THE EXPERT’S VOICE® IN DATABASES

- ,I/I/////////// 1‘/ Y. /////4

Beginning

Apache ST
Development

DISCOVER ALL ASPECTS OF USING
APACHE CASSANDRA IN APPLICATIONS

Vivek Mishra

QBLLL /L
Apresse

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOr ... ———————————— Xv
About the Technical ReVIEWETcvsssvsmssssssmsmsmssssssssmssssmssssssssssssssssssssssnssssnssssssnsssnssnsnss xvii
AcknOowIedgmEeNnts.......cccciiiisssssnmmnnmmmmmmsssssssssssnnnmesssssssssnnnnnnsessssssssssnnnnnnsessssssssnnnnnnnnnessssssns Xix
INtrodUCTiONceiiieesissannsssannssssnnnsssnnnsssnnnsssnnnsssnnnsssnnnsssannsssnnnsssnnnsssannsssnnnssssnnenssnnnsssnnnsssnnns xxi
Chapter 1: NoSQL: Cassandra BaSiCScussssmssmsssssmssssssmsssssssssssssssssssssssssssssssssnssnssnsassnsnss 1
Chapter 2: Cassandra Data Modelingccuseenmmnsssnnnsmssssssnnmssssssssessssssnsssssssssssssssssnssssns 27
Chapter 3: Indexes and Composite COIUMNS.ccoccmmmmissnmnnmmmssssnmmmsssssnmmmsssssmmssassmms 43
Chapter 4: Cassandra Data SeCUrily.....cccuusrmmssammmssansssssnsssssnssssansesssnsesssnsessansesssnsesssnnessnns 61
Chapter 5: MapReduce with Cassandracccccerrmmmmmmmsssssssnsmmmsmmsssssssssnn——————————— 79
Chapter 6: Data Migration and Analytics.........ccciumissmmmmmmmssennmmsssssssnmsssssssnssssssnsnssssssnsnsssass 97
Chapter 7: Titan Graph Databases with Cassandracc.cccuuemmmsemmmsssssmsssssmsssssssssnsens 123
Chapter 8: Cassandra Performance TUNINGccccuusseenmmmssssnsmmssssssnmsssssssssssssssssssssssnsnsnssss 153
Chapter 9: Cassandra: Administration and Monitoringccuccccimnnemnmmmnsssssnmmssnsnnnn. 171
Chapter 10: Cassandra ULilitiescccusermssemmmsssmmmmssssmssssssssssssssssnsssssnsssssssssssnsessnnssssnnnenss 191
Chapter 11: Upgrading Cassandra and Troubleshootingcccciunnssemmmnnsssensnnnssseasnnns 209
L1, 217
v

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Big or large data has been the talk of the town in recent years. With possibilities for solving unstructured and
semi-structured data issues, more and more organizations are gradually moving toward big data powered solutions.
This essentially gives organization a way to think “beyond RDBMS.” This book will walk you through many such use
cases during the journey.

Many NoSQL databases have been developed over the last 4-5 years. Recent research shows there are now more
than 150 different NoSQL databases. This raises questions about why to adopt a specific database. For example,
is it scalable, under active development, and most importantly accepted by the community and organizations? It is
in light of these questions that Apache Cassandra comes out as a winner and indicates why it is one of the most
popular NoSQL databases currently in use.

Apache Cassandra is a columnar distributed database that takes database application development forward from
the point at which we encounter the limitations of traditional RDBMSs in terms of performance and scalability. A few
things that restrict traditional RDBMSs are that they require predefined schemas, the ability to scale up to hundreds
of data nodes, and the amount of work involved with data administration and monitoring. We will discuss these
restrictions and how to address these with Apache Cassandra.

Beginning Apache Cassandra Development introduces you to Apache Cassandra, including the answers to the
questions mentioned above, and provides a detailed overview and explanation of its feature set.

Beginning with Cassandra basics, this book will walk you through the following topics and more:

e Datamodeling

e Cluster deployment, logging, and monitoring

e Performance tuning

e Batch processing via MapReduce

e Hive and Pig integration

e Working on graph-based solutions

e Open source tools for Cassandra and related utilities

The book is intended for database administrators, big data developers, students, big data solution architects,
and technology decision makers who are planning to use or are already using Apache Cassandra.

Many of the features and concepts covered in this book are approached through hands on recipes that show how
things are done. In addition to those step-by-step guides, the source code for the examples is available as a download
from the book’s Apress product page (Wwww.apress.com/9781484201435).

xxi

www.it-ebooks.info

www.apress.com/9781484201435
http://www.it-ebooks.info/

CHAPTER 1

NoSQL: Cassandra Basics

The purpose of this chapter is to discuss NoSQL, let users dive into NoSQL elements, and then introduce big data
problems, distributed database concepts, and finally Cassandra concepts. Topics covered in this chapter are:

e NoSQL introduction

e CAP theorem

e Data distribution concepts

e Bigdata problems

e (Cassandra configurations

e (Cassandra storage architecture
e Setup and installation

e Logging with Cassandra

The intent of the detailed introductory chapter is to dive deep into the NoSQL ecosystem by discussing problems
and solutions, such as distributed programming concepts, which can help in solving scalability, availability, and other
data-related problems.

This chapter will introduce the reader to Cassandra and discuss Cassandra’s storage architecture, various other
configurations, and the Cassandra cluster setup over local and AWS boxes.

Introducing NoSQL

Big data’s existence can be traced back to the mid 1990s. However, the actual shift began in the early 2000s.

The evolution of the Internet and mobile technology opened many doors for more people to participate and

share data globally. This resulted in massive data production, in various formats, flowing across the globe. A wider
distributed network resulted in incremental data growth. Due to this massive data generation, there is a major shift in
application development and many new domain business possibilities have emerged, like:

e Social trending

e OLAP and Data mining
e Sentiment analysis

e Behavior targeting

e Real-time data analysis

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

With high data growth into peta/zeta bytes, challenges like scalability and managing data structure would be very
difficult with traditional relational databases. Here big data and NoSQL technologies are considered an alternative to
building solutions. In today’s scenario, existing business domains are also exploring the possibilities of new functional
aspects and handling massive data growth simultaneously.

NoSQL Ecosystem

NoSQL, often called “Not Only SQL,” implies thinking beyond traditional SQL in a distributed way. There are more
than 150 NoSQL databases available today. The following are a few popular databases:

e Columnar databases, such as Cassandra & HBase

¢ Document based storage like MongoDB & Couchbase
e Graph based access like Neo4] & Titan Graph DB

e Simple key-value store like Redis & Couch DB

With so many options and categories, the most important question is, what, how, and why to choose! Each
NoSQL database category is meant to deal with a specific set of problems. Specific technology for specific
requirement paradigm is leading the current era of technology. It is certain that a single database for all business
needs is clearly not a solution, and that’s where the need for NoSQL databases arises. The best way to adopt databases
is to understand the requirements first. If the application is polyglot in nature, then you may need to choose more
than one database from the available options. In the next section, we will discuss a few points that describe why
Cassandra could be an answer to your big data problem.

CAP Theorem

CAP theorem, which was introduced in early 2000 by Eric Brewer, states that no database can offer Consistency,
Availability, and Partition tolerance together (see Figure 1-1), but depending on use case may allow for any two
of them.

onsistency
- - =~ i o o - a -
P -~ ra ~
&’ Ny “
/ FAY \

! /NAN \
! ¥ \ \
: Partiti ¢ 2 ‘

artition | il e
' ' , Availability
\ tolerance !

\ \ ! !
\ \ 7/ /
\ ¥ ’
~ 7 N ’
~ 7’ ~ ”

-~ - - - ~ - - -

Figure 1-1. CAP theorem excludes the possibility of a database with all three characteristics (the “NA” area)

2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Traditional relational database management systems (RDBMS) provide atomicity, consistency, isolation, and
durability (ACID) semantics and advocate for strong consistency. That’s where most of NoSQL databases differ and
strongly advocate for partition tolerance and high availability with eventual consistency.

High availability of data means data must be available with minimal latency. For
distributed databases where data is distributed across multiple nodes, one way to achieve
high availability is to replicate it across multiple nodes. Like most of NoSQL databases,
Cassandra also provides high availability.

Partition tolerance implies if a node or couple of nodes is down, the system would still be
able to serve read/write requests. In scalable systems, built to deal with a massive volume
of data (in peta bytes) it is highly likely that situations may occur often. Hence, such systems
have to be partition tolerant. Cassandra’s storage architecture enables this as well.

Consistency means consistent across distributed nodes. Strong consistency refers to most
updated or consistent data on each node in a cluster. On each read/write request most
stable rows can be read or written to by introducing latency (downside of NoSQL) on each
read and write request, ensuring synchronized data on all the replicas. Cassandra offers
eventual consistency, and levels of configuration consistency for each read/write request.
We will discuss various consistency level options in detail in the coming chapters.

Budding Schema

Structured or fixed schema defines the number of columns and data types before implementation. Any alteration to
schema like adding column(s) would require a migration plan across the schema. For semistructured or unstructured
data formats where number of columns and data types may vary across multiple rows, static schema doesn't fit very
well. That’s where budding or dynamic schema is best fit for semistructured or unstructured data.

Figure 1-2 presents four records containing twitter-like data for a particular user id. Here, the user id imvivek
consists of three columns “tweet body’, "followers’; and “retweeted by”. But on the row for user “apress_team” there
is only the column followers. For unstructured schema such as server logs, the number of fields may vary from row
to row. This requires the addition of columns “on the fly” a strong requirement for NoSQL databases. Traditional
RDBMS can handle such data set in a static way, but unlike Cassandra RDBMS cannot scale to have up to a million
columns per row in each partition. With predefined models in the RDBMS world, handling frequent schema changes
is certainly not a workable option. Imagine if we attempt to support dynamic columns we may end up having many
null columns! Having default null values for multiple columns per row is certainly not desirable. With Cassandra we
can have as many columns as we want (up to 2 billion)! Also another possible option is to define datatype for column
names (comparator) which is not possible with RDBMS (to have a column name of type integer).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

= imvivek
jhassel

Started working -]

- on my Cassandra _
book = Imvivek, -

— —_ ‘ | apress_team,

- jhassel ritafernando
‘ apress_team,

- ritafernando ritafernando

ritafernando ==

Reviewing
Cassandra book

apress_team

Jhassel,
Imvivek,
apress_team,
ritafernando

Imvivek,
apress_team

=

Started working
on my Cassandra
~ book

1111

Figure 1-2. A dynamic column, a.k.a. budding schema, is one way to relax static schema constraint of RDBMS world

Scalability

Traditional RDBMSs offer vertical scalability, that is, scaling by adding more processors or RAM to a single unit.
Whereas, NoSQL databases offer horizontal scalability, and add more nodes. Mostly NoSQL databases are schemaless
and can perform well over commodity servers. Adding nodes to an existing RDBMS cluster is a cumbersome process
and relatively expensive whereas it is relatively easy to add data nodes with a NoSQL database, such as Cassandra.

We will discuss adding nodes to Cassandra in coming chapters.

No Single Point of Failure

With centralized databases or master/slave architectures, where database resources or a master are available on a
single machine, database services come to a complete halt if the master node goes down. Such database architectures
are discouraged where high availability of data is a priority. NoSQL distributed databases generally prefer multiple
master/slave configuration or peer-to-peer architecture to avoid a single point of failure. Cassandra delivers peer-to-
peer architecture where each Cassandra node would have an identical configuration. We will discuss this at length in
the coming chapters.

Figure 1-3a depicts a system single master acting as single point of contact to retrieve data from slave nodes. If
the master goes down, it would bring the whole system to a halt until the master node is reinstated. But with multiple
master configurations, like the one in Figure 1-3b, a single point of failure does not interrupt service.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

)=\ i. -
E S slavel
o & i_
E slave2 i slave?
Il E [
g slave3 slave3 -

(@ (b)

Figure 1-3. Centralized vs. distributed architecural setup

High Availability

High availability clusters suggest the database is available with 24x7 support with minimal (or no) downtime. In such
clusters, data is replicated across multiple nodes, in case one node is down still another node is available to serve the
read/write requests until that node is up and running. Cassandra’s peer-to-peer architecture ensures high availability
of data with co-location.

Identifying the Big Data Problem

Recently, it has been observed that developers are opting for NoSQL databases as an alternative to RDBMS. However,
I recommend that you perform an in-depth analysis before deciding on NoSQL technologies. Traditional RDBMS
does offer lots of features which are absent in most of NoSQL databases. A couple of questions that must be analyzed
and answered before jumping to a NoSQL based approach include

e Isitreallyabig data problem?
e Why/where RDBMS fails to deliver?

Identifying a “big data problem” is an interesting errand. Scalability, nature of data (structured, unstructured,
or semistructured) and cost of maintaining data volume are a few important factors. In most cases, managing
secured and structured data within an RDBMS may still be the preferred approach; however, if the nature of the
data is semistructured, less vulnerable, and scalability is preferred over traditional RDBMS features (e.g., joins,
materialized view, and so forth), it qualifies as a big data use case. Here data security means the authentication
and authorization mechanism. Although Cassandra offers decent support for authentication and authorization but
RDBMS fairs well in comparison with most of NoSQL databases.

Figure 1-4 shows a scenario in which a cable/satellite operator system is collecting audio/video transmission logs
(on daily basis) of around 3 GB/day per connection. A “viewer transmission analytic system” can be developed using
a big data tech stack to perform “near real time” and “large data” analytics over the streaming logs. Also the nature
of data logs is uncertain and may vary from user to user. Generating monthly/yearly analytic reports would require
dealing with petabytes of data, and NoSQL's scalability is definitely a preference over that of RDBMS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

e_ d

A\
®

A

e“
7
3

(1

\

Figure 1-4. Family watching satellite transmitted programs

Consider an example in which a viewer transmission analytic system is capturing random logs for each
transmitted program and watched or watching users. The first question we need to ask is, is it really a big data
problem? Yes, here we are talking about logs; imagine in a country like India the user base is huge as are the logs
captured 24x7! Also, the nature of transmitted logs may be random, meaning the structure is not fixed! It can be
semi-structured or totally unstructured. That’s where RDBMS will fail to deliver because of budding schema and
scalability problems (see previous section).

To summarize, build a NoSQL based solution if:

e Data format is semi/unstructured
e RDBMS reaches the storage limit and cannot scale further

e RDBMS specific features like relations, indexes can be sacrificed against denormalized but
distributed data

e Dataredundancy is not an issue and a read-before-write approach can be applied

In the next section, we will discuss how Cassandra can be a best fit to address such technical and functional
challenges.

Introducing Cassandra

Cassandra is an open-source column, family-oriented database. Originally developed at Facebook, it has been an
Apache TLP since 2009. Cassandra comes with many important features; some are listed below:

e Distributed database\
e Peer to Peer architecture
e Configurable consistency

e CQL (Cassandra Query Language)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Distributed Databases

Cassandra is a global distributed database. Cassandra supports features like replication and partitioning. Replication
is a process where system maintains n* number of replicas on various data sites. Such data sites are called nodes in
Cassandra. Data Partitioning is a scheme, where data may be distributed across multiple nodes. Partitioning is usually
for managing high availability/performance on data.

Note A node is a physical location where data resides.

Peer-to-Peer Design

Cassandra storage architecture is peer-to-peer. Each node in a cluster is assigned the same role, making it a
decentralized database. Each node is independent of the other but interconnected. Nodes in a network are capable
of serving read/write database requests, so at a given point even if a node goes down, subsequent read/write requests
will be served from other nodes in the network, hence there is no SPOF (Single Point Of Failure).

Figure 1-5 is a graphical representation of peer-to-peer (P2P) architecture.

"

e

Figure 1-5. Peer to Peer decentralized Cassandra nodes. Every node is identical and can communicate with other nodes

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Configurable Data Consistency

Data consistency is synchronization of data across multiple replica nodes. Eventually the consistency-based data
model returns the last updated record. Such a data model is widely supported by many distributed databases.
Cassandra also offers configurable eventual consistency.

Write Consistency

If the data is successfully written and synchronized on replica nodes before acknowledging the write request, data is
considered write consistent. However, various consistency level values are possible while submitting a write request.
Available consistency levels are

e ANY: A write must be written to at least ANY one node. In this case, all replica nodes are down
and “hinted_handoff _enabled: true” (default is true), then still corresponding write data and
hint will be stored by coordinator node, and later once all replica nodes are up, they will be
coordinated to at least one node. That written data will not be available for reads until all replica
nodes are down. Though ANY is the lowest consistency level but with highest availability as it
requires data to be replicated on any one node before sending write acknowledgment.

e ONE: With consistency level ONE; write request must be successfully written on at least one
replica node before acknowledgment.

e QUORUM*: With the consistency level QUORUM* write requests must be successfully written on
a selected group of replica nodes.

e LOCAL_QUORUM: With the consistency level LOCAL_QUORUM write requests must be
successfully written on a selected group of replica nodes, known as quorum, which are locally
available on the same data center as the coordinator node.

e EACH_QUORUM: With the consistency level EACH_QUORUM write requests must be successfully
written on select groups of replica nodes (quorum).

e ALL: With the consistency level ALL write requests must be written to the commit log and
memory table on all replica nodes in the cluster for that row key to ensure the highest
consistency level.

e SERIAL: Linearizable consistency is being introduced in Cassandra 2.0 as a lightweight
transaction support. With the consistency level SERIAL write requests must be written to the
commit log and memory table on quorum replica nodes conditionally. Here conditionally
means either guaranteed write on all nodes or none.

e TWO: Similar to ONE except with the consistency level TWO write requests must be written to
the commit log and memory table on minimum two replica nodes.

e THREE: Similar to TWO except with the consistency level TWO write requests must be written
to the commit log and memory table on a minimum of three replica nodes.

Read Consistency

No data is of much use if it is not consistent. Large or small data applications would prefer not to have dirty reads

or inconsistent data. A dirty read is a scenario where a transaction may end up in reading uncommitted data from
another thread. Although dirty reads are more RDBMS specific, with Cassandra there is a possibility for inconsistent
data if the responsible node is down and the latest data is not replicated on each replica node. In such cases, the
application may prefer to have strong consistency at the read level. With Cassandra’s tunable consistency, it is possible
to have configurable consistency per read request. Possible options are

8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

e ONE: With the read consistency level ONE, data is returned from the nearest replica node to
coordinator node. Cassandra relies on snitch configuration to determine the nearest possible
replica node. Since a response is required to be returned from the closest replica node, ONE is
the lowest consistency level.

e QUORUM: With the read consistency level QUORUM, the last updated data (based on
timestamp) is returned among data responses received by a quorum of replica nodes.

e LOCAL_QUORUM: With the read consistency level LOCAL_QUORUY, the last updated data
(based on timestamp) is returned among the data response received by a local quorum of
replica nodes.

e EACH_QUORUM: With the read consistency level EACH_QUORUM, the last updated data (based
on timestamp) is returned among the data response received by each quorum of replica
nodes.

e ALL: With the read consistency level ALL, the last updated data (based on timestamp)
returned among the data response received from all replica nodes. Since responses with the
latest timestamp are returned among all replica nodes, ALL is the highest consistency level.

e SERIAL: With the read consistency level SERIAL, it would return the latest set of columns
committed or in progress. Uncommitted transactions discovered during read would result in
implicit commit of running transactions and return to the latest column values.

e TWO: With the read consistency level TWO, the latest column values will be returned from the
two closest replica nodes.

e THREE: With the read consistency level THREE, the latest column values will be returned from
three of the closest replica nodes.

Based on the above-mentioned consistency level configurations, the user can always configure each read/write
request with a desired consistency level. For example, to ensure the lowest write consistency but the highest read
consistency, we can opt for ANY as write consistency and ALL for read consistency level.

Cassandra Query Language (CQL)

One of the key features of Cassandra from an end user perspective is ease-of-use rather than familiarity. Cassandra
query language (CQL) was introduced with Cassandra 0.8 release with the intention of having a RDBMS style
structured query language (SQL). Since its inception CQL has gone through many changes. Many new features have
been introduced in later releases along with lots of performance-related enhancement work. CQL adds a flavor of
known data definition language (ddl) and data manipulation language (dml) statements.

During the course of this book, we will be covering most of the CQL features.

Installing Cassandra

Installing Cassandra is fairly easy. In this section we will cover how to set up a Cassandra tarball (.tar file) installation
over Windows and Linux box.

1. Create a folder to download Cassandra tarball, for example:
e Runmkdir /home/apress/Cassandra {Here apress is user.name environment variable}

e Runcd/home/apress/cassandra

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

2. Download the Cassandra tarball:

e Linux:wget http://archive.apache.org/dist/cassandra/2.0.6/apache-cassandra-
2.0.6-bin.tar.gz

e Windows: http://archive.apache.org/dist/cassandra/2.0.6/apache-cassandra-
2.0.6-bin.tar.gz

3. Extract the downloaded tar file using the appropriate method for your platform:
e For Linux, use the following command: tar- xvf apache-cassandra-2.0.6-bin.tar.gz

e For Windows, you may use tools like WinZip or 7zip to extract the tarball.

Note If you get an “Out of memory” or segmentation fault, check for the JAVA_HOME and JvM_OPTS parameters in
cassandra-env.sh file

Logging in Cassandra

While running an application in development or production mode, we might need to look into server logs in certain
circumstances, such as:

e Performance issues
e Operation support
e Debug application vulnerability

Default server logging settings are defined within the log4j-server.properties file, as shown in the following.

output messages into a rolling log file as well as stdout
log4j.rootLogger=INFO, stdout,R

stdout

logaj.appender.stdout=org.apache.log4j.ConsoleAppender
logaj.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p %d{HH:mm:ss,SSS} %m%n

rolling log file

logaj.appender.R=org.apache.log4j.RollingFileAppender
logaj.appender.R.maxFileSize=20MB

logaj.appender.R.maxBackupIndex=50
logaj.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%5p [%t] %d{IS08601} %F (line %L) %m%n
Edit the next line to point to your logs directory
log4j.appender.R.File=/var/log/cassandra/system.log

Application logging options
#log4j.logger.org.apache.cassandra=DEBUG
#logaj.logger.org.apache.cassandra.db=DEBUG
#log4j.logger.org.apache.cassandra.service.StorageProxy=DEBUG

Adding this to avoid thrift logging disconnect errors.
log4j.logger.org.apache.thrift.server.TNonblockingServer=ERROR

10

www.it-ebooks.info

http://archive.apache.org/dist/cassandra/2.0.6/apache-cassandra-2.0.6-bin.tar.gz
http://archive.apache.org/dist/cassandra/2.0.6/apache-cassandra-2.0.6-bin.tar.gz
http://archive.apache.org/dist/cassandra/2.0.6/apache-cassandra-2.0.6-bin.tar.gz
http://archive.apache.org/dist/cassandra/2.0.6/apache-cassandra-2.0.6-bin.tar.gz
http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Let’s discuss these properties in sequence
e Properties with prefix log4j.appender.stdout are for console logging.

e Server logs are generated and appended on a location defined as property
log4j.appender.R.File value. The default value is /var/log/cassandra/system. User can
overwrite the property file for default location

e og4j.appender.R.maxFileSize defines the maximum log file size.

e The log4j.appender.R.maxBackupIndex property defines the maximum rolling log file
(default 50).

e The Log4j.appender.R.layout.ConversionPattern property defines logging pattern for log
files.

e Lastlineinthe log4j-server.properties file is for application logging in case of thrift
connection with Cassandra. By default it's commented out to avoid unnecessary logging on
frequent socket disconnection.

Application Logging Options

By default, Cassandra API level logging is disabled. But we can enable and change log level to log more application
level information. Many times applications may need to enable Cassandra-specific server-side logging to troubleshoot
the problems. The following code depicts the section that can be used for application-specific logging.

Application logging options
#log4j.logger.org.apache.cassandra=DEBUG
#log4j.logger.org.apache.cassandra.db=DEBUG
#log4j.logger.org.apache.cassandra.service.StorageProxy=DEBUG

Changing Log Properties

There are two possible ways for configuring log properties. First, we can modify log4j-server.properties and
second, via JMX (Java Management Extension), using jconsole. The difference between both of them is, using the
latter can change the logging level dynamically at run time, while the first one is static.

Managing Logs via JConsole

JConsole is a GUI monitoring tool for resource usage and performance monitoring of running Java applications
using JMX.

The jconsole executable can be found in JDK_HOME/bin, where JDK_HOME is the directory in which the Java
Development Kit (JDK) is installed. If this directory is in your system path, you can start JConsole by simply typing
jconsole at command (shell) prompt. Otherwise, you have to use the full path of the executable file.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

On running jconsole, you need to connect the Cassandra Daemon thread as shown in Figure 1-6.

|£/ Java Monitoring & Management Console EEr=]

Connection Window Help

= A

(< JConsole: New Connection =

New Connection

@ Local Process:

org.apache.cassandra.service.CassandraDaemon
sun. tools.jconsole. JConsole 948

(") Remote Process:
Usage: #t;hostnamegt;<it;portgt; OR service:jmux: ;protocolgt; itisapgt;

Username: 1 Password:

[connect || Cancel

Figure 1-6. JConsole connection layout

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

After successfully connecting to CassandraDaemon process, click on the MBeans tab to look into registered
message beans. Figure 1-7 depicts changing the log level for classes within the org.apache.cassandra.db package to
INFO level.

ndraDaemon

| Over\ne'wl Memory 1 Threads I Classes l VM Summary| MBeans

| = @ StorageService ~| | Operation invocation —
b Attributes T :
= Operations [setLogzleeveI‘ (p1 [pache,cassandra.db] . p2 [INFO])

truncate |
drain) - MBeanOperationinfo
startMNativeTransport [Name][Value
ove i -
getTokens . | Operation:
forceTableCleanup | |Name setLogdjLevel
scrub || Description Operation exposed for managerment
upgradeSSTables |Impact UNKNOWN
forceTableCompaction | ReturnType void
takeSnapshot |parameter-0:
takeColumnFamilySnapshot {[Name pl
clearsnapshot [Description
forceTabIe_Flush |Type java.lang.String
forceRepairAsync |Parameter-1:
forceRepairRangeAsync |
forceTableRepair :|N§n_‘le_: lp2
forceTableRepairPrimaryRange | Descriptor
forceTableRepairRange [Name][Va[ue
forceTerminateAllRepairSessions |
getMNaturalEndpoints

I getNaturalEndpoints

I decommission |

Figure 1-7. Changing the log level via jconsole Mbeans setting

Note Please refer to http://logging.apache.org/logaj/1.2/apidocs/org/apache/logaj/PatternLayout.html
for more information on logging patterns.

Understanding Cassandra Configuration

The primary Cassandra configuration file is Cassandra.yaml, which is available within the $CASSSANDRA_HOME/conf
folder. Roughly there are approximately 100 properties. Table 1-1 consists of a subset of such properties, which are
helpful for Cassandra beginners and worth mentioning.

13

www.it-ebooks.info

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://www.it-ebooks.info/

CHAPTER 1

NOSQL: CASSANDRA BASICS

Table 1-1. Important Cassandra server properties

Property

Default

Description

cluster _name

num_tokens

initial_token

hinted handoff_
enabled

max_hint_window_in_
ms

hinted_handoff_
throttle in kb

max_hints_delivery
threads

populate_io cache_
on_flush

authenticator

“Test cluster”

Disabled, not specified

N/A

True

3 hours

1024

False

AllowAllAuthenticator

This is to restrict node to join in one logical cluster only.

If not specified, default value is 1. For example, if you
want to enable virtual node support while bootstrapping
anode, you need to set num_tokens parameter.
Recommended value is 256.

Assigns a data range for node. While bootstrapping
anode, it is recommended to assign a value. If left
unspecified, a random token will be assigned by
Cassandra. For Random partitioning schema, the way to
calculate a initial tokenis:

i* (2127 / N)
fori=0..N-1. N is number of nodes.

With a consistency level ANY, if replica node is down,
then the corresponding write request will be stored
down on coordinator node as a hint in system.hints
column family. This is used to replay the mutation
object, once replica node starts accepting write requests.

Maximum wait time for a dead node until new hints
meant to be written on coordinator node. After the hint
window expires, no more new hints will be stored.

If left unspecified, the default value is 1 hour. This property
is used when writing hints on the coordinator node.

If the gossip protocol end point down time for a specific
replica node is greater than the specified Maximum

wait time value, then no new hints can be written by the
StorageProxy service on the coordinator node.

kb/sec hint data flow/per thread.

Maximum number of allowed threads to send data hints.
Useful when writing hints across multiple data centers.

Set it to true, if complete data on a node can fit into
memory. Since Cassandra 1.2.2, we can also set this
parameter per column family as well. https://issues.
apache.org/jira/browse/CASSANDRA-4694.

Implementation of TAuthenticator interface. By

default Cassandra offers A1lowAllAuthenticator and
PasswordAuthenticator as internal authentication
implementations. PasswordAuthenticator validates
username and password against data stored in credentials
and users column family in system_auth keyspace.

(Security in Cassandra will be discussed at length in
Chapter 10.)

14

(continued)

www.it-ebooks.info

https://issues.apache.org/jira/browse/CASSANDRA-4694
https://issues.apache.org/jira/browse/CASSANDRA-4694
http://www.it-ebooks.info/

Table 1-1. (continued)

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Property

Default

Description

Authorizer

permissions_
validity in _ms

Partitioner

data_file
directories

commitlog_directory

disk failure policy

key cache_size in mb

saved_caches_
directory

key cache_save
period

key_cache_keys to_
save

row_cache size in mb
row_cache_save_
period
row_cache_keys to_
save

AllowAllAuthorizer

Default is 2000. Disabled
if authorizer property is
AllowAllAuthorizer

Murmur3Partitioner

/var/lib/cassandra/data

/var/lib/cassandra/
commitlog

Stop

Empty, means 100MB or 5% of
available heap size, whichever
is smaller

/var/lib/cassandra/
saved_caches

14400

Disabled.

0(Disabled)
0(Disabled)

Disabled.

Implementation of TAuthorizer interface.
Implementation manages user’s permission over
keyspace, column family, index, etc. Enabling
CassandraAuthorizer on server startup will create a
permissions table in system_auth keyspace and to store
user permissions.

(Security in Cassandra will be discussed at length in
Chapter 10.)

Default permissions cache validity.

Rows distribution across nodes in cluster is decided
based on selection partitioner. Available values are
RandomPartitioner, ByteOrderedPartitioner,
Murmur3Partitioner and OrderPreservingPartitioner
(deprecated).

Physical data location of node.
Physical location of commit log files of node.

Available values are stop, best_effort, and ignore. Stop
will shut down all communication with node (except
JMX). best_effort will still acknowledge read request
from available sstables.

To disable set it to Zero.

Physical location for saved cache on node.

Key cache save duration (in seconds) save under
saved_caches_directory.

By default disabled. All row keys will be cached.

In-memory row cache size.

row cache save duration (in seconds) save under
saved_caches_directory.

By default disabled. All row keys will be cached.

(continued)

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Table 1-1. (continued)

Property Default

Description

row_cache_provider SerializingCacheProvider

commitlog_sync Periodic
commitlog sync_ 50
batch_window_in_ms

commitlog sync_ 10000
period_in_ms

commitlog segment_ 32

size in_mb

seed provider SimpleSeedProvider
concurrent_reads 32
concurrent_writes 32

memtable total One third of JVM
space_in_mb heap(disabled)

commitlog total_ 32(32bitJVM), 1024

space_in_mb (64bit JVM)
storage_port 7000
ssl_storage port 7001
listen_address Localhost

Available values are SerializingCacheProvider

and ConcurrentlLinkedHashCacheProvider.
SerializingCacheProvider is recommended in case
workload is not intensive update as it uses native
memory (not JVM) for caching.

Available values are periodic and batch. In case of batch
sync, writes will not be acknowledged until writes are
synced with disk.

See the commitlog_sync_batch_window_in_ms property.

If commitlog_sync is in batch mode, Cassandra will
acknowledge writes only after commit log sync windows
expires and data will be fsynced to disk.

If commitlog_sync is periodic. Commit log will be
fsynced to disk after this value.

Commit log segment size. Upon reaching this limit,
Cassandra flushes memtables to disk in form of sstables.
Keep it to minimum in case of 32 bit JVM to avoid running
out of address space and reduced commit log flushing.

Implementation of SeedProvider interface.
SimpleSeedProvider is default implementation and
takes comma separated list of addresses. Default value
for “-seeds” parameter is 127.0.0.1. Please change it
for multiple node addresses, in case of multi-node
deployment.

If workload data cannot fit in memory, it would require
to fetch data from disk. Set this parameter to perform
number of concurrent reads.

Generally writes are faster than reads. So we can set this
parameter on the higher side in comparison to
concurrent_reads.

Total space allocated for memtables. Once exceeding
specified size Cassandra will flush the largest memtable
first onto disk.

Total space allocated commit log segments. Upon
reaching the specified limit, Cassandra flushes
memtables to claim space by removing the oldest
commit log first.

TCP port for internal communication between nodes.
Used if client_encryption_options is enabled.

Address to bind and connect with other Cassandra
nodes.

16

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1-1. (continued)

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Property

Default

Description

broadcast_address

internode_
authenticator

start_native_
transport

native_transport_
port

rpc_address
rpc_port
rpc_min_threads

rpc_max_threads

rpc_recv_buff size
in_bytes

rpc_send_buff size_
in_bytes

incremental_backups

snapshot_before
compaction

auto_snapshot

concurrent_
compactors

multithreaded_
compaction

compaction_
throughput_mb_per
sec

endpoint_snitch

Disabled(same as listen_
address)

AllowAllInternode
Authenticator
False

9042

Localhost

9160

16

2147483647(Maximum 32-bit

signed integer)
Disabled

Disabled

False

False

True

Equals number of processors

False

16

SimpleSnitch

Broadcast address for other Cassandra nodes.

IinternodeAuthenticator interface implementation for
internode communication.

CQL native transport for clients.

CQL native transport port to connect with clients.

Thrift rpc address, client to connect with.
Thrift rpc port for clients to communicate.
Minimum number of thread for thrift rpc.

Maximum number of threads for thrift rpc.

Enable if you want to set a limit of receiving socket buffer
size for thrift rpc.

Enable if you want to set a limit of sending socket buffer
size for thrift rpc.

If enabled, Cassandra will hard links flushed sstables to
backup directory under data_file_directories/keyspace/
backup directory.

If enabled, will create snapshots before each compaction
under the data_file directories/keyspace/
snapshots directory.

If disabled, snapshot will not be taken in case of dml
operation (truncate, drop) over keyspace.

Equal to cassandra.available processors (if defined)
else number of available processors.

If enabled, single thread per processor will be used for
compaction.

Data compaction flow in megabytes per seconds. More
compaction throughput will ensure less sstables and
more space on disk.

A very important configuration. Snitch can also be
termed as informer. Useful to route requests for replica
nodes in cluster. Available values are SimpleSnitch,
PropertyFileSnitch, RackInferringSnitch, Ec2Snitch,
and Ec2MultiRegionSnitch.

(Iwill cover snitch configuration in later chapters.)

(continued)

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Table 1-1. (continued)

Property Default Description

request_scheduler NoScheduler Client request scheduler. By default no scheduling is
done, but we can configure this to RoundRobinScheduler
or a custom implementation. It will queue up client dml
request and finally release it after successfully processing
the request.

server_encryption_ None To enable encryption for internode communication.

options Available values are all, none, dc, and rack.

client_encryption_ false(not enabled) To enable client/server communication. If enabled must

options specify ss1_storage port. As it will be used for client/
server communication.

internode_ All To compress traffic in internode communication.

compression Available values are: all, dc, and none.

inter_dc_tcp_nodelay True

Setting it to false will cause less congestion over TCP
protocol but increased latency.

Commit Log Archival

To enable Cassandra for auto commit log archiving and restore for recovery (supported since 1.1.1.),

the commitlog archiving.properties file is used. It configures archive_command and restore_command properties.

Commit log archival is also referred to as write ahead log (WAL) archive and used for point-in-time recovery.
Cassandra’s implementation is similar to Postgresql. Postgresql is an object-oriented relational database

management system (OORDBMS) that offers wal_level settings with minimum as the lowest, followed by archive

and hot_standby levels to allow executing queries during recovery. For more details on Postgresql refer to

http://www.postgresql.org/.

archive_command

Enable archive_command for implicit commit log archival using a command such as:

archive_command= /bin/1n %path /home/backup/%name

Here %path is a fully qualified path of the last active commit log segment and %name is the name of commit log.
The above-mentioned shell command will create a hard link for the commit log segment (%path). If row mutation size
exceeds commitlog segment size in_mb, Cassandra archives this segment using the archive command under
/home/backup/. Here %path is the name of latest old segment and %name is commit log file name.

restore_command

Leaving restore_command and restore_directories blankin commitlog archiving.properties during bootstrap
Cassandra will replay these log files using the restore_command:

restore_command=cp -f %from %to

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Here %fromis a value specified as restore_directories and %to is next commit log segment file under
commitlog directory.
One advantage of this continuous commit log is high availability of data also termed warm standby.

Configuring Replication and Data Center

Recently, the need for big data heterogeneous systems has evolved. Components in such systems are diverse in
nature and can be made up of different data sets. Considering nature, locality, and quantity of data volume, it is highly
possible that such systems may need to interconnect with data centers available on different physical locations.

A data center is a hardware system (say commodity server), which consists of multiple racks. A rack may contain
one or more nodes (see Figure 1-8).

Node

Rack

Figure 1-8. Image depicting a Cassandra data center

Reasons for maintaining multiple data centers can be high availability, stand-by-node, and data recovery.

With high availability, any incoming request must be served with minimum latency. Data replication is a
mechanism to keep redundant copy of the same data on multiple nodes.

As explained above, a data center consists of multiple racks with each rack containing multiple nodes. A data
replication strategy is vital in order to enable high availability and node failure. Situations like

e Local reads (high availability)
e Fail-over (node failure)

Considering these factors, we should replicate data on multiple nodes in the same data center but with different
racks. This would avoid read/write failure (in case of network connection issues, power failure, etc.) of nodes in the
same rack.

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

Replication means keeping redundant copies of data over multiple data nodes for high availability and
consistency. With Cassandra we can configure the replication factor and replication strategy class while creating
keyspace.

While creating schema (rather than keyspace) we can configure replication as:

CREATE KEYSPACE apress WITH replication = {'class': 'SimpleStrategy', 'replication factor' : 3};
// cql3 script

create keyspace apress with placement_strategy='org.apache.cassandra.locator.SimpleStrategy' and
strategy options ={replication factor:1};
// using cassandra-cli thrift

Note Schema creation and management via CQL3 and Cassandra-cli will be discussed in Chapter 2.

Here, SimpleStrategy is the replication strategy, where the replication_factor is 3. Using SimpleStrategy like
this, each data row will be replicated on 3 replica nodes synchronously or asynchronously (depending on the write
consistency level) in clockwise direction.

Different strategy class options supported by Cassandra are

e SimpleStrategy
e localStrategy
e NetworkTopologyStrategy

LocalStrategy

LocalStrategy is available for internal purposes and is used for system and system auth keyspaces. Systemand
system_auth are internal keyspaces, implicitly handled by Cassandra’s storage architecture for managing
authorization and authentication. These keyspaces also keep metadata about user-defined keyspaces and

column families. In the next chapter we will discuss them in detail. Trying to create keyspace with strategy class as
LocalStrategy is not permissible in Cassandra and would give an error like “LocalStrategy is for Cassandra’s internal
purpose only”.

NetworkTopologyStrategy

NetworkTopologyStrategy is preferred if multiple replica nodes need to be placed on different data centers. We can
create a keyspace with this strategy as

CREATE KEYSPACE apress WITH replication = {'class': 'NetworkTopologyStrategy', 'dci' : 2, 'dc2' : 3};

Here dc1 and dc2 are data center names with replication factor of 2 and 3 respectively. Data center names are
derived from a configured snitch property.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

SimpleStrategy

SimpleStrategy is recommended for multiple nodes over multiple racks in a single data center.
CREATE KEYSPACE apress WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};

Here, replication factor 3 would mean to replicate data on 3 nodes and strategy class SimpleStrategy would mean
to have those Cassandra nodes within the same data center.

Cassandra Multiple Node Configuration

In this section, we will discuss multiple Cassandra node configurations over a single machine and over Amazon EC2
instances. Reasons to choose AWS EC2 instances include the setup of the Cassandra cluster over the cloud and the set
up on the local box to configure the Cassandra cluster over physical boxes. AWS based configuration would educate
users about AWS and Cassandra.

Configuring Multiple Nodes over a Single Machine

Configuring multiple nodes over a single machine is more of an experiment, as with a production application you
would like to configure a Cassandra cluster over multiple Cassandra nodes. Setting up multinode clusters over a single
machine or multiple machines is similar. That’s what we will be covering in this sample exercise. In this example, we
will configure 3 nodes (127.0.0.2-4) on a single machine.

1. Weneed to map hostnames to IP addresses.

a. In Windows and Linux OS, these configurations are available in etc/hosts (Windows)
or /etc/hosts (Linux) files. Modify the configuration file to add the above-mentioned
3 node configuration as:

127.0.0.1 127.0.0.2
127.0.0.1 127.0.0.3
127.0.0.1 127.0.0.4

b. For Mac OS, we need to create those aliases as:
sudo ifconfig lo0 alias 127.0.0.2 up
sudo ifconfig lo0 alias 127.0.0.3 up

sudo ifconfig lo0 alias 127.0.0.4 up

2. Unzip the downloaded Cassandra tarball installation in 3 different folders (one for each
node). Assign each node an identical cluster_name as:

The name of the cluster. This is mainly used to prevent machines in

one logical cluster from joining another.
cluster_name: 'Test Cluster'

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

3. We should hold identical seeds on each node in the cluster. These are used just to initiate
gossip protocol among nodes in the cluster. Configure seeds in cassandra.yaml as :

seed_provider:
Addresses of hosts that are deemed contact points.
Cassandra nodes use this list of hosts to find each other and learn
the topology of the ring. You must change this if you are running
multiple nodes!
- class_name: org.apache.cassandra.locator.SimpleSeedProvider
parameters:
seeds is actually a comma-delimited list of addresses.
Ex: "<ip1>,<ip2>,<ip3>"
- seeds: "127.0.0.2"

4. Change the listen_address and rpc_address configurations for 127.0.0.2, 127.0.0.3, and
127.0.0.4 IP addresses in each cassandra.yaml file. Since all 3 nodes are running on the
same machine, change the rpc_address to 9160, 9161, and 9162 for each respectively.

5. Here we have an option to choose between 1 token per node or multiple tokens per node.
Cassandra 1.2 introduced the “Virtual nodes” feature which allows assigning a range of
tokens on a node. We will discuss Virtual nodes in coming chapter. Change the
initial token to empty and keep num_tokens as 2 (recommend is 256).

6. Nextis to assign different JMX_PORT (say 8081, 8082, and 8083) for each node.
a. With Linux, modify $CASSANDRA_HOME/conf/cassandra.env.sh as

Specifies the default port over which Cassandra will be available for
JMX connections.
JMX_PORT="7199"

b. With Windows, modify
$CASSANDRA_HOME/bin/cassandra.bat as:

REM ***** JAVA options *¥***

set JAVA_OPTS=-ea”

-javaagent: "%CASSANDRA_HOME%\1ib\jamm-0.2.5.jar""
-Xms1G*

-Xmx1G*

-XX:+HeapDumpOnOutOfMemoryError”
-XX:+UseParNewGC"

-XX:+UseConcMarkSweepGC”
-XX:+CMSParallelRemarkEnabled”
-XX:SurvivorRatio=8"

-XX:MaxTenuringThreshold=1"
-XX:CMSInitiatingOccupancyFraction=75"
-XX:+UseCMSInitiatingOccupancyOnly”

-Dcom. sun.management. jmxremote.port=7199"

-Dcom. sun.management. jmxremote.ssl=false”
-Dcom.sun.management. jmxremote.authenticate=false®
-Dlog4j.configuration=1og4j-server.properties®
-Dlog4j.defaultInitOverride=true

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS
7. Let’s start each node one by one and check ring status as: $CASSANDRA_HOME/apache-
cassandra-1.2.4/bin/nodetool -h 127.0.0.02 -p 8081ring.

Figure 1-9 shows ring status while connecting to one Cassandra node using jmx. Since Cassandra’s architecture is
peer-to-peer, checking ring status on any node will yield the same result.

Datacenter: datacenterl

Replicas: 1

Address Rack Status State Load Owns Token
6462923463760331336

127.0.0.4 rackl Up Normal 71.77 KB 41.80% 359105573626366120

127.0.0.4 rackl Up Normal 71.77 KB 41.80% 943929740184731686

127.0.0.2 rackl Up Normal 74.62 KB 45.50% -6767292597249134115

127.0.0.2 rackl Up Normal 74.62 KB 45.50% 4485908808910730573

127.0.0.3 rackl Up Normal 51.45 KB 12.70% 1308925822450980902

127.0.0.3 rackl Up Normal 51.45 KB 12.70% 6462923463760331336

Figure 1-9. Thering status

Configuring Multiple Nodes over Amazon EC2

Amazon Elastic Computing Cloud (Amazon EC2), one of the important parts of Amazon Web Service (AWS) cloud
computing platform. AWS offers you to choose OS platform and provides required hardware support over the cloud,
which allows you to quickly set up and deploy application over the cloud computing platform. To learn more about
Amazon ec2 setup please refer to http://aws.amazon.com/ec2/.

In this section, we will learn about how to configure multiple Cassandra nodes over Amazon EC2. To do so,
follow these steps.

1. Firstlet’s launch 2 instances of AMI (ami-00730969), as shown in Figure 1-10.

viewing: | All Instances ¥ || All Instance Types ¥ £ & 1w2of2Instances
Hame Instance AMIID Root Device Type State Status Checks Alarm Status Monitoring Security Groups Key
ec2instance? &l -58dc6c39 ami-007308969 ebs t1 micro & running & 22 checks pi none basic viveksecgrp vivek
ec2instancel g -5edc6edt ami-00730969 ebs tL.micro & running & 2z checks pi none basic viveksecgrp vivek

Figure 1-10. Ec2 console display with 2 instances in running state

23

www.it-ebooks.info

http://aws.amazon.com/ec2/
http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

2. Modify security group to enable 9160, 7000, and 7199 ports, as in Figure 1-11.

@ Security Group: viveksecgrp = =

Details = Inbound

Create a | Custom TCP rule = |
new rule: Port (Service) Source Action
Port range: 22 (SSH) 0.0.0.0/0 Delete
(e.g., 80 or 49152-65535) 80 (HTTP) 0.0.0.0/0 Delete
Source: 0.0.0.00 1024 - 65535 0.0.0.0/0 Delete
(e.g., 192.168.2.0/24, sg-47ad482e, or 7000 0.0.0.0/0 Delete

1234567850/ default

Setail] 7199 0.0.0.0/0 Delate
(€ AddRute] | 5160 0.0.0.0/0 Delate

|Appl‘,' Rule Changes

Figure 1-11. Configuring security group settings

3. Connect to each instance and download Cassandra tarball as:
wget http://archive.apache.org/dist/cassandra/1.2.4/apache-cassandra-1.2.4-bin.tar.gz
4. Download and setup Java on each EC2 instance using the rpminstaller as:

sudo rpm -i jdk-7-linux-x64.rpm

sudo rm -rf /usr/bin/java

sudo 1n -s /usr/java/jdk1.7.0/bin/java /usr/bin/java
sudo rm -rf /usr/bin/javac

sudo 1n -s /usr/java/jdk1.7.0/bin/javac /usr/bin/javac

5. Multiple Cassandra node configurations are the same as we discussed in the previous
section. In this section we will demonstrate using single token per node (initial_token).
Let’s assign initial token values 0 and 1. We can assign initial_token values by modifying
Cassandra.yaml files on each node.

If blank, Cassandra will request a token bisecting the range of

the heaviest-loaded existing node. If there is no load information
available, such as is the case with a new cluster, it will pick

a random token, which will lead to hot spots.

initial_token:1

Node 1

If blank, Cassandra will request a token bisecting the range of

the heaviest-loaded existing node. If there is no load information
Node 2 # available, such as is the case with a new cluster, it will pick

a random token, which will lead to hot spots.

initial_token:0

Figure 1-12. initial_token configuration for both nodes

24

www.it-ebooks.info

http://archive.apache.org/dist/cassandra/1.2.4/apache-cassandra-1.2.4-bin.tar.gz
http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

6. Create any one of these two as a seed node and keep storage port, jmx_port, and rpc_port
to 7000, 7199, and 9160.

7. Let'skeep listen_address and rpc_address with empty values (default is the node’s inet
address (underlined), shown in Figure 1-13).

[ec2-user@ip-10-145-213-3 ~]§ ifconfig
the Link encap:Ethernet Hwaddr 22:00:0A:91:05:03
¥ i x ast:10.145.213.63 Mask:255.255,255.192

inet addr:

1net6 addr: % :aff:fe91:d563/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:1

RX packets:2014 errors:0 dropped:© overruns:0 frame:0
TX packets:1908 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1060

RX bytes:264991 (200.1 KiB) TX bytes:195399 (190.8 KiB)
Interrupt:25

flo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.8

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:® errors:0 dropped:® overruns:0 frame:@
TX packets:0 errors:0 dropped:9 overruns:0 carrier:0
collisions:0 txqueuelen:®

RX bytes:@ (0.0 b) TX bytes:0 (0.0 b)

Figure 1-13. How to get inet address for node

8. Let’s start each node one by one and check ring status. Verify both EC2 instances should
be up, running, and connected using ring topology. Figure 1-14 shows the ring status of
both running ec2 instances.

[ec2-user@ip-10-145-213-3 ~]$ software/apache-cassandra-1.2.4/bin/nodetool ring

Datacenter: datacenterl

Replicas: 1

Address Rack Status State Load Owns Token
1

10.145.213.3 rackl Up Normal 55.24 KB 100.00% 0

10.167.12.16 rackl up Normal 36.57 KB 0.00% il

Figure 1-14. The two EC2 instances and their ring statuses

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © NOSQL: CASSANDRA BASICS

9. Figure 1-15 shows instance 10.145.213.3 is up and joining the cluster ring.

INFO 17:25:49,677 Completed flushing /var/lib/cassandra/data/system/local/system-local-ib-1-Data.db (3560 bytes) for commitlog pa
148759, position=50656)

INFO 17:25:49,810 Starting Messaging Service on port 7008

INFO 17:25:49,889 Enqueuing flush of Memtable-local@599262429(86/86 serialized/live bytes, 4 ops)

INFO 17:25:49,890 Writing Memtable-1local@599262429(86/86 serialized/live bytes, 4 ops)

INFO 17:25:49,921 Completed flushing /var/lib/cassandra/data/system/local/system-local-ib-2-Data.db (122 bytes) for commitlog pa
148759, position=56933)

INFO 17:25:49,923 JOINING: waiting for ring information

INFO 17:25:56,879 Node /10.145.213.3 is now part of the cluster

INFO 17:25:560,880 InetAddress /10.145.213.3 is now UP

INFO 17:25:56,904 Enqueuing flush of Memtable-peers@288389262(73/73 serialized/live bytes, 4 ops)

INFO 17:25:50,905 Writing Memtable-peers@288389262(73/73 serialized/live bytes, 4 ops)

INFO 17:25:50,946 Completed flushing /var/lib/cassandra/data/system/peers/system-peers-ib-1-Data.db (136 bytes) for commitlog pa
148759, position=51229)

INFO 17:25:58,998 Enqueuing flush of Memtable-schema_keyspaces@1386215844(389/389 serialized/live bytes, 11 ops)

INFO 17:25:50,991 Writing Memtable-schema keyspaces@l386215844(389/389 serialized/live bytes, 11 ops)

INFO 17:25:51,025 Completed flushing /var/lib/cassandra/data/system/schema keyspaces/system-schema keyspaces-ib-1-Data.db (262 b
tinnlseamentTAd=13752A514R754 nnsitinn=53711)

Figure 1-15. Node 10.145.213.3 is up and joining the cluster

Summary

This chapter is an introductory one to cover all generic concepts and Cassandra-specific configurations. For
application developers it is really important to understand the essence of replication, data distribution, and

most importantly setting this up with Cassandra. Now we are ready for the next challenge: handling big data with
Cassandra! In the next chapter we will discuss Cassandra’s storage mechanism and data modeling. With data
modeling and understanding Cassandra’s storage architecture it would help us to model the data set, and analyze and
look into the best possible approaches available with Cassandra.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Cassandra Data Modeling

In the previous chapter we discussed Cassandra configuration, installation, and cluster setup. This chapter will walk
you through

¢ Data modeling concepts

e (Cassandra collection support
e CQLvs thrift based schema

e Managing data types

¢ Counter columns

Get ready to learn with an equal balance of theoretical and practical approach.

