. The zero-rule and Codd’s 12 rules are presented here.

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © RELATIONAL SYSTEM — A CLOSER LOOK

Date’s Zero-Rule

According to [Date, 1990], a system qualifies as a relational, database, and management
system (highlights are deliberate) iff it uses its relational facilities exclusively to manage
its database.

This is a loaded statement that will become clearer as you progress through the
course. For instance, after studying chapters 12 - 14, you will have a better appreciation
of what it means to use the relation facilities of a database to manage the said database.
Moreover, it is not sufficient to take a system that is fundamentally not relational, add an
interface that facilitates PROJECT, JOIN, SELECT (only), and then claim that the system is
relational. Instead, everything must be relational — the view mechanism, the catalog, the
structure, the integrity features, and the operations supported.

Codd’s Twelve Rules

Rule 1: The Information Rule: All information in the database must be represented as
relational tables, subject to established integrity constraints, structural and manipulation
features (mentioned earlier).

Rule 2: The Guaranteed Access Rule: All data stored in the database must be
logically addressable by specifying the relation, the related attribute(s), and the primary-
key-value.

Rule 3: Systematic Treatment of Null Values: The DBMS is required to have a
consistent way of representing and treating so-called “missing information” that is
different from regular data values, and independent of the data types supported.

Rule 4: The Active Online Catalog Rule: The system should host a comprehensive
relational catalog that is accessible to authorized users via the regular query language.
Chapter 14 will provide more clarification on the importance of the system catalog.

Rule 5: Comprehensive Data Sub-Language: The system must support at least one
relational language that meets the following criteria:

a. hasalinear syntax;

b. can be used both interactively and within application
programs;

c. provides adequate support of DDL, DML, and DCL
operations.

This requirement is adequately fulfilled in SQL, the universal standard database
language that will be covered in chapters 10 - 14.

Rule 6: The View Updating Rule: All views that are theoretically updateable must be
updateable by the system (this will be clarified in chapter 13).

Rule 7: High-level Insert, Update, and Deletion: The system must support set-wise
DML operations such as INSERT, UPDATE, and DELETE operations. Chapter 11 will
demonstrate that SQL fulfills this requirement.

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * RELATIONAL SYSTEM — A CLOSER LOOK

Rule 8: Physical Data Independence: The system should isolate all application
programs (and end user accesses) from the physical structure of the database. Changes in
one should not affect the other.

Rule 9: Logical Data Independence: The system should isolate all application
programs (and end user accesses) from the logical structure of the database. Changes in
one should not affect the other.

Rule 10: Integrity Independence: Integrity constraints must be specified separately
from application programs and stored in the system catalog. It must be possible to change
such constraints as required, without effect on the applications that access the database.

Rule 11: Distribution Independence: Existing applications should continue to
operate successfully when distributed versions of the DBMS are first introduced or
upgraded.

Rule 12: Nun-subversion: If the system provides a low-level (record-at-a-time)
interface, then it should not be possible to use this interface to undermine or bypass
relational security or integrity constraints of the system.

9.2.3 Far Reaching Consequences

These constraints set a very high standard for relational DBMS (RDBMS) suites to

attain. In fact, for a considerable period of time, the industry did not see a product that
irrefutably met all of these requirements. On the other hand, many proposed products
have fallen by the wayside, due to failure to come close enough to the established
standards. With incremental improvements to products such as (but not only) DB2,
Oracle, Informix, and Sybase over several years, the industry can now boast of products
meeting these standards (but not without room for improvement). Chapters 16 - 20 take a
look at some of these products.

Is the benchmark too high for RDBMS products? Not at all. It defines an ideal that
software engineering firms can strive to attain. It also establishes a firm mathematical
basis for the relational model. In this regard, the work of Codd, Date, Fagin, and others
cannot be over applauded. To a certain extent, the standards have protected the
consuming public from rogue companies that might have tried to exploit us by marketing
inferior database products under false claim of them being relational. We have seen many
such attempts, but for the most part, they have not gone very far.

In the next two divisions of the text, you will discover a rather interesting
phenomenon: Many of the standards described in the revised benchmark for a RDBMS
have been implemented in SQL, the universal database language, and leading DBMS
products such as DB2, Oracle, Sybase, Informix, MS SQL Server, and MySQL. This is
comforting information.

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © RELATIONAL SYSTEM — A CLOSER LOOK

9.3 Summary and Concluding Remarks

Here is a summary of what has been covered in this chapter:

e The benchmarks for a relational database system may be defined
in terms of the data structure requirements, the data integrity
requirements, and the data manipulation requirements.

e Over the years, the database systems industry has embraced Codd’s
benchmarks (first introduced in 1982 and subsequently revised
in 1985) as the standards for relational DBMS suites. The revised
standards also include Codd’s twelve rules and Date’s zero-rule.

¢ Even though these standards are more than two decades old, they
still remain binding on the industry. In fact, many of the smaller
DBMS products still struggle to meet them.

Although Codd died in 2003, his legacy will no doubt continue to live and guide
the field of database systems well into the foreseeable future. Date, a colleague of Codd,
continues to be a renowned author and consultant in the field. So thankfully, we are in
good hands.

9.4 Review Questions

1. Describe in your own words, what is meant by a relational
DBMS.

2. Conduct a critical evaluation and comparative analysis of
three leading DBMS products that you are familiar with. Use
Codd’s revised definition of a relational database system as
your benchmark.

3. Conduct a critical evaluation of E.F. Codd’s contribution to the
field of database systems.

9.5 References

[Codd, 1982] Codd, Edgar F. “Relational Database: A Practical Foundation for
Productivity,” Communications of the ACM, Vol. 25, Issue 2, February 1982. pp. 109-117.

[Codd, 1985] Codd, Edgar F. “Is Your DBMS Really Relational?” and “Does Your DBMS
Run By the Rules?” ComputerWorld, October 14 and October 21, 1985.

[Date, 1990] Date, Christopher J. Introduction to Database Systems Vol. I 5" ed. Menlo
Park, California: Addison-Wesley, 1990. See Chapter 15.

168

www.it-ebooks.info

http://www.it-ebooks.info/

PART C

The Structured Query
Language

The next six chapters will focus on the Structured Query Language (SQL). This
language has become the universal standard database language. It is therefore
imperative that as a student of computer science, or a practicing IT professional,
you are not just familiar, but have a working knowledge of the language. The
objectives of this division are:

to provide a solid overview of SQL as a database language;

to help you gain a good working knowledge of the main
SQL data definition statements;

to help you gain a good working knowledge of the main
SQL data manipulation statements;

to help you gain insights and a good working knowledge
of logical views and system database security;

to discuss and illustrate the importance and usefulness of
the system catalog;

to discuss some limitations of SQL.

Chapters to be covered include:

Chapter 10 — Overview of SQL

Chapter 11 — SQL Definition Statements
Chapter 12 — SQL Data Manipulation Statements
Chapter 13 — Logical Views & Security

Chapter 14 — The System Catalog

Chapter 15 — Some Limitations of SQL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Overview of SQL

The Structured Query Language (SQL) has become the universal language of choice

for DBMS products. A study of this language is therefore imperative for the student of
computer science or computer information systems. This and the next few chapters will
help you acquire a working knowledge of the language, as implemented in the Oracle
environment (Oracle 10G or 11G). One fact you need to be immediately cognizant of is
that there are different implementations of SQL. However, the implementations usually
have more in common than differences; therefore once you have mastered the language
in one DBMS environment, adjusting to another environment is a trivial matter.

The chapter proceeds under the following subheadings:

e Important Facts
e Advantages of SQL

e Summary and Concluding Remarks

10.1 Important Facts

Structure Query Language (SQL) is an example of a DSL — consisting of DDL, DCL, and
DML as defined in chapter 2. First developed by IBM in the 1970s, SQL is the universal
language of databases.

SQL may be described as an interactive query language as well as a database
programming language. Commands can be entered directly at the command prompt,
or embedded in application programs, written in some other language. Examples of
languages that support embedded SQL include COBOL, BASIC, RPG 1V, Java, Oracle
PLSQL, Pascal, C++, Visual Basic, FoxPro, etc. The latest set of standards for SQL that is
available for public access is SQL-2007. SQL-2007 is an enhancement of SQL-2003 to
allow for better compatibility with the Extensible Markup Language (XML), and other
refinements. In this text, we essentially concentrate on core SQL statements; these
statements are also consistent with SQL-2003. The standards are updated roughly every
four years. For more information, please see the references listed in section 10.5.

SQL is a non-procedural (descriptive) language that closely mirrors the relational
calculus as discussed in chapter 8; there are also features that mirror the relational
algebra of chapter 7. Although the language was originally introduced by IBM, no
organization has a monopoly on it. Different implementations of SQL have their own
idiosyncrasies and flavors. Some of the major DBMS suites are Oracle, DB2, Informix,
Sybase, Ingres, Delphi, MS SQL Server, and MySQL.

171

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © OVERVIEW OF SQL

10.1.1 Commonly Used DDL Statements

Figure 10-1 provides a list of commonly used DDL statements of SQL. You will observe
that the statements are self-explanatory. This makes learning of the language very easy,
particularly when compared to more cryptic traditional programming languages.
Another feature that you will notice about SQL is that it is symmetrical and follows
very consistent standards (language experts favor the term orthogonal to describe this
feature). Thus, for most database objects, you can create the object, alter (i.e. modify)
it, or drop (i.e. remove) it from the system. And the main database objects that you will
be working with are tables, indexes, constraints and views; in the case of Oracle, there

are also databases, tablespaces, sequences and synonyms. Of course, there are other
database objects that will be covered later in the course.

Generic DDL Statements:

Statement

Explanation

Create-Table

Creates a database table. The table may be a relational table, an object table, or an XML table;
the default is relational.

Alter-Table

Alters the physical and/or logical structure of a table.

Drop-Table

Removes a table from the system catalog. The table and all its data are deleted. Most DBMS
products will forbid you to delete a table that contains referenced tuples.

Create-Index

Creates an index on a table. There are different types of indexes, but the default is B-tree.

Alter-Index

Modifies the structure of an index.

Drop-Index

Removes an index from the system catalog.

Create-Constraint

Creates a constraint on a database table. As you will later see, there are different types of
constraints.

Alter-Constraint:

Modifies the terms of a constraint.

Drop-Constraint

Removes a constraint from the system catalog.

Create-View Creates a logical view of data contained in physical database tables. Remember, a view is a
virtual relation.

Alter-View Allows modifications to a logical view.

Drop-View Removes a logical view from the system catalog.

Oracle Specific Statements:

Statement

Explanation

Create-Database

Creates a database. An Oracle database is a complex object which in turn consists of
tablespaces, which in turn consists of datafiles and other related physical objects.

Alter-Database

Modifies the database.

Drop-Database

Removes the database from the system catalog.

Create-Tablespace:

Creates a tablespace. A tablespace is a logical container within a database. It can contain
several datafiles that contain the actual database objects.

Alter-Tablespace

Modifies a tablespace

Drop-Tablespace

Removes a tablespace from the system catalog.

Create-Sequence

Creates a sequence. A sequence is a special database object which is used to storing unique
numbers. Sequences are useful in coding attributes of certain database records.

Alter-Sequence

Modifies a sequence.

Drop-Sequence

Removes a sequence from the system catalog.

Create-Synonym

Creates an alias of a database object.

Drop-Synonym

Removes a synonym from the system catalog. Note that synonyms cannot be altered, since
they are logical objects.

Figure 10-1. Commonly Used DDL Statements of SQL

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © OVERVIEW OF SQL

10.1.2 Commonly Used DML and DCL Statements

The commonly used DML and DCL statements of SQL are indicated in Figure 10-2.
The DML statements are often referred to as SUDI (select, update, delete and insert)
statements. The DCL statements fall into three categories: those that affect how DML
operations take place (mainly COMMIT and ROLLBACK); those that relate to system
privileges; and those that affect the environmental settings of the end user.

DML Statements:

Statement Explanation

Select Retrieves data from database tables in a manner that is consistent with
user specifications.

Update Updates data contained in physical database tables.

Delete Removes data from physical database tables.

Insert Inserts data into physical database tables.

DCL Statements:

Statement Explanation

Commit: Forces system buffer to write data database tables on disk.

Rollback Undoes earlier commit by reinstating the database table to its state prior to
the last update.

System Privilege Statements A set of statements that govern database security.

Environment Setting Statements A set of statements that govern environmental settings of database users.

Figure 10-2. Commonly Used DML & DCL Statements of SQL

10.1.3 Syntax Convention

In the next four chapters (chapters 11 - 14), the core DDL DML and DCL statements of
SQL will be discussed. The convention that will be employed for each statement is to
present the full (or close-to-full) syntax in BNF format, then discuss the most common

abridged format(s) of the statement; all the examples provided will be based on abridged

formats of the statements discussed. In most cases, it is unlikely that you will need to
use the full syntax of a statement; however, the full syntax is given to provide you with an
accurate perspective of the possibilities, and in the interest of completeness.

10.2 Advantages of SQL

SQL brings a number of significant advantages to the software engineering industry.
Some of these advantages are as follows:

Rapid Software Development: SQL enhances rapid
development of business application systems by its powerful
and easy-to-learn statements. In fact, most RAD tools, DBMS
suites, and CASE tools support the language.

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © OVERVIEW OF SQL

Higher software Quality: SQL brings higher software quality
to the software engineering arena. By using more powerful
SQL statements, than would be possible in traditional high
level languages, the software engineer is likely to produce
shorter code with fewer errors. The descriptive nature of the
language is useful in this regard.

Higher Productivity: SQL brings higher productivity to
businesses by providing superior database management
features than possible in systems developed with traditional
high-level languages alone. These superior database
management features include the following:

e Faster access to data
e Larger files
e Set-at-a-time access instead of record-by-record access

e Powerful data aggregation facilities to provide meaningful
end-user information

e Facilitation of logical views to provide meaningful end-user
information

e Facilities for the enforcement of data integrity constraints,
independent of application programs

e Facilities for logically reorganizing data to provide useful
information to end users

e Facilities for the enforcement of database security constraints

Data Independence: SQL helps DBMS suites to meet the
objective of data independence, with its associated benefits
(review chapter 1).

Standardization: SQL facilitates standardization among
competing software development tools, since they all are
forced to support the language.

10.3 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

174

SQL is the universe database language. It consists of various
statements for creating and administering a database. These
statements can be classified as DDL statements, DML statement,
and DCL statements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © OVERVIEW OF SQL

e SQL can be used at the command prompt, or embedded in other
high-level language programs.

e SQL brings a number of significant advantages to the software
engineering industry.

SQL is not without a fair amount of limitations. In order to fully understand the
limitations, you need to have a working knowledge of the language first. With this in
mind, a discussion of these limitations is left for chapter 15.

The next chapter discusses the main DDL statements of SQL. As you will see, they
are easy to learn and use.

10.4 Review Questions

1. What are the most common DDL statements of SQL? Briefly
explain the purpose of each.

2. What are the main DML statements of SQL? Briefly explain
the purpose of each.

3. Explain the three categories of DCL statements in SQL.

4. Identify some of the advantages of SQL.

10.5 Recommended Readings

[Eisenberg, 2000] Eisenberg, Andrew and Jim Melton. “SQL Standardization: The Next
Step.” SIGMOD Record Vol.29, no.1, March 2000. pp. 63 - 67.

[Kulkarni, 2003] Kulkarni, Krishna. Overview of SQL:2003. San Jose, CA: Silicon Valley
Laboratory, IBM Corp., 2003. http://www.wiscorp.com/SQL2003Features.pdf (accessed
August 2008).

[WISC, 2008] Whitemarsh Information Systems Corp. SQL. http://www.wiscorp.com/
SQLStandards.html (accessed August 2008).

175

www.it-ebooks.info

http://www.wiscorp.com/sql/SQL2003Features.pdf
http://www.wiscorp.com/SQLStandards.html
http://www.wiscorp.com/SQLStandards.html
http://www.it-ebooks.info/

CHAPTER 11

SQL Data Definition
Statements

The main SQL definition statements in an Oracle 10G environment are shown in

Figure 11-1. These statements relate to the six basic types of database objects in

Oracle — tables, indexes, views, constraints, synonyms, and sequences. Other more
advanced types of database objects include databases, table-spaces, data-files, users, user
profiles, functions, and procedures.

Create-Table Create-Index Create-Constraint Create-View

Alter-Table Alter-Index Alter-Constraint Alter-View
Drop-Table Drop-Index Drop-Constraint Drop-View
Create-Database Create-Tablespace Create-Sequence Create-Synonym
Alter-Database Alter-Tablespace Alter-Sequence Drop-Synonym
Drop-Database Drop-Tablespace Drop-Sequence

Figure 11-1. Commonly Used SQL Definition Statements

This chapter will focus on tables, synonyms, sequences and indexes; a discussion of
the more advanced objects will follow in subsequent chapters. The chapter will proceed
under the following subtopics:

e Overview of Oracle’s SQL Environment
e Database Creation

e Database Management

e Tablespace Creation

e Tablespace Management

e Table Creation Statement

¢ Dropping or Modifying a Table

¢ Working With Indexes

177

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

e Creating and Managing Sequences
e Altering and Dropping Sequences
e Creating and Managing Synonyms

e Summary and Concluding Remarks

11.1 Overview of Oracle’s SQL Environment

The most basic working environment provided in Oracle is the Oracle SQL *Plus
environment. It is a command entry interface, and gives the new SQL user an excellent
opportunity to learn the language. This default editor is a line editor: you are allowed to
enter your SQL command on a line-by-line basis, terminated by a semicolon or forward
slash (/). Some line editing commands and file editing commands are included in
Figure 11-2.

SQL *Plus File Editing Commands SQL *Plus Line Editing Commands
Command Purpose Command Purpose
SAVE <Filename> Save the file specified | <Text> Input text
GET <Filename> Read the file specified L List
START <Filename> Get and execute the file specified L <n> List line n
EDIT <Filename> Read the file specified for update <n> <Text> Edit line n
SPOOL <Filename> Write SQL statements to a file
EDIT Edits the last SQL statement in
Notepad environment

Figure 11-2. Oracle SQL *Plus Editing Commands

Alternately, you can use Notepad or any other text editor to key in your SQL
statements, save it as a text file, then read it into the SQL *Plus environment via the GET
or START command for text (.txt) files, or the @ command for SQL (.sql) files. In such
case, the path and filename must be specified within single quotes.

In addition to SQL *Plus, Oracle provides other more user-friendly GUI-based
components for learning and using SQL. These include Oracle Enterprise Manager (OEM),
Oracle SQL Developer (OSQLD), and Oracle iSQL *Plus. You may read more about these
components in Chapters 16 and 25. Finally, Oracle implements its own host language,
called PL/SQL. It is a simple language with a predominantly Pascal-like syntax. Although
coverage of the syntax of this language is beyond the scope of this course, a few examples
will contain P1/SQL code (particularly in Chapter 12). Because of the simplicity of the
syntax, you should be able to read the code and understand it, so there is no need to panic.

Throughout the remainder of the course, a slight modification of the BNF notation
will be used for specifying the syntax of SQL statements. The symbols used are shown in
Figure 11-3. Additionally, from time to time, you will observe the inclusion of clarifying
comments that conform to how comments are made in the C-based programming
languages (e.g. // this is a comment, /* and so is this */). These comments serve to clarify
the syntactic representations or examples that they appear in.

178

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

B This symbol means ‘is defined as’

<> Required input supplied by the user are enclosed in angular brackets

[...] Optional items are enclosed in square brackets

ItemA | IltemB Choice: ItemA or ItemB may be chosen by the user

ItemA [*Or*/

IltemB Choice: ItemA or ItemB may be chosen by the user. This option is used when the syntactic elements are
complex to the point where using a single slash (as in the preceding case) would not provide the
clarification needed.

{.} Repetition: Items enclosed within curly braces may be repeated zero to n times. The contemporary

convention is to use the curly braces to indicate user choice; however, to avoid confusion, that
convention will not be used; we will stick to the more traditional convention as specified.

Figure 11-3. BNF Notation Symbols

11.2 Database Creation

In the Oracle environment, database creation is quite involved, requiring you to be aware
of several intricate details about the Oracle DBMS itself. A database may be created in
one of three ways: manually, using the Database Configuration Assistant (DBCA), or
during installation of the Oracle Database server software. In each case, the Create-
Database statement is employed (manually or automatically). However, there are certain
procedures and intricate details which have to be carefully observed. In the interest of
getting you started, these intricacies will be de-emphasized for now. Below (Figure 11-4)
is the syntax of the Create-Database statement, followed by a simple example.

Create-Database ::=
CREATE DATABASE <Database-Name>
[USER SYS IDENTIFIED BY <Password>]
[USER SYSTEM IDENTIFIED BY <Password>]
[CONTROLFILE REUSE]
[LOGFILE [GROUP <n> (File-spec {,File-spec})
{ GROUP <n> (File-spec {,File-spec})}
[MAXLOGFILES <n>] [MAXLOGMEMBERS <n>] [MAXLOGHISTORY <n>]
[MAXDATAFILES <n>] [MAXINSTANCES <n>]
[ARCHIVELOG|NOARCHIVELOG] [FORCE LOGGING]
[CHARACTER SET <Charset>] [NATIONAL CHARACTER SET <Charset>]
[DATAFILE File-spec [Auto-extend Clause] {, File-spec [Auto-extend Clause]}
[EXTENT MANAGEMENT LOCAL]
[Default-temporary-tablespace-Clause]
[Undo-tablespace-Clause]
[Set-Time-Zone-Clause]

Auto_Extend-Clause ::=
AUTOEXTEND ON|OFF NEXT <n> KM MAXSIZE <n>|UNLIMITED K|M

Default-temporary-tablespace-Clause ::=

DEFAULT TEMPORARY TABLESPACE <TablespaceName>
[TEMPFILE File-spec

[EXTENT MANAGEMENT LOCAL]

[UNIFORM SIZE <n> K|M]

Figure 11-4. Syntax of the Create-Database Statement

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Undo-tablespace-Clause ::=
UNDO TABLESPACE <TablespaceName> DATAFILE File-spec

Set-Time-Zone-Clause ::=
SET TIME_ZONE = ‘<Time-Zone-Spec>'

File-spec ::= ‘<PathtoFile> SIZE <Integer> K|M [REUSE]

Note:

1. File-Spec is a path to a physical operating system file that you specify, based on your environment and database standards.

2. Ifyou specify locally managed TBS (EXTENT MANAGEMENT LOCAL), you must specify the default temporary TBS.

3. IF you specify locally managed TBS and the Datafile-Clause, you must specify the default temporary TBS and a datafile for
that TBS.

4. If you specify locally managed TBS but do not specify the Datafile-Clause, you can omit the default temporary TBS Clause.
Oracle will create a temporary TBS called TEMP with a 10M datafile.

5. The default temporary TBS size is (uniform) 1M.

6. The default log-file size (if you do not specify the Log-File-Clause, Oracle creates two log-files) is 100M.

7. Time zone is specified as a number of hours and minutes ahead of (+) the standard GMT, or by using a predetermined time-
zone name (as obtained from the view v$TIMEZONE_NAMES).

Example:

CREATE DATABASE SampleDB

CONTROLFILE REUSE

LOGFILE
GROUP 1 (‘C:\Oracle\Oradata\SampleDB\Log0101.log’, ‘D:\Oracle\Oradata\SampleDB\Log0101.log’) SIZE 50K,
GROUP 2 ('C:\Oracle\Oradata\SampleDB\Log0201.log', ‘D:\Oracle\Oradata\SampleDB\Log0202.log') SIZE 50K

MAXLOGFILES 5

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET AL32UTF8

NATIONAL CHARACTER SET AL16UTF16

DATAFILE
‘C:\Oracle\Oradata\SampleDB\System0101.dbf AUTOEXTEND ON,
‘D:\Oracle\Oradata\SampleDB\System0201.dbf ' AUTOEXTEND ON

NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE Temp_TBS

UNDO TABLESPACE Undo_TBS

SET TIME_ZONE = "+02:00";

Figure 11-4. Syntax of the Create-Database Statement (continued)

Observation: In some systems, database creation is as simple as creating a directory
(library or folder depending on the operating system used). Unfortunately, this is not the
case in Oracle. For more details on this matter, see the Oracle Product Documentation
[Oracle, 2008].

11.3 Database Management

Once the database has been created, it must be populated with database objects. Database
objects include tablespaces (specific to Oracle), tables, indexes, views, synonyms,
procedures, triggers, packages, sequences, users, roles, etc. As a good DBA and/or software
engineer, you will also need to carry out performance tuning on your database.

This may involve reorganizing database tables and indexes, deleting unnecessary indexes
or moving other objects. You will also be required to periodically perform backup and

180

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

recovery procedures, or make alterations to the database itself. These issues will be more
thoroughly discussed in Chapter 21. However, to enhance your overall appreciation, the
syntax for the Alter-Database statement is provided (Figure 11-5). This statement is used
extensively to effect structural as well as status changes to the database.

Alter-Database ::=

Alter Database [<DatabaseName>]

Startup-Clauses | Recovery-Clauses | Datafile-Clauses | Logfile-Clauses | Controlfile-Clauses |
Standby-Database-Clauses | Default-Settings-Clauses | Conversion-Clauses |
Redo-Thread-Clauses | Security-Clause;

Startup-Clauses::= Startup1 | Startup?2 | Startup3

Startup1 ::= MOUNT [STANDBY | CLONE DATABASE]

Startup2 ::= OPEN READ ONLY

Startup3 ::= OPEN READ WRITE [RESETLOGS | NORESETLOGS] [MIGRATE]

Recovery-Clauses ::= General-Recovery-Clause | Managed-Standby-Recovery | END BACKUP

General-Recovery-Clause ::=

RECOVER [AUTOMATIC [FROM ‘<PathtoFile>"]]

Full-Database-Recovery-Clause | Partial-Database-Recovery-Clause | LOGFILE ‘<PathtoFile >’
TestCorruption | RecoveryOption1 | RecoveryOption2

TestCorruption ::= [TEST] | [ALLOW <n> CORRUPTION] | [NOPARALLEL] | [PARALLEL <n>]
RecoveryOption1 ::= RECOVER [AUTOMATIC [FROM ‘<PathtoFile >]] CANCEL
RecoveryOption2 ::= RECOVER [AUTOMATIC [FROM ‘<PathtoFile >]] CONTINUE [DEFAULT]

Full-Database-Recovery-Clause ::= Standby1 | Standby?2 | Standby3 | Standby4
Standby1 ::= [STANDBY] DATABASE UNTIL CANCEL

Standby2 ::= [STANDBY] DATABASE UNTIL TIME <Timestamp>

Standby3 ::= [STANDBY] DATABASE UNTIL CHANGE <n>]

Standby4 ::= [STANDBY] DATABASE USING BACKUP CONTROLFILE

Partial-Database-Recovery-Clause ::= PartialR1 | PartialR2 | PartialR3 | PartialR4

PartialR1 ::= TABLESPACE <Tablespace> {, <Tablespace>}

PartialR2 ::= DATAFILE ‘<PathtoFile>" | <File-Number> {, ‘<PathtoFile >’ | <File-Number>}

PartialR3 ::= STANDBY TABLESPACE <Tablespace> {, <Tablespace>}
UNTIL [CONSISTENT WITH] CONTROLFILE

PartialR4 ::= STANDBY DATAFILE ‘<PathtoFile > | <File-Number> {, ‘<PathtoFile >’ | <File-Number>}
UNTIL [CONSISTENT WITH] CONTROLFILE

Managed-Standby-Recovery-Clause ::=
RECOVER MANAGED STANDBY DATABASE Recover-Clause | Cancel-Clause | Finish-Clause

Figure 11-5. Syntax for Alter-Database Statement

181

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

RClause!

DFSpec1

DFSpec2
DFSpec3
DFSpec4
DFSpec5
DFSpec6
DFSpec7

DFSpec8

RClause1
RClause2
RClause3 :
RClause4 :
RClause5 :

RClause7::
RClause8
RClause9 ::= NO EXPIRE

RClause10 ::= NOPARALLEL

RClause11::= PARALLEL <n>

RClause12 ::= THROUGH [THREAD <n>] SEQUENCE <n>
RClause13 ::= THROUGH ALL ARCHIVELOG

RClause14::= THROUGH ALL | LAST | NEXT SWITCHOVER

DFSpec9 :
DFSpec10 :: = RENAME FILE ‘<PathtoFile>' {, ‘<PathtoFile>' } TO ‘<PathtoFile>’ {, ‘<PathtoFile>" }

Recover-Clause ::= RClause1 | RClause2 | RClause3 | RClause4 | RClause5 | RClause6 | RClause7 | RClauses |

RClause9 | RClause10 | RClause11 | RClause12 | RClause13 | RClause14
::= DISCONNECT [FROM SESSION]
::= TIMEOUT <n>
:= NOTIMEOUT
:= NODELAY
:= DEFAULT DELAY
DELAY <n>
NEXT <n>
= EXPIRE <n>

Cancel-Clause ::=
CANCEL [IMMEDIATE] [WAIT | NOWAIT]

Finish-Clause ::=
DISCONNECT [FROM SESSION] [NOPARALLEL] | [PARALLEL <n>]
FINISH [SKIP [STANDBY LOGFILE]J][WAIT | NOWAIT]

Datafile-Clause ::= DFSpec1 | DFSpec2 | DFSpec3 | DFSpec4 | DFSpec5 | DFSpec6 | DFSpec? | DFSpec8 | DFSpec9 |

DFSpec10

:: = CREATE DATAFILE <File-Number> | '<File-Name>’ {,<File-Number> | ‘<File-Name>"}

[ASNEW] | [AS <File-spec> {, <File-spec>}]
:: = DATAFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>"} ONLINE
:: = DATAFILE <File-Number> | '<File-Name>' {, <File-Number> | ‘<File Name>"} OFFILINE [DROP]
:: = DATAFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>} RESIZE <n> [K|M]
:: = DATAFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>'} Autoextend-Clause
:: = DATAFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>"} END BACKUP
:: = TEMPFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>"}

ONLINE | OFFLINE | Autoextend_Clause
:: =TEMPFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>"} DROP [INCLUDING DATAFILES]
= TEMPFILE <File-Number> | '<File-Name>’ {, <File-Number> | ‘<File Name>"} RESIZE <nr> [K|M]

Autoextend-Clause ::= AutoOnOption | AutoOffOption
AutoOnOption ::= AUTOEXTEND OFF
AutoOffOption ::= AUTOEXTEND ON [NEXT <nr> [K|M] [Maxsize-Clause]]

Figure 11-5. Syntax for Alter-Database Statement (continued)

182

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Maxsize-Clause ::= FixedSize | VariableSize
VariableSize ::= MAXSIZE UNLIMITED
FixedSize ::= MAXSIZE <nr> [K|M]

Logfile-Clauses ::= LogClause1 | LogClause2 | LogClause3 | LogClause4 | LogClause5 | LogClause | LogClause?7 |
LogClause8 | LogClausen9 | LogClause10
LogClause1 ::= ARCHIVELOG | NOARCHIVELOG
LogClause2::= [NO] FORCE LOGGING
LogClause3::= ADD [STANDBY] LOGFILE [THREAD <n>] [GROUP <n>] Logfile-Spec {, [GROUP <n>] Logfile-Spec}
LogClause4::= DROP [STANDBY] LOGFILE Logfile-Spec
LogClause5::= ADD [STANDBY] LOGFILE MEMBER ‘<PathtoFile>’ [REUSE]
{, ‘<PathtoFile>' [REUSE]} TO Logfile-Spec {, Logfile-Spec}
LogClause6::= DROP [STANDBY] LOGFILE MEMBER ‘<PathtoFile>’ {, ‘<PathtoFile>"}
LogClause7::= ADD SUPPLEMENTAL LOG DATA [(PRIMARY KEY | UNIQUE INDEX
{, PRIMARY KEY | UNIQUE INDEX}) COLUMNS]
LogClause8::= DROP SUPPLEMENTAL LOG DATA
LogOClause9::= RENAME FILE ‘<PathtoFile>’ {, ‘<PathtoFile>"} TO ‘<PathtoFile>’ {, ‘<PathtoFile>"}
LogClause10::= CLEAR [UNARCHIVED] LOGFILE Logfile-Spec {, Logfile-Spec} [UNRECOVERABLE DATAFILE]

Logfile-Spec ::= LogOption1 | LogOption2 | LogOption3
LogOption1 ::= GROUP <n>

LogOption2 ::= (‘<PathtoFile>’ {, ‘<PathtoFile>"})
LogOption3 ::= '<PathtoFile>’

Controlfile-Clauses ::= CFOption1 | CFOption1 | CFOption3

CFOption1 ::= CREATE STANDBY CONTROLFILE AS ‘<PathtoFile>' [REUSE]
CFOption2 ::= BACKUP CONTROLFILE TO Tracefile-Clause
CFOption3 ::= BACKUP CONTROLFILE TO '<PathtoFile> [REUSE]

Tracefile-Clause ::=
TRACE [AS ‘<PathtoFile> [REUSE] [RESETLOGS | NORESETLOGS]]

Standby-Database-Clauses ::= SClause1 | SClause2 | SClause3 | SClause4 | SClause5 | SClause6 | SClause7 |
SClause8 | SClause9

SClause1 ::= ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [SKIP [STANDBY LOGFILE]]

SClause2::= SET STANDBY DATABASE TO MAXIMIZE PROTECTION | AVAILABILITY | PERFORMANCE

SClause3 ::= REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE Logfile-Spec {, Logfile-Spec}

SClause4 ::= START LOGICAL STANDBY APPLY [[NEW PRIMARY <DBLINK>] | [INITIAL <Scan-value>]]

SClause5 ::= STOP | ABORT LOGICAL STANDBY APPLY

SClause6 ::= NOPARALLEL

SClause7 ::= PARALLEL <n>

SClause8 ::= COMMIT TO SWITCHOVER TO PHYSICAL | LOGICAL PRIMARY | STANDBY

SClause9::= [WITH | WITHOUT SESSION SHUTDOWN] [WAIT | NOWAIT]

Default-Settings-Clauses ::= DSClause1 | DSClause2 | DSClause3 | DSClause4
DSClause1 ::= [NATIONAL] CHARACTER SET <Charset>

DSClause2 ::= Set-Time-Zone-Clause

DSClause3 ::= DEFAULT TEMPORARY TABLESPACE <TablespaceName>
DSClause4 ::= RENAME GLOBAL_NAME TO <Database-Name>.<Domain>

Figure 11-5. Syntax for Alter-Database Statement (continued)

www.it-ebooks.info

183

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Set-Time-Zone-Clause ::=
SET TIME_ZONE = '+ <HH:MM>' | <Time-Zone-Region>

Conversion-Clauses ::=

CONVERT | ResetOption
ResetOption ::= RESET COMPATIBILITY

Redo-Thread-Clauses ::= EnableThread | DisableThread
EnableThread ::= ENABLE [PUBLIC] THREAD <n>
DisableThread ::= DISABLE THREAD <n>

Security-Clause ::=
GUARD ALL | STANDBY | NONE

Examples:
ALTER DATABASE SampleDB MOUNT;
ALTER DATABASE SampleDB READ ONLY;

ALTER DATABASE SampleDB BACKUP CONTROLFILE TO TRACE AS ‘C:\Oracle\EFDB06\SampleTrace’;

Figure 11-5. Syntax for Alter-Database Statement (continued)

There is also a Drop-Database statement that allows you to delete the database.
In order to use it you must have administrator privilege. Also, be aware that not all
component files are removed from the operating system when this command is issued.
As an alternative, you can use the DBCA to delete a database.

11.4 Tablespace Creation

In the Oracle environment, another database object that must be created as part of the
database preparation is a tablespace. A tablespace is the holding area for all database
objects (actually, the objects are stored in datafile(s) contained within the tablespace).

A database must have at least one tablespace, but typically has several. The following are
tablespaces which are typically found in a database:

e System tablespace (prefixed SYSTEM): This is a default tablespace
used for system resources.

e Temporary tablespace (prefixed TEMP): Used for intermediate
results such as internal sorts for user queries.

e Tools tablespace (prefixed TOOLS): Used for Oracle
administrative tools.

e Index tablespace (prefixed INDX): For storing and maintaining
indexes.

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

¢ Undo tablespace (prefixed UNDOTBS): For automatic logs due to
data changes (this is particularly useful for data rollbacks and/or
data recoveries after a catastrophe).

e Users tablespace (prefixed USER): For storing user created tables.

A full discussion of Oracle tablespaces is beyond the scope of this course. However,
in the interest of a credible introduction, Figure 11-6 provides the syntax of the Create-
Tablespace statement, along with an example.

Create-Tablespace::=

CREATE [TEMPORARY | UNDO] TABLESPACE <TablespaceName>

[DATAFILE File-spec {, File-spec}

[MINIMUM EXTENT <n> [K|M]] /*NA if locally managed */

[BLOCKSIZE <n> [K]]

[LOGGING | NOLOGGING]

[FORCE LOGGING]

[ONLINE | OFFLINE]

[AutoExtend-Clause]

[[DEFAULT] STORAGE [COMPRESS | NOCOMPRESS] Storage-Spec] /*NA if TEMPORARY above */

[PERMANENT | TEMPORARY] /*NA if TEMPORARY above; default is PERMANENT; */
[*TEMPORARY NA for locally managed TBS */

[Extent-Management-Clause]

[SEGMENT SPACE MANAGEMENT MANUAL | AUTOJ; /* MANUAL is the default; AUTO recommended */

AutoExtend-Clause ::= AutoOn | AutoOff
AutoOn ::= AUTOEXTEND OFF
AutoOff ::= AUTOEXTEND ON NEXT <n> K|M MAXSIZE UNLIMITED | <n> [K|M]

Extent-Management-Clause ::= DictionaryOption | LocalOption1 | LocalOption2
DictionaryOption ::= EXTENT MANAGEMENT DICTIONARY

LocalOption1 ::= EXTENT MANAGEMENT LOCAL AUTOALLOCATE
LocalOption2 ::= EXTENT MANAGAEMENT LOCAL UNIFORM [SIZE <n> [K|M]]

File-spec ::=
‘<PathtoFile> SIZE <Integer> K|M [REUSE]

Storage-Spec ::=

INITIAL <n> [K|M] NEXT <n> [K|M]
PCTINCREASE <n> MINEXTENTS <n>
MAXEXTENTS <In> | UNLIMITED

FREELISTS <n> FREELIST GROUPS <n>
OPTIMAL <n> [K|M]

[PCTUSED <n>] [PCTFREE <n>]

[INITRANS <n>] [MAXFRANS <n>]
[BUFFER_POOL KEEP | RECYCLE | DEFAULT]

Example:

CREATE TABLESPACE SampleTBS

DATAFILE ‘C:\Oracle\Oradata\SampleDB\Sample TBS.dbf SIZE 500M
AUTOEXTEND ON NEXT 1M

MAXSIZE UNLIMITED

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 100K

SEGMENT SPACE MANAGEMENT AUTO;

Note: Locally managed TBS is depicted by the clause EXTENT MANAGEMENT LOCAL. This is default in
Oracle 10G and can therefore be omitted.

Figure 11-6. Syntax for Create-Tablespace Statement

185

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

11.5 Tablespace Management

Once the tablespace has been created and populated with database objects, it will need
to be managed. This is normally done via the Alter-Tablespace command. Through

this command, you can effect structural as well as status changes to the tablespace. As
with the Create-Tablespace command, a full discussion of is beyond the scope of this
course. However, in the interest of credibility, its syntax, as well as an example is provided
in Figure 11-7. Of course, you can also delete a tablespace via the Drop-Tablespace
statement. Figure 11-8 provides the syntax along with an example. Finally, through a
component called Oracle Enterprise Manager (OEM), you can manage tablespaces (and
most other database objects) in a GUI environment.

Alter-Tablespace::=

ALTER TABLESPACE <TablespaceName>

[ADD DATAFILE | TEMPFILE File-spec {, File-spec}]

[RENAME DATAFILE ‘<PathtoFile>’ {, ‘<PathtoFile >’ } TO ‘<PathtoFile >’ {, ‘<PathtoFile >'}]
[DATAFILE | TEMPFILE ONLINE | OFFLINE]

[DEFAULT STORAGE [COMPRESS | NOCOMPRESS] Storage-Spec]
[MINIMUM EXTENT <n> [K|M]]

[Online-Offline-Clause]

[COALESCE]

[BEGIN | END BACKUP]

[READ ONLY | WRITE]

[PERMANENT | TEMPORARY]

[LOGGING | NOLOGGING]

[[NO] FORCE LOGGING];

Storage-Spec ::= /* As defined in Create-Tablespace */
File-spec ::= /* As defined in Create-Tablespace */

Online-Offline-Clause ::= ONLINE | Offline-Spec
Offline-Spec ::= OFFLINE [NORMAL | TEMPORARY | IMMEDIATE]

Example:

ALTER TABLESPACE SampleTBS
OFFLINE NOLOGGING;

Figure 11-7. Syntax for Alter-Tablespace Statement

Drop-Tablespace ::=
DROP TABLESPACE <Tablespace> [INCLUDING CONTENTS [AND DATAFLES]] [CASCADE
CONSTRAINTS];

Example:
DROP TABLESPACE SampleTBS INCLUDING CONTENTS AND DATAFILES;

Figure 11-8. Syntax for Drop-Tablespace Statement

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

11.6 Table Creation Statement

Once the database and tablespaces have been configured, the next logical step is to create
database objects which (in Oracle’s case) will be stored in the tablespace(s). The first

type of database objects to be created is the relational and/or object tables; this is done
via the Create-Table statement. The Create-Table statement is one of the most multi-
faceted statements in SQL (next to the Select statement). The complete syntax is shown
in Figure 11-9, while an abridged version of the statement is provided in Figure 11-10.

Create-Table::=
Create-Relational-Table | Create-Object-Table | Create-XML-Table

Create-Relational-Table ::=

CREATE [GLOBAL TEMPORARY] TABLE [<Schema>] <TableName> [(Relational-Properties)]
[ON COMMIT DELETE | PRESERVE ROWS]

[Physical-Properties Table-Properties] [Storage-clause];

Relational-Properties ::=
Column-Definition {, Column-Definition}
[Constraint-Definition {, Constraint-Definition}]

Column-Definition ::=
<Column-Name> Data-Type-Spec [DEFAULT <Expression>]
[Inline-Constraint | Inline-Ref-Constraint]

/I Data-Type-Spec refers to any valid type specification as outlined in figure 11.11

Constraint-Definition ::=
Inline-Constraint | Out-of-line-Constraint | Inline-Ref-Constraint | Out-of-Line-Ref-Constraint

Out-of-line-Constraint ::= Out-Constraint-Unique | Out-Constraint-Primary | Out-Constraint-Foreign | Out-Constraint-Check
Out-Constraint-Unique ::= [CONSTRAINT <Constraint-Name>] UNIQUE (<Column> {,<Column>}) [Constraint-State]
Out-Constraint-Primary ::=

[CONSTRAINT <Constraint-Name>] PRIMARY KEY (<Column>[ASC/DESCJ{, <Column>[ASC/DESC]}) [Constraint-State]
Out-Constraint-Foreign ::=

[CONSTRAINT<Constraint-Name>] FOREIGN KEY (<Column> {,<Column>}) Reference-Clause [Constraint-State]
Out-Constraint-Check ::= [CONSTRAINT<Constraint-Name>] Check-Spec [Constraint-State]

Check-Spec ::= CFormat1 | CFormat2 | CFormat3

CFormat1 ::= Check (<Column> BETWEEN <Value1> AND <Value2>)
CFormat2 :::= CHECK (<Column> operator <Value>)

CFormat3 :::= CHECK (<Column> IN <Value> {,<Value>})

Inline-Constraint ::= In-Constraint-Null | In-Constraint-Unique | In-Constraint-Primary | In-Constraint-Foreign |
In-Constraint-Check

In-Constraint-Null ::= [CONSTRAINT <Constraint-Name> [NOT] NULL [Constraint-State]

In-Constraint-Unique ::= [CONSTRAINT <Constraint-Name> UNIQUE [Constraint-State]

In-Constraint-Primary ::= [CONSTRAINT <Constraint-Name> PRIMARY KEY [Constraint-State]

In-Constraint-Foreign ::= [CONSTRAINT <Constraint-Name> Reference-Clause [Constraint-State]

In-Constraint-Check ::= [CONSTRAINT <Constraint-Name> Check-Spec [Constraint-State]

Figure 11-9. The Create-Table Statement

187

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Reference-Clause ::=
REFERENCES [<Schema>] <ObjectName> [(<column>)]
[ON DELETE CASCADE] | [ON DELETE SET NULL]

Constraint-State ::= Exception-Clause | Using-Index-Clause | CState1 | CState2 | CState3 | CState4 | CState5
CState1 ::= [NOT] DEFERRABLE

CState2 ::= INITIALLY IMMEDIATE | DEFERRED

CState3 ::= ENABLE | DISABLE

CState4 ::= VALIDATE | NOVALIDATE

CState5 ::= REPLY | NO REPLY

Inline-Ref-Constraint ::= IROption1 | IROption2 | IROption3

IROption1 ::= SCOPE IS [<Schema>*] <Scope-Table>

IROption2 ::= WITH ROWID

IROption3 ::= [CONSTRAINT <Constraint-Name>] Reference-Clause [Constraint-State]

Out-of-Line-Ref-Constraint ::= OROption1 | OROption2 | OROption3

OROption1 ::= SCOPE FOR (<Ref-Column> | Ref-Attribute>) IS [<Schema ->] <Scope-Table>

OROption2 ::= REF (<Ref-Column> | <Ref-Attribute>) WITH ROWID

OROption3 ::= [CONSTRAINT <Constraint-Name>] FOREIGN KEY (<Ref-Column> | <Ref-Attribute>)
Reference-Clause [Constraint-State]

Using-Index-Clause ::= UlOption1 | UlOption2 | UIOption3 | UlOption4 | UIOption5 | UlOption6 | UlOption7 | UIOption8
UlOption1 ::= USING INDEX <Index Name>

UlOption2 ::= USING INDEX (Create-Index)

UlOption3 ::= USING INDEX PCTFREE | INITRANS | MAXTRANS <Integer>
UlOption4 ::= USING INDEX Storage-Clause

UlOption5 ::= USING INDEX TABLESPACE <Tablespace>

UlOption6 ::= USING INDEX SORT | NOSORT

UlOption7 ::= USING INDEX LOGGING | NOLOGGING

UlOption8 ::= USING INDEX LOCAL | Global-Partition-Index

Global-Partition-Index ::=
GLOBAL PARTITION BY RANGE (<Column> {,<Column>})
(Index-Partitioning-Clause)

Index-Partitioning-Clause ::=
PARTITION [<Partition>] VALUES LESS THAN (<Value> {,<Value>})
[Segment-Attributes- Clause]

Segment-Attributes-Clause ::=
[TABLESPACE <Tablespace>]
[Physical-Attributes-Clause] [LOGGING | NOLOGGING]

Figure 11-9. The Create-Table Statement (continued)

188

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Physical-Attributes-Clause ::=
[PCTFREE <n>] [PCTUSED <n>] [INITRANS <n>] [MAXTRANS <n>]
[Storage-Clause]

Exception-Clause ::=
EXCEPTIONS INTO [<Schema->] <Table>

Physical-Properties ::= PPOption1 | PPOption2 | PPOption3 | PPOption4 | PPOption5

PPOption1 ::= Segment- Attributes-Clause [COMPRESS | NOCOMPRESS]

PPOption2 ::= ORGANIZATION HEAP [Segment —Attributes-Clause] [COMPRESS | NOCOMPRESS}
PPOption3 ::= ORGANIZATION INDEX [Segment-Attributes-Clause] IOT-Clause

PPOption4 ::= ORGANIZATION EXTERNAL External-Table-Clause

PPOption5 ::= CLUSTER <Cluster-Name> (<Column> {,<Column>})

External-Table-Clause ::=
(ITYPE Access-Driver-Type] External-Data-Properties)
[RESET LIMIT <Integer>|UNLIMITED]

External-Data-Properties ::=

DEFAULT DIRECTORY <Directory>

[ACCESS PARAMETERS (<Opaque-Format-Spec>)] | [ACCESS PARAMETERS USING CLOB <Sub-query>]
LOCATION ([<Directory>:} ‘<Path-to-File>’ {,[<Directory>:] ‘<Path-to-File >})

Note: Opaque-format-space allows you to specify access parameters and their values.

Table-Properties ::=

[Column-Properties] [Table-Partitioning-Clause] [CACHE | NOCACHE]
[Parallel-Clause] [ROWDEPENDENCIES | NOROWDEPENDENCIES]
[MONITORING | NOMONITORING]

[Enable-Disable-Clause {Enable-Disable-Clause}] [Row-Moment-Clause]
[AS <Sub-query>]

Column-Properties::= CPOption1 | CPOption2
CPOption1 ::= Object-Type-Col-Properties | Nested-Table-Col-Properties | XML-Type-Col-Properties
CPOption2 ::= Varrey-Col-Properties | LOB-Storage-Clause [LOB-Partition—Storage]

Paralled-Clause::= NOPARALLEL | Parallel-Option
Parallel-Option ::= PARALLEL [<Integer>]
I/ Note: Defaultis NOPARALLEL.

Row-Movement-Clause::=
ENABLE | DISABLE ROW MOVEMENT

Table-Partitioning-Clause ::=
Range-Partition | Hash-Partition | List-Partition | Composite-Partition

Figure 11-9. The Create-Table Statement (continued)

189

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Enable-Disable-Clause::= EDOption1 | EDOption2 | EDOption3
EDOption1 ::= ENABLE | DISABLE [VALIDATE | NOVALIDATE] UNIQUE (<Column >{, <Column>)
[Using- Index-Clause] [Exception-Clause] [CASCADE] [KEEP | DROP INDEX]
EDOption2 ::= ENABLE | DISABLE [VOLATE | NOVOLATILE] PRIMARY KEY
[Using-Index-Clause] [Exception- Clause] [CASCADE] [KEEP | DROP INDEX]
EDOption3 ::= ENABLE | DISABLE [VOLATILE | NOVOLATILE] CONSTRAINT <Constraint-Name>
[Using-Index-Clause] [Exception-Clause] [CASCADE] [KEEP DROP | INDEX]

Using-Index-Clause :: = UlOption9 | UIOption10 | UlOption11
UlOption9 ::= USING INDEX [<Schema>.] <IndexName>
UlOption10 ::= USING INDEX (Create-Index)

UlOption11 ::= USING INDEX Index-Alternatives {Index-Alternatives}

Note: Create Index is defined in the Create-Index statement.

Index-Alternatives ::= LOCAL | Global-Partitioned-Index | IAOption1 | IAOption2 | IAOption3 | IAOption4 | IAOption5 |
IAOption6 | IAOption7 |

|IAOption1 ::= PCTFREE <Integer>
1AOption2 ::= INITRANS <Integer>
IAOption3 ::= MAXTRANS <Integer>
|IAOption4 ::= TABLESPACE <Tablespace>

|IAOption5 ::= Storage-Clause
IAOption6 ::= SORT | NSORT

IAOption7 ::= LOGGING | NOLOGGING /* Defaultis LOGGING */
Storage-Clause :: =

STORAGE (INITIAL <n> [K|M] NEXT <n> [K|M]

PCTINCREASE <n> MINEXTENTS <n>

MAXEXTENTS <In> | UNLIMITED

FREELISTS <n> FREELIST GROUPS <n>

OPTIMAL <n> [K|M]

[PCTUSED <n>] [PCTFREE <n>]

[INITRANS <n>] [MAXFRANS <n>]|

[BUFFER_POOL KEEP | RECYCLE | DEFAULT])

Range-Partition::=

PARTITION BY RANGE (<Column>{, <Column>})

(PARTITION [<Partition-Name>] Range-Values-Clause Table-Partition-Desc
{, PARTITION[<Partition-Name>] Range-Values-Clause Table-Partition-Desc})

Range-Values-Clause::=
VALUES LESS THAN (<Value>|MAXVALUE {, <Value>|MAXVALUE})

Figure 11-9. The Create-Table Statement (continued)

190

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Table-Partition-Desc ::=
[Segment-Attributes-Clause]
[[COMPRESS]<Integer>]] | NOCOMPRESS]
[OVERFLOW [Segment-Attributes-Clause]]
[LOB-Storage-Clause | Varray-Col-Properties]
[Partition-Level-Subpartition]

Lob-Storage-Clause::= LOB-Option1 | LOB-Option2
LOB-Option1 ::= LOB (<LOB-ltem>{, <LOB-ltem>}) STORE AS (LOB-Parameters) | <LOB-Segment-Name >
LOB-Option2 ::= LOB (<LOB-Item>{, <LOB-ltem>}) STORE AS <LOB- Segment-Name> (LOB-Parameters)

LOB-Parameters ::=

TABLESPACE <Tablespace>

[ENABLE | DISABLE STORAGE IN ROW]

[Storage-Clause]

[CHUNK <Integer>] [PCTVERSION <Integer>] [RETENTION]
[FREEPOOLS <Integer>][CACHE [READS] [LOGGING | NOLOGGING]]
[NOCACHE]

LOB-Partition-Storage ::=

PARTITION <Partition-Name> LOB-Storage-Clause | Varray-Col-Properties
[(SUBPARTITION <Subpartition-Name> LOB- Storage -Clause | Varrey-Col- Properties
{LOB- Storage -Clause |Varray-Col-Properties })]

Partition-Level-Subpartition ::= PLOption1 | PLOption2

PLOption1 ::= SUBPARTITIONS <Hash-Subpartition-Quantity>
[STORE IN (<Tablespace> {, <Tablespace> })]

PLOption2 ::= (Subpartition-Spec {, Subpartition-Spec })

Subpartition- Spec ::=
SUBPARTITION [<Subpartition-Name>]
[List-Values-Clause] [Partitioning- Storage -Clause]

Partitioning- Storage-Clause ::= PSOption1 | PSOption2 | PSOption3 | PSOption4 | PSOption5
PSOption1 ::= [TABLESPACE<Tablespace]

PSOption2 ::= [OVERFLOW [TABLESPACE <Tablespace>])

PSOption3 ::= [LOB (<LOB-ltem> STORE AS (TABLESPACE <Tablespace>)]

PSOption4 ::= [VARRAY <Varray-ltem> STORE AS LOB <LOB-Segment-Name>]

PSOption5 ::= [LOB (<LOB-ltem>) STORE AS <LOB-Segment-Name> [(TABLESPACE<Tablespace>)]]

List-Values-Clause ::= LVOption1 | LVOption2
LVOption1 ::= VALUES (DEFAULT | NULL)
LVOption2 ::= VALUES (<Value> {, <Value>})

Figure 11-9. The Create-Table Statement (continued)

191

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Hash-Partition ::=
PARTITION BY HASH (<Column> {, <Column>})
Individual- Hash-Partitions / Hash- Partitions-By- Quantity

Individual-Hash-Partitions::=
(PARTITION [<Partition-Name> Partitioning-Storage-Clause]
{,PARTITION [<Partition-Name> Partitioning-Storage-Clause}])

Hash-Partitions-by-Quantity::=
PARTITIONS <Integer> [STORE IN (<Tablespace> {, <Tablespace>})]
[OVERFLOW STORE IN (<Tablespace>{, <Tablespace>})]

List-Partition ::=

PARTITION BY LIST (<Column>)

(PARTITION [<Partition-Name>] List-Values-Clause Table-Partition-Descr
{, PARTITION [<Partition-Name>] List Values-Clause Table-Partition Descr})

Composite-Partition ::=

PARTITION BY RANGE (<Column>{,<Column>})

Subpartition-by-List | Subpartition-by-Hash

(PARTITION [<Partition-Name>] Range-Values-Clause Table-Partition-Descr

{, PARTITION [<Partition-Name>] Range Values Clause Table-Partition-Descr})

Subpartition-by-Hash::= SHOption1 | SHOption2
SHOption1 ::= SUBPARTITION BY HASH (<Column> {,<Column>}) Subpartition-Template
SHOption2 ::= SUBPARTITION BY HASH(<Column>{,<Column>})

SUBPARTITIONS <Integer> [STORE IN (<Tablespace> {, <Tablespace>})])

Subpartition-Template ::= STOption1 | STOption2 | STOption3 | STOption4

STOption1 ::= SUBPARTITION TEMPLATE Hash-Subpartition-by-Quantity

STOption2 ::= SUBPARTITION TEMPLATE Individual-Hash-Subparts {, Individual-Hash-Subparts}
STOption3 ::= SUBPARTITION TEMPLATE (List-Subpartition-Desc {, List-Subpartition-Desc})
STOption4 ::= SUBPARTITION TEMPLATE Range-Subpartition-Desc {, Range-Subpartition-Desc}

Hash-Subpartition-by-Quantity ::= PARTITIONS <Integer> [STORE IN (<Tablespace> {, <Tablespace>})]
Individual-Hash-Subparts ::= SUBPARTITION [Subpartition] Partitioning-Storage-Clause
List-Subpartition-Desc ::= SUBPARTITION [Subpartition] Partitioning-Storage-Clause
Range-Subpartition-Desc ::= SUBPARTITION [Subpartition] List-Values-Clause [Partitioning-Storage-Clause]

Subpartition-by-List ::=
SUBPARTITION BY LIST (<Column>)[Subpartition-Template]

Range-Values-Clause ::=
VALUES LESS THAN (<Value>|MAXVALUE {,<Value>|MAXVALUE})

Figure 11-9. The Create-Table Statement (continued)

192

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

10T-Clause ::= 10TOption1 | IOTOption2 | I0TOption3 | IOTOption4
10TOption1 ::= Mapping-Table-Clause [Index-Org-Overflow-Clause]
10TOption2 ::= PCTHRESHOLD <Integer> [Index-Org-Overflow- Clause]
10TOption3 ::= COMPRESS [<Integer>] [Index Org-Overflow- Clause]
10TOption4 ::= NOCOMPRESS [Index-Org-Overflow- Clause]

Mapping-Table-Clause ::= NOMAPPING | MappingOption
MappingOption ::= MAPPING TABLE

Index-Org-Overflow-Clause ::=
[INCLUDING <Column>] OVERFLOW [Segment-Attributes-Clause]

Object-Type-Col-Properties ::=
COLUMN <Column> Substitutable-Column-Clause

Substitutable-Column-Clause ::= SCOption1 | SCOption2
SCOption1 ::= [ELEMENT] IS OF [TYPE] (ONLY <Type>)
SCOption2 ::= [NOT] SUBSTITUTABLE AT ALL LEVELS

Nested-Table-Col-Properties ::=

NESTED TABLE <Nested-Item >|COLUMN-VALUE [Substitutable-Column-Clause]

STORE AS <Storage-Table> [((Object-Properties) [Physical-Properties] [Column-Properties])]
[RETURN AS LOCATOR | VALUE]

Note:

1. Object-properties are the same as table-properties for relational tables. However, instead of specifying column, you
specify attributes of the object.

2. <Nested-item> represents the users supplied column-name (or top level attribute of the table’s object type) whose
type is nested table.

3. <Storage-Table>represents the user-supplied table where rows of the nested-item reside.

Varray-Col-Properties ::= VPOption1 | VPOption2 | VPOption3

VPOption1 ::= VARRAY <Varray-ltem> Subtitutable-Column-clause

VPOption2 ::= VARRAY < Varray-ltem> STORE AS LOB <LOB-Segment-Name>

VPOption3 ::= VARRAY < Varray-ltem> STORE AS [<LOB-Segment-Name>] (LOB-Parameters)

Note:

1. <LOB-Segment-Name> represents the user-supplied name for the LOB data segment.
It assumes one LOB-item only.

2. <Varray-ltem> represents the user-supplied name of variable array.

XML-Type-Col-Properties ::=
XMLTYPE [COLUMN] <Column>[XML-Type-Storage] [XML-Schema-Spec]

Figure 11-9. The Create-Table Statement (continued)

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

XML-Type-Storage ::= XTOption1 | XTOption2 | XTOption3

XTOption1 ::= STORE AS OBLJECT RELATIONAL
XTOption2 ::= STORE AS CLOB [LOB-Parameters]
XTOption3 ::= STORE AS CLOB [<LOB-Segment-Name> [(LOB-Parameters)]

XML-Schema-Spec ::= XSOption1 | XSOption2
XSOption1 ::= [XMLSCHEMA <XML-Schema-URL>] ELEMENT <Element>
XSOption2 ::= [XMLSCHEMA <XML-Schema-URL>] ELEMENT <XML-Schema-URL> # <Element>

Note:

1. <XML-Schema-URL>represents the user-supplied URL of a registered XML schema (URL schema must have
been registered via package DBMS-XMLSCHEMA)

2. <Element> represents the user-supplied element name.

Create-Object-Table ::=

CREATE [GLOBAL TEMPORARY] TABLE [<SCHEMA>"]
<TableName> OF [<Schema>] <Object-Type>
[Object-Table-Substitution]

[(Object-Properties)] [ON COMMIT DELETE | PRESERVE ROWS]
[OID-Clause] [OID-Index-Clause]

[Physical-Properties] [Table-Properties];

Object-Table-Substitution ::=
[NOT] SUBSTITUTABLE AT ALL LEVELS

Object-Properties ::= OPOption1 | OPOption2
OPOption1 ::= <Column> | <Attribute> [DEFAULT<Expression>]
[Inline-Constraint {Inline-Constraint}] | [Inline-Ref-Constraint]
OPOption2 ::= Out-of-line Constraint | Out-of-line-Ref-Constraint | Supplemental-Logging-Props

Supplemental-Logging-Pops ::=
SUPPLEMENTAL LOG GROUP<Log-Group-Number>(<Column>{,<Column>}) [ALWAYS]

OID-Clause ::= OCOption1 | OCOption2
OCOption1 ::= OBJECT IDENTIFIER IS SYSTEM GENERATED
OCOption2 ::= OBJECT IDENTIFIER IS PRIMARY KEY

OID-Index-Clause ::= OlOption1 | OlOption2
OlOption1 ::= OIDINDEX [<IndexName>] (Physical-Attributes-Clause)
OlOption2 ::= OIDINDEX [<IndexName>] (TABLESPACE <Tablespace>)

Create- XML-Table ::=
CREATE TABLE [<Schema>-] <TableName> OF XMLTYPE
[XMLTYPE XML-Type-Storage] [XML-Schema-Spec]

XML-Schema-Spec ::=

[XMLSCHEMA <XML-Schema-URL>]
ELEMENT [<XML-Schema-URL> #] <XML-Element>

Note: The XML-Element is specified as a string in double quotes.

Figure 11-9. The Create-Table Statement (continued)

194

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Create-Table-Statement::=

CREATE TABLE [<Schema>.] <Base-table>
(Column-Definition {,Column-Definition}
[,Constraint-Definition {, Constraint-Definition}]);

Column-Definition ::=
<Column> <Data-type> [DEFAULT <ScalarExpression>][NOT NULL]J[UNIQUE]

Constraint-Definition ::=
[CONSTRAINT <Constraint-Name>] Primary-Key-Spec | Foreign-Key-Spec | NOT NULL | Check-Spec | Unique-Spec

Primary-Key-Spec ::=
PRIMARY KEY (<Column> [ASC/DESC] {,<Column> [ASC/DESC] })

Foreign-Key-Spec ::=
FOREIGN KEY (<Column>) REFERENCES [<Schema>.] <Base-table> [(<Column>)]
[ON DELETE CASCADE]

Check-Spec ::= CFormat1 | CFormat2 | CFormat3

CFormat1 ::= Check (<Column> BETWEEN <Value1> AND <Value2>)
CFormat2 :::= CHECK (<Column> operator <Value>)

CFormat3 :::= CHECK (<Column> IN <Value> {,<Value>})

Unique-Spec ::= UNIQUE <Column>

Figure 11-10. Abridged Version of the Create-Table Statement

The Data-Type-Spec defines a set of valid data types are indicated in Figure 11-11.
This list is not exhaustive, but includes the more commonly used data types.

195

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Data Type

| Meaning

Scalar Data Types:

CHAR (<Length> [BYTE|CHAR])

Character or string of specified length; default is BYTE; max length is 2000 bytes.

VARCHAR? (<Length> [BYTE|CHAR])

Variable string of specified maximum possible length; default is CHAR; max length is
4000 bytes. Type VARCHAR is same as VARCHARZ, and is there for backward
compatibility.

NCHAR (<Length>) Similar to CHAR, but used for Unicode character set; default length is 1 character.
NVARCHAR? (<Length>) Similar to VARCHAR?2, but used for Unicode character set.
LONG Variable length character up to 2GB. CLOB or NCLOB preferred. Included for backward

compatibility.

NUMBER(<Length> [<Decimal>])

Fixed and floating point (numeric) data; default is 38 digits; valid range is
-1*10-1% 0 9.999 * 99125

DECIMAL(<Length>, <Decimal>)

Same as NUMBER((<Length>, <Decimal).

INTEGER

Defaults to NUMBER(38).

SMALLINT

Same as INTEGER.

FLOAT [(<Length>)]

Similar NUMBER; default length is 38; maximum length or 126.

REAL Defaults to NUMBER(63).

DOUBLE PRECISION Same as NUMBER(38)
Date in the form century, year, month, day, hour, minute, second. Can be displayed in

DATE various formats. Range is January 1, 4712 BC to December 31, 9999 AD. Default time is
12:00 AM.

TIMESTAMP [(<Precision>)] Similar to DATE, but with possibility of fractional seconds precision.

- Similar to TIMESTAMP, but stores the time zone displacement. Displacement is the

E\II’\\IﬁETI{TME [Z(STE]C ision>)] differepce (in hours and minutes) between the. local time gnd the Universal Time
Coordinate (UTC), also known as the Greenwich Mean Time
Variable length unstructured data; maximum 2000 bytes. BLOB or BFILE preferred.

RAW (<Length) Included for%ackward compatibility. " P

LONG RAW (<Length>) L/ariable length unlst.r‘uctured data; maximum 2GB. BLOB or BFILE preferred. Included for

ackward compatibility.

BLOB Binary Large Object; maximum 4GB of unstructured binary data.

CLOB Character BLOB; maximum 4GB of unstructured character data.

NCLOB Unicode Character BLOB; maximum 4GB of unstructured character data.

BFILE Large external file, stored by the operating system; maximum file size of 4GB supported.
Oracle stores a pointer to the file.

ROWID Binary data representing a physical row address of a table’s row. Occupies 10 bytes.

UROWID Binary data representing any type of row address — physical, logical, or foreign. Can be up

t0 4000 bytes.

Collection Data Types:

VARRAY Variable array; elements are ordered and have a maximum limit.

TABLE Nested table; elements are not ordered, and there is no limit on the possible number of
elements.

Reference Data Type:

REF | Reference (via a pointer) to data stored in another object table

Figure 11-11. Valid Data Types

Please note:

1. The semicolon (;) signals the end of the SQL statement and
each clause is separated by a comma (,).

2. Insome systems (e.g. DB2), primary keys must be declared

NOT NULL.

196

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

3. Most DBMS suites provide a utility that allows the user to key
data into the table, once it has been created. Earlier versions
of Oracle do not. However, through Enterprise Manager, later
versions (starting with Oracle 9i) do.

4. Data can be entered in the table via the SQL insert statement
(which you will learn in Chapter 12) or an application
program, written for that purpose.

5. The matter of missing values is of much concern to any
creditable DBMS. In DB2 and Oracle, nulls are used to
represent missing or irrelevant information. Note that null
is not the same as zero or blank. If nulls are allowed for an
attribute and no data is provided, the system provides a null
value for that attribute.

6. Inmanymodern DBMS, a GUI sits on top of SQL definition
statements so user may not use them.

7. Some DBMS, (e.g. Oracle) provide the user with the flexibility

of specifying which attribute of a referenced table is to be used

in the foreign key characteristic.

8. The operator specified in the Check-Clause may be any valid
Boolean operator as defined in Chapters 7 and 8. When the
third form of the Check-Clause is used, the column specified
must be one of the values specified.

9. Value, Valuel and Value2 in the Check-Clause represent
literal values.

Example 1: To create base relations Program, Course and Pgm-Struct as described

in Chapter 7.

CREATE TABLE Frogram

(Pgm# CHAR (5) NOT NULL,

Pgnmname CHAR. (30) NOT NULL,
CONSTRAINT ProgPK FRIMARY KEY (Pam#)):

CREATE TABLE Course

(Crs# CHAR (5) NOT NULL.

Crsname CHAR (30) NOT NULL,

CONSTRAINT CoursePK PRIMARY KEY (Crs#))

CREATE TABLE Pgim_Struct

(PSPam# CHAR (5) NOT NULL,

PSCrs# CHAR (5) NOT NULL.

CONSTRAINT ProgStructPK. PRIMARY KEY (PSPgm# ,PSCrs#),

CONSTRAINT ProgStnuctFK2 FOREIGN KEY (PSCrs#) REFERENCES Course (Crs#)).

CONSTRAINT ProgStructFK1 FOREIGN KEY (PSPam#) REFERENCES Program (Pgn),

www.it-ebooks.info

197

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Example 2: The following example illustrates how the check constraints can be
specified during table creation.

CREATE TABLE Student

(Stud# NUMBER (7) NOT NULL,

Sname CHAR. (15) NOT NULL.

Fname CHAR (15) NOT NULL.

Mname CHAR (15).

Sex CHAR (1) NOT NULL,

DoB NUMBER (8).

Spzm# CHAR (5),

CumGPA NUMBER (4,2),

CONSTRAINT StudentPK PRIMARY KEY (Stud#),

CONSTRAINT StudentFK1 FOREIGN KEY (Spgnw) REFERENCES Program (Pgm#).
CONSTRAINT StudentCheckl CHECK (Sex IN (‘M. ‘F").

CONSTRAINT StudentCheck2 CHECK (DoB BETWEEN 19000101 AND 21991231).
CONSTRAINT StudentCheck3 CHECK (CumGPA >=0));

Once your table has been created, you may view the structure of the table via the
Describe statement, which has the following format:

DESCRIBE <BaseTable>:

Example 3: The following statement will cause the structure of the table Student to
be listed on the screen.

DESCRIBE Student:

You can also create a table from an existing table by feeding the output of a Select
statement as the input to a Create-Table statement. The format of the Create-Table
statement for this is:

CREATE TABLE <TableName> [(<Colummn> {<Column>}] AS <Sub-query=;

The sub-query component of the statement is specified by a Select statement.
An example of this is provided below; this will be much clearer after you have been
introduced to the Select statement (next chapter).

198

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Example 4: The following statements create two snapshot relations: the first
one stores Computer Science courses only; the second stores Computer Science and
Information Systems majors only.

CREATE TABLE CSCowses AS SELECT * FROM Course WHERE Crs# LIKE ‘CS%";

CREATE TABLE CSMajors (Stud#, Sname, Fname, Sex) AS SELECT * FROM Student WHERE (Spgm#
= ‘BSC1" OR Spgm# = ‘BSC2"):

11.7 Dropping or Modifying a Table

A table may be dropped (deleted from the system) via the Drop-Table statement. The
syntax is:

Drop-Table ::= DROP TABLE [<Schema>.] <TableName™> [CASCADE CONSTRAINTS]:

To drop all referential integrity constraints that refer to primary and unique keys in
the dropped table, specify the Cascade-Constraints-Clause. If you omit this clause, and
such referential integrity constraints exist, Oracle will return an error and will not drop
the table.

Example 5: The following statement removes table CSCourses from the system:

DROP TABLE CSCourses CASCADE CONSTRAINTS.

199

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

When a table is removed, all references to it are removed from the system catalog.

Any attempt to access a non-existent table will result in an execution error.

The structure of a table can be modified via the Alter-Table statement. Figure 11-12

provides the detailed syntax for the Alter-Table statement, while Figure 11-13 shows an
abridged version.

