

Áèëë Áåäæåê
Ïðåäèñëîâèå Íèÿ Íàðõèä

Kafka
Streams
Â ÄÅÉÑÒÂÈÈ

2019

Ïðèëîæåíèÿ è ìèêðîñåðâèñû â ðåàëüíîì
âðåìåíè ñ API Ka fka S treams

Áèëë Áåäæåê
Ïðåäèñëîâèå Íèÿ Íàðõèä

Kafka
Streams
Â ÄÅÉÑÒÂÈÈ

2019

Ïðèëîæåíèÿ è ìèêðîñåðâèñû â ðåàëüíîì
âðåìåíè ñ API Ka fka S treams

ББК 32.973.23
УДК 004.3
Б38

	 Беджек Билл
Б38	� Kafka Streams в действии. Приложения и микросервисы для работы в реальном

времени. — СПб.: Питер, 2019. — 304 с.: ил. — (Серия «Для профессионалов»).
	 ISBN 978-5-4461-1201-2

Узнайте, как реализовать потоковую обработку на платформе Kafka! В этой книге рассмотрены
реальные примеры сбора, преобразования и агрегации данных. Показана работа со множественными
процессорами, обработка событий в режиме реального времени. Вы узнаете даже о потоковом SQL
с KSQL! Эксплуатация и тестирование, мониторинг и отладка современных распределенных систем —
вы получите всю необходимую информацию о самых сложных аспектах потоковой обработки. Kafka
Streams API — ключ к эффективному применению Kafka на практике.

16+ (В соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ.)

	 ББК 32.973.23
	 УДК 004.3

Права на издание получены по соглашению с Apress. Все права защищены. Никакая часть данной книги не может
быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как на-
дежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может
гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные
ошибки, связанные с использованием книги. Издательство не несет ответственности за доступность материалов,
ссылки на которые вы можете найти в этой книге. На момент подготовки книги к изданию все ссылки на интернет-
ресурсы были действующими.

ISBN 978-1617294471 англ.	 © 2018 by Manning Publications Co. All rights reserved.
ISBN 978-5-4461-1201-2	 © Перевод на русский язык ООО Издательство «Питер», 2019
	 © �Издание на русском языке, оформление ООО Издательство

«Питер», 2019
	 © Серия «Для профессионалов», 2019

Краткое содержание

Предисловие...15
Введение..17
Благодарности..18
Об этой книге...19
Об авторе...22

ЧАСТЬ I. ЗНАКОМСТВО С KAFKA STREAMS
Глава 1. Добро пожаловать в Kafka Streams..24
Глава 2. Kafka в двух словах...46

ЧАСТЬ II. РАЗРАБОТКА С ПОМОЩЬЮ KAFKA STREAMS
Глава 3. Разработка приложений Kafka Streams..84
Глава 4. Потоки данных и состояние... 115
Глава 5. API KTable.. 153
Глава 6. API узлов-обработчиков... 184

ЧАСТЬ III. АДМИНИСТРИРОВАНИЕ KAFKA STREAMS
Глава 7. Мониторинг и производительность.. 214
Глава 8. Тестирование приложения Kafka Streams... 241

ЧАСТЬ IV. ПЕРЕДОВЫЕ ВОЗМОЖНОСТИ KAFKA STREAMS
Глава 9. Создание продвинутых приложений с помощью Kafka Streams.............. 260

ПРИЛОЖЕНИЯ
Приложение A. Дополнительная информация о настройках............................... 292
Приложение Б. Строго однократная доставка.. 299

Оглавление

Предисловие...15

Введение..17

Благодарности..18

Об этой книге...19

Кому стоит прочитать эту книгу..19

Структура издания..19

О коде..21

Другие онлайн-ресурсы..21

Об авторе...22

ЧАСТЬ I. ЗНАКОМСТВО С KAFKA STREAMS

Глава 1. Добро пожаловать в Kafka Streams..24

1.1. Движение больших данных, и как оно повлияло
на программирование..24

1.1.1. Возникновение больших данных...25

1.1.2. Важнейшие понятия парадигмы MapReduce..26

1.1.3. Одной пакетной обработки недостаточно...30

1.2. Знакомство с потоковой обработкой..31

Оглавление   7

1.3. Обработка транзакции покупки товара..32

1.3.1. Рассматриваем вариант с потоковой обработкой....................................32

1.3.2. Представление требований в виде графа...33

1.4. Транзакция покупки с другой точки зрения..34

1.4.1. Узел-источник...34

1.4.2. Узел маскирования номеров платежных карт..35

1.4.3. Узел паттернов...35

1.4.4. Узел поощрений...35

1.4.5. Узел хранения..37

1.5. Kafka Streams как граф узлов обработки..37

1.6. Использование Kafka Streams для потока данных транзакций покупок.............39

1.6.1. Задаем источник...40

1.6.2. Первый узел-обработчик: маскирование номеров
платежных карт..40

1.6.3. Второй узел-обработчик: паттерны покупок...41

1.6.4. Третий узел-обработчик: поощрение покупателей..................................43

1.6.5. Четвертый узел-обработчик: запись данных о покупках......................... 44

Резюме...45

Глава 2. Kafka в двух словах...46

2.1. Проблема данных...46

2.2. Использование Kafka для обработки данных..47

2.2.1. Первоначальная платформа данных компании ZMart..............................47

2.2.2. Концентратор информации о транзакциях продаж
на основе Kafka...48

2.3. Архитектура Kafka..50

2.3.1. Kafka — это брокер сообщений...50

2.3.2. Kafka — это журнал..51

2.3.3. Функционирование журналов в Kafka..52

8   Оглавление

2.3.4. Kafka и секции..53

2.3.5. Секции группируют данные по ключу...54

2.3.6. Написание пользовательского класса секционирования.......................... 55

2.3.7. Настройка пользовательского секционирования.....................................56

2.3.8. Выбор правильного числа секций...57

2.3.9. Распределенный журнал...57

2.3.10. ZooKeeper: ведущие/ведомые брокеры и репликация............................ 58

2.3.11. Apache ZooKeeper..59

2.3.12. Выборы контроллера..59

2.3.13. Репликация...60

2.3.14. Обязанности контроллера...61

2.3.15. Управление журналами...62

2.3.16. Удаление журналов..62

2.3.17. Сжатие журналов..64

2.4. Отправка сообщений с помощью генераторов..65

2.4.1. Свойства генераторов...68

2.4.2. Указание секции или метки даты/времени..69

2.4.3. Указание секции...69

2.4.4. Метки даты/времени в Kafka...70

2.5. Чтение сообщений с помощью потребителей...70

2.5.1. Управление смещениями..71

2.5.2. Автоматическая фиксация смещений..73

2.5.3. Фиксация смещения вручную..73

2.5.4. Создание потребителя..73

2.5.5. Потребители и секции..74

2.5.6. Перебалансировка..74

2.5.7. �Более точное назначение топиков/секций потребителям........................ 75

2.5.8. Пример потребителя...75

Оглавление   9

2.6. Установка и запуск Kafka...76

2.6.1. Локальные настройки Kafka..77

2.6.2. Запуск Kafka...77

2.6.3. Отправляем наше первое сообщение..79

Резюме...81

ЧАСТЬ II. РАЗРАБОТКА С ПОМОЩЬЮ KAFKA STREAMS

Глава 3. Разработка приложений Kafka Streams..84

3.1. API потоковых узлов-обработчиков..84

3.2. Программа Hello World для Kafka Streams...85

3.2.1. Создание топологии для Yelling...86

3.2.2. Настройка Kafka Streams...90

3.2.3. Создание объектов Serde..91

3.3. Работа с данными покупателей..93

3.3.1. Конструирование топологии...94

3.3.2. Создание пользовательского объекта Serde.. 101

3.4. Интерактивная разработка... 103

3.5. Дальнейшие шаги.. 105

3.5.1. Новые требования.. 105

3.5.2. Сохранение записей вне Kafka.. 112

Резюме... 114

Глава 4. Потоки данных и состояние... 115

4.1. Обработка событий.. 116

4.2. �Операции с сохранением состояния в Kafka Streams...................................... 117

4.2.1. Узел-обработчик transformValues.. 118

4.2.2. Поощрения покупателей с сохранением состояния............................... 119

4.2.3. Инициализация преобразователя значений.. 121

10   Оглавление

4.2.4. Отображение объекта Purchase в объект RewardAccumulator
на основе состояния... 121

4.2.5. Обновление узла-обработчика поощрений.. 126

4.3. Использование хранилищ состояния для поиска и ранее
просмотренные данные.. 128

4.3.1. Локальность данных... 128

4.3.2. Восстановление после сбоя и отказоустойчивость................................ 130

4.3.3. Использование хранилищ состояния в Kafka Streams............................ 131

4.3.4. Другие поставщики хранилищ пар «ключ/значение»............................ 132

4.3.5. Отказоустойчивость StateStore.. 132

4.3.6. Настройки топиков журналов изменений.. 132

4.4. Получение дополнительной информации путем соединения
потоков данных... 134

4.4.1. Подготовка данных... 136

4.4.2. Генерация ключей с идентификаторами покупателей
для соединения.. 137

4.4.3. Конструирование соединения... 139

4.4.4. Другие варианты соединений... 144

4.5. Метки даты/времени в Kafka Streams... 146

4.5.1. Готовые реализации интерфейса TimestampExtractor............................ 149

4.5.2. Класс WallclockTimestampExtractor... 150

4.5.3. Пользовательская реализация интерфейса
TimestampExtractor.. 150

4.5.4. Указываем, какой TimestampExtractor использовать.............................. 151

Резюме... 152

Глава 5. API KTable.. 153

5.1. Взаимосвязь между потоками данных и таблицами.. 154

5.1.1. Поток записей... 154

5.1.2. Обновления записей (журнал изменений)... 156

Оглавление   11

5.1.3. Поток событий по сравнению с потоком обновлений............................ 158

5.2. Обновления записей и настройки KTable.. 160

5.2.1. Задание размера буфера кэша.. 161

5.2.2. Задание интервала фиксации... 162

5.3. Агрегирование и оконные операции... 163

5.3.1. Агрегирование объема продаж акций по отраслям
промышленности.. 164

5.3.2. Оконные операции.. 169

5.3.3. Соединение объектов KStream и KTable... 176

5.3.4. Объекты GlobalKTable.. 179

5.3.5. Доступное для запросов состояние... 181

Резюме... 182

Глава 6. API узлов-обработчиков... 184

6.1. Компромисс между повышением уровня абстракции и расширением
возможностей контроля... 184

6.2. Создание топологии с использованием источников,
узлов-обработчиков и стоков... 185

6.2.1. Добавление узла-источника.. 186

6.2.2. Добавление узла-обработчика.. 187

6.2.3. Добавление узла-стока... 190

6.3. Углубляемся в API узлов-обработчиков на примере узла
биржевой аналитики.. 191

6.3.1. Узел-обработчик показателей акций... 193

6.3.2. Метод process()... 196

6.3.3. Выполнение пунктуатора.. 198

6.4. Узел совместной группировки.. 199

6.4.1. Создание узла совместной группировки.. 201

6.5. Интеграция API узлов-обработчиков и API Kafka Streams............................... 211

Резюме... 212

12   Оглавление

ЧАСТЬ III. АДМИНИСТРИРОВАНИЕ KAFKA STREAMS

Глава 7. Мониторинг и производительность.. 214

7.1. Основы мониторинга Kafka... 214

7.1.1. Оценка производительности потребителей и генераторов.................... 215

7.1.2. Проверка отставания потребителя.. 217

7.1.3. Перехват информации о поведении генераторов
и потребителей... 218

7.2. Метрики приложения... 222

7.2.1. Настройки метрик... 224

7.2.2. Как получить доступ к собранным метрикам... 225

7.2.3. Использование JMX... 225

7.2.4. Просмотр метрик... 230

7.3. �Дополнительные методики отладки Kafka Streams.. 231

7.3.1. Просмотр структуры приложения.. 231

7.3.2. Получение уведомлений о различных состояниях
приложения.. 233

7.3.3. Использование интерфейса StateListener... 234

7.3.4. Прослушиватель восстановления состояния.. 236

7.3.5. Обработчик неперехваченных исключений... 239

Резюме... 240

Глава 8. Тестирование приложения Kafka Streams... 241

8.1. Тестирование топологии.. 242

8.1.1. Создание теста... 245

8.1.2. Тестирование хранилища состояния в топологии.................................. 247

8.1.3. Тестирование узлов-обработчиков и преобразователей........................ 248

8.2. Комплексное тестирование.. 251

8.2.1. Создание комплексного теста... 252

Резюме... 257

Оглавление   13

ЧАСТЬ IV. ПЕРЕДОВЫЕ ВОЗМОЖНОСТИ KAFKA STREAMS

Глава 9. Создание продвинутых приложений с помощью Kafka Streams.............. 260

9.1. Интеграция Kafka с другими источниками данных.. 261

9.1.1. Интеграция данных с помощью Kafka Connect....................................... 262

9.1.2. Настройка Kafka Connect... 263

9.1.3. Преобразование данных... 265

9.2. Выбрасываем базу данных за борт... 269

9.2.1. Как работают интерактивные запросы.. 272

9.2.2. Распределение хранилищ состояния... 273

9.2.3. Настройка и обнаружение распределенного хранилища
состояния... 274

9.2.4. Написание кода для интерактивных запросов....................................... 276

9.2.5. Внутри сервера запросов.. 278

9.3. KSQL.. 282

9.3.1. Потоки и таблицы KSQL.. 283

9.3.2. Архитектура KSQL... 283

9.3.3. Установка и запуск KSQL... 285

9.3.4. Создание потока данных KSQL.. 286

9.3.5. Написание KSQL-запроса... 288

9.3.6. Создание таблицы KSQL.. 288

9.3.7 Настройка KSQL... 289

Резюме... 290

ПРИЛОЖЕНИЯ

Приложение A. Дополнительная информация о настройках............................... 292

А.1. Ограничение количества перебалансировок при запуске приложения........... 292

А.2. Устойчивость к отказам брокеров.. 293

14   Оглавление

А.3. Обработка ошибок десериализации... 293

А.4. Масштабирование приложения.. 294

А.5. Конфигурация RocksDB.. 295

А.6. Заблаговременное создание топиков повторного секционирования............... 295

А.7. Настройка внутренних топиков.. 296

А.8. Перезапуск приложения Kafka Streams.. 297

А.9. Очистка локального состояния.. 298

Приложение Б. Строго однократная доставка.. 299

Предисловие

Я считаю, что в будущем архитектуры, ориентированные на потоки событий и об-
работку их в режиме реального времени, будут встречаться повсеместно. Технически
продвинутые компании, например Netflix, Uber, Goldman Sachs, Bloomberg и др., уже
настроили масштабную работу подобных больших платформ потоковой обработки
событий. Как бы громко это ни прозвучало, но я считаю, что появление потоковой
обработки и событийно-управляемых архитектур повлияет на модель использования
компаниями данных так же сильно, как повлияли в свое время реляционные базы
данных.

Событийно-ориентированный образ мыслей и создание событийно-управляемых
приложений, ориентированных на потоковую обработку, требует определенной
смены мировоззрения от тех, кто привык к приложениям в стиле «запрос/ответ»
и к реляционным базам данных. Именно тут и пригодится книга Kafka Streams.

Потоковая обработка влечет фундаментальный переход от командно-ориенти-
рованного мышления к мышлению событийно-ориентированному — это перемена,
позволяющая создавать быстро реагирующие, событийно-управляемые, расширя
емые, гибкие приложения для работы в режиме реального времени. С точки зрения
бизнеса событийно-ориентированное мышление открывает организациям дорогу
к принятию решений и операциям в реальном времени с учетом контекста. С точки
зрения технологии событийно-ориентированное мышление дает возможность соз-
дания более автономных и расцепленных приложений и, следовательно, адаптивно
масштабируемых и расширяемых систем.

В обоих случаях конечной целью является увеличение скорости адаптации
(agility) — как для бизнеса, так и для облегчающих его задачи технологий. В основе
событийно-ориентированной архитектуры лежит внедрение событийно-ориенти-
рованного мышления в масштабах всей организации. А технологией, делающей
возможным этот переход, выступает потоковая обработка.

Kafka Streams — нативная библиотека потоковой обработки Apache Kafka, пред-
назначенная для создания событийно-управляемых приложений на языке Java.
Kafka Streams позволяет приложениям выполнять сложные преобразования потоков
данных, причем автоматически обеспечивает их отказоустойчивость и прозрач-
ность, а также адаптивное распределение по экземплярам приложения. С момента

16   Предисловие

ее появления в 2016 году, в версии 0.10 Apache Kafka, множество компаний начало
промышленную эксплуатацию Kafka Streams, включая Pinterest, «Нью-Йорк Таймс»,
Rabobank, LINE.

Наша цель относительно Kafka Streams и KSQL — упростить потоковую обработ-
ку до такой степени, чтобы создание событийно-управляемых приложений, реагиру-
ющих на события, стало естественным и не пришлось использовать тяжеловесные
фреймворки для обработки больших данных. В нашей модели основной сущностью
является не код, выполняющий обработку, а потоки данных в Kafka.

Руководство Kafka Streams — прекрасный способ изучить библиотеку Kafka
Streams, а также понять, почему она представляет собой ключевое средство создания
событийно-ориентированных приложений. Надеюсь, вы получите от прочтения
этой книги не меньшее удовольствие, чем я!

Ния Нархид (Neha Narkhede),
соучредитель и технический директор

компании Confluent, одна из создателей
Apache Kafka

Введение

В бытность разработчиком программного обеспечения мне посчастливилось рабо-
тать с современным ПО над интересными проектами. Поначалу я работал как над
клиентскими, так и над серверными приложениями, но обнаружил, что мне больше
нравится взаимодействовать исключительно с прикладной частью, так что этим
я и занялся. Со временем я перешел к распределенным системам, начиная с Hadoop
(тогда еще версии до 1.0). В очередном новом проекте я столкнулся с платформой
Kafka. Сначала меня поразила простота работы с ней, а также ее возможности и гиб-
кость. С каждым разом я находил все новые способы интеграции Kafka в процесс
доставки данных проекта. Написание генераторов и потребителей оказалось эле-
ментарной задачей, а качество системы благодаря Kafka значительно улучшилось.

Затем я узнал о Kafka Streams. Я сразу сообразил: «Зачем мне лишний кластер
для чтения данных из Kafka и немедленной их записи обратно?» Внимательно
посмотрев на доступные API, я нашел все, что только нужно было для потоковой
обработки: соединения, ассоциативные массивы, операции свертки и группировки.
Но что важнее, подход Kafka Streams к добавлению состояния превосходил все ре-
шения, с которыми мне только приходилось работать.

Мне всегда нравилось объяснять что-то другим просто и понятно. Так что, когда
появилась возможность написать о Kafka Streams, я знал, что эта сложная работа
стоит того. Я надеюсь, что мой труд принесет свои плоды и в данной книге мне
удастся продемонстрировать, что Kafka Streams — простой и в то же время изящный
и эффективный способ осуществления потоковой обработки.

Благодарности

Прежде всего мне хотелось бы поблагодарить свою жену Бет и выразить ей при-
знательность за всю поддержку, которую она мне оказывала в процессе написания
книги. Написание книги — задача, занимающая немало времени, и без ее содействия
мне никогда бы это не удалось. Бет, ты потрясающая, и я очень рад, что ты — моя
жена. Я хотел бы также поблагодарить моих детей, которые терпеливо переносили
сидение папы в офисе все выходные напролет, удовлетворяясь туманным ответом
«скоро» на вопрос о том, когда же я закончу.

Далее я благодарю Гочжена Вана (Guozhang Wang), Маттиаса Сакса (Matthias
Sax), Дэмиана Гая (Damian Guy) и Ино Терезку (Eno Thereska) — основных разра-
ботчиков библиотеки Kafka Streams. Без их гениальных озарений и упорного труда
библиотека Kafka Streams просто не появилась бы и у меня не было бы возможности
написать об этом революционном инструменте.

Я благодарю моего редактора из издательства «Мэннинг», Фрэнсис Лефковиц
(Frances Lefkowitz), чьи советы эксперта и бесконечное терпение превратили на-
писание данной книги почти в развлечение. Я также благодарен Джону Хайдаку
(John Hyaduck) за меткие технические замечания и Валентину Креттазу (Valentin
Crettaz), техническому корректору, за великолепную работу по анализу исходного
кода. Кроме того, я говорю спасибо рецензентам, благодаря которым читатели этой
книги получили продукт намного лучшего качества, за их непростую работу и бес-
ценные отзывы — это Александер Кутмос (Alexander Koutmos), Боян Джуркович
(Bojan Djurkovic), Дилан Скотт (Dylan Scott), Hamish Dickson (Хэмиш Диксон),
Джеймс Фроннхофер (James Frohnhofer), Джим Мэнтили (Jim Manthely), Хосе Сан
Лиандро (Jose San Leandro), Кэрри Коич (Kerry Koitzsch), Ласло Хегедюш (La' szlo'
Hegedu

..
s), Мэтт Беланже (Matt Belanger), Мишель Аддучи (Michele Adduci), Ни-

колас Уайтхед (Nicholas Whitehead), Рикардо Хорхе Перейра Мано (Ricardo Jorge
Pereira Mano), Робин Коу (Robin Coe), Сумант Тамбе (Sumant Tambe) и Венката
Марапу (Venkata Marrapu).

Наконец, я хотел бы поблагодарить всех разработчиков фреймворка Kafka за
создание столь превосходного программного продукта, особенно Джея Крепса
(Jay Kreps), Нию Нархид (Neha Narkhede) и Дзюна Рао (Jun Rao), не только за саму
идею Kafka в первую очередь, но и за основание компании Confluent — потряса
ющего и вдохновляющего места для работы.

Об этой книге

Я написал книгу Kafka Streams, чтобы познакомить вас с Kafka Streams и, в мень-
шей степени, вообще научить применять потоковую обработку. Я писал эту книгу
с точки зрения парного программирования, представляя, что сижу рядом с вами,
пока вы пишете код и изучаете API. Мы начнем с создания простого приложения
и будем добавлять в него новый функционал по мере погружения в Kafka Streams.
Вы узнаете, как выполнять тестирование и мониторинг, и, наконец, мы завершим
книгу созданием продвинутого приложения Kafka Streams.

Кому стоит прочитать эту книгу
Эта книга подойдет для любого разработчика, который хочет разобраться в пото-
ковой обработке. Понимание распределенного программирования поможет лучше
изучить Kafka и Kafka Streams. Было бы неплохо знать и сам фреймворк Kafka, но
это не обязательно: я расскажу вам все, что нужно. Опытные разработчики Kafka,
как и новички, благодаря этой книге освоят создание интересных приложений для
потоковой обработки с помощью библиотеки Kafka Streams. Java-разработчики
среднего и высокого уровня, уже привычные к таким понятиям, как сериализация,
научатся применять свои навыки для создания приложений Kafka Streams. Исход-
ный код книги написан на Java 8 и существенно использует синтаксис лямбда-вы-
ражений Java 8, так что умение работать с лямбда-функциями (даже на другом языке
программирования) вам пригодится.

Структура издания
Книга состоит из четырех частей, разбитых на девять глав. Часть I познакомит вас
с ментальной моделью библиотеки Kafka Streams, чтобы дать комплексное пред-
ставление о ее функционировании. В этих главах также приводятся основы Kafka
для тех, кто ничего о ней не знает или хотел бы освежить свои знания.

�� Глава 1 описывает историю вопроса: как и почему потоковая обработка стала
необходимым элементом широкомасштабной обработки данных в режиме

20   Об этой книге

реального времени. В ней также приводится ментальная модель Kafka Streams.
Вместо демонстрации кода я просто опишу в ней, как работает Kafka Streams.

�� Глава 2 — руководство для разработчиков, еще не имевших дела с Kafka. Те, у кого
уже есть опыт работы с ней, могут эту главу пропустить и перейти непосредствен-
но к Kafka Streams.

В части II я расскажу о Kafka Streams: начну с основ API и постепенно перейду
к более продвинутым возможностям.

�� В главе 3 вы найдете приложение типа Hello World, а далее и более реалистич-
ный пример: разработку приложения для вымышленного розничного торговца,
включая продвинутые возможности.

�� В главе 4 обсуждается понятие состояния и объясняется, почему оно иногда
необходимо для потоковых приложений. Вы узнаете из нее про реализации хра-
нилищ состояния, а также выполнение соединений в Kafka Streams.

�� Глава 5 посвящена дуализму таблиц и потоков, в ней вы познакомитесь с новым
понятием: интерфейсом KTable. Если KStream представляет собой поток событий,
то KTable — это поток взаимосвязанных событий или поток, предназначенный
для обновления записей.

�� В главе 6 мы углубимся в низкоуровневый API узлов-обработчиков (Processor
API). До сих пор вы имели дело с высокоуровневым предметно-ориентирован-
ным языком (Domain Specific Language, DSL), а здесь научитесь использовать
API узлов обработки на случай, если вам понадобится писать адаптированные
к конкретной задаче части приложения.

В части III мы перейдем от разработки приложений Kafka Streams к управлению
библиотекой Kafka Streams.

�� Глава 7 рассказывает о тестировании приложений Kafka Streams. Вы научитесь
тестировать топологию приложения в целом, осуществлять модульное тестиро-
вание отдельного узла обработки, а также использовать встроенный брокер для
комплексных тестов.

�� Глава 8 охватывает вопросы мониторинга приложений Kafka Streams с целью как
оценки времени обработки записей, так и обнаружения потенциальных узких мест.

Часть IV завершает эту книгу, в ней мы займемся разработкой продвинутого
приложения на основе Kafka Streams.

�� Глава 9 рассказывает об интеграции существующих источников данных с Kafka
Streams с помощью фреймворка Kafka Connect. Вы узнаете, как включать табли-
цы базы данных в потоковое приложение, а затем и как использовать интерак-
тивные запросы для создания визуализаций и приложений — информационных
панелей на основе проходящих через Kafka Streams данных без необходимости
применения реляционных баз данных. В этой главе вы также познакомитесь
с механизмом KSQL, благодаря которому с помощью Kafka можно выполнять
непрерывные запросы без написания кода, используя один SQL.

Об этой книге   21

О коде
Эта книга содержит множество примеров исходного кода как в пронумерованных
листингах, так и внутри обычного текста. В обоих случаях исходный код отформа-
тирован с помощью такого моноширинного шрифта, чтобы можно было отличить его
от обычного текста.

Во многих случаях исходный код был переформатирован: добавлены разрывы
строк и изменены отступы, чтобы оптимально использовать место на странице.
В редких случаях даже этого было недостаточно и листинги содержат символы про-
должения строки (➥). Кроме того, из исходного кода часто убраны комментарии,
если он описывается в тексте. Многие листинги сопровождают пояснения к коду,
подчеркивающие важные понятия.

Наконец, важно отметить, что многие из примеров кода несамодостаточны
и содержат лишь фрагменты кода, наиболее важные для обсуждаемого вопроса.
Все примеры из книги в их изначальном виде можно найти в прилагаемом к данной
книге исходном коде. Он находится на GitHub по адресу https://github.com/bbejeck/
kafka-streams-in-action или на сайте издательства: http://www.manning.com/books/kafka-
streams-in-action.

Исходный код для книги представляет собой комплексный проект, использу
ющий утилиту сборки Gradle (https://gradle.org). Этот проект можно импортировать
в среды разработки IntelliJ или Eclipse с помощью соответствующих команд.
Полные инструкции по применению исходного кода и навигации по нему можно
найти в прилагаемом файле README.md.

Другие онлайн-ресурсы
�� Документация по фреймворку Apache Kafka: https://kafka.apache.org/.

�� Документация по платформе Confluent: https://docs.confluent.io/current.
�� Документация по библиотеке Kafka Streams: https://docs.confluent.io/current/streams/

index.html#kafka-streams.

�� Документация по движку KSQL: https://docs.confluent.io/current/ksql.html#ksql.

Об авторе

Билл Беджек (Bill Bejeck) — участник проекта Kafka, работает
в компании Confluent, в команде разработчиков Kafka Streams.
Разработкой программного обеспечения он занимается более
13 лет, шесть из которых посвятил исключительно приклад-
ной части, а именно обработке больших объемов данных. Билл
также работал в командах, занимающихся вводом и обработкой
данных, где использовал Kafka для повышения качества инфор-
мационных потоков, отправляемых конечным потребителям.
Билл — автор книги Getting Started with Google Guava (издатель-

ство Packt). Кроме того, он регулярно ведет блог «Беспорядочные размышления
о написании кода» (http://codingjunkie.net/).

Часть I
Знакомство с Kafka
Streams

В части I этой книги мы поговорим об эре больших данных: как она
началась, когда появилась необходимость обрабатывать большие
объемы данных и постепенно выросла до принципа потоковой об-
работки — обработки данных по мере их доступности. Мы также
обсудим, что представляет собой библиотека Kafka Streams, и я по-
кажу вам ментальную модель ее функционирования, без какого-либо
кода, чтобы вы могли сконцентрироваться на общей картине проис-
ходящего. Мы также вкратце рассмотрим платформу Kafka, чтобы
ввести вас в курс работы с ней.

1 Добро пожаловать
в Kafka Streams

В этой главе:

�� как большие данные повлияли на программирование;
�� как работает потоковая обработка и зачем она нужна;
�� знакомство с Kafka Streams;
�� задачи, решаемые Kafka Streams.

С помощью этой книги вы научитесь использовать Kafka Streams для решения на-
сущных проблем ваших потоковых приложений. Мы рассмотрим в ней компоненты
Kafka Streams, начиная от простейших операций извлечения, преобразования и за-
грузки (extract, transform and load, ETL) и до сложных преобразований и соединений
записей. После ее прочтения вы сможете легко решать подобные сложные задачи
в своих потоковых приложениях.

Прежде чем углубиться в Kafka Streams, мы коротко рассмотрим историю об-
работки больших данных. По мере описания нами задач и их решений вы наглядно
увидите, как возникла необходимость в Kafka, а затем и Kafka Streams. Давайте
посмотрим, как началась эра больших данных и что привело к появлению Kafka
Streams.

1.1. �Движение больших данных, и как оно
повлияло на программирование

Современное программирование начало бурно расти с появлением фреймворков
и технологий больших данных. Конечно, разработка приложений на стороне клиента
тоже подверглась изменениям, и число мобильных приложений также резко вы-
росло. Но вне зависимости от размеров рынка мобильных устройств или развития
технологий клиентских приложений неизменным остается одно: с каждым днем
приходится обрабатывать все больше и больше данных. А по мере роста объемов
данных с такой же скоростью растут потребности в их анализе и использовании
в своих интересах.

Глава 1. Добро пожаловать в Kafka Streams   25

Однако далеко не всегда достаточно возможности обрабатывать большие объемы
данных крупными фрагментами (пакетной обработки). У организаций все чаще
возникает необходимость обрабатывать данные по мере поступления (потоковой
обработки). Библиотека Kafka Streams дает возможность обработки записей по
событиям — это самый передовой подход к потоковой обработке. Обработка по со-
бытиям (per-event processing) означает, что каждая запись обрабатывается сразу же,
как только оказывается доступна, никакой группировки данных в небольшие пакеты
(микропакетирования) не нужно.

ПРИМЕЧАНИЕ
Когда потребности обработки данных стали совершенно явственными, была
разработана новая стратегия — микропакетирование (microbatching). Как по-
нятно из названия, оно представляет собой просто пакетную обработку, но
с меньшими объемами данных. Благодаря снижению размера пакета микро-
пакетирование позволяет иногда получать результаты быстрее, но это все
равно пакетная обработка, хотя и с более короткими промежутками времени.
Это не настоящая обработка по событиям.

1.1.1. Возникновение больших данных
Интернет начал всерьез влиять на нашу повседневную жизнь в середине 1990-х.
С тех пор благодаря сетевой связи у нас появился беспрецедентный доступ к ин-
формации и возможность общения с кем угодно, в любой точке мира. Но побочным
продуктом этой всей сетевой связи оказалась генерация колоссальных объемов
данных.

Для наших целей можно считать, что эра больших данных началась в 1998 году,
когда Сергей Брин (Sergey Brin) и Ларри Пейдж (Larry Page) создали компанию
Google. Брин и Пейдж разработали новый способ ранжирования веб-страниц для
поиска — алгоритм PageRank. Если не вдаваться в подробности, алгоритм PageRank
оценивает сайт по количеству и качеству указывающих на него ссылок. При этом
предполагается, что чем важнее или значимее веб-страница, тем больше сайтов будет
на нее ссылаться.

Рисунок 1.1 наглядно иллюстрирует алгоритм PageRank.

�� Сайт А — наиболее важный, поскольку на него указывает большинство ссылок.

�� Сайт Б тоже довольно важен. Хотя на него указывает меньше ссылок, но среди
них — важный сайт (A).

�� Сайт В менее важен, чем A или Б. На сайт В указывает больше ссылок, чем на B,
но их качество ниже.

�� На сайты внизу рисунка (от Г до И) никакие ссылки не указывают, что делает
их наименее ценными.

Алгоритм PageRank на рисунке сильно упрощен, но этого достаточно, чтобы
получить основное представление о его работе.

26   Часть I  •  Знакомство с Kafka Streams

Рис. 1.1. Алгоритм PageRank в действии. Круги означают сайты, самые большие — те,
на которые указывает больше ссылок с других сайтов

На то время алгоритм PageRank был поистине революционным подходом. До той
поры поиски в Интернете чаще всего возвращали результаты на основе булевой
логики. Если сайт содержал все искомые ключевые слова или большинство из них,
то оказывался в результатах поиска вне зависимости от качества контента. Но для
работы алгоритма PageRank в масштабах всего контента Интернета необходим
был другой подход — традиционные подходы к работе с данными были слишком
медленными. Чтобы выжить и развиваться, Google необходимо было быстро (где
«быстро» — понятие относительное) индексировать весь этот контент и предоста-
вить аудитории качественные результаты.

И компания Google разработала еще один революционный подход для обработки
всех этих данных — парадигму MapReduce («отображение — свертка»). Парадигма
MapReduce не только дала Google возможность выполнить всю необходимую работу,
но и нечаянно породила целую новую отрасль вычислений.

1.1.2. Важнейшие понятия парадигмы MapReduce
Функции отображения (map) и свертки (reduce) не были чем-то новым на момент
разработки компанией Google MapReduce. Уникальным в подходе Google было
применение этих простых принципов в колоссальных масштабах на множестве
машин.

По сути, MapReduce берет начало в функциональном программировании. Функ-
ция отображения получает на входе данные и отображает их во что-то без изменения
исходных данных. Вот простой пример на языке Java 8, в котором объект LocalDate

Глава 1. Добро пожаловать в Kafka Streams   27

отображается в сообщение типа String, причем исходный объект LocalDate остается
неизменным:

Function<LocalDate, String> addDate =
 (date) -> "The Day of the week is " + date.getDayOfWeek();

Хотя и очень простой, этот короткий пример достаточен для демонстрации
функции отображения.

С другой стороны, функция свертки принимает на входе несколько параметров
и свертывает их в единое (или по крайней мере меньшее по размеру) значение.
Хороший пример свертки — сложение всех значений из набора чисел.

Для выполнения свертки набора чисел сначала необходимо задать начальное
значение. В данном случае мы возьмем 0 (нейтральный по отношению к операции
сложения элемент). Следующий шаг состоит в сложении этого начального значения
с первым элементом списка. Функция свертки повторяет данный процесс до тех пор,
пока не достигнет последнего значения, в результате чего получается одно число.

Ниже приведены шаги свертки объекта List<Integer>, содержащего значения
1, 2 и 3:

Как вы можете видеть, функция свертки сворачивает результаты для большей
компактности. Как и в функции отображения, исходный список чисел остается не-
изменным.

Следующий пример демонстрирует реализацию простой функции свертки с по-
мощью лямбда-функций Java 8:

List<Integer> numbers = Arrays.asList(1, 2, 3);

int sum = numbers.reduce(0, (i, j) -> i + j);

Наша книга посвящена не MapReduce, так что на этом мы завершим обсуждение
данного побочного вопроса. Но какие-то из основных концепций, появившихся в па-
радигме MapReduce (и позднее реализованные в Hadoop, исходная версия которого,
с открытым исходным кодом, была основана на официальном описании MapReduce
от Google), применяются в Kafka Streams:

�� распределение данных по кластеру так, чтобы процесс обработки хорошо мас-
штабировался;
�� использование пар «ключ/значение» и секций для группировки распределенных

данных;
�� вместо избегания сбоев — подготовка к ним с помощью репликации.

В следующих разделах мы обсудим эти концепции в общих словах. Обратите на
них внимание, поскольку они еще не раз будут встречаться в данной книге.

28   Часть I  •  Знакомство с Kafka Streams

Распределение данных по кластеру для лучшей
масштабируемости
Работа с объемами данных порядка 5 Тбайт (5000 Гбайт) может оказаться для от-
дельной машины непосильной задачей. Но такую проблему можно минимизировать,
разбив данные и воспользовавшись несколькими дополнительными машинами, что-
бы каждая обрабатывала посильный ей объем данных. Это ясно видно из табл. 1.1.

Таблица 1.1. Как разбиение 5 Тбайт на части повышает пропускную способность обработки

Количество машин Объем обрабатываемых каждым сервером данных, Гбайт

10 500

100 50

1000 5

5000 1

Как можно видеть из приведенной таблицы, вероятно, сначала объемы данных,
которые нужно обработать, будут совершенно «неподъемны», но за счет распределе-
ния нагрузки по дополнительным серверам эти сложности можно устранить. Один
гигабайт данных в последней строке таблицы — вполне посильный для обработки
на обычном ноутбуке объем данных.

Это первая ключевая концепция MapReduce: за счет распределения нагрузки
по кластеру машин можно превратить непомерные объемы данных во вполне до-
ступные для обработки.

Использование пар «ключ/значение» и секций для группировки
распределенных данных
Пара «ключ/значение» — простая структура данных с большими возможностями.
В предыдущем разделе вы видели, какое значение может иметь распределение
большого объема данных по кластеру машин. Распределение данных решает задачу
обработки, но при этом возникает задача сбора распределенных данных обратно.

Для перегруппировки распределенных данных можно воспользоваться ключами
из пар «ключ/значение» для секционирования данных. Термин «секционирование»
подразумевает группировку, но я имею в виду группировку не по одинаковым клю-
чам, а по ключам с одним хеш-кодом. Для разбиения данных на секции по ключу
можно применить следующую формулу:

int partition = key.hashCode() % numberOfPartitions;

Рисунок 1.2 демонстрирует использование функции хеширования для получе-
ния данных по различным олимпийским видам спорта, хранящихся на отдельных
серверах, и группировки их по секциям для различных видов спорта.

Ри
с.

 1
.2

. Г
ру

пп
ир

ов
ка

 з
ап

ис
ей

 п
о

кл
ю

чу
 п

о
се

кц
ия

м.
 Х

от
я

за
пи

си
 б

ер
ут

ся
 с

 р
аз

ли
чн

ых
 с

ер
ве

ро
в,

 о
ни

 в
се

 р
ав

но
 о

ка
зы

ва
ю

тс
я

в
со

от
ве

тс
тв

ую
щ

их
 с

ек
ци

ях

30   Часть I  •  Знакомство с Kafka Streams

Все данные хранятся в виде пар «ключ/значение». На рисунке под ключами
находятся названия событий, а значение представляет собой результат отдельного
спортсмена.

Секционирование — важная концепция, в следующих главах вы увидите ее по
дробные примеры.

Готовимся к сбоям с помощью репликации
Еще один ключевой компонент MapReduce — файловая система Google (Google
File System, GFS). Подобно тому как Hadoop — реализация MapReduce с открытым
исходным кодом, так и файловая система Hadoop (Hadoop File System, HDFS) —
реализация GFS с открытым исходным кодом.

Если не вдаваться в подробности, то как GFS, так и HDFS разбивают данные
на блоки и распределяют эти блоки по кластеру. Но одна из неотъемлемых частей
GFS/HDFS — их подход к обработке отказов серверов и дисков. Вместо того чтобы
пытаться предотвращать сбои, фреймворк учитывает их возможность с помощью
репликации блоков данных по кластеру (по умолчанию коэффициент репликации
равен 3).

Благодаря репликации блоков данных на различных серверах больше не нужно
бояться, что отказ дисков или даже сервера в целом приведет к простою в работе.
Репликация данных критически важна для обеспечения отказоустойчивости рас-
пределенных приложений, которая, в свою очередь, необходима для их успешной
работы. Далее мы увидим, как работает репликация в Kafka Streams.

1.1.3. Одной пакетной обработки недостаточно
Мода на Hadoop охватила мир обработки данных подобно лесному пожару. Он дал
возможность обрабатывать огромные объемы данных отказоустойчивым образом
с помощью стандартного аппаратного обеспечения (а значит, экономя средства).
Но использование Hadoop/MapReduce, по сути, пакетный процесс, так что при-
ходится собирать большие объемы данных, обрабатывать их, а затем сохранять ре-
зультаты для дальнейшего применения. Пакетная обработка идеально подходит для
алгоритмов, подобных PageRank, поскольку все равно нельзя принимать решения
о ценности ресурсов в масштабах всего Интернета на основе наблюдения за пере-
ходами пользователей по ссылкам в режиме реального времени.

Но в коммерческой сфере все сильнее требуются как можно более оперативные
ответы на такие важные вопросы, как:

�� какие тенденции существуют в настоящий момент;

�� сколько неудачных попыток входа в систему было сделано за последние 10 минут;

�� насколько востребована пользователями только что выпущенная возможность?

Потребность в ином решении задачи была очевидна, и этим решением стала по-
токовая обработка.

Глава 1. Добро пожаловать в Kafka Streams   31

1.2. Знакомство с потоковой обработкой
Существует много различных определений потоковой обработки. В этой книге
я называю потоковой обработкой (stream processing) работу с данными по мере
поступления их в систему. Определение можно уточнить, сказав, что потоковая
обработка — способность оперировать бесконечным потоком данных по мере их
движения посредством непрерывных вычислений без необходимости их сбора или
сохранения для того, чтобы на них отреагировать.

На рис. 1.3 показан поток данных, где каждый круг на прямой отражает состоя
ние данных в какой-либо момент времени. Информационный поток непрерывен,
поскольку данные при потоковой обработке ничем не ограничены.

Рис. 1.3. Эта «жемчужная» диаграмма — упрощенное представление потоковой обработки.
Каждый круг соответствует какой-либо информации или происходящему в конкретный
момент времени событию. Количество событий ничем не ограничено, и они перетекают

слева направо

Кому требуется потоковая обработка? Всем, кому нужна своевременная реакция
на наблюдаемое событие. Рассмотрим несколько примеров.

Когда имеет смысл использовать потоковую обработку, а когда — нет. Как и лю-
бое техническое решение, потоковая обработка не подходит на все случаи жизни.
Оптимальный сценарий использования для потоковой обработки — тот, где необ-
ходимо быстро реагировать на поступающие данные или уведомить об их посту-
плении. Вот несколько примеров.

�� Мошенничество с платежными картами. Владелец платежной карты может
не заметить ее кражи, но путем анализа покупок и сравнения их с устоявшимися
паттернами (местоположение, общий характер потребительских расходов) можно
заметить кражу платежной карты и оповестить ее владельца.

�� Обнаружение атак. Благодаря анализу файлов журналов приложения после
проникновения в систему можно предотвратить будущие атаки и повысить
уровень безопасности, но это не отменяет критической важности мониторинга
аномального поведения в реальном времени.

�� Финансовый сектор. Для принятия удачных решений о покупке или продаже
брокерам и потребителям необходимо иметь возможность отслеживать рыночные
цены и тенденции в режиме реального времени.

С другой стороны, потоковая обработка подходит не для всех предметных
областей. Для удачных прогнозов будущего поведения, например, необходимо об-
работать большое количество данных по длительному промежутку времени, чтобы
исключить аномалии и выявить паттерны и тенденции. В следующих областях

32   Часть I  •  Знакомство с Kafka Streams

разумнее анализировать данные за длительный промежуток времени, а не только
текущие.

�� Экономическое прогнозирование. Для точного прогноза, например, тенденций
процентной ставки на рынке недвижимости необходимо собрать данные о мно-
жестве переменных за длительный период времени.

�� Изменения школьных программ обучения. Только через один или два семестра
администрация школы сможет оценить, достигли ли своей цели изменения про-
граммы обучения.

Важно помнить следующее: потоковая обработка — оптимальный подход для
случая, когда выдать уведомление или предпринять какие-либо действия необхо-
димо сразу же при поступлении данных. Если же требуется углубленный анализ
или сбор большого архива данных для дальнейшего анализа, возможно, потоковая
обработка не то, что вам требуется. Теперь посмотрим на конкретный пример по-
токовой обработки.

1.3. �Обработка транзакции покупки товара
Начнем с применения общего подхода потоковой обработки к примеру с продажей
товаров в розницу. А затем рассмотрим использование Kafka Streams для реализации
потокового приложения.

Допустим, Джейн Доу едет с работы домой и вспоминает, что забыла купить зуб-
ную пасту. Она останавливается у магазина ZMart и заходит внутрь, берет зубную
пасту и направляется к кассе для оплаты. Кассир спрашивает ее, член ли она ZClub,
и сканирует ее карту участника. Теперь информация о том, что Джейн — член клуба
постоянных покупателей, включена в транзакцию покупки товара.

После отображения суммы покупки Джейн передает кассиру свою дебетовую
карту. Кассир проводит картой по терминалу и отдает Джейн чек. Выйдя из магази-
на, Джейн проверяет электронный почтовый ящик и обнаруживает там сообщение
от ZMart с благодарностью за приверженность их магазину и различные купоны на
скидки, которые можно использовать при следующем визите.

Эта транзакция — обычное событие, о котором покупатель не задумывается, но
вы наверняка видите, какое изобилие информации в нем содержится, и благодаря ей
ZMart может работать более эффективно и лучше обслуживать покупателей. Пере-
несемся в прошлое и посмотрим, как данная транзакция стала возможной.

1.3.1. �Рассматриваем вариант с потоковой обработкой
Допустим, вы ведущий разработчик отдела ZMart, занимающегося потоковы-
ми данными. ZMart — сеть розничных гипермаркетов, разбросанных по стране.
Дела у ZMart идут отлично, ежегодные доходы превышают $1 млрд. Вы собираетесь
провести интеллектуальный анализ данных о транзакциях компании, чтобы повы-

Глава 1. Добро пожаловать в Kafka Streams   33

сить эффективность бизнеса. Вы знаете, что объемы данных продаж колоссальны,
так что реализуемая технология должна работать быстро и хорошо масштабировать-
ся, чтобы справиться с ними.

Вы решаете воспользоваться потоковой обработкой, поскольку некоторые ком-
мерческие решения лучше принимать по горячим следам, сразу после транзакции,
чтобы не упустить возможностей. Если данные собраны, ждать многие часы для при-
нятия решений нет смысла. Вы проводите совещание с руководством и командой
разработчиков и вырабатываете следующие четыре основных требования, необхо-
димых для успеха проекта потоковой обработки.

�� Защита персональной информации. Прежде всего ZMart ценит свои отношения
с покупателями. При всей нынешней шумихе вокруг соблюдения конфиден-
циальности информации первоочередная задача — защитить персональную
информацию покупателей, а главное — номера их платежных карт. Как бы ни ис-
пользовалась информация о транзакциях, рисковать раскрытием информации
о платежных картах покупателей недопустимо.

�� Поощрение покупателей. При новой программе поощрения покупателей за-
рабатываемые покупателями бонусы зависят от количества потраченных на
определенные товары денег. Необходимо быстро оповещать покупателей о полу-
чении бонусов, ведь мы хотим, чтобы они вернулись за следующими покупками!
Опять же при этом требуется соответствующий мониторинг действий. Помните,
как Джейн получила сообщение по электронной почте сразу же после выхода из
магазина? Именно так все и должно работать.

�� Данные о продажах. Компания ZMart не отказалась бы усовершенствовать
свою стратегию рекламы и продаж. В частности, ее руководителям хотелось бы
отслеживать продажи по областям, чтобы выяснить, какие товары популярнее
в определенных частях страны. Цель — таргетинг продаж и организация реклам-
ных акций по наиболее продаваемым в конкретных областях страны товарам.

�� Хранилище. Все записи о продажах должны храниться во внешнем центре хране-
ния для ретроспективного и ситуативного анализа.

Эти требования сами по себе довольно просты, но как реализовать их примени-
тельно к отдельной транзакции покупки, такой как у Джейн Доу?

1.3.2. Представление требований в виде графа
Предыдущие требования можно легко представить в виде ориентированного аци-
клического графа (directed acyclic graph, DAG). Момент завершения покупателем
транзакции на кассе является узлом-источником всего графа. Требования ZMart
становятся узлами-потомками главного узла-источника (рис. 1.4).

Далее необходимо разобраться, как отобразить транзакцию покупки на граф
требований.

34   Часть I  •  Знакомство с Kafka Streams

Рис. 1.4. Бизнес-требования к потоковому приложению в виде ориентированного
ациклического графа. Каждая вершина соответствует требованию, а ребра отражают

движение данных по графу

1.4. �Транзакция покупки с другой точки зрения
В этом разделе мы пройдемся по этапам покупки и посмотрим, как они соотносятся,
без особых подробностей, с графом требований с рис. 1.4. В следующем разделе мы
выясним, как применить для данного процесса библиотеку Kafka Streams.

1.4.1. Узел-источник
Узел-источник графа (рис. 1.5) — место, в котором приложение потребляет транзак-
цию покупки. Этот узел служит источником информации о транзакциях покупок,
проходящей по графу.

Рис. 1.5. Простое начало графа транзакций покупок. Данный узел является источником
первичной информации о транзакциях покупок, которая будет перемещаться по графу

Глава 1. Добро пожаловать в Kafka Streams   35

1.4.2. Узел маскирования номеров платежных карт
В дочернем узле источника графа происходит маскирование номеров платежных
карт (рис. 1.6). Это первая вершина (узел) графа, отражающая бизнес-требования,
и единственная получающая первичные данные о продажах из узла-источника, что
делает ее, по сути, источником для остальных соединенных с ней узлов.

Рис. 1.6. Первый из узлов графа, отражающих бизнес-требования. Данный узел отвечает
за маскирование номеров платежных карт, он единственный, кто получает первичные данные

о продажах из узла-источника, что делает его, по существу, источником для остальных
соединенных с ним узлов

При операции маскирования платежных карт делается копия данных с последу-
ющим преобразованием всех цифр номера в x, за исключением четырех последних.
В данных во всех остальных частях графа поле номера платежной карты будет иметь
вид xxxx-xxxx-xxxx-1122.

1.4.3. Узел паттернов
Узел «Паттерны» (рис. 1.7) извлекает соответствующую информацию с целью вы-
яснения, в каких местах страны покупатели приобретают товары. Вместо копирова-
ния данных узел паттернов извлекает товар, дату и почтовый индекс (ZIP) продажи
и создает новый объект с этими полями.

1.4.4. Узел поощрений
Следующий дочерний узел в процессе — сумматор бонусов (рис. 1.8). У компании
ZMart есть программа поощрения покупателей, в соответствии с которой за приоб-
ретенные в ее магазинах товары покупателям начисляются бонусы. Роль данного
узла состоит в извлечении потраченной клиентом суммы (в долларах) и его иден-
тификатора и создании затем нового объекта, содержащего эти два поля.

36   Часть I  •  Знакомство с Kafka Streams

Рис. 1.7. Узел паттернов потребляет информацию о продажах из узла маскирования
и преобразует ее в запись, указывающую, когда покупатель приобрел товар, и содержащую

почтовый индекс места, где была завершена транзакция

Рис. 1.8. Узел поощрений отвечает за потребление записей о продажах из узла маскирования
и преобразование их в записи, содержащие общую сумму покупки и идентификатор покупателя

Глава 1. Добро пожаловать в Kafka Streams   37

1.4.5. Узел хранения
Последний из дочерних узлов записывает данные о покупке в NoSQL-хранилище
данных для дальнейшего анализа (рис. 1.9).

Мы проследили пример транзакции продажи по всему графу требований ZMart.
Посмотрим теперь, как с помощью Kafka Streams преобразовать этот граф в полно-
функциональное потоковое приложение.

Рис. 1.9. Узел хранилища также потребляет записи из узла маскирования. Эти записи
не преобразуются в другой формат, а сохраняются в NoSQL-хранилище данных

для дальнейшего ситуативного анализа

1.5. �Kafka Streams как граф
узлов обработки

Kafka Streams — библиотека, позволяющая выполнять обработку записей по мере
поступления каждого события. С ее помощью можно обрабатывать данные при их
поступлении без группировки в микропакеты. Каждая запись обрабатывается сразу
же, как только оказывается доступна.

Большинство целей компании ZMart чувствительны ко времени в том смысле,
что действия необходимо предпринимать при первой же возможности. В идеале

38   Часть I  •  Знакомство с Kafka Streams

сбор информации должен производиться при появлении событий. Кроме того,
магазинов ZMart в стране несколько, так что все записи о транзакциях следует
сосредоточить в едином потоке данных для анализа. Именно поэтому библиотека
Kafka Streams оптимальна для наших целей. Kafka Streams дает возможность обра-
батывать записи по мере их поступления, обеспечивая требуемое низкое значение
задержки.

В Kafka Streams необходимо задать топологию обрабатывающих узлов (я буду
попеременно использовать как термин (узел-)обработчик (processor), так и термин
(обрабатывающий) узел (node)). Источником для одного или нескольких узлов
будет топик Kafka, причем можно добавлять дополнительные узлы, которые будут
считаться дочерними (если вы плохо представляете себе, что такое топик Kafka,
не волнуйтесь, я объясню все в главе 2). Любой дочерний узел может задавать свои
дочерние узлы. Каждый из узлов обработки выполняет назначенную задачу, после
чего переправляет запись каждому из своих дочерних узлов. Процесс выполнения
заданий и последующей отправки данных дочерним узлам продолжается до тех пор,
пока все дочерние узлы не выполнят свои задачи.

Не напоминает ли вам этот процесс что-либо? Должен напоминать, поскольку он
схож с вышеприведенным преобразованием бизнес-требований ZMart в граф узлов
обработки. Kafka Streams работает путем обхода графа типа DAG (то есть топологии
узлов обработки).

Начнем мы с источника (родительского узла с одним или несколькими дочер-
ними). Данные всегда перемещаются от родительского к дочерним узлам, и нико
гда — наоборот. У каждого дочернего узла могут быть, в свою очередь, свои дочерние
узлы и т. д.

Записи перемещаются «вглубь» графа. Важные следствия такого подхода: каждая
запись (пара «ключ/значение») полностью обрабатывается всем графом, прежде чем
начинается перемещение следующей записи по топологии. А поскольку все записи
проходят при обработке «вглубь» всего DAG, нет необходимости встраивать в Kafka
Streams контроль обратного потока данных.

ОПРЕДЕЛЕНИЕ
Существует несколько определений контроля обратного потока данных
(backpressure), но тут мы обозначим это понятие как необходимость огра-
ничения потока данных посредством буферизации или механизма блокиро-
вания. Контроль обратного потока данных необходим тогда, когда источник
(source) генерирует данные быстрее, чем сток (sink) может их получать
и обрабатывать.

Благодаря способности связывать или соединять цепочкой несколько узлов
обработки можно быстро создавать сложную логику с сохранением относительной
простоты отдельных компонентов. Именно при подобном объединении узлов обра-
ботки проявляются вся мощь и сложность Kafka Streams.

Глава 1. Добро пожаловать в Kafka Streams   39

ОПРЕДЕЛЕНИЕ
Топология — способ организации частей системы и соединения их друг с дру-
гом. Говоря о топологии Kafka Streams, я подразумеваю преобразование дан-
ных посредством их пропускания через один или несколько узлов обработки.

Kafka Streams и Kafka

Как вы могли догадаться по названию, библиотека Kafka Streams — надстройка над
фреймворком Kafka. В этой вводной главе вам не нужны знания Kafka, поскольку
я сосредотачиваю ваше внимание на обобщенных принципах функционирования
Kafka Streams. Возможно, вам встретится несколько относящихся к Kafka терминов,
но в основном я сконцентрирую внимание на Kafka Streams с точки зрения потоковой
обработки.

Если вы еще не сталкивались с платформой Kafka или не очень хорошо с ней знакомы,
то всю информацию о ней, которая может вам понадобиться, вы найдете в главе 2.
Знания Kafka жизненно важны для эффективной работы с Kafka Streams.

1.6. �Использование Kafka Streams для потока
данных транзакций покупок

Снова сформируем граф обработки, создав теперь программу Kafka Streams. Напомню,
что на рис. 1.4 приведен граф требований для бизнес-требований компании ZMart.
Напомню также: вершины — узлы обработки данных, а ребра отражают движение
данных.

Хотя мы будем создавать программу Kafka Streams по мере создания нашего но-
вого графа, речь все равно будет идти об относительно высокоуровневом подходе.
Некоторые подробности мы опустим и вернемся к ним далее в данной книге, когда
будем рассматривать реальный код.

Программа Kafka Streams будет потреблять записи, при этом мы станем пре-
образовывать первичные записи в объекты типа Purchase. Объект Purchase будет
состоять из следующих элементов данных:

�� идентификатора покупателя ZMart (полученного путем сканирования карты
постоянного покупателя);

�� итоговой потраченной суммы в долларах;

�� купленных товаров;

�� почтового индекса магазина, где была произведена покупка;

�� даты и времени транзакции;

�� номера дебетовой или кредитной карты.

40   Часть I  •  Знакомство с Kafka Streams

1.6.1. Задаем источник
Первый этап при создании любой программы Kafka Streams — задание источника
для потока данных. Источник может представлять собой что-то из следующего:

�� отдельный топик Kafka;

�� несколько топиков Kafka в виде разделенного запятыми списка;

�� регулярное выражение, соответствующее одному или нескольким топикам.

В данном случае роль источника будет играть отдельный топик
под названием transactions. Если какие-либо из этих терминов
Kafka вам незнакомы, помните — обо всех них будет рассказано
в главе 2.

Важно отметить, что для фреймворка Kafka программа Kafka
Streams выглядит точно так же, как и любое другое сочетание по-
требителей и генераторов. Вместе с вашей потоковой программой
из одного топика может читаться произвольное количество при-
ложений. Рисунок 1.10 демонстрирует узел-источник в топологии.

1.6.2. �Первый узел-обработчик: маскирование
номеров платежных карт

После задания источника можно приступить к созданию узлов-обработчиков, ко-
торые будут работать с данными. Первая наша задача — наложить маски на номера
платежных карт из входящих записей о покупках. Первый наш узел-обработчик
будет преобразовывать номера платежных карт из вида 1234-5678-9123-2233 в xxxx-
xxxx-xxxx-2233.

Представленное на рис. 1.11 маскирование будет осуществляться с помощью
метода KStream.mapValues. Он будет возвращать новый экземпляр класса KStream
со значениями, маскированными в соответствии с указанным в ValueMapper. Этот
экземпляр KStream будет родительским узлом-обработчиком для всех остальных
создаваемых вами узлов-обработчиков.

Создание топологий узлов-обработчиков. При каждом создании нового эк-
земпляра KStream с помощью метода преобразования вы, по существу, создаете новый
узел-обработчик, соединенный с другими, уже существующими узлами-обработчиками.
Kafka Streams дает возможность путем объединения узлов-обработчиков элегантно
создавать сложные информационные потоки.

Важно отметить, что вызов метода, возвращающего новый экземпляр KStream,
не приводит к приостановке потребления данных исходным экземпляром. Метод
преобразования создает новый узел-обработчик и добавляет его к уже существу
ющей топологии узлов-обработчиков. Далее эта дополненная топология использу-
ется в качестве параметра при создании нового экземпляра KStream, начинающего
получать сообщения с момента создания.

Рис. 1.10. Узел-
источник: топик

Kafka

Глава 1. Добро пожаловать в Kafka Streams   41

Рис. 1.11. Узел-обработчик маскирования — дочерний узел главного узла-источника.
Он получает все первичные данные о транзакциях продаж и выдает новые записи

с маскированными номерами платежных карт

Скорее всего, вы будете создавать новые экземпляры KStream для выполнения
дополнительных преобразований, оставляя исходный поток данных для перво-
начальной его задачи. Вы увидите пример этого дальше, когда мы будем задавать
второй и третий узлы-обработчики.

Интерфейс ValueMapper можно использовать и для приведения входящих значе-
ний к совершенно новому типу, но в таком случае он будет возвращать обновленную
копию объекта Purchase. Применение метода отображения для изменения объекта —
паттерн, с которым вы часто будете сталкиваться в дальнейшем.

У вас, полагаю, уже должно было сложиться четкое представление о методике
создания конвейеров узлов-обработчиков для преобразования и вывода данных.

1.6.3. �Второй узел-обработчик:
паттерны покупок

Следующий узел-обработчик, который мы создадим, будет предназначен для за-
хвата информации, необходимой для выявления паттернов покупок в различных
регионах страны (рис. 1.12). Для этого мы добавим дочерний обрабатывающий
узел к первому созданному нами узлу-обработчику. Данный первый узел-обра-
ботчик генерирует объекты Purchase с замаскированными номерами платежных
карт.