Introducing Data Modeling

Data modeling is a mechanism to define read/write requirements and build a logical structure and object model.
Cassandra is an NOSQL database and promotes read-before-write instead of relational model. Read-before-write
or ready-for-read design is used to analyze your data read requirement first and store it in the same way. Consider
managing data volume in peta bytes or zeta bytes, where we cannot afford to have in-memory computations
(e.g., joins) because of data volume. Hence it is preferable to have the data set ready for retrieval or large data
analytics. Users need not know about columns up front, but should avoid storing flat columns and favor doing
computations (e.g., aggregation, joins etc.) during read time.

Cassandra is a column-family-oriented database. Column family, as the name suggests is “family of columns.”
Each row in Cassandra may contain one or more columns. A column is the smallest unit of data containing a name,
value, and time stamp (see Figure 2-1).

publisher

Column

name ﬁ
Column apress
value — -
1397157256727
Time —_
stamp

Figure 2-1. Cassandra column definition

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

By default Cassandra distribution comes with cqlsh and Cassandra-cli command line clients to manipulate.
Cassandra-cli and cqlsh (. sh and .bat) are available under bin folder. Running these command line clients over
Linux, Windows, or Mac is fairly easy. Running shell files over Linux and Mac box requires simply running cql.sh.
However running cqlsh over Windows would require Python to be installed.

To install cqlsh on Windows, follow these steps:

1. First, download Python from https://www.python.org/ftp/python/2.7.6/
python-2.7.6.msi.

2. Add python.exe to PATH under environment variable

3. Runsetup.py, available under $CASSANDRA_HOME/pylib directory:
python setup.py install
4. Run cqlsh, available under bin directory (see Figure 2-2):

python cqlsh

C:\wvivek\apache—cassandra—1.2.4-bin\apache—cassandra-1.2.4\bin>python cglsh
Connected to Test Cluster at localhost:9160.

[cglsh 2.3.8 | Cassandra 1.2.4 | CQL spec 3.8.8 | Thrift protocol 19.35.81]
Use HELP for help. .
cglsh>

cglsh>

Figure 2-2. successfully connected to cql shell

Data Types

Before CQL's evolution, data types in Cassandra are defined in the form of a comparator and validator. Column or
row key value is referred to as a validator, whereas a column name is called a comparator. Available data types are
shown in Figure 2-3.

Internal Type CQL Name Description
BytesType blob Arbitrary hexadecimal bytes (no validation)
AsciiType ascii US-ASCII character string
UTF8Type text, varchar | UTF-8 encoded string
IntegerType varint Arbitrary-precision integer
LongType int, bigint 8-byte long
UUIDType uuid Type 1 or type 4 UUID
DateType timestamp Date plus time, encoded as 8 bytes since epoch
BooleanType boolean true or false
FloatType float 4-byte floating point
DoubleType double 8-byte floating point
DecimalType decimal Variable-precision decimal
CounterColumnType | counter Distributed counter value (8-byte long)

Figure 2-3. Cassandra’s supported data types
28

www.it-ebooks.info

https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi
https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi
http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

Dynamic Columns

Since its inception, Cassandra is projected as a schema-less, column-family-oriented distributed database. The number

of columns may vary for each row in a column family. A column definition can be added dynamically at run time.
Cassandra-cli (Thrift) and cqlsh (CQL3) are two command clients we will be using for various exercises in

this chapter.

Dynamic Columns via Thrift

Let’s discuss a simple Twitter use case. In this example we would explore ways to model and store dynamic columns
via Thrift.

1. First, let’s create a keyspace twitter and column family users:
create keyspace twitter with strategy options={replication factor:1} and
placement_strategy='org.apache.cassandra.locator.SimpleStrategy';
use twitter;

create column family users with key validation_class='UTF8Type' and
comparator="UTF8Type' and default_validation_class="UTF8Type';

Here, while defining a column family, we did not define any columns with the column
family. Columns will be added on the fly against each row key value.

2. Store a few columns in the users column family for row key value 'imvivek':

set users['imvivek']['apress']="apress author’;

set users['imvivek']['team_marketing']="apress marketing';
set users['imvivek']['guest']="guest user';

set users['imvivek']['ritaf']="rita fernando';

Here we are adding followers as dynamic columns for user imvivek.

3. Let'sadd 'imvivek' and 'team_marketing' as followers for 'ritaf':

set users['ritaf']['imvivek']="vivek mishra';
set users['team marketing']['imvivek']="vivek mishra';

4. Toview a list of rows in users column family (see Figure 2-4), use the following command:

list users;

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

[default@twitter] list users;
Using default limit of 160
Using default cell limit of 100

RowKey: team marketing
=> (name=imvivek, value=vivek mishra, timestamp=13974921669866000)

RowKey: ritaf
=> (name=imvivek, value=vivek mishra, timestamp=1397492153545000)

RowKey: imvivek

=> (name=apress, value=apress author, timestamp=13974912951196000)

=> (name=guest, value=guest user, timestamp=13974921113886000)

=> (name=ritaf, value=rita fernando, timestamp=1397492132782000)

=> (name=team marketing, value=apress marketing, timestamp=1397492060977000)

3 Rows Returned.
Elapsed time: 13 msec(s).

Figure 2-4. Output of selecting users

In Figure 2-4, we can see column name and their values against each row key stored in step 3.

5. We can delete columns for an individual key as well. For example, to delete a column
'apress' for row key "imvivek':

del users['imvivek']['apress'];

Figure 2-5 shows the number of columns for imvivek after step 5.

[default@twitter] list users;

Using default limit of 100

Using default cell limit of 100

RowKey: team marketing

=> (name=imvivek, value=vivek mishra, timestamp=1397492166986000)
RowKey: ritaf

=> (name=imvivek, value=vivek mishra, timestamp=1397492153545000)
RowKey: imvivek

=> (name=guest, value=guest user, timestamp=1397492111388000)

=> (name=ritaf, value=rita fernando, timestamp=1397492132782000)
=> (name=team marketing, value=apress marketing, timestamp=1397492060977000)

3 Rows Returned.
Elapsed time: 11 msec(s).

Figure 2-5. The number of columns for imvivek after deletion

Here column name is the follower’s twitter_id and their full name is column value. That’s how we can manage
schema and play with dynamic columns in Thrift way. We will discuss dynamic column support with CQL3 in Chapter 3.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

Dynamic Columns via cqlsh Using Map Support

In this section, we will discuss how to implement the same Twitter use case using map support. Collection support in
Cassandra would work only with CQL3 binary protocol.

1. First, let’s create a keyspace twitter and column family users:
create keyspace twitter with replication = {'class':'SimpleStrategy’,
'replication factor':3};
use twitter;
create table users(twitter id text primary key,followers map<text,text>);

2. Store a few columns in users column family for row key value 'imvivek":

insert into users(twitter id,followers) values('imvivek',{'guestuser':'guest’,
'ritaf':'rita fernando','team marketing':'apress marketing'});

Here we are adding followers as dynamic columns as map attributes for user imvivek.
3. Let'sadd 'imvivek' and 'team_marketing' as followers for 'ritaf’:
insert into users(twitter id,followers) values('ritaf',{'imvivek':'vivek mishra'});
insert into users(twitter_ id,followers) values('team marketing',
{"'imvivek':'vivek mishra'});
4. Toviewlist of rows in the users column family (see Figure 2-6), use the following command:

select * from users;

cqlsh:twitter> select * from users;

twitter_id | followers
................ fem e e eeseessssssemsssmsssmsesesssssss-ssssesssssss-sss-ss-ssssessssssssssssssss=s=
team_marketing | {"imvivek': 'vivek mishra'}
ritaf | {"imvivek': 'vivek mishra'}
imvivek | {'guestuser': 'guest', 'ritaf': 'rita fernando', 'team_marketing': "apress marketing'}
(3 rows)

Figure 2-6. Map containing followers for user

5. Toadd 'team_marketing' as a follower for 'ritaf' and vice versa (see Figure 2-7), we can
simply add it as an element in users column family:

update users set followers = followers + {'team marketing':'apress marketing'} where
twitter id='ritaf';

update users set followers = followers + {'ritaf':'rita fernando'} where
twitter_id='apress_marketing';

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CASSANDRA DATA MODELING

followers + {'team_marketing':'apress marketing'} where twitter_id='ritaf';
followers + {'ritaf':'rita fernando'} where twitter_id='apress_marketing';

cqlsh:twitter> update users set followers
cqlsh:twitter> update users set followers
cqlsh:twitter> select * from users;

twitter_1id | followers
_________________ e mm e e e e e e e e e e e e eeeeameeeeeeemeeaeeemeeeeeaennn
team_marketing | {'imvivek': 'vivek mishra'}
ritaf | {'imvivek': 'vivek mishra', 'team_marketing': 'apress marketing'}
imvivek | {'guestuser': 'guest', 'ritaf': 'rita fernando', 'team_marketing': 'apress marketing'}
apress_marketing | {'ritaf': 'rita fernando'}
(4 rows)

Figure 2-7. After update map of followers for each user
6. Using update would work as an insert if row key doesn’t exist in the database. For example,

update users set followers = followers + {'ritaf':'rita fernando'} where
twitter_id='jhassell'; // update as insert

Figure 2-8 shows that ritaf has been added as a follower of jhassell.

cqlsh:twitter> update users set followers = followers + {'ritaf’':'rita fernando'} where twitter_id='jhassell’;
cqlsh:twitter> select * from users;

twitter_1id
L]

|

+
jhassell | {'ritaf': 'rita fernando'}
team_marketing | {"imvivek': 'vivek mishra'}
ritaf | {'imvivek’: 'vivek mishra', 'team_marketing': 'apress marketing'}
imvivek | {"guestuser': 'guest', 'ritaf’': 'rita fernando', 'team_marketing’': 'apress marketing'}
apress_marketing | {'ritaf': 'rita fernando'}

(5 rows)
Figure 2-8. Update works as an insert for map of followers for nonexisting row key (e.g., twitter_id)

7. Todelete an element from the map we need to execute, use this command:
delete followers['guestuser'] from users where twitter id="imvivek';

You can see that the list of followers for imvivek is reduced to four followers after deletion (see Figure 2-9).

cqlsh:twitter> delete followers['guestuser'] from users where twitter_id='imvivek';
cqlsh:twitter> select * from users;

twitter_1id | followers
jhassell | {'ritaf': 'rita fernando'}
team_marketing | {'imvivek': 'vivek mishra'}
ritaf | {"imvivek': 'vivek mishra', 'team_marketing': 'apress marketing'}
imvivek | {'ritaf': 'rita fernando', 'team_marketing': 'apress marketing'}
apress_marketing | {'ritaf': 'rita fernando'}

(5 rows)

Figure 2-9. After deleting guestuser as a follower for imvivek

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

With that said, we can add a dynamic column as a key-value pair using collection support.

Dynamic Columns via cqlsh Using Set Support

Consider a scenario where the user wants to store only a collection of follower’s id (not full name). Cassandra offers
collection support for keeping a list or set of such elements. Let’s discuss how to implement it using set support.

1. First, let’s create a keyspace twitter and column family users.
create keyspace twitter with replication = {'class':'SimpleStrategy’,
'replication_factor':3};
use twitter;
create table users(twitter_id text primary key,followers set<text>);

2. Store few columns in users column family for row key value 'imvivek".

insert into users(twitter id,followers) values('imvivek',
{"'guestuser', 'ritaf', 'team marketing'});

Here we are adding followers as dynamic columns as set attributes for user imvivek.

3. Let’s add the following:

"imvivek' and 'team_marketing' as followers for 'ritaf’
'ritaf' as a follower for 'jhassell'

insert into users(twitter id,followers) values('ritaf', {'imvivek','jhassell’,
"team_marketing'});
insert into users(twitter id,followers) values('jhassell’, {'ritaf'});

4. To view the list of rows in usexs column family (see Figure 2-10), use the following command:

select * from users;

Icqlsh:twitter: select * from users;

twitter_id | followers

____________ N e
jhassell | {'ritaf'}
ritaf | {"imvivek', 'jhassell', 'team_marketing'}
imvivek | {'guestuser', 'ritaf', 'team_marketing'}

(3 rows)

Figure 2-10. Followers for ritaf, jhassell, and imvivek have been added

5. We can update the collection to delete an element as follows. Figure 2-10 shows the result:

update users set followers = followers - {'guestuser'} where twitter id = 'imvivek';

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CASSANDRA DATA MODELING

cqlsh:twitter> update users set followers = followers - {'guestuser'} where twitter_id = 'imvivek';
cqlsh:twitter> select * from users;

twitter_id | followers
............ P g

jhassell | {'ritaf'}
ritaf | {'imvivek', 'jhassell', 'team_marketing'}
imvivek | {'ritaf', "team_marketing'}

(3 rows)

Figure 2-11. Updated set of followers after removing guestuser for imvivek

Collection support can be a good alternative for achieving Adding dynamic columns over Cassandra.
Composite key is a combination of multiple table fields where the first part is referred to as partition key and the
remaining part of the composite key is known as cluster key. Chapter 3 will discuss achieving dynamic columns
using composite columns.

Secondary Indexes

In a distributed cluster, data for a column family is distributed across multiple nodes, based on replication factor and
partitioning schema. However data for a given row key value will always be on the same node. Using the primary
index (e.g., Row key) we can always retrieve a row. But what about retrieving it using non-row key values?

Cassandra provides support to add indexes over column values, called Secondary indexes. Chapter 3 will cover
more about indexes, so for now let’s just take a look at a simple secondary index example.

Let’s discuss the same Twitter example and see how we can utilize and enable secondary index support.

1. First, let’s create twitter keyspace and column family usexrs.

create keyspace twitter with replication = {'class' : 'SimpleStrategy' ,
'replication factor' : 3};

use twitter;

create table users(user id text PRIMARY KEY,fullname text,email text,password text,
followers map<text, text>);

2. Insert a user with e-mail and password:

insert into users(user id,email,password,fullname,followers) values ('imvivek',
"imvivek@xxx.com', 'password', 'vivekm',{'mkundera’:'milan kundera','guest': 'guestuser'});

Before we move ahead with this exercise, it's worth discussing which columns should be indexed?

Any read request using the secondary index will actually be broadcast to all nodes in a cluster. Cassandra
maintains a hidden column family for the secondary index locally on node, which is scanned for retrieving rows using
secondary indexes.

While performing data modeling, we should create secondary indexes over column values which should return
a big chunk of data over a very large data set. Indexes over unique values of small data sets would simply become an
overhead, which is not a good data modeling practice. Index over fullname is a possible candidate for indexing.

3. Let’s create secondary index over fullname
create index fullname idx on users(fullname);

34

www.it-ebooks.info

http://imvivek@xxx.com/
http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

After successful index creation, we can fetch records using fullname. Figure 2-12 shows the result.

cqlsh:twitter> select * from users where fullname='vivekm';

user_id | email | followers | fullname | password
--------- B el e
imvivek | imvivek@outlook.com | {guest: guestuser, mkundera: milan kundera} | vivekm | password

Figure 2-12. Search user for records having fullname value vivekm

4, Let’s add a column of age and create the index:
alter table users add age text;
create index age_idx on users(age);
update users set age='32' where user_ id="imvivek';
insert into users(user id,email,password,fullname,followers,age) values
('mkundera', 'mkundera@outlook.com','password', 'milan kundera',{'imvivek':'vivekm','gues
t': 'guestuser'},'51');

Figure 2-13 shows the outcome.

cglsh:twitter> select * from users where age='51";

user_id | age | email | followers | fullname | password
---------- L e e e e e s S R LT LR LR LR Rt SRR

mkundera | 51 | mkundera@outlook.com | {guest: guestuser, imvivek: vivekm} | milan kundera | password

Figure 2-13. Selecting all users of age 51

5. Let’s alter data type of age to int:
alter table users alter age type int;
It will result in the following error:

TSocket read 0 bytes (via cqlsh)

6. To alter data type of indexed columns we need to rebuild them:

drop index age_idx;
alter table users alter age type int;

But please note that in such cases, it may result the data set being in an incompatible state (see Figure 2-14).

35

www.it-ebooks.info

http://mkundera@outlook.com/
http://www.it-ebooks.info/

CHAPTER 2 © CASSANDRA DATA MODELING

cqlsh:twitter> select * from users;

user_id | age | email | followers | fullname | password
.......... L e L F

mkundera | 1' | mkundera@outlook.com | {guest: guestuser, imvivek: vivekm} | milan kundera | password

imvivek | '32' | imvivek@outlook.com | {guest: guestuser, mkundera: milan kundera} | vivekm | password

Figure 2-14. Error while changing data type to int from string

Here is the error:

Failed to decode value '51' (for column 'age') as int: unpack requires a string argument of length 4
Failed to decode value '32' (for column 'age') as int: unpack requires a string argument of length 4

Hence it is recommended to change data types on indexed columns, when there is no data available for that column.
Indexes over collections are not supported in Cassandra 2.0. Figure 2-15 shows what happens if we try to create

an index follower. However, before this book went to press, version 2.1 was released and added this capability. See
“Indexing on Collection Attributes” in Chapter 11.

cqlsh:twitter> create index followers_idx on users(followers);

Figure 2-15. Indexes over collections are not supported in Cassandra 2.0

Note Updates to the data type of clustering keys and indexes are not allowed.

CQL3 and Thrift Interoperability

Prior to CQL existence, Thrift was the only way to develop an application over Cassandra. CQL3 and Thrift
interoperability issues are often discussed within the Cassandra community.
Let’s discuss some issues with a simple example:

1. First, let’s create a keyspace and column family using CQL3.

create keyspace cql3usage with replication = {'class' : 'SimpleStrategy' ,
'replication_factor' : 3};

use cql3usage;

create table user(user id text PRIMARY KEY, first name text, last name text,
emailid text);

2. Let’sinsert one record:

insert into user(user_ id,first name,last name,emailid)
values('@mevivs', 'vivek', 'mishra', 'vivek.mishra@xxx.com');

36

www.it-ebooks.info

http://vivek.mishra@xxx.com/
http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

3. Now, connect with Cassandra-cli (the Thrift way) and update the user column family to
create indexes over last_name and first_name:

update column family user with key validation_class="UTF8Type' and column_
metadata=[{column_name:last name, validation class:'UTF8Type', index type:KEYS},
{column_name:first name, validation class:'UTF8Type', index_ type:KEYS}];

Note Chapter 3 will cover indexing in detail.

4. Now explore the user column family with CQL3, and see the result in Figure 2-16.

describe table user;

CREATE TABLE user |
key text PRIMARY KEY
) WITH
bloom filter fp chance=0.010000 AND
caching="KEYS ONLY' AND
comment=""' AND
dclocal read_repair_ chance=0.000000 AND
gc_grace_seconds=864000 RND
read_repair chance=0.100000 AND
replicate_on write='true' AND
populate_io cache_on_ flush='false' AND
compaction={'class': 'SizeTieredCompactionStrategy'} AND
compression={'sstable_compression': 'SnappyCompressor'};

Figure 2-16. Describes table user

Metadata has been changed, and columns (first_name and last_name) modified via Thrift are no longer
available with CQL3! Don’t worry! Data is not lost as CQL3 and Thrift rely on the same storage engine, and we can
always get that metadata back by rebuilding them.

5. Let'srebuild first_name and last_name:

alter table user add first _name text;
alter table user add last_name text;

The problem is with CQL3'’s sparse tables. CQL3 has different metadata (CQL3Metadata) that has NOT been
added to Thrift's CFMetaData. Do not mix and match CQL3 and Thrift to perform DDL/DML operations. It will always
lead any one of these metadata to an inconsistent state.

A developer who can'’t afford loosing Thrift’s dynamic column support still prefers to perform an insert via Thrift,
but to read them back via CQL3. It is recommended to use CQL3 for a new application development over Cassandra.
However, it has been noticed that Thrift based mutation still works faster than CQL3 (such as batch operation) until
Cassandra 1.x.x releases. This is scheduled to address with Cassandra 2.0.0 release (https://issues.apache.org/
jira/browse/CASSANDRA-4693).

37

www.it-ebooks.info

https://issues.apache.org/jira/browse/CASSANDRA-4693
https://issues.apache.org/jira/browse/CASSANDRA-4693
http://www.it-ebooks.info/

CHAPTER 2 © CASSANDRA DATA MODELING

Changing Data Types

Changing data types with Cassandra is possible in two ways, Thrift and CQL3.

Thrift Way

Let’s discuss more about data types with legacy Thrift API:

1. Let’s create a column family with minimal definition, such as:

create keyspace twitter with strategy options={replication factor:1} and
placement_strategy="org.apache.cassandra.locator.SimpleStrategy"';

use twitter;
create column family default;

Default data type for comparator and validator is BytesType.

2. Let’s describe the keyspace and have a look at the default column family (see Figure 2-17):

describe twitter;

Keyspace: twitter:
Replication Strategy: org.apache.cassandra.locator.NetworkTopologyStrategy
Durable Writes: true
Options: [datacenterl:1]
Column Families:
ColumnFamily: default
Key Validation Class: org.apache.cassandra.db.marshal.BytesType
Default column value validator: org.apache.cassandra.db.marshal.BytesType
Columns sorted by: org.apache.cassandra.db.marshal.BytesType
GC grace seconds: 864000
Compaction min/max thresholds: 4/32
Read repair chance: 0.1
DC Local Read repair chance: 0.0
Populate I0 Cache on flush: false
Replicate on write: true
Caching: KEYS ONLY
Bloom Filter FP chance: default
Compaction Strategy: org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy
Compression Options:
sstable compression: org.apache.cassandra.io.compress.SnappyCompressor

Figure 2-17. Structure of twitter keyspace
3. Let’s try to store some data in the column family:
set default[1]['type']="bytes'; gives an error
Figure 2-18 shows that this produces an error.

[default@twitter] set default[1l]['type']='bytes';
org.apache.cassandra.db.marshal.MarshalException: cannot parse 'type' as hex bytes

Figure 2-18. Error while storing string value but column value is of bytes type

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

Since the comparator and validator are set to default data type (e.g., BytesType), Cassandra-cli is not able to
parse and store such requests.

4, To get step 3 working, we need to use the assume function to provide some hint:
assume default keys as UTF8Type;
assume default comparator as UTF8Type;
assume default validator as UTF8Type;

5. Nowlet’s try to change the comparator from BytesType to UTF8Type:

update column family default with comparator='UTF8Type';
gives error

This generates an error because changing the comparator type is not allowed (see Figure 2-19).
[default@twitter] update column family default with comparator='UTF8Type';
comparators do not match or are not compatible.

Figure 2-19. Changing comparator type is not allowed

6. Although changing comparator type is not allowed, we can always change the data type of
the column and key validation class as follows:

update column family default with key validation_class=UTF8Type and
default_validation_class = UTF8Type;

Columns in a row are sorted by column names and that’s where comparator plays a vital role. Based on
comparator type (i.e., UTF8Type, Int32Type, etc.) columns can be stored in a sorted manner.

CQL3 Way

Cassandra CQLS3 is the driving factor at present. Most of the high-level APIs are supporting and extending further
development around it.

Let’s discuss a few tricks while dealing with data types in CQL3 way. We will explore with the default column
family created in the Thrift way (see the preceding section).

1. Let’s try to fetch rows from the default column family (see Figure 2-20).

Select * from default;

cqlsh:twitter> select * from default;

key | columnl | value

Figure 2-20. Retrieving values using cql shell

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CASSANDRA DATA MODELING

2. Let’sissue the assume command and try to fetch rows from the default column family in
readable format:

assume default(columni) values are text;
assume default(value) values are text;
assume default(key) values are text;
select * from default;

Figure 2-21 shows the result.

cdlsh:twitter> select * from default;
key | columnl | value

type | bytes

Figure 2-21. Retrieving after assume function is applied

3. typeAsBlob or blobAsType functions can also be used to marshal data while running
CQL3 queries:

select blobAsText(key),blobAsText(type),blobAsText(value) from default;
4. We can alter the data type of validator as follows:

alter table default alter value type text;
alter table default alter key type text;

Note The assume command will not be available after Cassandra 1.2.X release. As an alternative we can use
typeAsBlob (e.9., textAsBlob) CQL3 functions.

Counter Column

Distributed counters are incremental values of a column partitioned across multiple nodes. Counter columns can be
useful to provide counts and aggregation analytics for Cassandra-powered applications (e.g., Number of page hits,
number of active users, etc.).

In Cassandra, a counter is a 64-bit signed integer. A write on counter will require a read from replica nodes
(this depends on consistency level, default is ONE). While reading a counter column value, read has to be consistent.

Counter Column with and without replicate_on_write

Default value of replicate_on_write is true. If set to false it will replicate on one replica node (irrespective of
replication factor). That might be helpful to avoid read-before-write on serving write request. But any subsequent
read may not be consistent and may also result in data loss (single replica node is gone!).

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = CASSANDRA DATA MODELING

Play with Counter Columns

In Chapter 1 we discussed setting multiple clusters on a single machine. First let’s start with a cluster of three nodes on
a single machine. (Please refer to the “Configuring Multiple Nodes on a Single Machine” section in Chapter 1.) In this
recipe we will discuss the do’s and don'ts of using counter columns.

1. Let’s create a keyspace counterkeyspace

create keyspace counterkeyspace with replication = {'class' : 'SimpleStrategy’,
'replication factor' : 2}

2. Create a column family counternoreptable with replicate_on_write as false:

create table counternoreptable(id text PRIMARY KEY, pagecount counter)
with replicate_on write='false';

3. Update pagecount to increment by 2 as follows:
update counternoreptable set pagecount=pagecount+2 where id = '1';
4. Select from the column family as follows:
select * from counternoreptable;
As shown in Figure 2-22, it results in zero rows. Whether it results in zero rows may depend on which node
it is written to.
cqlsh:counterkeyspace> select * from counternoreptable;

cqlsh:counterkeyspace> l

Figure 2-22. Inconsistent result on fetching from counter table

5. Let’s update pagecount for some more values and verify the results:

update counternoreptable set pagecount=pagecount+12 where id = '1';
select * from counternoreptable;

Figure 2-23 shows the result of this command.
update counternoreptable set pagecount=pagecount-2 where id = '1';
select * from counternoreptable;
cqlsh:counterkeyspace> select * from counternoreptable;

id | pagecount

Figure 2-23. Retrieving from the counter table after incrementing the counter column value

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CASSANDRA DATA MODELING

The result is different for this command (see Figure 2-24).

cqlsh:counterkeyspace> select * from counternoreptable;

id | pagecount

Figure 2-24. Inconsistent result of counter column without replication

You can see the inconsistent results on read with replicate on_write as false. With this, conclude that by
disabling such parameters we may avoid read-before-write on each write request, but subsequent read requests may
result in inconsistent data. Also without replication we may suffer data loss, if a single replica containing an updated
counter value goes down or is damaged. Try the above recipe with replicate_on_write as true and monitor whether
results are consistent and accurate or not!

Note You may refer to https://issues.apache.org/jira/browse/CASSANDRA-1072 for more on counter columns

Data Modeling Tips

Cassandra is a column-oriented database that is quite different from traditional RDBMS. We don’t need to define
schema up front, but it is always better to get a good understanding of the requirements and database before moving
ahead with data modeling, including:

e Writes in Cassandra are relatively fast but reads are not. Pre-analysis of how we want to
perform read operations is always very important to keep in mind before data modeling.

e Datashould be de-normalized as much as possible.

e Choose the correct partitioning strategy to avoid rebuilding/populating data over updated
partitioning strategy.

e Prefer using surrogate keys and composite keys (over super columns) while modeling table/
column family.

Summary

To summarize a few things discussed in this chapter so far:
e Do not mix Thrift and CQL3 for DDL and DML operations, although reads should be fine.
e Avoid changing data types.
e Use Cassandra collection support for adding columns on the fly.

In Chapter 3, we will continue our discussion by exploring indexes, composite columns, and the latest features
introduced in Cassandra 2.0, such as Compare and Set.

42

www.it-ebooks.info

https://issues.apache.org/jira/browse/CASSANDRA-1072
http://www.it-ebooks.info/

CHAPTER 3

Indexes and Composite Columns)

In previous chapters we have discussed big data problems, Cassandra data modeling concepts, and various schema
management techniques. Although you should avoid normalizing the form of your data too much, you still need to
model read requirements around columns rather than primary keys in your database applications.

The following topics will be covered in this chapter

e Indexing concept

e Data partitioning

e (Cassandra read/write mechanism
e Secondary indexes

e Composite columns

e What’s new in Cassandra 2.0

Indexes

An index in a database is a data structure for faster retrieval of a data set in a table. Indexes can be made over single or
multiple columns.

Indexing is a process to create and manage a data structure called Index for fast data retrieval. Each index
consists of indexed field values and references to physical records. In some cases a reference can be an actual row
itself. We will discuss these cases in the clustered indexes section.

Physically data is stored on blocks in data structure form (like sstable in Cassandra). These data blocks are
unordered and distributed across multiple nodes. Accessing data records without a primary key or index would
require a linear search across multiple nodes. Let’s discuss format index data structure.

Indexes are stored in sorted order into B-tree (balanced tree) structure, where indexes are leaf nodes under
branch nodes. Figure 3-1 depicts data storage where multi-level leaf nodes (0,1) are indexed in sorted order and
data is in unsorted order. Here each leaf node is a b-tree node containing multiple keys. Based on inserts/updates/
deletes, the number of keys per b-tree node keeps changing but in sorted order.

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

192 (2 38 e e 200 (22 (D0
10 8 6 15 20 2z sk e e .m0

2 @ e 19 22 109 13 10 3 129 189 45 32 O

Figure 3-1. b-tree Index and data structure with multi-level leaf nodes

Let’s simplify further. In Figure 3-2, the table containing age and row keys are leaf nodes and the other one is a
physical table.

' Age Fname email

21 Abhi xx@mail.co
m
32 Vivek vivek@mail Age Row
.com _ _ key
: 21 ahc234
Age Ename Email |
‘ 21 John | iohna@mai . 21 3dc32f
l.com [
| I e | 32 a4d3b3
19 Quattro at@mail.co
= |
32 a8c2q4
Age Fname Email ' 34 ' ax4a2fa
34 Vishal vishal@mai
l.com
32 Vaibhav vaibhav@m

ail.com

Figure 3-2. A physical table and an index table as leaf node

This allows faster retrieval of records using binary search. Since b-tree keeps data sorted for faster searching, it
would introduce some overhead on insert, update, and delete operations and would require rearranging indexes. B-tree
is the preferred data structure of a larger set of read and writes, that’s why it’s widely used with distributed databases.

Clustered Indexes vs. Non-Clustered Indexes

Indexes that are maintained independently from physical rows and don’t manage ordering of rows are called
non-clustered indexes (see Figure 3-1). On the other hand, clustered indexes will store actual rows in sorted order for
the index field. Since a clustered index will store and manage ordering of physical rows, only one clustered index is
possible per table.

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

The important question is for what scenarios we should use clustered indexes and non-clustered indexes. For
example, a department can be multiple employees (many-to-one relation) and often is required to read employee
details by department. Here department is a suitable candidate for a clustered index. All rows containing employee
details would be stored and ordered by department for faster retrieval. Here employee name is a perfect candidate for
a non-clustered index and thus we can hold multiple non-clustered indexes in a table but there will always be a single
clustered index per table.

Index Distribution

With distributed databases, data gets distributed and replicated across multiple nodes. Retrieval of a data collection
would require fetching rows from multiple nodes. Opting for indexes over a non-row key column would also require
being distributed across multiple nodes, such as shards. Long-running queries can benefit from such shard-based
indexing for fast retrieval of data sets.

Due to peer-to-peer architecture each node in a Cassandra cluster will hold an identical configuration. Data
replication, eventual consistency, and partitioning schema are two important aspects of data distribution.

Please refer to Chapter 1 for more details about replication factor, strategy class, and read/write consistency.

Indexing in Cassandra

Data on a Cassandra node is stored locally for each row. Rows are distributed across multiple nodes, but all columns
for a particular row key will be stored locally on a node. Cassandra by default provides the primary index over row key
for faster retrieval by row key.

Secondary Indexes

Indexes over column values are known as secondary indexes. These indexes are stored locally on a node where
physical data resides. That allows Cassandra to perform faster index-based retrieval of data. Secondary indexes are
stored in a hidden column family and internally managed by the node itself.

Let’s explore more on secondary indexes with a simple exercise.

1. First, let’s create a keyspace twitter and column family users.

create keyspace twitter with replication = { 'class':'SimpleStrategy' ,

'replication factor':3};use twitter;

create column family users with key validation_class='UTF8Type' and

comparator="UTF8Type' and default_validation_class='UTF8Type';

create table users (user_id uuid primary key, first name text, twitter handle text);
2. Let’s create index over first_name using create index syntax (see Figure 3-3).

create index fname_idx on users(first name);

3. Describe table usexs:

describe table users;

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INDEXES AND COMPOSITE COLUMNS

Figure 3-3 shows users schema with index created on first_name.

cglsh:tuwitter> describe table users;

CREATE TABLE users <
user_id timeuuid.
first_name text,
twitter_handle text,
PRIMARY KEY <(user_id)
> WITH
bloom_filter f chance-ﬂ 318888 AND
caching=" KEYS SNL\"
comnent=’
dclﬂl:dl_l"!:i\l‘.t rnpcur chance~-8.8008008 AND
ge_grace_seconds=864808 AND
index_interval=128 AND
:-cad_ropdil-_chance“B.I.BBBGB AND
) = rcplical‘.e_cn_ur-itc-‘l;l‘ut: AND

Index script populate_io_cache_on_flush='False’ AND
default_time_to_live=8 AND
speculative_retry='99.@BPERCENTILE’ AND
mentable _f 1u..h_p¢:r1|)d in_ms=8 AND
compaction={'class’: 'SizeTieredCompactionStr atugy‘) AND
conprassion={'“"table —conpression’ : ’LZ4Conmpressor

CREATE INDEX fname_idx ON users <first_name’;
Figure 3-3. Users table with index on first_name

4. Let’sinsert a few rows in the users column family.
insert into users(user_id,first name,twitter handle) values(now(),'apress','#apress team');
insert into users(user_ id,first name,twitter handle) values(now(),'jonathan','#jhassell");
insert into users(user_ id,first name,twitter handle) values(now(),'vivek','#mevivs');
insert into users(user id,first name,twitter handle) values(now(),'vivek', '#vivekab');

5. Let’s try to find records using the indexed column first_name (see Figure 3-4).

select * from users where first name='vivek';

Figure 3-4 shows output of fetching users having first name vivek.

cglsh:twitter> select »* from users where first_name=’vivek’;

user_id i first_name | twitter_handle

498d9f00—-d47?f-11e3-beB?-?%e?dceabdd? | vivek 1| fimevivs

64026320-d47f-11e3-heB@?7-7%e?dceabdd? | vivek 1| flvivekah
{2 rous>

Figure 3-4. Fetching users by first_name

Query over indexed column first_name with value 'vivek' (Figure 3-4) returns two rows. Here both rows can be
available on the same node or different nodes.

One point worth mentioning here is that indexes would also be stored locally along with data rows, which would
ensure data locality.

On the other hand, if we try to fetch rows using column twitter _handle, which is non-indexed:

select * from users where twitter handle='#imvivek';

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

it results in the following error:
Bad Request: No indexed columns present in by-columns clause with Equal operator

Let’s try another type of example:

1. Add another column age:
alter table users add age int ;

2. Update a few rows for age:

498d9f00-d47f-11e3-be07-79e7dceabdd7;
498b06f0-d47f-11e3-be07-79e7dceabdd7;

update users set age = 21 where user_id
update users set age = 51 where user_id

3. Create an index on the age column:
create index age_idx on users(age);
4. Now, try to fetch user_id for a user with age 21:
select user_id from users where age =21;
498d9f00-d47f-11e3-be07-79e7dceabdd7
(1 rows)
5. Next, let’s try to fetch users whose age is greater than 21:
select user_id from users where age >=21;

It results in the same error we saw in the preceding example:

Bad Request: No indexed columns present in by-columns clause with Equal operator

Secondary indexes allow users to retrieve records using indexed columns with “=" only. But still real-time
applications would want to perform range queries over non-row key columns.

Columns with low cardinality values are generally recommended for indexing as probability of retrieving data
from various nodes in a cluster is very high. Whereas a column with high cardinality may result in performance
overhead under high data load and large Cassandra clusters. Indexes on unique columns should be fine in case data
volume is not huge. Also, you can turn on tracing to monitor queries on secondary indexes. In general, tracing can be

used for investigating CQL3 queries. You can turn on/off tracing as

TRACING ON;
TRACING OFF;

From version 1.2 onward Cassandra provides composite column support. Using composite column support it is

possible to perform range scan over composite columns.
Let’s explore composite columns more in the next section.

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INDEXES AND COMPOSITE COLUMNS

Composite Columns

Thinner rows distributed across multiple nodes in a cluster work fine with added secondary index support. Still
applications may require applying sorting order on fetched rows. Implementing such sorting mechanisms at the client
side with a massive amount of data is clearly not desirable. Applications would rely on a database for such supports.
In version 1.1 onward, Cassandra provides support for sorted wide rows via composite columns. Sorted wide
rows mean more columns in place of skinny rows, which allows more data to be stored in a colocated way.
Let’s explore it with the same Twitter example, where the user and their tweets should be stored locally and need
to be sorted by tweet_date.

1. First, let’s create a keyspace twitter and column family users:

create keyspace twitter with replication = {'class':'SimpleStrategy’,
'replication factor':1};
use twitter;

create table users(user id text,followers set<text>, tweet date timestamp,
tweet_body text, first name text, PRIMARY KEY(user_ id,tweet date, first name));

Here for users the table contains a composite primary key with user_id, tweet_date and first_name.

2. Let’s store a few columns in the users column family for user_id 'imvivek':

// insert records for 'imvivek'

insert into users(user id,tweet date,tweet body,first name)
values('imvivek','2013-12-31",'good bye 2013','vivek');

insert into users(user id,tweet date,tweet body,first name)
values('imvivek','2014-01-01", 'welcome 2014', 'vivek');

insert into users(user_id,tweet date,tweet body,first name)
values('imvivek','2014-01-04", 'Working on Cassandra book on weekend','vivek');

3. Let's store a few columns in the users column family for user_id ' jhassell":

// insert records for 'jhassel'

insert into users(user_id,tweet_date,tweet body,first name)
values('jhassell’,'2013-12-21",'2013 bye bye','jonathan');

insert into users(user id,tweet date,tweet body,first name)
values('jhassell’, '2014-01-01"','2014! another exciting year','jonathan');

insert into users(user id,tweet date,tweet body,first name)
values('jhassell’,'2014-03-25", 'Cassandra book, rolling out!','jonathan');

4, Let’s try to fetch rows ordered by tweet_date in descending order (see Figure 3-5).

select * from users where user id='imvivek' order by tweet date DESC;

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Figure 3-5 output shows rows sorted by tweet_date for user_id imvivek

jeqlsh:twitter> select * fron users where user_id='imwivek' order by tweet_date DESC;

user_id | tweet_date | first_name | followers | tweet_body

invivek | 2814-81-84 88:00:88India Standard Time | vivek | null | Working on Cassandra book on weekend
invivek | 2014-81-81 88:80:08India Standard Time | vivek | null | welcone 2014
inwivek | 2013-12-31 88:80:8dIndia Standard Time | vivek | aull | good bye 2013

€3 rovs)

T

Order by tweet
date

Figure 3-5. Users with user_id imvivek, sorted by tweet date

5. We can also query the users table to fetch rows for multiple user ids sorted by tweet date
as follows (see Figure 3-6):

select * from users where user_id in('imvivek','jhassell') order by tweet date DESC;

'rqlsh:cwitcer) select * from users wvhere user_id in{’imvivek’,’ jhassell’) order by tweet_date DESC;

tweet_body

user_id | tweet_date i first_name | followers

Jjhassell | 2014-83-25 B0:80:08India Standard Time | Jonathan | null | Cassandra book. »olling out?
imvivek | 2814-01-B4 B0:80:08India Standard Time | vivek | null | Working on Cassandra book on weekend
Jjhassell | 2014-P1-81 B80:80:88India Standard Time | Jjonathan | null i 2814' another exciting year
imvivek | 2014-01-01 B0:00:00India Standard Time | vivek | {'apress_team’> | welcome 2014
imvivek | 2813-12-31 688:80:88India Standard Time | vivek | null | good hye 2613
Jhassell | 2813-12-21 680:80:88India Standard Time | Jonathan | null § 2813 bye hye

|(6 rous)
Figure 3-6. Here we are retrieving rows for user_id imvivek and jhassel using the in clause

Figure 3-6 shows rows sorted by tweet_date for users imvivek and jhassel.

6. Let’s update a few rows for followers and explore how the data structure would look
internally:

update users set followers = {'jhassell'} where user id='imvivek' and
tweet_date = '2013-12-31' and first_name = 'vivek';

update users set followers = {'jhassell'} where user_ id='imvivek' and
tweet date = '2014-01-01' and first_name = 'vivek';

Here, the user_id will be a partition key and the rest of the columns tweet_date and first_name will be part of a
clustering key. Let’s try to look on stored data with the help of Figure 3-7.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Partition key Clustering key

Figure 3-7. Composite column having imvivek as the partition key and remaining as the cluster key

While performing data modeling over Cassandra, one important point worth mentioning is that Ordering over the
clustering key works only if the partition key is in EQ/IN clause. Hence, while defining table structure, make sure that
columns that need to be sorted are part of the cluster columns. You can also ensure clustering order while creating table as

create table users(user id text,followers set<text>, tweet date timestamp, tweet body text,
first name text, PRIMARY KEY(user id,tweet date, first name)) with clustering order
by (tweet date DESC);

This would ensure keeping clustered data ordered by tweet_date in descending order.

Allow Filtering

As discussed in the “Secondary Indexes” section, one constraint with a secondary index is only the EQ operator is
allowed over indexed columns. We can perform range queries over non-row key columns if those are defined as
cluster columns. The query below will work as tweet_date is part of the remaining clustering key.

By default Cassandra restricts execution of such queries and intelligently educates them about performance
overhead of such queries by explicitly asking to enable filtering using allow filtering clause.

Users can run such queries by explicitly adding the ALLOW FILTERING clause with select queries as

select * from users where tweet_date>='2013-12-31"' allow filtering;

Figure 3-8 shows the output from selecting users by tweet date with allow filtering enabled.

cglsh:twitter> select *» from users where tueet_date>='2013-12-31"' allow filtering;
user_id | tweet_date i first_name | followers ! tweet_body
imvivek | 2013-12-31 98:80:80India Standard Time | vivek 1 {* jhassell’> | good hye 2013
imvivek ! 2014-81-81 BA:@A:B0India Standard Time ! vivek | {'apress_team'> | . welcome 2014
imnvivek | 2014-81-84 A0B:80:80India Standard Time | vivek | null | Working on Cassandra book on weekend
Jjhassell | 2014-81-91 AP:BP:PBIndia Standard Time | Jonathan | null | 2814! another exciting year
jhassell ! 2014-83-25 AB:@P:BAIndia Standard Time ! jonathan ! null ! Cassandra book. »olling out?
<5 rous

Figure 3-8. Rows fetched for tweet date greater than or equal to 31 December 2013 with the filtering allowed option

With a very large amount of data being distributed within a large cluster, running such queries may degrade the
application’s performance, if a partition key is not present with EQ/IN clause. It is recommended that users analyze
data first before running such queries, rather than perform a range of queries specific to a partition key.

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Expiring Columns

We can also set the TTL (Time To Live) value per each column in a Cassandra table. Upon exceding the defined TTL, the
column would be logically deleted and marked as obsolete. Though memory will only be freed up during compaction.

For example, with the banking system a OTP (One Time Password) is generated per request, and would expire
after a certain time. For such scenarios, we can temporarily create a column with TTL value.

Prior to Cassandra 2.x, setting the TTL value was possible via insert and update operations. Now with 2.x we can

also set the default TTL value for per column family/table. For storing TTL and expiration time, the column family
would required an additional eight bytes.
Let’s explore TTL with a simple exercise.

1. First, let’s create a keyspace demo and column family TTLSample
create keyspace demo with replication = {'class':'SimpleStrategy',
'replication factor':1};
use demo;

create table "TTLsample"(user id text PRIMARY KEY, OTP text, name text);

2. Let'sinsertarecord in TTLsample table with TTL value set to 16 seconds

insert into "TTLsample"(user id,0TP,name) values('imvivek','12121','vivek') using TTL 16;

Upon running the above query a row will be stored in TTLsample table with TTL value set to 16 seconds for
each column.

3. Let’s try to fetch the row before and after 16 seconds
select * from "TTLsample";

Figure 3-9 shows the output before and after 16 seconds.

cglsh:demo?> select * from "ITLsample";

Before TTL expiry —— user_id

1]
.

_______ i
imvivek H

- =

1 rous>

After TTL expiry cglsh:demo?> select * from “"ITLsample";

(@ rows>
Figure 3-9. Output before and after the time to live expiration
4. Youalso can set a TTL value for each column with an insert or update operation.

insert into "TTLsample"(user id,name) values('imvivek','vivek');
insert into "TTLsample"(user id,O0TP) values('imvivek','12121') using TTL 16;

Figure 3-10 shows output of the otp column before and after TTL expiration.

www.it-ebooks.info

51

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

cglsh:demo> select * from “"ITTLsample";

Before TTLexpiry — > yser_id

.
L]

- + —
"
L

imvivek

{1 rows?>
cglsh:demo> select * from “TTILsample';

After TTLexpiry —— usew_id

imvivek

1 rows?

Figure 3-10. Before and after TTL expiry for OTP column

5. Itis also possible to reset the TTL value before its expiration

insert into "TTLsample"(user_id,OTP) values('imvivek','12121") using TTL 160;
// expires OTP after 160 seconds

insert into "TTLsample"(user id,O0TP) values('imvivek','12121') using TTL 16;
// reset expiry to 16 seonds

Default TTL

With Cassandra 2.x, it is also possible to set the default TTL per column family:
alter table "TTLsample" with default_time_to live=10;

Figure 3-11 shows the default TTL value set to 10 seconds.

cqlsh:demo) describe table "TTLsanple";

CREATE TABLE "TILsample" (
user_id text,
name text,
otp text,

Pllilllﬂﬂk? KEY Cuser_id)

bloon_filter_fp_chance=0.81008088 AND
caching="KEYS_ONLY’ AND
connent="" AND
delocal_read_repair_chance=8.808000 AND
gc_grace_seconds=864088 AND
index_interval=128 AND
read_repair_chance=0.100080 AND
replicate_un_wr;:eﬂ’l_:ﬂe’hﬂHfD y -
populate_io_cache_on_f lush="false’

Default TIL——_, BeFaule_tine to_1ive=18 AND
speculative_retry="99.BPERCENTILE’ AND
nentable_f lush_period_in_ns=8 AND
conpaction=("class’: ’SizelieredConpactionStrateqy’} AND
conpression={’sstahle_conpression’: ’'LZ4Conpressor’');

~
=

Figure 3-11. Output shows default TTL set to 10 seconds

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Data Partitioning

Partitioning schema plays an important role in data distribution across nodes. Cassandra offers three types of data
partitioning strategies:

RandomPartitioner. Selecting the Random partitioner would distribute data across the
nodes using MD5 hashing algorithm. The random partitioner would evenly distribute data
in a cluster. Data distribution would rely on assigned initial_token value or num_tokens

for assigning rows to each node. MD5 hashes are 16 bytes and are used to represent
hexadecimal digits. Each node is assigned a data range that is represented by the token
value. On receiving read/write request, with random partitioner selected as the partitioning
strategy hash value for each row key gets generated and assigned to the node responsible
for serving that read/write request. That’s how data gets distributed with random
partitioning.

Muxmur3Partitioner. Default partitioner. Similar to RandomPartitioner but uses the
Murmur Hash function for calculating the token value. Murmur3 hash represents a 32- or
128-bit value, with Cassandra it uses a 128-bit value for tokens. Another difference with
MD5 and murmur3 hashes is that the latter is noncryptographic hashing whereas MD5 is
cryptographic hashing function (e.g., one-way hashing).

ByteOrderedPartitioner. Recommended for sequential data access. With this partitioner,
data gets distributed across the nodes according to row key values in a cluster. The
frequency of uneven data distribution is high and may lead to performance hotspots in case
of frequent writes within a specific range.

Changing Partitioners

Decide on a partitioning strategy up front while doing data modeling. Changing partitioners while a cluster is already
accepting data is not allowed and Cassandra will throw an error such as:

ERROR 23:34:10,630 Cannot open \var\lib\cassandra\data\system\schema_keyspaces\system-
schema_keyspaces-jb-1; partitioner org.apache.cassandra.dht.Murmur3Partitioner does not match
system partitioner org.apache.cassandra.dht.RandomPartitioner.

Note that the default partitioner starting with Cassandra 1.2 is Murmur3Partitioner, so you will need to edit that
to match your old partitioner if upgrading.

Data Colocation

Columns for each row key would be stored locally on that node. Based on the replication factor and strategy, data
would be replicated across the nodes. That’s where Cassandra ensures data locality and high availability.
Let’s discuss how reads and writes work in Cassandra.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INDEXES AND COMPOSITE COLUMNS

Cassandra Writes

With peer-to-peer architecture every node in the cluster is eligible to receive read/write requests. Nodes that work as
a proxy or delegator between the client and data node (assigned to serve the write requests) are called Coordinator
nodes. Upon receiving the write request, columns would first be written on the commit log and then into the
memtable onto assigned node. Based on supplied consistency, an acknowledgement would be sent back to the client.

Data would be flushed out in the form of sstable on to a disk based on memtable_total_space_in_mb. Upon
exceeding the limit, the largest memtable will be flushed out on to disk. Figure 3-12 shows the image representations
for Cassandra inserts and updates.

-

Person id | fname Person id | Iname
1 vivek 1 mishra

B 1 fname:vivek \
1 fname:vivek ' :
— fname:vivek 1 Iname:mishra \ fname:vivek

Iname:mishra

Commit log memtable
Commit log memtable

Figure 3-12. a) The image on the left, insert fname for id 1; b) the image on the right, update to add column Iname for
person id 1

In Figure 3-12a and 3-12b, columns fname and Iname are stored in successive write column requests. Each
memtable is an in-memory representation of a column family. Whereas the commit log will keep data in the same
sequence. Inserting a record for Person column family would keep adding it to corresponding memtable. For
example, adding another column age for row key 1 and updating fname, would modify the data structure as shown in
Figure 3-13.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Person id | fname

Person_id | age

1 32 1 vivs
1 fname:vivek / 1 1 fname:vivek =
E ' . - fname:vivs

1 Iname:mishra fname:vivek 1 Iname:mishra Iname:mishra

5 - | Iname:mishra N
1 age:32 - .
1 age:32 R 1 age:32 age: 32

1 fname:vivs

Commit log memtable Commit log memtable

Figure 3-13. a) The image on the left shows adding the age column with value 32; b) the one on the right shows
updating the row for person id 1 with column fname for value vivs

Figure 3-13a and 3-13b depicts the insert of age column and modifying fname respectively. Please note that
Cassandra provides faster write throughput, because there are no updates but only insert operations. But based on the
timestamp, the row with the latest timestamp will be returned as output. Here the timestamp is internally managed
by Cassandra itself. The process of compaction will manage freeing space by deletion of obsolete or tombstone rows.
With version 2.x Cassandra provides Compare and Set (CAS) support. We will discuss this later in the “Compare and
Set” section.

