Cassandra Data
Modeling and Analysis

Design, build, and analyze your data intricately using Cassandra



http://www.it-ebooks.info/

Cassandra Data Modeling
and Analysis

Design, build, and analyze your data intricately
using Cassandra

C.Y. Kan

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling and Analysis

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Production reference: 1171214

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-888-4

www . packtpub.com

Cover image by Suyog Gharat (yogiee@me . com)

www.it-ebooks.info


www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
C.Y. Kan

Reviewers
Christopher Bailey

Swathi Kurunji
Robert McFrazier
luliia Proskurnia
Alexander Shvid
Mikhail Stepura

Commissioning Editor
Akram Hussain

Acquisition Editor
Owen Roberts

Content Development Editor
Manasi Pandire

Technical Editor
Vijin Boricha

Copy Editors
Deepa Nambiar

Vikrant Phadkay

Rashmi Sawant

Project Coordinator
Leena Purkait

Proofreaders
Maria Gould

Samantha Lyon

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info


http://www.it-ebooks.info/

About the Author

C.Y. Kan is an expert in system integration and has over 20 years of IT experience,
which includes 15 years of project management and an architect role in many
large-scale international projects. He received a Bachelor's degree from the
University of Hong Kong and later a Master's degree from the University of
Technology, Sydney. He holds many professional qualifications such as PMP,
PRINCE2 Practitioner, PMI-ACP, Scrum Master, CISSP, TOGAF9, and is a
Certified SOA Architect.

Mr. Kan is an Assistant Vice President now working for PCCW Solutions Limited,
Hong Kong. He has expertise and interests in software technologies and development
methodologies, which includes Enterprise architecture, Service-oriented architecture,
Java-related technologies, traditional and NoSQL database technologies, Cloud
computing, Big Data, mobile application development, agile software development,
and various kinds of project management methodologies.

Mr. Kan is often invited by Project Management Institute Hong Kong Chapter to
teach courses on cloud computing, Big Data, service-oriented architecture, business
process management, and agile software development. He is also the author of

a video e-learning course, Cassandra Administration, Packt Publishing, which was
published last year.

I would like to thank my family, Cally and Kobe, for all that they
have done for me.

www.it-ebooks.info


http://www.it-ebooks.info/

About the Reviewers

Christopher Bailey is a senior technical researcher at the University of Bristol.
He has always been interested in technology and computing from an early age
and followed his passion throughout undergraduate and postgraduate levels

and obtained a PhD from the University of Southampton. Subsequently, he was
drawn more to the application of academic theory in practice. He now works with
academics and researchers to bring the latest advances in software engineering to
play within an academic setting.

Throughout his career, Christopher has been developing tools and applications for a
diverse range of projects, such as undergraduate e-learning platforms, pedagogical
tools for lecturers, video repositories for humanities, enterprise-level application
integrations, and location-aware crowdsourcing apps. More recently, he has been
one of the lead developers on the national online survey tool BOS (https://www.
onlinesurveys.ac.uk), which uses at its core, the performance throughput of
Cassandra to help store and manage the large number of responses generated

by the service.

Christopher lives in Bristol with his wife, and when he is not reviewing books, he
can be found tinkering with his 3D printer, planning his next holiday, or immersed
in his (unending) pursuit to learn Chinese.

www.it-ebooks.info


https://www.onlinesurveys.ac.uk
https://www.onlinesurveys.ac.uk
http://www.it-ebooks.info/

Swathi Kurunji is a PhD student in the Computer Science department at the
University of Massachusetts Lowell (UMass Lowell), USA. She has shown keen
interest in database systems. Her PhD research involves Query optimization,
Big Data Analysis, Data Warehouses, and cloud computing. She has shown
excellence in her field of study through research publications in international
conferences and journals. She has also received awards and scholarships at
UMass Lowell for research and academics.

Swathi has a Master of Science degree in Computer Science from UMass Lowell

and a Bachelor of Engineering degree in Information Science from KVGCE, India.
During her studies at UMass Lowell, she has worked as a teaching assistant, where she
helped professors in teaching classes and labs, designing projects, and grading exams.

Swathi has worked as a software development intern with IT companies such as
EMC and SAP. At EMC, she gained experience on Apache Cassandra data modeling
and performance analysis. At SAP, she gained experience on infrastructure/cluster
management components of the Sybase-IQ product. She has worked with Wipro
Technologies in India as a project engineer managing application servers.

She has a wide experience with database systems such as Apache Cassandra,
Sybase-1Q, Oracle, MySQL, and MSAccess. Her interests include Software Design
and Development, Big Data analysis, optimization of databases, and Cloud
computing. Her Linkedin profile is https://www.linkedin.com/pub/swathi-
kurunji/49/578/30a/.

I would like to thank my hubby and my family for all the support.

Robert E. McFrazier is an open source developer, manager, trainer, and architect.
Having started with web development, he was able to progress in his career in
multiple roles as a developer, trainer, build/release engineer, architect, and manager.
He has been working primarily in PHP web development, but he also has experience
in Java development, AWS cloud, message queues, Hadoop, Cassandra, and creating
high volume SOAP/REST API services.

He has previously reviewed Learning Cassandra for Administrators, Packt Publishing.

Robert has worked for many software companies, including Nordstrom.com,
InfoSpace, Clear, RealNetworks, Arise Virtual Solutions, T-Mobile, and Disney.

www.it-ebooks.info


https://www.linkedin.com/pub/swathi-kurunji/49/578/30a/
https://www.linkedin.com/pub/swathi-kurunji/49/578/30a/
http://www.it-ebooks.info/

Tuliia Proskurnia is a PhD candidate at EDIC doctoral school at EPFL with
specialization in distributed information systems. Currently, she is working on the
Specific Domain Knowledge Base Construction. She was awarded a fellowship by
the EPFL to conduct her doctoral research. She is a winner of the Google Anita Borg
scholarship and Google Ambassador at KTH (2012-2013). She obtained a Master's
diploma in Distributed computing (2013) from KTH (Stockholm, Sweden), UPC
(Barcelona, Spain). During her master thesis, she designed and implemented a
unique, real-time, low latency reliable, and strongly consistent distributed data store
for stock exchange environment at NASDAQ OMX. Previously, she has obtained
Master's and Bachelor's diploma in Computer Science with honors from National
Technical University of Ukraine "KPI". Her master thesis was about fuzzy portfolio
management in a priory uncertain condition. This period was productive for her in
terms of publications and conference presentations. During her studies in Ukraine,
she was awarded named scholarships several times.

Alexander Shvid is a Data Grid Architect with more than 10 years of software
experience in Fortune 500 companies with focus on financial institutions. He has
worked in the USA, Argentina, and Russia and has many architect and developer
certifications, including those from Pivotal /Spring Source and Oracle. He is a regular
speaker at user groups and conferences around the world, such as the Java One and
Cassandra meet ups.

Alex works for PayPal in Silicon Valley, developing low-latency Big Data real-time
solutions. His major specialization is in Big data and Fast data frameworks adoption
for enterprise environments. He participated in an open source project, Spring Data
Cassandra module, and developed Dell Crowbar automation barclamp for Cassandra.
His recent projects in Fast data include integration of Gemfire from Pivotal as an
event processing middleware solution and caching system for Gire (Buenos Aires,
Argentina), Visa (Foster City, CA, USA), VMWare (Palo Alto, CA, USA) as well the
Coherence from Oracle for Analog (Boston, MA, USA), RCI (Parsippany, NJ, USA)
and custom data grid solution for Deutsche Bank (New York, NY, USA).

When he is not working, Alex can usually be found hiking with his wife along the
Coastal Trail in San Francisco Bay Area.

www.it-ebooks.info


http://www.it-ebooks.info/

Mikhail Stepura is software engineer with over 13 years of experience in
developing software. He is passionate about programming, performance, scalability,
and all technology-related things. He is always intrigued by new technology and
enjoys learning new things. He enjoys contributing to open source projects in his
spare time.

www.it-ebooks.info


http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢  On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info


www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Bird's Eye View of Cassandra 7
What is NoSQL? 8
NoSQL Database types 12
Key/value pair store 12
Column-family store 13
Document-based repository 13
Graph database 14
What is Cassandra? 14
Google BigTable 15
Amazon Dynamo 16
Cassandra's high-level architecture 17
Partitioning 18
Replication 19
Shnitch 20
Seed node 20
Gossip and Failure detection 21
Write path 21
Read path 23
Repair mechanism 24
Features of Cassandra 25
Summary 26
Chapter 2: Cassandra Data Modeling 27
What is unique to the Cassandra data model? 28
Map and SortedMap 29
Logical data structure 29
Column 30

Row 30
Column family 31

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Keyspace 32
Super column and super column family 33
Collections 34
No foreign key 34
No join 34
No sequence 35
Counter 35
Time-To-Live 35
Secondary index 36
Modeling by query 36
Relational version 36
Cassandra version 38
Data modeling considerations 44
Data duplication 44
Sorting 44
Wide row 44
Bucketing 44
Valueless column 45
Time-series data 45
Cassandra Query Language 45
Summary 46
Chapter 3: CQL Data Types 47
Introduction to CQL 47
CQL statements 47
CQL command-line client — cqlsh 48
Native data types 49
Cassandra implementation 50
A not-so-long example 51
ASCII 53
Bigint 54
BLOB 54
Boolean 55
Decimal 55
Double 55
Float 55
Inet 56
Int 57
Text 57
Timestamp 59
Timeuuid 61
uulID 62

Lii]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Varchar 62
Varint 62
Counter 63
Collections 64
Set 66
List 66
Map 67
User-defined type and tuple type 67
Summary 69
Chapter 4: Indexes 71
Primary index 7
Compound primary key and composite partition key 74
Time-series data 79
Partitioner 81
Murmur3Partitioner 81
RandomPartitioner 81
ByteOrderedPartitioner 82
Paging and token function 82
Secondary indexes 83
Multiple secondary indexes 85
Secondary index do's and don'ts 86
Summary 87
Chapter 5: First-cut Design and Implementation 89
Stock Screener Application 920
An introduction to financial analysis 90
Stock quote data 91
Initial data model 93
Processing flow 94
System design 96
The operating system 96
Java Runtime Environment 97
Java Native Access 97
Cassandra version 97
Programming language 98
Cassandra driver 99
The integrated development environment 99
The system overview 100
Code design and development 101
Data Feed Provider 101

Collecting stock quote

101

[iii ]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Transforming data 103
Storing data in Cassandra 104
Putting them all together 107
Stock Screener 109
Data Scoper 109
Time-series data 111
The screening rule 111
The Stock Screener engine 111
Test run 114
Summary 115
Chapter 6: Enhancing a Version 117
Evolving the data model 117
The enhancement approach 118
Watch List 120
Alert List 121
Adding the descriptive stock name 122
Queries on alerts 123
Enhancing the code 125
Data Mapper and Archiver 125
Stock Screener Engine 129
Queries on Alerts 133
Implementing system changes 137
Summary 138
Chapter 7: Deployment and Monitoring 139
Replication strategies 139
Data replication 140
SimpleStrategy 140
NetworkTopologyStrategy 141
Setting up the cluster for Stock Screener Application 143
System and network configuration 143
Global settings 144
Configuration procedure 145
Legacy data migration procedure 146
Deploying the Stock Screener Application 148
Monitoring 150
Nodetool 150
JMX and MBeans 151
The system log 153
Performance tuning 155
Java virtual machine 155
Caching 156
Partition key cache 156
Row cache 156

[iv]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Monitoring cache 156
Enabling/disabling cache 157
Summary 158
Chapter 8: Final Thoughts 159
Supplementary information 159
Client drivers 159
Security 161
Authentication 161
Authorization 161
Inter-node encryption 161
Backup and restore 162
Useful websites 163
Apache Cassandra official site 163
PlanetCassandra 164
DataStax 165
Hadoop integration 167
Summary 168
Index 169

www.it-ebooks.info

[v]



http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

If you are asked about the top five hot topics in today's IT world, Big Data will
be one of them. In fact, Big Data is a broad buzzword that encompasses a lot of
components, and NoSQL database is an indispensable component of it.

Cassandpra is one of the most popular NoSQL databases. Nowadays, it offers a vast
number of technological advantages that enable you to break through the limits of

a traditional relational database in a web-scale or cloud environment. However,
designing a high-performance Cassandra data model is not an intuitive task, especially
for those of you who have been so involved with relational data modeling for many
years. It is too easy to adopt a suboptimal way to simply mimick a relational data
model in Cassandra.

This book is about how to design a better model that leverages the superb scalability
and flexibility that Cassandra provides. Cassandra data modeling will help you
understand and learn the best practices to unleash the power of Cassandra to the
greatest extent.

Starting with a quick introduction to Cassandra, we will guide you step-by-step
from the fundamental data modeling approach, selecting data types, designing
data model, and choosing suitable keys and indexes to a real-world application
by applying these best practices.

Although the application is small and rudimentary, you will be involved in the
full development life cycle. You will go through the design considerations of
how to come up with a flexible and sustainable data model for a stock market
technical-analysis application written in Python. Business changes continually
and so does a data model. You will also learn the techniques of evolving a data
model in order to address the new business requirements.

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Running a web-scale Cassandra cluster requires many careful thoughts, such as
evolving of the data model, performance tuning, and system monitoring, which
are also supplemented at your fingertips.

The book is an invaluable tutorial for anyone who wants to adopt Cassandra in
practical use.

What this book covers

Chapter 1, Bird's Eye View of Cassandra, explains what Big Data and NoSQL are

and how they are related to Cassandra. Then, it introduces the important Cassandra
architectural components and the features that come along with them. This chapter
lays the fundamental knowledge, concepts, and capabilities that all the following
chapters refer to.

Chapter 2, Cassandra Data Modeling, explains why data modeling using Cassandra
is so different from the relational data modeling approach. The commonly used
technique in making a Cassandra data model, modeling by query, is explained
with ample examples in more detail.

Chapter 3, CQL Data Types, walks you through the Cassandra built-in data types, with
many examples that compose of a data model. The internal physical storage of these
data types is also provided in order to help you understand and visualize what is
going on in Cassandra.

Chapter 4, Indexes, discusses the design of the primary and secondary indexes.
Cassandra data model is based on the queries to be used in order to access them.
Primary and secondary indexes are different from those with the same names in a
relational model, which often causes confusion to many new Cassandra data modelers.
This chapter clearly explains when and which of them can be used correctly.

Chapter 5, First-cut Design and Implementation, conducts the design of the data
model for a simple stock market technical-analysis application. This chapter starts
by defining the business problem to be solved, the functions to be provided, and
proceeds to design the data model and the programs. By the end of this chapter,
the technical-analysis application can run on Cassandra to provide real functions.

Chapter 6, Enhancing a Version, describes a number of enhancements on the
technical-analysis application built in Chapter 5, First-cut Design and Implementation.
The enhancements involve both data model and code changes. This chapter
illustrates how Cassandra's data model can flexibly embrace the changes.

[2]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Chapter 7, Deployment and Monitoring, discusses several important considerations
to migrate an application on Cassandra from a non-production environment to a
production one. The considerations include replication strategy, data migration,
system monitoring, and basic performance tuning. This chapter highlights these
pertinent factors in a real-life production Cassandra cluster deployment.

Chapter 8, Final Thoughts, supplements additional topics in application development
with Cassandra, such as client drivers that are available for different programming
languages, built-in security features, backup, and restore. It also recommends a few
useful websites for further information. Finally, a quick review of all the chapters
wraps up the book.

What you need for this book

The readers are advised to go through Cassandra basics before starting the journey
of developing a data model and an application. An excellent book to start with is
Learning Cassandra for Administrators, Vijay Parthasarathy, Packt Publishing.

Though having prior knowledge of Cassandra is not mandatory, anybody with
some background in any application design and implementation and relational
data modeling experience will find it easy to relate to this book.

The book refers to the recent Cassandra 2.0.x Version. Some of the code examples
refer to the features available in Cassandra Query Language 3 (CQL3).

In addition, as Python is used to develop the sample application, an elementary
programming knowledge of Python and NumPy is sufficient for a smooth read
of this book. The preferred Python Version is 2.7.x. A good book to familiarize
yourself with Python and NumPy is NumPy Cookbook, Ivan Idris, Packt Publishing.

All the tools and packages required to get the sample up and running are freely
available on the Internet. To get a hands-on experience of the sample application,
a computer running on Ubuntu Linux is suggested.

Who this book is for

If you are interested in Cassandra and want to develop real-world analysis
applications, then this book is perfect for you.

Using Cassandra as a web-scale or Cloud NoSQL database backend enables your
architecture and application systems to be truly ready for Big Data. After reading
this book, you will know how to handle and model the data to unleash the power
of Cassandra.

[31]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
" The SMA can be easily computed by the rolling mean () function, as shown in
chapter05 007.py."

A block of code is set as follows:

# -*- coding: utf-8 -*-
# program: chapter05 007.py

import pandas as pd

## function to compute a Simple Moving Average on a DataFrame
## d: DataFrame
## prd: period of SMA
## return a DataFrame with an additional column of SMA
def sma(d, prd):
d['sma'] = pd.rolling mean(d.close price, prd)
return d

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

CREATE TABLE stock ticker (

symbol varchar references stock symbol (symbol),
tick_date varchar,

open decimal,

high decimal,

Any command-line input or output is written as follows:
ubtc01l:~$ nodetool status

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
middle panel on the right-hand side is the IPython console that runs the code."

[4]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/88840S ImageBundle.pdf.

[51]

www.it-ebooks.info


www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/8884OS_ImageBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/8884OS_ImageBundle.pdf
http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

www.it-ebooks.info


http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Imagine that we have turned back the clock to the 1990s and you an application
architect. Whenever you were required to select a suitable database technology
for your applications, what kind of database technology would you choose?

I bet 95 percent (or more) of the time you would select relational databases.

Relational databases have been the most dominating data management solution

since the 1970s. At that time, the application system was usually silo. The users of the
application and their usage patterns were known and under control. The workload that
had to be catered for by the relational database could be determined and estimated.
Apart from the workload consideration, the data model can also be structured in
normalized forms as recommended by the relational theory. Moreover, relational
databases provide many benefits such as support of transactions, data consistency,

and isolation. Relational databases just fit perfectly for the purposes. Therefore, it is not
difficult to understand why the relational database has been so popular and why it is
the de facto standard for persistent data stores in application development.

Nonetheless, with the proliferation of the Internet and the numerous web applications
running on it, the control of the users and their usage patterns (hence the scale), the
workload generated, and the flexibility of the data model were gone. Typical examples
of these web applications were global e-commerce websites, social media sites, video
community websites, and so on. They generated a tremendous amount of data in a
very short period of time. It should also be noted that the data generated by these
applications were not only structured, but also semi-structured and even unstructured.
Since relational databases were the de facto standard at that time, developers and
architects did not have many alternatives but were forced to tweak them to support
these web applications, even though they knew that relational databases were
suboptimal and had many limitations. It became apparent that a different kind

of enabling technology should be found to break through the challenges.

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

We are in an era of information explosion, as a result of the ever-increasing
amount of user-generated data and content on the Web and mobile applications.
The generated data is not only large in volume and fast in velocity but it is also
diversified in variety. Such rapidly growing data of different varieties is often
termed as Big Data.

No one has a clear, formal definition of Big Data. People, however, unanimously agree
that the most fundamental characteristics of Big Data are related to large volume, high
velocity, and great variety. Big Data imposes real, new challenges to the information
systems that have adopted traditional ways of handling data. These systems are not
designed for web-scale and for being enhanced to do so, cost effectively. Due to this,
you might find yourself asking whether or not we have any alternatives.

Challenges come with opportunities on the flip side. A new breed of data
management products was born. The most recent answer to the question
in the last paragraph is NoSQL.

What is NoSQL?

The need to tackle the Big Data challenges has led to the emergence of new data
management technologies and techniques. Such technologies and techniques are
rather different from the ubiquitous relational database technology that has been
used for over 40 years. They are collectively known as NoSQL.

NoSQL is an umbrella term for the data stores that are not based on the relational
data model. It encompasses a great variety of many different database technologies
and products. As shown in the following figure, The Data Platforms Landscape
Map, there are over 150 different database products that belong to the non-relational
school as mentioned in http://nosqgl-database.org/. Cassandra is one of the
most popular ones. Other popular NoSQL database products are, just to name a few,
MongoDB, Riak, Redis, Neo4j, so on and so forth.