42   Часть I  •  Знакомство с Kafka Streams

Рис. 1.12. Узел-обработчик паттернов покупок принимает на входе объекты Purchase
и преобразует их в объекты PurchasePattern, содержащие информацию о купленных
товарах и почтовые индексы магазинов, в которых были осуществлены транзакции.

Новый узел-обработчик получает записи от узла-обработчика паттернов и записывает
их в топик Kafka

Узел-обработчик паттернов покупок получает на входе от родительского узла
объект Purchase и отображает его в новый объект PurchasePattern. Процесс ото-
бражения включает извлечение информации о приобретенном товаре (например,
зубной пасте) и почтовом индексе его покупки и создание на основе этой инфор-
мации объекта PurchasePattern. Мы рассмотрим процесс отображения во всех по
дробностях в главе 3.

Далее узел-обработчик паттернов покупок добавляет в топологию дочерний
узел-обработчик, который получает на входе новый объект PurchasePattern и за-
писывает его в топик Kafka patterns. Объект PurchasePattern при записи в тему
преобразуется в форму, подходящую для передачи данных, так что потом другие
приложения смогут потреблять эту информацию и использовать ее для выяснения
уровней запасов на складах, а также потребительских тенденций в заданном регионе.

Глава 1. Добро пожаловать в Kafka Streams   43

1.6.4. �Третий узел-обработчик:
поощрение покупателей

Третий узел-обработчик извлекает информацию, предназначенную для программы
поощрения постоянных покупателей (рис. 1.13). Это тоже дочерний узел-обработчик
начального узла-обработчика. Он получает на входе объекты Purchase и отображает
их в объекты другого типа — RewardAccumulator.

Рис. 1.13. Узел-обработчик поощрений покупателей отвечает за преобразование объектов
Purchase в объекты типа RewardAccumulator, содержащие идентификатор покупателя,
дату и сумму транзакции в долларах. Дочерний узел-обработчик записывает объекты

RewardAccumulator в другой топик Kafka

Узел-обработчик поощрений покупателей также добавляет дочерний узел-об-
работчик для записи объектов RewardAccumulator в топик Kafka rewards. Другие
приложения могут посредством потребления записей из топика rewards определить
число бонусов клиентов ZMart и сгенерировать, например, сообщения электронной
почты, подобные тому, которое получила Джейн Доу.

44   Часть I  •  Знакомство с Kafka Streams

1.6.5. �Четвертый узел-обработчик: запись данных
о покупках

Последний из наших узлов-обработчиков показан на рис. 1.14. Это третий дочерний
узел узла-обработчика маскирования, он заносит полные маскированные записи
о покупках в тему Kafka под названием purchases. В дальнейшем приложение хра-
нения NoSQL будет потреблять записи из данного топика по мере их поступления.
Эти записи пригодятся для последующего анализа.

Рис. 1.14. Последний узел-обработчик отвечает за запись объектов Purchase целиком в еще
один топик Kafka. Потребитель этого топика будет сохранять результаты в NoSQL-хранилище,

например MongoDB1

Как вы можете видеть, первый узел-обработчик, маскирующий номера платеж-
ных карт, служит источником данных для трех других узлов-обработчиков: двух,
которые далее улучшают структуру данных или преобразуют их, и одного, записы-

1	 Автор почему-то не выделяет на этом и последующих рисунках отдельный узел хранения,
сливая его воедино с узлом для топика purchases. См. рис. 1.4. — Примеч. пер.

Глава 1. Добро пожаловать в Kafka Streams   45

вающего маскированные результаты в топик для дальнейшего использования дру-
гими потребителями. С помощью Kafka Streams можно создавать графы обработки
из связанных узлов, обладающие большими возможностями потоковой обработки
входящих данных.

Резюме
�� Kafka Streams представляет собой граф узлов обработки, объединенных в единое

целое для сложной полнофункциональной потоковой обработки.

�� Пакетная обработка обладает большими возможностями, но ее недостаточно
для удовлетворения потребностей при работе с данными в режиме реального
времени.

�� Распределение данных, пары «ключ/значение», секционирование и репликация
данных критически важны для распределенных приложений.

Чтобы хорошо разобраться с библиотекой Kafka Streams, вам понадобятся опре-
деленные значения платформы Kafka. Для тех, кому Kafka в новинку, мы рассмотрим
основные ее принципы в главе 2:

�� установку Kafka и отправку сообщений;

�� архитектуру Kafka и распределенные журналы;

�� топики и их использование в Kafka;

�� функционирование генераторов и потребителей и эффективное их написание.

Если вы уже хорошо знакомы с Kafka, то можете спокойно перейти прямо к гла-
ве 3, где мы создадим приложение Kafka Streams на базе обсуждавшегося в данной
главе примера.

2 Kafka в двух словах

В этой главе:

�� архитектура Kafka;
�� отправка сообщений с помощью генераторов;
�� чтение сообщений с помощью потребителей;
�� установка и запуск Kafka.

Хотя данная книга посвящена библиотеке Kafka Streams, она была бы неполной без
обсуждения самого фреймворка Kafka. В конце концов, Kafka Streams — надстройка
над Kafka.

Библиотека Kafka Streams спроектирована очень удачно, так что для подготовки
ее к работе практически не нужно какого-либо опыта работы с Kafka, но неумение
выполнить тонкую настройку Kafka может серьезно ограничить ваши успехи в ра-
боте с ней. Чтобы извлечь максимальную пользу из Kafka Streams, совершенно не-
обходимы глубокие базовые знания Kafka.

ПРИМЕЧАНИЕ
Данная глава предназначена для разработчиков, желающих познакомиться
с Kafka Streams, у которых — совсем или почти — нет опыта работы с Kafka.
Если вы уже достаточно работали с Kafka на практике, то можете спокойно
пропустить эту главу и перейти прямо к главе 3.

Kafka — слишком объемная тема, чтобы охватить ее во всей полноте в одной гла-
ве. Я расскажу достаточно, чтобы вы хорошо разобрались в работе Kafka и несколь-
ких основных настройках ее конфигурации, которые вам понадобятся. Для более
подробного описания Kafka загляните в книгу Kafka in Action Дилана Скотта (Dylan
Scott) (издательство Manning, 2018).

2.1. Проблема данных
В настоящее время организации практически завалены данными. Интернет-компа-
нии, финансовые учреждения и крупные розничные торговцы имеют сейчас больше
возможностей для использования этих данных, чем когда бы то ни было, как для

Глава 2. Kafka в двух словах   47

лучшего обслуживания своих клиентов, так и для поиска лучших способов ведения
бизнеса. (Мы, как оптимисты, будем предполагать, что изучение данных клиентов
происходит лишь с самими лучшими намерениями.)

Вероятно, вам хотелось бы, чтобы программное решение для управления данны-
ми ZMart удовлетворяло таким требованиям, как:

�� наличие способа быстрой отправки данных в центральное хранилище;
�� возможность репликации данных, чтобы неизбежные частые отказы машин

не приводили к простою и потерям данных;
�� потенциал масштабирования до произвольного количества потребителей данных

без необходимости отслеживания различных приложений. Данные должны быть
доступны всем работникам компании без необходимости отслеживания того, кто
просматривал данные, а кто — нет.

2.2. �Использование Kafka
для обработки данных

В главе 1 вы познакомились с большой розничной компанией ZMart. На тот момент
ZMart требовалась потоковая платформа обработки данных об их продажах, что-
бы усовершенствовать свою работу с покупателями и повысить продажи в целом.
Но за шесть месяцев до этого ZMart пыталась хоть как-то справиться со своими
проблемами с данными. У нее в наличии было созданное специально для них про-
граммное решение, сначала работавшее нормально, но затем вышедшее из-под
контроля по причинам, которые вам скоро станут понятны.

2.2.1. �Первоначальная платформа данных
компании ZMart

Первоначально ZMart была маленькой компанией, в систему которой данные по
розничным продажам поступали из отдельных приложений. Сначала такая схема
работала нормально, но спустя время стало ясно, что нужно что-то новое. Данные по
продажам одного отдела интересны не только этому отделу, но и нескольким другим
подразделениям компании, у каждого из которых разное представление о том, что
важно, и о желаемой структуре данных. На рис. 2.1 показана первоначальная плат-
форма данных компании ZMart.

Со временем ZMart выросла за счет приобретения других компаний и расшире-
ния предложений в существующих магазинах. При каждом увеличении ее размера
связи между приложениями становились все более сложными. То, что начиналось
как горстка взаимодействующих друг с другом приложений, превратилось в на-
стоящую кучу спагетти. Как вы можете видеть на рис. 2.2, всего лишь между тремя
приложениями — огромное количество соединений, что создает сильную путаницу.
Очевидно, что при добавлении новых приложений эта структура данных быстро
выйдет из-под контроля.

48   Часть I  •  Знакомство с Kafka Streams

Рис. 2.1. Первоначальная архитектура данных компании ZMart была достаточно проста для того,
чтобы поток информации в каждый источник или из него был линейным

Рис. 2.2. После добавления со временем еще нескольких приложений соединения источников
информации становятся более запутанными

2.2.2. �Концентратор информации о транзакциях продаж
на основе Kafka

Решением проблемы ZMart было бы создание одного процесса-приемника для всех
данных о транзакциях — концентратора информации о транзакциях. Этот концен-
тратор информации о транзакциях должен быть без сохранения состояния, в его

Глава 2. Kafka в двух словах   49

задачи входит получение информации о транзакциях и сохранение ее так, чтобы
любое приложение-потребитель могло ее извлечь при необходимости. При этом
отслеживать, какую информацию они уже видели, должны сами приложения-потре-
бители. Концентратору информации о транзакциях будет известно только, сколько
времени в нем хранятся данные о конкретной транзакции и когда их необходимо
размножить или удалить.

Если вы еще не поняли, наш пример — идеальный сценарий использования
для Kafka. Kafka — это отказо- и ошибкоустойчивая система обмена сообщения
ми по типу «публикация/подписка». Отдельный узел Kafka называется брокером
(broker), а несколько серверов Kafka образуют кластер (cluster). Записываемые
генераторами (producers) сообщения Kafka хранит в топиках (topics). Потреби-
тели (consumers) подписываются на топики и обращаются к Kafka, чтобы узнать,
появились ли новые сообщения в топиках, на которые они подписаны. Рисунок 2.3
иллюстрирует использование Kafka в качестве концентратора информации о транз
акциях.

Это был обзор Kafka с высоты птичьего полета. В следующих разделах мы взгля-
нем на нее поближе.

Рис. 2.3. Использование Kafka в качестве концентратора информации о транзакциях
существенно упрощает архитектуру ZMart. Теперь каждой машине больше не нужно знать

обо всех остальных источниках информации. Достаточно знать, как читать данные из Kafka
и записывать их туда

50   Часть I  •  Знакомство с Kafka Streams

2.3. Архитектура Kafka
В следующих нескольких подразделах мы рассмотрим важнейшие элементы ар-
хитектуры Kafka и разберемся, как она функционирует. Если вы хотите поскорее
опробовать Kafka, то переходите прямо к разделу 2.6, посвященному установке и за-
пуску Kafka. После установки можете вернуться обратно и продолжить ее изучение.

2.3.1. Kafka — это брокер сообщений
Ранее я говорил, что Kafka — система обмена сообщениями по типу «публикация/
подписка», но точнее было бы сказать, что Kafka — это брокер сообщений. Брокер
(broker) — это посредник, который сводит вместе две, возможно, незнакомые друг
с другом стороны для обоюдовыгодного товарообмена или заключения сделки.
Рисунок 2.4 показывает дальнейшее развитие архитектуры данных компании ZMart.
В него были добавлены генераторы и потребители для демонстрации взаимодей-
ствия отдельных частей архитектуры с Kafka. Друг с другом они непосредственно
не взаимодействуют.

Рис. 2.4. Kafka — брокер сообщений. Генераторы отправляют в Kafka сообщения, которые там
сохраняются. Потребители могут получать эти сообщения посредством подписки на топики

Глава 2. Kafka в двух словах   51

Kafka хранит сообщения в топиках и извлекает их оттуда. Генераторы и потре-
бители сообщений никак непосредственно не связаны. Кроме того, Kafka не хранит
состояние генераторов и потребителей, а играет роль исключительно координаци-
онного центра для сообщений.

По существу, «под капотом» топик Kafka представляет собой журнал (log),
то есть файл, в который Kafka дописывает входящие записи. Чтобы справиться
с поступающим в топик объемом сообщений, Kafka использует секции. Мы уже
обсуждали секции в главе 1, и вы, наверное, помните, что они, в частности, приме-
няются для объединения расположенных на различных машинах данных. Вскоре
мы поговорим о секциях подробнее.

2.3.2. Kafka — это журнал
В основе Kafka лежит механизм журналов. Большинству разработчиков ПО хорошо
знакомо отслеживание с помощью журналов действий приложений. В случае про-
блем с производительностью или ошибками в приложении вы прежде всего загля-
нете в его журналы. Но это совсем другие журналы. В контексте Kafka (или любой
другой распределенной системы) журналом называется «предназначенная только
для дописывания в ее конец, полностью упорядоченная по времени последователь-
ность записей»1.

На рис. 2.5 приведен пример журнала. Приложение добавляет записи в конец
журнала по мере их поступления. Записи упорядочиваются по времени, хотя меток
даты/времени в них может и не быть, просто слева располагаются записи, поступи
вшие первыми, а справа — последними.

Рис. 2.5. Журнал — это файл, в котором входящие записи добавляются в конец, каждая
поступающая запись помещается непосредственно за последней из полученных ранее.

Этот процесс приводит к упорядочению записей по времени

Журналы — простая абстракция данных, имеющая очень большое значение.
При упорядоченных по времени записях разрешение конфликтов и выбор нужного
обновления для различных машин сильно упрощаются: просто выбирается послед-
няя запись.

1	 Kreps J. The Log: What Every Software Engineer Should Know About Real-time Data’s Uni-
fying Abstraction (Джей Крепс «Журнал: что каждый разработчик ПО должен знать об
абстракции, объединяющей всю обработку поступающих в реальном времени данных»),
http://mng.bz/eE3w.

52   Часть I  •  Знакомство с Kafka Streams

Топики в Kafka представляют собой журналы, разбитые в соответствии с на-
званием топика. Топики можно рассматривать практически как маркированные
журналы. Если журнал реплицируется среди кластера машин и одна из этих машин
выходит из строя, можно легко восстановить ее состояние, просто снова выполнив
действия из файла журнала. Распределенные журналы фиксаций служат именно
для восстановления после сбоя.

Мы затронули лишь самый краешек очень сложной темы, связанной с распре-
деленными приложениями и согласованностью данных, но изложенное, надеюсь,
дало вам хотя бы общее представление о том, что происходит «под капотом»
Kafka.

2.3.3. Функционирование журналов в Kafka
Один из параметров конфигурации, задаваемых при установке Kafka, — log.dir,
определяющий место хранения журналов Kafka. Каждый топик соответствует под-
каталогу в указываемом в этом параметре каталоге. Количество подкаталогов равно
числу секций топиков, формат их названий: имя-секции_номер-секции (я расскажу
о секциях в следующем разделе). В каждом каталоге находится файл журнала,
в который добавляются входящие сообщения. После достижения файлом журнала
определенного размера (в смысле числа записей или размера на диске) или по до-
стижении заданной (в конфигурации) разницы между метками даты/времени со-
общений файл журнала заменяется и Kafka начинает добавлять сообщения в новый
журнал (рис. 2.6).

Рис. 2.6. Каталог журналов — основное хранилище сообщений. Каждый подкаталог
в каталоге /logs соответствует секции одного из топиков. Имена файлов в таком каталоге

начинаются с названия топика, за которым следуют символ подчеркивания и номер секции

Как вы можете видеть, понятия «журнал» и «топик» тесно связаны. Можно ска-
зать, что топик — это журнал или что он символизирует журнал. Название топика
показывает, в каком журнале будут сохранены сообщения, отправленные в Kafka
посредством генераторов. Теперь, когда мы разобрались с понятием журналов, об-
судим другое фундаментальное понятие Kafka — секции.

Глава 2. Kafka в двух словах   53

2.3.4. Kafka и секции
Секции — важнейший элемент архитектуры Kafka. Они необходимы для обеспече-
ния производительности, и они гарантируют, что данные с одинаковыми ключами
будут отправлены одному потребителю в правильном порядке. Рисунок 2.7 иллю-
стрирует работу секций.

Рис. 2.7. Секции применяются в Kafka для достижения высокой пропускной
способности и распределения сообщений отдельного топика по нескольким

машинам кластера

При секционировании топика отправляемые в него данные, по существу, разби-
ваются на параллельные потоки. Именно в этом и заключается секрет потрясающей
пропускной способности Kafka. Я уже упоминал, что топик — это распределенный
журнал; каждая секция сама по себе тоже является журналом и следует тем же пра-
вилам. Kafka добавляет каждое из входящих сообщений в конец журнала, и все эти
сообщения оказываются строго упорядоченными по времени. Каждому сообщению
присваивается смещение. Упорядоченность гарантируется только внутри секции, но
не между различными секциями.

Секционирование служит и другой цели, помимо повышения пропускной спо-
собности. Благодаря ему можно распределять сообщения топиков по нескольким
машинам, так что вместимость конкретного топика не будет ограничиваться дис-
ковым пространством, доступным на одном сервере.

54   Часть I  •  Знакомство с Kafka Streams

Секции играют и еще одну важнейшую роль: они обеспечивают совместное рас-
положение сообщений с одинаковыми ключами, о чем мы расскажем в следующем
разделе.

2.3.5. Секции группируют данные по ключу
Kafka оперирует данными в виде пар «ключ/значение». Если их ключи пустые,
генератор Kafka заносит записи в секции, выбираемые циклическим образом.
Рисунок 2.8 демонстрирует работу механизма назначения секции в случае непустых
ключей.

Рис. 2.8. foo отправляется в секцию 0, а bar — в секцию 1. Номер секции
определяется путем хеширования байтового представления ключа по модулю

числа секций

Если ключи не пусты, Kafka использует следующую формулу (показана в виде
псевдокода), чтобы определить, в какую секцию поместить пару «ключ/значение»:

хеш.(ключ) % число секций

Благодаря детерминистичности подхода к выбору секции записи с одним клю-
чом всегда будут попадать в одну секцию, причем в правильном порядке. Такой
подход применяется методом секционирования по умолчанию; при необходимости
иной стратегии выбора секций можно создать пользовательский метод секциони-
рования.

Глава 2. Kafka в двух словах   55

2.3.6. �Написание пользовательского класса
секционирования

Зачем может понадобиться пользовательский способ секционирования? По несколь-
ким причинам, из которых мы рассмотрим тут одну — применение составных ключей.

Пускай данные о покупках поступают в Kafka, причем ключи состоят из двух
значений: идентификатора покупателя и даты транзакции. При этом вам нужно
группировать данные по идентификатору покупателя, так что просто взять хеш
идентификатора покупателя и даты покупки нельзя. В таком случае необходимо на-
писать пользовательский метод секционирования, который бы «знал», на основании
какой части составного ключа выбирается секция. Например, в листинге 2.1 показан
составной ключ из src/main/java/bbejeck/model/PurchaseKey.java (исходный код можно
найти по адресу https://manning.com/books/kafka-streams-in-action).

Листинг 2.1. Составной ключ PurchaseKey

public class PurchaseKey {

 private String customerId;
 private Date transactionDate;

 public PurchaseKey(String customerId, Date transactionDate) {
 this.customerId = customerId;
 this.transactionDate = transactionDate;
 }

 public String getCustomerId() {
 return customerId;
 }

 public Date getTransactionDate() {
 return transactionDate;
 }
}

При секционировании необходимо убедиться, что все транзакции для конкрет-
ного покупателя попадают в одну секцию, но сделать это с помощью ключа целиком
не получится. Учет при секционировании даты приведет к множеству различных
значений ключей для одного покупателя, поскольку покупки происходят в разные
дни, в результате чего транзакции будут попадать в секции хаотичным образом.
Все транзакции с одним идентификатором покупателя должны попасть в одну сек-
цию. Единственный способ добиться этого — применять при выборе секции только
идентификатор покупателя.

Пользовательский метод секционирования из следующего примера именно это
и делает. Класс PurchaseKeyPartitioner (из src/main/java/bbejeck/chapter_2/partitioner/
PurchaseKeyPartitioner.java) извлекает идентификатор покупателя из ключа и определяет
на его основе, какую секцию применять (листинг 2.2).

56   Часть I  •  Знакомство с Kafka Streams

Листинг 2.2. Пользовательский класс секционирования PurchaseKeyPartitioner

Этот пользовательский класс секционирования расширяет класс DefaultParti
tioner. Можно реализовать непосредственно интерфейс Partitioner, но в классе
DefaultPartitioner уже реализована логика, которая нам пригодится.

Конечно, при создании пользовательского метода секционирования вы можете
не ограничиваться одним только ключом. Можно применить также только значение
или значение в сочетании с ключом.

ПРИМЕЧАНИЕ
API Kafka содержит интерфейс Partitioner, который можно применять при
создании пользовательского метода секционирования. Мы не будем рассма-
тривать написание метода секционирования с нуля, но основные принципы
не отличаются от описанных в листинге 2.2.

Вы только что посмотрели на создание пользовательского класса секционирова-
ния. Теперь подключим его к Kafka.

2.3.7. Настройка пользовательского секционирования
После написания пользовательского класса секционирования нужно сообщить
Kafka о необходимости его применять вместо секционирования по умолчанию.
Мы пока еще не обсуждали генераторы, вот пример задания другого класса секцио
нирования в конфигурации генератора Kafka:

partitioner.class=bbejeck_2.partitioner.PurchaseKeyPartitioner

Благодаря настройке, позволяющей задавать отдельный способ секционирования
для каждого экземпляра генератора, можно использовать тот класс секционирования
для любого генератора, какой вам нужен. Мы обсудим настройки генераторов по
дробно в посвященном генераторам разделе.

Глава 2. Kafka в двух словах   57

ПРЕДУПРЕЖДЕНИЕ
Следует с осторожностью выбирать применяемые ключи и части пары «ключ/
значение», по которым выполняется секционирование. Проверьте, чтобы
выбранный вами ключ был распределен равномерно по всем вашим данным.
В противном случае вы в конце концов столкнетесь с проблемой асимметрии
данных, поскольку большая их часть будет располагаться лишь в небольшой
части секций.

2.3.8. Выбор правильного числа секций
Выбор числа секций при создании топика — искусство и наука одновременно. Глав-
ное, что нужно учесть, — объем поступающих в этот топик данных. Для повышения
пропускной способности должно быть тем больше секций, чем больше данных.
Но, как всегда в жизни, приходится идти на компромиссы.

Повышение числа секций приводит к росту количества TCP-соединений и от-
крытых дескрипторов файлов. Кроме того, длительность процесса обработки записи
в потребителе также является определяющим фактором для пропускной способ-
ности. Если в потребителе производится «тяжеловесная» обработка, то добавление
дополнительных секций может решить проблему на время, но в конце концов про-
изводительность из-за этого начнет страдать1.

2.3.9. Распределенный журнал
Мы обсудили основные принципы журналов и секционированных топиков. Соеди-
ним эти понятия в виде распределенного журнала.

До сих пор мы сосредотачивали наше внимание на журналах и топиках на одном
сервере (брокере) Kafka, но обычно среда реального кластера Kafka включает не-
сколько машин. Я умышленно удерживал обсуждение в рамках одноузловых систем,
ведь в случае одного узла разбираться в принципах работы проще. Но на практике
в Kafka всегда работают с кластером машин.

При секционировании топика Kafka не размещает его секции на одной машине,
а распределяет их по нескольким машинам из кластера. При добавлении записей
в журнал Kafka распределяет их по нескольким машинам посредством секциони-
рования. На рис. 2.9 можно наблюдать этот процесс в действии.

Рассмотрим короткий пример с рис. 2.9 в качестве ориентира. В этом примере
будет один топик при пустых ключах, так что генератор назначит секции цикличе-
ским образом.

Генератор отправляет первое сообщение в секцию 0 на брокере Kafka 1, второе
сообщение — в секцию 1 на брокере Kafka 1, а третье — в секцию 2 на брокере Kafka 2.
При отправке шестого сообщения генератор переходит с брокера Kafka 5 на бро-
кер Kafka 3, и следующее сообщение начинает цикл заново, с секции 0 на брокере

1	 Rao J. How to Choose the Number of Topics/Partitions in a Kafka Cluster? (Дзюн Рао «Как
выбрать число топиков/секций в кластере Kafka»), http://mng.bz/4C03.

58   Часть I  •  Знакомство с Kafka Streams

Kafka 1. Сообщения продолжают размещаться так и дальше, распределяя трафик по
всем узлам кластера Kafka.

Хотя может показаться, что хранить данные удаленно довольно рискованно, ведь
сервер может выйти из строя, это не так благодаря предоставляемой Kafka избыточ-
ности данных. При записи на один из брокеров в Kafka данные реплицируются на
одну или несколько машин кластера (репликацию мы рассмотрим в следующем
разделе).

2.3.10. �ZooKeeper: ведущие/ведомые брокеры
и репликация

До сих пор мы обсуждали то, какую роль играют в Kafka топики, а также как и поче-
му их нужно секционировать. Как вы видели, секции не располагаются все на одной
машине, а распределяются по брокерам в кластере. Пришло время рассказать, как
Kafka обеспечивает доступность данных в случае отказов отдельных машин.

В Kafka существует понятие ведущего и ведомого брокеров: для каждой секции
топика один из брокеров выбирается в качестве ведущего (leader) для остальных

Рис. 2.9. Генератор записывает сообщения в секции топика. Если ключа в сообщении нет, он
(генератор) выбирает секции циклическим образом. В противном случае используется деление

хеша ключа по модулю числа секций

Глава 2. Kafka в двух словах   59

брокеров — ведомых (followers). Одна из главных задач ведущего брокера — назна-
чение ведомых брокеров для репликации (replication) секций топика. Аналогично
тому как Kafka распределяет секции топика по кластеру, Kafka также реплицирует
секции по машинам. Прежде чем углубляться в подробности того, как функциони-
руют ведущие/ведомые брокеры и репликация, необходимо обсудить используемую
Kafka для этого технологию.

2.3.11. Apache ZooKeeper
Если вы новичок в Kafka, то, наверное, задаетесь вопросом: «Почему в книге о Kafka
вдруг зашла речь об Apache ZooKeeper?» Apache ZooKeeper — неотъемлемая часть
архитектуры Kafka, именно благодаря ему у Kafka есть ведущие брокеры и она
может, например, отслеживать репликацию топиков (https://zookeeper.apache.org/).

ZooKeeper — централизованный сервис, предназначенный для хранения
настроек и информации о наименованиях, распределенной синхронизации
и предоставления групповых сервисов. Все эти сервисы так или иначе при-
меняются в распределенных приложениях.

А поскольку Kafka — распределенное приложение, становится понятна роль
ZooKeeper в его архитектуре. В данной книге мы будем рассматривать только си-
стемы Kafka с двумя и более серверами.

Один из брокеров в любом кластере Kafka «выбирается» контроллером (controller).
В предыдущем разделе мы обсуждали секции и говорили о том, как Kafka распре-
деляет секции по различным машинам кластера. У секций топика есть ведущий
и ведомый (-е) брокер (-ы) (количество брокеров для репликации определяется ее
уровнем). При генерации сообщения Kafka отправляет запись ведущему брокеру
соответствующей секции.

2.3.12. Выборы контроллера
Для выборов брокера-контроллера Kafka использует ZooKeeper. Обсуждение ал-
горитмов консенсуса выходит далеко за рамки этой книги, так что мы с высоты
птичьего полета только отметим, что ZooKeeper выбирает, какой брокер из кластера
будет контроллером.

При отказе брокера-контроллера или его недоступности (по какой-либо причи-
не) ZooKeeper выбирает новый из числа брокеров, не отстающих от ведущего (так
называемые согласованные реплики (in-sync replica, ISR)). Это множество состоит
из нормально функционирующих брокеров, и в качестве претендентов на роль ве-
дущего брокера1 ZooKeeper рассматривает только его участников.

1	 См. документацию Kafka: Replicated Logs: Quorums, ISRs, and State Machines (Oh my!)
(«Реплицируемые журналы: кворумы, ISR и конечные автоматы (вот это да!)»), http://
kafka.apache.org/documentation/#design_replicatedlog.

60   Часть I  •  Знакомство с Kafka Streams

2.3.13. Репликация
Чтобы обеспечить доступность данных в случае отказа одного из брокеров кластера,
Kafka реплицирует записи между брокерами. Можно задавать уровень репликации
индивидуально для каждого топика (как вы видели в нашем предыдущем примере
с публикацией и потреблением) или для всех топиков в кластере. Рисунок 2.10 ил-
люстрирует поток репликации между брокерами.

Рис. 2.10. Брокеры 1 и 3 — ведущие для одной секции топика и ведомые для другой,
в то время как брокер 2 — лишь ведомый. Ведомые брокеры копируют данные с ведущего

Процесс репликации Kafka достаточно прост. Ведомые для секции топика броке-
ры потребляют сообщения из соответствующего ведущего брокера и дописывают их
в журналы. Как уже обсуждалось в предыдущем разделе, ведомые брокеры, которые
не отстают от ведущего, считаются согласованными репликами (ISR). ISR-брокер
может быть избран ведущим при сбое или недоступности нынешнего ведущего
брокера1.

1	 См. документацию Kafka: Replication («Репликация»), http://kafka.apache.org/documenta
tion/#replication.

Глава 2. Kafka в двух словах   61

2.3.14. Обязанности контроллера
Брокер-контроллер отвечает за организацию взаимодействия ведущих/ведомых
для всех секций топика. Если узел Kafka перестает работать или не реагирует (на
периодические контрольные сигналы ZooKeeper), брокер-контроллер переназначает
все назначенные тому секции (как те, для которых он является ведущим, так и те,
для которых он является ведомым). Рисунок 2.11 демонстрирует работу брокера-
контроллера1.

На следующем рисунке приведен простой сценарий отказа. На шаге 1 брокер-
контроллер обнаруживает, что брокер 3 недоступен. На шаге 2 брокер-контроллер
делает ведущим для секции 1 брокер 2 вместо брокера 3.

Рис. 2.11. Брокер-контроллер отвечает за назначение других брокеров на роль ведущих
для одних топиков/секций и ведомых для других топиков/секций. Когда брокер перестает
реагировать, брокер-контроллер переназначает другим брокерам все, что было назначено

сбойному брокеру

1	 Часть приводимой в этом разделе информации основана на ответах Гвен Шапиры (Gwen
Shapira) на вопросы: «Какую роль на самом деле играет Zookeeper в Kafka? Какие возмож-
ности я упущу, если не буду использовать их вместе?» — на сайте Quora: http://mng.bz/25Sy.

62   Часть I  •  Знакомство с Kafka Streams

ZooKeeper также участвует в таких аспектах работы Kafka, как:

�� членство в кластере — осуществляет присоединение к кластеру и обслуживание
членства в нем. Когда брокер перестает реагировать, ZooKeeper удаляет его из
числа членов кластера;
�� конфигурация топика — отслеживает топики кластера, их ведущие брокеры,

число секций в топике, а также любые конкретные переопределения настроек
топика по умолчанию;
�� управление доступом — определяет, кто может читать из конкретных топиков

и записывать информацию в них.

Теперь вы видите, почему Apache Kafka зависит от ZooKeeper. Именно благодаря
ZooKeeper существуют в Apache Kafka ведущие и ведомые брокеры. Главному брокеру
при этом доверяется важнейшая роль: назначение ведомым брокерам секций топика
для репликации, а также переназначение их в случае отказа одного из брокеров.

2.3.15. Управление журналами
Мы говорили о дописывании сообщений, но пока еще не обсуждали вопрос управ-
ления журналами по мере их роста. Доступное на жестких дисках кластера место —
ресурс ограниченный, так что для Kafka важно удалять сообщения через какое-то
время. Существует два подхода к удалению старых данных в Kafka: традиционный
подход с удалением журналов и их сжатие.

2.3.16. Удаление журналов
Стратегия удаления журналов является двухэтапной: сначала журналы архивиру-
ются в сегменты, после чего наиболее старые сегменты удаляются. Kafka архивирует
(roll) журналы в сегменты, чтобы как-то справиться с их возрастающими размерами.
Хронометраж архивирования журналов зависит от включаемых в сообщения ме-
ток даты/времени. Kafka архивирует журнал при поступлении нового сообщения
с меткой даты/времени, превышающей метку даты/времени первого сообщения
в журнале плюс значение параметра конфигурации log.roll.ms. В этот момент
журнал архивируется и создается новый сегмент, который далее будет играть роль
нового активного журнала. Из ранее активного сегмента по-прежнему извлекаются
сообщения для потребителей.

При настройке брокера Kafka можно указать одну из двух опций архивирования
журналов1:

�� log.retention.ms — основной параметр, без значения по умолчанию;
�� log.roll.hours — дополнительный параметр, используется только тогда, когда

не задано значение параметра log.retention.ms. По умолчанию его значение
равно 168 часам.

1	 См. документацию Kafka: Broker Configs («Конфигурация брокеров»), http://kafka.apache.org/
documentation/#brokerconfigs.

Глава 2. Kafka в двух словах   63

Со временем число сегментов будет расти и придется удалять старые сегменты,
чтобы освободить место для поступающих данных. Для этого можно задать значе-
ние длительности сохранения старых сегментов. Процесс архивирования показан
на рис. 2.12.

Рис. 2.12. Слева показаны текущие журнальные сегменты. Справа сверху — удаленный
журнальный сегмент, а ниже его — только что заархивированный, но еще используемый

сегмент

Как и архивирование журналов, удаление сегментов основывается на метках
даты/времени в сообщениях, а не на системном времени или времени последнего
изменения файла. Удаляются журнальные сегменты с максимальной меткой даты/
времени в журнале. Существует три параметра настройки, перечисленных ниже
в порядке убывания их приоритета. Это значит, что расположенный выше в списке
параметр имеет большую силу, чем расположенные ниже:

�� log.retention.ms — длительность хранения файла журнала в миллисекундах;
�� log.retention.minutes — длительность хранения файла журнала в минутах;
�� log.retention.hours — длительность хранения файла журнала в часах.

Эти настройки рассчитаны на топики большого объема, где за заданный период
времени гарантированно достигается максимальный размер файла. Существует еще
одна настройка, log.retention.bytes, подходящая для применения в случае большей
предельной длительности промежутка архивирования с целью минимизации опе-
раций ввода/вывода. Наконец, чтобы обезопасить себя от существенных всплесков

64   Часть I  •  Знакомство с Kafka Streams

объема сегментов при относительно больших значениях настроек архивирования,
можно воспользоваться настройкой log.segment.bytes, которая задает максималь-
ный размер отдельного журнального сегмента.

Удаление журналов хорошо подходит для записей без ключей, или независимых
записей. Но для ваших потребностей в случае записей с непустыми ключами и воз-
можных обновлений данных лучше подойдет другой метод.

2.3.17. Сжатие журналов
Представьте себе, что ваши данные, снабженные ключами, периодически обновля-
ются: новые записи с теми же ключами заменяют предыдущие значения. Например,
ключом может быть биржевой тиккер, а роль периодически обновляемого значения
будет играть цена одной акции. Представьте себе, что такая информация использу-
ется в вашем приложении для отображения курсов акций и происходит фатальный
сбой (или возникает необходимость перезапуска). При этом должна сохраняться
возможность возобновить работу с наиболее свежими данными для всех ключей1.

При применении стратегии удаления удаление сегмента может произойти между
последним обновлением и фатальным сбоем/перезапуском приложения, так что при
запуске у вас не окажется всех записей. Лучше будет сохранить последнее известное
значение для заданного ключа, рассматривая следующую запись с тем же ключом
в качестве обновления таблицы базы данных.

Сжатые топики (журналы) производят обновление записей по ключу. Вместо
высокоуровневого подхода с удалением целых сегментов в зависимости от интер-
вала времени или размера сжатие позволяет действовать более аккуратно и удалять
старые записи в журнале по ключу. Если не углубляться в подробности, очиститель
журналов (пул потоков) работает в фоновом режиме, перезаписывая файлы жур-
нальных сегментов и удаляя записи, если далее в том же журнале встречается за-
пись с тем же ключом. Рисунок 2.13 иллюстрирует сохранение только последнего
сообщения для каждого ключа при сжатии журналов.

Такой подход гарантирует наличие в журнале только последней записи для дан-
ного ключа. Можно задавать настройки хранения информации отдельно для каждого
топика, то есть некоторые топики будут хранить информацию определенное время,
а другие — использовать сжатие.

По умолчанию включена очистка журналов. Чтобы переключиться на сжатие
журналов для топика, необходимо при его создании задать свойство log.cleanup.po
licy=compact.

Сжатие применяется в Kafka Streams при хранении состояния, но вам не при-
дется создавать эти журналы/топики вручную — обо всем позаботится фреймворк.
Тем не менее важно понимать принцип работы сжатия. Сжатие журналов — обшир-
ная тема, и здесь мы коснемся ее лишь вкратце. Дополнительную информацию вы
можете найти в документации Kafka: http://kafka.apache.org/documentation/#compaction.

1	 См. документацию Kafka: Log Compaction («Сжатие журналов»), http://kafka.apache.org/
documentation/#compaction.

Глава 2. Kafka в двух словах   65

Рис. 2.13. Слева показан журнал до сжатия, в котором можно заметить дублирующиеся ключи
с различными значениями — обновлениями для данного ключа. Справа показан журнал после

сжатия — сохранено только последнее значение для каждого ключа, а журнал уменьшился
в размере

ПРИМЕЧАНИЕ
У вас может возникнуть вопрос: как при равном compact значении свойства
cleanup.policy удалить запись из журнала? В случае сжатого топика удаление
устанавливает значение заданного ключа в null, формируя таким образом от-
метку об удалении. Ключ со значением null гарантирует, что все предыдущие
записи с тем же ключом уже удалены, как будет удалена через некоторое
время и сама отметка об удалении.

Основной вывод из этого раздела: в случае независимых, автономных событий
или сообщений следует использовать удаление журналов. В случае же обновляемых
событий или сообщений лучше подойдет сжатие журналов.

Мы потратили немало времени на обсуждение внутренних механизмов работы
Kafka с данными. Настало время выйти за рамки Kafka и рассмотреть отправку
в нее сообщений с помощью генераторов и чтение сообщений из Kafka с помощью
потребителей.

2.4. �Отправка сообщений
с помощью генераторов

Возвращаясь к ZMart и их потребности в централизованном концентраторе инфор-
мации о транзакциях продаж, обсудим, как мы будем отправлять эту информацию
в Kafka. В Kafka используемый для отправки сообщений клиент называется генера-
тором (producer). На рис. 2.14 снова показана архитектура данных ZMart, генера-
торы в ней выделены, чтобы подчеркнуть их участие в информационном потоке.

66   Часть I  •  Знакомство с Kafka Streams

Рис. 2.14. Для отправки сообщений в Kafka используются генераторы. Генераторы «не знают»,
какой из потребителей и когда прочитает эти сообщения

Хотя у ZMart множество различных транзакций продаж, мы рассмотрим пока
покупку отдельного товара — книги стоимостью $10,99. По завершении покупате-
лем транзакции покупки информация о ней преобразуется в пару «ключ/значение»
и отправляется генератором в Kafka.

Ключом служит идентификатор покупателя, 123447777, а значение находится
в формате JSON: "{\"item\":\"book\",\"price\":10.99}" (я экранировал двой-
ные кавычки, чтобы можно было представить JSON в виде строкового литерала).
Данные в этом формате можно отправить с помощью генератора в кластер Kafka.
Вы можете найти следующий пример в файле src/main/java/bbejeck.chapter_2/producer/
SimpleProducer.java (листинг 2.3).

Генераторы Kafka являются потокобезопасными. Отправка данных в Kafka про-
изводится асинхронно — возврат из метода Producer.send происходит сразу же по-
сле помещения генератором записи во внутренний буфер. Этот буфер отправляет
записи пакетами. В зависимости от ваших настроек при отправке сообщения при
заполненном буфере генератора вы можете столкнуться с блокировкой.

Глава 2. Kafka в двух словах   67

Листинг 2.3. Пример простого генератора

Вышеупомянутый метод Producer.send принимает в качестве параметра экзем-
пляр типа Callback. После подтверждения получения записи ведущим брокером
генератор инициирует выполнение метода Callback.onComplete. Только один из
аргументов метода Callback.onComplete будет непустым. В данном случае нас инте-
ресует только вывод трассы вызовов при ошибке, так что нам важно, чтобы объект
исключения был не пуст. Возвращаемый фьючерс после подтверждения получения
записи сервером выдает объект типа RecordMetadata.

ОПРЕДЕЛЕНИЕ
В листинге 2.3 метод Producer.send возвращает объект Future, который пред-
ставляет собой результат выполнения асинхронной операции. Что важнее,
Future дает возможность извлечь результаты асинхронных операций отло-
женным образом, вместо того чтобы ждать их завершения. Более подробную
информацию о фьючерсах вы можете найти в документации Java, в разделе
«Интерфейс Future<V>»: http:// mng.bz/0JK2.

68   Часть I  •  Знакомство с Kafka Streams

2.4.1. Свойства генераторов
При создании экземпляра класса KafkaProducer передается параметр типа ja
va.util.Properties, содержащий настройки генератора. Настройки генератора
KafkaProducer довольно просты, но стоит обратить внимание на некоторые из них.
Именно в них можно задать, например, пользовательский класс секционирования.
Свойств конфигурации слишком много, чтобы охватить тут их все, поэтому рас-
смотрим лишь те, что задействовались в листинге 2.3.

�� Серверы для начальной загрузки — bootstrap.servers представляет собой раз-
деленный запятыми список значений вида хост:порт. В конце концов генератор
использует все брокеры кластера; этот список применяется для первоначального
подключения к кластеру.

�� Сериализация — свойства key.serializer и value.serializer определяют способ
преобразования фреймворком Kafka ключей и значений в байтовые массивы.
Внутри Kafka для ключей и значений применяются байтовые массивы, так что
нужно предоставить Kafka правильные сериализаторы для преобразования объ-
ектов в байтовые массивы перед отправкой.

�� acks — свойство acks задает минимальное число подтверждений от брокера,
при получении которого генератор будет считать отправку записи успешной.
Допустимые значения этого свойства: all, 0 и 1. При значении all генератор
будет ждать получения от брокера подтверждения фиксации записи во всех ве-
домых брокерах. При значении 1 брокер вносит запись в свой журнал, но не ждет
подтверждения фиксации записи никакими ведомыми брокерами. Значение 0
означает, что генератор вообще не ждет никаких подтверждений — по сути, это
стратегия типа «сделать и забыть».

�� Стратегии повторов отправки — свойство retries задает число попыток по-
вторной отправки на случай сбоя отправки пакета. Если порядок записей важен,
имеет смысл установить свойству max.in.flight.requests.per.connection зна-
чение 1, чтобы второй пакет не оказался успешно отправленным до повторной
отправки сбойного.

�� Тип сжатия — свойство compression.type определяет используемый алгоритм
сжатия (если сжатие вообще применяется). Задание этого свойства указывает
генератору на необходимость сжатия пакета перед отправкой. Обратите внима-
ние, что сжимается пакет в целом, а не отдельные сообщения.

�� Класс секционирования — свойство partitioner.class задает название класса,
который реализует интерфейс Partitioner. Свойство partitioner.class имеет
отношение к нашему обсуждению пользовательских классов секционирования
в подразделе 2.3.7.

Более подробную информацию о генераторах вы можете найти в документации
Kafka: http://kafka.apache.org/documentation/#producerconfigs.

Глава 2. Kafka в двух словах   69

2.4.2. �Указание секции
или метки даты/времени

При создании объекта ProducerRecord можно указать секцию, метку даты/времени
или и то и другое. При создании экземпляра ProducerRecord в листинге 2.3 мы вос-
пользовались одним из четырех1 имеющихся перегруженных конструкторов. Осталь-
ные конструкторы этого класса позволяют указать секцию и метку даты/времени
или одну только секцию:

ProducerRecord(String topic, Integer partition, String key, String value)
ProducerRecord(String topic, Integer partition,
 Long timestamp, String key,
 String value)

2.4.3. Указание секции
В подразделе 2.3.4 мы говорили о том, насколько важны в Kafka секции. Мы также
обсуждали, как работает класс DefaultPartitioner (метод секционирования по
умолчанию) и как можно задать пользовательский класс секционирования. Зачем
может понадобиться явным образом указывать секцию? Существует множество
обоснованных причин для этого. Вот один пример.

Допустим, что к вам поступают снабженные ключами данные, но для вас нет
никакой разницы, в какую секцию попадут записи, поскольку логика потребителей
позволяет обрабатывать любые возможные значения ключей. Кроме того, распреде-
ление ключей может быть неравномерным, так что вам нужно обеспечить прибли-
зительно одинаковый объем данных в каждой из секций. Ниже приведена черновая
реализация этого (листинг 2.4).

Листинг 2.4. Указываем секцию вручную

Здесь мы задействуем вызов функции Math.abs, так что не нужно следить, чтобы
значение целочисленной переменной не превысило Integer.MAX_VALUE.

1	 В текущей версии Kafka 2.0 в классе ProducerRecord шесть перегруженных конструкторов.
См. документацию Kafka: https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/
producer/ProducerRecord.html. — Примеч. пер.

70   Часть I  •  Знакомство с Kafka Streams

ОПРЕДЕЛЕНИЕ
Класс AtomicInteger относится к пакету java.util.concurrent.atomic, содержа-
щему классы с поддержкой потокобезопасных операций без блокировок для
отдельных переменных. Дополнительную информацию вы можете найти
в документации Java по пакету java.util.concurrent.atomic: http://mng.bz/PQ2q.

2.4.4. Метки даты/времени в Kafka
В Kafka версии 0.10 в записи были добавлены метки даты/времени. Метка даты/
времени задается при создании объекта ProducerRecord с помощью следующего
вызова перегруженного конструктора:

ProducerRecord(String topic, Integer partition,
➥ Long timestamp, K key, V value)

Если не задать метку даты/времени, это сделает генератор (с использова-
нием текущего системного времени) перед отправкой записи брокеру Kafka.
На метки даты/времени также влияет параметр конфигурации брокера log.messa
ge.timestamp.type, который может принимать значение или CreateTime (по умол-
чанию), или LogAppendTime. Подобно многим другим настройкам брокеров, зада-
ваемое для брокера значение применяется ко всем топикам по умолчанию, но при
создании топика можно задать для него другое значение. Если указать значение
LogAppendTime и топик не перекрывает настроек брокера, то брокер будет запи-
сывать вместо метки даты/времени текущее время при добавлении записи в жур-
нал. В противном случае будет использоваться метка даты/времени из объекта
ProducerRecord.

Как выбрать одно из этих значений? LogAppendTime рассматривается в качестве
времени обработки, а CreateTime — времени события. Какое выбрать — зависит от
ваших бизнес-требований. Нужно решить для себя: вы хотите знать, когда Kafka
обработал запись или когда фактически произошло событие? В следующих главах
мы увидим, какую важную роль метки даты/времени играют в контроле информа-
ционных потоков в Kafka Streams.

2.5. �Чтение сообщений
с помощью потребителей

Вы уже посмотрели на работу генераторов; время взглянуть на потребители в Kafka.
Допустим, что вы создаете предварительную версию приложения для отображения
актуальной статистики продаж ZMart. Для данного примера мы прочитаем сообще-
ние, отправленное в предыдущем примере с помощью генератора. А поскольку созда-
ние этого приложения еще только начинается, мы пока только прочитаем указанное
сообщение и выведем информацию в консоль.

Глава 2. Kafka в двух словах   71

ПРИМЕЧАНИЕ
Мы обсудим тут только новую версию потребителя, включенную в Kafka 0.9,
поскольку рассматриваемая в данной книге версия Kafka Streams все равно
требует версии Kafka 0.10.2 или более поздней.

Для потребления сообщений из Kafka мы воспользуемся классом KafkaConsumer.
Класс KafkaConsumer прост в применении, но при его эксплуатации следует учесть
несколько нюансов. В приведенной на рис. 2.15 архитектуре ZMart выделены места
участия потребителей в информационном потоке.

Рис. 2.15. Потребители читают данные из Kafka. Подобно тому как генераторы «не знают»
ничего о потребителях, потребители понятия не имеют о том, кто сгенерировал читаемые ими

из Kafka сообщения

2.5.1. Управление смещениями
Класс KafkaConsumer, в отличие от KafkaProducer, частично сохраняет состояние
посредством периодической фиксации смещений потребленных из Kafka сообще-
ний. Смещения идентифицируют сообщения уникальным образом и отражают их

72   Часть I  •  Знакомство с Kafka Streams

начальные позиции в журнале. Потребителям приходится периодически фиксиро-
вать смещения полученных ими сообщений.

Фиксация смещений означает для потребителя две вещи:

�� подразумевает, что потребитель полностью обработал сообщение;

�� соответствует отправной точке для этого потребителя на случай сбоя или пере-
запуска.

В случае нового экземпляра потребителя или возникшего сбоя может оказаться,
что последнее зафиксированное смещение неизвестно, так что место, с которого
потребитель начнет работу, зависит от настроек:

�� auto.offset.reset="earliest" — извлечение сообщений будет производиться,
начиная с самого первого из доступных смещений. Будут извлечены все сообще-
ния, которые еще не были удалены в ходе процесса управления журналами;

�� auto.offset.reset="latest" — извлечение сообщений будет производиться,
начиная с последнего из доступных смещений, по существу, сообщения будут
потребляться только с момента присоединения потребителя к кластеру;

�� auto.offset.reset="none" — стратегия сброса смещений не задана. Брокер гене-
рирует исключение и передает его потребителю.

На рис. 2.16 показаны результаты выбора различных значений параметра
auto.offset.reset. При выборе значения earliest вы получите сообщения, начиная
со смещения 1 (точнее, 0. — Примеч. пер.). Если же выбрать latest, то вы получите
сообщения, начиная со смещения 11 (точнее, 10. — Примеч. пер.).

Рис. 2.16. Наглядное представление работы настройки auto.offset.reset при значении
earliest по сравнению со значением latest. В случае выбора earliest вы получите все

еще не удаленные сообщения, а latest означает, что вам придется ждать поступления
следующего сообщения

Далее мы обсудим опции, связанные с фиксацией смещений, которую можно
выполнять вручную или автоматически.

Глава 2. Kafka в двух словах   73

2.5.2. Автоматическая фиксация смещений
Автоматическая фиксация смещения включена по умолчанию, для ее настройки су-
ществует свойство enable.auto.commit. Есть также дополнительная к этой опция —
auto.commit.interval.ms, — задающая частоту фиксации смещений потребителем
(по умолчанию раз в 5 секунд). Менять данный параметр следует осмотрительно.
Слишком маленькое значение приведет к интенсификации сетевого трафика, слиш-
ком большое — к получению потребителями больших объемов повторных данных
в случае сбоя или перезапуска.

2.5.3. Фиксация смещения вручную
Существует два типа фиксации смещений вручную: асинхронное и синхронное.
Вот код для синхронных фиксаций:

consumer.commitSync()
consumer.commitSync(Map<TopicPartition, OffsetAndMetadata>)

Метод commitSync() без аргументов удерживает блокировку до момента успеш-
ной фиксации всех смещений, возвращенных при последней операции извлечения
(вызова метода poll). Этот вызов применяется ко всем подписанным топикам и сек-
циям. Вторая версия метода принимает на входе параметр типа Map<TopicPartition,
OffsetAndMetadata> и фиксирует только указанные в данном ассоциативном массиве
смещения для определенных в нем секций и топиков.

Существуют также аналогичные, полностью асинхронные, методы consumer.com
mitAsync(), возврат из которых происходит сразу же. Один из этих перегруженных
методов — без параметров, а двум методам consumer.commitAsync можно передать
объект OffsetCommitCallback, вызываемый по завершении фиксации, неважно,
успешной или нет. Передача экземпляра функции обратного вызова дает воз-
можность асинхронной обработки, в том числе ошибок. Преимущество фиксации
смещений вручную — в возможности управлять тем, в какой момент запись будет
считаться обработанной.

2.5.4. Создание потребителя
Создание потребителя аналогично созданию генератора. Передаются настройки
в виде объекта класса java.util.Properties, и вы получаете в ответ экземпляр
KafkaConsumer. Затем этот экземпляр подписывается на топики в соответствии
с передаваемым списком их названий или регулярным выражением. Обычно по-
требители запускаются в цикле с задаваемым в миллисекундах промежутком между
опросами.

Результатом опроса становится объект ConsumerRecords<K, V>. Класс Consu
merRecords реализует интерфейс Iterable, так что каждый вызов метода next()

74   Часть I  •  Знакомство с Kafka Streams

возвращает объект ConsumerRecord, содержащий метаданные сообщения, помимо
самих ключа и значения.

После исчерпания всех объектов ConsumerRecord, которые были возвращены
в результате последнего вызова poll, происходит возврат вверх цикла и новый опрос
в течение заданного времени. На практике потребители обычно работают подобным
образом в течение произвольного времени, разве что произойдет ошибка или воз-
никнет необходимость в остановке и перезапуске приложения (при этом как раз
пригодятся зафиксированные смещения — при перезапуске потребитель сможет
начать работу с того места, где ее прекратил).

2.5.5. Потребители и секции
Обычно требуется несколько экземпляров потребителя — по одному для каждой
секции топика. Один потребитель может читать из нескольких секций, однако не-
редки случаи пулов потоков выполнения с числом потоков, равным числу секций,
где в каждом потоке потребитель работает с одной назначенной ему секцией.

Паттерн «один потребитель из расчета на одну секцию» позволяет добиться ма
ксимальной пропускной способности, но общее количество потоков при распределе-
нии потребителей по нескольким приложениям или машинам не должно превышать
общего числа секций топика. Все лишние (сверх общего количества секций) потоки
будут простаивать. В случае сбоя потребителя ведущий брокер переназначает его
секции другому нормально функционирующему потребителю.

ПРИМЕЧАНИЕ
Потребитель, подписанный всего на один топик, показан в данном примере
исключительно в демонстрационных целях. Потребитель может быть под-
писан на произвольное число топиков.

Ведущий брокер назначает секции топиков всем доступным потребителям с оди-
наковым group.id. Это параметр конфигурации, определяющий принадлежность
потребителя к определенной группе потребителей (consumer group). Благодаря это-
му потребители могут располагаться на различных машинах. На деле лучше, чтобы
они были распределены по нескольким машинам. В таком случае при отказе одной
из машин ведущий брокер сможет переназначить секции топиков потребителям
с нормально функционирующих машин.

2.5.6. Перебалансировка
Процесс назначения топиков/секций потребителям и отмены этих назначений,
описанный в предыдущем разделе, называется перебалансировкой (rebalancing).
Назначения топиков/секций потребителям не статичны, они меняются в процессе
работы. При добавлении потребителей с тем же идентификатором группы часть на-
значений топиков/секций активным потребителям отменяется и эти топики/секции

Глава 2. Kafka в двух словах   75

назначаются новым потребителям. Такой процесс переназначения продолжается до
тех пор, пока все секции не окажутся распределены по потребителям.

Все потребители, оставшиеся после достижения этой точки равновесия, будут
простаивать. Если потребитель покидает группу по какой-либо причине, назначен-
ные ему топики/секции переназначаются другим потребителям.

2.5.7. �Более точное назначение топиков/секций
потребителям

В подразделе 2.5.5 я описал использование пула потоков и подписку нескольких
потребителей (из одной группы) на одни и те же топики. Хотя Kafka и выравнивает
нагрузку по топикам/секциям между всеми потребителями, назначение топиков
и секций носит недетерминистский характер: нельзя предугадать, какие пары топи-
ков/секций получит каждый из потребителей.

В классе KafkaConsumer имеются методы, с помощью которых можно подписаться
на конкретные топик и секцию:

TopicPartition fooTopicPartition_0 = new TopicPartition("foo", 0);
TopicPartition barTopicPartition_0 = new TopicPartition("bar", 0);

consumer.assign(Arrays.asList(fooTopicPartition_0, barTopicPartition_0));

У назначения топиков/секций вручную есть свои недостатки:

�� в случае отказа одной из машин не произойдет автоматического переназначе-
ния секций топиков, даже для потребителей с одним идентификатором группы.
Для изменения назначений понадобится выполнить еще один вызов мето-
да consumer.assign;

�� для фиксации используется группа, указанная в настройках потребителя, но,
поскольку все потребители будут функционировать сами по себе, имеет смысл
задать для каждого из них свой уникальный идентификатор группы.

2.5.8. Пример потребителя
В листинге 2.5 приведен код потребителя для предварительной версии приложе-
ния ZMart, которая потребляет информацию о транзакциях и выводит ее в кон-
соль. Вы можете найти этот код в файле src/main/java/bbejeck.chapter_2/consumer/
ThreadedConsumerExample.java.

Листинг 2.5. Пример ThreadedConsumerExample

76   Часть I  •  Знакомство с Kafka Streams

Этот фрагмент кода несамодостаточен, я для ясности опустил в нем некоторые
другие части класса. Полный код примера можно найти в исходном коде для данной
главы.

2.6. Установка и запуск Kafka
На момент написания данной книги текущей версией Kafka является 1.0.0. Посколь
ку Kafka — проект для языка Scala, то каждый его выпуск поставляется в двух
версиях: для Scala 2.11 и Scala 2.12. В данной книге мы будем использовать версию
для Scala 2.12. Хотя вы можете скачать этот выпуск и сами, исходный код для книги
включает в себя дистрибутив Kafka, подходящий для работы с Kafka Streams так,
как показано и описано в книге. Для установки Kafka разархивируйте файл .tgz
из репозитория исходного кода книги (его можно найти на сайте книги, вот здесь:
https://manning.com/books/kafka-streams-in-action) куда-нибудь в каталог libs вашей
машины.

Глава 2. Kafka в двух словах   77

ПРИМЕЧАНИЕ
Этот дистрибутив Kafka включает Apache ZooKeeper, так что устанавливать
его дополнительно не надо.

2.6.1. Локальные настройки Kafka
Запуск Kafka на локальной машине требует лишь минимальных настроек, если со-
гласиться со значениями по умолчанию. По умолчанию Kafka использует порт 9092,
а ZooKeeper — порт 2181. Если у вас нет уже работающих на этих портах приложе-
ний, то все готово.

Kafka записывает журналы в каталог /tmp/kafka-logs, а ZooKeeper применяет
для хранения журналов каталог /tmp/zookeeper. В зависимости от вашей машины
может понадобиться изменить права доступа или владельца указанных каталогов
или задать другое место для хранения журналов.

Для изменения каталога журналов Kafka перейдите с помощью команды cd в ка-
талог <kafka-install-dir>/config и откройте файл server.properties. Найдите эле-
мент log.dirs и измените значение на то, которое хотели бы использовать. В том же
каталоге откройте файл zookeeper.properties и измените в нем элемент dataDir.

Мы обсудим настройку Kafka подробнее далее в этой книге, а пока описанных
настроек вполне достаточно для наших целей. Не забывайте, что упомянутые «жур-
налы» представляют собой реальные данные, используемые Kafka и ZooKeeper, а не
журналы уровня приложения, служащие для отслеживания его поведения. Журналы
приложения располагаются в каталоге <kafka-install-dir>/logs.

2.6.2. Запуск Kafka
Запуск Kafka не представляет сложности. Поскольку для должной работы кластера
Kafka необходим ZooKeeper (ZooKeeper определяет ведущий брокер, хранит ин-
формацию о топиках, осуществляет проверки функционирования членов кластера
и т. д.), вам придется запустить его до запуска Kafka.

ПРИМЕЧАНИЕ
Начиная с этого момента, во всех ссылках на каталоги предполагается, что
вы работаете в каталоге, куда установлена Kafka. Если ваша машина работает
под управлением операционной системы Windows, таким каталогом будет
<kafka-install-dir>/bin/windows.

Запуск ZooKeeper
Для запуска ZooKeeper откройте командную строку и введите следующую команду1:

bin/zookeeper-server-start.sh config/zookeeper.properties

1	 Для ОС Windows команда имеет следующий вид: bin\windows\zookeeper-server-start.bat
config\zookeeper.properties. — Примеч. пер.

78   Часть I  •  Знакомство с Kafka Streams

После запуска на экране появится большое количество информации, и в резуль-
тате вывод будет выглядеть примерно так, как показано на рис. 2.17.

Рис. 2.17. Выводимые на экран результаты
при запуске ZooKeeper

Запуск Kafka
Для запуска ZooKeeper откройте еще одну оболочку командной строки и введите
вот такую команду1:

bin/Kafka-server-start.sh config/server.properties

Опять же вы увидите пробегающий по экрану текст. После завершения запуска
Kafka на экране будет что-то вроде показанного на рис. 2.18.