Cassandra Reads

The process of coordinator selection and assigning a read request to data node is similar to a write request. Cassandra
returns columns for a particular row key with the latest timestamp. Cassandra internally performs the following steps
to return the column name and value:

1. First search memtable for cached values

2. Scan sstables using bloom filter row key for column

3. Sorteligible sstables by latest timestamp

4. Merge and return columns with recent timestamp value

We will discuss bloom filter in detail in Chapter 8.
Figure 3-14 shows how read works with Cassandra storage architecture.

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INDEXES AND COMPOSITE COLUMNS

1
fname:vivs

fname:vivs | sl ity
: : Agecta > " memtable
: Lname: mishra e M o

Read i g

Index Index

foname; Iname:
vivek mishra

sstable-1 sstable-2 sstable-3

N 4

Disk

Figure 3-14. Read mechanism with Cassandra

What’s New in Cassandra 2.0

Cassandra 2.0 and subsequent versions came with lots of new features and many performance enhancements on
the CQL3 side. Cassandra 2.0 introduces support for several key capabilities related to indexes and composite
columns, including:

e Compare and set (CAS)
e Secondary indexes over composite columns

e Conditional DDL

Note Before this book went to press, Cassandra 2.1 was released. Please see Chapter 11 for information on several
important new features in version 2.1.

Compare and Set

With eventual consistency and replication support, transactional data can be consistent and highly available. But still
in a few cases, applications might need to access data independently across multiple threads, such as an application
need to generate unique OTP (One Time Password) and want to avoid race conditions. Support for compare and set
(CAS) has been enabled since 2.x onwards.

Note CAS support in Cassandra is based on paxos algorithm. You may refer to
http://en.wikipedia.org/wiki/Paxos_(computer science) for more details.

56

www.it-ebooks.info

http://en.wikipedia.org/wiki/Paxos_(computer_science
http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Algorithm

A compare and set operation requires a read of the latest value from the replica node, and the node acting as a
coordinator is called the Leader. The Leader will coordinate the replica nodes so they perform the following tasks:

1. Prepare token and promise
Issue Read to replica and receive output with the latest token

Propose updated value and get acceptance

> e n

Issue commit to each replica and receive acknowledgement

Using CAS

Each CAS operation will require multiple DB round trips; hence, it is recommended to use such operations for limited
requirements to avoid performance overhead.

Let’s use CAS with the same Twitter example.

1. First, let’s create a keyspace twitter and column family users
create keyspace twitter with replication={'class':'SimpleStrategy', 'replication factor': 1 };
use twitter;
create table users(user id text primary key,followers set<text>, tweet date timestamp,
tweet _body text, first name text);

2. Let'sinsert arecord for row key 'imvivek’ using the if not exists command

insert into users(user id,tweet date,tweet body,first name) values('imvivek','2013-12-31',
'good bye 2013','vivek') if not exists;

3. Let’sre-run the same command with first_name as 'vivek update'

insert into users(user id,tweet date,tweet body,first name) values('imvivek','2013-12-31',
'good bye 2013, 'vivek update') if not exists;

In Figure 3-15, since before executing the command at step 2 the table was empty and no records existed; hence,
it gets successfully applied, but the same fails at step 3.

qlsh:tuitter) insert into users(user_id,tuveet_date,tweet_hody,First_nane) values(’ invivek’,’2813-12-31","good hye 2013','vivek’) if not exists;

lepplied] ____ applied

cqlsh:tvitter? insert into users{user_id,.tweet_date,tweet_body,first_name} values{'imvivek’',’2013-12-31", good bye 2013'.'vivek_update’) if not exists;

[applied] | user_id | First_name | followers ! tweet_hody | tueet_date
False ! imwivek | vivek | null | good hye 2813 | 2013-12-31 B0:008:88India Standard Time
Not applied

Figure 3-15. A CAS operation to insert a row with id imvivek if it doesn’t exist

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INDEXES AND COMPOSITE COLUMNS

4. Let’s try to use CAS to update users for adding followers for a user having the first name
“vivek”

update users set followers = {'apress'} where user_id='imvivek' if first_name='vivek'
select * from users;

Figure 3-16 shows the result of retrieving records after the CAS update operation.

cglsh:twitter> select * from users;

user_id | first_name | followers | tweet_body i tuweet_date
imvivek 1§ vivek | {’apress’> | good hye 2013 | 2013-12-31 0B:80:08India Standard Time
(1 r»ows)>

Figure 3-16. Rows after succesfully updating using the CAS operation

Secondary Index over Composite Columns

With Cassandra 2.x onward, Cassandra allows the secondary index over clustering keys, which allows the user to run
queries using EQ operater. Prior to 2.x, it was possible to include the remaining cluster key in a where clause only if the
preceding clustering key part was available in the where clause.

Let’s use the same Twitter example discussed within the “Composite Columns” section.

1. First, let’s create a keyspace twitter and column family users:

create keyspace twitter with replication = {'class':'SimpleStrategy’,
'replication_factor':1};
use twitter;

create table users(user_id text,followers set<text>, tweet date timestamp,
tweet body text, first name text, PRIMARY KEY(user id,tweet date, first name));

2. Let’s Store a few colums in the users column family for user_id 'imvivek':

// insert records for 'imvivek'

insert into users(user id,tweet date,tweet body,first name)
values('imvivek','2013-12-31", 'good bye 2013','vivek');

insert into users(user id,tweet date,tweet body,first name)
values('imvivek','2014-01-01", 'welcome 2014', 'vivek');

insert into users(user id,tweet date,tweet body,first name)
values('imvivek','2014-01-04", 'Working on Cassandra book on weekend','Vivs');

3. Addindexover first_name and retrieve records with the first name vivek:

create index on user(first name);
select * from users where first_name = 'vivek';

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INDEXES AND COMPOSITE COLUMNS

Figure 3-17 shows the result of fetching data by clustering the column first_name after secondary indexes enabled.

cglsh:twitter> select * from users where first_name = ‘vivek’;

user_id I tuweet_date : first_name ! followers ! tweet_hody
imvivek ; 2013-12-31 PP:P0:80India Standard Time ; vivek 1 null ; good bye 2013
imvivek | 2814-91-91 90:00:80India Standard Time | vivek | null | welcome 2014
(2 rows>

Figure 3-17. Fetch records after enabling secondary indexes over clustering the column first_name

Conditional DDL

With Cassandra 2.x it is now possible to perform conditional DDL operations over keyspace, table, and indexes. A
conditional DDL allows a user to validate whether a questioned keyspace, column family, or index is present or not.
Let’s look at a few examples of how this works.

Keyspaces

e Create the keyspace twitter if it doesn’t exist:
create keyspace if not exists twitter with replication = {'class':'SimpleStrategy’,
'replication_factor'
: 3%
e Drop the keyspace twitter if it exists:

drop keyspace if exists twitter;

Tables

e (Create a table usexs if it doesn’t exist:

create table if not exists users(user_id text,followers set<text>, tweet_date timestamp,
tweet _body text, first name text, PRIMARY KEY(user id,tweet date, first name));

e Drop the table users if it exists:
drop table if exists users;

Indexes

e Create an index over column first name on the users table if it doesn’t exist:
create index if not exists users first name_idx on users(first name);
e Drop theindexusers_first name_idx if it exists:

drop index if exists users_first name_idx;

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INDEXES AND COMPOSITE COLUMNS

Summary

With this chapter we have discussed data modeling and indexing concepts and their use in Cassandra.
To summarize, a few points are worth reiterating:

e Indexes are stored locally to data node.
e Updates to column values are indexes, which is an atomic operation.
e Avoid secondary indexes over high cardinality column values.

¢ Too many indexes can kill write performance and should be avoided. Instead try to
denormalize the data model, or use composite columns.

With data modeling in place, the next question while designing an application with Cassandra that naturally
comes to mind is data security. Chapter 4 will talk about data encryption/decryption and the security options
available with Cassandra.

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Cassandra Data Security

Database security means protecting sensitive data and database applications from unauthorized access. Scalability
and high availability of data are definitely good things to have, but so is data security! For example, financial and other
public industries require scalable, highly available, and secured databases. That said, organizations of many kinds,
and especially financial and governmental ones, prioritize security.

Since Cassandra 1.2.2 onward, we can secure data with Cassandra in two ways, access control and encryption.
Authorization and authentication support is available with Cassandra.

This chapter will cover the following topics:

e (Cassandra’s systemand system_auth keyspaces
e Managing user permissions

e Internode and client-server SSL encryption

Authentication and Authorization

Authentication means providing control over users trying to access a data store. The user’s identity has to be validated
while securing the connection with the database. There are three basic types of authentication:

e Internal authentication. With internal authentication generally the data store would manage
the user’s login via credentials such as user id and password.

e External authentication. External authentications, such as Kerberos, are network protocols to
authenticate a client’s identity using a ticketing system.

e Client-server encryption. Client-to-server or node-to-node encryption is another way by which
data can be transferred across the cluster. With encryption, clients’ or nodes’ public trust
certification has to be installed on another node.

The authentication process is limited to user verification and identification.

Processing user access control is known as authorization. Database authorization means managing a user’s role
and privileges to schema, tables, and columns.

Cassandra’s internal authentication is an SSL-encryption mechanism that we'll look at in the form of practical recipes.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = CASSANDRA DATA SECURITY

system and system_auth Keyspaces

The system keyspace contains information about available column families, columns, and clusters. The system_auth
keyspace mainly contains authentication information, user credentials, and permissions. We will discuss them in
upcoming recipes. Table/column families under the system keyspace are:

e schema_keyspace

e schema_columns

e schema_columnfamilies
e local

e peers

Figure 4-1 shows the system keyspace hierarchy, where the root node is the system keyspace, subordinate nodes
are column families, and each table represents columns defined with those column families.

)

System

~~

H

schema_
columns

(

keyspace_name

schema_
columnfamilies

keyspace_name

release_version
ring_id
.uhema_version I
thrift_version
tokens set
truncated at map |

key

local peer
S’ S
bootstrapped data_center
cluster_name peer
cql_version rack
data_center release_version
gossip_generatio ring_id
n
native_protocol_ Ipc-acdress
version
schema_version
Partitioner
tok set
Rack

| durable_writes

strategy_classs

strategy_options

columnfamily_
name

schema_
keyspace

columnfamily_
Name

bloom_filter_fp_
chance

component_
index

caching | index_name

column_aliases

comment

compaction_stra

tegy_classstrateg
y_options

comparator

default_validato
<

Id,key_aliases

Jkey_validator

max_compaction
_threshold

max_compaction
_threshold

read_rapair_cha
nce

replicate_on_wri

tw

subcomparator

index_options

index_type

keyspace_name

validator

Figure 4-1. System keyspace and underlying column families and corresponding columns

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Before we start managing authentication and authorization with system and system_auth keyspaces, let’s start
this section by exploring whether the system keyspace is modifiable!

The system Keyspace Is Unmodifiable

Before we jump into authorization and authentication, let’s play with the system keyspace to validate whether it is
modifiable by an external user. Since it is a keyspace internally managed by Cassandra’s storage architecture, it is not
possible for an external user to update/modify the system keyspace. The next simple exercise is all about trying these
negative scenarios to validate this. While designing schema it is not required to tweak such exercise with Cassandra,
but since we are talking about security, let’s see how secure the system keyspace is!

Read access to the systemkeyspace is provided by default. Let’s try accessing it with some exercises
LocalStrategy.

The systemkeyspace is configured with LocalStrategy as replication options.

e First, let’s try creating a keyspace with a replication strategy as LocalStrategy:

create keyspace system_test with replication = { 'class':'localstrategy’,
'replication_factor':3};

create keyspace system test with replication = { 'class':'LocalStrategy'};

Figure 4-2 shows that we cannot create another keyspace with LocalStrategy.

cqlsh:system test> create keyspace system test with replication = { 'class':'LocalStrategy','replication factor':3};

cqlsh:system test> create keyspace system test with replication = { 'class':'LocalStrategy'};

Figure 4-2. LocalStrategy is not for public use

e Now, let’s try to modify/drop the system keyspace:

alter keyspace system with replication = { 'class' : 'LocalStrategy'};alter keyspace
system with replication = { 'class' : 'SimpleStrategy', 'replication factor':3};

Figure 4-3 shows it is not possible to alter the system keyspace for changing strategy.
cqlsh:system> alter keyspace system with replication = { 'class' : 'SimpleStrategy', 'replication factor®':3};

cqlsh:systeﬁb alter keyspace sysfem with replication = { 'class' : 'LocalStrategy'};

Figure 4-3. Changing the strategy class is not possible with the system keyspace

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

This means we cannot alter the system keyspace either.

e Next, let’s try to drop the system keyspace:
drop keyspace system;

Figure 4-4 shows we cannot drop the system keyspace either!

cqlsh:system> drop keyspace system;

Figure 4-4. Dropping system keyspace is not an option

With these examples we can conclude that modifying the system keyspace is not permissible; however we can
modify data present in column families under the system keyspace.

Accessing system_auth Keyspace with Authentication Enabled

Cassandra’s binary distribution comes with two authenticators: PasswordAuthenticator and
AllowAllAuthenticator. With PasswordAuthenticator enabled, Cassandra validates users by their names and
hashed passwords. These user credentials are stored in the system_auth.credentials table.

In this recipe, we will discuss managing user credentials and accessing the system_auth keyspace using
PasswordAuthenticator. With authentication enabled we need to provide the user name and password while
connecting to the Cassandra server. Cassandra stores the user name and hashed password under the credentials table
in this keyspace.

Before we start, we need to enable authentication in cassandra.yaml as follows:

authenticator: org.apache.cassandra.auth.PasswordAuthenticator

Now that authentication is enabled, you can complete the following steps:

1. First, let’s try connecting to the server creating a keyspace without our
username/password:

create keyspace system temp with replication = { 'class' : 'SimpleStrategy’,
'replication_factor' : 3 };

On executing, the above command will produce the error shown in Figure 4-5.

[impadmin@impetus-NLO52 kundera-neo4j]$ /home/impadmin/software/apache-cassandra-1.2.4/bin/cglsh -3

Connected to Test Cluster at 127.0.0.1:9160.

[cqlsh 2.3.0 | Cassandra ©.0.0 | CQL spec 3.0.6 | Thrift protocol 19.35.0]

Use HELP for help.

cqlsh> create keyspace system temp with replication = { 'class' : 'SimpleStrategy', 'replication factor' : 3 };

Figure 4-5. A connection failure because we did not authenticate before trying to create the keyspace

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

2. Now, connect using the user name and password and create the keyspace:

// connect with user name and password.
$CASSANDRA_HOME/bin/cqlsh -3 -u cassandra -p cassandra

// create keyspace.
create keyspace system temp with replication = { 'class' : 'SimpleStrategy',
'replication_factor' : 3 };

Figure 4-6 shows a successful connection.

[impadmin@impetus-NLB52 kundera-neo4j]$ /home/impadmin/software/apache-cassandra-1.2.4/bin/cqlsh -3 -u cassandra -p cassandrz
Connected to Test Cluster at 127.0.0.1:9160.

[cglsh 2.3.8 | Cassandra 1.2.4 | COL spec 3.08.8 | Thrift protocol 19.35.8]

Use HELP for help.

cqlsh> ireate keyspace system temp with replication = { *class' : 'SimpleStrategy', 'replication factor' : 3 };

cqlsh>

Figure 4-6. After successfully connecting using user credentials

3. Next, let’s create a superuser and non-superuser:

create user normaluser with password 'normal';
create user 'superuser' with password 'superuser' superuser;

It will store user information in usexs table as shown in Figure 4-7.

cqlsh> use system auth;
cqlsh:system auth> select * from users;

name | super
............ +- - - -
cassandra | True
packtsu | True
superuser | True
normaluser | False

Figure 4-7. List of registered users

Also, you can explore the credentials table for its password and other information.

With this we conclude that we can create and manage user credentials using authentication.

In the preceding recipe we managed to create a superuser and non-superuser. The next recipe will talk about
managing and accessing user credentials on different column families for both types of users.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Managing User Permissions

Cassandra provides the mechanism to manage user permission and credentials for authenticated users. In this
recipe, we will explore more about managing/accessing user permissions. The default authorizer set configured in
cassandra.yaml is AllowAllAuthorizer.

1. First, let’s try to authenticate with normaluser and manage its permission with
AllowAllAuthorizer:

//connect with cqlsh.
$CASSANDRA_HOME/bin/cqlsh -3 -u normaluser -p normal

// list user permissions.
list all permissions of normaluser;
list all permissions of cassandra;

// grant permissions to normaluser.
grant select on all keyspaces to normaluser;

This results in the authorization error shown in Figure 4-8. Hence, we need to enable the authorizer in
cassandra.yaml.

cqlsh> list all permissions of normaluser;
cqlsh> list all permissions of Eassandra;
cqlsh> 'grant select on all keysbaces TO normaluser';

Figure 4-8. Managing permissions with AllowAllAuthorizer is not allowed

2. Let’s enable the authorizer configuration in cassandra.yaml and restart the server.
Figure 4-9 shows how to enable CassandraAuthorizer in cassandra.yaml.

- AllowAllAuthorizer allows any action to any user - set it to disable authorization.
- CassandraAuthorizer stores permissions in system auth.permissions table. Please

increase system auth keyspace replication factor if you use this authorizer.

authorizer: org.apache.cassandra.auth.AllowAllAuthorizer

authorizer: org.apache.cassandra.auth.CassandraAuthorizer

Figure 4-9. Enabling CassandraAuthorizer in cassandra.yaml

3. Now, let’s try to create a keyspace with normaluser:

create keyspace testkeyspace with replication = { 'class' : 'SimpleStrategy',
'replication_factor' : 3};

Again, we get an error (see Figure 4-10) because create permissions have not been given to normaluser.

cqlsh> create keyspace testkeyspace with replication = { 'class' : 'SimpleStrategy' , 'replication factor' : 3};

ATE per
Figure 4-10. Error as normaluser doesn’t have permission to create a keyspace

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Also, normaluser can’t grant permissions to itself. Only superuser can!

4,

So, let’s log in with superuser:

$CASSANDRA_HOME/bin/cqlsh -3 -u superuser -p superuser

Now, create a keyspace and grant permissions to normaluser:

// create keyspace.

create keyspace testkeyspace with replication = { 'class' : 'SimpleStrategy' ,

'replication factor' : 3};

// grant all permissions on 'testkeyspace' to normaluser.
grant all on keyspace testkeyspace to normaluser;

Upon issuing permission to normaluser, the server will store its permissions in the permissions table under the
system_auth keyspace.

6.

Let’s explore all given permissions of normaluser (see Figure 4-11).

// 1list all permissions.
list all permissions of normaluser;

cd15h> list all hermissions of normalusef;

username | resource | permission
............ +_----_-_----------_------+_--_-----.--
normaluser | <keyspace testkeyspace> | CREATE
normaluser | <keyspace testkeyspace> | ALTER
normaluser | <keyspace testkeyspace> | DROP
normaluser | <keyspace testkeyspace> | SELECT
normaluser | <keyspace testkeyspace> | MODIFY
normaluser | <keyspace testkeyspace> | AUTHORIZE

Figure 4-11. The current normaluser permissions

Let’s create anotherkeyspace and a privileges table under it with the name privileges:

// create keyspace.

create keyspace anotherkeyspace with replication = { 'class' : 'SimpleStrategy' ,

'replication factor' : 3};

// create table.
create table privileges (user id text PRIMARY KEY, read write boolean);

Let’s grant all permissions on the privileges table to normaluser:

grant all on table anotherkeyspace.privileges to normaluser;

www.it-ebooks.info

67

http://www.it-ebooks.info/

CHAPTER 4 = CASSANDRA DATA SECURITY

68

9

10.

11.

12.

Now, let’s list all normaluser permissions again (see Figure 4-12).

// 1list all permissions.
list all permissions of normaluser;

username
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser
normaluser

resource

<table
<table
<table
<table
<table
<table

anotherkeyspace
anotherkeyspace
anotherkeyspace
anotherkeyspace
anotherkeyspace
anotherkeyspace

.privileges>
.privileges>
.privileges>
.privileges>
.privileges>
.privileges>

<keyspace
<keyspace
<keyspace
<keyspace
<keyspace
<keyspace

testkeyspace>
testkeyspace>
testkeyspace>
testkeyspace>
testkeyspace>
testkeyspace>

Figure 4-12. The new list of permissions for normaluser

Next, let’s grant all permissions on all keyspaces to superuser:

grant select on all keyspaces to 'superuser';

I

2

| CREATE
| ALTER
| DROP
| SELECT
| MODIFY
| AUTHORIZE
| CREATE
| ALTER
| DROP
| SELECT
| MODIFY
| AUTHORIZE

And now grant select permission to superuser on the privileges table:

grant select on anotherkeyspace.privileges to 'superuser';

Let’s view all permissions given on the privileges table (see Figure 4-13).

list all permissions on privileges;

username

normaluser
normaluser
normaluser
normaluser
normaluser
normaluser

superuser

superuser

resource

<table

anotherkeyspace
anotherkeyspace
anotherkeyspace
anotherkeyspace
anotherkeyspace
anotherkeyspace

.privileges>
.privileges>
.privileges>
.privileges>
.privileges>
.privileges>

<all keyspaces>

anotherkeyspace

.privileges>

Figure 4-13. Permissions on privileges and parent resources

www.it-ebooks.info

I

+

| CREATE
| ALTER
| DROP
| SELECT
| MODIFY
| AUTHORIZE
| SELECT
| SELECT

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

13. We also can display permissions specific to a resource using the NORECURSIVE specifier
(see Figure 4-14).

list all permissions on privileges NORECURSIVE;

username | resource | permission
------------ +--_------_----------_---------------+--_---------
normaluser | <table anotherkeyspace.privileges> CREATE
normaluser | <table anotherkeyspace.privileges> ALTER
normaluser | <table anotherkeyspace.privileges> DROP

I I
I I
I I
normaluser | <table anotherkeyspace.privileges> | SELECT
I I
I I
I I

normaluser | <table anotherkeyspace.privileges> MODIFY
normaluser | <table anotherkeyspace.privileges> AUTHORIZE
superuser | <table anotherkeyspace.privileges> SELECT

Figure 4-14. List of permissions assigned to all users on the privileges table

14. Let’s connect using normaluser and try to view all permissions given on the
privileges table.

list all permissions on anotherkeyspace.privileges;
Again, we receive a “not authorized” error (see Figure 4-15). normaluser has been given all permissions on

the privileges table, but it can’t view everyone’s permissions. However, normaluser can perform other permitted
operations mentioned previously.

cqlsh> llst all permlssluns on anotherkeyspace privileges;

Bad que are not authorized to view eryone's permissions
Figure 4-15. No permission given to normaluser on anotherkeyspace

15. Let’s also try having normaluser drop itself and superuser (see Figure 4-16).

drop user normaluser;
drop user 'superuser';

The result, shown in Figure 4-16, indicates that normaluser can’t drop, revoke, or view permissions of other users.
But a superuser can!

cqlsh> drop user normaluser;

Bad Request: Users aren't allowed to DROP themselves
cqlsh> drop user 'superuser';
Bad Request: Only superusers are allowed to perfrom DROP USER queries

Figure 4-16. Dropping of user is not allowed with non-superuser

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

16. So, let’s connect with superuser and try to revoke permissions given to a specific user
(normaluser, in this case), as follows:

revoke all permissions on privileges from normaluser;
list all permissions on privileges;

Figure 4-17 shows that the action was successful.

cqlsh:anotherkeyspace> list all permissions on privileges;

username | resource | permission
----------- +--_--_.--_---.-------_-.----_-.---._+.----_-.----
superuser | <all keyspaces> | SELECT
superuser | <table anotherkeyspace.privileges> | SELECT

Figure 4-17. Permissions of a superuser on the privileges table

From this series of steps, we conclude:
e Anon-superuser can’t manage, access, or view other users’ permissions.
e Permissions can be given on the keyspace and the specific table/column family.

e Asuperuser can manage or access permissions of other users.

Accessing system_auth with AllowAllAuthorizer

By default, authentication is disabled in Cassandra and Al1lowAllAuthenticator is configured as the authenticator
in cassandra.yaml configuration. In the previous section we explored various authorization techniques
with PasswordAuthenticator. In this section we will explore whether the managing user’s permission
with AllowAllAuthorizer is permissible or not. This recipe will let you understand what will not work with
AllowAllAuthorizer. This is purely for experimentation purposes.

As mentioned above, the system_auth keyspace contains user credentials and permissions details. In this recipe,
we will try accessing the system_auth keyspace and managing user credentials without authentication.

1. Firstlet’s describe the system_auth keyspace (see Figure 4-18).

// describe keyspace.
describe keyspace system auth;

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

cqlsh:system auth> describe keyspace system auth;

CREATE KEYSPACE system auth WITH replication = {
‘class': 'SimpleStrategy’,
‘replication factor': '1'

};
USE system auth;

CREATE TABLE users (
name text PRIMARY KEY,
super boolean
) WITH
bloom filter fp chance=0.010000 AND
caching="'KEYS ONLY' AND
comment="" AND
dclocal read repair chance=0.000000 AND
gc_grace seconds=7776000 AND
read repair chance=0.100000 AND
replicate on write='true' AND
populate io cache on flush='false' AND
compaction={"'class': 'SizeTieredCompactionStrategy'} AND
compression={‘'sstable compression': 'SnappyCompressor'};

Figure 4-18. The system_auth keyspace described

2. Let’s explore the users table as shown in Figure 4-19.

cqlsh:system auth> select * from users;

cassandra | True

Figure 4-19. Default user in the users table

3. To start, let’s try deleting all the data from the users table (see Figure 4-20):

truncate users;

cqlsh:system auth> truncate users;
cqlsh:system auth> select * from users;
cqlsh:system auth>

Figure 4-20. Truncated users table

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

4. 'We were able to truncate the users table, but now let’s see whether we can drop it.
drop table users;

Figure 4-21 shows that we cannot do this, since it is a system table and restricted by Cassandra for external users.

cqlsh:system auth> drop table users;

Figure 4-21. Dropping the users table is not allowed

5. Next, restart the Cassandra server to verify whether the users table is empty (see Figure 4-22):

select * from users;

cqlsh:system auth> select * from users;
name | super

cassandra | True

Figure 4-22. Default user cassandra is prepopulated

Changes made to the system_auth keyspace with A11lowAllAuthorizer enabled will be ignored by Cassandra.
Hence changes made in step 3 will not be applied and Cassandra will populate default settings as shown in step 2.

6. Let'stryto create a user:

create user normaluser with password 'normal';
create user normaluser;

Creating a user with AllowAllAuthenticator is not permitted in Cassandra as you can see in Figure 4-23.
However, as we saw earlier, it is possible with PasswordAuthenticator.

cqlsh> create user normaluser with password 'normal’;

cqlsh> create user normaluser;

Figure 4-23. Trying to create a user with AllowAllAuthenticator while not logged in

7. We can alter the system_auth keyspace for replication strategy as:

alter keyspace system_auth with replication = {'class':'SimpleStrategy’,
'replication_factor':3};

With this recipe, we conclude that we can alter the system_auth keyspace but we cannot create a user with
AllowAllAuthenticator (authentication disabled). When authenticating on a Cassandra server using default user

credentials, you must configure the consistency level as QUORUM.
Let’s discuss SSL encryption and connecting cqlsh and Thrift clients when encryption is enabled.

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Preparing Server Certificates

In recent years, social media and Internet-based applications made data accessibility and sharing possible all over the
world. SSL protocols are used to send encrypted data over the Internet with secure communication.

For client-server or internode communication over SSL, we need to prepare server certificates. A keystore file
contains server keys, whereas a Truststore contains trusted SSL certificates for all clients or nodes.

Before we start a new recipe, let’s discuss some possible errors and resolutions up front. After configuring and
upon starting the Cassandra server, if we receive an error such as the following, we need to configure the installed Java
version with the Java cryptography extension (JCE).

Cannot support TLS_RSA WITH_AES_256_CBC_SHA with currently installed providers

Download the JCE package from:

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html (Java 6)
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html (Java 7)

Then copy local_policy.jar and US_export_policy.jar under the $JAVA_HOME/jre/1ib/security folder.
Since we are done with required configuration, let’s explore preparing server certificates with a simple exercise.

1. First, generate a keystore for the server using keytool:

keytool -genkey -alias servernode -keystore /home/impadmin/keys/server/server.jks
-storepass server -keypass server

Here, /home/impadmin/keys/server is the path to the folder that contains the keystore file. You may change it
accordingly. Figure 4-24 shows the basic details to be entered when generating a keystore.

What is your first and last name?
[Unknown]: 1localhost
What is the name of your organizational unit?
[Unknown]: Authors
What is the name of your organization?
[Unknown]: Cassandra
What is the name of your City or Locality?
[Unknown]: Noida
What is the name of your State or Province?
[Unknown]: UP
What is the two-letter country code for this unit?
[Unknown]: 1IN
Is CN=localhost, OU=Authors, O=Cassandra, L=Noida, ST=UP, C=IN correct?
[no]: y

Figure 4-24. Inputs provided during generation of the keystore

2. Export the public key part from the keystore file:

keytool -export -alias servernode -file /home/impadmin/keys/publickey.cer -keystore
/home/impadmin/keys/server.jks -storepass server

73

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Figure 4-25 shows publickey. cer is stored in the /home/impadmin/keys folder.

Certificate stored in file </home/impadmin/keys/publickey.cer>

Figure 4-25. A stored publickey certificate with a full path

3. Importpublickey.cer as a trusted certificate in the server’s truststore:

keytool -import -v -trustcacerts -alias client -file /home/impadmin/keys/publickey.cer
-keystore /home/impadmin/keys/.truststore -storepass client

Figure 4-26 shows the certificate has been successfully added.

Serial number: 7464dde
valid from: Sat Oct 19 19:13:36 IST 2013 until: Fri Jan 17 19:13:36 IST 2014
Certificate fingerprints:
MD5: C5:E0:06:20:96:FE:F2:7C:04:15:25:09:7C:0C:FF:17
SHAl: 12:60:B2:37:77:1B:BE:9F:17:13:BB:56:DE:78:5F:CD:F3:E3:CF:5E
SHA256: 45:E4:28:BB:5F:90:F8:BA:98:0D:5E:66:40:C5:9E:B9:FF:03:DA:1D:7A:ED:AC:9B:17:B0:80:8F:2E:83:B4:42
Signature algerithm name: SHAlwithDSA
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

©000: 77 D8 34 83 1A EF 9C 42 18 65 8B 78 13 5D 33 B7 w.4....B.e.x.]3.
001e: B7 63 ED 9E «Cl s

]
]

Trust this certificate? [no]: y

Certificate was added to keystore
[Storing /home/impadmin/keys/.truststore]

Figure 4-26. The client’s certificate added successfully to the server’s truststore

With that said, we have prepared server certificates. In next few recipes we will use truststore to access the server
with trusted certificates. For internode communication, we need to repeat the above recipe on each node and copy
each node’s public certificate in the truststore of each node.

Figure 4-27 shows a graphical representation of client certification preparation and importing with truststore.

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Share publickey.cert

Import client’s
publickey.cert to

truststore
Export public key
certificate CA.clientl.publickey.cert
Share public key))
e e ST CA.client2.publickey.cert

CA.client3.publickey.cert

Figure 4-27. The process to prepare and share a client’s public key certificate with the server

The process of preparing and sharing certificates among Cassandra nodes is the same, and each node has to
export and share public key certificates with all other nodes in the Cassandra cluster.

Once the certificate preparation process is complete, you need to enable and connect command line clients with
SSL encryption enabled. The next section will discuss this process.

Connecting with SSL Encryption

The previous section discussed connecting with cqlsh having SSL enabled. Let’s explore connecting with Cassandra-cli
command line client with SSL encryption enabled.

Connecting via Cassandra-cli

Let’s enable Cassandra for encrypted client-to-node encryption and connect with the server in the Thrift way
(using Cassandra-cli).

1. First we need to configure the server for client-to-node encryption.

// enable server
enabled: true

// path to keystore
keystore: /home/impadmin/keys/server.jks

// keystore password
keystore password: server

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

The following shows the configuration changes required in cassandra.yaml to configure keystore and
truststore paths:

enable or disable client/server encryption.
client_encryption_options:
enabled: false
keystore: /home/impadmin/keys/server.jks
keystore password: server
require client auth: false
Set trustore and truststore password if require client auth is true
truststore: /home/impadmin/keys/.truststore
truststore password: client
More advanced defaults below:
protocol: TLS
algorithm: SunX509
store_type: JKS
cipher_suites: [TLS ECDHE RSA WITH AES 256 CBC SHA, TLS DHE RSA WITH AES 128 CBC SHA, TLS ECDH
ECDSA WITH AES 128 CBC SHA, TLS DHE RSA WITH AES 256 CBC SHA,
SSL DHE RSA WITH 3DES EDE CBC SHA, TLS ECDH RSA WITH AES 256 CBC SHA, SSL RSA WITH RC4 128 SHA,
TLS ECDH ECDSA WITH 3DES EDE CBC SHA, TLS ECDHE RSA WITH RC4 128 SHA,
TLS ECDH ECDSA WITH RC4 128 SHA, TLS ECDHE ECDSA WITH RC4 128 SHA, TLS ECDHE RSA WITH AES 128 CBC
SHA, TLS ECDHE ECDSA WITH 3DES EDE CBC SHA,
TLS ECDH RSA WITH RC4 128 SHA, TLS EMPTY RENEGOTIATION INFO SCSV, TLS ECDH RSA WITH 3DES EDE CBC
SHA, TLS ECDH RSA WITH AES 128 CBC SHA,
TLS ECDHE ECDSA WITH AES 256 CBC SHA, TLS ECDHE ECDSA WITH AES 128 CBC SHA, TLS DHE DSS WITH AES
256 CBC SHA, TLS RSA WITH AES 128 CBC SHA,
TLS ECDH ECDSA WITH AES 256 CBC SHA, TLS RSA WITH AES 256 CBC SHA, TLS ECDHE RSA WITH 3DES EDE CBC
SHA, SSL RSA WITH RC4 128 MD5, TLS DHE DSS WITH AES 128 CBC SHA,
SSI DHF DSS WTTH 3DFS FDF CRC SHA. SSI RSA WTTH 3DFS FDF CRC SHA1

Here cipher_suites configuration contains all valid protocols, and it is recommended to keep it as-is while
configuring with this application.
You may enable require_client_auth to true for client certificate authentication.

2. Start the Cassandra server and connect cassandra-cli:
$CASSANDRA_HOME/bin/cassandra-cli -h 127.0.0.1 -p 9160 -ts

/home/impadmin/keys/.truststore -tf org.apache.cassandra.cli.transport.
SSLTransportFactory -tspw client

Here, -ts, -tf, and -tspw are truststore, transport factory, and truststore password.

With SSL encryption we can connect to the Thrift client using transport factory and truststore configuration.
Next, we will connect cqlsh with SSL encryption enabled.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Connecting via cqlsh

To connect cqlsh with encryption enabled, we need to create .cqlshrc file under home directory. Also we can connect

cqlsh with require_client_auth=false. Let’s connect and configure cqlsh in this recipe.

1. Let’s create .cqlshrc file under home directory for SSL-specific configurations.
factory = cqlshlib.ssl.ssl transport factory

// path to truststore file
certfile = /home/impadmin/source/keys/.truststore

Figure 4-28 shows the configuration changes in the . cqlshrc file.

[connection]

hostname = 127.0.6.1

port = 9160

; enable below for ssl

factory = cqlshlib.ssl.ssl transport factory

[ssl]

certfile = /home/impadmin/source/keys/.truststore
;3 optional - true by default.

validate = true

Figure 4-28. The .cqlshrc configuration changes

2. That’sit! Let’s run cqlsh to connect with the Cassandra server:

SSL_CERTFILE=/home/impadmin/source/keys/publickey.cer
SSL_VALIDATE=$CASSANDRA_HOME/bin/cqlsh -3 -t cqlshlib.ssl.ssl transport_factory

Connecting via the Cassandra Thrift Client

The following code snippet is the way to connect via a Cassandra Thrift Java-based client with a secure server:

TSSLTransportFactory.TSSLTransportParameters params =
new TSSLTransportFactory.TSSLTransportParameters();
params.setTrustStore("path to .truststore", "trustore password");

transport = TSSLTransportFactory.getClientSocket("localhost", 7001, 10000, params);
TProtocol protocol = new TBinaryProtocol(transport);

Cassandra.Client client = new Cassandra.Client(protocol);

Here 7011 is the SSL port. The rest is similar to the Cassandra-cli way. Open the client socket using
SSL-configured transport parameters (e.g., configure truststore path, password, and SSL transport factory).

That’s how we can connect to the Cassandra server via command-line clients and the Java-based Thrift client.

www.it-ebooks.info

77

http://www.it-ebooks.info/

CHAPTER 4 © CASSANDRA DATA SECURITY

Summary

To summarize, the topics discussed in this chapter are as follows:
e Managing user roles and privileges via super and non-superusers
e Preparing SSL encryption certificates for client-server and internode communication
e Connecting via various clients to secure a Cassandra server.

That ends our discussion around data security and user management with Cassandra.

The next chapter will move closer to large data analytics by discussing batch processing using Hadoop’s
MapReduce algorithm and how to run the MapReduce program over Cassandra using the Cassandra file system as
both input and output!

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

MapReduce with Cassandra

So, what's next after discussing data modeling, security, and user role privileges management? With Cassandra query
language (CQL), we can definitely manage basic query-based analytics via primary key and secondary indexes and
keep data model denormalized as much as possible. But, still, it is possible to perform analytics over a very large
chunk of data, in a manner similar to joins, or to persist data into Cassandra after counting specific fields, such as
counting the tweets of a particular user account for a given date range. Clearly it's a case of large data analytics, more
specifically batch analytics.

In this chapter we will:

e Provide an introduction to MapReduce
e Explore Hadoop
e Discuss HDFS and MapReduce

e Describe integrating Cassandra with MapReduce

Batch Processing and MapReduce

Any form of data, structured or unstructured, would be meaningless unless it gets processed. So far we have discussed
various ways to manage and model data volume into Cassandra.

What about running analytics over such archived large data sets? Large data analytics can be divided into two
broad categories:

e Batch processing
e Stream processing

In lay terms, batch processing is the execution of one or multiple jobs. These jobs are programmed to require
minimal human intervention. Required input/output parameters and resources are preconfigured with jobs.
The history of batch processing mechanisms can be traced back to punch cards and mainframe computing.

Let’s take an example of a satellite channel application archiving logs for many years. At the end of each year
(or maybe half yearly) the provider wants to know how many users of a particular age range have watched specific
programs in a primetime slot. Since data volume is huge and totally unstructured, we cannot stream and fit it in-
memory to perform such computations. Such data can be largely unrelated to each other and to process these
in-batch would require predefined steps for parallel processing.

With respect to large data, batch processing jobs can be categorized in three simple steps:

. extract,
e transform,

e andload

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

This process is commonly referred to as ETL. Various ETL tools such as Ab initio, CloverETL, Pentaho, and
Informatica are available for data warehousing and analytics.

Another aspect of ETL systems is analytics. Imagine a system needs to perform big data analytics where data
input points are different applications and the system needs to generate a consolidated aggregation report. This is
where data would get extracted from various input channels and will get computed and transformed before loading
itinto a database. Figure 5-1 shows an example where ETL based analytics need to extract data from social media
channels, financial applications, and server logs. Transformation/computation is done on the engine side and finally
the output gets loaded onto the database.

Figure 5-1. ETL based analytics

In 2008, Google’s research program published a paper “MapReduce: Simplified Data Processing on Large Clusters”
that introduced the MapReduce paradigm, though it had been in use since 2003. (You can download this white paper
athttp://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdio4.pdf.)
The The MapReduce algorithm is a distributed parallel programming model, comprised of the map and reduce
function, and is one solution to business problems that require analytics over heterogeneous forms of massive
amounts of data. Since the Google paper was published, various MapReduce implementations have been built.

One popular and open-source implementation is Apache Hadoop.

Apache Hadoop

Apache Hadoop is a popular open-source library for distributed computation for large-scale data sets. It’s a large-scale
batch processing infrastructure that is primarily meant to deal with batch analytics over data distributed across
hundreds of nodes.

80

www.it-ebooks.info

http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

With a MapReduce job, the data set is divided into chunks in such a way that each of these chunks can be
processed independently as a map task in a collocated way and then the framework sorts and supplies the output for
reduced tasks. The Hadoop framework automatically manages task scheduling and data distribution.

Obviously such a huge amount of data cannot be managed on a single node and it has to be distributed across
multiple nodes. Two issues that are clearly visible here are:

e Data Distribution

e Co-located data processing

HDFS

Data distribution with Hadoop is managed with the Hadoop Distributed File System (HDFES). HDFS is one of the
submodules for Apache Hadoop project. It is specifically designed to build a scalable system over a less expensive
hardware. HDFS is based on master/slave architecture, where a single process known as NameNode runs on the
master node and manages all the information about data files and replication across the cluster of nodes.

For more information about HDFS architecture, please refer to
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

MapReduce

MapReduce implementation is also the answer to another issue: It's a framework for parallel processing of large
amounts of data distributed across multiple nodes.
Three primary tasks performed during the MapReduce process are:

e Splitand map
e Shuffle and sort
e Reduce and output

Upon submitting a job, input data is split in chunks and assigned as a parallel map task to each mapper. Each
mapper generates a distinct key value pair as an output, which is shuffled and sorted by keys and supplied as input
to each reducer. Each mapper and reducer running on data node would operate on local data only (data locality).
Another added advantage is framework is completely decoupled and custom implementations for mapper, reducer,
file format, and record reading.

Let’s simplify this with the help of a famous word count problem. Here, the program needs to output a number of
occurrences of each word of the input file (see Figure 5-2).

81

www.it-ebooks.info

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

Shuffle and reduce
Welcome to the Cassandra world sort I
ﬂm Apress, 1 ‘:‘| Apress.1 I
{Welcome, 1}
. {to, 1} book, 1 E’lLJl output
spit {the, 1}
{Cassandra,1} Cassandra, 1 I {Apress 1}
wors Cassandra, 1
Cassandra, 1 I {book, 1}
- I {Cassandra,3}
VWelcome to the Cassandra world Anrass tioak Casssaden roade sa EESY“] M
Apress book Cassandra made easy split [lmag I {easy‘ 1}
is 1 is,1)
Cassandra 2.0.8 is out now (Apress, 1} I {IS, 1}

{Book,1} made.1 c:{ made.1 I {made, 1}

{Cassandra, 1}

{now,1}
o M now, 1 Lo]
{easy,1} I {the,1}
the, 1 QILI
: fto, 1}
Cassandra 2.0.8 is out now IM—J mlm—]l {oug!‘i}
[] map I I 1
out,1 out {welcome, 1}
{Cassandra,1} I
{world, 1}
{2.08,1)
on 2081}

{out, 1} world, 1 ‘=’| word1 I
{now, 1}
2081 =| 208.1 I

Figure 5-2. How MapReduce works with word count

Figure 5-2 is a graphical representation of the MapReduce program of word count for three given lines from a
Word file.

1. Welcome to the Cassandra world
2. Apress book Cassandra made easy
3. Cassandra 2.0.8 out now

Here each map task runs locally on data node where the data resides. Then data is implicitly shuffled and
sorted by the Hadoop MapReduce framework and finally given to reduce tasks, after the reduction process outputs
itinto a file.

To understand it on a lower level, you may also refer to the pseudo code representation in Figure 5-3.

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

def map(file) def reduce(word,countArr([])
for each word in file var sum
emit(word,1) for(count <= 0 to countArr)
sum +=count

emit(sum)

Figure 5-3. Word count MapReduce algorithm

Read and Store Tweets into HDFS

Since we have followed Twitter-based examples throughout this book, let’s again use real-time tweets for an HDFS/
MapReduce example. The reason to start with HDFS is to get started with running MapReduce over default HDFS, and
then later explain how it can be executed over an external file system (e.g., Cassandra file system). In this section we
will discuss how to set up and fetch tweets about “apress” In our example, we will stream in some tweets about “Apress
publications” and store them on HDFS. The purpose of this recipe is to set up and configure Hadoop processes and
lay the foundation for the next recipe in the “Cassandra MapReduce Integration” section.

Reading Tweets

To start, let’s build a sample Maven-based Java project to demonstrate reading tweets from Twitter. (For more details
on using Maven, you may also refer to http://maven.apache.org/plugins/maven-site-plugin/usage.html.)

1. First, let’s generate a Maven project:
Cmvn archetype:create -DgroupId=com.apress -DartifactId=twitterExample -Dversion=1.0 -Dpackaging=jar

2. Let'sadd atwitter4j dependency (see Figure 5-4) in pom.xml:

<!-- Twitter 4j dependency -->
<dependency>
<groupId>org.twittersj</groupId>
<artifactId>twitter4j-core</artifactId>
<version»[3.0,)</version>
</dependency>

3. Configure twitter4j.properties (under src/main/resources) for consumer and
access credentials:

#twitter4j.properties

Given below keys are masked. Before running DefaultTwitterService, kindly change them according to
your settings.

oauth.consumerSecret=8XXXXXXCXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
oauth.accessToken=3CCXX
oauth.accessTokenSecret=hxXXX

oauth. consumerKey=0oXxXXXXXXXXXXXXXXXXXXXX

83

www.it-ebooks.info

http://maven.apache.org/plugins/maven-site-plugin/usage.html
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

4. Let’s create a connection using the Twitter API as:

twitter = new TwitterFactory().getInstance();

Note Please refer to com.apress.chapters.mapreduce.twittercount.hdfs.ConnectionHandler for the
implementation.

5. Next configure apress as search tokens and fetch tweets:
Query query = new Query("apress");
QueryResult result = connection.search(query);
6. Let’s store these tweets on a local folder:
final String filePath = "tweets"; // you may change it as per your configuration

File file = new File(filePath);
FileOutputStream fos = null;

try
{
fos = new FileOutputStream(file);
}
catch (FileNotFoundException e)
{
// log error
}
// read and write tweets on local file system
do
{
List<Status> statuses = result.getTweets();
for (Status status : statuses)
{
StringBuilder sb = new StringBuilder();
sb.append(status.getUser().getCreatedAt());
sb.append("\001");
if (status.getUser() != null)
{
sb.append(status.getUser().getName());
sb.append("\001");
sb.append(status.getText());
sb.append("\n");
try
{
fos.write(sb.toString().getBytes());
}
84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

catch (IOException e)

{
// log error
}
count++;
}
while ((query = result.nextQuery()) != null);
}

Running this will store a tweets file in the current directory.

The source code for all the examples used in this chapter is available with the downloads for this book.
The complete source code for the preceding snippet is available at com.apress.chapter5.mapreduce.twittercount.
hdfs.DefaultTwitterService

Storing Tweets into HDFS

Next, store tweets into HDFS. You also need to have Hadoop installed and set up. In this example we will be using
Hadoop single node setup, and that’s what we’ll do first.
A few basic steps to the setup are:

1. Download the Hadoop tarball distribution:
https://archive.apache.org/dist/hadoop/core/hadoop-1.1.1/hadoop-1.1.1-bin.tar.gz
2. Extract the tarball into a local folder and run the following command:
$HADOOP_HOME/bin/hadoop namenode -format
Here, $HADOOP_HOME is the directory containing extracted Hadoop binaries.
3. Modify $HADOOP_HOME/conf/core-site.xml for the Default FS setting:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>

4. Modify $HADOOP_HOME/conf/hdfs-site.xml for the replication setting:

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>

85

www.it-ebooks.info

https://archive.apache.org/dist/hadoop/core/hadoop-1.1.1/hadoop-1.1.1-bin.tar.gz
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

5. Start the Hadoop process by running the following:
$HADOOP_HOME/bin/start-all.sh

Now complete the following steps to copy the tweets file:

1. Before we copy the local file on HDFS, let’s verify whether all five processes are running.
Figure 5-4 shows all those as underlined.

17067 TaskTracker

16796 SecondaryNameNode

9633 Jps

16915 JobTracker

16521 NameNode

5243 org.eclipse.equinox.launcher 1.2.0.v20110562.jar
6270 CassandraDaemon

16652 DataNode

Figure 5-4. Five Hadoop processes (underlined) running on a local box

2. Copy the tweets file on HDFS:

// create /apress/tweetdata on HDFS
$HADOOP_HOME/bin/hadoop fs -mkdir /apress/tweetdata
$HADOOP_HOME/bin/hadoop fs -put $DIR/tweets /apress/tweetdata

Here tweets are stored under the HDFS directory: /apress/tweetdata.

3. Once data is copied, you may verify it using the web admin UI (localhost:50070) by
clicking on Browse the filesystem, as shown in Figure 5-5. You see data is available using
the Hadoop web UI console.

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

€ ® 2 [1ocalhost:50070/dfshealth.jsp
NameNode 'localhost:9000'

Started: Sun Sep 2919:33:11I1ST 2013

Version: 1.1.1,r1411108

Compiled: Mon Nov 19 10:48:11 UTC 2012 by hortonfo
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

9 files and directories, 2 blocks = 11 total. Heap Size is 60.19 ME / 888.94 MB (69%6)

Configured Capacity © 22028GB
DFS Used : 1.75 MB
Non DFS Used : 4955 GB
DFS Remaining ! 17073 GB
DFS Used% . 0%
DFS Remaining% : 7751 %
Live Nodes : 1
Dead Nodes : 0
Decommissioning Nodes : 0
Number of Under-Replicated Blocks 0

Figure 5-5. Hadoop Web Ul admin console

Alternatively, you can run the following command to validate the stored tweet file:
$HADOOP_HOME/bin/hadoop fs -lsr /apress/tweetdata

We are storing the live Twitter stream on the local file system first just for this sample exercise. With real-time
streaming of tweets, you may want to store a live Twitter stream into HDFS using Flume or Scribe. Please refer to
https://cwiki.apache.org/FLUME/ or https://github.com/facebook/scribe.

For more information on installation and setup, you can refer to
http://hadoop.apache.org/docs/stable/single node_setup.html.

In this example, we discussed how to store live tweets in HDFS. In the following section, we will explore writing
a MapReduce program to store the tweet count of specific users and dates into the Cassandra column family.

Cassandra MapReduce Integration

In this section, we will read tweets (see above section) from HDFS and discuss a MapReduce program to perform the
computation of tweets. Finally, reduced output will be stored in the Cassandra tweetcount column family. We will
discuss MapReduce over Cassandra with two recipes, which are:

¢ Reading tweets from HDFS and storing tweet counts into Cassandra.

¢ Reading tweets from Cassandra and storing tweet counts into Cassandra.

87

www.it-ebooks.info

https://cwiki.apache.org/FLUME/
https://github.com/facebook/scribe
http://hadoop.apache.org/docs/stable/single_node_setup.html
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

For this example, we will be using the Thrift protocol to create a Cassandra schema. As an open-source API
for Cassandra, MapReduce integration is available with the Thrift protocol. Sample exercises will demonstrate the
MapReduce integration with Cassandra in a CQL3 way.

Reading Tweets from HDFS and Storing Count Results into Cassandra

In this section we will be reading the previously stored tweets file on the HDFS directory /apress/tweetdata (see the
preceding section) and storing the tweet count per user and per date in Cassandra. Cassandra provides MapReduce
support for both Thrift and CQL3. We will explore both protocols starting with Thrift.

The Thrift Way

Let's explore it with the same Twitter example, where the user and their tweets should be stored locally and sorted by
tweet_date.