[8]

www.it-ebooks.info


http://nosql-database.org/
http://www.it-ebooks.info/

Chapter 1

 Towards F— s
o i Sty ache 54 Ao, Treasure (amn;l_sw AW Microsaft
DataTorrente Data Gubsle Data Engne | EMR HDlasght Metacale
[ Fecdzaid s Yy . Seratia
el Databricks/Spark
Metamarkets { T-Systems Zutinset "
ey ShCH2 Scerine Aiwg f (Yumeate W g e Oracle B
Guaviiag—1o5phere sanii () a Dt Closd
i Elusticsaarch o [T B hacks adera
Autono 115000 Softlayer Orache B
— Oracie A StreamB: ' Dats Applance
i, Sean 5
Endeca Server p o e SeDA HPTE
BN Infasphers
st ot Explocer Bivatal Teradata  Rainstar
AW aser
Logshy Sume 1BM PureData
Logentries Lotk for Anabytics
SOream
wicrosoft
SOL Server Deacle Teradata
oW Exalytics
Aactian P30 Htremiiata
] Metamarkets Deuid
Soreci R Progren Openfage by
Orache TariesTon Mctian Vector
saidDB xopaic)
Hergky OpenStack Trove LucidDi ey
] K Syt
L Actian Matrie
T it
g JokHDR - prierde o
Google Claud 501 P Vertica
CodeTuture Jre—— Fivotal Greenpluen w
Adabas Translatrice for MySaL MenetiE s
; c Contiruent fbibipey s
A4 M, sl Gemfire K0 : athom! ; LogicBlox
T Altbase HOH Timeey Seal B Satuns
anci Y ) ) Adiibase x50 n Cleariyd A
. Googh App, AWS,
ObjctStore sy Tngine Dataston WehSealesiyl Arure s
Gongle G b=Havenill  LevelDB = P
MeObjested rciounty HYPOrDexs
™ Sardog Cloudlind
= Titan
b MongoDa!
Jcdan § pasficieypp Mone fedisGroeng
= Trinity Compose Redis w_”‘:
tntorbystems || [ SPARCLBASE s Couch
Cochd™) fuGianh  pgagalabf Rodis Lab
T —— Fedia lod Hat 105
Objectivity O RnkateGraph EAMOJ(UMIOB
udant
AW Dy
Lot Hotes

The Data Platforms Landscape Map (Source: 451 Research)

So, what kinds of benefits are provided by NoSQL? When compared to the relational
database, NoSQL overcomes the weaknesses that the relational data model does not
address well, which are as follows:

* Huge volume of structured, semi-structured, and unstructured data

* Flexible data model (schema) that is easy to change

* Scalability and performance for web-scale applications

e Lower cost

* Impedance mismatch between the relational data model and

object-oriented programming

*  Built-in replication

* Support for agile software development

[o]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Limitations of NoSQL Databases
. Many NoSQL databases do not support transactions. They use replication
% extensively so that the data in the cluster might be momentarily
A~ inconsistent (although it is eventually consistent). In addition, the range
queries are not available in NoSQL databases. Furthermore, a flexible
schema might lead to problems with efficient searches.

The huge volume of structured, semi-structured, and unstructured data was
mentioned earlier. What I want to dive deeper into here is that different NoSQL
databases provide different solutions for each of them. The primary factor to

be considered is the NoSQL database type, which will be introduced in the
subsequent section.

All NoSQL databases provide a flexible data model that is easy to change and some
might be even schemaless. In a relational database, the relational data model is called
schema. You need to understand the data to be stored in a relational database, design
the data model according to the relational database theory, and define the schema
upfront in the relational database before you can actually store data inside it. It is

a very structured approach for structured data. It is a prescriptive data modeling
process. It is absolutely fine if the data model is stable, because there are not many
changes required. But what if the data model keeps changing in the future and you
do not know what needs to be changed? You cannot prescribe comprehensively in
advance. It leads to many inevitable remedies; say, data patching for example, to
change the schema.

Conversely, in NoSQL databases, you need not prescribe comprehensively. You only
need to describe what is to be stored. You are not bound by the relational database
theory. You are allowed to change the data model whenever necessary. The data
model is schemaless and is a living object. It evolves as life goes on. It is a descriptive
data modeling process.

Scalability and performance for web-scale applications refer to the ability of the
system to be scaled, preferably horizontally, to support web-scale workloads without
considerably deteriorating system performance. Relational databases can only be
scaled out to form a cluster consisting of a very small number of nodes. It implies the
rather low ceiling imposed on these web-scale applications using relational databases.
In addition, changing the schema in a clustered relational database is a big task of
high complexity. The processing power required to do this is so significant that the
system performance cannot be unaffected. Most NoSQL databases were created to
serve web-scale applications. They natively support horizontal scaling without very
little degrade on the performance.

[10]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Now let us talk about money. Traditionally, most high-end relational databases are
commercial products that demand their users to pay huge software license fees.
Besides, to run these high-end relational databases, the underlying hardware servers
are usually high-end as well. The result is that the hardware and software costs of
running a powerful relational database are exceptionally large. In contrast, NoSQL
databases are open source and community-driven in a majority, meaning that you
need to pay the software license cost, which is an order of magnitude less than other
databases. NoSQL databases are able to run on commodity machines that will lead
to a possible churn, or crashes. Therefore, the machines are usually configured to

be a cluster. High-end hardware servers are not needed and so the hardware cost is
tremendously reduced. It should be noted that when NoSQL databases are put into
production, some cost of the support is still required but it is definitely much less
when compared to that of commercial products.

There exists a generation gap between the relational data model and object-oriented
programming. The relational data model was the product of 1970s, whereas
object-oriented programming became very popular in 1990s. The root cause,
known as impedance mismatch, is an inherent difficulty of representing a record

or a table in a relational data model with the object-oriented model. Although

there are resolutions for this difficulty, most application developers still feel very
frustrated to bring the two together.

Impedance Mismatch
Impedance mismatch is the difference between the relational
i

model and the in-memory data structures that are usually
encountered in object-oriented programming languages.

Built-in replication is a feature that most NoSQL databases provide to support

high availability in a cluster of many nodes. It is usually automatic and transparent
to the application developers. Such a feature is also available in relational databases,
but the database administrators must struggle to configure, manage, and operate it
by themselves.

Finally, relational databases do not support agile software development very

well. Agile software development is iterative by nature. The software architecture
and data model emerge and evolve as the project proceeds in order to deliver the
product incrementally. Hence, it is conceivable that the need of changing the data
model to meet the new requirements is inevitably frequent. Relational databases
are structured and do not like changes. NoSQL can provide such flexibility for agile
software development teams by virtue of its schemaless characteristic. Even better,
NoSQL databases usually allow the changes to be implemented in real time without
any downtime.

[11]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

NoSQL Database types

Now you know the benefits of NoSQL databases, but the products that fall under
the NoSQL databases umbrella are quite varied. How can you select the right one
for yourself among so many NoSQL databases? The selection criteria of which
NoSQL database fits your needs is really dependent on the use cases at hand. The
most important factor to consider here is the NoSQL database type, which can be
subdivided into four main categories:

* Key/value pair store
* Column-family store
* Document-based repository

* Graph database

The NoSQL database type dictates the data model that you can use. It is beneficial to
understand each of them deeper.

Keyl/value pair store

Key/value pair is the simplest NoSQL database type. Key/value store is similar
to the concept of Windows registry, or in Java or C#, a map, a hash, a key/value
pair. Each data item is represented as an attribute name, also a key, together with
its value. It is also the basic unit stored in the database. Examples of the NoSQL
databases of key/value pair type are Amazon Dynamo, Berkeley DB, Voldemort
and Riak.

Internally, key/value pairs are stored in a data structure called hashmap. Hashmap
is popular because it provides very good performance on accessing data. The key of
a key/value pair is unique and can be searched very quickly.

Key/value pair can be stored and distributed in the disk storage as well as in
memory. When used in memory, it can be used as a cache, which depends on
the caching algorithm, can considerably reduce disk I/O and hence boost up

the performance significantly.

On the flip side, key/value pair has some drawbacks, such as lack of support of
range queries, no way to operate on multiple keys simultaneously, and possible
issues with load balancing.

[12]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Column-family store

A column in this context is not equal to a column in a relational table. In the NoSQL
world, a column is a data structure that contains a key, value, and timestamp. Thus,
it can be regarded as a combination of key/value pair and a timestamp. Examples
are Google BigTable, Apache Cassandra, and Apache HBase. They provide
optimized performance for queries over very large datasets.

Column-family store is basically a multi-dimensional map. It stores columns of
data together as a row, which is associated with a row key. This contrasts with
rows of data in a relational database. Column-family store does not need to store
null columns, as in the case of a relational database and so it consumes much less
disk space. Moreover, columns are not bound by a rigid schema and you are not
required to define the schema upfront.

The key component of a column is usually called the primary key or the row key.
Columns are stored in a sorted manner by the row key. All the data belonging to
arow key is stored together. As such, read and write operations of the data can be
confined to a local node, avoiding unnecessary inter-node network traffic in a cluster.
This mechanism makes the data lookup and retrieval extremely efficient.

Obviously, a column-family store is not the best solution for systems that require
ACID transactions and it lacks the support for aggregate queries provided by
relational databases such as suM ().

Document-based repository

Document-based repository is designed for documents or semi-structured data. The
basic unit of a document-based repository associates each key, a primary identifier,
with a complex data structure called a document. A document can contain many
different key-value pairs, or key-array pairs, or even nested documents. Therefore,
document-based repository does not adhere to a schema. Examples are MongoDB
and CouchDB.

In practice, a document is usually a loosely structured set of key/value pairs in the
form of JavaScript Object Notation (JSON). Document-based repository manages a
document as a whole and avoids breaking up a document into fragments of key/value
pairs. It also allows document properties to be associated with a document.

As a document database does not adhere to a fixed schema, the search performance
is not guaranteed. There are generally two approaches to query a document
database. The first is to use materialized views (such as CouchDB) that are prepared
in advance. The second is to use indexes defined on the document values (such as
MongoDB) that behave in the same way as a relational database index.

[13]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Graph database

Graph databases are designed for storing information about networks, such as a
social network. A graph is used to represent the highly connected network that is
composed of nodes and their relationships. The nodes and relationships can have
individual properties. The prominent graph databases include Neo4J and FlockDB.

Owing to the unique characteristics of a graph, graph databases commonly provide
APIs for rapid traversal of graphs.

Graph databases are particularly difficult to be scaled out with sharding because
traversing a graph of the nodes on different machine does not provide a very good
performance. It is also not a straightforward operation to update all or a subset of
the nodes at the same time.

So far, you have grasped the fundamentals of the NoSQL family. Since this book
concentrates on Apache Cassandra and its data model, you need to know what
Cassandra is and have a basic understanding of what its architecture is, so that
you can select and leverage the best available options when you are designing
your NoSQL data model and application.

What is Cassandra?

Cassandra can be simply described in a single phrase: a massively scalable, highly
available open source NoSQL database that is based on peer-to-peer architecture.

Cassandra is now 5 years old. It is an active open source project in the Apache Software
Foundation and therefore it is known as Apache Cassandra as well. Cassandra can
manage huge volume of structured, semi-structured, and unstructured data in a large
distributed cluster across multiple data centers. It provides linear scalability, high
performance, fault tolerance, and supports a very flexible data model.

Netflix and Cassandra
. One very famous case study of Cassandra is Netflix's move to replace
% their Oracle SQL database to Cassandra running on cloud. As of March
~ 2013, Netflix's Cassandra deployment consists of 50 clusters with over 750
nodes. For more information, please visit the case study at http: //www.
datastax.com/wp-content/uploads/2011/09/CS-Netflix.pdf.

In fact, many of the benefits that Cassandra provides are inherited from its two
best-of-breed NoSQL parents, Google BigTable and Amazon Dynamo. Before we
go into the details of Cassandra's architecture, let us walk through each of them first.

[14]

www.it-ebooks.info


http://www.datastax.com/wp-content/uploads/2011/09/CS-Netflix.pdf
http://www.datastax.com/wp-content/uploads/2011/09/CS-Netflix.pdf
http://www.it-ebooks.info/

Chapter 1

Google BigTable

Google BigTable is Google's core technology, particularly addressing data persistence
and management on web-scale. It runs the data stores for many Google applications,
such as Gmail, YouTube, and Google Analytics. It was designed to be a web-scale
data store without sacrificing real-time responses. It has superb read and write
performance, linear scalability, and continuous availability.

Google BigTable is a sparse, distributed, persistent, multidimensional sorted map.
The map is indexed by a row key.

Despite the many benefits Google BigTable provides, the underlying design concept is
really simple and elegant. It uses a persistent commitlog for every data write request
that it receives and then writes the data into a memory store (acting as a cache). At
regular intervals or when triggered by a particular event, the memory store is flushed
to persistent disk storage by a background process. This persistent disk storage is
called Sorted String Table, or SSTable. The SSTable is immutable meaning that once it
has been written to a disk, it will never be changed again. The word sorted means that
the data inside the SSTable is indexed and sorted and hence the data can be found very
quickly. Since the write operation is log-based and memory-based, it does not involve
any read operation, and therefore the write operation can be extremely fast. If a failure
happens, the commitlog can be used to replay the sequence of the write operations to
merge the data that persists in the SSTables.

Read operation is also very efficient by looking up the data in the memory store and
the indexed SSTables, which are then merged to return the data.

All the above-mentioned Google BigTable brilliances do come with a price. Because
Google BigTable is distributed in nature, it is constrained by the famous CAP theorem,
stating the relationship among the three characteristics of a distributed system,
namely Consistency, Availability, and Partition-tolerance. In a nutshell, Google
BigTable prefers Consistency and Partition-tolerance to Availability.

The CAP theorem

CAP is an acronym of the three characteristics of a distributed system:
Consistency, Availability, and Partition-tolerance. Consistency means
. thatall the nodes in a cluster see the same data at any point in time.
% Availability means that every request that is received by a non-failing
= node in the cluster must result in a response. Partition-tolerance means

that a node can still function when communication with other groups of
nodes is lost. Originating from Eric A. Brewer, the theorem states that
in a distributed system, only two out of the three characteristics can be
attained at the most.

[15]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Google BigTable has trouble with Availability while keeping Consistency across
partitioned nodes when failures happen in the cluster.

Amazon Dynamo

Amazon Dynamo is a proprietary key-value store developed by Amazon. It is
designed for high performance, high availability, and continuous growth of data
of huge volume. It is the distributed, highly available, fault-tolerant skeleton for
Amazon. Dynamo is a peer-to-peer design meaning that each node is a peer and
no one is a master who manages the data.

Dynamo uses data replication and auto-sharding across multiple nodes of the cluster.
Imagine that a Dynamo cluster consists of many nodes. Every write operation in

a node is replicated to two other nodes. Thus, there are three copies of data inside
the cluster. If one of the nodes fails for whatever reason, there are still two copies

of data that can be retrieved. Auto-sharding ensures that the data is partitioned
across the cluster.

Auto-sharding

NoSQL database products usually support auto-sharding so that
they can natively and automatically distribute data across the

%ﬁ‘ database cluster. Data and workload are automatically balanced
across the nodes in the cluster. When a node fails for whatever
reason, the failed node can be quickly and transparently replaced
without service interruptions.

Dynamo focuses primarily on the high availability of a cluster and the most important
idea is eventual consistency. While considering the CAP Theorem, Dynamo prefers
Partition-tolerance and Availability to Consistency. Dynamo introduces a mechanism
called Eventual Consistency to support consistency. Temporary inconsistency might
occur in the cluster at a point in time, but eventually all the nodes will receive the latest
consistent updates. Given a sufficiently long period of time without further changes,
all the updates can be expected to propagate throughout the cluster and the replicas on
all the nodes will be consistent eventually. In real life, an update takes only a fraction
of a second to become eventually consistent. In other words, it is a trade-off between
consistency and latency.

[16]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Eventual consistency

Eventual consistency is not inconsistency. It is a weaker form of
*  consistency than the typical Atomic-Consistency-Isolation-Durability
%&‘ (ACID) type consistency is found in the relational databases. It implies
that there can be short intervals of inconsistency among the replicated
nodes during which the data gets updated among these nodes. In other
words, the replicas are updated asynchronously.

Cassandra’'s high-level architecture

Cassandra runs on a peer-to-peer architecture which means that all nodes in the
cluster have equal responsibilities except that some of them are seed nodes for other
non-seed nodes to obtain information about the cluster during startup. Each node
holds a partition of the database. Cassandra provides automatic data distribution
and replication across all nodes in the cluster. Parameters are provided to customize
the distribution and replication behaviors. Once configured, these operations are
processed in the background and are fully transparent to the application developers.

Cassandra is a column-family store and provides great schemaless flexibility to
application developers. It is designed to manage huge volume of data in a large
cluster without a single point of failure. As multiple copies of the same data
(replicas) are replicated in the cluster, whenever one node fails for whatever reason,
the other replicas are still available. Replication can be configured to meet the
different physical cluster settings, including data center and rack locations.

Any node in the cluster can accept read or write requests from a client. The node
that is connected to a client with a request serves as the coordinator of that particular
request. The coordinator determines which nodes are responsible for holding the
data for the request and acts as a proxy between the client and the nodes.

Cassandra borrows the commitlog mechanism from Google BigTable to ensure data
durability. Whenever a write data request is received by a node, it is written into the
commitlog. The data that is being updated is then written to a memory structure,
known as memtable. When the memtable is full, the data inside the memtable is
flushed to a disk storage structure, SSTable. The writes are automatically partitioned
by the row key and replicated to the other nodes holding the same partition.

Cassandra provides linear scalability, which means that the performance and
capacity of the cluster is proportional to the number of nodes in it.

[17]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Partitioning
The ability to scale horizontally and incrementally is a Cassandra key design feature.

To achieve this, Cassandra is required to dynamically partition the data over the set
of nodes in the cluster.

A cluster is the outermost structure which is composed of nodes in Cassandra.

It is also a container of keyspace. A keyspace in Cassandra is analogous to a
schema in a relational database. Each Cassandra cluster has a system keyspace
to keep system-wide metadata. It contains the replication settings which controls
how the data is distributed and replicated in a cluster. Typically, one keyspace is
assigned to one cluster but one cluster might contain more than one keyspace.

The smallest cluster in the theory contains a single node and a cluster of three

or more nodes, which is much more practical. Each node holds a replica for the
different range of data in partitions, and exchanges information across the cluster
every second.

A client issues read or write requests to any node. The node that receives the
request becomes a coordinator that acts as a proxy of the client to do the things as
explained previously. Data is distributed across the cluster and the node addressing
mechanism is called consistent hashing. Therefore, a cluster can be viewed as a ring
of hash as each node in the cluster or the ring is assigned a single unique token so
that each node is responsible for the data in the range from its assigned token to that
of the previous node. For example, in the following figure, a cluster contains four
nodes with unique tokens:

6DE7 : “ORACLE”

Cassandra's consistent hashing

[18]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Before Version 1.2, tokens were calculated and assigned manually and from Version
1.2 onwards, tokens can be generated automatically. Each row has a row key used by
a partitioner to calculate its hash value. The hash value determines the node which
stores the first replica of the row. The partitioner is just a hash function that is used
for calculating a row key's hash value and it also affects how the data is distributed
or balanced in the cluster. When a write occurs, the first replica of the row is always
placed in the node with the key range of the token. For example, the hash value of
arow key ORACLE is 6DE7 that falls in the range of 4,000 and 8,000 and so the row
goes to the bottom node first. All the remaining replicas are distributed based on the
replication strategy.

Consistent hashing
Consistent hashing allows each node in the cluster to independently
*  determine which nodes are replicas for a given row key. It just involves
hashing the row key, and then compares that hash value to the token of
each node in the cluster. If the hash value falls in between a node's token,
and the token of the previous node in the ring (tokens are assigned to
nodes in a clockwise direction), that node is the replica for that row.

Replication

Cassandra uses replication to attain high availability and data durability. Each
data is replicated at a number of nodes that are configured by a parameter called
replication factor. The coordinator commands the replication of the data within its
range. It replicates the data to the other nodes in the ring. Cassandra provides the
client with various configurable options to see how the data is to be replicated,
which is called replication strategy.

Replication strategy is the method of determining which nodes the replicas
are placed in. It provides many options, such as rack-aware, rack-unaware,
network-topology-aware, so on and so forth.

[19]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Snitch

A snitch determines which data centers and racks to go for in order to make
Cassandra aware of the network topology for routing the requests efficiently. It
affects how the replicas can be distributed while considering the physical setting of
the data centers and racks. The node location can be determined by the rack and data
center with reference to the node's IP address. An example of a cluster across two
data centers is shown in the following figure, in order to illustrate the relationship
among replication factor, replication strategy, and snitch in a better way:

Data Center 1 Data Center 2
1231 xxx.xxx 123,200 X0
Rack 1 Rack 2 Rack 1 Rack 2

123.1.1.xxx |..... S e 13 FE 0030 v G S TR N 123.2.1.xxx 123.2.2 . xxx

. -4

Ci‘) _Nodea Cj) _Node2

Multiple data center cluster

Each data center has two racks and each rack contains two nodes respectively. The
replication factor per data center is set to three here. With two data centers, there
are six replicas in total. The node location that addresses the data center and rack
locations are subject to the convention of IP address assignment of the nodes.