СОВЕТ
ZooKeeper необходим для работы Kafka, так что важно производить за-
вершение работы в обратном порядке: сначала завершить работу Kafka,
а затем — ZooKeeper. Для завершения работы Kafka можно нажать Ctrl+C
в терминале, где запущена Kafka, или выполнить сценарий kafka-server-
stop.sh2 из другого терминала. То же самое относится и к ZooKeeper, за
исключением того, что сценарий останова называется zookeeper-server-
stop.sh3.

1	 Для ОС Windows команда имеет следующий вид: bin\windows\Kafka-server-start.bat
config\server.properties. — Примеч. пер.

2	 Для ОС Windows — kafka-server-stop.bat. — Примеч. пер.
3	 Для ОС Windows — zookeeper-server-stop.bat. — Примеч. пер.

Глава 2. Kafka в двух словах   79

Рис. 2.18. Вывод при запуске Kafka

2.6.3. Отправляем наше первое сообщение
После завершения настройки и запуска Kafka воспользуемся Kafka для ее главной
задачи: отправки и получения сообщений. Но перед отправкой сообщения необхо-
димо задать топик, в который генератор мог бы отправить сообщение.

Ваш первый топик
Ничего сложного в создании топика в Kafka нет. Нужно просто запустить сценарий,
передав ему несколько параметров конфигурации. Настройки достаточно просты,
но серьезно влияют на производительность.

По умолчанию Kafka создает топики автоматически, то есть при попытке отправ-
ки сообщения в несуществующий топик или чтения из него брокер Kafka создаст его
(на основе настроек по умолчанию из файла server.properties). Полагаться в во-
просе создания топиков на брокер, даже при разработке, — не самая лучшая идея,
первая же попытка генерации/потребления данных завершится неудачей, ведь для
распространения информации (метаданных) о существовании топика требуется
время. Всегда создавайте топики заранее.

Создание топика
Для создания топика необходимо выполнить сценарий kafka-topics.sh1. Откройте
окно терминала и выполните следующую команду:

bin/kafka-topics.sh --create --topic first-topic --replication-factor 1
➥ --partitions 1 --zookeeper localhost:2181

1	 Для ОС Windows — kafka-topics.bat. — Примеч. пер.

80   Часть I  •  Знакомство с Kafka Streams

После выполнения сценария вы увидите в терминале что-то вроде показанного
на рис. 2.19.

Рис. 2.19. Результаты создания топика. Важно создавать топики заранее, чтобы можно было
задать для каждого из них нужные настройки. В противном случае в созданных автоматически

топиках будут использованы конфигурация по умолчанию или настройки из файла server.properties

Большинство флагов конфигурации в предыдущей команде говорят сами за себя,
остановимся подробнее лишь на двух из них:

�� replication-factor — этот флаг задает число копий сообщения (считая исход-
ное. — Примеч. пер.), распределяемое по кластеру ведущим брокером. В данном
случае replication-factor равен 1, так что никаких копий производиться не бу-
дет. В Kafka будет храниться только исходное сообщение. Для демонстрации
или предварительной версии приложения вполне достаточно коэффициента
репликации, равного 1, но на практике почти всегда используется коэффициент
репликации 2 или 3, чтобы обеспечить доступность данных в случае отказов
машин;
�� partitions — этот флаг задает число применяемых топиком секций. Опять же

для данного примера достаточно одной секции, но при более высокой нагрузке
наверняка их понадобится больше. Определение правильного числа секций —
своего рода искусство, а не точная наука.

Отправка сообщения
Отправка сообщения в Kafka обычно требует написания клиента генератора, но
в Kafka есть также удобный сценарий kafka-console-producer, с помощью которого
можно отправлять сообщение из окна терминала. В этом примере мы воспользу-
емся консольным генератором, но в подразделе 2.4.1 мы обсудили, как применять
KafkaProducer.

Для отправки вашего первого сообщения наберите следующую команду (пока-
зана также на рис. 2.20):

Предполагается, что эта команда выполняется из каталога bin
./kafka-console-producer.sh --topic first-topic --broker-list localhost:9092

Рис. 2.20. Консольный генератор — замечательный инструмент для быстрого тестирования
настроек и проверки сквозной функциональности

Глава 2. Kafka в двух словах   81

Существует несколько опций настройки консольного генератора, но пока мы
указали только обязательные: топик для отправки сообщения, список брокеров
Kafka для подключения (в данном случае список состоит только из одного брокера
на локальной машине).

Сценарий запуска консольного генератора — «блокирующий», так что после
выполнения вышеприведенной команды введите какой-нибудь текст и нажмите
клавишу Enter. Можно отправлять столько сообщений, сколько нужно, но для нашей
демонстрации введите одно: the quick brown fox jumped over the lazy dog, нажмите
клавишу Enter, а затем сочетание Ctrl+C, чтобы выйти из генератора.

Чтение сообщения
В Kafka также есть консольный потребитель для чтения сообщений из командной
строки. Он похож на консольный генератор: его достаточно запустить один раз —
и он будет читать сообщения из топика вплоть до завершения работы сценария
вручную (нажатием Ctrl+C).

Для запуска консольного потребителя выполните следующую команду:

bin/kafka-console-consumer.sh --topic first-topic
➥ --bootstrap-server localhost:9092 --from-beginning

После запуска консольного потребителя вы увидите в терминале что-то наподо-
бие изображенного на рис. 2.21.

Параметр --from-beginning означает, что вы получите все сообщения, не удален-
ные из данного топика. У консольного потребителя не будет каких-либо зафикси-
рованных смещений, так что без настройки --from-beginning вы получите только
сообщения, отправленные после его запуска.

Рис. 2.21. Консольный потребитель — удобная утилита для того, чтобы понять, «текут» ли
данные и содержат ли сообщения ожидаемую информацию

Вы только что завершили молниеносный тур по Kafka, а также сгенерировали
и прочитали свое первое сообщение. Если вы не читали первую часть этой главы —
самое время вернуться в начало и разобраться в нюансах работы Kafka!

Резюме
�� Kafka представляет собой брокер сообщений, получающий сообщения и сохра-

няющий их таким образом, чтобы можно было удобно и быстро реагировать на
запросы потребителей. Сообщения никогда не «проталкиваются» к потребите-
лям, а сохранение сообщений в Kafka совершенно не зависит от того, когда и на-
сколько часто они потребляются.

82   Часть I  •  Знакомство с Kafka Streams

�� Для достижения высокой пропускной способности, а также возможности упо-
рядоченной группировки сообщений с одинаковыми ключами в Kafka исполь-
зуются секции.

�� Для отправки сообщений в Kafka применяются генераторы.

�� При пустых ключах секции назначаются в циклическом порядке; в противном
случае генератор задействует для назначения секций хеш ключа по модулю числа
секций.

�� Для чтения сообщений в Kafka используются потребители.

�� Топики/секции назначаются потребителям, состоящим в группе потребителей,
так, чтобы попробовать добиться равномерного распределения сообщений.

В следующей главе мы займемся Kafka Streams на конкретном примере из мира
розничных продаж. Хотя создание всех экземпляров генераторов и потребителей
возьмет на себя Kafka Streams, вы сможете увидеть, как сыграют там свою роль по-
нятия, с которыми я вас познакомил.

Часть II
Разработка с помощью
Kafka Streams

Эта часть книги продолжает предыдущую, в ней я приведу менталь-
ную модель Kafka Streams в действие, и мы создадим ваше первое
приложение Kafka Streams. А после того как вы распробуете Kafka
Streams, мы рассмотрим важнейшие API данной библиотеки.

Вы узнаете об использовании состояния в потоковых приложе-
ниях, в частности для выполнения соединений, подобных тем, с кото-
рыми вы могли иметь дело в SQL-запросах. Далее мы познакомимся
с новой абстракцией из Kafka Streams — API KTable. Мы начнем эту
часть книги с высокоуровневого предметно-ориентированного языка,
а завершим ее обсуждением низкоуровневых API узлов-обработчиков,
с помощью которых можно добиться от Kafka Streams практически
всего, что вам от нее нужно.

3 Разработка приложений
Kafka Streams

В этой главе:

�� знакомство с Kafka Streams;

�� создание приложения Hello World с помощью Kafka Streams;

�� изучаем подробнее основанное на Kafka Streams приложение для ZMart;

�� разбиваем входящий поток данных на несколько потоков.

Из главы 1 вы узнали про существование библиотеки Kafka Streams, о топологии
узлов обработки — о графе преобразования данных при их потоковом поступлении
в Kafka. В этой главе вы научитесь создавать такую топологию обработки с помощью
API библиотеки Kafka Streams.

Для создания приложений Kafka Streams используются API Kafka Streams.
Вы научитесь создавать приложения Kafka Streams, но, что важнее, станете лучше
понимать, как компоненты взаимодействуют друг с другом и как с их помощью вы-
полнить нужную потоковую обработку.

3.1. API потоковых узлов-обработчиков
Предметно-ориентированный язык Kafka Streams представляет собой высокоуров-
невый API, предназначенный для быстрого создания приложений Kafka Streams.
Степень продуманности этого высокоуровневого API очень высока, в нем есть гото-
вые методы для удовлетворения большинства потребностей потоковой обработки,
что позволяет создавать сложные программы потоковой обработки без особых труд-
ностей. В центре данного API лежит объект KStream, олицетворяющий потоковые
записи пар «ключ/значение».

Большинство методов DSL Kafka Streams возвращает ссылку на объект KStream,
что делает возможным стиль программирования с использованием текучих ин-
терфейсов. Кроме того, немалая доля методов интерфейса KStream принимает на
входе типы, состоящие из интерфейсов с одним методом, что позволяет применять

Глава 3. Разработка приложений Kafka Streams   85

лямбда-выражения Java 8. Учитывая эти факторы, легко представить себе простоту
и удобство создания приложений Kafka Streams.

Когда-то, в 2005 году, Мартин Фаулер (Martin Fowler) и Эрик Эванс (Eric Evans)
придумали понятие текучего интерфейса (fluent interface) — интерфейса, в котором
при вызове экземпляром класса метода возвращается этот же экземпляр (https://
martinfowler.com/bliki/FluentInterface.html). Такой подход удобен при формировании объ-
ектов на основе нескольких параметров, например: Person.builder().firstNa
me("Beth").withLastName("Smith").withOccupation("CEO"). В Kafka Streams суще-
ствует одно маленькое, но важное отличие от такого подхода: возвращаемый объект
KStream представляет собой новый экземпляр того же класса, а не тот, который
вызвал метод.

Существует также низкоуровневый API узлов-обработчиков, не столь лаконич-
ный, как DSL Kafka Streams, но предоставляющий больше возможностей контроля.
Мы рассмотрим API узлов-обработчиков в главе 6. После этого введения можно
приступить к созданию требуемой программы Hello World для Kafka Streams.

3.2. �Программа Hello World для Kafka Streams
В нашем первом примере Kafka Streams мы временно оставим обрисованную в главе 1
задачу и возьмемся за более простой сценарий использования. Это позволит вам бы-
стрее разобраться в функционировании Kafka Streams. Мы вернемся к задаче из главы 1
чуть позднее, в подразделе 3.2.1, с более реалистичным и конкретным примером.

Нашей первой программой будет «игрушечное» приложение, которое преоб-
разует входящие сообщения к верхнему регистру — как бы кричит на читателей
сообщений. Мы назовем его приложением Yelling («кричащим»).

Прежде чем углубиться в код, взглянем на топологию обработки этого приложе-
ния. Мы будем следовать той же схеме, что и в главе 1, где мы создавали топологию
графа обработки, в котором у каждого узла была своя задача. Основное отличие
состоит в том, что теперь граф будет проще, как можно видеть из рис. 3.1.

Как вы видите, мы создали простой граф обработки — настолько простой, что он
напоминает скорее связный список узлов, чем необычную древовидную структуру
графа. Но из него вполне понятно, что можно ожидать увидеть в коде: узел-источник,
узел обработки, преобразующий входящий текст в верхний регистр, и обрабатыва-
ющий узел-сток, который записывает результаты в топик.

Это лишь простейший пример, но его код вполне показателен для программ Kafka
Streams. Структура большинства примеров схожа.

1.	 Описание элементов конфигурации.

2.	 Создание экземпляров интерфейса Serde.

3.	 Построение топологии обработки.

4.	 Создание и запуск объекта KStream.

86   Часть II  •  Разработка с помощью Kafka Streams

Рис. 3.1. Граф (топология) Yelling App

Как мы увидим, основное отличие в более продвинутых примерах будет за-
ключаться в степени сложности топологии обработки. Приступим с учетом этого
к созданию нашего первого приложения.

3.2.1. Создание топологии для Yelling
Первый шаг при создании любого приложения Kafka Streams — создание узла-ис-
точника. Узел-источник отвечает за потребление протекающих через приложение
записей из топика. На рис. 3.2 в графе выделен узел-источник.

Следующая строка кода создает узел-источник (родительский узел) графа (ли-
стинг 3.1).

Листинг 3.1. Описываем источник для потока данных

KStream<String, String> simpleFirstStream = builder.stream("src-topic",
➥ Consumed.with(stringSerde, stringSerde));

Экземпляр класса simpleFirstStreamKStream настроен на потребление записан-
ных в топик src-topic сообщений. Помимо указания имени топика, мы передаем
также объекты типа Serde (через экземпляр класса Consumed). Мы будем применять
класс Consumed для передачи необязательных параметров при каждом создании
узла-источника в Kafka Streams.

Глава 3. Разработка приложений Kafka Streams   87

Рис. 3.2. Создание узла-источника приложения Yelling

У нас теперь есть узел-источник для нашего приложения, но нам нужно присоеди-
нить к нему обрабатывающий узел, чтобы воспользоваться этими данными, как показано
на рис. 3.3. Код для присоединения узла-обработчика (дочернего для узла-источника)
показан в следующем листинге. С помощью этой строки кода мы создаем еще один
экземпляр KStream — дочерний узел первого родительского узла (листинг 3.2).

Листинг 3.2. Преобразование входящего текста в текст в верхнем регистре

KStream<String, String> upperCasedStream =
➥ simpleFirstStream.mapValues(String::toUpperCase);

Вызов функции simpleFirstStream.mapValues соответствует созданию нового
обрабатывающего узла, на выходе которого можно видеть результаты прохождения
данных через вызов метода mapValues.

Важно не забывать о том, что нельзя модифицировать исходное значение передава-
емого в метод mapValues объекта ValueMapper. Экземпляр upperCasedStream получает
уже преобразованные копии исходного значения, возвращаемые в результате вызова
функции simpleFirstStream.mapValues. В данном случае это текст в верхнем регистре.

Метод mapValues() принимает на входе экземпляр интерфейса ValueMapper<V, V1>.
В интерфейсе ValueMapper<V, V1> описан только один метод, ValueMapper.apply, что
делает его идеальным кандидатом для применения лямбда-выражения Java 8. Поэто-
му мы и воспользовались тут ссылкой на метод String::toUpperCase — сокращенной
формой лямбда-выражения Java 8.

88   Часть II  •  Разработка с помощью Kafka Streams

Рис. 3.3. Добавляем узел для преобразования в верхний регистр
к приложению Yelling

ПРИМЕЧАНИЕ
Существует множество руководств по лямбда-выражениям Java 8 и ссыл-
кам на методы. Для начала можно обратиться к документации Oracle по
языку Java, разделам Lambda Expressions («Лямбда-выражения», http://
mng.bz/J0Xm) и Method References («Ссылки на методы», http://mng.bz/
BaDW).

Можно было также воспользоваться формой s → s.toUpperCase(), но, поскольку
toUpperCase представляет собой метод экземпляра класса String, мы применили
ссылку на метод.

Мы часто будем встречаться с паттерном использования лямбда-выражений
вместо конкретных реализаций при работе с потоковым API узлов-обработчиков
в данной книге. Поскольку большинство методов этих API ожидают на входе типы,
представляющие собой интерфейсы с одним методом, почти всегда можно приме-
нять лямбда-выражения Java 8.

Пока наше приложение Kafka Streams потребляет записи и преобразовывает их
в верхний регистр. Нам осталось только добавить обработчик-сток, который бы за-
писывал результаты в топик. Рисунок 3.4 демонстрирует, до какого места в создании
топологии мы добрались.

Глава 3. Разработка приложений Kafka Streams   89

Рис. 3.4. Добавляем узел-обработчик для записи результатов
приложения Yelling

Следующая строка кода добавляет в граф последний узел-обработчик (листинг 3.3).

Листинг 3.3. Создание узла-стока

upperCasedStream.to("out-topic", Produced.with(stringSerde, stringSerde));

Метод KStream.to создает в топологии обрабатывающий узел-сток. Обрабатыва-
ющие узлы-стоки вносят записи обратно в Kafka. Данный узел-сток получает записи
от узла-обработчика upperCasedStream и записывает их в топик out-topic. Опять же
мы передаем в качестве параметров экземпляры Serde, на этот раз для сериализации
записываемых в топик Kafka записей. Но в данном случае мы задействуем экзем-
пляр класса Produced, используемый для передачи необязательных параметров при
создании узла-стока в Kafka Streams.

ПРИМЕЧАНИЕ
Передавать объекты Serde объектам Consumed и Produced вовсе не обяза-
тельно. Если этого не сделать, приложение будет использовать указанный
в конфигурации сериализатор/десериализатор. Кроме того, с помощью клас-
сов Consumed и Produced можно задать объект Serde только для ключа или
только для значения.

90   Часть II  •  Разработка с помощью Kafka Streams

В предыдущем примере топология создается с помощью трех строк кода:

KStream<String,String> simpleFirstStream =
➥ builder.stream("src-topic", Consumed.with(stringSerde, stringSerde));
KStream<String, String> upperCasedStream =
➥ simpleFirstStream.mapValues(String::toUpperCase);
 upperCasedStream.to("out-topic", Produced.with(stringSerde, stringSerde));

Для демонстрации различных этапов процесса создания топологии мы прибегли
к пошаговому созданию, где одна строка соответствует одному шагу. Но все методы
API интерфейса KStream, кроме создающих концевые узлы, возвращают новый эк-
земпляр KStream, благодаря чему можно воспользоваться вышеупомянутым стилем
программирования текучих интерфейсов. Для демонстрации этой идеи покажу
альтернативный способ создания топологии приложения Yelling:

builder.stream("src-topic", Consumed.with(stringSerde, stringSerde))
➥ .mapValues(String::toUpperCase)
➥ .to("out-topic", Produced.with(stringSerde, stringSerde));

Мы сократили программу с трех строк до одной без потерь понятности или функ-
циональности. Начиная с данного момента, все примеры в книге будут использовать
стиль текучих интерфейсов, за исключением случаев, когда это повлекло бы за собой
снижение понятности программы.

Первая ваша топология Kafka Streams готова, но мы обошли стороной важные
шаги настройки и создания объектов Serde. Давайте теперь рассмотрим их.

3.2.2. Настройка Kafka Streams
Хотя Kafka Streams предоставляет очень широкие возможности настройки и мно-
жество свойств, которые можно менять под свои нужды, в нашем первом примере
будут использоваться только два параметра конфигурации — APPLICATION_ID_CONFIG
и BOOTSTRAP_SERVERS_CONFIG:

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

Оба параметра обязательны, поскольку у них нет значений по умолчанию.
Попытка запуска программы Kafka Streams с неопределенными значениями этих
двух свойств приведет к генерации исключения ConfigException.

Свойство StreamsConfig.APPLICATION_ID_CONFIG идентифицирует приложение
Kafka Streams, его значение должно быть уникальным в пределах всего кластера.
Оно также служит значением по умолчанию для префикса идентификатора клиента
и идентификатора группы, если они не заданы. Префикс идентификатора клиента
представляет собой задаваемое пользователем значение, которое однозначно иденти-
фицирует подключающиеся к Kafka клиенты. Идентификатор группы применяется
для управления членством в группе потребителей, читающих из одного топика, обе-
спечивая возможность чтения потребителями топиков, на которые они подписаны.

Глава 3. Разработка приложений Kafka Streams   91

Свойство StreamsConfig.BOOTSTRAP_SERVERS_CONFIG может представлять собой
одну или несколько пар имя_хоста:порт, разделенных запятыми. Значение этого
параметра указывает приложению Kafka Streams на расположение кластера Kafka.
Мы обсудим еще несколько элементов настроек по мере их появления в дальнейших
примерах в книге.

3.2.3. Создание объектов Serde
Класс SerDes1 в Kafka Streams предоставляет удобные методы для создания экзем-
пляров Serde:

Serde<String> stringSerde = Serdes.String();

В этой строке мы создаем экземпляр Serde, необходимый для сериализации/
десериализации с помощью класса Serdes. В ней мы создаем переменную, которая
будет использоваться в топологии неоднократно для ссылки на объект Serde. Класс
Serdes обеспечивает реализации по умолчанию для таких типов данных, как:

�� строковый тип;

�� байтовый массив;

�� длинное целое;

�� целое;

�� число с двойной точностью.

Польза реализаций интерфейса Serde заключается в наличии сериализатора/
десериализатора, благодаря чему вам не требуется указывать четыре параметра (се-
риализатор ключа, сериализатор значения, десериализатор ключа, десериализатор
значения) всякий раз, когда требуется передать объект Serde в метод класса KStream.
В следующем примере мы создадим реализацию Serde, которая будет отвечать за
сериализацию/десериализацию более сложных типов.

Посмотрим на нашу программу целиком. Исходный код можно найти в файле src/
main/java/bbejeck/chapter_3/KafkaStreamsYellingApp.java (исходный код для данной книги раз-
мещен на ее сайте по адресу https://manning.com/books/kafka-streams-in-action) (листинг 3.4).

Вы создали свое первое приложение Kafka Streams. Вкратце перечислю этапы его
создания, поскольку такой же паттерн встретится вам в большинстве приложений
Kafka Streams.

1.	 Создание экземпляра StreamsConfig.

2.	 Создание объекта Serde.

3.	 Построение топологии обработки.

4.	 Запуск программы Kafka Streams.

1	 От англ. Serializer/Deserializer — «сериализатор/десериализатор». — Примеч. пер.

92   Часть II  •  Разработка с помощью Kafka Streams

Листинг 3.4. Программа Hello World: приложение Yelling

Помимо общей информации о создании приложений Kafka Streams, надеюсь,
вы сделали из вышеизложенного вывод о необходимости применять лямбда-вы-
ражения везде, где это только возможно, ради повышения лаконичности ваших
программ.

Приступим теперь к более сложному примеру, который позволит вам изучить
дополнительные API потоковых узлов-обработчиков. Хотя пример новый, сценарий
использования вам уже хорошо знаком — обработка данных для ZMart.

Глава 3. Разработка приложений Kafka Streams   93

3.3. Работа с данными покупателей
В главе 1 мы обсуждали новые требования ZMart по обработке данных покупателей,
целью которых было повышение эффективности ведения бизнеса. Вы узнали, как
создать топологию узлов для обработки записей о покупках по мере их поступле-
ния из потока данных о транзакциях в магазинах ZMart. На рис. 3.5 снова показан
полный граф топологии.

Рис. 3.5. Топология программы Kafka Streams для ZMart

Вкратце рассмотрим требования к программе потоковой обработки, которые за-
одно отлично описывают, что эта программа будет делать:

�� номера платежных карт во всех записях должны быть защищены, в данном слу-
чае путем маскирования первых 12 цифр;

�� для определения паттернов покупок необходимо извлечь информацию о куплен-
ных товарах и почтовых индексах, которая далее будет записана в топик;

94   Часть II  •  Разработка с помощью Kafka Streams

�� необходимо собрать номера карт постоянных покупателей ZMart, а также дан-
ные о потраченных суммах и записать эту информацию в топик. Потребители
топика на основе указанных данных смогут определить число бонусов покупа-
телей;

�� необходимо записать в топик транзакцию целиком для последующего чтения
движком хранения и ситуативного анализа.

Как и в приложении Yelling, при создании приложения мы будем сочетать те-
кучие интерфейсы с лямбда-выражениями Java 8. Хотя иногда очевидно, что при
вызове метода возвращается тип KStream, но не всегда. Напомню, что большинство
методов API-класса KStream возвращают новые экземпляры KStream. А теперь
создадим потоковое приложение, которое бы удовлетворяло бизнес-требованиям
компании ZMart.

3.3.1. Конструирование топологии
Займемся построением топологии обработки. Чтобы вам было понятнее, к какой
части топологии относится определенный фрагмент создаваемого кода, я буду вы-
делять на рисунках часть графа, над которой мы в этот момент будем работать.

Создание узла-источника
Мы начнем с создания узла-источника и первого узла-обработчика топологии, со-
единив цепочкой два вызова API KStream (выделено на рис. 3.6). Вам должно быть
уже ясно, какова роль этого начального узла. Первый узел-обработчик топологии
будет отвечать за маскирование номеров платежных карт с целью защиты персо-
нальной информации покупателей.

Узел-источник создается с помощью вызова метода StreamsBuilder.stream
с передаваемыми ему в качестве параметров строковым объектом Serde по умолча-
нию, пользовательским Serde для объектов Purchase и именем топика — источника
сообщений для потока. В данном случае мы указываем только один топик, но можно
указывать и разделенный запятыми список имен или регулярное выражение для
имен топиков.

В листинге 3.5 мы передали объекты Serde с помощью экземпляра класса
Consumed, но могли и опустить его и передать только имя топика, оставив объекты
Serde по умолчанию, из настроек конфигурации.

Листинг 3.5. Создание узла-источника и первого узла-обработчика

KStream<String,Purchase> purchaseKStream =
➥ streamsBuilder.stream("transactions",
➥ Consumed.with(stringSerde, purchaseSerde))
➥ .mapValues(p -> Purchase.builder(p).maskCreditCard().build());

Глава 3. Разработка приложений Kafka Streams   95

Рис. 3.6. Узел-источник потребляет из топика Kafka, поставляя при этом данные только
маскирующему узлу-обработчику, вследствие чего тот становится источником для всей

остальной топологии

Непосредственно за ним следует вызов метода KStream.mapValues, который при-
нимает на входе экземпляр ValueMapper<V, V1> в качестве параметра. ValueMapper
получают один параметр одного типа (в данном случае объект Purchase) и ото-
бражают его в новое значение, возможно, другого типа. В этом примере метод
KStream.mapValues возвращает объект того же типа (Purchase), но уже с маскиро-
ванным номером платежной карты.

Обратите внимание, что при применении метода KStream.mapValues исходный
ключ не меняется и не учитывается при отображении в новое значение. При не-
обходимости сгенерировать новую пару «ключ/значение» или задействовать ключ
при генерации нового значения можно воспользоваться методом KStream.map,
который принимает в качестве параметра экземпляр KeyValueMapper<K, V,
KeyValue<K1, V1>>.

96   Часть II  •  Разработка с помощью Kafka Streams

Советы по функциональному программированию
У функций map и mapValues важно учитывать то, что при их работе предполагается
отсутствие побочных эффектов, то есть передаваемые как параметры объект или
значения не должны изменяться. Происходит это из-за свойств функционального
программирования в API KStream. Функциональное программирование — обшир-
ная тема, всестороннее обсуждение которой выходит за рамки данной книги, но мы
вкратце рассмотрим тут два основных принципа функционального программиро-
вания.

Первый из них: избегать изменения состояния. Если необходимо изменить или
обновить объект, он передается функции и создается его копия или совершенно новый
экземпляр со всеми требуемыми изменениями или обновлениями. В листинге 3.5
для внесения в объект Purchase обновлений, связанных с маскированием номеров
платежных карт, методу KStream.mapValues передается лямбда-выражение. Значение
поля с номером платежной карты в исходном объекте Purchase не меняется.

Второй принцип: построение сложных операций путем композиции нескольких
более мелких специализированных функций. Композиция функций — часто встре-
чающийся при работе с API KStream паттерн.

ОПРЕДЕЛЕНИЕ
В рамках этой книги я буду называть функциональным программированием
(functional programming) такой подход к программированию, при котором
функции являются объектами первого класса. Более того, предполагается,
что функции стараются не создавать побочных эффектов, например не мо-
дифицировать состояния или изменяемые объекты.

Создание второго узла-обработчика
Теперь мы приступим к созданию второго узла-обработчика, отвечающего за из-
влечение из топика информации о паттернах, на основе которых ZMart сможет
определить паттерны покупок в различных областях страны. Мы также добавим
в топологию узел-сток, отвечающий за запись информации о паттернах в топик
Kafka. Их устройство показано на рис. 3.7.

В листинге 3.6 видно, как узел-обработчик purchaseKStream использует уже зна-
комый нам вызов метода mapValues для создания экземпляра KStream. Этот новый
объект KStream будет получать объекты purchaseKStream, созданные в результате
вызова метода mapValues.

Листинг 3.6. Второй узел-обработчик и записывающий данные в Kafka узел-сток

KStream<String, PurchasePattern> patternKStream =
➥ purchaseKStream.mapValues(purchase ->
➥ PurchasePattern.builder(purchase).build());
patternKStream.to("patterns",
➥ Produced.with(stringSerde,purchasePatternSerde));

Глава 3. Разработка приложений Kafka Streams   97

Рис. 3.7. Второй узел-обработчик создает объект с информацией о паттернах покупок. А узел-сток
записывает объект PurchasePattern в топик

Тут мы объявляем переменную для хранения ссылки на новый экземпляр KStream,
которая пригодится нам при выводе результатов потока данных в консоль с помощью
вызова print. Это очень удобно при разработке и отладке. Узел-обработчик пат-
тернов покупок переправляет полученные им записи своему описанному в вызове
метода KStream.to дочернему узлу, который записывает данные в топик patterns.
Обратите внимание, как объект Produced используется для передачи заранее соз-
данного объекта Serde.

Метод KStream.to — полная противоположность методу KStream.source. Вместо
создания источника данных для топологии метод KStream.to задает узел-сток,
записывающий данные из экземпляра KStream в топик Kafka. Существуют также
перегруженные версии метода KStream.to, в которых можно опустить параметр
Produced и применять заданные в настройках Serde по умолчанию. С помощью
класса Produced можно также задать несколько необязательных параметров, один
из которых, StreamPartitioner, мы обсудим далее.

98   Часть II  •  Разработка с помощью Kafka Streams

Создание третьего узла-обработчика
Третьим узлом-обработчиком в топологии является накопитель бонусов поку-
пателей, показанный на рис. 3.8, благодаря которому ZMart имеет возможность
отслеживать покупки, совершаемые членами клуба постоянных покупателей
(листинг 3.7). Накопитель бонусов отправляет данные в топик, откуда их потре-
бляют приложения в штаб-квартире компании ZMart, вычисляющие бонусы по
завершении покупки.

Рис. 3.8. Третий узел-обработчик создает объект RewardAccumulator. А завершающий узел
записывает результаты в топик Kafka

Листинг 3.7. Третий узел-обработчик и записывающий в Kafka завершающий узел

KStream<String, RewardAccumulator> rewardsKStream =
➥ purchaseKStream.mapValues(purchase ->
➥ RewardAccumulator.builder(purchase).build());
rewardsKStream.to("rewards",
➥ Produced.with(stringSerde,rewardAccumulatorSerde));

Для создания узла-обработчика поощрений мы воспользовались уже знакомым
вам паттерном: создали новый экземпляр KStream, отображающий содержащиеся
в записях необработанные данные о покупках в объекты нового типа. Мы также
присоединили к накопителю бонусов узел-сток для записи в топик объектов

Глава 3. Разработка приложений Kafka Streams   99

KStream с информацией о поощрениях и последующего определения количества
бонусов покупателей.

Создание последнего узла-обработчика
И наконец, мы присоединим к первому из созданных нами объектов KStream,
purchaseKStream узел-сток для записи необработанных данных о покупках (с ма-
скированными номерами платежных карт, конечно) в топик под названием purchases
(листинг 3.8). Из него информация будет попадать в NoSQL-хранилище, например,
Cassandra (http://cassandra.apache.org/), Presto (https://prestodb.io/) или Elastic Search (www.
elastic.co/webinars/getting-started-elasticsearch) для последующего ситуативного анализа.
Этот последний узел-обработчик показан на рис. 3.9.

Рис. 3.9. Последний узел-обработчик записывает транзакцию покупки целиком в топик,
потребителем которого является NoSQL-хранилище данных

Листинг 3.8. Последний узел-обработчик

purchaseKStream.to("purchases", Produced.with(stringSerde, purchaseSerde));

Теперь, по завершении создания приложения по кусочкам, посмотрим на него це-
ликом (src/main/java/bbejeck/chapter_3/ZMartKafkaStreamsApp.java) (листинг 3.9). Как легко
заметить, оно намного сложнее, чем предыдущий пример Hello World (приложение
Yelling).

100   Часть II  •  Разработка с помощью Kafka Streams

Листинг 3.9. Программа KStream для покупок компании ZMart

ПРИМЕЧАНИЕ
Я опустил некоторые подробности в листинге 3.9 для ясности. Учтите, что
примеры кода из книги далеко не всегда самодостаточны. Примеры целиком
можно найти в прилагаемом к книге исходном коде.

Глава 3. Разработка приложений Kafka Streams   101

Как вы можете видеть, этот пример несколько сложнее, чем приложение Yelling,
но его информационный поток аналогичен. А именно этапы его создания по-
прежнему были следующими.

1.	 Создание экземпляра StreamsConfig.

2.	 Создание одного или нескольких экземпляров класса Serde.

3.	 Формирование топологии обработки.

4.	 Сбор всех компонентов воедино и запуск программы Kafka Streams.

В этом приложении упоминалось создание объектов Serde, но я не объяснял, по-
чему или как их создавать. Давайте потратим еще немного времени и обсудим роль
класса Serde в приложении Kafka Streams.

3.3.2. Создание пользовательского объекта Serde
Kafka производит передачу данных в виде байтовых массивов. Поскольку формат
данных — JSON, необходимо сообщить Kafka, как преобразовать объект сначала
в JSON, а затем, при отправке в топик, в байтовый массив. И наоборот, необходимо
указать способ преобразования прочитанных байтовых массивов в JSON, а затем —
в используемый узлами-обработчиками тип объектов. Именно для такого преоб-
разования данных в различные форматы и из них необходимы объекты Serde. Kafka
предоставляет несколько готовых объектов Serde через клиентские зависимости
Kafka (String, Long, Integer и т. п.), но для других объектов нужно создавать свои.

В нашем первом примере, приложении Yelling, требовался лишь сериализатор/
десериализатор для строковых значений, реализации которых предоставляет фа-
бричный метод Serdes.String(). В примере ZMart, однако, нам придется созда-
вать пользовательские экземпляры Serde в силу произвольности типов объектов.
Мы увидим далее, что требуется для создания объекта Serde для класса Purchase.
Я не стану описывать создание других экземпляров Serde, поскольку оно следует
тому же паттерну, только с другими типами.

Для создания объекта Serde необходимо реализовать интерфейсы Deserializer<T>
и Serializer<T>. В дальнейших примерах мы будем использовать реализации, при-
веденные в листингах 3.10 и 3.11, а также библиотеку Gson от компании Google для
преобразования объектов в/из формата JSON. В следующем листинге приведен
сериализатор, который также можно найти в файле src/main/java/bbejeck/util/serializer/
JsonSerializer.java.

Для сериализации мы сначала преобразовываем объект в формат JSON, а затем
получаем для этого строкового значения представление в виде байтового массива.
Для преобразования в/из JSON в данном примере используется библиотека Gson
(https://github.com/google/gson).

Десериализация требует другой последовательности действий: создания нового
строкового значения из байтового массива и дальнейшего преобразования строки
JSON в Java-объект с помощью библиотеки Gson. Этот обобщенный десериализатор
можно найти в файле src/main/java/bbejeck/util/serializer/JsonDeserializer.java.

102   Часть II  •  Разработка с помощью Kafka Streams

Листинг 3.10. Обобщенный сериализатор

Листинг 3.11. Обобщенный десериализатор

Глава 3. Разработка приложений Kafka Streams   103

Далее вернемся к следующим строкам из листинга 3.9:

Как вы можете видеть, объект Serde удобен в качестве контейнера для сериали-
затора и десериализатора для заданного объекта.

Я уже рассказал немало про разработку приложения Kafka Streams. И хотя нуж-
но рассказать еще намного больше, сделаем небольшую паузу и поговорим о самом
процессе разработки, а также способах упрощения разработки приложений Kafka
Streams.

3.4. Интерактивная разработка
Мы создали граф для потоковой обработки записей ZMart с тремя узлами-обработ-
чиками, записывающими данные в отдельные топики. Конечно, вы сможете во время
разработки использовать для просмотра результатов консольный потребитель, но
не помешало бы более удобное решение, например возможность просмотра в кон-
соли движения данных по топологии, как показано на рис. 3.10.

Для этой цели может пригодиться один из методов интерфейса KStream, а имен-
но метод KStream.print, принимающий в качестве параметра экземпляр класса
Printed<K, V>.

Рис. 3.10. При разработке очень удобна возможность вывода в консоль выходных данных каждого
узла. Для включения вывода в консоль достаточно заменить вызов метода to на вызов метода print

104   Часть II  •  Разработка с помощью Kafka Streams

Класс Printed содержит два статических метода: для вывода в stdout (Prin
ted.toSysOut()) и для записи результатов в файл (Printed.toFile(filePath)).

Кроме того, можно маркировать выводимые результаты, присоединив вызов
метода withLabel(), благодаря которому вы можете выводить перед записями за-
головок. Чтобы выводимые в консоль или файл результаты были удобны для ис-
пользования, важно обеспечить разумную реализацию метода toString.

Наконец, если вы не хотите использовать метод toString или хотели бы на-
строить способ вывода Kafka Streams записей в соответствии со своими задачами,
существует метод Printed.withKeyValueMapper, принимающий на входе экземпляр
KeyValueMapper, позволяющий форматировать записи произвольным образом.
Повторю вышеупомянутое предостережение, которое относится и к этому методу:
не следует модифицировать исходные записи.

В этой книге мы будем выводить во всех примерах записи в консоль. Вот не-
сколько примеров использования метода KStream.print в листинге 3.9:

Взглянем, какие результаты вы увидите на экране (рис. 3.11), и разберемся, чем
они могут помочь при разработке. При включенном выводе можно работать с при-
ложением Kafka Streams непосредственно из IDE, внося изменения, останавливая
и снова запуская его, и визуально верифицировать, что выводимые результаты такие,
как вы ожидали. Это не заменяет модульное и комплексное тестирование, но непо-
средственное наблюдение результатов потоковой обработки во время разработки
очень помогает.

Рис. 3.11. Вид данных на экране. Включив вывод результатов в консоль, вы сразу увидите,
правильно ли работают узлы-обработчики

Глава 3. Разработка приложений Kafka Streams   105

Один из недостатков использования метода print() — он приводит к созданию
концевого узла, который нельзя включить в цепочку узлов-обработчиков. Поэтому
он должен быть отдельным оператором. Однако существует также метод KStream.peek,
принимающий в качестве параметра экземпляр интерфейса ForeachAction и воз-
вращающий новый экземпляр KStream. В интерфейсе ForeachAction содержится
один метод, apply(), с типом возвращаемого значения void, так что от вызова метода
KStream.peek ничего не передается далее по конвейеру, благодаря чему он идеально
подходит для таких операций, как вывод результатов в консоль. Для его включения
в цепочку узлов-обработчиков не требуется отдельный оператор вывода. Как вы
увидите далее, именно так метод KStream.peek и используется в других примерах
в этой книге.

3.5. Дальнейшие шаги
Пока что наша программа Kafka Streams для анализа покупок работает неплохо.
Были разработаны и другие приложения для потребления записанных в топики
patterns-, rewards- и purchases-сообщений, и результаты для компании ZMart ока-
зались вполне удовлетворительными. Но, увы, ни одно хорошее дело не остается
безнаказанным. Как только руководители ZMart увидели возможности вашего по-
токового приложения, так сразу же завалили вас новыми требованиями.

3.5.1. Новые требования
У вас появились новые требования для каждой из трех категорий генерируемых
результатов. Хорошая новость: исходные данные не поменялись. От вас требуется
лишь немного усовершенствовать и в некоторых случаях дополнительно разбить
выдаваемые вами результаты. Новые требования могут как относиться к уже су-
ществующим топикам, так и означать необходимость создания совершенно новых:

�� нужно отфильтровать покупки стоимостью меньше определенного количества
долларов. Высшее руководство компании не интересуют мелкие покупки для
повседневных нужд;

�� компания ZMart расширилась и купила сеть магазинов электроники, а также сеть
кофеен. Все данные о покупках в этих новых магазинах также будут проходить
через ваше потоковое приложение. От вас требуется отправлять информацию
о совершаемых в данных новых подразделениях покупках в соответствующие
топики;

�� выбранное вами NoSQL-решение сохраняет элементы в формате «ключ/значе-
ние». Хотя в Kafka также используются пары «ключ/значение», ключи в посту-
пающих в ваш кластер Kafka записях не заданы. Вам нужно будет сгенерировать
ключ для каждой из записей до передачи его по топологии в топик purchases.

В дальнейшем вас неизбежно ждут еще новые требования, но пока можно на-
чинать работать с текущим набором новых требований. Если вы заглянете в API

106   Часть II  •  Разработка с помощью Kafka Streams

KStream, то увидите там несколько уже существующих методов, сильно облегчающих
выполнение этих требований.

ПРИМЕЧАНИЕ
Начиная с данного момента, мы будем ради большей ясности сокращать все
примеры кода, оставляя лишь самое важное. Можно без опасений всегда
предполагать, что код конфигурации и задания настроек не поменялся,
разве что происходит знакомство с чем-то новым. Эти сокращенные при-
меры сами по себе могут не работать — полные листинги кода для данного
примера можно найти в файле src/main/java/bbejeck/chapter_3/ZMartKaf
kaStreamsAdvancedReqsApp.java.

Фильтрация покупок
Начнем с того, что отфильтруем покупки, стоимость которых меньше заданного
порогового значения. Чтобы удалить дешевые покупки, необходимо вставить филь-
трующий узел-обработчик между экземпляром KStream и узлом-стоком. При этом
граф топологии обработки приобретет вид, показанный на рис. 3.12.

Рис. 3.12. Мы вставили узел-обработчик между маскирующим узлом и записывающим данные
в Kafka концевым узлом. Этот фильтрующий узел-обработчик отбрасывает покупки, чья стоимость

меньше заданного значения

Глава 3. Разработка приложений Kafka Streams   107

Можно воспользоваться методом KStream, принимающим в качестве параметра
экземпляр Predicate<K,V>. Хотя мы и связываем тут вызовы методов цепочкой, но
создаем в топологии новый обрабатывающий узел (листинг 3.12).

Листинг 3.12. Фильтрация KStream

KStream<Long, Purchase> filteredKStream =
➥ purchaseKStream.filter((key, purchase) ->
➥ purchase.getPrice() > 5.00).selectKey(purchaseDateAsKey);

Этот фрагмент кода отфильтровывает покупки стоимостью менее $5 с выбором
даты покупки в качестве значения типа Long для ключа.

В интерфейсе Predicate описан только один метод, test(), принимающий два
параметра — ключ и значение, — хотя пока нам требуется только значение. Опять
же, вы можете воспользоваться лямбда-выражением Java 8 вместо описанного в API
KStream конкретного типа.

ОПРЕДЕЛЕНИЕ
Если вы знакомы с функциональным программированием, то должны чув-
ствовать себя как дома при работе с интерфейсом Predicate. Если же термин
«предикат» (predicate) вам в новинку — ничего страшного, это просто за-
данное утверждение, например x < 100. Объект может или соответствовать
утверждению предиката, или не соответствовать.

Кроме того, мы хотели бы задействовать в качестве ключа метку даты/времени
покупки, поэтому воспользуемся узлом-обработчиком выбора ключей selectKey,
который с помощью упомянутого в разделе 3.4 KeyValueMapper извлекает дату по-
купки в виде значения типа Long. Мы обсудим выбор ключа подробнее в пункте
«Генерация ключа» далее.

Обратная функция, KStreamNot, делает то же самое с точностью до наоборот:
только не соответствующие заданному предикату записи попадают в дальнейшую
обработку в топологии.

Разбиение/ветвление потока данных
Теперь нам нужно разбить поток покупок на отдельные потоки, записывающие
в различные топики. К счастью, существует метод KStream.branch, который иде-
ально подходит для этой задачи. Метод KStream.branch принимает на входе произ-
вольное число экземпляров Predicate и возвращает массив экземпляров KStream.
Размер возвращаемого массива соответствует числу переданных при вызове метода
предикатов.

На предыдущем шаге мы изменили существующий лист топологии обработки.
А поскольку нам нужно разбить поток данных, мы создадим совершенно новые
листья на графе обрабатывающих узлов, как показано на рис. 3.13.

Ри
с.

 3
.1

3.
 У

зе
л

ве
тв

ле
ни

я
ра

зб
ив

ае
т

по
то

к
на

 д
ва

: о
ди

н
со

ст
ои

т
из

 и
нф

ор
ма

ци
и

о
по

ку
пк

ах
 в

 к
аф

е,
 а

 в
то

ро
й

со
де

рж
ит

 с
ве

де
ни

я
о

по
ку

пк
ах

 в
 м

аг
аз

ин
е

эл
ек

тр
он

ик
и

Глава 3. Разработка приложений Kafka Streams   109

Записи из первоначального потока данных проходят через узел ветвления, при
этом каждая запись сопоставляется с переданными предикатами в соответствующем
порядке. Порядок потоков в возвращаемом массиве соответствует порядку пере-
данных методу branch() предикатов. Мы будем пока что придерживаться варианта
с отдельным топиком для каждого подразделения, хотя это далеко не единственный
возможный подход. В конце концов, требованиям данный подход удовлетворяет,
а в дальнейшем его можно при необходимости пересмотреть.

Листинг 3.13. Разбиение потока данных

ПРЕДОСТЕРЕЖЕНИЕ
В примере из листинга 3.13 записи попадают в несколько различных топиков.
Хотя существует возможность настроить Kafka для автоматического создания
топиков при первой попытке сгенерировать данные для несуществующего
топика или прочитать данные из него, не стоит полагаться на этот механизм.
Если положиться на автоматическое создание топиков, их настройки будут
основаны на значениях по умолчанию из файла server.config, которые могут
отличаться от того, что вам нужно. Всегда следует заранее обдумывать, какие
топики нужны, с каким числом секций и каким коэффициентом репликации,
и создавать их до запуска приложения Kafka Streams.

В листинге 3.13 мы заранее описали предикаты, поскольку четыре параметра
в виде лямбда-выражений были бы несколько громоздкими для передачи. Индексы
возвращаемого массива также маркированы для большего удобства чтения.

Этот пример демонстрирует возможности и гибкость Kafka Streams. Нам потре-
бовалось лишь несколько строк кода для разбиения исходного потока транзакций
покупок на четыре потока. Также мы начали наращивать более сложную топологию
обработки на основе все того же узла-источника.

110   Часть II  •  Разработка с помощью Kafka Streams

Разбиение и секционирование потоков данных
Хотя принципы разбиения и секционирования кажутся схожими, в Kafka и Kafka
Streams это совершенно разные вещи. Разбиение потока данных с помощью метода
KStream.branch приводит к созданию одного или нескольких потоков, которые могут
в итоге отправлять записи в отдельные топики. Секционирование же представляет
собой способ, с помощью которого Kafka распределяет сообщения одного топика по
нескольким серверам и, если не считать тонкой модификации настроек, является
основным способом достижения высокой пропускной способности в Kafka.

Пока задача решается нормально. Мы легко выполнили два из трех новых тре-
бований. Пришло время реализовать последнее из дополнительных требований —
сгенерировать ключи для сохраняемых записей о покупках.

Генерация ключа
Сообщения Kafka представляют собой пары «ключ/значение», так что все про-
ходящие через приложения Kafka Streams записи — тоже пары «ключ/значение».
Но ключи вовсе не обязаны быть непустыми. На практике, если конкретный ключ
не нужен, за счет пустого ключа можно снизить общий объем передаваемых по сети
данных. Ключи во всех поступающих в приложение Kafka Streams компании ZMart
записях — пустые.

Это нам ничуть не мешало, пока мы не осознали, что наше NoSQL-хранилище
хранит данные в формате «ключ/значение». Нам нужно найти способ создать
ключ на основе данных объекта Purchase, прежде чем он окажется записан в топик
purchases (листинг 3.14). Конечно, можно воспользоваться для генерации ключа
и возврата новой пары «ключ/значение» (в которой «новым» будет только ключ)
методом KStream.map, но существует метод KStream.selectKey с более лаконичным
синтаксисом, возвращающий новый экземпляр KStream, который генерирует записи
с новым ключом (возможно, с другим типом данных) и тем же значением. Это изме-
нение топологии обработки аналогично фильтрации в том смысле, что между филь-
тром и стоком добавляется новый обрабатывающий узел, как показано на рис. 3.14.

Листинг 3.14. Генерация нового ключа

Ри
с.

 3
.1

4.
 В

 N
oS

QL
-х

ра
ни

ли
щ

е
в

ка
че

ст
ве

 к
лю

ча
 х

ра
ни

мы
х

да
нн

ых
 б

уд
ет

 и
сп

ол
ьз

ов
ат

ьс
я

да
та

 п
ок

уп
ки

. Н
ов

ый
 у

зе
л

вы
бо

ра
 к

лю
ча

 б
уд

ет

из
вл

ек
ат

ь
да

ту
 п

ок
уп

ки
 (д

ля
 п

ри
ме

не
ни

я
в

ка
че

ст
ве

 к
лю

ча
) н

еп
ос

ре
дс

тв
ен

но
 п

ер
ед

 з
ап

ис
ью

 д
ан

ны
х

в
Ka

fk
a

112   Часть II  •  Разработка с помощью Kafka Streams

Для создания нового ключа мы преобразуем дату покупки в длинное целое. Хотя
мы могли бы передать лямбда-выражение, для повышения удобочитаемости мы
присвоили это значение переменной. Обратите внимание также, что необходимо
изменить тип используемого в методе KStream.to объекта Serde, поскольку мы из-
менили тип ключа.

Это был простой пример генерации новых ключей. Далее, в другом примере,
я покажу выбор ключей для соединения отдельных потоков данных. Кроме того,
во всех предыдущих примерах отсутствовало сохранение состояния, но есть и не-
сколько возможностей для преобразований с сохранением состояния, которые мы
рассмотрим чуть позже.

3.5.2. Сохранение записей вне Kafka
К вам обратилась служба безопасности компании ZMart по поводу возможного мошен-
ничества в одном из магазинов. К ним поступило несколько сообщений о том, что один
из менеджеров этого магазина вводит неправильные коды скидок. Служба безопасности
не знает точно, что произошло на самом деле, поэтому просит вас помочь ей.

Люди из службы безопасности не хотели бы, чтобы указанная информация по-
падала в топик. Вы долго рассказывали им о безопасности Kafka, о разграничении
доступа к данным, о том, что можно ограничить доступ к топику, но они стоят на
своем и хотят, чтобы эти записи попадали в полностью контролируемую ими ре-
ляционную базу данных. Вы чувствуете, что в этой битве вам не победить, так что
сдаетесь и решаете сделать так, как они просят.

Обработка по каждой записи. Прежде всего вам нужно создать новый KStream
для фильтрации результатов по одному идентификатору работника. Этот фильтр
позволит сократить до очень небольшого количества даже самые огромные объемы
проходящих через топологию данных.

Мы будем использовать тут KStream с предикатом, нацеленным на выбор од-
ного идентификатора работника. Данный фильтр будет совершенно независим от
предыдущего и подключен к экземпляру KStream-источника. Хотя фильтры можно
связывать цепочкой, здесь мы этого делать не станем, поскольку для указанного
фильтра нам требуется полный доступ к данным потока.

Далее мы воспользуемся методом KStream.foreach, как показано на рис. 3.15. Метод
KStream.foreach принимает в качестве параметра экземпляр ForeachAction<K, V>.
Это еще один пример концевого узла, представляющий собой простой узел-обра-
ботчик, который выполняет с помощью переданного ему экземпляра ForeachAction
какие-либо действия над каждой получаемой записью (листинг 3.15).

Листинг 3.15. Операции над каждой записью с помощью foreach

ForeachAction<String, Purchase> purchaseForeachAction = (key, purchase) ->
➥ SecurityDBService.saveRecord(purchase.getPurchaseDate(),
➥ purchase.getEmployeeId(), purchase.getItemPurchased());
purchaseKStream.filter((key, purchase) ->
➥ purchase.getEmployeeId()
➥ .equals("source code has 000000"))
➥ .foreach(purchaseForeachAction);

Ри
с.

 3
.1

5.
 Д

ля
 з

ап
ис

и
по

ку
по

к,
 в

 о
ф

ор
мл

ен
ии

 к
от

ор
ых

 у
ча

ст
во

ва
л

оп
ре

де
ле

нн
ый

 р
аб

от
ни

к
ко

мп
ан

ии
 в

не
 п

ри
ло

ж
ен

ия
 K

af
ka

 S
tre

am
s,

мы

 с
на

ча
ла

 д
об

ав
им

 у
зе

л
ф

ил
ьт

ра
ци

и
(fi

lte
r)

 д
ля

 и
зв

ле
че

ни
я

по
ку

по
к

с
со

от
ве

тс
тв

ую
щ

им
 и

де
нт

иф
ик

ат
ор

ом
 р

аб
от

ни
ка

, п
ос

ле
 ч

ег
о

во
сп

ол
ьз

уе
мс

я
оп

ер
ат

ор
ом

 fo
re

ac
h

дл
я

за
не

се
ни

я
вс

ех
 з

ап
ис

ей
 в

о
вн

еш
ню

ю
 р

ел
яц

ио
нн

ую
 б

аз
у

да
нн

ых

114   Часть II  •  Разработка с помощью Kafka Streams

ForeachAction опять же использует лямбда-выражение Java 8 и сохраняется
в переменной purchaseForeachAction. Это требует лишней строки кода, что более чем
компенсируется повышением понятности. В следующей строке другой экземпляр
KStream выполняет отправку отфильтрованных результатов в описанный строкой
выше ForeachAction.

Отмечу, что KStream.foreach не сохраняет состояние. Если для каких-либо дей-
ствий над каждой из записей требуется состояние, можно воспользоваться методом
KStream.process. Мы обсудим метод KStream.process в следующей главе, когда зай
мемся добавлением сохранения состояния в приложение Kafka Streams.

Отступим на шаг назад и посмотрим на сделанное. Весьма впечатляюще, учи-
тывая объем написанного кода. Впрочем, не слишком расслабляйтесь, руководство
ZMart отметило вашу продуктивность и готовит для вас множество новых измене-
ний и усовершенствований программы потокового анализа покупок.

Резюме
�� Функцию KStream.mapValues можно использовать для отображения значений

входящих записей в новые значения, возможно, с другим типом. Как вы узнали,
при этом отображении исходные объекты не должны меняться. Другой метод,
KStream.map, делает то же самое, но его можно применять для отображения как
ключа, так и значения в новую сущность.

�� Предикат — оператор, принимающий в качестве параметра объект и возвраща-
ющий true или false в зависимости от того, удовлетворяет ли объект заданному
условию. Мы использовали в наших примерах предикаты, чтобы не удовлетво-
ряющие заданному предикату записи не проходили дальше по топологии.

�� В методе KStream.branch предикаты применяются для разбиения потока данных
на несколько новых потоков. Узел-обработчик отправляет запись в первый по-
ток с соответствующим записи предикатом и отбрасывает не удовлетворяющие
ни одному предикату записи.

�� С помощью метода KStream.selectKey можно модифицировать существующие
записи или создавать новые.

В следующей главе мы начнем работать с состоянием, свойствами, необходимыми
для использования состояния в потоковом приложении, и причинами, по которым
состояние вообще может вам понадобиться. Затем мы добавим в приложение KStream
состояние сначала с помощью сохраняющих его версий уже встречавшихся вам
в этой главе методов KStream (KStream.mapValues()). А затем, в более продвинутом
примере, мы выполним соединение двух различных потоков покупок для улучшения
обслуживания покупателей компанией ZMart.

4 Потоки данных
и состояние

В этой главе:

�� операции с сохранением состояния и Kafka Streams;

�� использование хранилищ состояния для поиска по справочнику и запоминания уже
просмотренных данных;

�� соединение потоков данных для получения дополнительной информации;

�� время и метки даты/времени как движущая сила Kafka Streams.

В прошлой главе мы нырнули без оглядки в DSL Kafka Streams и создали топологию
обработки для удовлетворения требований к потоковой обработке покупок в мага-
зинах компании ZMart. Построенная нами топология, хотя и нетривиальная, была
одномерной в том смысле, что все преобразования и операции были без сохранения
состояния. Мы рассматривали каждую транзакцию изолированно от других, без-
относительно к другим событиям, происходящим в тот же момент или в пределах
определенного промежутка времени до или после транзакции. Кроме того, мы ра-
ботали только с отдельными потоками данных, игнорируя возможность получения
дополнительной информации за счет их соединения.

В настоящей главе вам предстоит извлечь из приложения Kafka Streams как можно
больше информации. Для этого нам придется использовать состояние. Состояние
(state) — не что иное, как возможность восстанавливать просмотренную ранее
информацию и связывать ее с текущей. Состояние можно применять по-разному.
Мы рассмотрим пример этого, когда будем изучать операции с сохранением состо-
яния, такие как накопление значений с помощью DSL Kafka Streams.

Еще один пример сохранения состояния, который мы обсудим далее, — соедине-
ние потоков данных. Оно очень похоже на соединения при операциях баз данных,
например соединение записей из таблиц employee («сотрудник») и department («от-
дел») для генерации отчета по штату различных отделов компании.

Мы также покажем, как должно выглядеть состояние и каковы требования
к использованию состояния, когда будем обсуждать хранилища состояния в Kafka
Streams. Наконец, мы поговорим о важности меток даты/времени и о том, чем
они могут оказаться полезны при операциях с сохранением состояния, например,

116   Часть II  •  Разработка с помощью Kafka Streams

для обеспечения работы лишь с событиями, происходящими в пределах определен-
ного промежутка времени, или для упрощения работы с поступающими не в том
порядке данными.

4.1. Обработка событий
Иногда при обработке событий не требуется никакой дополнительной информации
или контекста. А иногда событие само по себе несет определенный смысл, но без до-
полнительного контекста важность происходящего остается непонятной: благодаря
дополнительной информации этой событие предстает в совершенно ином свете.

Пример события, не требующего дополнительной информации, — попытка
использования украденной платежной карты. Транзакцию необходимо отменить
сразу же, как только выяснится, что эта платежная карта была украдена. Никакой
дополнительной информации для принятия такого решения не требуется.

Но иногда одиночного события недостаточно для принятия решения. Рассмо-
трим, например, последовательность биржевых сделок трех отдельных инвесторов
за короткий промежуток времени. На первый взгляд ничего в покупках акций ком-
пании «XYZ Фармасьютикл» (рис. 4.1) не наводит на размышления. Покупки одних
и тех же акций инвесторами происходят на Уолл-стрит каждый день.

Рис. 4.1. Биржевые сделки без дополнительной информации выглядят совершенно обычными

А теперь рассмотрим эти события в контексте. В течение биржевого дня компа-
ния «XYZ Фармасьютикл» объявила об одобрении государственными органами ее
нового лекарства, из-за чего цены на ее акции подскочили до исторического макси-
мума. Кроме того, указанные три инвестора тесно связаны с «XYZ Фармасьютикл».
С учетом этого приведенные на рис. 4.2 транзакции представляются в совершенно
новом свете.

Хронометраж совершения этих покупок акций и публикации информации вы-
зывает вопросы. Имела ли место заблаговременная утечка информации? Или транз
акции относятся к одному инвестору, получившему внутреннюю информацию,
который пытается замести следы?

Сохранение состояния необходимо для потоков данных. Предыдущий вы-
мышленный сценарий иллюстрирует некие интуитивно понятные большинству из
нас знания. Иногда понять, что происходит, несложно, но чаще всего для принятия
удачных решений необходимо представлять контекст. В области потоковой обра-
ботки такой дополнительный контекст называется состоянием.

Глава 4. Потоки данных и состояние   117

Рис. 4.2. В контексте дополнительной информации о времени совершения биржевых сделок они
предстают в абсолютно новом свете

На первый взгляд, сохранение состояния и потоковая обработка между собой
не согласуются. Потоковая обработка означает постоянный поток отдельных со-
бытий, особо не связанных друг с другом, которые нужно обрабатывать по мере их
возникновения. Понятие состояния же скорее вызывает представление о статиче-
ском ресурсе вроде таблицы базы данных.

На деле же их можно рассматривать как одно и то же. Но изменения в потоке
данных происходят намного быстрее и чаще, чем в таблице базы данных1.

Для работы с потоковыми данными не всегда требуется состояние. В некоторых
случаях отдельные события или записи несут достаточно информации, чтобы пред-
ставлять значимость сами по себе. Но чаще все же входящий поток данных требует
обогащения информацией из какого-либо хранилища, или на основе ранее посту-
пивших событий, или путем соединения взаимосвязанных событий из различных
потоков.