1. First, we need to prepare the data definition. Let’s create a column family tweetcount
using Cassandra-cli:

// create keyspace.
Create keyspace tweet keyspace;

use tweet keyspace;

// create column family tweetcount.
create column family tweetcount with comparator='UTF8Type' and key validation_class = 'UTF8Type' and
column_metadata=[{column_name:'count', validation class:'Int32Type'}];

2. Let’s create a MapReduce job. We need to create a Hadoop configuration instance and
configure the NameNode host and port:

Configuration conf = new Configuration();

conf.set("fs.default.name", "hdfs://localhost:9000"); // Change this as per your Hadoop
configuration.

conf.set("mapred.child.java.opts", "-Xms1024m -Xmx2g -XX:+UseSerialGC");
conf.set("mapred.job.map.memory.mb", "4096");

conf.set("mapred.job.reduce.memory.mb", "2048");
conf.set("mapreduce.map.ulimit","1048576");

conf.set("mapred.job.reduce.physical.mb", "2048");
conf.set("mapred.job.map.physical.mb", "2048");

Note You may want to change fs.default.name if you're running on a remote machine.

3. Let’s now configure the MapReduce job for the mapper and reducer:

//Mapper configuration
job.setMapperClass(TweetTokenizer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

// Reducer configuration
job.setReducerClass(TweetAggregator.class);
job.setOutputKeyClass(ByteBuffer.class);
job.setOutputValueClass(List.class);
job.setOutputFormatClass(ColumnFamilyOutputFormat.class);

4. Next, we need to provide a Cassandra-specific configuration for output mapping:

ConfigHelper.setOutputRpcPort(job.getConfiguration(), "9160");
ConfigHelper.setOutputInitialAddress(job.getConfiguration(), "localhost");
ConfigHelper.setOutputPartitioner(job.getConfiguration(), "Murmur3Partitioner");
ConfigHelper.setOutputColumnFamily(job.getConfiguration(), KEYSPACE_NAME, COLUMN_FAMILY);

Note You can also change the rpc port and initial address in case you are not running on a localhost.

5. Finally, we need to provide input and output paths:

FileInputFormat.addInputPath(job, new Path(otherArgs[o0]));
job.setOutputFormatClass(ColumnFamilyOutputFormat.class);

Here otherArgs[0] is the input path for the HDFS tweet file (e.g., /apress/tweetdata).
Let’s have a look at the mapper (TweetTokenizer):

public class TweetMapper

{

public static class TweetTokenizer extends Mapper<LongWritable, Text, Text, IntWritable>

{

private final static IntWritable one = new IntWritable(1);

/* (non-Javadoc)
* @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.
Mapper.Context)
*/
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException

{
// split into tokens and pass date and count as key.
String[] values = StringUtils.split(value.toString(), "\o01");
if(values.length >=2 83 values.length <=3)
{
context.write(new Text(values[0]), one); // count on by date.
context.write(new Text(values[1]), one); // count on users.
}
}
}
}

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

Now, let’s have a look at the reducer (TweetAggregator):

public static class TweetAggregator extends org.apache.hadoop.mapreduce.Reducer<Text,
IntWritable, ByteBuffer, List<Mutation>>

{

}

public void reduce(Text word, Iterable<IntWritable> values, Context context) throws IOException,
InterruptedException
{

int sum = 0;
for (IntWritable val : values)
sum += val.get();

context.write(ByteBufferUtil.bytes(word.toString()), Collections.
singletonlList(getMutation(word, sum)));

}

private static Mutation getMutation(Text word, int sum)
{
Column ¢ = new Column();
c.setName(ByteBufferUtil.bytes("count"));
c.setValue(ByteBufferUtil.bytes(sum));
c.setTimestamp(System.currentTimeMillis());

Mutation m = new Mutation();

m.setColumn_or supercolumn(new ColumnOrSuperColumn());
m.column_or supercolumn.setColumn(c);

return m;

The complete source code of this MapReduce job can be found with the downloads for this book. The executable
classis TwitterHDFSJob (com.apress.chapter5.mapreduce.twittercount.hdfs package). You also can refer to the
README. txt (under src/main/resources) file for further instructions about setting the database and running this
MapReduce job.

After successfully executing the job, the output in the tweetcount column family will be as shown here:

[default@tweet keyspace] list tweetcount;
Using default limit of 100
Using default cell limit of 100

RowKey: Mon May 11 06:16:04 IST 2009
=> (name=count, value=334, timestamp=1407569960904)

RowKey: Hazem Saleh
=> (name=count, value=334, timestamp=1407569960798)

RowKey: cessprin
=> (name=count, value=334, timestamp=1407569960990)

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

RowKey: Thu Feb 23 00:24:16 IST 2012

=> (name=count, value=334, timestamp=1407569960966)
RowKey: Hunter Scott

=> (name=count, value=334, timestamp=1407569960803)

22 Rows Returned.

The sample output of the stored tweetcount includes a total of 22 rows. The row key is either tweet date or user
name and contains a column with the name as count and its value.

The CQL3 Way

In previous chapters we discussed the differences between and interoperability issues with CQL3 and Thrift.
Cassandra provides support for CQL-compatible input and output format classes for MapReduce. Please note that
these implementations are still based on Thrift but not the native CQL3 driver. In this example, we will be using
COLOutputFormat for writing output in the CQL3 column family. We know that column families created via CQL3 are
not visible with Thrift, so let’s explore how we can run the MapReduce over CQL3 table/column families. Running the
preceding MapReduce program with CQL3 requires very few changes. We need to define the table in CQL3 format and
change the Hadoop job configuration to point to the CQL3-based output format. Let’s discuss these changes as follows:

1. First, you need to create the table tweetcount:
create table tweetcount_cql (key text primary key, count int);
2. Changesrequired at the Hadoop job level are:

// set update COL and row key
job.getConfiguration().set("row key", "key");
String query = "UPDATE " + KEYSPACE_NAME + "." + COLUMN_FAMILY + " SET count = ? ";
CqlConfigHelper.setOutputCql(job.getConfiguration(), query);
//set cql outputformat class
job.setOutputFormatClass(CqlOutputFormat.class);

3. The CQL3-based aggregator is:

public static class TweetCQLAggregator extends org.apache.hadoop.mapreduce.Reducer<Text,
IntWritable, Map<String,ByteBuffer>, List<ByteBuffer>>

{

private static Map<String,ByteBuffer> keys = new HashMap<>();

/* (non-Javadoc)
* @see org.apache.hadoop.mapreduce.Reducerfireduce(KEYIN, java.lang.Iterable,org.apache.hadoop.
mapreduce.Reducer.Context)
*/
public void reduce(Text word, Iterable<IntWritable> values, Context context) throws
IOException,
InterruptedException

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

{
int sum = 0;
for (IntWritable val : values)
sum += val.get();
System.out.println("writing");
keys.put("key", ByteBufferUtil.bytes(word.toString()));
context.write(keys, getBindVariables(word, sum));
}
private List<ByteBuffer> getBindVariables(Text word, int sum)
{
List<ByteBuffer> variables = new ArraylList<ByteBuffer>();
variables.add(Int32Type.instance.decompose(sum));
return variables;
}

Finally, after running the HDFS job (see TwitterHDFSCQLJob, source referenced after the output), we can see
the output using the cqlsh client:

select * from tweetcount_cql;

|

+

Mon May 11 06:16:04 IST 2009 |

Hazem Saleh |

cessprin |

Thu Feb 23 00:24:16 IST 2012 |

Hunter Scott |

Tue Sep 29 22:01:16 IST 2009 |

Elena Vielva Gomez |

Sun Dec 18 20:13:39 IST 2011 |
Alejandro || Serras | 334

|

|

|

|

|

|

|

|

|

|

|

|

Tue Jul 06 18:01:47 IST 2010 334
Wed Mar 07 05:11:11 IST 2012 334
Wed Nov 07 14:04:18 IST 2012 334
Oseias Moraes 334

Adeesh Fulay 334

Sat Nov 05 21:29:20 IST 2011 334
Sun Jul 24 21:44:17 IST 2011 334
Manthita. 334

ebooksdealofdaybot 334

Wed ApI 23 19:19:49 IST 2014 334
The News Selector 6680

Louise Corrigan 334

Mon Mar 03 01:19:17 IST 2014 6680

22 Rows Returned.

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

The complete source code is available with the downloads for this book, and classes discussed are

e com.apress.chapter5.mapreduce.twittercount.hdfs.TwitterHDFSCQLJob

e com.apress.chapter5.mapreduce.twittercount.hdfs.TweetAggregator

In next section we will discuss using Cassandra as an input and output format for MapReduce.

Cassandra In and Cassandra Out

Let’s discuss running a MapReduce where input will be fetched from Cassandra and output will also get stored in
Cassandra.

So far we have seen that the MapReduce job execution is possible over default HDFS and over an external file
system such as Cassandra. You must be wondering which file system to adopt and why? Well it depends on the use
case. For example, if an application has already been built using various Cassandra features, it’s better to keep its
MapReduce base batch analytics to be implemented in Cassandra. There can be use cases where HDFS has already
been used for storing raw data and the user might not agree with migration but still want to run a few MapReduce
jobs and store output into Cassandra. Similarly the user may want to migrate away from HDFS and its ecosystem
(Hive, Pig, and so forth) to a single database solution (i.e., Cassandra). One big difference we must remember is that
HDES is a distributed file system, whereas Cassandra is a distributed database. Cassandra is fault-tolerant and doesn’t
have a single point of failure whereas HDFS is not. Another key difference is that Hadoop is master-slave architecture
whereas Cassandra is peer to peer. Since the solutions build over Cassandra are scalable and use Cassandra’s specific
features (such as secondary indexes, composite columns, etc.), we still might need to perform batch analytics using
MapReduce over Cassandra. In this recipe, we discuss the same tweet count example using Cassandra as both the
input and output format.

The program takes a user name as an input argument (the default user value is mevivs), for which a number of
tweets is calculated.

1. Weneed to prepare the data definition first. Let’s create a keyspace tweet_keyspace and
column families tweetstore and tweetcount. Here tweetstore will store raw tweets, whereas
the count for a specific user will be stored in the tweetcount column family via cqlsh.

// create keyspace.
create keyspace tweet keyspace with replication={"class': 'SimpleStrategy', 'replication factor:3};
use tweet_keyspace;

// create input column family.
create table tweetstore(tweet id timeuuid PRIMARY KEY, user text, tweeted at timestamp, body text);

// update column family from Cassandra-cli(thrift way) to enable index over user.
create column family tweetstore with column_metadata=[{column_name:'user', validation_
class:'UTF8Type', index type: KEYS},{column_name:'body', validation class: 'UTF8Type'},
{column_name: 'tweeted at',validation class: 'DateType'}]

// create output column family via Cassandra-cli.

create column family tweetcount with comparator='UTF8Type' and key validation_class = 'UTF8Type'
and column_metadata=[{column_name:'count', validation class:'Int32Type'}];

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

2. Let’s populate some rows in tweetstore using cqlsh client:
use tweet_keyspace;

// copy command
copy tweetstore from STDIN;

The following is the console output of copying from STDIN:

cqlsh:tweet_keyspace> copy tweetstore from STDIN;
[Use \. on a line by itself to end input]

[copy] now(),bama meeting with European allies on Ukraine http://t.co/1Ik3qBOPXC from #APress #tns,
2013-10-20,mevivs

[copy] now(),nergdahl uproar halts plan for return celebration http://t.co/bywaBAoWTP from #APress
#tns,2012-09-22,Chrisk

[copy] now(),booksdealofdaybot”A[Apress]?Android Apps Security?http://t.co/5XLSObkkof,2014-03-24,mevivs
[copy] \.

3 rows imported in 6 minutes and 35.900 seconds.
3. Let’s create a MapReduce job with this mapper and reducer configuration:

Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
Job job = new Job(conf, "tweet count");

job.setJarByClass(TwitterCassandraJob.class);

// mapper configuration.
job.setMapperClass(TweetMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setInputFormatClass(ColumnFamilyInputFormat.class);

// Reducer configuration
job.setReducerClass(TweetAggregator.class);
job.setOutputKeyClass(ByteBuffer.class);
job.setOutputValueClass(List.class);
job.setOutputFormatClass(ColumnFamilyOutputFormat.class);

4. Next, we need to configure the MapReduce job for input family and format configuration:

// Cassandra input column family configuration
ConfigHelper.setInputRpcPort(job.getConfiguration(), "9160");
ConfigHelper.setInputInitialAddress(job.getConfiguration(), "localhost");
ConfigHelper.setInputPartitioner(job.getConfiguration(), "Murmur3Partitioner");
ConfigHelper.setInputColumnFamily(job.getConfiguration(), KEYSPACE_NAME, INPUT_COLUMN_FAMILY);

job.setInputFormatClass(ColumnFamilyInputFormat.class);

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

5. Since we need to fetch records for a specific indexed column (user), we will be using
the Thrift Slice API to configure the MapReduce job with the mapper class for
filtered streaming.

// Create a slice predicate

SlicePredicate slicePredicate = new SlicePredicate();
slicePredicate.setSlice range(new SliceRange(ByteBufferUtil.EMPTY BYTE BUFFER, ByteBufferUtil.EMPTY_
BYTE_BUFFER, false, Integer.MAX VALUE));

// Prepare index expression.

IndexExpression ixpr = new IndexExpression();ixpr.setColumn_name(ByteBufferUtil.bytes(COLUMN NAME));
ixpr.setOp(IndexOperator.EQ);

ixpr.setValue(ByteBufferUtil.bytes(otherArgs.length > 0 &% !StringUtils.isBlank(otherArgs[o0])?
otherArgs[0]: "mevivs"));

List<IndexExpression> ixpressions = new ArraylList<IndexExpression>();
ixpressions.add(ixpr);

ConfigHelper.setInputRange(job.getConfiguration(), ixpressions);
ConfigHelper.setInputSlicePredicate(job.getConfiguration(), slicePredicate);

6. Next, we need to configure the MapReduce job for the output family and
format configuration:

// Cassandra output family configuration.

ConfigHelper.setOutputRpcPort(job.getConfiguration(), "9160");
ConfigHelper.setOutputInitialAddress(job.getConfiguration(), "localhost");
ConfigHelper.setOutputPartitioner(job.getConfiguration(), "Murmur3Partitioner");
ConfigHelper.setOutputColumnFamily(job.getConfiguration(), KEYSPACE NAME, OUTPUT COLUMN_FAMILY);

job.setOutputFormatClass(ColumnFamilyOutputFormat.class);
7. Let’s have alook at the mapper (TweetMapper):

public class TweetMapper extends Mapper<ByteBuffer, SortedMap<ByteBuffer, Column>, Text, IntWritable>

{
static final String COLUMN_NAME = TwitterCassandraJob.COLUMN_NAME;

private final static IntWritable one = new IntWritable(1);

/* (non-Javadoc)
* @see org.apache.hadoop.mapreduce.Mapper#tmap(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.
Mapper.Context)
*/
public void map(ByteBuffer key, SortedMap<ByteBuffer, Column> columns, Context context) throws
IOException,
InterruptedException
{

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE WITH CASSANDRA

Column column = columns.get(ByteBufferUtil.bytes(COLUMN_NAME));
String value = ByteBufferUtil.string(column.value());
context.write(new Text(value), one);

It simply reads a specific column (e.g., user from streaming columns) and writes a count for each column value.
We will be using the same reducer (TweetAggregator) to perform reduce operations.

The complete source code of this MapReduce job can be found with the downloads for this book. The executable
classis TwitterCassandraJob (com.apress.chapter5.mapreduce.twittercount.cassandra package). You may also
refer to README . txt and db. txt (under src/main/resources) file for further instructions.

After successfully executing the job, the output in the tweetcount column family is shown in Figure 5-6.

[de%‘ault@tweet_keyspacé] ‘list tweetcount;

Using default limit of 100

Using default column limit of 100

RowKey: mevivs

=> (column=count, value=2, timestamp=1380554854391)

1 Row Returned.
Elapsed time: 139 msec(s).

Figure 5-6. Counts specific to user mevivs are stored in tweetcount

Complete source code for this recipe is available under com.apress. chapter5.mapreduce. twittercount.cassandra
folder in the downloads for this book.

Stream or Real-Time Analytics

Batch processing frameworks is a good fit for a write-once/read-everywhere paradigm. But for continuous updates to
the data set, any in-process Hadoop job will not pick those data updates and would require a rerun.

Real-time analytics would require processing and analyzing a massive amount of data as it enters the system.
Applications such as stock market trading and dynamic predictive analysis would require providing analytics in real
time as the data gets processed on to the system.

In the last year or so, there has been significant interest in building such a real-time analytics application. As a
result, there are number of new frameworks, such as storm, Samaza, and Kafka. We will discuss their integration in
subsequent chapters.

Summary

As mentioned previously, all the code snippets shared in this chapter are available as complete source code with the
downloads for this book. The download also contains db.txt and README. txt for instructions about configuring and
running these Java programs and the Cassandra data definition used in these examples.

In this chapter, we discussed HDFS and MapReduce and integrating them with Cassandra. Running MapReduce
is one solution for large data analytics. However, to meet more complex analytics requirements, it might be necessary
to use built-in APIs that can build and execute such MapReduce programs automatically. Two of the most popular
tools are Hive and Pig. The next chapter will discuss using Hive and Pig and their integration with Cassandra.

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Data Migration and Analytics

In the previous chapter, we discussed the benefits of and requirements for running batch analytics over Cassandra via
Hadoop MapReduce. We can easily utilize Hadoop MapReduce's pluggable architecture to implement MapReduce
even with custom implementations. Let’s talk about a few of the published use cases as follows:

e NetApp collects and analyzes system diagnostic-related data for improving the quality of client
site deployed systems.

e Theleading health insurance provider collects and processes millions of claims per day. Data
ingestion is approximately 1 TB per day.

e Nokia collects and analyzes data related to various mobile phones. The expected data volume
to deal with is about 600 TB with both structured and unstructured forms of data.

e Etsy, an online marketplace for handmade items, needs to analyze billions of logs for behavior
targeting and building search-based recommendations.

Storage of large amounts of data is a significant issue, and with Cassandra we can achieve faster ingestion. What
about analyzing these large datasets? CQL3 comes in very handy as an SQL-like interface, but to process and analyze in
parallel batches, we need to implement MapReduce-like algorithms. Previous chapters cover implementing MapReduce
basics and implementing in Java. But in a few cases we prefer ready-to-use and easy-to-integrate solutions!

In this chapter we will discuss

e Apache Pig setup and basics

e Integrating Pig with Cassandra

e Importing data into Cassandra

e Apache Hive setup and basics

e Hive external and internal tables
e Hive with Cassandra

e Introducing Sqoop

e Sqoop with Cassandra

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

Data Migration and Analytics

Data migration is the process of data transfer among multiple storage systems. With big data problems, the key point
for data migration can be upgrading from one storage system (e.g., an RDBMS) to another one (e.g., Cassandra) for
scalability and performance. With the recent emergence of many NoSQL databases, data migration has been an
important process to evaluate and implement solutions with the preferred database.

As discussed in the above use cases, data analytics of structured or unstructured forms of data is another issue.
Exploring new business domains and dealing with data that has been considered of no use due to known limitations
are a few important factors of large data analytics.

Data science is an emerging field these days involving the study of the filtering and extraction of information
from raw data. It’s an integral part of artificial and competitive intelligence, and data mining and analysis are other
practices related to data science.

The process of data mining is to extract and define a pattern after studying big data sets using various artificial
intelligence and natural language process-related techniques. Risk analysis, behavior targeting, and forecasting are a
few of the big data use cases that require data mining and pattern analysis.

The debate between front-end versus back-end implementation has been underway for many years.
Programmers and database architects have their own views on this topic. People with experience in Java or other
technologies can easily write such MapReduce implementations. Similarly developers who are well-versed with
databases always prefer to implement such algorithms on the database side. Let’s try to visualize how a MapReduce
job would differ for back-end and application programmers.

Figure 6-1 shows a MapReduce job execution of counting tweets by date on the business layer (programmatically)
and storing the output on a database. Here the MapReduce algorithm implementation is on the application level.
Such implementations can be Java or any other language.

o Store
Tweet count { / 22 analyzed
by date | MapReduce | tweet count
—> ") —>
gD
&\
Ul layer Business services Database

Figure 6-1. Image depicting standard implementation of tweet analytics at business layer

Another implementation for the same use case can be that backend programmers or data scientists prefer to
write MapReduce scripts or functions on the database side, as shown in Figure 6-2.

Backend scripts
& functions

Tweet count Delegates
by date .
request o >
§ map / T
|::> Delegator e S
Ul laver Business services Database

Figure 6-2. An image depicting implementation of tweet analytics at the database layer
98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

Developing such MapReduce programs for almost everything is definitely not maintainable and is time-
consuming, as well. That’s where an SQL-like language or writing a simple script can be really helpful. Database
administrators or scientists might prefer a database-based approach (Figure 6-2) for quick implementation. With this
we can conclude that there is a space for requirement of such tools. For example, these tools come in very handy to
implement a scheduled job which requires extraction over large data sets and stores output.

This comes with a question, are there any tools or open source libraries that are available as a ready-to-use
solution. Tools like Apache Hive, Apache Pig, and Sqoop come in very handy for such needs. Before we explore each
of these tools, let’s go over a brief introduction to each of these.

Apache Pig allows end programmers to write MapReduce implementations in the form of scripts. Apache Pig simply
translates this Pig script into Hadoop-compatible MapReduce implementations. There are functions and data type
support available with Apache Pig that provide easy and reusable integration to quickly write Pig-powered MapReduce
implementations. People building data pipeline or ETL-type solutions prefer to use Pig, as it is procedural but not
declarative. Since it is not declarative, you can create checkpoints and plug in custom code at any point of the workflow.

Apache Hive enables users to manage and analyze large data sets using SQL-like query language. SQL has
been popular and widely used across the industry. It enables programmers to quickly adopt Hadoop and HBase big
data platforms by providing a query-like interface, namely Hive Query Language (Hive QL). Generally it is used for
ad-hoc SQL-based analytics. With Hive QL we can perform various DDL and DML operations in an SQL manner.
Data definition language (DDL) is used for performing tasks like creating and altering tables, and data manipulation
language (DML))) is used to do things like inserting and deleting records. DDL and DML semantics are similar to
SQLs. You can refer to https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-
DDLOperations for more information about DDL. Hive'’s data partitioning and external table support gives users an
added advantage to declare and analyze data over external file systems using Hive. We will cover this in a later part of
this chapter.

Sqoop means SQL to Hadoop. Solutions built over RDBMS are not scalable and the user is looking forward to migrate
on big data powered solutions. The first priority is migrating existing production data to another database or file system.
This is where Apache Sqoop comes in very handy and can help to easily migrate data from one database to another.

Now, let’s explore each one of these tools in detail. We'll start with Apache Pig.

Apache Pig

Apache Pig is a platform that provides a simple scripting language known as Pig Latin to build the MapReduce
program in an abstract way. Initially it was developed as part of Yahoo's research-related work but later moved to
Apache incubation in 2007. It is named as Pig as it can ingest/read in almost any format.

Setup and Installation

There are two possible ways to set up the Apache Pig distribution. One can either download the tarball manually or
set up a third-party binary distribution (.deb or .rpm) over Linux boxes.

For Windows, it requires downloading and setting up a Linux-like environment using cygwin. Cygwin is Unix-
like environment and command-line interface for Windows. Cygwin provides native integration of Windows-
based applications, data, and other system resources with applications, software tools, and data of the Unix-like
environment. For more details, you can refer to http://en.wikipedia.org/wiki/Cygwin.You can download and set
up cygwin from www.cygwin.com/install.html.

99

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-DDLOperations
https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-DDLOperations
http://en.wikipedia.org/wiki/Cygwin.You
http://www.cygwin.com/install.html
http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

In this chapter, we will set up using a tarball distribution for setup and other configuration. To set up this over
your local box, let’s follow the following sequence:

1. First create a folder:

mkdir pig-dist
cd pig-dist

2. Then, download the tarball distribution:

wget http://mirrors.ibiblio.org/apache/pig/pig-0.12.1/pig-0.12.1.tar.gz

Note During the writing of this chapter, the latest tarball installation is 0.12.1. You may change it for the latest
version accordingly.

3. Extract the downloaded tarball using the following command:
tar -xvf pig 0.12.1.tar.gz

After step 3, the pig-dist folder will have the extracted distribution under the pig-0.12.1 folder as shown
in Figure 6-3.

vivek@vivek-Vostro-3560:~/software/pig-dist$ 1s
pig-0.12.1

Figure 6-3. The extracted tarball distribution in a local folder

Understanding Pig

Figure 6-4 shows Pig architecture and various components of Apache Pig. It depicts how Pig scripts get compiled and
converted into a MapReduce job. With Pig’s architecture, a written Pig script would get compiled into MapReduce
programs and submitted by the Hadoop job manager as a MapReduce job. The Grunt command shell is a
command-line interface for running Pig scripts and the Pig API can be used for building custom implementations.

100

www.it-ebooks.info

http://mirrors.ibiblio.org/apache/pig/pig-0.12.1/pig-0.12.1.tar.gz
http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

Grount Command
Shell Pig API
Hadoop job

Manager
Pig Compiler

Master
l Map Reduce Job
Tracker

Cassandra
Node ' '
\ Task Tracker Task Tracker Task Tracker

Figure 6-4. Apache Pig components and MapReduce job transformation

Secondary Name Node

Before we start on examples, let’s discuss these two modes and then a few important Pig commands and data
types that we will be using in upcoming exercises in this chapter.

Pig Execution Modes

With Apache Pig, two execution modes are available:
e Local

e MapReduce

Local Mode

Pig has an interactive shell, and we can start Pig’s execution in local mode, which will require running the following
command (see Figure 6-5):

pig -x local

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

vivek@vivek-Vostro-3560:~/softwarefpig-8.12.15 bin/pig -x leocal

2014-06-07 16:11:09,398 [main] INFO org.apache.pig.Main - Apache Pilg version 0.12.1 (r1585011) compiled Apr 05 2014, 01:41:34

2014-06-87 16:11:09,399 [main] INFO org.apache.pig.Main - Logging error messages to: fhome/vivek/software/pig-0.12.1/plg_1462137669391.log
2014-06-87 16:11:09,432 [main] INFO org.apache.pig.impl.util.Utils - Default bootup file [home/vivek/.pigbootup not found

2014-06-87 16:11:09,731 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file system at: file
B

grunt> I

Figure 6-5. Starting Pig in local mode

MapReduce Mode

Running Pig in MapReduce mode requires that the Hadoop process is up and running. (You can refer to the “Reading
Tweets from HDFS and Storing Count Results into Cassandra” section in Chapter 5.) To run Pig in MapReduce mode,
we need to run

$ pig
Once connected we can also explore the HDFS directory using the Grunt shell as follows:

grunt> cd hdfs:///

grunt> 1s
hdfs://0.0.0.0/tweets <dir>
hdfs://0.0.0.0/usr <dir>

With this setup and configuration in place, now we are ready to explore other configurations and feature sets
provided by Pig. So let’s start with data types.

Data Types

Data types supported by Pig can be categorized as simple data types and complex data types.

Simple Data Types

Simple data types, such as String, int, and so on, are those generally available with most databases and are most often
used. Table 6-1 shows all the simple data types supported by Pig.

Table 6-1. Pig-Supported Simple Data Types

Data type Description

charArray UTF-8 encoded string (e.g., Cassandra)
ByteArray Byte array (blob)

Double 64-bit precision format (e.g., 11.9)
Float 32-bit precision format (e.g., 10.2f)

Int 32-bit signed integer (e.g., 100)

Long 64-bit signed integer (e.g., 50L)

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

Complex Data Types

Complex data types, such as map which holds the key-value pair, prefer some kind of predefined data structure
format. Table 6-2 shows all three complex data types supported by Pig.

Table 6-2. Pi- Supported Complex Data Types

Data Type

Description

Tuples

Bags

Map

A tuple is an ordered set of data. A tuple can be thought of as a row with multiple fields and these
fields can be of any type and may or may not have data. Tuples are enclosed with ().

For example, (Vivek,Apress,6) depicts a tuple having author name, publishing house, and chapter
number fields.

A bagis a collection of tuples. A bag can have duplicate tuples and each tuple may differ in the
number of fields and their data types.

For example, this is a bag with multiple tuples:

{(vivek,Apress,6), (Chris,Apress,Reviewer,6),{Melissa,Apress,Coordinator,6),
{Brian,Apress,Tech reviewer)}

A map is a collection of key value pairs. Each key value pair is delimited by #.

For example, [name#vivek,email#fvivek.mishra@nomail.com] is a map containing two key value
pairs. The first element has name as key and vivek as value, whereas the second one has email as key
and vivek.mishra@nomail.com as value.

Pig Functions

Pig comes with several built-in functions. Users can also implement custom user-defined functions (UDFs). Built-in
pig functions can further be categorized as

Eval functions
Math functions
String functions
Store functions

Bag/tuple functions

In this section, let’s look at some of the most commonly used Pig functions.

PigStorage

The default function to load data in UTP-8 format. Examples of PigStorage are in the next two sections.

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

LOAD

The LOAD function loads data from the file system. By default it is used in conjunction with the PigStorage function as
shown in the following steps:

1. Create a sample tweets.txt on the local file system in a folder (in this example it is
/home/vivek). The file will contain data in the following format:

apress_team|technology|A whole bunch of new technology books about to come.
Watch this space!

2. Run the following command to load the tweets file using PigStorage with the Grunt shell:
pipe_input = LOAD '/home/vivek/input/tweets.txt' USING PigStorage('|"');
3. To dump the output of pipe_input (as shown in Figure 6-6), run the following command:

dump pipe_input;

2014-06-14 23:17:08,499 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReducelLayer.MapReduceLauncher - Success!
2014-86-14 23:17:08,501 [main] WARN org.apache.pig.data.SchemaTupleBackend - SchemaTupleBackend has already been initialized
2014-06-14 23:17:08,563 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1
2014-86-14 23:17:08,503 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total input paths teo process : 1
(apress_team,technology,A whole bunch of new technology books about to come. Watch this space!)

grunt=>

Figure 6-6. Output of the MapReduce program

STORE

This function is used to load intermediate or computed Pig script results on output results in the file system. In the
following example, we are reading tweets.txt containing fields delimited by ‘|" and storing it as a file containing fields
delimited by ; (see Figure 6-7).

pipe_input = LOAD '/home/vivek/input/tweets.txt' USING PigStorage('|') as (screen_name:chararray,cat
egory:chararray,body:chararray);
csv_output = Store input into '/home/vivek/output/tweets.csv' USING PigStorage(',"');

Success!

Job Stats (time in seconds):
JobId Alias Feature Outputs
job_local_eeez pipe_input MAP_ONLY fhome fvivek/output/tweets.csv,

Input{s):
successfully read records from: "/home/vivek/input/tweets.txt”

Output(s):
successfully stored records in: "/home/vivek/foutput/tweets.csv”

Job DAG:
job_local_see3

2014-06-14 23:21:00,261 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MapReduceLauncher - Success!

Figure 6-7. The output of reading and storing tweets in a csv file

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

Output of the preceding command is shown in Figure 6-7.
Upon running the preceding command, a new file (part-m-00000) will be written in the /home/vivek/output
folder which will contain comma-separated values as

apress_team,technology,A whole bunch of new technology books about to come. Watch this space!

Such files are output files generated by the MapReduce job executed with the Pig script. For more details about
MapReduce, please refer to the previous chapter.

Please note that here we have used the default storage function PigStorage(), but readers may create their
own UDFs and can store/load by using them. For example, in the case of Cassandra, to load data in the Cassandra
file system, the CSVStorage and CassandraStorage functions will be used. We will discuss Cassandra's Pig-specific
functions in coming exercises.

FILTER

FILTER is used for rows/tuple selection based on the provided condition. Let’s describe pipe_input and filter it by
screen_nanme for the value apress_team:

describe pipe_input;
filter by name = FILTER pipe_input by screen_name matches 'apress_team';

Running this command will filter pipe_input for screen_name instances with the value apress_team
(see Figure 6-8).

2014-06-14 23:34:30,024 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReducelLauncher - Success!
2014-06-14 23:34:30,025 [main] WARN org.apache.plg.data.schemaTupleBackend - SchemaTupleBackend has already been initialized
2014-06-14 23:34:30,028 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1
2014-06-14 23:34:30,028 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedutil - Total input paths to process : 1
(apress_team,technology,A whole bunch of new technology books about to come. Watch this space!)

Figure 6-8. Output of the FILTER command

FOREACH

Use this function to iterate over result bags and transform into output or intermediate results (see Figure 6-9).

similar result = FOREACH pipe_input GENERATE(*);
result with screen name_only=FOREACH pipe_input GENERATE screen_name;
dump result with_screen_name only;

2014-06-14 23:37:58,504 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReducelLayer.MapReduceLauncher - Success!
20814-86-14 23:37:58,505 [main] WARN org.apache.pig.data.SchemaTupleBackend - SchemaTupleBackend has already been initialized
2014-06-14 23:37:58,507 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1
2014-06-14 23:37:58,507 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedutil - Total input paths to process : 1
(apress_tean]

Figure 6-9. Running FOREACH to generate intermediate results

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

TOTUPLE

TOTUPLE is a function to generate tuples. For example we can use TOTUPLE to generate a tuple of column name and
value as shown in Figure 6-10.

screen_tuple = FOREACH pipe_input GENERATE TOTUPLE('screen name',screen_name);

2014-06-14 23:43:11,087 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReducelLayer.MapReduceLauncher - Success!
2014-06-14 23:43:11,088 [main] WARN org.apache.plig.data.SchemaTupleBackend - SchemaTupleBackend has already been initialized
2014-06-14 23:43:11,089 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1
2014-06-14 23:43:11,089 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedutil - Total input paths to process : 1
((screen_name,apress_team))

Figure 6-10. Depicts generated tuple having screen_name as apress_team

Previously, we discussed a few basic Pig Latin commands. Let’s explore Apache Pig with more sample exercises.
For all the exercises in this chapter we will be referring to the tweets file which contains tweets about apress. You can
download the sample tweets file from the attachment folder (datafiles). This file contains tweet data, screen names,
and the tweet body delimited by ‘\001’ (see Figure 6-11).

Mon Mar 83 91:19:17 IST 2014E|The News selectcr@obana meeting with European allies on Ukraine http://t.cof6xU6IfMsXI from #APress #tns

Mon Mar 63 91:19:17 IST 2814:|The News Selectorf{|Bergdahl uproar halts plan for return celebration http://t.co/BhF6kMySpW from #APress #tns
Wed Mar 97 95:11:11 IST zUlelLoulse (orr‘lganﬂiechn‘lcal review position available for #Parse and #Phonegap related @Apress titles: paid,
ongoing work. Email me: loulsecorrigan@apress.com

Mon May 11 06:16:04 IST zaasleazem SalehE@RyanBurrell I just contacted Apress team to check the sample zip file. Thanks for your feedback.
Sun Dec 18 20:13:39 IST Zell:ilcesspr'\nP.T @manthi77: Demain jviens juste en Droit apress floouwuf jreviens meme pas

Figure 6-11. The sample tweet file delimited by ‘\001’

Counting Tweets

In this example we will demonstrate running various Pig commands using the interactive Grunt shell. For Pig scripts
having a medium level of complexity, we may want to prepare and run those as Pig scripts, as well. The command to
run a Pig script is as follows:

Pig -x local myscript.pig
Here myscript.pig is a compiled Pig script. We can also execute such Pig scripts in embedded mode as follows:
// Compile to .class file
javac -cp pig.jar MyScript.java
// Running Pig script as java program in embeddeded mode

java -cp:pig.jar:. MyScript

In this exercise, we will explore Apache Pig for running the MapReduce program for total tweet count and
counting tweets for a specific screen_name.

1. Firstload tweets using PigStorage:

tweets = LOAD '/home/vivek/tweets' USING PigStorage('\ua001') as (date:chararray,screen_
name:chararray,body:chararray);

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

2. Let's filter tweets for the screen name The News Selector.
name = FILTER tweets by screen_name matches 'The News Selector';
3. Let’s group name for all fields using the GROUP command:
namegroup = group name ALL;
4. To count tweets for namegroup, run the FOREACH command with the COUNT function:

tweetCount = FOREACH namegroup generate COUNT(name);
dump tweetCount;

Figure 6-12 shows the output of dumping tweetCount onto the console. The tweet count for screen name
The News Selector is 6680.

2014-06-15 00:32:17,549 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReducelLayer.MapReducelLauncher - Success!
2014-086-15 00:32:17,549 [main] WARN org.apache.pig.data.schemaTupleBackend - SchemaTupleBackend has already been initialized
2014-06-15 08:32:17,551 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1
2014-086-15 00:32:17,551 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total input paths to process : 1
(6680) _

Figure 6-12. Output of dumping tweetCount on console

5. To store output in a file, we can use the CSVExcelStorage function. To do that, we need to
register it first with the Pig registry:

register '$PIG_HOME/contrib/piggybank/java/piggybank.jar' ;
define CSVExcelStorage org.apache.pig.piggybank.storage.CSVExcelStorage();

Upon running these commands over the Grunt shell, the function will be registered and ready for use.

6. Continuing the same exercise, we can also store the total tweet count as follows:

totalGroup = group tweets ALL;
totalCount = foreach totalGroup generate COUNT(tweets);
store totalCount into 'totalcount' using CSVExcelStorage(',','YES MULTILINE');

A folder named tweetcount will be created in the PIG_HOME directory, which will contain a file with a name like
part-r-00000 with the total tweet count.

Until now we have explored Pig for running MapReduce jobs over the local file system. Now let's try to run Pig
MapReduce scripts over the Cassandra file system.

It is important to note that we can create complex Pig scripts which may end up running multiple MapReduce
jobs. One problem with such Pig scripts is running those jobs in sequence and losing parallel programming. Also you
must have noticed the intermediate outputs like loading tweets generated during the running of Pig scripts.

Pig with Cassandra

Cassandra and Pig integration is fairly easy. As mentioned above, to transform Pig Latin scripts into MapReduce over
Cassandra requires Cassandra-specific storage functions and connection settings. By default Apache Cassandra comes
up with the built-in function support for Pig integration under the package org.apache.cassandra.hadoop.pig.

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

In this section we will use the CQL-based storage function CqlStorage for exercises. Readers may also run the
same exercise using CassandraStorage, which is primarily for column families created in a non-CQL way. For more
details on CQL versus Thrift, please refer to Chapter 1.

The first step is to configure Pig for Cassandra-specific settings:

cassandra daemon host,

export PIG_INITIAL ADDRESS=localhost

/# thrift rpc port

export PIG RPC_PORT=9160

#configured partitioner

export PIG_PARTITIONER=org.apache.cassandra.dht.Murmur3Partitioner

#Add thrift library to pig's classpath.
export PIG CLASSPATH=/home/vivek/software/apache-cassandra-2.0.4/1ib/libthrift-0.9.1.jar

Data Import
In this section, we will create a Cassandra table to store tweets and use Apache Pig to load tweets in Cassandra.

1. Firstlet’s create a keyspace and table in Cassandra as follows:
create keyspace twitter with replication = {'class':'SimpleStrategy’,
'replication factor':1};
use twitter;
create table twitterdata(screen name text primary key, tweetdate text, body text);

2. Start Piginlocal mode and load tweets:

tweets = LOAD '/home/vivek/tweets' USING PigStorage('\ua001') as
(date:chararray,screen name:chararray,body:chararray);

You may need to change the directory path as per your settings.

3. Register apache-cassandra-2.0.4.jar:

register '$CASSANDRA HOME/lib/apache-cassandra-2.0.4.jar';
define CqlStorage org.apache.cassandra.hadoop.pig.CqlStorage();

4. Generate a tuple using TOTUPLE:

data_to = FOREACH tweets GENERATE TOTUPLE(TOTUPLE('screen name',screen name)),
TOTUPLE(TOTUPLE(' tweetdate',date), body);

5. Finally, store the generated tuples in Cassandra using the CqlStorage function:

STORE data_to INTO 'cql://twitter/twitterdata?output_query=update twitterdata set
tweetdate %3D%3F,body %3D%3F' USING CqlStorage();

6. Atlast, connect to the cql shell and verify the loaded data (see Figure 6-13):

Select * from twitterdata;

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

cqlsh:twitter> select * from twitterdata;

screen_name | bedy
| tweetdate
_____________________ e mm o m e e e e e e e e e e e e e e e e emeeeeaeeeeeeeaameeeeaeneann
_____________________ e mm e e e e e eeeeeeeeeeeeeeeaaneann
Hazem Saleh | @RyanBurrell I just contacted Apress team to check the sample zip file. Thank
s for your feedback. | tweetdate Mon May 11 06:16:04 IST 2009
cessprin | RT @manthi77: Demailn jviens juste en Drolt apress floouu
uf jreviens meme pas | tweetdate Sun Dec 18 20:13:39 IST 2011
Hunter Scott | RT @I0OUG: RT @Erik_Benner: @IOUG: Database consolidation strategy - IOUG Master Class http://t.co/xTHyAzrGeq @Apress al
so glving away an 0. | tweetdate Wed Apr 23 19:19:49 IST 2014
Elena Vielva Gémez | .@trupill Genial! Aunque para que sea perfecto, mejor acompafiarlo con Beginning Haskell http:
/ft.cofWXMoSsEnUU) | tweetdate Thu Feb 23 @0:24:16 IST 2012
Alejandro || Serras | RT @ElenaVielva: .@trupill Genlal! Aunque para que sea perfecto, mejor acompafiarle con Beginning Haskell http:
J/t.co/WXMaSsEnlu) | tweetdate - Tue Sep 29 22:81:16 IST 2089
Oselas Moraes | Gostel de um video @YouTube http://t.co/920ptTFUL94gic - Filme - Melhor cena
- Acidente de avido | =« tweetdate Tue Jul 86 18:81:47 IST 2018
Adeesh Fulay | RT @I0OUG: RT @Erik_Benner: @IOUG: Database consolidation strategy - IOUG Master Class http://t.co/xTHyAzrcoq @Apress al
so giving away an 0. | tweetdate] Sat Nov 05 21:29:20 IST 2011
Manthita. | Demain jviens juste en Droit apress fioouu
uf jreviens meme pas | tweetdate Sun Jul 24 21:44:17 IST 2011
ebooksdealofdaybot | [Apress] Android Apps Security ht
tp: /ft.co/5XLS0bkkof | tweetdate Wed Nov ©7 14:84:18 IST 2012
The News Selector | Now application 'inconsistencies' wvex health law http://t.cofubomgqss
sN from #APress #tns | tweetdate Mon Mar 03 01:19:17 IST 2014
Loulse Corrigan | Technical review position avallable for #Parse and #Phonegap related @Apress titles: pald, ongolng work. Emaill me: louis
ecorrigan@apress.com | tweetdate Wed Mar 67 ©5:11:11 IST 2012

(11 rows) |

Figure 6-13. The console depicts the output of data persisted in the twitterdata table

You must have noticed that total tweet count is 10,020, but still twitterdata in Cassandra got populated with
11 rows. The reason is that multiple tweets are present for the same screen name, and it is defined as the primary key
in the twitterdata table.

In the real world, it is certainly possible to have a nonunique field in data files and the user may want Cassandra
to take care of the unique key part. We can solve this problem by defining an implicit primary key of type timeuuid
and populate it external to original data file. In the next exercise, we will try to solve this problem by introducing a
unique primary key.

Loading Sata with timeuuid

Pig Latin does not have any direct support for Cassandra data types such as timeuuid and uuid. But there is an open
source project called Pygmalion https://github.com/jeromatron/pygmalion, which provides a number of Pig
utilities for Cassandra.

You can git clone or download the zip (https://github.com/jeromatron/pygmalion/archive/master.zip)
and build it on your local box. Alternatively, you can find pygmalion-1.1.0-SNAPSHOT. jar in the jars folder from the
downloads for this book.

1. Firstlet’s create the keyspace and table in Cassandra as follows:

create keyspace twitter with replication = {'class':'SimpleStrategy’,
'replication_factor':1};

use twitter;

create table twitterdata(id timeuuid primary key, screen name text, tweetDate text,
body text);

2. Load tweets using PigStorage:

tweets = LOAD '/home/vivek/tweets' USING PigStorage('\ua001') as
(date:chararray,screen_name:chararray,body:chararray);

109

www.it-ebooks.info

https://github.com/jeromatron/pygmalion
https://github.com/jeromatron/pygmalion/archive/master.zip
http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS
3. Register jars with Pig registry:

register /home/vivek/Documents/apress_book/Apress/uuid-3.2.jar;
register /home/vivek/Documents/apress_book/Apress/hector-core-0.7.0-28.jar;
register /home/vivek/Documents/apress_book/Apress/pygmalion-1.1.0-SNAPSHOT.jar;

4. Define the Pig function:

define FromCassandraBag org.pygmalion.udf.FromCassandraBag();

define ToCassandraBag org.pygmalion.udf.ToCassandraBag();

define CqlStorage org.apache.cassandra.hadoop.pig.CqlStorage();

define GenerateBinTimeUUID org.pygmalion.udf.uuid.GenerateBinTimeUUID();

5. Generate a tuple to have an ID with timeuuid values using the GenerateBinTimeUUID
function and other tuples from actual tweet files:

data_to = FOREACH tweets GENERATE TOTUPLE(TOTUPLE('id',GenerateBinTimeUUID())),
TOTUPLE(TOTUPLE(' tweetdate',date), body);

6. Finally, load this data in Cassandra:

STORE data_to INTO 'cql://twitter/twitterdata?output_query=update twitterdata set
tweetdate %3D%3F,body %3D%3F' USING CqlStorage();

7. Now you may explore the twitterdata column family for inserted data:

Select * from twitterdata;
Select count(*) from twitterdata;

Up until this point, we have explored various ways to load and run MapReduce programs over Cassandra using
Apache Pig. Apache Pig comes in very handy for developers to quickly write Pig Latin scripts to execute MapReduce
programs instead of writing lengthy native MapReduce programs.

In next section, we will explore running MapReduce analytics over Cassandra in an SQL manner, which is more
commonly used.

Apache Hive

Apache Hive is a platform to provide data analytics support over a very large volume of data stored over HDFS. Hive
comes up with various features like built-in UDTF (user-defined table functions), UDAF (user-defined aggregation
function), analytics over compressed data, and most importantly Hive Query Language (Hive QL). We will discuss
these functions in upcoming sections.

Initially Hive was developed as part of Facebook’s research initiatives and later it went on to become an Apache
TLP (Top Level Project).

In this section, we will discuss the Hive setup, its execution modes, and integration with Cassandra.

Setup and Configuration

To set up Hive in MapReduce mode, we need to configure Hadoop installation for a few steps. Please note, you may
refer to Chapter 5 for more details about MapReduce and Hadoop.

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

1. With Hadoop, make sure that JAVA_HOME is configured properly. You may configure
it by modifying $HADOOP_HOME/conf/hadoop-env.sh and add JAVA_HOME to point jdk
installation directory:
export JAVA HOME=/usr/lib/jvm/java-7-oracle

2. Start the Hadoop installation by running

$HADOOP_HOME/bin/start-all.sh

3. Please make sure that the name node is properly formatted. Please refer to Chapter 5 for
more details. If you're getting error such as

connect to host localhost port 22: Connection refused

you need to install an SSH server on your box. For Ubuntu boxes, you can install it by
running sudo apt-get install openssh-server.

4. After this, please verify that all Hadoop processes are running properly (Figure 6-14).

vivek@vivek-Vostro-3560:~/software/hadoop-1.1.15 jps

24200
24474
24922
23949
24568
24872

DataNode
secondaryNameNode
Jps

NameNode
JobTracker
TaskTracker

Figure 6-14. Shows all Hadoop process are running

Next, you need to set up and run Hive:

1. First, download the latest jar from http://apache.mirrors.tds.net/hive/
Extract the tarball in a local folder and set that local folder as HIVE_HOME.
Set HADOOP_HOME in $HIVE_HOME/bin/hive.sh file.

> e n

When this configuration of Hive is complete, we can start the Hive shell by running
$HIVE_HOME/bin/hive.sh

Understanding UDE, UDAE and UDTF

Hive comes with built-in user-defined functions (UDF), user-defined aggregate functions (UDAF), and user-defined
table functions (UDTF). Using the Hive shell we can fetch a list of available functions and also describe them:

SHOW FUNCTIONS;
DESCRIBE FUNCTION <function_name>;
DESCRIBE FUNCTION EXTENDED <function_name>;

111

www.it-ebooks.info

http://apache.mirrors.tds.net/hive/
http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

The UDFs built in to Hive include functions like round(), pow(), and rand(). And there are built-in collection
functions such as mapkeys and map_values to return unordered lists of keys and values respectively. For more about
UDFs, refer to https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-
Built-inFunctions.

Among the built-in UDAFs supported by Hive are functions such as count, min, max, and percentile. For a
detailed list of supported aggregate functions, you can also refer to https://cwiki.apache.org/confluence/
display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions (UDAF).

Also, there are the table-generating UDTFs that operate over multiple rows and at the table level. For example,
the explode function generates a row for each array element. Further details and their usage are available at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-
inTable-GeneratingFunctions(UDTF).

Hive Tables

Hive provides the mechanism for creating two types of tables:
e Hive-managed table
e Hive external table

With Hive-managed tables, Hive is responsible for managing the table’s metadata and actual data. Dropping such
data would result in data drop as well. Whereas with an external table it will not be managed by Hive, and any drop
table activity will not result in data drop. We will explore more about these types of tables in coming exercises.

Local FS Data Loading

In this section, we will discuss more about Hive DDL/DML operations. In this first exercise, we will create a simple
schema in Hive and load data from the local file system.

1. First, let’s create a database:
create database employee store;
2. Next, create a table as follows:
use employee_store;
create table employee(person_id string, fname string) row format delimited fields

terminated by ',"';

Here, with a table DDL operation we have defined that fields are delimited by ', '.

3. We can load data from the local file system as follows:

load data local inpath '/home/vivek/Documents/apress book/Apress/datafiles/
person_store' overwrite into table employee ;

4. Finally, we can explore the inserted data (see Figure 6-15):

select * from employee;

112

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inFunctions
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inFunctions
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inTable-GeneratingFunctions(UDTF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inTable-GeneratingFunctions(UDTF
http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

hive> select * from employee;

OK

p_1 vivek
p_2 Rita
p_3 John
p_4 Apress

Time taken: 0.072 seconds
Figure 6-15. Fetched rows from the employee table

Let’s talk about what a Hive, Hadoop, and Cassandra-based architecture would look like. The image in Figure 6-16
depicts how a Hive-powered MapReduce job would run over Cassandra data nodes. Here each Hive query will get converted
into a MapReduce job and submitted with Hadoop which in turn would rely on the name node and metadata to identify
Cassandra data nodes to run corresponding maps and reduce tasks locally on those data nodes.

Hive

Master
l Map Reduce Job

Name Node Job Tracker Secondary Name Node

Cassandra
Node l l
Task Tracker Task Tracker Task Tracker

Figure 6-16. he diagram depicts an architectural representation of running Hive MapReduce over Cassandra
data nodes

One point worth mentioning is running Hive MapReduce jobs over HDFS would be same as shown in Figure 6-17
except data blocks would belong to HDEFS in place of Cassandra nodes.

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

hive> load data inpath '/Jusr/vivek/employee store/infile' overwrite into table employee ;
Loading data to table default.employee

Deleted hdfs://localhost:9000/user/hive/warehouse/employee

OK

Time taken: ©.294 seconds

hive> select * from employee;

0K

p_1 vivek
p_2 Rita
p_3 John
p_4 Apress

Time taken: ©.201 seconds

Figure 6-17. Fetching rows from employee table via the Hive shell

HDEFS Data Loading

We can also load from HDFS in a Hive-managed table using the load data command. Let’s explore this part with a
simple exercise:

1. Let’s put the tweets file on HDFS using the put command:

bin/hadoop fs -put /home/vivek/Documents/apress_book/Apress/datafiles/person_store
/usr/vivek/employee store/infile

2. We can load data directly to the HDFS directory using the 1load command as follows:

load data inpath '/usr/vivek/employee store/infile
' overwrite into table employee ;

The difference here is that it is load data inpathin place of load data local inpath, which allows mapping
from file path to HDFS directory (e.g., /usr/vivek/employee store/infile).