Seed node

Some nodes in a Cassandra cluster are designated as seed nodes for the others.

They are configured to be the first nodes to start in the cluster. They also facilitate the
bootstrapping process for the new nodes joining the cluster. When a new node comes
online, it will talk to the seed node to obtain information about the other nodes in the
cluster. The talking mechanism is called gossip. If a cluster is across multiple data
centers, the best practice is to have more than one seed node per data center.

[20]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Gossip and Failure detection

Nodes need to communicate periodically (every second) to exchange state
information (for example, dead or alive), about themselves and about other nodes
they know about. Cassandra uses a gossip communication protocol to disseminate
the state information, which is also known as epidemic protocol. It is a peer-to-peer
communication protocol that provides a decentralized, periodic, and an automatic
way for the nodes in the cluster to exchange the state information about themselves,
and about other nodes they know about with up to three other nodes. Therefore, all
nodes can quickly learn about all the other nodes in the cluster. Gossip information is
also persisted locally by each node to allow fast restart.

Cassandra uses a very efficient algorithm, called Phi Accrual Failure Detection Algorithm,
to detect the failure of a node. The idea of the algorithm is that the failure detection

is not represented by a Boolean value stating whether a node is up or down. Instead,
the algorithm outputs a value on the continuous suspicion level between dead and
alive, on how confident it is that the node has failed. In a distributed environment,
false negatives might happen due to the network performance, fluctuating workload,
and other conditions. The algorithm takes all these factors into account and provides a
probabilistic value. If a node has failed, the other nodes periodically try to gossip with
it to see if it comes back online. A node can then determine locally from the gossip state
and its history and adjust routes accordingly.

Write path

The following figure depicts the components and their sequence of executions that
form a write path:

Cassandra

write

Client > Data

memtable | fush

data <=

index

commitlog

SSTable

Cassandra write path

[21]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

When a write occurs, the data will be immediately appended to the commitlog on
the disk to ensure write durability. Then Cassandra stores the data in memtable, an
in-memory store of hot and fresh data. When memtable is full, the memtable data

will be flushed to a disk file, called SSTable, using sequential I/O and so random I/O
is avoided. This is the reason why the write performance is so high. The commitlog is

purged after the flush.

Due to the intentional adoption of sequential I/ O, a row is typically stored across
many SSTable files. Apart from its data, SSTable also has a primary index and a
bloom filter. A primary index is a list of row keys and the start position of rows

in the data file.

Bloom filter

& Bloom filter is a sample subset of the primary index with very
/= fast nondeterministic algorithms to check whether an element
is a member of a set. It is used to boost the performance.

For write operations, Cassandra supports tunable consistency by various write
consistency levels. The write consistency level is the number of replicas that
acknowledge a successful write. It is tunable on a spectrum of write consistency
levels, as shown in the following figure:

EACH_QU

ORUM A

Cassandra write consistency levels
The following describes the terms in the figure:

* ANY: This is the lowest consistency (but highest availability)
e ALL: This is the highest consistency (but lowest availability)
* ONE: This gives at least one replica

* TWO: This gives at least two replicas

* THREE: This gives at least three replicas

*  QUORUM: This ensures strong consistency by tolerating some level of
failure, which is determined by (replication_factor /2) + 1 (rounded down
to the nearest integer)

e LOCAL_QUORUM: This is for multi-data center and rack-aware without
inter-data center traffic

e EACH_QUORUM: This is for multi-data center and rack-aware

[22]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

The two extremes are the leftmost ANY which means weak consistency and the
rightmost ALL means strong consistency. A consistency level of THREE is very
common in practice. QUORUM can be chosen to be an optimum value, as calculated
by the given formula. Here, the replication factor is the number of replicas of data on
multiple nodes. Both LOCAL QUORUM and EACH QUORUM support multiple
data centers and rack-aware write consistency with a slight difference as shown earlier.

Read path

On the flip side, the following figure shows the components and their sequence of
executions that form a read path:

Cassandra
read
Client |¢«—= Data < o |<A -
Memory read read memtable
Disk
g data -d-z data
SSTable SSTable

Cassandra read path

When a read request comes in to a node, the data to be returned is merged from all

the related SSTables and any unflushed memtables. Timestamps are used to determine
which one is up-to-date. The merged value is also stored in a write-through row cache
to improve the future read performance.

Similar to the write consistency levels, Cassandra also provides tunable read
consistency levels, as shown in the following figure:

Cassandra read consistency levels

ALL

[23]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

The following describes the terms in the figure:

* ALL: This is the highest consistency (but lowest availability)
* ONE: This gives at least one replica

*  TWO: This gives at least two replicas

* THREE: This gives at least three replicas

*  QUORUM: This ensures strong consistency by tolerating some level of
failure, which is determined by (replication_factor /2) + 1 (rounded down
to the nearest integer)

e LOCAL_QUORUM: This is for multi-data center and rack-aware without
inter-data center traffic

e EACH_QUORUM: This is for multi-data center and rack-aware

Read consistency level is the number of replicas contacted for a successful,
consistent read, almost identical to write consistency levels, except that ANY
is not an option here.

Repair mechanism

There are three built-in repair mechanisms provided by Cassandra:

* Read repair
* Hinted handoff

* Anti-entropy node repair

During a read, the coordinator that is just the node connects and services the

client, contacts a number of nodes as specified by the consistency level for data

and the fastest replicas will return the data for a consistency check by in-memory
comparison. As it is not a dedicated node, Cassandra lacks a single point of failure.
It also checks all the remaining replicas in the background. If a replica is found to be
inconsistent, the coordinator will issue an update to bring back the consistency. This
mechanism is called read repair.

Hinted handoff aims at reducing the time to restore a failed node when rejoining the
cluster. It ensures absolute write availability by sacrificing a bit of read consistency.
If a replica is down at the time a write occurs, another healthy replica stores a hint.
Even worse, if all the relevant replicas are down, the coordinator stores the hint
locally. The hint basically contains the location of the failed replica, the affected

row key, and the actual data that is being written. When a node responsible for the
token range is up again, the hint will be handed off to resume the write. As such, the
update cannot be read before a complete handoff, leading to inconsistent reads.

[24]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Another repair mechanism is called anti-entropy which is a replica synchronization
mechanism to ensure up-to-date data on all nodes and is run by the administrators
manually.

Features of Cassandra

In order to keep this chapter short, the following bullet list covers the great features
provided by Cassandra:

* Written in Java and hence providing native Java support

* Blend of Google BigTable and Amazon Dynamo

* Flexible schemaless column-family data model

* Support for structured and unstructured data

* Decentralized, distributed peer-to-peer architecture

* Multi-data center and rack-aware data replication

* Location transparent

* Cloud enabled

* Fault-tolerant with no single point of failure

* An automatic and transparent failover

* Elastic, massively, and linearly scalable

*  Online node addition or removal

* High Performance

* Built-in data compression

*  Built-in caching layer

*  Write-optimized

* Tunable consistency providing choices from very strong consistency to
different levels of eventual consistency

* Provision of Cassandra Query Language (CQL), a SQL-like language
imitating INSERT, UPDATE, DELETE, SELECT syntax of SQL

*  Open source and community-driven

[25]

www.it-ebooks.info


http://www.it-ebooks.info/

Bird's Eye View of Cassandra

Summary

In this chapter, we have gone through a bit of history starting from the 1970s. We
were in total control of the data models that were rather stable and the applications
that were pretty simple. The relational databases were a perfect fit in the old days.
With the emergence of object-oriented programming and the explosion of the web
applications on the pervasive Internet, the nature of the data has been extended from
structured to semi-structured and unstructured. Also, the application has become
more complex. The relational databases could not be perfect again. The concept of
Big Data was created to describe such challenges and NoSQL databases provide an
alternative resolution to the relational databases.

NoSQL databases are of a wide variety. They provide some common benefits
and can be classified by the NoSQL database type. Apache Cassandra is one of
the NoSQL databases that is a blend of Google BigTable and Amazon Dynamo.
The elegance of its architecture inherits from the DNA of these two parents.

In the next chapter, we will look at the flexible data model supported by Cassandra.

[26]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

In this chapter, we will open the door to the world of Cassandra data modeling.
We will briefly go through its building blocks, the main differences to the relational
data model, and examples of constructing queries on a Cassandra data model.

Cassandra describes its data model components by using the terms that are inherited
from the Google BigTable parent, for example, column family, column, row, and so
on. Some of these terms also exist in a relational data model. They, however, have
completely different meanings. It often confuses developers and administrators who
have a background in the relational world. At first sight, the Cassandra data model is
counterintuitive and very difficult to grasp and understand.

In the relational world, you model the data by creating entities and associating them
with relationships according to the guidelines governed by the relational theories.

It means that you can solely concentrate on the logical view or structure of the data
without any considerations of how the application accesses and manipulates the
data. The objective is to have a stable data model complying with the relational
guidelines. The design of the application can be done separately. For instance, you
can answer different queries by constructing different SQL statements, which is not
of your concern during data modeling. In short, relational data modeling is process
oriented, based on a clear separation of concerns.

On the contrary, in Cassandra, you reverse the above steps and always start from what
you want to answer in the queries of the application. The queries exert a considerable
amount of influence on the underlying data model. You also need to take the physical
storage and the cluster topology into account. Therefore, the query and the data model
are twins, as they were born together. Cassandra data modeling is result oriented
based on a clear understanding of how a query works internally in Cassandra.

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Owing to the unique architecture of Cassandra, many simple things in a relational
database, such as sequence and sorting, cannot be presumed. They require your
special handling in implementing the same. Furthermore, they are usually design
decisions that you need to make upfront in the process of data modeling. Perhaps
it is the cost of the trade-off for the attainment of superb scalability, performance,
and fault tolerance.

To enjoy reading this book, you are advised to temporarily think in both relational
and NoSQL ways. Although you may not become a friend of Cassandra, you will
have an eye-opening experience in realizing the fact that there exists a different way
of working in the world.

What is unique to the Cassandra data
model?

If you want me to use just one sentence to describe Cassandra's data model, I will
say it is a non-relational data model, period. It implies that you need to forget the
way you do data modeling in a relational database.

You focus on modeling the data according to relational theories. However, in
Cassandra and even in other NoSQL databases, you need to focus on the application
in addition to the data itself. This means you need to think about how you will query
the data in the application. It is a paradigm shift for those of you coming from the
relational world. Examples are given in the subsequent sections to make sure that you
understand why you cannot apply relational theories to model data in Cassandra.

Another important consideration in Cassandra data modeling is that you need

to take the physical topology of a Cassandra cluster into account. In a relational
database, the primary goal is to remove data duplication through normalization to
have a single source of data. It makes a relational database ACID compliant very
easily. The related storage space required is also optimized. Conversely, Cassandra
is designed to work in a massive-scale, distributed environment in which ACID
compliance is difficult to achieve, and replication is a must. You must be aware of
such differences in the process of data modeling in Cassandra.

[28]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Map and SortedMap

In Chapter 1, Bird's Eye View of Cassandra, you learned that Cassandra's storage

model is based on BigTable, a column-oriented store. A column-oriented store is a
multidimensional map. Specifically, it is a data structure known as Map. An example
of the declaration of map data structure is as follows:

Map<RowKey, SortedMap<ColumnKey, ColumnValues>>

The Map data structure gives efficient key lookup, and the sorted nature provides
efficient scans. RowKey is a unique key and can hold a value. The inner sortedMap
data structure allows a variable number of ColumnKey values. This is the trick that
Cassandra uses to be schemaless and to allow the data model to evolve organically
over time. It should be noted that each column has a client-supplied timestamp
associated, but it can be ignored during data modeling. Cassandra uses the
timestamp internally to resolve transaction conflicts.

In a relational database, column names can be only strings and be stored in the table
metadata. In Cassandra, both RowKey and ColumnKey can be strings, long integers,
Universal Unique IDs, or any kind of byte arrays. In addition, Columnkey is stored
in each column. You may opine that it wastes storage space to repeatedly store the
Columnkey values. However, it brings us a very powerful feature of Cassandra.
RowKey and ColumnKey can store data themselves and not just in Columnvalue.

We will not go too deep into this at the moment; we will revisit it in later chapters.

Universal Unique ID

Universal Unique ID (UUID) is an Internet Engineering Task
. Force (IETF) standard, Request for Comments (RFC) 4122, with
% the intent of enabling distributed systems to uniquely identify
e information without significant central coordination. It is a 128-bit
number represented by 32 lowercase hexadecimal digits, displayed
in five groups separated by hyphens, for example: 0a317b38-
53bf-4cad-a2c9-4c5b8e7806a2

Logical data structure

There are a few logical building blocks to come up with a Cassandra data model.
Each of them is introduced as follows.

[29]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Column

Column is the smallest data model element and storage unit in Cassandra. Though
it also exists in a relational database, it is a different thing in Cassandra. As shown
in the following figure, a column is a name-value pair with a timestamp and an
optional Time-To-Live (TTL) value:

Column

Value

Timestamp

TTL

The elements of a column

The name and the value (ColumnKey and Columnvalue in SortedMap respectively)
are byte arrays, and Cassandra provides a bunch of built-in data types that influence
the sort order of the values. The timestamp here is for conflict resolution and is
supplied by the client application during a write operation. Time-To-Live is an
optional expiration value used to mark the column deleted after expiration. The
column is then physically removed during compaction.

Row

One level up is a row, as depicted in the following figure. It is a set of orderable
columns with a unique row key, also known as a primary key:

Column

The structure of a row

[30]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

The row key can be any one of the same built-in data types as those for columns. What
orderable means is that columns are stored in sorted order by their column names.

Sort order is extremely important because Cassandra cannot
3 sort by value as we do in a relational database.

Different names in columns are possible in different rows. That is why Cassandra

is both row oriented and column oriented. It should be remarked that there is no
timestamp for rows. Moreover, a row cannot be split to store across two nodes in the
cluster. It means that if a row exists on a node, the entire row exists on that node.

Column family

The next level up is a column family. As shown in the following figure, it is a
container for a set of rows with a name:

Column Family

Row Key Column Column Column

Column

Column Column

Column Column Column

Column Column

The structure of a column family

The row keys in a column family must be unique and are used to order rows. A
column family is analogous to a table in a relational database, but you should not
go too far with this idea. A column family provides greater flexibility by allowing
different columns in different rows. Any column can be freely added to any column
family at any time. Once again, it helps Cassandra be schemaless.

[31]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Columns in a column family are sorted by a comparator. The comparator determines
how columns are sorted and ordered when Cassandra returns the columns in a
query. It accepts long, byte and UTFS for the data type of the column name, and the
sort order in which columns are stored within a row.

Physically, column families are stored in individual files on a disk. Therefore, it is
important to keep related columns in the same column family to save disk I/O and
improve performance.

Keyspace

The outermost data model element is keyspace, as illustrated in the following figure:

Keyspace

The structure of a keyspace

Keyspace is a set of column families and super column families, which will be
introduced in the following section. It is analogous to a schema or database in
the relational world. Each Cassandra instance has a system keyspace to keep
system-wide metadata.

Keyspace contains replication settings controlling how data is distributed and
replicated in the cluster. Very often, one cluster contains just one keyspace.

[32]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Super column and super column family

As shown in the following figure, a super column is a named map of columns and a
super column family is just a collection of super columns:

Super Column
m Column
| Name |

Column

Super Column Family

; Super Super
:

The structure of a super column and a super column family

Super columns were popular in the earlier versions of Cassandra but are not
recommended anymore since they are not supported by the Cassandra Query
Language (CQL), a SQL-like language to manipulate and query Cassandra,
and must be accessed by using the low-level Thrift API. A column family is
enough in most cases.

Thrift

Thrift is a software framework for the development of scalable
cross-language services. It combines a software stack with a code
*  generation engine to build services that work efficiently and seamlessly
with numerous programming languages. It is used as a remote
procedure call (RPC) framework and was developed at Facebook Inc.
It is now an open source project in the Apache Software Foundation.

There are other alternatives, for example, Protocol Buffers, Avro,
MessagePack, JSON, and so on.

[33]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Collections

Cassandra allows collections, namely sets, lists, and maps, as parts of the data model.
Collections are a complex type that can provide flexibility in querying.

Cassandra allows the following collections:

* Sets: These provide a way of keeping a unique set of values. It means that
one can easily solve the problem of tracking unique values.

* Lists: These are suitable for maintaining the order of the values in the
collection. Lists are ordered by the natural order of the type selected.

* Maps: These are similar to a store of key-value pairs. They are useful for
storing table-like data within a single row. They can be a workaround of
not having joins.

Here we only provided a brief introduction, and we will revisit the collections in
subsequent chapters.

No foreign key

Foreign keys are used in a relational database to maintain referential integrity that
defines the relationship between two tables. They are used to enforce relationships in
a relational data model such that the data in different but related tables can be joined
to answer a query. Cassandra does not have the concept of referential integrity and
hence, joins are not allowed either.

No join

Foreign keys and joins are the product of normalization in a relational data model.
Cassandra has neither foreign keys nor joins. Instead, it encourages and performs
best when the data model is denormalized.

Indeed, denormalization is not completely disallowed in the relational world, for
example, a data warehouse built on a relational database. In practice, denormalization
is a solution to the problem of poor performance of highly complex relational queries
involving a large number of table joins.

[ In Cassandra, denormalization is normal. ]

Foreign keys and joins can be avoided in Cassandra with proper data modeling.

[34]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

No sequence

In a relational database, sequences are usually used to generate unique values for
a surrogate key. Cassandra has no sequences because it is extremely difficult to
implement in a peer-to-peer distributed system. There are however workarounds,
which are as follows:

* Using part of the data to generate a unique key
* Usinga UUID

In most cases, the best practice is to select the second workaround.

Counter

A counter column is a special column used to store a number that keeps counting
values. Counting can be either increment or decrement and timestamp is not required.

The counter column should not be used to generate surrogate keys. It is just designed
to hold a distributed counter appropriate for distributed counting. Also bear in mind
that updating a counter is not idempotent.

Idempotent

Idempotent was originally a term in mathematics. But in computer

%%‘ science, idempotent is used more comprehensively to describe an
operation that will produce the same results if executed once or
multiple times.

Time-To-Live

Time-To-Live (TTL) is set on columns only. The unit is in seconds. When set on a
column, it automatically counts down and will then be expired on the server side
without any intervention of the client application.

Typical use cases are for the generation of security token and one-time token,
automatic purging of outdated columns, and so on.

[35]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Secondary index

One important thing you need to remember is that the secondary index in
Cassandra is not identical to that in a relational database. The secondary index in
Cassandra can be created to query a column that is not a part of the primary key.
A column family can have more than one secondary index. Behind the scenes, it
is implemented as a separate hidden table which is maintained automatically by
Cassandra's internal process.

The secondary index does not support collections and cannot be created on the
primary key itself. The major difference between a primary key and a secondary
index is that the former is a distributed index while the latter is a local index. The
primary key is used to determine the node location and so, for a given row key, its
node location can be found immediately. However, the secondary index is used just
to index data on the local node, and it might not be possible to know immediately
the locations of all matched rows without having examined all the nodes in the
cluster. Hence, the performance is unpredictable.

More information on secondary keys will be provided as we go through the
later chapters.

Modeling by query

In the previous section, we gained a basic understanding of the differences between a
relational database and Cassandra. The most important difference is that a relational
database models data by relationships whereas Cassandra models data by query.
Now let us start with a simple example to look into what modeling by query means.

Relational version

The following figure shows a simple relational data model of a stock quote application:

[36]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

stock_symbol

[ symbol description exchange
AAPL Apple Inc. NASDAQ
FB Facebook, Inc. NASDAQ

stock_ticker

L—> symbol tick_date open high low close volume
AAPL 2014-04-24 568.21 570.00 560.73 567.77 | 27092600
FB 2014-04-24 63.60 63.65 59.77 60.87 | 138520000
AAPL 2014-04-25 564.53 571.99 563.96 571.94 | 13922800
FB 2014-04-25 59.97 60.01 57.57 57.71 | 92288700

The relational data model of a stock quote application (Source: Yahoo! Finance)

The stock_symbol table is an entity representing the stock master information
such as the symbol of a stock, the description of the stock, and the exchange that the
stock is traded. The stock_ticker table is another entity storing the prices of open,
high, low, close, and the transacted volume of a stock on a trading day. Obviously
the two tables have a relationship based on the symbol column. It is a well-known
one-to-many relationship.