Alte

Mov

Upg

Sup

Allo
ALL

r-Table ::=

ALTER TABLE [<Schema>.] <Table-Name>
[Alter-Table-Props | Column-clauses | Constraint-Clauses | Alter-Table-Partitioning | Alter-External-Table-Clauses |

e-Table-Clause]

[Enable-Disable-Clause] | [ENABLE | DISABLE TABLE LOCK] | [ENABLE | DISABLE ALL TRIGGERS];

Alter-Table-Props::=
Physical-Attributes-Clause | LOGGING | NOLOGGING | COMPRESS | NOCOMPRESS | Supplemental-log-Group-Clauses |
Allocate-Extent-Clause | Deallocate-Unused-Clause | CACHE | NOCACHE | MONITORING | NOMONITORING |

rade-Table-Clause | Record-Per-Block clause | Row-Movement-Clause | Parallel-Clause | Renew-Table-Spec

[Alter-IOT-Clauses]

plemental-Log-Group-Clauses::= SLClause1 | SLClause2

SLClause1 ::= ADD SUPPLEMENTAL LOG GROUP <LogGroup> (<Column> {,<Column>}) [ALWAYS]
SLClause2 ::= DROP SUPPLEMTAL LOG GROUP <LogGroup>

cate-Extent-Clauses::=
OCATE EXTENT [(Extent-Spec {Extent-Spec})]

Extent-Spec::= ESOption1 | ESOption2 | ESOption3
ESOption1 ::= Size <M> [K|M]

ESOption2 ::= DATAFILE ‘<PathtoFile>’
ESOption3::= INSTANCE <n>

Figure 11-12. The Alter-Table Statement

200

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Deallocate-Unused-Clause::=
DEALLOCATE UNUSED [KEEP <n> [K|M]

Upgrade-Table-Clause::=
UPGRADE [[NOT] INCLUDING DATA] [Column-Properties]

Record Per-Block-Clause::=
MINIMIZE | NOMINIMIZE RECORD PER BLOCK

Rename-Table-Spec::=
RENAME TO <New-TableName>

Alter-I0T-Clauses::=
|0T-Clause | Alter-Overflow-Clause | Alter-Mapping-Table-Clause | COALESCE

/I'0T-Clause is defined in Create-Table

Alter-Overflow-Clauses::= AOClause1 | AOClause2
AOClause1 ::= Add-Overflow-Clause
AOClause2 ::= OVERFLOW {Allocate-Extent-Clause} | Deallocate-Unused-Clause

Add-Overflow-Clause::=
ADD OVERFLOW [Segment-Attributes-Clause]
[(PARTITION [Segment-Attributes-Clause] {, PARTITION [Segment-Attributes-Clause]})]

Il Segment-Attributes-Clause is defined in Create-Table
Alter-Mapping-Table-Clauses::= AMClause1 | AMClause2

MClause1 ::= MAPPING TABLE UPDATE BLOCK REFERENCES
MClause2 ::= MAPPING TABLE Allocate-Extent-Clause | Deallocate-unused-Clause

Column-Clauses::=

{Add-Column-Clause}| {Modify-Column-Clause} | {Drop-Column-Clause}|
Rename-Column-Clause | {Modify-Collection-Retrieval} |
{Modify-LOB-Storage-Clauses} | {Alter-Varray-Col_Props}

Add-Column-Clause::=
ADD (Column-Definition-{,Column-Definition})

Il Column-Definition is defined in Create-Table

Modify-Column-Clause::=
MODIFY Modify-Col-Props | Modify-Col-Substitutable

Modify-Col-Props::= /*Similar but not identical to Column Definition*/
(<Column> [Data-type-Spec] [DEFAULT <Expression>] {Inline-Constraint}
{, <Column> [Data-type-Spec] [DEFAULT <Expression>] {Inline-Constraint})

Il Inline-Constraints defined in Create-Table

Modify-Col-Substitutable::=
COLUMN <Column> [NOT] SUBSTITUTABLE AT ALL LEVELS [FORCE]

Figure 11-12. The Alter-Table Statement (continued)

201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Drop-Column-Clause::= DCOption1 | DCOption2 | DCOption3 | DCOption4 | DCOption5 | DCOption6

DCOption1 ::= SET UNUSED COLUMN <Column> [[CASCADE CONSTRAINTS] | INVALIDATE]

DCOption2 ::= SET UNUSED (<Column> {,<Column>}) [CASCADE CONSTRAINTS] | INVALIDATE]
{[[CASCADE CONSTRAINTS] | INVALIDATE]}

DCOption3 ::= DROP COLUMN <Column> [[CASCADE CONSTRAINTS] | INVALIDATE] [CHECKPOINT <n>]

DCOption4 ::= DROP COLUMN (<Column> {,<Column>} [[CASCADE CONSTRAINTS] | INVALIDATE]
{[[CASCADE CONSTRAINTS] | INVALIDATE]} [CHECKPOINT <n>]

DCOption5 ::= DROP UNUSED COLUMNS [CHECKPOINT <n>|

DCOption6 ::= DROP COLUMNS CONTINUE [CHECKPOINT <n>]

Rename-Column-Clause::=
RENAME COLUMN <Old-Column> TO <New-Column>

Modify-Collection-Retrieval::=
MODIFY NESTED TABLE <Collection-Item> RETURN AS LOCATOR | VALUE

Modify-LOB-Storage-Clause::=
MODIFY LOB (<LOB-Item>) (Modify-LOB-Parms)

Modify-LOB-Parms::= MLParm1 | MLParm2 | MLParm3 | MLParm4 | MLParm5 | MLParm6

MLParm1 ::= Storage-Clause | Allocate-Extent-Clause | Deallocate-Unused-Clause | RETENTION | CACHE
MLParm2 ::= PCTVERSION <n>

MLParm3 ::= FREEPOOLS <n>

MLParmé4 ::= REBUILD FREEPOOLS

MLParm5 ::= NOCACHE [LOGGING | NOLOGGING]

MLParm6 ::= CACHE READS [LOGGING / NOLOGGING]

Alter-Varray-Col-Props::=
MODIFY-VARRAY <Varray-ltem> (Modify-LOB-Parms)

Constraints-Clauses ::= Drop-Constraint-Clause | ACClause1 | ACClause2 | ACClause3 | ACClause4 |
ACClause5 | ACClause6

ACClause1 ::= ADD Out-of-Line-Constraint < Out-of-Line-Constraint >

ACClause2 ::= ADD Out-of-Line-Ref-Constraint

ACClause3 ::= MODIFY CONSTAINT <Constraint-Name> <Constraint-State>
ACClause4 ::= MODIFY PRIMARY KEY <Constraint-Name>
ACClause5 ::= MODIFY UNIQUE (<Column> {,<Column>}) <Constraint-State>

ACClause6 ::= RENAME CONSTRAINT <Old-Constraint> To <New-Constraint>
[*Constraint-State, Out-of-Line-Constraint, Out-of-Line-Ref-Constraints are as defined in Create-Table*/

Drop-Constraint-Clause::= DCOption1 | DCOption2 | DCOption3

DCOption1 ::= DROP PRIMARY KEY [CASCADE] [KEEP | DROP INDEX]

DCOption2 ::= DROP UNIQUE (<Column> {,<column>}) [CASCADE] [KEEP | DROP INDEX]
DCOption3 ::= DROP CONSTRAINT <Constraint> [CASCADE]

Figure 11-12. The Alter-Table Statement (continued)

202

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Alter-Table-Partitioning::=

Modify-Table-Default-Attributes | Set-Subpartition-Template | Modify-Table-Partition | Modify-Table-Subpartition |
Move-Table-Partition | Move-Table-Subpartition | Add-Table-Partition | Coalesce-Table-Partition |
Drop-Table-Partition | Drop-Table-Subpartition | Rename-Partition-Subpart | Truncate-Partition-Subpart |
Split-Table-Partition | Split-Table-Subpartition | Merge-Table-Partitions | Exchange-Partition-Subpart |
Merge-Table-Subpartition

Modify-Table-Defaults-Attributes::=

MODIFY DEFAULT ATTRIBUTES [FOR PARTITION <Partition>]

[Segment-Attributes-Clause] [COMPRESS | NOCOMPRESS] [PTCTHRESHOLD <n>] [[COMPRESS <n>] |

NOCOMPRESS] [Alter-Overflow-Clause] [LOB {(<LOB-Item>) (<LOB-Parameters>)} {VARRAY <Varray> (<LOB-Parameters>)}]

Il Segment-Attributes-Clause and LOB-Parameters are defined in Create-Table

Set-Subpartition-Template::= SSTOption1 | SSTOption2 | SSTOption3

SSTOption1 ::= SET SUBPARTITION TEMPLATE Hash-Subpartition-by-Quantity

SSTOption2 ::= SET SUBPARTITION TEMPLATE (Range-Subpartition-Desc {, Range-Subpartition-Desc }}
SSTOption3 ::= SET SUBPARTITION TEMPLATE (List-Subpartition-Desc {, List-Subpartition-Desc }}

[*Hash-Subpartition-by-Quantity, Range-Subpartition-Desc , and List-Subpartition-Desc are defined in Create-Table */

Modify-Table-Partition::=
Modify-Range-Partition | Modify-Hash-Partition | Modify-List-Partition

Modify-Range-Partition::=
MODIFY PARTITION <Partition> Partition-Attributes | Add-Hash-Subpartition | Add-List-Subpartition |
Alter-Mapping-Table-Clause | Coalesce-Subpartition | Rebuild-Unusable

Coalesce-Subpartition::=
COALESCE SUBPARTION [Update-Global-Index-Clause] [Parallel-Clause]

/I Parallel-Clause is defined in Create-Table

Update-Global-Index-Clause::=
UPDATE | INVALIDATE GLOBAL INDEXES

Rebuild-Unusable::=
[REBUILD] UNUSABLE LOCAL INDEXES

Partition-Attributes::=

[{Physical-Attributes-Clause | LOGGING | NOLOGGING | Allocate-Extent-Clause | Deallocate-Unused-Clause}]
[OVERFLOW {Physical-Attributes-Clause | LOGGIN INOLOGGING | Allocate-Extent-Clause | Deallocate-Unused-Clause}]
[COMPRESS | NOCOMPRESS] [LOB-Varray-Option]

LOB-Varray-Option::= LOBOption1 | LOBOption2
LOBOption1 ::= {LOB <LOB-Item> Modify-LOB-Parms}
LOBOption2 ::= VARRAY <Varray> Modify-LOB-Parms

Figure 11-12. The Alter-Table Statement (continued)

203

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Add-Hash-Subpartition::=
ADD Subpartition-Specs [Update-Global-Index-Clause] [Parallel-Clause]

/I Parallel-Clause and Subpartition-Specs are defined in Create-Table

Add-List-Subpartition::=
ADD Subpartition-Specs

Alter-Mapping-Table-Clause::=
MAPPING TABLE Allocate-Extent-Clause | Deallocate-Unused-Clause | Update-Block-Refs

Update-Block-Refs::=
UPDATE BLOCK REFERENCES

Modify-Harsh-Partition::=
MODIFY PARTITION <Partition> Partition-Attributes | Rebuild-Unusable |
Alter-Mapping-Table-Clause

Modify-List-Partition::=
MODIFY PARTITION <Partition> Partition-Attributes | Rebuild-Unusable | Add-Drop-Values

Add-Drop-Values::=
ADD | DROP VALUES (<Partition-Value> {,<Partition-Value})

Modify-Table-Subpartition::=
MODIFY SUBPARTITION <Subpartition> Modify-Hash-Subpartition | Modify-List-Subpartition

Modify-Hash-Subpartition::=
Rebuild-Unusable | {LOB-Varray-Option} | Allocate-Extent-Clause | Deallocate-Unused-Clause

Modify-List-Subpartition::=
Rebuild-Unusable | {LOB-Varray-Option} | Allocate-Extent-Clause | Deallocate-Unused-Clause | Add-Drop-Subvalues

Add-Drop-Subvalues::=
ADD | DROP VALUES (<Value> {<Value>})

Move-Table-Partition::=
MOVE PARTITION <Partition> [MAPPING TABLE] [Table-Partition-Description]
[Update-Global-Index-Clause] [Parallel-Clause]

Table-Partition-Description::=

[Segment-Attributes-Clause] | [[COMPRESS [<Integer>]] | NOCOMPRESS]
[OVERFLOW [Segment-Attribute-Clause]]

[{LOB-Storage-Clause | Varray-Col-Properties}] [Partition-Level-Subpartition]
[Partition-Level-Subpartition]

/I Components not defined here are all defined in Create-Table

Figure 11-12. The Alter-Table Statement (continued)

204

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Move-Table-Subpartition::=
MOVE Subpartition-Spec [Update-Global-Index-Clause] [Parallel-Clause]

Add-Table-Partition::=
ADD-Range-Partition-Clause | Add-Hash-Partition-Clause | Add-List-Partition-Clause

Add-Range-Partition-Clause::=
ADD PARTITION [<Partition>] Range-Value-Clause [Table-Partition-Description]

/I Range-Value-Clause defined in Create-Table

Add-Hash-Partition-Clause::=
ADD PARTITION [<Partition>] Partitioning-Storage-Clause [Update-Global-Index-Clause] [Parallel-Clause]

/I Partitioning-Storage-Clause and Parallel-Clause defined in Create-Table

Add-List-Partition-Clause::=
ADD PARTITION [<Partition>] List-Value-Clause [Table-Partition-Description]

Coalesce-Table-Partition::=
COALESCE PARTITION [Update-Global-Index-Clause] [Parallel-Clause]

Drop-Table-Partition::=
DROP PARTITION <Partition> Update-Global-Index-Clause [Parallel-Clause]

Drop-Table-Subpartition::=
DROP SUBPARTITION <Subpartition> [Update-Global-Index-Clause [Parallel-Clause]

Rename-Partition-Subpartition::=
RENAME PARTITION | SUBPARTITION <Oldname> TO <Newname>

Truncate-Partition-Subpartition::=
TRUNCATE PARTITION | SUBPARTITION <Partition | Subpartition>
[DROP | REUSE STORAGE] [Update-Global-Index-Clause [Parallel-Clause]]

Split-Table-Partition::=
SPLIT PARTITION <Partition> AT | VALUES (<Value> {,<Value>}) [INTO (Partition-spec, Partition-Spec)]
[Update-Global-Index-Clause] [Parallel-Clause]

Partition-Spec::=
PARTITION [<Partition>] [Table-Partition-Description]

Split-Table-Subpartition::=
SPLIT SUBPARTITION <Subpartition> VALUES (<Value> | NULL {,<Value> | NULL}] INTO
(Subpartition-Spec, Subpartition-Spec) [Update-Global-Index-Clause] [Parallel-Clause]

Merge-Table-Partitions::=
MERGE PARTITIONS <Partition-1> , < Partition-2> INTO Partition-Spec
[Update-Global-Index-Clause] [Parallel-Clause]

Figure 11-12. The Alter-Table Statement (continued)

205

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Subpartition_Spec ::=
SUBPARTITION [<Subpartition>] [List-values-Clause] [Partitioning-Storage-Clause]

Il List-Values-Clause and Partitioning-Storage-Clause are defined in Create-Table

Merge-Table-Subpartition::=
MERGE SUBPARTITIONS <Subpartition-1> , <Subpartition-2> [INTO Subpartition-Spec]
[Update-Global-Index-Clause] [Parallel-Clause]

Exchange-Partition-Subpartition::=

EXCHANGE Partition-Extended-Name | Subpartition-Extended-Name WITH TABLE <TableName>
[INCLUDING | EXCLUDING INDEXES] [WITH | WITHOUT VALIDATION]

[Exceptions-Clause] [Update-Index-Clauses] [Parallel-Clause]

Partition-Extended-Name ::= PNOption1 | PNOption2
PNOption1 ::= PARTITION <PartitionName>
PNOption2 ::= PARTITION FOR (<Partition-Key-Value> {, Partition-Key-Value>})

Subpartition-Extended-Name ::= SPNOption1 | SPNOption2
SPNOption1 ::= SUBPARTITION <SubpartitionName>
SPNOption2 ::= SUBPARTITION FOR (<Subpartition-Key-Value> {, Subpartition-Key-Value>})

Update-Index-Clauses ::= Update-Global-Index-Clause | Update-All-Indexes-Clause
Update-Global-Index-Clause ::= UPDATE | INVALIDATE GLOBAL INDEXES
Update-All-Index-Clause ::= UPDATE INDEXES [(<IndexName> {, <IndexName>})]

Exception-Clause::=
EXCEPTIONS INTO [<Scheme>.] <TableName>

Alter-External-Table-Clause::=
Add-Column-Clause | Modify-Column-Clause | Drop-Column-Clause | Parallel-Clause | External-Data-Properties |
Reject-Spec {Alter-External-Table-Clause}

Reject-Spec::=
REJECT LIMIT <Integer> | UNLIMITED

/I Parallel-Clause and External-Data-Properties are defined in Create-Table

Move-Table-Clause::=
MOVE [ONLINE] [Segment-Attributes-Clause] [COMPRESS | NOCOMPRESS]
[I0T-Clause] {LOB-Storage-Clause | Varray-Col-Properties} [Parallel-Clause]

Move-Table-Clause::= MTOption1 | MTOption2 | MTOption3

MTOption1 ::= ENABLE | DISABLE [VALIDATE | NOVALIDATE] UNIQUE (<Column> {,<Column>}
[Unique-Index-Clause] [Exceptions-Clause] [CASCADE] [KEEP | DROP] INDEX

MTOption2 ::= ENABLE | DISABLE [VALIDATE | NOVALIDATE]
PRIMARY KEY [Unique-Index-Clause] [Exceptions-Clause] [CASCADE] [KEEP | DROP] INDEX

MTOption3 ::= ENABLE | DISABLE [VALIDATE | NOVALIDATE] CONSTRAINT (<Constraint>
[Unique-Index-Clause] [Exceptions-Clause] [CASCADE] [KEEP | DROP] INDEX

/I Components not defined here have been defined earlier, or in Create-Table

Figure 11-12. The Alter-Table Statement (continued)

206

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

SQL DATA DEFINITION STATEMENTS

Alter-Table ::=

ALTER TABLE <TableName>

[ADD Column-Definition]

[MODIFY Column-Definition]

[ADD Constraint-Definition]

[DROP <Column> {,<Column>}]

[DROP PRIMARY KEY]

[DROP FOREIGN KEY (<Column> {,<Column>})]
[DROP/DISABLE/ENABLE CONSTRAINT <Constraint-Name>];

/I Column-Definition and Constraint-Definition are as defined in Create-Table (see figure 11.10)

Figure 11-13. Abridged Version of the Alter-Table Statement

Example 6: We could add an additional attribute for course-abbreviation to the

Course table:

ALTER TABLE Cowrse ADD Crsabbr CHAR. (4):

Note:
1. The table now has three columns — Crs#, Crsname, Crsabbr.

provided that this is supported by the DBMS.

2. Existing records in the table are all amended to have the additional attribute.

3. The records are not ALTERED at the time of the statement, but noted in the system catalog. At the next
read of the table, the DBMS appends NULLed attribute values to the records. The next write to disk writes
the expanded records if the additional null values have been updated to the non-null.

4. It is a good habit to assign default values to attributes appended subsequent to table creation and usage,

Example 7: The following statement appends an additional attribute (and foreign

key) to the Student table.

ALTER TABLE Student ADD Hall# CHAR (4)
ADD FOREIGN KEY (Hall#) REFERENCES Hall (Hall#):

Oracle also allows you to rename a table (or any valid database object) via the
Rename command. You can also remove all rows from a table via the Truncate-Table
command. The abridged syntax for each command is as follows:

Rename-Statement ::= RENAME <Object-name> TO <Object-name=;

Truncate-table-Statement ::= TRUNCATE TABLE <TableName=>;

www.it-ebooks.info

207

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Example 8: The following statements a) renames the Hall table to Dormitory and b)
deletes all tuples of the Student table.

RENAME Hall TO Dormitory:

TRUNCATE TABLE Student:

11.8 Working with Indexes

An index is a database object that is used to speed up the retrieval of tuples from base
relations. The index is independent of the table it indexes. It stores address pointers
to tuples of the base relation. Once created, indexes are automatically maintained by
the DBMS, and used to service certain user access requests as required. The software
engineer’s (or DBA’s) only responsibility is to create them.

An index may be created whenever any of the following circumstances holds:

e A column or combination of columns is frequently used in system
query conditions (e.g. join conditions).

e A column contains a wide range of values.
e A column contains a large number of null values.

e Thetable is large and most queries on it are expected to retrieve
less than 2 % - 4% of the tuples.

e A column or combination of columns is frequently used in the
Order-By clause of queries.

An index is not necessary when any of the following circumstances holds:
e Thetable is small.

e Most queries are expected to retrieve more than 2% - 4% of the
tuples.

e The table is frequently updated (there are exceptions to this rule).
e Columns are not often used in database queries.

An experienced software engineer or DBA can reasonably determine what indexes
are to be created in a database, as this could seriously affect the performance of the
database. When queries are executed, the DBMS first checks to see whether there are
indexes that will facilitate efficient access of the requested data. If it finds such indexes, it
uses them; otherwise, it creates temporary indexes required to service the queries.

Figure 11-14 shows the full syntax of the Create-Index statement, an abridged
version of which is provided in Figure 11-16. Figure 11-15 provides the full syntax for the
Alter-Index statement.

208

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Create-Index ::=
CREATE [UNIQUE | BITMAP] INDEX [<Schema>-] <IndexName>
ON Cluster-Index-Clause | Table-Index-Clause | Bitmap-Join-Index-Clause

Cluster-Index-Clause ::=
CLUSTER [<Schema>-] <Cluster> Index-Attributes

Index-Attributes ::=

[Physical-Attributes-Clause] [LOGGING | NOLOGGING] [ONLINE] [REVERSE]

[SORT | NOSORT] [Parallel-Clause] [Key-Compression] [Compute-Stat] [Tablespace-Spec]
{ Index-Attributes }

Key-Compression ::= NOCOMPRESS | Compress-Option
Compress-Option ::= COMPRESS <Integer>

Compute-Stat ::=
COMPUTE STATISTICS

Tablespace-Spec ::=
TABLESPACE <Tablespace> | DEFAULT

Figure 11-14. The Create-Index Statement

209

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

[* Physical-Attributes-Clause and Parallel-Clause are defined in Create-Table */

Table-Index-Clause ::=

[<Schema>-] <Table> [<Table-Alias>]

(Index-Expr [ASC/DESC] {,Index-Expr [ASC/DESC] })

[Global-Partitioned-Index | Local-Partitioned-Index] [Index-Attributes] [Domain-Index-Clause]

Index-Expr ::=
<Column> | <Column-Expression>

Il Column expressions occur in function-based indexes

Global-Partitioned-Index ::=
GLOBAL PARTITION BY RANGE (<Column>{,<Column>})
(Index-Partitioning-Clause>

Index-Partitioning-Clause ::=
PARTITION [<Partition>] VALUES LESS THAN (<Value> {,<Value>})
[Segment-Attributes-Clause]

/I Segment-Attributes-Clause defined in Create-Table

Local-Partitioned-Index ::=
LOCAL [On-Range-Partitioned-Table | On-List-Partitioned-Table | On-Hash-Partitioned-Table |
On-Comp-Partitioned-Table]

On-Range-Partitioned-Table ::=
(PARTITION [<Partition> [Segment-Attributes-Clause]]
{,PARTITION [<Partition> [Segment-Attributes-Clause]]})

I/ On-List-Partition-Table is as for On-Range-Partition-Table

On-Hash-Partitioned-Table ::= OHPOption1 | OHPOption2
OHPOption1 ::= STORE IN (<TableSpace> {,<TableSpace>})
OHPOption2 ::= On-Range-Partitioned-Table

On-Comp-Partitioned-Table ::=

STORE IN (<TableSpace> {,<TableSpace>})

(PARTITION [<Partition> {Segment-Attribute-Clause} [Index-Subpartition-Clause]]
{,PARTITION [<Partition> {Segment-Attributes-Clause}[Index-Subpartition-Cause][})

Index-Subpartition-Clause ::= ISCOption1 | ISCOption2
ISCOption1 ::= STORE IN (<TableSpace>{,<TableSpace>})
ISCOption2 ::= (SUBPARTITION[<Subpartition>[TABLESPACE<Tablespace>]|
{, SUBPARTITION[<Subpartition>[TABLESPACE<TableSpace>]]})

I Segment-Attributes-Clause is defined in Create-Table

Figure 11-14. The Create-Index Statement (continued)

210

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Domain-Index-Clause ::=
INDEXTYPE IS <IndexType> [Parallel-Clause]
[PARAMETERS (‘<ODCI-Parameters>')]

Bitmap-Join-Index-Clause ::=

[<Schema>-] <Table> ([[<Schema>-]<Table>-] | [<Table-Alias>+] <Column>[ASC/DESC]
{,[[<Schema>-]<Table>"] | [<Table-Alias>*]<Column>[ASC/DESC]]})

FROM [<Schema>]<Table> [<Table-Alias>]

{,[<Schema>-]<Table> [<Table-Alias>]}

WHERE <Condition>[Local-Partitioned-Index] Index-Attributes

Figure 11-14. The Create-Index Statement (continued)

Alter-Index ::=

ALTER INDEX [<Schema>-]<Index>

{Deallocate-Unused-Clause | Allocate-Extent-Clause | Parallel-Clause |

Physical-Attributes-Clause | LOGGIN | NOLOGGING} | Rebuild-Clause | ENABLE | DISABLE | UNUSABLE |
COALESCE | Rename-Index | Index-Parms1 | Monitor-Usage | Updated-Block-Ref |
Alter-Index-Partitioning};

Index-Parms1 ::=
PARAMETERS (‘<ODCI-Parameters>’)

Rename-Index ::=
RENAME TO <NewIndexName>

Monitor-Usage ::=
MONITORING | NONMONITORING USAGE

Update-Bloc-Ref ::=
UPDATE BLOCK REFERENCES

Alter-Index-Partitioning ::=
Modify-Index-Default-Attributes | Modify-Index-Partition | Rename-Index-Partition |
Drop-Index-Partition | Split-Index-Partition | Modify-Index-Subpartition

Modify-Index-Default-Attributes ::=
MODIFY DEFAULT ATTRIBUTES [FOR PARTITION <Partition>]
{Physical-Attributes-Clause | LOGGING | NOLOGGING | TableSpace-Spec}

// Physical-Attributes-Clause is defined in Create-Table

Modify-Index-Partition ::=

MODIFY PARTITION <Partition>

{Physical-Attributes-Clause | LOGGING | NOLOGGING | Allocate-Extent-Clause | Deallocate-Unused-Clause}
Index-Parms2 | COALESCE | UNUSEABLE | Update-Block-Ref

Figure 11-15. The Alter-Index Statement

211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Index-Parms2 ::=
PARAMETERS (‘<Alter-Partition-Parms>’)

/I Physical-Attributes-Clause is defined in Create-Table
I/ Allocate-Extent-Clause and Deallocate-Unused-Clause defined in Alter-Table

Rename-Index-Partition ::= RIPOption1 | RIPOption2
RIPOption1 ::= RENAME PARTITION <partition> TO <NewName>
RIPOption2 ::= RENAME SUBPARTITION <Subpartition> TO <NewName>

Drop-Index-Partition ::=
DROP PARTITION <Partition>

Split-Index-Partition ::=
SPLIT PARTITION <Partition> AT (<Value> {,<Value>})
[INTO (Index-Partition-Description, Index-Partition-Description)] [Parallel-Clause]

Index-Partition-Description ::=
PARTITION [<Partition> {[Segment-Attributes-Clause | Key-Compression]}]

/I Segment-Attributes-Clause is defined in Create-Table
Modify-Index-Subpartition ::=
MODIFY SUBPARTITION <Subpartition> UNUSABLE | Allocate-Extent-Clause |

Deallocate-Unused-Clause

/I Allocate-Extent-Clause and Deallocate-Unused-Clause are defined in Alter-Table

Figure 11-15. The Alter-Index Statement (continued)

Create-Index ::=
CREATE [UNIQUE] [BITMAP] INDEX <Index> ON <TableName> (<Column> [ASC/DESC]
{,<Column> [ASC/DESCT}) [CLUSTER];

Figure 11-16. Abridged Version of the Create-Index Statement

Note:
1. The default order is ASC(ending).

2. The (left-right) ordering of the columns in the index is
significant in the usual major-minor convention.

3. The CLUSTER option specifies that this is a clustering index —
index values are clustered.

4. The UNIQUE option specifies that no two rows in the indexed
table will be allowed to have the same value for the index
column(s).

212

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

5. The default algorithm for Oracle indexes is B-tree; however
the user has the option of creating a bit-map index. The bit-
map is like a matrix representing row-IDs and columns. It is
useful in situations where many column values are identical
(for instance where the primary key is composite).

Finally, you can drop an index via the Drop-Index statement. The syntax for this
statement is shown in Figure 11-17.

Drop-Index ::=
DROP INDEX [<Schema>.] <Index> [FORCE];

Figure 11-17. The Drop-Index Statement

Example 9: The following statements create indexes on the tables indicated:

CREATE INDEX PgmX ON Program (Pgmname),

CREATE INDEX CrsX ON Course (Crsname);

Example 10: The following statement drops the index CrsX:

DROP INDEX CrsX:

Note: When a table is dropped, all its related indexes are automatically dropped also.

11.9 Creating and Managing Sequences

A sequence is an Oracle database object that automatically generates unique numbers.
It is typically used to create primary key values, particularly if the primary key is a single
attribute. For composite primary keys, or other alphanumeric codes, the sequence could
still be useful in generating a unique number, which is to be concatenated with some
other data to comprise a code.

A sequence provides two significant advantages:

e Itsuse could lead to shorter application code.

¢ When sequence values are cached, processing efficiency is
enhanced.

213

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

The syntax for the Create-Sequence statement is shown in Figure 11-18. As you can
see, the statement is quite straightforward, and the clauses self-explanatory.

Create-Sequence ::=

CREATE SEQUENCE <SequenceName> [INCREMENT BY <Number>]
[START WITH <Number2>] [MAXVALUE <Number3> | NOMAXVALUE]
[MINVALUE <Number4> | NOMINVALUE] [CYCLE | NOCYCLE]
[CACHE <Number5> | NOCACHE];

Figure 11-18. The Create-Sequence Statement

The sequence is accessed via two pseudo columns CURRVAL and NEXTVAL.
Typically, it is accessed via a Select statement to retrieve its current value, or via an
Insert statement to insert data into a table (both statements will be discussed in the next
chapter).

Example 11: The following examples illustrate how a sequence is created and used:

CREATE SEQUENCE DeptnoSeqn INCREMENT BY 05 START WITH 0 MAXVALUE 9095 NOCYCLE.

To use the sequence in inserting a row into the table, the following statement may be
embedded into a PL/SQL program block:

INSERT INTO DEPT(Dept#, Dname) VALUES(DeptnoSeqn.NEXTVAL, &DeptName):

To view the current value, do a selection on DUAL (DUAL is the general purpose
pseudo table used when a scalar value which is not stored in a specific database table is
to be displayed):

SELECT DeptnoSeqn. CURRVAL FROM DUAL:

11.10 Altering and Dropping Sequences

The attributes of a sequence may be modified via the Alter-Sequence statement. Its
syntax is similar to that of the Create-Sequence statement (see Figure 11-19): The
following guidelines apply to sequence modification:

e Only the owner of a sequence (or a user with alter privilege to the
sequence) can modify it.

e Only future sequence numbers are affected by the modification.

e Torestart a sequence, it has to be deleted and then recreated.
214

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Alter-Sequence ::=

ALTER SEQUENCE <SequenceName> [INCREMENT BY <Number>]
[START WITH <Number2>] [MAXVALUE <Number3> | NOMAXVALUE]
[MINVALUE <Number4> | NOMINVALUE] [CYCLE | NOCYCLE]
[CACHE <Number5> | NOCACHE];

Figure 11-19. The Alter-Sequence Statement

A sequence may be removed via the Drop-Sequence command, which has the
following syntax:

DROP SEQUENCE <SequenceName>:

11.11 Creating and Managing Synonyms

A synonym is a virtual object (i.e. the alias of an object), used to fulfill any or both of the
following purposes:

e Shortening the length of an object’s name

e Referring to an object (typically a table) owned by another
schema (user)

The Create-Synonym command has the following syntax:

CREATE [PUBLIC] SYNONYM <SynonymName> FOR <[Schema.]ObjectName]:

Note: If the synonym is public (created with keyword PUBLIC), other users have
access to it; otherwise, it is private to the user who created it. Synonym, as used here,
corresponds to the term “alias’) as used in Chapter 7.

Example 12: The following example creates a synonym called ValidDate for an
object of the same name in another schema:

CREATE PUBLIC SYNONYM ValidDate FOR Jones.ValidDate:

215

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

Here, the object ValidDate (which could be any valid Oracle database object,
including a function) resides in a schema called Jones, and synonym is created in the
current schema.

The syntax for deleting a synonym is:

| DROP SYNONYM <SynonymName=>: |

11.12 Summary and Concluding Remarks

It's time to summarize what was covered in this chapter:

e The Oracle SQL*Plus environment provides a line editor that
allows you to enter, edit and execute SQL statements. However,
you may use any text editor of your choice and import the SQL
statement into the SQL*Plus environment. Other alter GUI-based
environments are iSQL *Plus, Oracle Enterprise Manager (OEM),
and Oracle SQL Developer (OSQLD).

e The Create-Database statement allows you to create an Oracle
database. Alternately, you may use the Oracle DBCA.

e The Alter-Database statement allows you to change features of a
database, and the Drop-Database statement allows you to delete
the current database. Alternately, you may use the Oracle DBCA.

¢ The Create-Tablespace statement allows you to create a
tablespace. The Alter-Tablespace statement allows you to change
features of a tablespace, and the Drop-Tablespace statement
allows you to delete a tablespace.

e The Create-Table statement allows you to create a table. The
Alter-Table statement allows you to change features of a table,
and the Drop-Table statement allows you to delete a table.

e The Create-Index statement allows you to create an index. The
Alter-Index statement allows you to change features of an index,
and the Drop-Index statement allows you to delete an index.

e The Create-Sequence statement allows you to create a sequence.
The Alter-Sequence statement allows you to change features of a
sequence, and the Drop-Sequence statement allows you to delete
a sequence.

e The Create-Synonym statement allows you to create a synonym.
The Drop-Synonym statement allows you to delete a synonym.

Each of the database objects discussed in this chapter can be created and fully
managed using the OEM, OSQLD, or Oracle iSQL *Plus. However, in the interest of
learning SQL, it is recommended that you stick with SQL *Plus. The upcoming chapter
discusses the common DML and DCL statements of SQL.

216

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

11.13 Review Questions

1.
2.

10.

11.

What are the commonly used SQL definition statements?

Use the Oracle DBCA component to create a database.
Practice writing SQL statements to create simple databases.

Practice writing SQL statements to modify different aspects of
a database.

Write SQL statement to add a tablespace to your database.
Create a second tablespace to hold the tables described in
your sample college database.

Practice writing SQL statements to modify different aspects of
a tablespace.

Write SQL statements to create the tables described in the
sample college database described in Chapter 7 (Figure 7-1).

Write appropriate SQL statements to do the following:
e Add a constraint to a table.

¢ Modify a constraint.

e Enable or disable a constraint.

Write SQL statements to define indexes on your database
tables.

Practice writing SQL statements to modify or drop indexes.

By considering the Student table in your sample college
database, write SQL statement to create a sequence for this
table. Describe and demonstrate how this sequence could be
used.

What is a synonym and how is it used in a database? Practice
writing SQL statements to create and drop a synonym.

11.14 References and/or Recommended
Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York, NY: Addison-
Wesley, 2002. See Chapter 6.

[Couchman, 1999] Couchman, Jason and Christopher Allen. Oracle Certified Professional:
Application Developer Guide. New York, NY: Osborne/McGraw-Hill, 1999. See Chapters 3

and 4.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5" ed. Reading, MA: Addison-Wesley, 2007. See Chapter 8.

217

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SQL DATA DEFINITION STATEMENTS

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See Chapters 15 and 19.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapter 7.

[Oracle, 2008] Oracle Corporation. SQL Reference.
http://www.oracle.com/technology/index.html (accessed October 2008).

[Shah, 2002] Shah, Nilesh. Database Systems Using Oracle: A Simplified Guide to SQL and
PL/SQL. Upper Saddle River, NJ: Prentice Hall, 2002. See Chapters 3 and 4.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See Chapter 5.

218

www.it-ebooks.info

http://www.oracle.com/technology/index.html
http://www.it-ebooks.info/

CHAPTER 12

SQL Data Manipulation
Statements

There are four core DML statements in SQL, namely INSERT, UPDATE, DELETE, and

SELECT. These statements apply to base tables and views (views will be discussed in the

next chapter). The chapter proceeds under the following subheadings:

e Insertion of Data

Update Operations

e Deletion of Data

¢ Commit and Rollback Operations

e Basic Syntax for Queries

e Simple Queries

e Queries Involving Multiple Tables

e Queries Involving the Use of Functions

e Queries Using LIKE, BETWEEN and IN Operators
e Nested Queries

e Queries Involving Set Operators

e Queries With Runtime Variables

e Queries Involving SQL Plus Format Commands
e Embedded SQL

e Dynamic Queries

¢ Summary and Concluding Remarks

The chapter will continue to use examples based on the college database described

in Chapter 7, so feel free to take some time to review this.

www.it-ebooks.info

219

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

12.1 Insertion of Data

There are three general formats of the Insert statement; the abridged form of the syntax
for each format is provided in Figure 12-1:

Note:

1. The first format is used when the attribute values to be
inserted are explicitly provided with the statement (typically
by an SQL user).

2. The second format is used when the attribute values to be
inserted are implicitly provided from program variables
(useful in embedded SQL). Oracle’s host language is PL/SQL
(a Pascal-like language). The optional ampersand (&) that
precedes the program variable denotes an execution time
variable; the user will be prompted to specify a value when
the SQL statement is executed. If no ampersand precedes
the variable, then the SQL statement must appear as an
embedded SQL statement within a PL/SQL program block;
the values for the insertion are obtained from the specified
program variables; some languages (for example C++) require
a colon (:) to precede source program variables.

3. The third format is used when tuples to be inserted are to
come from the result of some query.

4. TIfall the column names are omitted, this is equivalent to
specifying them all in the same order as they were specified in
the Create-Table statement.

Insert ::= Insert1 | Insert2 | Insert3

Insert1 ::=
INSERT INTO <TableName> [(<Column> {, <Column>})]
VALUES (<Literal> {, <Literal>});

Insert2 ::=
INSERT INTO <TableName> [(<Column> {, <Column>})]
VALUES ([&] <Pgm-variable> {, [&] <Pgm-variable>});

Insert3 ::=
INSERT INTO <TableName> [(<Column> {, <Column>})]
<Select-statement>;

Figure 12-1. Abridged Form of the Insert Statement

220

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 1: Add a new department to the database with the following details:
Code = D500; Name = Engineering; Head = S20:

INSERT INTO Dept (Dept#. Dname, Dhead#)
Values ('D500', 'Engineering’, 'S20");

Example 2: Save all students enrolled in the BSc in MIS program:

CREATE TABLE MajorsMIS (Smud# NUMBER(7) NOT NULL. Sname CHAR(15). Fname CHAR(15).
PRIMARY KEY (Stud#))

INSERT INTO MajorsMIS (Stud#, Sname, Fname)
SELECT Stud#, Sname. Fname FROM Student WHERE Spgm# = 'BSC1"

From the above example, the following should be noted:

1. The result of the SELECT is placed into table MajorsMIS.
When used in this way, the Insert statement can insert a
set of several rows at once; it illustrates what was referred to as
set-at-a-time insertion in Chapter 9.

2. Table MajorsMIS is an example of a temporary relation or
snapshot as discussed in Chapter 3.

Example 3: The following example illustrates a PL/SQL procedure to insert data into
the Course table, where the values come from program variables:

/* This block allows insertion into a table */
Create Procedure InsertCourse (ThisCourse IN Course.Crs#%Type, ThisCrsname IN Course.Crsname2oType)
1s
BEGIN
INSERT INTO Course (Crs#, Crsname)
VALUES (ThisCourse, ThisCrsname).
/* Note: If the ampersands are removed from the variables, no execution time prompt is done */
EXCEPTION
WHEN OTHERS THEN /* catch all errors */
DBMS_Output. Put_Line (‘'There is an execution error’):
END:

Note: This procedure can be called from the SQL prompt, or from within an
application program by issuing the call statement as in the following example:

Call InsertCourse ('CS101', 'Computer Applications');

An alternate way of specifying the above procedure is to remove the parameters and
write the Insert-Statement with execution-time variables. An execution-time variable is
a variable with an ampersand (&) preceding it. This indicates to the SQL parser that the
user will be prompted to supply a value for the variable. You will see examples of the use
of such variables in upcoming examples.

221

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

12.2 Update Operations

The Update statement is used for updating rows of a table. The update may be on a single
row or a set of rows, depending on the condition specified in the Where-Clause. The
abridged general formats of the Update statement are shown below (Figure 12-2):

Note:

1. Ascalar expression is any combination of columns, arithmetic
operators and SQL functions that evaluates to a scalar value
(i.e. anumber or an alphanumeric value). More will be said
about SQL functions later.

2. The first form of the update statement is applicable when
the update values are to come from literals that the user
(programmer) will supply, or other columns of the table, or a
combination of columns and literals.

3. The second form of the update statement is used in an
embedded-SQL scenario, or where execution time prompt is
desired.

4. Whenever a sub-query is specified within an update
statement (the third form), it must provide values for the
attributes to be updated.

Update1 ::= Update1 | Update2 | Update3

Update1 ::=

UPDATE <TableName>

SET <Column> = <Scalar-expression> | <Literal> {, <Column> = <Scalar-expression> | <Literal>}
[WHERE <Condition>];

Update2 ::=

UPDATE <TableName>

SET <Column> = [&]<Program-Variable> {, <Column> = [&]<Program-Variable>}
[WHERE <Condition>];

Update3 ::=

UPDATE <TableName>

SET (<Column> {,<Column>}) = (<Sub-query>)
[WHERE <Condition>];

Figure 12-2. Abridged Form of the Update Statement

222

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 4: Change the Computer Science department name to ‘Department of
Computer Science and Mathematics’; change the department head to Professor Hans
Gaur (staff code of “S20”):

UPDATE Dept SET Dname = ‘Department of Computer Science & Mathematics’, Dhead# = ‘S20°
WHERE DEPT# = ‘CSC";

Note: This is an example of a simple update (assuming that “CSC” is the unique code
for the department). The record that satisfies the condition specified in the Where-Clause
is fetched and updated.

Example 5: Assign all male students in the BSC in MIS to Urvine Hall:

UPDATE Student SET Hall # = ‘Urv’ WHERE SPgm# = ‘BSC1° AND Sex=‘M";

Note: This is an example of a multiple update. All records satisfying the condition
specified are fetched and updated. This also illustrates what was referred to as set-at-a-time
update in Chapter 9.

Example 6: Change the course code CS100 to CS105:

UPDATE Course SET Crs#='CS5105' WHERE Crs# ='CS8100"

Note:

1. TItis nota good practice to change codes that are primary key
since it increases the possibility of violation of the referential
integrity rule.

2. The Oracle DBMS will allow such updates providing that no
violation of the referential integrity rule would result; if a
violation would result, the instruction would be disallowed
(also true for DB2). An alternative to this approach is to
restrict the update of primary keys (the system would allow
insertion and deletion only), except in the case where the
DBMS introduces and maintains surrogates, transparent to
the end user. Still another alternative is to allow cascaded
update, but this would be very expensive.

Example 7: The following statement uses execution time variable in an Update
statement:

UPDATE Course SET Crsname = &ThisCourse WHERE Crs#="C5220';

223

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 8: The following statement uses a query to update a row:

UPDATE Course SET (Crsname, Crsabbr) =
(SELECT Crsname, Crsabbr FROM Course WHERE Crs# ='CS220")
WHERE Crs# = ‘C5490";

12.3 Deletion of Data

To remove rows from a table, the Delete statement is used. Alternately, you may use the
Truncate statement to delete all rows from a table. Figure 12-3 shows the syntax of both

statements.

Delete ::= DELETE FROM <TableName> [WHERE <Condition>];

Truncate ::= TRUNCATE TABLE <TableName>;

Figure 12-3. The Delete Statement and the Truncate Statement

Example 9: Delete course ‘C9999’ from the database:

DELETE FROM CowrseWHERE Crs# = ‘C9999";

Note: The DBMS will not allow referenced tuples to be deleted unless DELETE
CASCADES was specified when the related foreign key(s) was (were) specified. The
default referential integrity for most DBMS suites is DELETE RESTRICTED.

Example 10: Delete all students that belong to Mary Seacole Hall:

DELETE FROM Student WHERE Hall# = ‘Mars’:

Example 11: Delete all staff members:

DELETE FROM Staff. | or | TRUNCATE TABLE Staff:

Note: Examples 10 and 11 are illustrations of set-at-a-time deletions as mentioned
in Chapter 9. In the case of Example 10, all records satisfying the condition are deleted; in
the case of Example 11, all records are deleted from the table.

224

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

12.4 Commit and Rollback Operations

The Commit statement and the Rollback statement are both DCL statements that have
relevance to data manipulation. They are useful in transaction management: the Commit

forces a write to the database table while the Rollback causes recovery to a safe point.

This is particularly important when multiple related tuples are written to different tables
(for instance, an invoice may consist of a summary tuple, written to one table, and several

detail tuples, written to another table). The syntax for both statements are shown:

Commit ::= COMMIT;

Rollback ::= ROLLBACK [TO SAVEPOINT <Save-point-name=];

Two related statements are the Set-Transaction statement and the Save-Point

statement. The former is used to define the beginning of a transaction block; the latter

is used to create a recovery point in case of catastrophes such as power loss or system

failure. The syntax of each is in Figure 12-4:

Note:
1.

These statements are typically used in a programming block,
not at the SQL prompt.

The default transaction mode for Oracle is READ WRITE.
However, for application programs that are required to read
data only, this should be changed to READ ONLY to prevent
record locking. This is particularly important in a multi-user
environment.

These transaction management statements work the same
way for insertions, updates, and deletions.

Set-Transaction ::=
SET TRANSACTION <Mode>;
Mode ::= READ ONLY / READ WRITE

Save-Point ::=
SAVEPOINT <Save-point-name>;

Figure 12-4. Syntax For Set-Transaction and Save-Point Statements

www.it-ebooks.info

225

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 12: A PL/SQL program block for inserting an invoice might look as follows:

CREATE PROCEDURE InsertInvoice
AS
Success BOOLEAN: /* A boolean variable */

SAVEPOINT InvoicePoint;
SET TRANSACTION READ WRITE: /*This is really redundant: is included for illustration. */
InsertSummary; /* procedure call to insert a row in table InvoiceSummary */
InsertDetail (Success); /* procedure call to insert several related detail rows in table InvoiceDetail */
IF Success THEN
COMMIT
ELSE
ROLLBACK TO SAVEPOINT InvoicePoint:
END IF:

12.5 Basic Syntax for Queries

From an end user perspective, one of the most important services of the database system
is the facility to retrieve information and put it to use. This is made possible via the SQL
Select statement. The Select statement is by far, one of the most powerful and complex
statements in SQL. It is used to retrieve data from database tables, but as you will soon
see, it has many optional clauses. Figure 12-5 provides a general form of the Select
statement, showing the more commonly used clauses.

226

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Select ::=

SELECT [<FunctionSpec>] [DISTINCT] [,] <ltemList>
FROM <RelationList>

[WHERE <Condition>]

[GROUP BY <GroupList>]

[HAVING <Condition>]

[ORDER BY <OrderList>];

ItemList::=
<Attribute> | <ScalarExpression> [[AS] <Alias>] {,<Attribute> | <ScalarExpression> [[AS] <Alias>] }

RelationList ::=
<Table> | <SelectStatement> [<TupleVariable>] {, <Table> | <SelectStatement> [<TupleVariable>]}

Condition ::=
Comparison | NotCondition | AndCondition | OrCondition | Existsltem

NotCondition ::= NOT <Condition>
AndCondition ::= <Condition> AND < Condition >
OrCondition ::= <Condition> OR <Condition>
Existsltem ::= EXISTS (<Subquery>)

Comparison::= Comparison1 | Comparison2 | Comparison3 | Comparison4 | Comparison5

Comparison1 ::= <Variable> <Operator> <Variable>

Comparison2 ::= <Attribute> <Operator> <Attribute>

Comparison2 ::= <Attribute> <Operator> <Literal> | <ScalarExpression>

Comparison4 ::= <Attribute> IN (ValuesList | Subquery)

Comparisin5 ::= <Attribute> BETWEEN (<ScalarExpression1> AND <ScalarExpression2>)
ValuesList ::= <Literal> | <ScalarExpression> {,<Literal> | <ScalarExpression>}

Attribute ::=

<TupleVariable.Column> | <Column>

Operator ::= =|<|<=|>|>=|<>|LIKE

OrderList::= <Column> [ASC/DSC] {,<Column> [ASC/DSC]}
GroupList::= <Column> {,<Column>}

Figure 12-5. Syntax for the Select Statement

Observe: Except for a few omissions, the query condition closely mirrors the
definition of a well-formed formula, given in Chapter 8. This is not an accident; it is
deliberate.

www.it-ebooks.info

227

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Note:

1. The Function-Spec-Clause may involve any combination of
a vast list of SQL functions, some of which will be mentioned
in subsequent sections. The following are some categories of
functions that are applicable:

¢ Row functions

e Date functions

e Data conversion functions

e Aggregation (group) functions
e Programmer defined functions

2. Condition is as discussed in Chapter 8 (WFFs) except for the
following:

a. InSQL, the construct IF <Comparison> THEN WEFF is
not allowed.

b. The syntax for using the existential quantifier s
slightly different — the tuple variable is implicit
rather than explicit.

c. The universal quantifier is not widely supported in
SQL implementations. However, in light of available
substitution rules (review section 8.4) we will not pursue
its use any further.

3. DISTINCT stipulates that unique tuples will be provided as
output where duplicate may occur.

4. Ascalar expression is an appropriate combination of
columns/literals and arithmetic operators, which results in a
scalar value (typically numeric or alphanumeric). The valid
scalar operators are multiplication (*), division (/), addition (+),
subtraction (-) and concatenation (||).

5. Relational operators used in the Where-Clause or Having-
Clause include the following:

< <= > »>= = <> LIKE IN BETWEEN

We will start by looking as simple examples, then pull in additional features
as we proceed.

228

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

12.6 Simple Queries

We will use the following format for a simple query:

SimpleQuery ::- SELECT <Item-list> FROM <Table> [WHERE <Condition=>];

Example 13: List name and ID of students enrolled in “BSC1” program:

SELECT Sname, SFname, Stud? FROM Student WHERE Spgm#= ‘BSC1";

Example 14: List all courses offered:

SELECT Crs#, Crsname from Course;

[* Since only two attributes are in the relation and we need both, we could have */
SELECT * FROM Course;

[* When the asterisk is used in this way, it is referred to as a wildeard */

Example 15: Refer to the supplier-items database of earlier Chapters (3 and 4).
Suppose that we have relations Inventoryltem {Item#, [temName, ItemPrice, Weight, ...},
Supplier {Sup#, Sname, Scity, ...} and Schedule {Sup#, Item#, Qty ...}. We wish to show
shipment amount on item received. Suppose each shipment is a box of 12 items. We
could have the following query:

SELECT Sup#, Item#, Qty. ‘Amount=", Qty * 12 FROM Schedule;

The result would look like this:

Sup# Item# oty
S001 1001 025 Amount = 300

Amount = 999

Example 16: Produce a list of students (showing the student’s full name and
StudentID) from Chancellor Hall sorted on first name within surname:

SELECT Sname || © ¢ || Fname AS FullName, Stud# FROM Student WHERE Hall#=
'Chan’ ORDER BY Sname, Fname;

229

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Note the use of the concatenation operator in the scalar expression (Sname || “ ||
Fname) and the introduction of the alias (FullName). Please be careful not to confuse
“alias” as used here, with the term described in Chapter 7. What we are talking about here
is a column alias.

12.7 Queries Involving Multiple Tables

Quite often, it will be required to pull data from multiple tables in order to service a
particular query. The situation may warrant a natural join, a theta join, an outer join, or a
Cartesian product. Oracle supports two different approaches to dealing with queries from
multiple tables — the traditional approach, and the newly introduced ANSI (American
National Standards Institute) approach.

12.7.1 The Traditional Method

The traditional method for treating queries involving multiple tables is to specify the join
condition in the Where-Clause. Let us take a few examples:

Example 17: Referring to supplier-items database (of Chapters 3 and 4), suppose we
need to multiply quantity by item price to obtain the value of each shipped box. We will
display supplier-name and item-name also. The query is shown below:

SELECT SH.Sup#, S.Sname, SH.Iten#, LItemName, SH.Qty. SH.Qty * LItemPrice AS Value
FROM Schedule SH. Supplier S, InventoryItem I WHERE SH.Sup# = S.Sup# AND SH.Item# = LItems#:

Note: This is an example of an equijoin. It also includes a scalar expression
(SH.Qty * LItemPrice) and a column alias (Value). Note the introduction of explicit
tuple variables SH, S and I, and the new column, Value. It is a good habit to introduce
tuple variables when the information queried is to come from multiple tables, and/or
comparisons are to be made in order to service the query. The result of the above query
would look like this:

Sup# Sname Item# ItemName oty Value
S001 ABC Co. 1001 Crank Shaft 10 250.00

Example 18: Show all program-name and course-name combinations.

SELECT P.Pgmname, C.Crsname FROM Pgm_Struct PS, Program P. Course C
WHERE PS PSPam# = P.Pgm# AND PS.PSCrs# = C.Crs#:

230

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 19: Find department heads that are not division heads:

SELECT S.Staff#, S Staffname FROM Staff 5. Dept D, Division DV
WHERE D.Dhead# = S.Stafff AND D.D_Div# = DV.Div# AND DV.DvHead# = S Staff# AND
D.Dhead# <= DV.DvHead#),

Note: This is an example of a theta-join. Here, we make use of the fact that the table
Division stores an attribute (DvHead#) which indicates the staff member who is head
of the division. We also make use of the fact that the table Dept stores a similar attribute
(Dhead#) to indicate the staff member who is head of the department. Further, every
department belongs to a division.

Example 20: Get all students who share a birthday with another student.

SELECT S1.Stud#, S1.DOB FROM Student S1, Student S2
WHERE S1.Stud# << S2.Stud# AND S1.DOB = S2.DOB;

Note: This is an example of a Cartesian product of a relation with itself. Compare this
with Example 8 in section 7.4 and Example 3 in section 8.2.

Caution: If you wish to join relation R1 with relation R2, make sure the R1’s foreign
key does not allow for null values, since this will produce a spurious result. If in doubt,
use an outer join, as clarified in the next example.

Example 21: Provide a list of all students and their assigned hall. Assume that it is
possible for Hall# in the table Student to have null values. The following solution would
be incorrect, since it could produce a spurious result:

SELECT Sname, Hallname FROM Student S. Hall H WHERE S. Hall# = H.Hall#:

Note: The results will exclude all students who have not been assigned to a hall
(incidentally, this is an example of a natural join). To avoid this situation, use the outer
join by simply including a parenthesized plus sign (+) on the attribute of the table where
there may not be a corresponding row (in this case H.Hall#), when specifying the join
condition. The Query should therefore be written as:

SELECT Sname, Hallname FROM Student S, Hall H WHERE $. Hall# = H.Hall#(+):

231

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Note:

1. The plus sign indicates that rows from the implied relation
may have null values (or non-matching values) for the
attribute of interest; these rows should be included. If the plus
sign is on the right, we have a left outer join; if the plus sign is
on the left, we have a right outer join.

2. Using this approach, you can have the parenthesized plus
sign (+)on either but not both sides of the join condition. This
means that you have a left outer join, a right outer join, but
not a full outer join. To obtain a full outer join, you have to
take the union of a left outer join with a right outer join.

3. Left outer joins means take all rows from the table on
the left; right outer join means take all rows from the table
on the right.

12.7.2 The ANSI Method

Oracle 10g supports the more newly introduced ANSI syntax for handling queries from
multiple tables. With this new syntax, the From-Clause is modified so that you are
forced to explicitly specify the join. The syntax for the modified From-Clause is shown
in Figure 12-6.

From-Clause ::= From1 | From2 | From3 | From4 | From5

From1 ::= FROM <Table> NATURAL [INNER] JOIN <Table>
{NATURAL [INNER] JOIN <Table>}

From2 ::= FROM <Table> [INNER] JOIN <Table> USING <Column-list>
{INNER] JOIN <Table> USING <Column-list>}

From3 ::= FROM <Table> [Alias] [INNER] JOIN <Table> [Alias] ON <Condition>
{INNER] JOIN <Table> [Alias] ON <Condition>}

From4 ::= FROM <Table> CROSS JOIN <Table>

From5 ::= FROM <Table> [Alias] [NATURAL] LEFT|RIGHT|FULL [OUTER] JOIN <Table> [Alias] [ON <Condition>]
{INATURAL] LEFT|RIGHT|FULL [OUTER] JOIN <Table> [Alias] [ON <Condition>]}

Figure 12-6. Modified From-Clause for ANSI join

232

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Please Note:

1.

The first format describes the natural join. For this, the join
column(s) in each table must be identical. Moreover, you are
not allowed to qualify column names.

The second format is useful where more than one column

in each table have the same name; you then need to specify
which columns should be used for the joining. If you have a
properly designed database with unique attribute-names in
each table, there will not be many occasions to use this format.

The third format is the most widely used, because it is the most
flexible. You specify the join condition after the keyword ON.

The fourth format is for taking Cartesian (cross) products; no
join condition is required.

The fifth format is for outer joins; there are three types:

e The left outer join is a join between two tables that returns
rows based on the join condition, and unmatched rows from
the table on the left.

e Theright outer join is a join between two tables that returns
rows based on the join condition, and unmatched rows from
the table on the right.

e The full outer join is a join between two tables that returns
rows based on the join condition, and unmatched rows from
the table on the left, as well as the table on the right.

When the keyword LEFT | RIGHT | FULL is used, the keyword
OUTER is implied and is therefore optional. Conversely, when
the keyword LEFT | RIGHT | FULL is omitted, the keyword
INNER is implied.

Left outer join means that all rows from the table on the left
are kept; right outer join means that all rows from the table on
the right are kept; full outer join means that all rows are kept
from both tables (the one on the left and the one on the right).

One significant advantage of the ANSI syntax over the
traditional is that you can separate join conditions from other
conditions that can still be specified in the Where-Clause.
Another advantage is a much easier achievement of a full
outer join (in the traditional approach, you have to take a
union of a left outer with a right outer).

233

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 22: Example 18 is repeated here using ANSI syntax (show all program-
name and course-name combinations).

SELECT P.Pgmmname, C.Crsname FROM Pgm-Struct PS JOIN Program P ON PS.PSPgn# = P.Pain?
JOIN Course C ON PS.PSCrs# = C.Crs#:

Example 23: Example 21 is repeated here using ANSI syntax (student-name and
hall-name combinations, including students not assigned to halls):

SELECT S.Sname. H.Hallname FROM Student S LEFT JOIN Hall H ON S. Hall# = H.Hall#:

12.8 Queries Involving the use of Functions

SQL allows the use of several functions in order to provide the user (programmer)
with flexibility in specifying queries. We will briefly discuss the following categories of
SQL functions:

e Row functions

e Date functions

e Data conversion functions

e Aggregation (group) functions

e Programmer defined functions

12.8.1 Row Functions

Row functions are functions that act on rows (tuples) of a query result, typically affecting
the value of specific columns of a given row. Figure 12-7 provides a list of commonly
row functions that can be used within a query specification. The list is by no means
exhaustive.

234

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Function

Explanation

NVL(<Column>, <Literal>)

Replaces null values in the specified column with the literal
specified

CONCAT(<Column> | <Literal> ,<Column> | <Literal>)

Concatenates the two columns specified

LOWER(<Column> | <Literal> | <Scalar-expression>)

Converts the alphabetic argument to lower case

UPPER(<Column> | <Literal> | <Scalar-expression>)

Converts the alphabetic argument to upper case

INITCAP(<Column> | <Literal> | <Scalar-expression>)

Converts the first character of each word in the alphabetic
argument to upper case

LPAD(<Column>, <Length> [,<PadCharacter>])

Inserts Length characters to the left; the default character
being space

RPAD(<Column>, <Length>[,<PadCharacter>])

Inserts Length characters to the right; the default character
being space

SUBSTR(<Column> | <Literal> | <ScalarExpression>, <Start>,
<Length>)

Returns a sub-string of the specified length, starting at the
start position

LENGTH(<Column> | <Literal> | <ScalarExpression>)

Returns the length of the string specified

ABS(<Column> | <ScalarExpression>)

Returns the absolute value of the numeric argument

MOD(<Column> | <Scalar-expression >, (<Column> |
<ScalarExpression>)

Returns the remainder of the first argument divided by the
second

CEIL(<Column> | <Literal> | <ScalarExpression>)

Rounds up to the nearest integer

FLOOR(<Column> |<Literal> | <ScalarExpression>)

Rounds down to the nearest integer

ROUND(<Column> | <Literal> | <ScalarExpression>, <Prec>)

Rounds to the specified precision (expressed as a literal or
an expression). If the precision is negative, round to the
precision of Prec places to the left of the decimal point.

TRUNC(<Column> | <Literal> | <Scalar-expression>, <Prec>)

Truncates to the specified precision (expressed as a literal
or an expression). If the precision is negative, truncate to
Prec places to the left of the decimal point.

GREATEST(<Column> | <Literal> |
<ScalarExpression>{,<Column> | <Literal> |
<ScalarExpression>})

Returns the highest value from a list of strings, numbers or
dates.

LEAST(<Column> | <Literal> | <ScalarExpression>{,<Column> |
<Literal> | <ScalarExpression>})

Returns the lowest value from a list of strings, numbers or
dates.

SQRT(<Column> | <Literal> | <ScalarExpression>)

Returns the square root of the numeric argument

VSIZE(<Column> | <Literal>)

Returns the size in bytes of the argument

DECODE(<Column> | <ScalarExpression>, <Search>, <Result>
{,<Search>, <Result>})

Replaces the search argument with the result for the column
specified.

Figure 12-7. Commonly Used SQL Row Functions

Example 24: The following examples illustrate how the row functions may be used
(note the use of the pseudo table DUAL for non-database data):

/* produces the result 136.88, 137, 140 #/

/* produces the result 136.87, 136, 130 %/

/* displays the initials of smdents */

SELECT Sname, NVL(Spgm#, ‘Trial") FROM Student:

SELECT ROUND (136.876. 2) ROUND(136.876. 0), ROUND(136.876. -1) FROM DUAL:

SELECT TRUNC (136.876. 2) TRUNC(136.876. 0). TRUNC(136.876. -1) FROM DUAL:

SELECT Stud#, Sname, RPAD(DECODE(Sex, ‘M’, ‘Male’, ‘F’, ‘Female’), 6) AS Sexx FROM Student:
/* displays “Male” instead of “M" and “Female” instead of “F" */

SELECT Stud#, SUBSTR(Sname.1.1) | SUBSTR(Fname.1.1) AS Initl FROM Student;

SELECT GREATEST(123, 457, 899, 898998, 23000) FROM DUAL:
/* displays 898998 which is the highest value in the specified list */

/* Displays surname & program code, with “Trial” for unassigned students */

235

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Note: You may be surprised by a negative precision used with the rounding function.
It simply means that rounding takes place to the left (instead of right) of the decimal
point. The following examples should provide clarification:

e ROUND (134.4,-1) =130
e ROUND (134.4, -2) = 100
e ROUND (134.4,-3)=0
e ROUND (158.6, -1) = 160
e ROUND (158.6, -2) = 200
e ROUND (158.6,-3)=0

12.8.2 Date Functions

Date functions constitute a special group of row functions in Oracle. Oracle has an
internal representation of date, which stores the day, month, year (including century),
hour, minute and second. The default date format is DD-MON-YY. Additionally, Oracle
provides a number of date manipulation functions (Figure 12-8):

Function Explanation
MONTHS_BETWEEN(<Date1>, <Date2>) Returns the number of months between two dates
ADD_MONTHS(<Date>, <Months>) Returns a new date after adding a specified number of months
NEXT_DAY(<Date>) Returns the new date after a specified date
LAST_DAY(<Date>) Returns the last day of the month specified
ROUND(<Date>, [,<Format>]) Truncates the date given to the nearest day, month or year, depending on
the format (which is ‘DAY’ or ‘MONTH' or 'YEAR')
TRUNC(<Date>, [,<Format>]) Truncates the date given to the nearest day, month or year, depending on
the format (which is ‘DAY’ or ‘MONTH’ or 'YEAR')
SYSDATE Returns the current system date
NEW_TIME(<Date>, <Zone1>, <Zone2>) Converts a date and time in time zone Zone1 to date and
time in time zone Zone2. Time formats are in the form
XST or XDT, (S for Standard, D for Daylight saving)
with two exceptions: GMT and there is no NDT for
Newfoundland.

Figure 12-8. SQL Date Manipulation Functions

236

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 25: The following examples illustrate how the date functions may be used:

SELECT SYSDATE FROM DUAL; /* displays the current date */

SELECT Sname. TRUNC((SYSDATE - DoB)/365.25) AS Age FROM Student;
/* displays students” name and age, assuming DoB is stored internally as type date */

SELECT ADD_MONTHS(SYSDATE. 20) FROM DUAL: /* displays date 20 months beyond current date */

SELECT Sname. MONTHS_BETWEEN(DoB. SYSDATE) AS AgeInMonths FROM Student;
/* displays students’ name and age in months, assuming DoB is stored internally as type date */

SELECT LAST_DAY(’17-AUG-01") FROM DUAL: /* displays “31-AUG-01" */

SELECT ROUND('22-JUL-98", ‘MONTH"), ROUND("22-JUL-0§", ‘YEAR’) FROM DUAL:
/# displays “01-AUG-98" and “01-JAN-99" #/

SELECT TRUNC('22-JUL-98", ‘MONTH’). TRUNC(’22-JUL-98", ‘YEAR'") FROM DUAL;
/* displays *01-TUL-98" and “01-JAN-98™ */

To change the default format for system, you can use the Alter-Session statement,
and change the pseudo column nls_date_format as in the following example:

ALTER SESSION SET nls_date_format = ‘YYYY-MM-DD HH24:MI:SS":
/* If you now display the system date, you will observe the new format of the system date */

12.8.3 Data Conversion Functions
Data conversion functions are used to convert data in the following ways:
e Character to number
e Number to character
e Character to date
e Date to character

Figure 12-9 indicates the three common data conversion functions (other less
common functions are not discussed in this course). Figure 12-10 shows date formats and
numeric formats which are often used with these functions.

TO_CHAR((<Column> | <Literal> | <Scalar-expression>[,<Format>])
/* Converts a number or date to a VARCHAR?2 value, based on the format (specified in single quotes) */
TO_NUMBER((<Column> | <Literal> | <Scalar-expression> [,<Format>])
[* Converts a string with valid digits to number, based on the format specified */
TO_DATE((<Column> | <Literal> | <Scalar-expression>[,<Format>])
[* Converts a string to date, based on the format specified (default DD-MON-YY) */

Figure 12-9. SQL Commonly Used Data Conversion Functions

237

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Valid Date Formats: Valid Numeric Formats:

YYYY Four digit year 9 Number of 9s determine width

Y, YYorYYY Last 1, 2, or 3 digits of year 0 Displays leading zeros

YEAR Year spelled out $ Displays floating dollar sign

Q Quarter of the year L Displays floating local currency

MM Two digits for month . Displays decimal point

MON First three characters of month , Displays thousand indicator as specified
MONTH Month spelled out PR Displays negative numbers in parentheses
WW or W Week number of year or month

DDD, DD or D Day of year, month or week

DAY Day spelled out

DY Three letter abbreviation of day

DDTH Ordinal number of day e.g. 7t

HH, HH12, HH24 Hour of day, hour (0-12) or hour(0-23)

M Minute (0-59)

SS Second (0-59)

Figure 12-10. Valid Date and Numeric Formats

Example 26: The following examples illustrate how the conversion functions may
be used:

SELECT Empid, TO_CHAR(Salary, ‘$99,999.99") AS Salary FROM Emp:
/* displays Salary in the format shown */

SELECT Stud#. TO_CHAR(DoB. ‘DD-MM-YYYY") AS DoB FROM Student:
/* displays DoB in the format shown */

SELECT TO_NUMBER(SUBSTR(SYSDATE.1.4)) FROM DUAL:
/* displays the current year as a number */

12.8.4 Programmer-Defined Functions

Oracle supports programmer-defined functions; these are used in same manner as SQL
system functions. Programmer defined functions are written in Oracle’s PL/SQL and
stored on the server. For more information on how to define them, refer to your Oracle
documentation.

238

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 27: Below is a programmer defined PL/SQL function to determine y raised
to the power x:

/* This is a sample function. */
Create Function YPowerX (Y Number, X Number) Return Number

As
K Number(3);
Result Number:
Begin
If (X =0) then
Result :=1:
Else
Result :=1;

For K In 1.X Loop
Result := Result * Y
End Loop:
End If;
Return Result;
End:

12.8.5 Aggregation Functions

SQL provides several aggregate functions to provide summarized view of data. Some
commonly used aggregate (group) functions are described in Figure 12-11:

Note:

1. SUM, AVG, STDDEV and VARIANCE work with numeric
values.

2. For MAX and MIN, the DISTINCT option is irrelevant.

3. COUNT works with the DISTINCT option always, except for
the case where COUNT (*) or COUNT(1) is used.

Function Explanation

AVG(<Column>) Returns average of tuple values for the column specified
COUNT(<Column> | <Scalar-Expression>) Returns number of tuples in a relation referenced

SUM(<Column> | <Scalar-Expression>) Returns total of tuple values for the column specified
MAX(<Column>) Returns largest tuple value for the column specified
MIN(<Column>) Returns smallest tuple value for the column specified
STDDEV(<Column>) Returns standard deviation of tuple values for the column specified
VARIANCE(<Column>) Returns variance of tuple values for the column specified

Figure 12-11. Commonly Used SQL Aggregate Functions

Example 28: How many courses are offered?

SELECT COUNT (*) FROM Course: SELECT COUNT (1) FROM Cowrse;

Note: The second statement is preferred to the first, since it is more efficient.

239

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 29: How many programs offer course M100?

SELECT COUNT (DISTINCT PSPam#) FROM Pgm_Struct WHERE PSCrs# = ‘M100";

Example 30: Referring to the supplier-items database, how many boxes of item
‘1100’ is supplied? What is the maximum quantity and the minimum quantity?

SELECT SUM (Qty) AS SumQty, MAX(Qty) AS MaxQty, MIN(Qty) AS MinQty FROM Schedule
WHERE Iteni# = ‘1100;

Aggregate functions are also often used in situations where data is to be grouped, in
order to set up control breaks. This is illustrated in the following examples.

Example 31: Referring to the supplier-items database, produce a list showing item
number and quantity of items shipped:

SELECT Item#. SUM (Qty) AS SumQty FROM Schedule GROUP BY Ttem#:

Sample result: Item# SumQty
1100 600
1101 700

The aggregation functions are often used when grouping data (hence the alternate
name, group functions) in order to set up control (summary) lines in reports. The next
two examples will illustrate how this is done.

For the next two examples (as well as some of the upcoming ones), consider the
section of the sample Oracle database (which is shipped with the Oracle product)
consisting of the following tables (table names and column names may vary with different
implementations):

Dept{Deptno, Dname, Loc} with primary key [Deptno]
Emp{Empno, Ename, Job, Mg, Hiredate, Sal, Comm, Deptno} with primary key [Empno]

Assume further that Emp.Deptno is a foreign key, which references Dept.Deptno.
Example 32: Develop a list from the employee table, showing for each department, the
total salary, average salary, minimum salary, maximum salary and standard deviation:

SELECT Deptno, SUM(Sal) AS TotalSal, AVG(Sal) AS Average, MAX(Sal) AS MaxSal,
MIN(Sal) AS MinSal, STDDEV(Sal) AS StdDev FROM Emp GROUP BY Deptuo;

240

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Note: In typical implementations of SQL, it is not permissible to use the GROUP
BY clause in a join query. The solution below would therefore be rejected by the SQL
compiler. However, there are ways to get around this hurdle (for instance creating a view
or snapshot, then writing a query on the view or snapshot). This will be further discussed
in Chapter 15).

SELECT Deptno. Dname, SUM(Sal) AS TotalSal. AVG(Sal) AS Average, MAX(Sal) AS MaxSal,
MIN(Sal) AS MinSal. STDDEV(Sal) AS StdDev FROM Emp E. DEPT D
WHERE E.Deptno = D.Deptno GROUP BY E.Deptno:

The Having-Clause may be used to restrict groups. HAVING... works after the
groups have been selected; WHERE... works on rows before group selection.

Example 33: Develop a list from the employee table, showing for each department,
the total salary, average salary, minimum salary, maximum salary and standard
deviation; show only departments with a total salary of at least $60,000:

SELECT Deptno, SUM(Sal) AS TotalSal. AVG(Sal) AS Average, MAX(Sal) AS MaxSal.
MIN(Sal) AS MinSal, STDDEV(Sal) AS StdDev FROM Emp GROUP BY Deptno
HAVING TotSal >= 60000:

/* Note: This will not run in Oracle: you must modify it as follows */

SELECT Deptno, SUM(Sal) AS TotalSal. AVG(Sal) AS Average, MAX(Sal) AS MaxSal,
MIN(Sal) AS MinSal, STDDEV(Sal) AS StdDev FROM Emp GROUP BY Deptno
HAVING SUM(Sal) >= 60000:

Note: The question of when a column should be included in a query that involves
grouping of data has often troubled inexperienced users of SQL. Here is a simple guide:

If you cannot group on the column, then you may not include it in the Select clause of the Select
statement of an aggregation query.

12.9 Queries Using LIKE, BETWEEN and IN
Operators

The LIKE operator is used to test for the existence of string patterns in a column. The
BETWEEN ... AND operator is used to test for column values within a range of values.
The IN operator is used to test for column values within a set of values; the set of values
may be expressed explicitly, or implied from the result of a sub query (sub-queries will be
discussed in the next section).

Example 34: Get names of all courses with code beginning with the acronym “CS”
(all computer science courses, for instance):

SELECT Crsnames FROM Course WHERE Crs# LIKE ‘CS%";

241

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS
Note: The wildcard % is used to denote that the string being searched for must begin
with the character(s) specified; the characters that follow do not matter.

Example 35: Get names of all second year courses (assuming that a three-digit
sequence number after the course acronym, indicates the level of the course):

SELECT Crsnames FROM Course WHERE Crs# LIKE '%2__ "

Example 36: Referring to the Oracle employee-department database (of the previous
sub-section), list employees within a salary range of 50,000 and 120,000:

SELECT Empno. Ename, Sal FROM Emp WHERE Sal BETWEEN 50000 AND 120000;

Example 37: List all students enrolled in MIS, Computer Science or Mathematics
(assuming sample data of Figure 7-2):

SELECT * FROM Student WHERE Spgim# IN (‘BSC1°, ‘BSC2", ‘BSC4):
/* i equivalent to */
SELECT * FROM Student WHERE Spgn = ‘BSC1’ OR Spgmi# = ‘BSC2" OR Spgm# = ‘BSC4";

Note: In the next section, you will see that the IN operator works quite nicely
with sub-queries.

12.10 Nested Queries

A sub-query is a nested query, i.e. a query within another query. A sub-query is
particularly useful when a query on a given table depends on data in the table itself.
Additionally, nested queries are alternatives to queries involving natural joins (not
recommended for complex join conditions). There are two types of nested queries:

e Single-row sub-query: only one row is retrieved
e Multiple-row sub-query: multiple rows are retrieved

The typical format for a sub-query is:

SELECT <Item-list> FROM <Relation-list> WHERE <Column> | <Scalar-expression> <Boolean-operator=>
(<Sub-query=);

242

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

In this format, the following rules apply:

1. The sub-query is another Select statement, which cannot
include an Order-By-Clause.

2. Theinner query is executed first, and its result is passed to the
outer query.

3. Within the Where-Clause, a scalar expression involving at
least one column may be specified (immediately following
WHERE) instead of a column.

An alternate format for a sub-query is:

SELECT <Item-list> FROM <Relation-list> [WHERE <Condition>]:

In this format, the following rules apply:
1. Therelation-list includes at least one sub-query.
2. Ttis possible to have this format combined with the first.

3. The inner query is executed first, and its result is passed to the
outer query.

Example 38: Produce a list showing student name and associated major (program)
name (assuming a student’s program code is never null):

SELECT $.Sname || S.Fname AS Fullname, P.Pgmname FROM Student S, Program P WHERE S. Spgm#
IN (SELECT Pgm#, Pgmmname FROM Program).

/* is equivalent to */

SELECT $.Sname || S.Fname AS Fullname, P.Pgmname FROM Student S, Program P WHERE S. Spgm# =
P.Pgm#:

Example 39: Referring to the Oracle employee-department database, produce a list
of employees who earn the maximum salary in their respective departments:

SELECT Ename, Job, Sal, Deptno FROM Emp

WHERE Sal IN (SELECT MAX(Sal) FROM Emp GROUP BY Deptno):

// An alternate query follows

SELECT DISTINCT Ename, Job, E1.Sal, E1.DeptNo FROM Emp E1. (SELECT MAX(Sal) AS MaxSal.
DeptNo FROM Emp GROUP BY DeptNo) E2 WHERE E1.Sal = E2 MaxSal:

Note: In queries of this form, do not use the equal operator (=) as the connecting
operator unless you are sure that the inner sub-query produces only one row. In any
event, the IN operator is safer.

243

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

The ANY (or SOME) operator and ALL operator both work nicely with nested
queries. The expression on the left is compared to any row or all rows from the sub-query
on the right. In using these operators, the following convention must be noted:

e < ANY(...) means less than the maximum value
e =ANY(...)isequivalent to IN (...)
e > ANY(...) means greater than the minimum value

e > ALL(...) means greater than the maximum value

< ALL(...) means less than the minimum value

Example 40: Referring to the Oracle employee-department database, produce a list
of employees who earn less than the maximum salary of a secretary:

SELECT Empno, Ename, Sal FROM Emp

WHERE Sal < ANY(SELECT Sal FROM Emp WHERE Job = ‘Secretary’):

/* which is equivalent to */

SELECT E1.Empno, E1.Ename, E1.Sal FROM Emp El. (SELECT Job, MAX(Sal) as MaxSal FROM
Emp GROUP BY Job) E2 WHERE E2.Job = ‘Secretary” AND E1.Sal < E2.MaxSal;

Example 41: Referring to the Oracle employee-department database, produce a list
of employees who earn less than the minimum salary of a secretary:

SELECT Empno, Ename, Sal FROM Emp

WHERE Sal < ALL(SELECT Sal FROM Emp WHERE Job = ‘Secretary’):

/* which is equivalent to */

SELECT E1.Empno, E1.Ename, E1.5al FROM Emp E1. (SELECT Job, MIN(Sal) as MinSal FROM
Emp GROUP BY Job) E2 WHERE E2.Job = ‘Secretary” AND E1.Sal < E2.MinSal:

Example 42: Referring to the Oracle employee-department database (described
in section 12.8.5), produce a list of employees who earn more than the average earning
for his/her department (show both the employee’s salary and his/her department’s
average salary):

SELECT El.Ename, El.Sal, E1.Deptno, E2.AvgSal FROM Emp El, (SELECT Deptno, AVG(Sal) AS
AvgSal FROM Emp GROUP BY Depino) E2
WHERE (E1.Deptno = E2.Deptno AND E1.5al > E2.AvgSal);

244

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Note:

1. Several layers of nesting may be constructed; however, this is
not recommended.

2. Within nested queries, a scalar variable is confined (known
only) to its select block at each level. However, (scalar)
variables within a higher block, A, are known to the inner
blocks of A. For instance, if a query solution consists of blocks
A, B, C, where A consists of B and C, then:

e Variables of block C are not known to block B and vice versa.
e Variables of blocks B and C are not known to block A.
e Variables of block A are known to blocks B and C.

Query Using Exists and NOT Exists

SQL also allows the specification of nested queries that involve the use of the existential
quantifiers (EXISTS and NOT EXISTS). As mentioned earlier, the universal quantifier is
not supported in some implementations of the language (it is supported in Oracle 10G and
Oracle 11G). However, considering the standardization rules of Chapter 8 (section 8.4),
this is not a serious deterrent. Moreover, in most cases, the rule of not retrieving a
bounded tuple variable, along with its consequences, ensure that SQL statements can be
specified without the use of quantifiers. That said, SQL nonetheless supports the use of the
existential quantifiers, albeit in a manner that is slightly different from what was discussed
in Chapter 8: the tuple variable is usually implicit.

Example 43: Let us revisit the problem of determining program names of programs
that include the course M100:

The relational calculus solution would be:

RANGE OF P IS Program:
RANGE OF PS IS Pgm_Struct:
P.Pgmname WHERE EXISTS PS (PS.Paé# = P.Pgn# AND PS.Crs# = M100");

The SQL solution could be any of the following:

SELECT Pgm#, Pgmname FROM Program

WHERE Pan# IN (SELECT * FROM Pgim_Struct WHERE PSCrs#= M100);

*or */

SELECT Pgm#, Pgmname FROM Program

WHERE EXISTS (SELECT * FROM Pam_Struct PS WHERE PS.PSPam# = Program. Pgm#
AND PS.PS5Crs# = MI1007).

I* or %/

SELECT PS.PSPgm#, P.Pgmname FROM Program P, Pem_Struct PS

WHERE PS.PSPam# = P.Pgmi# AND PS.PSCrs# = M100"

245

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

12.11 Queries Involving Set Operators

SQL supports the binary set operators UNION, UNION ALL, INTERSECT and MINUS.

Recall from Chapter 7, that a basic requirement for these operations is that (in each

case) the two participating relations must have corresponding attributes defined on the

same domain. Since from a design perspective, it is highly unlikely that a database will

have many base relations that meet this criterion, these set operators are usually used in

queries where two sub-queries produce results that meet the compatibility criterion.
The general syntax, therefore, is:

<Queryl> <Set Operator> <Query2>:

By way of review (except for UNION ALL), the set operators are explained below:

e UNION: Returns all rows from both queries, but duplicate rows
are not displayed.

e UNION ALL: Returns all rows from both queries, including
duplicate rows.

e INTERSECT: Returns rows that appear in both query results.

e MINUS: Returns rows that appear in the first query result, but not
in the second.

Example 44: Produce a list all students enrolled in MIS, Computer Science or
Mathematics (assuming sample data of Figure 7-2), as in Example 37, but this time using
the union of sets:

SELECT * FROM Student WHERE Spgm# = ‘BSC1’

UNION SELECT * FROM Student WHERE Spgny = ‘BSC2’

UNION SELECT * FROM Student WHERE Spgm# = ‘BSC4":

/I Alternate solution follows:

SELECT * FROM Stmdent WHERE Spgnw# = ‘BSC1° OR Spgm# = ‘BSC2’ OR Spam# = ‘BSC4’;

Example 45: Find all students from Lenheim Hall who are mathematics majors:

SELECT * FROM Student WHERE Hall# = ‘Len *

INTERSECT SELECT * FROM Student WHERE Spgm# = ‘BSC4";

/' Alternate solution follows:

SELECT * FROM Smdent WHERE Hall# = ‘Len * AND Spgm# = ‘BSC4";

246

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 46: Find all male students from Lenheim Hall who are not mathematics
majors:

SELECT * FROM Student WHERE Hall# = ‘Len " AND Sex = ‘M’

MINUS SELECT * FROM Student WHERE Hall# = ‘Len ' AND Sex = ‘M’ AND Spgm# = ‘BSC4";
/I Alternate solution follows:

SELECT * FROM Student WHERE Hall# = ‘Len * AND Sex = ‘M’ AND Spgm# <= ‘BSC4";

12.12 Queries with Runtime Variables

It has already been established that runtime variables may be specified in an SQL data
manipulation statement. This applies to data insertion, update, and deletion statements;
it also applies to data retrieval statements (i.e. queries). The rules are unchanged.

Example 47: Produce a list of courses offered, starting from a particular course
which the user will specify:

SELECT * FROM Course WHERE Crs# >= &InputCode:

Note: The ampersand (&) preceding the variable InputCode indicates that user will
be prompted to specify a value for the variable. This value will then be used to complete
the query. A double ampersand indicates (to Oracle) that the input is to be obtained from
the previous input value.