4.2. �Операции с сохранением состояния
в Kafka Streams

В этом разделе вы увидите, как добавить сохраняющую состояние операцию к уже
существующей операции без сохранения состояния с целью обогащения собираемой
приложением информации. Вам придется модифицировать первоначальную тополо-
гию из главы 3, которая для освежения вашей памяти приведена на рис. 4.3.

В этой топологии мы генерировали поток событий, относящихся к транзакциям
покупок. Один из узлов-обработчиков топологии подсчитывал бонусы покупателей
в зависимости от суммы покупки. Но в нем лишь подсчитывались бонусы для от-
дельной транзакции, а полученные результаты отправлялись дальше по топологии.

1	 Kreps J. Why Local State Is a Fundamental Primitive in Stream Processing (Джей Крепс
«Почему локальное состояние — важнейший базовый элемент потоковой обработки»),
http://mng.bz/sfoI.

118   Часть II  •  Разработка с помощью Kafka Streams

Рис. 4.3. Еще раз взглянем на топологию из главы 3

Если добавить в этот узел-обработчик сохранение состояния, можно будет от-
слеживать общую сумму накопленных бонусов. А приложение-потребитель ZMart
сможет проверять указанную сумму и отправлять покупателю поощрение при не-
обходимости.

Теперь, когда вы уже представляете себе, как сохранение состояния может при-
годиться в приложениях Kafka Streams (или любых других потоковых приложени-
ях), рассмотрим несколько конкретных примеров. Мы начнем с преобразования
узла-обработчика для поощрений без сохранения состояния в узел-обработчик
с сохранением состояния с помощью метода transformValues интерфейса KStream.
Вы сможете предоставлять расширенную информацию потребителям, находящимся
дальше по конвейеру, благодаря отслеживанию общего числа заработанных бонусов
и промежутков времени между покупками.

4.2.1. Узел-обработчик transformValues
KStream.transformValues — простейшая из функций с сохранением состояния.
Рисунок 4.4 иллюстрирует ее работу.

Этот метод семантически не отличается от KStream.mapValues() с несколькими
исключениями. Одно из отличий заключается в наличии у transformValues доступа

Глава 4. Потоки данных и состояние   119

к экземпляру интерфейса StateStore. Еще одно отличие — возможность планирова-
ния операций на выполнение через равные промежутки времени с помощью метода
punctuate(). Мы обсудим метод punctuate() подробнее, когда будем рассматривать
API узлов-обработчиков в главе 6.

Рис. 4.4. Узел-обработчик transformValues обновляет входящие записи на основе
информации, хранимой в локальном состоянии. В этом случае ключом для извлечения

и сохранения состояния для заданной записи служит идентификатор покупателя

4.2.2. �Поощрения покупателей
с сохранением состояния

Узел-обработчик поощрений из топологии главы 3 (см. рис. 4.3) для компании
ZMart извлекает информацию о членах клуба постоянных покупателей ZMart.
Изначально в нем использовался метод KStream.mapValues() для отображения объ-
екта Purchase в объект RewardAccumulator.

Объект RewardAccumulator сначала состоял всего из двух полей — иденти-
фикатора покупателя и суммы покупки по транзакции. Теперь же требования

120   Часть II  •  Разработка с помощью Kafka Streams

несколько поменялись и бонусы связываются с программой поощрения покупа-
телей ZMart:

Если раньше другое приложение читало данные из топика поощрений и подсчи-
тывало «достижения» покупателя, то теперь руководство хочет, чтобы бонусы под-
считывало наше потоковое приложение. Кроме того, необходимо собирать данные
о длительности промежутка времени между покупками этого покупателя.

Приложению-потребителю при чтении записей из топика поощрений необходимо
только проверить, превышает ли общее число бонусов установленное для выдачи
вознаграждения пороговое значение. Можно добавить в объект RewardAccumulator
поля totalRewardPoints и daysFromLastPurchase и отслеживать накопленные бо-
нусы и последнюю дату покупки на основе локального состояния. Для этого нам
понадобится переделать код класса RewardAccumulator следующим образом (его
можно найти в файле src/main/java/bbejeck/model/RewardAccumulator.java; весь исходный
код находится по адресу https://manning.com/books/kafka-streams-in-action) (листинг 4.1).

Листинг 4.1. Переделанный объект RewardAccumulator

Обновленные правила программы постоянных покупателей просты. Поку-
патель зарабатывает один бонус за каждый потраченный доллар, причем сумма
транзакции округляется до ближайшего целого числа долларов. Общая структура
топологии не меняется, но узел обработки поощрений будет использовать метод
KStream.transformValues() вместо KStream.mapValues(). Семантически эти методы
работают схожим образом, в том смысле что в обоих объект Purchase отображается
в объект RewardAccumulator. Различие состоит в возможности использования ло-
кального состояния для преобразования.

Точнее говоря, эта обработка будет состоять из двух основных шагов.

1.	 Инициализация преобразователя значений.

2.	 Отображение на основе состояния объекта Purchase в объект RewardAccumulator.

Глава 4. Потоки данных и состояние   121

Метод KStream.transformValues() принимает на входе объект ValueTransfor
merSupplier<V, R>, служащий для создания экземпляра интерфейса ValueTrans
former<V, R>. Наша реализация ValueTransformer будет иметь вид PurchaseRewardTrans
former<Purchase, RewardAccumulator>. Ради ясности я не буду воспроизводить весь
код класса в тексте книги. Вместо этого мы рассмотрим наиболее важные методы
для нашего примера приложения. Отмечу также, что эти фрагменты кода несамодо-
статочны и некоторые детали будут опущены для ясности. Полный код можно найти
в исходном коде этой главы (по адресу https://manning.com/books/kafka-streams-in-action).
Отправимся дальше и займемся инициализацией данного узла-обработчика.

4.2.3. �Инициализация
преобразователя значений

Первый этап — задание значений или создание переменных экземпляра в методе
init() преобразователя (листинг 4.2). В методе init() мы извлечем хранилище
состояний, созданное при построении топологии обработки (вопрос добавления
хранилища состояний мы рассмотрим в подразделе 4.3.3).

Листинг 4.2. Метод init()

Внутри класса преобразователя происходит преобразование к типу KeyValueStore.
Пока нас не интересуют детали реализации внутри преобразователя, лишь возмож-
ность извлекать значения по ключу (в следующем разделе я расскажу подробнее
о разновидностях реализации хранилищ состояния).

4.2.4. �Отображение объекта Purchase в объект
RewardAccumulator на основе состояния

После инициализации узла-обработчика можно перейти к преобразованию объекта
Purchase с использованием данных о состоянии (листинг 4.3). Это преобразование
состоит из нескольких простых этапов.

1.	 Проверка количества уже накопленных покупателем бонусов.

2.	 Подсчет числа бонусов по текущей транзакции и общего их числа.

122   Часть II  •  Разработка с помощью Kafka Streams

3.	 Установка значения соответствующего поля объекта RewardAccumulator равным
новому общему количеству бонусов.

4.	 Сохранение суммарного количества бонусов для данного идентификатора по-
купателя в локальном хранилище состояния.

Листинг 4.3. Преобразование объекта Purchase с использованием состояния

В методе transform() мы сначала отображаем объект Purchase в RewardAccu
mulator — это та же операция, что и в методе mapValues(). В нескольких следующих
строках в процессе преобразования задействуется состояние. Производится поиск
по ключу (идентификатору покупателя), и к бонусам за текущую покупку при-
бавляются ранее накопленные. После чего новое количество бонусов помещается
в хранилище состояния, откуда может быть затребовано при необходимости.

Осталось только обновить узел-обработчик поощрений. Но сначала нужно
учесть, что мы обращаемся ко всей информации о продажах по идентификатору
покупателя. Группировка информации конкретного покупателя по продажам под-
разумевает, что все его транзакции находятся в одной секции. Но, поскольку у посту-
пающих в приложение транзакций отсутствуют ключи, генератор распределяет их
по секциям в циклическом порядке. Мы рассматривали циклическое распределение
по секциям в главе 2, но имеет смысл освежить его в памяти (рис. 4.5).

Это значит, что, если не использовать топики только с одной секцией, мы стол-
кнемся с проблемой. Поскольку ключи не заполнены, назначение секций в цикли-
ческом порядке означает, что транзакции для одного покупателя могут оказаться
в разных секциях.

Важно размещать транзакции с одним идентификатором покупателя в одной
и той же секции для целей поиска записей по идентификатору в хранилище состоя-
ния. В противном случае в разных секциях окажутся записи с одним идентификато-
ром и вам придется искать одного покупателя в нескольких хранилищах состояния.
(Из предыдущей фразы можно сделать вывод, что у каждой секции — свое храни-
лище состояния, но это не так. Секции распределяются по объектам StreamTask,
у каждого из которых есть свое хранилище состояния.)

Глава 4. Потоки данных и состояние   123

Рис. 4.5. При пустых ключах генератор Kafka равномерно распределяет записи
(в циклическом порядке)

Для решения такой проблемы необходимо заново секционировать данные
по идентификатору покупателя. Мы посмотрим, как это сделать, в следующем
пункте.

Повторное секционирование данных
Сначала обсудим, как происходит в целом повторное секционирование данных
(рис. 4.6). Для повторного секционирования записей можно сначала модифици-
ровать или заменить ключ исходной записи, после чего отправить запись в новый
топик. Далее можно снова потреблять эти записи, но в результате повторного сек-
ционирования они могут поступать из других секций, не тех, в которых находились
изначально.

Хотя в этом простом примере мы заменяли пустой ключ конкретным значе-
нием, повторное секционирование не всегда требует замены ключа. С помощью
интерфейса StreamPartitioner (http://mng.bz/9Z8A) можно применить практически
любую стратегию секционирования, какая только придет вам в голову, например
секционировать по значению или по части значения вместо ключа. В следующем
разделе я продемонстрирую использование интерфейса StreamPartitioner в Kafka
Streams.

124   Часть II  •  Разработка с помощью Kafka Streams

Рис. 4.6. Повторное секционирование: изменение исходного ключа с целью перемещения
записей в другую секцию

Повторное секционирование в Kafka Streams
Повторное секционирование в Kafka Streams легко выполняется с помощью метода
KStream.through(), как показано на рис. 4.7. Метод KStream.through() создает про-
межуточный топик, а текущий экземпляр KStream начинает заносить в него записи.
Вызванный метод through() возвращает новый экземпляр KStream с тем же промежу-
точным топиком в качестве источника. Таким образом, повторное секционирование
данных происходит без перебоев в работе.

Между тем внутри Kafka Streams происходит создание узла-стока и узла-источ-
ника. Узел-сток является дочерним узлом-обработчиком вызывающего интерфейса
KStream, а новый узел-источник служит источником записей для нового экземпляра
KStream. Можно создать аналогичную субтопологию с помощью DSL, но метод
KStream.through() удобнее.

Если вы модифицировали или заменили ключи, а пользовательская стратегия
секционирования вам не нужна, можете применить для секционирования метод сек-
ционирования по умолчанию встроенного генератора Kafka Streams — KafkaProducer.
Если же вы захотите применить свой подход к секционированию, то можете восполь-
зоваться StreamPartitioner. Именно этим мы и займемся в следующем примере.

Глава 4. Потоки данных и состояние   125

Рис. 4.7. Запись в промежуточный топик и чтение из него в новом экземпляре KStream

Код применения метода KStream.through() приведен в листинге 4.4. В этом при-
мере метод KStream.through() принимает два параметра: название топика и экземпляр
класса Produced с объектами Serde для ключа, Serde для значения и StreamPartitioner.
Обратите внимание, что существует версия метода KStream.through(), в которую
можно передать только название топика на случай, если вас устраивают экземпля-
ры Serde по умолчанию для ключа и значения и вам не требуется пользовательская
стратегия секционирования.

Листинг 4.4. Использование метода KStream.through()

Мы создали в этом фрагменте кода экземпляр RewardsStreamPartitioner.
Посмотрим теперь на то, как он работает, а также продемонстрируем создание объ-
екта StreamPartitioner.

Использование StreamPartitioner
Обычно секции назначаются на основе вычисления хеша объекта, по модулю числа
секций. В этом случае мы собираемся использовать идентификатор покупателя из
объекта Purchase, чтобы все относящиеся к одному покупателю данные оказывались
в одном хранилище состояния. В листинге 4.5 показана реализация интерфейса

126   Часть II  •  Разработка с помощью Kafka Streams

StreamPartitioner (ее можно найти в файле src/main/java/bbejeck/chapter_4/partitioner/
RewardsStreamPartitioner.java).

Листинг 4.5. RewardsStreamPartitioner

Обратите внимание, что новый ключ мы еще не сгенерировали. Для определения
нужной секции мы используем одно из свойств значения. Главный вывод из этого
краткого отступления: записи, для обновления и модификации которых применя-
ется состояние, должны находиться в одной секции.

ПРЕДУПРЕЖДЕНИЕ
Не относитесь легкомысленно к повторному секционированию, исходя из этой
простой демонстрации. Хотя повторное секционирование иногда необходимо,
оно сопряжено с определенными издержками: дублированием данных и до-
полнительными вычислительными затратами на обработку. Я бы советовал
вам использовать по возможности операции mapValues(), transformValues()
или flatMapValues(), поскольку map(), transform() и flatMap() могут приво-
дить к автоматическому повторному секционированию. Лучше применять
повторное секционирование умеренно.

Вернемся теперь к изменениям в узле-обработчике поощрений, необходимым
для поддержки преобразований с сохранением состояния.

4.2.5. Обновление узла-обработчика поощрений
Пока мы создали новый узел-обработчик, записывающий объекты с информацией
о покупках в топик, секционированный по идентификатору покупателя. Новый
топик станет также источником узла-обработчика поощрений, который мы скоро
модифицируем. Это нам было нужно, чтобы гарантировать попадание всех покупок
одного покупателя в одну секцию, так что мы будем далее использовать одно хра-
нилище состояния для всех покупок конкретного покупателя. На рис. 4.8 показана
обновленная топология обработки с новым узлом повторного секционирования
между узлом маскирования платежных карт (который служит источником для всех
транзакций покупок) и узлом-обработчиком поощрений.

Ри
с.

 4
.8

. Н
ов

ый
 у

зе
л

по
вт

ор
но

го
 с

ек
ци

он
ир

ов
ан

ия
 о

бе
сп

еч
ив

ае
т

ра
сп

ре
де

ле
ни

е
по

ку
по

к
по

 с
ек

ци
ям

 в
 с

оо
тв

ет
ст

ви
и

с
ид

ен
ти

ф
ик

ат
ор

ам
и

по
ку

па
те

ле
й,

 ч
то

 п
оз

во
ля

ет
 у

зл
у-

об
ра

бо
тч

ик
у

по
ощ

ре
ни

й
пр

ав
ил

ьн
о

об
но

вл
ят

ь
да

нн
ые

 н
а

ос
но

ве
 л

ок
ал

ьн
ог

о
со

ст
оя

ни
я

128   Часть II  •  Разработка с помощью Kafka Streams

Теперь мы воспользуемся в следующем коде новым экземпляром Stream (соз-
данным методом KStream.through()) для обновления узла-обработчика поощрений
и применения подхода к преобразованию с сохранением состояния (листинг 4.6).

Листинг 4.6. Меняем узел-обработчик поощрений так, чтобы использовать преобразования
с сохранением состояния

Метод KStream.transformValues принимает посредством лямбда-выражения
Java 8 экземпляр интерфейса ValueTransformerSupplier<V, R>.

В данном разделе мы добавили сохранение состояния к узлу, в котором оно ранее
не сохранялось. Благодаря этому ZMart может быстрее отреагировать на покупку,
подходящую под критерии поощрения. Вы увидели, как использовать хранилище
состояния и выгоды от него, но мы умолчали о важных нюансах, касающихся воз-
можного влияния состояния на ваши приложения. С учетом этого мы посвятим
следующий раздел обсуждению разновидностей хранилищ состояния, требований,
которые нужно удовлетворить для эффективного применения состояния, и способов
добавления хранилища состояния в программу Kafka Streams.

4.3. �Использование хранилищ состояния
для поиска и ранее просмотренные данные

В этом разделе мы займемся основами использования хранилищ состояния в Kafka
Streams и ключевыми аспектами применения состояния в потоковых приложениях
в целом. Благодаря таким знаниям вы сможете на практике принимать верные ре-
шения при использовании состояния в своих приложениях Kafka Streams.

Пока мы обсудили, почему может понадобиться сохранять состояние при работе
с потоками данных, и рассмотрели пример одной из простейших операций с сохра-
нением состояния из числа доступных в Kafka Streams. Прежде чем углубиться в ис-
пользование хранилищ состояния в Kafka Streams, коротко рассмотрим два важных
атрибута состояния: локальность данных и восстановление после сбоя.

4.3.1. Локальность данных
Локальность данных критически важна для высокой производительности. Хотя по-
иск по ключу обычно выполняется очень быстро при работе с большими объемами
данных, задержка вследствие использования удаленных хранилищ оказывается
узким местом.

Глава 4. Потоки данных и состояние   129

Рисунок 4.9 иллюстрирует принципы локальности данных. Штриховая линия
символизирует обращение по сети с целью извлечения данных из удаленной базы
данных. Сплошная линия изображает обращение к хранилищу данных в оператив-
ной памяти, расположенному на том же сервере. Как вы можете видеть, обращаться
за данными локально более выгодно с точки зрения производительности по сравне-
нию с сетевым обращением к удаленной базе данных.

Рис. 4.9. Локальность данных жизненно необходима
для потоковой обработки

Главное здесь не длительность задержки в пересчете на одну извлеченную за-
пись, которая может быть минимальной. Суть в том, что потоковое приложение
потенциально может обрабатывать миллионы или даже миллиарды записей, так что
даже минимальная сетевая задержка, умноженная на такое число записей, может
сыграть роковую роль.

Локальность данных также означает локальность хранилища по отношению
ко всем обрабатывающим узлам и отсутствие совместного его использования
различными процессами или потоками выполнения. Таким образом, сбой одного
процесса не влияет на другие процессы или потоки выполнения при потоковой
обработке.

Ключевой момент состоит в том, что, хотя для потоковых приложений иногда
требуется сохранение состояния, оно должно быть локальным по отношению к месту
обработки. У каждого сервера или узла приложения должно быть свое хранилище
состояния.

130   Часть II  •  Разработка с помощью Kafka Streams

4.3.2. �Восстановление после сбоя
и отказоустойчивость

Сбои в приложениях неизбежны, особенно когда речь идет о распределенных при-
ложениях. Необходимо переместить акцент с предотвращения сбоев на быстрое
восстановление после них или даже восстановление после перезапуска.

Рисунок 4.10 демонстрирует основные принципы локальности данных и от-
казоустойчивости. У каждого узла-обработчика — свое локальное хранилище
данных, а топик для журнала изменений играет роль резервной копии хранилища
состояния.

Рис. 4.10. Способность восстанавливаться после сбоев очень важна для потоковых
приложений. Kafka Streams сохраняет во внутреннем топике данные из локальных хранилищ

в оперативной памяти, так что при возобновлении работы после сбоя или перезапуска
производится повторное заполнение данными

Высокая стоимость резервного копирования хранилища состояния в топик смяг-
чается за счет того, что KafkaProducer отправляет записи в пакетном режиме, и по
умолчанию они кэшируются. Kafka Streams заносит записи в хранилище только при
сбросе кэша на диск, так что сохраняется только последняя запись с заданным ключом.
Мы обсудим механизм кэширования хранилищ состояния подробнее в главе 5.

Глава 4. Потоки данных и состояние   131

Хранилища состояния Kafka Streams удовлетворяют требованию как локаль-
ности, так и отказоустойчивости. Они локальны по отношению к заданным узлам-
обработчикам и не используются совместно различными процессами и потоками
выполнения. Кроме того, для резервного копирования и быстрого восстановления
хранилища состояния применяются топики.

Мы рассмотрели требования к использованию состояния в потоковых прило-
жениях. Далее мы обсудим, как обеспечить применение состояния в приложении
Kafka Streams.

4.3.3. �Использование хранилищ состояния
в Kafka Streams

Для добавления хранилища состояния достаточно создать экземпляр интерфейса
StoreSupplier с помощью одного из статических фабричных методов класса Stores.
Для настройки хранилища состояния под свои задачи существует два дополнитель-
ных класса: Materialized и StoreBuilder. Какой использовать — зависит от способа
добавления хранилища в топологию. В случае высокоуровневого DSL обычно при-
меняется класс Materialized, а при работе с низкоуровневым API узлов-обработ-
чиков — StoreBuilder.

Хотя в текущем примере используется высокоуровневый DSL, хранилище со-
стояния мы будем добавлять в Transformer, предоставляющий семантику API узлов-
обработчиков. Поэтому для настройки хранилища состояния под наши нужды мы
будем применять StoreBuilder (листинг 4.7).

Листинг 4.7. Добавление хранилища состояния

Сначала мы создаем объект StoreSupplier, который, в свою очередь, создает
хранилище (в оперативной памяти) пар «ключ/значение». Далее мы передаем этот
StoreSupplier в качестве параметра при создании StoreBuilder, указывая также
ключи в виде String и значения в виде Integer. Наконец, мы добавляем StateStore
в топологию, передавая объект StoreBuilder в метод addStateStore. В результате мы
получаем возможность обращаться к объекту для состояния в узлах-обработчиках
по созданному выше имени rewardsStateStoreName.

132   Часть II  •  Разработка с помощью Kafka Streams

Мы показали вам пример создания хранилища состояния в оперативной памяти,
но существует немало опций для создания различных видов экземпляров StateStore.
Рассмотрим их вкратце.

4.3.4. �Другие поставщики хранилищ
пар «ключ/значение»

Помимо метода Stores.inMemoryKeyValueStore, существуют и другие статические
фабричные методы для генерации поставщиков хранилищ:

�� Stores.persistentKeyValueStore;

�� Stores.lruMap;

�� Stores.persistentWindowStore;

�� Stores.persistentSessionStore.

Стоит отметить, что все экземпляры StateStore, созданные с помощью методов,
которые содержат слово persistent в названии, осуществляют локальное хранение
данных с помощью RocksDB (http://rocksdb.org).

Прежде чем завершить обсуждение хранилищ состояния, я хотел бы рассказать еще
о двух важных аспектах хранилищ состояния Kafka Streams: об обеспечении отказо
устойчивости с помощью топиков журналов изменений и настройке этих топиков.

4.3.5. Отказоустойчивость StateStore
Во всех типах StateStoreSupplier журналирование включено по умолчанию.
Журналирование в данном контексте означает использование журнала изменений
в виде топика Kafka для резервного копирования значения из хранилища и обеспе-
чения отказоустойчивости.

Например, предположим, что произошел отказ одной из машин, на которых рабо-
тает Kafka Streams. После восстановления сервера и перезапуска приложения Kafka
Streams восстанавливается исходное содержимое хранилищ состояния этого экзем-
пляра (последнее зафиксированное перед сбоем смещение в журнале изменений).

Журналирование можно отключить при использовании фабрики Stores с по-
мощью метода disableLogging(). Но при этом хранилища состояния теряют отка-
зоустойчивость и способность восстанавливаться после аварийных сбоев, так что
делать это без веских оснований не стоит.

4.3.6. Настройки топиков журналов изменений
Журналы изменений для хранилищ состояния можно настраивать с помощью мето-
да withLoggingEnabled(Map <String, String> config). При этом можно использовать
любые доступные в интерфейсе java.util.Map для топиков параметры конфигура-
ции. Настройки журналов изменений для хранилищ состояния играют важную роль

Глава 4. Потоки данных и состояние   133

при создании приложений Kafka Streams. Но не забывайте, что создавать вручную
топики журналов изменений не нужно — Kafka Streams делает это за вас.

ПРИМЕЧАНИЕ
Журналы изменений хранилищ состояния представляют собой сжатые топи-
ки, обсуждавшиеся в главе 2. Как вы помните, семантика удаления требует,
чтобы ключ был пустым, так что, если нужно удалить запись из хранилища
состояния навсегда, необходимо выполнить операцию put(key, null).

Длительность сохранения данных для сегмента журнала в топиках Kafka по
умолчанию равна одной неделе. В зависимости от объема ваших данных это может
оказаться вполне удовлетворительным значением, но очень может быть, что вы
захотите изменить такую настройку. Кроме того, стратегия очистки по умолча-
нию — delete.

Рассмотрим сначала, как настроить топик журнала изменений так, чтобы устано-
вить объем сохраняемой информации равным 10 Гбайт и период сохранения — двум
дням (листинг 4.8).

Листинг 4.8. Задание свойств журналов изменений

Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("retention.ms","172800000");
changeLogConfigs.put("retention.bytes", "10000000000");

// Для использования с классом StoreBuilder
storeBuilder.withLoggingEnabled(changeLogConfigs);

// Для использования с классом Materialized
Materialized.as(Stores.inMemoryKeyValueStore("foo")
 .withLoggingEnabled(changeLogConfigs));

В главе 2 мы обсуждали предоставляемую Kafka возможность сжатия топиков.
Освежим вашу память: в сжатых топиках применяется другой подход к очистке.
Вместо удаления сегментов журнала время от времени сегменты журналов сжима-
ются (compacted): для каждого ключа оставляется только последняя запись, а более
старые записи с тем же ключом удаляются. По умолчанию Kafka Streams создает
топики журналов изменений со стратегией очистки compact.

Но если в вашем топике журнала изменений множество уникальных ключей, то
сжатия может оказаться недостаточно, так как размер сегмента журнала будет про-
должать расти. Существует простое решение этой проблемы — достаточно задать
стратегию очистки delete и compact (листинг 4.9).

Листинг 4.9. Задание стратегии очистки

Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("retention.ms","172800000");
changeLogConfigs.put("retention.bytes", "10000000000");
changeLogConfigs.put("cleanup.policy", "compact,delete");

134   Часть II  •  Разработка с помощью Kafka Streams

Теперь размер вашего топика журнала изменений останется в разумных пределах
даже с уникальными ключами. Это было лишь краткое описание настроек топиков,
в приложении A вы найдете дополнительную информацию о топиках журналов из-
менений и их настройках.

Мы рассмотрели основы операций с сохранением состояния и хранилищами
состояния. Вы узнали о предоставляемых Kafka Streams хранилищах состояния —
в оперативной памяти и постоянных — и разобрались, как включить их в свое при-
ложение. Вы также узнали, насколько важны локальность данных и отказоустой-
чивость при использовании состояния в потоковом приложении. Займемся теперь
соединением потоков данных.

4.4. �Получение дополнительной информации
путем соединения потоков данных

Как мы уже обсуждали ранее в этой главе, сохранение состояния необходимо для
потоков данных тогда, когда события в них неавтономны. Иногда нужные вам
состояние или контекст содержатся в другом потоке данных. В этом разделе мы
займемся формированием нового события путем сочетания различных событий из
двух потоков с одинаковым ключом.

Лучше всего посмотреть на соединение потоков данных на конкретном примере,
так что мы вернемся к примеру компании ZMart. Как вы помните, компания ZMart
открыла новую линейку магазинов, торгующих электроникой и сопутствующими
товарами (CD и DVD, смартфонами и т. п.). В попытке найти новый подход ком-
пания ZMart начала сотрудничество с общенациональной сетью кофеен и открыла
на территории всех своих магазинов кафе. В главе 3 мы занимались разделением
транзакций покупок в этих магазинах на два отдельных потока данных. На рис. 4.11
показана топология для удовлетворения этого требования.

Открытие на территории магазинов кафе было очень удачным решением для
компании ZMart, и этот успех она хотела бы закрепить. Поэтому было решено за-
пустить новую программу. ZMart хотела бы поддерживать посещаемость покупа-
телями магазинов электроники за счет предложения купонов на посещение кафе
(в надежде, что повышение посещаемости приведет к дополнительным прода-
жам).

Компания ZMart хотела бы идентифицировать покупателей, которые заказали
кофе и совершили затем покупку в магазине электроники, и отправлять им купон
почти сразу после этой второй транзакции (рис. 4.12). ZMart хочет выяснить, удаст-
ся ли им выработать у своих покупателей своеобразный условный рефлекс.

Чтобы определить, когда выдавать купон, необходимо соединить информацию
о заказах в кафе с информацией о продажах в магазине электроники. Код соединения
потоков данных довольно прост. Начнем с подготовки данных, которые необходимо
обработать для выполнения соединения.

Ри
с.

 4
.1

1.
 У

зе
л

ве
тв

ле
ни

я
и

ег
о

ме
ст

о
в

об
щ

ей
 т

оп
ол

ог
ии

136   Часть II  •  Разработка с помощью Kafka Streams

Рис. 4.12. Записи о покупках с метками даты/времени, отдаленными друг от друга
не более чем на 20 минут, соединяются по идентификатору покупателя, после чего на их

основе покупателю выдается поощрительный бесплатный купон на кофе

4.4.1. Подготовка данных
Во-первых, взглянем еще раз на ту часть топологии, которая отвечает за ветвление
потоков данных (рис. 4.13). И проанализируем код, реализующий ветвление (его
можно найти в файле src/main/java/bbejeck/chapter_3/ZMartKafkaStreamsAdvancedReqsApp.java)
(листинг 4.10).

Листинг 4.10. Ветвление на два потока данных

Этот код демонстрирует реализацию ветвления: входящие записи отбирают-
ся в соответствии с предикатами и возвращается массив экземпляров KStream.
Индексы объектов KStream в массиве точно такие же, как и порядок предикатов.
Любые записи, не соответствующие ни одному из предикатов, в процессе ветвления
отбрасываются.

Хотя у нас уже есть два потока данных для соединения, остался еще один шаг.
Как вы помните, записи о покупках поступают в приложение Kafka Streams без

Глава 4. Потоки данных и состояние   137

ключей. В результате нам нужно добавить еще один узел-обработчик для генерации
ключа с идентификатором покупателя. Ключи должны быть заполнены, поскольку
именно их мы и будем использовать для соединения записей.

4.4.2. �Генерация ключей с идентификаторами
покупателей для соединения

Для генерации ключа выбирается идентификатор покупателя из данных о покуп-
ке, содержащихся в потоке. Для этого необходимо обновить исходный экземпляр
KStream (transactionStream) и создать еще один обрабатывающий узел между ним
и узлом ветвления. Это выполняется с помощью следующего кода (располагается
в файле src/main/java/bbejeck/chapter_4/KafkaStreamsJoinsApp.java) (листинг 4.11).

Листинг 4.11. Генерация новых ключей

На рис. 4.14 показано, как выглядит обновленная топология обработки с учетом
листинга 4.11. Как вы уже видели, при изменении ключа может потребоваться по-
вторное секционирование данных. Это справедливо и для настоящего примера.
Почему же на рисунке нет шага повторного секционирования?

Рис. 4.13. Для соединения необходимо более одного потока данных. Узел-обработчик
ветвления обеспечивает это за счет создания двух потоков: одного с заказами в кафе,

а второго — с покупками электроники

Ри
с.

 4
.1

4.
 Н

ео
бх

од
им

о
по

вт
ор

но
 о

то
бр

аз
ит

ь
за

пи
си

 о
 п

ок
уп

ка
х

ти
па

 «
кл

ю
ч/

зн
ач

ен
ие

»
в

та
ки

е
за

пи
си

, г
де

 к
лю

ч
со

де
рж

ит
 и

де
нт

иф
ик

ат
ор

по

ку
па

те
ля

. К
 с

ча
ст

ью
, и

де
нт

иф
ик

ат
ор

 п
ок

уп
ат

ел
я

мо
ж

но
 и

зв
ле

чь
 и

з
об

ъе
кт

а
Pu

rc
ha

se

Глава 4. Потоки данных и состояние   139

При каждом вызове в Kafka Streams метода, в результате выполнения которого
может быть сгенерирован новый ключ (selectKey, map или transform), значение
специального внутреннего булева флага устанавливается в true, указывая, что
этот новый экземпляр KStream требует повторного секционирования. А при таком
значении указанного флага Kafka Streams автоматически осуществляет вместо вас
повторное секционирование при выполнении вами любой операции соединения,
свертки или агрегирования.

В данном примере мы выполнили над потоком transactionStream операцию
selectKey(), так что полученный KStream помечен как подлежащий повторному
секционированию. Кроме того, мы сразу после этого выполняем операцию ветвле-
ния, так что все возвращаемые из вызова метода branch() объекты KStream также
помечены для повторного секционирования.

ПРИМЕЧАНИЕ
В этом примере повторное секционирование производится только по ключам.
Но бывают случаи, когда использовать ключи нежелательно или требуется
применить какое-либо сочетание ключа и значения. В подобных случаях
можно воспользоваться интерфейсом StreamPartitioner<K, V>, как вы видели
в листинге 4.5 в пункте «Использование StreamPartitioner».

Теперь у нас есть два отдельных потока данных с заполненными ключами, и мы
готовы к следующему шагу: соединению потоков данных по ключу.

4.4.3. Конструирование соединения
Следующий шаг — выполнение собственно соединения. Мы возьмем два развет-
вленных ранее потока и соединим их с помощью метода KStream.join(). Получив
шаяся топология показана на рис. 4.15.

Соединение записей о покупках
Для создания соединенной записи необходимо создать сначала экземпляр интер-
фейса ValueJoiner<V1, V2, R>. ValueJoiner принимает в качестве параметров два
объекта одного или разных типов и возвращает единый объект, возможно, третьего
типа. В данном случае ValueJoiner принимает два объекта Purchase и возвращает
объект CorrelatedPurchase. Взглянем на код (его можно найти в файле src/main/java/
bbejeck/chapter_4/joiner/PurchaseJoiner.java) (листинг 4.12).

Для создания объекта CorrelatedPurchase мы извлекаем определенную информа-
цию из каждого объекта Purchase. Поскольку требуемое для конструирования ново-
го объекта число элементов велико, мы воспользуемся паттерном проектирования
«Строитель», чтобы сделать код понятнее и избежать возможных ошибок вслед-
ствие перепутанных местами параметров. Кроме того, PurchaseJoiner проверяет,
не пусты ли значения обоих передаваемых объектов Purchase, так что его можно
применять для внутреннего, внешнего и левого внешнего соединений. Мы обсудим
различные варианты соединений в подразделе 4.4.4. А пока перейдем к реализации
соединения потоков данных.

Ри
с.

 4
.1

5.
 В

 э
то

й
об

но
вл

ен
но

й
то

по
ло

ги
и

об
а

уз
ла

-о
бр

аб
от

чи
ка

 (д
ля

 к
аф

е
и

дл
я

ма
га

зи
на

 э
ле

кт
ро

ни
ки

) п
ер

ес
ыл

аю
т

св
ои

 з
ап

ис
и

в
уз

ел

со
ед

ин
ен

ия
. В

 у
зл

е
со

ед
ин

ен
ия

 д
ля

 п
ои

ск
а

со
от

ве
тс

тв
ий

 в
о

вт
ор

ом
 п

от
ок

е
ис

по
ль

зу
ет

ся
 д

ва
 х

ра
ни

ли
щ

а
со

ст
оя

ни
я

Глава 4. Потоки данных и состояние   141

Листинг 4.12. Реализация ValueJoiner

142   Часть II  •  Разработка с помощью Kafka Streams

Реализация соединения
Вы уже видели, как выполняется слияние записей, получившихся в результате со-
единения потоков данных, так что перейдем сразу к вызову метода KStream.join
(его можно найти в файле src/main/java/bbejeck/chapter_4/KafkaStreamsJoinsApp.java)
(листинг 4.13).

Листинг 4.13. Использование метода join()

Мы передаем в метод KStream.join четыре параметра:

�� electronicsStream — поток данных о покупках электроники для соединения;

�� purchaseJoiner — реализация интерфейса ValueJoiner<V1, V2, R>. В ValueJoiner
передается два значения (возможно, различных типов). Метод ValueJoiner.apply
выполняет логику реализации и возвращает (возможно, новый) объект типа R
(возможно, совершенно нового типа). В этом примере purchaseJoiner добавляет
соответствующую информацию из обоих объектов Purchase и возвращает объект
CorrelatedPurchase;

�� twentyMinuteWindow — экземпляр класса JoinWindows. Метод JoinWindows.of по-
зволяет задать максимальную разницу во времени между двумя включаемыми
в соединение значениями. В данном случае разница между метками даты/вре-
мени не должна превышать 20 минут;

�� экземпляр класса Joined — осуществляет передачу параметров для соединения.
В этом случае параметры представляют собой объекты Serde ключа и значения
для основного потока данных и объект Serde значения для дополнительного.

Глава 4. Потоки данных и состояние   143

Экземпляр Serde для ключа только один, поскольку при соединении записей
ключи должны быть одного типа.

ПРИМЕЧАНИЕ
Объекты Serde необходимы при выполнении соединений потому, что участ-
ники соединения материализуются в оконных хранилищах состояния. В этом
примере передается только один объект Serde для ключа, поскольку ключи
для обеих сторон соединения должны быть одного типа.

Мы указали, что события покупки должны отстоять друг от друга не более чем на
20 минут, но это не подразумевает какой-либо упорядоченности. Соединение будет
выполняться для любых меток даты/времени, расположенных в пределах 20 минут
друг от друга, независимо от порядка.

Существует два дополнительных метода JoinWindows(), с помощью которых
можно задать относительный порядок событий:

�� JoinWindows.after — вызов streamA.join(streamB,...,twentyMinuteWindow.after
(5000)....) означает, что метка даты/времени записи из потока streamB должна
находиться в пределах 5 секунд после метки даты/времени записи из потока
streamA. Начальная граница окна не меняется;

�� JoinWindows.before — вызов streamA.join(streamB,...,twentyMinuteWindow.be
fore(5000),...) означает, что метка даты/времени записи из потока streamB
должна находиться в пределах 5 секунд до метки даты/времени записи из потока
streamA. Конечная граница окна не меняется.

В обоих методах, before() и after(), длительность промежутка времени вы-
ражается в миллисекундах. Используемые в соединениях временные диапазоны
представляют собой примеры так называемых скользящих окон (sliding windows).
Мы обсудим оконные операции подробнее в следующей главе.

ПРИМЕЧАНИЕ
В листинге 4.13 задействуются реальные метки даты/времени транзак-
ций, а не метки даты/времени Kafka. Для применения включенных в транз
акции меток даты/времени необходимо задать пользовательское сред-
ство извлечения меток даты/времени путем установки значения свойства
StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG равным
TransactionTimestampExtractor.class.

Мы сформировали соединенный поток данных: покупка электроники, произве-
денная в пределах 20 минут от заказа кофе, приведет к выдаче покупателю купона
на получение при следующем посещении им ZMart бесплатного кофе.

Прежде чем двигаться дальше, я хотел бы дать некоторые пояснения по пово-
ду важного требования при соединении данных — совместного секционирования
(co-partitioning).

144   Часть II  •  Разработка с помощью Kafka Streams

Совместное секционирование
Для выполнения соединения в Kafka Streams необходимо, чтобы все его участники
были совместно секционированы, то есть у них было одинаковое число секций и клю-
чи одного типа. В результате при вызове метода join() в листинге 4.13 оба экземпля-
ра KStream проверяются на предмет необходимости повторного секционирования.

ПРИМЕЧАНИЕ
Участвующие в соединении экземпляры интерфейса GlobalKTable повторного
секционирования не требуют.

В подразделе 4.4.2 мы применяли к transactionStream метод selectKey()
и сразу после этого осуществляли ветвление по возвращаемым объектам KStream.
А поскольку метод selectKey() изменяет ключи, то как объект coffeeStream, так
и electronicsStream требуют повторного секционирования. Имеет смысл еще
раз сказать, что повторное секционирование требуется для того, чтобы гаранти-
ровать попадание записей с идентичными ключами в одну секцию. Повторное
секционирование выполняется автоматически. Кроме того, при запуске прило-
жения Kafka Streams проверяется, одинаковое ли число секций в участвующих
в соединении топиках, и при обнаружении расхождений генерирует исключение
TopologyBuilderException. За то, чтобы участвующие в соединении ключи были
одного типа, отвечает разработчик.

Совместное секционирование также требует, чтобы все генераторы Kafka исполь-
зовали один и тот же класс секционирования при записи в топики-источники Kafka
Streams. Аналогично вы должны применять один и тот же объект StreamPartitioner
при любых операциях записи в топики-стоки Kafka Streams посредством метода
KStream.to(). Если же вы придерживаетесь стратегий секционирования по умол-
чанию, то можете о них не волноваться.

Продолжим разговор о соединениях и посмотрим на остальные их варианты.

4.4.4. Другие варианты соединений
Соединение из листинга 4.13 представляет собой внутреннее соединение (inner join).
При нем, если запись с одной из сторон отсутствует, соединение не производится
и объект CorrelatedPurchase не возвращается. Существуют и другие варианты со-
единений, не требующие наличия записей с обеих сторон. Они удобны в тех случаях,
когда информация нужна, но необходимая запись для соединения отсутствует.

Внешние соединения
При внешнем соединении всегда возвращается запись, хотя отправляемая дальше
соединенная запись может не включать оба задаваемых соединением события.
Если одна из сторон соединения отсутствует в пределах временного окна, то внешнее

Глава 4. Потоки данных и состояние   145

соединение отправляет далее по конвейеру имеющуюся запись. Конечно, если в преде-
лах временного окна есть оба события, то возвращаемая запись содержит их оба.

Например, в листинге 4.13 можно было бы воспользоваться внешним соедине-
нием следующим образом:

coffeeStream.outerJoin(electronicsStream,..)

Рисунок 4.16 демонстрирует три возможных результата внешнего соединения.

Рис. 4.16. При внешнем соединении возможны три результата: только событие из основного
потока данных, оба события и только событие из второго потока

Левое внешнее соединение
Отправляемые далее по конвейеру из левого внешнего соединения записи аналогич-
ны полному внешнему соединению за одним исключением. Если в окне соединения
присутствует только событие из второго потока, то никакого результата вообще
не возвращается. В листинге 4.13 можно было бы воспользоваться внешним соеди-
нением следующим образом:

coffeeStream.leftJoin(electronicsStream..)

Рисунок 4.17 демонстрирует возможные результаты левого внешнего соединения.
Мы охватили в этом разделе соединение потоков данных, но одна концепция

заслуживает более подробного обсуждения: метки даты/времени и их влияние на
приложение Kafka Streams. В примере с соединением мы задавали максимальную
разницу между моментами событий равной 20 минутам. В нашем случае речь шла

146   Часть II  •  Разработка с помощью Kafka Streams

о времени между покупками, но мы не конкретизировали, как задавать или извле-
кать эти метки даты/времени. Рассмотрим этот вопрос подробнее.

Рис. 4.17. При левом внешнем соединении тоже возможны три результата, но если присутствует
только событие из второго потока, то ничего не возвращается

4.5. Метки даты/времени в Kafka Streams
В подразделе 2.4.4 мы обсуждали метки даты/времени в записях Kafka. В этом раз-
деле мы поговорим про использование меток даты/времени в Kafka Streams. Метки
даты/времени играют важную роль в следующих ключевых аспектах функциональ-
ности Kafka Streams:

�� в соединении потоков данных;
�� обновлении журналов изменений (API KTable);
�� определении момента запуска на выполнение метода Processor.punctuate() (API

узлов-обработчиков).

Мы пока не рассматривали API KTable и узлов-обработчиков, но ничего страш-
ного. Для понимания изложенного в данном разделе это вам не понадобится.

При обсуждении потоковой обработки можно сгруппировать метки даты/време-
ни по трем категориям, как показано на рис. 4.18.

�� Время события (event time) — метка даты/времени, задаваемая в момент генера-
ции события, обычно включается в объект, представляющий событие. Здесь мы
будем считать временем события также и метку даты/времени, задаваемую при
создании объекта ProducerRecord.

Глава 4. Потоки данных и состояние   147

Рис. 4.18. В Kafka Streams существует три категории меток даты/времени: время события,
время ввода и время обработки

148   Часть II  •  Разработка с помощью Kafka Streams

�� Время ввода данных (ingestion time) — метка даты/времени, задаваемая в момент
первого попадания данных в конвейер их обработки. Можно считать временем
ввода данных метку даты/времени, устанавливаемую брокером Kafka (при пара-
метре конфигурации log.message.timestamp.type, равном LogAppendTime).
�� Время обработки (processing time) — метка даты/времени, задаваемая в момент

начала прохождения данных или записи о событии через конвейер обработки.
В этом разделе я покажу, как API Kafka Streams поддерживает все три типа меток

даты/времени.

ПРИМЕЧАНИЕ
До сих пор мы неявно предполагали, что клиенты и брокеры располагаются
в одном часовом поясе, но это может быть не так. При использовании меток
даты/времени безопаснее будет применять всемирное координированное
время (UTC), чтобы исключить возможные недоразумения при использовании
различными брокерами и клиентами различных часовых поясов.

Мы рассмотрим три случая семантики обработки меток даты/времени:

�� метку даты/времени, включаемую в объект самого события или сообщения (се-
мантика времени события);
�� использование метки даты/времени, задаваемой в метаданных записи при соз-

дании объекта ProducerRecord (семантика времени события);
�� использование текущей метки даты/времени (текущее локальное время) при

вводе записи1 в приложение Kafka Streams (семантика времени обработки).

Для семантики времени события вполне достаточно использовать метку даты/
времени, которую помещает в метаданные ProducerRecord. Но встречаются случаи,
когда этого недостаточно. Рассмотрим следующие примеры:

�� вы отправляете в Kafka сообщения с событиями, с зафиксированными в объектах
сообщений метками даты/времени. Эти объекты событий становятся доступны-
ми генератору Kafka с некоторым запозданием, так что необходимо учитывать
только включенную в объект метку даты/времени;
�� требуется различать время потребления записей приложением Kafka Streams

и время, указанное в метках даты/времени записей.

Чтобы сделать возможными различные семантики обработки, Kafka Streams
предоставляет интерфейс TimestampExtractor с одной абстрактной и четырьмя
конкретными его реализациями. Для работы с включенными в значения записей
метками даты/времени необходимо создать пользовательскую реализацию интер-
фейса TimestampExtractor. Рассмотрим вкратце уже готовые реализации и реализуем
свой TimestampExtractor.

1	 Возможно, автор неточно выражается или ошибается в данном месте. По логике, здесь
должно говориться не о «вводе записи» (ingest), а о «начале ее движения по конвейеру»
(flow). — Примеч. пер.

Глава 4. Потоки данных и состояние   149

4.5.1. �Готовые реализации интерфейса
TimestampExtractor

Практически все предоставляемые Kafka Streams реализации интерфейса Time
stampExtractor работают с метками даты/времени, указываемыми генератором или
брокером в метаданных сообщения, что означает или семантику времени события
(метку даты/времени устанавливает генератор), или семантику времени добавления
в журнал (метку даты/времени устанавливает брокер). Рисунок 4.19 демонстрирует
извлечение метки даты/времени из объекта ConsumerRecord.

Рис. 4.19. Метки даты/времени в объекте ConsumerRecord: метку устанавливает генератор
или брокер в зависимости от настроек

Хотя мы предполагаем, что используется настройка по умолчанию CreateTime
для меток даты/времени, не забывайте, что при настройке LogAppendTime воз-
вращается значение метки даты/времени, соответствующее времени добавления
записи в журнал. Базовую функциональность для извлечения метки даты/вре-
мени из метаданных объекта ConsumerRecord предоставляет абстрактный класс
ExtractRecordMetadataTimestamp. Большинство конкретных реализаций расширя-
ют именно его. Для обработки некорректных меток даты/времени (случаев, когда
метка даты/времени меньше 0) разработчики переопределяют абстрактный метод
ExtractRecordMetadataTimestamp.onInvalidTimestamp.

Вот список классов, расширяющих класс ExtractRecordMetadataTimestamp:

�� FailOnInvalidTimestamp — генерирует исключение в случае некорректной метки
даты/времени;
�� LogAndSkipOnInvalidTimestamp — возвращает некорректную метку даты/времени

и заносит в журнал предупреждение о том, что запись будет отброшена из-за не-
корректной метки даты/времени;
�� UsePreviousTimeOnInvalidTimestamp — возвращает последнюю извлеченную

корректную метку даты/времени в случае некорректной метки.

150   Часть II  •  Разработка с помощью Kafka Streams

Мы рассмотрели в этом разделе средства извлечения меток времени события,
но существует одно более продвинутое средство извлечения меток даты/времени,
которое я хотел бы обсудить.

4.5.2. Класс WallclockTimestampExtractor
Класс WallclockTimestampExtractor предоставляет семантику времени обработки и не
извлекает никаких меток даты/времени. Вместо этого он возвращает время в милли-
секундах, получаемое с помощью вызова метода System.currentTimeMillis().

Вот и все, что я хотел рассказать о готовых средствах извлечения меток даты/
времени. В следующем разделе мы рассмотрим вопрос создания их пользователь-
ского варианта.

4.5.3. �Пользовательская реализация интерфейса
TimestampExtractor

Для работы с метками даты/времени (или их вычисления) в объекте-значении из
ConsumerRecord вам понадобится пользовательское средство извлечения меток, реа-
лизующее интерфейс TimestampExtractor. Рисунок 4.20 демонстрирует применение
включенной в объект-значение метки даты/времени по сравнению с меткой даты/
времени, устанавливаемой (генератором или брокером) Kafka.

Рис. 4.20. Пользовательский TimestampExtractor возвращает метку даты/времени на основе
значения, содержащегося в объекте ConsumerRecord. Эта метка даты/времени может быть уже
существующим значением или значением, вычисленным на основе свойств объекта-значения

Ниже приведен пример реализации TimestampExtractor (ее можно найти в файле
src/main/java/bbejeck/chapter_4/timestamp_extractor/TransactionTimestampExtractor.java) (ли-

Глава 4. Потоки данных и состояние   151

стинг 4.14), используемый также в примере соединения (листинг 4.13 из пункта
«Реализация соединения»), хотя как параметр конфигурации и не показанный
в тексте.

Листинг 4.14. Пользовательский TimestampExtractor

В примере с соединением мы применили пользовательский TimestampExtractor
потому, что хотели задействовать метки даты/времени фактического момента по-
купки. Подобный подход дает возможность соединять записи даже в случае задержек
доставки или поступления данных в неправильном порядке.

ПРЕДУПРЕЖДЕНИЕ
Старайтесь не слишком «умничать» при создании пользовательской реализа-
ции TimestampExtractor. Сохранение и архивирование журналов основываются
на метках даты/времени, так что возвращаемая средством извлечения метка
может стать меткой сообщения, которая затем будет применяться в журналах
изменений и топиках результатов далее по конвейеру.

4.5.4. Указываем, какой TimestampExtractor использовать
Теперь, когда мы обсудили принципы функционирования средств для извлечения
меток даты/времени, осталось указать приложению, какое из них использовать.
Существует два способа задания средства извлечения меток.

Первая возможность: задать глобальное средство извлечения меток, указав его
в свойствах при настройке приложения Kafka Streams. Если же значение свойства не за-
дано, будет применяться значение по умолчанию — FailOnInvalidTimestamp.class.
Например, следующий фрагмент кода указывает приложению с помощью задания
свойства при его настройке использовать класс TransactionTimestampExtractor:

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
➥ TransactionTimestampExtractor.class);

Вторая возможность — передать экземпляр TimestampExtractor через объект
Consumed:

Consumed.with(Serdes.String(), purchaseSerde)
 .withTimestampExtractor(new TransactionTimestampExtractor()))

152   Часть II  •  Разработка с помощью Kafka Streams

Преимущество второго способа состоит в возможности использования своего
TimestampExtractor для каждого источника входных данных, в то время как при
первом варианте приходится обрабатывать записи из различных топиков в одном
экземпляре TimestampExtractor.

Мы подошли к концу обсуждения вопросов применения меток даты/времени.
В следующих главах вам предстоит столкнуться с ситуациями, в которых разница
между метками даты/времени будет инициировать какие-либо действия, например
сброс на диск кэша KTable. Я не жду, что вы запомните все три вида средств извлече-
ния меток даты/времени, но важно понимать, что эти метки даты/времени играют
важную роль в функционировании Kafka и Kafka Streams.

Резюме
�� Сохранение состояния необходимо для потоковой обработки. Иногда события

бывают автономны, но обычно для принятия верных решений требуется допол-
нительная информация.

�� Kafka Streams предоставляет удобные абстракции для преобразований с сохра-
нением состояния, включая соединения.

�� Хранилища состояния в Kafka Streams обеспечивают необходимые для потоко-
вой обработки атрибуты состояния: локальность данных и отказоустойчивость.

�� Метки даты/времени управляют движением данных в Kafka Streams. Следует
тщательно и обдуманно выбирать источники меток даты/времени.

В следующей главе мы продолжим изучать вопросы сохранения состояния
в потоковой обработке, перейдя к более важным операциям, например таким, как
агрегирование и группировка. Мы изучим также API KTable. Если основные задачи
API KStream связаны с обработкой отдельных записей, то KTable представляет со-
бой реализацию журнала изменений, где записи с одинаковыми ключами считаются
обновлениями одной записи. Мы также обсудим соединения экземпляров KStream
и KTable. Наконец, мы поговорим об одном из наиболее интересных усовершенство-
ваний Kafka Streams — доступном для запроса состоянии (queryable state). Доступное
для запроса состояние позволяет непосредственно наблюдать состояние потока без
необходимости материализации информации с помощью чтения данных из топика
во внешнем приложении.

5 API KTable

В этой главе:

�� описание связи между потоками данных и таблицами;

�� обновление записей и абстракция KTable;

�� агрегирование, оконные операции и соединение объектов KStream и KTable;

�� глобальные KTable;

�� доступные для запросов хранилища состояния.

Пока мы рассмотрели API KStream и вопросы добавления состояния в приложения
Kafka Streams. В этой главе мы обсудим вопрос сохранения состояния более по
дробно. А попутно я познакомлю вас с новой абстракцией — KTable.

При обсуждении API KStream речь шла об отдельных событиях или потоках
событий. В первоначальном примере ZMart, при покупке Джейн Доу товара, мы
рассматривали покупку как отдельное событие. Мы не отслеживали количество
совершенных Джейн покупок или их частоту. В контексте базы данных поток со-
бытий покупок можно рассматривать как последовательность операций вставки.
А поскольку все записи новые и не связаны друг с другом, можно спокойно встав-
лять их в таблицу.

Теперь пусть у каждого события покупки есть первичный ключ (идентификатор
покупателя). Покупки Джейн Доу сейчас представляют собой последовательность
связанных событий покупки (обновлений). Благодаря использованию первичного
ключа происходит обновление каждой из покупок в соответствии с новыми покупка-
ми Джейн. Связь между потоками данных и таблицами можно описать следующим
образом: поток событий рассматривается как операции вставки, а события с клю-
чами — как обновления.

В этой главе мы обсудим взаимосвязь между потоками данных и таблицами
подробнее. Подобная взаимосвязь важна для понимания того, как функционирует
KTable.

Во-вторых, мы рассмотрим интерфейс KTable. API KTable необходимо, потому что
специально предназначено для работы с обновлениями записей. Эта возможность

154   Часть II  •  Разработка с помощью Kafka Streams

нужна нам для таких операций, как агрегирование и подсчеты количеств. Мы вкрат-
це затронули вопрос обновлений в главе 4, при знакомстве с преобразованиями с со-
хранением состояния; в подразделе 4.2.5 мы обновляли узел-обработчик поощрений,
чтобы отслеживать покупки.

В-третьих, мы займемся оконными операциями. Оконная операция — операция,
при которой группируются данные за определенный промежуток времени. Напри-
мер, чтобы узнать, сколько покупок было совершено за последний час при обнов-
лении каждые 10 минут. Оконные операции дают возможность собирать данные
порциями, в отличие от сбора неограниченных данных.

ПРИМЕЧАНИЕ
Оконная обработка данных (windowing) и обработка по корзинам (bucketing) —
в чем-то синонимичные понятия. И то и другое относится к разбиению ин-
формации на меньшие порции или категории. Оконная обработка данных
подразумевает категоризацию по времени, но результат в обоих случаях
одинаков.

Последней темой обсуждения в данной главе будут доступные для запросов хра-
нилища состояния. Доступные для запросов хранилища состояния — замечательная
возможность Kafka Streams: они позволяют выполнять запросы непосредственно
к хранилищам состояния. Другими словами, дают возможность просматривать
данные (с сохранением состояния) без потребления их из топика Kafka или чтения
их из базы данных. Итак, начнем с первой из анонсированных тем.

5.1. �Взаимосвязь между потоками данных
и таблицами

В главе 1 было дано определение потока данных как бесконечной последователь-
ности событий. Это довольно расплывчатая формулировка, так что конкретизируем
ее на конкретном примере.

5.1.1. Поток записей
Допустим, мы хотели бы увидеть последовательность обновлений курса акций.
Можно переделать «жемчужную» диаграмму из главы 1, чтобы она выглядела так,
как показано на рис. 5.1. Как видите, каждая котировка акций представляет собой
дискретное событие, они не связаны друг с другом. Даже если за несколько коти-
ровок отвечает одна компания, они все равно рассматриваются по отдельности.
Такое представление событий соответствует потоку данных событий, описыва
емому KStream.

Глава 5. API KTable   155

Рис. 5.1. «Жемчужная» диаграмма для неограниченного потока котировок акций

Взглянем теперь на то, как эта концепция соотносится с таблицами базы данных.
Рассмотрим простую таблицу биржевых котировок, показанную на рис. 5.2.

Рис. 5.2. Простая таблица базы данных с курсом акций различных компаний. В ней есть столбец
с ключом, а также другие столбцы со значениями. Можно рассматривать ее строки как пары

«ключ/значение», если «свалить» все остальные столбцы в контейнер value

ПРИМЕЧАНИЕ
Для упрощения будем считать, что ключ — одиночное значение.

Далее обратимся снова к потоку записей. Поскольку записи автономны, данный
поток соответствует операциям вставки в таблицу. На рис. 5.3 эти две концепции
объединены в целях иллюстрации.

Самое главное здесь — возможность рассматривать поток событий аналогично
вставкам в таблицу, благодаря чему можно лучше разобраться в использовании по-
токов данных для работы с событиями. Следующий этап — изучение случая, когда
события в потоке взаимосвязаны.

156   Часть II  •  Разработка с помощью Kafka Streams

Рис. 5.3. Поток индивидуальных событий по сравнению со вставками в таблицу базы данных.
Аналогично можно представить себе построчную потоковую обработку таблицы

5.1.2. Обновления записей (журнал изменений)
Рассмотрим тот же поток транзакций покупателя, но теперь с учетом их действий
в различные моменты времени. Если добавить ключ — идентификатор покупателя,
то можно связать события покупки друг с другом и получить поток обновлений
вместо потока событий.

Если поток событий мы сравнивали с журналом, то поток обновлений можно
сравнить с журналом изменений. Рисунок 5.4 иллюстрирует эту концепцию.

На этом рисунке видна взаимосвязь между потоком обновлений и таблицей базы
данных. Как журнал (log), так и журнал изменений (changelog) отражают добав-
ляемые в конец файла входящие записи. В журнале видны все записи, а в журнале
изменений — только последняя запись для каждого ключа.

ПРИМЕЧАНИЕ
Как в журнале, так и в журнале изменений записи при поступлении до-
бавляются в конец файла. Различие в том, что журнал используется, когда
нужно видеть все записи, а журнал изменений — только когда нужно видеть
последнюю запись для каждого ключа.

Глава 5. API KTable   157

Рис. 5.4. В журнале изменений каждая входящая запись заменяет предыдущую запись с тем же
ключом (если таковая есть). В случае потока записей общее число событий было равно четырем,

а в случае обновлений (журнала изменений) их только два

Для сокращения журнала с сохранением последних записей для всех ключей
можно воспользоваться сжатием журналов, обсуждавшимся в главе 2. Результат
сжатия журнала показан на рис. 5.5. Раз нас интересуют только последние значения,
то можно удалить более старые пары «ключ/значение».

Рис. 5.5. Слева показан журнал до сжатия, в котором можно заметить дублирующиеся ключи
с разными значениями — обновления. Справа показан журнал после сжатия — для каждого

ключа остается только последнее значение, и размер журнала за счет этого уменьшился

158   Часть II  •  Разработка с помощью Kafka Streams

Вы уже знакомы с потоками событий по работе с KStream. Для журналов измене-
ний (потоков обновлений) мы будем использовать абстракцию KTable. Следующий
этап, после того как мы разобрались во взаимосвязи между потоками и таблицами, —
сравнение потока событий с потоком обновлений.

5.1.3. �Поток событий по сравнению
с потоком обновлений

Для сравнения потока событий с потоком обновлений мы воспользуемся KStream
и KTable. С этой целью мы запустим простое приложение — биржевой тикер, за-
писывающий текущие курсы акций для трех (вымышленных!) компаний. От него
мы получим три порции котировок акций, всего девять записей. А KStream и KTable
будут читать эти записи и выводить их в консоль с помощью метода print().

На рис. 5.6 показаны результаты работы данного приложения. Как можно
видеть, KStream вывел в консоль все девять записей. Именно так и должно было
быть, поскольку KStream рассматривает каждую запись как отдельную сущность.
KTable же вывел только три записи, поскольку рассматривает их как обновления
предыдущих.