The following is the Data Definition Language (DDL) of the two tables:

CREATE TABLE stock symbol

(

symbol varchar PRIMARY KEY,
description varchar,

exchange wvarchar

)i

CREATE TABLE stock ticker
symbol varchar references

tick date varchar
open decimal,
high decimal,

low decimal,
close decimal,
volume bigint,

PRIMARY KEY (symbol,

)i

’

(

stock symbol (symbol) ,

tick date)

[37]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Consider the following three cases: first, we want to list out all stocks and their
description in all exchanges. The SQL query for this is very simple:

// Query A
SELECT symbol, description, exchange

FROM stock symbol;

Second, if we want to know all the daily close prices and descriptions of the stocks
listed in the NASDAQ exchange, we can write a SQL query as:

// Query B

SELECT stock symbol.symbol, stock symbol.description,
stock ticker.tick date, stock ticker.close

FROM stock_symbol, stock_ticker

WHERE stock symbol.symbol = stock ticker.symbol

AND stock symbol.exchange = ''NASDAQ'';

Furthermore, if we want to know all the day close prices and descriptions of the stocks
listed in the NASDAQ exchange on April 24, 2014, we can use the following SQL query:

// Query C

SELECT stock symbol.symbol, stock symbol.description,
stock ticker.tick date, stock ticker.open,
stock_ticker.high, stock_ticker.low, stock_ticker_close,
stock ticker.volume

FROM stock_symbol, stock_ticker

WHERE stock symbol.symbol = stock ticker.symbol

AND stock symbol.exchange = ''NASDAQ''

AND stock ticker.tick date = ''2014-04-24"'";

By virtue of the relational data model, we can simply write different SQL queries to
return different results with no changes to the underlying data model at all.

Cassandra version

Now let us turn to Cassandra. The DDL statements in the last section can be slightly
modified to create column families, or tables, in Cassandra, which are as follows:

CREATE TABLE stock symbol (
symbol varchar PRIMARY KEY,
description varchar,
exchange varchar

)i

CREATE TABLE stock ticker (
symbol wvarchar,

[38]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

tick date varchar,

open decimal,

high decimal,

low decimal,

close decimal,

volume bigint,

PRIMARY KEY (symbol, tick date)
) ;

They seem to be correct at first sight.

As for Query A, we can query the Cassandra stock_symbol table exactly the
same way:

// Query A
SELECT symbol, description, exchange
FROM stock symbol;

The following figure depicts the logical and physical storage views of the
stock symbol table:

stock_symbol

RowKey description exchange
AAPL Apple Inc. NASDAQ
FB Facebook, Inc. NASDAQ
RowKey: AAPL

=> (name=, value=, timestamp-=...)
=> (name=description, value=4170706c6520496e632e, timestamp=...)
=>(name=exchange, value=4e4153444151, timestamp=...)

RowKey: FB

=>(name=, value=, timestamp-=...)

=> (hame=description, value=46616365626f6f6b2c20496e632¢, timestamp=...)
=> (name=exchange, value=4e4153444151, timestamp=...)

The Cassandra data model for Query A

The primary key of the stock_symbol table involves only one single column,
symbol, which is also used as the row key and partition key of the column family.
We can consider the stock_symbol table in terms of the SortedMap data structure
mentioned in the previous section:

Map<RowKey, SortedMap<ColumnKey, ColumnValues>>

[39]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

The assigned values are as follows:

RowKey=AAPL
ColumnKey=description
ColumnvValue=Apple Inc.
ColumnKey=exchange
ColumnValue=NASDAQ

So far so good, right?

However, without foreign keys and joins, how can we obtain the same results for
Query Band Query C in Cassandra? It indeed highlights that we need another way
to do so. The short answer is to use denormalization.

For guery B, what we want is all the day close prices and descriptions of the stocks
listed in the NASDAQ exchange. The columns involved are symbol, description,
tick date, close, and exchange. The first four columns are obvious, but why do
we need the exchange column? The exchange column is necessary because it is used
as a filter for the query. Another implication is that the exchange column is required
to be the row key, or at least part of the row key.

Remember two rules:

1. Arow key is regarded as a partition key to locate the nodes storing that row

2. A row cannot be split across two nodes

In a distributed system backed by Cassandra, we should minimize unnecessary
network traffic as much as possible. In other words, the lesser the number of nodes
the query needs to work with, the better the performance of the data model. We must
cater to the cluster topology as well as the physical storage of the data model.

Therefore we should create a column family for Query B similar to the previous one:

// Query B

CREATE TABLE stock ticker by exchange (
exchange wvarchar,

symbol wvarchar,

description varchar,

tick date varchar,

close decimal,

PRIMARY KEY (exchange, symbol, tick date)
) ;

[40]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

The logical and physical storage views of stock_ticker by exchange are shown
as follows:

stock_ticker_by_exchange

RowKey AAPL:2014- AAPL:2014- AAPL:2014- AAPL:2014- AAPL:2014- AAPL:2014-
04-24: 04-24.close 04- 04-25: 04-25.close 04-
24-description 25:description
NASDAQ 0 568.21 Apple Inc. 0 571.94 | Applelnc.
FB:2014-04- FB:2014-04- FB-2014-04- FB-2014-04- FB-2014-04- FB-2014-04-
24 24-close 24-description 25 25:close 25:description
0 60.87 Facebook 0 57.71 Facebook
, Inc. , Inc.

RowKey: NASDAQ

=> (name=AAPL:2014-04-24:, value=, timestamp=...)

=> (name=AAPL:2014-04-24:close, value=0000000200ddc9, timestamp=...)

=> (name=AAPL:2014-04-24:description, value=4170706c6520496e632¢, timestamp=...)
=> (name=AAPL:2014-04-25:, value=, timestamp=...)

=> (name=AAPL:2014-04-25:close, value=0000000200df6a, timestamp=...)

=> (name=AAPL:2014-04-25:description, value=4170706c6520496e632¢, timestamp-=...)
=» (name=FB:2014-04-24:, value=, timestamp=...)

=>» (name=FB:2014-04-24:close, value=0000000217c7, timestamp=...)

=> (name=FB:2014-04-24:description, value=46616365626f6f6b2c20496e632e,
timestamp=...)

=» (name=FB:2014-04-25:, value=, timestamp=...)

=> (name=FB;2014-04-25:close, value=00000002168h, timestamp=...)

=> (name=FB;2014-04-25:description, value=46616365626T6f6h2c20496e632¢,
timestamps=...)

The Cassandra data model for Query B

The row key is the exchange column. However, this time, it is very strange that the
column keys are no longer symbol, tick_date, close, and description. There

are now 12 columns including APPL.: 2014-04-24:, APPL:2014-04-24:close,
APPL:2014-04-24:description, APPL:2014-04-25:, APPL:2014-04-25:close,
APPL:2014-04-25:description, FB:2014-04-24:, FB:2014-04-24:close,
FB:2014-04-24:description, FB:2014-04-25:, FB:2014-04-25:close, and
FB:2014-04-25:description, respectively. Most importantly, the column keys are
now dynamic and are able to store data in just a single row. The row of this dynamic
usage is called a wide row, in contrast to the row containing static columns of the
stock_symbol table—termed as a skinny row.

[41]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Whether a column family stores a skinny row or a wide row depends on how the
primary key is defined.

If the primary key contains only one column, the row is a skinny row.

If the primary key contains more than one column, it is called a

compound primary key and the row is a wide row.

In either case, the first column in the primary key definition is the row key.

Finally, we come to Query c. Similarly, we make use of denormalization. Query ¢
differs from Query B by an additional date filter on April 24, 2014. You might think of
reusing the stock_ticker by exchange table for Query c. The answer is wrong. Why?
The clue is the primary key which is composed of three columns, exchange, symbol,
and tick_date, respectively. If you look carefully at the column keys of the stock
ticker by exchange table, you find that the column keys are dynamic as a result of the
symbol and tick_date columns. Hence, is it possible for Cassandra to determine the
column keys without knowing exactly which symbols you want? Negative.

A suitable column family for Query ¢ should resemble the following code:

// Query C

CREATE TABLE stock ticker by exchange date (
exchange varchar,

symbol varchar,

description varchar,

tick _date varchar,

close decimal,

PRIMARY KEY ((exchange, tick date), symbol)
) ;

This time you should be aware of the definition of the primary key. It is interesting
that there is an additional pair of parentheses for the exchange and tick date
columns. Let's look at the logical and physical storage views of stock_ticker by
exchange_date, as shown in the following figure:

[42]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

stock_ticker_by_exchange_date

RowKey AAPL AAPL close AAPL descripti FB: FB:close FB:description
on
NASDAQ: 0 567.77 | Applelnc. 0 60.87 Facebook
2014-04- , Inc.
24

RowKey: NASDAQ:2014-04-24

=> (name=AAPL:, value=, timestamp=...)

=> (name=AAPL:close, value=0000000200ddc9, timestamp-=...)

=> (name=AAPL:description, value=4170706c6520496e632¢, timestamp-=...)

=» (name=FB:, value=, timestamp=...)

=> (name=FB:close, value=0000000217c7, timestamp=...)

=> (name=FB:description, value=46616365626f6f6h2c20496e632e, timestamp=...)

The Cassandra data model for Query C

You should pay attention to the number of column keys here. It is only six instead of
12 asin stock_ticker_by_ exchange for Query B.The column keys are still dynamic
according to the symbol column but the row key is now NASDAQ:2014-04-24 instead
of just NASDAQ in Query B. Do you remember the previously mentioned additional
pair of parentheses? If you define a primary key in that way, you intend to use more
than one column to be the row key and the partition key. It is called a composite
partition key. For the time being, it is enough for you to know the terminology only.
Further information will be given in later chapters.

Until now, you might have felt dizzy and uncomfortable, especially for those of

you having so many years of expertise in the relational data model. I also found

the Cassandra data model very difficult to comprehend at the first time. However,
you should be aware of the subtle differences between a relational data model and
Cassandra data model. You must also be very cautious of the query that you handle.
A query is always the starting point of designing a Cassandra data model. As an
analogy, a query is a question and the data model is the answer. You merely use

the data model to answer the query. It is exactly what modeling by query means.

[43]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

Data modeling considerations

Apart from modeling by query, we need to bear in mind a few important points
when designing a Cassandra data model. We can also consider a few good patterns
that will be introduced in this section.

Data duplication

Denormalization is an evil in a relational data model, but not in Cassandra. Indeed,
itis a good and common practice. It is solely based on the fact that Cassandra does
not use high-end disk storage subsystem. Cassandra loves commodity-grade hard
drives, and hence disk space is cheap. Data duplication as a result of denormalization
is by no means a problem anymore; Cassandra welcomes it.

Sorting
In a relational database, sorting can be easily controlled using the ORDER BY clause in

a SQL query. Alternatively, a secondary index can be created to further speed up the
sorting operations.

In Cassandra, however, sorting is by design because you must determine how to
compare data for a column family at the time of its creation. The comparator of the
column family dictates how the rows are ordered on reads. Additionally, columns
are ordered by their column names, also by a comparator.

Wide row

It is common to use wide rows for ordering, grouping and efficient filtering.
Besides, you can use skinny rows. All you have to consider is the number of
columns the row contains.

It is worth noting that for a column family storing skinny rows, the column key is
repeatedly stored in each column. Although it wastes some storage space, it is not
a problem on inexpensive commodity hard disks.

Bucketing

Even though a wide row can accommodate up to 2 billion variable columns, it is still
a hard limit that cannot prevent voluminous data from filling up a node. In order to

break through the 2 billion column limit, we can use a workaround technique called
bucketing to split the data across multiple nodes.

[44]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Bucketing requires the client application to generate a bucket ID, which is often a
random number. By including the bucket ID into a composite partition key, you can
break up and distribute segments of the data to different nodes. However, it should
not be abused. Breaking up the data across multiple nodes causes reading operations
to consume extra resources to merge and reorder data. Thus, it is expensive and not a
favorable method, and therefore should only be a last resort.

Valueless column

Column keys can store values as shown in the Modeling by query section. There is no
"Not Null" concept in Cassandra such that column values can store empty values
without any problem. Simply storing data in column keys while leaving empty
values in the column, known as a valueless column, is sometimes used purposely.
It's a common practice with Cassandra.

One motivation for valueless columns is the sort-by-column-key feature of Cassandra.
Nonetheless, there are some limitations and caveats. The maximum size of a column
key is 64 KB, in contrast to 2 GB for a column value. Therefore, space in a column

key is limited. Furthermore, using timestamp alone as a column key can result in
timestamp collision.

Time-series data

What is time-series data? It is anything that varies on a temporal basis such as
processor utilization, sensor data, clickstream, and stock ticker. The stock quote

data model introduced earlier is one such example. Cassandra is a perfect fit for
storing time-series data. Why? Because one row can hold as many as 2 billion
variable columns. It is a single layout on disk, based on the storage model. Therefore,
Cassandra can handle voluminous time-series data in a blazing fast fashion. TTL is
another excellent feature to simplify data housekeeping.

In the second half of this book, a complete stock quote technical analysis application
will be developed to further explain the details of using Cassandra to handle
time-series data.

Cassandra Query Language

It is quite common for other authors to start introducing the Cassandra data
model from CQL. I use a different approach in this chapter. I try to avoid diving
too deep in CQL before we have a firm understanding of how Cassandra handles
its physical storage.

[45]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra Data Modeling

The syntax of CQL is designed to be very similar to that of SQL. This intent is good
for someone who is used to writing SQL statements in the relational world, to migrate
to Cassandra. However, because of the high degree of similarity between CQL and
SQL, it is even more difficult for us to throw away the relational mindsets if CQL is
used to explain how to model data in Cassandra. It might cause more confusion in
the end. I prefer the approach of a microscopic view of how the data model relates

to the physical storage. By doing so, you can grasp the key points more quickly and
understand the inner working mechanism more clearly. CQL is covered extensively
in the next chapter.

Summary

In this chapter, we looked at the basics of a Cassandra data model and are now familiar
with the column, row, column family, keyspace, counter, and other related terms. A
comparison of the main differences between a relational data model and the Cassandra
data model was also given to explain the concept of modeling by query that may seem
shocking and counterintuitive at first sight. Then a few important considerations on
data modeling and typical usage patterns were introduced. Finally, the reason why the
introduction of CQL is deliberately postponed was expressed.

This chapter is only the first part on Cassandra data modeling. In the next chapter,
we will continue the second part of the tour, Cassandra Query Language.

[46]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

In this chapter, we will have an overview of Cassandra Query Language and take

a detailed look into the wealthy set of data types supported by Cassandra. We will
walk through the data types to study what their internal storage structure looks like.
If you want to know how Cassandra implements them behind the scenes, the Java
source code of Cassandra can be referenced. For those of you who have not installed
and set up Cassandra, you can refer to Chapter 5, First-cut Design and Implementation,
for a quick procedure.

Introduction to CQL

Cassandra introduced Cassandra Query Language (CQL) in release 0.8 as a SQL-like
alternative to the traditional Thrift RPC API. As of the time of this writing, the latest
CQL version is 3.1.7. I do not want to take you through all of its old versions and
therefore, I will focus on version 3.1.7 only. It should be noted that CQL Version 3

is not backward compatible with CQL Version 2 and differs from it in many ways.

CQL statements

CQL Version 3 provides a model very similar to SQL. Conceptually, it uses a table to
store data in rows of columns. It is composed of three main types of statements:

* Data definition statements: These are used to set and change how data is
stored in Cassandra

* Data manipulation statements: These are used to create, delete, and
modify data

* Query statements: These are used to look up data

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

CQL is case insensitive, unless the word is enclosed in double quotation marks. It
defines a list of keywords that have a fixed meaning for the language. It distinguishes
between reserved and non-reserved keywords. Reserved keywords cannot be used
as identifiers. They are truly reserved for the language. Non-reserved keywords only
have a specific meaning in certain contexts but can be used as identifiers. The list of
CQL keywords is shown in DataStax's documentation at http: //www.datastax.
com/documentation/cql/3.1/cgl/cqgl_reference/keywords r.html.

CQL command-line client — cqlsh

Cassandra bundles an interactive terminal supporting CQL, known as cqlsh. Itis
a Python-based command-line client used to run CQL commands. To start cqlsh,
navigate to Cassandra's bin directory and type the following:

* On Linux, type . /cglsh
*  On Windows, type cqlsh.bat or python cglsh

As shown in the following figure, cqlsh shows the cluster name, Cassandra, CQL,
and Thrift protocol versions on startup:

@S E kan@ubuntu: ~

kan@ubuntu:~$ cqlsh
Connected to Test Cluster at localhost:9160.

[cqlsh 4.1.1 | Cassandra 2.0.9 | CQL spec 3.1.1 | Thrift protocol 19.39.0]
Use HELP for help.
cqlsh> |

cqlsh connected to the Cassandra instance running on the local node

We can use cqlsh to connect to other nodes by appending the host (either hostname
or IP address) and port as command-line parameters.

If we want to create a keyspace called packt using SimpleStrategy (which will be
explained in Chapter 6, Enhancing a Version) as its replication strategy and setting the
replication factor as one for a single-node Cassandra cluster, we can type the CQL
statement, shown in the following screenshot, in cqlsh.

[48]

www.it-ebooks.info


http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/keywords_r.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/keywords_r.html
http://www.it-ebooks.info/

Chapter 3

This utility will be used extensively in this book to demonstrate how to use CQL to
define the Cassandra data model:

& ® 3 kan@ubunktu: ~

kan@ubuntu:~$ cqlsh
Connected to Test Cluster at localhost:9160.
[cqlsh 4.1.1 | Cassandra 2.0.9 | CQL spec 3.1.1 | Thrift protocol 19.39.0]

Use HELP for help.
cqlsh> CREATE KEYSPACE packt
WITH REPLICATION=
5 {'class':'SimpleStrategy', 'replication_factor':1};

cqlsh= |

Create keyspace packt in cqlsh

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http:/ /www.packtpub.com.
If you purchased this book elsewhere, you can visit http:/ / www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Native data types

CQL Version 3 supports many basic data types for columns. It also supports
collection types and all data types available to Cassandra. The following table
lists the supported basic data types and their corresponding meanings:

Type Description

ascii ASCII character string

bigint 64-bit signed long

blob Arbitrary bytes (no validation)

Boolean True or False

counter Counter column (64-bit signed value)

decimal Variable-precision decimal

double 64-bit IEEE 754 floating point

float 32-bit IEEE 754 floating point

inet An IP address that can be either 4 bytes long (IPv4) or 16 bytes long (IPv6)
and should be inputted as a string

int 32-bit signed integer

text UTF8 encoded string

[49]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

Type Description

timestamp | A timestamp in which string constants are allowed to input timestamps as
dates

timeuuid Type 1 UUID that is generally used as a "conflict-free" timestamp

uuid Type 1 or type 4 UUID

varchar UTF8-encoded string

varint Arbitrary-precision integer

Table 1. CQL Version 3 basic data types

Cassandra implementation

If we look into the Cassandra's Java source code, the CQL Version 3 native data
types are declared in an enum called Native in the org.apache.cassandra.cql3.
CQL3Type interface, as shown in the following screenshot:

\

public interface CQL3Type

{
public boolean isCollection();
public AbstractType<?> getType();

public enum Native implements CQL3Type

{
ASCII (AsciiType.instance),
BIGINT  (LongType.instance},
BLOB (BytesType.instance),
BOOLEAN (BooleanType.instance),
COUNTER  (CounterColumnType.instance),
DECIMAL (DecimalType.instance),
DOUBLE  (DoubleType.instance),
FLOAT (FloatType.instance),

INET (InetAddressType.instance),
INT (Int32Type.1instance),

TEXT (UTF8Type.instance),
TIMESTAMP(TimestampType.instance),
uuID (UWIDType.instance),

VARCHAR (UTF8Type.instance),
VARINT  (IntegerType.instance),
TIMEUUID (TimeUUIDType.instance);

() cassandra/CQL3Type. x

€ |8 GitHub, Inc. [US]|https://github.com/apache/cassandra/blob/trun

I

e

Cassandra source code declaring CQL Version 3 native data types

It is interesting to know that TEXT and VARCHAR are indeed both UTF8Type. The Java

classes of AsciiType, LongType, BytesType, DecimalType, and so on are declared in

the org.apache.cassandra.db.marshal package.

[50]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 3

Cassandra source code is available on GitHub at
s https://github.com/apache/cassandra.