Example 48: Search for a course based on name or description, which the user will
specify:

SELECT * FROM Course WHERE Crsname >= &Search OR. CrsDescr >= &&Search;

The Oracle PL/SQL Accept statement may also be used but it must be specified
within a program block. The format is

Accept <Variable> [Prompt <String>]:

247

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 49: The following is a program block which includes use of the Accept

statement:

Declare
ThisDept emp.depmo®sType:
ThisEmp emp.empno%Type:
ThisEmpName emp.ename%Type:
BEGIN

SET SERVEROUTPUT ON;
WHERE empno = *&ThisEmp2';
ijﬁl\ds_ourpul_pul_]ine (ThisEmp):
DBMS_output.put_line (ThisDept):

/* set serveroutput off; */
END:

ACCEPT ThisEmp2 PROMPT 'Enter Employes Number:';

SELECT empno, ename, deptno into ThisEmp. ThisEmpName, ThisDept From Emp

DBMS_output.put_line (ThisEmpName);

12.13 Queries Involving SQL Plus Format

Commands

The Oracle SQL Plus environment provides certain format commands that can be used to
affect the appearance of outputs from queries. Figure 12-12 shows some of the commonly
used format commands, while Figure 12-13 provides a list of valid format codes that may

be used in a format specification:

Function Explanation

TTITLE <Text>/ON/OFF Sets up title for a query output

BTITLE <Text>/ON/OFF Sets up footnote for a query

BREAK ON <Column> Specifies a control break

COLUMN <Column Option> Specifies how a column is to be displayed. The Column Option consists
of column commands and optional formats. Column commands include:
* CLEAR
» FORMAT <Format specification>
* HEADING <Text>

JUSTIFY LEFT/CENTER/RIGHT

Figure 12-12. Commonly Used Format Commands

n Alphanumeric, e.g. A20
Numeric, e.g. 999.99
Forces leading zero, e.g. 009.99
Floating dollar sign, e.g. $999.99

. Decimal point

, Thousand separator, e.g. 999,999.99

©» o © >

Figure 12-13. Valid Format Codes

248

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 50: The following are examples of the use of such commands:

TTITLE ‘Student Listing’;
COLUMN Sname HEADING ‘Sumame’ FORMAT AlS5 JUSTIFY LEFT.
BREAK ON Spgm#;

SELECT Spgm. Sname, Fname, Stud# FROM Student ORDER Spgm, Sname;
/* Produces a list of students, sorted on surname within major, with a control break on major. The list
will also have a heading as specified. */

To clear the format command settings, you use the format clearing statements. The
syntax of two such commands are as follows:

CLEAR BREAKS | COLUMNS | BUFFER | SCREEN:
TTITLE | BTITLE | REHEADER | REFOOTER OFF:

12.14 Embedded SQL

When developing applications for industrial or commercial purposes, SQL is typically
used as a database language that is used by the software engineer when it is convenient to
do so. What this often means is that an application program may be written in a high level
language (such as Pascal, C++, Java, etc.), but containings embedded SQL statements to
take care of database access issues.

The general convention for embedded SQL is as follows:

Wherever a column, literal or scalar expression is applicable in an
SQL statement, a program variable, or scalar expression involving
programming variables, may be applied.

In many languages, the convention for specifying program
variable is to precede the variable with a colon (:). One exception
to this rule is Oracle’s PL/SQL, where a program variable is
preceded either by the ampersand (&) in the case of execution-
time variables, or nothing at all.

In the case where data is to be retrieved into program variables,
the Select statement is specified with an Into-Clause. The
required syntax is shown below.

In the case where a query will produce multiple rows, a cursor is
set up. Although cursors are implemented differently from one
host language to the other, the general principle is somewhat
similar: A full discussion of cursors is beyond the scope of

this course; suffice it to say that a cursor is a holding area for
rows retrieved by a query. Cursors are normally used in stored
procedures (in the host language), where multiple rows are
retrieved for subsequent usage.

249

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Embedded SQL was mentioned earlier in this chapter (see sections 12.1 and 12.2);
in fact, Examples 3 and 12 illustrate embedded SQL relating to data insertion and
transaction control respectively. The host language used here is Oracle’s PL/SQL. The
general syntax for such queries is shown in Figure 12-14, followed by illustrations in
Examples 51-53.

SELECT <ltem-list> INTO <Program-variable> {, <Program-variable>} FROM <Relation-list>
[WHERE <Condition>]

[GROUP BY <Group-list>]

[HAVING <Condition>]

[ORDER BY <Order-list>];

Figure 12-14. Syntax for Embedded Query

Example 51: The following examples illustrate two PL/SQL program block that each
retrieves a single row into program variables (the second more elegantly than the first):

Declare
ThisDept emp.deptno%eType.
ThisEmp emp.empnoeType;
ThisEmpName emp.ename®Type:

BEGIN

== Accept ThisEmp prompt ‘Enter Employee Number:";
SELECT empno, ename, deptno INTO ThisEmp, ThisEmpName, ThisDept FROM Emp
where empno = &ThisEmp:
DBMS_output.put_line (ThisEmp):
DBMS_output.put_line (ThisEmpName):
DBMS_output.put_line (ThisDept):

END:

Declare
ThisDeptRec Dept%Rowtype:
ThisEmpRec emp%Rowtype:
ThisEmp Emp.empno%Type:
ThisDept Dept.deptno%Type:

BEGIN
== Accept ThisEmp prompt 'Enter Employee Number:",
SELECT * INTO ThisEmpRec FROM Emp where empno = &ThisEmp;
SELECT * INTO ThisDeptRec FROM Dept where deptno = &ThisDept:
DBMS_output.put_line (ThisEmpRec); /* Will not work. See the comment below */
DBMS_output.put_line (ThisDeptRec.Deptno || © - * || ThisDeptRec.Dname);
END:
/* The output statement works only with a single string variable. To output a set of variables, first combine them
into a single string.*/

250

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SQL DATA MANIPULATION STATEMENTS

Example 52: The following example illustrates a PL/SQL program block that

retrieves multiple rows via a cursor:

Declare
ThisEmp emp.empno%s Type:
ThisEmpRec emp%RowType:
RecordFound boolean;
SalaryNull Exception:
Cursor EmpCursor is
SELECT * FROM emp WHERE empno >= &ThisEmp;
Begin
RecordFound := True:
Open EmpCursor:
While RecordFound Loop
Fetch EmpCursor Into ThisEmpRec:
If EmpCursor%eNOTFOUND Then
RecordFound := False:
End If:
If ThisEmpRec.Sal IS NULL Then
Raise SalaryNull;
End If;

End Loop:

Close EmpCursor;

Exception

When No_Data_Found then /* Pre-defined (implicit) exception */
DBMS_Output.Put_Line (No data found'):

When SalaryNull then /* User-defined (explicit) exception */
DBMS_Output.Put_Line ("Salary is null):;

When Others then /* catch all errors */

DBMS_Output.Put_Line (‘"There is an execution error'):
End:

DBMS_Output.Put_Line(ThisEmpRec.Empno || ' || ThisEmpRec.Ename):

www.it-ebooks.info

251

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Example 53: The following example performs the same activity as the previous, but
here a PL/SQL procedure is used:

/* This block does the same operation as the previous. However, it illustrates an alternate way of setting up
aloop */
Create Procedure QueryEmp (ThisEmp In emp.empno®Type)

As
ThisEmpRec emp%RowType:
SalaryNull Exception:
Cursor EmpCursor is
select * from emp where empno >= &ThisEmp;
Begin
Open EmpCursor:
<<Hunt>>
Loop
Fetch EmpCursor Into ThisEmpRec:
Exit Hunt when EmpCursor%eNOTFOUND;
If ThisEmpRec.Sal IS NULL Then
Raise SalaryNull;
End If:
DBMS_Output.Put_Line(ThisEmpRec.Empno || ' || ThisEmpRec.Ename):
End Loop:
Close EmpCursor;
Exception
When No_Data_Found then /* Implicit exception */
DBMS_Output.Put_Line (No data found);
When SalaryNull then /* Explicit exception */
DBMS_Output.Put_Line ("Salary is null’);
When Others then /* catch all errors */
DBMS_Output.Put_Line ("There is an execution error’);
End:

12.15 Dynamic Queries

Dynamic queries are used a lot in complex programming environments, where it is
either difficult or cumbersome to write a single SQL statement to correspond to each
request that the end user is likely to make. Instead of attempting this feat, the application
programmer or software engineer writes a sophisticated program (typically in a high
level language) which constructs or generates SQL statements that are pertinent to

the user request, and passes them on to an SQL parser. Three scenarios for this kind of
programming come readily to mind:

e Asophisticated user needs to conduct ad-hoc queries on an
underlying database. The user is shielded from implementation
details of the database, but is aware of underlying base tables or
logical views, and the corresponding data fields (physical and/or
logical) that they contain. The user is allowed to determine what
details are to be included in his/her query.

252

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

A front-end system (such as Delphi, C++ Builder, Visual Basic, etc.)
is being used to construct a user interface for a software system
that accesses one or more underlying databases. The software
developer incorporates embedded SQL statements in various
application queries, based on user input. This request is then sent
to the relevant database server to be serviced. The database server
processes the request and sends the response back to the client.

A database administrator needs to periodically back up several
components of an Oracle database. Rather than repeatedly
issuing backup statements for the different items (for instances
tablespaces) he/she may write an SQL script to dynamically
generate the required SQL statements needed to perform backup
of each component.

Figure 12-15 illustrates an inquiry screen for an application developed in Delphi.
The end user is accessing a database for a list of publishers that the institution conducts
business with. On the screen, you will notice a push button labeled Search, a radio group
(with entries ByCode and ByName), and an input field. This application program works

as follows:

The end user can specify any search argument in the input field,
to indicate the starting publisher code or name of interest (blank
means start at the beginning of the list of publishers).

The user will use the radio group to select whether information
will be displayed sorted by publisher code or publisher name.

When the user clicks the Search push button, the program will
examine the entries made, build an appropriate SQL statement to
fetch the information requested, invoke the SQL parser to request
this information from the underlying database (which could be in
a different back-end system such as Oracle, DB2, etc.). The code
for building the SQL statement is shown in the figure.

The database server that receives this request will process it and
return the information to the program. The program will then
load the grid shown with the information, display it on screen,
and then await the next request from the end user.

253

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

|- Delphi 6 - Book -1oO] x|
File Edit Search View Project Run Component Datsbase Tools Window Help |<None> ~|| &k &
DS -l %933 | @ | Standad | Addiional | Win32 | Sustem | Data Access | Data Coniiols | doEsores 1>
PO -Naa|h O SAR == F ¢ H]F] -
~Iolx]
Starting ‘With:
| @ ByCods C ByName search |
Publ Code | Publisher Name |Contact Person |Add|ess Line-1 o
Addison-wesley Bruce Jones
Biouks Cole Publishing
MeGraw-Hill Publisher Hany Jenking

Mew Riders Publishing
Que Publishing

procedure TInquirePubForm.PubSearchButtonClick(Sender: TObject);
begin
PublishersQuery.Close;
Case (PubRadioGroup.ltemindex) of
0:
begin
PublishersQuery.SQL.Clear;
PublishersQuery.SQL.Add('SELECT * FROM Publisher WHERE PubCode >="+
" + trim(PubSearchArg.Text) + ™" + ' ORDER BY PubCode');
PublishersQuery.ExecSQL;
PublishersQuery.Active := True;
end;

1:

begin

PublishersQuery.SQL.Clear;

PublishersQuery.SQL.Add('SELECT * FROM Publisher WHERE PubName >="+
" + trim(PubSearchArg.Text) + " + ' ORDER BY PubName');
PublishersQuery.ExecSQL;

PublishersQuery.Active := True;

end;

end; {End Case }

end; {End Procedure}

Figure 12-15. Dynamic SQL For End User Access From Front-end System

254

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

Figure 12-16 provides another illustration of dynamic SQL. A detailed explanation is
beyond the scope of this course; however a cursory clarification is in order, and will suffice:

e The SPOOL statement (sixth line down) causes the output of the
subsequent query to be redirected to the file specified.

e The SELECT statement causes a series of rows to be written to the
spool file. These rows actually contain SQL statements to backup
tablespaces found in the current database.

e The spoolfile can therefore be subsequently run as an SQL script
to backup these tablespaces.

SET VERIFY OFF;

SET FEEDBACK OFF;

SET TERMOUT OFF;

SET ECHO OFF;

SET PAGESIZE 0;

SPOOL C:\Oracle\Admin\Backup\BackupTS.sql;

SELECT ‘ALTER TABLESPACE || Tablespace_Name || * BEGIN BACKUP; *,
HOST copy ‘|| File_Name || ‘ D:\OracleBackup\EFDB ‘, * ALTER TABLESPACE * || Tablespace_Name ||
' END BACKUP’ FROM DBA_DATA_FILES;

SPOOL OFF; SET VERIFY ON; SET FEEDBACK ON;
SET TERMOUT ON; SET ECHO ON;
SET PAGESIZE 20;

[* The instructions will be stored in C:\Oracle\Admin\Backup\BackupTS.sql. We can now run this script */
@ C:\Oracle\Admin\Backup\BackupTS.sq;

Figure 12-16. Automatic Backup of Tablespaces in a Database via Dynamic SQL
Statements

12.16 Summary and Concluding Remarks

Relatively speaking, this has been a rather lengthy chapter. In recognition, the following
paragraphs provide a summary of the various related topics covered, followed by some
concluding remarks.

The Insert statement facilitates insertion of data into a specific table. The statement
allows data insertion in one of three ways:

e Insertion by specifying literal column-values for a row of a table
e Insertion via execution-time variables for a row of a table

e Insertion by redirecting the result of a query into a table (multiple
records insertion is supported by this strategy)

255

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

The Update statement facilitates update of rows of a table. Depending on the
condition specified (in the Where-Clause), the update might affect a single row, multiple
rows, or all the rows (if no condition is specified, or all the rows meet the condition
specified). The data to be used for the update can be specified in one of three ways:

e By specifying literal column-values for the row(s) of the table that
meet(s) the condition specified

e By specifying execution-time variables corresponding to stated
columns, for the row(s) of the specified table that meet(s) the
condition specified

e By specifying a sub-query that includes columns corresponding
to the stated columns, for the row(s) of the specified table that
meet(s) the condition specified

The Delete statement facilitates deletion of rows from a specified table. Depending
on the condition specified (in the Where-Clause), the deletion might be for a single
row, multiple rows, or all the rows (if no condition is specified, or all the rows meet the
condition specified).

The Commit and Rollback statements facilitate transaction management, and are
useful in situations where it is desirable to have a transaction wholly committed, or not
recorded, in order to preserve the integrity of the database.

The Select statement is one of the most powerful and widely used statements in
SQL. It facilitates retrieval of data from one or more tables and presenting the information
to the end-user. This process is called querying. It is very flexible and can therefore be
used in several different ways:

e Simple queries involve data retrieval (via the Select statement)
from one table only.

e Queries involving multiple tables can be constructed in one of
two ways:

e The traditional method requires you to specify the join
condition in the Where-Clause of the Select statement.

e The American National Standard Institute (ANSI) method
requires you to specify the join using join keywords. The
ANSI method is more verbose but is also more flexible than
the traditional method.

e Queries involving the use of functions provide additional
functionality and flexibility in data retrieval. The functions can be
classified into five categories: row functions, date functions, data
conversion functions, aggregation functions, and programmer-
defined functions.

e Queries can be constructed using the special operators LIKE,
BETWEEN and IN.

e You can have queries containing other queries - nested queries.
These queries may involve the use of keywords such as ANY, ALL,
EXISTS and NOT EXISTS.

256

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS
You can define queries involving the use of set operators —
UNION, UNION ALL, INTERSECT, and MINUS.
You can define queries that make use of execution-time variables.

You can define queries that make use of various SQL*Plus format
commands.

Typically, software applications do not use SQL only, but embed
SQL statements in programs written in another HLL.

A dynamic query is a query that uses data fed to it to construct
a Select statement that is then executed. It avoids hard-coding
values, thereby providing more flexibility to the end uses that use it.

Complete discussion of all aspects of the Select statement could easily take up a
considerable portion of a book. The chapter captures and discusses the salient features,
which if mastered, will place you on a solid footing in any environment that requires
expertise in SQL.

One thing that should be clear is the remarkable power of the language. This can be
appreciated if you attempt to write a Java or C++ program to replace any of the examples
provided in the chapter. No wonder it is the universal database language. But go on to the
next chapter, as there is much more to learn about the language.

12.17 Review Questions

1.

Describe three ways in which data may be inserted into base
table.

Write PL/SQL blocks to allow you to quickly populate the
sample college database (created in Chapter 11) with data.
Test these out in Oracle.

Write PL/SQL blocks to allow you to quickly modify data in
your database. Test these out in Oracle.

Write PL/SQL blocks to allow you to easily delete data from
your database. Test these out in Oracle.

Explain the purpose of the Commit and Rollback statements.
Demonstrate how they may be used.

Practice writing the following:

e Simple queries

e Queries Involving Multiple Tables

e Queries Involving the Use of Functions

° Queries Using LIKE, BETWEEN and IN Operators

e Nested Queries

257

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © SQL DATA MANIPULATION STATEMENTS

e Queries Involving Set Operators
e Queries With Runtime Variables
e Queries Involving SQL Plus Format Commands

7. Differentiate between embedded SQL code and dynamic SQL
code. Describe a scenario that would warrant the use of each.

12.18 References and/or Recommended
Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3" ed. New York, NY:
Addison-Wesley, 2002. See Chapters 20 and 21.

[Couchman, 1999] Couchman, Jason and Christopher Allen. Oracle Certified Professional:
Application Developer Guide. New York, NY: Osborne/McGraw-Hill, 1999. See Chapters 1,
2,5and 6.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5" ed. Reading, MA: Addison-Wesley, 2007. See Chapters 8 and 9.

[Garcia-Molina, 2002] Garcia-Molina, Hector, Jeffrey Ullman and Jennifer Widom.
Database Systems: The Complete Book. Upper Saddle River, NJ: Prentice Hall, 2002.
See Chapter 6.

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See Chapters 16-18.

[Oracle, 2008] Oracle Corporation. SQL Reference. http://www.oracle.com/technology/
index.html (accessed October 2008).

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapter 8.

[Shah, 2002] Shah, Nilesh. Database Systems Using Oracle: A Simplified Guide to SQL and
PL/SQL. Upper Saddle River, NJ: Prentice Hall, 2002. See Chapters 5 - 12.

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See Chapter 5.

258

www.it-ebooks.info

http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/index.html
http://www.it-ebooks.info/

CHAPTER 13

SQL Views and System
Security

Two very powerful and important features of SQL are the facility to create and manage
logical views, and the capability to manage security issues of a database. This chapter
discusses these two related issues. The chapter proceeds under the following subtopics:

e Traditional Logical Views
e System Security
e Materialized Views

¢ Summary and Concluding Remarks

13.1 Traditional Logical Views

As pointed out in Chapter 3, a logical view is a virtual relation that allows end users to
access information in a manner that is consistent with their requirements. Any creditable
DBMS will allow the creation and manipulation of logical views. Following are a few
important points about views:

e SQL views allow for logical interpretation of information in the
database.

e Views include virtual, named (but not base), and derived
relations; these significantly help to comprise the external schema
of the database (review chapter 2).

e Like named relations, views are created, and dropped using
the Create and Drop statements. However, views cannot be
structurally altered; they are virtual relations that are created and
dropped as the situation dictates.

e Views are stored in the system catalog.

259

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

e Data modification (insert, update, and delete operations) can be
applied through views in the normal (SQL) manner, providing
that the view is updateable (more on this later). The view
statements are compiled or translated (depending on the DBMS),
and the implied base relations are updated at execution time.

e Views can also be queried in a manner that is identical to how
base relations are queried.

13.1.1 View Creation

An abridged version of the Create-View statement appears in Figure 13-1; the full syntax
is shown in Figure 13-2.

View-Definition::=
CREATE [OR REPLACE] [FORCE/NOFORCE] VIEW [<Schema>.] <ViewName> [(Column {,Column})] AS <Sub-query>
[WITH CHECK OPTION [CONSTRAINT <Constraint-name>]] | [WITH READ ONLY];

Figure 13-1. Abridged Form of Create-View Statement

Create-View ::=

CREATE [OR REPLACE] [FORCE/NOFORCE] VIEW [<Schema>.] <ViewName>
[Column-Spec | Object-View-Clause | XML-Type-View-Clause | View-Constraint-Spec]
AS <Sub-query>

[WITH CHECK OPTION [CONSTRAINT <Constraint-name>]] | [WITH READ ONLY];

View-Constraint-Spec ::= VCOption1 | VCOption2
VCOption1 ::= (Out-of-line-Constraint)
VCOption2 ::= (<Alias> Inline-Constraint {, Inline-Constraint} {, <Alias> Inline-Constraint {, Inline-Constraint})

/* Inline-Constraint and Out-of-line-Constraint are defined in Create-Table (review chapter 11) */

Object-View-Clause ::= OVOption1 | OVOption2

OVOption1 ::= OF [<Schema>.] <TypeName> UNDER [<Schema>.] <Super-View>
(Out-of-line-Constraint | [<Attribute> Inline-Constraint]
{, Out-of-line-Constraint | [<Attribute> Inline-Constraint]})

OVOption2 ::= OF [<Schema>.] <TypeName> WITH OBJECT IDENTIFIER DEFAULT |
[<Attribute> {, <Attribute>}]
(Out-of-line-Constraint | [<Attribute> Inline-Constraint]
{, Out-of-line-Constraint | [<Attribute> Inline-Constraint]})

XML-Type-View-Clause ::=
OF XMLTYPE XML-Schema-Spec
WITH OBJECT IDENTIFIER DEFAULT |[(<Expression> {, <Expression>})]

XML-Schema-Spec ::=
[XMLSCHEMA <XML-Schema-URL>] ELEMENT [<XML-Schema-URL> #] <Element>

Column-Spec ::=
(<Column> {, <Column>}

Figure 13-2. The Create-View Statement

260

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Note:

1. Any derivable table (which can be obtained via Select
statement) can be defined as a view. The sub-query is not
allowed to include an Order-By-Clause, but this is not
a serious omission, as there are alternatives around this
constraint.

2. Theviewis in a way, similar to an insertion with a Select-
Clause. The difference is that the insertion inserts actual data
into a base relation; the view on the other hand, stores virtual
data, i.e. it stores the access path to actual data that resides in
the underlying base relation(s).

3. The OR REPLACE option replaces an existing view with the
same name.

4. The FORCE option creates the view even if the underlying
relation does not exist; the default is NOFORCE.

5. The WITH CHECK OPTION applies to the condition specified
in the sub-query (in the Where-Clause): It allows insertion
and update of rows based on the condition. This CHECK
OPTION may be given an optional constraint name.

6. The READ ONLY option ensures that the view cannot be used
for update of the underlying base relation.

Example 1: Create a logical view CSCourses that stores Computer Science
Courses only (assume that the first two characters of the Course Code for Computer
Science is “CS”):

CREATE VIEW CSCourses (Crs#, Crsname)
AS SELECT Crs#, Crsname FROM Course WHERE Crs# LIKE 'CS%';

Example 2: Create a logical view that stores for each academic program, a full
breakout of all courses included in that program, as they would appear in a college
bulletin:

CREATE VIEW Bulletin (PsPgm#, Pgmname, PsCrsSeqn, PsCrs#, Crsname)
AS SELECT PsPgm#, Pgmname, PsCrsSeqn, PsCrs#, Crsname FROM Pgm_Struct PS, Program P,
Course C WHERE PS.PsPgm# = P.Pgm# AND PS.PsCrs# = C.Crs#;

261

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

13.1.2 View Modification and Removal

To modify a logical view, use the Alter-View statement. To remove it from the system
catalog, use the Drop-View statement. The syntax for each statement is shown in
Figure 13-3.

Alter-View ::=

ALTER VIEW [<Schema>.] <ViewName>

[ADD Constraint-Clause] |

[MODIFY CONSTRAINT <Constraint> RELY | NORELY] |
[DROP CONSTRAINT <Constraint>] |

[DROP PRIMARY KEY] |

[DROP UNIQUE (<Column> {, <Column}] |

COMPILE;

/I Constraints-Clause is as defined in Create-Table (review chapter 11)

Drop-View ::=
DROP VIEW [<Schema>.] <ViewName> [CASCADE CONSTRAINTS];

Figure 13-3. The Alter-View and Drop-View Statements

Note:

1. You are not allowed to alter the logical structure of a view,
only constraints defined on it. In practice, this statement is
seldom used.

2. When aview is dropped, it is removed from the system
catalog.

3. The Cascade-Constraints-Clause is used to drop all
referential integrity constraints that refer to primary and/or
unique keys in the view to be dropped. If omitted, and such
constraints exist, the Drop-View statement will fail.

4. Dropping a base relation automatically drops all associated
views on that base relation.

Example 3: Remove the view CSCourses from the system:

DROP VIEW CSCourses;

262

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

13.1.3 Usefulness and Manipulation of Logical Views

Logical views are very useful, particularly during development of software systems that
access related databases. The following are some advantages of views:

e Provision of some amount of logical data independence in the
face of restructuring of the database

e Facilitation of assorted external views of the data stored

e Simplification of the perception of end users — the users
concentrate only on data that is of concern to them

¢ Aiding system security — users have access only to data that
concerns them, and cannot access or manipulate in any way, data
to which they are not authorized

Data manipulation operations on updateable views are converted to equivalent
operations on the underlying base table(s). In the case of data retrieval (via the Select
statement), the conversion is straightforward and traces directly to operations on the
underlying base relation(s). In the case of data changes (insertion, update or deletion),
more care is required, as explained below.

A logical view is updateable if it meets all of the following criteria:

e Theview is defined to include attributes that constitute a
candidate key of the underlying base relation

e The view does not involve a JOIN*, UNION or INTERSECT
operation

e The Select statement does not contain the keyword DISTINCT

e The Select statement does not include use of any aggregate
function, a Group-By-Clause or a Having-Clause

e The view does not contain derived columns

e Theview does not include the READ ONLY option

*Note: You can actually update an underlying base table through a join logical view, by specifying
data (through the view) that will affect one (and only one) of its underlying base tables. However, this
is not recommended.

13.2 System Security

In a database system (and many software applications), there are three possible levels of
system security:

e Access to the system
e Access to the system resources

e Access to system data

263

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

Let us briefly examine each level, and see how they are facilitated in SQL.
For the most part, this is examined in the context of an Oracle environment. However,
the principles covered are also applicable in non-Oracle database environments as well.

13.2.1 Access to the System

Oracle allows access to the system through user profiles and user accounts. A profile is a
working environment for a group of user accounts. When you create a database, Oracle
creates a default profile called DEFAULT. When you create a user account, if you do not
specify a profile, Oracle assigns the DEFAULT profile to the user account. A user account
consists of a user name, a password and other optional parameters. Each user account
has an associated profile.

Figure 13-4 shows the syntax for the Create-Profile statement, and example 4
illustrates how it is used. As can be seen from the syntax, the command is used to help
create a working environment for the user.

Create-Profile ::=
CREATE PROFILE <ProfileName> LIMIT Resource-Parms | Password-Parms {Resource-Parms | Password-Parms};

Resource-Parms :=

[SESSIONS_PER_USER <n> | UNLIMITED | DEFAULT] /* No. of concurrent sessions per user */

[CPU_PER_SESSION <n> | UNLIMITED | DEFAULT] /* CPU time limit for a session, expressed in hundredth of seconds*/

[CPU_PER_CALL <n> | UNLIMITED | DEFAULT] /* CPU time limit for a call (parse, execute or fetch), expressed in
hundredth of seconds*/

[CONNECT_TIME <n> | UNLIMITED | DEFAULT] /* The total elapsed time limit for a session, expressed in minutes */

[IDLE_TIME <n> | UNLIMITED | DEFAULT] /* Inactive time during a session, expressed in minutes */

[LOGICAL_READS_PER_SESSION <n> | UNLIMITED | DEFAULT]

[LOGICAL_READS_PER_CALL <n> | UNLIMITED | DEFAULT]

[COMPOSITE_LIMIT <n> | UNLIMITED | DEFAULT] /* The total resource cost for a session, expressed in service units.
Oracle calculates the total service units as a weighted sum of CPU_PER_SESSION, CONNECT_TIME,
LOGICAL_READS_PER_SESSION, and PRIVATE_SGA. */

[PRIVATE_SGA [<n> [K|M]] | UNLIMITED | DEFAULT]

Password-Parms :=

[FAILED_LOGIN_ATTEMPTS <Expression> | UNLIMITED | DEFAULT] /* the number of failed attempts to log in to the user
account before the account is locked */

[PASSWORD_LIFE_TIME <Expression> | UNLIMITED | DEFAULT] /* The number of days the same password can be
used for authentication. The password expires if it is not changed within this period */

[PASSWORD_REUSE_TIME <Expression> | UNLIMITED | DEFAULT] /* The number of days before which a password
cannot be reused */

[PASSWORD_REUSE_MAX <Expression> | UNLIMITED | DEFAULT] /* The number of password changes required before
the current password can be reused*/

[PASSWORD_LOCK_TIME <Expression> | UNLIMITED | DEFAULT] /* The number of days an account will be locked after
the specified number of consecutive failed login at */

[PASSWORD_GRACE_TIME <Expression> | UNLIMITED | DEFAULT] /* The number of days after the grace period begins
during which a warning is issued and login is allowed. The password expires after the grace period. */

[PASSWORD_VERIFY_FUNCTION <Function> | NULL | DEFAULT] /* Function to verify password */

Figure 13-4. The Create-Profile Statement

264

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Example 4: The following statement creates a user profile called InventoryProfile.
The parameters not specified will have default values.

CREATE PROFILE InvoryProfile LIMIT
SESSIONS_PER_USER 3

IDLE_TIME 15

FAILED_LOGIN_ATTEMPTS 3
PASSWORD_LIFE_TIME 1
PASSWORD_REUSE_TIME 0
PASSWORD_REUSE_MAX 4
PASSWORD_LOCK_TIME UNLIMITED;

As expected, Oracle allows you to modify or drop a profile via the Alter-Profile
statement, or the Drop-Profile statement respectively. The syntax for each is shown
below (Figure 13-5).

Alter-Profile ::=
ALTER PROFILE <ProfileName> LIMIT Resource-Parms | Password-Parms {Resource-Parms | Password-Parms}

Resource-Parms := /* As defined in Create-Profile */
Password-Parms := /* As defined in Create-Profile */

Drop-Profile ::=
DROP PROFILE <ProfileName> [CASCADE];

Figure 13-5. The Alter-Profile and Drop-Profile Statements

Note: The CASCADE option on the Drop-Profile statement instructs Oracle to
reassign all user accounts formerly assigned to the profile, to the DEFAULT profile.

265

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

In addition to profiles, Oracle allows the DBA (or some user with system admin
privileges) to create and remove users accounts. Each user account is assigned to a
profile. If the profile is not specified at account creation, Oracle assigns the account to the
DEFAULT profile. The required syntax for the Create-User statement follows:

Create-User ::= CUOption1 | CUOption2 | CUOption3

CUOption1 ::= CREATE USER <UserName> IDENTIFIED BY <Password> User-Spec;

CUOption2 ::= CREATE USER <UserName> IDENTIFIED EXTERNALLY User-Spec;

CUOption3 ::= CREATE USER <UserName> IDENTIFIED GLOBALLY AS ‘<ExternalName>’ User-Spec;
User-Spec ::=

[DEFAULT TABLESPACE <Tablespace>]
[TEMPORARY TABLESPACE <Tablespace>]
[QUOTA <n> [K|M] ON <Tablespace>]
[QUOTA UNLIMITED ON <Tablespace>]
[PROFILE <Profile>]

[PASSWORD EXPIRE]

[ACCOUNT LOCK | UNLOCK]

Figure 13-6. The Create-User Statement

Note:

1. Oracle supports a local database user, a global user
(authenticated by Enterprise Directory Service), or an external
operating system user.

2. To activate the password expiration (defined in the user’s
assigned profile), specify PASSWORD EXPIRE.

3. Usethe ACCOUNT LOCK / UNLOCK option to lock the
account (make it inaccessible by the user) or unlock the
account.

4. 'When you create a user, Oracle creates a schema by the same
name as the user. All objects created by that user will be
owned by the user’s schema.

Example 5: The following statement creates a user called Bremar.

CREATE USER Bremar IDENTIFIED BY Brem1199
DEFAULT TABLESPACE SampleTBS

QUOTA UNLIMITED ON SampleTBS

PROFILE InvoryProfile

PASSWORD EXPIRE

ACCOUNT UNLOCK;

266

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Of course, user accounts may be modified or dropped from the system. The
Alter-User statement allows you to change all the parameters on the Create-User
statement, but gives the added flexibility of changing some additional settings for the
account. A condensed version of the syntax is shown in Figure 13-7, which also includes
the syntax for the Drop-User statement.

Alter-User ::= AUOption1 | AUOption2 | AUOption3
AUOption1 ::= ALTER USER <UserName> IDENTIFIED BY <Password>
[REPLACE <OldPassword>] Alter-User-Spec;
AUOption2 ::= ALTER USER <UserName> IDENTIFIED EXTERNALLY Alter-User-Spec;
AUOption3 ::= ALTER USER <UserName>
IDENTIFIED GLOBALLY AS ‘<ExternalName>’ Alter-User-Spec;

Alter-User-Spec ::=

[DEFAULT TABLESPACE <Tablespace>]
[TEMPORARY TABLESPACE <Tablespace>]
[QUOTA <n> [K|M] ON <Tablespace>]
[QUOTA UNLIMITED ON <Tablespace>]
[DEFAULT ROLE [ALL EXCEPT] <Role> {,<Role>}]
[DEFAULT ROLE NONE]

[PROFILE <Profile>]

[PASSWORD EXPIRE]

[ACCOUNT LOCK | UNLOCK]

[Proxy-Clause] /* See Oracle Documentation */

Drop-User ::=
DROP USER <User> [CASCADE]

Figure 13-7. The Alter-User Statement

Note:

1. You can use this command to assign roles to the user account.
We will discuss roles shortly.

2. You can also use the Proxy-Clause to grant other privileges to
the user (for more on this, see the Oracle documentation for
the Alter-User statement).

3. The CASCADE option on the Drop-User statement drops all
objects owned by the user’s schema before dropping the user.

Example 6: The following statement removes the user called Bremar:

DROP USER Bremar CASCADE;

267

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

13.2.2 Access to the System Resources

In the context of a database, we are concerned with access to system objects such as
tables, views, indexes, sequences, synonyms, procedures, and other objects that the
DBMS may support. Three possible actions (considered as privileges) may apply to each
of these objects: creation, alteration, and dropping. Additionally, any valid SQL statement
is considered a privilege. Finally, there are other system-wide privileges and roles (as you
will see shortly).

The Grant statement is used for granting access of resources to user(s) and/or
role(s), while the Revoke statement is used for revoking access of resources from user(s)
and/or role(s). The basic syntax of each command is shown in Figure 13-8.

Grant ::=

GRANT [ALL PRIVILEGES] | [<Privilege> | <Role> {,<Privilege> | <Role>}]
[(<Column> {,<Column>}] [ON <Object Name>]

To <User> | <Role> | PUBLIC {,<User> | <Role>}

[WITH ADMIN OPTION] [WITH GRANT OPTION];

Revoke ::=
REVOKE ALL/<Privilege>/<Role> {,<Privilege>/<Role>} [On <Object Name>]
FROM <User>/<Role>/PUBLIC {<User>/<Role>} [CASCADE CONSTRAINTS];

Figure 13-8. The Grant and Revoke Statements

Note:

1. The ON Clause is used if the privilege relates to a database
object.

2. The privilege is typically a command name or arole; the
recipient of the privilege may be a user or a role (roles will be
clarified shortly).

3. The WITH ADMIN OPTION enables the recipient (user) to be
able to grant/revoke this system privilege to/from other users
or roles.

4. The WITH GRANT OPTION enables the recipient (user) to be
able to grant/revoke this object privilege to/from other users
or roles.

Example 7: Create user BruceJones and grant certain privileges to him; also allow
user Scott to be able to run queries on the Program table:

CREATE USER BruceJones IDENTIFIED BY BJ999123;

GRANT CREATE TABLE, CREATE VIEW, CREATE INDEX TO BruceJones;
GRANT SELECT ON Program TO BruceJones, Scott WITH GRANT OPTION;

268

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Example 8: Remove query access of Program from Bruce Jones and all privileges
from Stalker:

REVOKE SELECT ON PROGRAM FROM BrucelJones;
REVOKE ALL FROM Stalker;

Development Privileges

An application developer should have the following system privileges:

Create Session Create Table Create Sequence Create View
Create Trigger Create Synonym Create Procedure Create Tablespace
Analyze Any Insert Any Table Select Any Dictionary

The Create-Session privilege is required for logging onto Oracle and starting a
work session. The Analyze-Any privilege is useful for database performance analysis
and tuning (discussed in chapter 21). The Select-Any-Dictionary privilege is required in
order to query the system catalog (to be discussed in the upcoming chapter). The other
privileges are all self-explanatory, and need no further clarification at this point.

Roles

In managing multiple users in different user groups, roles are particularly useful. You can
define a role to consist of several privileges, and then grant the role to users. Additionally,
roles can be granted to other roles. A role is created via the Create-Role statement,
modified by the Alter-Role statement, and removed via the Drop-Role statement.

Figure 13-9 shows abridged formats of these statements.

Create-Role ::=

CREATE ROLE [<Schema>.] <RoleName>
[NOT IDENTIFIED] |

[IDENTIFIED BY <Password>] |

[IDENTIFIED USING [<Schema>.] <Package>] |
[IDENTIFIED EXTERNALLY | GLOBALLY];

Alter-Role ::=

ALTR ROLE [<Schema>.] <RoleName>

[NOT IDENTIFIED] |

[IDENTIFIED BY <Password>] |

[IDENTIFIED USING [<Schema>.] <Package>] |
[IDENTIFIED EXTERNALLY | GLOBALLY];

Drop-Role ::=
DROP ROLE [<Schema>.] <RoleName>;

Figure 13-9. Create-Role, Alter-Role and Drop-Role Statements

269

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

Note: To create a role, you need to have the Create-Any-Role system privilege
(the Any is optional; if supplied, you can create a role in any schema; if omitted, you can
create roles in your schema only). Only role owners and users with Alter-Any-Role and
Drop-Any-Role system privileges can modify or delete a role.

Example 9: Create a role called Developer with appropriate privileges and grant the
role to Bruce Jones:

CREATE ROLE Developer;

GRANT CREATE SESSION, CREATE TABLE, CREATE SEQUENCE, CREATE VIEW, CREATE ROLE,
CREATE PROCEDURE, CREATE TRIGGER, CREATE TABLESPACE , CREATE SYNONYM,

INSERT ANY TABLE, ANALYZE ANY, SELECT ANY DICTIONARY TO Developer;

GRANT Developer TO BruceJones WITH ADMIN OPTION;

You can use terms such as ANY, ALL, NONE and EXCEPT in assigning privileges.
Example 10: The following examples illustrate the use of these keywords:

ALTER USER BruceJones DEFAULT ROLE ALL;

ALTER USER Bremar DEFAULT ROLE ALL EXCEPT DBAROole;
/*where DBAROole is defined */

ALTER USER KClub DEFAULT ROLE Connect, Developer;
/*where Connect and Developer are defined */

GRANT CREATE ANY ROLE, DROP ANY ROLE to BruceJones;

ALTER USER Stalker DEFAULT NONE;

13.2.3 Access to the System Data

Access to system data can be managed in one of three ways:
e Through object privileges
e Through logical views

e Through intricate database design
Security via Object Privileges
Object privileges apply to specific database objects and are sometimes referred to as

SUDI (select, update, delete, and insert) privileges. Below (Figure 13-10) is a list of
possible object privileges and the relevant types of database object to which they apply:

270

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Privilege Objects Applicable

ALTER Table & Sequence

DELETE Table, View, Sequence, Procedure
EXECUTE Procedure

INDEX Table

INSERT Table & View

REFERENCE Table

SELECT Table, View, Sequence

UPDATE Table & View

Figure 13-10. Object Privileges

The Grant statement is used to issue object privileges. When used for this purpose,
the following rules apply:

¢ The ON-Clause is required.

e The privilege specified must be an object privilege, or the
keyword ALL.

Example 11: The following examples assume the prior creation of the user accounts
specified:

GRANT SELECT, UPDATE ON Student TO BruceJones;

GRANT ALL ON STUDENT TO Boss;

GRANT SELECT ON Pgm_Struct TO PUBLIC; /* granted to all users */

GRANT UPDATE ON Dept TO BruceJones, Developer /*granted to user and role */

Example 12: The following statement revokes UPDATE privilege on table Student,
for user BruceJones.

REVOKE UPDATE ON Student FROM Brucelones;

Security via Views

As stated in the previous section, views can be used to enhance system security by
allowing users to access only what is relevant to them. Conversely, views can be used to
prevent users from accessing data for which they have no access privilege.

271

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

Example 13: Referring to the college database of earlier discussions, develop a set
of logical views that allow department heads to have access to student information if and
only if the student is enrolled in a major offered by that department:

CREATE VIEW CSMajors (Stud#, Sname, Fname, Sex, Major)
AS SELECT S.Stud#, S.Sname, S.Fname, S.Sex, P.Pgmname AS Major FROM Student S, Program P WHERE
S.Spgm# IN (‘BSC1’, ‘BSC2’, ‘BSC5’) AND S.Spgm# = P.Pgm#;

CREATE VIEW MathMajors (Stud#, Sname, Fname, Sex, Major)
AS SELECT S.Stud#, S.Sname, S.Fname, S.Sex, P.Pgmname AS Major FROM Student S, Program P WHERE
S.Spgm# IN (‘BSC4’, ‘BSC5”) AND S.Spgm# = P.Pgm#;

REVOKE ALL ON CSMajors FROM PUBLIC;
GRANT SELECT ON CSMajors TO BruceJones; /* Assume BruceJones is Chair for Computer Science */

REVOKE ALL ON MathMajors FROM PUBLIC;
GRANT SELECT ON MathMajors TO TimMaitland; /* Assume TimMaitland Chair for Mathematics */

Note: You can block direct access to data in a base table (for example Student), and
force users to access the data through logical views on the table. These logical views can
in turn have restricted access to specific users as illustrated.

Security via Database Design

In addition to views, a database designer may design database tables with security
attributes that will subsequently be used to control user access. Only authorized users
will have access to these security attributes, but they can be used to block other users
from accessing sensitive data. However, you would be required to create and maintain
some additional tables (an example of this approach appears in [Foster, 1999]).

13.3 Materialized Views

Oracle supports database objects called materialized views. A materialized view is a
database object that stores the results of a query. It differs from the traditional logical view
in that whereas the logical view stores the definition of the query, the materialized view
stores the result of the query. A materialized view would therefore qualify as a snapshot
relation (review chapter 3). A full discussion of materialized views is beyond the scope of
this course; however, a brief introduction is worthwhile.

The From-Clause of the sub-query that feeds a materialized view can name
tables, views, and other materialized views. Collectively these are called master tables
(areplication term) or detail tables (a data warehouse term). Databases that contain the
master tables are called the master databases.

272

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Materialized views are used in replication environments, as well as in data
warehousing (to be discussed in chapter 24). In replication environments, the
materialized views commonly created are primary key views, rowed views, object views,
and sub-query views. For data warehousing purposes, the materialized views commonly
created are materialized aggregate views, single-table materialized aggregate views, and
materialized join views.

To create a materialized view in your own schema, you need the following system
privileges:

e Create Materialized View
e Create Table or Create Any Table
e Select Any Table

To create a materialized view in another user’s schema, you need the following
system privileges:

e Create Any Materialized View
e Create Table or Create Any Table
e Select Any Table

If you desire to create a materialized view with QUERY REWRITE enabled (see syntax
below), then in addition to the above-mentioned privileges, the following must hold:

e The owner of the master tables must have the QUERY REWRITE
system privilege.

e Ifyou are not the owner of the master tables, you must have the
GLOBAL QUERY REWRITE system privilege or the QUERY REWRITE
object privilege on each table outside your schema.

e Ifthe schema owner does not own the master tables, then the
schema owner must have the GLOBAL QUERY REWRITE privilege
or the QUERY REWRITE object privilege on each table outside the
schema.

e Ifyou are defining the materialized view on a pre-built container
(see syntax below), you must have the Select privilege WITH
GRANT OPTION on the container table.

The user whose schema contains the materialized view must have sufficient quota in
the target tablespace to store the materialized view’s master table and index, or must have
the UNLIMITED TABLESPACE system privilege.

13.3.1 Creating a Materialized View

The Create-Materialized-View statement is used for creating materialized views. The
syntax is shown in Figure 13-11.

273

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

Create-Materialized-View ::=

CREATE MATERIALIZED VIEW [<Schema>.] <ViewName> [(<ColumnName> {, <ColumnName>})]
[OF [<Schema>.] <ObjectType>] [(Scoped-Table-Ref-Constraint)]

Properties-Spec | Prebuilt-Spec

[Using-Index-Clause] [Create-Mv-Refresh]

[FOR UPDATE] [ENABLE | DISABLE QUERY REWRITE]

AS Subquery;

Using-Index-Clause ::= No-Index-Option | Index-Option
No-Index-Option ::= USING NO INDEX
Index-Option ::= USING INDEX {Physical-Attributes-Clause | Tablespace-Spec}

Tablespace-Spec ::= TABLESPACE <Tablespace>
Scoped-Table-Ref-Constraint ::=

SCOPE FOR (<Ref-Column> | <Ref-Attribute>) IS [<Schema>.] <ScopeTable>

{, SCOPE FOR (<Ref-Column> | <Ref-Attribute>) IS [<Schema>.] <ScopeTable>}

Properties-Spec ::=
Physical-Properties Materialized-View-Props

Prebuilt-Spec ::=
ON PREBUILT TABLE [WITH | WITHOUT REDUCED PRECISION]

Physical-Properties ::= /* as defined in Create-Table statement (see chapter 11) */
Physical-Attributes-Clause ::= /* as defined in Create-Table statement (see chapter 11) */
Materialized-View-Props ::=

[Column-Properties] [Table-Partitioning-Clause] [CACHE | NOCACHE [Parallel-Clause]
[BUILD IMMEDIATE | DEFERRED]

Column-Properties ::= /* as defined in Create-Table statement (see chapter 11) */
Table-Partitioning-Clause ::= /* as defined in Create-Table statement (see chapter 11) */
Parallel-Clause ::= /* as defined in Create-Table statement (see chapter 11) */
Create-Mv-Refresh ::=

REFRESH

[FAST | COMPLETE | FORCE] [ON DEMAND | COMMIT]

[START WITH <Date>] [NEXT <Date>]

[[WITH PRIMARY KEY] | [WITH ROWID]]

[USING DEFAULT [MASTER | LOCAL] ROLLBACK SEGMENT]

[USING [MASTER | LOCAL] ROLLBACK SEGMENT <Rollback-Segment>]

Subquery ::= /* as defined in Select statement (review chapter 12) */

Figure 13-11. Create-Materialized-View Statement

274

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Example 14: The views of example 13 are replaced by materialized views below:

CREATE MATERIALIZED VIEW CSMajors
AS SELECT S.Stud#, S.Sname, S.Fname, S.Sex, P.Pgmname AS Major FROM Student S, Program P WHERE
S.Spgm# IN (‘BSC1’, ‘BSC2’, ‘BSC5’) AND S.Spgm# = P.Pgm#;

CREATE MATERIALIZED VIEW MathMajors
AS SELECT S.Stud#, S.Sname, S.Fname, S.Sex, P.Pgmname AS Major FROM Student S, Program P WHERE
S.Spgm# IN (‘BSC4’, ‘BSCS5”) AND S.Spgm# = P.Pgm#;

REVOKE ALL ON CSMajors FROM PUBLIC;
GRANT SELECT ON CSMajors TO BruceJones; /* Assume BruceJones is Chair for Computer Science */

REVOKE ALL ON MathMajors FROM PUBLIC;
GRANT SELECT ON MathMajors TO TimMaitland; /* Assume TimMaitland Chair for Mathematics */

13.3.2 Altering or Dropping a Materialized View

As you no doubt expect, there is an Alter-Materialized-View statement and a Drop-
Materialized-View statement. The respective syntactical structures are shown in Figure 13-12.

Alter-Materialized-View ::=

ALTER MATERIALIZED VIEW [<Schema>.] <Materialized-View>
[Properties-Option]

[Alter-IOT-Clause]

[USING INDEX Physical-Attributes-Clause]

[[MODIFY Scoped-Table-Ref-Constraint] | Alter-Mv-Refresh]

[[ENABLE | DISABLE QUERY REWRITE] | COMPILE | [CONSIDER FRESH]];

Properties-Option ::=
Physical-Attributes-Clause | COMPRESS | NOCOMPRESS | CACHE | NOCACHE | Allocate-Extent-Clause |
Alter-Table-Partitioning | Parallel-Clause | Logging-Clause | LOB-Option | Modify-LOB-Option

LOB-Option ::= LOB-Storage-Clause {, LOB-Storage-Clause}
Modify-LOB-Option ::= Modify-LOB-Storage-Clause {, Modify-LOB-Storage-Clause}

Physical-Attributes-Clause ::= /* as defines in Create-Table statement (see chapter 11) */
LOB-Storage-Clause ::= /* as defines in Create-Table statement (see chapter 11) */
Modify-LOB-Storage-Clause ::= /* as defines in Alter-Table statement (see chapter 11) */
Alter-Table-Partitioning ::= /* as defines in Alter-Table statement (see chapter 11) */
Parallel-Clause ::= /* as defines in Create-Table statement (chapter 11) */
Allocate-Extent-Clause ::= /* as defines in Alter-Table statement (chapter 11) */
Alter-lOT-Clause ::= /* as defines in Alter-Table statement (chapter 11) */
Scoped-Table-Ref-Constraint ::= /* as defined in Create-Materialized-View */
Alter-Mv-Refresh ::= /* as defined for Create-Mv-Refresh in Create-Materialized-View */

Logging-Clause ::=
LOGGING | NOLOGGING

Drop-Materialized-View ::=
DROP MATERIALIZED VIEW [<Schema>.] <Materialized-View>;

Figure 13-12. Alter-Materialized-View and Drop-Materialized-View Statements

275

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

Example 15: The following statements change methods used for materialized
view refresh.

ALTER MATERIALIZED VIEW CSMajors
REFRESH USING DEFAULT MASTER ROLLBACK SEGMENT;

ALTER MATERIALIZED VIEW MathMajors
REFRESH WITH PRIMARY KEY;

13.4 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

e Alogical view is a virtual relation that allows end users to
access information in a manner that is consistent with their
requirements. The view is created by the Create-View statement,
which simply allows few required keywords to be inserted ahead
of a query (see Figure 13-2).

e Theviewis treated just like a normal base table. It can be
designed to be updateable or read-only.

e The Alter-View statement facilitates modification of the view, and
the Drop-View statement facilitates deletion of the view.

e Views are very beneficial in enhancing logical data independence,
facilitation of assorted external views of the database,
simplification of the perception of end users, and enhancing
system security.

e SQLfacilitates the enforcement of a stringent security mechanism
at three levels: access to the system, access to system resources,
and access to data.

e Access to the system is controlled by profiles and user accounts.
SQL provides statements for creating, altering and dropping of
profiles as well as user accounts.

e Access to system resources is controlled by privileges and roles.
You can grant privileges and/or roles to users via the Grant
statement, and revoke them via the Revoke statement. You can
lump privileges together by creating a role via the Create-Role
statement, and then granting the privileges to the role. The role
can then be granted to or revoked from other users. Of course, a
role can be altered (via the Alter-Role statement) and dropped
(via the Drop-Role statement).

276

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * SQL VIEWS AND SYSTEM SECURITY

Access to system data can be controlled through object privileges

to base tables, logical views and object privileges to them, or
intricate database design.

A materialized view is a database view that stores both definition
and the result of the related sub-query. It therefore qualifies as
a snapshot relation. You can create, alter and drop materialized

views via the Create-Materialized-View statement, the Alter-

Materialized-View statement and the Drop-Materialized-View

statement respectively.

Logical views constitute a very important part of a database, providing a number of
conveniences that translate to improved efficiency, flexibility and productivity. As you

will see in the upcoming chapter, they also form an integral part of the database

system catalog.

13.5 Review Questions

1.

What is a logical view? Discuss the importance and usefulness
of logical views in a database.

When are views updateable and when are they not? Discuss.

Practice writing SQL statements to define logical views for
various scenarios. Use the sample college database as your
model.

Briefly explain the three levels of security in a typical database
system. Explain how Oracle’s implementation of SQL
facilitates these three levels.

Improve on your college database (from chapter 11) by doing
the following:

a. Create a user profile called EndUser, for your database.
Create a second profile called Developer.

b. Create two roles: one for each profile (you may call
them EndUserR and DeveloperR respectively). Grant
appropriate system privileges to these roles.

c. Create two users: BruceEnd and BruceDev. BruceEnd
must belong to profile EndUser, with default role
EndUserR; BruceDev must belong to profile Developer,
with default role DeveloperR. Both users must have your
tablespace (created from chapter 11) as their default
tablespace, with QUOTA UNLIMITED.

www.it-ebooks.info

277

http://www.it-ebooks.info/

CHAPTER 13 © SQL VIEWS AND SYSTEM SECURITY

d. Grantfull access of all your database objects created
so far to user BruceDev. Grant limited access of your
database objects to user BruceEnd.

e. Alternately log on to the system as BruceDev and then
BruceEnd, and check to see whether the privilege
restrictions you have set are taking effect.

6. Practice writing SQL statements to manipulate system and
object privileges. Test with your account (assumed to be
System or SysDBA), BruceDev and BruceEnd.

7. What are materialized views? Discuss their relevance
usefulness. When would you use a materialized view versus a
traditional logical view, and vice versa?

8. Describe a situation that would warrant the use of a
materialized view in your college database. Write an SQL
statement to define that materialized view.

9. Practice writing SQL statements to modify materialized views.

13.6 References and/or Recommended Readings

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation and Management 3* ed. New York,
NY: Addison-Wesley, 2002. See Chapter 18.

[Couchman, 1999] Couchman, Jason and Christopher Allen. Oracle Certified Professional:
Application Developer Guide. New York, NY: Osborne/McGraw-Hill, 1999. See Chapter 4.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
California: Addison-Wesley, 2004. See Chapters 9 and 17.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5™ ed. Reading, MA: Addison-Wesley, 2007. See Chapter 23.

[Foster, 1999] Foster, Elvis C. Labour Market Information System: Thesis. Kingston,
Jamaica: Department of Mathematics and Computer Science, University of the West
Indies, 1999. See Chapter 4 and appendix 8.

[Oracle, 2008] Oracle Corporation. SQL Reference. http://www.oracle.com/technology/
index.html (accessed August 2008).

[Shah, 2002] Shah, Nilesh. Database Systems Using Oracle: A Simplified Guide to SQL
and PL/SQL. Upper Saddle River, NJ: Prentice Hall, 2002. See Chapter 13.

278

www.it-ebooks.info

http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/index.html
http://www.it-ebooks.info/

CHAPTER 14

The System Catalog

Every reputable DBMS contains a system catalog (also called the data dictionary) of some
form. This has been alluded to several times earlier in the course. This chapter discusses
this very important component of the database system. The chapter proceeds under the
following subtopics:

Introduction

e Three Important Catalog Tables
e Other Catalog Tables

¢ Querying the System Catalog

e Updating the System Catalog

e Summary and Concluding Remarks

14.1 Introduction

The system catalog (data dictionary) is perhaps the most important database object in

a database system. This is so because it facilitates and supports all or most of the other
database objects. The system catalog typically contains metadata about the database.

By metadata, we mean data about other data. This catalog itself consists of relational
tables, which can be manipulated using SQL statements. The system catalog provides the
following benefits:

e The system catalog, by maintaining metadata in the form of other
relational tables, facilitates most (if not all) of the other database
objects. This fulfills the requirements of the Zero Rule of Chapter 9.

e Through the system catalog, the DBMS is able to deliver on
the requirements of physical and logical data independence
(Chapters 1 and 9) in a sleek manner.

e Through the system catalog, the DBMS is able to deliver on the
requirement of integrity independence (Chapters 4, 5 and 9).

279

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

e System and object privileges (discussed in the previous
chapter) are stored in special catalog tables, thus facilitating the
management of the security mechanisms of the database.

e Asyou will see later in the course (Chapter 22), the system catalog
also facilitates the successful implementation of distributed
database systems.

The rest of this chapter will focus on aspects of the system catalog, as implemented
in Oracle. Note however, that all features of the Oracle catalog may not apply to catalogs
of other DBMS suites; also there may be features of others, not included in the Oracle
catalog. Note also that a comprehensive discussion of the Oracle data dictionary is
beyond the scope and intent of this course; the discussion here is necessarily cursory, but
detailed enough to give you a good appreciation of the subject matter.

The Oracle system catalog contains system tables for various database objects:
Figure 14-1 provides some of the most commonly referenced objects that are facilitated
by the system catalog.

Tablespaces Datafiles Tables Sequences
Tab_Columns Constraints (on tables) Cons_columns Synonyms
Indexes Users Roles Privileges
Tab_comments Col_comments Views

Figure 14-1. Commonly Referenced Catalog Tables

These tables are automatically maintained by the DBMS in a manner that is
transparent to the user. Oracle allows manipulation of catalog tables only through views.
For each table, three views are often available: the view that has the prefix DBA (for all
database objects), a view that has the prefix USER (for the objects owned by the
current user), and a view that has the prefix ALL (for all objects that are accessible to
the current user). However, there are exceptions to this rule. Additionally, views prefixed
by V$ are dynamic performance views which can be queried, irrespective of your schema,
provided that you have the appropriate privilege. Finally, views prefixed by GV$ are global
dynamic views.

14.2 Three Important Catalog Tables

To illustrate the importance of the system catalog, let us focus our attention on three
important catalog tables: Tables, Tab_Columns and Indexes. We will focus on three
views on these tables: User_Tables, User_Tab_Columns and User_Indexes.

14.2.1 The User_Tables View

This catalog view is based on the underlying table Tables (the DB2 equivalent being
Systables). It contains a row for every base table in the user’s schema. When a user
account is created, Oracle creates a schema with the same name as the user name.

280

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

All objects created by that user are linked to his/her schema, and are eventually stored in
a tablespace, the default tablespace carrying the name System (for a full discussion of
tablespaces, see the Oracle production documentation).

To observe the structure of User_Tables, you may invoke the describe statement thus:

DESCRIBE User_Tables:

You will observe that the table contains a number of columns. Among the ones of
immediate concern are those indicated in Figure 14-2.

Owner: The user who created the object
Table_Name: Name of database table
Tablespace_Name: Name of tablespace in which it is stored
Num_Rows: Number of rows

Figure 14-2. Columns of User_Tables

14.2.2 The User_Tab_Columns View

This catalog view is based on the underlying table Tab_Columns (DB2 equivalent being
Syscolumns). It contains a row for every column of every table mentioned in User_Tables.
Figure 14-3 shows the columns of immediate concern.

Table_Name: Name of database table
Column_Name: Name of column in the table
Data_Type: Data type of the column
Data_Length: Length of the column
Data_Precision: Number of decimal places of column
Data_Default: Default value of column

Figure 14-3. Columns of Tab_Columns

14.2.3 The User_Indexes View

This catalog view is based on the underlying table Indexes (DB2 equivalent being
Sysindexes). It contains a row for every index in the user’s schema. Some columns of
interest are mentioned in Figure 14-4.

281

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

Index_Name: Name of index
Table_Owner: User who created the table
Index_Type: Type of index
Table_Name: Name of table indexed
Num_Rows: Number of rows indexed

Figure 14-4. Columns of User_Indexes

Figure 14-5 provides a simplified illustration of what the catalog data would be,
assuming that the database consists of the tables mentioned in the sample college
database that we have been referencing (since Chapter 7).

282

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

User_Tables:

Table_Name Tablespace Num_Rows
Student System 8

Program System 2

Hall System 2

Dept System 4

Division System 3

Course System 2

Staff System 2
PgmStruct System 2
User_Indexes:

Index_Name Table_Name Table_Owner
xStud Student BruceJones
xStud2 Student BruceJones
xProgram Program BruceJones
xProgram2 Program BruceJones
xHall Hall BruceJones
xDept Dept BruceJones
xDept2 Dept BruceJones
xDept3 Dept BruceJones
xDiv Division BruceJones
xDiv2 Division BruceJones
xCourse Course BruceJones
xCourse2 Course BruceJones
xStaff Staff BruceJones
xStaff2 Staff BruceJones
xPgm_Struct Pgm_Struct BruceJones
xPgm_Struct2 Pgm_Struct BruceJones
User_Tab_Columns:

Column_Name Table_Name Data_Type
Stud# Student Integer
Sname Student Varchar2
Fname Student Varchar2
Pgm# Program Char
Pgmname Program Varchar2
Crsi# Course Char
Crsname Course Varchar2
Dept# Dept Char
Dname Dept Varchar2

Figure 14-5. Simplified Illustration of System Catalog for College Database

www.it-ebooks.info

283

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

14.3 Other Important Catalog Tables

There are several other catalog tables all of which are managed in a manner transparent to
the database user. Figure 14-6 provides a .list of commonly used catalog views. This list is by
no means exhaustive. However, studying and probing this list will give you a good insight of
the usefulness of the catalog views, as you manage the database. Do not feel disconcerted
or overwhelmed if you are not familiar with all of the views listed in the figure. These you
would normally cover in a course on Oracle database administration. The intent here is to
give you a reasonable overview of the role and complexity of the system catalog.

View Name Contents

V$SYSTEM_PARAMETER Database system parameters as defined in the parameter file
VSPARAMETER Database system parameters as defined in the parameter file
V$SESSION Information on all current sessions running in the database
V$BACKUP Backup status for datafiles in the database
V$BACKUP_DATAFILE Information on files backed up via RMAN

V$BACKUP_REDOLOG

Information on archived log files backed up via RMAN

V$BACKUP_PIECE

Information on backed up pieces, updated via RMAN

V$BACKUP_SET

Information on complete, successful backups up via RMAN

V$DATABASE Information on databases created on the machine
VSDATAFILE_HEADER Datafile header information

VSDATAFILE Information on datafiles associated with the database
VSCONTROLFILE List of controffiles for the database and their status

VSCONTROLFILE_RECORD_SECTION

Conntrolfile record information (record size, records used, etc.)

V$ARCHIVEED_LOG

Information on archived logs

VSLOGFILE

On-line redo log members of groups

VSLOG

On-line redo log groups

VSLOG_HISTORY

History of log information

VSARCHIVE_DEST

Information about the five archive destinations, status and failures

V$ARCHIVE_PROCESSES

Status on the ten archive processes

VSPWFILE_USERS

List of users entitled to use SYSDBA and SYSOPER privs.

V$THREAD Information on log files assigned to each instance

V$INSTANCE List of database instances running

V$OBJECT_USAGE List of indexes and their usage

V$PROCESS List of processes running

V$SESSTAT Indicates statistics for various sessions

VSLATCHNAME List of DB latches for various sessions

V$TIMEZONE_NAMES Valid Time-zones

V$ROLLNAME List of all online undo segments

V$ROLLSTAT Undo statistics. Can be joined with VSROLLNAME
VSTABLESPACE Information (TBS name, number and backup status) on tablespaces

V$SORT_USAGE

Information (User, Session#, tablespace, segment, extents, etc) on active sorts in
the database. Can be joined with V&Session & V&SQL

V$SQL

SQL statements run by the users

VSTEMP-EXTENT-MAP

Extents of all locally Managed temporary tablespaces.

VSTEMP-EXTENT-POOL

Temporary space used and cached for the current instance for locally managed
temporary tablespaces.

V$SORT-SEGMENT Info on sort segments.

V$DATAFILE Info on data file from the control file.

VSUNDOSTAT 10-minute snapshots reflecting the performance of the undo tablespace.
VSTEMPFILE Info on temporary files (similar to V&DATAFILE)

VS$DISPATCHER Info on dispatchers.

V$DISPATCHER_RATE Info on performance statistics for dispatchers.

V$QUEUE Info on the request queue and response queues.

VS$CIRCUIT Info on Shared Server virtual circuits.

V§SHARED_SERVER

Info on shared servers in the system.

V$SHARED_SERVER _Monitor

Summary info on maximum connections, maximum servers, servers started, servers
terminated, high-water level for the shared servers (combined).

Figure 14-6. Commonly Used Catalog Views

284

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

View Name Contents

V$SESSION Info on sessions

V$TIME ZONE-NAMES Time Zones allowed

V$SORT-SEGMENT Info about every sort segment in a given instance. Uploaded only for temporary

tablespaces.

V$BACKUP_SET

Stores information on backup sets.

RC_BACKUP_SET

Stores information on backup sets. Applicable only if Recovery catalog is in place.

DBA-EXTENTS Extents allocated for all segments in the database
DBA-FREE-SPACE Free extents in tablespaces
DBA-SEGMENTS Segments created in a database, their size, tablespace, type, storage forms, etc.

DBA_DATA_FILES

Information on datafile(s) for each tablespace. An alternative to joining
VSTABLESPACE and V$DATAFILE.

DBA-8K-CACHE-SIZE For Shareland block size of 8K
DBA-16K-CACHE-SIZE For BOTHRACK size of 16 C
DBA-CACHE-SIZE Block Size for the db

DBA_PROFILES List of profiles.

XXX_SOURCE The source code for programs running
XXX_OBJECTS Objects belonging to a database
XXX_TABLES Tables belonging to a database
XXX_TAB_COLUMNS Columns of database tables
XXX_TAB_PRIVS Table privileges granted to users and roles
XXX_COL_PRIVS Column privileges granted to users and roles
XXX_INDEXES Indexes defined on database tables

XXX_IND_COLUMNS

Columns included in each index

DBA_CONSTRAINTS

List of constraints

DBA_CONS_COLUMNS

Columns for each constraint

XXX_SYS_PRIVS

System privileges granted

DBA_ROLES

List of roles

SESSION_ROLES

Roles for the session

XXX_ROLE_PRIVS

Role privileges granted

XXX_ROLLBACK_SEGS

Information on undo segments

ROLE_SYS_PRIVS

System privileges granted to roles

ROLE_ROLE_PRIVS

Role privileges granted to other roles

ROLE_TAB_PRIVS

Table privileges granted to roles

XXX_TABLESPACES

Information (TBSName, Block-Size, Extent Info) Tablespace in the database

XXX-FREE-SPACE Free extents available in tablespaces (for each data-file in each tablespace). Locally
Managed temporary tablespaces are not included.

XXX-SEGMENTS Info on segments and their storage parameters

XXX-EXTENTS Info on extents (Size, assorted segments, associated tablespace).

XXX-DATAFILES Info on data-files belongings do tablespaces

XXX-TEMP-FILES Info no temporary files belongs to locally managed temporary tablespaces

XXX-USERS Info (Including default tablespace allocation) on users.

XXX_VIEWS Info on logical views

XXX-TEMP-FILES

Info on data files belonging to locally managed temporary tablespaces.

XXX-USED-EXTENTS

Info on used extents for tablespaces

XXX-ROLLBACK_SEGS

Info on rollback segments for tablespaces

DBA-UNDO-EXTENTS

Info on undo extents for tablespaces

Note: Prefix XXX means DBA, USER or ALL, e.g. DBA_SYS_PRIVS or USER_SYS_PRIVS.

Figure 14-6. Commonly Used Catalog Views (continued)

www.it-ebooks.info

285

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

14.4 Querying the System Catalog

The system catalog can be queried using SQL Select statements in a manner similar to

any created relational table. This is one of the many remarkable features of the relational

DBMS, and a powerful witness to the potency of Date’s Zero Rule (see Chapter 9).
Example 1: What columns does the table Student have?

SELECT Column_Name FROM USER_TAB_COLUMNS WHERE Table_Name = 'STUDENT"
/* is equivalent to */
DESCR. Student:

Example 2: What relation(s) contain(s) the attribute Pgm#?

SELECT Table_Name FROM USER_TAB_COLUMNS WHERE Column_Name IN ('Pgn#, ‘PGM#’);

Example 3: What relation(s) contain(s) an attribute that is CHAR(7)?

SELECT Table_Name FROM USER_TAB_COLUMNS
WHERE Data_Type = ‘CHAR’ AND Data_Length=7:

Example 4: The catalog may be used to keep track of certain related tables, defined
for a particular system. For instance, if the tables of interest are prefixed ‘CMP’ then the
following statement will yield a list of tables of interest:

SELECT Table_Name FROM USER_TABLES WHERE Table_Name LIKE ‘CMP%; -

Example 5: List all logical views in the system, and all valid users:

SELECT * FROM DBA_VIEWS:

SELECT * FROM DBA_USERS:

14.5 Updating the System Catalog

Direct update (via INSERT, UPDATE, DELETE) of system catalog record, is not allowed as
this would be an avenue for compromising the integrity of the database.

The system catalog is automatically updated by the system DBMS when statement
such as CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE VIEW, DROP VIEW,
CRETE INDEX, DROP INDEX, CREATE SYNONYM, DROP SYNONY, etc. are issued.

In short, whenever a database object is created or modified, the system catalog is
automatically updated by the DBMS.

286

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

The Comment statement is the only SQL statement that allows direct update of
the system catalog by a user. It allows update of the Comments column in either the
Tab_Comments table or the Col_Comments table. The format of the command is:

Comment-Satement::= COMMENT ON TABLE | COLUMN <TableName> | <ColumnName> IS <String>:

Note: The column-name specified must be qualified by its table-name. The string
supplied is enclosed in single quotes.

In order to understand how this statement works, you need to familiarize
yourself with the structure and purpose of the catalog tables Tab_Comments and
Col_Comments. The Describe statement will allow you to view the structure (left as an
exercise). You will observe the following columns in respective tables:

Tab_Comments {Table_Name. Table_Type. Comuments}
Col Comments {Table_ Name. Colunmn_Name. Comments}

The Tab_Comments table is used to store comments on tables of the database;
the Col_Comments table is used to store comments on table columns of the database.
The Comment statement allows modification of these comments.

Example 6: Store comments on tables and columns of the database:

COMMENT ON TABLE Course IS ‘The Course Relation’;
COMMENT ON COLUMN Cowse.Crs# IS ‘Course Code™;
COMMENT ON COLUMN Cowse.Crsname IS ‘Course Name';

[* Do this for each table in the database */

To access these comments, you may query any of the following the views:
e DBA_Tab_Comments: All table comments for the database.

e USER_Tab_Comments: All table comments owned by the
current user.

e ALL_Tab_Comments: All table comments to which the current
user has access.

¢ DBA_Col_Comments: All column comments for the database.

e USER_Col_Comments: All column comments owned by the
current user.

e ALL_Col_Comments: All column comments to which the current
user has access.

287

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

Example 7: The following statement lists table comments for tables owned by
schemas beginning with the name Bruce:

SELECT SUBSTR(table_name.1.12) TabName. SUBSTR(comments.1.40) TabComment
FROM DBA_Tab_Comments WHERE Owner LIKE ‘Bruce®:’;

14.6 Summary and Concluding Remarks

It is now time to summarize what has been discussed in this chapter:

e The system catalog is the most important database objectin a
database system. This is so because it facilitates and supports all
or most of the other database objects. The system catalog typically
contains metadata about the database.

e The Oracle system catalog contains system tables for various
database objects including (but not confined to) tablespaces,
datafiles, tables, views, table columns, constraints, indexes, users,
roles, privileges, etc. Oracle does not allow direct access of its
catalog tables; rather, it provides views prefixed by DBA, ALL,
USER, and GCS$.

e Three commonly used Oracle catalog views are User_Tables,
User_Tab_Columns, and User_Indexes. In actuality, the Oracle
catalog contains scores of catalog views (review section 14.3).

e You can query catalog views just as you would any other table. This
often provides useful information to the DBA or software engineer.

e Asarule, Oracle does not allow direct update of its catalog tables.
However, note that the catalog is automatically updated every
time the physical or logical structure of the database is modified.
The only exception to this rule is the Comment statement. This
statement allows the specification of comments for database
tables and columns.

If you consider what has been said about the system catalog in light of Date’s Zero
Rule and Codd’s twelve rules for relational DBMS suites, you will soon realize the catalog
is an absolute necessity if the DBMS is to stand up to the lofty industry expectations. To
be more direct, if you are evaluating a DBMS suite and discover that it does not host a
comprehensive system catalog, you are pursuing a product that is not going to stand up to
much rigor; you'd be well advised to save your effort for some more meaningful project.

As powerful as useful as SQL is, the language is not without limitations. The next
chapter discusses some of these limitations.

288

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © THE SYSTEM CATALOG

14.7 Review Questions

1.

Discuss the importance of the system catalogin a
database system.

State some commonly referenced catalog tables.

Discuss three important catalog tables, and explain how their
use can help in the management of a database.

The PL/SQL Describe statement allows you to view the

structure of a database table. Write an equivalent Select
statement on the system catalog, that provides the same
information. Use one of the tables in the sample college
database as your frame of reference.

Review the as many of the catalog views listed in Figure 14-6
as possible, and practice writing Select statements on them.

Explain clearly, how the system catalog is maintained. Provide
useful examples.

14.8 References and/or Recommended Readings

[Couchman, 1999] Couchman, Jason and Christopher Allen. Oracle Certified Professional:
Application Developer Guide. New York, NY: Osborne/McGraw-Hill, 1999. See Chapter 3.

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See Chapter 5.

[Oracle, 2008] Oracle Corporation. SQL Reference.
http://www.oracle.com/technology/index.html (accessed August 2008).

[Ullman, 1997] Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall, 1997. See Chapter 7.

289

www.it-ebooks.info

http://www.oracle.com/technology/index.html
http://www.it-ebooks.info/

CHAPTER 15

Some Limitations of SQL

As can be seen from Chapters 11 - 14, SQL is a very powerful programming language,
ideally suited for the management of databases. However, like all languages, SQL

has limitations. This chapter briefly examines some of these limitations. The chapter
proceeds as follows:

e Programming Limitations

e Limitations on Views

e Foreign Key Constraint Specification

¢ Superfluous Enforcement of Referential Integrity
¢ Limitations on Calculated Columns

e If-Then Limitation

e Summary and Concluding Remarks

15.1 Programming Limitations

While SQL is a very sophisticated fourth generation language (4GL) for database
management, it does not have many facilities that are normally present in a traditional
high-level language (HLL). These include user interface programming and traditional
internal processing facilities for basic data structures. The truth is, SQL was never
intended for these facilities. SQL is therefore most effective in an environment where it
is embedded in HLL code. The HLL may be the host language of a DBMS, or some other
language that the DBMS supports.

Quite often, in complex software development projects, the developer will encounter
situations where a single SQL statement is inadequate to service the needs of the user.
What is required is a series of SQL statements (and possibly non-SQL statements). The
limitations on logical views (discussed in the following section) provide a case in point.
Again, an HLL support is often a perfect antidote for these scenarios.

15.2 Limitations on Views

The limitations on logical views were mentioned in Chapter 13 (sections 13.1 and 13.2),
without much elaboration. Let us revisit this matter here.

291

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © SOME LIMITATIONS OF SQL

15.2.1 Restriction on use of the Order-By-Clause

When a view is created, the Order-By-Clause is not supported in the sub-query. This
means that you cannot create a view that orders data. The rationale for this limitation is
that a view is a virtual relation, and therefore ordering of the data would only increase
system overheads. The obvious response to this argument is this: since a view merely
stores a definition, why not include data ordering in the definition?

The work-around for this limitation is to create the view (obviously without
ordering data), then when the view is being accessed via a query, employ the
Order-By-Clause on the query.

Example 1: Creation of the College Bulletin from the college database of
earlier discussions:

CREATE VIEW Bulletin (PsPgn¥, Pgmname. PsCrsSeqn, PsCrs#, Crsname)
AS SELECT PsPgn#, Pgmname. PsCrsSeqn. PsCrs#, Crsname FROM Pgm_Struct PS, Program P, Course
C WHERE PS.PsPanw = P.Pgm# AND PS.PsCrs# = C.Crs#;

SELECT * FROM Bulletin ORDER BY PsPgni#. PsCrsSeqn:

15.2.2 Restriction on Data Manipulation for Views
involving UNION, INTERSECT or JOIN

As pointed out in Chapter 13, a view is not updateable if it involves a JOIN, a UNION or
an INTERSECT operation. A little thought will reveal that while this is an understandable
constraint, it is not always a prudent one, as there are situations that could warrant
updateable views involving these operations (for more elaboration, see [Date, 2004]).

The example above is a useful illustration: it should be possible for a user to modify
Pgmname and/or Crsnme for a logical row in Bulletin as follows:

e IfPgmname is modified, the DBMS should use Pgm# to
access the correct row in the table Program and modify its
corresponding column for Pgmname.

e If Crsname is modified, the DBMS should use Crs# to access the
correct row in the table Course and modify its corresponding
column for Crsname.

In either case, the search for a corresponding column must not be made merely
on the column name (since queries can rename columns), but the name as well as
characteristics of the column (which can be obtained from the system catalog).

Note: Administering changes (insertion, update or deletion of rows) to join logical
views of this sort is by no means a trivial matter, hence SQL does not support it. The point
to note here is that it is thinkable and indeed doable, though complex. A similar argument
applies to logical views involving UNION and INTERSECT operations.

292

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © SOME LIMITATIONS OF SQL

15.3 Foreign Key Constraint Specification

Some implementations of SQL (example early versions of Gupta SQL-Windows) do not
provide the designer the flexibility of specifying which attribute(s) of a referenced table
are to be considered when a foreign key constraint is defined.

Example 2: Referring to the college database of Chapter 7, the following is what a
Gupta SQL-Windows specification for the foreign keys of the Pgm_Struct table would
look like:

ALTER TABLE Pgm_Struct FOREIGN KEY (PsPgm#) REFERENCES Program:
ALTER TABLE Pgm_Struct FOREIGN KEY (PsCrs#) REFERENCES Course:

Note: Gupta SQL-Windows has since been upgraded to Team Developer; therefore,
this example is not a commentary on the current product. The [previous SQL] syntax did
not allow for the designer to specify which attribute in the referenced relation is to be
used. Rather, the DBMS chose the attribute with similar characteristics to the referencing
attribute (i.e. the foreign key). This idea is good for basic scenarios; however, if there
are more than one attribute in the referenced relation with similar characteristics to the
foreign key, confusion could arise.

Work-around: The obvious work-around for a scenario like this is to allow the
designer to explicitly specify which attribute of the referenced relation is to be used in the
foreign key constraint. Oracle does this quite nicely; the specification for this scenario
might be as follows:

ALTER TABLE Pgm_Struct
ADD CONSTRAINT PSForeignl FOREIGN KEY (PsPgm#) REFERENCES Program (Pgms#)
ADD CONSTRAINT PSForeign2 FOREIGN KEY (PsCrs#) REFERENCES Course (Crs#):

15.4 Superfluous Enforcement of
Referential Integrity

Some implementations of SQL exhibit a superfluous enforcement of the referential
integrity rule with respect to update of non-key attributes of tuples in a referenced relation.