3. Finally, we can explore inserted data (see Figure 6-17):
select * from employee;
4. 'We can also use conditional queries such as fetching employees by name (see Figure 6-18):

select * from employee where fname = 'vivek';

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

hive= select * from employee where fname = "vivek';

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is set to ® since there's no reduce operator

Starting Job = job_201406161219_0001, Tracking URL = http://localhost:50030/jobdetails. jsp? jobid=job_201406161219_0001

Kill Command = fhome/vivek/software/hadoop-1.1.1/libexec/.. /binfhadoop job -Dmapred.job.tracker=localhost:9881 -kill job_2014086161219_6861
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: @

2014-86-16 14:19:03,293 Stage-1 map = 0%, reduce = 0%

2014-86-16 14:19:05,317 Stage-1 map 100%, reduce
2014-86-16 14:19:06,330 Stage-1 map = 1088%, reduce
2014-06-16 14:19:07,344 Stage-1 map 100%, reduce
20814-86-16 14:19:08,352 Stage-1 map = 1080%, reduce
2014-86-16 14:19:09,363 Stage-1 map 100%, reduce
MapReduce Total cumulative CPU time: 770 msec

Ended Job = job_201486161219_8681

IMapReduce Jobs Launched:

Job ©: Map: 1 Cumulative CPU: 0.77 sec HDFS Read: 250 HDFS Write: 10 SUCCESS
Total MapReduce CPU Time Spent: 778 msec

0K

p_1 vivek

Time taken: 11.572 seconds

8%, Cumulative CPU 8.77 sec
8%, Cumulative CPU 8.77 sec
9%, Cumulative CPU 0.77 sec
8%, Cumulative CPU 8.77 sec
160%, Cumulative CPU 0.77 sec

Figure 6-18. Fetching rows having the fname vivek

Upon running such queries, they are transformed into MapReduce jobs unless the conditional column is not
a partition key. A query over a partition key can fetch data directly from the data nodes and no MapReduce process
will be required as data is already partitioned by partition keys. We can define the partition key while creating the
table as follows:

CREATE TABLE employee (
fname String,
lname String,
emailld String,
salary FLOAT,

)

PARTITIONED BY (location STRING, joining year INT, joining_month INT, joining_day INT) ;

Any conditional query over all parts of a partition key will quickly locate data folders, as data will be automatically
arranged into different folders as per the defined partition key.

Hive External Table

We can also create an external Hive table over the HDFS directory. It is recommended to create an external table if it
doesn’t need to be managed by Hive.
Let’s revisit the same tweets example for external table exercises.

1. Let’s put the tweets file on HDFS using the put command (see Figure 6-19):

bin/hadoop fs -put /home/vivek/Documents/apress_book/Apress/datafiles/person_store
/usr/vivek/employee store/infile

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATA MIGRATION AND ANALYTICS

o € | [localhost:50075/browseBlock.jsp?blockld=-5860554882318379843&blockSize=39&genstamp=

i Apps For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

File: /usr/vivek/employee_store/infile

Goto : '.‘usr.'\flvek}empﬂoyee_store ' 'go'

Go back to dir listing
Advanced view/download options

p_1,vivek
p_2,Rita
p_3,John
p_4, T —

Figure 6-19. A Hive directory with employee records

2. Then, we can create an external table in Hive over the HDFS location:

create external table employee ext(person_id string, fname string) row format delimited
fields terminated by ',' location 'hdfs://localhost:9000/usr/vivek/employee store';

Here hdfs://localhost:9000 is the value of fs.default.name property.

3. We can explore the inserted data (see Figure 6-20):

select * from employee ext;

hive> select * from employee_ext;

0K

p_1 vivek
p_2 Rita
p_3 John
p_4 Apress

Time taken: 0.108 seconds

Figure 6-20. Fetching records from the employee_ext external table

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

Hive with Cassandra

With external table support it is possible to use Hive for data analytics over Cassandra by using the Cassandra-specific
storageHandler implementation. DataStax (www.datastax.com) provides commercial products such as DataStax
Enterprise (DSE) which provides seamless integration with tools such as Hive. We will explore more about DSE
offering in the “Apache Sqoop” section later in this chapter.

In this section, we will discuss integration of open source Apache Cassandra with Hive. One open source
implementation is the Cassandra-specific storage handler that is available at https://github.com/tuplejump/cash.
You may git clone or download the zip source and build it locally for jars. Alternatively, you can find these jars under
jars folder as a source attachment.

For our example, we will create a table in Cassandra and create external tables over Hive to explore the data
inserted via Cassandra and Hive.

1. First, let’s create a twitter keyspace and twitterdata table:

create keyspace twitter with replication={'class':'SimpleStrategy’,
'replication_factor':2};

use twitter;

create table twitterdata(tweet_id timeuuid primary key, body text, tweeted by text);

2. Let’sinsert a few records with the insert command:

insert into twitterdata(tweet id,body,tweeted by) values(now(),'my first tweet',
'@mevivs');

insert into twitterdata(tweet id,body,tweeted by) values(now(),'Cassandra
book:beginning cassandra development','@apress team');

insert into twitterdata(tweet id,body,tweeted by) values(now(),
'Technical review position available for #Parse and #Phonegap related
@Apress titles: paid','@apress_team');

insert into twitterdata(tweet id,body,tweeted by) values(now(),'Android Apps
Security http://t.co/5XLSObkk9f', '@jhassel’);

3. Let’s connect to the Hive shell by configuring the Cassandra storage handler, Thrift, and
Cassandra-specific jars:

/home/vivek/software/hive-0.9.0/bin/hive --auxpath /home/vivek/source/cash/
cassandra-handler/target/hive-cassandra-1.2.9.jar:/home/vivek/.m2/repository/org/
apache/cassandra/cassandra-all/1.2.9/cassandra-all-1.2.9.jar:/home/vivek/software/
apache-cassandra-2.0.4/1ib/libthrift-0.9.1.jar:/home/vivek/.m2/repository/org/
apache/cassandra/cassandra-thrift/1.2.9/cassandra-thrift-1.2.9.jar

4. After successfully connecting with the Hive shell, we can create the external table as follows:
CREATE EXTERNAL TABLE twitter.twitterdata(tweet_id string, body string,

tweeted by string) STORED BY 'org.apache.hadoop.hive.cassandra.cql.CqlStorageHandler'
WITH SERDEPROPERTIES ("cql.primarykey" = "message id, author", "comment"="check",

"read_repair_chance" = "0.2", "dclocal read repair_chance" = "0.14", "gc_grace_
seconds” = "989898", "bloom_filter fp chance" = "0.2", "compaction" = "{'class' :
'LeveledCompactionStrategy'}", "replicate on write" = "false", "caching" = "all");

117

www.it-ebooks.info

http://www.datastax.com/
https://github.com/tuplejump/cash
http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

Please note, support for the Hive-managed Cassandra table is not yet available with the Cassandra storage
handler project. Trying to create a Hive-managed table as

CREATE TABLE twitter.twitterdata_hive(tweet_id string, body string, tweeted_by string) STORED BY
'org.apache.hadoop.hive.cassandra.cql.CqlStorageHandler' WITH SERDEPROPERTIES ("cql.primarykey" =

"message_id, author", "comment'="check", "read repair chance" = "0.2", "dclocal read repair_ chance"
= "0.14", "gc_grace_seconds" = "989898", "bloom filter fp chance" = "0.2", "compaction" =
"{'class' : 'LeveledCompactionStrategy'}", "replicate on write" = "false", "caching" = "all");

will result in the error shown in Figure 6-21.

hive>
> CREATE TABLE twitter.twitterdata_hive(tweet_id string, body string, tweeted_by string) STORED BY 'org.apache.hadoop.hive.cassandra.cql.Cq

1storageHandler' WITH SERDEPROPERTIES (“cql.primarykey” = "message_ld, auther”, "comment"="check"”, "read_repalr_chance" = "8.2", “"dcleocal_read_
repair_chance" = "8.14", "gc_grace_seconds"” = "989898", "bloom_filter_fp_chance"” = "8.2", "compaction” = "{'class' : 'LeveledCompactionStrategy
'}", "replicate_on_write" = "false”, "caching” = "all");

FAILED: Error in metadata: MetaException(message:Cassandra tables must be external.)
FAILED; Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask

Figure 6-21. shows error while creating internal table over Cassandra in Hive

Until now, we have explored various ways to perform MapReduce algorithms over Cassandra via Hive and Pig.
Another important aspect of data analytics is data migration, where existing RDBMS data needs to be migrated on
Cassandra for scalability and performance.

In the next section, we will explore more about data migration.

Data Migration

Legacy applications built using traditional RDBMS and looking to NoSQL databases for scalability and performance
may require migrating data from RDBMS to Cassandra. For example, financial applications want to migrate
transaction logs, popular websites storing activity logs in RDBMS, and now want to migrate the same to Cassandra.

In the Traditional Way

This is the simplest possible way to export data from an RDBMS such as MySQL in a CSV-format file and load the data
in Cassandra. Let’s discuss this more with a sample exercise.

1. First, let’s create a database and table in MySQL.:
create schema twitter;
create table twitterdata(id varchar(20) primary key,screen name varchar(20),
body varchar(30));
2. Insert some sample tweets:
insert into twitterdata('1','mevivs','my first tweet');

insert into twitterdata values('2','jhassel’,'my first tweet');
insert into twitterdata values('3','rfernando','my first tweet');

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

3. Let’s export data from the twitterdata table:

select * from twitterdata INTO OUTFILE '/tmp/mysql_ output.csv' Fields TERMINATED BY ','
ENCLOSED BY '"' LINES TERMINATED BY '\n';

4. Next, let’s create a table and keyspace in Cassandra:
create table ntwitterdata(id text primary key, screen name text, bodt text);

5. Finally, we can copy twitterdata from the csv file using the copy command over
the cql shell:

copy twitterdata from '/tmp/mysql_output.csv';

This way, we can perform data migration in the traditional way. Unfortunately it happens in the localized way.

It looks simple, but what about migrating the complete schema containing multiple tables? Would giving the
name of the schema would be more than sufficient to establish tunnel and migrate data? Apache Sqoop (SQL to
Hadoop) is an answer for these questions.

Apache Sqoop

Apache Sqoop is a tool to transfer data from relational databases to NoSQL databases such as Cassandra or
distributed file systems such as Hadoop. Sqoop has been an Apache TLP since 2012. Sqoop comes in very handy when
we need to establish a tunnel for data migration between RDBMS and NoSQL (e.g., Cassandra, Hadoop).

We will be using DataStax’s DSE for sample Sqoop Cassandra integration in this section. For more details about
DSE setup and configuration you can refer to

http://www.datastax.com/docs/datastax_enterprise3.1/reference/start_stop_dse
http://www.datastax.com/docs/datastax_enterprise3.o/install/install rpm_pkg

You can also download and extract the tarball in a local folder.

Sqoop with Cassandra

For a Sample Exercise We Will Use the Same Tweets File We Used Previously and Then Finally use DSE Sqoop Support
to Migrate From MySQL to Cassandra.

1. First, let’s connect to the MySQL client:
mysql -u root -p -local-infile
2. Next, we will create a keyspace twitter and table twitterdata:
create keyspace twitter with replication={'class':'SimpleStrategy’,
'replication factor':2};
use twitter;

create table twitterdata(tweetdate varchar(50),screen _name varchar(50),
body varchar(300), id int NOT NULL AUTO INCREMENT, PRIMARY KEY(id));

119

www.it-ebooks.info

http://www.datastax.com/docs/datastax_enterprise3.1/reference/start_stop_dse
http://www.datastax.com/docs/datastax_enterprise3.0/install/install_rpm_pkg
http://www.it-ebooks.info/

CHAPTER 6 * DATA MIGRATION AND ANALYTICS

3. Let'sload tweets data in the twitterdata table (see Figure 6-22):
LOAD DATA LOCAL INFILE '/home/vivek/tweets' INTO TABLE twitterdata FIELDS
TERMINATED BY 0x01 LINES TERMINATED BY '\n';

mysql> LOAD DATA LOCAL INFILE '/home/vivek/tweets' INTO TABLE twitterdata FIELDS TERMINATED BY ©0x01 LINES TERMINATED BY '\n';
Query OK, 10020 rows affected, 10020 warnings (0.17 sec)
Records: 10020 Deleted: @ Skipped: © Warnings: 16020

Figure 6-22. Loading the file from the local file system in the hive table

4. Next, start DSE Cassandra with Hadoop:
bin/dse cassandra -t
5. After this, run sqoop import as follows:

bin/dse sqoop import --connect jdbc:mysql://localhost/twitter --username root -P
--table twitterdata --cassandra-keyspace twitter --cassandra-column-family twitterdata
--cassandra-row-key id --cassandra-thrift-host localhost -cassandra-create-schema

6. After successfully importing, let’s explore the twitterdata column family via cassandra-
cli (see Figure 6-23):

$DSE_HOME/bin/cassandra-cli

RowKey: 6138

=> (name=body, wvalue=Obama meeting with European allies on Ukraine http://t.co/RtjWYwPpEs from #APress #tns, timestamp=1402878157525)
=> (name=screen_name, value=The News Selector, timestamp=1402878157525)

=> (name=tweetdate, value=Mon Mar 03 ©1:19:17 IST 2014, timestamp=1402878157525)

Figure 6-23. Exploring cassandra-cli for loaded data

7. Youcan explore twitterdata table from cqlsh (see Figure 6-24):

$DSE_HOME/bin/cqlsh

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ DATA MIGRATION AND ANALYTICS

cqlsh:twitter> describe table twitterdata;

CREATE TABLE twitterdata (
key text,
columnl text,
value text,
PRIMARY KEY (key, columni)

) WITH COMPACT STORAGE AND
bloom_filter_fp_chance=0.010000 AND
caching="'KEYS_ONLY' AND
comment="'" AND
dclocal_read_repair_chance=0.000000 AND
gc_grace_seconds=864000 AND
read_repair_chance=0.100000 AND
replicate_on_write='true' AND
populate_io_cache_on_flush="false' AND
compaction={'class': 'SizeTieredCompactionStrategy'} AND
compression={'sstable_compression': 'SnappyCompressor'};

Figure 6-24. Describing the table twitterdata

With this, we conclude that Sqoop can easily be configured with Cassandra for data migration purposes.
The next chapter will take discussion forward with graph databases.

Summary

The following is a summary of topics discussed in this chapter:

e Configure and run Hive-based queries to integrate and run MapReduce jobs in a SQL-like
manner.

e Pig comes very handy if the reader is well-versed with script-based programming and familiar
with writing scripts.

e Use Sqoop for migrating data from HDFS/MySQL to Cassandra and vice versa.

The next chapter will take the discussion ahead with new the paradigm, graph-based databases. The chapter will
discuss why, how, and when to use graph databases and most importantly how to do so with Cassandra.

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Titan Graph Databases with
Cassandra

So far, we have discussed data modeling in Cassandra, building a large data analytics platform using Hadoop and
related technologies. When business requirements require interconnectedness among various objects, an answer is
having reference (joins) queries among multiple objects. Everything looks good until we have to deal with many such
relations or the data volume becomes really huge.

LinkedIn, Twitter, and Facebook are popular examples where relationships among registered users can be
described as a social graph. Another example could be building a credit history and doing risk analysis of granting
loans to a group of customers. Definitely with multiple tables and join theory, we can implement a solution but
obviously it will not be scalable and performant. That’s where idea of using a graph database comes very handy.

In this chapter we will discuss:

e Anintroduction to graph concepts
e Graph frameworks and databases
e Titan Graph setup and installation

e Graph use cases

Introduction to Graphs

Graph theory can be traced back to 1736. A graph is a data structure that consists of vertices/nodes and edges. A graph
can have zero or multiple edges. A graph without edges is also referred to as an empty graph.

A vertex is a graph node that is connected to other graph nodes/vertices via edges. Each edge is an arc or line
which connects multiple vertices.

In computer science, a graph can be categorized in many ways. A few of the popular ones include:

e Simple and nonsimple graphs
e Directed and undirected graphs

e Cyclic and acyclic graphs

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Simple and Nonsimple Graphs

A simple graph, as the name suggests, is a basic graph having at most one edge between two vertices. It's a graph that
has no self loops but multiple nodes (see Figure 7-1a). On the other hand, graphs with self loops and multiple edges
are nonsimple graphs (see Figure 7-1b). Here, a self loop is an edge which connects to a vertex itself. A graph having
multiple edges between the same nodes is also called a multigraph or parallel graph. The graph shown in Figure 7-1cis
a multigraph and a self-loop graph. It contains a selfloop on vertex A and has multiple edges between vertex A and B.

a b c

Figure 7-1. a) On the left, a simple graph; b) a nonsimple graph in the middle; and c) a multigraph with a self loop

Directed and Undirected Graphs

Graphs with multiple nodes and directed edges are directed graphs (see Figure 7-2a). Undirected graphs are the
graphs having edges without direction (see Figure 7-2b).

Figure 7-2. a) On the left, a directed graph with directed edges; b) an undirected graph

Cyclic and Acyclic Graphs

A graph is said to have a cycle if that traverses a path with at least one edge and starts and ends at the same vertex,
whereas a non-cyclic or acyclic graph doesn’t contain any cycle. Such graphs can be directed or undirected. Figure 7-3
shows graphical representations of cyclic and acylic graphs.

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Figure 7-3. a) The dotted lines show a cycle in a graph; b) an acyclic graph

Figure 7-3a represents a cyclic graph with edges represented by dotted lines connecting the B, C, and D vertices.
Those are a few basic types of graphs. The next question that may come to mind is whether there are any open
source tools, frameworks, or databases specifically built to handle graph-related problems?

Open Source Software for Graphs

Open source software is free, easy to submit bugs and request feature modifications according to our needs, and most
importantly cost effective. In recent years, using open source software in the IT industry has become popular, and more
organizations prefer open source solutions. A few of the considerations before adopting an open source solution are:

e Should be mature and stable
e Should be in active development and must have community support
e There must be systems in production to validate industry usage

We asked the question of whether there are any tools, frameworks, or databases for solving graph-related
problems. Well, let’s explore and find out!

Graph Frameworks: TinkerPop

Graph frameworks are used for graph data modelling and visualization. In this section we will discuss TinkerPop
(www . tinkerpop.com/) and its feature set. TinkerPop Blueprints is used as a specification by many NoSQL databases
(including Titan). Blueprints provides a set of interfaces and implementations for graph data modeling and will be
discussed in later in this section.

TinkerPop is an open source graph computing framework with multiple components, frameworks, and
command-line tools for handling graph data modeling and visualization. In this section we will discuss them
individually.

Pipes

Pipes is a dataflow framework that enables the splitting, merging, filtering, and transformation of data from input to
output. Computations are evaluated in a memory-efficient, lazy fashion.

Think of pipes as vertices that are connected by edges, with functions for extraction, transformation, and data
computation generally.

125

www.it-ebooks.info

http://www.tinkerpop.com/
http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

Gremlin

Gremlin is a graph traversal language that is used for graph query, analysis, and manipulation. The Gremlin
distribution comes with built-in API support for Java and Groovy. We will discuss Gremlin at length in relation to Titan
in the “Command-line Tools and Clients” section later in this chapter.

Frames

Frames exposes the elements of a Blueprints graph as Java objects. Instead of writing software in terms of vertices and
edges, with Frames, software is written in terms of domain objects and their relationships to each other.

Rexster

Rexster is a multi-faceted graph server that exposes any Blueprints graph through several mechanisms with a general
focus on REST. It exposes a graph server via the REST API and RexPro protocol. RexPro is a binary protocol for Rexster
that can be used to send Gremlin scripts to a remote Rexster instance. The script is processed on the server and the
results serialized and returned to the calling client. It also provides tools for a browser-based interface known as the
Dog House and the Rexster console (which will be discussed with the Titan ecosystem).

Furnace

Furnace is a property graph algorithms package. It provides implementations for standard graph analysis
algorithms that can be applied to property graphs in a meaningful way. Furnace provides different graph algorithm
implementations that are optimized for different graph computing scenarios, such as single-machine graphs and
distributed graphs.

Note Single machine graphs involve graph data over a single node, whereas distributed graphs have data distributed
across multiple nodes.

Blueprints

Blueprints, as the name suggests, is a property graph model interface with provided implementations. Databases that
implement the Blueprints interface automatically support Blueprints-enabled applications.

Blueprints can be thought of as JDBC (Java DataBase Connectivity) or JPA (Java Persistence API) APIs for graph
databases. Most graph databases implement Blueprints. Figure 7-4 shows a representation of how Blueprints can be
visualized with the previously mentioned TinkerPop components.

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

¢ Graph
server

* Object
Blueprints |— mapper

* Data flow
processing

* Graph
algorithims

¢ Query
language

Figure 7-4. TinkerPop Blueprints implementations

TITAN GRAPH DATABASES WITH CASSANDRA

So with this we have covered TinkerPop framework, its components and other graph-related concepts. The next
question is whether there are any graph-based solutions that can be thought of as graph databases. In next section we

will answer these questions.

Graph as a Database

In comparison to traditional RDBMS, NoSQL databases are less about schema and more about denormalized forms of
data. But graph databases offer the flexibility to define relationships between nodes via edges, and that's why it is easy
to understand them in terms of RDBMS concepts. Building graph-like queries with an RDBMS is certainly possible
but as discussed previously it will be of very limited use. With non-graph databases, the ability to run graph-based
queries for traversal or building graph structures is not supported and could be cumbersome to build. Because of
inherent graph data structure support, graph databases will have an edge over traditional RDBMS.

A few differences between RDBMS and graph databases are

e There is no need for index lookup with graph databases, as nodes or vertices are aware of
properties they are connected with (e.g., edges) whereas with RDBMS we need to rely on an

indexing mechanism.

e Two vertices interconnected via edges can be different in properties and may evolve

dynamically, but RDBMS imposes a fixed set of schema.

e With graph databases, the relationship between two vertices is stored at the record level

whereas with RDBMS it is defined at the table level.

www.it-ebooks.info

127

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

One thing we need to keep in mind is that the current era of application development is one of using specific
technologies for specific needs, which is a good fit for building polyglot or hybrid solutions. This means that for
cases in which your needs are best served by running graph-like queries and your requirements lend themselves to
a faster graph-based model, then the answer is simple: Use graph databases. A graph database uses nodes and edges
and their properties to build and store data in a graph structure. Every element in a graph databases has a reference
to adjoining nodes, which means no index lookup will be required. Figure 7-4 shows an example of a graph database
storing Twitter users as nodes and their followers as edges. Each node contains an fname, id, Iname, and role as
properties, whereas each edge has a property to denote the date when a user became a follower of the adjoining node
(i.e., user).

Figure 7-5 shows a Twitter connection and follower graph for users mevivs, chris_n, apress_team, and melissa_m.
Here the vertex apress_team is being followed by the mevivs and melissa_m vertices. On the other hand, a transitive
relation/traversal exists between chris_n, who is following mevivs, who follows apress_team, and the apress_team
follows chris_n. In the “Gremlin Shell” and “Use Cases” sections, we will refer to the same Twitter example to explore
command-line tools and Java APIs in sample exercises. When considering such transitive graph queries, one thing
worth discussing is that the ways graph databases handle such queries is different than SQL queries. Handling of
such transitive queries with SQL is not straightforward and would require performing complex joins, unions, or
intersections. But handling such transitive queries with graph databases is much easier and requires just following
the edges for incoming and outgoing data queries using the edge’s properties. The “Use Cases” section will discuss
these graph traversals.

id: chris n
follcwing fname: chris
since: 2014-09-21 Iname: nelson
role: reviewer following
since: 2012-04-12

id: mevivs
fname: vivek

Iname: mishra
role: author

following
since: 2013-03-11

id: apress_team
fname: apress
role: administrator

following
since: 2014-03-28

following

id: e since: 2014-06-18

fname: melissa
Iname: maldonado
role: coordinator

Figure 7-5. A graph database storing Twitter users, their properties, and followers

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Let’s talk about available graph databases. A few of the popular graph databases are

. Neo4]

OrientDB
e Objectivity’s InfiniteGraph
e Titan

Because the intent of this chapter is to discuss Cassandra and Titan graph databases at length, we will discuss
only important features provided by the other databases mentioned here.

Neo4J

Neo4] (www.neo4j.org/) is an open source database licensed under GPU (General Public Usage). It was developed by
Neo Technology Inc. It stores data in the form of nodes that are connected by directed edges. A few important features
provided include:

e Scalable and highly available data
e Fll ACID transaction support
REST-based access

e Support for Cypher and Gremlin graph query language

OrientDB

OrientDB (www.orientechnologies.com/orientdb/) is an Apache 2 licensed NoSQL graph database. It is managed
and developed by Luca Garulli of Orient Technologies. A few important features provided by OrientDB are:

e REST-based access
e Full ACID transaction support

e A SQL-like interface for query support

InfiniteGraph

InfiniteGraph (www.infinitegraph.com/) is an enterprise distributed graph database built by Objectivity Inc. A few
important features supported by InfiniteGraph are

e Support for concurrency and consistency
e Full ACID transaction support

e Avisualization tool

129

www.it-ebooks.info

http://www.neo4j.org/
http://www.orientechnologies.com/orientdb/
http://www.infinitegraph.com/
http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

Titan

Titan (thinkaurelius.github.io/titan/)is an Apache licensed scalable graph database built to store a large amount
data in the form of nodes and edges. It supports Cassandra as backend storage. A few of its important features are

e Full text search and geospatial query support via Lucene/ES

e ACID support

e Eventual and intermediate consistency

e Support for multiple databases which can be good for polyglot graph-based applications
e Support for Gremlin and cypher

Titan and its various components will be discussed in the coming sections.

Titan Graph Databases

Titan is a transactional graph database that allows thousands of concurrent users to execute complex graph traversal
queries in real time. It also provides support for graph data analytics, reporting, and ETL support via Hadoop
integration. It also comes with built-in support of Elasticsearch and Lucene for geospatial queries and full text search.
It also provides native support for a Blueprint TinkerPop graph stack.

Figure 7-6 shows a graphical representation of the Titan ecosystem.

RexsterPro

%Gremﬁ_n
Scala ¢~ (V.E)

Titan Java API

'RESTAPI

REST-based
\Access.se Rexster Dog House

Rexster Web Titan High-Level
\ Console Graph AP
.)

Faunus
Analytics
- Engine

Titan 4
Distributed
Graph Database

Rexstét\\?

Rexster Graph Server

Figure 7-6. The Titan ecosystem
130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Basic Concepts

In this section, we’ll introduce some basic concepts that are important for understanding Titan graph databases.

Vertex-Centric Indices

A vertex-centric index is specific to a vertex. Most traversal among referencing or non-referencing vertices would be
via edges or their properties. Indexing such properties or edge labels can avoid performance overhead. Such indices
can also be referred to as local indices. The purpose of vertex-centric indices is to sort and index adjoining edges of a
vertex based on an edge’s properties and labels.

Titan also provides support for Elasticsearch, which can be run in standalone or embedded mode with Titan.
With Elasticsearch it is also possible to perform full text search, executing geospatial queries, and numeric range
queries. Elasticsearch allows us to query over nonindexed properties, as well.

Edge Compression

With edge compression, Titan can store compressed metadata and keep memory usage low. It also can store all edge
labels and properties within the same data block for faster retrieval.

Graph Partitioning

This is where the underlying database matters the most. In Cassandra, we know that data for one particular row would
be stored on one Cassandra node. Titan understands that with keys sorted by vertex ID, it can effectively partition and
distribute graph data across Cassandra nodes. The vertex ID is a 64-bit unique value.

By default Titan adopts a random partitioning strategy to randomly assign vertices to nodes. Random partitions
are efficient and keep the cluster balanced, but in the case of multiple backend storage options adopted for storing
graphs, it would lead to performance issues and require cross-database communication across the instances.

With Titan we can also configure explicit partitioning. With explicit partitioning we can control and store traversed
subgraphs on same node.

We can enable an explicit partition in Titan as follows:

cluster.partition = true
cluster.max-partitions = 16
ids.flush = false

Here max-partitions is the maximum number of partitions per cluster. Also we need to disable flushing IDs
as well.

When using Cassandra as the storage backend option, it must be configured with the ByteOrderedPartitioner.

Titan stores vertices and adjoining edges and properties as a collection. This mechanism is called adjacency list
format. With this mechanism, edges connecting to a vertex and its properties would be stored together in a collocated
way. Each row will contain a vertex ID as a key and adjoining edges and properties as cells. Data representation in this
format is common across all supported databases.

Figures 7-7 and 7-8 show the Titan data layout and edge storage mechanisms. (The images are from the Titan
wiki page at https://github.com/thinkaurelius/titan/wiki/Titan-Data-Model and reused under the Apache
License, Version 2.0, www.apache.org/licenses/LICENSE-2.0.)

131

www.it-ebooks.info

https://github.com/thinkaurelius/titan/wiki/Titan-Data-Model
http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Titan Data Layout

[Coenecie | o= [oropery Woropery W_cooe W _ccor T cioe T

v | G] = () I I JL e
[Lverexi | emp [oroperty W ropery Wovopre [e T ioe T

>

sorted by type & sort key

Figure 7-7. Titan’s data layout mechanism

Individual Edge Layout

signature other

Edge labelid + e adjacent
properties

direction y vertex id edge id

- column - value -

Property proﬁ]erty property

value

Figure 7-8. Titan’s edge storage mechanism

The underlying datastore will store each vertex along with adjoining edges and properties as a single row. Also
these rows will be sorted by vertex id and cells will be sorted by property and edge key. Dynamic cells can be added at
run time. Data collocation is very important, that’s why storing the vertex and adjoining edges as a single row would
help to achieve high availability.

Backend Stores
Titan'’s storage architecture is totally decoupled and supports multiple NoSQL databases, which are
e (Cassandra
e HBase
e BerkeleyDB
e Persistit

Support for multiple NoSQL data stores allows adopting the right one based on application requirements. In
other words, you can select specific technology for specific needs. Based on the CAP theorem we may opt for any one
of the supported databases.

With Titan we can configure backend storage on the fly using the storage.backend option. Examples in this
chapter will cover how to use this option with Cassandra.

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Transaction Handling

Titan is a transactional graph database; hence every read/write operation would happen in a transaction boundary.
The following code snippet shows Titan wrap the vertex mevivs in a transaction boundary and commit it:

TitanGraph g = TitanFactory.open("/home/vivek/Titan");

Vertex mevivs = g.addVertex(null); //Implicitly wraps within transaction
mevivs.setProperty("fname", "vivek");

g.commit(); //Commits transaction

In cases with very large volume and a polyglot nature, permanent or temporary failures may happen. Here
temporary failures are situations such as network failure, nodes not responding, and similar scenarios. In such
scenarios we can configure the retry delay property with Titan like this:

Configuration conf = new BaseConfiguration();
conf.setProperty("storage.attempt-wait ",250); // time in milliseconds

Such temporary failure can be handled with retries, but permanent failure, like hardware failure, would require
the user to explicitly handle TitanException:

Try
{
TitanGraph g = TitanFactory.open("/home/vivek/Titan");
Vertex mevivs = g.addVertex(null); //Implicitly wraps within transaction
mevivs.setProperty("fname", "vivek");
g.commit(); //Commits transaction
} catch (TitanException e) {
//configure explicit retry or fast-fail scenarios.
}

These are the Titan basic concepts and its architecture. Next, we will cover setup and installation of
Titan Graph database.

Setup and Installation

We can download the latest Titan distribution from https://github.com/thinkaurelius/titan/wiki/Downloads.
The latest version at the time of writing is 0.5.0. After downloading the distribution, extract it to a local folder. We will
be referring to the TITAN_HOME variable at many places in this chapter. We can set it as follows:

export TITAN_HOME=/home/vivek/software/titan

Command-line Tools and Clients

With setup and installation in place, the first question that comes to mind is whether there are any command-line
clients? Like the CQL shell for Cassandra, is there any option available with Titan for server-side scripting and quick
analysis? Gremlin shell and Rexster are two command-line options we will be exploring in this section.

133

www.it-ebooks.info

https://github.com/thinkaurelius/titan/wiki/Downloads
http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

Gremlin Shell

Titan provides support for Gremlin shell for graph traversal and mutation using the Gremlin query language. It's a
functional language. Each step outputs an object, and with *” (dot), we can access associated functions with it.
For example,

gremlin> conf = new BaseConfiguration() // step 1
==>o0rg.apache.commons.configuration.BaseConfiguration@2d3ci17a

gremlin> conf.setProperty("storage.backend", "cassandrathrift") // step 2

Here conf is an object of Configuration created in step 1 whose setProperty function has been invoked in step 2.

Let’s discuss Gremlin with an exercise. In this recipe we will be using the same Twitter example, where users’
tweets will be a graph’s vertices and the relationship between a user and its tweets and followers will be edges. In this
example we will be using Cassandra as the backend storage option. You can opt for running a standalone Cassandra
server; otherwise, by default, it would start and connect with an embedded one.

1. First we need to connect with Gremlin as in Figure 7-9.

vivek@vivek-Vostro-3560:~/software/titan-all-0.4.4$ bin/gremlin.sh

\J,’f

(o 0)
----- 0000-(_)-0000-----
gremlin>

Figure 7-9. Connected to the Gremlin shell

2. Next, we need to initialize a configuration object and set a few Cassandra-specific
properties:

gremlin> conf = new BaseConfiguration()
==>0rg.apache.commons.configuration.BaseConfiguration@2d3c117a
gremlin> conf.setProperty("storage.backend", "cassandrathrift")
==>null

gremlin> conf.setProperty("storage.hostname", "localhost")
==>null

gremlin> conf.setProperty("storage.port”, "9160")

==>null

gremlin> conf.setProperty("storage.keyspace"”, "twitter")
==>null

3. Next, get an object of Titan graph:

gremlin> graph = TitanFactory.open(conf)
==>titangraph[cassandrathrift:localhost]

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Let’s make few vertex keys and edge labels:

gremliny> graph.makeKey("fname").
dataType(String.class).indexed(Vertex.class).make()
==>fname

gremlin> graph.makeKey("lname").
dataType(String.class).indexed(Vertex.class).make()
==>1name

gremlin> graph.makeKey("twitter tag").
dataType(String.class).indexed(Vertex.class).make()
==>twitter_tag

gremlin> graph.makeKey("tweeted at").
dataType(String.class).indexed(Vertex.class).make()
==>tweeted_at

gremlin> graph.makelLabel("has_tweeted").make()
==>has_tweeted

gremlin> tweet.setProperty("body", "Working on Cassandra book for apress")
==>null

gremlin> tweet.setProperty("tweeted at", "2014-09-21")
==>null

Here fname, 1name, and twitter tag are vertex keys and the label has_tweeted will be used for edges in the

next step.

5

Let’s create vertices for user and tweet:

gremliny vivs = graph.addVertex(null)

==>v[4]

gremlin> vivs.setProperty("fname", "vivek")
==>null

gremlin> vivs.setProperty("lname", "mishra")
==>null

gremlin> vivs.setProperty("twitter tag", "mevivs"
==>null

gremlin> graph.V("fname","vivek")

==>v[4]

gremlin> tweet = graph.addVertex(null)
==>v[8]

Next, add an edge between these two vertices:

gremlin> graph.addEdge(null, vivs, tweet, "has_tweeted")
==>e[2V-4-1E][4-has_tweeted->8]

Let’s add apress_team as a user and establish and define “vivek follows apress_team”
relationship edge:

gremlin> apress = graph.addVertex(null)
==>v[12]

gremlin> apress.setProperty("fname", "apress")
==>null

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

gremlin> apress.setProperty("twitter tag", "apress team")
==>null

gremlin> graph.addEdge(null, vivs, apress, "following")
==>e[3r-4-22][4-following->12]

8. We can find a vertex by its key as follows:

gremlin> vivek = graph.V('fname', 'vivek').next()
==>v[4]

gremlin> vivek.map()

==>twitter_tag=mevivs

==>1name=mishra

==>fname=vivek

9. We can also fetch all outgoing edges from vertex vivek having the relationship has:

gremlin> outVertex = vivek.out('has').next()
==>v[8]

gremlin> outVertex.map()

==>body=Working on Cassandra book for apress
==>tweeted at=2014-09-21

The preceding recipe demonstrates a way to populate and traverse through a Twitter graph application using

Gremlin query language.
Let’s discuss Rexster Rest AP, the Dog House, and Titan Server.

Rexster: Server, Rest API, and the Dog House
As discussed in the TinkerPop section, using the REST API and web console, we can visualize and manage any Titan
graph. In a previous recipe we discussed downloading and setting up the Titan distribution on a local box. To start
Titan Server, embedded Elasticsearch, and Cassandra, we need to run
TITAN_HOME/bin/titan.sh

Next, to connect with the REST API and the Dog House we need to execute

TITAN_HOME/bin/rexster-console.sh

This will start Elasticsearch and connect with Elasticsearch transport at port 9300 and will get Rexster running at
port 8184. The REST API and the Dog House console would get started on localhost:8182 port (see Figure 7-10).

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

vivek@vivek-Vostro-3560:~/software/titan-0.5.0-hadoop1/bin$./titan.sh start

Forking Cassandra...

Running “nodetool statusthrift’.... OK (returned exit status © and printed string "running").
Forking Elasticsearch...

Connecting to Elasticsearch (127.0.0.1:9300)... OK (connected to 127.0.0.1:9300).

Forking Titan + Rexster...

Connecting to Titan + Rexster (127.0.0.1:8184).......... OK (connected to 127.0.0.1:8184).
Run rexster-console.sh to connect.
vivek@vivek-Vostro-3560:~/software/titan-0.5.0-hadoop1/bins i

Figure 7-10. Starting Rexster server

Rexster Dog House

Figure 7-11 shows the Dog House console with tabs for the Dashboard, the option to browse edges and vertices, and
the built-in Gremlin command-line shell.

{ = localhost

i apps For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now

Gremlin b#ﬂeular

graph Graph
graph - titangraph[cassandra:[127.0.0.1]]
£ Browse Vertices O Browse Edges
Extensions

+ tp:gremlin

v

Rexster: The Dog House

Figure 7-11. Rexster Dog House web console

The built-in Gremlin command-line client allows you to run graph mutation and traversal queries (discussed
previously in this chapter).

Let’s explore the graph stored in the Gremlin recipe using Gremlin query language. We can analyze vertices using
the Browse Vertices option as shown in Figure 7-12.

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

Gremlin

graph Graph
graph - titangraph[cassandra:[12 0.1]]

£ Browse Vertices £ Browse Edges

Browser

Figure 7-12. Browing graph vertices

We can further drill down to properties of a specific vertex, as well (see Figure 7-13). The figure shows the
properties and incoming and outgoing from vertex “vivek”. It has two outgoing edges “has” and “following” to tweet
and apress_team vertex.

Gremlin
graph Graph
graph - titangraphj 0.0.1]]
£ Browse Vertices 0 Browse Edges
Extensions
+ tpigremlin

Vertex [256]

In Properties

o
Edges

Figure 7-13. Exploring properties and relationships of vertex “vivek”

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

In the same way we can also explore edges and their properties (see Figures 7-14 and 7-15).

Browse Gremlin 'ﬁ.zc"‘kexxbar

graph Graph
graph - titangraph[cassandra:[127.0.0.1]]

£ Browse Vertices £ Browse Edges

Browser

Figure 7-14. Exploring the edges with the labels “has” and “following”

Browse Gremlin
Graph
graph - titangraph[cassandra:[127.0.0.1]]
£~ Browse Vertices £~ Browse Edges
Extensions

+ tp:gremlin

Edge [1og-74-9hx-e8]

Properties

Figure 7-15. Exploring the edge with the label “has”

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

Figure 7-15 shows the properties and connected incoming and outgoing vertices of edge “has” The vertices
mevivs and tweet are connected via the edge “has” which in lay terms means “Vivek has tweeted a tweet!”

We can also visualize a graph by clicking the search icon which would render a visualization as shown in
Figure 7-16.

Visualization

Figure 7-16. Visualization of vertices and edges

The figure depicts a graphical representation of three vertices and two edges.

Rexster REST API

We can also query a Titan graph database using the REST API! For example, to get a list of all vertices we simply need
to hit a request like this:

localhost:8182/graphs/$graph_name/vertices

For example, we can get a list of all vertices of the twitter “graph” as shown in Figure 7-17.

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

4 C [localhost v
i Apps Forquick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...
{"version”:"2.5.8","results":[{"body":"Working on Cassandra book for apress”, "tweeted at":"ss", " id":512," type":"vertex"},

{"twitter tag”:"mevivs®,"Llname":"mishra”,"fname":"vivek","” id":256," type":"vertex"},
{"twitter_taq”:"apress_team”, "fname":"apress”,” id":768," type”:"vertex“}], "totalSize":3, "queryTime":20.901978}

Figure 7-17. Returning a list of all vertices using the REST API

We can also query for a specific vertex by its ID (see Figure 7-18).

< c localhost

i apps Forquick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

{"version*:"2.5.8","results”:{"twitter_tag":"mevivs",“lname*:“mishra”,*fname":"vivek"," id*:256," type":“"vertex"},“queryTime":8.234983}

Figure 7-18. Get a vertex using the ID 256

A complete list of all supported REST methods can be found at https://github.com/tinkerpop/rexster/wiki/
Basic-REST-API.

Titan with Cassandra

In this section we will discuss the Titan implementation using Cassandra as a storage option. This section will discuss
how to use the Titan Java API with Cassandra and perform use cases such as reading and writing to graphs.

Titan Java API

Titan is an implementation of the Blueprints graph interface. Titan provides Java- and Groovy-based implementations
to access Titan.

The Titan Java API setup is fairly easy. For backend storage it relies on other databases, so to start using Titan we
just need to add

<dependency>
<groupIld>com.thinkaurelius.titan</groupId>
<artifactId>titan-all</artifactId>
<version>0.4.4</version>

</dependency>

141

www.it-ebooks.info

https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

The latest Titan release at the time of writing is version 0.5.0. For Cassandra, Titan relies on Netflix’s Astyanax
Thrift client. The latest version of the TitanGraph API supports Astyanax’s 1.56.37 version. Please note that you may
end up in dependency issues if a different version of Astyanax Thrift is being used in a project for other Cassandra-
related implementations. This means support of CQL would also be very limited with Astyanax Thrift client support.
Features specific to CQL3 (e.g., collections) may not work properly with this version of Astyanax.

With Cassandra running on remote machines over multiple nodes, we can configure those remote nodes with
Titan with a comma-separated list of IP addresses.

Cassandra for Backend Storage

As discussed above, Cassandra can be used as a storage backend with Titan. In this section, we will configure Titan
storage options, including using Cassandra, and open a graph instance. In the following “Use Cases” section, we will
demonstrate how to use Titan with Cassandra, such as with writing and reading from the graph, via some simple
exercises.

1. The first thing is that we need to configure Titan for some storage options:

import org.apache.commons.configuration.BaseConfiguration;

import org.apache.commons.configuration.Configuration;

import com.thinkaurelius.titan.core.TitanFactory;

import com.thinkaurelius.titan.core.TitanGraph;

import com.thinkaurelius.titan.core.TitanKey;Configuration conf = new
BaseConfiguration();

conf.setProperty("storage.backend", "cassandrathrift");
conf.setProperty("storage.hostname", "localhost");
conf.setProperty("storage.port", "9160");
conf.setProperty("storage.keyspace", "twitter");

Table 7-1. Titan configuration properties

Property Value Description

storage.backend cassandrathrift Cassandra as backend storage

storage.hostname localhost Thrift listen_address, change according to your Cassandra server
settings.

storage.port 9160 Thrift rp

storage.keyspace Twitter Cassandra keyspace for Titan Graph storage

Table 7-1 outlines and describes the configuration properties we used in the preceding step.
2. Next we need to open a graph instance using TitanFactory:
TitanGraph graph = TitanFactory.open(conf);

Let’s further explore the Titan Java API with Cassandra via a few use cases, such as reading, writing, and batch
processing data.

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Use Cases

In this section, we will discuss graph traversal, reading, writing, and batch processing with graph data. Let’s first
discuss a scenario in which vertices and connecting edges are large in number, which is quite common with big data.

Writing Data to a Graph

After instantiating an instance of a graph, let’s explore writing vertices and incident edges into a graph. We will
be discussing the same Twitter example and will build a graph-based implementation for the user, its tweets,
and followers.

Figure 7-19 shows a representation of a problem we will be implementing using the TitanGraph API.

“body”: “Working on Cassandra book for apress”,
“tweeted at”:"2014-09-21"

Has tweeted

", 0.

“fname”: “vivek”,
“Iname”:"mishra”
“twitter_tag”:"mevivs”

following

“fname”: “apress”,
“twitter_tag”:"apress_team”

Figure 7-19. User vivek is following apress_team and tweets about his Cassandra book on Twitter

1. Let's add a vertex to the graph:
Vertex vivs = graph.addVertex(null);
vivs.setProperty("fname", "vivek");
vivs.setProperty("lname", "mishra");
vivs.setProperty("twitter tag", "mevivs");

Here, Vertex is an API referred from Blueprints. The following are import statements for the preceding code
snippet:

import com.tinkerpop.blueprints.Direction;
import com.tinkerpop.blueprints.Vertex;

You can assume a vertex as Java POJO and its properties as field variables.

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

2. Let’s create another vertex for tweets and define an edge between the user and tweet
vertex:

Vertex tweet = graph.addVertex(null);
tweet.setProperty("body", "Working on Cassandra book for apress");
tweet.setProperty("tweeted at", "2014-09-21");

graph.addEdge(null, vivs, tweet, "has_tweeted"); // User vivs has tweets
3. Wecan also add another vertex and establish a relation of "following":

Vertex apress = graph.addVertex(null);

apress.setProperty("fname", "apress");

apress.setProperty("twitter tag", "apress team");

graph.addEdge(null, vivs, apress, "following"); // Vivs is following apress team

4. And then finally commit the transaction:

graph.commit();

Reading from the Graph
Let’s explore a bit around reading vertices and properties from a Titan graph:

1. Reading from a graph is also fairly easy, and we can retrieve all vertices for a particular
graph or even a specific vertex:

Iterable<Vertex> vertices = graph.getVertices();
Iterator<Vertex> iter = vertices.iterator();

2. We can iterate over each vertex and retrieve incident edges like this:

while(iter.hasNext())
{

Vertex v = iter.next();
Iterable<Edge> keys = v.getEdges(Direction.BOTH);

3. Each edge will have IN and OUT vertices, and we can retrieve those vertices via edges:
for(Edge key : keys)

System.out.print(key.getVertex(Direction.IN).toString()); // will print vivs on
consle

System.out.print("=>");

System.out.print(key.getLabel());

System.out.print("=>");

System.out.println(key.getVertex(Direction.OUT).toString()); // will print tweets or
apress

}

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

The preceding reading and writing to a Titan graph provides a simple recipe for how to use Titan with Cassandra.

Cassandra is all about large data processing and analytics. It is no different when working with a graph-based
model using Cassandra. So what about batch processing of data with a Titan graph database? Titan does provide
support for batch data processing, and in the next example we will explore how to perform batch loading using the
Titan Java APL.

Batch Loading

Titan provides support for batch loading using the BatchGraph API, which can be thought of as a wrapper around
TitanGraph with configurable parameters to define batch size and the type of vertex ID. We can create a BatchGraph
instance as follows:

BatchGraph bGraph = new BatchGraph<TITAN GRAPH INSTANCE>,<VERTEX ID TYPE>,<BATCH SIZE>);

Using a bulk loading API, we can push a batch of records with a single database call. That way graph data loading
will always be faster.

Let’s explore more about bulk loading in Titan with a sample Java recipe. In this example, we will read data from a
.csvfile.

Figure 7-20 shows data in the format of User A following User B. Each user has fname, 1name, and twitter_tag
as properties of the vertex, where an edge label is following and contains a property value as Cassandra. Please note
that you can find the sample . csv file with source code for this book under the sxc/main/resources folder.

mevivs vivek mishra apress_te apress team following Cassandra
apress_team apress team jhassel Jonathan Hassel following Cassandra
jhassel Jonathan Hassel mevivs vivek mishra following Cassandra
jhassel Jonathan Hassel apress_miapress marketing following Cassandra

Figure 7-20. A table showing the user-to-follower relationship

Follow these steps to complete the recipe:

1. First, the common step is to configure a graph for Cassandra:

import org.apache.commons.configuration.BaseConfiguration;
import org.apache.commons.configuration.Configuration;
import com.thinkaurelius.titan.core.TitanFactory;

import com.thinkaurelius.titan.core.TitanGraph;

import com.thinkaurelius.titan.core.TitanKey;Configuration conf = new
BaseConfiguration();

conf.setProperty("storage.backend", "cassandrathrift");
conf.setProperty("storage.hostname", "localhost");
conf.setProperty("storage.port", "9160");
conf.setProperty("storage.keyspace", "batchprocess");
conf.setProperty("storage.batch-loading", "true");

2. Let'sload the sample .csv file using FileReader:

File file = new File("src/main/resources/bulk load.csv");
BufferedReader reader = new BufferedReader(new FileReader(file));

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

3. Next, create an instance of a graph and wrap it with BatchGraph:

TitanGraph graph = TitanFactory.open(conf);
BatchGraph bgraph = new BatchGraph(graph, VertexIDType.STRING, 1000);

Here 1000 is the batch size and the vertex ID is of string type.

4. Now let’s define each vertex property as a vertex key and each edge’s property as a label
key:

// prepare vertex key for each property

KeyMaker maker = graph.makeKey("twitter tag");
maker.dataType(String.class);
maker .make();
graph.makeKey("fname").dataType(String.class).make();

graph.makeKey("1name").dataType(String.class).make();

// prepare edge properties as label

LabelMaker labelMaker = graph.makelLabel("contentType");
labelMaker.make();

graph.makeLabel("following").make();

Here TitanKey and LabelKey are classes provided by Titan Java API, which are used to prepare vertex and
edge keys.

5. Nowlet’s read line by line from the file and extract vertex and edge properties:
while (reader.ready())

String line = reader.readlLine();
StringTokenizer tokenizer = new StringTokenizer(line, ",");
while (tokenizer.hasMoreTokens())
{
// System.out.println(tokenizer.nextToken());
// twitter_ tag,fname,lname,twitter tag,fname,lname,edgeName,edgeProperty
final String in_twitter tag = tokenizer.nextToken();
final String in_fname = tokenizer.nextToken();
final String in_lname = tokenizer.nextToken();
final String out twitter tag = tokenizer.nextToken();
final String out fname = tokenizer.nextToken();
final String out lname = tokenizer.nextToken();
final String edgeName = tokenizer.nextToken();
final String edgeProperty = tokenizer.nextToken();

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

6. Now create in and out vertices within an extreme out while loop (see step 5) and assign an
edge as follows:

//in vertex

Vertex in = bgraph.addVertex(Math.random() + "");
in.setProperty("twitter tag", in_twitter tag);
in.setProperty("fname", in_fname);
in.setProperty("lname", in_lname);

//out vertex

Vertex out = bgraph.addVertex(Math.random() + "");
out.setProperty("twitter tag", out_twitter tag);
out.setProperty("fname", out fname);
out.setProperty("lname", out lname);
//assign edge
bgraph.addEdge(null, in, out, edgeName);

7. Finally we can call commit after successfully reading all records from the . csv file and
populating BatchGraph:

bgraph.commit();

Here batch size is the number of vertices and edges to be loaded before we invoke the commit on the graph. One
thing we should take care of is setting a moderate value as the batch size to avoid heap size issues while processing a
big graph having millions or billions of edges.

The Supernode Problem

In the real world, big data-based graphs can be very large, and there can be a group of vertices having a very high

number of incident edges. In graph theory, such vertices are called supernodes. With so many complex paths, a

random traversal in a graph can lead us to such supernodes, which would badly affect the system’s performance.
Figure 7-21 shows my LinkedIn social graph, where the marked vertices can be termed supernodes.