Рис. 5.6. Вывод записей с одинаковыми ключами: KTable по сравнению
с KStream

Глава 5. API KTable   159

ПРИМЕЧАНИЕ
На рис. 5.6 показано, как KTable работает с обновлениями. При этом мной
было сделано неявное допущение, о котором хотелось бы упомянуть. При
работе с KTable в записях в парах «ключ/значение» должны быть заполнены
ключи. Ключи необходимы для работы KTable, поскольку без ключа невоз-
можно обновить запись в таблице базы данных.

С точки зрения объекта KTable, он получил не девять отдельных записей, а три
исходных записи и две порции обновлений и вывел в консоль только последнюю
их порцию. Обратите внимание, что записи KTable совпадают с последними тремя
опубликованными KStream записями. Мы обсудим механизмы, с помощью которых
KTable выводит только обновления, в следующем разделе.

В листинге 5.1 приведена программа для вывода в консоль результатов биржевых
тикеров (находится в файле src/main/java/bbejeck/chapter_5/KStreamVsKTableExample.java;
исходный код можно найти по адресу https://manning.com/books/kafka-streams-in-action).

Листинг 5.1. Вывод в консоль KTable и KStream

Использование объектов Serde по умолчанию

При создании KTable и KStream мы не задавали никаких объектов Serde. А равно и при
обоих вызовах метода print(). А все благодаря тому, что мы внесли в конфигурацию
объекты Serde для использования по умолчанию, примерно вот так:

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
➥ Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
➥ StreamsSerdes.StockTickerSerde().getClass().getName());

Если же вы хотели бы использовать другие типы данных, то для чтения или внесения
записей необходимо передать объекты Serde через перегруженные методы.

160   Часть II  •  Разработка с помощью Kafka Streams

Главный вывод: записи с одинаковыми ключами в потоке данных по своей сути
обновления, а не самостоятельные новые записи. Именно понятие потока обновле-
ний лежит в основе интерфейса KTable.

Теперь, когда мы увидели интерфейс KTable в действии, можно обсудить меха-
низмы, которые лежат в основе его функциональности.

5.2. Обновления записей и настройки KTable
Чтобы разобраться, как работает интерфейс KTable, нужно задать себе два вопроса:

�� где хранятся записи;

�� как KTable определяет, когда отправлять записи дальше?

Ответы на эти вопросы жизненно важны для операций агрегирования и свертки.
Например, при агрегировании хотелось бы получить обновленные количества, но
получать обновление при каждом увеличении количества на единицу — вряд ли то,
что вам нужно.

Для ответа на первый вопрос взглянем на строку кода для создания объекта KTable:

builder.table(STOCK_TICKER_TABLE_TOPIC);

С помощью этого простого оператора StreamsBuilder создает экземпляр KTable
и одновременно незаметно создает объект StateStore для отслеживания состояния
потока, таким образом создавая поток обновлений. У созданного при этом подходе
хранилища состояния StateStore, недоступного для интерактивных запросов, есть
только внутреннее имя.

Существует перегруженная версия метода StreamsBuilder.table, принимающая
в качестве параметра экземпляр Materialized, благодаря чему у вас появляется воз-
можность настроить тип хранилища и задать для него имя, чтобы сделать его доступ-
ным для запросов. Мы обсудим интерактивные запросы позднее в этой главе.

Вот и ответ на наш первый вопрос: KTable использует для хранения локальное
состояние в сочетании с Kafka Streams (мы обсуждали хранилища состояния в раз-
деле 4.3).

Перейдем теперь к следующему вопросу: что определяет, когда KTable отправляет
обновления узлам-обработчикам далее по конвейеру? Для ответа на этот вопрос нам
придется учесть несколько факторов:

�� число поступающих в приложение записей. При повышении темпов поступления
данных обычно повышается и темп отправки обновленных записей;

�� количество уникальных ключей в данных. Опять же, чем больше уникальных
ключей, тем больше обновлений отправляется дальше по конвейеру;

�� параметры конфигурации cache.max.bytes.buffering и commit.interval.ms.

Из этого списка мы рассмотрим только то, чем можем управлять: параметры
конфигурации. Сначала поговорим о настройке cache.max.bytes.buffering.

Глава 5. API KTable   161

5.2.1. Задание размера буфера кэша
Кэш объекта KTable служит для дедупликации обновлений записей с одним ключом.
Благодаря этой дедупликации дочерние узлы получают только самые свежие обнов-
ления вместо всех обновлений, что существенно снижает объемы обрабатываемых
данных. Кроме того, в хранилище состояния помещаются только самые свежие
обновления, что означает весьма существенный рост производительности при ис-
пользовании постоянных хранилищ состояния.

Рисунок 5.7 иллюстрирует кэширование. Как вы можете видеть, при включенном
кэшировании не все обновления записей перенаправляются дальше по конвейеру.
В кэше содержится только последняя запись для конкретного ключа.

ПРИМЕЧАНИЕ
Приложение Kafka Streams представляет собой топологию (граф) соединен-
ных между собой узлов (узлов-обработчиков). У каждого узла, если только
он не концевой, есть один или несколько дочерних узлов. По завершении
работы с записью узел-обработчик отправляет ее «дальше по конвейеру»,
своим дочерним узлам.

Рис. 5.7. Кэширование KTable удаляет избыточные обновления записей с одинаковым
ключом, предотвращая таким образом переполнение дочерних узлов KTable в топологии

непрерывными обновлениями

Поскольку KTable соответствует журналу изменений в потоке данных, можно
ожидать, что в каждый конкретный момент придется иметь дело только с последним
изменением. А применение кэша обеспечивает реализацию этого поведения. При не-
обходимости обработать все записи в потоке лучше воспользоваться описанным
ранее интерфейсом KStream.

162   Часть II  •  Разработка с помощью Kafka Streams

Чем больше кэш, тем меньше изменений будет отправляться далее. Кроме того,
кэширование снижает объем данных, записываемых на диск постоянными хранили-
щами (RocksDB), а в случае включенного журналирования — и число записей для
любого хранилища, отправляемых в топик журнала изменений.

Размер кэша определяется настройкой cache.max.bytes.buffering, которая
задает объем памяти, выделяемой под кэш записей. Заданное количество па-
мяти поровну распределяется между потоками выполнения для этого потока
данных (число потоков выполнения для потока данных задается параметром
StreamsConfig.NUM_STREAM_THREADS_CONFIG конфигурации, равным по умолчанию 1).

ПРИМЕЧАНИЕ
Для отключения кэширования необходимо установить параметр cache.max.by
tes.buffering в 0. Но в результате этого далее по конвейеру будут отправ-
ляться все обновления KTable, то есть поток журнала изменений фактически
превратится в поток событий. Кроме того, без кэширования будет больше
операций ввода/вывода, ведь постоянным хранилищам придется записывать
на диск все обновления, а не только последние.

5.2.2. Задание интервала фиксации
Второй параметр конфигурации — commit.interval.ms. Он определяет частоту
(в миллисекундах) сохранения состояния узла-обработчика. При сохранении
(фиксации) состояния узла-обработчика происходит сброс кэша на диск с от-
правкой дальше по конвейеру последних обновленных и дедуплицированных
записей.

В полном технологическом процессе кэширования (рис. 5.8) можно видеть две
основные движущие силы, участвующие в отправке записей дальше по конвейеру.
Отправка записей дальше по конвейеру происходит в результате или фиксации, или
достижения максимального размера кэша. И наоборот, отключение кэширования
приведет к отправке дальше по конвейеру всех записей, включая записи с дубли-
рующимися ключами. Вообще говоря, при использовании KTable лучше, чтобы
кэширование было включено.

Как видите, необходим компромисс между размером кэша и интервалом фикса-
ции. Большой размер кэша при коротком интервале фиксации приведет к частым
обновлениям. А более длинный интервал фиксации может привести к меньшему
числу обновлений (в зависимости от настроек памяти), поскольку для освобождения
памяти предусмотрен механизм вытеснения кэша. Жестких правил тут не существу-
ет — узнать, что лучше подходит для вас, можно только методом проб и ошибок.
Рекомендую начать со значений по умолчанию: 30 секунд (интервал фиксации)
и 10 Мбайт (размер кэша). Главное — помнить, что частотой отправления из KTable
обновленных записей можно управлять.

Глава 5. API KTable   163

Рис. 5.8. Полный технологический процесс кэширования: если кэширование включено,
записи с дублированием удаляются и отправляются дальше по конвейеру при сбросе кэша

на диск или фиксации

Теперь посмотрим, как использовать KTable в своем приложении.

5.3. Агрегирование и оконные операции
В этом разделе мы перейдем к изучению наиболее многообещающих частей Kafka
Streams. Пока мы рассмотрели следующие аспекты Kafka Streams:

�� создание топологии обработки;

�� использование состояния в потоковых приложениях;

�� выполнение соединений потоков данных;

�� различия между потоками событий (KStream) и потоками обновлений (KTable).

В следующих же примерах мы соберем все эти элементы воедино. Кроме того, вы
познакомитесь с оконными операциями — еще одной замечательной возможностью
потоковых приложений. Первым нашим примером будет простое агрегирование.

164   Часть II  •  Разработка с помощью Kafka Streams

5.3.1. �Агрегирование объема продаж акций
по отраслям промышленности

Агрегирование и группировка — жизненно необходимые инструменты при работе
с потоковыми данными. Исследования отдельных записей по мере поступления
часто оказывается недостаточно. Для извлечения из данных дополнительной ин-
формации необходимы их группировка и комбинирование.

В этом примере вам предстоит примерить костюм внутридневного трейдера,
которому нужно отслеживать объемы продаж акций компаний в нескольких отрас-
лях промышленности. В частности, вас интересуют пять компаний с наибольшими
объемами продаж акций в каждой из отраслей промышленности.

Для подобного агрегирования потребуется несколько следующих шагов по пере-
воду данных в нужный вид (если говорить в общих чертах).

1.	 Создать источник на основе топика, публикующий необработанную информацию
по торговле акциями. Нам придется отобразить объект типа StockTransaction
в объект типа ShareVolume. Дело в том, что объект StockTransaction содержит
метаданные продаж, а нам нужны только данные о количестве продаваемых
акций.

2.	 Сгруппировать данные ShareVolume по символам акций. После группировки по
символам можно свернуть эти данные до промежуточных сумм объемов про-
даж акций. Стоит отметить, что метод KStream.groupBy возвращает экземпляр
типа KGroupedStream. А получить экземпляр KTable можно, вызвав далее метод
KGroupedStream.reduce.

Что такое интерфейс KGroupedStream

Методы KStream.groupBy и KStream.groupByKey возвращают экземпляр KGrou
pedStream. KGroupedStream является промежуточным представлением потока
событий после группировки по ключам. Он вовсе не предназначен для непосред-
ственной работы с ним. Вместо этого KGroupedStream используется для операций
агрегирования, результатом которых всегда является KTable. А поскольку резуль-
татом операций агрегирования является KTable и в них применяется хранилище
состояния, то, возможно, не все обновления в результате отправляются дальше
по конвейеру.

Метод KTable.groupBy возвращает аналогичный KGroupedTable — промежуточное
представление потока обновлений, перегруппированных по ключу.

Сделаем небольшой перерыв и посмотрим на рис. 5.9, на котором показано, чего
мы добились. Эта топология должна быть вам уже хорошо знакома.

Глава 5. API KTable   165

Рис. 5.9. Отображение и свертка объектов StockTransaction в объекты ShareVolume
с последующей сверткой их до промежуточных сумм

Взглянем теперь на код для этой топологии (его можно найти в файле src/main/
java/bbejeck/chapter_5/AggregationsAndReducingExample.java) (листинг 5.2).

Листинг 5.2. Источник для преобразования-свертки биржевых транзакций

Приведенный код отличается краткостью и большим объемом производимых
в нескольких строках действий. В первом параметре метода builder.stream вы мо-
жете заметить нечто новое для себя: значение перечисляемого типа AutoOffsetRe
set.EARLIEST (существует также и LATEST), задаваемое с помощью метода Consu
med.withOffsetResetPolicy. С помощью этого перечисляемого типа можно указать
стратегию сброса смещений для каждого из KStream или KTable, он обладает приори-
тетом над параметром сброса смещений из конфигурации.

166   Часть II  •  Разработка с помощью Kafka Streams

GroupByKey и GroupBy

В интерфейсе KStream есть два метода для группировки записей: GroupByKey и GroupBy.
Оба возвращают KGroupedTable, так что у вас может появиться закономерный вопрос:
в чем же различие между ними и когда использовать какой из них?

Метод GroupByKey применяется, когда ключи в KStream уже непустые. А главное, флаг
«требует повторного секционирования» никогда не устанавливался.

Метод GroupBy предполагает, что вы меняли ключи для группировки, так что флаг повтор-
ного секционирования установлен в true. Выполнение после метода GroupBy соединений,
агрегирования и т. п. приведет к автоматическому повторному секционированию.

Резюме: следует при малейшей возможности использовать GroupByKey, а не GroupBy.

Что делают методы mapValues и groupBy — понятно, так что взглянем на метод sum()
(его можно найти в файле src/main/java/bbejeck/model/ShareVolume.java) (листинг 5.3).

Листинг 5.3. Метод ShareVolume.sum

ПРИМЕЧАНИЕ
Мы уже встречали паттерн проектирования «Строитель» ранее в этой книге,
но здесь он используется несколько в другом контексте. В данном примере
«Строитель» применяется для создания копии объекта и обновления поля
без модификации исходного объекта.

Метод ShareVolume.sum возвращает промежуточную сумму объема продаж акций,
а результат всей цепочки вычислений представляет собой объект KTable<String,
ShareVolume>. Теперь вы понимаете, какую роль играет KTable. При поступлении
объектов ShareVolume в соответствующем объекте KTable сохраняется последнее
актуальное обновление. Важно не забывать, что все обновления отражаются в пред-
шествующем shareVolumeKTable, но не все отправляются далее.

ПРИМЕЧАНИЕ
Зачем выполнять свертку вместо агрегирования? Хотя свертка — одна из
разновидностей агрегирования, при ней вы получаете объект того же типа.
Хотя операция агрегирования также суммирует значения, но может возвра-
щать объект другого типа.

Глава 5. API KTable   167

Далее с помощью этого KTable мы выполняем агрегирование (по количеству
продаваемых акций), чтобы получить пять компаний с наибольшими объемами про-
даж акций в каждой из отраслей промышленности. Наши действия при этом будут
аналогичны действиям при первом агрегировании.

1.	 Выполнить еще одну операцию groupBy для группировки отдельных объектов
ShareVolume по отраслям промышленности.

2.	 Приступить к суммированию объектов ShareVolume. На этот раз объект агреги-
рования представляет собой очередь по приоритету фиксированного размера.
В такой очереди фиксированного размера сохраняются только пять компаний
с наибольшими количествами проданных акций.

3.	 Отобразить очереди из предыдущего пункта в строковое значение и вернуть
пять наиболее продаваемых по количеству акций по отраслям промышлен-
ности.

4.	 Записать результаты в строковом виде в топик.

На рис. 5.10 показан граф топологии движения данных. Как вы видите, второй
круг обработки достаточно прост.

Рис. 5.10. Топология для группировки по отрасли промышленности, агрегирования
для получения пяти самых продаваемых, отображения очереди из этих пяти в строковое

значение и записи данной строки в топик

Теперь, четко уяснив себе структуру этого второго круга обработки, можно обра-
титься к его исходному коду (вы найдете его в файле src/main/java/bbejeck/chapter_5/
AggregationsAndReducingExample.java) (листинг 5.4).

В данном инициализаторе есть переменная fixedQueue. Это пользовательский
объект — адаптер для java.util.TreeSet, который применяется для отслежи-
вания N наибольших результатов в порядке убывания количества проданных
акций.

168   Часть II  •  Разработка с помощью Kafka Streams

Листинг 5.4. KTable: группировка и агрегирование

Вы уже встречались с вызовами groupBy и mapValues, так что не будем на них оста-
навливаться (мы вызываем метод KTable.toStream, поскольку метод KTable.print счи-
тается устаревшим). Но вы пока еще не видели KTable-версию метода aggregate(),
так что мы потратим немного времени на его обсуждение.

Как вы помните, KTable отличает то, что записи с одинаковыми ключами счита-
ются обновлениями. KTable заменяет старую запись новой. Агрегирование происхо-
дит подобным же образом: агрегируются последние записи с одним ключом. При по-
ступлении записи она добавляется в экземпляр класса FixedSizePriorityQueue
с помощью сумматора (второй параметр в вызове метода aggregate), но если уже
существует другая запись с тем же ключом, то старая запись удаляется с помощью
вычитателя (третий параметр в вызове метода aggregate).

Это все значит, что наш агрегатор, FixedSizePriorityQueue, вовсе не агрегирует
все значения с одним ключом, а хранит скользящую сумму количеств N наиболее
продаваемых видов акций. В каждой поступающей записи содержится общее коли-
чество проданных до сих пор акций. KTable даст вам информацию о том, акций каких
компаний продается больше всего в настоящий момент, скользящее агрегирование
каждого из обновлений не требуется.

Мы научились делать две важные вещи:

�� группировать значения в KTable по общему для них ключу;

�� выполнять над этими сгруппированными значениями такие полезные операции,
как свертка и агрегирование.

Глава 5. API KTable   169

Умение выполнять эти операции важно для понимания смысла данных, движу-
щихся через приложение Kafka Streams, и выяснения того, какую информацию они
несут.

Мы также соединили воедино некоторые из ключевых понятий, обсуждавшихся
ранее в этой книге. В главе 4 мы рассказывали, насколько важно для потокового
приложения отказоустойчивое, локальное состояние. Первый пример из этой гла-
вы продемонстрировал, почему настолько важно локальное состояние — оно дает
возможность отслеживать, какую информацию вы уже видели. Локальный доступ
позволяет избежать сетевых задержек, благодаря чему приложение становится более
производительным и устойчивым к ошибкам.

При выполнении любой операции свертки или агрегирования необходимо ука-
зать название хранилища состояния. Операции свертки и агрегирования возвращают
экземпляр KTable, а KTable использует хранилище состояния для замены старых
результатов новыми. Как вы видели, далеко не все обновления отправляются далее
по конвейеру, и это важно, поскольку операции агрегирования предназначены для
получения итоговой информации. Если не применять локальное состояние, KTable
будет отправлять дальше все результаты агрегирования и свертки.

Далее мы посмотрим на выполнение таких операций, как агрегирование, в пре-
делах конкретного промежутка времени — так называемых оконных операций
(windowing operations).

5.3.2. Оконные операции
В предыдущем разделе мы познакомились со «скользящими» сверткой и агреги-
рованием. Приложение производило непрерывную свертку объема продаж акций
с последующим агрегированием пяти наиболее продаваемых на бирже акций.

Иногда подобные непрерывные агрегирование и свертка результатов необходи-
мы. А иногда нужно выполнить операции только над заданным промежутком време-
ни. Например, вычислить, сколько было произведено биржевых операций с акциями
конкретной компании за последние 10 минут. Или сколько пользователей нажало на
новый рекламный баннер за последние 15 минут. Приложение может производить
такие операции многократно, но с результатами, относящимися только к заданным
промежуткам времени (временным окнам).

Подсчет биржевых транзакций по покупателю
В следующем примере мы займемся отслеживанием биржевых транзакций по не-
скольким трейдерам — либо крупным организациям, либо смышленым финанси-
стам-одиночкам.

Существует две возможные причины для подобного отслеживания. Одна из
них — необходимость знать, что покупают/продают лидеры рынка. Если эти круп-
ные игроки и искушенные инвесторы видят для себя открывающиеся возможности,

170   Часть II  •  Разработка с помощью Kafka Streams

имеет смысл следовать их стратегии. Вторая причина заключается в желании заме-
тить любые возможные признаки незаконных сделок с использованием внутренней
информации. Для этого вам понадобится проанализировать корреляцию крупных
всплесков продаж с важными пресс-релизами.

Такое отслеживание состоит из таких этапов, как:

�� создание потока для чтения из топика stock-transactions;

�� группировка входящих записей по идентификатору покупателя и биржевому
символу акции. Вызов метода groupBy возвращает экземпляр класса KGrou
pedStream;

�� возвращение методом KGroupedStream.windowedBy потока данных, ограни-
ченного временным окном, что позволяет выполнять оконное агрегирование.
В зависимости от типа окна возвращается либо TimeWindowedKStream, либо
SessionWindowedKStream;

�� подсчет транзакций для операции агрегирования. Оконный поток данных опре-
деляет, учитывается ли при этом подсчете конкретная запись;

�� запись результатов в топик или вывод их в консоль во время разработки.

Топология данного приложения проста, но наглядная ее картинка не помешает.
Взглянем на рис. 5.11.

Далее мы рассмотрим функциональность оконных операций и соответству
ющий код.

Рис. 5.11. Топология оконного подсчета транзакций

Глава 5. API KTable   171

Типы окон
В Kafka Streams существует три типа окон:

�� сеансовые;

�� «кувыркающиеся» (tumbling);

�� скользящие/«прыгающие» (sliding/hopping).

Какое выбрать — зависит от бизнес-требований. «Кувыркающиеся» и «прыга-
ющие» окна ограничиваются по времени, в то время как ограничения сеансовых
связаны с действиями пользователей — длительность сеанса (-ов) определяет-
ся исключительно тем, насколько активно ведет себя пользователь. Главное —
не забывать, что все типы окон основываются на метках даты/времени записей,
а не на системном времени.

Далее мы реализуем нашу топологию с каждым из типов окон. Полный код будет
приведен только в первом примере, для других типов окон ничего не изменится,
кроме типа оконной операции.

Сеансовые окна
Сеансовые окна сильно отличаются от всех остальных типов окон. Они ограничива-
ются не столько по времени, сколько активностью пользователя (или активностью
той сущности, которую вы хотели бы отслеживать). Сеансовые окна разграничива-
ются периодами бездействия.

Рисунок 5.12 иллюстрирует понятие сеансовых окон. Меньший сеанс будет сли-
ваться с сеансом слева от него. А сеанс справа будет отдельным, поскольку следует
за длительным периодом бездействия. Сеансовые окна основываются на действиях
пользователей, но применяют метки даты/времени из записей для определения того,
к какому сеансу относится запись.

Рис. 5.12. Сеансовые окна, разделяемые коротким периодом бездействия, объединяются в новый,
более крупный сеанс

172   Часть II  •  Разработка с помощью Kafka Streams

Использование сеансовых окон для отслеживания
биржевых транзакций
Воспользуемся сеансовыми окнами для захвата информации о биржевых транзак-
циях. Реализация сеансовых окон показана в листинге 5.5 (который можно найти
в файле src/main/java/bbejeck/chapter_5/CountingWindowingAndKTableJoinExample.java).

Листинг 5.5. Отслеживание биржевых транзакций с помощью сеансовых окон

Большинство операций этой топологии вы уже встречали, так что нет нужды
рассматривать их тут снова. Но есть здесь и несколько новых элементов, которые
мы сейчас обсудим.

При всякой операции groupBy обычно выполняется какая-либо операция агреги-
рования (агрегирование, свертка или подсчет количества). Можно выполнить или
накопительное агрегирование с нарастающим итогом, или оконное агрегирование,
при котором учитываются записи в пределах заданного временного окна.

Код из листинга 5.5 выполняет подсчет количества транзакций в пределах сеан-
совых окон. На рис. 5.13 эти действия анализируются пошагово.

С помощью вызова windowedBy(SessionWindows.with(twentySeconds).un
til(fifteenMinutes)) мы создаем сеансовое окно с интервалом бездействия 20 се-
кунд и интервалом сохранения 15 минут. Интервал бездействия 20 секунд означает,
что приложение будет включать любую запись, которая поступит в пределах 20 се-
кунд от окончания или начала текущего сеанса в текущий (активный) сеанс.

Глава 5. API KTable   173

Рис. 5.13. Создание сеансовых окон с заданием интервалов бездействия и сохранения

Далее мы указываем, какую операцию агрегирования нужно выполнить в се-
ансовом окне — в данном случае count. Если входящая запись выходит за пределы
интервала бездействия (с любой из сторон от метки даты/времени), то приложение
создает новый сеанс. Интервал сохранения означает поддержание сеанса в течение
определенного времени и допускает запоздавшие данные, которые выходят за пе-
риод бездействия сеанса, но все еще могут быть присоединены. Кроме того, начало
и конец нового сеанса, получившегося в результате объединения, соответствуют
самой ранней и самой поздней метке даты/времени.

Рассмотрим несколько записей из метода count, чтобы увидеть, как работают
сеансы (табл. 5.1).

Таблица 5.1. Таблица сеансов с интервалом бездействия 20 секунд

Порядок поступления Ключ Метка даты/времени

1 {123-345-654,FFBE} 00:00:00

2 {123-345-654,FFBE} 00:00:15

3 {123-345-654,FFBE} 00:00:50

4 {123-345-654,FFBE} 00:00:05

При поступлении записей мы ищем уже существующие сеансы с тем же ключом,
временем окончания меньше чем текущая метка даты/времени — интервал бездействия
и временем начала больше чем текущая метка даты/времени + интервал бездействия.
С учетом этого четыре записи из табл. 5.1 сливаются в единый сеанс следующим
образом.

1.	 Первой поступает запись 1, так что время начала равно времени окончания
и равно 00:00:00.

2.	 Далее поступает запись 2, и мы ищем сеансы, заканчивающиеся не раньше
23:59:55 и начинающиеся не позднее 00:00:35. Находим запись 1 и объединяем
сеансы 1 и 2. Берем время начала сеанса 1 (более раннее) и время окончания
сеанса 2 (более позднее), так что наш новый сеанс начинается в 00:00:00 и за-
канчивается в 00:00:15.

3.	 Поступает запись 3, мы ищем сеансы между 00:00:30 и 00:01:10 и не находим
ни одного. Добавляем второй сеанс для ключа 123-345-654,FFBE, начинающийся
и заканчивающийся в 00:00:50.

174   Часть II  •  Разработка с помощью Kafka Streams

4.	 Поступает запись 4, и мы ищем сеансы между 23:59:45 и 00:00:25. На этот раз
находятся оба сеанса — 1 и 2. Все три сеанса объединяются в один, с временем
начала 00:00:00 и временем окончания 00:00:15.
Из рассказанного в этом разделе стоит запомнить следующие важные нюансы:

�� сеансы — не окна фиксированного размера. Длительность сеанса определяется
активностью в рамках заданного промежутка времени;
�� метки даты/времени в данных определяют, попадает событие в существующий

сеанс или в промежуток бездействия.

Далее мы обсудим следующую разновидность окон — «кувыркающиеся» окна.

«Кувыркающиеся» окна
«Кувыркающиеся» (tumbling) окна захватывают события, попадающие в опреде-
ленный промежуток времени. Представьте себе, что вам нужно захватывать все
биржевые транзакции какой-то компании каждые 20 секунд, так что вы собираете
все события за этот промежуток времени. По окончании 20-секундного интервала
окно «кувыркается» и переходит на новый 20-секундный интервал наблюдения.
Рисунок 5.14 иллюстрирует эту ситуацию.

Рис. 5.14. Смещение «кувыркающегося» окна через фиксированный промежуток времени

Как вы можете видеть, все поступившие за последние 20 секунд события вклю-
чены в окно. По окончании этого промежутка времени создается новое окно.

В листинге 5.6 приведен код, демонстрирующий использование «кувыркающих-
ся» окон для захвата каждые 20 секунд биржевых транзакций (его можно найти
в файле src/main/java/bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java).

Глава 5. API KTable   175

Листинг 5.6. Использование «кувыркающихся» окон для подсчета транзакций

Благодаря этому небольшому изменению вызова метода TimeWindows.of можно
использовать «кувыркающееся» окно. В данном примере нет вызова метода until(),
вследствие чего будет использоваться интервал сохранения по умолчанию, равный
24 часам.

Наконец, пора перейти к последнему из вариантов окон — «прыгающим»
(hopping) окнам.

Скользящие («прыгающие») окна
Скользящие/«прыгающие» (sliding/hopping) окна похожи на «кувыркающиеся»,
но с небольшим отличием. Скользящие окна не ждут окончания интервала време-
ни перед созданием нового окна для обработки недавних событий. Они запускают
новые вычисления после интервала ожидания, меньшего чем длительность окна.

Для иллюстрации различий «кувыркающихся» и «прыгающих» окон вернемся
к примеру с подсчетом биржевых транзакций. Наша цель по-прежнему состоит
в подсчете числа транзакций, но нам не хотелось бы ждать весь промежуток време-
ни перед обновлением счетчика. Вместо этого мы будем обновлять счетчик через
более короткие промежутки времени. Например, подсчитывать число транзакций
мы будем по-прежнему каждые 20 секунд, но обновлять счетчик — каждые 5 секунд,
как показано на рис. 5.15. При этом у нас оказывается три окна результатов с пере-
крывающимися данными.

Рис. 5.15. Скользящие окна обновляются чаще и могут содержать пересекающиеся данные

176   Часть II  •  Разработка с помощью Kafka Streams

В листинге 5.7 приведен код для задания скользящих окон (его можно найти
в файле src/main/java/bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java).

Листинг 5.7. Использование «прыгающих» окон для подсчета транзакций

«Кувыркающееся» окно можно преобразовать в «прыгающее» с помощью до-
бавления вызова метода advanceBy(). В приведенном примере интервал сохранения
равен 15 минутам.

ПРИМЕЧАНИЕ
Как вы, наверное, заметили, единственное отличие в коде во всех приведен-
ных примерах оконных операций заключается в вызове метода windowedBy.
Вместо включения в код примеров четырех практически идентичных классов
я вставил четыре различные строки для оконных операций в файл src/main/
java/bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java. Чтобы
посмотреть на ту или иную оконную операцию в действии, закомментируйте
текущую оконную операцию и раскомментируйте ту, которую хотите вы-
полнить.

Вы увидели в этом разделе, как ограничивать результаты агрегирования вре-
менными окнами. В частности, хотелось бы, чтобы вы запомнили из этого раздела
следующие три вещи:

�� размер сеансовых окон ограничивается не промежутком времени, а активностью
пользователей;

�� «кувыркающиеся» окна дают представление о событиях в рамках заданного
периода времени;

�� длительность работы «прыгающих» окон фиксирована, но они часто обновля-
ются и могут содержать во всех окнах пересекающиеся записи.

Далее мы узнаем, как преобразовать KTable обратно в KStream для соединения.

5.3.3. Соединение объектов KStream и KTable
В главе 4 мы обсуждали соединение двух объектов KStream. Теперь нам предстоит
научиться соединять KTable и KStream. Понадобиться это может по следующей про-
стой причине. KStream — поток записей, а KTable — поток обновлений записей, но

Глава 5. API KTable   177

иногда может быть нужно добавить дополнительный контекст к потоку записей
с помощью обновлений из KTable.

Возьмем данные о количестве биржевых транзакций и соединим их с биржевыми
новостями по соответствующим отраслям промышленности. Вот что нужно сделать,
что добиться этого с учетом уже имеющегося кода.

1.	 Преобразовать объект KTable с данными о количестве биржевых транзакций
в KStream с последующей заменой ключа на ключ, обозначающий отрасль про-
мышленности, соответствующую данному символу акций.

2.	 Создать объект KTable, читающий данные из топика с биржевыми новостями.
Этот новый KTable будет категоризован по отраслям промышленности.

3.	 Соединить обновления новостей с информацией о количестве биржевых транз
акций по отраслям промышленности.

Теперь посмотрим, как реализовать этот план действий.

Преобразование KTable в KStream
Для преобразования KTable в KStream необходимо сделать следующее.

1.	 Вызвать метод KTable.toStream().

2.	 С помощью вызова метода KStream.map заменить ключ названием отрасли
промышленности, после чего извлечь из экземпляра Windowed объект Trans
actionSummary.

Мы свяжем эти операции цепочкой следующим образом (код можно найти в фай-
ле src/main/java/bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java) (листинг 5.8).

Листинг 5.8. Преобразование KTable в KStream

Поскольку мы выполняем операцию KStream.map, то повторное секционирова-
ние для возвращаемого экземпляра KStream производится автоматически при его
использовании в соединении.

Мы завершили процесс преобразования, далее нам нужно создать объект KTable
для чтения биржевых новостей.

178   Часть II  •  Разработка с помощью Kafka Streams

Создание KTable для биржевых новостей
К счастью, для создания объекта KTable достаточно одной строки кода (этот код можно
найти в файле src/main/java/bbejeck/chapter_5/CountingWindowingAndKtableJoinExample.java)
(листинг 5.9).

Листинг 5.9. Объект KTable для биржевых новостей

Стоит отметить, что никаких объектов Serde указывать не требуется, поскольку
в настройках используются строковые Serde. Также благодаря применению пере-
числения EARLIEST таблица заполняется записями в самом начале.

Теперь мы можем перейти к заключительному шагу — соединению.

Соединение обновлений новостей с данными о числе транзакций
Создание соединения не представляет сложностей. Мы воспользуемся левым
соединением на случай, если по соответствующей отрасли промышленности нет
биржевых новостей (нужный код можно найти в файле src/main/java/bbejeck/chapter_5/
CountingWindowingAndKtableJoinExample.java) (листинг 5.10).

Листинг 5.10. Выполнение соединения объектов KStream и KTable

Этот оператор leftJoin достаточно прост. В отличие от соединений из главы 4,
метод JoinWindow не используется, поскольку при выполнении соединения KStream-
KTable для каждого ключа в KTable присутствует только одна запись. Такое соеди-
нение не ограничивается по времени: запись или есть в KTable, или отсутствует.
Основной вывод: с помощью объектов KTable можно обогащать KStream реже об-
новляемыми справочными данными.

А теперь мы рассмотрим более эффективный способ обогащения событий из
KStream.

Глава 5. API KTable   179

5.3.4. Объекты GlobalKTable
Как вы поняли, существует необходимость обогащения потоков событий или до-
бавления к ним контекста. В главе 4 вы видели соединения двух объектов KStream,
а в предыдущем разделе — соединение KStream и KTable. Во всех этих случаях не-
обходимо повторное секционирование потока данных при отображении ключей на
новый тип или значение. Иногда повторное секционирование выполняется явным
образом, а иногда Kafka Streams делает это автоматически. Повторное секциониро-
вание необходимо, поскольку ключи изменились и записи должны оказаться в но-
вых секциях, иначе соединение окажется невозможным (это обсуждалось в главе 4,
в пункте «Повторное секционирование данных» подраздела 4.2.4).

Повторное секционирование имеет свою цену
Повторное секционирование требует затрат — дополнительных затрат ресурсов на
создание промежуточных топиков, сохранение дублирующихся данных в еще одном
топике; оно также означает повышение задержки вследствие записи и чтения из этого
топика. Кроме того, при необходимости выполнить соединение более чем по одному
аспекту или измерению нужно организовать соединения цепочкой, отобразить
записи с новыми ключами и снова провести процесс повторного секционирования.

Соединение с наборами данных меньшего размера
В некоторых случаях объем справочных данных, с которыми планируется соеди-
нение, относительно невелик, так что полные их копии вполне могут поместиться
локально на каждом из узлов. Для подобных ситуаций в Kafka Streams предусмотрен
класс GlobalKTable.

Экземпляры GlobalKTable уникальны, поскольку приложение реплицирует все
данные на каждый из узлов. А поскольку на каждом из узлов присутствуют все
данные, нет необходимости секционировать поток событий по ключу справочных
данных, чтобы он был доступен всем секциям. С помощью объектов GlobalKTable
можно также выполнять бесключевые соединения. Вернемся к одному из предыду-
щих примеров для демонстрации этой возможности.

Соединение объектов KStream с объектами GlobalKTable
В подразделе 5.3.2 мы выполнили оконное агрегирование биржевых транзакций по
покупателям. Результаты этого агрегирования выглядели примерно следующим
образом:

{customerId='074-09-3705', stockTicker='GUTM'}, 17
{customerId='037-34-5184', stockTicker='CORK'}, 16

Хотя эти результаты соответствовали поставленной цели, было бы удобнее,
если бы выводилось также имя клиента и полное название компании. Чтобы доба-
вить имя покупателя и название компании, можно выполнять обычные соединения,
но при этом понадобится произвести два отображения ключей и повторное секцио-
нирование. С помощью GlobalKTable можно избежать затрат на подобные операции.

180   Часть II  •  Разработка с помощью Kafka Streams

Для этого мы воспользуемся объектом countStream из листинга 5.11 (соответству
ющий код можно найти в файле src/main/java/bbejeck/chapter_5/GlobalKTableExample.java),
соединив его с двумя объектами GlobalKTable.

Листинг 5.11. Агрегирование биржевых транзакций с помощью сеансовых окон

KStream<String, TransactionSummary> countStream =
builder.stream(STOCK_TRANSACTIONS_TOPIC,
➥ Consumed.with(stringSerde, transactionSerde)
➥ .withOffsetResetPolicy(LATEST)).groupBy((noKey, transaction) ->
➥ TransactionSummary.from(transaction),
➥ Serialized.with(transactionSummarySerde, transactionSerde))
 .windowedBy(SessionWindows.with(twentySeconds)).count()
 .toStream().map(transactionMapper);

Мы уже обсуждали это ранее, так что не стану повторяться. Но отмечу, что код
в функции toStream().map ради удобочитаемости абстрагирован в объект-функцию
вместо встраиваемого лямбда-выражения.

Следующий этап — объявление двух экземпляров GlobalKTable (приведенный код
можно найти в файле src/main/java/bbejeck/chapter_5/GlobalKTableExample.java) (листинг 5.12).

Листинг 5.12. Объявление экземпляров GlobalKTable для справочных данных

Обратите внимание, что названия топиков описываются с помощью перечисля-
емых типов.

Теперь, когда мы подготовили все компоненты, осталось написать код для соеди-
нения (который можно найти в файле src/main/java/bbejeck/chapter_5/GlobalKTableExam
ple.java) (листинг 5.13).

Листинг 5.13. Соединение объекта KStream с двумя GlobalKTable

Глава 5. API KTable   181

Хотя в этом коде присутствуют два соединения, они организованы в виде це-
почки, поскольку отдельно ни один из их результатов не используется. Результаты
выводятся в конце всей операции.

При запуске вышеприведенной операции соединения вы получите результаты
следующего вида:

{customer='Barney, Smith' company="Exxon", transactions= 17}

Суть не изменилась, но эти результаты выглядят более понятно.
Если считать главу 4, вы уже видели несколько типов соединений в действии.

Они перечислены в табл. 5.2. Эта таблица отражает возможности соединения, ак-
туальные для версии 1.0.0 Kafka Streams; в будущих выпусках, возможно, что-то
поменяется.

Таблица 5.2. Соединения в Kafka Streams

Левое соединение Внутреннее соединение Внешнее соединение

KStream-KStream KStream-KStream KStream-KStream

KStream-KTable KStream-KTable –

KTable-KTable KTable-KTable KTable-KTable

KStream-GlobalKTable KStream-GlobalKTable –

В заключение напомню основное: вы можете соединять потоки событий (KStream)
и потоки обновлений (KTable) с помощью локального состояния. Кроме того, если
размер справочных данных не слишком велик, можно воспользоваться объектом
GlobalKTable. GlobalKTable реплицируют все секции на каждый из узлов приложе-
ния Kafka Streams, обеспечивая тем самым доступность всех данных независимо от
того, какой секции соответствует ключ.

Далее мы увидим возможность Kafka Streams, благодаря которой можно наблю-
дать изменения состояния без потребления данных из топика Kafka.

5.3.5. Доступное для запросов состояние
Мы уже выполняли несколько операций с участием состояния и всегда выводили
результаты в консоль (для целей разработки) или записывали их в топик (для це-
лей промышленной эксплуатации). При записи результатов в топик приходится
использовать потребитель Kafka для их просмотра.

Чтение данных из этих топиков можно считать разновидностью материализо-
ванных представлений (materialized views). Для наших задач можно использовать
определение материализованного представления из «Википедии»: «…физический
объект базы данных, содержащий результаты выполнения запроса. Например, оно
может быть локальной копией удаленных данных, или подмножеством строк и/или
столбцов таблицы или результатов соединения, или сводной таблицей, полученной
с помощью агрегирования» (https://en.wikipedia.org/wiki/Materialized_view).

182   Часть II  •  Разработка с помощью Kafka Streams

Kafka Streams также позволяет выполнять интерактивные запросы (interactive
queries) к хранилищам состояния, что дает возможность непосредственного чтения
этих материализованных представлений. Важно отметить, что запрос к хранилищу
состояния носит характер операции «только для чтения». Благодаря этому вы мо-
жете не бояться случайно сделать состояние несогласованным во время обработки
данных приложением.

Возможность непосредственных запросов к хранилищам состояния имеет
большое значение. Она значит, что можно создавать приложения — информаци-
онные панели без необходимости сначала получать данные от потребителя Kafka.
Повышает она и эффективность приложения, благодаря тому что не требуется снова
записывать данные:

�� благодаря локальности данных к ним можно быстро обратиться;

�� исключается дублирование данных, поскольку они не записываются во внешнее
хранилище1.

Главное, что я хотел бы, чтобы вы запомнили: можно напрямую выполнять за-
просы к состоянию из приложения. Нельзя переоценить возможности, которые
это вам дает. Вместо того чтобы потреблять данные из Kafka и сохранять записи
в базе данных для приложения, можно выполнять запросы к хранилищам состояния
с тем же результатом. Непосредственные запросы к хранилищам состояния означают
меньший объем кода (отсутствие потребителя) и меньше программного обеспечения
(отсутствие потребности в таблице базы данных для хранения результатов).

Мы охватили немалый объем информации в настоящей главе, поэтому на время
прекратим наше обсуждение интерактивных запросов к хранилищам состояния.
Но не волнуйтесь: в главе 9 мы будем создавать простое приложение — информа-
ционную панель с интерактивными запросами. Для демонстрации интерактивных
запросов и возможностей их добавления в приложения Kafka Streams в нем будут
использоваться некоторые из примеров этой и предыдущих глав.

Резюме
�� Объекты KStream олицетворяют потоки событий, сравнимые со вставками в базу

данных. Объекты KTable олицетворяют потоки обновлений, они больше схожи
с обновлениями в базе данных. Размер объекта KTable не растет, старые записи
заменяются новыми.

�� Объекты KTable необходимы для операций агрегирования.

1	 Этот раздел основан на информации из статей Джея Крепса (Jay Kreps) Introducing Kafka
Streams: Stream Processing Made Simple («Знакомимся с Kafka Streams: упрощение пото-
ковой обработки», http://mng.bz/49HO) и The Log: What Every Software Engineer Should
Know About Real-time Data’s Unifying Abstraction («Журнал: что каждый разработчик
ПО должен знать об абстракции, объединяющей всю обработку поступающих в реальном
времени данных», http://mng.bz/eE3w).

Глава 5. API KTable   183

�� С помощью оконных операций можно разбить агрегированные данные по
временным корзинам.

�� Благодаря объектам GlobalKTable можно получить доступ к справочным данным
в любой точке приложения, независимо от разбиения по секциям.

�� Возможны соединения между собой объектов KStream, KTable и GlobalKTable.

До сих пор мы концентрировали внимание на создании приложений Kafka
Streams с помощью высокоуровневого DSL KStream. Хотя высокоуровневый под-
ход позволяет создавать аккуратные и лаконичные программы, его использование
представляет собой определенный компромисс. Работа с DSL KStream означает
повышение лаконичности кода за счет снижения степени контроля. В следующей
главе мы рассмотрим низкоуровневый API узлов-обработчиков и попробуем другие
компромиссы. Программы станут длиннее, чем были до сих пор, зато у нас появит-
ся возможность создания практически любого узла-обработчика, который только
может нам понадобиться.

6 API узлов-обработчиков

В этой главе:

�� что лучше: абстракции более высокого уровня или больше возможностей контроля;
�� создание топологии с использованием источников, узлов-обработчиков и стоков;
�� углубляемся в API узлов-обработчиков на примере узла финансовой аналитики;
�� создаем узел совместной группировки;
�� интеграция API узлов-обработчиков и API Kafka Streams.

До сих пор мы работали в этой книге с высокоуровневым API Kafka Streams.
Но именно DSL дает возможность разработчикам создавать ошибкоустойчивые
приложения с помощью минимального количества кода. Способность быстрой
компоновки топологий обработки — важная возможность DSL Kafka Streams.
Благодаря этой возможности вы можете быстро воплощать в жизнь свои идеи
по обработке данных, не увязая в запутанных настройках вроде тех, что бывают
у других фреймворков.

В какой-то момент даже при использовании самых лучших инструментов вы на-
толкнетесь на какой-нибудь нестандартный случай: задачу, которая требует отхода
от привычного пути. Как бы то ни было, вам придется перейти на уровень ниже
и создать код, который просто невозможно было написать при использовании аб-
стракции более высокого уровня.

6.1. �Компромисс между повышением уровня
абстракции и расширением возможностей
контроля

Классический пример компромисса между повышением уровня абстракции и рас-
ширением возможностей контроля — использование фреймворков объектно-ре-
ляционного отображения (object-relational mapping, ORM). Хороший фреймворк
ORM отображает объекты предметной области в таблицы базы данных и создает
нужные SQL-запросы во время выполнения программы. При SQL-операциях
не выше среднего уровня сложности (простые операторы SELECT или JOIN) фрейм-

Глава 6. API узлов-обработчиков   185

ворки ORM экономят массу времени. Но как бы хорош ORM-фреймворк ни был,
всегда найдется хотя бы несколько запросов (очень сложные соединения, операторы
SELECT со вложенными подзапросами), которые просто не работают так, как вам
нужно. Вам придется самим написать код SQL для получения информации из базы
данных в нужном формате. Здесь и возникает необходимость компромисса между
повышением уровня абстракции и расширением возможностей контроля. Зачастую
можно сочетать свой код SQL с высокоуровневыми отображениями, реализуемыми
фреймворком.

Эта глава посвящена тем случаям, когда требуется такая потоковая обработка,
которую использование DSL Kafka Streams только усложняет. Например, как вы
видели при работе с API KTable, фреймворк управляет временем отправки записей
далее по конвейеру. Но вам может понадобиться управлять отправкой записей
явным образом. Например, при отслеживании сделок на Уолл-стрит вам нужно
отправлять записи далее только в случае превышения ценой акции определенного
порогового значения. Для подобного контроля можно задействовать API узлов-
обработчиков. Хотя API узлов-обработчиков повышает сложность разработки, но
предоставляет более широкие возможности. С его помощью можно создавать поль-
зовательские узлы-обработчики, которые выполняют практически все, что только
может вам понадобиться.

Из этой главы вы узнаете, как с помощью API узлов-обработчиков решать сле-
дующие задачи:

�� планировать выполнение каких-либо действий через равные промежутки време-
ни (на основе меток даты/времени записей или системного времени);
�� получить полный контроль над тем, когда записи отправляются далее по кон-

вейеру;
�� отправлять записи далее конкретным дочерним узлам;
�� создавать отсутствующую в API Kafka Streams функциональность (я покажу

пример этого при создании узла совместной группировки).

Сначала посмотрим на использование API узлов-обработчиков на примере соз-
дания топологии шаг за шагом.

6.2. �Создание топологии с использованием
источников, узлов-обработчиков и стоков

Допустим, вы владелец успешной пивоварни (Pops Hops) с несколькими точками
продаж. Недавно вы начали принимать онлайн-заказы от оптовых торговцев, вклю-
чая сбыт за рубежом, в Европе. Вам нужно организовать маршрутизацию заказов
внутри компании, в зависимости от того, местный заказ или международный, с пре-
образованием валюты любых продаж в рамках ЕС из фунтов стерлингов в евро или
доллары США.

Упрощенная схема такого технологического процесса будет выглядеть примерно
так, как показано на рис. 6.1. При реализации этого примера вы увидите, насколько

186   Часть II  •  Разработка с помощью Kafka Streams

гибко позволяет API узлов-обработчиков выбирать конкретные дочерние узлы для
пересылки записей. Начнем с создания узла-источника.

Рис. 6.1. Конвейер сбыта пива

6.2.1. Добавление узла-источника
Первый шаг формирования топологии — создание узлов-источников. В листинге 6.1
(код которого можно найти в файле src/main/java/bbejeck/chapter_6/PopsHopsApplication.
java) задается узел-источник для нашей новой топологии.

Листинг 6.1. Создание узла-источника нашего «пивного» приложения

В методе Topology.addSource() есть несколько параметров, которые не использо-
вались нами в DSL. Во-первых, мы указываем название узла-источника. При приме-
нении DSL Kafka Streams передавать название не требовалось, поскольку название для
узла генерировал экземпляр KStream. Но при использовании API узлов-обработчиков
необходимо указывать названия узлов топологии. Имена узлов применяются для
привязки дочерних узлов к родительским.

Далее мы указываем используемое для этого источника средство извлечения мет-
ки даты/времени. В подразделе 4.5.1 мы обсуждали различные средства извлечения
меток даты/времени, которые можно применять для источников потоков данных.

Глава 6. API узлов-обработчиков   187

В этом случае мы задействовали класс UsePreviousTimeOnInvalidTimestamp; все
остальные источники в данном приложении будут использовать класс по умолча-
нию FailOnInvalidTimestamp.

Затем мы указали десериализаторы ключей и значений — еще одно отличие от
DSL Kafka Streams. В DSL при создании узлов-источников и узлов-стоков мы пере-
давали экземпляры Serde. Объект Serde сам содержит сериализатор и десериализа-
тор, а DSL Kafka Streams использует нужный в зависимости от того, требуется ли
преобразование объекта в байтовый массив или байтового массива в объект. А по-
скольку API узлов-обработчиков — абстракция более низкого уровня, необходимо
напрямую указывать десериализатор при создании узла-источника и сериализатор
при создании узла-стока. Наконец, мы указали название топика-источника.

Взглянем теперь на то, как мы будем обрабатывать записи покупок, поступающие
в приложение.

6.2.2. Добавление узла-обработчика
Сейчас мы добавим узел для обработки поступающих из узла-источника запи-
сей (соответствующий код можно найти в файле src/main/java/bbejeck/chapter_6/
PopsHopsApplication.java) (листинг 6.2).

Листинг 6.2. Добавление узла-обработчика

В этом коде для формирования топологии используется паттерн «текучего» ин-
терфейса. Отличие от API Kafka Streams заключается в возвращаемом типе. В случае
API Kafka Streams любой вызов оператора KStream возвращает новый экземпляр
KStream или KTable. В API узлов-обработчиков же любое обращение к Topology воз-
вращает тот же экземпляр Topology.

Второй комментарий описывает передачу узла-обработчика, экземпляр которого
был создан в первой строке кода примера. Метод Topology.addProcessor прини-
мает в качестве второго параметра экземпляр интерфейса ProcessorSupplier, но,
поскольку ProcessorSupplier — интерфейс с одним методом, его можно заменить
лямбда-выражением.

Важнее всего в этом разделе то, что третий параметр, purchaseSourceNodeName,
метода addProcessor() совпадает со вторым параметром метода addSource(), как

188   Часть II  •  Разработка с помощью Kafka Streams

показано на рис. 6.2. Благодаря этому между узлами устанавливается связь типа
«предок — потомок», которая, в свою очередь, определяет путь перемещения запи-
сей от одного узла-обработчика к другому в приложении Kafka Streams. На рис. 6.3
показано, что мы уже создали.

Рис. 6.2. Связываем родительский и дочерний узлы в API узлов-обработчиков

Рис. 6.3. Топология API узлов-обработчиков на текущий момент,
включая названия узлов и названия родителей

Уделим немного времени обсуждению функций узла-обработчика BeerPur
chaseProcessor, созданного в листинге 6.1. У него есть две задачи:

�� преобразование сумм продаж на внешнем рынке (в евро) в доллары США;

�� маршрутизация записи к соответствующему узлу-стоку в зависимости от типа
продажи (за рубежом или на внутреннем рынке).

Все эти действия происходят в методе process(). Подытожим вкратце, какие
действия он производит:

�� проверяет тип валюты. Если сумма указана не в долларах — переводит в доллары;

�� если речь идет о продаже за рубежом — направляет обновленную запись в топик
international-sales;

�� в противном случае отправляет запись непосредственно в топик domestic-sales.

Глава 6. API узлов-обработчиков   189

В листинге 6.3 приведен код для этого узла-обработчика (его можно найти
в файле src/main/java/bbejeck/chapter_6/processor/BearPurchaseProcessor.java).

Листинг 6.3. Узел покупки пива (BeerPurchaseProcessor)

Класс из этого примера расширяет AbstractProcessor — класс, переопределя-
ющий методы интерфейса Processor, за исключением метода process(). Именно
в методе Processor.process() мы производим действия над проходящими через
топологию записями.

190   Часть II  •  Разработка с помощью Kafka Streams

ПРИМЕЧАНИЕ
В интерфейсе Processor имеются методы init(), process(), punctuate() и close().
Processor — основная движущая сила логики любого работающего с записями
потокового приложения. В примерах мы в основном будем использовать класс
AbstractProcessor, так что переопределять станем только необходимые нам
методы. Класс AbstractProcessor сам инициализирует объект ProcessorContext,
так что переопределять метод init() не нужно, разве что вам понадобится
выполнить какие-либо дополнительные настройки.

Последние несколько строк листинга 6.3 демонстрируют главное в этом приме-
ре — способность направлять записи конкретным дочерним узлам. Метод context()
в данных строках извлекает ссылку на объект ProcessorContext для нужного узла-об-
работчика. Все узлы-обработчики топологии получают ссылки на ProcessorContext
с помощью метода init(), выполняемого потоковой задачей (объектом StreamTask)
при инициализации топологии.

Мы узнали, как обрабатывать записи, теперь нам нужно подключиться к узлу-
стоку (топику), чтобы занести записи обратно в Kafka.

6.2.3. Добавление узла-стока
Сейчас вы уже, наверное, хорошо представляете себе схему применения API узлов-
обработчиков. Для добавления источника мы воспользовались методом addSource,
а для добавления узла-обработчика — методом addProcessor. Как можно ожидать,
для подключения узла-стока (топика) к узлу-обработчику мы воспользуемся мето-
дом addSink(). На рис. 6.4 показана обновленная топология.

Рис. 6.4. Завершаем топологию, добавляя узлы-стоки

Глава 6. API узлов-обработчиков   191

Теперь мы можем обновить нашу топологию, добавив код для узлов-стоков
(его можно найти в файле src/main/java/bbejeck/chapter_6/PopsHopsApplication.java) (ли-
стинг 6.4).

Листинг 6.4. Добавление узла-стока

В этом листинге мы добавили два узла-стока, один — для долларов и второй —
для евро. Записи будут заноситься в топик, соответствующий валюте транзакции.

Важно отметить, что название родительского узла у обоих добавляемых стоков
совпадает. Благодаря этому мы связали оба узла-стока с одним нашим узлом-об-
работчиком (как показано на рис. 6.4).

В этом нашем первом примере были продемонстрированы компоновка топо-
логий и направление записей в конкретные дочерние узлы. Хотя API узлов-обра-
ботчиков требует несколько большего объема кода, чем API Kafka Streams, создание
топологий с его помощью все равно остается несложной задачей. В следующем
примере я покажу, насколько гибок API узлов-обработчиков.

6.3. �Углубляемся в API узлов-обработчиков
на примере узла биржевой аналитики

Вернемся к сфере финансовых операций и примерим шляпу внутридневного
трейдера. Внутридневному трейдеру необходимо анализировать изменения курсов
акций, чтобы выбрать оптимальные моменты для покупки и продажи. Его задача —
извлечь выгоду из колебаний рынка и сорвать быструю прибыль. Мы будем учитывать

192   Часть II  •  Разработка с помощью Kafka Streams

несколько ключевых показателей в надежде, что они укажут, когда вам имеет смысл
начинать действовать.

Вот список требований:

�� отображать текущий курс акций;

�� показывать, повышается или понижается цена за одну акцию;

�� отображать общее количество проданных на текущий момент акций, а также его
тренд (понижение/повышение);

�� отправлять записи далее по конвейеру только для акций с 2%-ным трендом (по-
нижение/повышение);

�� собирать не менее 20 выборок заданных акций, прежде чем производить с ними
какие-либо вычисления.

Рассмотрим, как осуществить этот анализ вручную. Рисунок 6.5 демонстри-
рует пример дерева решений, которое понадобится нам для принятия подобных
решений.

Рис. 6.5. Обновления тренда курса акций

Для нашего анализа необходимо провести несколько расчетов. Кроме того, мы
воспользуемся результатами этих расчетов для определения того, нужно ли (и если
да, то когда) отправлять записи далее по конвейеру.

Данное ограничение на отправку записей означает, что мы не можем положиться
на стандартный механизм фиксации времени или сброса кэша на диск для управ-
ления их движением, что исключает использование API Kafka Streams. Само собой
разумеется, что нам придется сохранять состояние, чтобы отслеживать изменения
в динамике. Нам необходима возможность создания пользовательских узлов-об-
работчиков. Посмотрим, как решить эту задачу.

Глава 6. API узлов-обработчиков   193

Только для демонстрационных целей

Я совершенно уверен, что это и так понятно, но все равно констатирую очевидное:
настоящие оценки курсов акций приводятся только для демонстрационных целей.
Не делайте никаких рыночных прогнозов на основе этого примера. Данная модель
абсолютно не похожа на реальные и представлена только для демонстрации более
сложного сценария обработки. Я отнюдь не внутридневной трейдер!

6.3.1. Узел-обработчик показателей акций
В листинге 6.5 приведена реализация приложения для обработки показателей акций
(его можно найти в файле src/main/java/bbejeck/chapter_6/StockPerformanceApplication.java).

Листинг 6.5. Приложение для обработки показателей акций с пользовательским
узлом-обработчиком

Технологический процесс в этой топологии такой же, как и в предыдущем при-
мере, так что сосредоточим внимание на новых элементах узла-обработчика. В пре-
дыдущем примере не нужны никакие настройки, так что можно было положиться
на инициализацию объекта ProcessorContext методом AbstractProcessor.init.
В этом же примере, однако, мы собираемся использовать хранилище состояния,
а также запланировать время отправки записей вместо пересылки их сразу при
получении.

194   Часть II  •  Разработка с помощью Kafka Streams

Рассмотрим сначала метод init() узла-обработчика (его можно найти в файле
src/main/java/bbejeck/chapter_6/processor/StockPerformanceProcessor.java) (листинг 6.6).

Листинг 6.6. Задачи метода init()

Во-первых, нам нужно инициализировать AbstractProcessor с помощью
ProcessorContext, так что мы вызываем метод init() суперкласса. Далее мы полу-
чаем ссылку на созданное в топологии хранилище состояния. Все, что от нас требу-
ется, — сохранить ее в переменной для дальнейшего использования в узле-обработ-
чике. В листинге 6.5 также появляется Punctuator — интерфейс, представляющий
собой обратный вызов для выполнения логики узла-обработчика в соответствии
с расписанием, инкапсулированный в методе Punctuator.punctuate().

СОВЕТ
Метод ProcessorContext.schedule(long, PunctuationType, Punctuator) возвра-
щает тип Cancellable, благодаря чему вы можете отменить выполнение
пунктуации и работать с более продвинутыми сценариями, например пере-
численными в обсуждении Punctuate Use Cases («Сценарии использования
метода пунктуации», http://mng.bz/YSKF). Я не стану приводить примеры
в тексте или обсуждать здесь этот вопрос, но некоторые примеры вы можете
найти в каталоге src/main/java/bbejeck/chapter_6/cancellation.

В последней строке листинга 6.5 мы используем ProcessorContext, что-
бы запланировать выполнение Punctuator каждые 10 секунд. Второй параметр,
PunctuationType.WALL_CLOCK_TIME, определяет, что мы хотели бы вызывать метод
Punctuator.punctuate() каждые 10 секунд по системному времени (WALL_CLOCK_
TIME). Можно также задать другую опцию, PunctuationType.STREAM_TIME, означающую,
что выполнение Punctuator.punctuate() тоже будет производиться каждые 10 секунд,
но в соответствии с временем, прошедшим судя по меткам даты/времени данных.
Выясним, в чем различие между этими двумя настройками PunctuationType.

Семантика пунктуации. Начнем наш разговор о семантике пунктуации со
STREAM_TIME, поскольку эта опция требует некоторых пояснений. Рисунок 6.6 ил-
люстрирует понятие времени потока (stream time). Давайте проясним некоторые

Глава 6. API узлов-обработчиков   195

нюансы, чтобы лучше разобраться с тем, как формируется расписание выполнения
(отмечу, что некоторые из внутренних механизмов Kafka Streams тут не показаны).

�� StreamTask извлекает из PartitionGroup минимальную метку даты/времени.
PartitionGroup представляет собой набор секций заданного StreamThread, кото-
рый содержит всю информацию о метках даты/времени для всех секций группы.

�� Во время обработки записей StreamThread обрабатывает в цикле свой объект
StreamTask, при этом каждая задача в конце концов вызывает метод punctuate для
каждого из своих подходящих для пунктуации узлов-обработчиков. Напомню,
что вам нужно собрать не менее 20 сделок с конкретным видом акций, прежде
чем оценивать его показатели.