Example 3: Suppose that we have a course — M100 College Algebra — that occurs in
all academic programs. We wish to change the description of the course to “Elementary
Algebra’; thus:

UPDATE Course SET CrsName = ‘Elementary Algebra’ WHERE Crs# = *M100";

293

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © SOME LIMITATIONS OF SQL

Note: Some DBMSs (e.g. Oracle) will forbid this update, since M100 would be a
referenced tuple. This might be considered imprudent. What might be required is a
restriction on deletion, not update of this sort.

Work-around: Oracle avoids this situation quite elegantly, by allowing the designer
to temporarily disable a constraint, and enable it at a subsequent time. If your DBMS
does not have this kind of facility, what you may have to do is drop the foreign key
constraint from the referencing table(s), make the update, and then reintroduce the
foreign key constraint.

Example 4: Here is an illustration of how you could circumvent the problem in Oracle:

ALTER TABLE Pgm_Struct DISABLE CONSTRAINT PSForeign2:
* or ALTER TABLE Pgm_Struct MODIFY CONSTRAINT PSForeign2 DISABLE: */

UPDATE Course SET CrsName = ‘Elementary Algebra’ WHERE Crs# = ‘“M100";

ALTER TABLE Pgm_Struct ENABLE CONSTRAINT PSForeign2;
/* or ALTER TABLE Pgm_Struct MODIFY CONSTRAINT PSForeign2 ENABLE; */

15.5 Limitations on Calculated Columns

In most implementations of SQL (that this writer has worked with), you are forbidden to
specify a virtual (calculated) column in a Group-By-Cause, Having-Clause, or a Where-
Clause in the same Select statement (this excludes accessing virtual columns in nested
queries as demonstrated in section 12.10 of Chapter 12). Neither can you define a virtual
(calculated) column in terms of another calculated column in the same Select statement.
Example 5: Consider a table that is keyed on a numeric attribute, Trans_Date,
that stores the date (YYYYMMDD format). One might want to create a virtual attribute,
Trans_Year, that stores the year only (first four bytes of Trans_Date), and cumulate
another column of the table, based on Trans_Year. In the writer’s experience, this cannot
be done in a straightforward manner.
Work-around: One obvious work-around would be as follows:

1. Create alogical view with the virtual column;
2. Write a query on the view, grouping on the virtual column.

Alternate Work-around: An alternate work-around is to simply restate the
calculated expression wherever it is needed within the query.

294

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © SOME LIMITATIONS OF SQL

Example 6: Example 33 from Chapter 12 is repeated here to illustrate the point:
We desire a list from the employee table (of the Oracle default database), showing for
each department, the total salary, average salary, minimum salary, maximum salary

and standard deviation; we want to show only departments with a total salary of at least

$600,000:

// This will not run in Oracle

SELECT Deptno, SUM(Sal) AS TotalSal, AVG(Sal) AS Average, MAX(Sal) AS MaxSal,
MIN(Sal) AS MinSal, STDDEV(Sal) AS StdDev FROM Emp GROUP BY Deptno
HAVING TotalSal >= 60000:

// This will run in Oracle

SELECT Deptno, SUM(Sal) AS TotalSal. AVG(Sal) AS Average, MAX(Sal) AS MaxSal,
MIN(Sal) AS MinSal, STDDEV(Sal) AS StdDev FROM Emp GROUP BY Deptno
HAVING SUM(Sal) >= 60000;

Notice that in the Having-Clause, the calculated column TotSal cannot be used. You have to specify the
expression used for the derived column.

Example 7: Referring to the default Oracle database, suppose we want to list

employees beyond a certain hire year. Following is an incorrect SQL statement followed

by a correct SQL statement for the problem:

SELECT Empno, Ename, SUBSTR(TO_CHAR(Hiredate, YYYYMMDD").1.4) HireYear FROM Emp
WHERE HireYear >= 1985; /* Will not run. You cannot use a calculated column in this way */

SELECT Empno, Ename, SUBSTR(TO_CHAR(Hiredate, YYYYMMDD".1.4) HireYear FROM Enp
WHERE SUBSTR(TO_CHAR(Hiredate. YYYYMMDD").1.4) >= 1985: /*This will mn successfully */

15.6 If-Then Limitation

In Chapter 8 (section 8.2), it was mentioned that one form of a WFF is as follows:

If <Condition> then <WFF>

It appears that this format is seldom implemented in typical SQL implementations

(though there are deviations of it). The work-around is to apply the appropriate
standardization rule (review section 8.4 of Chapter 8), which is shown below:

If A then B <=>(A)' or B.

This is by no means a significant setback. One can get by without ever using
an if-then construct, and simply using its equivalent.

www.it-ebooks.info

295

http://www.it-ebooks.info/

CHAPTER 15 © SOME LIMITATIONS OF SQL

15.7 Summary and Concluding Remarks

Here is a summary of what was covered in this chapter:

e SQLis a powerful language, but not without limitations. The first
is that SQL is a database language by design and intent. It does
not include features for building complex user interfaces, because
it was not intended to.

e You are not allowed to use the Order-By-Clause on SQL views.
Additionally, a view is not updateable if it includes the use of the
set operator UNION, INTERSECT, or JOIN.

¢ Some implementations of SQL do not provide the designer the
flexibility of specifying which attribute(s) of a referenced table are
to be considered when a foreign key constraint is defined.

e Some implementations of SQL exhibit a superfluous enforcement
of the referential integrity rule with respect to update of non-key
attributes of rows in a referenced relation.

e You are not allowed to define a calculated column in terms of
another calculated column in the same query, or to reference a
calculated column in the same Select statement.

e Itappears that the if-then construct is not widely supported
in SQL.

Fortunately, there is a work-around for each limitation. This is perhaps why SQL is
so popular: its benefits far outweigh its limitations. We can therefore expect that SQL will
continue to be the universal database language a long time yet.

This brings us to the end of our study of SQL. The next five chapters provide an
overview of five commonly used DBMS suites.

15.8 Review Questions

1. What are the programming limitations of SQL? As a software
engineer, how do you make up for these limitations?

2. Discuss the limitations of SQL with respect to logical views.
What are the implications of these limitations?

3. What problems relating to referential integrity are often
present in implementations of SQL? How are these problems
addressed in Oracle 10g?

4. Describe the SQL limitation on calculated columns. Carefully
explain how it can be circumvented.

296

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © SOME LIMITATIONS OF SQL

15.9 Recommended Readings

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapters 4 and10.

[Oracle, 2008] Oracle Corporation. SQL Reference.
http://www.oracle.com/technology/index.html (accessed August 2008).

297

www.it-ebooks.info

http://www.oracle.com/technology/index.html
http://www.it-ebooks.info/

PART D

Some Commonly Used
DBMS Suites

This division allows you to peruse through a professional summary of
six commonly used DBMS suites. Two of the products are regarded as
comprehensive (front-end and back-end) products; two are regarded as a back-
end products; one is regarded as a front-end product. While the products chosen
are widely regarded as leaders in their respective categories, these chapters
are not to be regarded as promotion of the products. In fact, it should be noted
that the software engineering industry is rich with excellent alternatives to the
products discussed in the division.

The primary purpose of the division is to expose you to six excellent DBMS
alternatives. The chapters to be covered include:

e Chapter 16 — Overview of Oracle

e Chapter 17 — Overview of DB2

e Chapter 18 — Overview of Microsoft SQL Server
e Chapter 19 — Overview of MySQL

e Chapter 20 — Overview of Delphi

There are several other products that time will not allow for us to explore.
Included in this list are the following

e Ingres
e Informix
e Sybase

It is hoped that the ones covered will provide you with the impetus to go on
and explore more about them, as well as others not covered in the text.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Overview of Oracle

This chapter provides an overview of the Oracle DBMS. Actually, you have been exposed
to Oracle throughout division three, since the implementation of SQL that we have
studied is Oracle-based. The chapter proceeds under the following subheadings.

e Introduction
e Main Components of the Oracle Suite
e Shortcomings of Oracle

e Summary and Concluding Remarks

16.1 Introduction

Oracle is widely regarded as one of the world’s leading RDBMS suites. The product was
developed by a company that bears the same name as the product. The product, unlike
many of its competitors has benefited from a very focused corporate mission. The Oracle
DBMS was first introduced in the 1980’s. By the early 1990’s Oracle Corporation was the
world’s leading software engineering company. Today it consistently shares an overall
second position with IBM (behind the phenomenal Microsoft), and first in the areas of
database management systems and internet applications.

The Oracle suite is a comprehensive package of software development tools for
developing, as well as managing an information system with an underlying Oracle
database. The product has been through several stages of revision and upgrade. The latest
version is Oraclel1G, which supports grid computing and no upper limit on database
size. By the time this volume is published, Oracle 11G will be in production in many
organizations.

In terms of connectivity, Oracle communicates with all the major alternate DBMS
suites in the industry (typically via ODBC) — DB2, Sybase, Informix, Ingress, MS SQL
Server, and MySQL.

The Oracle suite is marketed for major modern operating systems including, Windows,
Unix, and Linux. The following are the Oracle product editions currently marketed:

e Enterprise Edition
e Standard Edition

e Standard Edition One

301

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE

e Express Edition
e Personal Edition

These editions all come with various components and features to service different
needs. Typically, when you purchase Oracle, you specify what edition you are interested
in. You will be allowed to install the appropriate edition when you access the Oracle CDs.

Some advantages of the Oracle DBMS suite are:

e The productis recognized as one of the leading DBMS suites in
the industry.

e Oracle provides a comprehensive and at times innovative
implementation of SQL.

e The product supports RAD (though limited).

e The Oracle DBMS handles large databases very effectively.
e Oracle handles distributed databases quite well.

e Oracle also handles object databases quite well.

e Oracle facilitates the construction and management of small,
medium sized, and large data warehouses.

e Oracle facilitates communication with other databases.

e The Oracle DBMS hosts a comprehensive system catalog, thus
allowing it to effectively handle complex databases consisting of
different types of objects.

e Oracle provides a user interface that encourages Oracle experts,
while facilitating novices.

e Oracle provides availability and scalability with grid computing,
industry-leading security, lower costs with its self-managing
database.

16.2 Main Components of the Oracle Suite

The Oracle 11G product family includes the several main components. The more visible
ones are:

e Oracle Server

e Oracle PL/SQL

e Oracle Developer

e Oracle Database Configuration Assistant (DBCA)
e Oracle Network Services

e Oracle Admin Assistant

302

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Oracle Database Upgrade Assistant

Oracle Enterprise Manager (OEM) Database Control
Oracle Enterprise Manager Grid Control

Oracle Enterprise Manager Configuration Assistant
Oracle HTTP Server

Oracle Documentation

Oracle Transparent Gateways

Oracle Development Kit

Oracle JDBC/OCI Interfaces

Oracle iSQL *Plus and SQL *Plus

Oracle Real Application Clusters

Oracle Enterprise Integration Gateways

Oracle Application Server

Oracle Integration

Oracle Internet File System

Oracle Recovery Manager

Oracle Warehouse Builder

Oracle OLAP Client

OVERVIEW OF ORACLE

In addition, there are several other add-ons as well as less visible but significant
components in the Oracle suite. A brief discussion (overview) of a few of these
components follows.

16.2.1 Oracle Server

The Oracle Server is the central database engine of the Oracle Suite. It hosts a fairly
comprehensive implementation of SQL, supporting all major SQL statements, and with
enhancements of its own.
The developer typically writes SQL statements in an SQL *Plus environment. This
environment provides:

Additional commands which can be used along with standard

SQL commands

A default editor (notepad), which may also be used to key
in commands

A line editor, which may be used to key in commands

www.it-ebooks.info

303

http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE
The Oracle Server supports a very comprehensive system catalog. There are system

tables for all the database object types supported. These include (but are not confined to):

e Databases

e Tablespaces

e Datafiles

e (Database) Tables

e Sequences

e Columns of tables

e Constraints (Cons-tables and Cons-columns)

e Synonyms

e Logical views

e Indexes

e Privileges (Role_privs and Table_privs)

e Table_Comments

e Column_Comments

These tables are typically accessed indirectly via logical views prefixed by ‘DBA’,
‘User’ or ‘All’ (e.g. we have DBA_tables, User_tables and All_tables).

16.2.2 Oracle PL/SQL and SQL *Plus

Oracle has its own host language, PL/SQL. This high level language (very Pascal-like) is
what is typically used to develop an application (although Java is supported).

PL/SQL was specifically developed for Oracle applications and is portable on Oracle
Servers. It exhibits all the main features of a classical HLL, but avoids ambiguities (for
instance about the If-Statement). PL/SQL is a limited HLL; it focuses solely on database
application development. It has limited treatment of arrays and pointers.

Oracle provides a standard SQL Editor through SQL *Plus. SQL *Plus is a basic line
editor that allows you to enter and SQL statements. You were introduced to basic SQL
*Plus commands in section 11.1. Due to its limitations, many Oracle users tend to use
other text editors to specify SQL instructions and integrate them into SQL *Plus.

This process is seamless and is handled quite well by SQL *Plus.

304

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE

16.2.3 Oracle Developer Suite

Oracle Developer is a sophisticated suite component that facilitates rapid application
development (RAD). Like most RAD tools, Oracle Developer provides several facilities in
a GUI environment. Following is a summary of the prominent subsystems:

Oracle Business Intelligence Beans: This subsystem provides
a set of standard JavaBeans components to build business
intelligence applications.

Oracle Designer: This subsystem provides a complete toolset
to be employed in modeling the requirements and design of
enterprise applications.

Oracle Discoverer: This subsystem is an ad-hoc query

and reporting tool for publishing information drawn from
data marts, data warehouses, online transaction processing
systems, and other Oracle back-end systems on the Web.

Oracle Forms Developer: This subsystem is a PL/SQL-based
development environment for building GUI-based applications
that may be designed to be Web-accessible (see chapter 25).

Oracle JDeveloper: This subsystem is a Java-based alternative
to the Forms Developer, facilitating the development of a
GUI-based application that may be designed to be
Web-accessible. It provides an Interactive Development
Environment (IDE) that mirrors that of the Sun Microsystems
equivalent product called NetBeans. With the recent
acquisition of Sun Microsystems, we can expect further
improvement of the related services and capabilities in this
area. This is a huge acquisition for the Oracle Corporation.

Oracle Reports Developer: This subsystem provides
report-building tools for designing attractive reports by pulling
information from an Oracle database.

Oracle Software Configuration Manager: This subsystem
facilitates management of structured and unstructured data and
all types of files throughout the software development life cycle.

Oracle Warehouse Builder: This subsystem provides tools
required for the construction and management of a data
warehouse (see chapter 24).

16.2.4 Oracle Enterprise Manager Database Control
and SQL Developer

The Oracle Enterprise Manager (OEM) Database Control is a component that provides
a user friendly GUI environment for the DBA to perform administrative work on the
database. Through OEM, the DBA can manage a given database, or a group of

305

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE

databases in a cluster. Moreover, OEM is Web-accessible; through it, you can access
your database from any computer that has an internet connection via the URL address
http://<Machine.Domain>:5500/em (you supply the machine name and domain name
for your network).

When you access a database through OEM, all its component objects (schemas,
users, tablespaces, tables, procedures, triggers, indexes, constraints, etc.) are available in
a hierarchical manner. Each of these database components can be accessed, and their
properties changed. OEM then generates the required SQL code or database scripts,
in order to effect these changes, and executes them. OEM can also be used to create
database objects (user accounts, tables, views, tablespaces, indexes, constraints, etc.).
The productivity of the DBA is therefore greatly enhanced. Of course, you will need a valid
user account, password, and appropriate privileges.

Oracle also provides a GUI-based component called Oracle SQL Developer
(OSQLD). It provides functions similar to OEM. Students as well as practitioners will find
this component very effective in providing a shield from the slightly gorier rigor of SQL
syntax (but the truth is, SQL syntax is by no means a tragedy; we could live with it).

Still, Oracle provides another GUI-based component called iSQL *Plus, which
facilitates Web-accessibility to the database in a manner that is similar to OEM. You can
also access your database server from any machine that has an internet connection, via
the URL http://<Machine.Domain>:5560/isqlplus (again, you supply the machine
name and domain name for your network).

16.2.5 Oracle Enterprise Manager Grid Control

Oracle Enterprise Manager Grid Control is an HTML-based interface that provides
complete monitoring across the entire Oracle technology stack — business applications,
application servers, databases, and the E-Business Suite — as well as non Oracle
components. The components of Grid Control include:

e Oracle Management Service (OMS)
e Oracle Management Agents
e Oracle Management Repository

These components communicate with each other through HTTP and we can achieve
secure communications between tiers within firewall-protected environments by enabling
the secure socket layer (SSL) protocol. Using Grid Control, an administrator can view
alerts, overall system status, performance metrics, and be alerted when failure occurs.

16.2.6 Oracle Database Configuration Assistant

Earlier versions of Oracle did not have OEM, only Oracle Database Configuration
Assistant (DBCA). Unfortunately, creating, configuring and managing Oracle databases
can be quite complex. DBCA helps to take some complexity out of this by automating
the process. The user is shielded from gory syntactical details via a user interface,
which generates the requisite SQL and database scripts, based on the user responses to
friendly prompts.

306

www.it-ebooks.info

http://%3cMachine.Domain%3e:5500/em
http://%3cMachine.Domain%3e:5560/isqlplus
http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE

DBCA and OEM are complimentary products; the former is particularly useful for
database creation and initial configuration; the latter is extremely helpful during database
administration and monitoring.

16.2.7 Oracle Warehouse Builder

The Oracle Warehouse Builder (OWB) is comprised of a number of components that
facilitate the construction and management of a data warehouse environment. You will
learn more about data warehousing in chapter 24. For now, you may consider a data
warehouse as a database consisting of read-only information obtained by extracting,
aggregating, and possibly reformatting data from multiple source databases. With OWB,
you can construct a simple data warehouse for a set of departmental databases, as well as
a complex data warehouse for an entire enterprise or group of enterprises.

16.3 Shortcomings of Oracle

Oracle, despite its apparent monopoly on the industry, has a few significant
shortcomings, primarily in the area of its user interface:

SQL Environment: The standard SQL environment provided through SQL *Plus
is unfortunately not graphical, but command-based. This means that the developer
has to memorize SQL syntax rules in order to be productive. Out of recognition of this
shortcoming, Oracle provides three complimentary alternatives to SQL *Plus — DBCA,
OEM, and Oracle SQL Developer (OSQLD).

Oracle Forms Developer: In earlier versions of Oracle Forms Developer (OFD), the
user interface needed improvement. Direct manipulation was not always provided in an
elegant manner. Case in point: when an object was created on a form:

e The user had to access the Property Palette in order to change
certain attributes about the object. The problem was, changes
made on the Property Palette were not always obvious to the user
(e.g. color scheme selection).

e The user had to constantly switch among Object Navigator, Layout
Editor and Property Palette. Although the three perspectives were
automatically connected, the process of constant switching was
counter-productive.

e Form Builder was not as easy to learn as equivalent components
in other products.

At the time of writing, these problems were not thoroughly checked in OFD 11G.
However, it is hoped that they have been corrected in this new version. Moreover, the
introduction of Oracle JDeveloper (OJD) in Oracle 10G, as an alternative to earlier
versions of OFD, has effectively circumvented these problems, since such problems do
not exist in OJD.

PL/SQL Support: Like SQL support, Oracle’s support of its own PL/SQL is somewhat
lacking: no GUI or interactive command prompt. The developer has to memorize PL/SQL
command syntax, and there are no context sensitive prompts to help.

307

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE

System Integration: As stated earlier, the Oracle suite consists of several
components. Two observed problems here:

e There are (in the writer’s view) too many splinter components,
many of which could be merged.

e These components are not all gracefully integrated (one example
of this is OJD of Oracle 10G; this component requires some
caution in order to be properly installed and configured).

The reason for this is that Oracle shows signs of after-thought evolution, rather than
purposeful planning. This problem becomes evident when one considers for example,
pre-10G versions of OEM and DBCA. These two products could have been easily merged
with a third — Recovery Manager (RMAN) — into one product, providing comprehensive
coverage of database administration. The problem of integration becomes very
glaring when full installation of Oracle (particularly so on Unix and Linux platforms)
is attempted. You will observe that in Oracle10G and 11G, the OEM has been greatly
improved. This was not always the case.

Code Generation: Earlier versions of Oracle provided very negligible automatic code
generation. For instance, early versions of Form Builder provided a useful environment
for application development, but did not generate much PL/SQL code. The developer
was still required to memorize SQL and PL/SQL syntax. It must be said, however, that
components such as OEM, OSQLD, and DBCA do generate a considerable amount of
code. It is hoped that this trend will continue in the future.

Database Management: Most DBMS suites have a simple, straightforward way of
dealing with creating a database and populating it with database objects. Oracle does not.
To achieve this objective, you have to follow the following procedure:

e (Create an Oracle database.

e Create one or more tablespaces. Each tablespace will consist of at
least one datafile.

e Create user(s) and grant appropriate quotas to the tablespace(s).
e Populate the tablespace(s) with database objects.

The DBA or someone with DBA privileges typically does the first three steps. Each of
these steps is multifaceted, involving several subservient steps. By using DBCA and OEM,
these steps have been greatly simplified, but they can still be thought intensive. The final
step can be done by users with appropriate privileges.

Affordability: Traditionally, Oracle solutions have been prohibitively expensive for
small and medium size companies. In recognition of this, Oracle Corporation provides a
special educational program for colleges and universities in North America. This program
is called the Oracle Academic Initiative (OAI). Under this program, enrolled institutions
pay a nominal membership fee; this entitles them to free access to Oracle products, which
they are authorized to use for education and research purposes.

Combined Effect: When we combine the effect of all the flaws mentioned, the end
result is that Oracle remains a product that is relatively difficult to learn and use. On
the other hand, if these problems were to be corrected, the product would truly qualify
as a “killer application” [Downes, 1998]. Moreover, Oracle 91, 10G, and 11G represent
significant improvements over its earlier versions of the product.

308

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © OVERVIEW OF ORACLE

16.4 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

e Oracle is widely regarded as one of the world’s leading RDBMS
suites. The product runs on all the major operating system platforms,
except 0S-400, is marketed under five editions — Enterprise
Edition (EE), Standard Edition (SE), Standard Edition One (SE1),
Express Edition (XE), and Personal Edition (PE).

e The Oracle suite includes a number of components. These
include (but are not confined to) Oracle Server, Oracle PL/SQL,
Oracle JDeveloper, Oracle Database Configuration Assistant,
Oracle Enterprise Manager, Oracle SQL Developer, Oracle
SQL*Plus, and Oracle iSQL*Plus.

e Oracle has some shortcomings relating to the component
integration, limited code generation, complex database creation,
and affordability.

Notwithstanding the shortcomings, Oracle is an excellent DBMS suite, and for this
reason, it is expected to continue to dominate the database systems arena well into
the foreseeable future. Oracle’s recent acquisition of Sun Microsystems represents a
significant possession for the company. This means that we can expect to see greater
integration of Java-based interfaces in the Oracle products (something Oracle has been
working on for some time), as well as increased platform independence.

16.5 Review Questions

1. What are the main editions of Oracle that are marketed?

2. What are the main components of an Oracle suite? Briefly
discuss how these components are related.

3. Identify some benefits and drawbacks of the Oracle suite.

16.6 References and/or Recommended Readings

[Couchman, 1999] Couchman, Jason and Christopher Allen. Oracle Certified
Professional: Application Developer Guide. New York, NY: Osborne/McGraw-Hill, 1999.

[Downes, 1998] Downes, Larry and Chunka Mui. Unleashing the Killer App - Digital
Strategies For Market Dominance. Boston: Harvard Business School Press, 1998.

[Oracle, 2008] Oracle Corporation. SQL Reference. http://www.oracle.com/technology/
index.html (accessed August 2008).

[Shah, 2002] Shah, Nilesh. Database Systems Using Oracle: A Simplified Guide to SQL and
PL/SQL. Upper Saddle River, NJ: Prentice Hall, 2002.

309

www.it-ebooks.info

http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/index.html
http://www.it-ebooks.info/

CHAPTER 17

Overview of DB2

This chapter provides an overview of the DB2 DBMS. The chapter proceeds under the
following captions:

e Introduction
e Main Components of the DB2 Suite
e Shortcomings of DB2

¢ Summary and Concluding Remarks

17.1 Introduction

DB2 is another leading RDBMS suite in the software engineering industry (Oracle being
its main arch rival). Developed by IBM Corporation, the DB2 RDBMS was first introduced
for MVS/370 and MVS/XA in 1983 and for MVS/ESA in 1988. In 1996 The DB2 Universal
Database, the industry’s first fully scalable, Web-accessible database management system
was announced by IBM. It is called “universal” because of its ability to sort and query
alphanumeric data as well as text documents, images, audio, video, and other complex
objects. Also, DB2 supports the two dominant database models — the relational model
and the object-oriented model, hence the term universal DBMS (UDBMS). Like Oracle,
the DB2 suite is quite comprehensive.

DB2 Universal Database (UDB) offers many database and information management
enhancements. The most recent version of the product is DB2 UDB version 9.7. It is the
database of choice for the development and deployment of critical solutions in areas
such as:

e E-business
e Business intelligence

L4 Content management

311

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

e Enterprise Resource Planning
e Customer Relationship Management
e Data Warehousing

Being a leading DBMS product, DB2 provides a wide range advantages. The
following are some of the more widely acclaimed advantages of the DB2 UDB suite:

e The product is recognized as one of the leading DBMS suites in
the industry.

e DB2 provides a comprehensive and at times innovative
implementation of SQL.

e The DB2 suite includes a number of front-end RAD tools that all
seamlessly support DB2.

e The DB2 UDB handles large databases very effectively.

e DB2UDB handles distributed databases and object databases
quite well.

e DB2 UDB facilitates the construction and management of small,
medium, and large data warehouses.

e DB2 UDB facilitates communication with other databases.

e The DB2 UDB hosts a comprehensive system catalog, thus
allowing it to effectively handle complex databases consisting of
different types of objects.

e DB2UDB provides a user interface that encourages experts, while
facilitating novices.

e DB2 facilitates seamless integration of various products.

The DB2 suite is marketed for major modern operating systems including i5/0S,
Windows, AIX (IBM’s implementation of UNIX), Solaris, Linux, HP-UX, and Mac OS-X.
The following are the DB2 UDB product editions currently marketed:

e DB2UDB Everyplace Edition
e DB2UDB Personal Edition

312

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

e DB2 UDB Workgroup Server Edition
e DB2 UDB Express Edition
e DB2UDB Enterprise Server Edition

These editions all come with various components and features to service different
needs. IBM uses the mantra “DB2 is DB2 is DB2” to mean, all DB2 database applications

are platform independent across the above-mentioned editions and operating systems
[IBM, 2009a].

17.2 Main Components of the DB2 Suite

The DB2 product family includes the following main components:
e DB2 Universal Database Core
e IBM InfoSphere Information Server
e IBM Data Studio
e IBM InfoSphere Warehouse

Depending on the edition of the DB2 UDB, various other components may be
included. Additionally, there are several other components comprising these main
components. Some of these DB2 UDB components are summarized in Figure 17-1. This
list is not comprehensive. However, it should convey the reality that the DB2 UDB suite is
quite comprehensive.

313

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

Component

Summary

DB2 Universal Database Core

This is the core product for creating and managing a
relation/object database.

DB2 High Performance Upload (DB2
HPU)

Enables the DBA to manage large quantities of data, and
efficiently manage functions such as backup, data upload,
recovery, and data migration.

DB2 Performance Expert for LUW

Useful in optimizing the performance of the database
environment

Data Encryption Expert

Facilitates encryption and compression of data for both on-line
and offline environments.

InfoSphere Data Architect

Facilitates the modeling, designing, and standardization of
various distributed data resources.

InfoSphere DataStage

Facilitates the extraction and transformation of data from
multiple sources, and loading them into a staging area.

InfoSphere Federation Server

Facilitates the amalgamation of data from multiple
heterogeneous sources into a single virtual view for end users.

InfoSphere Information Analyzer

For analyzing the structure, content, and quality of the
information from heterogeneous data sources.

InfoSphere Connectivity Software

Provides the necessary protocol for efficient cross-platform
connections to multiple sources.

InfoSphere Metadata Workbench

Allows for tracing of relationships and attributes from source
databases to a target database where they are used (even
across editions and platforms).

InfoSphere QualityStage

Facilitates analysis of data from source databases, based on
established business rules, in order to determine the data
quality; also includes data cleansing features.

InfoSphere Replication Server

Enables data consolidation and/or replication in support of
data availability.

Optim Database Administrator for Linux,
Unix, and Windows (LUW)

Used for various administrative activities such as data
migration, structural database changes, disaster recovery, etc.

Optim Database Relationship

Used for managing groups of related tables in support of a set
of business operation(s).

Optim Development Studio

A development environment for Oracle, DB2, and Informix,
supporting SQL, XQuery, stored procedures, Web services,
and Java data access.

Optim pureQuery Runtime for LUW

Used for building high performance database applications.

Optim Query Tuner for LUW

Provides expert advice for writing high performance queries,
and improving database design.

Optim Test Data Management Solution
for Custom and Packaged Application

Facilitates the thorough testing of database applications for
data quality.

InfoSphere Warehouse Departmental
Edition

For constructing and managing a data warehouse, typically at
the departmental level.

InfoSphere Warehouse Enterprise
Edition

For constructing and managing a data warehouse at the
enterprise level.

Figure 17-1. DB2 Components

Following is a summary of the main components mentioned above. As the DB2
product documentation is a much more comprehensive source than this chapter, you
are advised to check that source (see [IBM, 2008], [IBM, 2009a], and [IBM, 2009b]) for
additional information.

314

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

17.2.1 DB2 Universal Database Core

The DB2 Universal Database Core (also called the DB2 Common Code) contains the
core database services. Superimposed on top of this is a layer of code that is specific to
the operating system (OS) platform that the DBS suite runs on. This approach gives the
product the platform independence that it enjoys. When you purchase DB2, you must
specify and choose the OS platform that will be used for your implementation, as well as
the desired edition. Depending on the edition chosen, you will have other features and
components bundled together in a seamless whole (for more information on this, see the
production documentation via [IBM, 2009a]).

Irrespective of the edition and OS platform, all DB2 applications are accessible with
each other, and from IBM software development tools such as Rational and WebSphere.
Additionally, through ODBC, other non-DB2 databases can be reached.

17.2.2 IBM InfoSphere Information Server

The InfoSphere Information Server (previously called the Information Integrator in earlier
versions) is a collection of technologies that combines database management systems,
Web services, replication, federated systems, and data warehousing functions into a
common platform. It also includes a variety of programming interfaces and data models.
It is used for data integration from heterogeneous data sources (hence the name). Using
the Information Integration technology, you can access diverse types of data (structured,
unstructured, and semi-structured). The source data may reside on different back-end
systems (example Oracle, Microsoft SQL Server, Informix, etc.). You can transform that
data into a format that provides easy access to information across the enterprise, while
giving the end user the illusion that all the data resides on their machine.

Information integration enables the integration of data from multiple sources with
the following functions:

e Provision of real-time read and write access
e Transformation of data for business analysis and data interchange

e Management of data placement for performance, currency, and
availability

The DB2 information integration strategy includes the following goals for users:

e To provide users with the ability to continue to more easily
manipulate legacy data

e To provide users with the ability to take advantage of familiar
software to use known assets and resources

e To provide users with the ability to acquire and easily maintain
new data

e To provide users with the ability to use existing data management
tools to access data wherever it is located

315

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

Figure 17-2 provides a list of some of the prominent components comprising the
InfoSphere Information Server (these were earlier clarified in Figure 17-1).

InfoSphere Metadata Workbench
InfoSphere Information Analyzer
InfoSphere DataStage
InfoSphere QualityStage
InfoSphere Federation Server
InfoSphere Connectivity Software
InfoSphere Data Architect
InfoSphere Replication Server

Figure 17-2. Prominent Constituent Components of the InfoSphere Information Server

17.2.3 IBM Data Studio

The Data Studio spans the entire life cycle (design, development, implementation,
deployment, and management) for all DB2 applications, irrespective of editions and OS
platform. Among the services provided are the following:

e Accelerated solution delivery

e Integrated database administration
e Data growth management

e Optimized performance

e Data privacy

e Streamlined data test management

e Streamlined upgrades and migration

Under these services, a number of components have been bundled. Figure 17-3
provides a list of some of the more prominent ones.

InfoSphere Data Architect

Optim Database Administrator

Optim Database Relationship

Optim Development Studio

Optim pureQuery Runtime for LUW
Optim Query Tuner for LUW

Optim Database Administrator for LUW
Optim Test Data Management Solution for Custom and Packaged Applications
DB2 High Performance Upload

DB2 Performance Expert for LUW
Data Encryption Expert

Figure 17-3. Prominent Constituent Components of the Data Studio

316

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

17.2.4 IBM InfoSphere Warehouse

The DB2 UDB suite provides four editions of a data warehousing software. The editions of
InfoSphere Warehouse provided are tailored to meet the varied needs of the organization.
They are as follows:

InfoSphere Warehouse Departmental Edition
InfoSphere Warehouse Departmental Base Edition
InfoSphere Warehouse Enterprise Edition

InfoSphere Warehouse Enterprise Base Edition

With these resources, you can construct simple departmental data warehouses from

departmental databases, or more complex data warehouses for an entire enterprise or

group of enterprises.

17.3 Shortcomings of DB2

DB2 represents a huge effort by IBM to develop and market a top quality product. To a

large extent the company has succeeded. There have not been many serious complaints

about the product. Nonetheless, as the saying goes, there is no perfect software. A few

complaints have been made against the product, as summarized below:

Backup and Recovery: DB2 offers a very basic set of backup
and recovery capabilities, but lacks the completeness and
depth of high availability functionality required by most
e-businesses today. One is therefore forced to rely on cold
backups at the operation system level. More improvement is
needed in this area.

Support of Domains: Some users would like to see DB2
support domain-based calculus. It is felt that by adding
domains to the DBMS, stronger data integrity constraints can
be achieved.

Affordability: Like Oracle, DB2 is prohibitively expensive for
small and medium size companies. In recognition of this,
IBM provides a special educational program for colleges and
universities in North America. Under this program, enrolled
institutions purchase the products for a nominal fee, and

are able to use them for education and research purposes.
Additionally, IBM provides the public with the flexibility of
choosing from five different editions according to prevailing
needs and financial constraints.

www.it-ebooks.info

317

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

Documentation: IBM provides a Web-accessible information
center for the DB2 product family (see [IBM, 2008]). It must
be stated that compared to other similar resources, this site
could benefit from some improvements. In the experience of
this author, one has to spend considerable time in finding the
information sought.

Combined Effect: DB2 is on the verge of becoming a truly
superb product. It is hoped that IBM can address the few
problem areas for the product.

17.4 Summary and Concluding Remarks

It is now time to summarize what we have covered in this chapter:

DB2 is widely regarded as one of the world’s leading UDBMS
suites. The product runs on all the major operating system
platforms, and is marketed under five editions: DB2 UDB
Everyplace Edition, DB2 UDB Personal Edition, DB2 UDB
Workgroup Server Edition, DB2 UDB Express Edition, and DB2
UDB Enterprise Server Edition.

The DB2 suite includes a number of components. These include
(but are not confined to) DB2 Universal Database Core, IBM
InfoSphere Information Server, IBM Data Studio, and IBM
InfoSphere Warehouse.

DB2 has some shortcomings relating to backup and recovery,
and affordability.

Not withstanding the shortcomings, DB2 is an excellent DBMS suite, and is arguably
the one with the most comprehensive and coherent design. For these and other reasons,
itis expected that the product will continue to dominate the database systems arena well
into the foreseeable future.

17.5 Review Questions

1.
2.

318

What are the main editions of DB2 that are marketed?

What are the main components of the DB2 suite? Briefly
discuss how these components are related.

Identify some benefits and drawbacks of the DB2 suite.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © OVERVIEW OF DB2

17.6 References and/or Recommended Readings

[Downes, 1998] Downes, Larry and Chunka Mui. Unleashing the Killer App — Digital
Strategies For Market Dominance. Boston: Harvard Business School Press, 1998.

[IBM, 2008] IBM Corporation. IBM DB2 Database for Linux, UNIX, and Windows
Information Center. http://publib.boulder.ibm.com/infocenter/db21luw/
vor5/index. jsp (accessed August 2008).

[IBM, 2009a] IBM Corporation. Compare the Distributed DB2 9.5 Data Servers.
http://www.ibm.com/developerworks/db2/1library/techarticle/0301zikopoulos/
0301zikopoulosi.html (accessed August 2009).

[IBM, 2009b] IBM Corporation. IBM Data Management. http://www-01.ibm.com/
software/data/management/ (accessed August 2009).

319

www.it-ebooks.info

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://www.ibm.com/developerworks/db2/library/techarticle/0301zikopoulos/0301zikopoulos1.html
http://www.ibm.com/developerworks/db2/library/techarticle/0301zikopoulos/0301zikopoulos1.html
http://www-01.ibm.com/software/data/management/
http://www-01.ibm.com/software/data/management/
http://www.it-ebooks.info/

CHAPTER 18

Overview of MS SQL Server/

This chapter provides an overview of the Microsoft SQL Server DBMS. Relatively
speaking, SQL Server represents the most recent introduction of a major DBMS suite in
the marketplace. It is also somewhat different from other products. For these two reasons,
we will deviate slightly from the structure of the previous two chapters, as we cover
additional but relevant information about the product. The chapter therefore proceeds
under the following captions:

Introduction

Main Features of SQL Server

Editions of SQL Server

Main Components of the SQL Server Suite
SQL Server Default databases

SQL Server Default Logins

Named versus Default Instances
Removing SQL Server

Shortcomings of SQL Server

Summary and Concluding Remarks

By the time this volume is available to the public, many of components mentioned
will likely be outdated. The focus therefore is to describe the general product
environment that an MS SQL Server user is likely to see. The discussion will be broadly
based on products MS SQL Server 2005 and MS SQL Server 2008.

321

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

18.1 Introduction

MS SQL Server (version 8.0) is Microsoft’s flagship relational database engine product.
The product was developed by Microsoft for its Windows operation system platform,
and has been through several stages of revision.

18.1.1 Brief History

Microsoft SQL Server uses a version called Transact-SQL (T-SQL). Microsoft initially
developed SQL Server (a database product that implements the SQL language) with
Sybase Corporation for use on the OS/2 platform. After the IBM-Microsoft collaboration
broke down, Microsoft abandoned OS/2 in favor of its then new network operating
system, Windows NT Advanced Server. At that point, Microsoft decided to further develop
the SQL Server engine for Windows NT by itself. The resulting product was Microsoft
SQL Server 4.2, which was updated to version 4.2.1.

After Microsoft and Sybase parted ways, Sybase further developed its database
engine to run on Windows NT (currently known as Sybase Adaptive Server Enterprise),
and Microsoft developed SQL Server 6.0, then SQL Server 6.5, which also ran on top of
Windows NT. SQL Server 7.0 introduced the capability to run on Windows NT as well as
on Windows 95 and Windows 98. With SQL Server 7.0, Microsoft dramatically rewrote
and modified the Sybase code. The company redesigned the core database engine and
introduced a sophisticated query optimizer and an advanced database storage engine.
SQL Server 2005 enhanced this new code line, adding significant new features. The most
recent version of the DBMS is MS SQL Server 2008.

18.1.2 Operating Environment

As mentioned earlier, MS SQL Server has been specifically designed, developed, and
tailored to operate in, and maximize the use of the features of the Windows operating
system. The DBMS can run as a Windows service. As you are no doubt aware,

a service is an application that Windows can start either automatically when booting up,
or manually on demand. Services on Windows have a generic application programming
interface (API) that can be controlled programmatically. Services facilitate the running
of applications such as MS SQL Server without requiring that a user be logged in to the
server computer.

Technically speaking, MS SQL Server is a back-end system. However, being
developed and marketed by Microsoft, all the front-end Microsoft RAD tools are designed
to integrate with SQL server. The effect is that when SQL Server is implemented in a
Microsoft Windows environment (as it must be), one has a choice from several front-end
tools that will seamlessly integrate with the SQL Server database.

322

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

18.1.3 MS SQL Server and the Client-Server Model

Like most modern DBMS suites, Microsoft’s SQL Server is a client-server software system.
The server side of the application provides database security, fault tolerance, database
performance, concurrency, and reliable backups. The client side provides the user
interface that facilitates access to the database via reports, queries, and forms. Various
clients can connect to MS SQL Server, including the utilities that come with SQL Server,
such as SQL Server Query Analyzer. Non-Microsoft applications can also access the
backend via ODBC.

18.2 Main Features of MS SQL Server

According to Microsoft, MS SQL Server provides a number of significant features, some of
which are mentioned below:

Database Support: The SQL Server database engine provides
facilities for supporting relational databases as well as
unstructured data (via XML). It also includes security features
and other related features required to create and support
complex Web-accessible databases.

Replication Services: The SQL Server relational database
engine supports the features required to support demanding
data processing environments. The database engine protects
data integrity while minimizing the overhead of managing
thousands of users who may be concurrently modifying the
database. SQL Server distributed queries facilitate referencing
of data from multiple sources as if the data all resided in the
local SQL Server database. At the same time, the distributed
transaction support protects the integrity of any updates of
the distributed data. Replication facilitates maintenance of
multiple copies of data, while ensuring that the separate copies
remain synchronized.

Ease of Installation and Usage: SQL Server includes a set

of administrative and development tools that improve upon
the process of installing, deploying, managing, and using
SQL Server across several sites. SQL Server also supports

a standards-based programming model integrated with

the Microsoft Distributed interNet Applications (DNA)
architecture, allowing for easy integration with the World
Wide Web (WWW). These features allow software engineers
to rapidly deliver SQL Server applications that customers can
implement with a minimum of installation and administrative
overhead.

Interoperability: SQL Server includes facilities for
communicating with heterogeneous databases.

323

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

Notification Services: These services come in the form

of capabilities for the development and deployment of
applications that can deliver personalized, timely information
updates to a variety of connected and mobile devices.

Integration Services: These services include data extraction,
transformation, and loading (ETL) capabilities for data
warehousing and enterprise-wide data integration.

Analysis Services: These services include online analytical
processing (OLAP) capabilities for the rapid and sophisticated
analysis of large and complex datasets using multidimensional
storage.

Reporting Services: These services provide a comprehensive
solution for creating, managing, and delivering both
traditional, paper-oriented reports and interactive, Web-based
reports from pre-existing databases.

Management Tools: SQL Server includes integrated management
tools for administering and tuning the database. Two significant
products provided are Microsoft Operations Manager (MOM) and
Microsoft Systems Management Server (SMS).

Development Tools: SQL Server ships with various integrated
development tools for the database engine, data extraction,
transformation, and loading, data mining, OLAP, and
application development through Microsoft Visual Studio.

18.3 Editions of MS SQL Server

Microsoft markets two server editions (Enterprise and Standard, both in 32 bit and 64 bit
flavors) of SQL Server and several specialized editions of SQL Server. After examining
their requirements and specifications, it should be obvious which one to use. However,
regardless of the edition of SQL Server that one chooses, they are all built on a common
code base (except for the version for Windows CE), so the same rules, conditions, and
administration apply. A brief summary of each edition follows.

SQL Server Standard Edition: The Standard Edition is what most people mean
when they refer to SQL Server. This version of the product supplies the essential
functionality needed for e-commerce, data warehousing, and line-of-business solutions.
It is intended to run on Windows platforms, starting at Windows Server 2003 (SP2) to
more contemporary versions of the operating system including Windows Server 2008.
Among the prominent features are the following:

e Support of 16 multiple instances
e Support of 4 concurrent processors
e RAMof3GB

e Compliant with 64 bit architecture
324

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

Unlimited database size

Notification services

SQL Server Enterprise Edition: Enterprise Edition (64-bit) provides the most
scalable data platform. Addressing more memory than any other edition of SQL Server,
it scales to the performance levels required to support the largest data warehousing and
analysis applications, ecommerce websites and enterprise business systems. This edition
runs on various Windows platforms ranging from Microsoft Windows 2003 Server with
Service Pack (SP) 2 or later to Windows Server 2008. This edition includes the full range of
features in the SQL Server suite. Among the prominent features are the following:

Support of 50 multiple instances

No limit on concurrent processors

RAM of 512 GB, or based on the underlying operating system
Compliant with 64 bit architecture

Unlimited database size

Table and index partitioning

Indexed views

Parallel index operations

Database snapshots

Integration services

Notification services

SQL Server Workgroup Edition: The Workgroup Edition is the data management
solution for small organizations or workgroups within larger entities. It includes the entire
core database features needed for data management in an affordable and simple-to-manage
package. The platform requirements are similar to that of the Enterprise Edition. Among
the prominent features are the following:

Support of 50 multiple instances
Can support 2 concurrent processors
RAM of 3 GB

Unlimited database size

SQL Server Express Edition: The Express Edition helps developers to use a
lightweight version of the product to build robust and reliable applications. The product
is free and can be downloaded from the Microsoft Web site. Among the prominent
features are the following:

Support for 1 processor only
RAM of 1 GB

Database size of 4 GB

325

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

SQL Server Compact Edition: The Microsoft SQL Server 2008 Compact Edition is
also a free lightweight version of SQL Server that facilitates a low maintenance, compact
embedded database for single-user client applications for all Windows platforms
including tablet PCs, pocket PCs, smart phones and desktops.

SQL Server Developer Edition: The Developer Edition is designed to enable
developers to build any type of application on top of SQL Server 2008. It includes all the
functionality of the Enterprise Edition but with a special development and test license
agreement that prohibits production deployment.

18.4 Main Components of MS SQL Server Suite

In this section, we shall briefly examine the main components of the SQL Server suite.
We shall do so under the following categorizations:

e Server Components
e Management Tools

e Client Connectivity
e Development Tools
e Code Samples

e Optional Components

18.4.1 Server Components
The main server components are as follows:

e The SQL Server (also known as SQL Server Agent) is the core
database engine and the management support service. This
option is enabled by default.

e The Upgrade Tools is the database upgrade support, so one can
run the Version Upgrade Wizard to upgrade a SQL Server 6.5
installation. This option is enabled by default.

e Replication Support should be left enabled (as it is by default) if
you plan to use replication.

e Full-Text Search uses technology from Microsoft Index Server to
build indexes on textual data. This option is installed by default
and supports full-text search in a fail-over cluster configuration.

e Debug Symbols, enabled by default, provides debug files should
one ever need to troubleshoot SQL Server with Microsoft Product
Support. This option should be left enabled.

e Performance Counters should be left enabled (as it is by default)
if one wants the ability to monitor SQL Server’s performance with
the performance monitor utility that Windows provides.

326

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

18.4.2 Management Tools

The management tools are enabled by default; they consist of the following:

Enterprise Manager is the graphical management interface for
both development and administration of SQL Server.

The SQL Server Profiler is a great tool for monitoring SQL Server
activities, including queries and how these queries are run. It also
provides performance measurements.

Query Analyzer is the component used to enter and run
Transact-SQL statements. One can also view how SQL Server will
optimize and run queries. Experienced T-SQL developers tend to
use this tool.

DTC Client Support allows you to use the Distributed
Transaction Coordinator to run data modification queries across
multiple systems.

Conflict Viewer is the conflict resolution wizard for merge replication.

18.4.3 Client Connectivity

Client Connectivity is a set of components that facilitates communication with the

SQL Server. This set includes components for Open Database Connectivity (ODBC),
Object Linking and Embedding Database (OLE DB), and DB-Library. Each library allows
you to write or use programs that connect to SQL Server. Collectively, they are known as
the MDAC (Microsoft Data Access Components).

18.4.4 Development Tools

The main development tools are described below:

Headers and Libraries are the C++ files needed for development
of SQL Server programs.

MDAC system development kits (SDKs) are the Software
Development Kits for XML and the Microsoft Data Access
Components. These SDKs allow enable and support the
development of programs using XML and MDAC.

Backup/Restore API includes a sample program, necessary
C/C++ files, and documentation on how to build backup and
restore programs.

Debugger Interface installs the components necessary to allow
Microsoft Visual Studio components and the SQL Server Query
Analyzer utility the capability to debug stored procedures.

This option is selected by default.

327

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

18.4.5 Code Samples

None of the code samples is installed by default. However, depending on your choice,
their inclusion could serve to enrich your SQL Server environment. The following are the
main options:

ADO includes programming examples for ActiveX
Data Objects (ADO).

DBLIB includes programming examples for the DB-Library API.
DB-Library was the native Database Application Programming
Interface (API) of SQL Server in earlier releases, and is supported
in SQL Server for backward compatibility.

Desktop includes code samples on setting up unattended install
operations for the Microsoft SQL Server Desktop Engine (MSDE).

DTS includes programming examples for data transformation
services (DTS). DTS provides a way to move data from one data
source to another.

ESQLC includes the programming examples for Embedded SQL
for the C programming language.

MSDTC includes the programming examples for the Microsoft
Distributed Transaction Coordinator.

ODBC includes the programming examples for the open database
connectivity programming API in SQL Server.

ODS includes the programming examples for the open data
services (ODS) API for SQL Server.

OLE Automation includes the programming examples to support
OLE Automation for SQL Server.

Replication includes the programming examples for
SQL Server replication.

SQLDMO includes programming examples for the SQL-Distributed
Management Objects administrative programming interface.

SQLNS includes programming examples for the SQL Name Space
administrative programming interface.

18.4.6 SQL Server Optional Components

After installing SQL Server, you can install three additional services: the Microsoft
Search Service, the Microsoft SQL Server Analysis Services, and Microsoft English Query.
Although you can the Microsoft Search Service (full-text indexing) during the default
setup of SQL Server, you also have the option of installing the other two services after the
initial setup is complete. This can be done independent of SQL Server if so desired.

328

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

Microsoft SQL Server Analysis Services: Microsoft SQL Server Analysis Services
comprise a set of technologies to extend data warehousing into SQL Server. The Server
Analysis Services help us build OLAP (On Line Analytical Processing) data to perform
detailed trend analysis in many ways, as well as support data mining. The services
provide the capability to build and control these cubes, and a user interface to build,
administer, and query these cubes is also installed. The server side installs only on
Windows 2003 (or later). The client components and user interface are also available on
Windows clients.

Microsoft English Query: Microsoft English Query allows an administrator to
configure a database schema and allows end users to run their database queries in English
instead of Transact-SQL. This capability is particularly beneficial for Internet-based
applications that don’t want to force users to run SQL statements. For example, we can
say, “Show me the number of books sold for each author this year,” rather than use a
complicated SQL statement.

18.5 MS SQL Server Default Databases

When you install SQL Server, the following databases are installed. You can add
additional databases later, but these databases are guaranteed to be there. Some of them
(master, model, tempdb, and MSDB) are system databases — they cannot be dropped
without causing serious harm to SQL Server. The other two, pubs and Northwind,

are simply samples to help we learn SQL Server. These can be safely dropped from
production SQL Servers.

The master Database: The master database is the key database for running SQL
Server. It contains a pointer to the primary data file for every other database installed on
system, as well as key server wide information. This server wide information includes
such items as system wide error messages, login information, system stored procedures,
and connected or linked servers. The master database can be recovered only in the event
of a disaster with special techniques.

The model Database: The model database is best thought of as a template database.
Each time a new database is created, the model database is actually copied, and then the
size and other changes requested for new database are applied. Therefore, any object that
exists in the model database is copied to the new database at the time of creation. For
example, you can place a table, a username, and other essential objects in this database
right after installation of SQL Server. Each time a new database is created after that, these
essential objects are automatically included. The model database is about 768KB after
installation. Because the model is copied to create each new database, no database can
be smaller than the model.

The tempdb Database: The tempdb database is the place where sorts, joins, and
other activities that require temporary space are performed. It’s approximately 2MB after
installation, but as is the case with all databases in SQL Server by default, it can grow as
more space is required. The tempdb database is reinitialized each time SQL Server (the
SQL Server service) is started.

The MSDB Database: The MSDB database supports the SQL Server Agent service,
including storing information about jobs, alerts, events, and replication. A history of all
backup and restore activity is also kept in this database. The MSDB database is about
12MB by default.

329

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

The pubs Database: The pubs database is meant to be a learning tool. It contains
a sample database about a publisher, including information about authors, books, and
sales. Most of the examples in the SQL Server Books Online are based on the pubs
database. Most database features are highlighted via their implementation in the pubs
database. The pubs database is just under 2MB in size after installation.

The Northwind Database: The Northwind database is an alternative learning
database to the pubs database. Northwind has been the sample database supplied with
Microsoft Access for some time now. Because more and more Microsoft Access users
are migrating to SQL Server, the Northwind database was brought over to assist them in
learning the features of the product with a familiar database. Northwind is about 3.5MB
by default.

18.6 MS SQL Server Default Logins

One of the first things you should do after installing SQL Server is to log in. If you went
with the default and selected Windows Authentication Mode, you simply need to select
the Windows NT Authentication option on any dialog that asks you to connect to SQL
Server. If you choose to use Mixed Mode, you could either do that or use the default login
for SQL Server, sa (lowercase on case-sensitive sort-order servers). The letter sa stands for
system administrator.

sa: The sa user account is a member of the sysadmin fixed
server role. As a member of this role, sa can do anything

in SQL Server. The sa account always exists and cannot be
dropped. However, you cannot use it when we are in Windows
Authentication Mode. If you are in Mixed Mode, you can
select to login using this account. Still, it is more likely you
will use the next option, logging in via membership in local
administrators group.

Windows Local Administrators Group: If you are on

a Windows computer and are a member of the local
administrators group, you do not have to use the SQL Server
authentication. During setup, SQL Server adds the local
Windows Administrators group to the sysadmin role, just

as sa is added. As a result, all local administrators are made
SQL Server administrators by default. On earlier versions of
Windows platforms (prior to 2003), Windows authentication
is not available, so you must use sa. Password control is

not necessary in SQL Server when we are using Windows
authentication; SQL Server simply uses Windows login
credentials.

330

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

18.7 Named versus Default Instances

SQL Server has introduced the capability to run multiple, independent copies of the
database server on a single Windows-based computer. Microsoft supports up to 16 copies
of SQL Server installed on a single computer.

Default Instance: One can connect to the default instance of SQL Server (there
is only one per machine) by specifying only the server name when connecting via an
application program. In earlier versions, connection to the SQL Server was done this
way — the SQL Server instance was specified as the machine name on which SQL Server
was running. For instance, if the computer is named BDServ, then to connect to the
default instance, you would specify DBServ when prompted for the SQL Server name.
The program files install to the default path of \MSSQL. The service names for the actual
SQL Server services are as follows:

e SQL Server: MSSQLServer
e SQL Server Agent: SQLServerAgent

Named Instance: A named instance of SQL Server is one that is named during setup.
When you want to connect to a named instance, you specify both the server name and
the instance name that was entered during setup. The services are created with unique
names as well:

e SQL Server: MSSQLS$Instancename
e SQL Server Agent: SQLAgent$Instancename

Common Components: Some common components are shared between
installations of SQL Server; they do not really belong to either the default or any of the
named instances that might have been installed on the computer. They include the SQL
Server tools, as well as system components such as MDAC 2.6. For more information on
these, please refer to the MS SQL Server product documentation.

18.8 Removing MS SQL Server

If, for some reason, you need to remove SQL Server, simply use Control Panel 's Add/
Remove Programs — just like any other application on your computer. Selecting this
option removes all files and Registry keys related to SQL Server, but does not remove
shared components that were installed, such as the MDAC components. Also, if this is not
the last instance of SQL Server to be removed, the tools will remain. When you remove
the last instance of SQL Server, the tools are also removed.

We need to address one important issue regarding upgrade from to SQL Server from
an earlier version of the software. If for instance, you desire to upgrade from SQL Server 6.5,
do not run the 6.5 setup program to remove the previous release of SQL Server; this can
damage your SQL Server installation. Microsoft provides a special uninstall program for
SQL Server 6.5; it is accessible via a shortcut in the Microsoft SQL Server Switch menu;
itis called Uninstall SQL Server 6.x.

331

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

18.9 Shortcomings of MS SQL Server

SQL Server represents a huge effort by Microsoft to develop and market a top quality
product. Whether the company will succeed in this venture is a bit too early to tell; we will
have to wait and see. There are however, a few areas of concern as summarized below:

Support Only for Microsoft Windows: Almost all Windows
operating systems provide support for SQL Server. If you have
anything other than Microsoft Windows as your operating
system platform, however, you will have to forego using this
product, and instead look to another RDBMS vendor. It is
obvious why Microsoft has taken this course of action, but it
would be nice to have the ability to install the product on other
operating systems. Platform independence or some semblance
of it would certainly add credence to MS SQL Server, as it
competes in the DBMS industry.

No Native Load Balancing Capabilities: SQL Server provides
any built-in support for load balancing.While it is possible

to achieve a "load-balanced" solution with horizontal data
portioning, this is not true load balancing. The DBMS provides
no logic that analyses the load on one server and then passes
the request to another based on the results of the analysis. This
does not mean that load balancing cannot be achieved with
SQL Server; it can be achieved via a third party solution such as
Cisco’s Content Services Switch.

No Version Control on Database Objects: SQL Server
provides no versioning support of stored procedures, views,
or even any Data Definition Language (DDL). You have to
script your database and objects, and then use a product such
as Visual SourceSafe (VSS) to version the scripts. This is not
good, particularly if you have developers who come along and
change the structure slightly, without updating the external
source control repository.

Poor Performance and Configuration Out of the Box: Most
DBAs know that to improve performance of your RDBMS, you
should separate your program, data, and transaction log files
onto physically separate disk drives. With SQL Server, you can
split the data and program files from each other at installation
time, but the transaction log files are installed by default with
the data partition. This results in poor performance.

332

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

Cannot Read Transaction Log Files: There is no capability
with SQL Server’s own tools to read the transaction logs.

This means that you need to either buy a third-party tool, or
take a wild guess and restore the database to a point in time.
Transaction logs are used only during recovery of database, if
the database is corrupt. The ability to read the transaction logs
is valuable for debugging purposes. This therefore represents a
serious omission.

No Support for Java: Microsoft’s non-support stance on Java
is well known. Unfortunately, this has meant that your Java
code is not portable from other DBMS platforms. Code that
has been written for your DB2 or Oracle installation will need
to be translated into T-SQL to be used within SQL Server.

This creates a challenge when migrating from other RDBMS
platforms. In fact, SQL Server doesn’t offer any support for any
programming language, except of course SQL. To use VBScript
in SQL Server, you need to develop DTS packages that interface
with the RDBMS. These related limitations constitute a serious
handicap to the product.

Combined Effect: MS SQL Server has made a reasonably
impressive entrance to the DBMS market place. The product is
scalable to some degree; its robustness and stability is yet to be
tested; however, there are a few success stories that Microsoft
will hasten to point out.Given the fact that for better or for
worse, the Windows operating system has become a household
name, and that MS SQL Server seamlessly integrates with that
operating system (both products produced and marketed by
Microsoft), MS SQL Server is guaranteed a promising future.

18.10 Summary and Concluding Remarks

Here is a summary of what we have covered in this chapter:

MS SQL Sever is an emerging DBMS suite that is seeking to
increase market share in the database systems market. The
product runs on Windows platforms. The product is marketed
under six editions: Standard Edition, Enterprise Edition,
Workgroup Edition, Express Edition, Compact Edition, and
Developer Edition.

The MS SQL Sever suite includes a number of components.

These components have been classified under Server Components,
Database Management Tools, Client Connectivity Tools,
Development Tools, Code Samples, and Optional Components.

333

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © OVERVIEW OF MS SQL SERVER

e MS SQL Sever is shipped with the following default databases:
master, model, tempdb, MSDB, pubs, and Northwind.

e MS SQL Sever has a number of shortcomings relating to
platform dependence (running only on Windows platform),
no load-balancing, poor performance, difficult reading
transaction logs, security, lack of support for Java.

MS SQL Sever has made a fair entry into a very competitive market. If not for any
other reason, we expect it to be around for the foreseeable future, due to its marriage to
the Windows platform.

18.11 Review Questions

1. What are the main editions of MS SQL Server that are marketed?

2. What are the main components of the MS SQL Server suite?
Briefly discuss how these components are related.

3. Describe the default databases and logins that are provided by
MS SQL Server.

4, Identify some benefits and drawbacks of the MS SQL Server suite.

18.12 References and/or Recommended Readings

[Beauchemin, 2005] Beauchemin, Bob, Niels Berglund, and Dan Sullivan. A First Look at
Microsoft SQL Server 2005 for Developers. Microsoft Press, 2005.

[DeBetta, 2005] DeBetta, Peter. Introducing Microsoft SQL Server (TM) 2005 for Developers
(Pro - Developer). Microsoft Press, 2005.

[Microsoft, 2008] Microsoft. SQL Server 2005.
http://www.microsoft.com/sql/2005/default.mspx (accessed October 2008).

[Microsoft, 2008] Microsoft, SQL Server 2008.
http://msdn.microsoft.com/en-us/library/bb418432(SQL.10) aspx
(accessed October 2008).

334

www.it-ebooks.info

http://www.microsoft.com/sql/2005/default.mspx
http://msdn.microsoft.com/en-us/library/bb418432(SQL.10)%20aspx
http://www.it-ebooks.info/

CHAPTER 19

Overview of MySQL

This chapter provides an overview of MySQL. The chapter proceeds under the
following captions:

e Introduction to MySQL

e Main Features of MySQL

e Main Components of MySQL
e Shortcomings of MySQL

¢ Summary and Concluding Remarks

19.1 Introduction to MySQL

MySQL has become the most popular open source DBMS and the fastest growing DBMS
in the industry. The product is an attractive alternative to higher-cost, more complex
DBMS suites. Its award-winning speed, scalability and reliability, combined with the fact
that it is free, are some of the reasons for the product’s increasing popularity. The current
production release series is MySQL 5.0, which was declared stable for production use in
October 2005.

MySQL is currently marketed in three editions:

e MySQL Standard Edition
e MySQL Enterprise Edition
e MySQL Cluster Edition

Figure 19-1 provides the salient differences between these editions, in terms of their
characteristic services and features. The editions and features are clarified on the
MySQL website (see [MySQL, 2010]).

335

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

MySQL Editions
Characteristic Services and Features Standard | Enterprise | Cluster
Continuous Support Yes Yes Yes
Maintenance, Updates, and Patches Yes Yes Yes
Knowledge Base Yes Yes Yes
MySQL Core Database Yes Yes Yes
MySQL Connections (via ODBC, JDBC, and .Net) Yes Yes Yes
MySQL Replication Yes Yes Yes
MySQL Partitioning No Yes Yes
MySQL Workbench Yes Yes Yes
MyISAM Storage Engine Yes Yes Yes
InnoDB Storage Engine Yes Yes Yes
NDB Storage Engine No No Yes
MySQL Enterprise Monitor (for MySQL servers) No Yes Yes
MySQL Enterprise Backup No Yes Yes
MySQL Cluster Manager No No Yes
MySQL Cluster Geo-Replication No No Yes

Figure 19-1. Prominent Services and Features of the MySQL Editions

The original creator of MySQL is a Swedish company called MySQL AB. The
company had been in operation for over ten years (1995 - 2008), before being acquired
by Sun Microsystems, which has been recently acquired by Oracle. In the early stages,
MySQL was used primarily for internal purposes. Over the past five years, the product’s
ascendancy to international acclaim has been quite noticeable. MySQL runs on multiple
platforms, including Unix, Linux, Windows, Solaris, and MacOS. The maximum
tablespace size supported is 64 TB. Database tables can be of any size up to this limit.

MySQL brings a number of advantages to the database arena. These are summarized
in Figure 19-2.

= Reliability and Performance: In its relatively short existence, the product has established itself as being
fairly reliable. Also, due to its relatively small size, MySQL databases tend to be relatively high on
performance, when compared to larger, more complex products.

= MySQL Software is Open Source: Because MySQL is open source, it is free, and it brings all the benefits
of open sourse products. For this reason, the product is enjoying increased popularity in the academic
community as well as among small businesses.

= Platform Independence: MySQL runs on multiple operating system platforms. This provides users with
felexibility in terms of project development and implementation.

= Ease of Use and Deployment: Because of the above-mentioned benefits, MySQL is very easy to deploy.
The product is also easy to learn and use.

Figure 19-2. Main Benefits of MySQL

336

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

19.2 Main Features of MySQL

In order to fully MySQL, it is important to take note of the underlying features of the
product. These are summarized in Figure 19-3. These features were adopted from the
official MySQL Web site [MySQL AB, 2008]; minor modifications have been added to

improve readability. From the list of features provided, it is clear that the intent of MySQL
AB is to develop and market a comprehensive DBMS.

Internals and Portability:

MySQL was written in C and C++.

The product has been tested with a broad range of different compilers.

MySQL runs on many different operating system platforms.

Includes APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available.

Implements a fully multi-threaded using kernel threads. It can easily use multiple CPUs if they are available.

Provides transactional and non-transactional storage engines.

Uses very fast B-tree disk tables with index compression.

Itis relatively easy to add other storage engines. This is useful if you want to add an SQL interface to an in-house
database.

Implements a very fast thread-based memory allocation system.

Implements very fast joins using an optimized one-sweep multi-join.

Employs in-memory hash tables, which are used as temporary tables.

SQL functions are implemented using a highly optimized class library and should be as fast as possible. Usually there is no
memory allocation at all after query initialization.

The MySQL code is tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool
(http:/developer.kde.org/~sewardj/).

The server is available as a separate program for use in a client/server networked environment. It is also available as a
library that can be embedded (linked) into standalone applications. Such applications can be used in isolation or in
environments where no network is available.

Data Types:

MySQL supports several data types, including signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE,
CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM, and OpenGlIS spatial
types.

Fixed-length and variable-length records.

Statements and Functions:

Full operator and function support in the SELECT and WHERE clauses of queries.

Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(), COUNT(DISTINCT ...),
AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC syntax.

Support for aliases on tables and columns as required by standard SQL.

DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were changed (affected).

The MySQL-specific SHOW command can be used to retrieve information about databases, database engines, tables, and
indexes.

The EXPLAIN command can be used to determine how the optimizer resolves a query.

Function names do not clash with table or column names. For example, ABS is a valid column name. The only restriction is
that for a function call, no spaces are allowed between the function name and the ‘(that follows it.

You can mix tables from different databases in the same query.

Security:

A stringent but flexible privilege-based security mechanism that allows host-based verification. Passwords traffic is
encrypted when you connect to a server.

Scalability and Limits:

Handles small as well as large databases. MySQL database server with 60,000 tables and about 5,000,000,000 rows are
possible. Maximum tablespace size is 64 TB.

Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each index may consist of 1 to 16 columns or parts of
columns. The maximum index width is 1000 bytes; before MySQL 4.1.2, the limit was 500 bytes. An index may use a prefix
of a column for CHAR, VARCHAR, BLOB, or TEXT column types.

Figure 19-3. Main Underlying Features of MySQL

www.it-ebooks.info

337

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

Connectivity:

= Clients can connect to the MySQL server using TCP/IP sockets on any platform. On Windows systems in the NT family
(NT, 2000, XP, or 2003), clients can connect using named pipes. On Unix systems, clients can connect using Unix domain
socket files.

= InMySQL 4.1 and higher, Windows servers also support shared-memory connections if started with the --shared-
memory option. Clients can connect through shared memory by using the --protocol=memory option.

= The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC connections. For
example, you can use MS Access to connect to your MySQL server. Clients can be run on Windows or Unix. MyODBC
source is available. Al ODBC 2.5 functions are supported, as are many others.

= The Connector/J interface provides MySQL support for Java client programs that use JDBC connections. Clients can be
run on Windows or Unix. Connector/J source is available.

= MySQL Connector/NET enables developers to easily create .NET applications that require secure, high-performance data
connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET aware tools.
Developers can build applications using their choice of .NET languages. MySQL Connector/NET is a fully managed
ADO.NET driver written in 100% pure C#.

Geographic Localization:

= The server can provide error messages to clients in many languages.

= Full support for several different character sets, including latin1 (cp1252), german, big5, ujis, and more. For example,
the Scandinavian characters ‘a’, ‘a" and ‘6’ are allowed in table and column names. Unicode support is available as of
MySQL 4.1.

= Al data is saved in the chosen character set. All comparisons for normal string columns are case-insensitive.

= Sorting is done according to the chosen character set (using Swedish collation by default). It is possible to change this
when the MySQL server is started. To see an example of very advanced sorting, look at the Czech sorting code. MySQL
Server supports many different character sets that can be specified at compile time and runtime.

Clients and Tools:

= MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These statements are
available from the command line through the mysgqlcheck client. MySQL also includes myisamchk, a very fast
command-line utility for performing these operations on MyISAM tables.

= AllMySQL programs can be invoked with the --help or -? option to obtain online assistance.

Figure 19-3. Main Underlying Features of MySQL (continued)

19.3 Main Components of MySQL

Compared to other DBMS suites on the market, MySQL is relatively simple, and therefore
does not include a sophisticated (or convoluted) list of components. Rather, there is a list
of important programs that make up the MySQL suite. The most important programs are
summarized in Figure 19-4. The information provided here was adopted from the MySQL
AB Web site (with minor changes to improve readability and clarity). For a more detailed
discussion, the reader is referred to that site. Each program provides a help option that
allows you to access useful documentation on the program in question.

338

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

mysqld: This is the SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running, because clients
gain access to databases by connecting to the server.

mysqld_safe: This is a server startup script. mysqld_safe attempts to start mysqld. mysqld_safe is the recommended way to
start a mysqld server on Unix and NetWare. mysqld_safe adds some safety features such as restarting the server when an error
occurs and logging runtime information to an error log file.

mysql.server: This is a server startup script. This script is used on systems that use System V-style run directories containing
scripts that start system services for particular run levels (Linux, Solaris and Mac OS X). It invokes mysqld_safe to start the MySQL
server. The mysql.server component can be found in the support-files directory under your MySQL installation directory or in a
MySQL source distribution.

mysqld_multi: This is a server startup script that can start or stop multiple servers installed on the system. mysqld_multi is
designed to manage several mysqld processes that listen for connections on different Unix socket files and TCP/IP ports. It can
start or stop servers, or report their current status.

mysqlmanager: This is an alternative to the mysql_multi program; it is called the MySQL Instance Manager (IM). This program is
a daemon running on a TCP/IP port that serves to monitor and manage MySQL Database Server instances. MySQL Instance
Manager is available for Unix-like operating systems, as well as Windows.

MySQL Instance Manager can be used in place of the mysqld_safe script to start and stop the MySQL Server, even from a remote
host. MySQL Instance Manager also implements the functionality (and most of the syntax) of the mysqld_multi script.

mysql_install_db: This script creates the MySQL database and initializes the grant tables with default privileges. It is usually
executed only once, when first installing MySQL on a system.

After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make sure that the server works
satisfactorily. You may also wish to arrange for the server to be started and stopped automatically when your system starts and
stops. You should also assign passwords to the accounts in the grant tables. On Unix, the grant tables are set up by the
mysq_install_db program. For some installation methods, this program is run for you automatically:

mysql_fix_privilege_tables: This program is used after a MySQL upgrade operation. It updates the grant tables with any changes
that have been made in newer versions of MySQL. Some releases of MySQL introduce changes to the structure of the system
tables in the MySQL database to add new privileges or support new features. When you update to a new version of MySQL, you
should update your system tables as well to make sure that their structure is up to date. Note: As of MySQL 5.1.7, this program has
been superseded by mysql_upgrade.

mysql_upgrade: This program is used after a MySQL upgrade operation. It checks tables for incompatibilities, repairs them if
necessary, and updates the grant tables with any changes that have been made in newer versions of MySQL. The mysql_upgrade
program should be executed each time you upgrade MySQL. It checks all tables in all databases for incompatibilities with the current
version of MySQL Server. If a table is found to have a possible incompatibility, it is checked. If any problems are found, the table is
repaired. mysql_upgrade also upgrades the system tables so that you can take advantage of new privileges or capabilities that
might have been added.

All checked and repaired tables are marked with the current MySQL version number. This ensures that next time you run
mysql_upgrade with the same version of the server, it can tell whether there is any need to check or repair the table again.
mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade.info in the data directory. This is used to
quickly check if all tables have been checked for this release so that table-checking can be skipped. To ignore this file, use the —
force option.

make_binary_distribution: This program makes a binary release of a compiled MySQL database.

Figure 19-4. Important MySQL Component Programs

339

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

19.4 Shortcomings of MySQL

Like all software products, MySQL does have some limitations in its current production
release (version 5.1). What is most impressive about the MySQL venture is that the
developers readily admit the limitations and document them. Following is a summary
of these limitations:

19.4.1 Limitation on Joins and Views

Limitation on Joins: The maximum number of tables that can be referenced in a single
join is 61. This also applies to the number of tables that can be referenced in the definition
of a view. This is a reasonable threshold that should not cause anyone to lose sleep.

Limitations on Views: View processing is not optimized in MySQL. Three restrictions
have been documented by MySQL AB:

¢ You are not allowed to create indexes on views. This is significant,
so MySQL AB would do well to remove it in the near future.

e Indexes can be used for views processed using MySQL's merge
algorithm. However, a view that is processed with the temptable
algorithm is unable to take advantage of indexes on its underlying
tables (although indexes can be used during generation of the
temporary tables). This is also a significant restriction that should
be lifted in the future.

e Subqueries cannot be used in the From-Clause of a view.
MySQL AB promises to lift this limitation in the future.

19.4.2 Limitations on Sub-queries

MySQL AB lists a number of restrictions on sub-queries, and promises to address them
in the near future. Some of the more prominent ones are mentioned below (for a full list,
go to the MySQL AB site [MySQL AB, 2008]):

1. Ifyou compare a null value to a sub-query using operators
ALL, ANY, or SOME, and the subquery returns an empty result,
the comparison might evaluate to the non-standard result of
NULL rather than to TRUE or FALSE.

2. Asubquery’s outer statement can be any one of the following:
SELECT, INSERT, UPDATE, DELETE, SET, or DO.

3. Sub-query optimization for the IN (<sub-query>) construct is not
as effective as for the equal (=) operator or for IN (<value-list>)
constructs. A typical case for poor performance of the IN
(<sub-query>) construct is when the sub-query returns a small
number of rows but the outer query returns a large number of
rows to be compared to the sub-query result. The problem is
that, for a statement that uses an IN (<sub-query>) construct,
the optimizer rewrites it as a correlated sub-query.

340

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

Example 1: The following example illustrates:

SELECT ... FROM Tablel t1 WHERE tl.a IN (SELECT b FROM Table2);
/I The optimizer rewrites the statement to a correlated subquery:
SELECT ... FROM Tablel t1 WHERE EXISTS (SELECT b FROM Table2) t2 WHERE 12.b=tl.a):

If the inner and outer queries return M and N rows, respectively, the
execution time becomes on the order of f(MxN), rather than f(M+N) as

it would be for an uncorrelated subquery. An implication is that query
construct with IN (<sub-query>) can be much slower than a query written
using an IN(<value-1ist>) construct that lists the same values that the
sub-query would return. Obviously, this is a very undesirable situation.

4. The optimizer is more mature for joins than for subqueries,
so in many cases a statement that uses a subquery can be
executed more efficiently if you rewrite it as a join. An exception
to this occurs for the case where an IN (<sub-query>) construct
can be rewritten as a SELECT DISTINCT join construct.

Example 2: The following example illustrates:

SELECT =ColumnsList> FROM <Table1> WHERE <ID_col> IN (SELECT <ID_col2>
FROM <Table2> WHERE <Condition>):

// The above statement format can be rewritten as follows:

SELECT DISTINCT <ColumnsList> FROM <Tablel> t1, <Table2>t2

WHERE t1.<ID_col>=12.<ID_col> AND <Condition>);

Note however, that in this case, the join requires an extra DISTINCT operation
and is not more efficient than the subquery. If you are not looking for distinct
values in the result set, then the Select statement with the join is preferred to
the Select statement with a subquery.

19.4.3 Limitations on server-side Cursors

Server-side cursors are implemented in the C programming language via the
mysql_stmt_attr_set() function. The same implementation is used for cursors in stored
routines. A server-side cursor allows a result set to be generated on the server side only;
the entire result set is not necessarily transferred to the client, but only for the rows
requested by the client. For example, if a client executes a query but is only interested

in a few rows, the remaining rows are not transferred. In MySQL, a server-side cursor is
materialized into a temporary table. Initially, this is a memory table, but is converted to
disk table if its size reaches the value of the max_heap_table_size system variable.

One limitation of the implementation is that for a large result set, retrieving its rows
through a cursor might be slow.

341

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

19.4.4 Other Limitations

There are other restrictions relating to stored procedures, functions, triggers and

XA transactions. (The acronym XA means extended architecture. The term XA transactions
is often used to describe transactions involving different systems or databases.

For instance, a client application program acting as a transaction manager in one system,
may request information from a database server acting as a resource manager in another
system.) These will not be discussed here; the interested reader is referred to the MySQL
AB Web site [MySQL AB, 2008].

19.5 Summary and Concluding Remarks

Let us summarize what has been discussed in this chapter:

MySQL is the most popular open source DBMS. It runs

on Windows and Unix platforms, and is marketed under

three editions: Standard Edition, Enterprise Edition, and Cluster
Edition.

The MySQL suite consists of a number of important component
programs, including but not confined to: mysqld, mysqld_safe,
mysql.server, mysqlmanager, mysql_multi, etc.

The official MySQL Web site reports a number of shortcomings
that are being addressed. These include but are not confined to
limitations on joins, limitations on views, limitations on sub-
queries, limitations on server-side cursors, etc.

MySQL has made an impressive entry into the software engineering industry, and for
this reason, it is expected that the product will be around for the foreseeable future.

19.6 Review Questions

1.
2.
3.

342

Briefly account for the history of MySQL.
Outline the characteristic features of MySQL.

What are the main components of the MySQL suite? Briefly
discuss the functional responsibilities of each component.

Discuss the benefits and shortcomings of MySQL.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © OVERVIEW OF MYSQL

19.7 References and/or Recommended Readings

[Downes, 1998] Downes, Larry and Chunka Mui. Unleashing the Killer App - Digital
Strategies For Market Dominance. Boston, MA: Harvard Business School Press, 1998.

[Dubois, 2005] Dubois, Paul. MySQL 3™ ed. Indianapolis, IN: Sams, 2005.