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Figure 7-21. Vivek’s LinkedIn graph

For example, if need to traverse through all connections for a particular group (say graphDB), such traversal
without indices would lead to performance issues. With incident edges indexed by label, such lookups will be much
quicker.

For example, if we want to find all friends of Vivek who have joined the “graphDB” group, doing a random
traversal would require searching every connection of Vivek’s and then scanning groups joined by each of his friends.
Imagine that Vivek has a large number of connections on LinkedIn. It can be assumed that random traversal in such a
case would be a nightmare to find the desired output. But using a label-index query, it will be much quicker:

g.query ().has("friends of",EQUAL, "vivek")..has("group",EQUAL,"graphDB").vertices();
This query is a label-indexed query, which searches all of Vivek’s friends using “friends of” and then searches the

remaining subset for graphDB using the “group” indexed edge.
We will explore this further in next section of this chapter.

148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

Faster Deep Traversal

Deep traversal means going to the n’th level in the hierarchy of a graph. Let’s take the example we saw in the
preceding section of my LinkedIn social graph, where I can query my connections for common group interests.
Depending on the data volume and number of incident edges, iterating over each vertex via vertex query is probably
not a good idea. Titan provides support for multiple-vertex queries, where multiple-vertex queries can be combined
and send a single combined query to a graph database. That way retrieval of data will be a lot faster because we will be
hitting the server only one time.

Let’s explore how to achieve faster deep traversal using a multiple-vertex query in Titan with a Hindu
mythological epic called Ramayana. In this example we will try to find son of relationships at the leaf level. Figure 7-22
shows the family tree of Rama and their ancestors.

Dashrath
e Bharat Laxman Satrughna
Luv Kush Daksha Pushkala Angada Chanderkedu Shatrugadi Subahu

Figure 7-22. The Ramayan family graph

One way to find son of relationships at each level is to iterate through each level like this:

private static void iterateTolLeaf(Vertex dasratha)

{
System.out.println("Finding sons for::" + dasratha.getProperty("fname"));
Iterable<Vertex> immediateSons = dasratha.getVertices(Direction.IN, "son of");
Iterator<Vertex> iter = immediateSons.iterator();
// one way is
while (iter.hasNext())
{
Vertex v = iter.next();
// recursive call
iterateToleaf(v);
}
}

In the preceding code snippet, we need to invoke with the root vertex object, i.e., dasaratha, and then the
recursive call will iterate through each vertex on each level. For smaller graphs it may work, but for large data and big
data graphs, it is not a feasible solution. This is where multiple-vertex query comes in very handy and performant.

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' TITAN GRAPH DATABASES WITH CASSANDRA

Let’s walk through a few code snippets to execute a multivertex query using Titan. You can find a complete
GraphTraversalRunner.java example with the attached source code.

1. Firstlet’s add dasaratha as root vertex:
Vertex das = add("fname", "dasaratha", graph);

private static Vertex add(final String propertyName, final String value, TitanGraph graph)

{
Vertex vertex = graph.addVertex(null);
vertex.setProperty(propertyName, value);
return vertex;

}

2. Next, add dasaratha’s son:

// add dasratha's son.
Vertex ram = addSon("fname", "ram", graph, das);
Vertex laxman = addSon("fname", "laxman", graph, das);
Vertex bharat = addSon("fname", "bharat", graph, das);
Vertex shatrugna = addSon("fname", "shatrugna", graph, das);
private static Vertex addSon(String propertyName, String value, TitanGraph graph, Vertex

father)

{
Vertex son = add(propertyName, value, graph);
graph.addEdge(null, son, father, "son of");
return son;

}

3. Repeat step 2 for ram, laxman, bharat, and shatrugna:

// ram's son
addSon("fname", "luv", graph, ram);
addSon("fname", "kush", graph, ram);

// bharat's son

addSon("fname", "Daksha", graph, bharat);
addSon("fname", "Pushkala", graph, bharat);

// laxman's son

addSon("fname", "Angada", graph, laxman);
addSon("fname", "Chanderkedu", graph, laxman);
// Shatrugna’s son

addSon("fname", "Shatrugadi", graph, shatrugna);
addSon("fname", "Subahu", graph, shatrugna);

4. Finally store the complete hierarchy:

graph.commit();

150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 = TITAN GRAPH DATABASES WITH CASSANDRA

5. Now to fetch all vertices with Direction.IN (means incoming edges) and having the label
son of using multivertex support, we need to execute the following query:

//prepare multi vertex query
TitanMultiVertexQuery mq = graph.multiQuery();
mq.direction(Direction.IN).labels("son of");

mq.addVertex((TitanVertex) das);// add root
mq.addVertex((TitanVertex) ram);
mq.addVertex((TitanVertex) bharat);
mq.addVertex((TitanVertex) laxman);
mq.addVertex((TitanVertex) shatrugna);

//execute multi vertex query
Map<TitanVertex, Iterable<TitanVertex>> dfsResult = mq.vertices();

//iterate through result and print
for (TitanVertex key : dfsResult.keySet())

{
System.out.println("Finding son of" + key.getProperty("fname"));
Iterable<TitanVertex> sons = dfsResult.get(key);
Iterator<TitanVertex> sonIter = sons.iterator();
while (sonIter.hasNext())
{
System.out.println(sonIter.next().getProperty("fname"));
}
}

This way, we can perform faster deep traversal with Titan.

We have covered most of the important features supported by Titan graph database. Sample code snippets
shared in this chapter should enable readers to use Titan with Cassandra, such as building social graphs, network
graphs, or running graphs like queries. As far as the future of graph databases is concerned, the next chapter will
discuss a report published about active development which is happening in the graph database world.

With this, we conclude our discussion around graph databases and how Titan can be integrated with Cassandra.
For more details and supported feature sets you may refer to https://github.com/thinkaurelius/titan/wiki.

Summary

To summarize, topics covered in this chapter include:
¢ Introduction to graphs

¢ Understanding TinkerPop and Blueprints

Titan database ecosystem
e Titan with Cassandra

The next chapter will walk you through the performance tuning and compaction techniques available with
Cassandra.

151

www.it-ebooks.info

https://github.com/thinkaurelius/titan/wiki
http://www.it-ebooks.info/

CHAPTER 8

Cassandra Performance Tuning

As storage hardware has become cheaper and more efficient in terms of capacity, organizations are able to choose
less expensive, lowmaintenance storage options for their terabytes of data. Obviously cost effectiveness has always
been an important factor behind technology selection. Storage and retrieval of large data are requirements, but an
economical solution should not be at the cost of performance. Data, whether large or small, isn’t good unless it can be
used effectively and have analytics applied to it.

With proven opportunities from real-world big data-related use cases, many organizations and startups are
exploring business ideas around large data. Real-time feeds are very much in demand for companies targeting an
online audience. Applications nowadays deal with gigabytes of data per second to be processed and analyzed, which
clearly shows that performance is an important component for modern big data-based applications.

In this chapter we will discuss

e Key performance indicators

e (Cassandra cache configurations

e Discuss Bloom filters and garbage collection
e (Cassandra stress testing

e Yahoo Cloud Serving Benchmarking

Understanding the Key Performance Indicators

Several key performance indicators (KPIs) will be discussed in this section, including:
¢ CPU and memory consumption
e Heavyread/write throughput and latency
e Logical and physical reads

Inconsistent performance or performance degradation are main points where applications need performance
tuning. This is where front-end applications and back-end databases need to be tuned from a performance
perspective.

To begin, let’s take an initial look at several KPIs that inform how we’ll configure Cassandra to enhance
performance.

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

CPU and Memory Utilization

CPU and memory utilization are very important from a performance perspective. There are tools like JConsole,
JProfile, and YourKit to monitor application’s performance via monitoring CPU and memory footprints. It's worth
mentioning that many Cassandra server processes take off-heap memory; hence, while tuning heap configuration
for applications running locally on the same box, we need to make sure that memory shortage or leakage does not
occur and bring instability to the application. A low heap size configuration would trigger frequent garbage collection
activities. Avoiding the garbage collection cycle is definitely not possible but we can tune it for better response time.
For example, keeping the younger generation big would accommodate more live objects and would lead to long GC
(garbage collection) cycles. In general garbage activity over younger generation objects will be fast and overhead on
response time would be almost negligible. But Full GC is sort of a “stop the world” event and can affect an application’s
performance badly. We need to make sure to allocate proper memory to Eden Spaces and later temporary and
permanent spaces in the memory pool. It is recommended to keep smaller permanent generation space.

Heavy Read/Write Throughput and Latency

Discussion of big data processing is all about “walking the talk” Application must be enabled to perform faster
ingestion and reads irrespective of data volume. Read/write latency is another important aspect of performance
monitoring and tuning. Modern applications demand real-time or near real-time data processing with minimal
latency. Hence while adopting technology and databases we must keep this in mind to avoid such performance
overheads.

Logical and Physical Reads

Logical reads mean reading rows from the data cache, whereas physical reads seek disc access. The higher side on
logical reads tends to have a big memory footprint, and, similarly, frequent physical reads introduce read latency and
can introduce performance overhead. Hence it is important to strike a balance between both. Cassandra provides row
and key cache along with memtables to reduce physical reads. We will discuss these in detail in this chapter.

Next, let’s discuss various Cassandra-specific configurations. During the latter part of this chapter we will cover
performance monitoring and tuning for front-end applications, as well.

Cassandra Configuration

Cassandra offers multiple configurations that can be tweaked for heavy read/write load. Let’s explore them one by
one, starting with cache configuration.

Data Caches

Data caches keep frequently accessed rows in memory to avoid disc access at the server side. In n-tier architecture,
data caching can also be implemented at the client side (e.g., Ehcache). The concept of data caching is not new

and has been there with traditional RDBMS, as well. Data cache is very useful with read operations, and it is
recommended to opt for database level caches for frequently fetched data. Cassandra offers both key and row caches.
Figure 8-1 shows a flow chart diagram of how these caches work while reading data from the Cassandra database.

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

Read request

Is row
cache
enabled?

Is key
cache
enabled?

Fetch key from
cache

Is row
available
in cache?

Read row from
sstable and
populate memtable

* Add fetched row in
row cache(if
enabled)

End

Figure 8-1. How a cache works with the Cassandra server upon receiving a read request

Row and key caches are helpful in retrieving rows most frequently used. Keeping a moderate size of row caches
and a higher number of key caches can result in better performance and less latency. Let’s discuss these cache
configurations with Cassandra.

Cache Directory

The default cache location is /var/1ib/cassandra/saved_caches. We can also modify it in cassandra.yaml:

saved_caches_directory: /var/lib/cassandra/saved_caches

Key Cache

With key cache, references to actual row keys will be cached in memory for each column family. Having a large key
cache is recommended for heavily used, read-based applications, obviously within permissible JVM settings. Various
key cache configurations that can be configured with cassandra.yaml are described in Table 8-1.

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

Table 8-1. Key Cache Configurations

Name Description

key_cache_size_in_mb Key cache size in megabytes. By default it is 5% of heap or 100MB (whatever is less).
It can be disabled by setting value as 0.

key cache_save period Time period to save key cache on configured cache directory. Default is 4 hours

key cache_keys to_save Number of keys to be saved, by default it is disabled but recommended setting is to
set it for high value.

With 2.0 onwards, key cache has been moved to off-heap, which reduces the time spent on serialization of keys
significantly. We will discuss off-heap versus on-heap later in this chapter. As discussed earlier, memory utilization
is one of the important KPIs for performance and while configuring row caches, we must avoid Full GC activities,
regardless of whether the key cache has been moved to off-heap now.

populate_io_cache_on_flush

By default it is disabled and set to false. Prior to Cassandra 1.2.x, it was supported at node level but now it is possible to
enable it at column family level. The purpose of this flag is to enable/disable page cache at the column family during
memtable flush and compaction. If set to true, it will keep a cache of the specific column family’s data in memory.

As discussed in Chapter 1, memtables keep flushing data onto the disc in the form of sstables. If this parameter is

set to true Cassandra keeps a page cache for all rows of this column family. Please note that page cache refresh only
happens in case of flushing and compaction to keep the updated data on the node for the respective column family.
Users need to make sure that data size fits well within the node’s memory. We can enable it while creating the table or
altering the existing table:

create table tweets(tweet id text primary key,body text) with caching='rows only' and
bloom_filter fp_chance=0.004 and populate_io_cache_on_flush="true'; // create table

alter table user with populate io_cache on_flush="true'; //alter table

It is recommended to keep this true for frequently queried column families which can fit well within memory for
better read throughput. Figure 8-2 shows the table the user created with this attribute set to true (see marked line).

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

cqlsh:twitter> describe table user;

CREATE TABLE user (
user_id text,
fname text,
PRIMARY KEY (user_id)

) WITH
bloom_filter_fp_chance=0.004000 AND
caching="KEYS_ONLY' AND
comment=""' AND
dclocal_read_repair_chance=0.000000 AND
gc_grace_seconds=864000 AND
index_interval=128 AND
read_repair_chance=0.100000 AND
replicate_on_write="true' AND
populate io cache on flush='true' AND
default_time_to_live=0 AND
speculative_retry="99.0PERCENTILE' AND
memtable_flush_period_in_ms=8 AND
compaction={"'class': 'SizeTieredCompactionStrategy'} AND
compression={'sstable_compression': 'LZ4Compressor'};

Figure 8-2. User table enabled with populate cache on I/O operations set to true

Row Cache

With row level cache enabled, the entire row is available in cache. Row cache requires a lot of space in comparison
to key level cache. With Cassandra 1.2 onwards row cache can be moved to off-heap, but deserialization of rows still
happens temporarily in-heap. Table 8-2 shows several row cache configurations and their descriptions.

Table 8-2. Row Cache Configurations

Name Description
row_cache_size in_mb By default it is disabled and set to 0.
row_cache_save period By default row cache is disabled, enabling it would improve on cold start and cache

can be expensive and memory intensive.

row_cache_keys to_save By default disable. Number of keys of row cache to be saved.

Row cache comes in very handy and reduces disk read significantly for frequently accessed rows. But it consumes
a lot of space as well. It is recommended to enable row cache if the application’s requirement is to fetch a complete
row instead of select columns very often.

To enable a cache for a specific column family, we can enable it while creating a column family as follows:

create table user(user_id text primary key,fname text) with caching="keys only';
create table tweets(tweet id text primary key,body text) with caching='rows only';

In the preceding script for a column family, user caching has been enabled for keys but for the tweets table it is
enabled for rows. It is recommended to enable row cache where the application would require reading entire rows
rather than selected columns. Obviously with the selected column approach, having row cache enabled would have
an adverse impact and be a waste of in-memory space by keeping rows within memory for no purpose.

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

The following code snippet shows how to configure these cache parameters in the Cassandra.yaml file:

50 MB keys to be saved in cache.

key _cache_size in mb: 50

5 minutes or 3600 seconds to keep keys cached in cache
key cache_save period: 3600

100 keys to save in key cache

key _cache_keys to_save: 100

#keep 100 mb of rows in cache

row_cache_size in _mb: 100

5 minute or 3600 seconds, duration to keep rows in cache.
row_cache_save_period: 3600

#100 number of keys from row cache to be saved.
row_cache_keys to_save: 100

#saved cache directory.

saved_caches_directory: /var/lib/cassandra/saved_caches

Bloom Filters

A Bloom filter is a data structure to manage whether an element is present in a set or not. It was conceived by Burton
Bloom in 1970 to find out the probability of whether an element exists in a set or not. With a Bloom filter enabled it
will return whether an element is “definitely not in set” or “may exist in a set.” A false positive (FP) means the element
may exist in a set when it doesn’t, and a false negative means an element definitely is not present in a set when it is.

Each table in Cassandra contains a Bloom filter. With a false positive chance ratio value, it checks for columns
in a row within the sstable that may exist but for which a false negative is definitely not possible. Here false negative
means that columns of the row exist but the Bloom filter returns negative.

Setting the Bloom filter FP ratio higher would mean less memory consumption and ensure that false negatives
would never occur (e.g., No disk i/o for non-existing keys) Range of Bloom filter FP ratio is .000744 to 1.0. The result of
setting a false positive ratio chance to a higher level is that there is the possibility finding a column in the sstable, but
there are no disk reads for negative scenarios.

You can set Bloom filter while creating column family or can also update the column family like this:

create table tweets(tweet id text primary key,body text) with caching='rows only' and
bloom_filter fp_chance=0.004;

alter table user with bloom filter fp chance=0.004;

Off-Heap vs. On-Heap

Heap offloading or off-heap is directly allocating memory from the operating system, whereas on-heap memory
objects are managed by the JVM itself. Cassandra also loads row and key caches in off-heap memory, which means
these objects are serialized on a non-Java heap. That way deserialization will be much faster.

Itis recommended to keep heap size moderate, as heap takes memory only from system memory. It has been
observed that it is better to not keep it more than 6 GB (if system memory is more than 6 GB). You can fetch maxMemory
by using Java runtime:

Runtime rTime = Runtime.getRuntime();
long maxSize = rTime.maxMemory();

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

If system memory is less than 2 GB, it is recommended to keep 50% of it.

Cassandra requires that the Java Native Access (JNA) library be installed for heap offloading caches.

To enable the JNA library, you need to download the INA. jar from https://github.com/twall/jna and set on
the classpath. That's it!

We can also set off-heap memory allocator within cassandra.yaml:

memory allocator: NativeAllocator
possible values are NativeAllocator, JEMallocAllocator.

To install JEMallocAllocator, you need to download and install the jemalloc library. Source for jemalloc is
available over GitHub (https://github.com/jemalloc/jemalloc).

Installing and Configuring jemalloc
The steps to install jemalloc are

1. First clone and download the source from github:
git clone https://github.com/jemalloc/jemalloc.git
2. Change the directory to jemalloc and run configure:

cd jemalloc
./configure

3. Next, install it by running the following:

make
make install

4. After successfully installing jemalloc, we need to configure installed libraries for
Cassandra in cassandra-env.sh:

export JEMALLOC_HOME= jemalloc/
export LD_LIBRARY_PATH=<JEMALLOC_HOME>/lib/
JVM_OPTS="$JVM OPTS -Djava.library.path=<JEMALLOC_HOME>/1ib/"

Garbage Collection

Cassandra does explicit garbage collection, and server logs can be monitored for the GCInspector class for more
information. You may opt to disable explicit garbage collection using XX:+DisableExplicitGC, but it is advisable to
do it only for experimental purposes. Alternatively configuring gclnterval settings are also an option (sun.rmi.dgc.
server.gcInterval and sun.rmi.dgc.client.gcInterval). It represents the maximum interval (in ms) for Java
runtime RMI (Remote Method Invocation) to call for garbage collection of unused and soft references. By default it is
setto 1 hour.

159

www.it-ebooks.info

https://github.com/twall/jna
https://github.com/jemalloc/jemalloc
https://github.com/jemalloc/jemalloc.git
http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

We can tune garbage collection settings in cassandra-env. sh available in the $CASSANDRA_HOME/conf folder.
A few of the options are

GC logging options -- uncomment to enable

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDetails"

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDateStamps"

JVM_OPTS="$IVM OPTS -XX:+PrintHeapAtGC"

JVM_OPTS="$IVM_OPTS -XX:+PrintTenuringDistribution"

JVM_OPTS="$JVM_OPTS -XX:+PrintGCApplicationStoppedTime"

JVM_OPTS="$JVM_OPTS -XX:+PrintPromotionFailure"

JVM_OPTS="$JVM_OPTS -XX:PrintFLSStatistics=1"

JVM_OPTS="$JVM_OPTS -Xloggc:/var/log/cassandra/gc-"date +%s”.log"
If you are using IDK 6u34 7u2 or later you can enable GC log rotation
don't stick the date in the log name if rotation is on.

JVM_OPTS="$JVM_OPTS -Xloggc:/var/log/cassandra/gc.log"

JVM_OPTS="$JVM_OPTS -XX:+UseGCLogFileRotation"

JVM_OPTS="$JVM_OPTS -XX:NumberOfGCLogFiles=10"

JVM_OPTS="$IVM OPTS -XX:GCLogFileSize=10M"

Hinted Handoff

This feature comes in very handy when one or more replica nodes are down or not available while writing a row. In
such a scenario, the coordinator node would keep a copy of data in the system.hints table until the replica node(s)

are up and running. Generally it is a nice feature, but if such failure happens on multiple nodes, it would increase
heap size on the coordinator node. The system.hints table holds the IP addresses of the replica node and the actual
data that needs to replay when the replica node comes alive. During the bootstrap process, system tables would

be loaded in memory so a larger number of failures would mean bigger data in memory on the coordinator node.
Such scenarios may also result in data loss (until repair). By default this feature is enabled. Disabling it might result

in relatively smaller heap sizes and less GC activities. But for durable writes it is advisable to keep this enabled. By
default the coordinator will keep data in the system.hints table for 3 hours, i.e., a default value of max_hint_window_
in_ms configuration in the Cassandra.yaml file. If the replica node doesn’t come up in this configured window time,
itwould be assumed as a dead node and later when it comes up it will need to run repair and replicate data from other
nodes.

Heap Size Configuration

Generally for applications, it is recommended to keep heap size in the range of 4-8 GB; but if memory is less than
4 GB, we still should use half of it (~2 GB) for I/O operations. You can modify JVM settings for heap size configuration
in cassandra-env.sh (look for JVM_OPTS).

JUM_OPTS="$JVM_OPTS $JVM_EXTRA OPTS" -Xms1G -Xmx1G -XX:+HeapDumpOnOutOfMemoryError”
-XX:+UseParNewGC -XX:+UseConcMarkSweepGC

160

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/2.0/cassandra/configuration/configCassandra_yaml_r.html#reference_ds_qfg_n1r_1k__max_hint_window_in_ms
http://www.datastax.com/documentation/cassandra/2.0/cassandra/configuration/configCassandra_yaml_r.html#reference_ds_qfg_n1r_1k__max_hint_window_in_ms
http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

Cassandra Stress Testing

Cassandra stress is a Java-based tool to test server performance under heavy read/write load. With binary distribution
itis available under the $CASSANDRA_HOME/tools/bin directory. The most commonly used options for stress testing are

e Write only
e Readonly
e Searchrange slice

The stress tool is meant to monitor a database’s performance under heavy reads, heavy writes, and reads via
nonprimary key columns. With various available parameters the user can experiment and analyze Cassandra’s
capability as per their requirement using this tool to search all available options with this utility you can use the help
option:

$CASSANDRA_HOME/tools/bin/cassandra-stress -h

Write Mode

Let’s start with the default mode, i.e., write mode, where we will perform stress testing of the Cassandra server using
this tool. With this mode we will be creating a column family with a predefined column size and total number of write
operations.

Let’s start with a simple write-only mode with a simple command:

$CASSANDRA _HOME/tools/bin/cassandra-stress

The output of this command would be similar to Figure 8-3.

vivek@vivek-Vostro-3560:~/software/apache-cassandra-2.0.4/binS ../tools/bin/cassandra-stress
Created keyspaces. Sleeping 1s for propagation.
total,interval_op_rate,interval_key_rate,latency,95th,99.9th,elapsed_time
170925,17092,17092,1.1,4.5,287.6,10

385212,21428,21428,1.3,4.3,282.4,20

591433,20622,20622,1.3,4.5,282.8,30

803491,21205,21205,1.4,4.9,282.8,40

995098,19160,19160,1.4,5.2,284.5,50

1000000,490,490,1.4,5.2,284.5,50

Averages from the middle 80% of values:

interval_op_rate : 20086
interval_key rate : 20086
latency median : 1.3
latency 95th percentile : 4.6
latency 99.9th percentile : 283.9
Total operation time : 00:00:50
END

Figure 8-3. Output from running the stress tool in default write mode

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

A few key points to monitor from the output shown in Figure 8-3 include
e total: the total number of operations.
e interval_op_rate: the number of operations performed during that interval.
e interval_key_rate: the number of rows written during the interval.
e latency: the average write latency for each operation in that interval.
e elapsed_time: total number of seconds spent during run.

Here the default host and port are localhost and 9160, respectively. By default, the number of records to be
inserted is one million.
You can also overwrite default host, port, and number of records as follows:

$CASSANDRA HOME/tools/bin/cassandra-stress -n <NO_OF RECORD> -d <HOST> -p <PORT>

Total time taken to run this stress test is ~50 seconds.

Let’s quickly connect to CQLS3 to verify stored rows. The stress test will create a default keyspace called
"Keyspace1" and a table called data. To get a count on the total number of inserted rows we can run the following

command:

use "Keyspacel" ;
select count(*) from "Standard1" limit 10000000;

Figure 8-4 shows the result.

cqlsh:Keyspacel> select count(*) from "Standardi" limit 10000000;

1000000

(1 rows)

Figure 8-4. A cql query to find the total number of records in the Standardl column family created via the stress tool

Reader can use the describe table command to describe the default columns and their data types. Here the
default column size is 5 and all are of type blob.

Similar to other default values, it is also possible to overwrite column count, size, family type, thread count,
and random row key generation. Let’s examine the sample output by running insert only for 20 and 30 threads,
respectively.

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

With 20 threads

$CASSANDRA_HOME/tools/bin/cassandra-stress -d localhost -p 9160 -o insert -t 20 -r -S 50 -U UTF8Type
-y Standard

Averages from the middle 80% of values:

interval _op_rate 1 16657

interval key rate : 16657

latency median 1 2.8

latency 95th percentile : 11.5
latency 99.9th percentile : 646.7
Total operation time : 00:01:01
END

Figure 8-5 shows a JConsole overview chart of CPU usage, heap, and other resource utilization with 20 threads.

Overview| Memory| Threads | Classes | VM Summary| MBeans s
Timne Range: |All S
Heap Memory Usage Threads
60 Mb 40
50 Mb
30
40Mb + |4 : !
30 Mb | . '. J\ 20
20Mb : :
10
10 Mb
0.0Mb ‘o 0 s
17:24 17:24
Used: 51.8 Mb Committed: 144.2 Mb Max: 1.8 Cb ThreadTab.inFoLabelFormat
Classes CPU Usage
3,000 40%
2,500
30%
2,000
1,500 20%
1,000
10%
500
0 - :-.-'.-f-:--'l Dofo \ . fl isage
17:24 17.24

[]

Loaded: 2,106 Unloaded:1 Total: 2,107 CPUUsage: 18.3%

Figure 8-5. A JConsole chart with 20 threads

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

With 30 threads

$CASSANDRA_HOME/tools/bin/cassandra-stress -d localhost -p 9160 -o insert -t 30 -r -S 50 -U UTF8Type

-y Standard

Averages from the middle 80% of values:

interval op rate 1 18467
interval key rate T 18467
latency median : 0.5
latency 95th percentile : 2.8
latency 99.9th percentile : 122.8
Total operation time : 00:01:04

Figure 8-6 shows a JConsole overview chart of CPU usage, heap, and other resource utilization with 30 threads.

Overview|| Memory| Threads | Classes | VM Summary MBeans

Time Range: |All

17:27

Loaded: 2,094 Unloaded: 1 Total: 2,095

Figure 8-6. A JConsole chart with 30 threads

Live threads

17.27

ThreadTab.infolLabelFormat

Heap Memory Usage Threads
80 Mb 50
70 Mb
60 Mb L2
50 I\"'Ib 30
40 Mb
30 Mb 20
20 f‘v"lb

10
10 Mb .
0.0 Mb ‘ 0
17:27
Used: 64.9Mb Committed: 147.3Mb Max: 1.8Gb

Classes CPUUsage
3,000 60%
2,500 50%
2,000 40%
1,500 30%
1,000 20%

500 10%
0 e 0%

CPUUsage: 21.0%

With a different number of threads it is clear that parameters can vary in terms of resource utilization and
performance. It is advisable to use stress tests to monitor the system’s limit based on the application’s SLA.

164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

Read Mode

With read mode, let’s test the Cassandra server for with a heavy read-only operation. Here we will perform a stress test
over the Cassandra server to monitor its performance with various parameters.
The simplest command to start a read stress test is

$CASSANDRA_HOME/tools/bin/cassandra-stress -o read

Figure 8-7 shows the result.

vivek@vivek-Vostro-3560:~/software/apache-cassandra-2.0.4/bin$../tools/binfcassandra-stress -o read
total,interval_op_rate,interval_key_rate,latency,95th,99.9th,elapsed_time
60178,6017,6017,4.4,29.4,111.6,10

148215,8803,8803,3.5,26.6,117.7,20

259379,11116,11116,3.0,22.1,117.7,30

425796,16641,16641,2.4,13.9,117.7,40

681714,25591,25591,1.8,9.1,116.2,50

973080,29136,29136,1.6,7.0,63.4,60

1000000,2692,2692,1.5,6.2,63.4,61

Averages from the middle 86% of values:

interval_op_rate : 15537
interval_key_rate : 15537
latency median : 2.7

latency 95th percentile : 17.9
latency 99.9th percentile : 115.9
Total operation time : 00:01:01
END

Figure 8-7. Output from running the stress tool in a heavy read operation
The total time taken to run the read stress test is slightly higher than the write stress test. Since we have tried

tweaking the stress test for other parameters, such as column size, number of columns, and number of threads in
write mode, here we’ll leave it for readers to try the available options with read mode as an exercise.

Monitoring

For monitoring the progress of stress testing, you may use jmxterm or JConsole for monitoring memory usage and
threads. Figure 8-8 shows one such image in JConsole captured during the previous run of read mode.

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

hart: |Heap Memory Usage v ime Range: |All v Perform GC

Details

Time: 201
Used:
Committed:
Max:

GC time: ©

0%

= =
Figure 8-8. Animage in JConsole captured during the run of read mode

For more details on how to configure and connect JConsole with Cassandra you may refer to Chapter 1.

For third-party tools, DataStax’s OpsCenter provides detailed information about running the Cassandra cluster.
For more details on usage of the DataStax OpsCenter please refer to www.datastax.com/what-we-offer/products-
services/datastax-opscenter.

Compaction Strategy

During Cassandra stress testing, we have seen that writes in Cassandra are blazingly fast. The reasons behind this are
that there are no updates and all columns are directly flushed into sstables. This means that at some point there would
be many versions of column values which may be present in form of multiple sstables. Similarly physical deletes
would not happen in real time but those are logically deleted instantly. Such rows are called tombstone or obsolete
rows. The process to remove such columns and free some space at the server side is known as compaction strategy.

Compaction always runs in the background with async mode. Cassandra offers two types of compaction
strategies:

e Size-tiered compaction strategy

e Leveled compaction strategy

Size-Tiered Compaction Strategy (STCS)

Size-tiered compaction strategy (STCS) is the default compaction strategy. Based on configuring min_compaction_
threshold (by default 4), sstables of similar size would be merged and compacted in a single table. Clearly for heavy
writes with not many reads/updates, this is the preferred strategy. Although all the data for one particular row key will
reside on the same data node, it still may be scattered across multiple sstables. With such a compaction strategy it is
highly possible that redundant compaction for the same columns may happen until the process is complete. With
frequent updates for the same row key, STCS could be problematic as a compaction strategy.

166

www.it-ebooks.info

http://www.datastax.com/what-we-offer/products-services/datastax-opscenter
http://www.datastax.com/what-we-offer/products-services/datastax-opscenter
http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

Leveled Compaction Strategy (LCS)

Leveled compaction strategy’s (LCS) implementation is heavily inspired by Google’s LevelDB (http://code.google.
com/p/leveldb). The purpose of LCS is to avoid redundant compaction for columns of a row key. With LCS, each level
of sstables would never overlap and guarantees data loss on read. With every level up, the compaction process will
take place and keep adding the sstables from previous ones. Here it would require enough space to keep the largest
level within memory. LCS performs more I/Os than STCS.

You can define a leveled compaction strategy while creating a table like this:

create table tweets(tweet id text primary key,body text) with caching='rows only' and compaction
='lLeveledCompactionStrategy' and populate_io_cache_on_flush="true'; // create table

LCS is recommended if the read proportion is somewhat similar to higher write proportions or frequent updates
are expected.

Yahoo Cloud Serving Benchmarking

The Yahoo Cloud Serving Benchmark (YCSB) project is the industry standard for evaluation of various cloud data
stores and key-value data stores using various workloads in parallel execution. It was released by Yahoo's research labs
in 2010 and is hosted at https://github.com/brianfrankcooper/YCSB.

YCSB is totally decoupled and extensible to add any new datastore-specific client.

Configuring and running YCSB is fairly easy. In this recipe we will discuss configuring the YCSB framework with
Cassandra.

1. First, you can build the jar from the source itself or download the tarball from
https://github.com/downloads/brianfrankcooper/YCSB/ycsb-0.1.4.tar.gz
2. Extract the tarball and change the directory:
cd ycsb-0.1.4

3. By default YCSB would insert data into the usertable keyspace and in the table named
data. So run the following command from Cassandra-cli to create data definitions:

create keyspace usertable;
use usertable;
create column family data;

4. Next create a property file (e.g., Cassandra-ycsb.properties) with the following
properties:

hosts=localhost
port=9160
fieldcount=4
threads=9
recordcount=1000
operationcount=1000

167

www.it-ebooks.info

http://code.google.com/p/leveldb
http://code.google.com/p/leveldb
https://github.com/brianfrankcooper/YCSB
https://github.com/downloads/brianfrankcooper/YCSB/ycsb-0.1.4.tar.gz
http://www.it-ebooks.info/

CHAPTER 8 ' CASSANDRA PERFORMANCE TUNING

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=0.5

updateproportion=0.5

scanproportion=0

insertproportion=0

Here, hosts and port are Cassandra Thrift host and rpc_port settings. fieldcount is the total number of fields to
be stored per row. threads determine the number of parallel executions. Also readproportion and updateproportion
can be tweaked during the tests. For example for heavy write only scenarios, you may keep insertproportion to 1.0
and rest as 0.0! Similarly for heavy read scenarios can set readproportion to 1.0.

5. Finally, run this command:

bin/ycsb load cassandra-10 -P /home/vivek/source/book_source/ycsb/casssandra-ycsb.
properties -threads 10

The output from running the preceding command will be a fairly large. Figure 8-9 shows what is interesting from
a performance perspective.

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder"”.
SLF43: Defaulting to no-operation (NOP) logger implementation
SLF43: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
[OVERALL], RunTime(ms), 233.0

[OVERALL], Throughput(ops/sec), 4291.845493562232

[INSERT], Operations, 1000

[INSERT], AverageLatency(us), 1545.354

[INSERT], MinLatency(us), 236

[INSERT], MaxLatency(us), 23316

[INSERT], 95thPercentileLatency(ms), 3

[INSERT], 99thPercentileLatency(ms), 10

[INSERT], Return=0, 1000

Figure 8-9. Output of running load using the YCSB Cassandra project

In Figure 8-9, the key points are average throughput and latency. For this run there are 4291 operations per
second and latency is 1545 us for a total of 1000 operations.

YCSB offers a great way to evaluate databases from the client perspective. You may do a quick analysis of
multiple clients’ performance against Cassandra. Or you can also use it for performance comparison among multiple
datastores. The framework is completely decoupled which makes it fairly easy to add clients for new datastores or add
multiple clients for same datastore.

Coming back to read operation analysis via YCSB, we can run it as

bin/ycsb run cassandra-10 -P /home/vivek/source/book_source/ycsb/casssandra-ycsb.properties -threads 10

168

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = CASSANDRA PERFORMANCE TUNING

With YCSB there are two modes of running load and run. With load it will store data into backend and throughput
and latency would be measured. Whereas with run mode we can tweak it for heavy read or read/update proportions
(see Cassandra-ycsb.properties).

YCSB comes with two types of distribution: zipfian and uniform. Continuous uniform distribution would refer
to symmetric distribution of data for each column at each interval. Whereas zipfian distribution is based on power
law distribution where load and throughput are inversely proportional to each other. For more details on zipfian
distribution please refer to http://en.wikipedia.org/wiki/Zipf's_law.

Summary

As we reach the end of this chapter, here are a few key performance checks to make if an application’s throughput is
consistently degraded over time:

e Monitor GC and examine the Cassandra server logs for the GCInspector class.

e Ifdata nodes are running out of space, add new nodes. We will discuss this further in the next
chapter.

e Monitor bloom_filter fp chance and cache configuration.

In the next chapter, we will cover more about Cassandra administration and monitoring.

169

www.it-ebooks.info

http://en.wikipedia.org/wiki/Zipf's_law
http://www.it-ebooks.info/

CHAPTER 9

Cassandra: Administration
and Monitoring

Database administration means managing a set of activities like ensuring database availability, managing security,
tuning, and backups. The details of “administration,” however, have undergone significant change.

Prior to NoSQL world evolution, database administrators (DBAs) were considered to be one of the most critical
members in the team. But with the rise in NoSQL's popularity, administrative effort and the need for a dedicated
team of database administrators have been reduced significantly. In Chapter 1 we discussed changing the gears from
RDBMS to NoSQL world. Let’s revisit a few of those key differences:

e Nojoins
e No relational schema
e No static schema

That means administration efforts, at least from an application design perspective, definitely are reduced, and
the “Who crashed the server” fight among developers and DBAs may soon cease to exist.

But that doesn’t mean database administration is not required at all. NoSQL means “Not only SQL” and not
“No SQL.” We may be required to spend less effort on application modeling, but core points like security, tuning,
and so forth, still need to be addressed. With traditional RDBMS, we might embed application logic at the database
level, whereas with NoSQL this currently is often not required or is at least less often necessary. However, as the
NoSQL world is evolving and maturing, more administrative effort will be necessary to manage things that are more
important and involved than adding indexes and creating tables.

In this chapter, the following topics will be covered:

e Adding new nodes to the Cassandra cluster
e Replacinganode
e Database backup and restoration

e Monitoring tools

171

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' CASSANDRA: ADMINISTRATION AND MONITORING

DBA SKILLS

As the database world changes, understanding the requisite skillsets for administrators is important. For proper
and effective database administration, the following basic skills are required:

e The ability to design and model databases based on a provided logical blueprint.
e BA proficiency in managing database backup and restoration procedures.
e The ability to manage data integrity and its high availability.

e The skill to ensure data security. Database administrators are responsible for managing
data security layers among various environments, such as testing, staging, and production
environments.

Adding Nodes to Cassandra Cluster

In Chapter 1, we discussed configuring a three-node Cassandra cluster on a single machine. In this section we will
first start the Cassandra cluster with two nodes and later will add another node.

1. First, for Random partitioner let’s generate tokens for all three nodes using the
token-generator tool. This tool can be found under $CASSANDRA_HOME/tools/bin folder.

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ tools/bin/token-generator

RandomPartitioner
Token Generator Interactive Mode

How many datacenters will participate in this Cassandra cluster? 1
How many nodes are in datacenter #1? 3

DC #1:
Node #1: 0
Node #2: 56713727820156410577229101238628035242
Node #3: 113427455640312821154458202477256070484

Here software/local-cluster/nodel stands for $CASSANDRA_HOME. If you choose to use Murmur3Partitioner,
you can generate token values by executing the following command:

python -c 'print [str(((2**64 / 3) * i) - 2*%63) for i in range(3)]"

It would give this output:
['-9223372036854775808", '-3074457345618258603"', '3074457345618258602"]

The next step is to configure three nodes for cluster setup. For detailed instruction about how to set this up,
please refer to the “Configuring Multiple Nodes over a Single Machine” section in Chapter 1. In brief, we need to

modify configurations such as listen_address, rpc_port, jmx_port, the data directory, the commit-log directory,
and native_protocol in corresponding Cassandra.yaml.

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

2. Let’s start both the nodes and check the ring status:
vivek@vivek-Vostro-3560:~/software/local-cluster/node2$ bin/nodetool -h 127.0.0.2 -p 7200 ring

Datacenter: datacenteri

Address Rack Status State Load Owns Token
-3074457345618258603

127.0.0.1 rack1 Up Normal 36.06 KB 100.00% -9223372036854775808

127.0.0.2 rackl Up Normal 45.06 KB 100.00% -3074457345618258603

You can see that both the nodes are up and running.

3. Let's start the third node and check the ring status:
vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool ring

Datacenter: datacenteri

Address Rack Status State Load Owns Token
3074457345618258602
127.0.0.1 rack1 Up Normal 36.06 KB 66.67% -9223372036854775808
127.0.0.2 rack1 Up Normal 45.06 KB 66.67% -3074457345618258603
127.0.0.3 rack1 Up Normal 43.7 KB 66.67% 3074457345618258602

All three nodes are up and running. With this we end our sample exercise of adding a node on running Cassandra
cluster. With Cassandra’s ring topology and peer-to-peer architecture, it’s really simple to let a node join on the fly.
Also, instead of generating the initial token value, we also can set up this with virtual nodes.

Prior to the Cassandra 1.2 release, we needed to manually assign one token range to each data node using the
token-generator tool, but with virtual nodes now we can assign multiple token ranges per node. Using the num_tokens
property, we can assign a number of virtual nodes per data node, which means holding a large number of smaller data
ranges. This is very handy when we need to replace or rebuild a dead node.

A dead node means a node that becomes unresponsive to gossip/intercommunication with other nodes. Such
a failure may happen because of network or hardware failures. Each node can be a primary or replica node for data
distributed across the Cassandra cluster. When a dead node is ready to join a Cassandra ring, it must stream all data
from replica nodes. Without virtual nodes, the contiguous token assignment introduces a lot of overhead as data
needs to stream from various primary and replica nodes. With virtual nodes, more tokens assigned to each node
mean smaller and more heterogeneous data distribution, which means the same volume of data can be streamed in
from multiple nodes! Obviously this would be much faster.

Let’s explore replacing a dead node with a new one in a sample exercise.

Replacing a Dead Node

Sometimes it’s possible to have a few dead nodes in a cluster. That is, they are not responding to gossip and need to be
replaced with new ones. Replacing a dead node in a running Cassandra cluster is straightforward. Let’s explore it with
a sample exercise continued from the previous one.

1. First, let’s bring down node 2 and check the ring status:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool ring

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' CASSANDRA: ADMINISTRATION AND MONITORING

Datacenter: datacenter1

Address Rack Status State Load Owns Token
3074457345618258602
127.0.0.1 rack1 Up Normal 50.44 KB 66.67% -9223372036854775808
127.0.0.2 rackl Down Normal 54.82 KB 66.67% -3074457345618258603
127.0.0.3 rackl Up Normal 71.09 KB 66.67% 3074457345618258602

You can see that node 2 (127.0.0.2) has been down and displayed with Status as Down.

2. Let’s configure a new node and assign it a token value that decreases the token at 127.0.0.2
by one (i.e., -3074457345618258604). Before starting the new node, however, let’s run a few
commands to repair and remove the dead node:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool rebuild
vivek@vivek-Vostro-3560:~/software/local-cluster/nodei1$ bin/nodetool removenode
td733376-0cf0-49af-bdob-79ab526350f8

Here, fd733376-0cf0-49af-bdob-79ab52635018 is the host ID for node 2. You can fetch the host ID for each node
by running the nodetool status command.

3. Finally, start the new node configured in the previous step and check the ring status:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool status
Datacenter: datacenteri

Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack
UN 127.0.0.4 78.66 KB 256 66.7% cdcecd4b-ac26-4763-99c4-9f757c2d8074 rackl
UN 127.0.0.1 50.44 KB 1 66.7% 8718be22-ed20-43ca-95c1-701864bb1e20 rackl
UN 127.0.0.3 71.09 KB 1 66.7% 0039bf7e-4e9c-4028-b3b6-1d027aedc690 rackl

Here, you can see that node 4 (127.0.0.4) is up and joined with the cluster ring.

You must be wondering what happened to node 2 (127.0.0.2)! Once you get node 2 up and running, it
automatically replaces the substitute node (i.e., node 4). Whenever node 2 is up and joins the ring, it takes back
ownership from node 4. Check node 2’s server logs for information (see Figure 9-1)

WARN 15:42:23,301 Token -3074457345618258604 changing ownership from /127.0.0
.4 to /127.0.0.2

INFO 15:42:23,326 Node /127.0.0.2 state jump to normal

INFO 15:42:23,330 Startup completed! Now serving reads.

Figure 9-1. Taking ownership back from replacement node (i.e., 127.0.0.4)

Data Backup and Restoration

Database backup means regularly keeping a copy in a safe location. In case of a natural calamity or hardware loss, the
backup can be used to restore the database. Because database scalability and performance should never be at the cost
of data loss, Cassandra also provides support for backups and restoration.

174

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

Backing up data with Cassandra can be achieved by creating a snapshot. Cassandra provides a mechanism
for collecting data snapshots using the nodetool utility. We have already discussed this utility in the current and
previous chapters. (Chapter 10 will cover nodetool and other Cassandra-related utilities in detail.) A snapshot of
an entire keyspace can be taken when the cluster is up and running. But restoration is possible only by taking the
cluster node down.

Using nodetool snapshot and sstableloader

Issuing a snapshot command flushes out all the memtable data and copies it on to the disk and then prepares the
hard link with flushed sstables.
Let’s discuss this with a sample exercise.

1. First, let’s prepare the schema and populate some data:

create keyspace sample backup with replication = { 'class':'SimpleStrategy', 'replication factor':2};
// create keyspace

use sample backup ; // set keyspace

// create table
create table twitter(hashtag timeuuid primary key, account_name text, tweets set<text»);

// insert records

insert into twitter(hashtag,account name,tweets) values(now(),'apress pub',{'New book on
Cassandra is out'});

insert into twitter(hashtag,account name,tweets) values(now(),'thenews',{'Obama meeting with
European allies on Ukraine http://t.co/18P8bPcbom from #APress','Bergdahl uproar halts plan for
return celebration http://t.co/BhF6kMy5pW from #APress'});

2. Verify the records have been persisted successfully with the select command:

select * from twitter;

hashtag | account _name | tweets

______________________________________ +______________+__
12da45f0-2702-11e4-861b-9d03f52e8a2b | apress pub | {'New book on Cassandra is out'}
74dc73e0-2702-11e4-861b-9d03f52e8a2b | thenews | {'Bergdahl uproar halts plan for return

celebration http://t.co/BhFékMy5pW from #APress', 'Obama meeting with European allies on Ukraine
http://t.co/18P8bPcbom from #APress'}

(2 rows)
3. To take a snapshot, we need to use the nodetool utility:
nodetool -h localhost -p 7199 snapshot twitter

Requested creating snapshot for: twitter
Snapshot directory: 1408816064473

175

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' CASSANDRA: ADMINISTRATION AND MONITORING

The output shows that running nodetool snapshot over a local node has created a snapshot 1408816064473
under the $CASSANDRA_DATA DIR/twitter/users folder. Here $CASSANDRA DATA DIRis the value defined in
Cassandra.yaml file for data_file directories properties (see Figure 9-2).

cassandra nodel data Etwitter users snapshots 1408816064473
Name

- ~ twitter-users-jb-1-Compressioninfo.db

twitter-users-jb-1-Data.db

- twitter-users-jb-1-Filter.db

twitter-users-jb-1-index.db

twitter-users-jb-1-Statistics.db

5:-} twitter-users-jb-1-Summary.db

twitter-users-jb-1-TOC.txt

Figure 9-2. The snapshot directory 1408816064473 under the data directory

4. To delete some data that we can restore, let’s first truncate the users table:
truncate users;

5. With step 4, we have truncated the data, so let’s try to invoke data restoration. With
Cassandra there are multiple ways to initiate restoration. First, let’s explore restoration
using the sstableloader utility. To begin, we need to copy all . db files in the Snapshot
directory into a folder which should be in sync with the database schema, meaning
keyspace/tablename. Here in our case it should be the users folder users under twitter
(/home/vivek/twitter/users).

6. Next, let’s execute the sstableloader utility for restoration:
$CASSANDRA_HOME/bin/sstableloader -d localhost /home/vivek/twitter/users

Here /home/vivek/twitter/users is the local folder containing all the backed up .db files. One point worth
mentioning is that this snapshot data can also be used for batch analytics using Hadoop MapReduce jobs. You can
plug in a custom record reader implementation using org.apache.cassandra.db.0OnDiskAtom and org.apache.
cassandra.io.sstable.SSTableIdentityIterator. Upon running the preceding command you see the following
output on the console:

Established connection to initial hosts

Opening sstables and calculating sections to stream

Streaming relevant part of /home/vivek/vivek/twitter/users/twitter-users-jb-1-Data.db to
[/127.0.0.1, /127.0.0.2, /127.0.0.3]

progress: [/127.0.0.2 1/1 (100%)] [/127.0.0.3 1/1 (100%)] [total: 100% - OMB/s (avg: OMB/s)]

176

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

7. Once it completes, we can verify whether the data has been restored by running the
select command:

select * from twitter.users;

user_id | age | name

_________ +_____+_______
ckbrown | 32 | chris
mevivs | 34 | vivek

Using nodetool refresh

Another way to restore the data is by using the nodetool refresh utility. It differs from the sstableloader approach
in that you need to manually copy .db files in Cassandra data directory. Figure 9-3 shows the structure of the copied
sstables.

twitter-users-jb-3-Compressioninfo.db
twitter-users-jb-3-Data.db
twitter-users-jb-3-Filter.db
twitter-users-jb-3-Index.db
twitter-users-jb-3-Statistics.db
twitter-users-jb-3-Summary.db
twitter-users-jb-3-TOC.txt

Figure 9-3. Copied sstables in the Cassandra data directory

Then run the nodetool refresh command:
vivek@vivek-Vostro-3560:~% $CASSANDRA HOME/bin/nodetool refresh twitter users

Here parameters passed with the nodetool refresh command are the keyspace followed by the table name.
This refreshes the data, which can be verified by running the select command.

177

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' CASSANDRA: ADMINISTRATION AND MONITORING

Using clearsnapshot

Taking snapshots periodically for backup purposes consumes a lot of space on disk; hence, it also requires that
you clear obsolete ones from time to time. We can clear the snapshot directory periodically by using nodetool
clearsnapshot command as follows:

vivek@vivek-Vostro-3560:~% $CASSANDRA _HOME/bin/nodetool -h localhost -p 7199 clearsnapshot

The preceding command will clear snapshot directories from all keyspaces. We can also clear snapshot
directories for one or more keyspaces like this:

/home/vivek/software/local-cluster/node1/bin/nodetool -h localhost -p 7199 clearsnapshot twitter
anotherkeyspace

Here, twitter and anotherkeyspace are selected keyspaces to clear snapshot directories.
In this section, we saw how we can use various utilities to perform database backup and restoration processes.
Next we will discuss various monitoring tools.

Cassandra Monitoring Tools

System monitoring is a process of analyzing and gathering the state of the system. Although Cassandra is distributed
and fault-tolerant, it also depends on how it is used to build the application. A few key issues which must be taken
care periodically are

e Performance
e Data access
e Monitoring node’s state
There are many monitoring tools to analyze data and Cassandra’s characteristics. A few of the popular ones are
e Helenos
e JConsole
e nodetool
e DataStax DevCenter and OpsCenter

We have already discussed how to monitor and perform logging using JConsole in Chapter 1 (please refer to
the “Managing Logs via JConsole” section). Chapter 10 covers more about various Cassandra utilities, including
nodetool. It is primarily used for Cassandra monitoring and including other operations, some of which we have used
earlier in this chapter, like removenode and refresh.

In this section, we will discuss Helenos and the DataStax DevCenter and OpsCenter for general monitoring.

Helenos

Helenos is a web interface distributed for free under Creative Commons Attribution license. This tool can be used for
accessing and manipulating the data and schema. A few of the features supported by Helenos are

e Exploring keyspace and column families
e Schema management
e CQL support

e Authorization and authentication

178

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

This project is hosted on https://github.com/tomekkup/helenos. Alternatively you can download the bundled
distribution from https://sourceforge.net/projects/helenos-gui/files/.

From above link, you need to download and extract the helenos-1.4-tomcat7_bundle.zip file. Distribution
contains Tomcat 7 bundled with a ready-to-use Helenos WAR file.