Knowing the Java implementation of the native data types allows us to have a
deeper understanding of how Cassandra handles them. For example, Cassandra
uses the org.apache.cassandra.serializers.InetAddressSerializer class
and java.net.InetAddress class to handle the serialization/deserialization of
the INET data type.

A not-so-long example

These native data types are used in CQL statements to specify the type of data to be
stored in a column of a table. Now let us create an experimental table with columns
of each native data type (except counter type since it requires a separate table), and
then insert some data into it. We need to specify the keyspace, packt in this example,
before creating the table called table01, as shown in the following screenshot:

@S G kan@ubuntu: ~

kan@ubuntu:~$ cqlsh
Connected to Test Cluster at localhost:9168.
[cqlsh 4.1.1 | Cassandra 2.0.9 | CQL spec 3.1.1 | Thrift protocol 19.39.0]
Use HELP for help.
cqlsh> USE packt;
cqlsh:packt>
cqlsh:packt> CREATE TABLE table@®1 (
... rowkey ascii,

asciifield ascii,

bigintfield bigint,

blobfield blob,

booleanfield boolean,

decimalfield decimal,

doublefield double,

floatfield float,

inetfield inet,

intfield int,

textfield text,

timestampfield timestamp,

timeuuidfield timeuuid,

uuidfield wuid,

varcharfield varchar,

varintfield varint,

. PRIMARY KEY (rowkey)
aea MF

cqlsh:packt=>

Create table01 to illustrate each native data type

[51]

www.it-ebooks.info


https://github.com/apache/cassandra
http://www.it-ebooks.info/

CQL Data Types

We create the table using the default values, but, there are other options to configure
the new table for optimizations, including compaction, compression, failure handling,
and so on. The PRIMARY KEY clause, which is on only one column, could also be
specified along with an attribute, that is, rowkey ascii PRIMARY KEY. Then inserta
sample record into table0l. We make it with an INSERT statement, as shown in the
following screenshot:

® S kan@ubuntu: ~

cqlsh:packt> INSERT INTO table@i
... (rowkey, asciifield, bigintfield, blobfield, booleanfield,
000 decimalfield, doublefield, floatfield, inetfield, intfield,
5o textfield, timestampfield, timeuuidfield, uuidfield,
varcharfield, varintfield)
VALUES
('1', 'ABC', 1000000000, textAsBlob('ABC'), True,
1.0, 1.123456789, 1.123456, '192.168.0.1', 1,
"ABC', '2014-05-01 01:02:03', now(), uuid(),
'ABC', 1);

cqlsh:packt>
cqlsh:packt=>

Insert a sample record into table01

We now have data inside table01. We use cqlsh to query the table. For the sake of
comparison, we also use another Cassandra command-line tool called Cassandra CLI
to have a low-level view of the row. Let us open Cassandra CLI on a terminal.

Cassandra CLI utility

Cassandra CLI is used to set storage configuration attributes on
a per-keyspace or per-table basis. To start it up, you navigate to
Cassandra bin directory and type the following;:

%‘ ¢ OnlLlinux, ./cassandra-cli

¢  On Windows, cassandra.bat

Note that it was announced to be deprecated in Cassandra 3.0 and
cglsh should be used instead.

The results of the SELECT statement in cglsh and the 1ist command in Cassandra
CLI are shown in the following screenshot. We will then walk through each column
one by one:

[52]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

cqlsh:packt> SELECT * FROM table@i;

ABC | 1000000000 |
1.1235 | 1.1235 | 192.168.0.1 | ABC | 2014-05-01 01:02:
03+0800 | 84763d40-1ale-1le4-8449-2d63f07021c6 0903075-d9e1-404f-86dc-967042
eaieb | ABC | 1

(1 rows)

cqlsh:packt>

[default@packt] list table®i;
Using default limit of 180
Using default cell limit of 180

(name=, value=, timestamp=1406967910163000)
(name=asciifield, value=414243, timestamp=1406967910163000)
(name=bigintfield, value=000000003b%acadd, timestamp=1406967910163000)
(name=blobfield, value=414243, timestamp=1406967910163000)
(name=booleanfield, value=01, timestamp=1406967910163000)
(name=decimalfield, value=000000010a, timestamp=1406967910163000)
(name=doublefield, value=3ff1f9add3739636, timestamp=1406967910163000)
(name=floatfield, value=3f8fcd68, timestamp=1406967910163000)
(name=inetfield, value=c0ag80001, timestamp=1406967910163000)
(name=intfield, value=00000001, timestamp=1406967910163000)
(name=textfield, value=414243, timestamp=1406967910163000)
(name=timestampfield, value=00000145b395fef8, timestamp=1406967910163000)
=> (name=timeuuidfield, value=84763d401ale11e484492d63f07021c6, timestamp=140696
7910163000)
=> (name=uuidfield, value=60903075d9e1404f86dc9670f42ealdb, timestamp=1406967910
163000)
=> (name=varcharfield, value=414243, timestamp=1406967910163000)
=> (name=varintfield, value=01, timestamp=1406967910163000)

1 Row Returned.
Elapsed time: 32 msec(s).
[default@packt]

Comparison of the sample row in cqlsh and Cassandra CLI

ASCII

Internally, a data value 'ABC' is stored as the byte values in hexadecimal
representation of each individual character, 'A', 'B', and 'C' as 0x41, 0x42,
and 0x43 respectively.

[53]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

Bigint
This one is simple; the hexadecimal representation of the number 1000000000 is
0x000000003b%aca00 of 64-bit length stored internally.

BLOB

A BLOB data type is used to store a large binary object. In our previous example,
we inserted a text 'ABC' as a BLOB into the blobfield. The internal representation
is 414243, which is just a stream of bytes in hexadecimal representation.

Obviously, a BLOB field can accept all kinds of data, and because of this flexibility
it cannot have validation on its data value. For example, a data value 2 may be
interpreted as either an integer 2 or a text '2'. Without knowing the interpretation
we want, a BLOB field can impose a check on the data value.

Another interesting point of a BLOB field is that, as shown in the SELECT statement in
the previous screenshot in cqlsh, the data value of blobfield returned is 0x414243
for 'aBC' text. We know from the previous section that 0x41, 0x42, 0x43 are the byte
valuesof 'a', 'B', and 'C', respectively. However, for a BLOB field, cqlsh prefixes
its data value with ' 0x' to make it a so-called BLOB constant. A BLOB constant is a
sequence of bytes in their hexadecimal values prefixed by 0 [xX] (hex) + where hex is
a hexadecimal character, such as [0-9a-fA-F].

CQL also provides a number of BLOB conversion functions to convert native
data types into a BLOB and vice versa. For every <native-type> (except BLOB
for an obvious reason) supported by CQL, the <native-type>AsBlob function
takes an argument of type <native-type> and returns it as a BLOB. Contrarily,
the blobAs<Native-type> function reverses the conversion from a BLOB back
to a <native-type>. As demonstrated in the INSERT statement, we have used
textAsBlob () to convert a text data type into a BLOB.

BLOB constant

BLOB constants were introduced in CQL version 3.0.2 to allow users

to input BLOB values. In older versions of CQL, inputting BLOB as
%%‘ string was supported for convenience. It is now deprecated and will be

removed in a future version. It is still supported only to allow smoother

transition to a BLOB constant. Updating the client code to switch to

BLOB constants should be done as soon as possible.

[54]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Boolean

A boolean data type is also very intuitive. It is merely a single byte of either 0x00,
which means False, or 0x01, which means True, in the internal storage.

Decimal

A decimal data type can store a variable-precision decimal, basically a BigDecimal
data type in Java.

Double

The double data type is a double-precision 64-bit IEEE 754 floating point in its
internal storage.

Float

The float data type is a single-precision 32-bit IEEE 754 floating point in its
internal storage.

BigDecimal, double, or float?
The difference between double and float is obviously the length of
precision in the floating point value. Both double and float use binary
representation of decimal numbers with a radix which is in many cases
an approximation, not an absolute value. double is a 64-bit value
while f1loat is an even shorter 32-bit value. Therefore, we can say that

- double is more precise than float. However, in both cases, there is still a

% possibility of loss of precision which can be very noticeable when working
~ with either very big numbers or very small numbers.

On the contrary, BigDecimal is devised to overcome this loss of
precision discrepancy. It is an exact way of representing numbers. Its
disadvantage is slower runtime performance.

Whenever you are dealing with money or precision is a must,

BigDecimal is the best choice (or decimal in CQL native data types),
otherwise double or float should be good enough.

[55]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

Inet

The inet data type is designed for storing IP address values in IP Version 4 (IPv4)
and IP Version 6 (IPv6) format. The IP address, 192.168.0.1, in the example record
is stored as four bytes internally; 192 is stored as 0xc0, 168 as 0xa8, 0 as 0x00, and

1 as 0x01, respectively. It should be noted that regardless of the IP address being
stored is IPv4 or IPv6, the port number is not stored. We need another column to
store it if required.

We can also store an IPv6 address value. The following UPDATE statement changes
the inetfield to an IPv6 address 2001:0db8:85a3:0042:1000:8a2e:0370:7334,
as shown in the following screenshot:

1| ABC | 1000000000 | \ True | 1.0 |
1.1235 | 1.1235 | 192.168.0.1 | 1 ABC | 2014-05-01 01:02:
03+0800 | 84763d40-1ale-11le4-8449-2d63f07021c6 | 60903075-dSel-404F-86dc-9670F42
ea1eb | ABC | 1

(1 rows)

:packt>

:packt>

:packt> UPDATE table®1l SET inetfield = '2001:0db8:85a3:0042:1000:8a2e:0370:
WHERE rowkey = '1';

:packt> SELECT inetfield FROM table®i;

kan@ubuntu: ~

Using default limit of 100
Using default cell limit of 180

(name=, value=, timestamp=1406967910163000)
(name=asciifield, value=414243, timestamp=1406967910163000)
(name=bigintfield, value=000000003b9acadd, timestamp=1406967910163000)
(name=blobfield, value=414243, timestamp=1406967910163000)
(name=booleanfield, value=01, timestamp=1486967910163000)
(name=decimalfield, value=000000010a, timestamp=1406967910163000)
(name=doublefield, value=3ff1f9add3739636, timestamp=1406967910163000)
(name=floatfield, valu f8fcd68, timestam 406967910163000)
(name=inetfield, wvalue , timestamp=1406979926
0000001, timestamp=1406967910163000)
, value=414243, timestamp=1406967910163000)
e=timestampfield, value=00000145b395fef8, timestamp=1406967910163000)
(name=timeuuidfield, value=84763d40lalel1e484492d63f07021c6, timestamp=140696
7910163000)
=> (name=uuidfield, value=60903075d9e1404f86dc9670f42ealdb, timestamp=1406967910
163000)
=> (name=varcharfield, value=414243, timestamp=1406967910163000)
=> (name=varintfield, value=01, timestamp=1406967910163000)

1 Row Returned.
Elapsed time: 34 msec(s).
[default@packt]

Comparison of the sample row in cqlsh and Cassandra CLI in inetfield

[56]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Internet Protocol Version 6

Internet Protocol Version 6 (IPv6) is the latest version of the
Internet Protocol (IP). It was developed by the IETF to deal with
the long-anticipated problem of IPv4 address exhaustion.

% IPv6 uses a 128-bit address whereas IPv4 uses 32-bit address. The
= two protocols are not designed to be interoperable, making the
transition to IPv6 complicated.

IPv6 addresses are usually represented as eight groups of four
hexadecimal digits separated by colons, such as 2001 : 0db8:85a3
:0042:1000:8a2e:0370:7334.

In cqlsh, the leading zeros of each group of four hexadecimal digits are removed.
In Cassandra's internal storage, the IPv6 address value consumes 16 bytes.

Int

The int data type is a primitive 32-bit signed integer.

Text

The text data type is a UTF-8 encoded string accepting Unicode characters.

As shown previously, the byte values of "ABC", 0x41, 0x42, and 0x43, are stored
internally. We can test the text field with non-ASCII characters by updating the
textfield as shown in the following screenshot:

The text data type is a combination of non-ASCII and ASCII characters. The four
non-ASCII characters are represented as their 3-byte UTF-8 values, 0xe8b584,
0xe6ba90, 0xe68f90, and 0xe4be9b.

[57]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

However, the ASCII characters are still stored as byte values, as shown in the screenshot:

kan@ubuntu: ~

cqlsh:packt>

cqlsh:packt> UPDATE table®1 SET textfield='#5iRiZ{taBc’
... WHERE rowkey='1";

cqlsh:packt>

cqlsh:packt> SELECT textfield FROM table®1;

FE R ftasc
(1 rows)

cqlsh:packt>

(name=bigintfield, value=000000003b%acafd, timestamp=1406967910163000)
(name=blobfield, value=414243, timestamp=1406967910163000)
(name=booleanfield, value=01, timestamp=1486967910163000)
(name=decimalfield, value=000000010a, timestamp=1406967910163000)
(name=doublefield, value=3ff1f9add3739636, timestamp=1406967910163000)
(name=floatfield, value=3f8fcd68, timestamp=1406967910163000)
(name=inetfield, value=20010db885a3004210008a2e03707334, timestamp=1406979926

467000)

=> (name=intfield, value=00080001, timestamp=1406967910163000)

=> (name=textfield, value:, timestamp=140699983297

9008)

=> (name=timestampfield, value=00000145b395fef8, timestamp=1406967910163000)

=> (name=timeuuidfield, value=84763d401ale11e484492d63f07021c6, timestamp=148696

7910163000)

=> (name=uuidfield, value=60903075d9e1404f86dc9670T42ea10b, timestamp=1406967910

163000)

=> (name=varcharfield, value=414243, timestamp=1406967910163000)

=> (name=varintfield, value=81, timestamp=1406967910163000)

1 Row Returned.
Elapsed time: 128 msec(s).
[default@packt] [

Experiment of the textfield data type

[58]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Timestamp

The value of the timestampfield is encoded as a 64-bit signed integer representing
a number of milliseconds since the standard base time known as the epoch: January
1, 1970, at 00:00:00 GMT. A timestamp data type can be entered as an integer for
CQL input, or as a string literal in ISO 8601 formats. As shown in the following
screenshot, the internal value of May 1, 2014, 16:02:03, in the +08:00 timezone is
0x00000145b6cd£878 or 1,398,931,323,000 milliseconds since the epoch:

packt@ubuntu: ~

Using default limit of 100
Using default cell limit of 160

1
(name=, value=, timestamp=1416811483812312)
(name=asciifield, value=414243, timestamp=1416811483812312)
(name=bigintfield, value=000000003b%acad®, timestamp=1416811483812312)
(name=blobfield, value=414243, timestamp=1416811483812312)
(name=booleanfield, value=01, timestamp=1416811483812312)
(name=decimalfield, value=000000010a, timestamp=1416811483812312)
(name=doublefield, value=3ff1f9add3739636, timestamp=1416811483812312)
(name=floatfield, value=3f8fcd68, timestamp=1416811483812312)
(name=inetfield, value=cPa80001, timestamp=1416811483812312)
(name=intfield, value=P0EOOO01, timestamp=1416811483812312)
(name=textfield, value=414243, timestamp=1416811483812312)
=> (name=timestampfield, value:, timestamp=1416811483812312)
=> (name=timeuuidfield, value=5f96213073a511e4a62fa92bco056ee6, timestamp=141681
1483812312)
=> (name=uuidfield, value=62a866bal49bdeac8c9ef5400f52dfec, timestamp=1416811483
812312)
=> (name=varcharfield, value=414243, timestamp=1416811483812312)
=> (name=varintfield, value=01, timestamp=1416811483812312)

1 Row Returned.
Elapsed time: 90 msec(s).
[default@gpackt] |

Experiment of the timestamp data type

A timestamp data type contains a date portion and a time portion in which the time
of the day can be omitted if only the value of the date is wanted. Cassandra will use
00:00:00 as the default for the omitted time of day.

[59]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

ISO 8601

ISO 8601 is the international standard for representation of dates and
times. Its full reference number is ISO 8601:1988 (E), and its title is
"Data elements and interchange formats - Information interchange -
Representation of dates and times."

ISO 8601 describes a large number of date/time formats depending on
the desired level of granularity. The formats are as follows. Note that the
"T" appears literally in the string to indicate the beginning of the time
element.

*  Year: YYYY (e.g. 1997)
*  Year and month: YYYY-MM (e.g. 1997-07)
e Date: YYYY-MM-DD (e.g. 1997-07-16)

e Date plus hours and minutes: YYYY-MM-DDThh:mmTZD
(e.g. 1997-07-16T19:20+01:00)

*  Date plus hours, minutes and seconds: YYYY-MM-
DDThh:mm:ssTZD (e.g. 1997-07-16T19:20:30+01:00)

e Date plus hours, minutes, seconds and a decimal fraction
of a second: YYYY-MM-DDThh:mm:ss.sTZD (e.g. 1997-07-
16T19:20:30.45+01:00)

*  YYYY = four-digit year

* MM = two-digit month (01=January, etc.)

* DD = two-digit day of month (01 through 31)

¢ hh = two digits of hour (00 through 23) (am/pm NOT allowed)

* mm = two digits of minute (00 through 59)

* ss=two digits of second (00 through 59)

* s =one or more digits representing a decimal fraction of a second

* TZD = time zone designator (Z or +hh:mm or -hh:mm)
Times are expressed either in Coordinated Universal Time (UTC) with
a special UTC designator "Z" or in local time together with a time zone
offset in hours and minutes. A time zone offset of "+/-hh:mm" indicates

the use of a local time zone which is "hh" hours and "mm" minutes
ahead/behind of UTC.

If no time zone is specified, the time zone of the Cassandra coordinator node
handing the write request is used. Therefore the best practice is to specify the
time zone with the timestamp rather than relying on the time zone configured
on the Cassandra nodes to avoid any ambiguities.

[60]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Timeuuid

A value of the timeuuid data type is a Type 1 UUID which includes the time of its
generation and is sorted by timestamp. It is therefore ideal for use in applications
requiring conflict-free timestamps. A valid timeuuid uses the time in 100 intervals
since 00:00:00.00 UTC (60 bits), a clock sequence number for prevention of duplicates
(14 bits), and the IEEE 801 MAC address (48 bits) to generate a unique identifier, for
example, 74754ac0-el3f-11e3-a8a3-a92bc9056ees.

CQL v3 offers a number of functions to make the manipulation of timeuuid handy:

* dateOf(): This is used in a SELECT statement to extract the timestamp portion
of a timeuuid column

* now(): This is used to generate a new unique timeuuid

* minTimeuuid() and maxTimeuuid(): These are used to return a result
similar to a UUID given a conditional time component as its argument

* unixTimestampOf(): This is used in a SELECT statement to extract the
timestamp portion as a raw 64-bit integer timestamp of a t imeuuid column

The following figure uses timeuuidfield of table01l to demonstrate the usage of
these timeuuid functions:

@ ® G kan@ubuntu: ~

cqlsh:packt=
cqlsh: packt> SELECT now(), timeuuidfield, dateOf(timeuuidfield),
.. uanTlmestampOf{tlmeuutdfleld)
minTimeuuid(dateOf(timeuuidfield)),
maxTimeuuid(dateof(timeuuidfield))
FROM table01i;

f538c370-1a3e-11e4-8449-2d63707021c6 | 84763d40-1ale-11e4-8449-2d63707021c6 | 2
014-08-02 16:25:10+0800 | 1406967910164 | 84763d40-1ale-11e4-80
80-808080808080 | B476644f-lale-11ed-7f7f-TF7Ff7Ff7f7f7F

(1 rows)

cqlsh:packt>

Demonstration of timeuuid functions

[61]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

Timestamp or Timeuuid?

Timestamp is suitable for storing date and time values. TimeUUID,
/S however, is more suitable in those cases where a conflict free,
unique timestamp is needed.

uuiD

The vu1D data type is usually used to avoid collisions in values. It is a 16-byte value
that accepts a type 1 or type 4 UUID. CQL v3.1.6 or later versions provide a function
called uuid () to easily generate random type 4 UUID values.

Type 1 or type 4 UUID?

Type 1 uses the MAC address of the computer that is generating the
UUID data type and the number of 100-nanosecond intervals since the
. adoption of the Gregorian calendar, to generate UUIDs. Its uniqueness
% across computers is guaranteed if MAC addresses are not duplicated;
L however, given the speed of modern processors, successive invocations
on the same machine of a naive implementation of a type 1 generator
might produce the same UUID, negating the property of uniqueness.

Type 4 uses random or pseudorandom numbers. Therefore, it is the
recommended type of UUID to be used.

Varchar

Basically varchar is identical to text as evident by the same UTF8Type in the
source code.

Varint

A varint data type is used to store integers of arbitrary precision.