[Kofler, 2005] Kofler, Michael. The Definitive Guide to MySQL 5 3™ ed. Berkely,
CA: Apress, 2005.

[MySQL AB, 2008] MySQL AB. Documentation: MySQL. http://dev.mysql.com/doc/
(accessed October 2008).

[MySQL, 2010] MySQL. MySQL Editions: http://www.mysql.com/products/ (accessed
August 2010).

343

www.it-ebooks.info

http://dev.mysql.com/doc/
http://www.mysql.com/products/
http://www.it-ebooks.info/

CHAPTER 20

Overview of Delphi

This chapter looks at the second front-end system that we will consider — Delphi.
The chapter provides an overview of the product under the following subheadings:

e Introduction
e Main Components of the Delphi Suite
e Shortcomings of Delphi

¢ Summary and Concluding Remarks

20.1 Introduction

Delphi is an object-oriented RAD tool, which allows the software engineer to develop
applications for Windows platforms. Delphi also provides a simple cross-platform
solution when used in conjunction with Kylix, the equivalent RAD tool for the Linux
platform. Kylix understands most of the code developed under a Delphi environment,
making cross-platform software development more accessible to developers.

Delphi was developed by Borland in the early 1990s. The product evolved from
Borland Turbo Pascal after the company decided to make an object-oriented Pascal version
of the popular product and simplify greatly the software development process. Since
2003, the market has seen several releases including Delphi V7, Delphi V8, Delphi 2005,
Delphi 2007, and Delphi 2009. The rest of the chapter will be based on a review of Delphi
2005 and Delphi 2007. However, since the chapter deliberately avoids implementation
details, you will find that the information provided also applies to earlier versions all the
way back to Delphi V6, as well as more recent versions. Since 2008, the Borland Software
Development Division (responsible for the Delphi product line) has been acquired by
software engineering firm called Embarcadero Technologies. The contemporary version
of the product is called Delphi Delphi XE2, and is marketed by Embarcadero.

Delphi is best described as a front-end RAD tool that interfaces with various
databases through at least one of the following strategies:

e Database drivers for Paradox, Interbase, MS SQL Server, Oracle,
DB2, Informix, MySQL, Sybase, Blackfish SQL, and SQL Anywhere

e Borland Database Engine (BDE) for local database drivers

e Borland Data Provider (BDP) for .NET (this includes Interbase 7.5,
MS SQL Server, Oracle, DB2, Sybase, and MS Access)

345

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

Delphi allows you to wrap an object-oriented GUI around a relational database.
Figure 20-1 summarizes some of the different types of projects that Delphi can be used
for, and Figure 20-2 summarizes the main strengths of the product.

Standard Delphi Projects:

Package

Dynamic Link Library (DLL)

Console Application

Visual component Library (VCL) Forms Application
Windows Logo Application

(Single Document Interface (SDI) Application
Multiple Document Interface (MDI) Application

Delphi for .NET Projects:

DB Web Control Library

Web Control Library

ASP.NET Web Server Application
Enterprise Core Object (ECO) ASP.NET Web Server Application
ECO ASP.NET Web Application
ASP.NET Web Application
Dynamic Link Library (DLL)
Package

Windows Forms Application

VCL Forms Application

Console Application

ECO WinForms Application
WinForm Controls Package

C# Projects:

DB Web Control Library

Web Control Library

ASP.NET Web Server Application
ECO ASP.NET Web Server Application
ECO ASP.NET Web Application
ASP.NET Web Application
Control Library

Class Library

Windows Forms Application
Console Application

ECO Package in DLL

ECO WinForms Application

Figure 20-1. Some Common Delphi Project Alternatives

346

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

= Object-Oriented: The object-oriented approach to software development, as supported by the product,
enhances productivity in application development and maintenance. In particular, the effects of reusability of
code (and objects), polymorphism and encapsulation are marked. Also, understandability of the system is
greatly enhanced. Thus, system development becomes more exciting, challenging and meaningful.

= Ease of Usage: Automatic code generation (which can be easily accessed and modified) significantly allows for
a significant reduction in the development time for an application. One-touch key or click allows quick access to
code or changing back to visual editing of application. Code is easy to traverse, visualize, and modify, with very
useful highlighters and code completion features.

= Comprehensive Tool Palette: Delphi provides a tool palette of over 160 reusable, customizable and extensible
CLX components (in various categories) for rapidly building sophisticated internet, database and GUI
applications.

= Code Generation: Delphi generates a fair amount of code - in fact you can build quite sophisticated
applications without writing a single line of code. In more complex situations where the software engineer
needs to write code, he/she gets a jump-start, which may account for anywhere between 40% and 80% of
coding.

= Ease of Learning: The code is generated in Object Pascal, a very easy-to-learn language.

= Scalability: Delphi allows building large corporate-level applications either from scratch, or from using existing
Delphi applications and scaling up.

= Cross Platform Portability: Code developed under Windows (using CLX), can be used natively under Linux
using Kylix, reducing development time and cost while enlarging the potential market of developed applications.

= Database Support: Support for a wide cross section of databases including MS Access, DB2, dBase, FoxPro,
InterBase, Informix, MS SQL, MySQL, MyBase, Oracle, Paradox, and Sybase.

= Comprehensive Help System: The help system is comprehensive and well organized, with context sensitivity
features.

= Operating System Integration: The product integrates seamlessly into the MS Windows and Linux
environment, utilizing the power of the operating system, rather than trying to take on tasks traditionally done by
an operating system.

= Easy Database Creation & Management: The creation and management of databases is a case which
emphasizes the previous advantage. Delphi allows you to create a database alias which points to a Windows
folder containing the related database objects. Those database objects could be native database objects (for
instance in Paradox), or they may be Oracle databases, or some other external database requiring access
through ODBC. This is the extent to database creation and management in Delphi: it passes the job of object
management to the operating system on which it is running.

Figure 20-2. Areas of Strength of Delphi

20.2 Major Components of the Delphi Suite

Delphi has the following major components:
e Database Development Environment

e Integrated Development Environment (IDE) and Visual
Component Library (VCL)

e Borland Database Engine (BDE)
e Component Library for Cross-Reference (CLX)
e Enterprise Core Object (ECO) Subsystem

e Documentation Subsystem

347

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

20.2.1 The Database Development Environment
The available tools for manipulating databases are as follows:

e Database Desktop: A simple interface for creating and managing
local databases.

e Database Explorer: An intuitive interface to the different
databases, allowing the user to view all the different settings,
as well as performing SQL queries and data manipulation.

¢ Borland Database Engine (BDE): A subsystem that allows
programmatic access and modification of databases and the
data contained in them. It is the engine between the application
and the data, and facilitates access to various databases. It also
provides access to non-native databases using ODBC, and other
vendor products using their respective drivers.

Through the database development environment, the user can carry out the

following functions:
e (Create a database alias
e Create tables
e Modify table structures
e Create and modify indexes
¢ Create and modify logical views

e Create and modify queries, which include graphic interpretation
of data

e Create and modify reports which include graphic interpretation
of data

Additionally, the developer has the option of writing original SQL statements and
storing these in files for later use. In summary, the main database object types facilitated

are database aliases, tables, indexes, views and query files.

20.2.2 Interactive Development Environment

The Interactive Development Environment (IDE) is the Delphi component that is used
for application development for Delphi, Delphi for .NET, or C++. It provides a number of

useful features:

e A GUIwith anumber of predefined application building blocks,
located on over 30 tool palettes. More commonly used tool
palettes include Standard, Additional, Data Access, Data Controls,
dbExpress, BDE, ActiveX, COM+, and ADO (ActiveX Data Objects).

e Context sensitive prompts to guide the application
development process.

348

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

e Interactive command prompts so the developer does not have to
memorize the syntax for using certain built-in procedures.

e Automatic code generation: A fairly sophisticated application can
be developed with negligible coding from the developer. Code is
generated in Object Pascal or C++.

¢ Code accessibility: For more complex/sophisticated applications,
the developer can easily access the generated code and modify it.

Each Delphi project may include several types of files. The more common file
types are: project files (extensions BDSPROJ and DPR), a Pascal unit file (extension
PAS) with Object Pascal code for each operation with a corresponding form, and a form
file (extension DFM) for each operation with a corresponding Pascal unit. By using the
tool palettes and applying Object Pascal (or C++) code, other components can be easily
added to the project. Some commonly used application building blocks are mentioned in
Figure 20-3.

Form MainMenu PopupMenu Label EditField
Memo OKButton CheckBox RadioButton ListBox
ComboBox ScrollBar RadioGroup Image OLE Container
Timer DataSet DataSource DBGrid DBNavigator
DBText DBEditField DBImage Query SQL

Table StoredProc Database ADODataSet ADOTable
ADOQuery RDSConnection

Figure 20-3. Commonly Used Building Blocks in Delphi
Theses tools provide software engineers and application developers with much
flexibility; the tools can be used to build a wide range of software applications including:
e Traditional database applications
e Client-server applications
e E-Business applications

e Web applications and services using W3C compliant technologies
such as SOAP, XML, WSDL

e Web applications frameworks compatible with Apache, IIS and
Netscape Web servers

e Texteditors and other GUI-based applications

Delphi generates all code in Object Pascal. The code can be easily accessed and
modified by the application developer. In practice, this is normally done, in order to
create an acceptable user interface.

349

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

20.2.3 Database Engine

The Borland Database Engine (BDE) was the original component that allowed
programmatic access and modification of databases and data. It was the engine between
the application and the physical database. In application mode, the developer would
typically superimpose BDE building blocks (via the BDE Tool Palette) onto forms to
facilitate database access. The BDE also provided access to non-native databases using
ODBC and other vendor products using their drivers. In more contemporary versions

of Delphi, the DBE has been replaced by three alternatives that provide identical
functionality: one is called Absolute Database; the other is called Accuracer Database
system; the third component is called dbExpress.

20.2.4 Component Library for Cross Reference

Through its Component Library for Cross-Referencing (CLX), Delphi allows developing
applications that can later be recompiled and used in the Linux platform (using Kylix).
These libraries include:

e Traditional database applications
e Client-server applications
e E-Business applications

e Web applications

20.2.5 Enterprise Core Object Subsystem

The Enterprise Core Object (ECO) subsystem facilitates code visualization and the
development and maintenance of class diagrams for an application. This component is
fairly new and therefore still needs refinement.

20.2.6 Documentation

Delphi is marketed with a comprehensive help system, which covers all aspects of the
software. The help system is in hypermedia format. Additionally, context sensitive help
can be obtained by pressing the F1 key from anywhere during application or database
development. Borland also maintains on-line documentation of the product.

350

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

20.3 Shortcomings of Delphi

Figure 20-4 provides a summary of some observed flaws about Delphi. The flaws are
mainly superficial, relating to the product’s user interface.

= There is not a simple SQL interface to perform complex interactive queries. However, the programmatic
manipulation is very powerful and allows performing more than by interactive queries.

= Support for local databases such as dBase and Paradox is not as good as support for large-scale systems such
as InterBase, MySQL, and Oracle. In fact, support for the local databases tends to be lacking (thus confirming
that Delphi is really a front-end system which will facilitate the construction of an application which accesses a
back-end database).

= The documentation provided by the product is suited for experienced developers. It assumes the user is familiar
with the Delphi environment. There are several books on Delphi software development available at bookstores
that attempt to address this problem.

= The installation of Delphi in a networked environment where workstations are shared among many people
(computer lab setting, for example) gives a lot of problems since the product requires registration of the software
suite. The software assumes a user is going to use the same workstation all the time.

Figure 20-4. Some Observed Flaws of Delphi

Delphi provides a RAD tool that once learned, can cut down development greatly,
it simplifies Windows application development, and it gives the freedom to use assembler
instructions, or object-oriented constructs and components that promise modularity
and reduced maintenance in the long run. With its good performance at compile and
run time, scalability and good database support, Delphi competes with the best software
developments tools in the market.

20.4 Summary and Concluding Remarks

It is now time to summarize what has been discussed in this chapter:

e Delphiis best described as a front-end RAD tool that connects
to any back-end database via ODBC; but it also provides limited
back-end database services. The product runs on Windows, Linux
and Unix platforms.

e The Delphi suite includes the following components: Database
Development Environment, Integrated Development
Environment (IDE), Visual Component Library (VCL), Borland
database Engine (BDE), Component Library for Cross-Reference
(CLX), and the Delphi Documentation.

e Afewshortcomings have been observed about Delphi; they relate
to support for dBase and Paradox databases, the documentation,
and product registration.

Delphi is an excellent product that has been tested and refined over time. It is
anticipated that this product will be around for the foreseeable future.

351

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © OVERVIEW OF DELPHI

20.5 Review Questions

1. Identify some benefits of running a Delphi database
(front-end) environment.

2. Identify and briefly discuss the main components of the
Delphi suite.

3. Discuss some of the observed shortcomings of Delphi.

20.6 References and/or Recommended Readings

[Embarcadero, 2008] Embarcadero Technologies. Delphi. http://www.embarcadero.com/
products/delphi/ (accessed October 2008).

[Cantu, 2005] Cantu, Marco. Mastering Delphi 2005. Sybex Publishing, 2005.

[Intersimone, 2007a] Intersimone, David. Antique Software: Turbo Pascal 1.0
http://bdn.borland.com/article/0,1410,20693,00.html (accessed October 2008).

[Intersimone, 2007b] Intersimone, David. Antique Software: Turbo Pascal 5.5
http://bdn.borland.com/article/0,1410,20803,00.html (accessed October 2008).

352

www.it-ebooks.info

http://www.embarcadero.com/products/delphi/
http://www.embarcadero.com/products/delphi/
http://bdn.borland.com/article/0,1410,20693,00.html
http://bdn.borland.com/article/0,1410,20803,00.html
http://www.it-ebooks.info/

PART E

Advanced Topics

This division of the text covers some advanced topics in database system that you
should be familiar with.
The objectives of this division are

e tointroduce you to the salient issues related to database
administration;

e tointroduce you to the theory, advantages, and
challenges of distributed databases;

e toprovide an overview of object databases, and point out
the challenges faced by the approach;

e toprovide an overview of data warehousing;

e to provide an overview of Web-accessible databases, and
the supporting technologies.

The division includes five chapters, each providing an overview of an area of
database systems that could be further explored.
The chapters to be covered include the following:

e Chapter 21 — Database Management

e Chapter 22 — Distributed Database Systems
e Chapter 23 — Object Databases

e Chapter 24 — Data Warehousing

e Chapter 25 — Web-Accessible Databases

Please note that for each of these topics, several texts have been written.
It will therefore not be possible to cover them in detail. Rather, in each case, an
overview is provided, outlining the salient issues.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Database Administration /

We have established the importance of a database as a valuable information resource
in the organization. This resource must be carefully administered (managed) in order
to ensure the continued operation and success of the organization. In this regard, the
database administrator is extremely important (database administrators are among
the highest paid IT professionals).

This chapter provides an overview of database administration. It discusses (from an
administrative view point) the following issues:

e Database Installation, Creation and Configuration
e Database Security

e Database Management

e Database Backup and Recovery

e Database Tuning

e Database Removal

e Summary and Concluding Remarks

Please note that a solitary chapter which overviews database administration will not
make you a good database administrator (DBA). To achieve that objective, you will need
to apply the knowledge in this course, combined with additional knowledge gained from
a special course in database administration. This chapter helps to prepare you for that
vocation by providing an overview of database administration issues.

21.1 Database Installation, Creation, and
Configuration

Before any work can be done, the database software must be installed. This is usually

a straightforward, but time consuming process. For large, sophisticated products such

as Oracle and DB2, installation could get complicated, since decisions have to be made
about what components to install, where (in terms of directories or folders) to store certain
resources, and what environmental or configuration settings to choose. For simpler
products like MySQL and Delphi, the installation process is correspondingly simpler.

355

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 DATABASE ADMINISTRATION

Next, the database must be created and configured. Depending on the DBMS
suite that is in use, database creation and configuration may be very simple or quite
complicated. In some systems (for example Delphi), database creation is a simple act of
creating a directory (in the Linux environment) or folder (in the Windows environment),
and then creating database aliases that point to that directory or folder. In others such as
MySQL, there is a highly simplified Create-Database statement that allows you to create
a database within seconds. On the other end of the spectrum, there are systems such as
Oracle, for which you must first complete a course before you know how to properly create
a database (review Oracle’s version of the Create-Database statement in Chapter 11).
And there are those products in between the two extremes.

Once you have created the database, there are issues that must be determined as
part of the database configuration. These issues include the following:

e Location of the database and its related files

¢ Communication issues for server and client (for client-server
databases) in a multi-user environment

e Physical structure of the database
e Logical structure of the database
e Users of the database and their access rights

Like database creation, the complexity of these issues, and the flexibility with which
they can be addressed, will depend to a large extent on the products involved, as well as
the complexity of the database itself.

21.2 Database Security

Database security is a very important aspect of database administration. Ideally, the
security mechanism must be multi-tiered, controlling access to the system, the system
resources, and the system data. The DBA must ensure the following:

e Access to the system is controlled.

e Authorized users must be able to access (insert, modify, retrieve
or delete) data that they are authorized to access.

e Authorized users must be restricted to the data and resources that
they are duly authorized to access and nothing more.

e Unauthorized users must have absolutely no access.

In order to achieve this, the DBA must be fully conversant with SQL facilities
(commands) for managing database users and objects. The information covered in
Chapter 13 is particularly relevant here. Some DBMS suites are marketed with a GUI,
which is superimposed on the basic SQL interface, and provides a more user-friendly
environment for working, by generating SQL code (which can be subsequently accessed
and modified) to GUI-based instructions. Examples of this in the Oracle suite include
Oracle Enterprise Manager (OEM), iSQL Plus, and Oracle SQL Developer (OSQLD).

356

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 " DATABASE ADMINISTRATION

To further reinforce the security mechanism of the database, more sophisticated
products provide the facility to encrypt data stored in database files. In other products,
the conventional wisdom is to rely on the encryption feature provided by the underlying
operating system.

21.3 Database Management

As mentioned in Chapter 11, once the database has been created, it must be populated
with database objects. Database objects include tablespaces (specific to Oracle), tables,
indexes, views, synonyms, procedures, triggers, packages, sequences, users, roles, etc.
Most of these database objects are dynamic and will grow or shrink in size, with the
passing of time. The database and its objects must therefore be managed.

Database management is a complex matter that covers a wide range of activities;
among these are the following:

e Reorganizing existing database tables and indexes
e Deleting unnecessary indexes or moving other objects
e Making alterations to the database itself

e Making alterations to database components (tablespaces,
datafiles, tables, procedures, etc.)

e Creating additional database objects (tablespaces, datafiles,
tables, users, indexes, procedures, etc.)

e Training users
¢ Backup and recovery of database objects
e Database performance tuning

Most of these issues have been discussed in previous chapters. The last two issues —
backup and recovery, and database performance tuning — deserve some attention. They
will be addressed in the next two sections.

21.4 Database Backup and Recovery

In general, the term database backup and recovery refers to the various strategies and
procedures involved in protecting a database against data loss, and reconstructing

the data should that loss occur. The reconstructing of data is achieved through media
recovery, which refers to the various operations involved in restoring, rolling forward,
and rolling back a backup of database files. Like database installation, creation and
configuration, backup and recovery can be quite simple or very complex, depending on
the database environment, and the desired objectives. For the remainder of this section,
we shall consider, as case study, backup and recovery in the Oracle environment (it does
not get any more complicated than this).

357

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 DATABASE ADMINISTRATION

21.4.1 Oracle Backups: Basic Concept

A backup is a copy of data. This backup may include important parts of the database
such as the control file, datafile(s), or tablespace(s); alternately, it may involve the entire
database. A backup is a safeguard against unexpected data loss and application errors.
If you lose the original data, then you can reconstruct it by using a backup.

Backups are divided into physical backups and logical backups. Physical backups,
which are the primary concern in a backup and recovery strategy, are copies of physical
database files. You can make physical backups with either the Oracle Recovery Manager
(RMAN) utility or operating system utilities. In contrast, logical backups contain logical
data (for example, tables and stored procedures) extracted with the Oracle Export utility
and stored in a binary file. You can use logical backups to supplement physical backups.

21.4.2 Oracle Recovery: Basic Concept

Recovery is the opposite of backup. A database recovery is effected from a database
backup, so if the backup was not done, the recovery is not an option. Like backup,
recovery may involve a component or section of the database (from a control file,
datafile(s) or tablespace(s)), or it may involve an entire database.

To restore a physical backup of a datafile or control file is to reconstruct it and make
it available to the Oracle database server. To recover a restored datafile is to update it by
applying archived redo logs, and online redo logs, that is, records of changes made to the
database after the backup was taken. If you use RMAN, then you can also recover restored
datafiles with incremental backups, which are backups of a datafile that contain only
blocks that changed after a previous incremental backup.

After the necessary files are restored, media recovery must be initiated by the
user. Media recovery can use both archived redo logs and online redo logs to recover
the datafiles. If you use SQL*Plus, then you can run the RECOVER command to perform
recovery. If you use RMAN, then you run the RMAN RECOVER command to perform
recovery.

21.4.3 Types of Failures

Several circumstances can halt the operation of an Oracle database. The most common
types of failure are described in Figure 21-1. Oracle provides for complete recovery from
all possible types of hardware failures, including disk crashes. Options are provided so that
a database can be completely recovered or partially recovered to a specific point in time.

358

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 " DATABASE ADMINISTRATION

Failure Type Comment
User errors can require a database to be recovered to a point in time before the error occurred.
For example, a user may accidentally drop a table. To enable recovery from user errors and
User error laccommodate other unique recovery requirements, Oracle provides exact point-in-time recovery.

For example, if a user accidentally drops a table, the database can be recovered to the instant in
time before the table was dropped.

Statement Failure

Statement failure occurs when there is a logical failure in the handling of a statement in an
Oracle program (for example, the statement is not a valid SQL construction). When statement
failure occurs, the effects (if any) of the statement are automatically undone by Oracle and control
is returned to the user.

Process Failure

IA process failure is a failure in a user process accessing Oracle, such as an abnormal
disconnection or process termination. The failed user process cannot continue work, although
Oracle and other user processes can. The Oracle background process PMON automatically
detects the failed user process or is informed of it by SQL*Net. PMON resolves the problem by
rolling back the uncommitted transaction of the user process and releasing any resources that the
process was using.

(Common problems such as erroneous SQL statement constructions and aborted user processes
should never halt the database system as a whole. Furthermore, Oracle automatically performs
necessary recovery from uncommitted transaction changes and locked resources with minimal
impact on the system or other users.

Instance Failure

Instance failure occurs when a problem arises that prevents an instance from continuing work.
Instance failure can result from a hardware problem such as a power outage, or a software
problem such as an operating system crash. When an instance failure occurs, the data in the
buffers of the system global area is not written to the datafiles.

Instance failure requires crash recovery or instance recovery. Crash recovery is automatically
performed by Oracle when the instance restarts. In an Oracle9i Real Application Clusters
lenvironment, the SMON process of another instance performs instance recovery. The redo log is
used to recover the committed data in the SGA's database buffers that was lost due to the
instance failure.

Media (disk) Failure

/An error can occur when trying to write or read a file that is required to operate the database. This
is called disk failure because there is a physical problem reading or writing physical files on disk. A
lcommon example is a disk head crash, which causes the loss of all files on a disk drive.

Different files can be affected by this type of disk failure, including the datafiles, the redo log files,
land the control files. Also, because the database instance cannot continue to function properly,
the data in the database buffers of the system global area cannot be permanently written to the
datafiles.

IA disk failure requires media recovery. Media recovery restores a database's datafiles so the
information in them corresponds to the most recent time point before the disk failure, including the
lcommitted data in memory that was lost because of the failure. To complete a recovery from a
disk failure, the following is required: backups of the database's datafiles, and all online and
necessary archived redo log files.

Figure 21-1. Types of Database Failures

If some datafiles are damaged during a disk failure, but most of the database is
intact and operational, the database can remain open while the required tablespaces
are individually recovered. Therefore, undamaged portions of a database are available
for normal use while damaged portions are being recovered. This is a very desirable
feature, especially for large corporate databases that must be up and running “twenty

four by seven.”

359

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 DATABASE ADMINISTRATION

21.4.4 Database Backups

Because one or more files can be physically damaged as the result of a disk failure, media
recovery requires the restoration of the damaged files from the most recent operating
system backup of a database. There are several ways to back up the files of a database.

Whole Database Backups

A whole database backup is an operating system backup of all datafiles, online redo log
files, and the control file of an Oracle database. A whole database backup is performed
when the database is closed and unavailable for use.

Partial Backups

A partial backup is an operating system backup of part of a database. The backup of an
individual tablespace’s datafiles and the backup of a control file are examples of partial
backups. Partial backups are useful only when the database’s redo log is operated in
ARCHIVELOG mode.

A variety of partial backups can be taken to accommodate any backup strategy.
For example, you can back up datafiles and control files when the database is open or
closed, or when a specific tablespace is online or offline. Because the redo log is operated
in ARCHIVELOG mode, additional backups of the redo log are not necessary. The
archived redo log is a backup of filled online redo log files.

21.4.5 Basic Recovery Steps

Because of the way the Oracle Database Writer (DBWn) writes database buffers to
datafiles, at any given time, a datafile might contain some tentative modifications by
uncommitted transactions and might not contain some modifications by committed
transactions. Therefore, two potential situations can result after a failure:

e Data blocks containing committed modifications were not
written to the datafiles, so the changes appear only in the redo
log. Therefore, the redo log contains committed data that must be
applied to the datafiles.

¢ Because the redo log can contain data that was not committed,
uncommitted transaction changes applied by the redo log during
recovery must be erased from the datafiles.

To solve this situation, two separate steps are used by Oracle during recovery from an
instance or media failure: rolling forward and rolling back.

360

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 " DATABASE ADMINISTRATION

Rolling Forward

The first step of recovery is to roll forward, which is to reapply to the datafiles all of the
changes recorded in the redo log. Rolling forward proceeds through as many redo log files
as necessary to bring the datafiles forward to the required time.

If all necessary redo information is online, Oracle rolls forward automatically when
the database starts. After roll forward, the datafiles contain all committed changes as well
as any uncommitted changes that were recorded in the redo log.

Rolling Back

The roll forward is only half of recovery. After the roll forward, any changes that were not
committed must be undone. After the redo log files have been applied, then the undo
records are used to identify and undo transactions that were never committed yet were
recorded in the redo log. This process is called rolling back. Oracle completes this step
automatically.

21.4.6 Oracle’s Backup and Recovery Solutions

There are two methods for performing Oracle backup and recovery: Recovery Manager
(RMAN) and user-managed backup and recovery. RMAN is a utility automatically
installed with the database that can back up any Oracle8 or later database. RMAN uses
server sessions on the database to perform the work of backup and recovery. RMAN has
its own syntax and is accessible either through a command-line interface or though the
Oracle Enterprise Manager GUL. RMAN comes with an API that allows it to function with
a third-party media manager.

One of the principal advantages of RMAN is that it obtains and stores metadata
about its operations in the control file of the production database. You can also set up an
independent recovery catalog, which is a schema that contains metadata imported from
the control file, in a separate recovery catalog database. RMAN performs the necessary
record keeping of backups, archived logs, and so forth using the metadata, so restore and
recovery is greatly simplified.

An alternative method of performing recovery is to use operating system commands
for backups and SQL*Plus for recovery. This method, also called user-managed backup
and recovery, is fully supported by Oracle Corporation, although use of RMAN is highly
recommended because it is more robust and greatly simplifies administration.

Whether RMAN is used, or user-managed methods, physical backups can be
supplemented with logical backups of schema objects made using the Oracle Export
utility. The utility writes data from an Oracle database to binary operating system files.
You can later use Oracle Import to restore this data into a database.

361

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 DATABASE ADMINISTRATION

21.5 Database Tuning

To maintain acceptable database performance, it is necessary to carry out periodic
performance tuning. As the database is being used, it will exhibit a natural tendency to
degraded performance. The current database system may not be performing acceptably,
based on user-defined criteria, due to any of the following:

e Poor database design
e Database growth

e Changing application requirements (possibly including a
redefinition of what acceptable performance is)

Note however, that there might be occasions when database tuning efforts are not
fully effective. When components that are external to the database, yet vital to the entire
client-server application performance, fail to perform acceptably, database tuning might
not help without the corresponding tuning of these other application infrastructure pieces.
The main components external to the backend database are the backend operating system,
the network, and the client operating system. The major examples are the following:

e Veryweak clients (PCs)
e Network saturation

e Very weak, saturated, or poorly tuned operating system

21.5.1 Tuning Goals

There are different ways of determining the goals of a performance tuning effort. A DBA
should consider them all. Database systems can be sampled on various quantitative
measures; the most important of these are the following:

e Throughput: This is the accomplished work per unit time, as
measured by transactions per second (tps); higher is better.

e Response time: This is the time it takes for an application to
respond, as measured in milliseconds or seconds, lower is better.

e Wait time: This is the elapsed time a program takes to run;
lower is better.

In any system, throughput and response time usually run counter to one another
as tuning goals. If response time is high (bad), throughput might be high (good).
If throughput is low (bad), response time might be low (good).

Common sense helps when sorting out these two conflicting measures. The more
users that are concurrently using a system within a certain amount of time, the more
likely it is that each user will experience longer delays than normal, but the number of
transactions going through the system will be greater. On the other hand, if you decrease

362

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 " DATABASE ADMINISTRATION

the number of concurrent users accessing the system within a certain time window,
each user will enjoy faster response time at the expense of fewer overall transactions
completing in that duration.

Typically, on-line transaction processing (OLTP) systems (also called operational
databases) want low response time or high throughput, in terms of transactions per
second, depending on the application needs. A decision support system (DSS) also
wants low response time. However, a DSS might also want high throughput in terms
of data blocks read or written per unit time. This type of throughput is not necessarily
counterproductive to high concurrency and low response times. A batch (production)
system typically wants lower wait times. For example, everyone likes for the payroll
application to complete on time!

Itis important to always consider the following two central tuning goals:

e Maximize your return on investment (ROI). Invest your time and
effort wisely by working on the problems most likely to yield the
optimum improvement.

e Minimize contention. Bottlenecks are characterized by delays and
waits; eliminate or reduce these whenever possible.

Finally, the following general-purpose database tuning goals should be considered:

e Minimize the number of data blocks that need to be accessed;
review and rewrite database access code as necessary.

e Use caching, buffering, and queuing whenever possible to
compensate for the electro-mechanical disadvantage (memory is
faster than disk).

e Minimize the data transfer rates (the time it takes to read or write
data); fast disks, RAID, and parallel operations help do this.

e Schedule concurrent programs that complement instead of
compete with each other.

21.5.2 Tuning Methodology

It is best to approach tuning with a structured methodology. After ensuring that the
operating system is performing at its peak and that sufficient operating system resources
have been allocated to your database system, you should tune following in this order:

e Database design

e Database application
e Memory management
e I/O management

L4 Database contention

363

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 DATABASE ADMINISTRATION

Database Design Tuning: In database design tuning, you are concerned with the
physical and logical structure of the database. During this exercise, the DBA examines
and takes decisions about refining the logical and physical structure of the database.
Among the issues that may be addressed are the following:

¢ Determining whether critical database components (tablespaces,
datafiles, log-files, etc) need to be redefined and/or relocated (to
different directories/folders).

e Determining whether critical database objects (primarily
tablespaces and tables) need to be partitioned (i.e. fragmented
into different partitions).

e Determining whether critical database tables need to be
restructured.

e Determining whether additional database objects (tables, logical
views, etc.) are required, and if so, where they should be placed.

Database Application Tuning: In database application tuning, the concern is on
end-user access to the database. During this exercise, the DBA determines ways to better
facilitate access to the database by the various applications that need to use it. Among the
issues that may be addressed are the following:

e Ascertaining whether existing database application objects
(procedures, triggers, etc.) are performing according to
expectations.

e Determining whether additional database application objects
(procedures, triggers, etc.) are required and where to place them.

e Determining whether adequate database access points (including
ODBC connections, database service connections, etc.) are in
place and are working acceptably.

Memory and I/0 Management Tuning: Memory management tuning in closely
related to database design tuning. This is critical because poor database design could
lead to poor memory performance which in turn leads to poor database performance.
Among the issues that may be addressed are the following:

e Storage allocations for database objects (primarily tablespaces,
datafiles, and tables).

e Storage allocations for the database itself (these parameters are
set at database creation or database alteration).

Oracle provides a number of utilities for managing memory performance of database
tables. However, a full discussion of these is beyond the scope of this course. Suffice it to
say that the database fault rate on each table can be monitored. If the fault rate is high, the
table needs to be reorganized.

Database Contention: Database contention relates to how the database is handling
multi-user access as well as concurrent access. Like memory management, there are specific
utilities for managing this issue; these utilities are typically provided by the DBMS suite.

364

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 " DATABASE ADMINISTRATION

21.6 Database Removal

Sometimes, it becomes necessary to remove a database. Often, there is no specific
command for this, for obvious reasons: The database exists under the auspices of the host
operating system. Database removal is therefore an operating system command.
Depending on the DBMS being used, database removal may be a trivial matter, or
one requiring a few steps. For instance, removal of a Delphi or MySQL database involves
a single step. On the other hand, removing an Oracle database involves several steps
of deleting related folders/directories managed by the DBMS in collaboration with the
underlying operating system. These folders/directories were created when the database
was created (or altered).
Once a database has been deleted, it is completely gone, and can only be
reintroduced via a recovery operation.

21.7 Summary and Concluding Remarks

Here is a summary of what has been discussed in this chapter:

e Depending on the DBMS being used, database creation may be
complex or simple. Delphi and Oracle are at the two extreme ends
of the spectrum — database creation is very simple in Delphi, and
very complex in Oracle.

e Database security must ideally be multi-tiered. It must address
access to the system, access to the system resources, and access
to data.

e Database management must continue after database creation. It
must address issues relating to the performance of the database
system in the face of growing data collection and changing user
needs. Database tuning is and integral part of this.

e Backup must be carefully planned and methodically
implemented, in order to minimize or eliminate data loss due to
system failures. The recovery procedures must also be reviewed
as required.

e Like database creation, depending on the DBMS used, database
removal may be trivial or complex.

21.8 Review Questions

1. What are the main issues to be considered when creating a
database?

2. What are the critical issues to be addressed when configuring
the security mechanism of a database?

365

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 DATABASE ADMINISTRATION

3. What are the main issues to be addressed during the
management of a database?

4. Why are backups important? Discuss how backup and
recovery are handled in Oracle.

5. Why is performance tuning of a database important? Identify
basic tuning guidelines to be observed.

21.9 References and/or Recommended Readings

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern
Database Management 8" ed. Upper Saddle River, NJ: Prentice Hall, 2007. See Chapter 12.

[Mullins, 2002] Mullins, Craig S. Database Administration: The Complete Guide to
Practices and Procedures. Reading, MA: Addison-Wesley, 2002.

[Oracle, 2008] Oracle Corporation. Documentation: Oraclel0G Database Release
2 Documentation. http://technet.Oracle.com (accessed October 2008).

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapters 11 and 15.

366

www.it-ebooks.info

http://technet.oracle.com/
http://www.it-ebooks.info/

CHAPTER 22

Distributed Database
Systems

As wonderful as database systems are, they would not be delivering on their true
potential, if they could not be networked in a distributed environment. This chapter
discusses distributed database systems under the following subheadings:

Introduction

Advantages of Distributed Database Systems
Twelve Rules for Distributed Database Systems
Challenges to Distributed Database Systems
Database Gateways

The Future of Distributed Database Systems

Summary and Concluding Remarks

22.1 Introduction

The concept of a distributed system was introduced in Chapter 2. A distributive database
system consists of a collection of sites, connected via a communication network in which:

Each site is a database system in its own right.

The sites work together (if necessary) so that a user at any given
site can access data at any other site as if the data resides of the
host (user’s) site.

367

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

Section 2.7 of Chapter 2 mentioned some connectivity possibilities. Here are a few
noteworthy points to remember:

1. From the definition, the user is given the notion of virtual
database systems consisting of data that may reside anywhere
in the network.

2. The sites may be distributed over a wide geographical area,
or in a local area/building. A distributed database system can
therefore be a LAN (local area network), a MAN (metropolitan
area network), or a WAN (wide area network).

3. Distributed database systems are not to be confused with
remote access systems, sometimes called distributive
processing systems. The latter has been around for some
time. In such systems, the user accesses data at remote sites
but the operation is not seamless; the user is aware and the
consequences may be obvious. In a distributed database
system, access across sites is seamless.

The literature [on electronic communications and computer networks] documents
several alternate approaches to setting up a distributed database. Three prevalent ones
are as follows:

e Using client-server technology to set up a federated database
e Setting up a virtual private network (VPN)
e Setting up a data warehouse

There is no shortage of information on client-server technology and VPN.
Exploration of this is beyond the scope of this course; however, references [Martin, 1995]
and [Ozsu, 1999] should provide you with a useful start. Suffice it to say that Oracle
as described earlier (Chapters 10-16) qualifies as a distributed DBMS. When you
install Oracle Server on a node in a network, that node acts as a database server. If you
then install Oracle Client on other nodes in the network, your database server can be
accessed from anywhere in the network (as well as from other network systems with Web
accessibility) in a seamless manner. Also, Chapters 24 and 25 provide overview of data
warehousing and Web-accessible databases respectively.

22.2 Advantages of Distributed Database
Systems

Figure 22-1 provides some benefits that distributed database systems provide.
The benefits may be summarized in three categories:

e Efficiency and Productivity
e Convenience

e Reliability
368

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

Efficiency and Productivity:

1. Improved response time and throughput since processing (front-end and back-end as well as at different sites) can
be done in parallel.

2. Data (from foreign sites) can be replicated (locally) to improve access time.

3. Easy and fast communication over relatively long distances.

4. Distributive database systems can ensure that the best resources are brought together and utilized in such
systems.

Convenience:

5. The systems used (back-ends and front-ends, and at different sites) may be different according to the needs and
circumstances of the (users of) respective sites.

6. The structure of the database can mirror the structure of the enterprise — local data is stored locally; access is
available to other data over the network.

7. Due to information sharing, the integrated system provides for more data storage, (possibly) increased functionality
and features than a single database system.

8. The system is more easily designed to facilitate multiple users (this could lead to improved productivity).

Reliability:
9. Reduction of dependence on a central system (also, this might not be practical).
10. Improved reliability: if one machine fails, the whole system does not fail (there is no reliance on a central system).

Figure 22-1. Benefits of Distributed Database Systems

When weighed against the challenges posed by distributed database (discussed
later), they outweigh them by a huge margin; we therefore expect the continued
proliferation of distributed databases.

22.3 Twelve Rules for Distributed
Database Systems

In his classic text, Introduction to Database Systems, Christopher Date discusses twelve
rules (objectives) for distributed database systems [Date, 2004]. Let us take a brief look at
these rules.

Rule 1: Local Autonomy

The sites should be autonomous to the maximum possible extent. All operations at a site
are governed by that site alone. This is not always entirely possible, but is an objective to
strive for.

Rule 2: No Reliance on Central Site

This is a consequence of objective 1. The sites must be treated as equals. There is no
reliance on a central site. Reliance on a central site would make the system vulnerable
to the central site (bottleneck could occur or the central site could go down). This is
undesirable.

369

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

Rule 3: Continuous Operation

The system must be able to run continuously. There should be no need for a planned shut
down in order to carry out any function (for instance backup or tuning).

Rule 4: Location Independence (Transparency)

Users should not need to know where data is physically stored in order to access it; the
system should operate as if all the data resided at the local site. The distributed nature of
the database must be transparent to the end end users.

Rule 5: Fragmentation Independence

The system should support data fragmentation — it should be possible to partition a
given relation into fragments that are stored at different sites. Thus, data can be stored
where it is most frequently used. Network trafficking is therefore reduced. Fragmentation
should be transparent to the end users.

Example 1: Suppose that a large organization has employee records in an Employee
relation. The departments are at different localities. Records for each department are
stored at different sites in those respective departments. This can be easily facilitated in
Oracle or DB2 by partitioning the Employee table. A full discussion of table partitioning
is beyond the scope of this course. However, suffice it to say that that this is the technique
used by several leading DBMS suites to facilitate fragmentation independence.

Rule 6: Replication Independence

A given relation (or fragment of a relation) can be replicated at different sites. Replication
may improve access time and hence performance. The drawback however, is that at
update, all copies have to be updated simultaneously. Replication should be transparent
to the end users.

Rule 7: Distributed Query Processing

Distributed query processing must be facilitated among different sites. Records are
transmitted set (relation) at a time instead of record at a time.

Example 2: Suppose we have an international company, IBM, say, where employees
are stored in the relation Employee, fragmented in various countries, where there are
IBM offices. IBM Canada, issues the request: “Find all Jamaican male employees.” Then:

a. Suppose there are n records that satisfy this request. If the
system is relational, the query will involve tw o messages one
from Canada to Jamaica and one from Jamaica to Canada. If
the system is not relational, but record-at-a-time, the query
will involve 2n messages — n from Canada to Jamaica and n
from Jamaica to Canada.

b. Query optimization of the request occurs before execution
(record-at-a -time requests cannot be optimized).
Due to these two points, distributive database systems are usually relational.

370

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

Rule 8: Distributed Transaction Management

Each transaction must be atomic — fully committed or fully rolled back. This objective
must be met irrespective of the agents (constituent processes) of the transaction.
Concurrency control must be ensured (usually by data locking).

Rule 9: Hardware Independence

It should be possible to integrate the system across different hardware platforms.
It should therefore be possible to run the DBMS on different hardware systems.

Rule 10: Operating System Independence

It should be possible to integrate the system across different operating system platforms.
It should therefore be possible to run the DBMS on different operating systems.

Rule 11: Network Independence

The system should be able to support different sites with different hardware and different
operating systems and networking protocols.

Rule 12: DBMS Independence

The DBMS suites used may be different. For instance DB2 and Oracle both support SQL
and open database connectivity (ODBC); it should therefore be possible to link databases
running on the two DBMS suites. The same argument should apply for other DBMS suites.

22.4 Challenges to Distributed Database Systems

Distributed databases did not come easily; neither were they easy to maintain.
Fortunately, the software engineering industry has figured out how to address these
challenges. However, improving the algorithms used, and finding new ones are always
topical research issues. There are five well known challenges to distributed database
systems. These are:

e Query Optimization
e Catalog Management
e Update Propagation
e Concurrency Control

e Transaction Management

371

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

Query Optimization

Query optimizing processing must be distributed in order to minimize network
trafficking. To illustrate, consider a query Qa of site A, accessing to relations in a natural
join: Rb of site B and Rc of site C. The optimizer must decide on one of the following
strategies:

a. Move copies of Rb and Rc to site A
b. Move copy of Rb to site C and process the join there
c. Move copy of Rc to site B and process the join there

The optimizer must be able to calculate what would be most economical alternative
(given the structure and configuration of the underlying network) and choose that
alternative. For example, Oracle implements two query optimization strategies — a rule-
based optimization and a cost-based optimization. Before executing a query, the query
optimizer optimizes the query by converting it to an internal format (based on an Oracle
algorithm) that will ensure the most efficient execution.

Catalog Management

Catalog management is one of the most complex issues that a distributed database must
resolve. This is so since additional information must be stored for the database objects
(e.g. fragmentation, replication, location etc.). Where and how the catalog should be
stored is a complicated issue. Below are some alternatives:

e Centralized: The catalog is stored at a centralized location, and is

accessible to the other participating sites.
¢ Fully Replicated: The catalog is replicated at each participating site.

e Partitioned: Each site maintains its own catalog. The total catalog
is the union of each site catalog.

e Hybrid: Each site maintains its own catalog; additionally,
a central site maintains the global catalog.

Each of these approaches has its related advantages and challenges. Resolving this
issue is often done with the use of simulation software, and much research into the matter.

Update Propagation

In the case where data is replicated at different sites, it may not be possible to effect
update to all replicas at the desired time. How is this resolved? The primary copy
approach is a common method of resolution:

e Onereplicais deemed the primary copy. As soon as that copy is
updated, the update process is deemed completed.

e The site with the primary copy is responsible for updating the
other sites as son as possible.

372

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

This somewhat contradicts the objectives of transaction independence and
redundancy control. As was emphasized in chapter 4, once data replication is introduced
in a database, with it come various other data integrity problems. Resolution is therefore a
matter of tradeoff.

Concurrency

Concurrency is another issue that must be resolved. To illustrate, consider what might
happen if user X tries to retrieve a particular data set for update purposes, but that data
set is being updated by another user Y. Consider that in a distributed system, there might
be thousands of users, so that this kind of contention could easily develop among several
users. Typically, the DBMS handles this problem by record locking: a record or data set
that is retrieved for update is locked to that transaction until the update is completed;
itis then released (unlocked) for other users. Requests to release (unlock) objects in a
distributed database system must be managed. This is a serious overhead.

In application development where distributed databases are accessed, or there is
multi-user access of a single database, the application programmer must check for record
lock on a data set before attempting to lock that data set. The application programmer
must program a graceful recovery from a record lock situation (normally done by issuing
an appropriate message to the end user and allowing them to defer that particular
request until some subsequent time).

Transaction Management

Issues such as when to lock records, and when to commit or rollback transactions are
critical in a distributed database. The application developer must be familiar with the
facilities provided by the DBMS and SQL (COMMIT and ROLLBACK) for managing
transactions.

22.5 Database Gateways

Traditionally, a database gateway is a software component that links two different DBMS
suites. It could run on either of the two systems running the dissimilar DBMS suites, or
on a separate machine for that purpose. The simplest configuration is to run the software
on either system as a driver for the other DBMS. Another alternative is to use the software
called Open Database Connectivity (ODBC). ODBC is marketed with the Windows
operating system, and is readily available for other operating systems.

Suppose for instance, that Oracle and DB2 both support SQL (as in fact, they do).
It should therefore be possible to link the two DBMS suites, as illustrated in Figure 22-2.
In reality, each product includes an ODBC driver that in effect acts as the gateway.
Following are some functions of the gateway:

e Mapping between the two different protocols (formats)

e Mapping between the two different dialects of SQL (e.g. Oracle’s
dialect versus DB2’s dialect)

373

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 * DISTRIBUTED DATABASE SYSTEMS
e Mapping between the two different system catalogs so that users of
one DBMS (Oracle) can access all files from the other DBMS (DB2)
e Mapping between the two different sets of data used

e Resolution of semantic mismatches across the two systems
(e.g. attribute Employee.Empno in a DB2 table may map to
Empl.Emp# in an Oracle table)

e Resolution of transaction management issues such as data
locking, updates, commit and rollback

e Resolution of security and accessibility issues across the two
different systems

- DB2 Oracle
pB2 [— saL $ saL

Database

Figure 22-2. Illustrating the Function of a Database Gateway

By way of example, Oracle operates a very sophisticated gateway system that
allows connectivity to other non-Oracle databases either directly through its gateway,
or indirectly through ODBC (see [Oracle, 2008]). Among the many features of the Oracle
gateway system are the following:

e Location independence and transparency

e Data-type translations between Oracle and non-Oracle systems
e Data dictionary between Oracle and non-Oracle systems

e Read/write access

e Support for large objects (LOBs)

e Support for non-Oracle stored procedures

¢ Transmission of pass-through SQL between Oracle and non-
Oracle system

e Data encryption services

374

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

22.6 The Future of Distributed Database Systems

Since the mid-1990’s, two significant technologies have significantly influenced the
development and direction of distributed databases. These are:

e Object Technology (OT)

e Electronic Communication Systems (ECS)

22.6.1 Object Technology

In a few short years, OT has come to dominate the contemporary software engineering
industry. New products are forced by industry demands to support OT in some form.
Much work has been done by the Object Management Group (OMG) in establishing

the Common Object Request Broker Architecture (CORBA) standards for distributed
database systems. The Microsoft equivalents of CORBA are Component Object Model (COM),
Distributed COM (DCOM), and more recently, the .NET framework.

CORBA standards span a wide range of specifications from user interface to object-object
communication. They are supported by some of the leading software engineering firms
in the industry. With the emergence of Java, the software industry has made significant
progress in the area of platform independent software components than ever before.

As mentioned in chapter 6, Java (through JDBC) supports both CORBA and ODBC.

22.6.2 Electronic Communication Systems

Complimentary to the advances in OT, the past decade has seen much achievement in
the arena of electronic communication systems (ECS). Contemporary operating systems
are more sophisticated, supporting a wider range of communication protocols. The
protocols and their underlying technology have been refined to provide much higher
transmission rates. Also, communication protocols provide much more services than
previously.

With a refinement of, and emphasis on standards, interoperability is now a much
more attainable goal than in the previous decade. These advances, when combined with
those in OT, will contribute to the proliferation of heterogeneous information models.

375

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

22.7 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

e Adistributed database systems is a conglomeration of database
systems in which each system operates as an autonomous system
on its own, or collaborates with other systems as required.

e Distributed databases systems provide a number of benefits in the
areas of efficiency and productivity, convenience, and reliability.

e Distributed database systems should strive to conform to the
standards outlined in Date’s twelve rules for such systems.

e Distributed databases face challenges in the areas of query
optimization, catalog management, update propagation,
concurrency control and transaction management.

e A database gateway is a software component that links two
different DBMS suites.

e Distributed databases have been significantly affected
by developments in object technology and electronic
communications technology. This is expected to continue in the
foreseeable future.

Distributed databases have helped to transform our world in a significant way.
To fully appreciate the power of distributed databases, just consider for a moment, a
world without them: no World Wide Web; minimized reliability on critical company
databases; reduced capabilities on operating systems; limited remote access to databases.
The next chapter takes a closer look at object databases.

22.8 Review Questions

1. Define a distributed database system. Discuss the advantages
of such systems.

2. Outline and clarify the twelve rules for distributed database
systems.

3. Discuss the challenges to distributed database system.

4. AsanIT professional (perhaps in training), what are your
future expectations for distributed database systems?

376

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © DISTRIBUTED DATABASE SYSTEMS

22.9 References and/or Recommended Readings

[Chung, 1997] Chung, P. Emerald, Yennun Huang, Shalini Yajnik, Deron Liang,
Joanne C. Shih, Chung-Yih Wang, and Yi-Min Wang. DCOM and CORBA Side by Side,
Step by Step and Layer by Layer. http://research.microsoft.com/~ymwang/papers/
HTML/DCOMNCORBA/S . html (accessed October 2008).

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapter 21.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5™ ed. Reading, MA: Addison-Wesley, 2007. See Chapter 25.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein, and Philip M. Lewis. Database Systems:
An Application-Oriented Approach 2" ed. New York, NY: Addison-Wesley, 2005.
See Chapter 16.

[Martin, 1995] Martin, James, and Joe Leben. Client/Server Databases: Enterprise
Computing. Upper Saddle River, NJ: Prentice Hall, 1995. See Chapters 7-9.

[Oracle, 2008] Oracle Corporation. Oracle Database Gateways.
http://www.oracle.com/technology/products/gateways/index.html (accessed
October 2008).

[Ozsu, 1999] Ozsu, M. Tamer, and Patrick Velduriez. Principles of Distributed Database
Systems. 2" ed. Eaglewood, NJ: Prentice Hall, 1999.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapter 12.

[Silberschatz, 2006] Silberschatz, Abraham, Henry Korth, and S. Sudarshan. Database
System Concepts 5 ed. Boston, MA: McGraw-Hill, 2006. See Chapter 22.

377

www.it-ebooks.info

http://research.microsoft.com/%7eymwang/papers/HTML/DCOMnCORBA/S.html
http://research.microsoft.com/%7eymwang/papers/HTML/DCOMnCORBA/S.html
http://www.oracle.com/technology/products/gateways/index.html
http://www.it-ebooks.info/

CHAPTER 23

Object Databases

The previous decade has witnessed the advancement of several so-called object database
management systems (ODBMS) and universal database management systems (UDBMS).
This Chapter discusses such systems under the following subheadings:

e Introduction

e Overview of Object Oriented Database Management Systems

e Challenges to Object Oriented Database Management Systems
e Hybrid Approaches

¢ Summary and Concluding Remarks

23.1 Introduction

Object Technology (OT) has been dominating the software engineering industry in recent
times. For better or worse, there has been a heightened interest and indulgence in object-
oriented methodologies (OOM). Full treatment of OT and OOM is better handled in another
course on the subject. However, for completeness, a brief introduction is made here.

OT provides obvious advantages to application programming, with benefits of
encapsulation, polymorphism and complexity (information) hiding, code reusability,
etc (Figure 23-1 summarizes the commonly mentioned advantages). By contrast, an
OO0 approach to database design may or may not bring significant benefits, depending
on the situation. Data structure encapsulation may or may not be desirable; besides,
the principle of encapsulation often contradicts the principle of data independence in
database design.

379

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 © OBJECT DATABASES

Reusability of Code: A tested system component can be reused in the design of another component.
Stability and Reliability: Software can be constructed from tested components. Organizations can be assured
of guaranteed performance of software.

More complex systems can be constructed.

Understandability: Designer and user think in terms of object and behavior rather than low-level functional
details. This results in more realistic modeling that is easier to learn and communicate.

Faster Design: Most RAD tools and contemporary CASE tools are object oriented to some degree. Also code
reusability enhances faster development.

Higher Quality Design: New software can be constructed by using tested and proven components.

Easier Maintenance: Since systems are broken down into manageable component objects, isolation of system
faults is easy.

Dynamic Lifecycle: I-OO-CASE tools integrate all stages of the software development life cycle (SDLC).
Interoperability: Generic classes may be designed for multiple systems.

. Design Independence: Classes may be designed to operate and/or communicate across different platforms.
. Clarity: OT promotes better communication between IS professionals and business people.

. Better CASE Tools: OT leads to the development of more sophisticated and flexible CASE and RAD tools.

. Better Machine Performance: OT leads to more efficient use of machine resources.

Figure 23-1. Benefits of Object Technology

It is widely believed that an OO approach to database design and implementation is

preferable for complex applications such as:

e CAD/CAM systems

e CASEtools

e Geographic information systems (GIS)

¢ Document Storage and retrieval systems

e Artificial intelligence (AI) systems and expert systems

Which approach is the better? This is a difficult question to answer. It depends on the

situation at hand, but the following is a summary of the alternatives:

e Truly function oriented systems with relational database and
procedural application development

e Truly OO systems involving (encapsulation of) both data
structure and operation

e Hybrid approach A with relational database and OO user
interface

e Hybrid approach B with object/relational database and OO user
interface

The first approach is a well-known traditional approach, and will not be discussed

further. The latter three approaches are more aligned to current practices in the software
engineering industry. They will be discussed in the upcoming sections.

380

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 © OBJECT DATABASES

23.2 Overview of Object-Oriented Database
Management Systems

In a truly object-oriented DBMS (OO DBMS), the following concepts hold (for more
details, see the references):

An object type is a concept or thing about which data is to be
stored, and a set of operations is to be defined.

An object is an instance of an object type.
An operation is a set of actions to be performed on an object.
A method specifies the way an operation is to be performed.

Encapsulation is the packaging of data structure and operations,
typically into a class. The internal structure of the class is hidden
from the outside, and only members (member functions) of the
class have access to it.

A subclass may inherit properties (structure or operations from
a subclass. Also a class may be comprised of several component
classes).

Polymorphism is the phenomenon where a given object or
operation may take on a different form, depending on the context
of usage.

Objects communicate by sending messages to each other. These
messages are managed via events; an object therefore responds to
events.

23.3 Challenges for Object-Oriented Database
Management Systems

A number of challenges stand in the way of achieving purely object-oriented DBMSs,
some of which have been articulated in [Date, 2004]. Figure 23-2 provides a brief
summary of these challenges.

381

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 © OBJECT DATABASES

1. OT as proposed by its ardent proponents, encourages generalization and the building of inheritance hierarchies
where objects consist of other objects (as in subtype, component and aggregation relationships. If pursued to their
logical conclusion without pragmatic deviations (as discussed in chapter 3), the system could break down into a
convoluted mess. Another related problem is that hierarchies, as we know, do not lend themselves to
representation of M:M relationships. Consider, for instance, an M:M relationship between Academic Program and
Course. How do we model and implement this in the OO paradigm? Do we assume that academic programs
contain courses or vice versa?. History has shown that hierarchical based systems (such as CODASYL) are
unsuited for complex distributed databases. For this reason, purely OO databases have been criticized as
“CODASYL warmed over.”

2. The OO model does not encourage the introduction of keys to uniquely identify objects, since object identifiers
(OIDs) are generated (as internal address) at the point of instantiation. Note however, that OIDs do not obliterate
the need for user keys, since end users still need to have a way of identifying objects separate and apart from
internal addresses. The problem is further compounded when we have intermediate transient objects, or what in
relational terminology is referred to as logical (virtual) objects such as a natural join record. In the OO model, there
is no way to negotiate these situations without duplicating data into separate storage variables which must be
maintained by the running program, thus increasing system overheads.

The relational model gracefully handles these situations by allowing the user to define keys and surrogates (note that
surrogates are not identical to OIDs). Then thanks to data independence, you can define multiple logical views on
physical data. It has been argued that encapsulation is to the OO model what data independence is to the relational
model. However, when analyzed, encapsulation is not a perfect replacement for data independence.

3. The OO model does not promote data sharing, a fundamental tenet of the relational model. At best, we could have
encapsulated objects sharing their data contents with other objects, but in a distributed environment database (or mere
network with one database server and several users), this would significantly increase the system overheads.

4. The matters of class, instance and collection are particularly difficult to negotiate. In the OO paradigm as we know, a
class is essentially a complex data type; an instance is a specific object which belongs to at least one class. Without
intense programmatic intervention, it would be difficult to determine a collection of objects belonging to a given class.

The relational model has no such problem. A relational table defines the type and contains the collection of
related data (objects) all in the same place. And as you are aware, this data can be shared and used to
construct any number of logical perspectives as required by external end users.

5. The perfect encapsulation of data structure and operation in a data model is still for the most part, an ideal. We have
seen complete achievement of this objective in the programming domain, but seldom in the database domain.

Figure 23-2. Challenges to Object-Oriented Database Management Systems

23.4 Hybrid Approaches

Due to the above-mentioned challenges, it is unlikely that we will see a proliferation

of purely object- oriented DBMS suites involving only encapsulated database objects

in the immediate future. The benefits of OT are therefore likely to continue to be more
significant in the area of user interface than database (of course with a few exceptions as
mentioned earlier). The relational model on the other hand, has long proven its worth.
The best we can therefore expect is a peaceful coexistence of both OO systems and
relational databases — a kind of hybrid. The next two subsections describe two hybrid
approaches.

382

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 © OBJECT DATABASES

23.4.1 Hybrid Approach A

In the Hybrid Approach A, a relational database is accessed by an OO user interface.
This means that the application development is done via an OO Programming Language
(OOPL), CASE tool, or RAD tool.

There is no shortage of OOPL (some of them pure OOPLs, others are hybrid OOPLs).
The more popular ones include C++, Java, C#, and Object Pascal. There are many object-
oriented CASE (OO-CASE) tools and RAD tools that support this approach. They include
(but are not confined to) products such as Team Developer, Delphi, Oracle JDeveloper,
WebSphere, NetBeans etc.

Three advantages of this approach are as follows:

1. It can facilitate legacy systems (software systems based on old
technology), which are prevalent in large organizations.

2. Itfacilitates peaceful coexistence of traditional and more
contemporary system approaches.

3. Itreaps the benefits of a relational database and OO
application development.

The main disadvantage of the approach is that it does not address the earlier
mentioned situations that warrant OO database design. However, the skillful database
designer can use techniques mentioned in Chapter 3 for implementing relationships
such as subtype, component and aggregation.

23.4.2 Hybrid Approach B

In this approach, a relational/object database (often referred to as a universal database) is
accessed via an OO user interface. Like the Hybrid Approach A, application development
is done via an OOPL, OO-CASE tool, or RAD tool.

The universal database supports both the relational database as well as the
0O database. The designer can therefore make critical decisions as to which approach
is preferred, given the scenario. The skillful database designer also has the flexibility of
employing techniques mentioned in Chapter 3 for implementing relationships such as
sub-type, component and aggregation.

Several of the leading software engineering companies have in recent times,
introduced products that support object databases. Examples include:

e IBM’s DB2 Universal
e Oracle Universal Database Server

e Informix’s Universal Data Option for its Dynamic Server

383

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 © OBJECT DATABASES

Advantages of the approach are as follows:

1. The strengths of the relational model and the OO model can
be emphasized, and the respective weak points avoided.

2. Legacy systems can be facilitated.

3. Itfacilitates peaceful coexistence of traditional and more
contemporary system approaches.

One possible disadvantage is that the database designer could be sometimes forced
to make difficult decisions on database design.

23.5 Summary and Concluding Remarks

It is time to summarize what we have discussed in this Chapter:

e OT provides several huge benefits to the software engineering
arena.

e An OO approach to database design may or may not bring
significant benefits, depending on the situation. In some
situations the OO approach is ideal; in others it is not.

e There are a number of challenges to object databases that do not
exist in a relational database.

e The most pragmatic approach for merging the benefits of the
relational model and the OO model is to superimpose an OO user
interface on a relational or universal database.

The strength of the relational model lies in its firm mathematical foundations, its
huge benefits, and the immense financial outlay that have been placed in relational
systems. This third fact is significant: Several large corporations have invested millions
of dollars hugely in relational databases. They are not likely to discard these investments.
The strength of the OO model lies in its huge benefits in certain situations, and its
intuitiveness. Given the strength of both models, we can expect them to continue to
peacefully coexist in the foreseeable future, complementing instead of rivaling each other.

23.6 Review Questions

1. Identify the main benefits that object technology brings to the
arena of database systems.

2. Describe the main features of the OO DBMS model.

3. Discuss the main challenges to the object-oriented database
management systems.

4. Discuss the hybrid approach to database systems.

384

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 © OBJECT DATABASES

23.7 References and/or Recommended Readings

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapters 25-26.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5 ed. Reading, MA: Addison-Wesley, 2007. See Chapters 20-22.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein and Philip M. Lewis. Database Systems:
An Application-Oriented Approach 2™ ed. New York, NY: Addison-Wesley, 2005.
See Chapter 14.

[Lee, 2002] Lee, Richard C. and William M. Tepfenhart. Practical Object-Oriented
Development With UML and Java. Upper Saddle River, NJ: Prentice Hall, 2002.

[Martin, 1993] Martin, James and James Odell. Principles of Object Oriented Analysis
and Design. Englewood Cliffs, NJ: Prentice Hall, 1993.

[Rumbaugh, 1991] Rumbaugh, James, et. al. Object Oriented Modeling And Design.
Eaglewood Cliffs, NJ: Pretence Hall, 1991.

[Silberschatz, 2006] Silberschatz, Abraham, Henry Korth, and S. Sudarshan. Database
System Concepts 5" ed. Boston, MA: McGraw-Hill, 2006. See Chapter 9.

385

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24

Data Warehousing

Since the mid1990s, database technology has expanded into a new area of interest — the
development and management of data warehouses. It is a fascinating field of study that
deserves some attention. This chapter provides an overview of data warehousing and
information extraction. The chapter proceeds under the following subheadings:

e Introduction

e Rationale For Data Warehousing

e Characteristics of a Data Warehouse

e Data Warehouse Architectures

e Extraction, Transformation and Loading

e Summary and Concluding Remarks

24.1 Introduction

The concept of a data warehouse springs from the combination of two sets of needs:

e The business requirement for a global view of information,
independent of and despite its source or underlying structure

e The need of information systems (IS) professionals to manage
large volumes of company data in a more effective manner

The data warehouse has been approached many times and from many directions in
the last decade; many implementations exist today. In order to proceed, we must make a
distinction between data and information:

e Datais the computerized representation of business information.

e Information is the assimilation of data to convey meaning as
understood and used by end users.

A data warehouse is an integrated, subject-oriented, time-variant, nonvolatile,
consistent database, constructed from multiple sources, and made available (in the form
of read-only access) to support decision making in a business context. As you will soon
see (in section 24.3), the highlighted terms in this definition are deliberate because of
their significance.

387

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

Here is an alternate definition: A data warehouse is a relational database that is
typically constructed from multiple transactional databases (called source databases),
and designed for query and analysis rather than transaction processing. The data
warehouse usually contains historical data that is derived from transaction data from
multiple sources. It separates analysis workload from transaction workload, and enables a
business to consolidate data from several sources.

In addition to a relational database, a data warehouse environment often consists
of an ETL (extract, transformation, and load) solution, an OLAP (on-line analytical
processing) engine, client analysis tools, and other applications that manage the process
of gathering data and delivering it to business users. End users typically require some
kind of catalog that describes the data in its business context, and acts as a guide to the
location and use of this information. Finally, end users require a set of tools to analyze
and manipulate the information thus made available.

As you are no doubt aware by now, achieving comprehensiveness and consistency
of data in today’s business environment is often a complex and challenging undertaking.
This is also true for a data warehouse. The following steps are necessary for the
construction of a data warehouse:

1. Conduct an information infrastructure analysis to determine
the required structure of the data warehouse.

2. Identify the source databases that will feed the data warehouse.

3. Design the integrated logical data model and determine the
architecture of the data warehouse.

4. Develop and implement a comprehensive meta-data
methodology.

5. Determine, and then implement the physical structure of the
data warehouse.

6. Design and implement an integrated staging area for the
data warehouse.

7. Extract, transform and load the data (from various sources)
into the data warehouse. This involves first cleansing the
source data of various structural and content errors.

8. Conduct comprehensive post-implementation review(s) to
ensure that the data warehouse is performing acceptably.

9. Maintain the data warehouse.

Data mining is the act of extracting data/information from assorted sources and
presenting information in a manner that is consistent with user requirement. Data
mining often implies the existence of data warehouses, so the two terms are closely
related. Another related term is information extraction (IE) —the extraction of structured
information from unstructured text. IE sometimes involve access of data warehouse(s)
either as the source or destination of information.

388

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

24.2 Rationale for Data Warehousing

Data warehousing is a technology that is fast enhancing more traditional decision support
systems (DSS), because of the added flexibility and benefits that the new technology
brings. Let us briefly examine the problems that DSS end users tend to have from two
perspectives — user constraints and information system (IS) constraints.

User Constraints: In the absence of data warehousing, users of traditional decision
support systems developed using the traditional application-driven approach, commonly
complained of the following difficulties:

¢ Difficulty in finding and accessing information needed
¢ Difficulty in understanding information found
e Information obtained is not as useful as expected

IS Constraints: In the absence of data warehousing, IS personnel also complained of
a variety of problems:

e Developing copy programs is often very challenging

¢ Maintaining copy programs and copy databases presents serious
integrity and work scheduling problems

e Data storage volumes tend to grow rapidly
e Database administration also tends to become quite complex

The solution to the above-mentioned problems is the implementation of a data
warehouse. A data warehouse provides the decision support benefits that a traditional
DSS provides, while providing more flexibility for expansion beyond the confines of the
company. This is so for two reasons:

¢ The data warehouse has the capacity to attract interest in
the salient facts about the organization, without providing
unnecessary details.

e While companies may be hesitant about putting their transaction
database(s) into the public domain (due to security and
confidentiality concerns), they are more likely to be willing to
put their data warehouse into the public domain (via the World
Wide Web).

24.3 Characteristics of a Data Warehouse

In the definition of a data warehouse, a number of terms were deliberately highlighted.
These terms convey important characteristics about a data warehouse. These will be
clarified in the next subsection. Next, we will examine what kind of data that is typically
stored in a data warehouse. We also examine the processing requirements of a data
warehouse. Finally, we will review twelve rules that govern data warehouses.

389

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

24.3.1 Definitive Features

In the introduction, it was established that a data warehouse is an integrated,
subject-oriented, time-variant, nonvolatile database. Let us briefly examine what these
adjectives mean.

Subject-Oriented: Data warehouses are designed to aid the analysis of data in order
to make decisions. For example, to learn more about your company’s sales data, you can
build a warehouse that concentrates on sales. Using this warehouse, you can answer
questions like “Who was our best customer for this item last year?” This ability to define
a data warehouse by subject matter, sales in this case, makes the data warehouse
subject-oriented.

Integrated: Integration is closely related to subject orientation. Data warehouses
typically contain data from disparate sources into a consistent format. They must resolve
such problems as naming conflicts and inconsistencies among units of measure. When a
data warehouse achieves this, it is said to be integrated.

Nonvolatile: Nonvolatile means that, once entered into the warehouse, data should
not change. This is logical because the purpose of a warehouse is to enable you to analyze
historical data.

Time-Variant: A data warehouse’s focus may change over time; also, it could grow
(in terms of data volume, data structure and complexity).

24.3.2 Nature of Data Stored

Of importance also, is the nature of data stored in a data warehouse. A data warehouse
differs from an operational database in the nature of data stored. An operational database
consists of a set of normalized relational tables that store atomic data. A data warehouse on
the other hand, stores decision support data, often in non-normalized, aggregated formats.
Three distinctions can be made between operational data and decision support data:

Time Span: Operational data represent atomic transactions
at specific points in time. Decision support data represent
(aggregated) data over a period of time.

Granularity: Operational data is atomic; decision support data
is often aggregated. Data warehouses contain decision support
data that have been aggregated from various sources and
transformed to its intended format.

Dimension: Operational data is instamatic; decision support
data is multi-dimensional, typically involving the dimension of
time as well as other factors of concern.

390

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

24.3.3 Processing Requirements

Data warehouses have very different processing requirements from OLTP systems and
operational databases, as explained below.

Workload: Data warehouses are designed to accommodate ad hoc queries. The
workload of the data warehouse might not be known in advance, so a data warehouse
should be optimized to perform well for a wide variety of possible query operations. OLTP
systems and operational databases support only predefined operations. Your applications
might be specifically tuned or designed to support only these operations.

Data Modifications: A data warehouse is updated on a regular basis by the ETL
process (run nightly or weekly) using bulk data modification techniques. The end users
of a data warehouse do not directly update the data warehouse. In OLTP systems and
operational databases, end users routinely issue individual data modification statements
to the database. The OLTP database is always up to date, and reflects the current state of
each business transaction.

Schema Design: Data warehouses often use non-normalized or partially normalized
schemas (such as a star schema) to optimize query performance. OLTP systems and
operational databases often use fully normalized schemas to optimize update/insert/
delete performance, and to guarantee data consistency.

The star schema was introduced in Chapter 5 (section 5.6); it is so widely mentioned
in database literature, it deserves a bit of attention: A star schema describes a mechanism
where there is a “central” table referred to as a fact table, and other so-called dimensional
tables that relate to the fact table via 1:M relationships. The dimensional tables contain
dimensional data about details stored in the fact table. While the star schema is
widely used in data warehouses, it is also applicable in operational databases as well.
Figure 24-1 provides an illustration of a star schema of five relational tables for tracking
the graduation statistics from a regional university that operates multiple schools and
programs in multiple locations. Tables Location, AcademicProgram, TimePeriod, and
School qualify as dimensional tables, while table GraduationSummary qualifies as the
fact table.

391

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

Location TimePeriod

LocCode TmCode

::gggﬁ;ne GraduationSummmary Img;adr%?rr

LocState GS_TmCode TmCommment

Primary Key [LocCode] gg‘gzz%z(éz Primary Key [TmCode]
GS_PgmCode

GS_NumberOfGraduates
GS_ReferenceNo

Primary Key [GS_ReferenceNo]

AcademicProgram School
Alternate Key [GS_TmCode,

PgmCode GS_LocCode, GS_SchCode, SchCode

PgmName GS_PgmCode] SchName

PgmDescription _

Primary Key [PgmCode] Primary Key [SchCode]

Note: The attribute GraduationSummary.GS_ReferenceNo has been introduced as a surrogate, to
avoid having a composite primary key. Also, the required foreign keys have already been included.

Figure 24-1. Illustration of a Star Schema for Graduations from a Regional University

Typical Operations: A typical data warehouse query may scan thousands or millions
of rows of data. For example, a data warehouse query may involve determining the total
sales for all customers in a specific time period. Except for sophisticated queries, a typical
OLTP or operational database operation accesses only a small percentage of records,
relative to the amount stored. For example, an operational query may involve retrieving
the current purchase order for a particular customer, from a table storing hundreds of
thousands of purchase orders.

Figure 24-2 provides a summary of what we have established so far: that a data
warehouse is typically constructed for various operational databases (sources), and
possesses certain characteristics.

392

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

N
e

Operational

Database /\

v
— (\ v
Information
<< Extraction
" = Extract Data Warehouse
Operational . ’ Load « Integrated
Database Filter :]
= Classify —_— " Sybject-Qnented
~— = Transform = Time-variant
= Aggregate . Nonvolat_ue
soe = Summarize = Summarized Data
= Integrate

~_

Operational
Database

Figure 24-2. Constructing a Data Warehouse

24.3.4 Twelve Rules That Govern a Data Warehousing

Data warehouse was first introduced by William Inmon in the 1990s; he still operates

as an expert in the field (see [Inmon, 2002] and [Inmon, 2007]). Like E.F. Codd and

C.J. Date of the relational model, Inmon introduced twelve rules for governing data
warehouses. These rules aptly summarize the previously mentioned characteristics of the
data warehouse. Many of these rules have been subsumed in the foregoing discussions.
Nonetheless, for emphasis, they are paraphrased below:

1. Separation: The data warehouse and operational database
environments should be separated.

2. Integration: The data warehouse data are integrated from
various operational sources.

3. Time Horizon: The data warehouse typically contains
historical data with an extended time horizon. This is in
contrast to a significantly shorter time horizon for the
operational databases that may be used as sources for the
data warehouse.

4. Nature of Data: The data in a data warehouse represent
snapshot captures (from operational data sources) at specific
points in time.

5. Orientation: The data contained in the warehouse are
subject-oriented.

393

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

6. Accessibility: The data warehouse is a predominantly
read-only database, with periodic batch updates from the
operational databases that are connected to it. It does not
support on-line interactive updates.

7. Life Cycle: The data warehouse development life cycle differs
from classical approach to database development in that
whereas the data warehouse development is data-driven, the
classical database approach tends to be process-driven.

8. Levels of Detail: In a typical data warehouse, there may be
several levels of detail. These include current detail, old detail,
lightly summarized data, and highly summarized data.

9. Data Set: The data warehouse is characterized by read-only
transactions on very large data sets. This is in contrast to the
operational database, which is characterized by numerous
update transactions on a more narrowly defined data set.

10. Relevance: The data warehouse environment has a system
that keeps track of all data sources, transformations and
storage. This is essential if the data warehouse is to maintain
its relevance.

11. Metadata: The data warehouse’s metadata forms a critical
component of its environment. The metadata provides the
following functions: definitions of data elements in the
warehouse; identification of data source, transformation,
integration, storage, usage, relationships, and history of each
data element.

12. Resource Usage: The data warehouse typically enforces
optimal usage of the data by enforcing some form of
chargeback mechanism for resource usage.

24.4 Data Warehouse Architecture

The architecture of a data warehouse varies depending upon the specifics of an
organization’s situation. Three common architectures have been identified:

e Basic Data Warehouse
e Data Warehouse With a Staging Area

e Data Warehouse With Staging Area and Data Marts

24.4.1 Basic Data Warehouse Architecture

Figure 24-3 shows a simple architecture for a data warehouse. End users directly access
data derived from several source systems through the data warehouse.

394

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

‘ Data Warehouse End User Presentation
Operational
Database /\) R

w Report Generators

A Visualization Tools
Summary Metadata - 5
Data - Modeling Tools
Operational Mining Tools

Database

i

Operational
Database

Figure 24-3. Basic Data Warehouse

The data warehouse consists of raw data (from operational databases), summary
data and metadata. Summaries are very valuable in data warehouses because they
pre-compute long operations in advance. For example, a typical data warehouse query
may be to retrieve something like aggregate sales for a specific period. In Oracle, this may
be implemented as a materialized view or snapshot relation set up for that purpose.

24.4.2 Data Warehouse Architecture with a Staging Area

In the basic data warehouse, you need to clean and process your operational data before
putting it into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building summaries and
general warehouse management. Figure 24-4 illustrates this typical architecture.

395

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

Y
—

Staging Area
Operational ang
Database / AN
Extract

~— » Transform
= Derive
© * Filter
= Aggregate
Operational — : ﬁ]ltl:fggze
Database 1]
— @
Operational 4
Database L
Load Data

End User Presentation

v /~ N
Data Warehouse /— _\
v Report Generators

Feed Data Visualization Tools

Data and Metadata > Modeling Tools

Mining Tools

~_

Figure 24-4. Data Warehouse with Staging Area

24.4.3 Data Warehouse Architecture with a
Staging Area and Data Marts

Although the data warehouse with staging area is quite common, you may want to
customize your warehouse’s architecture for different groups within your organization,
or across different related organizations. You can do this by adding data marts. A data
mart is a small, single-subject data warehouse that provides decision support for a
particular aspect (line) of the business. Figure 24-5 summarizes the approach for three
data marts. For example, the data marts may respectively represent information relating
to purchasing, sales, and inventory for an organization. A financial analyst would then be
able to conduct separate analysis on purchasing, sales and inventory, and then a global
analysis on the three aspects combined.

396

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

Y
N
Staging Area
Operational —l -
Database /ﬁ
= Extract
N~ = Transform
= Derive
O = Filter
= Aggregate
Operational : ﬁ::: Taatzze
Database °
S— @
Operational 4
Database L
Load Data

End User Presentation

Data Warehouse /ﬁ

\

Report Generators
Feed Data

Data Data >
Mart Mart

Visualization Tools

Modeling Tools
Mining Tools

Data Meta-

Mart data

Figure 24-5. Data Warehouse with Staging Area and Data Marts

24.5 Extraction, Transformation, and Loading

The data warehouse must be loaded regularly so that it can serve its purpose of
facilitating business analysis. To do this, data from one or more operational databases
needs to be extracted, transformed (where necessary), and copied into the warehouse.
The acronym ETL is often used to refer to this extraction, transformation and loading
of data. The acronym is perhaps too simplistic, since it omits the transportation phase
and implies that each of the other phases of the process is distinct. We refer to the entire
process, including data loading, as ETL. However, you should understand that ETL refers
to a broad process, and not three well-defined steps.

The methodologies and tasks of ETL have been well known for many years, and are
not necessarily unique to data warehouse environments. A wide variety of proprietary
applications and database systems are used as the IT backbone business enterprises.

397

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

Data are shared between applications or systems, trying to integrate them, giving at least
two applications the same picture of the world. This data sharing was mostly addressed
by mechanisms similar to what we now call ETL. Data warehouse environments face

the same challenge with the additional burden that they not only have to exchange, but
to integrate, rearrange and consolidate data over many operational systems, thereby
providing a new unified information base for business intelligence. Additionally, the data
volume in data warehouse environments tends to be very large.