You just need to start Tomcat by running the catalina. sh shell file (available in the bin folder). Next, enter
localhost:8080 in the browser, which will open the Helenos login page (see Figure 9-4).

|
A HELENOS
Enter your credentials...
Name
Password
Login = © cancel
’ |

Figure 9-4. The Helenos login page

The default credentials are admin for Name and admin again for Password. After successfully connecting, the
console will be displayed as shown in Figure 9-5.

Poros
{ € | [localhost:2080/gui/index.hitml 3
#! apps For quick access, place your bookmarks here on the bookmarks bar. import bookmarks now...

HEL=ENOS

€ Refresh | < Add keyspace 2 wekome

= Test Cluster
® 5 sysiem About

2 system_uaces : o 2
Helenos is a free web based environment that simplifies a data exploring & schema managament with Apache Cassandra database.
Licence
This program is distributed free, AS-IS, without any warranty under Creative Commons Attribution licence
Important links

+ Project main page

- Download (checkout for new version)
Donation

You can, of course, donate if you found it useful. | had much of satistaction working on Helenos, but 10 years Scottish tea is siill too expensive.

— = [D===

|Version 1.4

Connectionstale: #1 20 10

Figure 9-5. The Helenos console

179

www.it-ebooks.info

https://github.com/tomekkup/helenos
https://sourceforge.net/projects/helenos-gui/files/
http://www.it-ebooks.info/

CHAPTER 9 CASSANDRA: ADMINISTRATION AND MONITORING

In the left panel, you can see a tree view of all the configured keyspaces (see Figure 9-6).

& Test Cluster
= & system
= hints

schema_keyspaces

=, Nodeldinfo
=, IndexInfo
& system_traces

Figure 9-6. Displaying the cluster and available keyspaces

We can also explore the data by running CQL3 format queries like the one shown in Figure 9-7.

i3 system : schema_keyspaces

Query

SELECT * FROM schema_keyspaces LIMIT 109;

% Search Consistency level: ALL =

Name Value Clock TTL

= s system
[E] keyspace_name system January 1, 1970 05:29:59 0
[E] durable_writes March 24, 46599 02:13:05 0
[E] strategy_class org.apache.cassandra.locator.LocalStrategy March 24, 46599 02:13:05 0
(=] strategy_options { March 24, 46599 02:13:05 0

= [testkeyspace

- [7] keyspace_name testkeyspace January 1, 1970 05:29:59 0

= g system_traces
[E] keyspace_name system_traces January 1, 1970 05:29:59 0
[=] durable_writes January 1, 1970 05:30:00 0
(5] strategy_class org.apache.cassandra.locator. SimpleStrategy January 1, 1970 05:30:00 0
(=] strategy_options {"replication_factor":"2"} January 1, 1970 05:30:00 0

Figure 9-7. The result of fetching 100 rows from schema_keyspace table

The option to add another keyspace or refresh the available schemas using Helenos is available in the top-right
corner (refer to Figure 9-5). Figure 9-8 shows the options to add a keyspace or refresh the schema.

180

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

€ Refresh < Add keyspace

Figure 9-8. We can also add a keyspace or refresh the schema using Helenos

Adding a table/column family or dropping a keyspace is also possible with Helenos (see Figure 9-9).

J& Test Cluster
& system

T —

- Properties
5 system_traces o ot

<= Add column family
& Drop
l

Figure 9-9. You can add a column family or drop the testkeyspace keyspace

Selecting the Add column family option opens the dialog box shown in Figure 9-10.

Create new column family

Name * : twitter

Column *: Standard ~

Comparator * : = UTF-8 e
Subcomparator : | Ascii b

Key validation class *: UTF8Type A
Default validation class * : = UTF8Type .

GC grace seconds *: 86400

Comment : | Twitter column family

o ok | @ cancel

Figure 9-10. Adding the Twitter column family

181

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 CASSANDRA: ADMINISTRATION AND MONITORING

There is an option for managing connections (see Figure 9-11).

User: admin m

Manage connections

Figure 9-11. Manage connections with Helenos

After clicking this option, we can add, edit, or delete connections (see Figure 9-12).

& Connections
Accounts

Alias Hosts Cluster name Active 5
localhost:9160 Tes(Cluster

one of one row

4 Add | o Edit | & Connectto | = Delete

Figure 9-12. Editing connections with Helenos

You can also explore pagination, CQL support, and authentication with Helenos. There is a list of planned
features at https://github.com/tomekkup/helenos#wish-1ist, such as exporting data to a file, querying log files,
and JMX and cluster monitoring. However, currently there is no active development occurring with Helenos.

182

www.it-ebooks.info

https://github.com/tomekkup/helenos#wish-list
http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

DataStax DevCenter and OpsCenter

DataStax is a leading software solution provider company offering commercial products and technical support on
Cassandra and the related technology stack. The company’s co-founder Jonathan Ellis is also the project chair for the
Apache Cassandra project. DataStax offers Datastax Enterprise which comes with DataStax DevCenter and OpsCenter.
The company also offers the open source DataStax Java driver for building applications. In this section we will discuss
configuring and using these tools for monitoring purposes.

These packages are available for download individually or as part of the DataStax All-in-One Installer at
www . datastax.com/download. Whether you download them together or as separate distributions depends on your usage.

OpsCenter

The DataStax OpsCenter can be downloaded as part of the All-in-One Installer package as noted previously or you
can download it separately from http://downloads.datastax.com/community/opscenter.tar.gz. The latest release
version at the time of writing is 5.0. Once you extract and run opscenter.sh (under the bin folder), the DataStax
agents and web interface. The OpsCenter URL is http://localhost:8888. Once you go to this URL in a browser, you
see the interface shown in Figure 9-13.

patastax opscent- < N

localhost: L]

s Forquick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

< Overview 2 Clusters: 2 nodes uf

Active Alerts

Test Cluster Test Cluster 5 Test Cluster

1 node up 1 node up 1 node up

Capacity

Cluster Latency Cluster Latency

Disk Rates Dis

Figure 9-13. The DataStax OpsCenter console

The following is a list of features provided by OpsCenter:
¢ Cluster management. Its health, capacity, and monitoring
¢ Node and token ring management

e Alert and report generation

183

www.it-ebooks.info

http://www.datastax.com/download
http://downloads.datastax.com/community/opscenter.tar.gz
http://www.it-ebooks.info/

CHAPTER 9 ' CASSANDRA: ADMINISTRATION AND MONITORING

In this section we will explore these features. Let’s start with cluster management.
We can add a cluster with OpsCenter by clicking the NEW CLUSTER option in the upper-right corner of the
console (refer to Figure 9-13). Figure 9-14 shows to the Add Cluster dialog box.

Add Cluster

Enter atleastone host/ IP in the cluster (newline delimited) Help
127.0.0.1

JMX Port Thrift Port
7199 9160

Jl DSE security (kerberos) is enabled on my cluster

[l Clientto node encryption is enabled on my cluster

Save Cluster

Figure 9-14. Adding cluster information with OpsCenter

After successfully adding a cluster, its Dashboard screen will be displayed (see Figure 9-15).

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

Dashboard f3agent ted Fix Clusier Actions «

DEFALULT

2014-08-23 ~[1z13aM | 1o (20140823 rzaaan - |paae) [

Add Graph || Add Widget

Datacenter datacenterl

o 0;

NO DATA
tes Total: 0 byles

Figure 9-15. The OpsCenter Dashboard with the cluster named Test Cluster

By clicking the Test cluster label (refer to Figure 9-13), we can view the cluster ring and nodes status with
OpsCenter (shown in Figures 9-16 and 9-17).

B dalcenterl 127.00.1 -92: 347758 Active

B da@acenterl 127002 603 Active

datacenterl 127.00.3 E 57345618258602 Active

Figure 9-16. Displaying nodes information and status in the cluster

185

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' CASSANDRA: ADMINISTRATION AND MONITORING

View in List

127.0.0.3
127.0.0.2
127.0.0.1

Figure 9-17. Ring view to display list of nodes and health status

When you click a node (e.g., 127.0.0.1) from View in List as shown in Figure 9-17, it will show a tab on the
Dashboard that enables you to monitor performed events by using the Event logging option (see Figure 9-18).

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

8/23/2014, 12:33am Info Stopping repair service
8/23/2014, 12:33am Info OpsCenter starting up.
8/23/2014, 12:31am Info Stopping repair service
8/23/2014, 12:31am Info Stopping repair service
8/23/2014, 12:31am Info OpsCenter starting up.
8/23/2014, 12:31am Info OpsCenter starting up.
8/23/2014, 12:31am Info Stopping repair service
8/23/2014, 12:31am Info OpsCenter shutting down.
8/23/2014, 12:31am Info Stopping repair service
8/23/2014, 12:31am Info OpsCenter shutting down.
8/22/2014, 5:34pm Info Stopping repair service
8/22/2014, 5:34pm Info OpsCenter starting up.
8/22/2014, 4:59pm Info Stopping repair service
8/22/2014, 4:59pm Info OpsCenter starting up.

Figure 9-18. OpsCenter displays event logging with event messages

The OpsCenter Enterprise offering provides features such as backup and restoration, node rebalancing, and so
forth. You can experiment with OpsCenter using the community edition by adding widgets, such as a graph widget,
for exporting and managing data in a graphical format. You can also refer to www.datastax.com/what-we-offer/
products-services/datastax-opscenter/compare for information on community vs. enterprise offerings of
DataStax OpsCenter.

DevCenter

DataStax DevCenter is a visual interface for managing schema and performing CQL3 queries. It comes in very handy
for quick data operations over Cassandra. The latest available version is 1.2. After downloading (available in the
All-in-One Installer at www. datastax. com/download or individually at waw.datastax.com/download#dl-devcenter)
and extracting it successfully, we can start by running devcenter. sh (under the bin folder). That would open the
DevCenter Connection Manager console to enter cluster connection details, as shown in Figure 9-19.

187

www.it-ebooks.info

http://www.datastax.com/what-we-offer/products-services/datastax-opscenter/compare
http://www.datastax.com/what-we-offer/products-services/datastax-opscenter/compare
http://www.datastax.com/download
http://www.datastax.com/download#dl-devcenter
http://www.it-ebooks.info/

CHAPTER 9 CASSANDRA: ADMINISTRATION AND MONITORING

| DevCenter Connection Manager

Create a New Connection

Connection name; local-cluster
Contact hosts: Add

127.0.0.1 Remove

Native Protocol port: | 9042 l Test

Use compression: @ None () Snappy () LZ4

Figure 9-19. The DevCenter Connection Manager console

After successfully connecting, the DevCenter workbench interface displays (see Figure 9-20).

Datastax DevCenter

.. Connections &3 = 8 T *default_1.cql 2 =0 Elschema:localcl 2 = B
0 Runusing connection: | local-cluster : | inkeyspace: twitter = | with limit: |300 » i system_traces
- local-cluster 1 select * from users;| > & system
» 55 OpsCenter
» OF twitter

[QL Scripts 13 = 8
B X 2 T

Figure 9-20. Datastax DevCenter with the query editor

You can execute a CQL3 query using ALT+F11, and the output will be displayed as shown in Figure 9-21.

188

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © CASSANDRA: ADMINISTRATION AND MONITORING

Results

user_id age
ckbrown 32
mevivs 134

Figure 9-21. Query output in the DevCenter workbench

DevCenter is a very useful tool for developers and admins for creating and managing schema. You can also use it
to explore the various data modeling techniques discussed in Chapters 2 and 3.

The DataStax OpsCenter and DevCenter user guides are available at waw.datastax.com/documentation/
opscenter/5.0/opsc/about_c.html and www.datastax.com/documentation/getting started/doc/developer/
devcenter/usingDevCenter.html for reference. These are commercial offerings, so a few of the features may only be
available with the Enterprise edition. The Community edition is available for free download but for limited purpose
usage. More details around the licensing model are available at www.datastax.com/download/dse-vs-dsc and
www.datastax.com/developer-license-terms.

Summary

In this chapter we discussed various tools available for Cassandra monitoring and data manipulation. This chapter
also covered basics of data backup and restoration along with managing nodes in a cluster. The next chapter will
discuss various Cassandra utilities and performing benchmarking using YCSB.

189

www.it-ebooks.info

http://www.datastax.com/documentation/opscenter/5.0/opsc/about_c.html
http://www.datastax.com/documentation/opscenter/5.0/opsc/about_c.html
http://www.datastax.com/documentation/getting_started/doc/developer/devcenter/usingDevCenter.html
http://www.datastax.com/documentation/getting_started/doc/developer/devcenter/usingDevCenter.html
http://www.datastax.com/download/dse-vs-dsc
http://www.datastax.com/developer-license-terms
http://www.it-ebooks.info/

CHAPTER 10

Cassandra Utilities

So far in this book, we have covered almost all aspects of Cassandra, including data modeling, graph databases, batch
analytics, performance tuning, and analyzing various open source and commercial tools. Since we are progressing
toward the end of this book, one area worth discussing is various built-in utilities which are quite useful for database
administration, stress testing, or performing data migration or bulk loading.

Some of these topics have been discussed already in this book. For example, the stress testing tool for command
line-based stress testing was described in Chapter 8, the token generator for token assignment in Chapter 1, and a few
nodetool options in Chapters 3, 4, and 5.

In this chapter we will solely discuss more Cassandra utilities, including:

e The nodetool utility
e sstable2json and json2sstable

e (Cassandra bulk loading (with CQL3 collections)

Cassandra nodetool Utility

Cassandra provides a number of operations, such as token assignment, ring management, schema management,
node management and monitoring, and so forth. Cassandra’s nodetool utility is a command-line interface that wraps
all such operations with simple commands. In this section, we will explore a number of these commands in detail.
The nodetool utility is built-in and provided with the Cassandra distribution (found in the $CASSANDRA_HOME /bin
folder).
Before moving to the commands, let’s print the nodetool version:

vivek@vivek-Vostro-3560:~/software/apache-cassandra-2.0.4/bin$./nodetool version
ReleaseVersion: 2.0.4

The output from the preceding command shows that nodetool’s release version is 2.0.4.
To print all the available commands with this utility, simply run the following command:

vivek@vivek-Vostro-3560:~/software/apache-cassandra-2.0.4/bin$./nodetool

Let’s start our discussion of the nodetool utility commands with Cassandra ring management.

191

www.it-ebooks.info

http://mailto:vivek@vivek-Vostro-3560:~/software/apache-cassandra-2.0.4/bin$./nodetool
http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

Ring Management

A Cassandra ring is made up of various data nodes. Two of the important operations from a ring management
perspective are

e Checkingring status

e Decommissioning a dead node

Checking Ring Status

In Chapter 1, in the “Configuring Multiple Nodes over a Single Machine” section, we discussed how to start a
Cassandra cluster on a local machine. Refer to Chapter 1 for information on starting a Cassandra cluster over a single
machine. Once the cluster has been started, we can print the Cassandra cluster ring information like this:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool ring
Running the preceding command prints this output on the console:

Datacenter: datacenteri1

Address Rack Status State Load Owns Token

127.0.0.4 racki Up Normal 77.55 KB 66.67% -3074457345618258604
127.0.0.1 racki Up Normal 35.79 KB 66.67% -9223372036854775808
127.0.0.2 racki Up Normal 45.05 KB 33.33% -3074457345618258603
127.0.0.3 rackl Up Normal 61.28 KB 33.33% 3074457345618258602

Here the ring command prints each node’s status and the assigned tokens for each Cassandra node. The output
shows the data nodes’ IP addresses, their statuses, and rack information:

e The Address column shows the nodes’ URL or IP address.
e The Rack column contains rack information.

e Ifthe nodes are live and are part of the cluster ring, their status will be Up; otherwise,
it will be Down.

e Possible values for State are Normal, Leaving, Joining, and Moving.
e Ifadatanode is part of cluster ring it will be shown with status as Normal.
e Ifanode is getting decommissioned, then it will have an intermediate state of Leaving.
e The status will be Moving if the node has been moved to another token value.
e The Load column displays the current data load on each node. This information is important

from an administration perspective as load and ownership (the Owns column) information
show whether the ring is in a balanced state.

e The Token column shows the assigned token, which is a token range.

To fetch more information on the Cassandra cluster, like current state, load, and assigned token, we can run the
status command:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool status

192

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

Running this command prints the data shown in following output:

Datacenter: datacenteri1

Status=Up(U)/Down(D)
|/ State=Normal(N)/Leaving(L)/Joining(J)/Moving(M)

Status/ Address Load Tokens Owns Host ID Rack
State (effective)

UN 127.0.0.1 59.82 KB 129 166.7% 718d384e-c8c2-4355-bf9b-1bfab0obe2d99 Rackil
UN 127.0.0.2 66.54 KB 256 166.7% cb9da211-6948-4c21-b5f5-5ee660cd9355 Rackl
UN 127.0.0.3 50.31 KB 256 66.7% 74ee5df6-d990-4deb-9144-501c349308d6 Rackl

The preceding output is similar to the first output example in this section. The only differences are the Tokens
and Host ID fields. Here the Tokens column shows the number of tokens set for each node, and the Host IDis the
network ID of the data node. It's a UUID value assigned by Cassandra for each node.

That’s how we can monitor the cluster ring status and its information. In the next section we will discuss how to
decommission a live data node.

Decommissioning a Node

We can also decommission a node using the nodetool utility. In this exercise, we will decommission a node by using
the decommission command and then verify that it is decommissioned by checking the cluster ring status.

1. Assuming all three nodes are up and running (see the output shown in the preceding
section), let’s create a keyspace twitter_keyspace and table twitter using the cql
command-line interface:

cqlsh> create keyspace twitter keyspace with replication =
{"'class':'SimpleStrategy', 'replication factor':3};
cqlsh> use twitter keyspace;

cqlsh:twitter keyspace> create table twitter(tweeted at text, screen name text,
body text, PRIMARY KEY (tweeted at,screen_name));

2. Let'sload datain the twitter table using the copy command:
cqlsh:twitter keyspace> copy twitter(tweeted at,screen name,body) from
"/home/vivek/tweets_pipe' WITH DELIMITER = '|';

10020 rows imported in 12.457 seconds.

Here /home/vivek/tweets_pipe is alocal file in which all column values have a “|” field separator. You can find
this file with downloads for this book, or you can create the sample using the following data and format:

H|”
2014-08-02 | mevivs |Working on Cassandra book

2014-08-04|chris nelson|Cassandra book review in progress

Now let’s try to decommission the node with the IP address 127.0.0.1 using the nodetool utility’s decommission
command:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool decommission

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

Please note that we can only decommission a live node. Decommissioning a node would implicitly start
data streaming to another node. And we can monitor the decommissioning process using the nodetoolnetstats
command:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool netstats
It would display the following output:

Mode: LEAVING

Not sending any streams.
Read Repair Statistics:
Attempted: 0

Mismatch (Blocking): 0
Mismatch (Background): 0

Pool Name Active Pending Completed
Commands n/a 0 20048
Responses n/a 0 4806

The output means the node is still being processed and is in the LEAVING state. Here Attempted means the
number of attempts for the read repair. Mismatch (Blocking) and Mismatch (Background) refer to the number of
read repairs since the server restart that blocked query and background server restart, respectively. Here Commands
holds information about the number of read/write operations, and Responses holds information about the received
responses on client read/write requests.

During the LEAVING state, if we check cluster status, it will display output as shown after the command:

vivek@vivek-Vostro-3560:~/software/local-cluster/nodei1$ bin/nodetool status

Datacenter: datacenter1

Status=Up(U)/Down(D)
|/ State=Normal(N)/Leaving(L)/Joining(J)/Moving(M)

Status/ Address Load Tokens Owns Host ID Rack
State (effective)

uL 127.0.0.1 59.82 KB 129 166.7% 718d384e-c8c2-4355-bfob-1bfabobe2d99 Rackl
UN 127.0.0.2 66.54 KB 256 166.7% cb9da211-6948-4c21-b5f5-5ee660cd9355 Rackl
UN 127.0.0.3 50.31 KB 256 66.7% 74ee5df6-d990-4deb-9144-501c349308d6 Rackl

Once decommissioning of node has been completed, you can validate it using the netstat command, and the
output will be as follows:

vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool netstats

Mode: DECOMMISSIONED

Not sending any streams.
Read Repair Statistics:
Attempted: 0

Mismatch (Blocking): 0
Mismatch (Background): 0

194

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

Pool Name Active Pending Completed
Commands n/a 0 20048
Responses n/a 0 4808

Here you can see that mode is now DECOMMISSIONED.

3. Once the node has been decommissioned, we can validate it using the status command.
vivek@vivek-Vostro-3560:~/software/local-cluster/node1$ bin/nodetool status

Datacenter: datacenteri

Status=Up(U)/Down(D)
|/ State=Normal(N)/Leaving(L)/Joining(J)/Moving(M)

Status/ Address Load Tokens Owns Host ID Rack
State (effective)

UN 127.0.0.2 66.54 KB 256 100% cb9da211-6948-4c21-b5f5-5ee660cd9355 Rackl
UN 127.0.0.3 50.31 KB 256 100% 74ee5df6-d990-4deb-9144-501c349308d6 Rackl

Schema Management

Schema management means analyzing keyspaces and tables, performing repairs, rebuilding or cleaning up data, and
various other activities. With the nodetool utility, these operations are available in the form of simple commands.
Using them we can easily manage schema level operations. Let’s discuss some of the more important ones with
simple examples.

cfstats

Using the cfstats command we can gather statistics about keyspaces and their tables. It is very useful to monitor
read/write latency, compaction, and memtable-related information.
We can collect information for a keyspace like this:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool cfstats twitter keyspace

Here twittex_keyspace is the keyspace name.
We can also collect statistics for multiple keyspaces:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool cfstats keyspacel keyspace2

Here keyspace1 and keyspace2 are those keyspaces.
Also, we can capture statistics for a specific table:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool cfstats twitter keyspace.twiiter

Here, twitter_keyspace is the keyspace and twitter is the table.

195

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

The following is the output from running cfstats against the twitter table:

Keyspace: twitter keyspace

Read Count: 0

Read Latency: NaN ms.

Write Count: 1

Write Latency: 1.314 ms.

Pending Tasks: 0
Table: twitter
SSTable count: 0
Space used (live), bytes: 0
Space used (total), bytes: 0
SSTable Compression Ratio: 0.0
Number of keys (estimate): 0
Memtable cell count: 3
Memtable data size, bytes: 590
Memtable switch count: o
Local read count: 0
Local read latency: NaN ms
Local write count: 1
Local write latency: 1.314 ms
Pending tasks: o
Bloom filter false positives: 0
Bloom filter false ratio: 0.00000
Bloom filter space used, bytes: 0
Compacted partition minimum bytes: 0
Compacted partition maximum bytes: 0
Compacted partition mean bytes: 0
Average live cells per slice (last five minutes): 0.0
Average tombstones per slice (last five minutes): 0.0

cfhistogram

The cfhistogram command provides statistics about read/write latency in microseconds and the number of sstables
involved during reads and writes. The following command shows output of a column family histogram of the twitter
table within the keyspace twitter_keyspace:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool cfthistograms
twitter_keyspace twiiter
twitter_keyspace/twiiter histograms

Offset SSTables Write Read Latency Partition Cell Count
Latency size
(micros) (micros) (bytes)
1 0 0 0 0 0
2 0 0 0 0 0
3 234 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
196

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

8 (0] 0 0 (0] (0]
10 0 0 0 0 0
12 0 0 0 0 0
14 0 0 0 0 (0]
17 0 0 0 0 0
20 0 0 0 0 0
24 0 0 0 0 0
29 0 127 86 0 (0]
35 0 149 0 0 0
42 0 0 0 (0] (0]
50 0 0 0 0 0
60 0 0 0 0 0

Here, the third row in the output table depicts that there is a total of 3 sstable lookups done to serve 234 read
requests. The value in the SSTables column denotes the number of read requests. Also the row having offset
29 denotes read latency for 86 read requests and 127 write requests is between 24 to 29 microseconds, whereas for
149 write request write latency is between 29 and 35 microseconds.

This comes in very handy when we need to analyze a table’s performance under heavy read or write loads.

cleanup

We can run the cleanup command to clean up keyspaces and partition keys which are not related to data nodes, or
data that doesn’t belong to that node.

Generally we execute this command to delete data from a node that has just been added to the cluster. Whenever
anew node joins in the ring, using the cleanup command we can remove the obsolete data that is not related to the
cluster. Also we perform this command whenever a node becomes live after it has been decommissioned or removed
from the cluster ring. We can run this command:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$bin/nodetool cleanup twitter keyspace twiiter
Here we are performing cleanup on twitter table of keyspace twitter_keyspace. Please note that if we don’t
specify the keyspace, it will perform a cleanup over all available keyspaces. Also, we can perform a cleanup over

multiple tables in a keyspace by providing a list of table names:

nodetool cleanup <keyspace><tablel><table2>

clearsnapshot

Snapshot directories are generally created for the backup and restore processes. When snapshot directories are no
longer required for a keyspace, we can clear them using the clearsnapshot command:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool clearsnapshot twitter_ keyspace

Running the preceding command, deletes all snapshot directories for the keyspace twitter_keyspace. We can
also delete specific snapshot directories using the -f option as follows:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool clearsnapshot
twitter keyspace -f 1412341689

197

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

Generally, clearing snapshots is part of the backup process, and regular backing up and deleting snapshot
directories would be scheduled background cron jobs. A cron job is a time-based scheduler that can be set up as a
component of the backup process.

Note For more information on data backup and restore, please refer to the “Data Backup and Restoration”
section in Chapter 9.

flush

A memtable is a cache of data rows that can be looked up for a particular row key and data. An implicit flush of
memtables is automatically handled by Cassandra based on the memtable threshold and throughput configurations
defined in cassandra.yaml. Using the nodetool flush command, we can explicitly flush data on a particular data
node. Reasons for explicit flushes include

¢ The node is running out of space and needs to free some space on the server side.

e Data backup is occurring and you might need to restore it on another node using the
sstable loader.

e Aflush out to disk is required to reduce commit log replay during node restart.

Explicitly flush memtables onto disk using the nodetool flush command as follows:
vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool flush twitter keyspace twitter

Running the preceding command explicitly flushes out data from memtables and writes it onto disk for the
keyspace twitter_keyspace and table twitter.

repair
You need to repair cluster nodes generally if
e One or multiple nodes are in recovery mode.
e One of the Cassandra nodes is not participating in reads.
e Anodeis being added and data needs to manually be updated on that node.

Ideally, performing repairs periodically is recommended to to keep clusters consistent and in balanced states.
We can run the repair command as follows:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool repair -dc DC1

Running the preceding command triggers the repair process across multiple nodes on data center DC1. Please
note that repair is a memory-intensive process and requires that you perform disk I/O to copy snapshots across
replica nodes. We can also perform the repair process in parallel using the -pr option, which initiates the repair
process across replica nodes and results in less downtime. We can also restrict the repair process to nodes that are

local to a data center like this:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool repair -local

198

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

rebuild

We perform the rebuild command whenever we add a new data center in a Cassandra cluster and need to copy data
from one data center to the newly added one. The way to perform this command is

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool rebuild - - DC2

Here DC2 is a new data center. Please make sure to include the newly added data center, or the command will
perform successfully but no data copy will happen.

rebuild_index

In Chapter 2, we discussed that during schema changes, most often during Thrift and CQL3 exchange, it is quite
possible for a schema and the secondary indexes to be corrupted. We can rebuild those indexes using the
rebuild_index command:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool rebuild index
twitter keyspace twitter

Running the preceding command does a full index rebuild on all indexes of the twitter table in keyspace
twitter_keyspace. We can also rebuild specific indexes as follows:

vivek@vivek-Vostro-3560:~/software/local-cluster/node4$ bin/nodetool rebuild index
twitter_keyspace twitter screenname_idx

Here screenname_idx is the index on column screen_name.

Rebuilding indexes will not drop the index, but it will rebuild it with the available data on that node. There are a lot of
other command options with the nodetool utility. Here I have covered the most important ones from a data administration
backup perspective. In the following sections, we will discuss the refresh, repair, and sstablescrub commands, as well.

JSONifying Data

Since its inception, the Cassandra distribution has come with tools to import JSON-format data into sstable and
export sstable data in JSON files. These tools were primarily built for debugging purposes, but they also are useful
when we need to migrate data from one node to another.

The two tools that come with the Cassandra distribution are sstabl2json and json2sstable. We can find them
in the $CASSANDRA_HOME/bin folder. Let’s explore both!

Exporting Data to JSON Files with sstable2json

Using the sstabl2json command we can export on disk sstables data in JSON files. Let’s explore it with the following
exercise:

1. Firstlet’s create the schema and populate data using the cql shell. We will create a

keyspace twitterkeyspace and table user:

create keyspace twitterkeyspace with replication = {'class':'SimpleStrategy’,
'replication factor':3}

use twitterkeyspace;

create table user(user id timeuuid primary key, fname text,lname text);

199

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

2. Let’sinsert a few records:

insert into user(user_id,fname,lname) values(now(), 'vivek', 'mishra');
insert into user(user id,fname,lname) values(now(), 'Melissa', 'Maldonado');
insert into user(user_id,fname,lname) values(now(), 'Chris', 'Nelson');
insert into user(user_id,fname,lname) values(now(), 'Brian’,'Neill');
select * from user;

user_id | fname | lname

______________________________________ fmmmm e
849d5820-50e3-11e4-abc1-3f484de45426 | Brian | Neill
74ac3a80-50e3-11e4-abc1-3f484de45426 | Melissa | Maldonado
7c34a260-50e3-11e4-abc1-3f484de45426 | Chris | Nelson
f7d1f2c0-50e2-11e4-abc1-3f484de45426 | vivek | mishra

3. Let’s flush this data into sstables using nodetool flush:
$CASSANDRA _HOME/bin/nodetool flush
4. Finally, export data in a JSON file using sstable2json:

$CASSANDRA_HOME/bin/sstable2json /var/lib/cassandra/data/twitterkeyspace/user/
twitterkeyspace-user-jb-1-Data.db > output.json

Here twitterkeyspace-user-jb-1-Data.db is a.db data file under the data directory (in this case it is under
/var/lib/Cassandra). The preceding command will create a JSON file having data as shown in Figure 10-1.

L

{"key": "849d582050e311ed4abc13f484deq45426","columns™: [["","",1412989884066000], ["fname”,"Brian”,1412989884066000],
["lname”,"Neill",1412989884066000]]},

{"key": "74ac3a8050e31ledabc13f484ded45426","columns”: [["","",1412989857319000], ["fname","Melissa”,1412989857319000],
["lname","Maldonado”,1412989857319000]]1},

{"key": "7c34a26050e311ed4abc13f484deqs5426", "columns™: [["","",1412989869958000], ["fname","Chris",1412989869958000],
["lname","Nelson",1412989869958000]1},

{"key": "f7di1f2co50e211ed4abc13f484deq45426" ,"columns”™: [["","",1412989647852000], ["fname","vivek" ,1412989647852000],
[rlnawo',“mi:hra ,1412989647852000]1}

]

Figure 10-1. Data in the output.json file

We can also include and exclude specific rows using the -k and -x options, respectively. With the -k option, keys
have to be in hexadecimal format. Since with the user table, the primary key is of timeuuid type, so let’s first get key
values in hexadecimal format using the timeuuidAsBlob function as follows:

select timeuuidAsBlob(user id),fname from user;

timeuuidAsBlob(user id) | fname
___ +_________
0x849d582050e311e4abc13f484de45426 | Brian
0x74ac3a8050e311e4abc13f484de45426 | Melissa
0x7c34a26050e311ed4abc13f484de45426 | Chris
0xf7d1f2c050e211e4abc13f484de45426 | vivek
(4 rows)

200

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

Here timeuuidAsBlob(user id) isthe user id key in hexadecimal format. Now we can fetch rows having fname
as brian and vivek using the -k option:

$CASSANDRA_HOME/bin/sstable2json /var/lib/cassandra/data/twitterkeyspace/user/twitterkeyspace-user-
jb-1-Data.db -k 849d582050e311e4abc13f484de45426 f7d1f2c050e211e4abc13t484des5426

[

{"key": "849d582050e311e4abc13f484de45426","columns™: [["","",1412989884066000],
["fname","Brian",1412989884066000], ["lname","Neill",1412989884066000]]},

{"key": "f7d1f2c050e211e4abc13f484de45426"," " columns": [["","",1412989647852000],
["fname","vivek",1412989647852000], ["lname","mishra",1412989647852000]]}

]

849d582050e311e4abc13f484de45426 and f7d1f2c050e211e4abc13f484de45426 are the user IDs for brian and
vivek.

Similarly, we can exclude specific keys using the -x option:

$CASSANDRA_HOME/bin/sstable2json /var/lib/cassandra/data/twitterkeyspace/user/twitterkeyspace-user-
jb-1-Data.db -x 849d582050e311e4abc13f484de45426 f7d1f2c050e211e4abc13f484de45426

[

{"key": "74ac3a8050e311e4abc13f484de45426","columns": [["","",1412989857319000],

["fname","Melissa",1412989857319000], ["lname","Maldonado",1412989857319000]]},
{"key": "7c34a26050e311e4abc13484de45426","columns™: [["","",1412989869958000],

["fname","Chris",1412989869958000], ["lname","Nelson",1412989869958000]]}
]

Importing JSON Data with json2sstable
Similarly we can import JSON data back into sstable using json2sstable in a few simple steps:

1. First create a table dumpuser with the keyspace twitterkeyspace using the cql shell:

use twitterkeyspace;
create table dumpuser(user_id timeuuid primary key, fname text,lname text);

2. Next, import data from output. json using json2sstable in the dumpuser table:
$CASSANDRA_HOME/bin/json2sstable -K twitterkeyspace -c dumpuser output.json /var/
lib/cassandra/data/twitterkeyspace/dumpuser/twitterkeyspace-dumpuser-jb-1-Data.db
Importing 4 keys...

4 keys imported successfully.
3. Nextrefresh the newly loaded sstables using the nodetool refresh command:

$CASSANDRA_HOME/bin/nodetool refresh twitterkeyspace dumpuser

nodetool refresh makes data available without a node restart.

201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

4. Now we can verify the loaded data by running the select command using the cql shell
over the table dumpusex:

cqlsh:twitterkeyspace> select * from dumpuser;

user_id | fname | lname
______________________________________ +_________+___________
849d5820-50e3-11e4-abc1-3f484de45426 | Brian | Neill
74ac3a80-50e3-11e4-abc1-3f484de45426 | Melissa | Maldonado
7€34a260-50e3-11e4-abc1-3f484de45426 | Chris | Nelson
f7d1f2c0-50e2-11e4-abc1-3f484de45426 | vivek | mishra
(4 rows)

One piece of advice here is to avoid trying to load data in sstables for the same table using json2sstable multiple

times, as it may leave an sstable in a corrupted state. You can check server.log (under the log directory) for the
following error:

Caused by: org.apache.cassandra.io.compress.CorruptBlockException: (/var/lib/cassandra/data/
twitterkeyspace/dumpuser/twitterkeyspace-dumpuser-jb-1-Data.db): corruption detected,
chunk at 0 of length 210.
at org.apache.cassandra.io.compress.CompressedRandomAccessReader.decompressChunk
(CompressedRandomAccessReader. java:122)
at org.apache.cassandra.io.compress.CompressedRandomAccessReader.reBuffer
(CompressedRandomAccessReader. java:87)

. 26 more

Trying to fetch data from a corrupted table (in this case the dumpuser table) using the cql shell results in the

following output:

cqlsh:twitterkeyspace> select * from dumpuser;
Request did not complete within rpc_timeout.

Pre-

In this situation scrubbing and removing the corrupted data is our only option.

1. The Cassandra distribution comes with sstablescrub utility, which we’ll use here:
$CASSANDRA_HOME/bin/sstablescrub twitterkeyspace dumpuser
Running the preceding command results in the following output:

scrub sstables snapshotted into snapshot pre-scrub-1412993550669

Scrubbing SSTableReader(path="'/var/lib/cassandra/data/twitterkeyspace/dumpuser/twitterkeyspace-
dumpuser-jb-1-Data.db') (218 bytes)

Error scrubbing SSTableReader(path='/var/1lib/cassandra/data/twitterkeyspace/dumpuser/
twitterkeyspace-dumpuser-jb-1-Data.db'): null

202

2. Asaprestep, it’s always better to take a backup before running the repair command.
First create a snapshot directory for a backup. As you can see in the preceding output,
an error occurred while scrubbing the . db file; hence, we need to manually remove
/twitterkeyspace-dumpuser-jb-1-Data.db and restore the rest of the data from the
snapshot directory. Please refer to Chapter 9, the “Data Backup and Restoration” section,
for how to restore data from the snapshot directory.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

3. Also we need to run the nodetool repair command to bring back the table:
$CASSANDRA_HOME/bin/nodetool repair twitterkeyspace dumpuser

So here we have seen how to import JSON data into sstables and export data to JSON files, as well how to deal
with corrupted sstables.

Currently, there are discussions in the community about whether to retire or replace these tools. You can refer to
https://issues.apache.org/jira/browse/CASSANDRA-7464 for more details.

Cassandra Bulk Loading

In the “Decommissiong a Node” section, we saw that using the COPY command we can copy data from a . csv file
to tables. Prior to CQL3’s inception, in the early releases of Cassandra, the distribution came with a tool called
sstableloader, which could be used to directly load .db files into sstables. We just had to write an implementation
using the SSTableWriter API to generate .db files. One such Thrift-based implementation can be downloaded from
www . datastax.com/wp-content/uploads/2011/08/DataIlmportExample. java. Since CQL3, however, the CQL3 binary
protocol is going to be the active protocol for future Cassandra development, and also please note that support for
Thrift has been discontinued.

Here I am sharing a CQL3 compatible implementation to generate .db files for CQL3 tables. This is the extended
implementation of the preceding shared URL.

In this example we will create a table having a column of the collection type. Let’s start!

1. First we need to create keyspace Cql3Demo and table Users:

create keyspace "Cql3Demo" with replication = { 'class’

'SimpleStrategy', 'replication_factor':3};

use "Cql3Demo";

create table "Users"(user id uuid PRIMARY KEY,firstname text,lastname text,
password text,email text, age int, addresses set<text>);

2. Createa .csv file (CSVInput.csv) having a user ID, first name, last name, password, email
address, and age as follows:

5bd8c586-ae44-11e0-97b8-0026b0ea8cdo, vivek,mishra,4]c2s,22,vivek.mishra@nomail.com
4bd8cb58-ae44-12e0-a2b8-0026b0ed9cd1,apress,bigdata,s!aoml,12,bigdata@nomail.com
1ce7cb58-ae44-12e0-a2b8-0026boad21ab,Brian,Neil,s)3B3,12,brian.neil@nomail.com

3. Now, let’s have a look at implementation. It's a Maven-based project and requires that we
add the following dependency in pom.xml:

<dependency>
<groupld>org.apache.cassandra</groupId>
<artifactId>cassandra-all</artifactId>
<version>2.0.4</version>

</dependency>

<dependency>
<groupld>org.apache.cassandra</groupId>
<artifactId>cassandra-clientutil</artifactId>

<version>2.0.4</version>

</dependency>

203

www.it-ebooks.info

https://issues.apache.org/jira/browse/CASSANDRA-7464
http://www.datastax.com/wp-content/uploads/2011/08/DataImportExample.java
http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

4. Now let’s have a look at the Java implementation:
if (args.length == 0)
{

filename = " CSVInput.csv";

}
{

filename = args[0];

else

BufferedReader reader = new BufferedReader(new FileReader(filename));
String keyspace = "Cql3Demo";
String columnFamily = "Users";
// create cassandra type structure default is data/KEYSPACE/users
File directory = new File("data");
if (!directory.exists())

directory.mkdir();

}

directory = new File(directory.getPath() + "/" + keyspace);
if (!directory.exists())
directory.mkdir();

directory = new File(directory.getPath() + "/" + columnFamily);
if (!directory.exists())
directory.mkdir();

The preceding code snippet shows that the program takes the file name as an input argument. If it isn’t provided,
then the default file (CSVInput.csv) is used. It will also create a data folder in the root folder (see Figure 10-2).
a data
4 Cql3Demo

Users
Figure 10-2. The created data folder with .db files
5. Next, we need to instantiate SSTableSimpleUnsortedhriter:
SSTableSimpleUnsortedWriter usershWriter = new SSTableSimpleUnsortedWriter
(directory, new Murmur3Partitioner(),
keyspace, "Users", AsciiType.instance, null, 64, new CompressionParameters(

org.apache.cassandra.io.compress.SnappyCompressor.create(Collections.<String,
String> emptyMap())));

204

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

6. Now, we need to parse each entry in the CSVInput.csv file:

static class CsvEntry

{
UUID key;
String firstname;
String lastname;
String password;
int age;
String email;
boolean parse(String line, int lineNumber)
{
// Ghetto csv parsing
String[] columns = line.split(",");
if (columns.length != 6)
{
System.out.println(String.format("Invalid input '%s' at line %d
of %s", line, lineNumber, filename));
return false;
}
try
{
key = UUID.fromString(columns[0].trim());
firstname = columns[1].trim();
lastname = columns[2].trim();
password = columns[3].trim();
age = Integer.parseInt(columns[4].trim());
email = columns[5].trim();
return true;
}
catch (NumberFormatException e)
{
System.out.println(String.format("Invalid number in input '%s’
at line %d of %s", line, lineNumber, filename));
return false;
}
}
}

205

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

The preceding code snippet parses and sets each cell value (firstname, lastname, and so forth) and reads each
line from the . csv file like this:

CsvEntry entry = new CsvEntry();
while ((line = reader.readlLine()) != null)

{

if (entry.parse(line, lineNumber))

7. After parsing, let’s prepare a composite type for each column value. Since we have uuid,
int, and text as data types defined for the primary key, first name, last name, and age, we
need to define them as follows:

ByteBuffer uuid = UUIDType.instance.decompose(entry.key);
usershWriter.newRow(uuid);

List types = newArraylList();
types.add(UTF8Type.instance);

CompositeType compositeType = CompositeType.getInstance(types);

List numericTypes = newArraylist();
numericTypes.add(IntegerType.instance);

CompositeType numericType = CompositeType.getInstance(numericTypes);
8. Next, let’s assign values:

long timestamp = System.currentTimeMillis() * 1000; usersWriter.
addColumn(compositeType.decompose("firstname"),
compositeType.decompose(bytes(entry.firstname)), timestamp);
usershriter.addColumn(compositeType.decompose("lastname"),
compositeType.decompose(bytes(entry.lastname)), timestamp);
usersWriter.addColumn(compositeType.decompose("password"),
compositeType.decompose(bytes(entry.password)), timestamp);

usershriter.addColumn(compositeType.decompose("age"),
numericType.decompose(bytes(entry.age)),timestamp);

usersWriter.addColumn(compositeType.decompose("email™),
compositeType.decompose(bytes(entry.email)), timestamp);

206

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

9. Now, to assign the addresses collection, we need to construct and assign with data type as Set:
SetType<String> addressType = newSetType<String>(UTF8Type.instance);

// column name
ByteBuffer byteBufferl = compositeType.decompose("addresses");

// set value
ByteBuffer byteBuffer2 = compositeType.decompose(“noida");

10. We need to create a bytebuffer instance and add a column:
ByteBuffer bb = ByteBuffer.allocate(byteBuffer2.capacity()+byteBufferi.capacity());
bb.put(byteBuffer1);
bb.put(byteBuffer2);
bb.flip();
usershiriter.addColumn(bb,addressType.decompose(new HashSet<String>()),timestamp);
11. Next, we can save it:

usershriter.close();

The preceding command generates the . db files under the data/Cql3Demo/Users folder.

12. Now, we need to load the generated .db files using sstableloader:
$CASSANDRA_HOME/bin/sstableloader -d localhost data/Cql3Demo/Users/

13. We can validate the output by issuing the select command using the cql shell
(see Figure 10-3).

select * from "Users";

user id | addresses | age | email | firstname | lastname | password
————————————————————————————— - + ——————t + - - + e ——
Sbd8cS586-aed4-11e0-97b8-0026b0ea8ecd0 | {noida} | 22 | wvivek.mishra@nomail.com] vivek | mishra | 4Jec2s
4bd8cbS58-aed4-12e0-a2b8-0026b0eddcdl | {noida} | 12 | bigdata@nomail.com | apress | bigdata | a'aiml
lce7cbS8-aed4-12e0-a2b8-0026b0ad2lab | {noida} | 12 | brian.neil@nomail.com | Brian | Neil I s)3B3

Figure 10-3. The Users table with three rows
14. We can also alter the Users table and add a column with the data type of map:

alter table "Users" add mapCol map<text,text>;

207

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CASSANDRA UTILITIES

15. We just need to add the composite type for map and add map as a column to the
preceding implementation like this:

// map column name
byteBufferl = compositeType.decompose("mapcol");
// map column key
byteBuffer2 = compositeType.decompose("noida");

bb =ByteBuffer.allocate(byteBuffer2.capacity()+byteBufferi.capacity());
bb.put(byteBuffer1);

bb.put(byteBuffer2);

bb.flip();

// map value
usershriter.addColumn(bb,compositeType.decompose(bytes("vivek")),timestamp);

16. Issuing a select query over Users will produce the output shown in Figure 10-4.

user_id | addressesz | age | email | firstname | lastname | mapcol | password
-------------------------------------- e e e e e e e e e
SbdB8c586-aed44-11e0-9Tb8=-0026b0ealcdl | {noida} | 22 | vivek.mishra@nomail.com | vivek | mishra | {noida: wivek} | 4Jc2s
4bdBcb5B-aeq4-1280-a2bB-0026b0edocdl | {noida} | 12 | bigdata@nomail.com | apress | bigdata | {noida: wvivek]} | s!aiml
lceTcb58-ae44-12e0-a2b8-0026b0ad21ab | {noida} | 12 | brian.neil@ncmail.com | Brian | Reil | {noida: wivek} | =) 383

Figure 10-4. Output with a map column in the Users table

So that’s how we can bulk load . db files directly on to disk in sstable format.

Summary

Just to summarize, in this chapter we discussed the nodetool utility’s usage and various operations for ring and
schema management. We also discussed how to import and export data in JSON format. Finally we discussed loading
bulkloading CQL3 format data (including collection).

In the next and final chapter, we will be summarizing our discussion and talking about Cassandra version
upgrades and other popular discussions in various forums.

208

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Upgrading Cassandra and
Troubleshooting

So far, topics discussed in this book have included configuration, batch analytics, data modeling techniques,
performance tuning, and various utilities. One important topic yet to be discussed is Cassandra version upgrades.
The past one and half years have seen quick development and multiple Cassandra releases. Some of the changes
introduced in recent releases have backward compatibility issues, which makes Cassandra version upgrading an
important topic that needs to be addressed. The most recent release, at the time of this writing, is version 2.1, which
includes a couple important new features we have not covered elsewhere.

We have discussed various troubleshooting tips in different places in the book. In this chapter, we will summarize
several key ones that address issues you may well encounter.

The topics in this chapter include:

e Anoverview of the Cassandra 2.1 release
e (Cassandra version upgrade

e Troubleshooting tips

e Theroad ahead with Cassandra

Let’s start by discussing the new features introduced with the recently released Cassandra 2.1.

Cassandra 2.1

The recently released Cassandra 2.1 enables a few important features along with many performance-related fixes.
In this section, we will discuss three important features supported by Cassandra 2.1:

e User-defined types
e Frozen types

¢ Indexing on collection attributes

Note For a complete overview of what’s new in Cassandra 2.1, see the following documentation page:
www.datastax.com/documentation/cassandra/2.1/cassandra/features2.html.

209

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/2.1/cassandra/features2.html
http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

User-Defined Types

User-defined types allow you to combine multiple fields of information in a single table. For example, you can have a
single field with information from multiple fields using the CQL3 shell like this:

create type if not exists twitter keyspace.user metadata(fname,lname)

Here user_metadata is a user-defined type which is a wrapper on multiple columns. With user-defined types,
we can simplify data modeling schema by reducing multiple tables to fewer tables.

Frozen Types

Using the frozen keyword, we can define a particular user-defined type as follows:

CREATE TABLE twitter keyspace.users (
user_id timeuuid PRIMARY KEY,
name frozen <user_metadata>,

);

Here, name is a frozen type of user_metadata for the users table in the keyspace twitter_keyspace. With
a column field defined with the frozen keyword, Cassandra serializes multiple components in single value. For
example, with user_metadata, fname and 1name will be serialized as a single value. Once a user-defined data type is
frozen with the frozen keyword, we cannot update components of the user-defined type.

Indexing on Collection Attributes

”

In Chapter 2 we discussed data modeling concepts and working with collections. Also under the “Secondary Indexes’
section in Chapter 2, we discussed that indexes over Cassandra collection attributes were not supported. With
Cassandra 2.1, we now can create indexes over Cassandra collection attributes like this:

create table users(user_id text PRIMARY KEY,fullname text,email text,password text, followers
map<text, text>);

insert into users(user_id,email,password,fullname,followers) values ('imvivek','imvivek@xxx.com',
"password', 'vivekm',{'mkundera’':'milan kundera','guest': 'guestuser'});

create index followers idx on users(followers);

Here, users is a table and followers is a map containing user_id as its key and name as the value. The create
index command will enable an index over the values of the followers map (e.g., full name). We can also enable
indexes over followers map keys (e.g., user_id) like this:
create index followers idx_keys on users(KEYS(followers));

We can fetch records from followers using indexes as follows:

SELECT email, followers FROM users WHERE followers CONTAINS ‘milan kundera';
This command will return all followers having the full name “milan kundera’
One more change worth discussing is that Cassandra 2.1 doesn’t support the sstable format of versions earlier

than Cassandra 2.x, which leads to the important question of how to handle version upgrades! In the next section,
we will discuss how to handle version upgrades with Cassandra.

210

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

Upgrading Cassandra Versions

In the last year and a half, Cassandra has seen the rapid releases of multiple versions of Cassandra, including 1.2.x,
2.0.x, and 2.1.x. The reasons for the parallel development on multiple versions were maintenance, priority bug fixes,
and rolling out version 2.0. Version 2.0 came with many new feature sets, which we discussed in Chapter 2.

Applications using Cassandra as a database also required upgrades to their newest releases. Ideally it should be a
smooth ride, but major version changes came with format changes in sstables and brought in version restrictions.

The volume of releases since last summer is displayed in Figure 11-1, which shows the many Cassandra releases
since August 2013 and that parallel development is required on the Cassandra side for maintenance and feature
releases. Maintenance releases can also be termed as minor releases, such as critical bug fixes, whereas major releases
focus primarily on new feature support and performance fixes.