�� Если метка даты/времени с прошлого вызова punctuate (плюс запланированный
промежуток времени) меньше извлеченной из PartitionGroup или равна ей, то
Kafka Streams вызывает метод punctuate данного узла-обработчика.

Рис. 6.6. Расписание пунктуации при использовании настройки STREAM_TIME

196   Часть II  •  Разработка с помощью Kafka Streams

Главное в этом процессе то, что приложение наращивает метки даты/времени
с помощью TimestampExtractor, так что вызовы метода punctuate() будут едино-
образными только в том случае, если данные поступают с постоянной скоростью.
Если же данные поступают от случая к случаю, то метод punctuate() не будет вы-
полняться через запланированные регулярные интервалы времени.

При настройке PunctuationType.WALL_CLOCK_TIME, с другой стороны, выпол-
нение Punctuator.punctuate будет более предсказуемым благодаря использова-
нию системного времени. Отмечу, что семантика системного времени гарантий
не дает — в пределах интервала опроса системное время меняется и шаг изменения
зависит от того, сколько времени требуется для выполнения цикла опроса. Так что
в примере из листинга 6.6 можно ожидать, что пунктуация будет производиться
через интервалы, близкие к 10-секундным, вне зависимости от темпов поступления
данных.

Какой подход использовать — зависит исключительно от ваших потребностей.
Если вам нужно регулярно выполнять какие-либо действия независимо от движе-
ния данных, то оптимальным вариантом будет применение системного времени.
С другой стороны, если требуется только производить вычисления над входящими
данными и небольшой разрыв во времени между выполнениями допустим, попро-
буйте семантику потокового времени.

ПРИМЕЧАНИЕ
В версиях Kafka, предшествующих 0.11.0, для пунктуации использовался
метод ProcessorContext.schedule(long time), вызывавший, в свою очередь,
метод Processor.punctuate через заданные промежутки времени. Такой подход
работал только при семантике потокового времени, и оба метода в настоящий
момент считаются устаревшими. Я иногда упоминаю в этой книге устаревшие
методы, но в примерах используются только новейшие методы пунктуации.

Мы рассмотрели вопросы планирования, выполнения и пунктуации. Время
перейти к обработке входящих записей.

6.3.2. Метод process()
Именно в методе process() производятся все расчеты для оценки показателей акций.
При получении записи необходимо выполнить несколько шагов:

�� проверить хранилище состояния на наличие объекта StockPerformance, соответ-
ствующего биржевому символу акции из этой записи;

�� создать соответствующий объект StockPerformance, если в хранилище состояния
его нет. Далее экземпляр StockPerformance суммирует значения для текущей
цены акции и количества проданных акций и обновляет результаты;

�� после достижения количества 20 транзакций для какого-либо вида акций начать
расчеты.

Глава 6. API узлов-обработчиков   197

Хотя вопрос финансового анализа и выходит за пределы данной книги, мы вкрат-
це рассмотрим эти расчеты. Мы будем вычислять как для цены за акцию, так и для
количества продаваемых акций простое скользящее среднее (simple moving average,
SMA). В сфере биржевой торговли SMA используются для вычисления среднего
значения для наборов данных размером N.

В этом примере N = 20. Установка подобного ограничения означает, что при по-
ступлении новой информации о сделках будут собираться данные о цене за акцию
и количестве проданных акций для первых 20 транзакций. По достижении этого
порогового значения самое старое значение будет удаляться и добавляться самое
последнее. С помощью SMA мы получаем скользящее среднее цены акции и числа
проданных акций за последние 20 сделок. Важно отметить, что пересчитывать все
данные при поступлении новых значений не требуется.

На рис. 6.7 приведена общая картина работы метода process(), где показано,
какие действия производились бы при выполнении этих шагов вручную. Именно
в методе process() проводятся все вычисления.

Рис. 6.7. Пошаговое выполнение метода process() для анализа динамики акций

Взглянем теперь на код метода process() (его можно найти в файле src/main/java/
bbejeck/chapter_6/processor/StockPerformanceProcessor.java) (листинг 6.7).

В методе process() мы прибавляем последние цену акции и число участвовавших
в транзакции акций к значениям из объекта StockPerformance. Обратите внимание,
что все детали выполнения обновления абстрагированы в объекте StockPerformance.
В целом считается хорошим тоном не включать бизнес-логику в узел-обработчик —
мы вернемся к этому вопросу в главе 8, когда будем обсуждать тестирование.

В этом коде выполняется два основных вычисления: определение скользяще-
го среднего и вычисление разницы со скользящими средними цены акции/коли-
чества акций. Мы не хотим вычислять среднее до тех пор, пока не соберем данные
о 20 транзакциях, так что откладываем выполнение каких-либо действий до момента

198   Часть II  •  Разработка с помощью Kafka Streams

получения узлом-обработчиком данных о 20 сделках. Накопив информацию
о 20 сделках для конкретного вида акций, можно вычислить наше первое среднее
значение. А затем мы делим текущее значение цены акции или числа проданных
акций на скользящее среднее, преобразуя результат в процентное соотношение.

Листинг 6.7. Реализация метода process()

ПРИМЕЧАНИЕ
Если вы хотите взглянуть на вычисления, то код StockPerformance можно
найти в файле src/main/java/bejeck/model/StockPerformance.java.

В примере с интерфейсом Processor в листинге 6.3 мы по завершении выполне-
ния метода process() отправляли записи далее по конвейеру. В данном же случае
мы сохраняем итоговые результаты в хранилище состояния и оставляем отправку
записей методу Punctuator.punctuate.

6.3.3. Выполнение пунктуатора
Мы уже обсудили семантику пунктуации и выполнение по расписанию, так что
перейдем прямо к изучению кода метода Punctuator.punctuate (который можно
найти в файле src/main/java/bejeck/chapter_6/processor/punctuator/StockPerformancePunctuator.
java) (листинг 6.8).

Последовательность действий в методе Punctuator.punctuate проста. Мы про-
ходим в цикле по парам «ключ/значение» из хранилища состояния и, если значение
превысило заданный порог, отправляем запись далее по конвейеру.

Здесь важно запомнить, что если ранее отправка записей дальше осуществля-
лась посредством механизмов фиксации и сброса кэша на диск, то теперь мы сами
определяем, когда это будет происходить. Кроме того, предполагаемое выполнение
этого кода каждые 10 секунд не гарантирует фактическую отправку записей — они

Глава 6. API узлов-обработчиков   199

должны достичь разностного порога. Отмечу также, что методы Processor.process
и Punctuator.punctuate не выполняются в конкурентном режиме.

Листинг 6.8. Код пунктуации

ПРИМЕЧАНИЕ
Хотя мы иллюстрируем возможности доступа к хранилищу состояния, не по-
мешает вспомнить архитектуру Kafka Streams и обсудить несколько важных
нюансов. У каждой задачи StreamTask есть своя копия локального хранилища
состояния, и объекты StreamThread не используют совместно задачи или со-
стояние. Записи движутся по топологии посредством обхода графа «вглубь»,
а значит, ни один узел-обработчик не производит конкурентного обращения
к хранилищам состояния.

Этот пример — превосходное введение в написание пользовательских узлов-об-
работчиков, но можно пойти дальше и добавить новые структуры данных, а также
совершенно новые способы агрегирования данных, отсутствующие в API. С учетом
этого перейдем к добавлению узла совместной группировки.

6.4. Узел совместной группировки
В главе 4 мы обсуждали соединения двух потоков, а точнее, соединения покупок
из различных подразделений компании в пределах заданного промежутка времени.
Соединения можно использовать для сочетания записей с одинаковым ключом, по-
ступивших в пределах одного временного окна. В случае соединений предполагается

200   Часть II  •  Разработка с помощью Kafka Streams

взаимно-однозначное соответствие записей в потоке A и потоке B. Рисунок 6.8
иллюстрирует эту связь.

Рис. 6.8. Соединение записей из потоков A и B по общему ключу

Представьте себе теперь, что требуется выполнить подобный анализ, только
вместо взаимно-однозначного соединения по ключу нам нужно соединить две кол-
лекции данных по общему ключу, то есть произвести так называемую совместную
группировку (co-grouping) данных. Представьте себе, что вы управляете популярным
приложением для внутридневного трейдинга. Внутридневные трейдеры применяют
ваше приложение несколько часов в день — иногда все время, когда открыта биржа.
Одна из отслеживаемых вашим приложением метрик — понятие события. Мы счи-
таем событием (event) щелчок пользователя на символе акции для чтения более
подробной информации о компании и ее финансовых показателях. Нам хотелось бы
проанализировать подробнее взаимосвязь между этими щелчками пользователей
в приложении и покупкой ими акций. Нам нужны результаты сравнения щелчков
и покупок крупным планом для понимания картины в целом. Нам требуется кор-
теж с двумя коллекциями — для каждого из типов событий, сгруппированных по
биржевым символам компаний, как показано на рис. 6.9.

Наша цель состоит в комбинации текущего состояния событий щелчков и бир-
жевых транзакций для заданной компании каждые N секунд, не ожидая поступле-
ния записей ни из одного потока. Когда проходит заданный промежуток време-
ни, мы хотим получить совместную группировку событий щелчков и биржевых
транзакций по тикерному символу компании. А если события одного из видов
отсутствуют, то одна из коллекций в кортеже окажется пустой. Если вы знакомы
с фреймворком Apache Spark или Apache Flink, то эта функциональность напоми-
нает метод PairRDDFunctions.cogroup (http://mng.bz/LaD4) и класс CoGroupDataSet

Глава 6. API узлов-обработчиков   201

(http://mng.bz/FH9m) соответственно. Рассмотрим, из каких шагов состоит создание
этого узла-обработчика.

Рис. 6.9. Результаты совместной группировки по ключу с помощью кортежа, содержащего
две коллекции данных

6.4.1. Создание узла совместной группировки
Для создания узла совместной группировки необходимо связать воедино несколько
элементов:

�� описать два топика (stock-transactions, events);

�� добавить два узла-обработчика для потребления записей из вышеуказанных
топиков;

�� добавить третий узел-обработчик в качестве агрегатора/узла совместной груп-
пировки для двух предыдущих узлов;

�� добавить хранилище состояния для узла агрегирования, в котором будет хра-
ниться состояние для обоих событий;

�� добавить узел-сток, в который будут записываться результаты (и/или узел вы-
вода результатов в консоль).

Рассмотрим теперь каждый из этих шагов подробнее.

Описание узлов-источников
Первый шаг — создание узлов-источников — уже вам хорошо знаком. На этот раз мы
создадим два узла-источника — для чтения как потока событий щелчков, так и по-
тока биржевых транзакций. Чтобы видеть, где в топологии мы находимся в данный

202   Часть II  •  Разработка с помощью Kafka Streams

момент, мы будем отталкиваться от рис. 6.10, дорисовывая его постепенно. Код соз-
дания узлов-источников показан в листинге 6.9 (его можно найти в файле src/main/
java/bbejeck/chapter_6/CoGroupingApplication.java).

Листинг 6.9. Узлы-источники для узла совместной группировки

Рис. 6.10. Узлы-источники для совместной группировки

После создания источников для топологии перейдем к следующему шагу.

Добавление узлов-обработчиков
Добавим теперь «рабочих лошадок» топологии — узлы-обработчики. На рис. 6.11
показан обновленный граф топологии. Вот код для добавления этих двух узлов-об-
работчиков (находится в файле src/main/java/bbejeck/chapter_6/CoGroupingApplication.java)
(листинг 6.10).

Листинг 6.10. Узлы-обработчики

В первых двух строках названия родительских узлов представляют собой назва-
ния узлов-источников, читающих данные из топиков stock-transactions и events
соответственно. У третьего узла-обработчика в качестве названий родительских

Глава 6. API узлов-обработчиков   203

узлов указаны названия обоих предыдущих узлов-обработчиков. Это значит, что
оба первых узла-обработчика будут поставлять данные для узла агрегирования.

Для экземпляров ProcessorSupplier мы опять же воспользуемся сокращенным
написанием Java 8. На этот раз мы сократили форму написания еще сильнее путем
применения дескриптора метода — в данном случае для вызова конструктора, соз-
дающего соответствующий узел-обработчик.

СОВЕТ
В случае интерфейсов с одним методом без аргументов в Java 8 можно вос-
пользоваться лямбда-выражением в виде ()->doSomething. Но, поскольку
от ProcessorSupplier требуется только вернуть (возможно, новый) объект
Processor, можно сократить эту форму еще больше и воспользоваться де-
скриптором метода для конструктора типа Processor. Обратите внимание,
что это возможно только для конструкторов без аргументов.

Теперь поясню, почему наша топология имеет именно такой вид. Наш пример
представляет собой операцию агрегирования, и задача StockTransactionProcessor
и ClickEventProcessor состоит в обертывании соответствующих объектов в меньшие
агрегирующие объекты с последующей отправкой их другому узлу-обработчику для
полного агрегирования. Как StockTransactionProcessor, так и ClickEventProcessor
выполняют это частичное агрегирование и отправляют записи в CogroupingProcessor.
После чего CogroupingProcessor выполняет совместную группировку и отправляет
результаты через равные интервалы времени (определяемые метками даты/време-
ни) в топик вывода результатов.

Код узла-обработчика StockTransactionProcessor приведен в листинге 6.11
(его можно найти в файле src/main/java/bbejeck/chapter_6/processor/cogrouping/StockTrans
actionProcessor.java).

Рис. 6.11. Добавление узлов-обработчиков

204   Часть II  •  Разработка с помощью Kafka Streams

Листинг 6.11. StockTransactionProcessor

Как вы можете видеть, StockTransactionProcessor добавляет объект StockTrans
action в агрегатор (Tuple) и отправляет запись дальше.

ПРИМЕЧАНИЕ
Показанный в листинге 6.11 Tuple<L, R> представляет собой пользователь-
ский объект, предназначенный для примеров из этой книги. Вы можете найти
его описание в файле src/main/java/bbejeck/util/collection/Tuple.java.

Теперь посмотрим на код ClickEventProcessor (его можно найти в файле src/main/
java/bbejeck/chapter_6/processor/cogrouping/ClickEventProcessor.java) (листинг 6.12).

Листинг 6.12. ClickEventProcessor

Глава 6. API узлов-обработчиков   205

Как видите, ClickEventProcessor добавляет clickEvent в агрегатор Tuple анало-
гично предыдущему листингу.

Для полноты картины агрегирования нам осталось посмотреть на код Cogrou
pingProcessor. Он сложнее, так что мы рассмотрим каждый из его методов по
очереди, начиная с CogroupingProcessor.init() (который можно найти в файле src/
main/java/bbejeck/chapter_6/processor/cogrouping/CogroupingProcessor.java) (листинг 6.13).

Листинг 6.13. Метод CogroupingProcessor.init()

Как вы могли ожидать, метод init() отвечает за нюансы настройки класса. Мы со-
храняем сконфигурированное в главном приложении хранилище состояния в пере-
менной для дальнейшего использования. А также создаем CogroupingPunctuator,
отвечающий за запланированные вызовы пунктуации.

Дескрипторы методов для класса Punctuator

Для экземпляра класса Punctuator можно задать дескриптор метода. Для этого нужно
объявить метод в узле-обработчике, принимающий один параметр типа long, с воз-
вращаемым типом void. После этого запланируйте пунктуацию следующим образом:

context().schedule(15000L, STREAM_TIME, this::myPunctuationMethod);

Пример этого вы можете найти в файле src/main/java/bbejeck/chapter_6/processor/
cogrouping/CogroupingMethodHandleProcessor.java.

В листинге 6.13 вызов punctuate() запланирован через каждые 15 секунд. Благо-
даря использованию семантики PunctuationType.STREAM_TIME вызовы punctuate()
определяются метками даты/времени в поступающих данных. Помните, что если

206   Часть II  •  Разработка с помощью Kafka Streams

движение данных относительно неравномерно, то между вызовами Punctuator.punc
tuate() может пройти более 15 секунд.

ПРИМЕЧАНИЕ
Как вы помните из обсуждения семантики punctuate, существует два варианта:
PunctuationType.STREAM_TIME и PunctuationType.WALL_CLOCK_TIME. В ли-
стинге 6.13 используется семантика PunctuationType.STREAM_TIME. В прила-
гаемом к книге коде есть дополнительный пример узла-обработчика, демон-
стрирующий семантику PunctuationType.WALL_CLOCK_TIME, в файле src/main/
java/bbejeck/chapter_6/processor/cogrouping/CogroupingSystemTimeProces
sor.java, что дает вам возможность посмотреть на различия в производитель-
ности и поведении.

Посмотрим теперь, как CogroupingProcessor выполняет одну из своих основных
задач в методе process() (его можно найти в файле src/main/java/bbejeck/chapter_6/
processor/cogrouping/CogroupingProcessor.java) (листинг 6.14).

Листинг 6.14. Метод CogroupingProcessor.process()

Первый шаг в обработке входящих меньших агрегирующих объектов для общей
совместной группировки — проверка, нет ли уже соответствующего объекта в хра-
нилище состояния. Если нет, то мы создаем Tuple с пустыми коллекциями объектов
ClickEvent и StockTransaction.

Далее мы проверяем входящие меньшие агрегирующие объекты и при наличии
непустого объекта ClickEvent или StockTransaction добавляем его в общий агре-

Глава 6. API узлов-обработчиков   207

гирующий объект. Последний шаг в методе process() — поместить Tuple обратно
в хранилище состояния, обновив тем самым итоговый агрегирующий объект.

ПРИМЕЧАНИЕ
Хотя в нашем примере два узла-обработчика отправляют записи одному
и обращаются к одному хранилищу состояния, беспокоиться о вопросах
конкурентности не стоит. Помните, что родительские узлы-обработчики от-
правляют записи дочерним посредством обхода графа «вглубь», так что все
узлы последовательно вызывают дочерние. Кроме того, в Kafka Streams на
одну задачу приходится только один поток выполнения, так что ни о каких
вопросах конкурентности речь никогда не идет.

Следующий шаг — выполнение пунктуации (см. файл src/main/java/bbejeck/
chapter_6/processor/cogrouping/CogroupingPunctuator.java). Мы используем новый API, так
что не будем рассматривать устаревший метод Processor.punctuate (листинг 6.15).

Листинг 6.15. Метод CogroupingPunctuator.punctuate()

При каждом вызове метода punctuate мы извлекаем все сохраненные записи
в объект KeyValueIterator и начинаем извлекать по очереди все содержащиеся

208   Часть II  •  Разработка с помощью Kafka Streams

в нем совместно сгруппированные результаты. Далее мы создаем защитные копии
коллекций, создаем новый совместно сгруппированный кортеж Tuple и отправляем
его далее по конвейеру. В данном случае мы отправляем совместно сгруппированные
результаты в узел-сток. Наконец, мы удаляем текущие совместно сгруппированные
результаты и снова сохраняем кортеж в хранилище, готовые к поступлению следу-
ющей порции записей.

Мы закончили описание функциональности совместной группировки и можем
теперь завершить создание топологии.

Добавление хранилища состояния
Как вы уже видели, для агрегирования данных в потоковых приложениях Kafka
требуется сохранение состояния. Для должного функционирования CogroupingPro
cessor необходимо добавить к нему хранилище состояния. На рис. 6.12 показана
обновленная топология.

Рис. 6.12. Добавляем хранилище состояния к узлу совместной группировки
в топологии

Посмотрим теперь на код добавления хранилища состояния (его можно найти
в файле src/main/java/bbejeck/chapter_6/CoGroupingApplication.java) (листинг 6.16).

В этом коде мы добавили в топологию постоянное хранилище состояния.
Нам нужно именно постоянное хранилище, поскольку изредка возможны обновле-
ния некоторых ключей. В случае хранилищ в оперативной памяти и хранилищ типа

Глава 6. API узлов-обработчиков   209

LRU (с вытеснением давно не используемых данных) редко используемые ключи
и значения могут со временем удаляться, а тут нам требуется возможность извлечь
информацию для любого ключа, с которым мы ранее работали.

Листинг 6.16. Добавление узла хранилища состояния

СОВЕТ
В первых трех строках листинга 6.16 создаются настройки для хранилища
состояния с целью не допустить чрезмерного разрастания журнала изме-
нений. Помните: для топиков журналов изменений можно задавать любые
подходящие для обычных топиков настройки.

Этот код достаточно прост. Стоит отметить, однако, что единственный узел, ко-
торый может обращаться к хранилищу состояния, — CoGroupingProcessor.

Нам остался один шаг до завершения топологии — обеспечить возможность
чтения результатов совместной группировки.

Добавление узла-стока
Чтобы от топологии совместной группировки была польза, необходимо записывать
данные в топик (или консоль). Модифицируем топологию еще один, последний, раз,
как показано на рис. 6.13.

ПРИМЕЧАНИЕ
В нескольких примерах я говорил о добавлении узла-стока, но в исходном
коде сток выводит данные в консоль; код для стока, записывающего данные
в топик, закомментирован. При разработке я попеременно использую узел-
сток, записывающий в топик, и узел-сток, выводящий результаты в stdout.

210   Часть II  •  Разработка с помощью Kafka Streams

Рис. 6.13. Добавление узла-стока завершает создание топологии совместной группировки

Теперь результаты совместной группировки записываются в топик для приме-
нения при дальнейшем анализе. Вот соответствующий код (который можно найти
в файле src/main/java/bbejeck/chapter_6/CoGroupingApplication.java) (листинг 6.17).

Листинг 6.17. Узел-сток и узел вывода в консоль

В этом последнем элементе топологии мы добавили узел-сток — в виде дочернего
узла CoGrouping-Processor. Напомню, что при использовании API узлов-обработчиков
порядок описания узлов не устанавливает связи «предок — потомок». Для задания
такой связи необходимо указывать в качестве родительских узлов названия ранее
созданных узлов-обработчиков.

Мы завершили создание узла совместной группировки. Главное, что вам стоит
запомнить из этого раздела: хотя использование API узлов-обработчиков требует
написания большего объема кода, оно и обеспечивает гибкость, достаточную для
создания практически любой мыслимой потоковой топологии.

В завершение этой главы посмотрим, как можно интегрировать функциональ-
ность API узлов-обработчиков в приложение Kafka Streams.

Глава 6. API узлов-обработчиков   211

6.5. �Интеграция API узлов-обработчиков
и API Kafka Streams

До сих пор мы изучали Kafka Streams и API узлов-обработчиков по отдельности, но
кто сказал, что эти подходы нельзя сочетать? Давайте разберемся, зачем нам может
понадобиться подобное сочетание.

Допустим, вы уже давно используете как Kafka Streams, так и API узлов-об-
работчиков. Вам больше нравится подход Kafka Streams, но вам хотелось бы
включить некоторые свои уже готовые узлы-обработчики в приложение Kafka
Streams, поскольку они дают нужные вам возможности управления на более
низком уровне.

API Kafka Streams предоставляет три метода, с помощью которых можно ин-
тегрировать созданную с помощью API узлов-обработчиков функциональность:
KStream.process, KStream.transform и KStream.transformValues. Вам должен быть
знаком этот подход, поскольку вы уже работали с интерфейсом ValueTransformer
в подразделе 4.2.2.

Метод KStream.process создает концевой узел, в то время как методы KStream.trans
form и KStream.transformValues возвращают новый экземпляр KStream, благодаря
чему вы можете продолжать добавлять новые узлы-обработчики к данному узлу.
Отмечу также, что методы преобразования сохраняют состояние, поэтому при их
использовании необходимо передавать название хранилища состояния. Поскольку
KStream.process создает концевой узел, то обычно используется или KStream.trans
form, или KStream.transformValues.

Там вы можете заменить свой экземпляр Processor на Transformer. Основное
различие между этими двумя интерфейсами состоит в том, что метод, в котором
происходят основные действия у Processor, — process() с возвращаемым типом
void, а у Transformer это transform() с возвращаемым типом R. Оба интерфейса
предоставляют одинаковую семантику пунктуации.

В большинстве случаев для замены Processor достаточно переместить код логики
из метода Processor.process в метод Transformer.transform. Нужно учесть только
необходимость возврата значения, но можно вернуть пустое значение и отправлять
результаты далее с помощью метода ProcessorContext.forward.

СОВЕТ
Преобразователь возвращает значение: в данном случае значение пусто,
так что оно отфильтровывается, а для отправки нескольких значений
далее по конвейеру используется метод ProcessorContext.forward. Можно
также вернуть List<KeyValue<K,V>>, присоединив к нему вызов flatMap
или flatMapValues для отправки далее по конвейеру отдельных записей.
Пример этого вы можете найти в файле src/main/java/bbejeck/chapter_6/
StockPerformanceStreamsAndProcessorMultipleValuesApplication.java. Для за-
вершения замены экземпляра Processor необходимо подключить экземпляр
Transformer (или ValueTransformer) с помощью метода KStream.transform (или
KStream.transformValues).

212   Часть II  •  Разработка с помощью Kafka Streams

Отличный пример сочетания API KStream и API узлов-обработчиков можно
найти в src/main/java/bbejeck/chapter_6/StockPerformanceStreamsAndProcessorApplication.java.
Я не включал этот пример в текст книги, поскольку его логика, по большому счету,
не отличается от логики примера StockPerformanceApplication из подраздела 6.3.1.
Вы можете взглянуть на него, если интересно. Кроме того, вы найдете версию ис-
ходного приложения ZMart на основе API узлов-обработчиков в файле src/main/java/
bbejeck/chapter_6/ZMartProcessorApp.java.

Резюме
�� API узлов-обработчиков обеспечивает большую гибкость за счет большего объ-

ема кода.

�� Хотя код при использовании API узлов-обработчиков менее лаконичен, чем
в случае API Kafka Streams, применять его достаточно просто и «под капотом»
API Kafka Streams задействует именно API узлов-обработчиков.

�� При выборе используемого API учтите и возможность применения API Kafka
Streams с интеграцией низкоуровневых методов (process(), transform(),
transformValues()) по мере необходимости.

Пока мы охватили вопрос создания приложений с помощью Kafka Streams.
Следующий этап — их оптимальная настройка, мониторинг для обеспечения макси-
мальной производительности и обнаружение потенциальных проблем.

Часть III
Администрирование
Kafka Streams

В этих главах мы переключим внимание на оценку производитель-
ности приложений Kafka Streams. Вы также узнаете, как организо-
вать мониторинг и тестирование кода Kafka Streams, чтобы убедить-
ся, что он работает ожидаемым образом и достойно обрабатывает
ошибки.

7 Мониторинг
и производительность

В этой главе:

�� основы мониторинга Kafka;
�� перехват сообщений;
�� оценка производительности;
�� отслеживание состояния приложения.

Вы уже научились создавать приложения Kafka Streams с нуля, поработали с высо-
коуровневым DSL Kafka Streams и ощутили мощь декларативного API. Вы также
узнали об API узлов-обработчиков и поняли, что иногда можно отказаться от некото-
рых удобств ради более широких возможностей контроля при написании потокового
приложения.

Время переключиться на немного другую тематику. Вам предстоит надеть шляпу
частного детектива и взглянуть на свое приложение с иной точки зрения. Мы пере-
ключимся с того, как заставить приложение работать, на то, что происходит в при-
ложении. В определенном смысле проще всего — создать приложение. Гораздо более
сложная задача — добиться его успешного запуска, должного масштабирования
и правильного функционирования. Как бы вы ни старались, всегда возникают какие-
либо непредвиденные обстоятельства.

В этой главе вы научитесь проверять состояние своего приложения Kafka
Streams. Вы узнаете, как оценить производительность приложения и найти узкие
места производительности. Я расскажу вам также о методах, применяемых для
оповещения о различных состояниях приложения и для просмотра структуры
топологии. Вы узнаете, какие существуют метрики, как их собирать и как просма-
тривать собранные метрики во время работы приложения. Начнем с мониторинга
приложения Kafka Streams.

7.1. Основы мониторинга Kafka
Поскольку API Kafka Streams — составная часть Kafka, то, само собой, мониторинг
вашего приложения потребует и мониторинга Kafka. Полномасштабное наблюде-
ние за кластером Kafka — объемная тема, так что мы ограничим наше обсуждение

Глава 7. Мониторинг и производительность   215

производительности Kafka вопросами мониторинга потребителей и генераторов
Kafka. Более подробную информацию о мониторинге кластера Kafka можно найти
в документации (https://kafka.apache.org/documentation/#monitoring).

ПРИМЕЧАНИЕ
Стоит отметить, что для оценки производительности Kafka Streams необхо-
димо измерить и производительность Kafka. Иногда наше обсуждение про-
изводительности будет немного затрагивать и Kafka, но, поскольку данная
книга посвящена Kafka Streams, именно на Kafka Streams мы и сосредоточим
наше внимание.

7.1.1. �Оценка производительности потребителей
и генераторов

Мы начнем наше обсуждение производительности потребителей и генераторов
с рис. 7.1, иллюстрирующего один из базовых аспектов, заботящих нас в плане
производительности потребителей и генераторов. Как вы можете видеть, произ-
водительность как генератора, так и потребителя зависит от пропускной способ-
ности. Различия ровно таковы, что можно считать их двумя сторонами одной мо-
неты.

Рис. 7.1. Вопросы производительности потребителей и генераторов, запись на брокер
и чтение с него

В плане генераторов нас интересует в основном скорость отправки сообщений
брокеру. Разумеется, чем выше пропускная способность — тем лучше.

В плане потребителей нас также интересует производительность, а именно: на-
сколько быстро мы можем читать сообщения от брокера. Но существует и другой
показатель производительности потребителя: отставание потребителя. Взгляните
на рис. 7.2. На нем производительность генератора и потребителя оценивается не-
сколько с другой точки зрения, чем на рис. 7.1.

Как видите, нас интересует, какой объем сообщений и насколько быстро могут
наши генераторы отправлять брокеру, а одновременно и то, насколько быстро наши
потребители могут прочитать сообщения с него. Разница между скоростью записи
генераторами сообщений на брокер и скоростью чтения потребителями сообщений
с него называется отставанием потребителя (consumer lag).

216   Часть III  •  Администрирование Kafka Streams

Рис. 7.2. Пересмотр вопроса оценки производительности генератора
и потребителя Kafka

Рисунок 7.3 демонстрирует, что отставание потребителя представляет собой раз-
ницу между последним зафиксированным потребителем смещением и последним
смещением записанного на брокер сообщения. Некоторое отставание потребителя
неизбежно, но в идеале потребитель наверстывает упущенное или по крайней мере
отставание не растет.

Рис. 7.3. Отставание потребителя равно разнице зафиксированных потребителем
и записанных генератором смещений

Теперь, когда мы определились с параметрами производительности для потре-
бителей и генераторов, давайте разберемся с их мониторингом в целях диагностики
и устранения проблем с производительностью.

Глава 7. Мониторинг и производительность   217

7.1.2. Проверка отставания потребителя
Для проверки отставания потребителя Kafka предоставляет удобную утилиту
командной строки kafka-consumer-groups.sh, расположенную в каталоге <kafka-
install-dir>/bin. У этого сценария есть несколько опций, из которых мы рассмотрим
тут list и describe. Этих двух опций вам хватит для получения всей необходимой
информации о производительности группы потребителей.

Во-первых, воспользуемся командой list для вывода списка всех активных групп
потребителей. Результаты ее выполнения приведены на рис. 7.4.

<kafka-install-dir>/bin/kafka-consumer-groups.sh \
 --bootstrap-server localhost:9092 \
 --list

Рис. 7.4. Вывод перечня доступных групп потребителей из командной строки

Получив эту информацию, можно выбрать название группы потребителей и вы-
полнить следующую команду:

<kafka-install-dir>/bin/kafka-consumer-groups.sh \
 --bootstrap-server localhost:9092 \
 --group <GROUP-NAME> \
 --describe

Результаты (состояние работы потребителя) показаны на рис. 7.5.

Рис. 7.5. Состояние группы потребителей

Эти результаты показывают, что отставание потребителя невелико. Наличие
отставания потребителя не всегда означает наличие проблем — потребители чита-
ют сообщения пакетами и не получают следующий пакет до окончания обработки
текущего. Обработка записей занимает определенное время, так что небольшое от-
ставание неудивительно.

Небольшое либо постоянное отставание вполне нормально, но когда отставание
растет со временем — это признак того, что потребителю требуется больше ресурсов.
Например, может понадобиться увеличить число секций, а значит, и число потоков

218   Часть III  •  Администрирование Kafka Streams

выполнения, потребляющих данные из топика. Или, возможно, обработка прочитан-
ного сообщения требует слишком больших ресурсов. После потребления сообщения
его можно передать в асинхронную очередь, из которой другой поток выполнения
сможет его извлечь для обработки.

Из этого раздела вы узнали, как определить, насколько быстро потребитель чи-
тает сообщения с брокера. Далее мы слегка углубимся в наблюдение за поведением
в целях отладки — вы увидите, как перехватывать отправляемые генераторами
и получаемые потребителями сообщения до отправки/потребления записей при-
ложением Kafka Streams.

7.1.3. �Перехват информации о поведении генераторов
и потребителей

В начале 2016 года появилось предложение об усовершенствовании Kafka № 42
(Kafka Improvement Proposal 42, KIP-42), говорившее о возможности мониторинга
(перехвата) информации о поведении клиентов (генераторов и потребителей).
Целью этого KIP было предоставить «возможность быстрого развертывания инстру-
ментов для наблюдения, оценки и мониторинга поведения клиентов Kafka, вплоть
до уровня сообщения»1.

Хотя перехватчики обычно не первый эшелон средств отладки, они могут ока-
заться полезны при наблюдении за потоковым приложением Kafka и представляют
собой ценное дополнение к вашему инструментарию. Прекрасный пример исполь-
зования перехватчика (для генератора) — отслеживание смещений сообщений, от-
правляемых приложением Kafka Streams обратно в Kafka.

ПРИМЕЧАНИЕ
Kafka Streams может потреблять и генерировать произвольное число типов
ключей и значений, поэтому его внутренние Consumer и Producer используют
байтовые массивы ключей и значений (byte[]) и поэтому всегда обрабаты-
вают несериализованные данные. А если данные сериализованные, то для
их просмотра обязательно требуется дополнительный шаг сериализации/
десериализации.

Начнем с обсуждения перехватчика для потребителя.

Перехватчик для потребителя
Перехватчик для потребителя позволяет осуществлять перехват в двух точках
доступа. Первая — метод ConsumerInterceptor.onConsume(), читающий объект
ConsumerRecords в промежутке между извлечением записей с брокера и возвра-

1	 Apache Kafka, KIP-42: Add Producer and Consumer Interceptors («KIP-42: Добавление
перехватчиков для генераторов и потребителей»), http://mng.bz/g8oX.

Глава 7. Мониторинг и производительность   219

щением сообщений из метода Consumer.poll(). Представление о том, где пере-
хватчик потребителя производит перехват, вы можете получить из следующего
псевдокода:

Хотя этот псевдокод не имеет ничего общего с настоящим кодом KafkaConsumer,
он отлично иллюстрирует концепцию. Перехватчики принимают в качестве
параметра возвращаемый с брокера внутри метода Consumer.poll() объект
consumerRecords и получают возможность выполнить над ним любые операции,
включая фильтрацию и модификацию, до того как KafkaConsumer вернет эти записи
из метода poll.

ConsumerInterceptor указываются через ключ конфигурации ConsumerCon
fig.INTERCEPTOR_CLASSES_CONFIG и принимают на входе объект Collection, состо
ящий из одного или нескольких классов реализации ConsumerInterceptor. При этом
несколько перехватчиков соединяются цепочкой и выполняются в указанном в на-
стройках порядке.

ConsumerInterceptor принимает в качестве параметра и возвращает экземпляр
ConsumerRecords. В случае нескольких перехватчиков возвращаемый из одного
перехватчика объект ConsumerRecords служит входным параметром для следующего
перехватчика в цепочке. Таким образом, все произведенные одним перехватчиком
изменения передаются далее по цепочке.

Обработка исключений играет важную роль при соединении цепочкой не-
скольких перехватчиков. Если в перехватчике возникает исключение, он заносит
в журнал сообщение об ошибке, но не обрывает выполнение цепочки. А значит,
объект ConsumerRecords отправляется далее и проходит через оставшиеся пере-
хватчики.

Допустим, у нас есть три перехватчика: A, Б и В. Все три модифицируют за-
писи, причем для каждого из двух последних важны изменения, выполненные его
предшественниками. Но в случае возникновения в перехватчике A исключения
объект ConsumerRecords попадет далее в перехватчики Б и В без ожидаемых из-
менений, после чего результаты работы цепочки перехватчиков окажутся некор-
ректными. Поэтому лучше не полагаться в перехватчиках на изменения, вносимые
в ConsumerRecords предыдущим перехватчиком в цепочке.

Вторая точка перехвата — метод ConsumerInterceptor.onCommit(). После фикса-
ции потребителем смещений на брокере брокер возвращает объект Map<TopicPar
tition, OffsetAndMetadata>, содержащий информацию о топике, секции и зафи
ксированных смещениях, а также соответствующие метаданные (время фиксации
и т. п.). Информация о фиксации может пригодиться для отслеживания. В ли-
стинге 7.1 приведен пример простого ConsumerInterceptor, используемого для

220   Часть III  •  Администрирование Kafka Streams

журналирования (его можно найти в файле src/main/java/bbejeck/chapter_7/interceptors/
StockTransactionConsumerInterceptor.java).

Листинг 7.1. Журналирующий перехватчик для потребителя

Рассмотрим теперь перехват с точки зрения генераторов.

Перехватчики генераторов
ProducerInterceptor ведет себя аналогично ConsumerInterceptor, у него также есть
две точки доступа: ProducerInterceptor.onSend() и ProducerInterceptor.onAcknow
ledgement(). С помощью метода onSend() перехватчик может выполнить любое
нужное действие, включая изменение объекта ProducerRecord. Каждый из пере-
хватчиков генераторов в цепочке получает объект, возвращаемый предыдущим
перехватчиком.

Обработка исключений производится так же, как и на стороне потребителей, так
что для нее актуальны те же предостережения. Метод ProducerInterceptor.onAcknow
ledgement() вызывается при подтверждении брокером получения записи. Метод
onAcknowledgement() вызывается и после того, как отправка записи завершилась
неудачей.

В следующем листинге показан простой пример журналирующего перехват-
чика генератора (его можно найти в файле src/main/java/bbejeck/chapter_7/interceptors/
ZMartProducerInterceptor.java).

ProducerInterceptor указывается через ключ конфигурации ProducerCon
fig.INTERCEPTOR_CLASSES_CONFIG и принимает на входе объект Collection, состо

Глава 7. Мониторинг и производительность   221

ящий из одного или нескольких классов реализации ProducerInterceptor. При этом
несколько перехватчиков соединяются цепочкой и выполняются в указанном в на-
стройках порядке.

Листинг 7.2. Журналирующий перехватчик для генератора

СОВЕТ
При настройке перехватчиков в приложении Kafka Streams необходимо
указать перед названиями свойств перехватчиков потребителей и генера-
торов props.put(StreamsConfig.consumerPrefix(ConsumerConfig.INTERCEPTOR_
CLASSES_CONFIG) и props.put(StreamsConfig.producerPrefix(ProducerCon
fig.INTERCEPTOR_CLASSES_CONFIG) соответственно.

Посмотреть перехватчики в действии можно в классе src/main/java/bbejeck/
chapter_7/StockPerformanceStreamsAndProcessorMetricsApplication.java, где используется
перехватчик потребителя, и в классе src/main/java/bbejeck/chapter_7/ZMartKafkaStreamsAd-
vancedReqsMetricsApp.java, где используется перехватчик генератора. Оба класса вклю-
чают необходимые для применения перехватчиков настройки.

Отмечу, что, поскольку перехватчики обрабатывают каждую запись в приложе-
нии Kafka Streams, объем выводимой журналирующими перехватчиками инфор-
мации весьма значителен. Результаты работы перехватчиков выводятся в файлы
consumer_interceptor.log и producer_interceptor.log, располагающиеся в подкаталоге logs
корневого каталога установки исходного кода.

Мы потратили уже немало времени на изучение метрик производительности
потребителей и перехват записей, поступающих в приложение Kafka Streams

222   Часть III  •  Администрирование Kafka Streams

и исходящих из него. Но эта информация дает лишь общую картину, причем
извне приложения Kafka Streams. Заглянем внутрь приложения Kafka Streams
и посмотрим, что происходит у него «под капотом». Следующий наш шаг — оценка
производительности внутри топологии посредством сбора метрик.

7.2. Метрики приложения
Когда речь заходит об оценке производительности приложения, вы можете полу-
чить представление о том, сколько времени нужно для обработки одной записи, да
и оценка длительности сквозной задержки — неплохой показатель общей произво-
дительности. Но для повышения производительности нужно знать точно, в каком
месте возникает затор.

Оценка производительности очень важна для потоковых приложений. Сам факт
использования потокового приложения подразумевает ваше желание обрабатывать
данные сразу же после их появления. Вполне логично, что если вашему бизнесу
требуется потоковое решение, то вы хотели бы получить самый эффективный и без-
ошибочный процесс потоковой обработки, какой только доступен в рамках вашего
бюджета.

Прежде чем перейти к обсуждению собственно метрик, вернемся к одному из соз-
данных нами в главе 3 приложений, а именно к продвинутому приложению ZMart.
Это хороший кандидат на измерение метрик, поскольку содержит несколько узлов
обработки, поэтому мы воспользуемся его топологией для следующего примера. На
рис. 7.6 показана созданная нами топология.

С учетом топологии ZMart рассмотрим следующие категории метрик:

�� метрики потока выполнения:
yy среднее время выполнения операций commit, poll, process;
yy количество созданных задач в секунду, завершенных задач в секунду;

�� метрики задачи:
yy среднее число фиксаций в секунду;
yy среднее время фиксации;

�� метрики узлов-обработчиков:
yy средняя и максимальная длительность обработки;
yy среднее число операций process в секунду;

�� метрики хранилищ состояния:
yy среднее время выполнения операций put, get и flush;
yy среднее число операций put, get и flush в секунду.

Обратите внимание, что это далеко не исчерпывающий список возможных
метрик. Я выбрал именно данные метрики потому, что они прекрасно охватывают
наиболее частые сценарии в смысле производительности. Полный список вы можете
найти на сайте Confluent: http://mng.bz/4bcA.

Теперь, когда мы уже знаем, что будем измерять, выясним, как нам захватить
эту информацию.

Ри
с.

 7
.6

. Т
оп

ол
ог

ия
 п

ро
дв

ин
ут

ог
о

пр
ил

ож
ен

ия
 Z

M
ar

t с
 м

но
ж

ес
тв

ом
 у

зл
ов

224   Часть III  •  Администрирование Kafka Streams

7.2.1. Настройки метрик
В Kafka Streams есть уже готовый механизм сбора метрик производительности.
Чаще всего достаточно только указать несколько параметров конфигурации.
Поскольку сбор метрик сам по себе снижает производительность, существует два
его уровня: INFO и DEBUG. Сбор отдельной метрики может требовать не слишком
большого расхода ресурсов, но, если учесть, что некоторые метрики могут относиться
к операциям, связанным с обработкой каждой проходящей через приложение Kafka
Streams записи, суммарное воздействие на производительность может оказаться
весьма существенным.

Уровни метрик подобны уровням журналирования. При поиске причин проблемы
или при наблюдении за поведением приложения необходимо больше информации,
так что можно воспользоваться уровнем DEBUG. В остальное время вся информация
не требуется и достаточно уровня INFO.

Обычно в промышленной эксплуатации уровень DEBUG не используется, поскольку
падение производительности оказалось бы слишком большим. Ранее перечисленные
метрики доступны на различных уровнях, как показано в табл. 7.1. Как вы можете
видеть, метрики потоков выполнения доступны на обоих уровнях, в то время как
остальные категории метрик собираются только при применении уровня DEBUG.

Таблица 7.1. Возможность использования метрик по уровням

Категория метрик DEBUG INFO

Поток выполнения × ×

Задача ×

Узел-обработчик ×

Хранилище состояния ×

Кэш записей ×

Уровень задается при описании конфигурации приложения Kafka Streams. Этот
параметр конфигурации всегда был там, во всех конфигурациях наших приложений,
но до сих пор мы использовали значение по умолчанию. Уровень сбора метрик по
умолчанию — INFO.

Модифицируем настройки продвинутого приложения ZMart и включим сбор
всех метрик (src/main/java/bbejeck/chapter_7/ZMartKafkaStreamsAdvancedReqsMetricsApp.java)
(листинг 7.3).

Мы включили сбор и запись метрик уровня DEBUG. Главное, что стоит запомнить
из этого раздела: существуют встроенные метрики для всесторонней оценки произ-
водительности приложения Kafka Streams, но следует внимательно обдумать воз-
можные последствия для производительности, прежде чем включать сбор метрик
на уровне DEBUG.

Глава 7. Мониторинг и производительность   225

Листинг 7.3. Модификация настроек для сбора метрик уровня DEBUG

Мы обсудили, какие существуют метрики и как их собирать. Следующий шаг —
просмотр собранных метрик.

7.2.2. Как получить доступ к собранным метрикам
Метрики в приложениях Kafka Streams собираются, после чего отправляются
в подпрограммы генерации отчетов. Как вы могли догадаться, Kafka Streams предо-
ставляет подпрограмму генерации отчетов по умолчанию через Java Management
Extensions (JMX).

Если вы уже включили сбор метрик на уровне DEBUG, то ничего не остается, кроме
как изучить собранное. Помните, однако, что для работы JMX требуется работающее
в данный момент приложение, так что просматривать метрики мы будем во время
работы приложения.

СОВЕТ
Можно также получить доступ к метрикам программным способом. Пример
этого вы найдете в файле src/main/java/bbejeck/chapter_7/StockPerforman
ceStreamsAndProcessorMetricsApplication.java.

Вероятно, вы уже имели дело с технологией JMX или по крайней мере слышали
о ней. Я расскажу вкратце, с чего начать ее использование, но, если вы уже хорошо
с ней знакомы, можете следующий раздел смело пропускать.

7.2.3. Использование JMX
JMX — стандартный способ наблюдения за поведением программ, запущенных
на виртуальной машине Java. С помощью JMX можно также узнать, насколько
эффективно работает виртуальная машина Java (Java VM). По сути, JMX — это

226   Часть III  •  Администрирование Kafka Streams

инфраструктура, с помощью которой можно сделать видимыми различные части
вашей работающей программы.

К счастью, для такого мониторинга не требуется писать никакого кода. Доста-
точно просто подключиться с помощью утилит Java VisualVM (http://mng.bz/euif),
JConsole (http://mng.bz/Ea71) или Java Mission Control (http://mng.bz/0r5B).

СОВЕТ
Java Mission Control (JMC) — замечательная утилита для мониторинга с боль-
шими возможностями, однако для промышленной эксплуатации она требует
получения лицензии. Поскольку JMC поставляется в комплекте JDK, ее можно
запустить прямо из командной строки с помощью команды jmc (конечно,
если каталог bin JDK внесен в ваш системный путь). Кроме того, необходи-
мо добавить при запуске вашего потокового приложения Kafka следующие
флаги: -XX:+UnlockCommercialFeatures -XX:+FlightRecorder.

Поскольку самой простой в использовании является утилита JConsole, то на ней
мы пока и остановимся.

Что такое JMX?

В документе Lesson: Overview of the JMX Technology («Обзор технологии JMX», http://
mng.bz/Ej29) Oracle сообщает:

«Технология Java Management Extensions представляет собой стандартную часть
платформы Java SE (Стандартный выпуск), добавленную в платформу в выпу-
ске 5.0.

Технология JMX позволяет легко и единообразно управлять такими ресурсами, как при-
ложения, устройства и сервисы. А поскольку это динамическая технология, ее можно
использовать для мониторинга и управления ресурсами при их создании, установке
и реализации. Можно также применять технологию JMX для мониторинга и управления
виртуальной машиной Java.

В спецификации JMX описываются архитектура, паттерны проектирования, API
и сервисы языка Java, предназначенные для управления приложениями и сетями и их
мониторинга».

Запуск JConsole
JConsole поставляется вместе с JDK, так что если у вас установлен выпуск Java, то
есть и JConsole. Запуск JConsole требует всего лишь выполнения команды jconsole
из командной строки (Java должна быть включена в вашу системную переменную
path). После запуска появляется GUI, как показано на рис. 7.7. А дальше можно
сразу использовать ее для просмотра информации метрик!

Глава 7. Мониторинг и производительность   227

Рис. 7.7. Начальное меню JConsole

Начинаем мониторинг запущенной программы
Если вы посмотрите в центр GUI JConsole, то увидите диалоговое окно New Connection
(Новое подключение). Эта отправная точка работы с JConsole показана на рис. 7.8.
Пока нас интересуют только процессы Java, перечисленные в разделе Local Process
(Локальный процесс).

ПРИМЕЧАНИЕ
JConsole можно применять для мониторинга удаленных приложений, равно
как и защищенный доступ к JMX. На рис. 7.8 можно увидеть текстовые
поля Remote Process (Удаленный процесс), Username (Имя пользователя)
и Password (Пароль). В этой книге, однако, мы ограничимся локальным до-
ступом при разработке. В Интернете можно найти множество инструкций по
удаленному и защищенному доступу к JConsole, и в качестве отправной точки
отлично подойдет документация Oracle (http://mng.bz/Ea71).

Если вы еще не запустили свое приложение Kafka Streams — самое время сделать
это. Далее, чтобы оно отобразилось в окне Local Process (Локальный процесс), нажми-
те ConnectionNew Connection (ПодключениеНовое подключение), как на рис. 7.8.
При этом список перечисленных ниже Local Process (Локальный процесс) процессов
обновится и вы увидите в нем свое приложение Kafka Streams. Щелкните на соот-
ветствующем процессе дважды.

228   Часть III  •  Администрирование Kafka Streams

Рис. 7.8. JConsole подключается к программе

Весьма вероятно, что после двойного щелчка на программе, к которой вы хоте-
ли бы подключиться, вы увидите предупреждение, аналогичное показанному на
рис. 7.9. Поскольку вы работаете в пределах своей локальной машины, можете на-
жать кнопку Insecure Connection (Ненадежное подключение).

Рис. 7.9. Предупреждение подключения JConsole об отсутствии SSL

Глава 7. Мониторинг и производительность   229

Теперь все готово для просмотра метрик, собранных вашим приложением Kafka
Streams. Осталось только проверить имеющуюся информацию.

ПРЕДУПРЕЖДЕНИЕ
Вы используете ненадежное подключение для разработки на локальной
машине. На практике следует всегда обращаться только по защищенным
каналам к любым удаленным сервисам для просмотра внутреннего состояния
ваших приложений.

Просмотр информации
После подключения вы увидите экран GUI, примерно такой, как на рис. 7.10.
JConsole предоставляет несколько удобных способов заглянуть внутрь работающих
приложений.

Рис. 7.10. Запущенный JConsole

Из числа вкладок Overview (Обзор), Memory (Оперативная память), Threads (По-
токи выполнения), Classes (Классы), VM Summary (Сводка по VM) и MBeans (Управ-
ляемые Java-компоненты) мы воспользуемся только последней. Информация
на остальных вкладках тоже интересна, но относится больше к общему состоянию

230   Часть III  •  Администрирование Kafka Streams

приложения и применению им ресурсов. Собранные же на MBeans (Управляемые
Java-компоненты) метрики содержат информацию о внутренних рабочих характе-
ристиках топологии.

На этом мы завершим обзор использования JConsole. На следующем шаге мы
приступим к просмотру метрик, записанных для нашей топологии.

7.2.4. Просмотр метрик
Рисунок 7.11 демонстрирует возможности просмотра метрик через JConsole во
время работы приложения ZMart (src/main/java/bbejeck/chapter_7/ZMartKafkaStreamsAd
vancedReqsMetricsApp.java). Как вы видите, можно просмотреть характеристики (про-
пускную способность или задержку) всех элементов, вплоть до отдельных узлов-
обработчиков топологии.

Рис. 7.11. Метрики JConsole для ZMart

Глава 7. Мониторинг и производительность   231

СОВЕТ
Поскольку JMX взаимодействует только с работающими в данный момент
приложениями, то некоторые из примеров приложений из папки src/main/
java/bbejeck/chapter_7 будут работать безостановочно, чтобы вы могли по-
экспериментировать с метриками. А значит, вам придется останавливать их
вручную, или через IDE, или нажав Ctrl+C в командной строке.

На рис. 7.11 показана метрика process-rate, означающая среднее число обрабо-
танных записей в миллисекунду. Если посмотреть на правый верхний угол рисунка,
можно увидеть, что скорость обработки равна 3,537 записи в миллисекунду (3537 за-
писей в секунду). Кроме того, как уже обсуждалось ранее, из JConsole можно про-
сматривать метрики потребителя и генератора.

СОВЕТ
Хотя имеющиеся метрики охватывают практически все, возможны случаи,
когда вам понадобятся свои, пользовательские метрики. Это довольно ред-
кий и специфический сценарий применения, так что мы не будем рассма-
тривать подобный пример подробно. Но при желании вы можете взглянуть
на метод StockPerformanceMetricsTransformer.init в качестве примера добав-
ления пользовательской метрики и метод StockPerformanceMetricsTransfor
mer.transform в качестве примера их использования. Класс StockPerforman
ceMetricsTransformer находится в файле src/main/java/bbejeck/chapter_7/
transformer/StockPerformanceMetrics-Transformer.java.

Мы обсудили вопрос просмотра метрик Kafka Streams. Время перейти к другим
удобным способам выяснить, что происходит внутри приложения.

7.3. �Дополнительные методики отладки
Kafka Streams

Мы рассмотрим еще несколько методик наблюдения за потоковыми приложениями
Kafka Streams и их отладки. Предыдущий раздел был посвящен в основном произво-
дительности, в этом же разделе мы сосредоточим наше внимание на том, как узнать
своевременно о различных состояниях приложения, и на просмотре структуры
топологии.

7.3.1. Просмотр структуры приложения
После запуска готового приложения могут возникнуть ситуации, требующие его
отладки. Допустим, для определенной задачи не помешала бы вторая пара рук, но
по каким-либо причинам вы не можете никому показать код. Или, например, вам
может понадобиться просмотреть, какие TopicPartition назначены различным за-
дачам приложения.

232   Часть III  •  Администрирование Kafka Streams

Метод Topology.describe() дает возможность просмотреть общую структуру при-
ложения. Он выводит информацию о структуре программы, включая все внутренние
топики, созданные для целей повторного секционирования. На рис. 7.12 приведены
результаты вызова метода describe для CoGroupingListeningExampleApplication из
главы 7 (src/main/java/bbejeck/chapter_7/CoGroupingListeningExampleApplication.java).

Рис. 7.12. Отображает названия узлов, соответствующие дочерние узлы
и другую информацию

Как вы можете видеть, метод Topology.describe() выводит краткий, аккуратный
обзор структуры приложения. Отмечу, что приложение CoGroupingListeningExamp
leApplication использовало API узлов-обработчиков, так что названия всех узлов
топологии выбраны разработчиком. В случае API Kafka Streams названия были бы
несколько более стандартизированы.

KSTREAM-SOURCE-0000000000:
 topics: [transactions]
 children: [KSTREAM-MAPVALUES-0000000001]

СОВЕТ
При работе с API DSL Kafka Streams класс Topology непосредственно не при-
меняется, но к нему можно легко обратиться при необходимости. Если вам
нужно вывести в консоль физическую топологию приложения, воспользуйтесь
методом StreamsBuilder.build(), возвращающим объект Topology, а затем вы-
зовите метод Topology.describe(), как мы вам только что показывали.

Глава 7. Мониторинг и производительность   233

Может оказаться полезно также получить в приложении информацию о време-
ни выполнения для объектов StreamThread. Для доступа к информации объектов
StreamThread воспользуйтесь методом KafkaStreams.localThreadsMetadata().

7.3.2. �Получение уведомлений
о различных состояниях приложения

Запущенное приложение Kafka Streams не начинает сразу же обрабатывать данные —
сначала нужно произвести определенную координацию действий. Потребитель дол-
жен извлечь информацию о метаданных и подписках, приложение должно запустить
экземпляры StreamThread и распределить TopicPartition по StreamTask.

Этот процесс распределения или перераспределения задач (рабочей нагрузки) на-
зывается перебалансировкой (rebalancing). Перебалансировка означает возможность
автоматического вертикального масштабирования Kafka Streams в обе стороны.
Это ключевое его преимущество — возможность добавить новые экземпляры при-
ложения во время работы существующего приложения в расчете на то, что процесс
перебалансировки перераспределит нагрузку.

Например, допустим, что ваше приложение Kafka Streams содержит два узла-
источника, по две секции в каждом топике — итого четыре требующих распределе-
ния объекта TopicPartition. Сначала вы запускаете приложение с одним потоком
выполнения. Kafka Streams определяет, сколько нужно создать задач, на основе
максимального размера секции среди всех входных топиков. В данном случае у каж-
дого топика две секции, так что максимум равен 2, следовательно, будет создано две
задачи. Затем в процессе перебалансировки каждой из двух задач назначается по два
объекта TopicPartition.

После того как приложение поработало какое-то время, вы решаете, что хоти-
те обрабатывать записи быстрее. Для этого вам достаточно запустить еще один
экземпляр приложения с тем же идентификатором приложения, после чего про-
цесс перебалансировки распределит нагрузку с учетом нового потока выполнения
приложения. В результате две задачи окажутся распределенными по двум потокам
выполнения.

Мы только что удвоили возможности приложения, в то время как исходная вер-
сия продолжала работать — останавливать приложение не понадобилось.

Среди других причин перебалансировки — останов или запуск другого экземпля-
ра Kafka Streams (с тем же идентификатором приложения), добавление секций в то-
пик или — в случае узла-источника на основе регулярного выражения — добавление/
удаление топиков, соответствующих паттерну регулярного выражения.

Во время фазы перебалансировки внешние взаимодействия временно приоста-
навливаются до того момента, как приложение завершит распределение секций
топиков по потоковым задачам, так что вам хотелось бы получить оповещение об
этом моменте жизненного цикла приложения. Например, отсутствует возможность

234   Часть III  •  Администрирование Kafka Streams

обращения к доступным для запроса хранилищам состояния, а значит, желательно
ограничить запросы на просмотр содержимого хранилища состояния до тех пор,
пока это снова не станет возможным.

Но как же проверить, происходит ли сейчас перебалансировка ваших других
приложений? К счастью, такой механизм в виде интерфейса StateListener в Kafka
Streams есть, и мы рассмотрим его в следующем разделе.

7.3.3. Использование интерфейса StateListener
Приложение Kafka Streams в каждый заданный момент времени может находиться
в одном из шести состояний. На рис. 7.13 показаны допустимые для приложения
Kafka Streams состояния. Как вы видите, существует несколько сценариев смены со-
стояния, из которых мы сосредоточим внимание на одном — переходе из состояния
выполнения в состояние перебалансировки. Это наиболее частый и сильнее всего
влияющий на производительность тип перехода, поскольку в фазе перебалансировки
не производится никакой обработки.

Рис. 7.13. Возможные состояния приложения Kafka Streams

Чтобы уловить эти смены состояния, мы воспользуемся методом KafkaStre
ams.setStateListener, принимающим на входе экземпляр интерфейса StateListener.
Это интерфейс с одним методом, так что можно воспользоваться синтаксисом лямб-
да-выражений Java 8, как показано в листинге 7.4 (его можно найти в файле src/main/
java/bbejeck/chapter_7/ZMartKafkaStreamsAdvancedReqsMetricsApp.java).

Глава 7. Мониторинг и производительность   235

Листинг 7.4. Добавление прослушивателя состояния

СОВЕТ
Листинг 7.4, демонстрирующий класс ZMartKafkaStreamsAdvancedReqsMe
tricsApp.java, включает просмотр метрик JMX и оповещение о переходе из
одного состояния в другое, так что я отключил в нем вывод результатов
потоковой обработки в консоль. Мы записываем тут результаты только
в топики Kafka. При запуске приложения вы увидите в консоли выводимую
прослушивателем информацию.

В нашей первой реализации интерфейса StateListener мы выводим в журнал
(консоль) информацию об изменениях состояния. В подразделе 7.3.1, когда мы об-
суждали вывод структуры топологии, я упоминал, что нужно подождать завершения
перебалансировки. Именно это мы и делаем в листинге 7.4: выводим структуру после
завершения всех задач и переназначений.

Расширим немного этот пример и покажем оповещение при переходе прило-
жения в состояние перебалансировки. Для учета этого дополнительного перехода
необходимо изменить код следующим образом (его можно найти в файле src/main/
java/bbejeck/chapter_7/ZMartKafkaStreamsAdvancedReqsMetricsApp.java) (листинг 7.5).

Листинг 7.5. Изменяем прослушиватель состояния для учета состояния
перебалансировки (REBALANCING)

Хотя в нашем примере используются простые операторы журналирования, вам
должно быть понятно, что вы можете заменить их более сложной логикой обработки
изменений состояния в своем приложении.