24.5.1 What Happens During the ETL Process

During extraction, the desired data is identified and extracted from many different
sources, including database systems and applications. Very often, it is not possible to
identify the specific subset of interest, therefore more data than necessary has to be
extracted, so the identification of the relevant data will be done at a later point in time.
Depending on the source system’s capabilities (for example, operating system
resources), some transformations may take place during this extraction process. The size
of the extracted data varies from hundreds of kilobytes up to gigabytes, depending on the
source system and the business situation. The same is true for the time difference between
two (logically) identical extractions: the time span may vary between days/hours
and minutes to near real-time. Web server log files for example can easily become hundreds
of megabytes in a very short period of time. After extracting data, it has to be physically
transported to the target system or an intermediate system for further processing. Depending
on the chosen mode of transportation, some transformations can be done during this
process, too. For example, an SQL statement that directly accesses a remote target
through a gateway can concatenate two or more columns as part of the Select statement.
After transportation to the target system, the data may undergo transformation into
the desired formats for the target system. Once this process is completed, the data is
loaded into the data warehouse.

24.5.2 ETL Tools

Designing and maintaining the ETL process is often considered one of the most difficult
and resource-intensive portions of a data warehouse project. Many data warehousing
projects use ETL tools to manage this process.

Oracle Tools

Oracle Warehouse Builder (OWB) provides ETL capabilities and takes advantage of
inherent database abilities. Other data warehouse builders create their own ETL tools and
processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some
other tasks that are important for a successful ETL implementation as part of the daily
operations of the data warehouse and its support for further enhancements. The OWB
is quite a sophisticated component that facilitates the construction simple as well
as complex data warehouses, the population of them via the ETL process, and the
management of them.

398

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

DB2 Tools

As mentioned in Chapter 17, DB2 provides four main products for managing
data warehouses:

¢ InfoSphere Warehouse Departmental Edition

e InfoSphere Warehouse Departmental Base Edition
e InfoSphere Warehouse Enterprise Edition

e InfoSphere Warehouse Enterprise Base Edition

Each of these products (the latter being an upgrade of the former) consists of
related components that allow for the creation, population (via ETL transactions), and
management of data warehouses, according to organizational requirements.

24.5.3 Daily Operations and Expansion of the
Data Warehouse

Successive ETL transactions to the data warehouse must be scheduled and processed
in a specific order. Depending on the success or failure of the operation or parts of it,
the result must be tracked and subsequent, alternative processes might be started. The
control of the progress and the definition of a business workflow of the operations are
typically addressed by special ETL tools provided by the DBMS suite.

As the data warehouse is an active information system, data sources and targets
are not beyond the prospect of change. These changes must be maintained and
tracked through the lifespan of the system without overwriting or deleting the old ETL
process flow information. To build and keep a level of trust about the information in
the warehouse, the process flow of each individual record in the warehouse can be
reconstructed at any point in time in the future. With time, the data warehouse could
therefore expand into something larger and different.

24.6 Summary and Concluding Remarks

Here is a summary of what we have discussed in this chapter:

e Adatawarehouse is an integrated, subject-oriented, time-variant,
nonvolatile, consistent database, obtained from a variety of
sources and made available to support decision making in a
business context.

e Adatawarehouse is a relational database that is designed for
query and analysis rather than transaction processing.

e The data warehouse is updated via the ETL process.

e A data warehouse provides the decision support benefits that
a traditional DSS provides, while providing more flexibility for
expansion beyond the confines of the company.

399

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 DATA WAREHOUSING

e Data warehouses often use non-normalized or partially
normalized schemas to optimize query performance.

e Data warehouses should conform to Inmon’s twelve rules for data
warehouses.

e Three common data warehouse architectures are the basic
data warehouse, data warehouse with a staging area, and data
warehouse with a staging area and data marts.

The field of data warehousing is a fascinating breakthrough and is the subject of
many contemporary researches. Since it is relatively new, vast opportunities for data
warehouse architecture and ETL transaction optimization still abound. Data warehousing
is studied as an advanced course in several undergraduate degree programs, as well as
graduate programs. The supporting technologies are provided via products from the three
leading software engineering companies — IBM’s DB2, Oracle (from Oracle Corporation),
and Microsoft’s SQL Server. Additionally, these companies provide readily available
documentation on the topic.

With the advancement of the WWW and Web-accessible databases, it is anticipated
that the fascination in data warehousing will continue into the foreseeable future. And
speaking of Web-accessible databases, the next chapter discusses this topic.

24.7 Review Questions

1. Give the definition of a data warehouse. Clearly outline what
data warehousing entails.

2. Provide a rationale for data warehousing.

3. Describe a scenario that would warrant the use of a data
warehouse.

4. Discuss the main characteristics of a data warehouse in terms of:
e Definitive features
e Nature of data stored
e Processing requirements
¢ Rules that govern the data warehouse

5. State the three architectural approaches to data warehouse
design. For each approach, describe the basic architecture,
and provide a scenario that would warrant such an approach.

6. Clearly explain the ETL process. Give examples of ETL tools.

400

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © DATA WAREHOUSING

24.8 References and/or Recommended Readings

[Adelman, 2000] Adelman, Sid and Larissa Terpeluk Moss. Data Warehouse Project
Management. Boston, MA: Addison-Wesley, 2000.

[Connolly, 2002] Connolly, Thomas and Carolyn Begg. Database Systems:
A Practical Approach to Design, Implementation and Management 3" ed. New York,
NY: Addison-Wesley, 2002. See Chapters 30-32.

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapter 22.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5" ed. Reading, MA: Addison-Wesley, 2007. See Chapters 28 and 29.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern Database
Management 8" ed. Upper Saddle River, NJ: Prentice Hall, 2007. See chapter 11.

[IBM, 2008] IBM Corporation. Data Warehouse. http://www-01.ibm.com/software/
data/infosphere/warehouse/ (accessed October 2008).

[Inmon, 2002] Inmon, William. Building the Data Warehouse 3 rd ed. New York,
NY: John Wiley, 2002.

[Inmon, 2007] Inmon Associates Inc. http://www.billinmon.com/ (accessed October
2008).

[Oracle, 2008] Oracle Corporation. Oraclel0g Database Release 2. http://technetOracle.com
(accessed October 2008).

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapter 13.

[Silberschatz, 2006] Silberschatz, Abraham, Henry Korth, and S. Sudarshan. Database
System Concepts 5" ed. Boston, MA: McGraw-Hill, 2006. See Chapters 18 - 19.

401

www.it-ebooks.info

http://www-01.ibm.com/software/data/infosphere/warehouse/
http://www-01.ibm.com/software/data/infosphere/warehouse/
http://www.billinmon.com/
http://technetoracle.com/
http://www.it-ebooks.info/

CHAPTER 25

Web-Accessible Databasey

Another new area of database systems that has become widespread since the 1990s is
Web-accessible databases. The proliferation of these databases is strongly correlated to
the growth of the World Wide Web (WWW or W3); both phenomena have become part
and parcel of twenty-first century lifestyle, and both promise to be an integral part of life
in the foreseeable future. This Chapter provides an overview of Web-accessible databases.
The Chapter proceeds under the following subheadings:

¢ Introduction

e Web-Accessible Database Architecture

e Supporting Technologies

¢ Implementation with Oracle

e Implementation with DB2

e Generic Implementation via Front-end and Back-end Tools

¢ Summary and Concluding Remarks

25.1 Introduction

A Web-accessible database is simply a database that is accessible via the WWW. The
rationale for web-accessible databases can be easily appreciated when one considers
the huge benefits that they bring to the business community. Figure 25-1 provides a brief
discussion of some of the significant benefits.

403

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 * WEB-ACCESSIBLE DATABASES

Electronic Commerce: Through electronic commerce (E-commerce), companies are able to market their
products and services via on-line stores in a manner that was impossible prior to the WWW.

Broadening of Company Scope: The on-line market is not constrained by space, time, or geographic region.
Companies that trade in this market have virtually joined a global village in which resources and services are only
seconds away.

Convenience: Companies that use Web-accessible databases afford themselves easy access to critical company
information (preferably without sacrificing security) in very cost-effective way. These conveniences would have
much more expensive (if at all possible) if pursued via more traditional methods.

Improved Productivity: By using Web-accessible databases, companies often improve their productivity by
making use of resources that otherwise would have been more expensive (financially and in terms of time).

Improved Competitiveness: By using Web-accessible databases, companies often improve their competitive
advantage in the marketplace.

Other Benefits: In many cases, Web-accessible databases involve the use of distributed databases. In such
cases, the benefits of distributed databases (review section 22.2) also apply.

Figure 25-1. Significant Benefits of Web-Accessible Databases

25.2 Web-Accessible Database Architecture

In sections 2.6 and 2.7, we discussed the idea of separating a database system into front-
end and back-end. This principle is commonly used in implementing Web-accessible
databases. Two approaches are common: the two-tiered approach as represented in
Figure 25-2, and the three-tiered approach as represented in Figure 25-3. In the two-
tiered approach, client applications send requests to the DBMS, which is running on a
database server. These requests are processed according to some scheduling algorithm.
In the three-tiered approach, additional sophistication is provided by an intersecting
application server, which services client requests from various (heterogeneous)
applications and filters them to the DBMS for processing. This provides additional
flexibility and functionality to the system.

Users —>

Applications N -

DBMS

Database

Programming
Interface

Remote Access

Figure 25-2. Two-Tiered Approach to Web-Accessible Database

404

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 ' WEB-ACCESSIBLE DATABASES

Applications
- R Application
Users — N Server DBMS

Programming
Interface

A
Y

Remote Access

May or may not be Remote

Database

Figure 25-3. Three-Tiered Approach to Web-Accessible Database

As you view these two figures, bear in mind that users (in the figures) include
end-users as well as businesses making electronic requests from other Web-accessible
databases. This is so because there are two types of Web-accessible database systems that
are prevalent:

e Consumer-to-business (C2B) systems facilitate individual users
accessing a company database.

e Business-to-business (B2B) systems facilitate businesses
accessing other Web-accessible databases of other businesses in
a manner that is often transparent to the end-user. This relatively
new market provides huge opportunities for companies to
improve their efficiency and productivity by concentrating on
what they do best, and outsourcing non-essential functions that
other businesses provide more efficiently. This gives them the
opportunity to also forge powerful alliances for more effective
operation.

25.3 Supporting Technologies

The usefulness of separating front-end and back-end subsystems was illustrated in the
previous section. This strategy allows us to design and secure the database as a separate
activity from developing applications that access that database. Web applications could
be one of the many different applications that access the database. Following are some
supporting technologies for Web-accessible databases.

Web Servers: A Web server is a sophisticated software system that allows a computer
to provide various services to multiple client requests made via the WWW. The server
runs on an operating system (which runs on a computer). However, loosely speaking,
we usually refer to the entire package of machine and software as the Web server.

405

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 * WEB-ACCESSIBLE DATABASES

Popular Web server software products include Apache, Microsoft’s Internet Information
Service (IIS), CERN server, NCSA (National Center for Supercomputing Applications)
server, Spinner server, Plexus server, Perl server, Tomcat server, etc.

Server-side Extensions: A server-side extension is a software that communicates
with a Web server to handle assorted client requests. Often, the server-side extension
program acts as an intermediary between the Web server and the database, farming out
all SQL requests to the DBMS. Both the DBMS and the server-side extension program
must be ODBC-compliant. Products such as ColdFusion, Delphi, Java Studio Enterprise,
etc. qualify as server-side extension programs.

Web Server Interfaces: Web server interfaces facilitate the display of information on
dynamic Web pages. There are two popular categories:

e Common Gateway Interface (CGI) is a set of rules that specify
how parameters are passed between client programs and Web
servers. A client program that can run on a Web server is called a
script, hence the term CGI script. Common scripting languages
include JavaScript, Active Server Pages (ASP), and PHP. However,
high-level languages such as C++, Java, Per], etc. also qualify.

e Application Program Interface (API) is a set of routines, protocols
and tools that facilitate easy software construction. Since APIs are
typically shared code that is resident in memory (in the case of
Web technology, they reside on the Web server), they tend to be
more efficient than CGI scripts.

Extensible Markup Language (XML): XML is a meta-language that was designed
specifically to facilitate the representation, manipulation and transmission of structured
data over the WWW. It was first published by the WWW Consortium (W3C) in 1998, and
to no surprise, has become the de facto data exchange standard for e-commerce, thus
circumventing the pre-existing problem of interoperability among different Web servers.

XML was developed from an earlier standard called the Standard Generalized
Markup Language (SGML). And as expected, other XML-based languages are emerging.
Three examples are Extensible Business Reporting Language (XBRL), Structured Product
Labeling (SPL), and Extensible Style Language (XSL).

Simple Object Access Protocol (SOAP): The original emphasis of SOAP was to
support remote procedure calls (RPC). However, the norm is for SOAP messages to be
sent by web servers as XML documents (synchronous as well as asynchronous). SOAP
messages are frequently transmitted as the data portion of HTTP (hyper-text transport
protocol) messages.

406

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 ' WEB-ACCESSIBLE DATABASES

Hypertext Transport Protocol (HTTP): HTTP is the protocol used to transfer of
information over the WWW. It is characterized by a simply request-response structure
that represents interactions between a client (Web browser) and a Web server. It is
assumed that you are familiar with the Internet, basic Web page construction, Uniform
Resource Locators (URLs), domain names and other related issues.

Web Services Description Language (WSDL): The original authors of WSDL define
it as “an XML format for describing network services as a set of endpoints operating on
messages containing either document-oriented or procedure-oriented information”
[Ariba, 2001] WSDL can be construed as an interface definition language (IDL) with
bindings that clearly specify how the various components of a message are mapped.
WSDL messages are frequently transmitted as SOAP messages over HTTP.

Client-side Extensions: These add functionality to the Web browsers. Client-side
extensions are available in various forms. Following is a summary of the most commonly
encountered ones:

e Plug-ins: A plug-in is an external application program that
is automatically invoked by the Web browser when required.
For example, a Web browser, upon receiving a PDF (portable
document format) document will invoke the available PDF-reader
on the host operating system.

e Java: Asyou are no doubt aware, Java is a platform independent
programming language. Most operating systems have a Java
Virtual Machine (JVM), which allows Java code to execute on the
local machine (if there isn’t a JVM in the operating system, this is
readily available from the Sun Microsystems Web site). Calls to Java
routines are often embedded in HTML pages. When a Web browser
encounters this, it invokes the local JVM to execute the code.

e JavaScript: JavaScript is a Java-like scripting language (developed
by Netscape), but is much simpler. JavaScript code is often
embedded in Web pages. It is downloaded whenever the Web
page is activated, as well as on certain specific events (such as
loading of a specific page from the server, or a mouse-click, etc.)
Whenever the browser encounters this, it invokes the JavaScript
plug-in to execute this code.

e ActiveX: ActiveX is Microsoft’s alternative to Java. It works
perfectly in a Windows environment. Although possible in
other languages, C++ and Visual Basic are well known for their
facilitation of ActiveX controls.

407

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 * WEB-ACCESSIBLE DATABASES

VBScript: VBScript is another Microsoft product that is often
used to add functionality to the Web browser. Like JavaScript,
VBScript code is often embedded in Web pages. Invocation and
execution are also similar to JavaScript.

Cookies: Cookies are used to expedite user requests when the
user visits a site more than once. When the site is first visited,

the Web server creates a cookie with basic user information
(such as e-mail) and sends it to the browser. When the browser is
subsequently used to visit that site, the cookie, upon recognition
by the Web server, is used to expedite the user request.

25.4 Implementation with Oracle

Oracle implements a database that is by definition, Web-accessible (this applies since
Oracle 10G). This is achieved through the products Oracle Enterprise Manager, (OEM),
iSQL*Plus, Oracle JDeveloper, and Oracle SQL Developer in the following ways:

408

When you install the Oracle Server suite (including OEM) on
anode in your company or home network, the machine is
automatically configures as a database server.

Oracle automatically installs and configures a database listener
on database server to respond to incoming requests from client
nodes (running Oracle 10G or 11G Client) in the network, on the
internet, or an extranet.

Typically, your database server should have at least one database.
This can be created during installation, or subsequently via the
Oracle Database Configuration Assistant (DBCA) component.

You can access your database server from any machine

that has an internet connection, through OEM via the URL
http://<Machine.Domain>:5500/em (you supply the machine
name and domain name for your network). Of course, you will
need a valid user account, password, and appropriate privileges.

You can also access your database server from any machine that
has an internet connection, through Oracle’s iSQL*Plus via the
URL http://<Machine.Domain>:5560/isqlplus (again, you
supply the machine name and domain name for your network).
Again, you will need a valid user account, password, and
appropriate privileges.

Through Oracle JDeveloper (OJD), Oracle allows Web-accessible
Java-based applications to be constructed. These applications
may access local or remote Oracle (or heterogeneous) databases.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 ' WEB-ACCESSIBLE DATABASES

e Through Oracle Forms Developer (OFD), Oracle also allows
Web-accessible PL/SQL-based applications to be constructed.
These applications may access local or remote Oracle
(or heterogeneous) databases.

This development represents a huge step forward for Oracle, and has no doubt
fuelled its invigorated claim of being the leading software engineering firm for
Web-accessible databases.

25.5 Implementation with DB2

Like Oracle, DB2 implements a Web-accessible database (this applies to DB2 8 and
subsequent versions). This is achieved through the products DB2 Connect, DB2
Everyplace and WebSphere in the following ways:

e Ifyou configure a mainframe, or mini computer to be a DB2
server, and create your DB2 database on it, you can access the
database over an intranet, the Internet, or an extranet by running
DB2 Connect from your client machine. As in the case of the
Oracle database, you will need to know the machine name, the
domain name and port number that the database server listens
on, in order to connect to it.

e DB2 Everyplace is a miniscule version of DB2 that runs on mobile
devices such as personal digital assistants (PDAs), cell phones,
etc. DB2 Everyplace can be used as a local independent DBMS, or
to query information residing at a remote database server, via the
WWW.

e Through WebSphere, IBM allows Web-accessible Java-based
applications to be constructed. These applications may access
local or remote DB2 (or heterogeneous) databases. There is also
a WebSphere Everyplace version for PDAs, cell phones and other
pervasive devices.

Like Oracle, IBM also claims to be the leading software engineering firm for
Web-accessible databases. The truth is, both companies are archrivals at the top of the
database systems market.

409

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 * WEB-ACCESSIBLE DATABASES

25.6 Generic Implementation via a Front-end and
a Back-end Tool

This section describes a generic approach to constructing a Web-accessible database
system, based on front-end and back-end tools. The operation can be summarized in
two steps:

1. Create the database using an appropriate back-end tool.
The tool used must support ODBC, JDBC, or both. Of course,
itis assumed that appropriate planning and design as
discussed in earlier Chapters, have taken place.

2. Create the Web-application using an appropriate front-
end tool that incorporates the requisite Web-supporting
technologies as discussed in section 25.3. The tool must
support ODBC and/or JDBC, and must facilitate code in at
least one of the accepted scripting languages (JavaScript,
PHP, ASP, etc.). It must also support XML. Again, the basic
assumption is that sound principles of software engineering
will be used to design the user interface as a pre-requisite to
this activity.

Figure 25-4 provides a list of commonly used tools. They have been listed in three
categories: front-end tools, back-end tools, and programming languages. In each, it is
recommended that you use the most current version of the stated software product
(for the RAD tools and DBMS suites, the versions stated are simply safe starting points).

Product | Parent Company
Front-end RAD Tools that Support Web-Accessible Databases

Delphi 2005 Embarcadero Technologies
WebSphere 6.0 IBM

NetBeans 6.0 Sun Microsystems
ColdFusion MX7 Macromedia
Oracle JDeveloper 10G Oracle

Visual Studio 2005 Microsoft
Relational and/or Universal DBMS Suites

DB2 8.2 IBM

Oracle 10G Oracle

SQL Server 2005 Microsoft

Informix 10 IBM

MySQL 5.0 MySQL AB
Programming/Scripting Languages

Java, C++, Object Pascal, JavaScript, PHP, XML, ASP, VBScript, Perl

Figure 25-4. Commonly Used Tools for Web-accessible Databases

410

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 ' WEB-ACCESSIBLE DATABASES

25.7 Summary and Concluding Remarks

Let us summarize what we have covered in this Chapter:

A Web-accessible database is simply a database that can be
accessed via the WWW.

Web-accessible databases provide a number of benefits to
companies and individuals that implement and/or use them.
Among the benefits are facilitation of e-commerce, broadening
of the company’s scope of operation and market reach, a wide
range of conveniences, improved productivity, and improved
competitive advantage.

A Web-accessible database may be implemented as a two-tiered
system or a three-tiered system. Additionally, they may be C2B
or B2B.

The supporting technologies for Wed-accessible databases
include Web servers, server-side extensions, server interfaces,
XML, SOAP, WSDL, and client-extensions.

Both Oracle and DB2 implement Web-accessible databases as a
matter of policy.

Implementation of a Web-accessible database can be
summarized into two simple but profound steps: creating

the database and creating the Web-accessible user interface. The
tools used must meet minimum industry standards.

Web-accessible databases are among one of the technology-related phenomena that
have transformed life in the twenty-first century. They are expected to continue to be an
integral part of life in the foreseeable future.

This takes us to the end of the chapters for the course. If you understand most of the
issues discussed, and now have a desire to delve more deeply into some aspects of the
field, then the course has succeeded in its intent. If you find that you now have a strong
desire to make database systems one of your areas of expertise, then welcome to the
community! You will find it a wonderfully rewarding and progressive field.

25.8 Review Questions

1.

Give the definition of a web-accessible database. Provide
justification for their existence.

Discuss two example of the usefulness of Web-accessible
databases.

Discuss the two-tiered approach to implementing Web-
accessible database. When should you use such an approach?

411

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 * WEB-ACCESSIBLE DATABASES

4. Discuss the three-tiered approach to implementing
Web-accessible database. When should you use such
an approach?

5. Briefly describe the main supporting technologies for
Web-accessible databases.

6. Describe how Oracle implements Web-accessible databases.
7. Describe how DB2 implements Web-accessible databases.

8. Describe a generic approach for implementing a
Web-accessible database. What precautions must be taken?

25.9 References and/or Recommended Readings

[Ariba, 2001] Ariba, IBM Corporation, and Microsoft. Web Services Description Language
(WSDL) 1.1. http://www.w3.0rg/TR/wsdl (accessed August 2009).

[Date, 2004] Date, Christopher J. Introduction to Database Systems 8" ed. Menlo Park,
CA: Addison-Wesley, 2004. See Chapter 27.

[Elmasri, 2007] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database
Systems 5% ed. Reading, MA: Addison-Wesley, 2007. See Chapters 26 and 27.

[Hoffer, 2007] Hoffer, Jeffrey A., Mary B. Prescott and Fred R. McFadden. Modern
Database Management 8" ed. Upper Saddle River, NJ: Prentice Hall, 2007. See Chapter 10.

[Kifer, 2005] Kifer, Michael, Arthur Bernstein and Philip M. Lewis. Database Systems:
An Application-Oriented Approach 2" ed. New York, NY: Addison-Wesley, 2005.
See Chapter 17.

[Riccardi, 2003] Riccardi, Greg. Database Management With Web Site Development
Applications. Boston, MA: Addison-Wesley, 2003. See Chapters 12-15.

[Rob, 2007] Rob, Peter and Carlos Coronel. Database Systems: Design, Implementation &
Management 7" ed. Boston, MA: Course Technology, 2007. See Chapter 14.

[Silberschatz, 2006] Silberschatz, Abraham, Henry Korth, and S. Sudarshan. Database
System Concepts 5™ ed. Boston, MA: McGraw-Hill, 2006. See Chapter 10.

[W3C, 2003] World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3.0rg/XML/ (accessed August 2009).

412

www.it-ebooks.info

http://www.w3.org/TR/wsdl
http://www.w3.org/XML/
http://www.it-ebooks.info/

PART F

Final Preparations

This penultimate division has two objectives:

e tohelp you to review and assimilate the concepts and
principles covered in the course so that you will be able to
apply them to real situations;

e to help you prepare for final examinations.

The division consists of a final chapter that includes sample examination
questions and case studies for your usage.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

Sample Exercises
and Examination Questions/

This final chapter of sample exercises, examinations, and case studies, will proceed under
the following captions:

e Introduction

e Sample Assignment 1A

e Sample Assignment 2B

e Sample Assignment 3A

e Sample Assignment 4A

e Sample Assignment 5A

e Sample Assignment 6A

e Sample Assignment 7A

e Sample Assignment 8A

e Sample Interim Examination A
e Sample Interim Examination B
e Sample Final Examination A

e Sample Final Examination B

e Sample Final Examination C

26.1 Introduction

This chapter provides you with some sample examination questions and case studies,
designed to help you solidify in your mind, the concepts and principles covered in the
course. The problems are arranged in assignments and examinations. The intent is to
enlighten you to the type of problems they are likely to be asked to solve.

415

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Generally speaking, assignment questions are more demanding than examination
questions, and require more time. You will also observe that most of the examination
questions are drawn from actual assignments. You should therefore do the assignments
before attempting the examinations. The suggested weight (in points) for each question
is indicated immediately following the question in curly brackets.No solution is provided
for the problems posed in this chapter, for the following reasons:

e The problems are intended to test your understanding of the
materials covered. If you find that you are struggling with the
solution to a problem, then you need to review the relevant
sections before continuing.

e Insome cases (particularly where you are asked to design a
database), there may be more than one solution to the problem(s)
posed. This in typical in software engineering as well as in
database systems, where you analyze alternate solutions to a
problem, and choose the most prudent one.

e Ifyour are using this book as a prescribed text for a course in
database systems, your professor will want to have a say in what
questions you ought to focus on.

26.2 Sample Assignment 1A

Zealot Industries Inc. is a manufacturing firm with over 2000 employees. The firm has been
expanding well beyond the founders’ expectations. However, it faces a severe hindrance
to additional expansion — the absence of a computerized Human Resource Management
System (HRMS) that could facilitate management of human resource related issues.
Precision Software Inc. is a software engineering firm contracted to develop
and implement the HRMS project. After a preliminary meeting with Zealot’s senior
management, the lead software engineer on the Precision Software team documents his
findings as follows:

e Adetailed employee profile consists of the employee’s personal
information, employment history, education history and
beneficiary information.

e Everyemployee belongs to a department, and is assigned a
specific job description (there may be several employees with the
same job description).

¢ Employees are classified according to the salary range that they
fall in.

e Each employee has a compensation package which outlines basic
salary and other benefits. Benefits include health insurance,
retirement plan, life insurance, professional development
allowance, housing allowance, traveling allowance, entertainment
allowance, vacation allowance, and education allowance.

416

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

A payroll log keeps track of remuneration paid out to employees.

Each employee is assigned to at least one project; the number
of employees assigned to a project depends on the size and
complexity of the project.

Identify all information entities (object types) mentioned or
implied in the case. {10}

Identify all relationships among the entities (object types) and
represent them on an ERD or ORD. {20}

Use the information in the case, combined with the
information conveyed by the E-R diagram and your own
intuitive design skills to propose relations and their associated
attributes for each of the entities represented on the E-R
diagram. You may also introduce additional relation(s) to take
care of M:M relationship(s) which may exist. {60}

26.3 Sample Assignment 2B

1.

What are the possible advantages of using distributive
processing in a database system environment? {o6}

What are the problems that can be experienced from having
non-normalized files in a system? {06}

Relation R(AB C....K) is in INF only. The following FDs hold:

a. Primary key is (ABC)

b. A>D
c. B-—>E
d F->GHI
e. J>B
f. K=>C

g. (AF)->>J/K

By repeatedly using Heath's or Fagin’s theorems, decompose
Rinto a set of 5NF relations. Show how the new relations
will be keyed. {15}

417

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

4. The following atomic data elements were taken from the data
dictionary of an inventory system:

Item Number [ITM#]

Item Last Price [ITMLP]

Item Average Price [ITMAP]
Category Description [CTGDES]
Order# [ORD#]

[tem Ordered [ORDITM]

Order Status [ORDSTS]

Invoice Received Date [RCVDATE]
Quantity Received [RCVQTY]
Requisition Date [RQSDATE]
Department Requesting [RQSDEPT]
Requisition Honor Date [RQSHDATE]
Issue Number [ISS#]

Department Receiving the Issue [ISSDPT]

Item Name [ITMNAME]

Item On Hand Quantity [ITMQOH]
Item Category Code [ITMCTG]
Item Supplier [[ITMSPLR]

Order Date [ORDDATE]

Quantity Ordered [ORDQTY]
Invoice Number [INV#]

Item Received [RCVITM#]
Invoice’s Related Order [INVORD#]
Requisition Number [RQS#]

Issue Date [ISSDATE]

Quantity Issued [ISSQTY]

Item Issued [ISSITM]

Item Issue Price [ISSPRC]

Group the attributes into related entities. Then for each entity, identify
the FDs, then normalize it. Grade may be assigned as follows:

Identification of all possible FDs.

{11}

Putting the elements into normalized relations. You may
introduce elements as required with appropriate explanation.

{44}

26.4 Sample Assignment 3A

1. Define the following terms:
Candidate key
Foreign key
Functional dependence

Transitive dependence

{02}
{02}
{03}
{03}

2. Give the primary key and the highest normal form of each of
the following relations. State any assumptions made and give

reasons for your answers.

Student {Student#, Name, Address, Gender, Age DOB}

{o3}

Flight {Flight#, Date, Seats-Available, Flight-Time,

From-City, To-City}

418

{o3}

www.it-ebooks.info

http://www.it-ebooks.info/

3a.
3b.

3c.
3d.
3e.

4a.
4b.

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Account {Account#, Customer#, Customer-Name, Balance}
{03}

Supply {Part#, Quantity, Supplier#, Supplier-Address}
{03}

In the relation Participation, are attributes Manager, Project,
Hours (spent on project per month), Salary. A manager's
salary is fixed, and he/she can work on many projects.

Draw a FD diagram of the relation. {03}
Would you store Participation as defined?

Justify your answer. {04}
Provide some sample data for the relation. {04}

What is the highest normal form of Participation? {03}

Show how you would design a conceptual schema to store the
data mentioned for relation Participation? {11}

A scientific research establishment organizes its work in
projects, each project consisting of several experiments.
For each experiment, the following is recorded:

Project number

Project manager

Project name

Experiment number

Experiment name

Lab in which experiment is to be conducted
List of scientists to work on the project

Note: A project manager may work on an experiment.

A scientist may work on more than one experiment, provided
that they are done in the same lab. A manager may manage
more than one project.

From the information given, develop an ERD. {10}

Using the XR model, derive a set of BCNF relations for the
system. Use self- explanatory relation and attribute names
(you may introduce new attributes). {20}

419

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

5. Figure 26-1 provides a snapshot of a live database. Primary
keys are highlighted. Based on the data, derive an E-R

diagram (state any assumptions made). {10}
Warehouse
WhNo City Size (Sq.ft.)
WH1 Seattle 37,000
WH2 New York 50,000
WH3 Miami 20,000
WH4 Boston 13,000
Employee
WhNo EmpNo Salary ($US)
WH2 E1 42,000
WH1 E3 61,000
WH2 E4 65,000
WH3 E6 63,000
WH1 E7 55,000
Supplier
SNo Sname Location
S3 Wilson Jamaica
S4 Barnes USA
S6 Jones UK
S7 Lewis Singapore
PurchaseOrder
EmpNo SNo OrderNo OrderDate
E3 S7 OR67 840623
E1 S4 OR73 840728
E7 S4 OR76 840525
E6 S6 OR77 840619
E3 S4 OR79 840623
E1 S6 OR80 840729
E3 S6 OR90 850622
E3 S3 0R91 850713

Figure 26-1. Snapshot of a Database

420

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

26.5 Sample Assignment 4A

Figure 26-2 provides basic specifications for a music database. Carefully analyze the
figure, and answer the questions that follow.

Relational Table Primary Key or Candidate Keys
Musicians {MNO, MNAME, DOB, MCOUNTRY} Primary key [MNO]

Compositions {CNO, TITLE, MNO, CDATE} Primary key [CNO]

Ensembles {ENO, ENAME, ECOUNTRY, MNO_MGR} Primary key [ENO]

Performances {PNO, PDATE, CNO, CITY, PCOUNTRY, ENO} | Candidate keys [PDATE, ENO], [PNO]
Ensemble_Members {ENO, MNO ,INSTRUMENT} Primary key [ENO, MNO]

Figure 26-2. Basic Specifications Music Database

1a.

1b.

1c.

1d.

1e.

1f.

1g.

1h.

1i.

Write relational calculus statements to realize the following:

Registered musicians (MNO and MNAME) from USA or JAM
(where “USA” and “JAM” are abbreviated codes for United
States and Jamaica respectively). {03}

List every ensemble (ENO) that includes a SAXAPHONE or
CLARINET player. {03}

Give the ENO of every ensemble that includes a SAXAPHONE
but not a CLARINET player. {04}

List all compositions (CNO and TITLE) by MOZART. {04}

List all performances (PNO, CNO, MNO, and PCOUNTRY) of
compositions in the country of origin. {o6}

Give the ENO of every ensemble that includes a SAXAPHONE
or CLARINET player, but not both. {06}

Find CNO for compositions all of which have been
performed in USA. {03}

List countries in which MOZART's compositions have
been performed. {03}

Give ENAME of ensembles whose manager is
RUSSIAN. {03}

Write relational algebra statements corresponding
to each of the relational calculus statements
of question #1. {35}

421

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

26.6 Sample Assignment 5A

The (cross-section of the) college database introduced in chapter 7 (and discussed in
subsequent chapters) is repeated here (Figure 26-3).

Student {Stud#, Sname, Fname, Sex, Addr, Spgm#, S_Hall#, DoB ...}
Primary Key [Stud#]

Program {Pgm#, Pgmname ...}

Primary Key [Pgm#]

Hall {Hall#, Hallname ...}
Primary Key [Hall#]

Dept {Dept#, Dname, Dhead#, D_Div#}
Primary Key [Dept#]

Dhead# references Staff.Staff#
D_Div# references Division.Div#
Staff {Staff#, Staffname ...}
Primary Key [Staff#]
Course {Crs#, Crsname ...}
Primary Key [Crs#]

Pgm_Struct {PSPgm#, PSCrs#, PSCrsSeqn)
Primary Key [PsPgm#-PsCrs#]
PsPgm# references Program.Pgmi#
Pscrs# references Course.Crs#

Division {Div#, Divname, Dvhead# ...}
Primary Key [Div#]

Dvhead# references Staff.Staff#

Figure 26-3. Cross Section of College Database Requirements

1. Write SQL statements to create these tables in your schema of
the class database. You may add additional attributes to the
structure of each database table, as you deem appropriate.
Store these statements in an SQL script file. {40}

2. Useyour SQL script file to create the tables in the class
database. {16}

3. Populate your tables with sample data (at least six records per
table). {16}

422

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

26.7 Sample Assignment 6A

Figure 26-2 is repeated as Figure 26-4 for ease of reference. Carefully analyze the figure,
and answer the questions that follow.

Relational Table Primary Key or Candidate Keys
Musicians {MNO, MNAME, DOB, MCOUNTRY} Primary key [MNO]

Compositions {CNO, TITLE, MNO, CDATE} Primary key [CNO]

Ensembles {ENO, ENAME, ECOUNTRY, MNO_MGR} Primary key [ENO]

Performances {PNO, PDATE, CNO, CITY, PCOUNTRY, ENO} | Candidate keys [PDATE, ENOJ, [PNO]
Ensemble_Members {ENO, MNO ,INSTRUMENT} Primary key [ENO, MNO]

Figure 26-4. Basic Specifications for Music Database

2a.

2b.

2c.

2d.

2e.

2f.

2g.

2h.

2i.

Write appropriate SQL statements to create the tables
specified in the figure (you may assign appropriate column
types and lengths). Also include important integrity
constraints. {30}

Write SQL statements to realize the following:

Registered musicians (MNO and MNAME) from USA or JAM
(where “USA” and “JAM” are abbreviated codes for United
States and Jamaica respectively). {03}

List every ensemble (ENO) that includes a SAXAPHONE
or CLARINET player. {03}

Give the ENO of every ensemble that includes a SAXAPHONE
but not a CLARINET player. {04}

List all compositions (CNO and TITLE) by
MOZART. {o4}

List all performances (PNO, CNO, MNO, and PCOUNTRY)
of compositions in the country of origin. {o6}

Give the ENO of every ensemble that includes a SAXAPHONE

or CLARINET player, but not both. {o6}
Find CNO for compositions all of which have been
performed in USA. {03}
List countries in which MOZART's compositions have been
performed. {04}
Give ENAME of ensembles whose manager is RUSSIAN.
{o3}
Define and specify SQL views to realize the above
requirements. {36}

423

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Given the above database, and assuming an Oracle 10g
environment, show what the contents of the system catalog
tables User_Tables (attributes Table_Name and Tablespace_
Name) and User_Columns (attributes Column_Name and
Table_Name) would be. {10}

The above database may be refined by introducing a
Countries table, and adjusting three other tables to each have
a foreign key that references this table. Show the required
SQL statements to make this adjustment. {12}

26.8 Sample Assignment 7A

For each question, show the SQL statement(s) that you have used in order to address
the question.

1.

2a.

2b.

2c.

2d.

424

Create a test table called JonesB_TestTable (where “JonesB”
represents your user name) and populate it with some
sample data. {10}

Create a role and for its name, use the concatenation of
your user account and the word “Role.” For instance, the
role may be called JobesB_Role (where “JonesB”
represents your user name). {02}

Grant to your role the system privileges that facilitate
application development (see section 13.2.2 for
guidelines on this). {11}

Grant to your role, SUDI privileges on JonesB_TestTable
(review section 13.2.3 for the SUDI privileges). {04}

There is a catalog table that you can access to see all the
system privileges granted to all roles in the system. Its name
is Role_Sys_Privs. Study its structure, and then issue an
appropriate SQL statement to display the system

privileges associated with your role. Show the SQL
statement used. {06}

www.it-ebooks.info

http://www.it-ebooks.info/

3a.

3b.

3c.

3d.

3e.

3f.

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Create a test user account called JonesB_User (where
“JonesB” represents your user name). Assign the user to your
tablespace; also use a password that you will remember. Your
current tablespace name is TBS_JonesB (where “JonesB”
represents your user name). {04}

Try logging on to the database as JonesB_User. Record
the result of your attempt, and provide an explanation
for this observation. {04}

Log on with your normal user account and grant your
role (created in 2a) to user JonesB_User. {02}

Try logging on as JonesB_User once more and record the
result of your attempt. Provide an explanation for this
observation. {04}

Log on as JonesB_Useer and try running a query on your

test table. To do this, you must either create synonym for
JonesB_TestTable in the schema of JonesB_User, then run
the query on the synonym, or you must qualify the table name
when you run the query on JonesB_TestTable. Record the
result of your attempt, and explain why you obtained that
result. {10}

Switch to your normal user account and revoke the SUDI
privileges on JonesB_TestTable from your role. {04}

Log on as JonesB again and try running a query on your
JonesB_TestTable. Record the result of your attempt.
Provide an explanation for this result. {06}

26.9 Sample Assignment 8A

1.

21
2.2

2.3

Identify and summarize five issues to be addressed in
database administration. {12}
Give the definition of a distributed database system. {03}

What is the difference between database fragmentation
and database replication? Cite a situation that would
warrant each. {04}

State and clarify four of Date’s twelve rules for distributed
databases. {12}

425

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

2.4.

3.1.

3.2.

SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Discuss two challenges to distributed databases, and alternate
approaches for addressing each challenge. {08}

Describe two challenges to OO database management
systems. {06}

Describe one hybrid approach that facilitates the
peaceful coexistence of relational databases and
object technology. {04}

26.10 Sample Interim Examination A

Instruction: Answer all four questions.

1a.

1b.

1c.

2a.

2b.

3a.

3b.
3c.

4a.

426

What are the main components of a Database System? With
the aid of a diagram, show how they are related.

{10}
State six objectives of a database system. {06}

What is meant by data independence? Using example(s)
explain its importance. {04}

Clarify the terms external schema, conceptual schema and
internal schema. {06}

Clarify the terms data sub language (DSL), data definition
language (DDL) and data manipulation language (DML).

Relate SQL to these terms. {08}
What are the main functions of the DBMS? {06}
Give two examples of a DBMS. {02}

What are the functional components of the DBMS? By use of a
diagram, show how they are related. {12}

Define the following terms:

Primary key {02}
Foreign key {o2}
Attributes {o2}
Relation {o2}
Domain {03}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

4b. Figure 26-5 is an excerpt from the database design proposal
for a college administrative management system:

Relation Attributes Primary Key
Program ProgNum, ProgName ProgNum
Course CrsCode, CrsName, CrsCredit CrsCode
Pgm_Struct ProgNum, CrsCode, CrsSequence ProgNum & CrsCode
Chapterr LectNum, LectName LectNum
Class ClassCode, ClassDescr ClassCode
Class_Sched Period, CrsCode, LectNum, ClassCode Period & ClassCode

Figure 26-5. Excerpt from College Database Proposal

Study the figure and answer the following questions:
Identify all foreign keys. {02}

Describe verbally how you could obtain a list of course
names and chapterr names, lecturing these courses at
specific times. {02}

Explain verbally how you could obtain a list of program
names and course names in appropriate order for the
college bulletin. {02}

26.11 Sample Interim Examination B

Instruction: Answer all five questions.

1a.

1b.

1c.

1d.

2a.

2b.

3a.

What is a database? {02}

State four primary objectives and four secondary objectives of
a database system. {08}

What is data independence? Explain its importance in the
design of a database. {06}

State four advantages that a DBS has over traditional file
processing systems. {04}

Briefly describe the three levels of architecture in a
database system. You may use diagram(s) in your
explanation. {10}

With the use of diagram(s) where necessary, explain how
communication is achieved among end users, the database,
application programs, DBMS and the hardware. {10}

State four functions of the DBMS. {04}

427

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

3b.

3c.

SAMPLE EXERCISES AND EXAMINATION QUESTIONS

ITC Software Inc. is developing a database system for one

of its clients, X-Don Inc., based in Miami, Florida. X-Don

has experienced Windows users. They use the Oracle
RDBMS. Additionally, X-Don has very experienced Oracle
Programmers. However, it is strategically imprudent for ITC
Software to design and develop the database in Oracle or

on the Windows platform. They prefer to work on the Linux
platform, using a product called Kylix and PHP. To complicate
matters, ITC Software operates out of Port of Spain, Trinidad.
ITC Software therefore desires to access the X-Don’s database,
hosted in Miami, via telecommunication linkage. Is the
project feasible? Using block diagram, explain how the
project could be implemented. {o8}

Briefly explain the following: Data Definition Language (DDL);
Data Manipulation Language (DML); Data sub-language

(DSL); Structured Query Language (SQL) {08}
4. Developing an inventory management system is standard in most
organizations. The main entities to be identified are Purchase
Orders, Receipts (of goods), Inventory (Items), Inventory
Categories, Inventory Requisitions, Departments, Inventory
Issues. Next, we identify relationships among the entities:
e Departments make requisitions for inventory items;
e Issues of inventory are made to departments in response to
requisitions;
e Purchase orders are made to suppliers for inventory items;
e Goods received are normally accompanied by an invoice,
specifying the items and cost (of course, invoices come from
suppliers);
e Eachinventory item is assigned a category.
4a. From the information given, draw an ERD for the
inventory management system described. {10}
4b. For each relationship, state whether mandatory or
optional; 1:1 or 1:M or M:M or M:1. {10}
5a. Write brief notes on five of the terms in following list
(Figure 26-6): {10}
Entity Relation Attributes
Entity set Tuples Candidate Key
Primary Key Foreign Key Degree
Cardinality Domain Scalar Values

Figure 26-6. Basic Terms Used in the Relational Model

428

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

5b. Complete the following triplets with the most appropriate
words or expressions to be taken from the list provided

below (Figure 26-7). {10}
Relation
Rows
Number of Fields
Attributes
Number of Rows

List od Terms:

Binary Number of columns Decomposable
N-ary File Degree

Table Spurious Number of records
Fields Elements Base

Records Snapshot Tuples

Columns Cardinality Normalized

Figure 26-7. Database Terminology Puzzle

26.12 Sample Final Examination A

This examination consists of nine (9) questions distributed over four (4) sections. You are
required to do four (4) questions, but no more than one question from a section.

Section A: Do all questions from this section.
1.

1a. What are the main components of a database system?
With the aid of a diagram, show how they are related. {10}

1b. State six (6) objectives of a database system. {06}
1c. Give four (4) examples of popular DBMS suites. {04}
2.

2a. Briefly clarify the terms external schema, conceptual schema
and internal schema.By use of an appropriate diagram,
show how the three terms are related. {10}

2b. Explain what is meant by data sub-language (DSL), data
definition language (DDL) and data manipulation language
(DML). How does SQL relate to these terms? {04}

429

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

2c. State four (4) significant roles/functions of the DBMS.

{o4}

2d. What is the difference between a DBMS and a compiler?

{02}

Section B: You may do one question from this section.

3.

The following atomic data elements were taken from the data
dictionary of an inventory management system:

Item Number [ITM#]

Item Last Price [ITMLP]

Item Average Price [ITMAP]
Category Description [CTGDES]
Order# [ORD#]

Item Ordered [ORDITM]

Order Status [ORDSTS]

Receipt Date [RCVDAT]

Quantity Received [RCVQTY]
Requisition Date [RQSDAT]
Department Requesting [RQSDPT]
Requisition Honor Date [RQSHDT]
Issue Number [ISS#]

Item Issue Price [ISSPRC]
Department Receiving the Issue [ISSDPT]

Item Name [ITMNAM]

Item On Hand Quantity [[TMQOH]
Item Category Code [ITMCTG]
ltem Supplier [[TMSPLR]

Order Date [ORDDAT]

Quantity Ordered [ORDQTY]
Invoice Number [INV#]

Item Received [RCVITM]
Invoice's Related Order [INVORD]
Requisition Number [RQS#]

Issue Date [ISSDAT]

Item Issued [ISSITM]

Quantity Issued [ISSQTY]

Figure 26-8a. Excerpts from Inventory Management System

Put the elements into normalized relations, clearly stating
the basis for your decision. You may introduce data
elements as required. Clearly state any assumptions or

observations made.

{20}

4a. Complete the following triplets with the most appropriate
words or expressions to be taken from the list provided in

Figure 26-8b.

{10}

4b. Give a formal definition of a relation. Clarify any ambiguity
that may exist between an entity and a relation. {04}

4c. State three (3) kinds of relations that may be found in a
database; explain what each is with an example. {06}

430

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Relation

Rows

Number of Fields

Attributes

Number of Rows
List od Terms:
Binary Number of columns Decomposable
N-ary File Degree
Table Spurious Number of records
Fields Elements Base
Records Shapshot Tuples
Columns Cardinality Normalized

Figure 26-8b. Database Terminology Puzzle

5.

5a. State and briefly clarify two integrity rules that must
govern a database. {04}

5b. How should deletion of referenced tuples be treated?
Give an appropriate example. {06}

5¢. Suppose that it is desirable to record the following
information in a normalized database:

Course [C]
Teacher [T]
Hour [H]
Room [R]
Student [S]
Grade [G]

Assume that the following dependencies hold:

[H+R]> C

431

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

By completing closure, determine the candidate key
in the given relation. {03}

Derive a set of 4NF relations. {07}

Section C: Examine the section of a college/university database, shown in
Figure 26-9 and answer one question from this section.

432

6.

6a.

6b.

6c.

6d.

6Ge.

6f.

7a.

7h.
7c.

7d.

7Te.

1.

Write relational calculus statements that will produce the
results specified below:

List all students (name, ID, and gender) who share
surname with other students {03}

List all program-names and related course-
names {o4}

List the names of all programs that include the course (code)
‘CS100’ {03}

List the names of all programs that do not include course
(code) ‘ENGL101’ {03}

List all Canadian (country code ‘CAN’) students (name,
ID, Hall-name) enrolled in the B.S. in Computer Science
(program code ‘P11SC’) {04}

List the name of each department along with the name
of its chair-person {03}

Write relational algebra statements that will produce the
results specified below:

List all students (name, ID, and gender) who share
surname with other students {03}

List all program-names and related course-names 04}

List the names of all programs that include the
course (code) ‘CS100’ {03}

List the names of all programs that do not include course
(code) ‘ENGL101’ {03}

List all Canadian (country code ‘CAN’) students (name,
ID, Hall-name) enrolled in the B.S. in Computer Science
(program code ‘P11SC’) {04}

List the name of each department along with the name
of its chair-person {03}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Section D: Examine the section of a college/university database, shown in Figure 26-9
and answer one question from this section.

Table Name Attributes
Student Stud#, LName, FName, Sex, DOB, Pgm#, CntryCode, Hall#
Program Pgm#, PgmName
Department Dept#, DName, Chair#
Course CrsCode, CrsName
Hall Hall#, HallName
Staff Staff#, StaffName
Pgm_Struct Pgm#, Crscode, PgmSequence
Country CntryCode, CntryName
Note:
= Primary-key attributes are highlighted.
= Pgmi in the table Student stores the program-code of the student’s (academic) major.
= Chair# in the table Department stores the staff-number of the department’s chairperson.

Figure 26-9. Section of a College Database

8.

8a.

8h.
8c.

8d.

8e.

8f.

9a.

9b.

9c.

Write SQL statements that will produce the results specified below:

List all students (name, ID, and gender) who share
surname with other students {03}

List all program-names and related course-names {04}

List the names of all programs that include the
course (code) ‘CS100’ {03}

List the names of all programs that do not include
course (code) ‘ENGL101’ {03}

List all Canadian (country code ‘CAN’) students
(name, ID, Hall-name) enrolled in the B.S. in Computer
Science (program code ‘P11SC’) {04}

List the name of each department along with the name
of its chair-person {03}

How important are (logical) views in a database
(cite possible advantages)? {04}

Identify four (4) scenarios that could render a logical
view non-updateable. {04}

Referring to the college database of Figure 26-9, define

a view that “stores” Computer Science courses only
(assume that all Computer Science course-codes begin
with the acronym ‘CS’). {03}

433

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

9d. How important is the system catalog in a DBMS? Describe
three important tables that are usually included in the
system catalog (use the Oracle DBMS as a frame
of reference). {06}

9e. Given the information provided in Figure 26-9, illustrate
what might be the contents of one of the catalog tables
mentioned in (9d) above. Explain how the system
catalog is maintained. {03}

26.13 Sample Final Examination B

This examination consists of four (4) sections. You are required to do all questions in
section A, and three additional questions — one from each of the other three sections.

Section A: Answer all questions in this section. For multiple-choice questions, simply
highlight the responses that you deem to be correct.

1. State six significant objectives of a database system. {06}
a.

b.
c.
d.
e.
£

2. State three advantages of a database system.
{03}
a.

b.
c.
3. State three primary functions of a DBMS. {03}
a.
b.
C.

4. Which of the following is not a valid example of a DBMS?
{o1}

a. Oracle
b. DB2
c. Java Development Kit

d. Informix
434

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Arecord is to a file: {01}
a. What amouse is to a computer

b. What a tuple is to a relation

c. What a procedure is to a program

d. What peach is to a fruit salad

Cardinality of a relation refers to: {o1}

o

The age (in months) of the relation

b. The sexual orientation of parties in the relation

c. The number of tuples in the relation

d. None of the above

A foreign key may be defined as: {01}

a. Anattribute or combination of attributes that uniquely
identify tuples of a relation

b. An attribute or combination of attributes that ought not
to have been included in a relation

c. An attribute that may contain null values

d. An attribute or combination of attributes of a relation R1
that forms the primary key in some other relation R2

Let R1[A,B,C] and R2[C,D,E] be two relations with R1.C being
defined on the same domain as R2.C. Assume further that the
primary key of R1 is A and the primary key of R2 is C. Which of
the following statements are valid? {02}

a. SELECT *FROM R1, R2 WHERE R1.C=R2.C

b. SELECT * FROM R1, R2 WHERE R1.C =R2.D

c. Thereis a M:M relationship between R1 and R2
d. Thereisa 1:M relationship between R2 and R1

Based on the principle of data independence, which of the
following can be concluded? {02}

a. One can decompose a relation into smaller projections in
any way he/she chooses

b. Structural changes to a database should not affect the
application programs that access the database

435

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

436

10.

11.

12.

13.

SAMPLE EXERCISES AND EXAMINATION QUESTIONS

c. Different users of a database will have different external
perspectives of its data

d. All of the above

Which of the following statements regarding the results of
normalization are false? {02}

a. Redundancy and data anomalies are reduced

b. Redundancy and data anomalies are exacerbated

c. Dataintegrity and data independence are enhanced

d. Dataintegrity and data independence are compromised

Let R1[A,B,C] and R2[C,D,E] be two relations with R1.C being
defined on the same domain as R2.C. Assume further that
the primary key of R1 is A and the primary key of R2 is C. R2
consists of N2 tuples each of which is referenced by at least
one of the N1 tuples of R1. Which of the following assertions

are plausible/true? {02}
a. NI>N2
b. N1<N2

c. Inorder to purge (empty) both relations, one must purge
in the order {R1, R2}

d. Inorder to purge (empty) both relations, one must purge
in the order {R2, R1}

How many standard normal forms are there? {01}
a. Three

b. Four

c. Five

d. Six

A relation that is in BCNF is automatically in: {02}

a. 3NFE 2NF and INF
b. 3NF and 2NF
c. 4NF and 5NF

d. None of the above

www.it-ebooks.info

http://www.it-ebooks.info/

14.

15.

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

In database systems, a surrogate:

{02}

a. Isarelational table that is not related to other tables in

the database

b. Isasystem-controlled primary key, introduced by the

designer

c. Issometimes introduced to avoid using a cumbersome

composite primary key.

d. Isadatabase designer that gets no credit for his/her work

An ERD is useful to:

{o1}

a. Show the interrelationships among application programs

of a system

b. Represent the relationships among application programs

and database tables

c. Illustrate the various external view that users of a database

might have

d. [Ilustrate the main entities and relationships of a

database system

Section B: Answer one question from this section.

16.
16a. Give a formal definition of a relation. Clarify any ambiguity
that may exist between an entityand a relation. {04}
16b. State three (3) kinds of relations which may be found in
a database; for each type, explain what it is and give an
appropriate example. {o6}
16c —16e. The following is an excerpt from a college
database design proposal (Figure 26-10):
Relation Attributes Primary Key
Program ProgNum, ProgName ProgNum
Course CrsCode, CrsName, CrsCredit CrsCode
Pgm_Struct ProgNum, CrsCode, CrsSequence ProgNum & CrsCode
Chapterr LectNum, LectName LectNum
Class ClassCode, ClassDescr ClassCode
Class_Sched Period, CrsCode, LectNum, ClassCode Period & ClassCode

Figure 26-10. Except From a College Database

www.it-ebooks.info

437

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

16¢c. Based on the Figure 26-10, clearly identify all relationships
and foreign keys. {06}

16d. Based on Figure 26-10, describe, how you could obtain a
list showing course names and the corresponding names of
lecturers who teach these courses. {02}

16e. Based on Figure 26-10, describe, how you could obtain a
list showing program names and the corresponding course
names in appropriate order for the college bulletin. {02}

17.

17a. Define the following terms:

Functional Dependence {02}
Transitive Dependence {02}
Non-loss decomposition {02}
Boyce-Codd Normal Form {02}
Multi-valued Dependence {02}
Fourth Normal Form {02}

17b. As Database Manager or Information Systems Manager
in a software engineering firm, what standards would
you set in respect of logical database design? Justify
your position. {08}]

Section C: Answer one question from this section.

Figure 26-2, which provides an excerpt from the specification of a music database,
is repeated here (as Figure 26-11) for ease of reference. Carefully analyze the figure, and
answer the questions that follow.

Relational Table Primary Key or Candidate Keys
Musicians {MNO, MNAME, DOB, MCOUNTRY} Primary key [MNO]

Compositions {CNO, TITLE, MNO, CDATE} Primary key [CNO]

Ensembles {ENO, ENAME, ECOUNTRY, MNO_MGR} Primary key [ENO]

Performances {PNO, PDATE, CNO, CITY, PCOUNTRY, ENO} | Candidate keys [PDATE, ENO], [PNO]
Ensemble_Members {ENO, MNO ,INSTRUMENT} Primary key [ENO, MNO]

Figure 26-11. Basic Specifications of Music Database

438

www.it-ebooks.info

http://www.it-ebooks.info/

18.

18a.

18b.

18c.

18d.

18e.

19.

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Provide sample data of the above relations. {bonus 04}
Write relational calculus statements to realize the following:

List registered musicians from CUB or CAN (where “CUB”
and “CAN” are abbreviated codes for Cuba and Canada
respectively). {03}

Give the ENO of every ensemble that includes a Violin or
Violin player. {03}
Give the ENO of every ensemble that includes a Violin
player but not a Guitar player. {04}

List all compositions (CNO and TITLE) by
David Foster. {o4}

List all performances (PNO CNO MNO & PCOUNTRY)
of compositions that have been performed in the

country of origin. {o6}
Provide sample data of the above relations. {bonus 04}
Write relational algebra statements corresponding to
specifications of 18a - 18e above. {20}

Section D: Answer one question from this section.

20.
20a.
20a -

20b.

20c.

How important are logical views in a database? {04}

20f. The college database of question 16 is repeated
here for ease of reference.

Based on the schema provided in Figure 26-12, write SQL statements
to do the following:

Create a view which will allow three of the above tables to
be joined as one, so as to provide information for the college
bulletin. The information required should include Program
Code, Program Name, Course Sequence, Course Number,
and Course Name. {04}

Assuming the existence of a program with code “P01” and
name “BS. in Mathematics,” extract from the system, the
program structure for this program with courses listed

in order of sequence number. The data fields required

are outlined in 20b above. {04}

439

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Relation Attributes Primary Key
Program ProgNum, ProgName ProgNum

Course CrsCode, CrsName, CrsCredit CrsCode
Pgm_Struct ProgNum, CrsCode, CrsSequence ProgNum & CrsCode
Lecturer LectNum, LectName LectNum

Class ClassCode, ClassDescr ClassCode
Class_Sched Period, CrsCode, LectNum, ClassCode Period & ClassCode

Figure 26-12. Except From a College Database

20d. Establish a class-course-lecturer relationship, stored as a
view, so that for each class, it will be known what course is
offered, and who is the lecturer. {04}

20e. Listall courses offered by the college. {o1}

20f. Create a view for chemistry majors, which enables them
to have read-only access to the chemistry curriculum only
(assume that chemistry course codes are prefixed by the
string “CHEM”). {03}

21.

21a. Write SQL statement(s) to create a role called Developer and
give it all the privileges required for application development.
{o4}

21b. Write SQL statement(s) to assign the Developer role to users
GrantFord and HarryLim, and deny the user Stalker all
privileges. {03}

21c. Assume that your database contains a table called Payroll,
which has confidential information about the salary of
employees. As the DBA, you want to restrict access to
this table as follows: User JohnHenry must have query
access only; user BruceJones must have query as well as
modification access; no one else must have any access to the
table. Write SQL statement(s) to realize this. {06}

21d. Write an SQL statement to query the Oracle 10G system
catalog and provide a list of all tables in a given database (your
display must include the name of the table, the owner of the
table and the tablespace it belongs to). {03}

21e. Describe two limitations of SQL and briefly explain how they
can be circumvented. {04}

440

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

26.14 Sample Final Examination C

This examination consists of four (4) sections. You are required to do all questions in
section A, and three additional questions — one from each of the other three sections.

Section A: Answer all questions in this section

State six (6) significant objectives of a database system.

State the components of a database system.

a.
b.
c.
d.

€.

State four (4) primary functions of a DBMS.

a.
b.
c.

d.

{oe}

{05}

{04}

Give the meaning of the acronyms DSL, DDL, DML and DCL.
Briefly explain their importance in a database system. Provide

an example of a DSL.
DSL:

DDL:

DML:

DCL:

Example:

www.it-ebooks.info

{os}

441

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

5. Give three (3) examples of popular and modern DBMS suites.
{o3}

6. State and briefly clarify three (3) types of relations that are
likely to be found in a database. {03}

a.
b.
c.

7. Clarify the terms relation, foreign key, candidate key, and
degree. {04}

Relation:
Foreign Key:
Candidate Key:
Degree:

8. State four (4) types of objects that are typically defined in a
database that supports SQL. {04}

a.
b.
c.
d.

9. State two (2) strong points about SQL and describe two (2)
limitations of the language. {04}
a.
b.

C.

442

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

10. What are the two dominant contemporary models for

database design, implementation and management?
{02}

a.

b.

Section B: Answer one question from this section

11.

11a.

11b.

Precision Software Inc. is a software engineering firm
contracted to develop and implement a Human Resource
Management System (HRMS) for Zealot Industries Inc. After
a preliminary meeting with Zealot’s senior management,

the lead software engineer on the Precision Software team
documents his findings as follows:

e Adetailed employee profile consists of the employee’s
personal information, employment history, education
history and beneficiary information.

e Every employee belongs to a department, and is assigned
a specific job description (there may be more than one
employees with the same job description).

e Employees are classified according to the salary range that
they fall in.

¢ Each employee has a compensation package which outlines
basic salary and other benefits. Benefits include health
insurance, retirement plan, life insurance, professional
development allowance, housing allowance, traveling
allowance, entertainment allowance, vacation allowance,
and education allowance.

e A payroll log keeps track of remuneration paid out to
employees.

e Each employee is assigned to at least one project; the
number of employees assigned to a project depends on the
size and complexity of the project.

Identify all information entities (object types) mentioned or
implied in the case. {05}

Identify all relationships among the entities (or object types)
and represent them on an ERD or ORD. {15}

443

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

12.

SAMPLE EXERCISES AND EXAMINATION QUESTIONS

A scientific research est. For each experiment, the following is
recorded:

e Project number

e Project manager

e Projectname

e Experiment number

e Experiment name

e Labin which experiment is to be conducted
e Listof scientists to work on the project

Note: A project manager may work on an experiment. A scientist may work
on more than one experiment, provided that they are done in the same lab.
A manager may manage more than one project.

From the information given, use the XR model to derive a set of BCNF
relations for the system.

Use self-explanatory relation and attribute names (you may introduce
new attributes). {20}

Section C: Answer one question from this section

444

Examine the section of a college/university database, shown in Figure 26-13, and
answer one question from this section.

13.

13a.

13h.
13c.

13d.

13e.

13f.

Write relational calculus statements that will produce the
results specified below:

List all students (name, ID, and gender) who share surname
with at least another student {03}

List all program-names and related course-names {04}

List the names of all programs that include the
course (code) ‘CS100’ {03}

List of the names of all programs that do not include
the course (code) ‘ENGL101’ {03}

List all Canadian (country code ‘CAN’) students
(name, ID, Hall-name) enrolled in the B.S. in Computer
Science (program code ‘P11SC’) {04}

List the name of each department along with the name
of its chairperson {03}

www.it-ebooks.info

http://www.it-ebooks.info/

14.

14a.

14h.
14c.

14d.

14e.

141,

CHAPTER 26 © SAMPLE EXERCISES AND EXAMINATION QUESTIONS

Write relational algebra statements that will produce the
results specified below:

Write relational calculus statements that will produce the results

specified below:

List all students (name, ID, and gender) who share
surname with at least another student {03}

List all program-names and related course-names {04}

List the names of all programs that include the
course (code) ‘CS100’ {03}

List of the names of all programs that do not include the
course (code) ‘ENGL101’ {03}

List all Canadian (country code ‘CAN’) students
(name, ID, Hall-name) enrolled in the B.S. in
Computer Science (program code ‘P11SC’) {04}

List the name of each department along with the name of its

chairperson

{o3}

Section D: Answer one question from this section

Examine the section of a college/university database, shown in Figure 26-13, and
answer one question from this section.

15.

15a.

15h.
15¢.

15d.

15e.

151,

Write SQL statements that will produce the results specified below:

List all students (name, ID, and gender) who share surname

with at least another student {03}

List all program-names and related course-names {04}

List the names of all programs that include the
course (code) ‘CS100’ {03}

List of the names of all programs that do not include
the course (code) ‘ENGL101’ {03}

List all Canadian (country code ‘CAN’) students

(name, ID, Hall-name) enrolled in the B.S. in
Computer Science (program code ‘P11SC’) {04}

List the name of each department along with the

name of its chairperson {03}

445

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

16.
16a.
16b.

16c.

16d.

16e.

SAMPLE EXERCISES AND EXAMINATION QUESTIONS

State three (3) advantages of logical views. {03}

State three (3) scenarios that could render a logical view
non-updateable. {03}

Referring to the college database of Figure 26-13, define

a view that “stores” computer science courses only
(assume that all computer science course-codes begin
with the acronym ‘CS’). {03}

Assuming that the program code for Computer Science is
‘P11SC, construct a second logical view for computer science
majors only. Your view must include all attributes of the
student record, the full descriptive name of the computer
science program, and the descriptive name of the hall
dormitory that the students reside in. {05}

Provide the SQL statement that will create the Student
table of Figure 26-13, with its primary key and foreign keys
appropriately defined (assume that referenced tables have

been previously defined). {06}
Table Name Attributes
Student Stud#, LName, FName, Sex, DOB, Pgm#, CntryCode, Hall#
Program Pgm#, PgmName
Department Dept#, DName, Chairt
Course CrsCode, CrsName
Hall Hall#, HallName
Staff Staff#, StaffName
Pgm_Struct Pgm#, Crscode, PgmSequence
Country CntryCode, CntryName
Note:
= Primary-key attributes are highlighted.
= Pgm# in the table Student stores the program-code of the student's (academic) major.
= Chair# in the table Department stores the staff-number of the department's chairperson.

Figure 26-13. Section of a College Database

446

www.it-ebooks.info

http://www.it-ebooks.info/

PART G

Appendices

This final division contains three review topics from your data structures and
software engineering courses:

e Appendix 1 — Review of Trees
e Appendix 2 — Review of Hashing

e Appendix 3 — Review of Information Gathering Strategies

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1

Review of Trees

This appendix provides a brief review of trees. You should pay specific attention to

the section on B-trees, since most DBMS suites implement them by default. Note: This
appendix is not meant to replace a full course (and text) in data structures. It should
therefore be regarded as an overview, not a final authority on the subject matter.

This review covers the following sub-topics:

e Introduction to Trees

e Binary Trees

e Threaded Binary Trees

e Binary Search Trees

e Height-Balanced Trees

e Heaps

e M-way Search Trees and B-trees

¢ Summary and Concluding Remarks

A1.1 Introduction to Trees

The main difference between O(N?) sorting algorithms and O(N log N) sorting algorithms
is that the latter repeatedly reduce (by approximately one half) the number of keys
remaining to be compared with each other, while the former does not. Trees are excellent
sources of f (N log N) sorts.

Asyou are no doubt aware, in computer science, we use trees (and graphs) to represent
and implement complex data structures. Here is a working definition of a tree: A tree T is
a finite set of nodes (V,, V, ...V,) such that:

a. There is one designated node called the root

b. Theremaining nodes are partitioned into M > 0 disjoint sets
T, T,..T suchthateachT,isitself a tree.

c. Except for the root, each node has a parent node.

449

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Root

Figure Al-1. An Example of a Tree

GHOHO

Here are a few additional conventions about trees:

e The leaves are the terminal nodes.

e Parentnodes are said to have siblings.

e Aforestis a combination (abundance) trees.
Level, Height and Weight of a Tree

e Theroot s at level zero (0).

e The height is therefore determined by the formula
H = Highest level + 1‘

e Weight = Number of leaves

A1.2 Binary Trees

A1.2.1 Overview of Binary Trees

A binary tree is a tree in which each node is either empty or consists of two disjoint
binary trees: the left sub-tree and the right sub-tree. Figure A1-2 illustrates this concept.

450

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Left sub-tree —> f) @ <«— Right sub-tree

Figure A1-2. Illustrating a Binary Tree

Note:
e No parent has more than two children.

e Afull(also called perfect) binary tree is a binary tree that contains
the maximum number of nodes possible. Figure A1-3 shows a
complete binary tree.

e A completebinary tree is a binary tree that is full down to the
penultimate level, and with nodes at the final level filled in from left
to right.

Full Binary Tree

Height =3

h
9

O @

Complete Binary Tree

Height = 3

Figure A1-3. Illustration of a Full Binary Tree and Complete Binary Tree

451

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

The maximum number of nodes of a tree may be determined as follows:
¢ Number of nodes at the i" level is 2!
e Maximum number of nodes =¥, [0..k] of 2

Observe that this is a geometric series of first term 1 and common ration 2 (review
your discreet mathematics). The sum is therefore 2* - 1. So for a binary tree of heightk,

Maximum nodes = 2 - 1 l

Example 1: In the example above (Figure A1-3), maximum nodes =2%-1="7.

Al1.2.2 Representation of Binary Trees

Binary trees may be represented by arrays or preferably linked lists. Figure A1-4a
illustrates a tabular representation of a binary tree while Figure A1-4b illustrates the
graphic representation.

Location Information Left Right
1 B 4 6
2 G 0 0
3 F 0 0
4 D 0 0
5 A 1 7
6 E 0 0
7 C 3 2
Note:
1. The root is node A. It has no pointer to it.
2. Leaves do not have left or right sub-trees. From the table, leaves are D, E, F, G.

Figure Al-4a. Tabular Representation of a Binary Tree

452

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

O OO @&

Figure A1-4b. Graphic Representation of a Binary Tree

A1.2.3 Application of Binary Trees

Binary trees are typically applied in the following ways:

Binary trees (and extensions of binary trees) are used extensively
in database management systems (DBMS) and operating system
(OS) construction to effectively manage indexes of data files.

Binary trees are used in calculation of expressions during
compilation.

Binary trees are used in data compressions, example, Huffman
Coding Tree.

Al.2.4 Operations on Binary Trees

The following are the main operations that are normally defined on a binary tree:

Creation: At creation the tree either has no nodes or a dedicated
root-node.

Insertion: We may allow insertion at the root, after terminal
nodes only, or we may allow insertion anywhere in tree.

Deletion: Again, we may allow deletion of terminal nodes only,
or we may allow deletion of nodes from anywhere in tree.

Clear: Remove all nodes from the binary tree, thus leaving it empty.
Check-Size: Return the size of the tree.

Check-Empty: Check if the tree is empty.

In-order: In-order traversal of the tree.

Pre-order: Pre-order traversal of the tree.

Post-order: Post-order traversal of the tree.

453

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A1.2.5 Implementation of Binary Trees

Suppose that you desire a binary tree of LibraryPatron objects. The LibraryPatron class
includes data items including patron number, name, major, and status; it also includes
methods for manipulating instances of the class. You can implement this tree using an
array, array-list, or linked-list. The preference is for the linked-list implementation, since
it provides more flexibility. Figure A1-5 shows the UML diagrams for implementing this
binary tree. It is assumed that you have mastery of fundamental programming principles;
therefore, elaboration on these diagrams is not considered necessary. Note also that
Figure A1-5c lists a number of methods that you may choose to implement. Except for
traversal methods (the last three), you should be able to figure out the required logic for
these methods ob your own. Figure A1-6 provides the pseudo-code for these methods.
The logic for the traversal methods will be discussed in the next subsection.

LibraryPatron

protected int PatronNumber
protected String Name
protected String Major
private String Status

LibraryPatron()

LibraryPatron(int ThisNumber)

void Modify(LibraryPatron ThisPatron)
void InputData(int x)

String PrintMe()

int GetPatronNumber()

Figure Al1-5a. The UML Diagram of the LibraryPatron Class

PatronNode

protected LibraryPatron Info
protected PatronNode Left, Right

PatronNode()

void Modify(PatronNode ThisNode)
void InputData(int x)

String PrintMe()

Figure A1-5b. The UML Diagram of the PatronNode Class

454

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

PatronsBinaryTree

protected PatronNode Root
protected int Size, TravRef
LibraryPatron[] Traversal

public PatronsBinaryTree()

public void addRoot(LibraryPatron ThisPatron) /* Inserts at the root, assuming previously empty tree */
public void addLeftLeaf(PatronNode ThisLeaf, LibraryPatron ThisPatron) /* Inserts at the specified leaf */
public void addRightLeaf(PatronNode ThisLeaf, LibraryPatron ThisPatron) /* Inserts at the specified leaf */
public void addLeftSubtree(PatronNode ThisNode, PatronNode NewNode) /* Inserts at the specified node */
public void addRightSubtree(PatronNode ThisNode, PatronNode NewNode) /* Inserts at the specified node */
public void removeSubtree(PatronNode ThisNode)

public void Modify(PatronNode ThisNode, LibraryPatron ThisPatron)

public void clearTree()

public LibraryPatron getinfo(PatronNode ThisNode)

public PatronNode getNode(PatronNode ThisNode)

public int getSize()

public boolean isEmpty()

public void inOrderTraversal(PatronNode ThisNode)

public void preOrderTraversal(PatronNode ThisNode)

public void postOrderTraversal(PatronNode ThisNode)

Figure A1-5c. The UML Diagram of the PatronsBinaryTree Class

PatronsBinaryTreeMonitor

public static PatronsBinaryTree PatronsTree
public static final String HEADING = "Library Patrons Tree"
public static final int DEFAULT_NUMBER = 0

public static void main(String[] args)
public static void InputPatrons()
public static void TraverseTree()
public static void RemovePatrons()
public static void CheckSize()
public static void InitializeTree()
public static void Empty()

Figure A1-5d. The UML Diagram of the PatronsBinaryTreeMonitor Class

455

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Assume that each node consists of the following:

= Info // Euphemism for details of the node

= Left// Pointer to the left sub-tree

= Right // Pointer to the right sub-tree

Also assume that Root always points to the root of the tree

addRoot(LibraryPatron ThisPatron)
START
If (Root = NULL)
Root.Info := ThisPatron;
Set Root.Left and Root.Right to NULL;
Add 1 to Size;
End-If;
STOP

addLeftLeaf(PatronNode ThisLeaf, LibraryPatron ThisPatron)
START
Let NewNode be a PatronNode;
Instantiate NewNode;
NewNode.Info := ThisPatron;
Set NewNode.Left and NewNode.Right to NULL,;
ThisLeaf.Left := NewNode; // No longer a leaf, but now a sub-tree
Add 1 to Size;
STOP

addRightLeaf(PatronNode ThisLeaf, LibraryPatron ThisPatron)
START
Let NewNode be a PatronNode;
Instantiate NewNode;
NewNode.Info := ThisPatron;
Set NewNode.Left and NewNode.Right to NULL,;
ThisLeaf.Right := NewNode; // No longer a leaf, but now a sub-tree
Add 1 to Size;
STOP

addLeftSubtree(PatronNode ThisNode, PatronNode NewNode)
START
Let Temp, LeftEnd be PatronNode references;
Temp := ThisNode.Left;
LeftEnd := NewNode;
While (LeftEnd.Left <> NULL) LeftEnd := LeftEnd.Left; End-While;
ThisNode.Left := NewNode;
LeftEnd.Left := Temp;
Increase Size by the size of the sub-tree;
STOP

Figure A1-6. Binary Tree Algorithms

456

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1

REVIEW OF TREES

addRightSubtree(PatronNode ThisNode, PatronNode NewNode)
START

Let Temp, RightEnd be PatronNode references;

Temp := ThisNode.Right;

RightEnd := NewNode;

While (RightEnd.Right <> NULL) RightEnd := RightEnd.Right; End-While;

ThisNode.Right := NewNode;

RightEnd.Right := Temp;

Increase Size by the size of the sub-tree;

STOP

removeSubtree(PatronNode ThisNode)
START
If (ThisNode.Left = ThisNode.Right = NULL) // a leaf
Kill(ThisNode); Subtract 1 from Size;
End-If;
Else
If (ThisNode.Left <> NULL) removeSubtree(ThisNode.Left); End-If;
If (ThisNode.Right <> NULL) removeSubtree(ThisNode.Right); End-If;
Kill(ThisNode);
End-Else;
STOP

Modify(PatronNode ThisNode, LibraryPatron ThisPatron)
START

ThisNode.Info := ThisPatron;
STOP

clearTree()

START
removeSubtree(Root);

STOP

getinfo(PatronNode ThisNode): Returns LibraryPatron
START

Return ThisNode.Info;
STOP

getNode(PatronNode ThisNode): Returns PatronNode
START

Return ThisNode;
STOP

getSize(): Returns integer
START

Return Size;
STOP

Figure AlI-6. Binary Tree Algorithms (continued)

www.it-ebooks.info

457

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

isEmpty(): Returns Boolean
START

Return whether Size is 0 or not;
STOP

setSize (PatronNode ThisNode, Size)
START
Il Assume that this method is first called with ThisNode pointing to Root
Let Current, HoldLeft, and HoldRight be PatronNode instances;
Current := ThisNode;
If (Current <> NULL)
Add 1 to Size;
Holdeft := Current.Left;
HoldRight := Current.Right;

If (HoldLeft <> NULL)
Current := HoldLeft;
setSize(Current, Size);

End-If;

If (HoldRight <> NULL)
Current := HoldRight;
setSize(Current, Size);

End-If,

End-If;
STOP

Figure A1-6. Binary Tree Algorithms (continued)

A1.2.6 Binary Tree Traversals

There are three traversal algorithms for binary trees: Pre-order, In-order and Post-order.
Pre-order traversal (also called prefix walk or polish notation) obeys the algorithm
shown in Figures A1-7a and A1-7b.

Visit the root;
Traverse the left sub-tree in Pre-order;
Traverse the right sub-tree in Pre-order;

Figure A1-7a. Summary of the Pre-order Traversal Algorithm

458

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

preOrderTraversal(PatronNode ThisNode)
START // Assume the UML diagram of figure A1.5
Il Assume that Traversal is a global array of Size LibraryPatron objects;
If (ThisNode is not NULL)
Append ThisNode.Info to Traversal;
preOrderTraversal(ThisNode.Left);
preOrderTraversal(ThisNode.Right);
End-If;
STOP

Figure A1-7b. Detailed Pre-order Traversal Algorithm

Example 2: Figure A1-7c provides an example of the application of the
pre-order algorithm.

@ @ @ Pre-order: ABEFGX

Figure A1-7c. Example of Pre-order Traversal Algorithm

In-order traversal (also called symmetric order or infix notation) obeys the
algorithm shown in Figures A1-8a and A1-8b.