[62]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Counter

A counter data type is a special kind of column whose user-visible value is a 64-bit
signed integer (though this is more complex internally) used to store a number that
incrementally counts the occurrences of a particular event. When a new value is
written to a given counter column, it is added to the previous value of the counter.

A counter is ideal for counting things quickly in a distributed environment which
makes it invaluable for real time analytical tasks. The counter data type was
introduced in Cassandra Version 0.8. Counter column tables must use counter data
type. Counters can be stored in dedicated tables only, and you cannot create an index
on a counter column.

Counter type don'ts

* Don't assign the counter data type to a column that serves as the

M primary key
Q * Don't use the counter data type in a table that contains anything
other than counter data types and primary keys

* Don't use the counter data type to generate sequential numbers
for surrogate keys; use the timeuuid data type instead

We use a CREATE TABLE statement to create a counter table. However, INSERT
statements are not allowed on counter tables and so we must use an UPDATE
statement to update the counter column as shown in the following screenshot.

Cassandra uses counter instead of name to indicate that the column is of a counter
data type. The counter value is stored in the value of the column.

This is a very good article that explains the internals of how a counter works in a
distributed environment http://www.datastax.com/dev/blog/whats-new-in-
cassandra-2-1l-a-better-implementation-of-counters.

[63]

www.it-ebooks.info


http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-1-a-better-implementation-of-counters
http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-1-a-better-implementation-of-counters
http://www.it-ebooks.info/

CQL Data Types

The following screenshot shows that counter value is stored in the value of the column:

(1 rows)

cqlsh:packt> CREATE TABLE table®2 (
... rowkey ascii,
5o counterfield counter,
... PRIMARY KEY (rowkey)

saa 8
cqlsh:packt=
cqlsh:packt> UPDATE table®2 SET counterfield = counterfield + 1
o WHERE rowkey = '1';

cqlsh:packt=>
cqlsh:packt> SELECT * from table®2z;

cqlsh:packt> D
M S @ kan@ubuntu: ~

[default@packt]

[default@packt] list table@z;
Using default limit of 100
Using default cell 1imit of 100

=> (counter=counterfield, value=1)

1 Row Returned.
Elapsed time: 11 msec(s).
[default@packt]

Experiment of the counter data type

Collections

Cassandra also supports collections in its data model to store a small amount
of data. Collections are a complex type that can provide tremendous flexibility.
Three collections are supported: Set, List, and Map. The type of data stored in
each of these collections requires to be defined, for example, a set of timestamp
is defined as set<timestamp>, a list of text is defined as 1ist<text>, a map
containing a text key and a text value is defined as map<text, texts, and

so on. Also, only native data types can be used in collections.

Cassandra reads a collection in its entirety and the collection is not paged internally.
The maximum number of items of a collection is 64K and the maximum size of an
item is 64K.

[64]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

To better demonstrate the CQL support on these collections, let us create a table in
the packt keyspace with columns of each collection and insert some data into it, as
shown in the following screenshot:

cqlsh:packt> CREATE TABLE table®3 (
... rowkey ascii,
setfield set<text=,
listfield list<text=,
mapfield map<text, text=,
PRIMARY KEY (rowkey)
A H
cqlsh:packt=>
cqlsh:packt> INSERT INTO table®3
.. (rowkey, setfield, listfield, mapfield)
VALUES
('"1", {'Lemon','Orange', 'Apple'},
['Lemon','Orange', 'Apple’'],
o {'fruitl':'Apple', 'fruit3':'Orange’','fruit2': 'Lemon'});
cqlsh:packt=>
cqlsh:packt> SELECT * from table®3;

istfield | mapfield

1| ['Lemon', 'Orange', '"Apple'] | {'fruiti': 'Apple', 'fruit2': 'Lemon',
'fruit3': 'Orange'} | {'Apple', 'Lemon', 'Orange'}

(1 rows)

cqlsh:packt=> D

[default@packt] list table®3;
Using default limit of 108
Using default cell limit of 180

value=, timestamp=1406989055148000)
=> (name=1listfield:bfdabec®1a4f11e484492d63f07021c6, value=4c656d6T6e, timestamp
=1406989055148000)
=> (name=1listfield:bfdabec11a4f11e484492d63f07021c6, value=4f72616e6765, timesta
Mp=1406989055148000)
=> (name=1listfield:bfdabec21a4f11e484492d63f07021c6, value=4170706c65, timestamp
=1466989055148000)
=> (name=mapfield:667275697431, value=4170706c65, timestamp=1406989055148000)
=> e ie 67275697432, value=4c656d6f6e, timestamp=1406989055148000)
== e ie 667275697433, value=4f72616e6765, timestamp=1406989055148000)
=> timestamp=14069896055148000)
=> etfield:4c656d6f6e, value=, timestamp=1406989055148000)
=> (name=setfield:4f72616e6765, value=, timestamp=1406989055148000)

1 Row Returned.
Elapsed time: 87 msec(s).
[default@packt]

Experiment on collections

[65]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

How to update or delete a collection?

CQL also supports updation and deletion of elements in a collection.
% You can refer to the relevant information in DataStax's documentation

athttp://www.datastax.com/documentation/cql/3.1/cql/

cgl using/use collections c.html.

As in the case of native data types, let us walk through each collection below.

Set

CQL uses sets to keep a collection of unique elements. The benefit of a set is that
Cassandra automatically keeps track of the uniqueness of the elements and we,
as application developers, do not need to bother on it.

CQL uses curly braces ({ }) to represent a set of values separated by commas. An
empty set is simply { }. In the previous example, although we inserted the set as
{'Lemon', 'Orange', 'Apple'}, theinputorder was not preserved. Why?

The reason is in the mechanism of how Cassandra stores the set. Internally,
Cassandra stores each element of the set as a single column whose column name

is the original column name suffixed by a colon and the element value. As shown
previously, the ASCII values of 'Apple', 'Lemon', and 'Orange' are 0x4170706c65,
0x4c656d6f6e, and 0x4£72616e6765, respectively. So they are stored in three
columns with column names, setfield:4170706c65, setfield:4c656d6f6e, and
setfield:4£72616e6765. By the built-in order column-name-nature of Cassandra,
the elements of a set are sorted automatically.

List
A list is ordered by the natural order of the type selected. Hence it is suitable when
uniqueness is not required and maintaining order is required.

CQL uses square brackets ([1) to represent a list of values separated by commas.

An empty list is []. In contrast to a set, the input order of a list is preserved by
Cassandra. Cassandra also stores each element of the list as a column. But this time,
the columns have the same name composed of the original column name (1istfield
in our example), a colon, and a UUID generated at the time of update. The element
value of the list is stored in the value of the column.

[66]

www.it-ebooks.info


http://www.datastax.com/documentation/cql/3.1/cql/cql_using/use_collections_c.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_using/use_collections_c.html
http://www.it-ebooks.info/

Chapter 3

Map
A map in Cassandra is a dictionary-like data structure with keys and values. It is
useful when you want to store table-like data within a single Cassandra row.

CQL also uses curly braces ({ }) to represent a map of keys and values separated

by commas. Each key-value pair is separated by a colon. An empty map is simply
represented as { }. Conceivably, each key/value pair is stored in a column whose
column name is composed of the original map column name followed by a colon and
the key of that pair. The value of the pair is stored in the value of the column. Similar
to a set, the map sorts its items automatically. As a result, a map can be imagined as a
hybrid of a set and a list.

User-defined type and tuple type

Cassandra 2.1 introduces support for User-Defined Types (UDT) and tuple types.

User-defined types are declared at the keyspace level. A user-defined type simplifies
handling a group of related properties. We can define a group of related properties
as a type and access them separately or as a single entity. We can map our UDTs to
application entities. Another new type for CQL introduced by Cassandra 2.1 is the
tuple type. A tuple is a fixed-length set of typed positional fields without labels.

We can use user-defined and tuple types in tables. However, to support future
capabilities, a column definition of a user-defined or tuple type requires the frozen
keyword. Cassandra serializes a frozen value having multiple components into a
single value. This means we cannot update parts of a UDT value. The entire value
must be overwritten. Cassandra treats the value of a frozen UDT like a BLOB.

We create a UDT called contact in the packt keyspace and use it to define
contactfieldin table04. Moreover, we have another column, tuplefield,

to store a tuple in a row. Pay attention to the syntax of the INSERT statement for
UDT and tuple. For UDT, we may use a dotted notation to retrieve a component
of the UDT column, such as contactfield.facebook in our following example.
As shown in cassandra-cli, contactfield is stored as a single value,
00000001620000000163000000076440642e636£6d.

[67]

www.it-ebooks.info


http://www.it-ebooks.info/

CQL Data Types

The value concatenates each UDT component in sequence with the format, a length
of 4 bytes indicating the length of the component value and the component value
itself. So, for contactfield.facebook, 0x00000001 is the length and o0x62 is the
byte value of 'a'. Cassandra applies the same treatment to a tuple:

cqlsh:packt>
cqlsh:packt>
cqlsh:packt> CREATE TYPE contact (

... facebook text,

.. twitter text,

... email text
soa WP
cqlsh:packt>
cqlsh:packt> CREATE TABLE table@q (

.. rowkey ascii PRIMARY KEY,

.. contactfield frozen<contacts>,

... tuplefield frozen<tuple<int, text=>

soa NP
cqlsh:packt>
cqlsh:packt> INSERT INTO table@4 (rowkey, contactfield, tuplefield)

... VALUES ('a', {facebook:'b',twitter:'c',email: 'd@d.com'},
... (1,7e'));
cqlsh:packt>
cqlsh:packt> SELECT contactfield, contactfield.facebook, tuplefield FROM table®4

»

ntactfield

{facebook: 'b', twitter: 'c"', email: 'd@d.com'}
!ef}

(1 rows)
cqlsh:packt=

[default@packt]

[default@packt] list tableod4;
Using default limit of 100
Using default cell limit of 100

=> (name=, value=, timestamp=1414889697969626)

=> (name=contactfield, value=00000001620000000163000000076440642e636f6d, timesta
mp=1414889697969626)

=> (name=tuplefield, value=00000004000000010000000165, timestamp=141488969796962
6)

1 Row Returned.
Elapsed time: 86 msec(s).
[default@packt]

Experiment of user-defined and tuple types

[68]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Further information can be found at DataStax's documentation,
available at the following links: http://www.datastax.com/
documentation/cgl/3.1/cqgl/cgl using/cqlUseUDT.html
= * http://www.datastax.com/documentation/
developer/python-driver/2.1/python-driver/
reference/tupleTypes.html

Summary

This chapter is the second part of Cassandra data modeling. We have learned the
basics of Cassandra Query Language (CQL), which offers a SQL-like language to
implement a Cassandra data model and operate the data inside. Then a very detailed
walkthrough, with ample examples of native data types, more advanced collections,
and new user-defined and tuple types, was provided to help you know how to select
appropriate data types for your data models. The internal storage of each data type
was also explained to let you know how Cassandra implements its data types.

In the next chapter, we will learn another important element of a Cassandra
query —indexes.

[69]

www.it-ebooks.info


http://www.datastax.com/documentation/cql/3.1/cql/cql_using/cqlUseUDT.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_using/cqlUseUDT.html
http://www.datastax.com/documentation/developer/python-driver/2.1/python-driver/reference/tupleTypes.html
http://www.datastax.com/documentation/developer/python-driver/2.1/python-driver/reference/tupleTypes.html
http://www.datastax.com/documentation/developer/python-driver/2.1/python-driver/reference/tupleTypes.html
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

There is no doubt that Cassandra can store a gigantic volume of data effortlessly.
However, if we cannot efficiently look for what we want in such a data abyss, it
is meaningless. Cassandra provides very good support to search and retrieve the
desired data by the primary index and secondary index.

In this chapter, we will look at how Cassandra uses the primary index and the
secondary index to spotlight the data. After developing an understanding of
them, we can then design a high-performance data model.

Primary index

Cassandra is a column-based database. Each row can have different number of
columns. A cell is the placeholder of the value and the timestamp data is identified

by a row and column. Each cell can store values that are less than 2 GB. The rows are
grouped by partitions. The maximum number of cells per partition is limited to the
condition that the number of rows times the number of columns is less than 2 billion.
Each row is identified by a row key that determines which machine stores the row. In
other words, the row key determines the node location of the row. A list of row keys of
a table is known as a primary key. A primary index is just created on the primary key.

A primary key can be defined on a single column or multiple columns. In either case,
the first component of a table's primary key is the partition key. Each node stores

a data partition of the table and maintains its own primary key for the data that it
manages. Therefore, each node knows what ranges of row key it can manage and the
rows can then be located by scanning the row indexes only on the relevant replicas.
The range of the primary keys that a node manages is determined by the partition
key and a cluster-wide configuration parameter called partitioner. Cassandra
provides three choices to partitioner that will be covered later in this chapter.

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

A primary key can be defined by the CQL keywords PRIMARY KEY, with the column(s)
to be indexed. Imagine that we want to store the daily stock quotes into a Cassandra
table called dayquote01. The CREATE TABLE statement creates a table with a simple
primary key that involves only one column, as shown in the following screenshot:

@S E kan@ubuntu: ~

cqlsh:packt>

cqlsh:packt>

cqlsh: packt> CREATE TABLE dayquote®1 (
symbol wvarchar PRIMARY KEY,
exchange varchar,
price_time timestamp,

open_price float,
high_price float,
low_price float,
close_price float,
5 volume double

qaa A
cqlsh:packt= l

The symbol field is assigned the primary key of the dayquoteo1 table. This means
that all the rows of the same symbol are stored on the same node. Hence, this makes
the retrieval of these rows very efficient.

Alternatively, the primary key can be defined by an explicit PRIMARY KEY clause,
as shown in the following screenshot:

@ S @ kan@ubuntu: ~

cqlsh:packt=
cqlsh:packt> CREATE TABLE dayquote®2
T symbol wvarchar,
exchange varchar,
price_time timestamp,
open_price float,
high_price float,
low_price float,
close_price float,
volume double,
PRIMARY KEY (symbol)

noo AF
cqlsh:packt> l

[72]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Unlike relational databases, Cassandra does not enforce a unique constraint on the
primary key, as there is no primary key violation in Cassandra. An INSERT statement
using an existing row key is allowed. Therefore, in CQL, INSERT and UPDATE act in
the same way, which is known as UPSERT. For example, we can insert two records
into the table dayquote01 with the same symbol and no primary key violation is
alerted, as shown in the following screenshot:

® S kan@ubuntu: ~

cqlsh:packt>
cqlsh:packt> INSERT INTO dayquote®i
5 (exchange, symbol, price_time, open_price,
high_price, low_price, close_price, volume)
values
('"SEHK', '0001.HK', '2014-06-01 10:00:00', 11.1,
.. 12.2, 10.0, 10.9, 1000000.0);
cqlsh:packt>
cqlsh:packt> INSERT INTO dayquote®1
000 (exchange, symbol, price_time, open_price,
ooo high_price, low_price, close_price, volume)
soo values
caa ("SEHK', '0001.HK', '2014-05-31 10:00:00', 11.0,
12.0, 10.0, 11, 500000.0);
cqlsh:packt>
cqlsh:packt> SELECT * FROM dayquote®i;

symbol | close_price | exchange | high_price | low_price | open_price | price_
| volume
0001.HK | 11 | SEHK | 11 | 2014-0

5-31 10:00:00+0800 | 5e+05

(1 rows)

cqlsh:packt=

The returned query result contains only one row, not two rows as expected. This is
because the primary key is the symbol and the row in the latter INSERT statement
overrode the record that was created by the former INSERT statement. There is no
warning for a duplicate primary key. Cassandra simply and quietly updated the
row. This silent UPSERT behavior might sometimes cause undesirable effects in the
application logic.

M Hence, it is very important for an application developer to
Q handle duplicate primary key situations in the application logic.
Do not rely on Cassandra to check the uniqueness for you.

[73]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

In fact, the reason why Cassandra behaves like this becomes more clear when we
know how the internal storage engine stores the row, as shown by Cassandra CLI
in the following screenshot:

® S E kan@ubuntu: ~

[default@packt]

[default@packt] list dayquote®i;
Using default limit of 100
Using default cell 1imit of 100

RowkKey: 0001.HK
=> (name=, value=, timestamp=1407005232181000)
=> (name=close_price, value=41300000, timestamp=1407005232181000)

=> (name=exchange, value=5345484b, timestamp=1407085232181000)

=> (name=high_price, value=41400000, timestamp=1407005232181000)

=> (name=low_price, value=41200000, timestamp=1407005232181000)

=> (name=open_price, value=41300000, timestamp=1487005232181000)

=> (name=price_time, value=0000014650014900, timestamp=1407005232181000)
=> (name=volume, value=411e848000000000, timestamp=1407005232181000)

1 Row Returned.
Elapsed time: 23 msec(s).
[default@packt] [}

The row key is 0001 .HK. It is used to locate which node is used to store the row.
Whenever we insert or update the row of the same row key, Cassandra blindly
locates the row and modifies the columns accordingly, even though an INSERT
statement has been used.

Although a single column primary key is not uncommon, a primary key composed
of more than one column is much more practical.

Compound primary key and composite
partition key

A compound primary key is composed of more than one column. The order of the

columns is important. The structure of a compound primary key is depicted in the
following figure:

Partition Key Clustering Columns

[74]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Columns 1 to A are used as the partition key for Cassandra to determine the node
location for the partition. The remaining columns, columns B to N, are referred to as
the clustering columns for the ordering of data. The clustering columns are used to
locate a unique record in the data node. They are ordered, by default, and have the
ability to use the ORDER BY [DESC] clause in the SELECT statements. Moreover, we
can get the MIN or MAX values for clustering keys with the LIMIT 1 clause. We also
need to use the clustering columns for the predicates in a WHERE clause. We cannot
leave out one when trying to build a query.

To define a compound primary key, an explicit PRIMARY KEY clause must be used in
the CREATE TABLE or ALTER TABLE statements. We can define a compound primary
key for the table dayquote03, as shown in the following screenshot:

@ ® G kan@ubuntu: ~

cqlsh:packt>
cqlsh:packt> CREATE TABLE dayquote@®3 (
sog symbol varchar,
exchange varchar,
price_time timestamp,
open_price float,
high_price float,
low_price float,
close_price float,
volume double,
PRIMARY KEY (symbol, price_time)

aoa
cqlsh:packt= I

Because the first part of the primary key (that is symbol) is the same as that of the
simple primary key, the partition key is the same as that in dayquoteo1. Therefore,
the node location is the same regardless of whether the primary key is compound or
not, as in this case.

[75]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

So, what is difference between the simple primary key (symbol) and this compound
one (symbol, price_time)? The additional field price_time instructs Cassandra
to guarantee the clustering or ordering of the rows within the partition by the values
of price_time. Thus, the compound primary key sorts the rows of the same symbol
by price_time. We insert two records into the dayquote03 table and select all the
records to see the effect, as shown in the following screenshot:

=@ kan@ubuntu: ~

cqlsh:packt> INSERT INTO dayquote@3
T (exchange, symbol, price_time, open_price,
T high_price, low_price, close_price, volume)
Soo values
("SEHK', '0801.HK', '2014-06-01 10:00:00', 11.1,
12.2, 10.0, 16.9, 1000000.0);
cqlsh:packt>
cqlsh:packt> INSERT INTO dayquote@3
T (exchange, symbol, price_time, open_price,
T high_price, low_price, close_price, volume)
Zoo values
("SEHK', '0801.HK', '2014-85-31 10:00:00', 11.0,
ees 12.0, 10.0, 11, 500000.0);
cqlsh:packt>
cqlsh:packt> SELECT * FROM dayquote@3;

symbol | price_time | close_price | exchange | high_price | low_
price | open_price | volume

0601.HK | 2014-05-31 10:00:00+0800 |
10 | 11 | 5e+085

0001.HK | 2014-06-01 10:00:00+0800 |
10 | 11.1 | 1e+06

(2 rows)

cqlsh:packt> ||

[76]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Two records are returned as expected (compared to only one record in dayquote01).
Moreover, the ordering of the results is sorted by the values of price_time. The
following screenshot shows the internal view of the rows in the dayquote03 table:

@ @ ® kan@ubuntu: ~

RowkKey: 0001.HK

=> (name=2014-05-31
=> (name=2014-05-31
7768000)

=> (name=2014-05-31
8000)

=> (name=2014-05-31
768000)

=> (name=2014-05-31
68600)

=> (name=2014-05-31
768000)

=> (name=2014-05-31
8947768000)

=> (name=2014-06-01
=> (name=2014-06-01
7757000)

=> (name=2014-06-01
7000)

=> (name=2014-06-081
757000)

=> (name=2014-06-081
57600)

=> (name=2014-06-01
757000)

=> (name=2014-06-01
89477576000)

1 Row Returned.

10\ :00+0800:, value=, timestamp=1407018947768000)
10\ :00+0800:close_price, value=41300008, timestamp=140781894

10\ :00+0800:exchange, value=5345484b, timestamp=140701894776
10\ :00+0800:high_price, value=41400000, timestamp=1407018947
10\ :00+0800: low_price, value=41200000, timestamp=14670183477
10\ :00+0800:0pen_price, value=41300000, timestamp=1407018947
10\ :00+0800:volume, value=411e848000000000, timestamp=140701

10\ :00+0800:, value=, timestamp=1407018947757000)
10\ :00+0800:close_price, value=412e6666, timestamp=140781894

10\ :00+0800:exchange, value=5345484b, timestamp=140701894775
10\ :00+0800:high_price, value=41433333, timestamp=1407018947
10\ :00+0800: low_price, value=41200000, timestamp=14070189477
10\ :00+0800:0pen_price, value=4131999a, timestamp=1407818947

10\ :00+0800:volume, value=412e848000000000, timestamp=146701

Elapsed time: 106 msec(s).