236   Часть III  •  Администрирование Kafka Streams

ПРИМЕЧАНИЕ
В силу того что Kafka Streams — библиотека, а не фреймворк, на сервере
можно запустить только один экземпляр. А если у вас запущено несколько
приложений на разных машинах, то вы увидите результаты изменений со-
стояния только на своей локальной машине.

Главное в этом разделе — возможность выяснить текущее состояние своего
приложения Kafka Streams, благодаря чему оно перестает быть настолько «черным
ящиком».

Далее мы обсудим перебалансировку несколько подробнее. Хотя возможность
автоматической перебалансировки нагрузки — одна из сильных сторон Kafka
Streams, число перебалансировок лучше минимизировать. Ведь во время пере-
балансировки данные не обрабатываются, а хотелось бы, чтобы наше приложение
обрабатывало данные как можно больше времени.

7.3.4. Прослушиватель восстановления состояния
Из главы 4 вы узнали о хранилищах состояния и важности их резервного копиро-
вания на случай сбоя. В Kafka Streams мы часто используем в качестве резервной
копии хранилищ состояния топики, которые называются журналами изменений
(changelogs).

Журналы изменений записывают происходящие обновления хранилищ со-
стояния. В случае сбоя приложения Kafka Streams или его перезапуска вручную
хранилище состояния может восстановиться из локальных файлов состояния, как
показано на рис. 7.14.

Рис. 7.14. Восстановление хранилища состояния с нуля

Глава 7. Мониторинг и производительность   237

В некоторых случаях, однако, может понадобиться полное восстановление хра-
нилища состояния из журнала изменений, например при работе приложения Kafka
Streams в среде без сохранения состояния, вроде Mesos, или при серьезном сбое с поте-
рей файлов на локальном диске. В зависимости от объема требующих восстановления
данных такой процесс восстановления может потребовать немалого времени.

Во время этого периода восстановления все хранилища состояния, открытые
вами для выполнения запросов, недоступны, так что хотелось бы понимать, сколько
этот процесс восстановления займет времени и как он продвигается. Кроме того,
при наличии пользовательского хранилища состояния будет не лишним получить
оповещения о начале и завершении восстановления, чтобы выполнить нужные на
этих этапах задачи.

Интерфейс StateRestoreListener аналогично StateListener дает возможность
оповещения о происходящем внутри приложения. Интерфейс StateRestoreListener
включает три метода: onRestoreStart, onBatchRestored и onRestoreEnd. Для зада-
ния глобального прослушивателя восстановления используется метод KafkaStre
ams.setGlobalRestoreListener.

ПРИМЕЧАНИЕ
Ожидается, что StateRestoreListener не будет сохранять состояние. Он исполь
зуется для всего приложения. При необходимости отслеживания состояния
в прослушивателе следует обеспечить синхронизацию.

Посмотрим на код прослушивателя, чтобы разобраться, как работает подобный
процесс оповещения. Начнем с объявления переменной и метода onRestoreStart (его
можно найти в файле src/main/java/bbejeck/chapter_7/restore/LoggingStateRestoreListener.java)
(листинг 7.6).

Листинг 7.6. Журналирующий прослушиватель восстановления

238   Часть III  •  Администрирование Kafka Streams

Первое, что мы делаем, — создаем два экземпляра ConcurrentHashMap для от-
слеживания хода восстановления. В методе onRestoreStart мы сохраняем общее
количество записей, требующих восстановления, и заносим в журнал сообщение
о начале восстановления.

Далее посмотрим на код, выполняющий собственно восстановление каждо-
го пакета записей (его можно найти в файле src/main/java/bbejeck/chapter_7/restore/
LoggingStateRestoreListener.java) (листинг 7.7).

Листинг 7.7. Метод onBatchRestored

Для чтения из топика журнала изменений в процессе восстановления исполь-
зуется внутренний потребитель, поэтому приложение восстанавливает записи
пакетами, соответствующими вызовам метода consumer.poll(). Вследствие этого
максимальный размер любого пакета равен значению параметра конфигурации
max.poll.records.

После загрузки процессом восстановления последнего пакета в хранилище
состояния вызывается метод onBatchRestored. Во-первых, мы прибавляем размер
текущего пакета к накопленному количеству восстановленных записей. Далее под-
считываем степень завершения восстановления (в процентах) и выводим в журнал
результат. И наконец, сохраняем ранее вычисленное новое общее количество за-
писей.

Последний шаг, который мы обсудим, производится по завершении процесса
восстановления (его можно найти в файле src/main/java/bbejeck/chapter_7/restore/
LoggingStateRestoreListener.java) (листинг 7.8).

После завершения приложением процесса восстановления остается выполнить
один последний вызов прослушивателя с передачей общего количества восстанов-
ленных записей. В данном примере мы записываем в журнал окончательное состоя
ние и сбрасываем общий счетчик восстановления на 0.

Глава 7. Мониторинг и производительность   239

Листинг 7.8. Метод, вызываемый по завершении процесса восстановления

Наконец, мы можем воспользоваться LoggingStateRestoreListener в своем при-
ложении следующим образом (см. файл src/main/java/bbejeck/chapter_7/CoGroupingLis
teningExampleApplication.java) (листинг 7.9).

Листинг 7.9. Задаем глобальный прослушиватель восстановления

kafkaStreams.setGlobalStateRestoreListener(new LoggingStateRestoreListener());

Это был пример использования StateRestoreListener. В главе 9 вы увидите при-
мер, включающий графическое представление процесса восстановления.

СОВЕТ
Для просмотра файла журнала, сгенерированного при запуске приложе-
ния CoGroupingListeningExampleApplication, найдите файл logs/state_restore_
listener.log в корневом каталоге места установки исходного кода.

7.3.5. Обработчик неперехваченных исключений
Мне кажется, что, без преувеличения, всякий разработчик время от времени стал-
кивается с исключениями, на появление которых не рассчитывал, и видит длинную
трассу вызовов в стеке при неожиданном завершении работы программы. Хотя по-
добная ситуация не вполне вписывается в пример мониторинга, рекомендуемой
практикой является отправка уведомления и выполнение необходимой очистки
в случае возникновения неожиданного исключения. Для обработки подобных неожи-
данных ошибок Kafka Streams предоставляет метод KafkaStreams.setUncaughtExcep
tionHandler (листинг 7.10) (его можно найти в файле src/main/java/bbejeck/chapter_7/
CoGroupingListeningExampleApplication.java).

Листинг 7.10. Простейший обработчик неперехваченных исключений

kafkaStreams.setUncaughtExceptionHandler((thread, exception) -> {
 CONSOLE_LOG.info("Thread [" + thread + "]
➥ encountered [" + exception.getMessage() +"]");
});

Это, конечно, реализация, сокращенная до абсолютного минимума, но ее достаточ-
но для демонстрации того, где можно обрабатывать неожиданные исключения — или

240   Часть III  •  Администрирование Kafka Streams

посредством журналирования ошибки, как показано выше, или путем выполнения
необходимой очистки и останова потоков данных приложения.

На этом мы завершаем обсуждение мониторинга приложений Kafka Streams.

Резюме
�� Для мониторинга Kafka Streams требуется также мониторинг и брокеров Kafka.

�� Для отслеживания производительности приложения следует включить перио-
дическое создание отчетов о метриках.

�� Чтобы понимать, что происходит в вашем приложении, необходимо заглянуть
к нему «под капот», а иногда и провести более низкоуровневое расследование,
воспользовавшись утилитами командной строки, поставляемыми вместе с Java,
например jstack (производит дампы потоков выполнения) или jmap/jhat (про-
изводит дампы кучи).

В этой главе мы сосредоточили наше внимание на наблюдении за поведением
приложения. В следующей главе мы переключимся на вопрос согласованной и аде
кватной обработки ошибок. Мы также убедимся с помощью регулярного тестиро-
вания в том, что приложение ведет себя ожидаемым образом.

8 Тестирование приложения
Kafka Streams

В этой главе:

�� тестирование топологии;

�� тестирование отдельных узлов-обработчиков и преобразователей;

�� комплексное тестирование с помощью встроенного кластера Kafka.

Пока мы рассмотрели основные стандартные блоки, используемые при создании
приложений Kafka Streams. Но мы не упоминали еще один из важнейших элементов
разработки приложений: тестирование. Одна из главных концепций, на которой мы
сосредоточим наше внимание, — размещение бизнес-логики в автономных классах,
полностью независимых от приложения Kafka Streams, с целью упрощения тестиро-
вания. Я полагаю, что вы знаете, насколько важно тестирование, но все же упомяну
две основные, с моей точки зрения, причины, почему тестирование не менее важно,
чем сам процесс разработки.

Во-первых, разработкой своего кода вы создаете неписаное соглашение отно-
сительно того, что можно ожидать от кода. Единственный способ доказать, что код
работает, — тщательное тестирование, так что при тестировании необходимо учесть
широкий спектр возможных входных данных и сценариев, чтобы убедиться в долж-
ной работе кода в допустимых условиях.

Вторая причина, по которой необходим первоклассный набор тестов, — неиз-
бежные изменения программного обеспечения. Хороший набор тестов обеспечивает
немедленную обратную связь в случае, когда код начинает вести себя не так, как
ожидалось. Кроме того, при масштабном рефакторинге или добавлении новой функ-
циональности прохождение тестов позволяет быть уверенными в том, как изменения
повлияют на приложение (при условии, что тесты качественные).

Тестировать приложения Kafka Streams не всегда просто, даже если вы пони-
маете, насколько это важно. Можно запустить на выполнение простую топологию
и посмотреть на результаты, но у этого подхода есть один недостаток. Нам нужен
набор воспроизводимых (repeatable) тестов, которые можно запустить в любой мо-
мент в качестве составной части сборки, так что желательно иметь возможность
тестировать приложение без кластера Kafka и ансамбля ZooKeeper.

242   Часть III  •  Администрирование Kafka Streams

Именно об этом мы и поговорим в данной главе. Во-первых, вы увидите, как те-
стировать топологию без работающего кластера Kafka, когда вся топология работает
в рамках модульного теста. Вы также научитесь тестировать узлы-обработчики или
преобразователи отдельно друг от друга, с имитацией всех необходимых зависимо-
стей.

ПРИМЕЧАНИЕ
Вероятно, вам приходилось выполнять тестирование с использованием ими-
тационных объектов, но если нет, для знакомства вполне подойдет статья
из «Википедии»: https://en.wikipedia.org/wiki/Mock_object.

Хотя модульное тестирование жизненно важно для воспроизводимости тестов
и быстрой обратной связи, комплексное тестирование тоже играет важную роль,
ведь иногда бывает необходимо проверить взаимодействие частей приложения
между собой. Например, рассмотрим случай перебалансировки — важного элемента
приложений Kafka Streams. Добиться выполнения перебалансировки в модульном
тесте практически невозможно. В табл. 8.1 кратко описываются различия между
модульным и комплексным тестированием.

Таблица 8.1. Подходы к тестированию

Тип тестов Цель Скорость
тестирования

Объемы
использования

Модульные Изолированное тестирование
отдельных частей
функциональности

Быстрое Составляют
большинство тестов

Комплексные Тестирование точек сопряжения
различных подсистем

Более длительное Составляют
небольшую долю
тестов

Для тестирования необходимо запустить реальную перебалансировку в реа-
листичных условиях. В подобных случаях нужно выполнять приложение вместе
с экземпляром кластера Kafka. Но надеяться на наличие внешнего кластера не-
желательно, так что мы научимся пользоваться для комплексного тестирования
встроенными Kafka и ZooKeeper.

8.1. Тестирование топологии
Первая созданная нами в главе 3 топология была относительно сложной. Чтобы
освежить вашу память, она приведена на рис. 8.1 снова.

Логика обработки достаточно проста, но, как можно видеть из структуры, она со-
стоит из нескольких узлов. Важная особенность, которая упростит нам тестирование:
топология принимает один параметр на входе — исходную покупку — и производит

Глава 8. Тестирование приложения Kafka Streams   243

над ним далее несколько преобразований. Благодаря этому тестирование несколько
упрощается, в том смысле что достаточно передать одно значение с информацией
о покупке, после чего можно по результатам проверить, были ли произведены все
нужные преобразования.

Рис. 8.1. Полная исходная топология программы Kafka Streams для компании ZMart

СОВЕТ
В большинстве случаев логика обработки должна находиться в отдельных
классах, чтобы можно было модульно протестировать бизнес-логику отдельно
от топологии. В случае топологии ZMart большая часть логики проста и пред-
ставлена лямбда-выражениями Java 8, так что в данном случае мы будем
тестировать движение данных по топологии.

Нам нужен повторяемый автономный тест, поэтому мы воспользуемся клас-
сом ProcessorTopologyTestDriver, благодаря которому для выполнения подоб-
ного теста не требуется Kafka. Не забывайте, что возможность тестирования

244   Часть III  •  Администрирование Kafka Streams

топологии без работающего экземпляра Kafka означает ускорение и упрощение
тестирования, а значит, и сокращение цикла разработки. Отмечу также, что
ProcessorTopologyTestDriver — обобщенный фреймворк, предназначенный для
тестирования отдельных объектов топологии Kafka Streams.

Использование утилит тестирования библиотеки Kafka Streams

Для использования утилит тестирования библиотеки Kafka Streams необходимо мо-
дифицировать файл build.gradle следующим образом:

testCompile group:'org.apache.kafka', name:'kafka-streams',
➥ version:'1.0.0', classifier:'test'
testCompile group:'org.apache.kafka', name:'kafka-clients',
➥ version:'1.0.0', classifier:'test'

Если вы задействуете Maven, то воспользуйтесь следующим кодом:

<dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-streams</artifactId>
 <version>1.0.0</version>
 <scope>test</scope>
 <classifier>test</classifier>
</dependency>

<dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>1.0.0</version>
 <scope>test</scope>
 <classifier>test</classifier>
</dependency>

СОВЕТ
При написании своих собственных проектов с применением кода тестиро-
вания Kafka и Kafka Streams желательно указывать все зависимости, при-
веденные в примере кода.

Начальное создание топологии полностью производилось в методе ZMartKaf
kaStreamsApp.main. Для быстрой разработки это вполне подходит, но для тестиро-
вания — не очень. Теперь нам придется переделать топологию в автономный класс,
чтобы иметь возможность ее протестировать.

Логика работы не меняется, и мы будем переносить код в неизменном виде, так
что я не стану демонстрировать тут данное превращение. Вместо этого я предлагаю
вам при желании обратиться к файлу src/main/java/bbejeck/chapter_8/ZMartTopology.java.

По завершении переноса кода можно приступить к созданию теста.

Глава 8. Тестирование приложения Kafka Streams   245

8.1.1. Создание теста
Перейдем к созданию модульного теста для топологии ZMart. Воспользуемся стан-
дартным тестом JUnit. Перед выполнением теста необходимо произвести кое-какие
предварительные действия (см. файл src/test/java/bbejeck/chapter_8/ZMartTopologyTest.java)
(листинг 8.1).

Листинг 8.1. Метод с предварительными настройками для тестирования топологии

Важнейший момент листинга 8.1 — создание объекта ProcessorTopologyTestDri
ver, которым мы воспользуемся в листинге 8.2, при запуске теста (его можно найти
в файле src/test/java/bbejeck/chapter_8/ZMartTopologyTest.java).

Листинг 8.2. Тестирование топологии

246   Часть III  •  Администрирование Kafka Streams

В листинге 8.2 есть два критически важных фрагмента кода. Начиная с вызова
метода topologyTestDriver.process, мы отправляем запись в топик transactions —
источник данных для всей топологии. По завершении прохождения данных по
топологии мы сможем убедиться, что были произведены те действия, которые нуж-
ны. В следующей строке мы читаем запись из топика purchases с помощью метода
topologyTestDriver.readOutput и одного из описанных в топологии стоков. В пред-
последней строке мы создаем ожидаемую итоговую запись, после чего в последней
строке проверяем, соответствуют ли полученные результаты ожидаемым.

В топологии есть еще два узла-стока, так что для полноты теста убедимся, что
из них мы тоже получим правильные результаты (код можно найти в файле src/test/
java/bbejeck/chapter_8/ZMartTopologyTest.java) (листинг 8.3).

Листинг 8.3. Тестирование оставшейся части топологии

При добавлении новых узлов-обработчиков в тест схема работы останется такой
же, как в листинге 8.3. Из каждого топика читаются записи, после чего проверяется
их соответствие ожидаемым с помощью оператора контроля (assert). Главное: мы
получили воспроизводимый тест, который пропускает запись через всю топологию
без всяких расходов ресурсов на выполнение Kafka.

Глава 8. Тестирование приложения Kafka Streams   247

Класс ProcessorTopologyTestDriver поддерживает также тестирование топологий
с хранилищами состояния. Взглянем, как это осуществить.

8.1.2. �Тестирование хранилища состояния
в топологии

Для демонстрации тестирования хранилища состояния мы переделаем еще один
класс, StockPerformanceStreamsAndProcessorApplication, так, чтобы вызываемый
метод возвращал объект Topology. Этот класс можно найти в файле src/main/java/
bbejeck/chapter_8/StockPerformanceStreamsProcessorTopology.java. Я не вносил никаких из-
менений в логику его работы, так что здесь мы не будем его рассматривать.

Предварительные настройки теста остались такими же, как и ранее, так что я дам
пояснения только к новым фрагментам (src/test/java/bbejeck/chapter_8/StockPerforman
ceStreamsProcessorTopologyTest.java) (листинг 8.4).

Листинг 8.4. Тестирование хранилища состояния

Как вы видите, последняя строка с оператором assert быстро проверяет, исполь-
зуется ли хранилище состояния в коде так, как и планировалось. Вы посмотрели на
класс ProcessorTopologyTestDriver в действии, а также узнали, как выполнить
сквозное тестирование топологии. Тестируемые топологии могут быть очень про-
стыми, с одним узлом-обработчиком, или очень сложными, состоящими из несколь-
ких субтопологий. И хотя мы производим это тестирование без брокера Kafka,
не сомневайтесь: это полное тестирование топологии, с вовлечением в работу всех
компонентов, включая сериализацию и десериализацию записей.

Мы увидели сквозное тестирование топологии. Но хотелось бы также протести-
ровать внутреннюю логику объектов Processor и Transformer. Тестирование всей
топологии — замечательная вещь, но проверка поведения внутри каждого из классов
требует более тонкого подхода, который мы рассмотрим далее.

248   Часть III  •  Администрирование Kafka Streams

8.1.3. �Тестирование узлов-обработчиков
и преобразователей

Для проверки поведения внутри отдельного класса требуется настоящий модуль-
ный тест, предназначенный для тестирования только одного класса. Написание
модульного теста для объектов Processor и Transformer затруднений у вас вызвать
не должно, но помните, что обоим классам требуется ProcessorContext для полу-
чения хранилищ состояния и планирования операций пунктуации.

Нам нужно создать не реальный объект ProcessorContext, а его суррогат для
целей тестирования: объект-имитацию. Для этой цели можно поступить двумя
способами.

Один вариант: воспользоваться имитационным фреймворком, например Mockito,
(http://site.mockito.org) для генерации имитационных объектов в тесте. Другая возмож-
ность: применить объект MockProcessorContext из той же библиотеки тестирования,
что и ProcessorTopologyTestDriver. Какой вариант выбрать — зависит от ваших
нужд.

Если имитационный объект нужен вам просто в качестве заместителя реальной
зависимости, имеет смысл воспользоваться конкретными имитационными объ-
ектами (имитационными объектами, не создаваемыми с помощью фреймворка).
Но для проверки передаваемых в имитационный объект параметров, возвращаемого
значения или других элементов поведения отлично подойдет имитационный объект,
сгенерированный фреймворком. Имитационные фреймворки (такие как Mockito)
включают обширный API, позволяющий указывать ожидания и проверять поведе-
ние, экономя тем самым время разработки и ускоряя процесс тестирования.

В листинге 8.5 мы будем задействовать оба этих типа имитационных объектов.
Для создания имитации ProcessorContext мы воспользуемся фреймворком Mockito,
поскольку хотим проверить параметры при вызове метода init, а также убедиться,
что из метода punctuate() передаются ожидаемые значения. У нас также будет поль-
зовательский имитационный объект для хранилища пар «ключ/значение», который
вы увидите в действии в нашем пошаговом разборе примера кода.

В этом листинге мы будем тестировать узел-обработчик с помощью имитацион-
ных объектов. Мы начнем с теста под названием AggregatingMethodHandleProces
sorTest (расположенного в каталоге src/test/java/bbejeck_chapter6/processor/cogrouping/)
для объекта AggregatingMethodHandleProcessor. Во-первых, мы хотели бы проверить
используемые в методе init параметры (см.: src/test/java/bbejeck/chapter_6/Aggrega
tingMethodHandleProcessorTest.java).

Этот первый шаг прост: мы вызываем метод init для тестируемого узла-обра-
ботчика с имитационным объектом ProcessorContext. Затем мы можем проверить
используемые для планирования пунктуации параметры, а также извлечение хра-
нилища состояния.

Далее протестируем метод punctuate и проверим, что записи отправляются далее,
как и должны (его можно найти в файле src/test/java/bbejeck/chapter_6/AggregatingMe
thodHandleProcessorTest.java) (листинг 8.6).

Глава 8. Тестирование приложения Kafka Streams   249

Листинг 8.5. Тестирование метода init

Листинг 8.6. Тестирование метода punctuate

250   Часть III  •  Администрирование Kafka Streams

Этот тест несколько более запутанный, в нем используется как имитационное,
так и реальное поведение. Кратко рассмотрим его.

В первой строке задается поведение имитационного объекта ProcessorContext:
при вызове метода ProcessorContext.getStateStore он должен возвращать заглушку
для KeyValueStore. Эта строка представляет собой интересную смесь сгенерирован-
ного имитационного объекта и имитационного объекта-заглушки.

Мы вполне могли воспользоваться Mockito для генерации имитационного объ-
екта KeyValueStore, но не стали этого делать по двум причинам. Во-первых, мне
кажется, что сгенерированный имитационный объект, возвращающий другой сгене-
рированный имитационный объект, выглядит несколько неестественно. Во-вторых,
мы хотим проверять и применять сохраненные значения в KeyValueStore во время
тестирования вместо указания ожидаемых значений с помощью шаблонного от-
вета.

Следующие три строки, начиная с вызова processor.init, реализуют обычные
для узла-обработчика шаги: сначала инициализацию, а потом обработку записей.
На четвертом шаге особенно важно наличие работающего KeyValueStore. Поскольку
наш KeyValueStore представляет собой простую заглушку, мы воспользуемся «под
капотом» объектом java.util.HashMap в качестве настоящего хранилища. В трех
строках, следующих за указанием ожидаемых значений для узла-обработчика, мы
извлекаем из хранилища данные, помещенные туда при вызове метода process().
Мы создаем новые объекты ArrayList, включающие содержимое объекта Tuple
(опять же это пользовательский класс, разработанный для примеров кода в насто
ящей книге), извлеченного из хранилища состояния по заданному ключу.

Далее мы выносим метод punctuate из узла-обработчика. Поскольку это мо-
дульный тест, нам не требуется проверять приращение времени — это означало бы
тестирование самого API Kafka Streams, чего нам тут вовсе не нужно. Наша цель —
проверить поведение метода, который мы указали в качестве своего Punctuator
(посредством ссылки на метод).

Далее мы проверяем самое главное: что ожидаемые ключ и значение пересыла-
ются далее по конвейеру через метод ProcessorContext.forward. Эта часть теста
демонстрирует пользу от сгенерированного имитационного объекта. Благодаря
фреймворку Mockito нам нужно только сообщить имитационному объекту, что ему
следует ожидать вызова forward с заданными ключом и значением, и убедиться,
что тест выполнил код именно так. И наконец, мы проверяем, очистил ли узел-
обработчик коллекции объектов ClickEvent и StockTransaction после отправки их
далее по конвейеру.

Как вы можете видеть из этого теста, с помощью комбинации имитационных объ-
ектов — сгенерированного и заглушки — можно изолировать тестируемый класс.
Как я уже говорил ранее в данной главе, основную массу тестов в приложении Kafka
Streams составляют модульные тесты бизнес-логики, а также отдельных объектов
Processor и Transformer. Сама библиотека Kafka Streams и так тщательно протести-
рована, так что мы сосредоточим наши усилия на новом, непротестированном коде.

Глава 8. Тестирование приложения Kafka Streams   251

Вероятно, вам не хотелось бы дожидаться развертывания приложения, чтобы
выяснить, как оно взаимодействует с кластером Kafka. Вы предпочли бы провести
промежуточный контроль корректности кода, для которого потребуется ком-
плексное тестирование. Давайте узнаем, как локально выполнить тест с реальным
брокером Kafka.

8.2. Комплексное тестирование
Пока я рассказал вам о модульном тестировании топологии в целом или отдельных
компонентов. В большинстве случаев эти тесты оптимальны, поскольку их можно
быстро выполнить и проверить тем самым правильность работы конкретных фраг-
ментов кода.

Но бывает, что требуется сквозное тестирование всех элементов приложения
вместе: другими словами, комплексное тестирование. Обычно комплексное тестиро-
вание необходимо при наличии функциональности, которую невозможно охватить
в модульном тесте.

В качестве примера вернемся к самому первому нашему приложению, Yelling
App («Кричащее приложение»). Поскольку мы создавали топологию очень давно,
напомню ее на рис. 8.2.

Рис. 8.2. Восстановим в памяти топологию приложения Yelling App

252   Часть III  •  Администрирование Kafka Streams

Допустим, что мы хотим поменять источник с конкретного поименованного то-
пика на произвольный топик, соответствующий регулярному выражению:

yell-[A-Za-z0-9-]

В качестве примера мы хотели бы убедиться, что если при развернутом и за-
пущенном приложении добавится топик yell-at-everyone, то приложение начнет
читать информацию из него.

Мы не будем модифицировать исходное приложение Yelling App, поскольку
оно очень маленькое. Вместо этого мы воспользуемся прямо в тесте следующей
модифицированной версией (ее можно найти в файле src/java/bbejeck/chapter_3/Kaf
kaStreamsYellingIntegrationTest.java) (листинг 8.7).

Листинг 8.7. Модифицируем приложение Yelling App

Поскольку мы добавляем топики на уровне брокера Kafka, единственный способ
проверить, «подхватывает» ли приложение новый топик, — добавить такой топик во
время работы приложения. Подобный сценарий применения невозможен в случае
модульного теста. Но значит ли это, что вам придется развертывать обновленное
приложение для проверки?

К счастью, ответ на этот вопрос — нет. Вы можете воспользоваться встраиваемым
(embedded) кластером Kafka с помощью тестовых библиотек Kafka. Под термином
«встраиваемый» я понимаю тут большое приложение вроде Kafka или ZooKeeper,
работающее в локальном автономном режиме, то есть «встраивание» его в суще-
ствующее приложение.

Благодаря встроенному кластеру Kafka появляется возможность выполнения
комплексного теста, для которого требуется кластер Kafka, на своей локальной ма-
шине в любой момент, как отдельно, так и в составе группы тестов. Это существенно
сокращает цикл разработки. Приступим к созданию комплексного теста.

8.2.1. Создание комплексного теста
Первый шаг к использованию встраиваемого сервера Kafka требует добавления
трех дополнительных зависимостей — scala-library-2.12.4.jar, kafka_2.12-
1.0.0-test.jar и kafka_2.12-1.0.0.jar — в ваш файл build.gradle или pom.xml.
Я уже описывал синтаксис указания тестового JAR в разделе 8.1, так что повторять-
ся не стану.

Хотя может показаться, что число зависимостей растет, помните, что все добавля-
емые на данном этапе зависимости — тестовые. Они не включаются в дистрибутив

Глава 8. Тестирование приложения Kafka Streams   253

приложения и не развертываются вместе с его кодом; следовательно, они не по-
влияют на итоговый размер приложения.

Мы добавили нужные зависимости и можем теперь приступить к описанию
комплексного теста с участием встраиваемого брокера Kafka. Для создания ком-
плексного теста мы воспользуемся стандартным подходом JUnit.

Добавление EmbeddedKafkaCluster
Для добавления встраиваемого брокера Kafka в тест достаточно одной строки кода,
как показано в листинге 8.8 (его можно найти в файле src/test/java/bbejeck/chapter_3/
KafkaStreamsYellingIntegrationTest.java).

Листинг 8.8. Добавляем встраиваемый брокер Kafka

Во второй строке листинга 8.8 мы создаем экземпляр EmbeddedKafkaCluster,
служащий кластером для выполнения тестов в классе. Самое важное в этом при-
мере — аннотация ClassRule. Полное описание фреймворков тестирования и JUnit
выходит за рамки данной книги, но я уделю немного времени разъяснениям по по-
воду важности @ClassRule и ее роли в тесте.

Правила JUnit
В JUnit появилось понятие правил (rules), с помощью которых можно восполь-
зоваться часто встречающейся тестовой логикой JUnit. Вот их краткое описание,
взятое из https://github.com/junit-team/junit4/wiki/Rules#rules: «Правила обеспечивают
возможность очень гибкого добавления или переопределения поведения любого из
тестовых методов тестового класса».

В JUnit есть три типа правил, из которых класс EmbeddedKafkaCluster ис-
пользует правила типа ExternalResource (https://github.com/junit-team/junit4/wiki/
Rules#externalresource-rules). Правила ExternalResource применяются для под-
ключения и удаления внешних ресурсов, например необходимого для теста
EmbeddedKafkaCluster.

JUnit предоставляет класс ExternalResource с двумя пустыми методами: before()
и after(). Всякий расширяющий ExternalResource класс должен переопределить
эти методы, описав подключение и удаление необходимых для тестирования внеш-
них ресурсов.

254   Часть III  •  Администрирование Kafka Streams

Правила — абстракция, прекрасно подходящая для использования в тестах внеш-
них ресурсов. После создания расширяющего ExternalResource класса необходимо
только создать в тесте переменную и применить аннотацию @Rule или @ClassRule,
а все методы подключения/удаления будут выполнены автоматически.

Различие между аннотациями @Rule и @ClassRule заключается в частоте вызовов
методов before() и after(). Аннотация @Rule выполняет методы before() и after()
для каждого отдельного теста в классе. Аннотация же @ClassRule выполняет методы
before() и after() однократно; метод before() выполняется до всех тестов, а метод
after() — по завершении последнего теста в классе. Создание EmbeddedKafkaCluster
требует довольно много ресурсов, так что имеет смысл делать это лишь один раз для
каждого тестового класса.

Вернемся к созданию комплексного теста. Мы уже создали объект Embed
dedKafkaCluster, следующий шаг — создание необходимых в начале работы то-
пиков.

Создание топиков
Теперь, когда у нас уже есть встраиваемый кластер Kafka, можно воспользоваться
им для создания топиков следующим образом (src/test/java/bbejeck/chapter_3/Kaf
kaStreamsYellingIntegrationTest.java) (листинг 8.9).

Листинг 8.9. Создание топиков для тестирования

Создать топики для тестирования желательно один раз для всех тестов, так что
мы воспользовались аннотацией @BeforeClass, создающей нужные топики до выпол-
нения всех тестов. Для данного теста нам достаточно будет топиков из одной секции
с коэффициентом репликации 1, так что можно воспользоваться удобным методом
EmbeddedKafkaCluster.createTopic(String name). Если же нам требуется более од-
ной секции или коэффициент репликации больше 1, то настройки по умолчанию
нам не подойдут. В подобном случае можно воспользоваться одним из следующих
перегруженных методов createTopic:

�� EmbeddedKafkaCluster.createTopic(String topic, int partitions, int replication);

�� EmbeddedKafkaCluster.createTopic(String topic, int partitions, int replication,
Properties topicConfig).

По завершении этой подготовки к запуску встраиваемого кластера Kafka мы
можем перейти к тестированию топологии с помощью встраиваемого брокера.

Глава 8. Тестирование приложения Kafka Streams   255

Тестирование топологии
Все готово. Для комплексного тестирования нам нужно сделать такие шаги.

1.	 Запустить приложение Kafka Streams.

2.	 Занести какие-нибудь записи в топик-источник и проконтролировать правиль-
ность результатов.

3.	 Создать новый топик, соответствующий шаблону.

4.	 Занести еще какие-нибудь дополнительные записи в новый топик и проконтро-
лировать правильность результатов.

Начнем с первых двух частей теста (код можно найти в файле src/test/java/bbejeck/
chapter_3/KafkaStreamsYellingIntegrationTest.java) (листинг 8.10).

Листинг 8.10. Запуск приложения и контроль первого набора значений

Эта часть теста — вполне заурядный код тестирования. Мы проводим «инициа
лизацию» потокового приложения, занося записи в топик-источник. Потоковое
приложение уже работает, так что оно потребляет, обрабатывает и выводит записи
в рамках стандартной обработки. Для проверки того, что приложение работает так,
как ожидается, тест потребляет записи из топика узла-стока и сравнивает получен-
ные значения с ожидаемыми.

256   Часть III  •  Администрирование Kafka Streams

Ближе к концу листинга 8.10 вы можете видеть два статических вспомогательных
метода: IntegrationTestUtils.produceValuesSynchronously и IntegrationTest
Utils.waitUntilMinValuesRecordsReceived, которые сильно упрощают создание
этого комплексного теста. Данные вспомогательные методы генерации и потребле-
ния — часть kafka-streams-test.jar. Давайте обсудим их вкратце.

Генерация и потребление записей в тесте
Метод IntegrationTestUtils.produceValuesSynchronously создает ProducerRecord
для каждой записи в коллекции с пустым ключом. Этот метод — синхронный, он по-
лучает итоговый объект Future<RecordMetadata>, возвращаемый методом Producer.
send и немедленно вызывает Future.get(), блокирующий выполнение до возврата
из запроса генератора. А поскольку этот метод отправляет записи синхронно, мож-
но быть уверенными, что после возврата из метода записи уже доступны для по-
требления. Другой метод, IntegrationTestUtils.produceKeyValuesSynchronously,
принимает в качестве аргумента коллекцию KeyValue<K,V> на случай, если вы хотите
указать значения для ключей.

Для потребления записей в листинге 8.10 мы воспользовались методом Integra
tionTestUtils.waitUntilMinValuesRecordsReceived. Как вы, наверное, поняли из его
названия, он пытается прочитать ожидаемое число записей из заданного топика.
По умолчанию он ждет до 30 секунд и, если ожидаемое число записей прочитано
не было, генерирует исключение AssertionError, сигнализируя о том, что тест про-
вален.

На случай, если вам требуется для работы потребленное KeyValue, а не просто
значение, существует метод IntegrationTestUtils.waitUntilMinKeyValueRecordsRe
ceived, который ведет себя аналогично, но возвращает коллекцию KeyValue. Кроме
того, существуют перегруженные версии утилиты-потребителя, в которых можно
задать длительность ожидания через параметр типа long.

А теперь завершим наше описание теста.

Динамическое добавление топика
Мы добрались до фазы тестирования динамического поведения, для чего нам требу-
ется работающий брокер Kafka. Предыдущая часть теста служила для проверки на-
чальных значений. Теперь же мы собираемся воспользоваться EmbeddedKafkaCluster
для создания нового топика и убедиться, что приложение читает из этого то-
пика и обрабатывает записи так, как ожидалось (см.: src/java/bbejeck/chapter_3/Kaf
kaStreamsYellingIntegrationTest.java) (листинг 8.11).

Мы создали новый топик, соответствующий шаблону для узла-источника пото-
кового приложения. После этого мы прошли через те же самые шаги заполнения но-
вого топика данными и потребления записей из топика, обеспечивающего данными
узел-источник потокового приложения. В конце теста мы проверяем, совпадают ли
прочитанные результаты с ожидаемыми.

Вы можете запустить этот тест из своего IDE, и он должен выполняться успешно.
Итак, мы завершили создание вашего первого комплексного теста!

Глава 8. Тестирование приложения Kafka Streams   257

Листинг 8.11. Запуск приложения и проверка значений

Комплексный тест не стоит использовать для всего чего угодно, поскольку мо-
дульные тесты легче в написании и сопровождении. Но комплексные тесты могут
оказаться незаменимы в тех случаях, когда проверить поведение кода можно только
с помощью работающего брокера Kafka.

ПРИМЕЧАНИЕ
У вас может возникнуть соблазн создавать все тесты с помощью Embed
dedKafkaCluster, но лучше так не поступать. Если запустить только что создан-
ный нами пример комплексного теста, можно заметить, что он выполняется
намного дольше модульных тестов. Несколько лишних секунд для одного
теста — немного, но если умножить это время на несколько сотен или даже
тысяч тестов, то расход времени на выполнение вашего набора тестов ока-
жется весьма существенным. Кроме того, следует всегда стараться делать
тесты как можно меньшими по размеру и посвященными одному конкретному
элементу функциональности вместо того, чтобы задействовать весь техно-
логический процесс приложения.

Резюме
�� Старайтесь размещать бизнес-логику в автономных классах, полностью неза-

висимых от вашего приложения Kafka Streams. Это упрощает их модульное
тестирование.

�� Не помешает иметь хотя бы один тест, использующий ProcessorTopolo
gyTestDriver, для сквозного тестирования топологии. Эти тесты выполняются
быстро, поскольку не задействуют брокер Kafka.

258   Часть III  •  Администрирование Kafka Streams

�� Старайтесь использовать имитационный фреймворк для проверки отдельных
экземпляров Processor и Transformer только тогда, когда требуется проверить,
как ведет себя какой-либо класс в API Kafka Streams.

�� Комплексные тесты с EmbeddedKafkaCluster лучше применять редко, только
в случае такого интерактивного поведения, которое можно проверить лишь при
доступном работающем брокере Kafka.

Это была весьма интересная экскурсия в Kafka Streams, и вы узнали немало
об API Kafka Streams и об его применении для решения задач по обработке данных.
В завершение вашего обучения мы перейдем на более продвинутый уровень. Сле-
дующая, последняя глава этой книги представляет собой итоговый проект, который
основан на всем том, что вы узнали до сих пор, а в некоторых случаях требует и на-
писания пользовательского кода, отсутствующего в API Kafka Streams. В результате
мы от начала и до конца создадим реальное приложение на основе описанной в этой
книге базовой функциональности.

Часть IV
Передовые
возможности Kafka
Streams

В этой, заключительной, части книги мы соберем воедино все полу-
ченные вами знания и воспользуемся ими для создания продвинуто-
го приложения. Вам предстоит интегрировать Kafka Streams с Kafka
Connect, благодаря чему вы сможете осуществлять потоковую обра-
ботку данных даже в случае их записи в реляционную базу данных.
Далее вы научитесь применять возможности интерактивных запро-
сов для отображения — в режиме реального времени — информации
вашего приложения непосредственно из Kafka Streams, без внешних
утилит. Наконец, я расскажу вам о KSQL — новой утилите от ком-
пании Confluent (компании, основанной разработчиками Kafka из
LinkedIn) — и научу вас писать операторы SQL и выполнять непре-
рывные запросы к поступающим в Kafka данным.

9 Создание продвинутых
приложений с помощью
Kafka Streams

В этой главе:

�� интеграция внешних данных в Kafka Streams с помощью Kafka Connect;

�� выбрасывание базы данных за борт благодаря интерактивным запросам;

�� непрерывные запросы KSQL в Kafka.

Вы прошли долгий путь в своем стремлении научиться применению Kafka Streams.
Мы проделали немало работы, и вы теперь уже умеете, я надеюсь, создавать по-
токовые приложения. До сих пор мы ограничивались базовой функциональностью
Kafka Streams, но это не предел. В данной главе вам предстоит воспользоваться
полученными знаниями для создания двух продвинутых приложений, подходящих
для промышленного применения.

Например, во многих организациях новые технологии приходится интегрировать
с унаследованными старыми технологиями и процессами. Нередко источником вхо-
дящих данных служат таблицы баз данных. Как вы знаете из главы 5, таблицы — это
потоки, так что таблицы баз данных можно рассматривать как потоки данных.

Первое продвинутое приложение, которым мы займемся в настоящей главе, «пре-
образует» физическую базу данных в потоковое приложение благодаря интеграции
Kafka Connect с Kafka Streams. Kafka Connect будет прослушивать приложение на
предмет новых вставок в таблицу (-ы) и помещать соответствующие записи в топик
Kafka. Этот же топик будет служить источником для приложения Kafka Streams, так
что таблица базы данных превратится в потоковое приложение.

При работе со старым, унаследованным ПО данные, даже при их захвате в ре-
жиме реального времени, обычно сбрасываются в базу данных, которая служит
в дальнейшем источником информации для приложений-информационных панелей.
Во втором продвинутом приложении этой главы вы научитесь пользоваться интер
активными запросами — средством, с помощью которого можно выполнять запросы
напрямую к хранилищам состояния Kafka Streams. Приложения — информационные
панели могут благодаря этому извлекать данные непосредственно из хранилищ со-

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   261

стояния и отображать их в процессе движения по потоковому приложению, а база
данных становится не нужна.

А завершим мы наше обсуждение продвинутых функций замечательной новой
возможностью Kafka — KSQL. KSQL позволяет писать «долгоиграющие» SQL-
запросы к поступающим в Kafka данным. KSQL сочетает возможности Kafka
Streams с удобством написания SQL-запроса. Внутренние механизмы KSQL ис-
пользуют Kafka Streams для выполнения запросов.

9.1. �Интеграция Kafka с другими
источниками данных

Для нашего первого продвинутого приложения предположим, что вы работаете в из-
вестной финансовой консультационной фирме Big Short Equity (BSE). BSE хочет
начать вести обработку и анализ по-новому, и этот план включает использование
Kafka. Переход на новые рельсы уже частично выполнен, и вам поставлена задача
модернизировать используемые методы анализа. Цель состоит в отображении по-
следних фондовых транзакций и сопутствующей информации в реальном времени,
и Kafka Streams подходит для этого идеально.

BSE работает с ценными бумагами из разных областей финансового рынка.
Они записывают фондовые транзакции в режиме реального времени в реляционную
базу данных. Постепенно BSE планирует перейти на запись транзакций напрямую
в Kafka, но пока системой учета служит база данных.

Как же сократить разрыв между базой данных, в которую отправляются поступа-
ющие данные, и создаваемым приложением Kafka Streams? Ответ: воспользоваться
Kafka Connect (https://kafka.apache.org/documentation/#connect) — фреймворком, вклю-
ченным в дистрибутив Apache Kafka и служащим для интеграции Kafka с другими
системами. Достаточно, чтобы данные попали в Kafka, после чего вы можете не вол-
новаться о расположении их источника; нужно просто указать вашему приложению
Kafka Streams топик-источник, как вы уже делали с другими приложениями Kafka
Streams.

ПРИМЕЧАНИЕ
При использовании Kafka Connect для получения данных из других источ-
ников точкой сопряжения является топик Kafka. Это значит, что применять
импортированные данные может любое приложение посредством интерфейса
KafkaConsumer. Поскольку данная книга посвящена Kafka Streams, основное
внимание я сосредоточу на интеграции с приложениями Kafka Streams.

Рисунок 9.1 иллюстрирует интеграцию между базой данных и Kafka. В этом
случае мы используем Kafka Connect для мониторинга таблицы базы данных и пото-
ковой отправки обновлений в топик Kafka, который далее будет служить источником
для приложения финансовой аналитики.

262   Часть IV  •  Передовые возможности Kafka Streams

Рис. 9.1. Интеграция таблицы базы данных и Kafka Streams
с помощью Kafka Connect

СОВЕТ
Поскольку эта книга посвящена Kafka Streams, мы лишь вкратце пробежимся
по Kafka Connect в данном разделе. Более подробную информацию вы можете
найти в документации Kafka (https://kafka.apache.org/documentation/#connect)
и кратком руководстве по Kafka Connect (https://docs.confluent.io/current/
connect/quickstart.html).

9.1.1. �Интеграция данных
с помощью Kafka Connect

Фреймворк Kafka Connect специально разработан для потоковой передачи данных
из других систем в Kafka и из Kafka в другие системы хранения данных, например
MongoDB (http://www.mongodb.com/) и Elasticsearch (http://www.elastic.co/). С помощью
Kafka Connect можно импортировать в Kafka целые базы данных или другую ин-
формацию, например метрики производительности.

Для взаимодействия с внешними источниками данных Kafka Connect использу-
ет специальные коннекторы (connectors). Несколько коннекторов было доступно
изначально (http://www.confluent.io/product/connectors), и множество других создано
сообществом разработчиков коннекторов, что делает возможной интеграцию Kafka

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   263

практически с любой другой системой хранения. Если же нужного вам коннектора
не существует, вы можете реализовать свой собственный (https://docs.confluent.io/
current/connect/devguide.html).

9.1.2. Настройка Kafka Connect
Kafka Connect может работать в одном из двух режимов: распределенном и автоном-
ном. Для большинства сред промышленной эксплуатации имеет смысл запустить
Kafka Connect в распределенном режиме, ведь при запуске нескольких экземпляров
Kafka Connect можно воспользоваться выгодами параллелизма и отказоустойчи-
вости. Я предполагаю, что вы запускаете примеры на локальной машине, так что
применяю автономный режим.

Коннекторы Kafka Connect для взаимодействия с внешними источниками дан-
ных бывают двух типов: коннекторы источников и коннекторы стоков. На рис. 9.2
показано применение каждого из этих типов. Как вы можете видеть, коннекторы
источников поставляют данные в Kafka, а коннекторы стоков получают их из Kafka
(для использования в другой системе).

Рис. 9.2. Коннекторы источников и коннекторы стоков Kafka Connect

В этом примере мы воспользуемся JDBC-коннектором Kafka (https://github.com/
confluentinc/kafka-connect-jdbc). Его можно найти на GitHub, кроме того, для удобства
мы включили его в дистрибутив исходного кода для данной книги (https://manning.com/
books/kafka-streams-in-action).

264   Часть IV  •  Передовые возможности Kafka Streams

При использовании Kafka Connect вам потребуется выполнить небольшие на-
стройки самого Kafka Connect и каждого из коннекторов, применяемых для импор-
та/экспорта данных. Во-первых, взглянем на параметры конфигурации, которые
понадобятся нам для Kafka Connect:

�� bootstrap.servers — разделенный запятыми список используемых Connect
брокеров Kafka;

�� key.converter — класс преобразователя, отвечающего за сериализацию ключей
из формата Connect в формат, в котором данные записываются в Kafka;

�� value.converter — класс преобразователя, отвечающего за сериализацию зна-
чений из формата Connect в формат, в котором данные записываются в Kafka.
В нашем примере будет применяться встроенный класс org.apache.kafka.con
nect.json.JsonConverter;

�� value.converter.schemas.enable — может быть равен true или false. Указывает,
должен ли Connect включать схему для значения. В этом примере мы установим
его равным false. В следующем разделе я объясню почему;

�� plugin.path — содержит местоположение коннектора для Connect и его зависи-
мостей. Можно указать один каталог верхнего уровня, содержащий один или не-
сколько файлов JAR. Можно также указать несколько путей в виде разделенного
запятыми списка;

�� offset.storage.file.filename — файл, содержащий сохраненные потребителем
Connect смещения.

Вам придется также указать несколько параметров конфигурации для JDBC-
коннектора. Вот их список:

�� name — название коннектора;

�� connector.class — класс коннектора;

�� tasks.max — максимальное число задач этого коннектора;

�� connection.url — URL подключения к базе данных;

�� mode — метод отслеживания изменений JDBC-коннектором для источника;

�� incrementing.column.name — название столбца, по которому отслеживаются из-
менения;

�� topic.prefix — Kafka Connect записывает все таблицы в топики с названиями
топик.префикс + название_таблицы.

Большинство из этих настроек довольно просты, но две из них — mode и incre
menting.column.name — нам придется обсудить подробнее, поскольку они играют
важную роль в работе коннектора. JDBC-коннектор для источника определяет на
основании параметра mode, какие строки загружать. В примере используется также
параметр incrementing.column.name, ссылающийся на столбец, значение которого
автоматически увеличивается на единицу при каждой вставке в таблицу. Благодаря
отслеживанию этого столбца мы подтягиваем только новые записи, обновления

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   265

игнорируются. Нашему приложению Kafka Streams нужно подтягивать только
самые свежие фондовые сделки, так что такое значение данной настройки опти-
мально.

СОВЕТ
В исходный код для данной книги включена почти полная конфигурация как
для Kafka Connect, так и для JDBC-коннектора. Файлы настроек располагают-
ся в каталоге src/main/resources/conf дистрибутива исходного кода (https://
manning.com/books/kafka-streams-in-action). Вам остается только указать
путь, куда вы разархивировали репозиторий исходного кода. Не забудьте
прочитать полные инструкции в файле README.md.

На этом мы завершаем обзор Kafka Connect и JDBC-коннектора для источника.
Нам осталось обсудить еще одну точку сопряжения, чем мы и займемся в следу
ющем разделе.

ПРИМЕЧАНИЕ
Более подробную информацию о JDBC-коннекторе для источника вы можете
найти в документации Confluent (http://mng.bz/01vh). Кроме того, существуют
и другие заслуживающие внимания инкрементные режимы выполнения за-
просов (http://mng.bz/0pjP).

9.1.3. Преобразование данных
До получения этого нового задания вы уже разработали приложение Kafka Streams,
работающее с аналогичными данными. В результате у вас уже есть модель и объ-
екты Serde (где внутри для сериализации и десериализации используется Gson).
Для ускорения разработки вам не хотелось бы писать дополнительный код для ра-
боты с Kafka Connect. Как вы увидите в следующем разделе, мы сможем «бесшовно»
импортировать нужные данные из Kafka Connect.

СОВЕТ
Gson (https://github.com/google/gson) — разработанная компанией Google под
лицензией Apache библиотека, предназначенная для сериализации и десе-
риализации Java-объектов в формат JSON и из него. Узнать больше можно
из следующего руководства пользователя: http://mng.bz/JqV2.

Чтобы сделать возможной такую бесшовную интеграцию, нам понадобится внести
в свойства JDBC-коннектора еще несколько мелких изменений. Но прежде, чем сде-
лать это, вернемся на минуту к подразделу 9.1.2, где мы обсуждали параметры кон-
фигурации. А именно: я говорил, что мы будем использовать класс org.apache.kaf
ka.connect.json.JsonConverter с отключенными схемами, а значит, значение
преобразуется в простой формат JSON.

266   Часть IV  •  Передовые возможности Kafka Streams

Хотя в нашем приложении Kafka Streams мы хотели бы потреблять данные имен-
но в формате JSON, есть две проблемы. Во-первых, при преобразовании данных
в формат JSON в качестве названий полей в итоговом JSON используются названия
столбцов, которые заданы в сокращенном формате компании BSE, вне которой смыс-
ла не несут. Так что при преобразовании Gson-объекта Serde в ожидаемый объект
модели все поля окажутся пустыми, поскольку названия не совпадут.

Во-вторых, время и дата хранятся в базе данных в виде метки даты/времени, как
и следовало ожидать. Но в передаваемом Gson-объекте Serde не описан пользо-
вательский TypeAdapter (http://mng.bz/inzB) для типа Date, так что все даты необхо-
димо представить как String следующего вида: yyyy-MM-dd'T'HH:mm:ss.SSS-0400.
К счастью, в Kafka Connect есть механизм, с помощью которого можно легко решить
обе эти проблемы.

В Kafka Connect есть понятие преобразований (Transformation), благодаря
которому можно выполнять простые преобразования перед тем, как Connect за-
пишет данные в Kafka. На рис. 9.3 показано, где именно происходит этот процесс
преобразования.

Рис. 9.3. Преобразование названий столбцов так, чтобы они соответствовали
ожидаемым именам полей

В этом примере мы воспользуемся двумя встроенными преобразованиями:
TimestampConverter и ReplaceField. Как уже упоминалось ранее, для их использова-
ния необходимо добавить следующие строки в файл конфигурации connector-jdbc.
properties (см. src/main/resources/conf/connector-jdbc.properties) (листинг 9.1).

Эти свойства относительно понятны и не требуют дополнительного описания,
так что мы не станем тратить на них время. Как вы можете видеть, благодаря им
у вашего приложения Kafka Streams есть все, что требуется для успешной де-

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   267

сериализации сообщений, импортированных в Kafka с помощью Kafka Connect
и JDBC-коннектора.

Листинг 9.1. Свойства JDBC-коннектора

После подготовки Kafka Connect для завершения интеграции таблицы базы
данных и вашего приложения Kafka Streams достаточно воспользоваться топиком
с указанным в файле connector-jdbc.properties префиксом в названии (см.: src/main/
java/bbejeck/chapter_9/StockCountsStreamsConnectIntegrationApplication.java) (листинг 9.2).

Листинг 9.2. Заполнение топика источника Kafka Streams данными из Connect

Пока мы производим потоковую обработку записей из таблицы базы данных
в Kafka Streams, но это еще не все. Мы передаем в потоке данные о биржевых
транзакциях, так что для анализа нам понадобится сгруппировать транзакции по
символам акций.

Вы уже знаете, как выбрать ключ и повторно секционировать записи, но в смысле
производительности лучше, если записи попадут в Kafka уже с ключами; в этом слу-
чае приложению Kafka Streams не потребуется шаг повторного секционирования, за
счет отказа от которого можно сэкономить время и пространство на диске. Давайте
снова взглянем на конфигурацию Kafka Connect.

Во-первых, можно добавить преобразователь ValueToKey, который бы принимал
на входе список названий полей, подлежащих извлечению из значения и использова-
нию в качестве ключа. Поменяйте файл connector-jdbc.properties так, как показано
в листинге 9.3 (см.: src/main/resources/conf/connector-jdbc.properties).

268   Часть IV  •  Передовые возможности Kafka Streams

Листинг 9.3. Модифицированные свойства JDBC-коннектора

Мы добавили преобразование ExtractKey и указали Kafka Connect имя класса
преобразователя: ValueToKey. Мы также указали название поля, которое будет
служить ключом: symbol. Это свойство может состоять из нескольких разделенных
запятыми значений, но в данном случае нам нужно только одно. Обратите внимание,
что используется переименованная версия поля, поскольку данный преобразователь
выполняется после преобразователя Rename.

Результат преобразования ExtractKey представляет собой структуру из одного
значения. Но нам нужно только содержащееся в этой структуре значение для ключа —
символ акции. Поэтому мы добавим преобразование FlattenStruct для извлечения
только символа акции (см.: src/main/resources/conf/connector-jdbc.properties) (листинг 9.4).

Листинг 9.4. Добавляем еще одно преобразование

Мы добавили в топологию завершающее преобразование (FlattenStruct) и ука-
зали имя класса преобразования ExtractField$Key, используемого Kafka Connect
для извлечения заданного поля и включения в результаты (в данном случае в ключ)
только этого поля. Наконец, мы указали название поля (symbol) — такое же, как
и в предыдущем преобразовании; это логично, поскольку именно данное поле ис-
пользовалось при создании структуры для ключа.

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   269

С помощью всего нескольких строк настроек наше приложение Kafka Streams
может теперь выполнять более продвинутые операции без необходимости выбора
ключа и повторного секционирования (код можно найти в файле src/main/java/bbejeck/
chapter_9/StockCountsStreamsConnectIntegrationApplication.java) (листинг 9.5).

Листинг 9.5. Обработка в Kafka Streams с помощью Connect транзакций из таблицы

Благодаря тому что поступающие данные снабжены ключами, мы можем вос-
пользоваться методом groupByKey, который не устанавливает флаг автоматического
повторного секционирования. От операции группировки можно напрямую перейти
к агрегированию без шага повторного секционирования, что важно по соображениям
производительности. Включенный в исходный код для книги файл README.md содер-
жит инструкции по запуску встраиваемой базы данных H2 (http://www.h2database.com/
html/main.html) и Kafka Connect так, чтобы генерировать данные в необходимый для
работы потокового приложения топик dbTxnTRANSACTIONS.

СОВЕТ
Хотя может показаться заманчивым применить преобразования повсеместно,
импортируя данные в Kafka через Kafka Connect, помните: преобразования
должны быть простыми. Для любых преобразований, кроме самых простых,
показанных в наших примерах, лучше извлечь данные в Kafka и воспользо-
ваться Kafka Streams для вычислительно сложных преобразований.

Мы разобрались, как с помощью Kafka Connect отправить данные в Kafka для
дальнейшей обработки с помощью Kafka Streams. Время заняться вопросом визуа-
лизации состояния данных в режиме реального времени.

9.2. Выбрасываем базу данных за борт
Из главы 4 вы узнали, как добавить сохранение локального состояния в приложение
Kafka Streams. Состояние необходимо потоковым приложениям для таких операций,
как агрегирование, свертка и соединение. Локальное состояние необходимо всегда,
разве что приложение работает исключительно с отдельными записями.

270   Часть IV  •  Передовые возможности Kafka Streams

Возвращаясь к требованиям компании BSE, допустим, что вы разработали при-
ложение Kafka Streams, захватывающее следующие данные по трем категориям
фондовых операций:

�� всего транзакций по сектору рынка;
�� покупки акций клиентами, агрегированные по сеансам;
�� общее число проданных акций по символам акций в разрезе «кувыркающихся»

окон длительностью 0 секунд.

В предыдущих примерах мы или просматривали результаты в консоли, или чи-
тали их из топика-стока. Просмотр данных в консоли подходит для разработки, но
консоль не лучшая среда для отображения результатов. Для нужд аналитики и для
того, чтобы быстро разобраться, что к чему, гораздо лучше подойдет приложение —
информационная панель.

Из этого раздела вы узнаете, как с помощью интерактивных запросов в Kafka
Streams разработать приложение — информационную панель для просмотра ана-
литики без использования базы данных для хранения состояния. Приложение —
информационная панель будет заполняться данными непосредственно из Kafka
Streams по мере их потоковой обработки. Благодаря этому приложение будет не-
прерывно обновляться естественным образом.

В типичной архитектуре захватываемые/обрабатываемые данные помещаются
в реляционную базу данных для просмотра. Такая архитектура показана на рис. 9.4: до
появления Kafka Streams приходилось выполнять ввод и обработку данных с помощью
Kafka, подавать их на вход аналитического движка, а затем помещать в таблицу реля-
ционной базы данных, используемую приложением — информационной панелью.

Рис. 9.4. Архитектура приложений для просмотра обработанных данных
до появления Kafka Streams

Если добавить Kafka Streams с сохранением состояния, то архитектура слегка
изменится, как показано на рис. 9.5. Структура существенно упрощается за счет ис-
ключения кластера (не говоря уже про упрощение развертывания). Kafka Streams

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   271

по-прежнему записывает данные в Kafka, а база данных остается основным потре-
бителем преобразованных данных.

Рис. 9.5. Архитектура после добавления Kafka Streams с сохранением состояния

В главе 5 я говорил про интерактивные запросы. Напомню вам вкратце их опреде-
ление: с помощью интерактивных запросов можно напрямую просматривать данные
из хранилищ состояния, без потребления данных из Kafka. Другими словами, поток
данных становится своего рода базой данных.

А поскольку один рисунок стоит тысячи слов, посмотрим еще раз на рис. 9.5, но
уже с изменениями для использования интерактивных запросов (рис. 9.6).

Рис. 9.6. Та же архитектура, но уже с использованием интерактивных запросов

272   Часть IV  •  Передовые возможности Kafka Streams

Показанная на этом рисунке идея — простая, но весьма многообещающая.
В хранилище содержится состояние потока данных, а Kafka Streams предоставляет
к нему доступ только для чтения извне потокового приложения посредством во-
площающего REST интерфейса. Важно еще раз отметить широкие возможности
такого подхода: для просмотра текущего состояния потока данных больше не тре-
буется база данных.

Теперь, когда вы понимаете, насколько важны интерактивные запросы, посмо-
трим на них в действии.

9.2.1. Как работают интерактивные запросы
Чтобы интерактивные запросы могли работать, Kafka Streams предоставляет доступ
(только для чтения) к хранилищам состояния. Важно понимать, что хранилища со-
стояния, хотя для чтения и доступны, никак не обновляются и не модифицируются.
Kafka Streams предоставляет доступ к хранилищам состояния с помощью метода
KafkaStreams.store.

Вот как этот метод работает:

ReadOnlyWindowStore readOnlyStore =
➥ kafkaStreams.store(storeName, QueryableStoreTypes.windowStore());

В данном примере извлекается ссылка на объект WindowStore. Кроме того, в клас-
се QueryableStoreTypes есть два других метода:

�� QueryableStoreTypes.sessionStore();

�� QueryableStoreTypes.keyValueStore().

После получения ссылки на (доступное только для чтения) хранилище доста-
точно предоставить сервису (например, воплощающему REST сервису) доступ
к хранилищу, чтобы пользователи могли запрашивать информацию относительно
состояния потоковых данных. Но получение ссылки на хранилище состояния —
лишь часть задачи. Извлеченное выше хранилище состояния содержит ключи только
из локального хранилища.

ПРИМЕЧАНИЕ
Не забывайте, что Kafka назначает по хранилищу состояния для каждой за-
дачи и приложение Kafka Streams может состоять из нескольких экземпляров,
лишь бы у них был один идентификатор приложения. Кроме того, эти экзем-
пляры вовсе не обязаны располагаться на одной машине. Следовательно,
может так случиться, что хранилище состояния, к которому производится
запрос, содержит только некое подмножество ключей; а другие хранилища
состояния (с тем же названием, расположенные на других машинах) содержат
другое подмножество ключей.