Traverse the left sub-tree in In-order;
Visit the root;
Traverse the right sub-tree in In-order;

Figure Al-8a. Summarized In-order Traversal Algorithm

459

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

inOrderTraversal(PatronNode ThisNode)
START // Assume the UML diagram of figure A1.5
Il Assume that Traversal is a global array of Size LibraryPatron objects;
If (ThisNode is not NULL)
inOrderTraversal(ThisNode.Left);
Append ThisNode.Info to Traversal;
inOrderTraversal(ThisNode.Right);
End-If;
STOP

Figure A1-8b. Detailed In-order Traversal Algorithm

Example 3: Figure A1-8c provides an example of the application of the in-order

algorithm.

@ @ @ In-order: EBFAGX

Figure A1-8c. Example of In-order Traversal Algorithm

Post-order traversal (also called suffix walk or reverse polish notation) obeys the

algorithm shown in Figures A1-9a and A1-9b.

Traverse the left sub-tree in Post-order;
Traverse the right sub-tree in Post-order;
Visit the root;

Figure A1-9a. Summarized Post-order Traversal Algorithm

460

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

postOrderTraversal(PatronNode ThisNode)
START // Assume the UML diagram of figure A1.5
Il Assume that Traversal is a global array of Size LibraryPatron objects;
If (ThisNode is not NULL)
postOrderTraversal(ThisNode.Left);
postOrderTraversal(ThisNode.Right);
Append ThisNode.Info to Traversal;
End-If;
STOP

Figure A1-9b. Detailed Post-order Traversal Algorithm

Example 4: Figure A1-9c provides an example of the application of the post-order

algorithm.
)
OO
@ @ @ Post-order: EFBXGA

Figure A1-9c. Example of Post-order Traversal Algorithm

A1.2.7 Using Binary Tree to Evaluate Expressions

We can use binary trees to evaluate expressions by following a simple convention: All
operands are leaves of the tree and the operators are parent nodes.

Example 5: The expression (a - b) * c is represented on a binary tree as shown in
Figure A1-10a. To load an expression to tree, repeatedly select the operator that divides
the expression into two, as the root. In the end leaves are operands and roots are
operators.

461

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Figure Al-10a. Using Binary Tree to Represent Arithmetic Expressions

(@a-b)*c

Example 6: The expression [(((a+b)*c)/d) + ef]/g is represented on a binary tree as
shown in Figure A1-10b. Note that in the figure the symbol T is used for exponent.

[((at+b)*c)/d) +e'/g

Figure AI-10b. Using Binary Tree to Represent Arithmetic Expressions

Observe: You should be able to convince yourself that a post-order traversal of a
binary tree for arithmetic expressions of this sort, produces the expression in postfix
notation. This is left as an exercise for you.

462

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A1.3 Threaded Binary Trees

In order to facilitate easy traversal of a binary tree, the tree may be threaded with pointers
that explicitly show a traversal ordering. The threads link the nodes in the sequence of
the traversal method.

Types of Threads:

e Right thread links a node to its successor
e Left thread links a node to its predecessor

A tree can only be threaded according to one traversal method at a time.

Threaded for In-order Traversal

To illustrate, if a binary tree is threaded for In-order processing, the following conventions
are observed:

e Left threads (except for leftmost leaf) point to predecessor nodes
in in-order.

e Left thread from leftmost leaf points to the root.

e Right threads (except for rightmost leaf) point to successor nodes
in in-order.

e Right thread of rightmost leaf is NULL.

A1.4 Binary Search Trees

A binary search tree (BST) is a binary tree in which the following properties hold:

a. Allnodes in the left sub-tree of R, precede (by way of ordering)
R, so that, If R]. =R, Left, then Rj.Info <R.Info

b. Allnodes in the right sub-tree of R, succeed (by way of
ordering) R so that, If R]. =R, Right, then R]..Info >= Ri.Info

Note: In-order traversal of a BST produces a sorted list (in ascending values). Moreover,
it can be shown that this sort algorithm is an O(N Log N) algorithm on the average.
A BST provides the following advantages:

e It facilitates an O(N Log N) sort, which is more efficient sort than
N? sort algorithms.

e Itfacilitates faster (binary) search than searching a linear linked list.
The disadvantages associated with a BST are as follows:

e Ittakes up more space than linear link list.

e It can degenerate into a linked list (see next section).

e Asnodes are added, there is no control on the height (hence
structure) of the tree. This is often undesirable.

463

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Example 7: Suppose we wish to load the string HBXAM to a BST. We obtain a
BST as follows:

® @

Figure Al-11. Example of BST

Assuming the conventions of Figure Al-5, the algorithms of Figure A1-6 would still
be applicable but with two extensions: We need to introduce an algorithm for inserting
anode in the tree while preserving its properties. Secondly, we need to be able to search
for a particular value in the tree. Figures A1-12 and A1-13 provide the insertion algorithm,
and the search algorithm respectively. Note that the order in which nodes are added to
the BST affects the structure of the tree. In fact, if a sorted list is added to the BST,
it degrades to a linear linked list.

Insert (PatronNode ThisNode, LibraryPatron ThisPatron)
START
[* ThisNode represents the point in the BST where an assessment for insertion begins.
ThisPatron represents the information to be inserted in the BST. Typically, this algorithm will be called
with the argument for ThisNode being Root. However, it could called with any node as the starting point. */

Let NewNode and Current be instances of PatronNode;

If (ThisNode = NULL) // BST is empty
Instantiate NewNode; NewNode.Info := ThisPatron;
Set NewNode.Left and NewNode.Right to NULL;
Root := NewNode;

End-If;

Else
// Find the insertion point and insert the node there
Current := FindInsertionPoint(ThisNode, ThisPatron);
If (ThisPatron < Current.Info) addLeftLeaf(Current, ThisPatron); End-If; // See figure A1.6
Else addRightLeaf(Current, ThisPatron); End-Else;

End-Else;

/I Add 1 to Size; // This is already done
STOP

Figure Al-12a. Algorithm to Insert a Node in the BST

464

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

FindinsertionPoint(PatronNode ThisNode, LibraryPatron ThisPatron): Returns PatronNode
START
Let Point be a PatronNode;
Point := ThisNode;
If (ThisPatron < Point.Info)
If (Point.Left <> NULL)
Point := FindInsertionPoint(Point.Left, ThisPatron);
End-If;
Else // ThisPatron >= Point.Info
If (Point.Right <> NULL)
Point := FindInsertionPoint(Point.Right, ThisPatron);
End-If;
End-If;
Return Point;
STOP

Figure A1-12b. Algorithm to Find the Insertion Point in the BST

Search(LibraryPatron SearchValue): Returns PatronNode
START
Let Current and Sought be PatronNode instances;
Current := Root; Sought := NULL;
While (Current.Info <> SearchValue) AND (Current.Info <> NULL) do the following:
If (SearchValue < Current.Info)
Current := Current.Left;

End-If;

Else Current:= Current.Right; End-Else;
End-While;
If (Current.Info = SearchValue) Sought := Current; End-If;
Return Sought;

STOP

Figure Al1-13. Algorithm to Search the BST

Example 8: Adding the sorted list AB CD E F G to a BST results in the following:

&

Figure Al1-14. Loading a Sorted List to a BST

465

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Searching for a node in this BST would be reduced to searching a linear linked list!
Solving this problem is not trivial. It is generally referred to as balancing the tree. Several
algorithms have been proposed for balancing a BST.

A1.5 Height-Balanced Trees

A height-balanced k-tree (denoted (HB (k)) is a BST in which the maximum allowable
difference in height between any two sub-trees sharing a common root (not necessary a
parent) is k. Put another way, the maximum possible difference in height between leaves
of the tree is k.

An AVL tree (named after Adelson-Velskii and Landis, the Russian founders) is a
HB (1) tree, that is, the maximum possible difference in height between any two sub-trees
sharing a common root is 1. Put another way, leaves are either at level m or level m + 1.
Figure A1-14 provides some illustrations. Heaps (discussed next) are also examples of
HB trees.

AVL trees:

Non-AVL trees:

Figure Al-15. Illustrating AVL and non-AVL Trees

466

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A1.6 Heaps

A heap is an almost complete binary tree, such that:

a. Everyleaf of the tree is atlevel m or m + 1, where m is an
integer (AVL requirement).

b. Ifanode has aright descendant atlevel], it also has a left
descendant at level 1 (converse, not necessarily true).

c. There is some established relationship between the parent-
value and each child-value.

Figure A1-16 provides some illustrations. From the definition, observe that there are
two types of heaps: max-heaps and min-heaps:

e Max-heap: Every node stores a value that is greater than or equal
to the value of either of its children. The root therefore stores
maximum value of all nodes in the tree.

e Min-heap: Every node stores a value that us less than or equal
to the value of either of its children. The root therefore stores the
minimum value of all nodes in the tree.

Not a heap
Ah
eap Notaheap (Property (2) violated).
(Property (1) violated) An AVL however

Figure AI-16. Illustrations of Heap

The heap-sort algorithm utilizes a max-heap. Heap-sort involves two phases:
e Creating (building) the heap

e Processing the heap

A1.6.1 Building the Heap

Figure A1-17 provides a summarized form of the algorithm to construct a heap.

467

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

1. Start at left and gradually build the heap;

2. For each node, introduce left sub-tree whenever possible before introducing a right
sub-tree at each level;

3. If addition of a node results in any heap principle being violated, rotate node(s) until
the anomaly is resolved;

Figure Al1-17. Heap Construction Algorithm

Example 9: Figure A1-18 shows how a maximum heap is constructed with the
following nodes:6 257214109 22 3 16.

Figure A1-18. Illustration of Heap Construction

A1.6.2 Processing the Heap (Heap Sort)

The algorithm for processing the heap (also called heap-sort because it produces a sorted
list) is shown in Figure A1-19. The algorithm shown assumes a max-heap; it progressively
removes the root of the heap until it is empty. Heap-sort performs as well as quick-sort on
the average and better than quick-sort at worst; it is an O(N Log N) algorithm.

Repeatedly remove the maximum value from the heap (that, is the root);
Place this at end of a growing list (growing backwards);

Re-arrange the tree so that the heap properties are maintained;
Continue until the heap is empty.

W nN =

Figure A1-19. Heap-sort Algorithm

468

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

Example 10: Figure A1-20 illustrates how the heap of Example 9 would be processed
toyield a sorted list.

Remove 25 —

s

Remove 22 — ,

5@@@@

..And so on.

Figure A1-20. Illustrating Heap-sort

A1.7 M-Way Search Trees and B-Trees

An m-way search tree is a tree in which each node has out-degree < m. The out-degree
of a node is the number of sub-trees that it has. Figure A1-21 illustrates an m-way search
tree in which the root has out-degree 2, the left node has out-degree 3 and the right node
has out-degree 3. The leaves (always) have out-degree 0. Figure A1-22 illustrates a 3-way
search tree.

469

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

O 0O 00 O O

Figure A1-21. Illustrating an m-way Search Tree

The M-Way tree has the following properties (which are illustrated in Figure A1-22):

a. Eachnodeis of the form IPO, Ko, P1,K1,...Pn-1,Kn-1, Pnl
where P, P, ... P_are pointers to successor nodes and K, K, ...
K, are key values.

b. The key values in a node are in ascending order so that K. <K, .

c. All key values in nodes of the sub-tree pointed to by P, are less
than the key value K.

d. All key values in nodes of the sub-tree pointed to by P, are
greater than the key valuek .

e. The sub-tree pointed to by P, are also m-way search trees.

0—'—0 |50|0|100| '—|—1I
v

A4
Lo [w[elwle] [o [n] Lo [m]g [uo],y]

A 4

v
L lele]) Cele] plalelele] o] [3 L]
A A]
'l * [ofmo] &[] o]
v —

y A 4 A 4 A A 4 A y
[7 | Lo [] @] [2]3] [|[ea] [80] [128] [132] [138] [145]

[« [l

Figure A1-22. A Three-way Search Tree

470

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A1.7.1 Definition of B-tree
A B-tree of order m is an m-way search tree with the following properties:

a. Except for the root and leaves, each node of the tree has at
least [m/2] sub-trees and no more than m sub-trees so that
[m/2] < number of sub-trees < m. Note: [x] = the smallest
integer greater than x (e.g. [1.5] = 2).

b. The root of the tree has at least two sub-trees, unless it is
itself a leaf.

c. Allleaves of the tree are at the same level.

Figure A1-23 illustrates a B-tree of order 3, constructed from the 3-way search tree of
Figure A1-22.

Lol®] Tof |
:

R EINEIN “lo [18] o]

I

Lolrolo [TIN [afoola]] FNEINUER N NEE

7] | plez]es g "[110f120] / t]1as ||| v]1s0] |

i o T Y i R 2

Note: Right Pointer]i] always points to nodes greater than the key value.

Figure A1-23. B-tree of order 3 (Corresponding to 3-way Search Tree)

A1.7.2 Implementation of the B-tree
The main operations we desire for the B-tree include:

e C(Creation

e Direct Search

e Sequential Search

e Insertion

e Deletion

471

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A possible implementation of a B-tree of LibraryPatron objects is shown in
Figure A1-24. As you may well imagine, maintaining such a tree is much more challenging
than a BST or heap, but by no means insurmountable. We will look more closely at some
of these algorithms shortly.

PatronBTNode

protected LibraryPatron [] Info
protected PatronBTNode [] Pointer

PatronBTNode()

void Modify(PatronBTNode ThisNode) /* Modifies the current node based on ThisNode */

void Modify(int hostltem, LibraryPatron ThisPatron) /* Modifies an item in the node based on ThisPatron */
void InputData(int x)

String PrintMe(int Item) // Prepares an item in the node for printing

String PrintMe() // Prepares all items in the node for printing

Figure A1-24a. The UML Diagram of the PatronBTNode Class

PatronsBTree

protected PatronBTNode Root
protected int Size, TravRef
LibraryPatron[] Traversal

public PatronsBTree()

public void addRoot(LibraryPatron ThisPatron) // Inserts an item at the root

public void addltem(LibraryPatron ThisPatron) // Inserts an item

public void addNode(PatronBTNode ThisNode) // Inserts a node

public LibraryPatron removeltem(PatronBTNode ThisNode, int x) // Deletes an item
public PatronBTNode removeNode(PatronBTNode ThisNode) / Deletes a node
public void Modify(PatronBTNode ThisNode, int x, LibraryPatron ThisPatron) /* Modifies an item based on ThisPatron */
public void clearTree()

public LibraryPatron getinfo(PatronBTNode ThisNode, int x)

public PatronBTNode getNode(PatronBTNode ThisNode)

public int getSize()

public boolean isEmpty()

public void inOrderTraversal()

public PatronBTNode diretSearch(LibraryPatron SearchValue)

Figure A1-24b. The UML Diagram of the PatronsBTree Class

Sequential search of the B-tree is achieved by an In-order traversal. Several values
may be sought simultaneously. Note however, that internal nodes will be visited more
than once since they contain several keys. Performance is therefore poor.

The direct search algorithm is shown in Figure A1-25. It is used to find a specific node
in the tree. It is a very efficient algorithm. On the average, searching for an item among
1,000,000 items takes just about 20 comparisons! B-trees are also excellent for storing large
volumes of data without deteriorating. For these reasons, B-trees are widely used as the file
systems for compilers, database management systems, and operating systems.

472

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

diretSearch(LibraryPatron SearchValue): Returns PatronBTNode
START // Assume that the maximum number of items per node is N
Current := Root;
i= 0
While (SearchValue <> Current.Info[i]) do the following:
If (SearchValue < Current.Infoli]) OR (i = N)
Current := Current.Pointer[i]; i:= 0;
End-If;
Else If ((i+1)<=N) i:= i+ 1; End-If, End-Else;
End-While;

/I Current now points to the correct node
Return Current;
STOP

Figure AlI-25. Direct Search Algorithm

Figure A1-26 provides the summarized form of the B-tree insertion algorithm.
This algorithm is easier described than implemented. Fortunately, you do not need to
implement it in a typical data structures course. However, you do need to be able to
demonstrate an understanding of the algorithm, so let us take an example:

1. Search for and locate appropriate insertion node;

2. Ifthe node is not full, insert the data item;

3. Ifthe node is full, node splitting occurs as follows:
= Introduce a new node;
= Place half of the keys in the new node, and half of the keys in the original node;
= Move the remaining value up to the parent node;

Note In the worst case, node splitting continues up to the root and the tree height increases by one.

Figure A1-26. Summary of B-tree Insertion Algorithm

Example 11: Referring to the B-tree of Figure A1-23, consider inserting the following
items: 22, 41, 59, 57, 54. Figure A1-27 illustrates how these items would be added.

473

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A. 22 should reside in node I. Find node I and insert 22: 20 22

B. 41 should go in node n. Find node n and insert 41: 41 22

C. 59 should go in o, which is full. Split the node:

f[9Jeo] [[| —* KD

? (&0 I*—v—I
A 4)

D. 57 should go in node o. Find node o and insert 57: 50 57

E. 54 should go in node o (again). Split the node:

(with 54 movina up to node f)

But node f s also full! Split the node:

f [P [58]® [e0[® | + —y f 54 (with 58 moving up to
l l l node b)

B S I i e
f L efeo [of []

Figure A1-27. Illustrating Addition of Items to the B-tree

474

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

But node b is also full! Split the node:
b b'

b
—>
[g[19] o[43] o] *% Lol19] of [| lo[ss[el [|

d e c d e

(with 43 moving up to a)

Next, insert 43 into node a (the root):

I—mmmm: .
TR T | I
E K. AN
! ! Voo '

d e f f g h i

Figure A1-27. llustrating Addition of Items to the B-tree (continued)

The summarized item deletion algorithm is shown in Figure A1-28. Note that as in
the case of insertion, deletion may lead to significant adjustment of the tree.

-

Search for and locate the appropriate node;

Remove the item;

If resultant node is now empty, adjust the tree, by moving up a key value from one of its sub-tree giving
preference to the leftmost sub-tree. The worst-case scenario is that the tree looses a leaf.

@

Figure A1-28. B-tree Item Deletion Algorithm

Example 12: Referring to the B-tree of Figure A1-23, consider deleting the following

items:| & 7 1s
a. 65isinnodep,removeit:pz [T [[|
b. 7isinnodej,removeit: jiE T [1 T |

c. 16isinnode d, remove it. Move up 15 from node j and place
a dummy (null) value at node j.

475

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A1.8 Summary and Concluding Remarks

Here is a summary of what has been discussed in this chapter:

e Atree has one root and zero or more other sub-trees connected to
it. Except for the root, each node has a parent node.

e Abinary tree (BST) is a tree in which each node is either empty
or consists of two disjoint binary trees: the left sub-tree and the
right sub-tree. The BST may be traversed in-order, pre-order, or
post-order.

e Abinary search tree is a binary tree in which all nodes to the left
of a node are less then or equal to that node; all nodes to the right
of a given node are greater than or equal to that node.

e Aheight-balanced k-tree (denoted (HB (k)) is a BST in which
the maximum allowable difference in height between any two
sub-trees sharing a common root (not necessary a parent) is k.
For AVL trees, k=1.

e Aheapis an almost complete binary tree, such that: Every leaf of
the tree is at level m or m + 1, where m is an integer; if a node has
aright descendant at level |, it also has a left descendant at level I;
there is some established relationship between the parent-value
and its two children-values.

e Anm-way search tree is a tree of out-degree less than or equal to
m, i.e. a maximum of m pointers point from a node. The tree has
the following properties: Each node has a maximum of m pointers
and m-1 key values; in any node, the key values are in ascending
order; the pointer to the left of key value k[i] points to a node with
values less than or equal to k[i]; the pointer to the right of key
value k[i] points to a node with values greater than or equal to k[i].

e AB-treeis a special type of m-way search tree with the following
properties: Except for the root and leaves, each node of the tree
has at least m/2 sub-trees and no more than m sub-trees; the root
of the tree has at least two sub-trees, unless it is itself a leaf; all
leaves of the tree are at the same level.

Trees (and particularly BSTs, heaps, and B-trees) are widely used in software
engineering to solve various programming problems related to the organization and
retrieval of data.

476

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 © REVIEW OF TREES

A1.9 References and/or Recommended Readings

[Carrano, 2006] Carrano, Frank and Janet Prichard. Data Abstraction & Problem Solving
with Java. Boston, MA: Addison-Wesley, 2006. See Chapter 11.

[Carrano, 2007] Carrano, Frank. Data Structures & Abstraction with Java 2™ ed. Upper
Saddle River, NJ: Prentice Hall, 2007. See Chapter 25 - 29.

[Drake, 2006] Drake, Peter. Data Structures and Algorithms in Java. Upper Saddle River,
NJ: Prentice Hall, 2006. See Chapter 10.

[Folk, 1998] Folk, Michael, Bill Zoellick & Greg Riccardi. File Structures:
An Object-Oriented Approach with C++, 3rd ed. Reading, Massachusetts: Addison-Wesley,
1998. See Chapters 8 and 9.

[Ford, 2005] Ford, William H. and William R, Topp. Data Structures with Java. Upper
Saddle River, NJ: Prentice Hall, 2005. See Chapters 16 - 18, 22.

[Knuth, 1973] Knuth, D. The Art of Computer Programming volume 3, “Searching and
Sorting” Reading, Massachusetts: Addison-Wesley, 1973.

[Kruse, 1999] Kruse, Robert and Alex Ryba. Data Structures and Program Design in C++
1st ed. Upper Saddle River, New Jersey: Prentice Hall, 1999.

[Langsam, 2003] Langsam, Yedidya, Moshe Augenstein, and Aaron M. Tanenbaum. Data
Structures Using Java. Upper Saddle River, NJ: Prentice Hall, 2003. See Chapter 5.

[Main, 2006] Main, Michael. Data Abstraction & Other Objects Using Java. Boston, MA:
Addison-Wesley, 2006. See Chapters 9 and 10.

[Standish, 1980] Standish, T. A. Data Structure Techniques. Reading, Massachusetts:
Addison-Wesley, 1980.

[Venugopal, 2007] Venugopal, Sesh. Data Structures Outside In with Java. Upper Saddle
River, NJ: Prentice Hall, 2007. See Chapters 9 - 11.

[Weis, 2007] Weiss, Marl Allen. Data Structures and Algorithm Analysis in Java 2™ ed.
Boston, MA: Addison-Wesley, 2007. See Chapter 4 and 7.

477

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2

Review of Hashing

Hashing is a technique for mapping data from a large set to limited space in a much
smaller set. This appendix provides an overview of the subject. The appendix covers the
fundamentals of hashing under the following captions:

e Introduction

e Hash Functions

e Collision Resolution
e HashinginJava

¢ Summary and Concluding Remarks

A2.1 Introduction

In computer science, it is always important to establish mapping functions between
(what s called) the conceptual user view of data and actual physical storage reality in
the computer system. The former is what the end-user sees; the latter is what is actually
stored on the storage media. For reasons that will become clear in your courses in
software engineering, database systems, and operating systems, the two perspectives are
seldom identical.

Another equally important issue is how to find data that is stored. For example,
consider a transaction file for a financial institution, with millions of records. As you
can well imagine (based on earlier discussions), sequential access of records in this file,
would be suitable for a non-interactive program running in batch mode. However, it
would not be suitable for a program that needs to provide interactive responses to the
end used, based on different customers. You certainly would not want to process this
file relying solely on an array, linked list, queue, or stack. You could use a BST, a heap, or
better yet, a B-tree! But how would you determine where on the storage media to actually
store records of your file so they can be easily retrieved when needed? Hashing is one
technique for addressing this problem.

Hashing is a technique that addresses the problems of where (on a physical
storage medium) to store data and how to retrieve the data stored. In hashing, there is a
predictable relationship between a key value used to identify a record, and the record’s
location on a storage medium.

479

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

A hash function takes a key value, applies an algorithm to determine its location.
Mathematically, we represent this as follows (Figure A2-1):

F(KeyValue) Address Or Address := F(KeyValue)

Figure A2-1. Basic Concept of Hashing

The hash function maps key values from a relatively large domain to a relatively
smaller range of address locations. Because of this, collision may occur and must be
resolved. Collision occurs when two or more keys map to the same address, as illustrated
in Figure A2-2.

F(KeyValue1) Address 1

F(KeyValue2) Address 1

_,|
_,|

Figure A2-2. Illustrating Collision

Since two records cannot be stored in the same location, the collision must be
resolved. Various collision resolution techniques have been proposed. These will be
discussed shortly.

A2.2 Hash Functions

A good hash function should exhibit two important features: Firstly, it should be easy
and fast to compute. Secondly, it must attempt to scatter the key values (random or
non-random) evenly over the address space. Various hash functions have been proposed
and tested with varying results. Among the commonly discussed hash functions are the
following: absolute addressing, direct table lookup, division-remainder, mid-square,
folding, and truncation. We will briefly discuss each technique.

480

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

A2.2.1 Absolute Addressing

In absolute addressing, the address is the key value. Thus,

‘ Address ‘= KeyValue Mod Divisor

This is a simplistic approach to hashing; it will only work for trivial cases. In most
practical cases, this approach will be inadequate, since storage will be limited.

A2.2.2 Direct Table Lookup

In direct table lookup, the following steps are taken:

e The addresses are initially generated via some method. The
method used to generate these addresses could be any of the
techniques discussed in this section, or some other technique.

e The keys and addresses are stored as a separate index (directory).

e To access arecord, the index is first consulted to determine its
address.

Figure A2-3 provides an example of an index lookup table for an employee file.
The assumptions here are as follows:

The file is keyed on the employee’s identification number.
e Each employee record occupies 128 bytes of space.
¢ Ameans of determining the address for each record is in place.

e The notation TnSn is used to denote the track number and sector
number on a hard drive (for instance T1S1 means track 1, sector 1).

e Each sector can store up to 4096 bytes of data.

Key Value (ID_Number) Address on Storage Medium
2001000 T181-0000
2001010 T151-0128
2001020 T181-0256
2001030 T181-0384
2001040 T181-0512
2001050 T181-0640
2001060 T181-0768
2001070 T151-0896
2001080 T151-1024

Figure A2-3. Example of Table Lookup for Employee Records

481

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

The technique is applied as follows:

e When arecord is first written, its address is determined and
logged into the index (lookup) table.

e When arecord is to be retrieved, the index is consulted for its
exact location.

The technique has three significant advantages: Table lookup is a very efficient way
of storing small to medium sized files. Additionally, the technique is simple and easy
to implement. Finally, the technique avoids the problem of collision (by presumably
addressing it up front). For these reasons, the technique is widely used in database
management system (DBMS) suites and operating systems.

The approach has two problems: Firstly, storing a data file requires management of
two separate physical files on the storage medium. Secondly, as the size of the data file
grows, so does the size of the index (table lookup) file.

A2.2.3 Division-Remainder

The division-remainder technique prescribes that you divide the key value by an
appropriate number, then use the remainder of the division as the address for the record.
In computer science, we refer to the operation that yields the remainder of an integer
division as the modulus (commonly abbreviated as mod). Thus,

Address := KeyValue Mod Divisor

Note:

e Ifthe divisor is N, then address space must be of minimum size N
(that is 0 to N-1).

e To minimize the number of collisions, the divisor is typically a
large number that does not contain any prime factors less than 20.
For example, 997 or 1011 is preferred to 1024.

The technique is applied as follows: When a record is to be stored or retrieved,
its address is first determined via the hash function.
The technique has three significant advantages:

e Itissimple and easy to implement.
e Itisvery efficient for small files.

e Itavoids using two physical files for a single data file.

482

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

The technique has three significant disadvantages that discourage widespread use as
a primary hash function:

e It offers no guarantee against collision (though it can be
minimized by carefully choosing the divisor).

e TItdoes not perform very well in attempting to distribute keys
evenly across the address space.

e Asthe size of the data set increases, so does the likelihood of
collision.

A2.2.4 Mid-Square

In the mid-square technique, the key value is squared, and then a specific number of
digits is extracted from the “middle” of the result to yield the hash address. If an address
space of N digits is desired, then digits are truncated at both ends of the squared key
value, leaving N digits from the middle.

As an example, suppose that we need a 4-digit address, and we have a key value of
7895. The address could be determined as follows:

Address := Mid-square(7895) = 82331025 =3310

Like the division-remainder technique, when a record is to be stored or retrieved,
its address is first determined via the hash function.

The technique is a slight improvement over the division-remainder technique,
providing the following advantages:

e Itissimple and easy to implement.
e [Itisvery efficient for small files as well as large files.

e It performs reasonably well in attempting to distribute the keys
evenly over the address space.

e Itavoids using two physical files for a single data file.

The technique has one significant disadvantage: It offers no guarantee against
collision (but the performance is better than the division-remainder technique).

A2.2.5 Folding

The folding technique involves partitioning the key into several parts and combining
the parts in a convenient way (via multiplication, addition or subtraction) to obtain a
hash address.

483

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

To illustrate this technique, suppose that the folding method is addition and the
address space is for four digits. Then, we may derive a hash address from the key value of
625149 via one of the following means:

Address == 625+ 149 =0774 Or Address == 6251 + 49 = 6300

The advantages and disadvantages of folding are similar to those of the mid-square
technique. Figure A2-4 shows a comparison of how both techniques forms on data set
of key-values. For this particular data set, folding appears to distribute the key-values
more gracefully over the address space. On the other hand, the mid-square technique
appears to distribute the key-values more randomly over the address space. Of course,
this simple experiment is not enough for us to make conclusion as to how the techniques
will perform on other data sets.

Key-Values: 2001010 | 2001020 | 2001030 | 2001040 | 2001050 | 2001060 | 2001070 | 2001080
Folding Address: | 2011 2021 2031 2041 2051 2061 2071 2081
Mid-square 4102 8104 2106 6108 0110 4112 8114 2116
Address:

Figure A2-4. Comparing Folding with Mid-square on a Data Set

A2.2.6 Truncation

In the truncation technique, part of the key is ignored, and the other part is used as the
hash address. To illustrate this technique, suppose that the address space is for four digits.
Then, we may derive a hash address from the key value of 625149 via one of the following
means:

Address = 625149 = 6251 Or Address := 625149 = 5149

Truncation, like absolute addressing is too simplistic for practical purposes. It could
result in repeated collisions, and it does not come close to distributing the keys evenly
over the address space.

A2.2.7 Treating Alphanumeric Key Values

In many cases, key values will be alphanumeric instead of numeric. For these situations,
you will need to convert the alphanumeric data to numeric form. There are several ways
to do this, so there is no need to panic. Figure A2-5 provides a summary of two commonly
used techniques that have been proposed. Of course, you can come up with your own.

484

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

1. Simple Character Sequencing

= Assign a unique number for each possible character that can be used as part of a key-value (a good place to
start is characters on the keyboard). For example, A-Z could be assigned 1-26; a-z could be assigned 27-52;
digits could remain 0-9; and so on.

= For each alphanumeric key-value, convert each character to an integer, using the above-mentioned
convention, and then add the individual numeric pieces to obtain a final numeric value for that key-value.

= Observe: This approach would not guarantee that each key-value has a unique numeric value. For example,
“care” and “race” would have the same numeric value.

2. Use the ASCll/Unicode Character Sequencing
= Instead of developing your own sequencing, use the numeric value of each ASCII/Unicode character in the
key-value. In Java, this can be easily achieved by invoking any of the following two static methods of the
Character class (method signatures given):
static int digit(char ch, int radix) /* Returns the numeric value of character ch in the specified radix. */
static int getNumericValue(char ch) /* Returns the numeric value of the specified Unicode character. */
= For each alphanumeric key-value, convert each character to an integer, and then add the individual numeric
pieces to obtain a final numeric value for that key-value.
= Observe: Again, this approach would not guarantee that each key-value has a unique numeric value.

Figure A2-5. Converting Alphanumeric Keys to Numeric

A2.3 Collision Resolution

As mentioned earlier, when hash functions are applied, collisions are likely to occur.
Three collision resolution techniques are prevalent: linear probing, synonym chaining,
and rehashing.

A2.3.1 Linear Probing

The linear probing strategy prescribes that whenever a collision occurs, the empty
location that is closest to the hash address is found and used. If the end of the table is
reached, wrap-around is allowed. Figure A2-6 illustrates this. In the figure, collision has
been resolved for nodes D, E, and G.

Key Value Hash Address Storage Address

@MMmMoO0|m|(>
Nlo|~|N|w =
~N|o|o|s~|w =

Figure A2-6. Illustrating Linear Probing

485

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

The load factor fis defined as the number of records (to be) stored in the table to the
actual size of the table. Thus,

f = n/s where n is the number of records (to be) stored and s is the size of the table.

As items are added to the table, blocks of occupied cells start forming. This is
referred to as primary clustering. The result is increased likelihood of collision and
lengthened probes for subsequent items to be inserted. As the table fills up these searches
become longer.

For insertions and unsuccessful searches, the expected number of probes
is %[1 + 1/(1 - f)?]. For successful searches, the expected number of probes is
%[1 + 1/(1 - f)]. The derivation of these formulae is beyond the scope of this course.

Linear probing has the following advantages:

e The technique is conceptually simple and easy to implement.
e The amount of calculation done at each stage is very small.
Disadvantages of linear probing include the following:

e Primary clustering — the hash-table fills up in clusters, rather
than in even distribution over the address space.

e Primary clustering leads to longer search and increased
likelihood of collision, particularly as the file becomes full.

Linear probing sometimes described as an open addressing strategy. Another
commonly discussed open addressing strategy is quadratic probing. Since its
performance is not much different from linear probing, it will not be discussed any
further. Rehashing is another open addressing strategy; it will be discussed shortly.

A2.3.2 Synonym Chaining

The synonym chaining technique uses the hash address, not as the actual storage
location for the record, but as the index into a list (implemented as a linked list or array-
list). This way, we can facilitate multiple records with the same hash address! Figure A2-7
provides a graphic representation of this approach.

486

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

[11
115
1t

* I
o
> S
g
(7]
T [1 |
Hash Table Alinked list or queue for each hash-table entry (preferably a linked list)

Figure A2-7. Graphic Representation of Synonym Chaining

Programmatically, the hash table may be implemented via any of the following
strategies (you are encouraged to try implementing this on your own):

e Anarray of linked lists or queues
e Anarray-list of linked lists or queues
e Anarray-list of array-lists

Observe:

e The table size s is the number of linked lists (chains), not the
number of nodes.

e The average length of each chain is n/s where n is the number of
records (nodes).

e Theload factor s is therefore the average length of each chain.

¢ Anunsuccessful search will involve the examination of f items;
a successful search will require an average of 1 + f/2 examinations.
So as expected, the performance is significantly better than linear
probing.

Synonym chaining has the following advantages:

e The technique reduces access time for records with collision
addresses.

e [Itisrelatively easy to insert nodes in a given chain.

e There is even distribution of keys (nodes) over address space.

487

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

The technique has two main disadvantages:

e Additional space is required for the linked lists. However, since
linked lists are dynamic structures, this is not significant.

e Linked lists cannot be accessed randomly; they are sequential
access structures.

A2.3.3 Rehashing

Rehashing is another open addressing strategy that significantly reduces clustering. The
technique involves the application of a second hash function to resolve any collision that
might have occurred from the first hash function. In principle, rehashing can continue to
other levels until collision is resolved. However, in practice, if you have to hash more than
twice to resolve collision, you probably need to change your hash function(s).

The main advantage of rehashing is that it tends to produce an even spread of key
values over the address space. One significant disadvantage is that records may be moved
some distance from their home address, thus violating the locality principle.

A2.4 Hashing in Java

You can develop and implement hash functions in just about any programming language.
However, as usual, Java provides you with some nice features that facilitate this. In
particular, there are three Java classes that you should be familiar with — the Hashtable,
HashMap, and the TreeMap classes. These classes reside in the java.util package.

The Hashtable class implements a hash-table that maps keys to values. A key can
be any valid object. Each instance of Hashtable class has two properties that affect its
performance: the initial capacity and load factor. The capacity is the number of buckets
in the hash table, and the initial capacity is simply the capacity at the time the hash table
is created. A bucket is simply a holding area for key values that have the same address
(similar to a chain); the bucket is searched sequentially. The load factor is a measure of
how full the hash table is allowed to get before its capacity is automatically increased. The
conventional wisdom is 0.75. Figure A2-8 provides the UML diagrams for the class.

488

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

Hashtable <K, V> /* Implements a hash-table which maps keys to values as specified in the Map interface.
Note: If K:and V are not specified at instantiation, they revert to Object. */

int capacity, loadFactor

I/ Constructors

public Hashtable() /* Constructs an empty Hashtable instance with a default initial capacity of 11
and load factor of 0.75. */

public Hashtable(int initCap) /* Constructs an empty Hashtable instance with initial capacity of
initCap and load factor of 0.75. */

public Hashtable(int initCap, float loadFactor) /* Constructs an empty Hashtable instance with initial capacity of initCap
and load factor of loadFactor. */

/I Other methods of interest

public void clear() // Clears the hash-table

public boolean contains(Object value) /* Checks whether the specified value is contained in the hash-table. */
public boolean containsValue(Object value) // As for containsy().

public boolean containsKey(Object key) /* Checks whether the specified key is contained in the hash-table. */
public boolean equals(Object obj) /* Checks whether the current hash-table (map) is equal to the specified object. */
public V get(Object key) // Returns the value that the specified key maps to, or null.

public int hashCode() // Returns the hash-code value of this hash-table (map).

public boolean isEmpty() / Checks of the hash-table is empty.

public V put(K key, V value) // Inserts a new key-value mapping into the hash-table

protected void rehash() /* Increases the capacity and internally reorganizes the hash-table. */

public V remove(Object key) /* Removes the specified key and corresponding value from the hash-table. */
protected int size() // returns the size (number of keys) of the hash-table.

protected String toString() // Returns a string representation of the hash-table.

Figure A2-8. UML Diagram for the Hastable Class

The HashMap class is roughly equivalent to Hashtable, except that it is
unsynchronized and permits nulls. Additionally, there is no guarantee that the order of
the hash-table will remain constant over time.

The TreeMap class implements a non-synchronized map (similar to a hash-table),
in which keys are sorted. Figure A2-9 provides the UML diagrams for the class.

489

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

TreeMap <K, V> [* Implements a map which maps keys to values as specified in the Map interface. Note: If K
and V are not specified at instantiation, they revert to Object. */

I Constructor
public TreeMap() /* Constructs an empty TreeMap instance, using the natural ordering of its keys. */

I/ Other methods of interest

public K ceilingKey(K thisKey) // Returns the least key that is >= thisKey, or null.

public void clear() // Clears the map.

public boolean containsKey(Object value) /* Checks whether the specified value is contained in the map. */
public boolean containsKey(Object key) /* Checks whether the specified key is contained in the map. */
public boolean equals(Object obj) /* Checks whether the current map is equal to the specified object. */
public K firstkey() // Returns the first (i.e. lowest) key-value in the map.

public K floorKey(K thisKey) // Returns the greatest key that is <= thisKey, or null.

public V get(Object key) // Returns the value that the specified key maps to, or null.

public int hashCode() // Returns the hash-code value of this hash-table (map).

public K higherKey(K thisKey) // Returns the least key that is > thisKey, or null.

public V put(K key, V value) // Inserts a new key-value mapping into the map.

protected void rehash() // Increases the capacity and internally reorganizes the map.

public boolean isEmpty() // Checks of the hash-table is empty.

public K lastKey() / Returns the last (i.e. greatest) key-value in the map.

public K lowerKey(K thisKey) // Returns the greatest key that is < thisKey, or null.

public V remove(Object key) /* Removes the specified key and corresponding value from the map. */
protected int size() // returns the size (number of keys) of the hash-table.
protected String toString() // Returns a string representation of the map.

Figure A2-9. UML Diagram for the TreeMap Class

A2.5 Summary and Concluding Remarks

Let us summarize what we have covered in this chapter:

e Ahash function takes a key value, applies an algorithm to
determine its location.

e The hash function maps key values from a relatively large domain
to arelatively smaller range of address locations. Because of this,
collision may occur and must be resolved.

¢ Among the commonly used hashing techniques are absolute
addressing, direct table lookup, division-remainder, mid-square,
folding, and truncation.

e Three commonly used collision resolution strategies are linear
probing, synonym chaining, and rehashing.

e Inlinear probing, consecutive address locations are checked until
a free location is found for insertion, or the sought item is found.

490

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © REVIEW OF HASHING

¢ Insynonym chaining, each hash address is a reference to a linked
list of items that have that hash address.

e Inrehashing, successive hash functions are applied until the
collision is resolved.

e Java facilitates management of hash tables via the Hashtable,
HashMap, and TreeMap classes.

Hashing is widely used in the implementation of filing systems for compilers,
operating systems and database management systems.

A2.6 References and/or Recommended Readings

[Carrano, 2006] Carrano, Frank and Janet Prichard. Data Abstraction & Problem Solving
with Java. Boston, MA: Addison-Wesley, 2006. See Chapter 13.

[Carrano, 2007] Carrano, Frank. Data Structures & Abstraction with Java 2™ ed. Upper
Saddle River, NJ: Prentice Hall, 2007. See Chapter 19 and 20.

[Drake, 2006] Drake, Peter. Data Structures and Algorithms in Java. Upper Saddle River, NJ:
Prentice Hall, 2006. See Chapter 11.

[Ford, 2005] Ford, William H. and William R, Topp. Data Structures with Java.
Upper Saddle River, NJ: Prentice Hall, 2005. See Chapter 19 and 21.

[Kruse, 1994] Kruse, Robert. Data Structures and Program Design 3rd ed.
Eaglewood Cliffs, New Jersey: Prentice Hall, 1994. See Chapter 9.

[Langsam, 2003] Langsam, Yedidya, Moshe Augenstein, and Aaron M. Tanenbaum. Data
Structures Using Java. Upper Saddle River, NJ: Prentice Hall, 2003. See Chapter 4.

[Lewis, 1982] Lewis, T.G. and M.Z. Smith. Applying Data Structures 2" ed. Hopell, New
Jersey: Houghton Miflin, 1982. See Chapter 8.

[Shaffer, 1997] Shaffer, Clifford A. A Practical Introduction to Data Structures and Algorithm
Analysis. Upper Saddle River, New Jersey: Prentice Hall, 1997. See Chapter 10.

[Venugopal, 2007] Venugopal, Sesh. Data Structures Outside In with Java. Upper Saddle
River, NJ: Prentice Hall, 2007. See Chapter 12.

[Weis, 2007] Weiss, Marl Allen. Data Structures and Algorithm Analysis in Java 2™ ed.
Boston, MA: Addison-Wesley, 2007. See Chapter 5.

491

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3

Review of Information
Gathering Techniques

This appendix provides a brief review of information gathering techniques. You would
normally learn these techniques in a course in software engineering or systems analysis.
Mastery of the techniques discussed will enable you to readily identify information
entities, as you model and design a database system. Note, this appendix is not meant
to replace a full course (and text) in software engineering or systems analysis. It should
therefore be regarded as an overview, not a final authority on the subject matter.

In order to accurately and comprehensively specify the system, the software engineer
gathers and analyzes information via various methodologies. This Chapter discusses
these methodologies as outlined below:

¢ Rationale for Information Gathering

e Interviews

¢ Questionnaires and Surveys

e Sampling and Experimenting

e Observation and Document Review

e Prototyping

e Brainstorming and Mathematical Proof
e ObjectIdentification

¢ Summary and Concluding Remarks

A3.1 Rationale for Information Gathering

What kind of information is the software engineer looking for? The answer is simple,
but profound: You are looking for information that will help to accurately and
comprehensively define the requirements of the software to be constructed. The process

493

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

is referred to as requirements analysis, and involves a range of activities that eventually
lead to the deliverable we call the requirements specification (RS). In particular, the
software engineer must determine the following:

e Synergistic interrelationships of the system components: This
relates to the components and how they (should) fit together.

e System information entities (object types) and their
interrelatedness: An entity refers to an object or concept about
data is to be stored and managed.

e System operations and their interrelatedness: Operations are
programmed instructions that enable the requirements of the
system to be met. Some operations are system-based and may be
oblivious to the end user; others facilitate user interaction with
the software; others are internal and often operate in a manner
that is transparent to the end user.

e System business rules: Business rules are guidelines that specify
how the system should operate. These relate to data access, data
flow, relationships among entities, and the behavior of system
operations.

e System security mechanism(s) that must be in place: It will be
necessary to allow authorized users to access the system while
denying access to unauthorized users. Additionally, the privileges
of authorized users may be further constrained to ensure that they
have access only to resources that they need. These measures
protect the integrity and reliability of the system.

As the software engineer embarks on the path towards preparation of the
requirements specification, these objectives must be constantly borne in mind. In the
early stages of the research, the following questions should yield useful pointers:

e WHAT are the (major) categories of information handled? Further
probing will be necessary, but you should continue your pursuit
until this question is satisfactorily answered.

e WHERE does this information come from? Does it come from an
internal department or from an external organization?

e WHERE does this information go after leaving this office? Does it
go to an internal department or to an external organization?

e HOW and in WHAT way is this information used? Obtaining
answers to these questions will help you to identify business rules
and operations.

e WHAT are the main activities of this unit? A unit may be a division
or department or section of the organization. Obtaining the
answer to this question will also help you to gain further insights
into the operations.

494

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

e WHAT information is needed to carry out this activity? Again
here, you are trying to refine the requirements of each operation
by identifying its input(s).

e WHAT does this activity involve? Obtaining the answer to this
question will help you to further refine the operation in question.

e WHEN is it normally done? Obtaining the answer to this question
will help you to further refine the operation in question by
determining whether there is a time constraint on an operation.

e WHY is this important? WHY is this done? WHY...? Obtaining
answers to these probes will help you to gain a better
understanding of the requirements of the software system.

Of course, your approach to obtaining answers to these probing questions will be
influenced by whether the software system being researched is to be used for in-house
purposes, or marketed to the public. The next few sections will examine the commonly
used information gathering strategies.

A3.2 Interviewing

Interviewing is the most frequent method of information gathering. It can be very
effective if carefully planned and well conducted. It is useful when the information
needed must be elaborate, or clarification on various issues is required. The interview
also provides an opportunity for the software engineer to win the confidence and trust of
clients. It should therefore not be squandered.

Steps in Planning the Interview

In panning to conduct an interview, please observe the following steps:
1. Read background information.

Establish objectives.

Decide whom to interview.

Prepare the interviewee(s).

A

Decide on structure and questions.

Basic Guidelines for Interviews

Figure A3-1 provides some guidelines for successfully planning and conducting an
interview. These guidelines are listed in the form of a do-list, and a don’t-list.

495

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

Do-List for Interviews: Don’t-List for Interviews:
1. Make an appointment. 1. Don't be late.
2. Plan. Consider topics to be covered. 2. " be too formal of too casual.
3. Make sure information requested is impersonal and 3. interrupt the speaker.
objective. 4. " use technical jargons.
5
6

4. Prepare for the interview (theme & questions). " jump to conclusions.

5. Ask questions at the right level. . " argue or criticize (constructive or

6. State the purpose clearly, up front. destructive).

7. Communicate in the interviewee's language. 7. " make suggestions (not as yet; you
8. If compliments become necessary, be sincere. will get your opportunity to do so later).
9. Berelaxed and help the respondent to be relaxed.

10. Listen.

11. Identify facts as opposed to opinions. Both are important.
12. Accept ideas and hints.

13. Check the facts.

14. Collect source documents and forms.

15. Make effective use of open-ended and closed questions.
16. Part pleasantly.

Figure A3-1. Basic Guidelines for Interview

A3.3 Questionnaires and Surveys

A questionnaire is applicable when any of the following situations hold:
e Asmall amount of information is required of a large population.

e The time frame is short but a vast area (and/or dispersed
population) must be covered.

e Simple answers are required to a number of standard questions.

Guidelines for Questionnaires

Figure A3-2 provides a set of basic guidelines for preparing a questionnaire.

496

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

State purpose clearly
Thank the participants
Must have a topic or heading which reflects an apt summary of the information sought.
Should adhere to the principles of forms design.

Avoid ambiguity.

Decide when to use open-ended questions, closed questions or scalar questions.
Order questions appropriately.

State questions in a language the respondent will readily understand.

9. Be consistent in style.

10. Ask questions of importance to the respondents first.

11. Bring up less controversial questions first.

12. Cluster related questions.

} Usually in the form of a cover note or letter

O N WN

Figure A3-2. Guidelines for Questionnaires

Using Scales in Questionnaires

Scales may be used to measure the attitudes and characteristics of respondents, or have
respondents judge the subject matter in question. There are four forms of measurement

as outlined below:

1. Nominal Scale: Used to classify things. A number represents a
choice. One can obtain a total for each classification.

2. Ordinal Scale: Similar to nominal, but here the number
implies ordering or ranking.

Example 1:

1 = Extremely Rich 2 = VeryRich 3 =Rich 4 =NotRich 35 =Pauper

3. Interval Scale: Ordinal with equal intervals.

Example 2: Usage of a particular software product by number of modules

used (10 means high):

,_.
[
W

4. Ratio Scale: Interval scale with absolute zero.

Example 3: Distance traveled to obtain a system report:

0 1 2 3 .. 10 [Meters]

www.it-ebooks.info

497

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

Example 4: Average response time of the system:

0 1 2 3 10 [Minutes]

Administering the Questionnaire
Options for administering the questionnaire include the following:
e Convening respondents together at one time.

e Personally handing out blank questionnaires and collecting
completed ones.

¢ Allowing respondents to self-administer the questionnaire at
work and leave it at a centrally located place.

e Mailing questionnaires with instructions, deadlines, and return
postage.

e Using the facilities of the World Wide Web (WWW), for example
e-mail, user forums and chat rooms.

A3.4 Sampling and Experimenting

Sampling is useful when the information required is of a quantitative nature or can
be quantified, no precise detail is available, and it is not likely that such details will be
obtained via other methods. Figure A3-3 provides an example of a situation in which
sampling is relevant.

Shipping Number of Orders % of Total

As Promised 186 37.2

1 day late 71 14.2

2 days late 49 9.8

3 days late 35 7.0

4 days late 38 7.6

5 days late 28 5.6

6 days late 93 18.6
500 100.0

Figure A3-3. Examining the Delivery of Orders After Customer Complaints

Sampling theory describes two broad categories of samples:
e Probability sampling involving random selection of elements.

e Non-probability sampling where judgment is applied in selection
of elements.

498

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

A3.4.1 Probability Sampling Techniques

There are four types of probability sampling techniques:

Simple Random Sampling uses a random method of selection of
elements.

Systematic Random Sampling involves selection of elements at
constant intervals. Interval = N/n where N is the population size
and n is the sample size.

Stratified Sampling involves grouping of the data in strata.
Random sampling is employed within each stratum.

Cluster Sampling: The population is divided into (geographic)
clusters. A random sample is taken from each cluster.

Note: Techniques (b), (c), (d) constitute Quasi Random Sampling. The reason for this
is that they are not regarded as perfectly random sampling.

A3.4.2 Non-Probability sampling Techniques

There are four types of non-probability sampling techniques:

Convenience Sampling: Items are selected in the most
convenient manner available.

Judgment Sampling: An experienced individual selects a sample
(e.g. a market research).

Quota Sampling: A subgroup is selected until a limit is reached
(e.g. every other employee up to 500).

Snowball Sampling: An initial set of respondents is selected.
They in turn select other respondents; this continues until an
acceptable sample size is reached.

499

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

A3.4.3 Sample Calculations

Figure A3-4 provides a summary of the formulas that are often used in performing
calculations about samples:

Item Clarification

Mean X'=3(X)n OR ¥ (FiX) /Y (Fi) where n is the number of items (elements);
Fiis the frequency of X;; and X; represents the data values.

Standard Deviation S=V((SF:(X-X) /n) where nis the sample size

Variance Variance = §2

Standard Unit Z=(%-X)/S

Standard Error Se=S/V(n)

Unit Error r=2Se=2S/(n)

Sample Size From equation for unit error above,n = (ZS / r)?

Figure A3-4. Formulas for Sample Calculations

These formulas are best explained by examining the normal distribution curve
(Figure A3-5). From the curve, observe that:

e Prob(-1<=Z<=1)=68.27%
e Prob(-2<=7Z<=2)=95.25%
e Prob(-3<=7Z<=3)=99.73%

500

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

A
F P(F)
:/ i
x-:35 X:-ZS xl-s X >.<+s x+:2s x.+3s X= 3 2 1 0 =Z
TF P(F)
ah ah
6827 | 68.27 |
xs X x.+s X= 1 0 Z;
Il P(F)
9545% 95.45%
x!-25 X x+;25 X; 2 0 Z;
A
F P(F)
99.73%
99:73%
x-.35 X x.+35 X= 3 0 Z=
Figure A3-5. The Normal Distribution Table
501

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

The confidence limit of a population mean is normally given by X' +/- ZS, where
Zis determined by the normal distribution of the curve, considering the percentage
confidence limit required. The following Z values should be memorized:

e 68% confidence =>7Z=1.64
e 95% confidence =>7Z=1.96
e 99% confidence =>Z = 2.58

The confidence limit defines where an occurrence X may lie in the range (X' - ZS)
<X < (X' +Z8,), given a certain confidence. As you practice solving sampling problems,
your confidence in using the formulas will improve.

A3.5 Observation and Document Review

Review of source documents will provide useful information about the input, data
storage, and output requirements of the software system. This activity could also
provide useful information on the processing requirements of the software system. To
illustrate, get a hold of an application form at your organization, and attempt to identify
information entities (object types) represented on the form. With a little thought, you
should be able to identify some or all of the following entities:

e Personal Information

e Family/Kin Contact Information
e Education History

e Employment History

e Professional References

e Extra Curricular Activities

Internal documents include forms, reports and other internal publications; external
documents are mainly in the form of journals and other professional publications. These
source documents are the raw materials for gaining insights into the requirements of the
system, so you want to pay keen attention to them.

With respect to observation, it is always useful to check what you have been told
against what you observe and obtain clarification where deviations exist. Through keen
observation, the software engineer could gather useful information not obtained by other
means.

A3.6 Prototyping

In prototyping, the user gets a “trial model” of the software and is allowed to critique it.
User responses are used as feedback information to revise the system. This process
continues until a software system meeting user satisfaction is obtained.

502

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

The following are some basic guidelines for developing a prototype:
¢ Work in manageable modules.
e Build prototype rapidly.
e Modify prototype in successive iterations.

e Emphasize the user interface—it should be friendly and meeting
user requirements.

Kinds of Prototypes

There are various types of prototypes that you will find in software engineering. Among
the various categories are the following:

Patched-up Prototype or Production Model: This prototype is functional the first
time, albeit inefficiently constructed. Further enhancements can be made with time.

Non-operational or Interactive Prototype: This is a prototype that is intended
to be tested, in order to obtain user feedback about the requirements of the system
represented. A good example is where screens of the proposed system are designed;
the user is allowed to pass through these screens, but no actual processing is done. This
approach is particularly useful in user interface design (see Chapter 6).

First of Series Prototype: This is an operational prototype. Subsequent releases are
intended to have identical features, but without glitches that the users may identify. This
prototype is typically used as a marketing experiment: it is distributed free of charge, or
for a nominal fee; users are encouraged to use it and submit their comments about the
product. These comments are then used to refine the product before subsequent release.

Selected Features Prototype or Working Model: In this prototype, not all intended
features of the (represented) software are included. Subsequent releases are intended to
be enhancements with additional features. For this reason, it is sometimes referred to as
evolutionary prototype. The initial prototype is progressively refined until an acceptable
system is obtained.

Throw-away Prototype: An initial model is proposed for the sole purpose of eliciting
criticism. The criticisms are then used to develop a more acceptable model, and the
initial prototype is abandoned.

A3.7 Brainstorming and Mathematical Proof

The methodologies discussed so far all assume that there is readily available information
which when analyzed, will lead to accurate capture of the requirements of the desired
software. However, this is not always the case. There are many situations in which
software systems are required, but there is no readily available information that would

503

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

lead to the specification of the requirements of such systems. Examples include (but are
not confined to) the following:

e Writing a new compiler

e Writing a new operating system

e Writing a new CASE tool, RAD tool, or DBMS
¢ Developing certain expert systems

¢ Developing a business in a problem domain for which there is no
perfect frame of reference

For these kinds of scenarios, a non-standard approach to information gathering is
required. Brainstorming is particularly useful here. A close to accurate coverage of the
requirements of an original software product may be obtained through brainstorming: a
group of software engineering experts and prospective users come together, and through
several stages of discussion, hammer out the essential requirements of the proposed
software. The requirements are then documented, and through various review processes,
are further refined. A prototype of the system can then be developed and subjected to
further scrutiny.

Even where more conventional approaches have been employed, brainstorming
is still relevant, as it forces the software engineering team to really think about the
requirements identified so far, and ask tough questions to ascertain whether the
requirements have been comprehensively and accurately defined.

Mathematical proofs can also be used to provide useful revelations about the
required computer software. This method is particularly useful in an environment where
formal methods are used for software requirements specification. This approach is often
used in the synthesis of integrated circuits and chips, where there is a high demand for
precision and negligible room for error.

A3.8 Object Identification

We have discussed six different information-gathering strategies. As mentioned in
section A3.1, these strategies are to be used to identify the core requirements of the
software system. As mentioned then, one aspect that we are seeking to define is the set

of information entities (object types). Notice that the term information entity is used

as an alternative to object type. The two terms are not identical, but for most practical
purposes, they are similar. An information entity is a concept, object or thing about which
data is to be stored. An object type is a concept, object or thing about which data is to be
stored, and upon which a set of operations is to be defined.

In object-oriented environments, the term object type is preferred to information
entity. However, as you have seen, in most situations, the software system is likely to
be implemented in a hybrid environment as an object-oriented (OO) user interface
superimposed on a relational database.

Early identification of information entities is critical to successful software
engineering in the OO paradigm. This is so because your software will be defined in terms
of objects and their interactions. For each object type, you want to be able to describe the
data that it will host, and related operations that will act on that data. Approaching the

504

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

software planning in this way yields a number of significant advantages; moreover, even if
it turns out that the software development environment is not object-oriented, the effort
is not lost (in light of the previous paragraph).

Several object identification techniques have been proposed by the software
engineering industry. Among the approaches that have been proposed are the following:

e Using Things to be Modeled

e Using Definitions of Objects, Categories and Types

e Using Decomposition

e Using Generalizations and Subclasses

e Using OO Domain Analysis or Application Framework
e Reusing Individual Hierarchies, Objects and Classes

e Using Personal Experience

e Using the Descriptive Narrative Approach

e Using Class-Responsibility-Collaboration Card

e Using the Rule-of-Thumb Method

These methodologies are discussed in the companion text on software engineering
(see [Foster, 2010]). To get you adjusted to the idea of object identification, two of the
approaches are summarized here.

A3.8.1 The Descriptive Narrative Approach

To use the descriptive narrative approach, start with a descriptive overview of the system
(if it is small), or each component subsystem (in the case of a large or complex system).
From each descriptive overview, identify nouns (objects) and verbs (operations).
Repeatedly refine the process until all nouns and verbs are identified. Represent nouns as
object types and verbs as operations, avoiding duplication of effort.

To illustrate, the Purchase Order and Receipt Subsystem of an Inventory
Management System might have the following overview (Figure A3-6):

Purchase orders (PO) are sent to suppliers, requesting inventory items in specific quantities. If a PO is incorrectly
generated, it is immediately removed and a new PO generated. The purchase invoice is the official document used to
recognize receipt of goods from suppliers. All goods received are accompanied by invoices. Once received, the
invoice is recorded. Items received are also recorded and appropriate inventory adjustments made to the inventory
item master file. Receipt quantities can be adjusted, but if wrong items are recorded on receipt, or omissions are
made, the whole invoice must be removed and re-recorded. When a receipt is correctly recorded, the associated PO
status is adjusted.

Figure A3-6. Descriptive Narrative of Purchase Order and Invoice Receipt Subsystem

505

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

From this narrative, an initial list of object types and associated operations can be
constructed, as shown below (Figure A3-7). Further refinement would be required; for
instance, additional operations may be defined for each object type (left as an exercise);
also, the data description can be further refined.

Object Type Data Description Operations
Purchase Order Stores Order Number, Order Date, Supplier, ltems | Generate, Remove, Adjust-Status
Ordered and related Quantity Ordered, etc.

Supplier Stores Supplier Code, Supplier Name, Supplier Sent-Invoice
Address, Contact Person, Telephone, E-mail, etc.
Purchase Invoice | Stores Invoice Number, Invoice Date, Related Record, Remove, Adjust-Quantity

Supplier, Iltems Shipped and related Quantity
Shipped, Invoice Amount, Discount, Tax, etc.
Inventory Item Stores Item Code, Item Name, Item Category, Adjust-Inventory
Quantity on Hand, Last Purchase Price, etc.

Figure A3-7. Object Types and Operations for Purchase Order and Invoice
Receipt Subsystem

A3.8.2 The Rule-of-Thumb Approach

As an alternative to the descriptive narrative strategy, you may adopt an intuitive
approach as follows: Using principles discussed earlier, identify the main information
entities (object types) that will make up the system. Most information entities that make
up a system will be subject to some combination of the following basic operations:

e ADD: Addition of data items
e MODIFY: Update of existing data items
e DELETE: Deletion of existing data items

e INQUIRE/ANALYZE: Inquiry and/or analysis on existing
information

e REPORT/ANALYZE: Reporting and/or analysis of existing
information

¢ RETRIEVE: Retrieval of existing data
e FORECAST: Predict future data based on analysis of existing data

Obviously, not all operations will apply for all object types (data entities); also, some
object types (entities) may require additional operations. The software engineer makes
intelligent decisions about these exceptions, depending on the situation. Additionally, the
level of complexity of each operation will depend on the object type (data entity).

In a truly OO environment, the operations may be included as part of the object’s
services. In a hybrid environment, the information entities may be implemented as part
of a relational database. The operations would be implemented as user interface objects
(windows, forms, etc.).

506

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

A3.9 Summary and Concluding Remarks

Here is a summary of what we have covered in this Chapter:

It is important to conduct a research on the requirements of a
software system to be developed. By so doing, we determine the
synergistic interrelationships, information entities, operations,
business rules, and security mechanisms.

In conducting the software requirements research, obtaining
answers to questions commencing with the words WHAT,
WHERE, HOW, WHEN and WHY is very important.

Information gathering strategies include interviews,
questionnaires and surveys, sampling and experimenting,
observation and document review, prototyping, brainstorming
and mathematical proofs.

The interview is useful when the information needed must be
elaborate, or clarification on various issues is required. The
interview also provides an opportunity for the software engineer
to win the confidence and trust of clients. In preparing to conduct
an interview, the software engineer must be thoroughly prepared,
and must follow well-known interviewing norms.

A questionnaire is viable when any of the following situations
hold: A small amount of information is required of a large
population; the time frame is short but a vast area (and/or
dispersed population) must be covered; simple answers are
required to a number of standard questions. The software
engineer must follow established norms in preparing and
administering a questionnaire.

Sampling is useful when the information required is of a
quantitative nature or can be quantified, no precise detail is
available, and it is not likely that such details will be obtained
via other methods. The software engineer must be familiar with
various sampling techniques, and know when to use a particular
technique.

Review of source documents will provide useful information
about the input, data storage, and output requirements of
the software system. This activity could also provide useful
information on the processing requirements of the software
system.

Prototyping involves providing a trial model of the software for
user critique. User responses are used as feedback information to
revise the system. This process continues until a software system
meeting user satisfaction is obtained. The software engineer
should be familiar with the different types of prototypes.

507

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 3 © REVIEW OF INFORMATION GATHERING TECHNIQUES

e Brainstorming is useful in situations in which software systems
are required, but there is no readily available information that
would lead to the specification of the requirements of such
systems. Brainstorming involves a number of software engineers
coming together to discuss and hammer out the requirements of
a software system.

e Mathematical proofis particularly useful in an environment
where formal methods are used for software requirements
specification.

e One primary objective of these techniques is the identification
and accurate specification of the information entities (or object
types) comprising the software system.

Accurate and comprehensive information gathering is critical to the success of a
software engineering venture. In fact, the success of the venture depends to a large extent
on this. Your information fathering skills will improve with practice and experience.

A3.10 References and/or Recommended
Readings

[Daniel, 1989] Daniel, Wayne, and Terrel, James. Business Statistics for Management and
Economics 5" ed. Boston, MA: Houghton Mifflin Co., 1989.

[DeGroot, 1986] DeGroot, Morris H. Probability and Statistics 2" ed. Reading,
MA: Addison-Wesley, 1986.

[Foster, 2010] Foster, Elvis. Soffware Engineering — A Methodical Approach. Bloomington,
IN: Xlibris Publishing, 2010. See Chapter 5 and Appendix 4.

[Harris, 1995] Harris, David. Systems Analysis and Design: A Project Approach.
Fort Worth, TX: Dryden Press, 1995. See Chapters 3, 4.

[Kendall, 1999] Kendall, Kenneth E. and Julia E. Kendall. Systems Analysis and Design
4™ ed. Upper Saddle River, NJ: Prentice Hall, 1999. See Chapters 4 - 8.

[Long, 1989] Long, Larry. Management Information Systems. Eaglewood Cliffs,
NJ: Prentice Hall, 1989. See Chapter 13.

[Pfleeger, 2006] Pfleeger, Shari Lawrence. Software Engineering Theory and Practice 3 ed.
Upper Saddle River, NJ: Prentice Hall, 2006. See Chapter 4.

[Sommerville, 2001] Sommerville, Ian. Software Engineering 6" ed. Reading,
MA: Addison-Wesley, 2001. See Chapter 8.

[Sommerville, 2006] Sommerville, Ian. Software Engineering 8" ed. Reading,
MA: Addison-Wesley, 2006. See Chapter 7.

[Van Vliet, 2000] Van Vliet, Hans. Software Engineering 2" ed. New York,
NY: John Wiley & Sons, 2000. See Chapter 9.

508

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

The American National Standard
Institute (ANSI) method
advantage, 233
formats, 233
modified From-Clause, 232
ANSI method. See The American National
Standard Institute (ANSI) method

Binary search tree (BST)
advantages and disadvantages, 463
insertion algorithm, 464
properties, 463
search algorithm, 465

Binary trees
algorithms, 456
application, 453
expressions, 461-462
full and complete, 451-452
in-order traversal, 459-460
left and right sub-tree, 450
LibraryPatron class, 454
operations, 453
post-order traversal, 460-461
pre-order traversal, 458
tabular and graphic

representations, 452
threads, 463

Boyce-Codd normal form (BCNF), 68

BST. See Binary search tree (BST)

B-tree
definition, 471
deletion algorithm, 475
direct search algorithm, 472
insertion algorithm, 473-474
LibraryPatron objects, 472

C

Catalog tables
commonly used catalog views, 284
manipulation, 280
in sample college database, 282-283
Tab_Columns, 281
User_Indexes, 281
User_Tables, 280-281

Codd’s twelve rules, 166

D

Database administrator (DBA), 16
database backups, 360
database removal, 365
description, 355
installation, creation and
configuration, 355-356
management, 357
Oracle database (see Oracle database)
security mechanism, 356
Database design
description, 84
E-R model, 88
O/ESG (see Object/entity specification
grid (O/ESG))
XR model (see Extended relational
(XR) model)
Database development life cycle (DDLC), 9
Database management
system (DBMS), 4-5
application development
subsystem (ADS), 21
components, 19
data administration
subsystem (DAS), 21
data communications
manager (DCM), 22

509

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Database management system (DBMS) (cont.)
data definition subsystem (DDS), 20
data dictionary (DD), 21
engine, 20
functions, 17
steps, application program, 17-18
user interface subsystem (UIS), 20
utilities subsystem, 22

Database model
description, 84
entity-relationship (E-R) model, 84-88
tools, 113-114
XR model (see Extended relational

(XR) model)

Database system (DBS)
advantages, 7
approaches, 8
architecture, 4, 23, 25
components, 4
DBA, 16
DBMS, 4
definition, 3
features, 8
front-end and back-end systems, 22-23
inter-level mappings, 16
levels of architecture, 13-15
need, software category, 5
objectives, 5-6
SDLC and DDLC, 9

Database tuning
components, 362
database application, 364
database contention, 364
database design, 364
goals, 362-363
memory and I/O management, 364

Database user interface design
category, 121
command-based user interface, 124
description, 119
development and

implementation, 124-125
menu/graphical user interface, 121-122
relational table, 120-121
software development tool, 119

Data dictionary. See System catalog

Data independence, 7

Data mining, 388

Data warehousing
architectures

basic, 394-395
staging area and data marts, 395-396

510

business requirement, 387
construction, 388, 392-393
data modifications, 391
definition, 388
ETL, 397-399
information systems (IS), 387, 389
integration, 390
nonvolatile, 390
rules, 393-394
schema design, 391-392
subject oriented, 390
time span, granularity and
dimension, 390
time-variant, 390
typical operations, 392
user constraints, 389
workload, 391
WWW and Web-accessible
databases, 400
DB2 suite
components, 313
DB2 Universal Database Core, 315
dominant database models, 311
IBM Data Studio, 316
IBM InfoSphere Information
Server, 315-316
IBM InfoSphere Warehouse, 317
inventions, 311
modern operating systems, 312
shortcomings, 317
UDB, 311-313
“universal’, 311
DB2 Universal Database Core, 315
DB2 Universal Database (DB2 UDB)
advantages, 312
components, 313-314
data warehousing software, 317
product editions, 312
version 9.7, 311-312
DBA. See Database administrator (DBA)
DBMS. See Database management
system (DBMS)
DBS. See Database system (DBS)
DDLC. See Database development
life cycle (DDLC)
DDL statements, 172
Delphi
application building blocks, 349
Borland Database Engine (BDE), 350
Component Library for
Cross-Referencing (CLX), 350
components, 347

www.it-ebooks.info

http://www.it-ebooks.info/

database development
environment, 348
description, 345
documentation, 350
Enterprise Core Object (ECO)
subsystem, 350
Interactive Development
Environment (IDE), 348
inventions, 345
observed flaws, 351
projects, types of, 347
strategies, 345
strength, 347
Descriptive narrative approach, 505-506
Distributed database systems
autonomous, 369
benefits, 368
catalog management, 372
communication network, 367
concurrency, 373
connectivity, 368
continuous operation, 370
database gateways, 373-374
DBMS suites, 371
electronic communication
systems (ECS), 375
fragmentation, 370
hardware platforms, 371
object technology (OT), 375
operating system and
networking, 371
query optimization, 372-373
query processing, 370
replication, 370
transaction, 371, 373
transparency, 370
update propagation, 372
DKNE See Domain-key normal form
(DKNF)
DML and DCL statements, 173
Domain-key normal form (DKNF), 74-75
Dynamic queries, SQL statements
application program, 253
database administrator, 253
description, 252
front-end system, 253
inquiry screen, 253-254
tablespaces backup in a
database, 255
user, 252

E

Editions, MS SQL Server
Compact Edition, 326
Developer Edition, 326
Enterprise Edition, 325
Express Edition, 325
Microsoft English Query, 329
Microsoft SQL Server Analysis
Services, 329
Standard Edition, 324
Workgroup Edition, 325
Electronic communication
systems (ECS), 375
Embedded SQL statements
database access, 249
general convention, 249
general syntax, 250
PL/SQL program block, 250, 252
Entity integrity rule, 58
Entity-relationship diagram (ERD)
Crows-Foot notation, 39, 41
symbols, 39-40
ternary supplier-schedule
relationship, 42
ETL. See Extraction, transformation
and loading (ETL)
Extended relational (XR) model
associations, 97
characteristic entities, 96
component entities, 98-99
database design procedure, 95
designative entities, 97
entity classifications, 89-90
E-relations and P-relations, 92-93
integrity rules, 94-95
kernel entities, 95
operators, 89
properties, 99-100
subtype-super-type relationships,
surrogates, 90-91

INDEX

98

Extensible markup language (XML), 406

Extraction, transformation and
loading (ETL)

database systems and applications, 398

DB2 tools, 399
methodologies and tasks, 397
Oracle tools, 398

SQL statement, 398
transactions, 399

www.it-ebooks.info

511

http://www.it-ebooks.info/

INDEX

FG

Fagin’s theorem, 70-71
Fifth normal form (5NF)
Fagin’s theorem, 73
join dependency (JD) constraint, 73
SupplierSchedule relationship, 71, 73
First normal form (1NF), 64-65
Foreign key (FK), 58-59
Fourth normal form (4NF), 69

H

Hashing
absolute addressing, 481
alphanumeric key values, 484
collision resolution
linear probing, 485-486
rehashing, 488
synonym chaining, 486-487
description, 479
direct table lookup, 481
division-remainder, 482-483
folding, 483
Java
Hashtable class and HashMap
class, 489
TreeMap class, 490
key value, 480
mid-square, 483
transaction file, 479
truncation, 484
Heaps
construction algorithm, 467-468
description, 467
heap-sort, 468-469
types, 467
Height-balanced trees, 466
HTTP. See Hypertext transport
protocol (HTTP)
Hypertext transport protocol (HTTP), 407

IBM Data Studio, 316
IBM InfoSphere Information Server, 315-316
Information gathering techniques
brainstorming, 504, 508
description, 493
interview, 495
mathematical proofs, 504

512

non-probability sampling
techniques, 499

object identification, 504-506
observation and document review, 502
probability sampling techniques, 499
prototyping, 502-503, 507
questionnaires and surveys, 496, 498
sample calculations, 500-501
software engineer, 494-495

Insertion statement, SQL statements
abridged form, 220
create-table statement, 220
execution-time variable, 221
facilitation, 255

J, K

Java database connectivity (JDBC), 125
JDBC. See Java database
connectivity (JDBC)

L

Limitations, SQL

calculated column, 294-295

data manipulation, 292

foreign key constraint, 293

if-then, format, 295

Order-By-Clause, 292

programming limitations, 291

referential integrity, superfluous
enforcement, 293-294

Materialized views, SQL
Alter-Materialized-View statement, 275
Create-Materialized-View

statement, 273-275
description, 272
in replication environments, 273
master tables and databases, 272
privileges, 273

MS SQL Server
analysis services, 324
client-server software system, 323
components, suite, 326-329
database support, 323
default and named instance, 331
default databases, 329-330
default login, 330

www.it-ebooks.info

http://www.it-ebooks.info/

description, 322
development tools, 324
editions (see Editions, MS SQL Server)
installation and usage, 323
integration services, 324
interoperability, 323
management tools, 324
notification services, 324
operating system, 322
remove SQL Server, 331
replication services, 323
reporting services, 324
shortcomings, 332-333
SQL Server 7.0, 322
T-SQL, 322
MS SQL Server suite
client connectivity, 327
code samples, 328
development tools, 327
management tools, 327
server components, 326
Multi-valued dependency (MVD), 70-71
MVD. See Multi-valued
dependency (MVD)
M-way search trees, 469-470, 476
MySQL
advantages, 336
characteristic services and
features, 335-336
components, 338-339
description, 335
editions, 335
limitations
on joins and views, 340
on server-side cursors, 341
sub-queries, 340-341
XA transactions, 342
underlying features, 337

N

Nested query, SQL statements
ANY(or SOME) and ALL operator, 244
equal and IN operator, 243
EXISTS and NOT EXISTS, 245
multiple-row sub-query, 242
Oracle employee-department
database, 244
rules, 243
single-row sub-query, 242
sub-query, 242

INDEX

Normalization
candidate keys, 111-113
database design, 79
description, 60, 79
functional dependence (FD), 61-62
mountaineering problem, 108-110
non-loss decomposition (NLD), 62-63
procedure, normal forms, 60

o,P
Object databases
hybrid approaches, 382-383
object-oriented DBMS
(OO DBMS), 381-382
object technology (OT), 379-380
Object/entity specification grid (O/ESG)
conventions, 105-106
description, 105
manufacturing environment, 106
Object-oriented DBMS (OO DBMS), 381
Object-oriented software
engineering (OOSE), 101
Object technology (OT), 375
ODBC. See Open database
connectivity (ODBC)
Open database connectivity
(ODBC), 125
Oracle 10G, 307-308
Oracle 11G, 301-303, 307-308
Oracle database
backups, 358
recovery
basic concept, 358
rolling forward and
rolling back, 360
RMAN and user-managed
methods, 361
types of failures, 358-359
Oracle Database Configuration
Assistant (DBCA), 306, 308
Oracle DBMS suite
advantages, 302
components, 302-303
description, 301
editions, 309
inventions, 301
modern operating systems, 301
OEM Database Control, 305-306
Oracle Database Configuration
Assistant (DBCA), 306

513

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Oracle DBMS suite (cont.)
Oracle Developer, 305
Oracle Enterprise Manager Grid
Control, 306
Oracle Server, 303-304
OSQLD, 306
OWSB, 307
PL/SQL and SQL *Plus, 304
shortcomings, 307-308
Oracle Enterprise Manager
Grid Control, 306
Oracle Enterprise Manager (OEM)
Database Control, 306
Oracle SQL Developer (OSQLD), 306-307
Oracle system catalog
referenced objects, 280
views, 280
Oracle Warehouse
Builder (OWB), 307, 398

Q

Queries involving multiple tables
ANSI method, 232-234
traditional method, 230-232
Queries involving SQL functions
aggregation functions, 239-241
data conversion functions, 237-238
date functions, 236-237
programmer-defined functions, 238
row functions, 234-235

R

RAL. See Relation-attribute list (RAL)
Ramifications, relational model
Codd’s early benchmark, 164
far reaching consequences, 167
revised definition, 165-167
Recovery Manager (RMAN), 361
Referential integrity rule, 58
Relational algebra
Alias operation, 143-144
assignment operation, 144
objectives, 129-130
operations, 130-131
operators, 145-146
primary and secondary operations
Codd’s original classifications, 131
nested operations, 131