[default@packt] |

The row key is still the partition key, that is, 0001 . HK. However, Cassandra stores
the two rows returned by the CQL SELECT statement, as one single internal row in
its storage. The values of the clustering columns are used as a prefix to the columns

that are not specified

in the PRIMARY KEY clause. As Cassandra stores the internal

columns in the sorting order of the column name, the rows returned by the CQL

SELECT statement are

sorted inherently. In a nutshell, on a physical node, when

the rows for a partition key are stored in the order that is based on the clustering
columns, the retrieval of rows is very efficient.

[77]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

Now you know that the first part of a compound primary key is the partition key.

If we need to keep on storing 3,000 daily quotes (around 10 years) for 0001 . HK,
although the CQL sELECT statement returns 3,000 virtual rows, Cassandra requires
to store these 3,000 virtual rows as one entire row on a node by the partition key. The
size of the entire row gets bigger and bigger on a node as a result of storing more and
more daily quotes. The row will quickly become gigantic over a period of time and
will then pose a serious performance problem, as a result of an unbalanced cluster.
The solution is a feature offered by Cassandra called composite partition key.

The composite partition key spreads the data over multiple nodes. It is defined by
an extra set of parentheses in the PRIMARY KEY clause. Let us create another table
dayquote04 with a composite partition key in order to illustrate the effect. The
columns exchange and symbol are now members of a composite partition key,
whereas the column price_time is a clustering column. We insert the same two
records of different symbols into dayquote04, as shown in the following screenshot:

® S E kan@ubuntu: ~

cqlsh:packt>
cqlsh:packt> CREATE TABLE dayquote®4 (
200 symbol varchar,

exchange varchar,
price_time timestamp,
open_price float,
high_price float,
low_price float,
close_price float,
volume double,
PRIMARY KEY ((exchange, symbol), price_time)

INSERT INTO dayquote@®4
(exchange, symbol, price_time, open_price,
high_price, low_price, close_price, volume)
values
('"SEHK', '0001.HK', '2014-06-01 10:00:00', 11.1,
12.2, 10.0, 10.9, 1000000.0);

INSERT INTO dayquote®4
(exchange, symbol, price_time, open_price,
high_price, low_price, close_price, volume)
values
('SEHK', '"08002.HK', '2014-06-01 10:05:00', 11.0,
12.0, 10.0, 11, 500000.0);

[78]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

With reference to the following screenshot, two internal rows are returned with their
row keys as SEHK: 0001 .HK and SEHK: 0002 . HK, respectively. Internally, Cassandra
concatenates the columns in the composite partition key together as an internal row
key. In short, the original row without a composite partition key is now split into two
rows. As the row keys are now different from each other, the corresponding rows
can be stored on different nodes. The value of the clustering column price_time is
still used as a prefix in the internal column name to preserve the ordering of data:

oe0

kan@ubuntu: ~

Using default cell 1imit of 100

RowKey: SEHK:0001.HK

=> (name=2014-06-01
=> (name=2014-06-081
6998000)

=> (name=2014-06-081
998000)

=> (name=2014-06-01
98600)

=> (name=2014-06-01
998000 )

=> (name=2014-06-081
8296998000)

RowKey: SEHK:0002.HK

=> (name=2014-06-01
=> (name=2014-06-01
8637000)

=> (name=2014-06-081
637000)

=> (name=2014-06-081
37600)

=> (name=2014-06-01
637000)

=> (name=2014-06-01
0298637000)

2 Rows Returned.

10\ :00+0800:, value=, timestamp=1407020296998000)
10\ :00+0800:close_price, value=412e6666, timestamp=140702029

10\ :00+0800:high_price, value=41433333, timestamp=1407020296
10\ :00+0800: low_price, value=41200000, timestamp=14670282969
10\ :00+0800:0pen_price, value=4131999a, timestamp=1407020296

10\ :00+0800:volume, value=412e848000000000, timestamp=140702

10\ :05+0800:, value=, timestamp=1407020298637000)
10\ :05+0800:close_price, value=41300000, timestamp=140782029

10\ :05+0800:high_price, value=41400000, timestamp=1407020298
10\ :05+0800: low_price, value=41200000, timestamp=14070202986
10\ :05+0800:0pen_price, value=41380000, timestamp=14070826298

10\ :05+0800:volume, value=411e848000000000, timestamp=146702

Elapsed time: 84 msec(s).

[default@packt]

Time-series data

Cassandra is very suitable for handling time-series type of data, such as web server
logfiles, usage data, sensor data, SIP packets, and so on. The tables dayquote01 to
dayquote04 in the previous sections are used to store the daily stock quotes is an
example of the time-series data.

[79]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

We have just seen in the last section that a composite partition key is a better way
of not overwhelming the row. It limits the size of the rows on the basis of a symbol.
However, this does partially solve the problem. The size of the row of a symbol still
grows over a period of time. Do you have any other suggestion? We can define an
artificial column, quote_date, in the table and set the composite partition key to
exchange and quote_date instead, as shown in the following screenshot:

@ = kan@ubuntu: ~

cqlsh:packt>
cqlsh:packt> CREATE TABLE dayquote@®5s (
T symbol wvarchar,
exchange varchar,
price_time timestamp,
quote_date varchar,
open_price float,
high_price float,
low_price float,
close_price float,
volume double,
PRIMARY KEY ((exchange, quote_date), symbol, price_time)

soo JP
cqlsh:packt=>
cqlsh:packt>

Now the composite partition key limits the size of the rows on a daily basis, and
makes the rows more manageable. This way of doing is analogous to inserting the
data into different buckets labeled by a particular date. Hence, it is given a name
called the date bucket pattern. Partitioning by the date also makes table maintenance
easier by allowing you to drop the partition of quote_date. One drawback of the
date bucket pattern is that you always need to know the partition key in order to get
the rows. So, in dayquote05, you cannot get the latest quote_date value using the
ORDER BY DESC and LIMIT 1 clauses.

The date bucket pattern gives an application developer a design option to attain a
more balanced cluster, but how balanced a cluster is depends on a number of factors
in which the most important one is the selection of the partitioner.

[80]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Partitioner

A partitioner is basically a hash function used to calculate the TOKEN () (the hash
value) of a row key and so, it determines how data is distributed across the nodes
in a cluster. Choosing a partitioner determines which node is used to place the
tirst copy of data. Each row of data is uniquely identified by a partition key and is
distributed across the cluster by the value of the TOKEN (). Cassandra provides the
following three partitioners:

* Murmur3Partitioner (default since version 1.2)
* RandomPartitioner (default before version 1.2)

® ByteOrderedPartitioner

Murmur3Partitioner

Murmur3Partitioner provides faster hashing and improved performance than the
partitioner RandomPartitioner. It is the default partitioning strategy and the right
choice for new clusters in almost all cases. It uses the MurmurHash function that
creates a 64-bit hash value of the partition key. The possible range of hash values is
from -2% to +2% -1. When using Murmur3Partitioner, you can page through all the
rows using the TOKEN () function in a CQL SELECT statement.

RandomPartitioner

RandomPartitioner was the default partitioner prior to Cassandra Version 1.2.

It distributes data evenly across the nodes using an MD5 hash value of the row key.
The possible range of hash values is from 0 to 2'# -1. The MD5 hash function is slow
in performance, that is why Cassandra has moved to Murmur3 hashes. When using
RandomPartitioner, you can page through all rows using the TOKEN () function in a
CQL SELECT statement.

[81]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

ByteOrderedPartitioner

ByteOrderedPartitioner, as its name suggests, is used for ordered partitioning.
This partitioner orders rows lexically by key bytes. Tokens are calculated by looking
at the actual values of the partition key data and using a hexadecimal representation
of the leading character(s) in a key. For example, if you wanted to partition rows
alphabetically, you can assign a B TOKEN () using its hexadecimal representation

of 0x42.

Using ByteOrderedPartitioner allows ordered scans by a primary key as though
you were moving a cursor through a traditional index in a relational table. This type
of range scan query is not possible using RandomPartitioner because the keys are
stored in the order of their MD5 hash, and not in the sequential order of the keys.

Apparently, performing range-scan on rows sounds like a desirable feature of
ByteOrderedPartitioner. There are ways to achieve the same functionality
using secondary indexes. Conversely, using ByteOrderedPartitioner is not
recommended for the following reasons:

* Difficult load balancing: More administrative overhead is required to load
balance the cluster. ByteOrderedPartitioner requires administrators to
manually calculate partition ranges based on their estimates of the partition
key distribution.

* Sequential writes can cause hot spots: If the application tends to write or
update a sequential block of rows at a time, the writes will not be distributed
across the cluster. They all go to one node. This is frequently a problem for
applications dealing with timestamped data.

* Uneven load balancing for multiple tables: If the application has multiple
tables, chances are that these tables have different row keys and different
distributions of data. An ordered partitioner that is balanced for one table can
cause hot spots and uneven distribution for another table in the same cluster.

Paging and token function

When using the RandomPartitioner or Murmur3Partitioner, the rows are ordered
by the hash of their value. Hence, the order of the rows is not meaningful. Using
CQL, the rows can still be paged through even when using Randompartitioner

or Murmur3Partitioner using the TOKEN () function, as shown in the following
screenshot:

[82]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

@S E kan@ubuntu: ~
cqlsh:packt>
cqlsh:packt> SELECT symbol FROM dayquote04
WHERE TOKEN{exchange,symbol) < TOKEN('SEHK','0002.HK');
symbol

0001.HK

(1 rows)

cqlsh:packt> ||

ByteOrderedPartitioner arranges tokens in the same way as key values, while
RandomPartitioner and Murmur3Partitioner distribute tokens in a completely
unordered manner. The TOKEN () function makes it possible to page through the
unordered partitioner results. It actually queries results directly using tokens.

Secondary indexes

As Cassandra only allows each table to have one primary key, it supports secondary
index on columns other than those in the primary key. The benefit is a fast, efficient
lookup of data matching the indexed columns in the WHERE clause. Each table can
have more than one secondary index. Cassandra uses secondary indexes to find

the rows that are not using the row key. Behind the scenes, the secondary index is
implemented as a separate, hidden table that is maintained automatically by the
internal process of Cassandra. As with relational databases, keeping secondary
indexes up to date is not free, so unnecessary indexes should be avoided.

. The major difference between a primary index and a secondary
% index is that the primary index is a distributed index used to locate
S the node that stores the row key, whereas the secondary index is a

local index just to index the data on the local node.

Therefore, the secondary index will not be able to know immediately the locations of
all matched rows without having examined all the nodes in the cluster. This makes
the performance of the secondary index unpredictable.

. The secondary index is the most efficient when using equality
% predicates. This is indeed a limitation that must have at least one
s equality predicate clause to hopefully limit the set of rows that
need to be read into memory.

[83]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

In addition, the secondary index cannot be created on the primary key itself.

Caveat!

. Secondary indexes in Cassandra are NOT equivalent to those in the
% traditional RDBMS. They are not akin to a B-tree index in RDBMS.
=" They are mostly like a hash. So, the range queries do not work on
secondary indexes in Cassandra, only equality queries work on
secondary indexes.

We can use the CQL CREATE INDEX statement to create an index on a column after
we define a table. For example, we might want to add a column sector to indicate
the sector that the stock belongs to, as shown in the following screenshot:

@S E kan@ubuntu: ~

cqlsh:packt>
cqlsh:packt> CREATE TABLE dayquote®6 (
symbol wvarchar,
exchange varchar,
sector wvarchar,
price_time timestamp,
quote_date varchar,
open_price float,
high_price float,
low_price float,
close_price fleoat,
volume double,
PRIMARY KEY ((exchange, quote_date), symbol, price_time)
soo JIF
cqlsh:packt>
cqlsh:packt> INSERT INTO dayquoteBé
L (exchange, symbol, sector, price_time, open_price,
T high_price, low_price, close_price, volume, quote_date)
oo values
... ('SEHK', '8001.HK', 'Properties', '2014-06-01 10:00:00', 11.1,
12.2, 16.0, 10.9, 1000000.0, '20140601');
cqlsh:packt>
cqlsh:packt> INSERT INTO dayquoteBé
L (exchange, symbol, sector, price_time, open_price,
T high_price, low_price, close_price, volume, quote_date)
oo values
... ('SEHK', '0002.HK', 'Utilities', '2014-06-01 10:05:00', 11.0,
12.0, 10.0, 11, 500000.0, '20140601');
cqlsh:packt>

[84]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

If we want to search dayquote06 for symbols that belong to Properties, we might
run the command, as shown in the following screenshot:

@S E kan@ubuntu: ~
cqlsh:packt>

cqlsh:packt> SELECT symbol FROM dayquote@6 WHERE sector = 'Properties’;

cqlsh:packt> ||

As sector is not in the primary key, we cannot query Cassandra directly by sector.
Instead, we can create a secondary index on the column sector to make this
possible, as shown in the following screenshot:

' kan@ubuntu: ~

CREATE INDEX dayquote@6_sector_idx ON dayquote®6 (sector);

SELECT symbol FROM dayquote®6 WHERE sector = 'Properties’';

0001.HK

(1 rows)

cqlsh:packt>

The index name dayquote06_sector_idx is optional, but must be unique within the
keyspace. Cassandra assigns a name such as dayquote06_idx if you do not provide
a name. We can now query Cassandra for daily stock quotes by sector.

You can see that the columns in the primary key are not present in the WHERE
predicate clause in the previous screenshot and Cassandra uses the secondary
index to look for the rows matching the selection condition.

Multiple secondary indexes

Cassandra supports multiple secondary indexes on a table. The WHERE clause is
executed if at least one column is involved in a secondary index. Thus, we can
use multiple conditions in the WHERE clause to filter the results. When multiple
occurrences of data match a condition in the WHERE predicate clause, Cassandra
selects the least frequent occurrence of a condition to process first so as to have a
better query efficiency.

[85]

www.it-ebooks.info


http://www.it-ebooks.info/

Indexes

When a potentially expensive query is attempted, such as a range query, Cassandra
requires the ALLOW FILTERING clause, which can apply additional filters to the result
set for values of other non-indexed columns. It works very slowly because it scans all
rows in all nodes. The ALLOW FILTERING clause is used to explicitly direct Cassandra
to execute that potentially expensive query on any WHERE clause without creating
secondary indexes, despite unpredictability of the performance.

Secondary index do's and don'ts

The secondary index is best on a table that has many rows that contain fewer unique
values, that is low cardinality in the relational database terminologies, which is
counterintuitive to the relational people. The more unique values that exist in a
particular column, the more overhead you will have to query and maintain the
index. Hence, it is not suitable for querying a huge volume of records for a small
number of results.

o Do index the columns with values that have low cardinality. Cassandra
~ stores secondary indexes only for local rows in the data node as a
Q hash-multimap or as bitmap indexes, you can refer to it at https: //
issues.apache.org/jira/browse/CASSANDRA-1472.

Secondary indexes should be avoided in the following situations:

*  On high-cardinality columns for a small number of results out of a huge
volume of rows

An index on a high-cardinality column will incur many seeks for very few
results. For columns containing unique values, using an index for convenience
is fine from a performance perspective, as long as the query volume to the
indexed column family is moderate and not under constant load.

e [In tables that use a counter column

* On afrequently updated or deleted column

Cassandra stores tombstones (a marker in a row that indicates that a column
was deleted. During compaction, marked columns are deleted in the index

(a hidden table) until the tombstone limit reaches 100 K cells. After exceeding
this limit, the query that uses the indexed value will fail.

* Tolook for a row in a large partition

A query on an indexed column in a large cluster typically requires collating
responses from multiple data partitions. The query response slows down as
more machines get added to the cluster.

[86]

www.it-ebooks.info


https://issues.apache.org/jira/browse/CASSANDRA-1472
https://issues.apache.org/jira/browse/CASSANDRA-1472
http://www.it-ebooks.info/

Chapter 4

Important points to take note of
Wl * Don't index on high-cardinality columns
~Q * Don't use index in tables having a counter column
* Don'tindex on a frequently updated or deleted column

* Don't abuse the index to look for a row in a large partition

Summary

We have learned about the primary and secondary indexes in this chapter. Related
topics such as compound primary key, composite partition key, and partitioner are
also introduced. With the help of the explanation of the internal storage and inner
working mechanisms of Cassandra, you should now be able to state the difference
between the primary index and the secondary index, as well as use them properly
in your data model.

In the next chapter, we will start building the first version of the technical analysis
application using Cassandra and Python. A quick installation and setup guide on
how to connect Python to Cassandra and collect market data will also be provided.

[87]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and
Implementation

Riding on the ingredients of a Cassandra data model that were explained in the
previous chapters, now it is time to put them into a working application. We will
begin defining what we really want to store and inquire in the data model, setting
up the environment, writing the program code, and finally testing the application.

The application to be built is a Stock Screener Application, which stores the historical
stock quotes in a Cassandra database for technical analysis. The application collects
the stock quote data from a free source on the Internet and then applies some technical
analysis indicators to find out the buy and sell reference signals. A brief and quick
introduction of technical analysis is given in order to enable you to easily understand
what the application does. Although it is oversimplified in architecture and not
complete in features, it does provide a good foundation for further improvement

on more advanced features to be made by you.

Disclaimer
It should be assumed that the methods, techniques, or indicators
discussed in this book will be profitable and will not result in losses.
There is no assurance that the strategies and methods presented will
be successful, or that you will become a profitable trader. The past
performance and results of any trading system or trading methodology
are not necessarily indicative of future results. You should not trade
% with money that you cannot afford to lose. The examples discussed and
presented in this book are for educational purposes only. These are not
solicitations of any order to buy or sell. I assume no responsibility for
your trading results. No representation is being made that any account
will, or is likely to, achieve profits or losses similar to those discussed
in this book. There is a very high degree of risk in trading. You are
encouraged to consult a certified financial advisor before making any
investment or trading decisions.

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

Stock Screener Application

In this section, we will learn some background information of the sample application.
Then, we will discuss the data source, the initial data model, and the high-level
processing logic of the application.

An introduction to financial analysis

A stock screener is a utility program that uses a certain set of criteria to screen a large
number of stocks that match your preferences. It is akin to a search engine on stocks
but not on websites. The screening criteria might be based on fundamental and/or
technical analysis methods.

Firstly, let us look at what fundamental analysis is.

Fundamental analysis

Fundamental analysis involves analyzing a company's historical
. and present financial statements and health, its management and
% competitive advantages, and its competitors and markets, in order
- to assess and calculate the value of a company stock and predict its
probable price evolution. The goal is to make financial forecasts and
find out the undervalued stock (stock that is cheap, in other words)
for buy-and-hold.

In contrast, technical analysis is a totally different approach.

Technical analysis

Technical analysis is a stock analysis methodology used to forecast
*  the direction of prices through the study of past market data,

% primarily price and volume. The fundamental principle of technical
analysis is that the market price reflects all the relevant information,
so the analysis looks at the history of the trading patterns rather than
external drivers such as economic, fundamental, and news events.

In this book, technical analysis is solely used for the Stock Screener Application. As
technical analysis focuses on price actions, the Stock Screener Application requires
stock price data as its input and then it applies technical analysis techniques to
determine whether the stock fulfills the buy or sell conditions. Whenever such a
condition is fulfilled, we can say that a trading signal is triggered.