Проясню эту концепцию на примере вышеприведенных аналитических опе
раций.

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   273

9.2.2. Распределение хранилищ состояния
Рассмотрим первую из этих аналитических операций: агрегирование данных о бир-
жевых сделках по секторам рынка. Поскольку производится агрегирование, нужны
хранилища состояния. Для просмотра числа сделок по секторам рынка необходимо
предоставить доступ к хранилищам состояния, чтобы узнать, в каком секторе в дан-
ный момент самая высокая активность.

Деятельность фондового рынка приводит к генерации колоссальных объемов
данных, но в нашем примере для простоты будут использоваться только две секции.
Кроме того, предположим, что у вас запущено два однопоточных экземпляра прило-
жения на двух отдельных машинах, расположенных в одном ЦОД. Благодаря автома-
тической балансировке нагрузки Kafka Streams в каждом из экземпляров приложения
одна задача будет обрабатывать данные из одной секции входного топика.

Рисунок 9.7 демонстрирует распределение задач и хранилищ состояния. Как вы
можете видеть, экземпляр A обрабатывает записи из секции 0, а экземпляр Б — за-
писи из секции 1.

Рис. 9.7. Распределение задач и хранилищ состояния

Рисунок 9.8 иллюстрирует, что произойдет с двумя записями с ключами "Energy"
и "Finance".

"Energy":"100000" оказывается в хранилище состояния в экземпляре A при-
ложения, а "Finance":"110000" попадает в хранилище состояния в экземпляре Б.
Возвращаясь к примеру предоставления доступа к хранилищам состояния для
выполнения запросов, можно видеть, что если сделать хранилище состояния на

274   Часть IV  •  Передовые возможности Kafka Streams

экземпляре A доступным веб-сервису или другой внешней утилите для запросов,
то из него можно будет извлечь только значение для ключа "Energy".

Рис. 9.8. Распределение ключей и значений в хранилищах состояния

Каково же решение этой проблемы? Безусловно, не имеет смысла использовать
отдельный веб-сервис для запросов к каждому из экземпляров — подобный подход
плохо масштабируется. К счастью, этого и не требуется: решение состоит просто
в указании правильных параметров конфигурации.

9.2.3. �Настройка и обнаружение распределенного
хранилища состояния

Для активизации возможности выполнения интерактивных запросов необходимо
задать параметр StreamsConfig.APPLICATION_SERVER_CONFIG. Его значение должно
состоять из имени хоста приложения Kafka Streams и порта, на котором прослуши-
вается сервис запросов, в формате имя_хоста:порт.

При получении экземпляром Kafka Streams запроса для заданного ключа необхо-
димо выяснить, присутствует ли этот ключ в локальном хранилище. А главное, если
ключ там отсутствует (не локальный), то необходимо узнать, в каком экземпляре
находится данный ключ, и выполнить запрос к соответствующему хранилищу.

В классе KafkaStreams есть несколько методов, с помощью которых можно извле-
кать информацию из всех работающих в данный момент экземпляров с одинаковым
идентификатором приложения и задавать значение параметра APPLICATION_SERVER_
CONFIG. В табл. 9.1 приведены названия и описания этих методов.

Для получения информации обо всех экземплярах, доступных для интерактив-
ных запросов, можно использовать метод KafkaStreams.allMetadata. При написании
интерактивных запросов я чаще всего применяю метод KafkaStreams.allMeta
dataForKey.

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   275

Таблица 9.1. Методы для извлечения метаданных хранилища

Название Параметр (-ы) Использование
allMetadata — Все экземпляры, часть из которых, возможно,

удаленные

allMetadataForStore Название хранилища Все экземпляры (часть из которых удаленные),
содержащие указанное хранилище

allMetadataForKey Key, Serializer Все экземпляры (часть из которых удаленные),
хранилище которых содержит заданный ключ

allMetadataForKey Key, StreamPartitioner Все экземпляры (часть из которых удаленные),
хранилище которых содержит заданный ключ

Далее еще раз взглянем на распределение ключей/значений по экземплярам
Kafka Streams, добавив последовательность действий проверки для ключа "Finance",
найденного в другом экземпляре и возвращенного из него (рис. 9.9). У каждого эк-
земпляра Kafka Streams есть облегченный встраиваемый сервер, прослушивающий
заданный в параметре APPLICATION_SERVER_CONFIG порт.

Рис. 9.9. Процесс запроса и обнаружения ключа и значения

Важно отметить, что достаточно отправить запрос только одному из экземпляров
приложения Kafka Streams, причем какой экземпляр выбрать — неважно (конечно,
если вы настроили приложение правильно). Если экземпляр, к которому вы об-
ратились с запросом, не содержит искомых данных, то с помощью механизма RPC
и методов извлечения метаданных он найдет, где они расположены, извлечет их
и вернет результаты в ответ на исходный запрос.

Увидеть все это в действии можно посредством отслеживания последовательно-
сти вызовов на рис. 9.9. Экземпляр A не содержит ключа "Finance", но он обнаруживает,

276   Часть IV  •  Передовые возможности Kafka Streams

что искомый ключ есть в экземпляре Б. Поэтому экземпляр A обращается к встраи-
ваемому серверу на экземпляре Б, который извлекает нужные данные и возвращает
результат исходной запрашивающей стороне.

ПРИМЕЧАНИЕ
На отдельном узле интерактивные запросы будут работать без каких-либо
дополнительных усилий, но готовый механизм RPC отсутствует — вам при-
дется реализовать свой собственный. В этом разделе приведено одно из
возможных решений, но вы можете реализовать свое, и я уверен, что многие
из вас сумеют найти нечто получше моего варианта. Отличный пример еще
одной реализации RPC можно найти в GitHub-репозитории Confluent kafka-
streams-examples: http://mng.bz/Ogo3.

Взглянем теперь на интерактивные запросы в действии.

9.2.4. Написание кода для интерактивных запросов
Наше приложение для интерактивных запросов будет работать практически так же,
как и все наши предыдущие приложения, но с несколькими небольшими отличиями.
Во-первых, необходимо передавать два аргумента при запуске приложения Kafka
Streams: имя хоста и порт, на котором будет слушать встраиваемый сервис (следу-
ющий код можно найти в файле src/main/java/bbejeck/chapter_9/StockPerformanceInter
activeQueryApplication.java) (листинг 9.6).

Листинг 9.6. Передача параметров для имени хоста и порта

До сих пор мы запускали приложение не задумываясь. Теперь же нам нужно
указать два параметра (хост и порт), но это лишь незначительное изменение.

Мы также встраиваем локальный сервер для собственно выполнения запросов:
для данной реализации я выбрал веб-сервер Spark (http://sparkjava.com/). (Не тот
Spark — это книга про Kafka Streams, в конце концов!) Основания для такого вы-
бора — занимаемое им небольшое место на диске, подход «соглашения важнее

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   277

конфигурации», а также тот факт, что этот веб-сервер специально создан в расчете
на микросервисы — а именно микросервисы удобно предоставлять с помощью ин-
терактивных запросов. Если веб-сервер Spark вам не подходит, вы можете спокойно
заменить его другим веб-сервером.

ПРИМЕЧАНИЕ
Полагаю, большинство читателей знакомо с понятием «микросервис» (micro
service), но приведу все же лучшее из виденных мной определений — с сайта
http://microservices.io/: «Микросервисы — известные также под названием
микросервисной архитектуры — архитектурный стиль структурирования
приложения в виде набора слабо сцепленных сервисов, реализующих биз-
нес-возможности. Микросервисная архитектура обеспечивает возможность
непрерывной поставки/развертывания больших, сложных приложений, а так-
же помогает организации расширять свой стек технологий».

Теперь взглянем на место в коде, где происходит встраивание сервера Spark,
и вспомогательный код, служащий для управления им (его можно найти в файле src/
main/java/bbejeck/chapter_9/StockPerformanceInteractiveQueryApplication.java) (листинг 9.7).

Листинг 9.7. Инициализация веб-сервера и установка его состояния

278   Часть IV  •  Передовые возможности Kafka Streams

В этом коде мы создали экземпляр InteractiveQueryServer — класса-адаптера
для веб-сервера Spark и написали код для управления вызовами веб-сервисов, а так-
же запуска и останова веб-сервера.

В главе 7 мы обсуждали использование интерфейса StateListener для уведомле-
ния о различных состояниях приложения Kafka Streams. А здесь демонстрируется
его эффективное применение. Напомню, что при выполнении интерактивного за-
проса необходимо с помощью экземпляра StreamsMetadata выяснить, являются ли
данные локальными по отношению к обрабатывающему запрос экземпляру при-
ложения. Мы установили состояние сервера запросов в true, тем самым разрешив
доступ к метаданным только в том случае, если приложение находится в состоянии
выполнения.

Главное — помнить, что возвращаемые метаданные отображают мгновенное
состояние структуры приложения Kafka Streams. В любой момент вам может по-
надобиться масштабировать приложение в сторону расширения или наоборот.
В подобном случае (или в случае любого другого подходящего под требования
события, например добавления топиков с узлом-источником на основе регуляр-
ного выражения) приложение Kafka Streams проходит через процесс перебалан-
сировки, в результате чего распределение секций может поменяться. В данном
случае применение запросов разрешается только в состоянии выполнения, но вы
можете воспользоваться другой стратегией, если сочтете ее подходящей для сво-
их целей.

Далее следует еще один пример идеи, описанной в главе 7: описание обработчика
для неперехваченных исключений (UncaughtExceptionHandler). В данном случае мы
заносим ошибку в журнал, а затем останавливаем приложение и сервер запросов.
Поскольку это приложение работает в течение неограниченного времени, мы до-
бавили еще точку подключения для останова всех компонентов после завершения
вами работы демонстрационного приложения.

Мы разобрались, как инициализировать наш сервис и запустить его. Займемся
теперь кодом, необходимым для работы сервера запросов.

9.2.5. Внутри сервера запросов
Первый шаг при реализации воплощающего REST-сервиса — поставить в соот-
ветствие URL-путям правильные методы для выполнения (см.: src/main/java/bbejeck/
chapter_9/StockPerformanceInteractiveQueryApplication.java) (листинг 9.8).

Этот код иллюстрирует наше решение использовать веб-сервер Spark: для об-
работки запроса можно лаконично отобразить URL в лямбда-выражения Java 8.
Данные отображения довольно просты, но обратите внимание, что соответствие
операции извлечения из оконного хранилища задается дважды. Для извлечения
значений из оконного хранилища необходимо указать, от какого момента времени
и до какого.

Обратите внимание на проверку булева значения ready при задании соответ-
ствий. Указанное значение задается в StateListener. Если значение ready равно

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   279

false, то программа не будет пытаться обработать запрос и вернет сообщение, что
хранилища в настоящий момент недоступны. Это логично, поскольку оконное хра-
нилище сегментировано по времени, причем размер сегментов задается при созда-
нии хранилища (мы обсуждали оконные операции в подразделе 5.3.2). Но я здесь
немного жульничаю и предлагаю вам взглянуть в следующем примере на метод,
принимающий в качестве параметров только ключ и хранилище со значениями по
умолчанию для временных параметров «от» и «до».

Листинг 9.8. Ставим URL-путям в соответствие методы

ПРИМЕЧАНИЕ
Существует предложение (KIP-205, http://mng.bz/lI9Y) по расширению класса
ReadOnlyWindowStore — добавлению в него метода all(), который бы извлекал
все временные сегменты по ключу, делая таким образом ненужным указание
временных параметров «от» и «до».

В качестве примера работы сервиса интерактивных запросов посмотрим на
извлечение данных из оконного хранилища. Хотя я приведу только один пример,
в исходном коде вы можете найти инструкции по выполнению всех типов запросов.

Проверка местоположения хранилища состояния
Вам нужно собрать различные метрики по ценным бумагам BSE для анализа дан-
ных о биржевых транзакциях. Вы решаете сначала отслеживать продажи отдельных
типов акций, подсчитывая промежуточные итоги по 10-секундным окнам для обна-
ружения акций, демонстрирующих тенденцию к росту или падению.

Мы воспользуемся следующим отображением для нашего примера:

get("/window/:store/:key", (req, res) -> ready ?
➥ fetchFromWindowStore(req.params()) : STORES_NOT_ACCESSIBLE);

280   Часть IV  •  Передовые возможности Kafka Streams

Чтобы не заблудиться в процессе выполнения запроса, задействуйте рис. 9.9
в качестве «дорожной карты». Мы начнем с отправки HTTP-запроса типа GET: http://
localhost:4567/window/NumberSharesPerPeriod/XXXX, где XXXX соответствует тикерному
символу для данных акций (см.: src/main/java/bbejeck/webserver/InteractiveQueryServer.
java) (листинг 9.9).

Листинг 9.9. Отображение запроса и проверка местонахождения ключа

Данный запрос отображается на метод fetchFromWindowStore. Прежде всего не-
обходимо извлечь название хранилища и ключ (символ акции) из ассоциативного
массива параметров запроса. Мы получаем объект HostInfo для запрашиваемого
ключа и на основе содержащегося в нем имени хоста определяем, находится данный
ключ в этом экземпляре или в каком-то удаленном.

Далее мы проверяем, происходит ли (повторная) инициализация экземпляра
Kafka Streams, на которую указывает возврат методом host() значения "unknown".
Если да, то прекращаем обработку запроса и возвращаем сообщение "not accessible"
(«недоступен»).

Наконец, мы проверяем, совпадает ли возвращенное имя хоста с именем хоста
текущего экземпляра. Если нет, получаем данные с содержащего ключ экземпляра
и возвращаем результаты.

Далее посмотрим на извлечение и форматирование результатов (соответству
ющий код можно найти в файле src/main/java/bbejeck/webserver/InteractiveQueryServer.java)
(листинг 9.10).

Я уже упоминал ранее, что мы сжульничаем немного с запросом к оконному храни-
лищу, если параметры «от» и «до» в запросе отсутствуют. Если пользователь не указал
промежуток времени, то по умолчанию мы вернем результаты за последнюю минуту
из оконного хранилища. А поскольку длительность окна у нас равна 10 секундам, то
мы вернем результаты за шесть окон. После извлечения сегментов окон из хранилища
мы проходим по ним в цикле, формируем ответ, включающий число акций, приобре
тенных за каждый 10-секундный интервал времени в течение последней минуты.

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   281

Листинг 9.10. Извлечение и форматирование результатов

Выполнение примера интерактивного запроса
Чтобы увидеть результаты работы указанного примера, необходимо выполнить три
команды:

�� ./gradlew runProducerInteractiveQueries генерирует необходимые для примеров
данные;

�� ./gradlew runInteractiveQueryApplicationOne запускает приложение Kafka
Streams с портом 4567 в HostInfo;

�� ./gradlew runInteractiveQueryApplicationTwo запускает приложение Kafka
Streams с портом 4568 в HostInfo.

Далее перейдите в браузере по адресу http://localhost:4568/window/NumberSha
resPerPeriod/AEBB. Несколько раз нажмите кнопку Обновить — и увидите различные
результаты. Вот статический список символов компаний для этого примера: AEBB,
VABC, ALBC, EABC, BWBC, BNBC, MASH, BARX, WNBC, WKRP.

Запуск приложения — информационной панели
для интерактивных запросов
Можно предложить лучший пример: миниатюрное веб-приложение — информаци-
онную панель, которое автоматически обновляется (с помощью Ajax) и отображает
результаты четырех различных операций агрегирования Kafka Streams. Если вы
запустили перечисленные в предыдущем разделе команды, то у вас все готово:
для запуска приложения — информационной панели просто перейдите в браузере
по адресу localhost:4568/iq или localhost:4567/iq. Перейдя в любой из экземпляров, вы

282   Часть IV  •  Передовые возможности Kafka Streams

увидите, как интерактивные запросы Kafka Streams получают результаты из всех эк-
земпляров приложения с одним идентификатором приложения. Полные инструкции
по настройке и запуску приложения — информационной панели вы найдете в файле
README в дистрибутиве исходного кода.

Как видите, вы можете просматривать результаты потока данных в реальном
времени в приложении типа информационной панели. Ранее подобные приложения
требовали реляционной базы данных, но теперь всю нужную информацию можно
получить с помощью Kafka Streams.

На этом мы завершаем обсуждение интерактивных запросов. Перейдем к KSQL —
потрясающей новой утилите, недавно выпущенной компанией Confluent (осно-
ванной первоначальными разработчиками Kafka из LinkedIn), с помощью которой
можно выполнять «долгоиграющие» запросы к поступающим в Kafka записям по-
средством SQL, без написания кода.

9.3. KSQL
Представьте, что вы сотрудничаете с бизнес-аналитиками в BSE. Аналитиков заин-
тересовало ваше умение быстро писать приложения на Kafka Streams для анализа
данных в режиме реального времени. Это ставит вас в затруднительное положение:
с одной стороны, вы хотели бы сотрудничать с аналитиками и писать приложения
для них, но у вас есть и своя работа — при дополнительной нагрузке вы не успеете
ничего. Аналитики понимают, что создают для вас дополнительные проблемы, но
они код писать не умеют, так что всецело зависят от вас.

Аналитики в совершенстве умеют работать с реляционными базами данных, так
что SQL-запросы для них привычное дело. Если бы можно было создать SQL-слой
поверх Kafka Streams, то производительность труда бы возросла — как аналитиков,
так и ваша. Что ж, теперь такой слой есть.

В августе 2017 года компания Confluent представила новую мощную утилиту
для потоковой обработки: KSQL (https://github.com/confluentinc/ksql#-ksql). KSQL
представляет собой потоковый SQL-движок для Apache Kafka, предоставляющий
интерактивный SQL-интерфейс, с помощью которого можно создавать полнофунк-
циональные потоковые запросы без написания кода. KSQL особенно удобна для
обнаружения мошенничества и для приложений, работающих в режиме реального
времени.

ПРИМЕЧАНИЕ
KSQL — обширная тема для обсуждения, заслуживающая главы или двух,
а может, и целой отдельной книги. Поэтому тут мы рассмотрим ее только
вкратце. К счастью, вы уже знакомы с основными понятиями, лежащими в ос-
нове KSQL, поскольку ее внутренние механизмы используют Kafka Streams.
Дополнительную информацию вы можете найти в документации KSQL (http://
mng.bz/zw3F).

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   283

KSQL обеспечивает масштабируемую, распределенную потоковую обработку дан-
ных, включая агрегирование, соединения, оконные операции и др. Кроме того, в от-
личие от SQL-запросов к базе данных или системе пакетной обработки, результаты
KSQL-запроса непрерывны. А сейчас мы займемся написанием потоковых запросов,
но сначала остановимся на минуту и обсудим некоторые базовые понятия KSQL.

9.3.1. Потоки и таблицы KSQL
В подразделе 5.1.3 мы сравнивали понятия потока событий (event stream) и потока
обновлений (update stream). Поток событий — неограниченный поток отдельных не-
зависимых событий, а поток обновлений — поток обновлений предыдущих записей
с тем же ключом.

В KSQL есть аналогичное понятие запроса к Stream или Table. Объект Stream
представляет собой бесконечную последовательность неизменяемых событий или
фактов, а в случае запроса к Table факты могут обновляться или даже удаляться.

Хотя часть терминологии отличается, общая концепция остается неизменной.
Если вы хорошо знакомы с Kafka Streams, то KSQL никаких трудностей у вас
не вызовет.

9.3.2. Архитектура KSQL
KSQL применяет «под капотом» Kafka Streams для формирования и извлечения ре-
зультатов запросов. KSQL состоит из двух компонентов: утилиты командной строки
и сервера. Пользователи обычных SQL-утилит, например MySQL, Oracle и даже
Hive, будут чувствовать себя как дома при написании KSQL-запросов в интерфейсе
командной строки. А что самое лучшее, KSQL распространяется с открытым исход-
ным кодом (лицензия Apache 2.0).

В KSQL есть также клиент командной строки для соединения с сервером KSQL.
KSQL-сервер отвечает за обработку запросов и извлечение данных из Kafka, а также
за запись результатов в Kafka.

KSQL может работать в двух режимах: автономном (standalone), удобном при
разработке и создании предварительных версий, и распределенном (distributed),
который вы, конечно, будете использовать при работе с данными в более реалисти-
ческих масштабах. На рис. 9.10 показано функционирование KSQL в локальном
режиме. Как вы можете видеть, интерфейс командной строки KSQL, сервер REST
и движок KSQL — все расположены на одной виртуальной машине, что оптимально
для работы на вашем ноутбуке.

Теперь взглянем на KSQL в распределенном режиме (рис. 9.11). Интерфейс
командной строки KSQL располагается отдельно и подключается к одному из уда-
ленных серверов KSQL (мы обсудим запуск и подключение в следующем разделе).
Главное то, что, хотя вы подключаетесь явным образом к одному конкретному уда-
ленному серверу KSQL, все относящиеся к одному кластеру Kafka серверы возьмут
на себя часть работы по выполнению полученного запроса.

284   Часть IV  •  Передовые возможности Kafka Streams

Рис. 9.10. KSQL в локальном режиме

Рис. 9.11. KSQL в распределенном режиме

Заметим, что для выполнения запросов сервера KSQL используют Kafka Streams.
Это значит, что при необходимости в дополнительных вычислительных мощностях
можно просто запустить еще один сервер KSQL, даже и прямо во время работы (по-
добно запуску дополнительных экземпляров приложения Kafka Streams). Обратное
также справедливо: в случае лишних вычислительных мощностей можно остановить

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   285

произвольное число серверов KSQL при условии, что хотя бы один останется в ра-
бочем состоянии (иначе ваши запросы перестанут выполняться!).

А теперь посмотрим, как установить и запустить KSQL.

9.3.3. Установка и запуск KSQL
Для установки KSQL мы клонируем репозиторий KSQL с помощью команды git
clone git@github.com:confluentinc/ksql.git, после чего перейдем (cd) в каталог ksql
и выполним команду mvn clean package для сборки всего проекта KSQL. Если git
у вас не установлен или вы не хотите выполнять сборку из исходного кода, можете
скачать дистрибутив KSQL по адресу http://mng.bz/765U.

СОВЕТ
KSQL представляет собой проект на основе Apache Maven, так что для его
сборки вам понадобится Maven. Если он у вас не установлен, но вы работа-
ете на компьютере под управлением операционной системы Mac OS и у вас
установлена система управления пакетами Homebrew, то просто выполните
команду brew install maven. В противном случае вы можете перейти по
адресу https://maven.apache.org/download.cgi и скачать Maven; инструкции
по установке можно найти на странице https://maven.apache.org/install.html.

Прежде чем продолжать, убедитесь, что вы находитесь в корневом каталоге про-
екта KSQL. Следующий шаг — запуск KSQL в локальном режиме:

./bin/ksql-cli local

Отмечу, что во всех примерах мы будем использовать KSQL в локальном режиме,
но опишем и как запустить его в режиме распределенном.

После выполнения предыдущей команды вы увидите в своей консоли нечто на-
поминающее рис. 9.12. Поздравляю — вы успешно установили и запустили KSQL!
Приступим к написанию запросов.

Рис. 9.12. Результаты успешного запуска KSQL

286   Часть IV  •  Передовые возможности Kafka Streams

9.3.4. Создание потока данных KSQL
Вернемся к вашей деятельности на благо компании BSE. К вам обратился аналитик,
заинтересовавшийся одним из написанных вами приложений и хотевший внести
в него несколько небольших изменений. Но это пожелание не оказывается для вас
источником дополнительной работы: вы просто запускаете консоль KSQL и гово-
рите аналитику переделать ваше приложение в виде KSQL-запроса!

Пример, который мы собираемся переделать таким образом, представляет собой
последний оконный поток данных из примера интерактивных запросов. Его можно
найти в файле src/main/java/bbejeck/chapter_9/StockPerformanceInteractiveQueryApplication.java,
строки 96–103. В этом приложении мы отслеживали число акций, проданных за
каждый 10-секундный промежуток времени, сгруппированных по тикерному сим-
волу компании.

У нас уже описан топик (топик, соответствующий таблице базы данных) и объект
модели, StockTransaction, где поля объекта соответствуют столбцам таблицы. Хотя
топик уже описан, нам нужно зарегистрировать его в KSQL с помощью оператора
CREATE STREAM в src/main/resources/ksql/create_stream.txt (листинг 9.11).

Листинг 9.11. Создание потока данных

С помощью одного этого оператора мы создали экземпляр KSQL Streams, к ко-
торому сможем далее направлять свои запросы. У предложения WITH есть два обя-
зательных параметра: VALUE_FORMAT, сообщающий KSQL формат данных, и KAFKA_
TOPIC, указывающий KSQL, откуда извлекать данные. Можно также использовать
в предложении WITH при создании потока данных два дополнительных параметра.
Первый из них — TIMESTAMP, связывающий метку даты/времени сообщения со
столбцом в потоке KSQL. Этот столбец будет использоваться при обработке запи-
си в операциях, для которых требуется метка даты/времени, например в оконных
операциях. Второй параметр — KEY, связывающий ключ сообщения со столбцом
в заданном потоке. В таком случае ключ сообщения для топика stock-transactions
соответствует полю symbol в JSON-значении, так что указывать ключ не нужно.
В ином случае понадобилось бы задать соответствие ключа поименованному столб-
цу, поскольку для операций группировки всегда нужен ключ. Мы еще увидим это,
когда будем выполнять потоковый SQL.

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   287

СОВЕТ
Команда KSQL list topics; выводит список топиков на брокере, на который
указывает интерфейс командной строки KSQL, включая информацию о том,
зарегистрированы ли они.

Можно также просмотреть список потоков данных и убедиться, что KSQL создал
наш новый поток с помощью следующих команд:

show streams;
describe stock_txn_stream;

Результаты их выполнения приведены на рис. 9.13. Обратите внимание, что
KSQL вставил в поток два дополнительных столбца: ROWTIME и ROWKEY. Столбец
ROWTIME представляет собой метку даты/времени сообщения (добавляемую генера-
тором или брокером), а ROWKEY — ключ сообщения (если таковой имеется).

Рис. 9.13. Вывод списка потоков данных и вывод описания только что созданного потока

А теперь выполним запрос к этому потоку.

ПРИМЕЧАНИЕ
Чтобы подготовить данные для примеров KSQL, необходимо выполнить
команду ./gradlew runProducerInteractiveQueries.

288   Часть IV  •  Передовые возможности Kafka Streams

9.3.5. Написание KSQL-запроса
KSQL-запрос для биржевого анализа выглядит следующим образом:

SELECT symbol, sum(shares) FROM stock_txn_stream
➥ WINDOW TUMBLING (SIZE 10 SECONDS) GROUP BY symbol;

Выполните этот запрос, и вы увидите примерно такие
результаты, какие показаны на рис. 9.14. Столбец слева
представляет собой тикерный символ акций, а число
справа — количество проданных акций с таким символом
за последние 10 секунд. В этом запросе мы воспользова-
лись «кувыркающимся» окном, но KSQL поддерживает
также сеансовые и «прыгающие» окна, которые мы об-
суждали в подразделе 5.3.2.

Мы создали потоковое приложение без единой строки
кода — чем не достижение? Для сравнения посмотрим на
аналогичное приложение, написанное с помощью API
Kafka Streams (листинг 9.12).

Листинг 9.12. Приложение для биржевого анализа, написанное на Kafka Streams

KStream<String, StockTransaction> stockTransactionKStream =
➥ builder.stream(MockDataProducer.STOCK_TRANSACTIONS_TOPIC,
 Consumed.with(stringSerde, stockTransactionSerde)
 .withOffsetResetPolicy(Topology.AutoOffsetReset.EARLIEST));

Aggregator<String, StockTransaction, Integer> sharesAggregator =
➥ (k, v, i) -> v.getShares() + i;

stockTransactionKStream.groupByKey()
 .windowedBy(TimeWindows.of(10000))
 .aggregate(() -> 0, sharesAggregator,
 Materialized.<String, Integer,
 WindowStore<Bytes,
 byte[]>>as("NumberSharesPerPeriod")
 .withKeySerde(stringSerde)
 .withValueSerde(Serdes.Integer()))
 .toStream().
➥ peek((k,v)->LOG.info("key is {} value is{}", k, v));

Хотя код с использованием API Kafka Streams достаточно лаконичен, но его
эквивалент в KSQL занимает одну строку. Прежде чем завершить обсуждение ути-
литы KSQL, взглянем еще на несколько ее возможностей.

9.3.6. Создание таблицы KSQL
Ранее мы продемонстрировали создание потока данных KSQL. Теперь посмотрим,
как создать таблицу KSQL с топиком stock-transactions в качестве источника,
чтобы вам было привычнее (этот запрос можно найти в файле src/main/resources/ksql/
create_table.txt) (листинг 9.13).

Рис. 9.14. Результаты
запроса с «кувыркающимся»

окном

Глава 9. Создание продвинутых приложений с помощью Kafka Streams   289

Листинг 9.13. Создание KSQL-таблицы

CREATE TABLE stock_txn_table (symbol VARCHAR, sector VARCHAR, \
 industry VARCHAR, shares BIGINT, \
 sharePrice DOUBLE, \
 customerId VARCHAR, transactionTimestamp \
 STRING, purchase BOOLEAN) \
 WITH (KEY='symbol', VALUE_FORMAT = 'JSON', \
 KAFKA_TOPIC = 'stock-transactions');

После создания таблицы можно сразу выполнять к ней запросы. Имейте
в виду, что таблица будет содержать обновления для транзакций по symbol,
поскольку ключами в топике stock-transactions служат тикерные символы
акций.

В качестве интересного эксперимента выберем какой-нибудь символ акций из
потокового запроса показателей акций, после чего выполним следующие запросы
в консоли KSQL и посмотрим на разницу результатов:

select * from stock_txn_stream where symbol='CCLU';
select * from stock_txn_table where symbol='CCLU';

Первый запрос — к потоку отдельных событий — возвращает несколько резуль-
татов. А запрос к таблице возвращает намного меньше результатов (одну запись
в моем случае). Именно такое поведение и ожидается, поскольку таблица представ-
ляет обновления фактов, а поток данных — последовательность неограниченных
событий.

9.3.7 Настройка KSQL
KSQL предоставляет пользователю знакомый синтаксис SQL и возможность бы-
строго написания полнофункциональных потоковых приложений, но вы могли
заметить отсутствие конфигурации. Это не значит, что возможностей настройки
KSQL нет. Вы можете переопределять любые нужные вам настройки, а также при-
менять любые настройки потока данных, потребителя и генератора, которые только
можно задавать для приложений Kafka Streams. Для просмотра текущих настроек
выполните команду show properties;.

В качестве примера задания свойства конфигурации рассмотрим, как изменить
значение параметра auto.offset.reset на earliest:

SET 'auto.offset.reset'='earliest';

Аналогичным образом можно задать в командной оболочке KSQL значение лю-
бого свойства. Но если нужно задать несколько параметров конфигурации, вводить
каждый из них в консоли не слишком удобно. Вместо этого можно указать при за-
пуске файл конфигурации:

./bin/ksql-cli local --properties-file /path/to/configs.properties

Это был лишь краткий обзор утилиты KSQL, но я надеюсь, вы оценили воз-
можности и гибкость, предоставляемые ею для создания потоковых приложений
на Kafka.

290   Часть IV  •  Передовые возможности Kafka Streams

Резюме
�� С помощью Kafka Connect можно использовать в своих приложениях Kafka

Streams другие источники данных.

�� Интерактивные запросы — мощный инструмент: с их помощью можно про-
сматривать данные потока в процессе их прохождения через приложение Kafka
Streams без применения реляционной базы данных.

�� Язык KSQL помогает быстро создавать полнофункциональные потоковые при-
ложения без написания кода. KSQL позволяет обычным сотрудникам, не про-
граммистам, использовать мощь и гибкость Kafka Streams.

Приложения

A Дополнительная информация
о настройках

Данное приложение охватывает часто и не очень часто используемые настройки
конфигурации приложений Kafka Streams. При чтении книги вы неоднократно
встречали примеры описания конфигурации приложений Kafka Streams, но эта
конфигурация включала обязательные (идентификатор приложения, серверы на-
чальной загрузки) настройки и лишь несколько других (объекты Serde для ключей
и значений). В этом приложении я расскажу вам об остальных настройках, хотя и не-
обязательных, но весьма полезных для бесперебойной работы приложений Kafka
Streams. Настройки будут описаны в стиле справочника с примерами применения.

А.1. �Ограничение количества перебалансировок
при запуске приложения

GroupCoordinator брокера распределяет все секции топиков первому запускаемому
экземпляру приложения Kafka Streams. При запуске следующего экземпляра проис-
ходит перебалансировка, в результате которой текущие назначения секций топиков
сбрасываются и секции топиков распределяются заново по обоим экземплярам Kafka
Streams. Этот процесс повторяется до тех пор, пока не запустятся все экземпляры
приложения Kafka Streams с одним идентификатором приложения.

Для приложения Kafka Streams такое поведение — норма. Но обработка записей
приостанавливается на время перебалансировки, до ее завершения; следовательно,
желательно при запуске приложения ограничить по возможности число перебалан-
сировок.

В версии Kafka 0.11.0 появилась новая настройка брокеров — group.initial.re
balance.delay.ms. Эта настройка откладывает начальную перебалансировку потре-
бителя при его присоединении к группе на указанное в group.initial.rebalance.de
lay.ms время (в миллисекундах). Значение данной настройки по умолчанию равно
3 секундам. По мере присоединения к группе других потребителей перебалансиров-
ка откладывается на заданный промежуток времени (вплоть до достижения предела,

Приложение А. Дополнительная информация о настройках   293

задаваемого параметром max.poll.interval.ms). Это полезно для Kafka Streams,
поскольку перебалансировка при запуске новых экземпляров откладывается до
момента включения их всех в работу (если они запускаются по очереди). Например,
если запустить четыре экземпляра приложения, задав подходящую задержку пере-
балансировки, то будет выполнена одна перебалансировка после запуска всех четы-
рех экземпляров, а значит, вы сможете быстрее начать обрабатывать данные.

А.2. Устойчивость к отказам брокеров
Для обеспечения отказоустойчивости приложения Kafka Streams на случай сбоев
брокеров рекомендуется использовать следующие настройки (листинг A.1):

�� установить параметр Producer.NUM_RETRIES равным Integer.MAX_VALUE;

�� установить параметр Producer.REQUEST_TIMEOUT равным 305000 (чуть более
5 минут);

�� установить параметр Producer.BLOCK_MS_CONFIG равным Integer.MAX_VALUE;

�� установить параметр Consumer.MAX_POLL_CONFIG равным Integer.MAX_VALUE.

Листинг A.1. Задание настроек для обеспечения устойчивости к выходу брокеров из строя

Properties props = new Properties();
props.put(StreamsConfig.producerPrefix(
➥ ProducerConfig.RETRIES_CONFIG), Integer.MAX_VALUE);
props.put(StreamsConfig.producerPrefix(
➥ ProducerConfig.MAX_BLOCK_MS_CONFIG), Integer.MAX_VALUE);
props.put(StreamsConfig.REQUEST_TIMEOUT_MS_CONFIG, 305000);
props.put(StreamsConfig.consumerPrefix(
➥ ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG), Integer.MAX_VALUE);

Благодаря заданию таких настроек в случае аварийного останова всех брокеров
кластера Kafka ваше приложение Kafka Streams останется работоспособным и будет
готово возобновить работу после восстановления брокеров.

А.3. Обработка ошибок десериализации
Kafka работает с байтовыми массивами ключей и значений, и для их использования
ключи и значения нужно десериализовать. Именно поэтому для всех узлов-ис-
точников и узлов-стоков требуются объекты Serde. Появление испорченных дан-
ных во время обработки записей вполне возможно. Поэтому для указания, как
поступать с этими ошибками десериализации, в Kafka Streams существуют пара-
метры default.deserialization.exception.handler и StreamsConfig.DEFAULT_
DESERIALIZATION_EXCEPTION_HANDLER_CLASS_CONFIG.

Значение по умолчанию для этих параметров — класс org.apache.kafka.stre
ams.errors.LogAndFailExceptionHandler, выполняющий, как можно догадаться из

294   Приложения

названия, журналирование ошибки. При такой настройке генерация исключения
десериализации приведет к сбою (аварийному останову) приложения Kafka Streams.
Другой класс, org.apache.kafka.streams.errors.LogAndContinueExceptionHandler,
заносит ошибку в журнал, но приложение Kafka Streams при этом продолжает ра-
ботать.

Вы можете реализовать свои собственные обработчики исключений десериализации
путем создания класса, реализующего интерфейс DeserializationExceptionHandler
(листинг A.2).

Листинг A.2. Задание обработчика исключений десериализации

Properties props = new Properties();
props.put(StreamsConfig.DEFAULT_DESERIALIZATION_EXCEPTION_HANDLER_CLASS_
➥ CONFIG, LogAndContinueExceptionHandler.class);

Я показал тут только задание обработчика LogAndContinueExceptionHandler,
поскольку вариант журналирования с последующим остановом используется по
умолчанию.

А.4. Масштабирование приложения
Во всех примерах этой книги приложения Kafka Streams работают с одним потоком
выполнения. Для разработки такой режим вполне подходит, но при реальной экс-
плуатации, вероятно, вам понадобится более одного потока. Вопрос в том, сколько
нужно потоков выполнения и сколько — экземпляров Kafka Streams. Однозначных
ответов на эти вопросы не существует, поскольку только вы сами достаточно хорошо
знаете свои обстоятельства для ответа на них, но мы можем привести тут простые
выкладки, которые помогут вам в выборе.

Как вы помните из главы 3, Kafka Streams создает объекты StreamTask по числу
секций входного топика (-ов). В нашем первом примере для простоты мы рассмо-
трим входной топик из 12 секций.

В случае 12 входных секций Kafka Streams создаст 12 задач. Допустим, нам
нужно по одной задаче на поток выполнения. Можно использовать один экземпляр
с 12 потоками выполнения, но у такого подхода есть недостаток: в случае сбоя ма-
шины, на которой запущено приложение Kafka Streams, вся потоковая обработка
прекратится.

Но если запускать экземпляры с четырьмя потоками выполнения каждый, то
каждый экземпляр будет обрабатывать четыре входные секции. Преимущество тако-
го подхода: в случае сбоя одного из экземпляров Kafka Streams будет запущена пере-
балансировка и четыре задачи неработающего экземпляра будут перераспределены
по двум остальным, таким образом, оставшиеся экземпляры будут обрабатывать по
шесть задач каждый. Кроме того, после возобновления работы остановленного эк-
земпляра произойдет еще одна перебалансировка и все три экземпляра снова будут
обрабатывать по четыре задачи каждый.

Приложение А. Дополнительная информация о настройках   295

Важно учесть, что Kafka Streams определяет количество создаваемых задач на
основе максимального количества секций из всех входных топиков. В случае одно-
го топика с 12 секциями число задач будет равно 12; но если входных топиков у вас
четыре, по три секции каждый, то задач окажется три, каждая из которых будет от-
вечать за обработку четырех секций.

Помните, что если потоков выполнения больше, чем число задач, то оставшиеся
потоки будут простаивать. Если запустить в вышеописанном примере с тремя экзем-
плярами Kafka Streams четвертый экземпляр с четырьмя потоками выполнения, то
после перебалансировки у вас окажется четыре простаивающих потока выполнения
(16 потоков выполнения, но лишь 12 задач).

Это важнейшая особенность Kafka Streams, как я уже упоминал ранее в книге.
Подобное динамическое масштабирование не требует останова приложения — оно
происходит автоматически. Эта возможность удобна в случае неравномерного по-
ступления данных в приложение — при необходимости можно запустить дополни-
тельные экземпляры, чтобы справиться с возросшей нагрузкой, а затем отключить
часть из них, когда объемы поступающих данных снизятся.

Всегда ли нужно использовать один поток выполнения на задачу? Возможно,
хотя точно сказать трудно, это зависит от потребностей вашего приложения.

А.5. Конфигурация RocksDB
Для операций с сохранением состояния Kafka Streams применяет в качестве ме-
ханизма постоянного хранения RocksDB (http://rocksdb.org/). RocksDB — быстрое
хранилище пар «ключ/значение» с гибко изменяемой конфигурацией. Число его
опций слишком велико, чтобы приводить тут подробные рекомендации, но упомя-
ну, что Kafka Streams позволяет перекрыть его настройки по умолчанию с помощью
интерфейса RocksDBConfigSetter.

Для задания пользовательских настроек RocksDB создайте класс, реализующий
интерфейс RocksDBConfigSetter, и укажите название этого класса в конфигурации
своего приложения Kafka Streams, в параметре StreamsConfig.ROCKSDB_CONFIG_
SETTER_CLASS_CONFIG. Узнать больше о возможностях настройки RocksDB вы можете
из руководства по настройке RocksDB (RocksDB Tuning Guide, http://mng.bz/I88k).

А.6. �Заблаговременное создание топиков
повторного секционирования

В Kafka Streams при всякой операции, способной потенциально изменить ключ
map — например, transform или groupBy, — в классе StreamsBuilder устанавливается
внутренний флаг, указывающий на необходимость повторного секционирования.
При этом выполнение операций map или transform не приведет автоматически
к созданию временного топика повторного секционирования; но операция повторного

секционирования будет запущена, как только вы добавите любую операцию, ис-
пользующую обновленный ключ.

Хотя этот шаг является обязательным (см. главу 4), в некоторых случаях лучше
самостоятельно выполнить повторное секционирование заблаговременно. Взгляните
на следующий (сокращенный) пример:

В этом коде мы выполняем отображение исходного потока данных, чтобы соз-
дать новый ключ группировки. Нам нужно осуществить три подсчета количества
при трех различных вариантах оконных операций — вполне допустимый сцена-
рий использования. Но вследствие отображения в новый ключ каждая оконная
операция подсчета создает новый топик повторного секционирования. Опять же,
поскольку ключ поменялся, топик повторного секционирования необходим, но
три топика повторного секционирования вместо одного означают дублирование
данных.

Решение этой проблемы очень простое: после вызова метода map необходимо
сразу же вызвать операцию through для секционирования данных. При этом по-
следующие вызовы groupByKey не запустят повторное секционирование данных,
поскольку оператор groupByKey не устанавливает флаг потребности в повторном
секционировании. Вот исправленный код:

Благодаря добавлению узла-обработчика through и повторному секционирова-
нию вручную у нас окажется один топик повторного секционирования вместо трех.

А.7. Настройка внутренних топиков
При создании топологии Kafka Streams может создавать многочисленные внутрен-
ние топики в зависимости от добавляемых вами узлов-обработчиков. Эти вну-
тренние топики могут представлять собой журналы изменений для резервного
копирования хранилищ состояния, или топики повторного секционирования. В за-
висимости от объемов данных они могут занимать значительное пространство на
диске. Кроме того, хотя по умолчанию журналы изменений создаются со стратегией

296   Приложения

Приложение А. Дополнительная информация о настройках   297

очистки compact, в случае большого числа уникальных ключей их размеры будут
расти. С учетом этого имеет смысл настроить их так, чтобы их размер не превышал
разумных пределов.

Есть два варианта управления внутренними топиками. Во-первых, можно за-
давать настройки непосредственно при создании хранилищ состояния с помощью
метода StoreBuilder.withLoggingEnabled или Materialized.withLoggingEnabled.
Какой метод использовать — зависит от способа создания хранилища состояния.
Оба метода принимают в качестве параметра объект Map<String, String> со свой-
ствами топика. Пример их использования можно найти в файле src/main/java/bbejeck/
chapter_7/CoGroupingListeningExampleApplication.

Второй вариант управления внутренними топиками — указание настроек для
них в процессе настройки приложения Kafka Streams:

Properties props = new Properties();
// остальные свойства
props.put(StreamsConfig.topicPrefix("retention.bytes"), 1024 * 1024);
props.put(StreamsConfig.topicPrefix("retention.ms"), 3600000);

В случае подхода со StreamsConfig.topicPrefix указанные настройки использу-
ются глобально, для всех внутренних топиков. При этом настройки, задаваемые при
создании хранилища состояния, имеют приоритет над настройками, указываемыми
с помощью класса StreamsConfig.

Я не могу посоветовать вам, какие настройки использовать, поскольку это за-
висит от конкретного сценария использования. Но помните, что размер топика по
умолчанию не ограничен, а время сохранения по умолчанию равно одной неделе,
так что имеет смысл установить подходящие значения параметров retention.bytes
и retention.ms. Помимо этого, для журналов изменений, служащих в качестве ре-
зервной копии хранилищ состояния с большим количеством уникальных ключей,
можно установить параметр cleanup.policy равным compact, delete, чтобы размер
топика не слишком рос.

А.8. Перезапуск приложения Kafka Streams
В какой-то момент может возникнуть необходимость перезапуска приложения
Kafka Streams и повторной обработки данных или в процессе разработки, или после
установки обновления кода. Для этой цели Kafka Streams предоставляет сценарий
kafka-streams-application-reset.sh, расположенный в подкаталоге bin каталога,
в который установлен Kafka.

У данного сценария есть один обязательный параметр: идентификатор при-
ложения Kafka Streams. Он предлагает несколько возможностей (если вкратце):
сбрасывать входящие топики до самого раннего из имеющихся смещений, сбрасы-
вать промежуточные топики до последнего смещения и удалять любые внутренние
топики. Отмечу, что при первом запуске приложения необходимо вызвать метод
KafkaStreams.cleanUp, чтобы удалить локальное состояние, сохраненное с преды-
дущих запусков.

А.9. Очистка локального состояния
В главе 4 мы обсуждали вопрос сохранения Kafka Streams локального состояния
задач в локальной файловой системе. При разработке, тестировании или миграции
в новый экземпляр может понадобиться очистить все сохраненные локальные со-
стояния.

Для полной очистки предыдущего состояния можно воспользоваться методом
KafkaStreams.cleanUp либо перед вызовом метода KafkaStreams.start, либо после
вызова KafkaStreams.stop. Вызов метода KafkaStreams.cleanUp в любой другой
момент приведет к ошибке.

298   Приложения

Б Строго однократная
доставка

Важнейшим промежуточным этапом эволюции Kafka, относящимся к версии 0.11.0,
стала семантика строго однократной доставки (exactly once semantics). До этой
версии семантику доставки Kafka можно было описать как «как минимум одно-
кратную» (at-least-once) или «как максимум однократную» (at-most-once), в за-
висимости от генератора.

В случае как минимум однократной доставки возможна ситуация, когда брокер
сохранил сообщение, но перед отправкой подтверждения обратно генератору в бро-
кере возникла ошибка (мы предполагаем тут, что у генератора установлен параметр
asks="all" и время ожидания подтверждения истекло). Если в настройках генера-
тора указано ненулевое число повторов, он отправит сообщение повторно, будучи
в неведении, что предыдущее сообщение было успешно сохранено. При таком (хотя
и довольно редком) сценарии потребителям будет доставлено дублирующее сообще-
ние — отсюда и фраза «как минимум однократная».

Для обсуждения как максимум однократной доставки рассмотрим случай,
когда в настройках генератора число повторов равно нулю. В сценарии предыду-
щего примера упомянутое сообщение будет доставлено ровно один раз, посколь-
ку повторов отправки не производится. Но если ошибка в брокере произошла
до того, как он сумел сохранить сообщение, оно вообще не будет отправлено.
В этом случае мы считаем, что лучше получить не все сообщения, чем получить
дубликаты.

В случае же семантики строго однократной доставки, даже при повторной от-
правке генератором уже сохраненного в топике сообщения, потребители получат
сообщение ровно один раз. Для активизации транзакций (строго однократной об-
работки) при использовании KafkaProducer необходимо добавить параметр конфи-
гурации transactional.id и несколько вызовов методов, как показано в следующем
примере. В остальном транзакционная генерация сообщений выглядит вполне
знакомо. Замечу, что этот фрагмент кода несамодостаточен — он предназначен лишь

для иллюстрации того, что необходимо для генерации и потребления сообщений
с помощью транзакционного API:

Для транзакционного использования KafkaConsumer необходимо добавить ровно
один параметр конфигурации:

props.put("isolation.level", "read_committed");

В режиме read_committed KafkaConsumer читает только успешно зафиксирован-
ные транзакционные сообщения. Настройка по умолчанию — read_uncommitted, при
которой возвращаются все сообщения. Нетранзакционные сообщения извлекаются
всегда, в любом из режимов.

Строго однократная семантика стала очень важным достижением для Kafka
Streams. Благодаря ей (транзакциям) гарантируется строго однократная обработка
записей в топологии.

Для активизации строго однократной обработки в Kafka Streams установите зна-
чение параметра StreamsConfig.PROCESSING_GUARANTEE_CONFIG равным exactly_once.
Значение по умолчанию для PROCESSING_GUARANTEE_CONFIG равно at_least_once, что
соответствует нетранзакционной обработке. При указании данного простого пара-
метра Kafka Streams берет на себя все необходимые для транзакционной обработки
действия.

300   Приложения

Приложение Б. Строго однократная доставка   301

Это был краткий обзор транзакционного API фреймворка Kafka. Дополнитель-
ную информацию вы можете найти в следующих источниках:

�� Scott D. Kafka in Action (Manning), www.manning.com/books/kafka-in-action;

�� Narkhede N. Exactly-once Semantics Are Possible: Here’s How Kafka Does It
(Ния Нархид, «Строго однократная семантика возможна — и вот как ее осущест-
вляет Kafka»), Confluent, 30 июня 2017, http://mng.bz/t9rO;

�� Mehta A., Gustafson J. Transactions in Apache Kafka (Апурва Мехта и Джейсон
Густавсон, «Транзакции в Apache Kafka»), Confluent, 17 ноября 2017, http://
mng.bz/YKqf;
�� Wang G. Enabling Exactly-Once in Kafka Streams (Гочжэн Ян, «Включение

строго однократной доставки в Kafka Streams»), Confluent, 13 декабря 2017,
http://mng.bz/2A32.

 Билл Беджек

Kafka Streams в действии. Приложения и микросервисы
для работы в реальном времени

Перевел с английского И. Пальти

	 Заведующая редакцией	 Ю. Сергиенко
	 Руководитель проекта	 О. Сивченко
	 Ведущий редактор	 Н. Гринчик
	 Литературный редактор	 Е. Рафалюк-Бузовская
	 Художественный редактор	 В. Мостипан
	 Корректоры	 Е. Павлович, Т. Радецкая
	 Верстка	 Г. Блинов

Изготовлено в России. Изготовитель: ООО «Прогресс книга».
Место нахождения и фактический адрес: 194044, Россия, г. Санкт-Петербург,

Б. Сампсониевский пр., д. 29А, пом. 52. Тел.: +78127037373.

Дата изготовления: 03.2019. Наименование: книжная продукция. Срок годности: не ограничен.

Налоговая льгота — общероссийский классификатор продукции ОК 034-2014, 58.11.12 —
Книги печатные профессиональные, технические и научные.

Импортер в Беларусь: ООО «ПИТЕР М», 220020, РБ, г. Минск, ул. Тимирязева, д. 121/3, к. 214, тел./факс: 208 80 01.

Подписано в печать 04.03.19. Формат 70×100/16. Бумага офсетная. Усл. п. л. 24,510. Тираж 700. Заказ 0000.

Отпечатано в ОАО «Первая Образцовая типография». Филиал «Чеховский Печатный Двор».
142300, Московская область, г. Чехов, ул. Полиграфистов, 1.

Сайт: www.chpk.ru. E-mail: marketing@chpk.ru
Факс: 8(496) 726-54-10, телефон: (495) 988-63-87

mailto:marketing@chpk.ru

	Об авторе
	Об этой книге
	Кому стоит прочитать эту книгу
	Структура издания
	О коде
	Другие онлайн-ресурсы

	Введение
	Предисловие
	Благодарности
	Часть I. Знакомство с Kafka Streams
	Глава 1. Добро пожаловать в Kafka Streams
	1.1. Движение больших данных и как оно повлияло на программирование
	1.1.1. Возникновение больших данных
	1.1.2. Важнейшие понятия парадигмы MapReduce
	1.1.3. Одной пакетной обработки недостаточно

	1.2. Знакомство с потоковой обработкой
	1.3. Обработка транзакции покупки товара
	1.3.1. Рассматриваем вариант с потоковой обработкой
	1.3.2. Представление требований в виде графа

	1.4. Транзакция покупки с другой точки зрения
	1.4.1. Узел-источник
	1.4.2. Узел маскирования номеров платежных карт
	1.4.3. Узел паттернов
	1.4.4. Узел поощрений
	1.4.5. Узел хранения

	1.5. Kafka Streams как граф
узлов обработки
	1.6. Использование Kafka Streams для потока данных транзакций покупок
	1.6.1. Задаем источник
	1.6.2. Первый узел-обработчик: маскирование номеров платежных карт
	1.6.3. Второй узел-обработчик:
паттерны покупок
	1.6.4. Третий узел-обработчик:
поощрение покупателей
	1.6.5. Четвертый узел-обработчик: запись данных о покупках

	Резюме

	Глава 2. Kafka в двух словах
	2.1. Проблема данных
	2.2. �Использование Kafka
для обработки данных
	2.2.1. �Первоначальная платформа данных компании ZMart
	2.2.2. �Концентратор информации о транзакциях продаж на основе Kafka

	2.3. Архитектура Kafka
	2.3.1. Kafka — это брокер сообщений
	2.3.2. Kafka — это журнал
	2.3.3. Функционирование журналов в Kafka
	2.3.4. Kafka и секции
	2.3.5. Секции группируют данные по ключу
	2.3.6. �Написание пользовательского класса секционирования
	2.3.7. Настройка пользовательского секционирования
	2.3.8. Выбор правильного числа секций
	2.3.9. Распределенный журнал
	2.3.10. �ZooKeeper: ведущие/ведомые брокеры и репликация
	2.3.11. Apache ZooKeeper
	2.3.12. Выборы контроллера
	2.3.13. Репликация
	2.3.14. Обязанности контроллера
	2.3.15. Управление журналами
	2.3.16. Удаление журналов
	2.3.17. Сжатие журналов

	2.4. �Отправка сообщений
с помощью генераторов
	2.4.1. Свойства генераторов
	2.4.2. �Указание секции
или метки даты/времени
	2.4.3. Указание секции
	2.4.4. Метки даты/времени в Kafka

	2.5. �Чтение сообщений
с помощью потребителей
	2.5.1. Управление смещениями
	2.5.2. Автоматическая фиксация смещений
	2.5.3. Фиксация смещения вручную
	2.5.4. Создание потребителя
	2.5.5. Потребители и секции
	2.5.6. Перебалансировка
	2.5.7. �Более точное назначение топиков/секций потребителям
	2.5.8. Пример потребителя

	2.6. Установка и запуск Kafka
	2.6.1. Локальные настройки Kafka
	2.6.2. Запуск Kafka
	2.6.3. Отправляем наше первое сообщение

	Резюме

	Часть II. Разработка с помощью Kafka Streams
	Глава 3. Разработка приложений Kafka Streams
	3.1. API потоковых узлов-обработчиков
	3.2. Программа Hello, World для Kafka Streams
	3.2.1. Создание топологии для Yelling
	3.2.2. Настройка Kafka Streams
	3.2.3. Создание объектов Serde

	3.3. Работа с данными покупателей
	3.3.1. Конструирование топологии
	3.3.2. Создание пользовательского объекта Serde

	3.4. Интерактивная разработка
	3.5. Дальнейшие шаги
	3.5.1. Новые требования
	3.5.2. Сохранение записей вне Kafka

	Резюме

	Глава 4. Потоки данных и состояние
	4.1. Обработка событий
	4.2. �Операции с сохранением состояния в Kafka Streams
	4.2.1. Узел-обработчик transformValues
	4.2.2. �Поощрения покупателей
с сохранением состояния
	4.2.3. �Инициализация
преобразователя значений
	4.2.4. �Отображение, на основе состояния, объекта Purchase в объект RewardAccumulator
	4.2.5. Обновление узла-обработчика поощрений

	4.3. �Использование хранилищ состояния для поиска и ранее виденные данные
	4.3.1. Локальность данных
	4.3.2. �Восстановление после сбоя
и отказоустойчивость
	4.3.3. �Использование хранилищ состояния в Kafka Streams
	4.3.4. �Другие поставщики хранилищ
пар «ключ/значение»
	4.3.5. Отказоустойчивость StateStore
	4.3.6. Настройки топиков журналов изменений

	4.4. �Получение дополнительной информации путем соединения потоков данных
	4.4.1. Подготовка данных
	4.4.2. �Генерация, для соединения, ключей с идентификаторами покупателей
	4.4.3. Конструирование соединения
	4.4.4. Другие варианты соединений

	4.5. Метки даты/времени в Kafka Streams
	4.5.1. �Готовые реализации интерфейса TimestampExtractor
	4.5.2. Класс WallclockTimestampExtractor
	4.5.3. �Пользовательская реализация интерфейса TimestampExtractor
	4.5.4. Указываем, какой TimestampExtractor использовать

	Резюме

	Глава 5. API KTable
	5.1. �Взаимосвязь между потоками данных и таблицами
	5.1.1. Поток записей
	5.1.2. Обновления записей (журнал изменений)
	5.1.3. �Поток событий по сравнению с потоком обновлений

	5.2. Обновления записей и настройки KTable
	5.2.1. Задание размера буфера кэша
	5.2.2. Задание интервала фиксации

	5.3. Агрегирование и оконные операции
	5.3.1. �Агрегирование объема продаж акций
по отраслям промышленности
	5.3.2. Оконные операции
	5.3.3. Соединение объектов KStream и KTable
	5.3.4. Объекты GlobalKTable
	5.3.5. Доступное для запросов состояние

	Резюме

	Глава 6. API узлов-обработчиков
	6.1. �Компромисс между повышением уровня абстракции и расширением возможностей контроля
	6.2. �Создание топологии с использованием источников, узлов-обработчиков и стоков
	6.2.1. Добавление узла-источника
	6.2.2. Добавляем узел-обработчик
	6.2.3. Добавление узла-стока

	6.3. �Углубляемся в API узлов-обработчиков на примере узла биржевой аналитики
	6.3.1. Узел-обработчик показателей акций
	6.3.2. Метод process()
	6.3.3. Выполнение пунктуатора

	6.4. Узел совместной группировки
	6.4.1. Создание узла совместной группировки

	6.5. �Интеграция API узлов-обработчиков и API Kafka Streams
	Резюме

	Часть III. Администрирование Kafka Streams
	Глава 7. Мониторинг и производительность
	7.1. Основы мониторинга Kafka
	7.1.1. �Оценка производительности потребителей и генераторов
	7.1.2. Проверка отставания потребителя
	7.1.3. �Перехват информации о поведении генераторов и потребителей

	7.2. Метрики приложения
	7.2.1. Настройки метрик
	7.2.2. Как получить доступ к собранным метрикам
	7.2.3. Использование JMX
	7.2.4. Просмотр метрик

	7.3. �Дополнительные методики отладки Kafka Streams
	7.3.1. Просмотр структуры приложения
	7.3.2. �Получение уведомлений
о различных состояниях приложения
	7.3.3. Использование интерфейса StateListener
	7.3.4. Прослушиватель восстановления состояния
	7.3.5. Обработчик неперехваченных исключений

	Резюме

	Глава 8. Тестирование приложения Kafka Streams
	8.1. Тестирование топологии
	8.1.1. Создание теста
	8.1.2. �Тестирование хранилища состояния
в топологии
	8.1.3. �Тестирование узлов-обработчиков и преобразователей

	8.2. Комплексное тестирование
	8.2.1. Создание комплексного теста

	Резюме

	Часть IV. Передовые возможности Kafka Streams
	Глава 9. Создание продвинутых приложений с помощью Kafka Streams
	9.1. �Интеграция Kafka с другими источниками данных
	9.1.1. �Интеграция данных
с помощью Kafka Connect
	9.1.2. Настройка Kafka Connect
	9.1.3. Преобразование данных

	9.2. Выбрасываем базу данных за борт
	9.1.2. Как работают интерактивные запросы
	9.2.2. Распределение хранилищ состояния
	9.2.3. �Настройка и обнаружение распределенного хранилища состояния
	9.2.4. Написание кода для интерактивных запросов
	9.2.5. Внутри сервера запросов

	9.3. KSQL
	9.3.1. Потоки и таблицы KSQL
	9.3.2. Архитектура KSQL
	9.3.3. Установка и запуск KSQL
	9.3.4. Создание потока данных KSQL
	9.3.5. Написание KSQL-запроса
	9.3.6. Создание таблицы KSQL
	9.3.7 Настройка KSQL

	Резюме

	Приложения
	Приложение А. Дополнительная информация о настройках
	А.1. �Ограничение количества перебалансировок при запуске приложения
	А.2. Устойчивость к отказам брокеров
	А.3. Обработка ошибок десериализации
	А.4. Масштабирование приложения
	А.5. Конфигурация RocksDB
	А.6. �Заблаговременное создание топиков повторного секционирования
	А.7. Настройка внутренних топиков
	А.8. Перезапуск приложения Kafka Streams
	А.9. Очистка локального состояния

	Приложение Б. Строго однократная доставка