514

rename operation, 144-145
syntax
Cartesian product, 138-140
division statement, 142-143
natural join statement, 137-138
projection statement, 136-137
sample data, 132-134
select statement, 135-136
theta join, 140-141
union and intersection and
statements, 141
Relational calculus
domain oriented relational
calculus, 160-161
explicit operations, 149
free and bound variables, 155-157
notation, 150
quantifiers, 154
QUEL, 150
query optimization, 158-160
salient syntactical
components, 151-152
SQL, 150
substitution and standardization
rules, 157-158
well-formed formula, 154
Relational model
attributes, 34
basic concepts, 31
categorization, 36
database network, 44-45
database tree (hierarchy), 43-44
definition, 35
domains, 33-34
ERD. See Entity-relationship
diagram (ERD)
features, 163
implementation, 46-49
multiplicity, 45
non-relational approaches, 53
object-relationship diagram (ORD), 43
properties, 35-36
RDBS, 37
types of relationships, 38
Relational Model, ramifications
(see Ramifications,
relational model)
Relation-attribute list (RAL), 49-50
Relationship list (RL), 49-52
Rule-of-thumb approach, 506

www.it-ebooks.info

http://www.it-ebooks.info/

S

Sample exercises and examination
questions, 415
SDLC. See Software development
life cycle (SDLC)
Second normal form (2NF), 66
Shortcomings, DB2
affordability, 317
backup and recovery capabilities, 317
combined effect, 318
documentation, 318
support domain-based calculus, 317
Shortcomings, MS SQL Server
load balancing capabilities, 332
non-support stance on Java, 333
no versioning support, 332
performance and configuration, 332
robustness and stability, 333
support for MS Windows, 332
transaction logs, 333
Shortcomings, Oracle
affordability, 308
code generation, 308
combined effect, 308
database management, 308
Oracle Forms Developer (OFD), 307
PL/SQL support, 307
SQL environment, 307
Simple object access protocol (SOAP), 406
Sixth normal form (6NF), 75-77
Software development life
cycle (SDLC), 8
SQL. See Structure query language (SQL)
SQL data manipulation statements
commit and rollback, 225, 256
core statements, 219
delete and truncate, 224, 256
dynamic queries, 252-253, 255
embedded SQL, 249-252
insertion statement, 220-221
LIKE, BETWEEN and IN
operator, 241-242
nested query, 242-245
queries involving multiple
tables, 230-234
queries involving set operators, 246
queries, SQL functions (see Queries
involving SQL functions)
runtime variables, 247
select statement, 226-228, 256
set queries involving operators, 246

INDEX

set-transaction and save-point, 225-226
simple query, 229
SQL Plus format commands, 248-249
update statements, 222-223
SQL definition statements
alter-index statement, 211-212
altering and dropping
sequences, 214-215
alter-table statement, 200, 207
create-index statement, 208, 212
creating and managing
sequences, 213-214
database creation, 179-180
database management, 180-181, 184
drop-index statement, 213
drop-table statement, 199
managing synonyms and
creation, 215-216
Oracle, 178
student table, 207-208
table creation statement, 187, 195-199
tablespace creation, 184-185
tablespace management, 186
types, database objects, 177
SQL view, limitations (see Limitations, SQL)
SQL views
and system security (see System
security, SQL)
materialized views, 272-275
traditional logical view
(see Traditional logical view, SQL)
Structure query language (SQL)
advantages, 173-174
DDL statements, 172
description, 171
DML and DCL statements, 173
syntax convention, 173
System catalog
benefits, 279-280
catalog tables (see Catalog tables)
metadata, 279
querying, 286
updating, 286-287
System security, SQL
access to data
database design, 272
logical views, 271-272
object privileges, 270-271
access to resources
developer, 270
development privileges, 269
Grant and Revoke statement, 268

515

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

System security, SQL (cont.)

objects, 268
roles, 269

access to the system
Alter-User statement, 267
alter-View and drop-View

statement, 265

Bremar, 266-267
Create-Profile statement, 264-265
Create-User statement, 266
InventoryProfile, 265
profiles and user accounts, 264

levels, 263

T

Third normal form (3NF), 67
Traditional logical view, SQL
alter-View and drop-View
statement, 262
Cascade-Constraints-Clause, 262
create and drop statements, 259
create-view statement, 260
CSCourses, 261
data modification, 260
derivable table, 261
description, 259
storage, 259
usefulness and manipulation, 263
virtual, named and derived, 259
Transact-SQL (T-SQL), 322, 327
Trees
binary (see Binary trees)
BST, 463-464, 466
level, height and weight, 450
root, 449

uVv

UML. See Unified modeling
language (UML)
Unified modeling language (UML)

516

college database, 102

database design procedure, 104
development, 101

marketing company, 103
symbols, 101

Update statements, SQL statements

abridged general formats, 222
description, 222

facilitation, 256

multiple update, 223

simple update, 223

W, XY, Z

Web-accessible databases

ActiveX, 407
benefits, 403
business-to-business (B2B), 405
CGI and API, 406
consumer-to-business (C2B), 405
cookies, 408
DB2 implementation, 409
description, 403
front-end and back-end

tools, 410
HTTP, 407
Java, 407
JavaScript, 407
Oracle implementation, 408
plug-in, 407
server-side extension, 406
SOAP, 406
three-tiered approach, 404-405
two-tiered approach, 404
VBScript, 408
Web server, 405
WSDL, 407
XML, 406

Web services description

language (WSDL), 407

WSDL. See Web services description

language (WSDL)

www.it-ebooks.info

http://www.it-ebooks.info/

Database Systems

Elvis C. Foster
Shripad Godbole

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

Database Systems
Copyright © 2014 by Elvis C. Foster with Shripad V. Godbole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0878-6
ISBN-13 (electronic): 978-1-4842-0877-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLCis a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

www.it-ebooks.info

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

This book is dedicated to my late father, Claudius Foster, who taught
me the discipline of being a responsible person. The book is also dedicated
to my students — past, present, and future. You are the object of my inspiration
and motivation; you are the reason for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUthOrs.........cuccemsemmssmmmssmmessssss s —————— Xxvii
Prefaceccoummmmssmmmmssmsmsssssmssssssssssssssssnsssssssssssnsssssnsssssnnsnssnnnnsnnss XXix
Acknowledgments.........cccuunmnmmmmmmmmmmmnssssssssnmneesssssssssssnsseeessnnns XXXV
Part A: Preliminary TOPICS.......cccusssssmmmmnmmmnsssssssnsnnnnnnssssns 1
Chapter 1: Introduction to Database Systems.........cccuccrnssnnrsssannnns 3
1.1 Definitions and Rationaleccoceervnncerennccnesessese e 3
1.2 Objectives of a Database System..........ccccvvrvrrrrrvrsncrcr e 5
Clarification on Data INdePENENCE.........cccvererereriererrererere s e rer e res e reeseraesesaeresaens 7

1.3 Advantages of a Database System.......ccccocvrvrecricrnsnccnccceee, 7
1.4 Approaches to Database Design..........cccveveervrvrsercrss s 8
1.5 Desirable Features of a DBS............cccconnnnnnsnssssesssese s 8
1.6 Database Development Life Cycle.........cceovverrierenrscnnscsenenesensenes 8
1.7 Summary and Concluding Remarks..........ccccvevrerrenrersessessessessensenns 10
1.8 ReView QUESTIONS........cccoverereneeeeseseseresss e sesesesenens 10
1.9 References and/or Recommended Readings...........cccvvceveeriernnenne. 11
Chapter 2: The Database System Environmentccunmmemeennnnnas 13
2.1 Levels of ArchiteCture..........ccoevvcerrirennsense s 13
2.1.1 EXTEINAI LEVEI ...t 14

2.1.2 CONCEPIUAI LEVEL ...ttt ssnsssnsnnas 15

2.1.3 INtErNal LEVEL ...t 15

2.2 Inter-level Mappings.......cccoveeeereersesssessssessssses s sssssssesssssssssssssssssenns 16
2.3 The Database Administratorccocvrenerernencrnnenesesssesessesesnenes 16
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

2.4 The Database Management System..........ccccecvercrcscsceecessessenenens 17
2.5 Components of DBMS SUIEccccevrvrrrnernerrer e sennnns 19
2.5.1 The DBMS ENGINEccoovireererirrecscrss s sssss s sssssessssssssessssns 20
2.5.2 Definition TOOIS SUDSYSTEM........cccovrrererrrreererrrrs e sesnns 20
2.5.3 The User Interface SUbSYSIEM........ccceccerrcccrcrre s 20
2.5.4 Application Development SUDSYSTIEMccccevreiencnrnneserere s 21
2.5.5 Data Administration SUDSYSTIEM ... 21
2.5.6 Data Dictionary SUDSYSTEMccoverererneneserse e sessns 21
2.5.7 Data Communications Managercocvvererererresesesssssesesessssesesessssssssesessnns 22
2.5.8 Utilities SUDSYSIEM.......cccorereeere st sanaens 22
2.6 The Front-end and Back-end Perspectives.......c.ccccvvercerrrnieriennnes 22
2.7 Database System Architecture..........cccccrvervrrcrvrrcrsesrcer e 23
2.8 Summary and Concluding Remarks..........ccccovvernimresnnsesnsesesnnenns 26
2.9 Review QUESHIONS.........ccvicrrrccrre e 26
2.10 References and/or Recommended Readings..........cccveveereercennne 27
Part B: The Relational Database Modelcccccenreeens 29
Chapter 3: The Relational Modelcccovinmmmmmmmmnnnsnnsssssssssssnnns 31
3.1 BaSiC CONCEPLS....cocerrerrerrerreerrrreeresssessesssessesssessesssesssessessssssesssssses 31
3.2 DOMAINSeeeerrreesssessssessssssssesssassnnsnns 33
Significance of DOMAINS.........ccccvvrererrererererere s rse e s e ssssesassessesessesasaens 34
3.3 ReIALIONSceeeeererrecer e 34
3.3.1 Properties of @ Relationccccoeverenenennicnnscrescse e snsaens 35
3.3.2 Kinds of Relations..........ccouiimnnnnssssnnns 36
3.4 Relational Database Systemccceevrernnriiesnssesssessssesesesens 37
Steps in Building a Relational Database System..........cccoceeverrvernveresreserenenens 37
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

3.5 ldentifying, Representing, and Implementing Relationships 38
3.5.1 Identifying RelationShips ..o 38
3.5.2 Representing RelationShips........cccccueenerniennncnnscnesne s sessesesaens 39
The Entity-Relationship Model............ccocvvnnnnnnnnnnsssesssees 39
3.5.4 The Object-Relationship Model.............coorirnciereeeeeeeeeee 43
3.5.5 Database Tree ... 43
Datahase NEtWOrKS ..o 44
3.5.3 Multiplicity of Relationshipscccoevmmnnicnninnrnccsesse e 45
3.5.4 Implementing RelationShipsc.cccovenerniennnnncne e senaens 46

3.6 The Relation-Attributes List and Relationship Listcccecveernnne 49

3.7 Non-Relational Approaches..........cccceercrneriernennesnsessee s see s 53

3.8 Summary and Concluding Remarks...........ccceeverernensessnssensensnnnnnns 53

3.9 Review QUESLIONS........cccceverrerrerrer e 54

3.10 References and/or Recommended Readings...........coccevreruernrucnn 55

Chapter 4: Integrity Rules and Normalization..........ccccssueennnsssnnns 57

4.1 Fundamental Integrity RUIESceeeeeeeeecerceecee e 57

4.2 Foreign Key CONCEPtccovceereeecrciesee s ses s sns e e snenns 58
Deletion of Referenced TUPIEScccvevererere et see e e sae e sae s e snesaesaenens 59

4.3 Rationale for Normalization............cccceevvervrnersnssses s 60

4.4 Functional Dependence and Non-loss Decomposition.................... 61
4.4.1 Functional DEPENUENCE.........ccveveerereeree e ses e e e e e sassesseseas 61
4.4.2 Non-10SS DECOMPOSILION.......cccverirerierie e sa e e e 62

4.5 The First Normal FOrm.........ccooeeecrcrcesce e s e e e 64
Problems with Relations in TNF Only ..o 65

4.6 The Second Normal FOrm...........ccocvvrvrrrsnsssssesses s sennnns 66
Problems with Relations in 2NF ONlycccevrenenennescsesessesesesesesesessesssesessnns 66

4.7 The Third Normal FOrM........ccooeeeersrssressesses s ses s e sessessnnnnns 67
Problems with Relations in 3NF ONlYcccccvevererrerenrereneresseresessssessesesessesenes 67

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

4.8 The Boyce-Codd Normal FOrmccceeeeecercesssses s sessnnnnns 68
4.9 The Fourth Normal FOrm ... 69
4.9.1 Multi-valued Dependency.........ccocerrererererssesesessssssesessssssssessssssssssessssesssessssens 70
4.9.2 Fagin’s THEOTEIMcoeuirererererreeseressssesesessssssssessssesssessssssssssssssssssssssssesssssssnns 70
4.10 The Fifth Normal FOrm ... 71
4.10.1 Definition of Join DEPendencCy.........ccocevvrererenensne s ses s sessessesens 73
4.10.2 Fagin’s TREOIEIMcceverierierie e e saessesaesaesaessesaessssassaesassassaesassassassassens 73
4.11 Other Normal FOrmS.......cocevvrverinnrries s see s e s ssne s 74
4.11.1 The Domain-Key Normal FOrmccoceerevninnncnesnessesessesss s sessesensens 74
4.11.2 The Sixth Normal FOrm..........ooooomieeeere s 75
4.12 Summary and Concluding Remarks........c.cccveeevsmresessennsesenenenns 78
4.13 ReVieW QUESHIONS.......cccocverrrerrnrneeesesese s se s sesssens 79
4.14 References and/or Recommended Readings..........cccveveereerinnnnne 80
Chapter 5: Database Modeling and DeSign.......ccccuseenresssssnnssssssnns 83
5.1 Database Model and Database Design..........cccceveerrereersersessensensnnns 83
5.1.1 Database Model............cooiincinsic s 84
5.1.2 Database DeSigN...........cocccererenerererre e 84
5.2 The E-R Model ReViSitedccccerrerermnsernnmsensnsessesessessssessessssenns 84
5.3 Database Design via the E-R Model.........c.ccceevrvrrcrirncersencernennne 88
5.4 The Extended Relational Model...........ccceveerverririerncenseencenseesesseenaes 89
5.4.1 Entity Classificationscccoevrernrrinnniennicsncss s esessesessens 89
5.4.2 SUITOQALEScocvrereecerirec e 90
5.4.3 E-Relations and P-Relations.............cccoerrennnncscssnsescsess s 92
5.4.4 Integrity RUIEScoveceeeercr et 94
5.5 Database Design via the XR Modelccooeevvennienennscnsnesesnnnenns 95
5.5.1 Determining the Kernel ENtities.........cccovrenerernenenesenssssesesssssesesessssesesensnns 95
5.5.2 Determining the Characteristic Entities.........c.cooureverrnniesensnsesesenesesesesennns 96
5.5.3 Determining the Designative Entitiesccccovverercrnnsescsensesesesesssesesennns 97

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

5.5.4 Determining the ASSOCIALIONS.........cceceeererercerr et renaens 97
5.5.5 Determining Entity Subtypes and Super-types........ccocvvevrvererrereerereserenenens 98
5.5.6 Determining Component ENtities.......ccocveevreerrrerereresre s seree e sessesenaens 98
5.5.7 Determining the Propertiescceveeerererieressereesereeseresesseressessssessesessesensens 99
5.6 The UML MOGEL........cccoceererrrrrrrnnseeeneseresesss e sessssssssssesnas 101
5.7 Database Design via the UML Model.........ccccoorvrirrrcrcrcercernne 104
5.8 Innovation: The Object/Entity Specification Grid.............ccocuvrunenee. 105
5.9 Database Design via Normalization Theory.........ccccecvevrrrerrersnnne 108
5.9.1 Example: Mountaineering Problem...........ccccorvevrcnnncnencnnesesesssessssesseenns 108
5.9.2 Determining Candidate Keys and then Normalizing...........cccoovevvnnenennnnnnns 111
5.10 Database Model and Design ToOIS.........c.cceeveereersersersessessensensennns 113
5.11 Summary and Concluding Remarks.........ccccoecvvrrrrerversersensensenne 115
5.12 Review QUESTIONS........cccoveererrererrrreese e sessenes 116
5.13 References and/or Recommended Readings..........cccoevcercernnnne. 117
Chapter 6: Database User Interface DeSign........ccuccurvssmnrsssnnsnanns 119
6.1 INtrodUCHIONcvre e 119
6.2 Deciding on User Interface..........ccocvvrverrersrnersensessesses s ses e ses e 121
6.3 Steps in User Interface Design.........ccccecvrevrvcrnnriesnsesesesesenennns 121
6.3.1 Menu or Graphical USer INTerface.........cceevereriererierersersesersesessesessessssessesenns 121
6.3.2 Command-Based User INterface...........ccouveeenenssnsnssssssssssssssssssssssssnnns 124
6.4 User Interface Development and Implementation......................... 124
6.5 Summary and Concluding Remarks...........ccocvvrrerrersersessensensensenns 126
6.6 Review QUESTIONS.........cccoveerreenrreesrrs e 127
6.7 References and/or Recommend Readings..........ccceeveerrercerrennnes 127
xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: Relational Algebra...........ccccmmsmmmssnsmsassssnsssnssssssssnsnnns 129
7.1 INTrodUCHION ... s 129
7.2 Basic Operations of Relational Algebra..........cccoovrerercrcncernne 130
7.2.1 Primary and Secondary Operations...........ccccovevnvennnnnnnnesenesnsessssessesenns 131
7.2.2 Codd’s Original Classification of Operations...........ccccervrrennesniernsesnnenns 131
7.2.3 Nested OPErationscccveverereereeseseeseesee e see e seesaesessaessssasssesasssesasssssnens 131
7.3 Syntax of Relational AIgebraccovreriernseresensesssesesessesessennes 132
7.3.1 Select Statement ... ————— 135
7.3.2 Projection Statement ..o s 136
7.3.3 Natural Join Statement.............ccovricnn s 137
7.3.4 Cartesian ProduCt ... 138
7.3.5 THELA-JOIN.....oceieeeeec s 140
7.3.6 Union, Intersection, Difference Statements.........ccccvcvvvvvvrvnvnsnvenseniennnnns 141
7.3.7 Division Statement ... 142
7.4 Aliases, Renaming and the Relational Assignment.............c.ce...... 143
7.4.1 The Alias OPeration........c.ccccveeverrererrerereresesesersesessessssersesessesessssassessssesssseres 143
7.4.2 The Assignment OPeration..........cccccceevevererererseresseressersesessesessesesessssesseees 144
7.4.3The Rename OPerationccccevevvereereveeseresereressersssersesessesessesessessssessssees 144
7.5 0ther Operators.........cceeveeeseesssss s ses s sre s sne s 145
7.6 Summary and Concluding Remarks..........cccocvvenrriernsesenessesennennes 147
7.7 ReVieW QUESHIONS.......ccccoceererererereeeeeseseseses s sessssssssssssenes 147
7.8 References and/or Recommended Readings.........cccecveeveeriernnnne. 148
Chapter 8: Relational Calculuscccuusseennessssnnnsssssssnnsssssssnsssnans 149
8.1 INtrodUuCHioNccccercc e ——— 149
8.2 Calculus Notations and lllustrations...........cccccvrvnenrnnenersncnennnnes 151
8.3 Quantifiers, Free and Bound Variablescceeviervieriensnrinnienns 154
8.3.1 Well-Formed FOrmula...........coconriiicnnnnsissesesssse s 154
8.3.2 Free and Bound VariabIes.............cveeererenenneesssssssss e ssssnsssnsnnnns 155

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

8.4 Substitution Rule and Standardization Rules.............ccoccevierunnenee 157
8.5 Query Optimization...........ccoceevrerernierssse e 158
8.6 Domain Oriented Relational Calculus...........ccccovvrererenerereescnernnnes 160
8.7 Summary and Concluding Remarks...........ccceeversrsessersessensensnnnns 161
8.8 Review QUESTIONS.........cccoverneresnsesesse s sne e snseenas 161
8.9 References and/or Recommended Readings.........c.covrersneucencnes 162
Chapter 9: Relational System — a Closer LOOK.........uunsmmmnnnnnnnas 163
9.1 The Relational Model SUMMArIzZed...........cccoovvererererernsereressesesennes 163
9.2 Ramifications of the Relational Model............cccccveerrirenricrnnienes 164
9.2.1 Codd’s Early Benchmark............cceevcerrrrernnenesenesnnesssesesessssessesesessssessesenns 164
9.2.2 Revised Definition of a Relational System...........cccocvvrnvrecniecniennscnnenn, 165
9.2.3 Far Reaching CONSEUUENCEScceceerermeererersseesesssseesesssssesesessssssesessnns 167
9.3 Summary and Concluding Remarks..........cccocvvenmrvernsesesessessnnennes 168
9.4 Review QUESHIONS.......ccccoceeemrererrneeeesesese s sesss s ssseens 168
9.5 REfBIBNCEScovrrrecrrcrret s 168
Part C: The Structured Query Languagecccsussssanns 169
Chapter 10: Overview of SQL........cccccmrrrrsssssssnmsnmsssessssssssssssnnsnnas 171
10.1 Important Facts ... 171
10.1.1 Commonly Used DDL Statements...........coceveverererrsesesesssesesessssssssessssssenes 172
10.1.2 Commonly Used DML and DCL Statements.........c.cccceererrrenereresssesesensnnenes 173
10.1.3 Syntax CoNVENTION.........ccceeeerernerererrsese e sssssesessssenes 173
10.2 Advantages 0f SQALcccererernenerninsesnesesesse s sessssesessssenens 173
10.3 Summary and Concluding Remarks...........ccouevereersersessessensennnns 174
10.4 Review QUESTIONS........cccveeerrmrenrnesessnsesssse s se e e e ssssnssens 175
10.5 Recommended Readingscccevververrrersernensenssessesssesseessesseesas 175
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 11: SQL Data Definition Statements...........cccvveeeennnnnnns 177
11.1 Overview of Oracle’s SQL Environment............ccocoeeeerricnerenieens 178
11.2 Database Creation............ccocevcernnrrcnnscsnsssesse s 179
11.3 Database Management ... 180
11.4 Tablespace Creationcccocevevereersrensssssssesses e sss s e sessessensens 184
11.5 Tablespace Management............ccccceeeeereceseesssnssssssesns s sesseneas 186
11.6 Table Creation Statementccoccoevrienninesnies s 187
11.7 Dropping or Modifying a Table.........cccccocvvrrvrcrnincnnsercerces e 199
11.8 Working with INdeXes.........cccverrrrerrrssssser s 208
11.9 Creating and Managing SEqUENCES.........c.ccverrerrerrerrersersessessensens 213
11.10 Altering and Dropping SEQUENCES........ccccceeeeererreseresessessesenaens 214
11.11 Creating and Managing Synonyms...........cccceevereesnessnssessessennns 215
11.12 Summary and Concluding Remarks...........ccoccvvrvrvrnrsersensennens 216
11.13 Review QUESHIONS........ccccevererereeres e 217
11.14 References and/or Recommended Readings..........c.ccceveerennee. 217
Chapter 12: SQL Data Manipulation Statements...........ccosceeneins 219
12.1 Insertion of Data..........ccccveevnrmrensiennnrse s 220
12.2 Update Operations.........ccocvvevrerieererseenssnseesesssesessssssessssssssssssns 222
12.3 Deletion of Data.........ccccvvernnirnnnien s 224
12.4 Commit and Rollback Operations...........ccceververeercensersensessensennens 225
12.5 Basic Syntax for QUErIEScccevverererernseresssers s 226
12.6 SIMPIE QUENIESceecererererer s 229
12.7 Queries Involving Multiple TabIes..........ccoovverererrersseresessessesennens 230

12.7.1 The Traditional Methodoeoeierieieer e 230

12.7.2 ThE ANSI MEENOTvvvveveererressessessses 232

xiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

12.8 Queries Involving the use of Functions..........cccccverevcrceecencnnnee. 234
12.8.1 ROW FUNCHONS ...ttt 234
12.8.2 Date FUNCHIONS.........cccoereieecreseecre e 236
12.8.3 Data Conversion FUNCLIONS..........cccorureeerermneesire e 237
12.8.4 Programmer-Defined FUNCLIONS ..o 238
12.8.5 Aggregation FUNCHONS..........coo e 239

12.9 Queries Using LIKE, BETWEEN and IN Operators..........c.cceeerurune 241

12.10 NeSted QUENIES........coveerereerereeresee s ses e sasseaens 242

12.11 Queries Involving Set Operators.........c.ccocverersersensersessessessennnns 246

12.12 Queries with Runtime Variablescccucvreercernseresensesnnsennens 247

12.13 Queries Involving SQL Plus Format Commandsc.cccceeunene 248

12.14 Embedded SQL........cccooeeeererereseerenesesesese s sssesessssesessssenens 249

12.15 DynamicC QUEKIEScoceeerererrerrereserssessesessessesessessssessesesesnssnnens 252

12.16 Summary and Concluding Remarks..........cccccvverinsriernscsenennens 255

12.17 Review QUESTIONS..........cccereereneniernsseses s 257

12.18 References and/or Recommended Readings..........cccveevverennen. 258

Chapter 13: SQL Views and System Securityc..cccnnnsssnnnnnnans 259

13.1 Traditional Logical VIEWS..........ccocvververrernensersesses e e sessesens 259
13.1.1 VieW Creation..........ccccevereeenerrssesesesssesesessssss s sessssssssesessssssssesssssseaes 260
13.1.2 View Modification and ReEmOVal............cccovrrerenerrsnsenesesnesesesssesesessssssens 262
13.1.3 Usefulness and Manipulation of Logical VIeWS...........coevrerererereseserensnnenes 263

13.2 System SECUNLYccocvvrrerierer e 263
13.2.1 ACCESS 10 the SYSIEMcveeeeecerecere e enen 264
13.2.2 Access 10 the System RESOUICES.........ccvveververeerereereresereressesssessesessesenes 268
13.2.3 Access to the System Data..........ccccevvveveriersrererre e senees 270

XV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

13.3 Materialized VIEWScccererenericrnrncsse s 272
13.3.1 Creating a Materialized VIieWccoevriernrcnnnrescne e seenes 273
13.3.2 Altering or Dropping a Materialized VIeWcccocevvevrvennsennncsesesenennes 275

13.4 Summary and Concluding Remarks............cceeviernseresnnsesnsennens 276

13.5 Review QUESTIONS........ccvuvereeereseresesesssss e seesesesesens 277

13.6 References and/or Recommended Readings............cccveeveernnnee. 278

Chapter 14: The System Catalogccocccnrrrssnnnnnsssssnnnsssssannsnnsns 279

141 INtrOdUCHION ...t 279

14.2 Three Important Catalog Tables...........cccoveerenrvennsnesnsesesennens 280
14.2.1 The USer_TableS VIEW........ccccevererirere s ses s sseseessssssssssssssssssssssssssenes 280
14.2.2 The User_Tab_ColumNS VIBWccccvvvereereerenseesssssssssssssssssssssssssssssssssssenes 281
14.2.3 The USEr_INAEXES VIBW.......ccceeverererereenseseessessssssssessessssssssssssssssssssssssssenes 281

14.3 Other Important Catalog Tables.........ccccevverrrrrrnrnser e 284

14.4 Querying the System Catalog.........ccceeverrrrrsrcrcrcee e 286

14.5 Updating the System Catalog.........ccocvrernierenmnsesnsenesensessesensens 286

14.6 Summary and Concluding Remarks..........cceevverrerrersersessessensensens 288

14.7 Review QUESTIONS........cccvccrimrenrnersss s sessessssesnens 289

14.8 References and/or Recommended Readings...........ccoevverrerrennen. 289

Chapter 15: Some Limitations of SQLccccccmmmmsssnnnnnssssnnsnnnans 291

15.1 Programming Limitations.........c.cccvvrvrvninnrsessesssses e 291

15.2 Limitations on VIBWS ... 291
15.2.1 Restriction on use of the Order-By-Clauseccceeveverrerenreresrereesersesenes 292
15.2.2 Restriction on Data Manipulation for Views involving UNION,

INTERSECT OF JOIN «....vvveremreeessssssesssssmsssnnenes 292

15.3 Foreign Key Constraint Specificationc.ccccvevencrcercencencnnnee. 293

15.4 Superfluous Enforcement of Referential Integrity............ccceevruene 293

15.5 Limitations on Calculated Columns..........ccccovveeernicrernscserennennns 294

xvi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

15.6 If-Then Limitation...........ccccoivrniicnnnncse s 295
15.7 Summary and Concluding Remarks...........ccooeeviernseresnsesesenens 296
15.8 ReView QUESTIONS........cvuvereeeeeresesessssss e sesesssss s ssesesesesens 296
15.9 Recommended Readingscccocrverrersensensensessnssss s s sessessennens 297
Part D: Some Commonly Used DBMS Suites............... 299
Chapter 16: Overview of Oracle.........ccucemmmmsssnnnnmsssssssnsssssnssnnnans 301
16.1 INtrOdUCHIONcoverreceec e 301
16.2 Main Components of the Oracle Suite........c.ccccvvrrrrrrrrerseriennnne 302
16.2.1 OFaCIE SEIVENccceeeeeree e 303
16.2.2 Oracle PL/SQL @nd SQL *PIUSc.coceerererereresesesesesesesssesesesssssssssssssssssssssens 304
16.2.3 Oracle Developer SUIEccccvevererererererer e se e res e rse e saesesseenaes 305
16.2.4 Oracle Enterprise Manager Database Control and SQL Developer 305
16.2.5 Oracle Enterprise Manager Grid Control.........c.ccccveeverererrerensereesereesessenenees 306
16.2.6 Oracle Database Configuration Assistantcccecvrevrvernrensreresernsenens 306
16.2.7 Oracle Warehouse BUIIUETcococeerererereresesesesesesesesese e seseseseenens 307
16.3 Shortcomings of Oracle.........cccvcvcercrserssces s 307
16.4 Summary and Concluding Remarks............coeeevvernsersesnsessesennens 309
16.5 Review QUESTIONS........cccvvereeeseserereressss e sesssss s ssesesesenens 309
16.6 References and/or Recommended Readings...........c.coovvererunuennns 309
Chapter 17: Overview of DB2..........ccccosseemnmnssssnnnmssssssssssssssssssnsns 311
17.1 INtrOdUCHION ... 31
17.2 Main Components of the DB2 Suitecccoccvvrvrrrvercrsesseniennn, 313
17.2.1 DB2 Universal Database COre...........cococveererererenerereneresesesesese e seseseesenens 315
17.2.2 IBM InfoSphere Information SErver..........covceevvneneresesesesesesssesesessnsens 315
17.2.3 IBM Data STUGI0.....ve.orevesereessseressssesssssessssssesssssssssssssssssssssssssssssssssssssns 316
17.2.4 IBM InfoSphere WarehouSEccceeveevercererreresere e sesesessesessessesessenenaes 317
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

17.3 Shortcomings 0f DB2c.ccocrercrcrcrcr s 317
17.4 Summary and Concluding Remarks...........ccooeevrernsersesnsesnsenens 318
17.5 Review QUESHIONS........cccceeicrerncc e 318
17.6 References and/or Recommended Readings............ccceeeveernnee. 319
Chapter 18: Overview of MS SQL Server..........cccrmmssmmnnsssssanssnnsns 321
18.1 INtroductionccecvvrcrrrrr e 322
18.1.1 Brief HiStOry.....ccceceeeereeccc e 322
18.1.2 Operating Environment...........ccooocninnccnnsnecre e 322
18.1.3 MS SQL Server and the Client-Server Model..........c.oovnnninininensnsnsnsnnnns 323
18.2 Main Features of MS SQL Serverccccvvvrvrvrcrvensessessensennens 323
18.3 Editions of MS SQL SEIVercccvvereenicressers e sessesennens 324
18.4 Main Components of MS SQL Server Suite........cccvveevververceriennnen 326
18.4.1 Server COMPONENTS.......coeverererere e s sae e s saesa e sn e sa e nae s 326
18.4.2 Management TOOIS.........ccccccreverenenecrerire e 327
18.4.3 Client CoNNECLIVIY........ccovrerererecer e 327
18.4.4 Development TOOIS.......cccoevererenere e s se e e e s s snesae e sassae e s 327
18.4.5 Code SAMPIES......ccceerererrrcre e a e r e e enas 328
18.4.6 SQL Server Optional COMPONENTS.........cccevererrerenerereesee e see e seeseesesseenes 328
18.5 MS SQL Server Default Databases..........cccveerverversersersersessensennens 329
18.6 MS SQL Server Default LOgINScccccveeenierenenesnsesesessessesensens 330
18.7 Named versus Default Instances..........ccccvvrercrcrcrcsceeceecennen, 331
18.8 Removing MS SQL SEIVErcccovceeererernserenesessssessesessessesensens 331
18.9 Shortcomings of MS SQL Server..........ccoovvvreenvernsesesensesesenaens 332
18.10 Summary and Concluding Remarks.........c.ccoccveverercercencencennen. 333
18.11 Review QUESTIONS.........cccceverrereniersse s ses e sneennens 334
18.12 References and/or Recommended Readings.........c.ccecveereeernene 334
xviii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 19: Overview of MySQL........ccccccmmmsssnnnmmsssssnssssssssssnnssns 335
19.1 Introduction to MySQL..........ccocvrierrniernnierrs e 335
19.2 Main Features of MySQLccoovreericrnsrerne e 337
19.3 Main Components of MySQLc.ccccoeermvennnsenennesessnsesessnenens 338
19.4 Shortcomings of MySQL........cccoceveernienrniennssesess e sesesseens 340
19.4.1 Limitation on JoinS @and VIEWScoceeeerererererenereseseseseseseseseseseseseseseeenens 340
19.4.2 Limitations on SUD-QUENIESccceereriererierenrerrerereesersesesseresessssersssessesenaes 340
19.4.3 Limitations on Server-side CUISOrS.........oovererereresesesesesesesesssesssssessssenens 341
19.4.4 Other LImitationsc.cococeeeerererenesenesesesesesese e seseeens 342
19.5 Summary and Concluding Remarks...........ccccverereersessessessessennnas 342
19.6 Review QUESHIONS.........cccccerrererenererene e ssssenens 342
19.7 References and/or Recommended Readings.........ccceevverreriennene 343
Chapter 20: Overview of Delphiccuscemminssnennnmnssssnnnnnssssnnnnnns 345
20.1 INrodUCHION ... s 345
20.2 Major Components of the Delphi Suite........c.ccccvvrrrercrcersernnne 347
20.2.1 The Database Development Environment............ccooevvvnvrvnvnsnsensensennnnns 348
20.2.2 Interactive Development Environment...........ccocevvvevevnvesessensessessessennenns 348
20.2.3 Database ENGNe.........ccoeceeenernennscse e ses s e snesens 350
20.2.4 Component Library for Cross Reference..........cccevvvrvrrennesnsesnsesnnenns 350
20.2.5 Enterprise Core Object Subsystem...........ccooriceicnerniencnereesesese s 350
20.2.6 DOCUMENTALIONcveececereee et 350
20.3 Shortcomings of Delphi..........ccoeeriereniriennseresresse e 351
20.4 Summary and Concluding Remarks..........cccecvvrvervrrersensensensennns 351
20.5 Review QUESLHIONS.........ccccverermrenessessss s 352
20.6 References and/or Recommended Readings.........c.ccoeeeererennennes 352
xix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Part E: Advanced TOPICSccccumeemmmmmmmmmmmnnnnnnmnnnnsnssssnnes 393

Chapter 21: Database Administrationcc.ccccernssnnnnnnsssnnnnnnns 355
21.1 Database Installation, Creation, and Configuration 355
21.2 Database SECUNTYcccvreenierenensesnsese s se s s 356
21.3 Database Managementccocrvrrerin s 357
21.4 Database Backup and ReCovery.........ccccocvvrvercersersescessessessensennns 357
21.4.1 Oracle Backups: Basic CONCEPL..........couvimmnnnnnsssssssssssnnns 358
21.4.2 Oracle Recovery: Basic CONCEPL.........cccooeeeeererrcencrennecse e 358
21.4.3 TYPES Of FAIIUIES.....oeeeeerereeerere e 358
21.4.4 Datahase BaCKUPS.......cccccverrerncnnness e ses e s s ssssesnssens 360
21.4.5 BasiC RECOVEIY STEPS.....ccoieeerererceiriree e 360
21.4.6 Oracle’s Backup and Recovery Solutionscccovvvevrevncsnsennscsnnenn 361
21.5 Database TUNING........ccoeeererrnsmresessessssese s sss e sessssessesesssssssssnes 362
21.5.1 TUNING GOAISvceeeerrreeecrerssseesesssse e e s e ssse e e sss e sssssesessssssssessssnns 362
21.5.2 Tuning Methodol0ogy........ccerrerererrrrereseresrsesessssssssessssssesesessssssssessssssssessssnns 363
21.6 Database Removal.............ccouverennnnninnsnnessssesse s 365
21.7 Summary and Concluding Remarks.........cccoovevvvcercscescessennne 365
21.8 Review QUESLIONS........cccccverrnerennserssssse s sssesssse e sessessssssnes 365
21.9 References and/or Recommended Readings.........c..coeeevcrnruennen 366
Chapter 22: Distributed Database Systems.........ccscemrrssssnnnssnans 367
22.1 INtroduction ... 367
22.2 Advantages of Distributed Database Systems...........cccceeveenee.e 368
22.3 Twelve Rules for Distributed Database Systems...........ccccvvuvuene 369
22.4 Challenges to Distributed Database Systemscccecvvernruenee. 371
22.5 Database GatEWaYS.........cceeeeerrerrersessessnssnsses s se s sns s 373

XX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

22.6 The Future of Distributed Database Systems..........cccccvercernee 375
22.6.1 0bject TECANOIOGY.......cccoceerereererere e 375
22.6.2 Electronic Communication Systems.........cccvvnvernvnnncnesnnesssesessesenenns 375

22.7 Summary and Concluding Remarks..........c.ccoeenriernsesesessessnnennes 376

22.8 Review QUESTIONS.......cccovveeerrerern e se s 376

22.9 References and/or Recommended Readings..........cccoeveercernnee 377

Chapter 23: Object Databasesccccusssemnnrsssssnnsssssssnnssssssnnsnsssns 379

23.1 INtroduCtion........coceeceece e ———— 379

23.2 Overview of Object-Oriented Database

Management SyStems..........ccccevcrennicnn s 381

23.3 Challenges for Object-Oriented Database

Management SYStems........ccveverevrrnne e 381

23.4 Hybrid APPrOACNESccceeeeeeerrersessessessessessessssses e e sessessns s snnnes 382
23.4.1 Hybrid Approach A.........covereneneresenes s ses e ssssssssssssssssssssssssssssssssssenns 383
23.4.2 Hybrid Approach B...........ccoeeievnicrscrsssse s sesss s ssssessssenns 383

23.5 Summary and Concluding Remarks.........ccccoevvrercrcercescessencnnne, 384

23.6 Review QUESTIONS.........ccccvverrerverrer s 384

23.7 References and/or Recommended Readings..........ccocvvevverrerennes 385

Chapter 24: Data Warehousing.......cccussesssssssssssssssssssssssssssssnsssssns 387

24.1 INtroduCtion.ccceeceeceeceeer s 387

24.2 Rationale for Data Warehousing.........cccceeververeersersnssessessensensennns 389

24.3 Characteristics of a Data Warehousecccceevververversersensensenne 389
24.3.1 Definitive FEALUIES.......cccovererererere et se e sa e sae s 390
24.3.2 Nature of Data STored..........covevvverrrrerne e see s 390
24.3.3 Processing ReqUIreMEeNts.........cooveeerererrnsenesessssssessssssssesessssssesessssssssessssnns 391
24.3.4 Twelve Rules That Govern a Data Warehousing..........ccocevereseseressnesesenenns 393

XXi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

24.4 Data Warehouse Architecture..........cccovvevncnsnnccnnsenssesesenennas 394
24.4.1 Basic Data Warehouse ArchiteCture ... 394
24.4.2 Data Warehouse Architecture with a Staging Area..........cococceevrrcccicnennne 395
24.4.3 Data Warehouse Architecture with a Staging Area and Data Marts........... 396

24.5 Extraction, Transformation, and Loading...........cccvvveerrerierrernne 397
24.5.1 What Happens During the ETL ProCessc.cuoueerererrmesesessssesssessssssssesssenns 398
24.5.2 ETLTO0IS ...ocrvvvvessenessssssesssssssssessssssssessesses 398
24.5.3 Daily Operations and Expansion of the Data Warehouse............cccceeerneee. 399

24.6 Summary and Concluding Remarks.........cccceevvrverrerrensersensensennns 399

24.7 Review QUESLHIONS.........ccccverererereressss s sase e 400

24.8 References and/or Recommended Readings.........c..coeeeerrerennenes 401

Chapter 25: Weh-Accessible Databases.........cccussesssssnsssssnsssnns 403

25.1 INtrodUCHiONccececeer e 403

25.2 Web-Accessible Database Architecture.............coevneresesiesenennas 404

25.3 Supporting TeChNOIOGIesScceceeereerrerrrrcerrer e 405

25.4 Implementation with 0racleccccvvevivrerierrerree e 408

25.5 Implementation with DB2............coooreeeeerrrceer e 409

25.6 Generic Implementation via a Front-end and a Back-end Tool ... 410

25.7 Summary and Concluding Remarks.........ccccoeevvvvrverversensensensenne 411

25.8 Review QUESTIONS.........ccovecrereeererreesessesese s se s sssesessnnes 411

25.9 References and/or Recommended Readings..........cccoeveercernnnne 412

Part F: Final Preparations.........cccceemmmemmrrrnnnnnnnnnnnnnnnnns 413

Chapter 26: Sample Exercises and Examination Questions 415

26.1 INtroduCtion.........cceeceeceece e 415

26.2 Sample ASSIgNMENt 1A ... 416

26.3 Sample AsSigNMENt 2Bccccvvrvrrerrer s 417
xxii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

26.4 Sample AsSIgNMENt 3A ... 418
26.5 Sample AsSIgNMENt 4Accoeeiiernnressse s 421
26.6 Sample ASSIgNMENTE DAcocvvrrerrrrr e 422
26.7 Sample ASSIgNMENt BAcoceeercrcrrerer s 423
26.8 Sample ASSIgNMENT 7A ... enas 424
26.9 Sample AsSIgNMENt 8Accoeeriernrre e 425
26.10 Sample Interim Examination A..........ccooveeeecrcrcsce e 426
26.11 Sample Interim Examination B.........ccccccevevvrvenienveniessesseeneenns 427
26.12 Sample Final Examination A..........ccoccoveenvrnnniesnsessesessessssennes 429
26.13 Sample Final Examination B............ccccoorvrvrcrsrcrceceresceeen 434
26.14 Sample Final Examination C..........ccccccvvrrerienreniesnersessesseeseenns 441
Part G: AppendiCesccuuussemmmmmmmmmssssssssssnnsssssssssssnnnnns 447
Appendix 1: Review of Treesccccuusssmemmmssssnsnssssssnssssssssnsssssssnnnnss 449
A1.1 Introduction 10 TreesS.......ccervrererrseresrssersse e sss e sesse s 449
A1.2 BINAry TrEESceerceererruerree e sssese s e se s s s e s s s see e ssne s ssnessessne s 450
A1.2.1 Overview Of BiNary TrEES.......cocvverererererereresenes 450
A1.2.2 Representation of Binary TreeSccvvvrvrrrvnninnennsnses s ses s sessesssssesens 452
A1.2.3 Application of Binary TrEES......cccuvrrrrrrrrnrerrsn s sessessessesssssessens 453
A1.2.4 Operations 0N BiNAry TrEES........cocvvererererereres 453
A1.2.5 Implementation of Binary TreeS........ccccvvrvrrrrnrnnnnnses s ses s sessesssssessens 454
A1.2.6 Binary Tree TraVerSalSccvvvererrenneniennensessss s sss s sessssssssssssssssssssssssses 458
A1.2.7 Using Binary Tree to Evaluate EXpPressions.........ccccuvvvvvnnensensensensensessennens 461
A1.3 Threaded Binary TrEES.......cccreeererrerrersessessessessesssssssssssssssssssssnsnns 463
Threaded for In-order Traversal...........cccoereeenerersescsesse e 463
A1.4 Binary SEarch TrEEScccvverrrerresrssersssessessssessssessessssesssssssssssseens 463
A1.5 Height-Balanced Trees.........ccccvvrrmriernmnsessesses s sesssesseessessnesnes 466
xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

AT1.6 HEAPS ... sse e sn e nesne s n e nesn e n e nn e nnennenn 467
A1.6.1 Building the Heapccocverrrerrrrerrrnse e sesse e s senaens 467
A1.6.2 Processing the Heap (Heap Sor)........ccooveecnerncscnenseeseseseeeseseeeens 468

A1.7 M-Way Search Trees and B-Treescceerrerrereresmssessesessessnsenns 469
A1.7.1 Definition Of B-1re.......cceceeererrerererrrrsesesisse e seenns 47
A1.7.2 Implementation of the B-1reeccovceeerrnercnerneses e 471

A1.8 Summary and Concluding Remarks..........ccocevvrrrrresnnensensennenns 476

A1.9 References and/or Recommended Readings..........ccccceeveerinrnnne 477

Appendix 2: Review of Hashing.........ccovnnemmnnnssssnnnssssssssssssssssnns 479

A2.1 INtrodUCHION.......ceeceeeeee e 479

A2.2 Hash FUNCLIONSccceeveereriereeseesee e s e s ses e e e sas s snsnns 480
A2.2.1 AbSOIUtE ADArESSING......ceeeererreererrsreesesessssesessssssesesessssssssessssssssessssssessnnes 481
A2.2.2 DireCt Table LOOKUPcoveveeeeererrecneresssesessssssssesessssssesessssssssessssssssssssssssnsnns 481
A2.2.3 DiviSion-ReMAINGETcccerrrrerererrrrnesesssssssesessssssesessssssssessssssssesssssssssnnns 482
A2.2.4 Mid-SUAIE.....corrrrreererrrreeseressesesessssssssessnnns 483
A2.2.5 FOIUING......ouoeererreeeressseessessessssssssssassssssssssssssssssssssssssssssssssassssssssasessenees 483
A2.2.6 TFUNCALION.......cccerrrreecreresreesesesseese s e se e se s e sesasse s e sssssssssssssssnsnnns 484
A2.2.7 Treating Alphanumeric Key ValUESc.cococeeeeernenenernesesessnssesesessssesennns 484

A2.3 Collision ReSOIULION.......cccerierieerieriersiessessee e ssse e ssse e sssessessnesnes 485
A2.3.1 Linear Probingcccuvrvrrrnnrrrrsrsn sttt ses s ses e e nnas 485
A2.3.2 Synonym ChaiNiNg........ccceeereererrerererersersssersssessesessessssessssessssessssssssssssenassens 486
A2.3.3 RENASHING......cceeiererieir e 488

A2.4 Hashing in Java.........cccccoeeerenenesesessesse e sse s ssssssssessssnsssssssnnns 488

A2.5 Summary and Concluding Remarks...........c.ccovvrrrennsesnnesesenenns 490

A2.6 References and/or Recommended Readings..........cceevvevverrennenne 491

XXiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Appendix 3: Review of Information Gathering Techniques......... 493
A3.1 Rationale for Information Gathering..........cccceeevvvrrrernrensensennenns 493
A3.2 INTEIVIEWINGeeceeeeereerecrecse e ssessessessessesnessesnesnssnesnesnssnssnssnennnns 495
Steps in Planning the INtErview..........ccoverrcrrcne s 495
Basic Guidelines for INterVIBWScccoceerreneserrecere e 495
A3.3 Questionnaires and SUIVEYSccccevrereresserensesesessessesesssensenns 496
Guidelines for QUESTIONNAIIES..........ceurrrerererrrererer e sneae s 496
Using Scales in QUESTIONNAIIESocceeererereserernee e 497
Administering the QUESTIONNAIEccccerriererrreer e 498
A3.4 Sampling and Experimenting.........ccceevvevnveernnsnssessessessessennenns 498
A3.4.1 Probability Sampling TEChNIQUES........cccveererrereerererererereressereesessesessesenaens 499
A3.4.2 Non-Probability sampling TEChNIQUEScceveerererererererenrereesersesessesenaens 499
A3.4.3 Sample CalCUIAtioNS.........cceevereererererrerereresrerre e resesassessesessesessesessesasaens 500
A3.5 Observation and Document ReVIEWc.ccoveerenensernnnescsennens 502
A3.6 Prototyping.......cccveeeerserenmsesnsesesessesssse s sessessssessssssseens 502
Kinds Of PrOtOtYPES......covevreecrerereercrerse e s 503
A3.7 Brainstorming and Mathematical Proofccceeevvvvrvvensennnnns 503
A3.8 Object Identification..........cccceeeeerererere e 504
A3.8.1 The Descriptive Narrative Approachcccceevvrvervrsensessessessessessessessenens 505
A3.8.2 The Rule-of-Thumb APProach..........ccceveverrerrersensessenses s s ses s s sessessessens 506
A3.9 Summary and Concluding Remarks...........c.ccoevrvrrernserenessesenens 507
A3.10 References and/or Recommended Readings..........ccevvrerrerrnne 508
1T O 509
XXV

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Elvis C. Foster is Associate Professor of Computer
Science at Keene State College, New Hampshire. He
holds a Bachelor of Science (BS.) in Computer Science
and Electronics, as well as a Doctor of Philosophy
(PhD) in Computer Science (specializing in strategic
information systems and database systems) from
University of the West Indies, Mona Jamaica. Dr. Foster
has over 25 years of combined experience as a software
engineer, database expert, information technology
executive and consultant, and computer science
educator. He has lectured at the higher education

level in three different countries, including the United States, and has produced several
outstanding computer science and information technology professionals, many of whom
have excelled at graduate school as well as in the workplace.

Shripad V. Godbole is an independent database administrator/consultant with over

20 years of experience in diverse business environments, information infrastructure
planning, diagnostics, and administration. His qualifications include Bachelor of Science
(BS) in Physics, Bachelor of Computer Science (BCS), Master of Science (MS) in Physics
with Specialization in Electronics — all from Poona University, Pune, India. He is also an
Oracle Certified Professional Database Administrator (OCPDBA), and holds a Master of
Business Administration (MBA) in Technology Management from University of Phoenix.

xxvii

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book has been compiled with three target groups in mind: The book is best suited
for undergraduate students who are pursuing a course in database systems. Graduate
students who are pursuing an introductory course in the subject may also find it useful.
Finally, practicing software engineers who need a quick reference on database design
may find it useful.

The motivation that drove this work was a desire to provide a concise but
comprehensive guide to the discipline of database design and management. Having
worked in the information technology (IT) and software engineering industries for
several years before making a career switch to academia, it has been my observation
that many IT professionals and software engineers tend to pay little attention to their
database design skills; this is often reflected in the proliferation of software applications
with inadequately designed underlying databases. In this text, the discipline of database
systems design and management is discussed within the context of a bigger picture —
that of software engineering. The student is led to understand from the outset that a
database is a critical component of a software system, and that proper database design
and management is integral to the success of the software product. Additionally and
simultaneously, the student is led to appreciate the huge value of a properly designed
database to the success of a business enterprise.

The text draws from lectures notes that have been compiled and tested over several
years with outstanding results. They draw on personal experiences gained in industry
over the years, as well as the suggestions of various professionals and students. The
chapters are organized in a manner that reflects my own approach in lecturing the
course, but each chapter may be read on its own.

The text has been prepared specifically to meet three objectives: comprehensive
coverage, brevity, and relevance. Comprehensive coverage and brevity often operate as
competing goals. In order to achieve both, I have adopted a pragmatic approach that
gets straight to the critical issues for each topic, and avoids unnecessary fluff, while using
the question of relevance as the balancing force. Additionally, readers should find the
following features quite convenient:

e Short paragraphs that express the salient aspects of the subject
matter being discussed

e Bullet points or numbers to itemize important things to be
remembered

e Diagrams and illustrations to enhance the reader’s understanding
e Real-to-life examples
e Introduction of a number of original methodologies for database

modeling and design

XXix

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

e Step-by-step, reader-friendly guidelines for solving generic
database systems problems

e Each chapter begins with an overview and ends with a summary

e A chapter with sample examination questions (for the student)
and case studies (for the student as well as the practitioner)

Organization of the Text

The text is organized in twenty-five (25) chapters, and an additional chapter consisting
of sample examination questions and case studies. The chapters are placed into six
divisions, with a seventh division for the appendices. The chapters and related divisions
are as follows:

Part A: Preliminary Topics

Chapter 1, Introduction to Database Systems, introduces the database system (DBS) as
an essential resource in the business organization. It also identifies the objectives and
advantages of a DBS.

Chapter 2, The Database System Environment, discusses the environment of a
database system. This includes the components, architecture, and personnel.

Part B: The Relational Database Model

Chapter 3, The Relational Model, discusses the fundamentals of the relational model for
databases. It provides the foundation for subsequent chapters.

Chapter 4, Integrity Rules and Normalization, builds on chapter 3 to discuss the
database normalization and other related topics.

Chapter 5, Database Modeling and Design, builds on chapters 3 and 4, and examines
alternate methodologies for modeling and designing a database.

Chapter 6, Database Application Design, summarizes the process of application
design and development for a database environment, within the larger context of
software engineering.

Chapter 7, Relational Algebra, introduces relational algebra as the foundation for an
understanding of databases languages such as Structured Query Language (SQL).

Chapter 8, Relational Calculus, introduces relational calculus as an alternate
foundation that is equivalent to relational algebra.

Chapter 9, Relational System — a Closer Look, discusses established benchmarks for
relational database management systems.

XXX

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Part C: Structured Query Language

Chapter 10, Overview of SQL, introduces SQL as the universal database language.

Chapter 11, SQL Definition Statements, discusses the SQL statements that are used
for creation and management of objects comprising the database.

Chapter 12, SQL Data Manipulation Statements, discusses SQL statements that
facilitation the manipulation of data contained in the database.

Chapter 13, Logical Views and Security, discusses the importance of logical views,
and how to create and use them. It also discusses database security, and the various SQL
statements that can be used to enforce security constraints in the database.

Chapter 14, The System Catalog, discusses the system catalog as a vital resource of
the database that can be used in its management.

Chapter 15, Some Limitations of SQL, discusses some limitations of SQL, and how
they can be circumvented.

Part D: Some Commonly Used DBMS Suites

Chapters 16 - 20 provide an overview of some commonly used DBMs suites. This includes
Oracle, DB2, Microsoft SQL Server, MySQL, and Delphi.

Part E: Advanced Topics

Chapter 21, Database Administration, provides an overview of database administration.
This includes issues such as security, mmanagement, backup and recovery, tuning,
among others.

Chapter 22, Distributed Database Systems, discusses the importance of distributed
databases, and the challenges of maintaining them.

Chapter 23, Object Databases, discusses the importance of object databases, and the
challenges of achieving them.

Chapter 24, Data Warehousing, provides an overview of data warehousing. This
includes a discussion of the rationale for data warehousing, characteristic features of a
data warehouse, architecture, and construction of a data warehouse.

Chapter 25, Web-Accessible Databases, discusses the relevance, architecture,
supporting technologies, and implementation alternatives for Web-accessible databases.

Part F: Final Preparations

Chapter 26, Sample Exercises and Examination Questions is self-explanatory.

Part G: Appendices

Appendix 1, Review of Trees, gives you a chance to review information that you would
have covered in your course in data structures. The same is true for appendix 2; Review
of Hashing.

Finally, appendix 3, Review of Information Gathering Techniques, pulls some
relevant information from the field of software engineering.

XXXi

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Text Usage

The text could be used as a one-semester or two-semester course in database systems,
augmented with material from a specific database management system. However, it
must be stated that it is highly unlikely that a one-semester course will cover all twenty-
five chapters. The preferred scenario therefore is a two-semester course. Below are

two suggested schedules for using the text; one assumes a one-semester course; the
other assumes a two-semester course. The schedule for a one-semester course is a very
aggressive one that assumes adequate preparation on the part of the participants. The
schedule for a two-semester course gives the student more time to absorb the material,
and also engage in a meaningful project .

One-Semester Schedule: Two-Semester Schedule:
Week Topic Week Topic
01 Chapters 01 & 02 01 Chapters 01 & 02
02 Chapter 03 02 Chapter 03
03 Chapter 04 03 Chapter 04
04 Chapter 04 04 Chapter 04
05 Chapters 05 & 06 05 Chapters 05 & 06
06 Chapter 07 06 Chapter 07
08 Chapter 08 08 Chapter 08
08 Chapters 09 & 10 08 Chapters 09 & 10
09 Chapter 11 09 Chapter 11
10 Chapter 12 10 Chapter 12
11 Chapter 12 11 Chapter 12
12 Chapters 13 & 14 12 Chapters 13 & 14
13 Chapters 15 & 16/17/18/19/20 13 Chapters 15 & 16
14 Chapters 21 - 23 14 Chapters 17 & 18
15 Chapters 24 & 25 15 Chapters 19 & 20
16 Review 16 Review
17 Chapters 21 & 22
18 Chapters 23 & 24
19 Chapter 25
20-21 Review
22-32 Course Project

Approach and Notations

As can be observed, I have employed a principle-then-example approach throughout
the course. All principles and theories are first explained, and then clarified by
examples. The reason for this approach is that I firmly believe one needs to have a firm
grasp of database principles and theories in order to do well as a database designer or
administrator. Database design is emphasized as a critical component of good software
engineering, as well as the key to successful company databases.

xXxXxXii

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Chapters 8 and 9 discuss relational algebra and relational calculus respectively,
as the basis for modern database languages. Then chapters 11-15 cover the salient
features of SQL, the universal database language. In these chapters, the BNF notation is
extensively used, primarily because of its convenience and brevity, without sacrificing
comprehensive coverage.

Feedback and Support

It is hoped that you will have as much fun using this book as I had preparing it. Additional
support information can be obtained from the Web site http://www.elcfos.comor
http://www.elcfos.net. Also, your comments will be appreciated.

xxxiii

www.it-ebooks.info

http://www.elcfos.com
http://www.elcfos.net
http://www.it-ebooks.info/

Acknowledgments

My profound gratitude is owed to my wife, Jacqueline, and children Chris-Ann and
Rhoden, for putting up with me during the periods of preparation of this text. Also, I must
recognize several of my past and current students (from four different institutions and
several different countries) who at various stages have encouraged me to publish my
notes, and have helped to make it happen. In this regard, I would like to make special
mention of Dionne Jackson, Kerron Hislop, Brigid Winter, Sheldon Kennedy, and Ruth
Del Rosario.

Special appreciation is offered to my colleague Shripad Godbole, who has
coauthored some of the chapters with me, particularly in divisions D and E. Being a
practicing database administrator, Shripad has also served as a valuable resource in these
areas. And through Shripad, heartfelt gratitude is extended to his wife, Smita, who has
given him unwavering support in everything he has done over the years, including his
involvement in this project.

I offer a big thank you to Dr. Han Reichgelt at Southern Polytechnic State University,
who in many ways has been my professional mentor. As on previous occasions, I have
relied on him for critical evaluations and advice. Speaking of critical evaluations, the
contribution of my relatively new friend and colleague, Dr. Jared Bruckner at Southern
Adventist University was also significant.

The editorial and production teams at Xlibris Corporation deserve mention for
their work in facilitating initial publication of the volume. An equally significant level of
gratitude is extended to the editorial team at Apress Publishing for recognizing the work’s
value and for investing the time and effort in the project. Thanks to everyone involved.

Finally, I should also make mention of reviewers Jared Bruckner, Marlon Moncrieffe,
Jacob Mangal, Abrams O’'Buyonge, and Han Reichgelt, each a practicing software
engineer, information technology consult, or computer science professor who has taken
time to review the manuscript and provide useful feedback. Thanks, gentlemen.

—Elvis C. Foster, PhD
Keene State College
Keene, New Hampshire, USA

XXXV

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Authors
	Preface
	Acknowledgments
	Part1: Preliminary Topics
	Chapter 1: Introduction to Database Systems
	1.1 Definitions and Rationale
	1.2 Objectives of a Database System
	Clarification on Data Independence

	1.3 Advantages of a Database System
	1.4 Approaches to Database Design
	1.5 Desirable Features of a DBS
	1.6 Database Development Life Cycle
	1.7 Summary and Concluding Remarks
	1.8 Review Questions
	1.9 References and/or Recommended Readings

	Chapter 2: The Database System Environment
	2.1 Levels of Architecture
	2.1.1 External Level
	2.1.2 Conceptual Level
	2.1.3 Internal Level

	2.2 Inter-level Mappings
	2.3 The Database Administrator
	2.4 The Database Management System
	2.5 Components of DBMS Suite
	2.5.1 The DBMS Engine
	2.5.2 Definition Tools Subsystem
	2.5.3 The User Interface Subsystem
	2.5.4 Application Development Subsystem
	2.5.5 Data Administration Subsystem
	2.5.6 Data Dictionary Subsystem
	2.5.7 Data Communications Manager
	2.5.8 Utilities Subsystem

	2.6 The Front-end and Back-end Perspectives
	2.7 Database System Architecture
	2.8 Summary and Concluding Remarks
	2.9 Review Questions
	2.10 References and/or Recommended Readings

	Part2: The Relational Database Model
	Chapter 3: The Relational Model
	3.1 Basic Concepts
	3.2 Domains
	Significance of Domains

	3.3 Relations
	3.3.1 Properties of a Relation
	3.3.2 Kinds of Relations

	3.4 Relational Database System
	Steps in Building a Relational Database System

	3.5 Identifying, Representing, and Implementing Relationships
	3.5.1 Identifying Relationships
	3.5.2 Representing Relationships
	The Entity-Relationship Model
	The Object-Relationship Model
	Database Tree
	Database Networks
	3.5.3 Multiplicity of Relationships
	3.5.4 Implementing Relationships

	3.6 The Relation-Attributes List and Relationship List
	3.7 Non-Relational Approaches
	3.8 Summary and Concluding Remarks
	3.9 Review Questions
	3.10 References and/or Recommended Readings

	Chapter 4: Integrity Rules and Normalization
	4.1 Fundamental Integrity Rules
	4.2 Foreign Key Concept
	Deletion of Referenced Tuples

	4.3 Rationale for Normalization
	4.4 Functional Dependence and Non-loss Decomposition
	4.4.1 Functional Dependence
	4.4.2 Non-loss Decomposition
	Corollary of Heath’s Theorem
	Conclusion

	4.5 The First Normal Form
	Problems with Relations in 1NF Only

	4.6 The Second Normal Form
	Problems with Relations in 2NF Only

	4.7 The Third Normal Form
	Problems with Relations in 3NF Only

	4.8 The Boyce-Codd Normal Form
	4.9 The Fourth Normal Form
	4.9.1 Multi-valued Dependency
	4.9.2 Fagin’s Theorem

	4.10 The Fifth Normal Form
	4.10.2 Fagin’s Theorem

	4.11 Other Normal Forms
	4.11.1 The Domain-Key Normal Form
	4.11.2 The Sixth Normal Form

	4.12 Summary and Concluding Remarks
	4.13 Review Questions
	4.14 References and/or Recommended Readings

	Chapter 5: Database Modeling and Design
	5.1 Database Model and Database Design
	5.1.1 Database Model
	5.1.2 Database Design

	5.2 The E-R Model Revisited
	5.3 Database Design via the E-R Model
	5.4 The Extended Relational Model
	5.4.1 Entity Classifications
	5.4.2 Surrogates
	5.4.3 E-Relations and P-Relations
	5.4.4 Integrity Rules

	5.5 Database Design via the XR Model
	5.5.1 Determining the Kernel Entities
	5.5.2 Determining the Characteristic Entities
	5.5.3 Determining the Designative Entities
	5.5.4 Determining the Associations
	5.5.5 Determining Entity Subtypes and Super-types
	5.5.6 Determining Component Entities
	5.5.7 Determining the Properties

	5.6 The UML Model
	5.7 Database Design via the UML Model
	5.8 Innovation: The Object/Entity Specification Grid
	5.9 Database Design via Normalization Theory
	5.9.1 Example: Mountaineering Problem
	5.9.2 Determining Candidate Keys and then Normalizing

	5.10 Database Model and Design Tools
	5.11 Summary and Concluding Remarks
	5.12 Review Questions
	5.13 References and/or Recommended Readings

	Chapter 6: Database User Interface Design
	6.1 Introduction
	6.2 Deciding on User Interface
	6.3 Steps in User Interface Design
	6.3.1	Menu or Graphical User Interface
	6.3.2	Command-Based User Interface

	6.4 User Interface Development and Implementation
	6.5 Summary and Concluding Remarks
	6.6 Review Questions
	6.7 References and/or Recommend Readings

	Chapter 7: Relational Algebra
	7.1 Introduction
	7.2 Basic Operations of Relational Algebra
	7.2.1 Primary and Secondary Operations
	7.2.2 Codd’s Original Classification of Operations
	7.2.3 Nested Operations

	7.3 Syntax of Relational Algebra
	7.3.1 Select Statement
	7.3.2 Projection Statement
	7.3.3 Natural Join Statement
	7.3.4 Cartesian Product
	7.3.5 Theta-Join
	7.3.6 Union, Intersection, Difference Statements
	7.3.7 Division Statement

	7.4 Aliases, Renaming and the Relational Assignment
	7.4.1 The Alias Operation
	7.4.2 The Assignment Operation
	7.4.3 The Rename Operation

	7.5 Other Operators
	7.6 Summary and Concluding Remarks
	7.7 Review Questions
	7.8 References and/or Recommended Readings

	Chapter 8: Relational Calculus
	8.1 Introduction
	8.2 Calculus Notations and Illustrations
	8.3 Quantifiers, Free and Bound Variables
	8.3.1 Well-Formed Formula
	8.3.2 Free and Bound Variables

	8.4 Substitution Rule and Standardization Rules
	8.5 Query Optimization
	8.6 Domain Oriented Relational Calculus
	8.7 Summary and Concluding Remarks
	8.8 Review Questions
	8.9 References and/or Recommended Readings

	Chapter 9: Relational System — a Closer Look
	9.1 The Relational Model Summarized
	9.2 Ramifications of the Relational Model
	9.2.1 Codd’s Early Benchmark
	9.2.2 Revised Definition of a Relational System
	Date’s Zero-Rule
	Codd’s Twelve Rules

	9.2.3 Far Reaching Consequences

	9.3 Summary and Concluding Remarks
	9.4 Review Questions
	9.5 References

	Part3: The Structured Query Language
	Chapter 10: Overview of SQL
	10.1 Important Facts
	10.1.1 Commonly Used DDL Statements
	10.1.2 Commonly Used DML and DCL Statements
	10.1.3 Syntax Convention

	10.2 Advantages of SQL
	10.3 Summary and Concluding Remarks
	10.4 Review Questions
	10.5 Recommended Readings

	Chapter 11: SQL Data Definition Statements
	11.1 Overview of Oracle’s SQL Environment
	11.2 Database Creation
	11.3 Database Management
	11.4 Tablespace Creation
	11.5 Tablespace Management
	11.6 Table Creation Statement
	11.7 Dropping or Modifying a Table
	11.8 Working with Indexes
	11.9 Creating and Managing Sequences
	11.10 Altering and Dropping Sequences
	11.11 Creating and Managing Synonyms
	11.12 Summary and Concluding Remarks
	11.13 Review Questions
	11.14 References and/or Recommended Readings

	Chapter 12: SQL Data Manipulation Statements
	12.1 Insertion of Data
	12.2 Update Operations
	12.3 Deletion of Data
	12.4 Commit and Rollback Operations
	12.5 Basic Syntax for Queries
	12.6 Simple Queries
	12.7 Queries Involving Multiple Tables
	12.7.1 The Traditional Method
	12.7.2 The ANSI Method

	12.8 Queries Involving the use of Functions
	12.8.1 Row Functions
	12.8.2 Date Functions
	12.8.3 Data Conversion Functions
	12.8.4 Programmer-Defined Functions
	12.8.5 Aggregation Functions

	12.9 Queries Using LIKE, BETWEEN and IN Operators
	12.10 Nested Queries
	12.11 Queries Involving Set Operators
	12.12 Queries with Runtime Variables
	12.13 Queries Involving SQL Plus Format Commands
	12.14 Embedded SQL
	12.15 Dynamic Queries
	12.16 Summary and Concluding Remarks
	12.17 Review Questions
	12.18 References and/or Recommended Readings

	Chapter 13: SQL Views and System Security
	13.1 Traditional Logical Views
	13.1.1 View Creation
	13.1.2 View Modification and Removal
	13.1.3 Usefulness and Manipulation of Logical Views

	13.2 System Security
	13.2.1 Access to the System
	13.2.2 Access to the System Resources
	Development Privileges
	Roles

	13.2.3 Access to the System Data
	Security via Object Privileges
	Security via Views
	Security via Database Design

	13.3 Materialized Views
	13.3.1 Creating a Materialized View
	13.3.2 Altering or Dropping a Materialized View

	13.4 Summary and Concluding Remarks
	13.5 Review Questions
	13.6 References and/or Recommended Readings

	Chapter 14: The System Catalog
	14.1 Introduction
	14.2 Three Important Catalog Tables
	14.2.1 The User_Tables View
	14.2.2 The User_Tab_Columns View
	14.2.3 The User_Indexes View

	14.3 Other Important Catalog Tables
	14.4 Querying the System Catalog
	14.5 Updating the System Catalog
	14.6 Summary and Concluding Remarks
	14.7 Review Questions
	14.8 References and/or Recommended Readings

	Chapter 15: Some Limitations of SQL
	15.1 Programming Limitations
	15.2 Limitations on Views
	15.2.1 Restriction on use of the Order-By-Clause
	15.2.2 Restriction on Data Manipulation for Views involving UNION, INTERSECT or JOIN

	15.3 Foreign Key Constraint Specification
	15.4 Superfluous Enforcement of Referential Integrity
	15.5 Limitations on Calculated Columns
	15.6 If-Then Limitation
	15.7 Summary and Concluding Remarks
	15.8 Review Questions
	15.9 Recommended Readings

	Part4: Some Commonly Used DBMS Suites
	Chapter 16: Overview of Oracle
	16.1 Introduction
	16.2 Main Components of the Oracle Suite
	16.2.1 Oracle Server
	16.2.2 Oracle PL/SQL and SQL *Plus
	16.2.3 Oracle Developer Suite
	16.2.4 Oracle Enterprise Manager Database Control and SQL Developer
	16.2.5 Oracle Enterprise Manager Grid Control
	16.2.6 Oracle Database Configuration Assistant
	16.2.7 Oracle Warehouse Builder

	16.3 Shortcomings of Oracle
	16.4 Summary and Concluding Remarks
	16.5 Review Questions
	16.6 References and/or Recommended Readings

	Chapter 17: Overview of DB2
	17.1 Introduction
	17.2 Main Components of the DB2 Suite
	17.2.1 DB2 Universal Database Core
	17.2.2 IBM InfoSphere Information Server
	17.2.3 IBM Data Studio
	17.2.4 IBM InfoSphere Warehouse

	17.3 Shortcomings of DB2
	17.4 Summary and Concluding Remarks
	17.5 Review Questions
	17.6 References and/or Recommended Readings

	Chapter 18: Overview of MS SQL Server
	18.1 Introduction
	18.1.1 Brief History
	18.1.2 Operating Environment
	18.1.3 MS SQL Server and the Client-Server Model

	18.2 Main Features of MS SQL Server
	18.3 Editions of MS SQL Server
	18.4 Main Components of MS SQL Server Suite
	18.4.1 Server Components
	18.4.2 Management Tools
	18.4.3 Client Connectivity
	18.4.4 Development Tools
	18.4.5 Code Samples
	18.4.6 SQL Server Optional Components

	18.5 MS SQL Server Default Databases
	18.6 MS SQL Server Default Logins
	18.7 Named versus Default Instances
	18.8 Removing MS SQL Server
	18.9 Shortcomings of MS SQL Server
	18.10 Summary and Concluding Remarks
	18.11 Review Questions
	18.12 References and/or Recommended Readings

	Chapter 19: Overview of MySQL
	19.1 Introduction to MySQL
	19.2 Main Features of MySQL
	19.3 Main Components of MySQL
	19.4 Shortcomings of MySQL
	19.4.1 Limitation on Joins and Views
	19.4.2 Limitations on Sub-queries
	19.4.3 Limitations on server-side Cursors
	19.4.4 Other Limitations

	19.5 Summary and Concluding Remarks
	19.6 Review Questions
	19.7 References and/or Recommended Readings

	Chapter 20: Overview of Delphi
	20.1 Introduction
	20.2 Major Components of the Delphi Suite
	20.2.1 The Database Development Environment
	20.2.2 Interactive Development Environment
	20.2.3 Database Engine
	20.2.4 Component Library for Cross Reference
	20.2.5 Enterprise Core Object Subsystem
	20.2.6 Documentation

	20.3 Shortcomings of Delphi
	20.4 Summary and Concluding Remarks
	20.5 Review Questions
	20.6 References and/or Recommended Readings

	Part5: Advanced Topics
	Chapter 21: Database Administration
	21.1 Database Installation, Creation, and Configuration
	21.2 Database Security
	21.3 Database Management
	21.4 Database Backup and Recovery
	21.4.1 Oracle Backups: Basic Concept
	21.4.2 Oracle Recovery: Basic Concept
	21.4.3 Types of Failures
	21.4.4 Database Backups
	Whole Database Backups
	Partial Backups

	21.4.5 Basic Recovery Steps
	Rolling Forward
	Rolling Back

	21.4.6 Oracle’s Backup and Recovery Solutions

	21.5 Database Tuning
	21.5.1 Tuning Goals
	21.5.2 Tuning Methodology

	21.6 Database Removal
	21.7 Summary and Concluding Remarks
	21.8 Review Questions
	21.9 References and/or Recommended Readings

	Chapter 22: Distributed Database Systems
	22.1 Introduction
	22.2 Advantages of Distributed Database Systems
	22.3 Twelve Rules for Distributed Database Systems
	22.4 Challenges to Distributed Database Systems
	Query Optimization
	Catalog Management
	Update Propagation
	Concurrency
	Transaction Management

	22.5 Database Gateways
	22.6 The Future of Distributed Database Systems
	22.6.1 Object Technology
	22.6.2 Electronic Communication Systems

	22.7 Summary and Concluding Remarks
	22.8 Review Questions
	22.9 References and/or Recommended Readings

	Chapter 23: Object Databases
	23.1 Introduction
	23.2 Overview of Object-Oriented Database Management Systems
	23.3 Challenges for Object-Oriented Database Management Systems
	23.4 Hybrid Approaches
	23.4.1 Hybrid Approach A
	23.4.2 Hybrid Approach B

	23.5 Summary and Concluding Remarks
	23.6 Review Questions
	23.7 References and/or Recommended Readings

	Chapter 24: Data Warehousing
	24.1 Introduction
	24.2 Rationale for Data Warehousing
	24.3 Characteristics of a Data Warehouse
	24.3.1 Definitive Features
	24.3.2 Nature of Data Stored
	24.3.3 Processing Requirements
	24.3.4 Twelve Rules That Govern a Data Warehousing

	24.4 Data Warehouse Architecture
	24.4.1 Basic Data Warehouse Architecture
	24.4.2 Data Warehouse Architecture with a Staging Area
	24.4.3 Data Warehouse Architecture with a Staging Area and Data Marts

	24.5 Extraction, Transformation, and Loading
	24.5.1 What Happens During the ETL Process
	24.5.2 ETL Tools
	Oracle Tools
	DB2 Tools

	24.5.3 Daily Operations and Expansion of the Data Warehouse

	24.6 Summary and Concluding Remarks
	24.7 Review Questions
	24.8 References and/or Recommended Readings

	Chapter 25: Web-Accessible Databases
	25.1 Introduction
	25.2 Web-Accessible Database Architecture
	25.3 Supporting Technologies
	25.4 Implementation with Oracle
	25.5 Implementation with DB2
	25.6 Generic Implementation via a Front-end and a Back-end Tool
	25.7 Summary and Concluding Remarks
	25.8 Review Questions
	25.9 References and/or Recommended Readings

	Part6: Final Preparations
	Chapter 26: Sample Exercises and Examination Questions
	26.1 Introduction
	26.2 Sample Assignment 1A
	26.3 Sample Assignment 2B
	26.4 Sample Assignment 3A
	26.5 Sample Assignment 4A
	26.6 Sample Assignment 5A
	26.7 Sample Assignment 6A
	26.8 Sample Assignment 7A
	26.9 Sample Assignment 8A
	26.10 Sample Interim Examination A
	26.11 Sample Interim Examination B
	26.12 Sample Final Examination A
	26.13 Sample Final Examination B
	26.14 Sample Final Examination C

	Part7: Appendices
	Appendix 1: Review of Trees
	A1.1 Introduction to Trees
	A1.2 Binary Trees
	A1.2.1 Overview of Binary Trees
	A1.2.2 Representation of Binary Trees
	A1.2.3 Application of Binary Trees
	A1.2.4 Operations on Binary Trees
	A1.2.5 Implementation of Binary Trees
	A1.2.6 Binary Tree Traversals
	A1.2.7 Using Binary Tree to Evaluate Expressions

	A1.3 Threaded Binary Trees
	A1.4 Binary Search Trees
	A1.5 Height-Balanced Trees
	A1.6 Heaps
	A1.6.1 Building the Heap
	A1.6.2 Processing the Heap (Heap Sort)

	A1.7 M-Way Search Trees and B-Trees
	A1.7.1 Definition of B-tree
	A1.7.2 Implementation of the B-tree

	A1.8 Summary and Concluding Remarks
	A1.9 References and/or Recommended Readings

	Appendix 2: Review of Hashing
	A2.1 Introduction
	A2.2 Hash Functions
	A2.2.1 Absolute Addressing
	A2.2.2 Direct Table Lookup
	A2.2.3 Division-Remainder
	A2.2.4 Mid-Square
	A2.2.5 Folding
	A2.2.6 Truncation
	A2.2.7 Treating Alphanumeric Key Values

	A2.3 Collision Resolution
	A2.3.1 Linear Probing
	A2.3.2 Synonym Chaining
	A2.3.3 Rehashing

	A2.4 Hashing in Java
	A2.5 Summary and Concluding Remarks
	A2.6 References and/or Recommended Readings

	Appendix 3: Review of Information Gathering Techniques
	A3.1 Rationale for Information Gathering
	A3.2 Interviewing
	Steps in Planning the Interview
	Basic Guidelines for Interviews

	A3.3 Questionnaires and Surveys
	Guidelines for Questionnaires
	Using Scales in Questionnaires
	Administering the Questionnaire

	A3.4 Sampling and Experimenting
	A3.4.1 Probability Sampling Techniques
	A3.4.2 Non-Probability sampling Techniques
	A3.4.3 Sample Calculations

	A3.5 Observation and Document Review
	A3.6 Prototyping
	Kinds of Prototypes

	A3.7 Brainstorming and Mathematical Proof
	A3.8 Object Identification
	A3.8.1 The Descriptive Narrative Approach
	A3.8.2 The Rule-of-Thumb Approach

	A3.9 Summary and Concluding Remarks
	A3.10 References and/or Recommended Readings

	Index