3 days ago

cassandra-2.1.2 [oS cassandra-1.2.18 (== on Feb 3 cassandra-1.2,1_4 :
o cdfsads [zip [[)tar.gz b < saessbe [Dzip [Dtargz © 6393144 [lzip [L)largz

- cassandra-2.0.4
200 i B cassandra-2.0.11 i hin 20 cassandra 2.__(‘)_9 on Dec 30, 2013 ancra:=0]
: o ezbazde [[zip [Dtargz 0 sbe7ace [|zip [)targz © dsefafz Llzip Lltargz
assand = assandra- - cassandra-1.2.13
20 days ago i m—Z,_‘l.‘I on Jun 30 b i 1‘2,'1? . on Dec 19, 2013 * o
g © 3261d5e [zip [Dtargz <o gresefe [[zip [Ditargz <1 dlzip U)targz
assand assandra- cassandra-2.0.3 |-
on Sep 18 1 ra-12.19 I on Jun 28 c o 2'.1\'0402.\ onNov25,2013 % . . :
< 2dz9ebd [Dzip [Dtargz o exbefez [zip [Dtargz © 3cs7eeb LiZip Litargz
assal 0O-deb - assandra-: cassandra-1.2.12
on Sep 18 . ndmz'." . on Jun 2 b i 2‘.1\'}”1 - on Nov 25, 2013 iy i
© eoscles [zip [Dtargz < c1e Dzip Diargz <o ezesesf [[zip [targz
assand cassandra- cassandra-2.0.2 |
on Sep 16 = az10 on May 29 ndra 2'9‘3 e on Oct 28, 2013 S -
© ceazees [zip [Dtargz © agadzsr [zip [Dtargz © 22es7be [lzip [targz
cassandra-1.2.11 =
R cassandra-2.1.0-rc7 on May 5 cassandra-2.1.0-bela2 on Oct 22, 2013 SRR el
h < ezbepde [zip [targz < ag7z7ba [Dzip [Dtargz < 9szsa49 [lzip [targz
cassand cassandra- cassandra-2.0.1 |
on Aug 25 ra-2.0.10 on Apr 18 ndra 2'.‘)'? . on Sep 23, 2013 e e .
0 £ © 2887 Nzip [targz < 7dbbesz [zip [Dtargz < ebssdbe [lzip [ltargz
cassandra-2.1.0-rc6 i cassandra-1.2.16 - s B0 OOAS cassandra-1.2.10 [«
on Aug 19 on Mar 31 Dzp Dtargz on Sep 22, 2013 < 9usiss Dzp Dtarge

< dog7217 [Dzip [Dtargz

- - cassandra-2.0.0
oo AD 4 cassandra: 2{0-“:5 on Mar 10 . on Sep 3, 2013 = g
< cf Llzip [i)targz Lltargz @3pasca Llzip Lltargz
1o cassandra-2.1.0-rc4 |~ on Feb 20 cassandra-2.1.0-betat - on Aug 30, 2013 Cassal‘ldra-i-g,s_)
onJul 19 <o dg7ze2c Dzip Ditargz o 73dedbd [Dzip [targz 0O 6lesdel L|Zip [Ltarge
assandra-. cassandra-1.2.15 (== cassandra-2.0.0-rc2
on Jul 10 b ™ 21\0—“:3 onFeb & 3 3 on Aug 20, 2013 < zesigaz Dazip [Dtargz
© ebcaesl L]Zip liltargz ©- 17see8é L|Zip L|targz 3eslead Lizip Lllarg
assandra- cassandra-2.0.0-rc1 [
onJul3 CRMRRG A1 210 BN onFeb T et on Aug 8, 2013 o bl
< sassebe []zip [targz © 2967eeb L)Zip Litargz egaes72 L|Zip Lltarg

Figure 11-1. Cassandra release chart since August 2013
211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

Backward Compatibility

A Cassandra release is backward compatible if it works fine with input and the data model obtained with previous
releases. Ideally, each future release should be backward compatible to avoid administrative troubleshooting.
Significant changes have been made to Cassandra’s storage architecture, however, with rapid releases of new feature
support and performance enhancements. It is extremely important to understand the compatibility issues across the
various Cassandra releases and in some cases the sequence you have to follow to avoid problems.

In general, Cassandra requires you to migrate through major and minor releases in sequence. The reason for
such sequential upgrades is that every release would educate you on compatibility issues and its version upgrade
process. For instance, Cassandra 2.0 releases are not compatible with versions older than the 1.2.9 release. Similarly,
upgrading from a 1.2.x Cassandra release to 2.1 requires doing a rolling restart to version 2.0.7 followed by version 2.1.
Without the rolling restart, you should see the following error in the Cassandra server log:

java.lang.RuntimeException: Can't open incompatible SSTable! Current version jb, found file:
/var/lib/cassandra/data/system/schema_columnfamilies/system-schema_columnfamilies-ib-5
at org.apache.cassandra.db.ColumnFamilyStore.createColumnFamilyStore(ColumnFamilyStore.java:410)
at org.apache.cassandra.db.ColumnFamilyStore.createColumnFamilyStore(ColumnFamilyStore.java:387)
at org.apache.cassandra.db.Keyspace.initCf(Keyspace.java:309)
at org.apache.cassandra.db.Keyspace.<init>(Keyspace.java:266)
at org.apache.cassandra.db.Keyspace.open(Keyspace.java:110)
at org.apache.cassandra.db.Keyspace.open(Keyspace.java:88)
at org.apache.cassandra.db.SystemKeyspace.checkHealth(SystemKeyspace.java:499)
at org.apache.cassandra.service.CassandraDaemon.setup(CassandraDaemon. java:228)

Hence it's recommended to follow release notes to properly address version upgrade-related issues. As discussed
above, to solve such version upgrade issues, we need to perform a rolling restart. A rolling restart is one that doesn'’t
bring down the cluster and perform a version upgrade on each node, but rather one that performs the upgrade
on nodes with zero downtime. Nodes get upgraded and restarted one at a time so that data availability can still be
assured. This means a node with Cassandra 1.1.x version, for example, would require first an upgrade to Cassandra
version 1.2.9 and then a version 2.0 upgrade like the one mentioned previously: that is, the sequence would be
version 1.1.xto 1.2.9 to 2.0.7 and finally to 2.1.

A few of the configuration changes in version 2.0 release are

e The property index_interval has been moved to the table level and is no longer available in
cassandra.yaml.

e Virtual nodes (e.g., num_tokens) are enabled by default with 2.0 and later versions whereas
with earlier versions it was disabled.

e Javaversion 7 must be installed for 2.0 and later releases.

Now that we have discussed backward compatibility, let’s see how to perform a version upgrade on Cassandra nodes.

Performing an Upgrade with a Rolling Restart
Using the scenario mentioned in the preceding section, let’s walk through the steps for performing the sequential upgrade:

1. Before we start the rolling upgrade, we should take care of the above-mentioned changes
and take a backup of all configurations belonging to the previous Cassandra version and
data. For data backup we can create a snapshot as follows:

vivek@vivek-Vostro-3560:~$CASSANDRA _HOME$ bin/nodetool -h localhost snapshot
twitter keyspace

212

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

In the preceding command, please replace $CASSANDRA_HOME$ with the currently installed Cassandra version
(e.g., $apache-cassandra-1.1.6%).
In the preceding command, we are creating a snapshot for keyspace twitter_keyspace.

2. Please make sure to remove all dead nodes from the running Cassandra cluster before
downloading the next version, 1.2.9 in this case.

3. Then run the following command:
nodetool upgradesstables

This will upgrade the existing sstables (with version 1.1.x) to a format compatible with 1.2.9.

4. Then, in sequence, follow the preceding steps for upgrading from 1.2.9 to 2.0.7, and then
finally, perform the same for the upgrade from version 2.0.7 to 2.1.

For a multi-node Cassandra cluster we need to perform the same steps over all the nodes. If version upgrades
fail on any node, we can try copying schema from another node and replicate the data from other live nodes.

Troubleshooting Cassandra

Troubleshooting is the process of diagnosing and fixing problems. In this section, we will troubleshoot a few common
problems—such as having too many open files and running out of memory—that you might encounter and have to
troubleshoot.

Too Many Open Files

If you get an error like

java.net.SocketException: Too many open files
at java.net.Socket.createImpl(Socket.java:447)
at java.net.Socket.getImpl(Socket.java:510)

at java.net.Socket.setSoLinger(Socket.java:984)

it means you are hitting the limit of the maximum allowed open files. The default value is 1024. With Cassandra,
it is highly possible to exceed this limit. We can increase this limit by modifying the /etc/security/limits.conf file
like this:

root soft nofile 65535
Here 65535 is the number of file descriptors open. This should solve the issue. Additionally, we can monitor the
number of file descriptors by monitoring running Java processes to validate whether it is a case of memory leak or not!
Using the 1sof command, we can list all open files. For example, we can list all open files for a process ID (PID)

as follows:

1sof -p 13241

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
init 13241 root cwd DIR 225,0 4096 1/
init 13241 root rtd DIR 225,0 4096 1/

213

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

Stack Size Limit

The stack size limits the number of threads we can have in the Java Virtual Machine (JVM). If you are seeing an error
like the following one:

The stack size specified is too small, Specify at least 228k
Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

it means stack size is set too low. The default assigned value is 180K, and as recommended by Cassandra, we can
set it to 228K by modifying the Cassandra-env. sh file (available under the conf folder) like this:

JVM_OPTS="$IVM_OPTS -Xss228k"

Out of Memory Errors

With the massive volume of data processed with Cassandra, sometimes nodes may die with “out of memory” errors.
If you encounter this situation, first check the row cache and memtable sizes and validate whether they are set at
values that are too large. Here, “too large” simply means they can’t fit well in the available memory. If these values are
well below available memory limits, then we should investigate the heap dump and server and application logs for
further information on errors. With Cassandra 1.2.9 onwards, many background processes have been moved from
on-heap to off-heap processing to avoid garbage collection activities. So you can run out of memory off-heap or
on-heap. For more discussion about off-heap and on-heap, please refer the “CPU and Memory Utilization” and
“Off-Heap vs. On-Heap” sections in Chapter 8. Additionally, you can check client-side code in case the application is
reading something like entire rows or large columns.

Too Much Garbage Collection Activity

If garbage collection (GC) takes longer than a few seconds, check the system. log file for a message like one of
the following:

INFO [ScheduledTasks:1] 2014-01-29 02:41:16,579 GCInspector.java (line 116) GC for
ConcurrentMarkSweep: 341 ms for 1 collections, 8001582816 used; max is 8126464000

INFO [ScheduledTasks:1] 2014-01-29 02:41:29,135 GCInspector.java (line 116) GC for
ConcurrentMarkSweep: 350 ms for 1 collections, 8027555576 used; max is 8126464000

Long garbage collection pauses can create a stop-the-world scenario that brings data nodes to a freeze state for
some time. In such scenarios, it is highly possible that a portion of the JVM that is not in use would be swapped out.
It is recommended to keep this off using
swapoff -all

Running this command over a Linux terminal will disable swapping for all devices.

These are a few common problems you are likely to encounter and their solutions. Next let’s discuss the road
ahead with Cassandra.

214

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

Road Ahead with Cassandra

Apache Cassandra is still under active development, and an extremely active community keeps the momentum going.
We have already discussed the multiple tools and APIs available for Apache Cassandra development. Figure 11-2
shows a chart of upcoming Cassandra releases at the time of this writing (taken from https://issues.apache.org/
jira/browse/CASSANDRA/fixforversion/12324945/?selectedTab=com.atlassian.jira.jira-projects-plugin:
version-summary-panel).

Versions: Unreleased

Name Release date

8 2.0.12

&

20
o

&
(%

&0
N
[

Figure 11-2. Upcoming Cassandra releases (as of November 2014)

There is absolutely no doubt that Cassandra has been widely accepted as a preferred columnar database for
building scalable big data applications. Companies such as eBay, Netflix, and Facebook are using Cassandra for
multiple purposes. Developers from these organizations have been regularly contributing and introducing their
Cassandra-based tools, which bodes well for the future.

Furthermore, there are high-level clients available in almost all language options. Table 11-1 shows a table listing
popular high-level Cassandra client APIs.

Table 11-1. Cassandra High-Level Clients

Language Clients

Java DataStax Java driver, Astyanax, Hector, Kundera
Python DataStax Python driver, pycassa

NET DataStax C# driver,CqlSharp

C++ libcql

Scala scqla

Perl perlcassa

PHP Cassandra PDO driver, phpcasa

215

www.it-ebooks.info

https://issues.apache.org/jira/browse/CASSANDRA/fixforversion/12324945/?selectedTab=com.atlassian.jira.jira-projects-plugin:version-summary-panel
https://issues.apache.org/jira/browse/CASSANDRA/fixforversion/12324945/?selectedTab=com.atlassian.jira.jira-projects-plugin:version-summary-panel
https://issues.apache.org/jira/browse/CASSANDRA/fixforversion/12324945/?selectedTab=com.atlassian.jira.jira-projects-plugin:version-summary-panel
http://www.it-ebooks.info/

CHAPTER 11 © UPGRADING CASSANDRA AND TROUBLESHOOTING

With multiple APIs in different languages, an active community, and planned releases, Cassandra definitely has a
long road ahead. All-new sets of interesting features are expected in upcoming Cassandra releases. Again, Cassandra
is a popular NoSQL database that is ideal for dealing for handling big data; the ecosystem is rich in client APIs for
Cassandra; active development that has been going on for several years continues; and companies like Netflix, eBay,
and Facebook are using and promoting it. With many new commercial tools and products coming in this space, it’s a
database to learn and use!

Summary

With this we come to the end of this chapter and the book. From Chapter 1 to Chapter 11, we have discussed different
Cassandra features and their implementations in the form of sample exercises. In this chapter, we looked at the
process of upgrading to new versions of Cassandra and how to navigate the complexities of so many recent releases.
We also considered several common and important problems you likely will have to troubleshoot at some point, and
we looked at the road ahead for Cassandra.

Key topics covered earlier in the book included batch analytics and available tools (Chapters 5 and 6),
graph-based implementations over Cassandra (Chapter 7), and performance tuning and various performance-related
do’s and don’ts (Chapter 8).

With this book, I tried to keep a balance between sample recipes and theory. I hope you have enjoyed it and
learned things as you expected. Thanks!

References

The following list includes a few of the references I used while writing this book. They can be useful for keeping an eye
on Cassandra’s future development:

e http://cassandra.apache.org/

e www.datastax.com/

e http://wiki.apache.org/cassandra/
e http://planetcassandra.org/blog/

e For a general discussion mailing list, subscribe to the user mailing list at
user-subscribe@cassandra.apache.org.

e For development-related discussion, you can subscribe to
dev-subscribe@cassandra.apache.org.

e Todiscuss client API-related topics, subscribe to client-dev-subscribe@cassandra.apache.org.

216

www.it-ebooks.info

http://cassandra.apache.org/
http://www.datastax.com/
http://wiki.apache.org/cassandra/
http://planetcassandra.org/blog/
http://www.it-ebooks.info/

Index

A

AllowAllAuthenticator, 14, 64, 70, 72
AllowAllAuthorizer, 15, 66, 70-72
Amazon Elastic Computing Cloud (Amazon EC2)
AWS cloud computing, 23
Cassandra tarball download, 24
inet address, 25
initial_token values, 24
Java, rpm installer, 24
launch 2 instances, running state, 23
ring status, 25
security group settings, 24
10.145.213.3 node, 26
Amazon Web Service (AWS) cloud computing, 23
Apache Hive
with Cassandra, 117
DDL, 99
definition, 110
DML, 99
external table, 115
HDFS data loading, 114
Hive QL, 99
local FS data loading, 112
setup and configuration, 110
tables, 112
UDAE 112
UDF, 112
UDTE, 112
Apache licensed scalable graph database, 130
Apache Pig
Cassandra integration
configuration, 108
CqlStorage, 108
data import, 108
timeuuid, 109
categorization, 103

components and MapReduce job transformation, 100

counting tweets, 106
data types, 102

definition, 99
execution mode
complex data types, 103
local mode, 101
MapReduce Mode, 102
simple data types, 102
FILTER function, 105
FOREACH function, 105
LOAD function, 104
Pig-powered MapReduce implementation, 99
PigStorage function, 103
setup and installation, 99
STORE function, 104
TOTUPLE function, 106

B

ByteOrderedPartitioner, 15, 53, 131

C

Cable/satellite operator system, 5
CAP theorem

budding/dynamic schema, 3-4
characteristics, 2

consistency, 2, 3

high availability, 2-3, 5
partition tolerance, 2-3
scalability, 4-5

Cassandra

API level logging
log management (see JConsole tool)
log properties, 11
server properties, 14
troubleshooting, 11

commit log archival
archive_command, 18
point-in-time recovery, 18
restore_command, 18

217

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Cassandra (cont.)
configuration (see Cassandra configuration)
CQL,9
data center
high availability, 19
LocalStrategy, 20
multiple racks, 19
NetworkTopologyStrategy, 20
replication configuration, 20
replication strategy, 19
SimpleStrategy, 21
strategy class options, 20
data consistency
read, 8-9
write, 8
data modeling (see Data modeling)
development, 6
distributed database, 7
installation, 9-10
login
characteristics, 10
default server settings, 10
properties, 11
multiple node configurations
Amazon EC2 (see Amazon Elastic Computing
Cloud (Amazon EC2))
single machine, 21
P2P architecture, 7
utilities (see Cassandra utilities)
Cassandra 2.0
CAS, 55-58
DDL, 59
secondary index, 58
Cassandra configuration
bloom filters, 158
data caches
cache directory, 155
key cache, 156
populate_io_cache_on_flush, 156
read operations, 154
row cache, 157
heap offloading
garbage collection, 159
heap size, 160
jemalloc installation, 159
JNA library, 159
replica nodes, 160
Cassandra query language (CQL), 9, 79
Cassandra utilities
bulk loading
assign values, 206
composite type, 208
CQL3 binary protocol, 203
CQL3 compatible implementation, 203
.csv file, 203, 206

218

.db files, 204, 207
Java implementation, 204
keyspace Cql3Demo and table Users, 203
Maven-based project, 203
SSTableSimpleUnsortedWriter, 204
SSTableWriter API, 203
Users table, 207-208
JSONifying data
exporting data, 199
importing data, 201
Nodetool utility. Nodetool utility
Commit log archival
archive_command, 18
point-in-time recovery, 18
restore_command, 18
Compaction strategy, 166
Compare and Set (CAS), 55-58
Composite columns
allow filtering clause, 50
data partitioning
ByteOrderedPartitioner, 53
Cassandra inserts and updates, 54-55
Cassandra storage architecture, 55-56
error, 53
Murmur3Partitioner, 53
RandomPartitioner, 53
TTL (see Time To Live (TTL))
tweet_date, 48
Cygwin, 99

D

Data analytics, 98
Database administration
backup and restoration
clearsnapshot, 178
nodetool refresh, 177
nodetool snapshot, 175-176
sstableloader, 176-177
Cassandra cluster, 172-173
dead node replacing, 173-174
NoSQL, 171
skills, 172
Database security
authorization, definition, 61
client-to-server/node-to-node encryption, 61
definition, 61
external and internal authentication, 61
manage user permissions
AllowAllAuthorizer, 66
CassandraAuthorizer, 66
drop user, 69
keyspace creation, 66
NORECURSIVE specifier, 69
normaluser, 67

www.it-ebooks.info

http://www.it-ebooks.info/

not authorized error, 69
privilege table, 68-70
superuser, 67-68
server certificates preparation
client’s public key, 74
JCE, 73
keystore file, 73
truststore, 73-74
SSL connection
via Cassandra-cli, 75
via Cassandra Thrift Client, 77
via cqlsh, 77
system_auth keyspace
AllowAllAuthorizer, 70
keyspace creation, 64
superuser and non-superuser creation, 65
user name and password, 65
system keyspace
LocalStrategy, 63
table/column families, 62
Data definition language (DDL), 99
Data manipulation language (DML), 99
Data migration
Apache Hive. Apache Hive
Apache Pig. Apache Pig
Apache Sqoop, 99
DataStax’s DSE, 119
definition, 119
tarball, 119
with Cassandra, 119
business layer, 98
database-based approach, 99
database layer, 98
data mining, 98
data science, 98
definition, 98
front-end vs. back-end implementation, 98
MySQL, 118
NoSQL databases, 118
RDBMS, 118
tools, 99
Data modeling
changing data types
CQL3 way, 39
Thrift API, 38
columns family, 27
counter column
replicate_on_write, 40
usage, 41
zero rows, 41
CQL3 and thrift interoperability, 36
cqlsh and Cassandra-cli command, 28
data types, 28

INDEX

dynamic columns
CQL3 binary protocol, 31
Thrift, 29
RDBMS, 42
set support, 33
secondary indexes, 34
DataStax Enterprise (DSE), 117, 119-120
DataStax OpsCenter
cluster information, 184
Dashboard screen, 184-185
enterprise, 187
Event logging option, 186-187
features, 183
interface, 183
nodes and health status, 186
nodes information and
status, 185
Dirty read scenario, 8
Distributed database, 7

E, F

ETL tools, 80

G

Garbage collection (GC), 154, 159-160, 214
Graph database
cyclic and acylic graphs, 124
definition, 123
directed graph, 124
Gremlin shell
Cassandra-specific properties, 134
Gremlin query language, 134
setProperty function, 134
user and tweets, 134-135
vertex keys and edge labels, 135-136
multigraph and self-loop graph, 124
nonsimple graph, 124
open source software (see Open
source software)
Rexster Dog House
Browing graph vertices option, 138
Browse Vertices option, 137
explore edges and properties, 138
visualization graph, 140
web console, 137
Rexster REST API, 140
Rexster server, 136-137
setup and installation, 133
simple graph, 124
Titan (see Titan graph databases)
undirected graph, 124

219

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

H M

Hadoop Distributed File System (HDFS) MapReduce
CQL3 way Apache Hadoop
aggregator, 91 advantage, 81
CQLOutputFormat, 91 chunks, 81
cqlsh client, 92 co-located data processing, 81
Hadoop job level, 91 data distribution, 81
source code, 93 data locality, 81
table tweetcount creation, 91 data node, 82
definition, 81 definition, 80
distributed file system, 93 HDFS (see Hadoop Distributed File
reading tweets, 83 System (HDFS))
storing tweets, 85 multiple nodes, 81
thrift way primary tasks, 81
Cassandra-cli, 88 pseudo code, 82
Hadoop configuration instance, 88 word count, 82
input and output paths, 89 batch processing, 79
mapper and reducer, 88 Cassandra input and output
NameNode host and port, 88 cqlsh client, 94
output mapping, 89 distributed database, 93
source code, 90 input family and format
TweetAggregator, 90 configuration, 94
tweetcount, 90 mapper and reducer configuration, 94
TweetTokenizer, 89 mevivs, 93
Hadoop MapReduce, 97 output family and format
Hive Query Language (Hive QL), 99, 110 configuration, 95
source code, 96
I stream or real-time analytics, 96
Thrift Slice API, 95
Indexes TweetAggregator, 96
b-tree Index and data structure, 44 tweetcount column family, 96
clustered indexes vs. non-clustered indexes, 44 TweetMapper, 95
definition, 43 tweetstore and tweetcount, 93
distributed databases, 45 stream processing, 79
leaf nodes, 44 Monitoring tools
row key, 45 characteristics, 178
secondary indexes, 45 DataStax
definition, 183
J DevCenter, 187-189
downloading, 183
Java cryptography extension (JCE), 73 OpsCenter (see DataStax
Java native access (JNA) library, 159 OpsCenter)
JConsole tool Helenos
Daemon thread, layout, 12 column family option, 181
JDK installation, 11 console, 179
Mbeans setting, 13 CQL3 format queries, 180
resource and performance monitoring, 11 downloading, 179
editing connections, 182
K features, 178
keyspace, 180
Key performance indicators (KPIs), 153-154 login page, 179
managing connections, 182
L testkeyspace, 181
issues, 178
Leveled compaction strategy’s (LCS), 167 Murmur3Partitioner, 15, 53, 89, 94-95, 108
220

www.it-ebooks.info

http://www.it-ebooks.info/

N

Nodetool utility

ring management
checking ring status, 192
copy command, 193
cql command-line interface, 193
data and format, 193
decommission command, 193
LEAVING state, 194
netstat command, 194
nodetoolnetstats command, 194
status command, 195

schema management
cthistogram command, 196
cfstats command, 195
cleanup command, 197
clearsnapshot directories, 197
flush, 198
rebuild command, 199
rebuild_index, 199
repair, 198

Not Only SQL (NosQL)

application development, 1-2

big data problem, 5-6

databases, 2

massive data production, 1

(0

Open source software
graph frameworks, 126-127
InfiniteGraph, 129
Neo4], 129
OrientDB, 129
RDBMS, 127
Titan, 130
Twitter connection, 128

PQ

PasswordAuthenticator, 14, 64, 70, 72
Peer-to-peer (P2P)

architecture, 4-5, 7, 45, 54, 173
Postgresql, 18
Pygmalion, 109-110

R

RandomPartitioner, 15, 53, 172
Relational database management systems

(RDBMS), 3-6, 8-9, 42, 98-99, 127

INDEX

S

Secondary indexes, 34, 45, 58
Size-tiered compaction strategy
(STCS), 166-167
Stress testing
Java-based tool, 161
LCS, 167
monitoring progress, 165
read mode, 165
STCS, 166
tombstone/obsolete rows, 166
write mode
cql query, 162
data, 162
elapsed_time, 162
interval_key_rate, 162
interval_op_rate, 162
JConsole chart, 163-164
latency, 162
predefined column size, 161
table command, 162
total operation time, 161-162

T

Time To Live (TTL)
default, 52
expiring columns, 51
Titan graph databases
adjacency list format, 131
Backend stores, 132
batch loading, 145
Blueprint TinkerPop graph
stack, 130
configuration properties, 142
data layout mechanism, 132
ecosystem, 130
edge compression, 131
edge storage mechanism, 132
explicit partition, 131
faster deep traversal, 149
Java API, 141
max-partitions, 131
random partitioning strategy, 131
reading data, 144
Supernode problem, 147
transactional database, 130
transaction handling, 133
vertex-centric index, 131
writing data, 143
Top level project (TLP), 110, 119

221

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Troubleshooting release chart, 211
garbage collection activity, 214 sequential upgrade, 212
Isof command, 213 user-defined types, 210
out of memory errors, 214 User-defined aggregate function (UDAF), 110-111
stack size limits, 214 User-defined functions (UDF), 103, 105, 111-112

User-defined table functions (UDTF), 110-112

uvVv
W, X

Upcoming Cassandra releases, 215

Upgrading Cassandra versions Write ahead log (WAL) archive. See Commit log archival
applications, 211
backward compatibility, 212 Y Z
collection attributes, 210 ’
frozen types, 210 Yahoo Cloud Serving Benchmark (YCSB), 167-169
222

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Apache
Cassandra Development

Vivek Mishra

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Apache Cassandra Development
Copyright © 2014 by Vivek Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0143-5
ISBN-13 (electronic): 978-1-4842-0142-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jeff Olson

Technical Reviewer: Brian O’Neill

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Lori Cavanaugh

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer

Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

For my wife, Rashmi, and my angel, Uditi.
Without you, none of this would be possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUtROrcccvciriserss s ————————————————_———— Xv
About the Technical REVIEWETccuserssssssmsssmssmmsssssssssmsssssssssssssssssssssssssssssssssssnsssnsnsnsnss Xvii
ACKNOWIEdgMENTSccuuiiiiemmmmissnnnnmsssssnnnmsssssssnmssssssnnmsssssnnnnsssssnnnssssssnnnsssssnnnnsssssnnnnnssssnnnnss Xix
INtroduction........ccvvern s ———————=—"—S—_——————————_” xxi
Chapter 1: NoSQL: Cassandra BaSiCSuuuuummssssssssssmmsssssssssssssssssssssssssssnssssssssssssssssnnnssssnsnss 1
INtroducing NOSQL ... a e s sa s s re e 1
0T 0] I L eTu Ly] (] O 2

L 1 1o T 1 2

210 Lo o T To T =] 1 1 O 3
SCAUADIITY ...cveeeeeeererr s e s e e e e R e e R A Re A e RS e Re R e AR A e e R e e Re e e Re R e Re R e e nRe e ns 4
Identifying the Big Data ProbIEm...........ccocceiiieniicnessse s s snssnsnens 5
INtroduCing CASSANAIAccevuerereerere e saesae s saesaesae e e e e sa e saesa e e e naesaesnesnennnnas 6
Distributed DAtaDASEScvrereresesmsisisisisisisisisiss s ————————— 7

e LT (0 oo DT o SRS 7
Configurable Data CONSISTENCYcceeurererrerrerereerersesererersessesersesessesessessssersesesssssssessssessssessesessssssessssessssessenessensnaes 8
Cassandra Query Language (CAL)ccevrerrerereerererersersrsersssersesessessssessssersesessssssssssssessssessesesssssssssssessssessenessssssaes 9
INStAlliNG CaSSANMIA........ccceereerererrerrerre e s r e s s r e r e s e saesr e sr e en e snesresrennennennnnnnnnenan 9
LOQQINg iN CASSANMIA........cccvrerererresrsersesessessssessesessesss e e sss e sse s ssesss e sss s s e ssesnssesssnsssssssesssnnsnens 10
Application LOGging OPiONS........ccceceurrerererrrrnesesssssesesssssssssssssssssssesssasssnes 11
Changing LOG PrOPEITIESc.cevrerererrrreesesessnesesessssesesessssssssesssessssssssssnsssssesenes 11
Managing LOgS Vid JCONSOIEccceuiueererrrrnesesessssessesessesssessssssesessssssssssessssssssessssssssssssssssssssssssessssssssssnsssssasenes 11
COMMIT LOG AFCRIVAL.....ceveeeeeerrsreeseresssssesessse e s se s ss e s ss e e s sss e se s sse e s sse e e s s esn e nesanse e e ssssnsnnesansasenes 18

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Configuring Replication and Data Centerccocvevererenssesses s ses e sss e sessesssssasssssnnns 19
[0 T2 133 (=T)R 20
NEtWOrKTOPOIOGYSIIABQY.....cvererrererrerererererereraeseraesessesessesessesassersesessesessesassessssessesessssssseasaesassessssesassessenassensnsens 20
14101 (2S] (i 1C=T | 21
Cassandra Multiple Node CONfiQUIAtioNcccccvererereriereriersssersssersesessesesessssessssessesesssssssssassessssessssessessssssansens 21

831111 12T SRS 26

Chapter 2: Cassandra Data Modelingccussmssmsesmsmsmsnsssssssssssmsssmssssssssssnsssssssnsssssnnss 27

Introducing Data Modeling..........cooceeeeeeeerese e sn s sn s sn s sn s sn e sn e snennennn 27

D L B 0T 28

DYNAMIC COIUMNSovvieeceereereereesee e see e sse s s saesaesassae e sassassae s e saesaesaesaesasa e saenaesn e saesaesnesansnnnnns 29
Dynamic ColumNS Vid TRIILcovecceeere s st sesa s e res e sse e sae e sae s s e sae e saesesae e saesasaesaesesasesasanansananns 29
Dynamic Columns via cqlsh USing Map SUPPOIT........cccoverriererrerererreseresesesssessesessesesssssssesessessssessssessssassssasaens 31
Dynamic Columns via cqlsh USing Set SUPPOI..........coevriererierrrerrrirrererereresesessesessesessesessesassessssesassessesassssasaens 33

SECONAANY INABXESc.eeieererreer et s a e s a e s sa e e s a e s n e e e sa e e e nenas 34

CQL3 and Thrift INteroperability............cooveernernnesrrese e 36

Changing Data TYPES ...ccceeerereerererrersersersessesse e ssessessesaessesassassassassassassasssssssssssssssssassasssssasssssanns 38
L1111 0L 38
0] R 39

CoUNtEr COIUMN......cciiiciri e 40
Counter Column with and without replicate_on_WIte.........ccccevierrrerererr e eens 40
Play With COUNTEr COIUMNS.......coucccireicecirer e s bbb e e s e a et pe e ne e ne e nanns 41

Data MOUEING TIPS ...cuecrrierrrrrerersrsesrse s e s e ssssn s s e sresn s e s sn s e san s sas e s e snnnnnnas 42

E 111 1P 7S 42

Chapter 3: Indexes and Composite COIUMNScevsmsmsmsmsmsmssssssssnsssssss s 43

INUBXES covvncrirescrr s —————— 43
Clustered Indexes vs. NON-CIUSTEred INUEXESc v sssssns 44
INAEX DISTHDULION ...t 45
INAEXING IN CASSANMIAeevererereeerrerereererereseraesersesessesessesassesassersssessesessesassessssessesesssssssesssessssessssesassensssasaesansens 45
SECONAAIY INABXESveveeerereeerserereresersesersesessesessesessessssessesessesessesassessssessssesasssssessssersssessssessessnsesssessssesseenssssnaes 45

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

0] 110 | 0 10 48
Y) T {0 50
EXPIFING COIUMNS.....veoereerereresrertesereesessesessesassesassessesesaesesassasaesassessesesssssssesassessssessenessensssesssesassessssesassensssansensnsens 51
0] 211 G N PP 52
I L B o 1 (110 L4 O 53

What’s New in Cassandra 2.0.........cccueermnmrmnnmssnisssssss s s s ssssssssssnes 56
COMPArE AN SEL.......cceieiierirsere e s e E e R e R e e R e e R e e e Re e A e e R e e e Re e RenenRenneanes 56
Secondary Index over COmMPOSIte COIUMNSccocruiuiiicrerene e 58
CONAITIONAI DDL ... se e e s e e s e s e e Re e e A e Re e e s A s R e Re e e R s R e Re e e e A s Re e b sesRe s e nenrnnnas 59

BT 1111 TN 60

Chapter 4: Cassandra Data SeCUrily.....cccuusmrmssnsmssansssssnsmsssnsssssnsesssnsesssnsesssnnssssnnssssnnsssnns 61

Authentication and AUtNOFZAtIONccvceeiieiennsr s 61
system and System_auth KEYSPACESccceererererererrneneresrne s sesessssse s s sessssssssssesssssssssssssssssessssssssssnsnns 62
Managing USEr PEIMISSIONS........cccocrurueerererrresesessssessesessssssesessssssesssssssssssssssssssesssssssssssssssssssssssssnsssssssssssssssassnes 66
Accessing system_auth with AIHOWAIIAULNOKIZEYcccoeeerererererere e se s ssssssssennns 70

Preparing Server CertifiCatescvvvrvrrrinirierserserses s s s s e e se s e sassassnssnssnssnens 73

Connecting With SSL ENCrYptioNcoveoeeeeeeeceesersesse e sn s snssnssnesn e sn e snennennns 75
Connecting Via CaSSANUIA-Cli.........ccorureeererieecsirieeei e e s e e s se e a e nnnne s 75
CONNECLING Vi@ COISI ...t s e e e e e R e s Re e e e R et Re e Renenne e nanns 77
Connecting via the Cassandra Thrift ClIent...........ccocoiecnc e sn s 77

BT 1111 TSN 78

Chapter 5: MapReduce with Cassandracccccsvuesmmsssssmsssssmsssssesssssesssssesssssssssssssssnnsssnns 79

Batch Processing and MapREUUCE...........cvcerrimrenissesssesesesss s ss s sss s s ssssssnssssssssssssnens 79

A 0 T 1 1= P2 T[0T o 80
HDFS ...t E e R R £ e e e R R R R R EnE R EnE R e R e e e R e e e e es 81
1 To] 2 1< o 1o OSSR 81
Read and Store TWEetS iNT0 HDFS ... sesesesesenenes 83

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Cassandra MapReduce INtegration ... sas e e sas e s snens 87
Reading Tweets from HDFS and Storing Count Results into Cassandra............ccooeevererererieresreressereesessesesesenens 88
Cassandra In and Cassandra OUL............cuvvmrmmninnn s 93

Stream or Real-Time ANAIYLICS.........ccccieecrcecr e 96

SUMMAIY ...ttt r s e e R e s e s s e s Re e s e R e e s Re e e e e Re e nan e n e nnnnnnnes 96

Chapter 6: Data Migration and AnalytiCs.......ccccccmmrrrrnssssssssmnnnnmsmsssssssssssnsseessssssssssssnssnnas 97

Data Migration and AN@IYEICSccoceeerernriresiseresr e s 98

Y02 T 1 1N T S 99
L 1o TR L 10 I3 =1L LT 99
10 T2 63 =T Lo 3T 8 o 100
0T T T T O 106
Pig With CaSSANAIA.......ccceveerrererererererereesersesessesesesesseraesessesessessssesassesssssssessssssassessssessenssssssssessssessssssssnsssenanaens 107

APACNE HIVE ... a e s a e s r e r e sr e nn e sn e nn e nn e n e nn e n e nennennennnnan 110
Setup and CoNfIGUIALION ..o e s e e a e e b e e e ne e aennean e 110
Understanding UDF, UDAF, @nd UDTF ..ot sas s se s snssesssesnssesnsssssessnnens 111
= 0] 112
LoCaAl FS Data LOAUINGccceccereiieiererineriec s e s s s s se s sa e sae e s re e et b st eae e sne st nenannenn 112
HDFS Data LOAAING......cccceerierieiierirerin e se e s e e s s s bt e e s a s e s a et p e e ae e e e b et ea et e ne e nnennnanan 114
Hive EXIErNal TADIEcooviviniriririniriininissisii s 115
Hive With CaSSANAIA........c.covririririsinisisisisisisis s 117

D2 11T 1o R 118
IN the TraditioNal WAYcccorureeirirresesirire e e enne s e s e s 118
FY 0 Tt 1 LT o] oSO T S TTRTP 119
SQ00P With CASSANAIA.c.cueueecerrcrrresrrsseeresssss s e 119

E3 1] 11 1P 7SR 121

Chapter 7: Titan Graph Databases with Cassandracccccemmrmmmssssssssssnssnmssssssssssssnsnnns 123

100 10T 10 i (0B] 3 123
Simple and NonSIMPIE GrAPNSccveererererrererererererereressersssersesersssessessssesassesassesssssssesssssssssessssessssesssnsssesanaens 124
Directed and UNdirected Graphis.........cvccvueeerererererererrersesersesessesessesassessesessesessssassessssessesssssssssessssessssesssssssssanaens 124
CYCliC aNd ACYCHC GIAPNS......vecereerereererertrrereesersesesseresessesessesessessssesassessssessesssassassessssessensssssssessssesssesssssssssanaene 124

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Open Source SOftware for GraphS........ccccvveririerir e sn e snesae s 125
Graph Frameworks: TINKEIPOP........cocvrerrrrererererereresrersesersesessesesserasessesessesassssassessssessssessssessessssessssesssnssssnanaens 125
Graph @s @ DAtADASEcccereveniirrii s ——————— 127

Titan Graph Databasesccccvvrrersersmrrrsr s nn e n e sn e n e nn e 130
BaSIC COMCEPISveeieeiicrie ettt e s e s e e b e e e R A e e e R e e R e e Re R e Re R e e e R e e e Re e e Re e naean 131
Setup and INSTAIALION..........coe e sa e e e e e e e e e e e a e e e sa e s e na e e e sa e e e naennens 133
Command-line TOOoIS @nd ClIENTSc.covvrrirnnnins s 133

Titan With CaSSANAIA........cccccvvererieresirersse e sr s r s n s n s snennnen 141
L LI 1 L o 141
Cassandra for BACKENT STOFAQEcovcceererreieneririnesesisrsese e sese s s sas s s s e ssss e se s e sssssssssssnssssaes 142
USE CASEScueuererereiesesesesesisese st E R R R R R R R R R R R R R R R R R e 143

E3 111 1P 2SR 151

Chapter 8: Cassandra Performance TUNINGccusseemsssanssssanssssansssssnsssssnsssssnsssssnsssssansss 153

Understanding the Key Performance Indicators..........ccocvvvrrrnnnnnnsnsen e ses e 153
CPU and Memory ULIHIZALIONcccveriereererereresereresersesersesessesessesasessssessssessssassessssesssnsssssssssssssessssessssssssnanaens 154
Heavy Read/Write Throughput and LAtENCY..........ceccvrrerererererererersssersesessesessesasessssessssesssssssessssessssesssnsssssanaens 154
Logical and PhYSICal REAUScceererrererrereereresereresersssersesessessssessssessssessessssssassessssesssssssssssessssesssesssnssssnanaens 154

Cassandra Configuration..........ccccceeereresere e sre e sae e sr e sa e sn e n e n e r e n e n e snenrenn s 154
DAtA CACKES......ccecet s 154
BIOOM FIBIS ..ottt 158
L0 s ToT T IR LT 0 B o T o S 158

Cassandra StreSS TESHINGcccvvererriiernsrresrsse s s sa s s nn s 161
LT 0o T 161
312 1o 0T T 165
10 0T (0 T TSR 165
COMPACLION STFALEOY ...cveveeecererieererire e a e e e e e ae e s s se e e e s ae s e e nnnnnas 166

Yahoo Cloud Serving Benchmarkingccoccvvvvrinnnnnnnsnserses s ses e s ssssssssssssens 167

BT 1] 11 1 SRS 169

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 9: Cassandra: Administration and Monitoringcccucccermnsssssnnnsssssssemsssssnnns 171
Adding Nodes to Cassandra CIUSTETcccceeeeeererereresse e sse e ssessesessessnssnssssssssssssssnsssssssnas 172
Replacing @ Dead NOUEccccvvererierierirerse st se et se s se s sn s sa s sa s sa s sn s sn e sn e sa e nn s nn s 173
Data Backup and ReStoration...........cccceecrveriiieniinnc s ssnssnens 174
Using nodetool snapshot and sstableloader ... 175
USING NOUET00I FEFIESN ...t s r e bt a e ne e e e naean 177
USING CIEArSNAPSNOL ..ot r e e e e e s et p e e Re e e b e e R e e e ne e e Renenneas 178
Cassandra Monitoring TOOIScccceeeerererrerere e sr e e s s sae s sesn e saesaesn e snssnesn e sn e snennenre s 178
3] 7 0L 178
DataStax DevCenter and OPSCENTENccveceeererreercrirrresese e e se s ss e nsnnnas 183
R 111 P2 2SS 189
Chapter 10: Cassandra ULIlitiescuusmsmmsmsmsnsmsssssmsmsmsmsmsssssssssssssssssssssssssssssssssssssnss 191
Cassandra NOAETOO0l ULIlItY........cccererererreereererrie s se e e e s s e sas e s sassnssassassns e snsns 191
e aTo 0L TP T T T | 192
SChema MANAGEMENL.......coc et re e ree s s s e sa s s s e sae e saesesaesa s e sae e sae e sae e sae e saenaesenaesenasrenaeenaeranaens 195
JSONIfYING DALAcoveereeeecrerire e r s e ne e 199
Exporting Data to JSON Files with SStable2jSON...........cccceeeierniernsre e sn e sneaens 199
Importing JSON Data with jSOn2SSTablecccereeirerisrccrecr e 201
Cassandra Bulk LOAdING.........ccceeeerererererseriesse e ssessessessessenes 203
RS 1] 1] 1P 2SS 208
Chapter 11: Upgrading Cassandra and Troubleshootingcccusssemmmmmnnmmnmssssssssssnsnnns 209
CaSSANAIA 2.1 ...t 209
USEI-DEfINEA TYPES .. .eeruereeerterereerereresersesersesessesessesssessesessesessessssessssessesessessssesassessssessensssssssessssessssessensssenanaens 210
L (0] (0T SRS 210
Indexing on CollECtion ALHDULES........ccceeerere et s e ra e e ra s sas e s e e saese s s sa s e sae e sae e saenananes 210
Upgrading Cassandra VErSiONS...........ccceuerermressnsesessssessssssessssesssssssesssssssessssesssssssessssssssssssens 211
Backward CompatiDility.......c.ccoieeiienniercsre s e nn e 212
Performing an Upgrade with a Rolling Restartccovvieencnncnnscresese e ses e sessesnnnens 212
xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Troubleshooting CasSaANAIa..........cucvverrerreriersirrir s e sr s n e sa e sn e sn e nens 213
TOO MANY OPEN FlES.....eeeeeeereerererersertesererersesereses e s se e sse e s e sesaesas e sae e s ae e saesesaesasaesaesesae e sae e saesasaesassenasnerasnenaes 213
STACK SIZE LIMIL.....ccvivireeeirrireescssssse s s e s e e s e e R e e R e e e R e e e R e e e nnn e 214
OUL OF MEIMOTY EFTOTSecuveceteereesereresereesesaesessesessesesesaesessesessesassesassessesessesssassassesassessensssssssessssessssesssnsssenanaens 214
Too Much Garbage CollECLION ACHIVILY.........ccvererrererrererererererereser e re s s e e rsesesaesesaesas e raesesaesesassessesassessesesssnenaes 214

Road Ahead with CasSandra.............cccceerrereneresnnese s s sas s s sas e sae e ns 215

1111 1P SRRSO 216

RETEIBINCESccveerccreiree et e p e nn e e ne e n e nae e e e 216

11T 217
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Vivek Mishra his a technology enthusiast, author, speaker, and big data architect.
He is a lead commitor to the open source project Kundera and has contributed to
Apache Cassandra.

Presently, he works as Lead Software Engineer with Impetus Infotech pvt Ltd.
He is focused on real-time data quality and virtualization using machine learning
algorithms and their applications to address business problems.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

Brian O’Neill is a technology leader and recognized authority on big data.

He leads and contributes to open-source projects involving distributed storage,
real-time computation, and analytics. He won InfoWorld’s Technology

Leadership award in 2013 and was selected as a Datastax Cassandra MVP 2012-2014.
He authored the Dzone reference card on Cassandra and recently published a
book on distributed processing titled, Storm Blueprints: Patterns for Distributed
Real-time Computation. He holds patents in artificial intelligence and data
management and he is an alumnus of Brown University.

Presently, Brian is CTO for Health Market Science (HMS), where he heads the
development of a big data platform focused on analytics and data management for
the healthcare space. The platform is powered by Storm and Cassandra and delivers
real-time data management and analytics against thousands of disparate data
feeds, including medical claims and social media.

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

First I would like to thanks my wife Rashmi and my daughter Uditi for supporting me throughout my career and all the
encouragement to write this book. Special thanks to my parents for encouraging me to choose the right career path
and teaching me dedication towards the work. I also want to thank all my colleagues, seniors, and mentors for all the
support and thoughtful discussions.

A BIG thanks to Chris Nelson, Brian O’'Neill, Melissa Maldonado, and the Apress team for a thorough technical
review and amazing experience as an author. Without this team, it wouldn’t have been possible.

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

	Beginning Apache Cassandra Development
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: NoSQL: Cassandra Basics
	Introducing NoSQL
	NoSQL Ecosystem
	CAP Theorem
	Budding Schema
	Scalability
	No Single Point of Failure
	High Availability

	Identifying the Big Data Problem
	Introducing Cassandra
	Distributed Databases
	Peer-to-Peer Design
	Configurable Data Consistency
	Write Consistency
	Read Consistency

	Cassandra Query Language (CQL)

	Installing Cassandra
	Logging in Cassandra
	Application Logging Options
	Changing Log Properties
	Managing Logs via JConsole
	Understanding Cassandra Configuration

	Commit Log Archival
	archive_ command
	restore_command

	Configuring Replication and Data Center
	LocalStrategy
	NetworkTopologyStrategy
	SimpleStrategy
	Cassandra Multiple Node Configuration
	Configuring Multiple Nodes over a Single Machine
	Configuring Multiple Nodes over Amazon EC2

	Summary

	Chapter 2: Cassandra Data Modeling
	Introducing Data Modeling
	Data Types
	Dynamic Columns
	Dynamic Columns via Thrift
	Dynamic Columns via cqlsh Using Map Support
	Dynamic Columns via cqlsh Using Set Support

	Secondary Indexes
	CQL3 and Thrift Interoperability
	Changing Data Types
	Thrift Way
	CQL3 Way

	Counter Column
	Counter Column with and without replicate_on_write
	Play with Counter Columns

	Data Modeling Tips
	Summary

	Chapter 3: Indexes and Composite Columns
	Indexes
	Clustered Indexes vs. Non-Clustered Indexes
	Index Distribution
	Indexing in Cassandra
	Secondary Indexes

	Composite Columns
	Allow Filtering
	Expiring Columns
	Default TTL
	Data Partitioning
	Changing Partitioners
	Data Colocation
	Cassandra Writes
	Cassandra Reads

	What’s New in Cassandra 2.0
	Compare and Set
	Algorithm
	Using CAS

	Secondary Index over Composite Columns
	Conditional DDL

	Summary

	Chapter 4: Cassandra Data Security
	Authentication and Authorization
	system and system_auth Keyspaces
	The system Keyspace Is Unmodifiable
	Accessing system_auth Keyspace with Authentication Enabled

	Managing User Permissions
	Accessing system_auth with AllowAllAuthorizer

	Preparing Server Certificates
	Connecting with SSL Encryption
	Connecting via Cassandra-cli
	Connecting via cqlsh
	Connecting via the Cassandra Thrift Client

	Summary

	Chapter 5: MapReduce with Cassandra
	Batch Processing and MapReduce
	Apache Hadoop
	HDFS
	MapReduce
	Read and Store Tweets into HDFS
	Reading Tweets
	Storing Tweets into HDFS

	Cassandra MapReduce Integration
	Reading Tweets from HDFS and Storing Count Results into Cassandra
	The Thrift Way
	The CQL3 Way

	Cassandra In and Cassandra Out

	Stream or Real-Time Analytics
	Summary

	Chapter 6: Data Migration and Analytics
	Data Migration and Analytics
	Apache Pig
	Setup and Installation
	Understanding Pig
	Pig Execution Modes
	Local Mode
	MapReduce Mode

	Data Types
	Simple Data Types
	Complex Data Types
	PigStorage
	LOAD
	STORE
	FILTER
	FOREACH
	TOTUPLE

	Counting Tweets
	Pig with Cassandra
	Data Import
	Loading Sata with timeuuid

	Apache Hive
	Setup and Configuration
	Understanding UDF, UDAF, and UDTF
	Hive Tables
	Local FS Data Loading
	HDFS Data Loading
	Hive External Table
	Hive with Cassandra

	Data Migration
	In the Traditional Way
	Apache Sqoop
	Sqoop with Cassandra

	Summary

	Chapter 7: Titan Graph Databases with Cassandra
	Introduction to Graphs
	Simple and Nonsimple Graphs
	Directed and Undirected Graphs
	Cyclic and Acyclic Graphs

	Open Source Software for Graphs
	Graph Frameworks: TinkerPop
	Pipes
	Gremlin
	Frames
	Rexster
	Furnace
	Blueprints

	Graph as a Database
	Neo4J
	OrientDB
	InfiniteGraph
	Titan

	Titan Graph Databases
	Basic Concepts
	Vertex-Centric Indices
	Edge Compression
	Graph Partitioning
	Backend Stores
	Transaction Handling

	Setup and Installation
	Command-line Tools and Clients
	Gremlin Shell
	Rexster: Server, Rest API, and the Dog House
	Rexster Dog House
	Rexster REST API

	Titan with Cassandra
	Titan Java API
	Cassandra for Backend Storage
	Use Cases
	Writing Data to a Graph
	Reading from the Graph
	Batch Loading
	The Supernode Problem
	Faster Deep Traversal

	Summary

	Chapter 8: Cassandra Performance Tuning
	Understanding the Key Performance Indicators
	CPU and Memory Utilization
	Heavy Read/Write Throughput and Latency
	Logical and Physical Reads

	Cassandra Configuration
	Data Caches
	Cache Directory
	Key Cache
	populate_io_cache_on_flush
	Row Cache

	Bloom Filters
	Off-Heap vs. On-Heap
	Installing and Configuring jemalloc
	Garbage Collection
	Hinted Handoff
	Heap Size Configuration

	Cassandra Stress Testing
	Write Mode
	Read Mode
	Monitoring
	Compaction Strategy
	Size-Tiered Compaction Strategy (STCS)
	Leveled Compaction Strategy (LCS)

	Yahoo Cloud Serving Benchmarking
	Summary

	Chapter 9: Cassandra: Administration and Monitoring
	Adding Nodes to Cassandra Cluster
	Replacing a Dead Node
	Data Backup and Restoration
	Using nodetool snapshot and sstableloader
	Using nodetool refresh
	Using clearsnapshot

	Cassandra Monitoring Tools
	Helenos
	DataStax DevCenter and OpsCenter
	OpsCenter
	DevCenter

	Summary

	Chapter 10: Cassandra Utilities
	Cassandra nodetool Utility
	Ring Management
	Checking Ring Status
	Decommissioning a Node

	Schema Management
	cfstats
	cfhistogram
	cleanup
	clearsnapshot
	flush
	repair
	rebuild
	rebuild_index

	JSONifying Data
	Exporting Data to JSON Files with sstable2json
	Importing JSON Data with json2sstable

	Cassandra Bulk Loading
	Summary

	Chapter 11: Upgrading Cassandra and Troubleshooting
	Cassandra 2.1
	User-Defined Types
	Frozen Types
	Indexing on Collection Attributes

	Upgrading Cassandra Versions
	Backward Compatibility
	Performing an Upgrade with a Rolling Restart

	Troubleshooting Cassandra
	Too Many Open Files
	Stack Size Limit
	Out of Memory Errors
	Too Much Garbage Collection Activity

	Road Ahead with Cassandra
	Summary
	References

	Index