[90]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

The conceptual design of the Stock Screener Application is shown in the
following figure:

Data Feed ‘/ Historical Stock R Alert List
Provider '\ Data Screener "

We will go through the preceding figure from the left to the right. Data Feed
Provider is the source of stock quote data that is collected from a free Data Feed
Provider on the Internet, such as Yahoo! Finance. It should be noted that Yahoo!
Finance provides free-of-charge end-of-day (EOD) stock quote data, thus providing
the daily stock quote. If you want the Stock Screener to produce intraday signals,
you need to look for other Data Feed Providers who typically have a wide range of
paid service offers available. Historical Data is a repository to store the historical
stock quote data. Stock Screener is the application to be developed in this chapter.
Lastly, Alert List is a list of trading signals found by the Stock Screener.

Before we proceed to the high-level design of the Stock Screener, I would like to
highlight the reasons of establishing the Historical Data repository. There are three
major reasons. First, it can save tremendous network bandwidth from repeatedly
downloading historical stock quote data from the Data Feed Provider (actually,
Yahoo! Finance provides as many as 10 years of historical price data.) Second, it
serves as a canonical data model so that the Stock Screener does not need to cater
for the different data formats of different Data Feed Providers. Finally, the Stock
Screener can still perform technical analysis on the historical data even though it is
disconnected from the Internet.

Stock quote data

Technical analysis only focuses on price action. So what is price action? Price action
is simply the movement of a stock's price. It is encompassed in technical and chart
pattern analysis in an attempt to discover the order in the seemingly random
movement of price.

On a single day, the price action of a stock can be summarized by four important prices:

* Open price: This is the starting price for that day
* High price: This is the highest price for that day
* Low price: This is the lowest price for that day

* Close price: This is the closing price for that day

[91]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

These four prices are usually abbreviated as OHLC. In addition to OHLC, another
measure of how much of a given stock has been traded in a given period of time is
known as Volume. For a complete trading day, the volume is called daily volume.

Only five attributes such as open price, high price, low price, close price, and
volume (OHLCYV), provide all the necessary and sufficient data for technical analysis
of stock. Now we know the input for technical analysis, but how do we get them?

Many websites provide free-of-charge stock quote data that are very easy to obtain,
and are especially suitable for amateur or retail traders. The following websites are
just a few of them listed for your reference:

*  Yahoo! Finance: http://finance.yahoo.com

* Google Finance: https://www.google.com/finance

e EODData: http://eoddata.com

However, there is a caveat that stock quote data might have errors, for example,
incorrect high and low prices. In this book, I selected Yahoo! Finance as the prime
Data Feed Provider. The following screenshot is a sample of the historical prices
of a stock called GS:

GS Historical Prices| ¢ x Yy
(4 & [Y finance.yahoo.com % =
A Home Mail News Sports Finance  Weather Games Groups Answers Screen Flickr Mobile More v
YAHOOQO! Search Finance Search Web signin g Mail
[ oo e | o T G
Finance Home My Portfolic  Market Data Yahoo Originals Business & Finance Personal Finance ~ CNBC  Contributors
Reportan e
Dow 40.37% Nasdaq #0.69% S-DAY TREND
GS
s oncs ] —
Scottrade &
QUOTES
Summary
Order Book The Goldman Sachs Group, Inc. (GS) Follow Beat the market
Options
} Historical Prices 177.22 +1.68 (0.96%) 9:39AM EDT - NYSE Real Time Price Get the app
CHARTS
Interactive Historical Prices Get Historical Prices for: | GO |
Basic Chart
Basic Tech. Analysis
NEWS & INFO Set Date Range
Headlines @ Daily
5 v
Press Releases Start Date: | May ¥ | 4 1999 | Eg.Jan 1, 2010 Weekly
Company Events EndDate: [Jul v | [30 | 2014 Ly
Message Boards : : Dividends Only
Market Pulse e
COMPANY - g REZRERFEE
Profile | Next| Last
Key Statistics 3
N Prices
SEC Filings
Competitors Date Open High Low Close Volume Adj Close*
Industry Jul 29, 2014 176.17 177.11 175.45 17554 3,055,600 17554
Jul 28, 2014 175.00 176.46 174.67 17595 2,303,400 17595
ANALYST COVERAGE Jul 25, 2014 175.91 176.46 17472 175.40 2,114,900 175.40
Analyst Opinion Jul 24, 2014 176.80 177.32 175.61 176.26 1,920,700 176.26
R Jul 23, 2014 175.21 177.22 174.63 176.82 3,436,100 176.82
OWNERSHIP Jul 22, 2014 172.38 17538 172.38 175.02 3,849,500 175.02 N

www.it-ebooks.info


http://finance.yahoo.com
http://eoddata.com
http://www.it-ebooks.info/

Chapter 5

As you scroll to the bottom of the web page, you will see a link Download to
Spreadsheet. When you click on this link, the historical stock quote data can be
downloaded as a Comma Separated Values (CSV) file. An excerpt of the CSV
file is shown in the following screenshot:

| C:\Osersikan'\Downloads\table csv - Hotepad++ | —18]x|
X

File Edit Search ¥iew Encoding Language Zettings Macro Eun Plugine Window 2
| cOFR < cB[smR|oe(nals s |B3|%1FaE >

[=] table v rﬂl

1 Date, Cpen,High, Low, Close, Volume, Adj Close il

2  2014-07-30,175.926,177.48,175.36,175.76,2345600,175.76

i 2014-07-29,176.17,177.11,175.45,175.54,3055600,175.54

©  2014-07-28,175.00,176.46,174.67,175.95,2303400,175.35
2014-07-25,175.91,176.46,174,72,175.40,2114900,175.40
2014-07-24,176.80,177.32,175.61,176.26,1920700,176.
2014-07-23,175.21,177.22,174.63,176.82,3436100,176.¢
2014-07-22,172.38,175.38,172.38,175.02,3849500,175.0
9 2014-07-21,170.17,172.10,170.05,171.72,2227400,171.7
10 2014-07-18,170.41,171.79,169.65,171.47,2558600,171.47
11 2014-07-17,170.21,171.60,168.92,170.14,3805100,170.14
12 2014-07-16,169.20,170.99,169.00,170.47,3295100,170.47
13 2014-07-15,169.70,170.15,167.15,163.17,4802300,169.17
14 2014-07-14,167.18,167.72,166.46,167.00,2993600,167.00

1 o

15 2014-07-11,163.02,165.14,162.38,164.80,2276000,164.80
16 2014-07-10,162.22,163.78,161.53,163.42,2204100,163.42 ;I
[length: 20013 Ln: 1 Col:42 Sel:010 [z |UTF-8 wic BOM ms

Of course, we can manually download the historical stock quote data from the
website. Nonetheless, it becomes impractical when we want to download the
data of many different stocks on a daily basis. Thus, we will develop a program
to automatically collect the data feed.

Initial data model

We now know that a single daily price action consists of a stock symbol, trading date,
open price, high price, low price, close price, and volume. Obviously, a sequence of
price action measured typically at successive trading days is of a time-series nature
and Cassandra is very suitable for storing time-series type data.

As mentioned previously, it is beneficial to store the collected stock quote data
locally in a repository. Therefore, we will implement the repository as a table
in a Cassandra database.

[93]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

We can use CQL to define a table called quote to store the historical prices:

// table to store historical stock quote data
CREATE TABLE quote (

symbol varchar, // stock symbol

price time timestamp, // timestamp of quote
open price float, // open price
high price float, // high price
low_price float, // low price
close price float, // close price
volume double, // volume
PRIMARY KEY (symbol, price time)

) ;

// primary key

The column data types and names are self-explanatory.

One useful technique of designing a Cassandra data model is to imagine the visual
representation of the internal storage of a row. The following figure is such an example:

2014-07-30
00:00:

2014-07-30
00:00:close_price

2014-07-30
00:00:high_price

2014-07-30
00:00:low_price

2014-07-30
00:00:0pen_price

2014-07-30
00:00:volume

2014-07-31
00:00:

GS

175.76

177.48

175.36

175.96

2345600

Based on the design of the primary key, the row key is symbol and the clustering
column is price_time. It is expected that a row will become a wide row, as more
historical stock quote data gets added to it. Without the internal storage picture, this
might not be easy to spot in the initial data model design stage. For the time being,
we just take note of the potential wide row problem and leave it as is (one possible
solution is the date bucket pattern).

Processing flow

The following figure shows the processing flow of the Stock Screener, which
elaborates the conceptual design with a more detailed sequence of steps. Each
of the building blocks is explained starting first from the top, as shown in the
following screenshot:

[94]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Vs
Data Feed
Provider
Data Feed
Data Feed
Adapter
A 4
Data Mapper
and Archiver
N
v
Historical
Data ; i
Historical Data
I
Stock ’
oc
_ Technical
Screener Sc;eelnlng Data Scoper Analysis
ule Signal
I I
A 4
Stock
Screener
Engine
A4
Alert List
Alert List

Data Feed Provider consists of Data Feed, Data Feed Adapter, and Data Mapper and

Archiver. Yahoo! Finance is chosen as the data feed. Data Feed Adapter is used to deal
with the different connectivity and interfacing methods if we switch to other Data Feed
Providers. Data Mapper and Archiver caters for the different stock quote data formats

and standardizes them to the corresponding columns of the quote table.

The quote table is the Historical Data repository and has been explained previously.

[95]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

We now turn our focus to the core Stock Screener. The heart of the Stock Screener
is the Stock Screener Engine that uses the Screening Rule on the Historical Data,
which is filtered by the Data Scoper. The Screen Rule is used by one or more
Technical Analysis Signals so that the Stock Screener Engine produces an alert if
the conditions of the Technical Analysis Signals are met.

The alert generated by the Stock Screener Engine is presented in the form of an
Alert List, which can be kept as records or distributed through other means.

Basically, the Data Feed Provider and the Stock Screener need not run in the
same process. They work in an asynchronous mode. This means that the Data
Feed Provider can collect, map, and archive the historical stock quote data into the
Historical Data repository, whereas the Stock Screener can analyze and produce
alerts independently.

We have come up with a high-level design of the application, the next thing to do is
conceivably see how it can be implemented.

System design

In this section, we will select the appropriate software for various system components.

The operating system

When considering the implementation, the first fundamental choice is the
operating system. The single most important constraint is that it must be supported
by Cassandra. For this book, I have selected Ubuntu 14.04 LTS 64-bit Version,
which can be obtained at the official Ubuntu website, http://www.ubuntu.com/.
You should be able to painlessly set up your Linux box by following the verbose
installation instructions.

However, it is entirely up to you to use any other operating systems, supported by
Cassandra, such as Microsoft Windows and Mac OS X. Please follow the respective
operating system installation instructions to set up your machine. I have already
considered the portability of the Stock Screener. As you will see in the subsequent
sections, the Stock Screener Application is designed and developed in order to be
compatible with a great number of operating systems.

[96]

www.it-ebooks.info


http://www.ubuntu.com/
http://www.it-ebooks.info/

Chapter 5

Java Runtime Environment

As Cassandra is Java-based, a Java Runtime Environment (JRE) is required
as a prerequisite. I have used Oracle Java SE Runtime Environment 7 64-bit
Version 1.7.0_65. It is provided at the following URL:http://www.oracle.com/
technetwork/java/javase/downloads/jre7-downloads-1880261.html.

Of course, I have downloaded the Linux x64 binary and followed the instructions
at http://www.datastax.com/documentation/cassandra/2.0/cassandra/
install/installdreDeb.html to properly set up the JRE.

At the time of writing, Java SE has been updated to Version 8. However, I have not
tested JRE 8 and DataStax recommends JRE 7 for Cassandra 2.0 too. Therefore, I will
stick to JRE 7 in this book.

Java Native Access

If you want to deploy Cassandra in production use on Linux platforms, Java Native
Access (JNA) is required to improve Cassandra's memory usage. When installed and
configured, Linux does not swap the Java virtual machine (JVM), and thus avoids
any performance related issues. This is recommended as a best practice even when
Cassandra, which is to be installed, is for non-production use.

To install JNA on Ubuntu, simply use Aptitude Package Manager with the following
command in a terminal:

$ sudo apt-get install libjna-java

Cassandra version

I used Cassandra Version 2.0.9, which is distributed by DataStax Community,

on Debian or Ubuntu. The installation steps are well documented at http: //www.
datastax.com/documentation/getting started/doc/getting started/
gettingStartedDeb t.html.

The installation process typically takes several minutes depending on your Internet
bandwidth and the performance of your machine.

DataStax

DataStax is a computer software company based in Santa Clara,
%%‘ California which offers commercial enterprise grade for Apache

Cassandra in its DataStax Enterprise product. It also provides

tremendous support for the Apache Cassandra community.

[97]

www.it-ebooks.info


http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/install/installJreDeb.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/install/installJreDeb.html
http://www.datastax.com/documentation/getting_started/doc/getting_started/gettingStartedDeb_t.html
http://www.datastax.com/documentation/getting_started/doc/getting_started/gettingStartedDeb_t.html
http://www.datastax.com/documentation/getting_started/doc/getting_started/gettingStartedDeb_t.html
http://www.it-ebooks.info/

First-cut Design and Implementation

Programming language

It is now time to turn our attention to the programming language for the
implementation of the Stock Screener Application. For this book, I have chosen
Python. Python is a high-level programming language designed for speed of
development. It is open source, free, and cross-platform. It possesses a wealthy
set of libraries for almost every popular algorithm you can imagine.

You need not be afraid of learning Python if you are not familiar with it. Python is
designed such that it is very easy to learn when compared to other programming
languages such as C++. Coding a Python program is pretty much like writing
pseudocode that improves the speed of development.

In addition, there are many renowned Python libraries used for data analysis, for
example, NumPy, SciPy, pandas, scikit-learn, and matplotlib. You can make use of
them to quickly build a full-blown application with all the bells and whistles. For the
Stock Screener Application, you will use NumPy and pandas extensively.

When it comes to high performance, Python can also utilize Cython, which is
an optimizing static complier for Python programs to run as fast as native C
or C++ programs.

The latest major version of Python is Python 3. However, there are still many
programs running that are written in Python 2. This is caused by the breaking
backward compatibility of Python 3 that makes the migration of so many libraries
written in Python 2 to Python 3, a very long way to go. Hence, the coexistence of
Python 2 and Python 3 is expected for quite a long time in future. For this book,
Python 2.7 .x is used.

The following steps are used to install Python 2.7 in Ubuntu using a terminal:

$ sudo apt-get -y update

$ sudo apt-get -y upgrade

$ sudo apt-get install python-pip python-dev \
$ python2.7-dev build-essential

Once the installation is complete, type the following command:
$ python --version

You should see the version string returned by Python, which tells you that the
installation has been successful.

[98]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

One problem that many Python beginners face is the cumbersome installation of the
various library packages. To rectify this problem, I suggest that the reader downloads
the Anaconda distribution. Anaconda is completely free and includes almost 200 of
the most popular Python packages for Science, Mathematics, engineering, and data
analysis. Although it is rather bulky in size, it frees you from the Python package
hustle. Anaconda can be downloaded at http://continuum.io/downloads, where
you can select the appropriate versions of Python and the operating system. It is
straightforward to install Anaconda by following the installation instructions, so I
will not detail the steps here.

Cassandra driver

The last item of the system environment is the driver software for Python to
connect to a Cassandra database. In fact, there are several choices out there, for
example, pycassa, Cassandra driver, and Thrift. I have chosen Python Driver 2.0
for Apache Cassandra distributed by DataStax. It exclusively supports CQL 3

and Cassandra's new binary protocol, which was introduced in Version 1.2. More
detailed information can be found at http://www.datastax.com/documentation/
developer/python-driver/2.0/common/drivers/introduction/
introArchOverview c.html.

The driver can be easily installed with pip in a Ubuntu terminal:

$ pip install cassandra-driver

_pip
& pip is a command-line package management system used to install
> and manage Python library packages. Its project page can be found
at Github, https://github.com/pypa/pip.

The integrated development environment

Spyder is an open source, cross-platform integrated development environment (IDE),
usually used for scientific programming in Python. It is automatically installed by
Anaconda and integrates NumPy, SciPy, matplotlib, IPython, and other open source
software. It is also my favorite Python development environment.

There are many other good and popular Python IDEs, such as IPython and Eclipse.
The code in this book is friendly to these IDEs.

[99]

www.it-ebooks.info


http://continuum.io/downloads
http://www.datastax.com/documentation/developer/python-driver/2.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/python-driver/2.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/python-driver/2.0/common/drivers/introduction/introArchOverview_c.html
https://github.com/pypa/pip
http://www.it-ebooks.info/

First-cut Design and Implementation

The system overview

Alright, we have gone through the major system components of the Stock Screener
Application and decided their implementation. The following figure depicts the
system overview for the implementation of the application:

Yahoo! Finance

Ubuntu 14.04 LTS x64

Python 2.7.7

Stock Screener Application

Python Driver for Apache Cassandra 2.0.2

Historical Data

JRE 1.7.0_65 x64

Cassandra 2.0.7

It is worth noting that the system will be developed on a single Ubuntu machine
tirst and then on a single node Cassandra cluster (In Chapter 7, Deployment and
Monitoring, we will expand the cluster to a two-node cluster). It serves as a limit
to the superb clustering capabilities of Cassandra. However, from the software
development perspective, the most important thing is to completely realize the
required functionalities rather than splitting the significant efforts on the system
or infrastructure components, which are of second priority.

[100]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Code design and development

We are now entering the development stage. I will walk you through the coding of
the application building blocks step-by-step. Logically, two core modules will be
built, namely, Data Feed Provider and Stock Screener. First, we will build the Data
Feed Provider.

Data Feed Provider
The Data Feed Provider achieves the following three tasks:

1. Collecting the historical stock quote data from Yahoo! Finance.
2. Transforming the received data into a standardized format.

3. Saving the standardized data into the Cassandra database.

Python has a well-known data analysis library called pandas. It is an open source
library providing high-performance, easy-to-use data structures, and data analysis
tools, especially, for time-series type of data. You can go to http://pandas.pydata.
org/ for more details.

Collecting stock quote

pandas offers a DataReader function in its pandas.io.data package. DataReader
extracts financial data from various Internet sources into a data structure known
as DataFrame. Yahoo! Finance is one of the supported Internet sources, making the
collection of the historical stock quote data a piece of cake. Refer to the following
Python code, chapter05_001.py:

# -*- coding: utf-8 -*-
# program: chapter05 001.py

## web is the shorthand alias of pandas.io.data
import pandas.io.data as web
import datetime

## we want to retrieve the historical daily stock quote of
## Goldman Sachs from Yahoo! Finance for the period

## between 1-Jan-2012 and 28-Jun-2014

symbol = 'GS'

start_date = datetime.datetime (2012, 1, 1)

end date = datetime.datetime (2014, 6, 28)

## data is a DataFrame holding the daily stock quote

[101]

www.it-ebooks.info


http://pandas.pydata.org/
http://pandas.pydata.org/
http://www.it-ebooks.info/

First-cut Design and Implementation

data = web.DataReader (symbol, 'yahoo', start date, end date)

## use a for-loop to print out the data
for index, row in data.iterrows() :
print index.date(), '\t', row['Open'], '\t', row['High'l, \
"\t', row['Low'], '\t', row['Close'], '\t',
row['Volume']

A brief explanation is required. pandas offers a very handy data structure called
DataFrame, which is a two-dimensional labeled data structure with columns

of potentially different types. You can think of it as a spreadsheet or SQL table.
It is generally the most commonly used pandas object.

The following is a screenshot demonstrating the use of Spyder to write and test
chapter05_001.py code:

e Spyder (Python 2.7)

Fle Edit Search Souge Run Debug Consoles Jools View Help
Hu&l > e d 4 bilas 32 p @ -BO A [ometkan e ¢+ ¢
Editor - dra-Data- _001.py @ ® Object inspector @ &)
| @ chapter05 00Lpy X i, Source Console #| Object | range | B 1
1 5
gun
3Crested on Sat Jun 28 20:42:53 2014 _
4
5@progran: chapter0s_001.py Here you can get halp of any object by
6 @author: kan pressing Ctrlslin front of i, either on the
7 Editor or the Console. 5
8 §
9 import pandas.io.data as web :ﬂmlﬁf::;i:::;;unt:mﬂﬂiﬁ'::[ |
10 import datetime Object inspector | Variable explorer | File explorer | Profiler
11 . -
12 IPython console @ |
,_3 B oo e % |
14 o B e s
15 symbol = 'S’ 2014-06-85 162.72 163.43 161.56 162.58 1859600.0
16 start_date = datetime.datetime(2012, 1, 1) 2014-66-86 162.9 166.26 162.9 166.19 3459700.8
17 end_date = datetime.datetime(2014, &, 28) 2014-06-69 166.04 166.86 165.64 166.6  2362400.0
18 - 2014-06-10 165.86 167.26 165.48 166.36 1684500.0
19 2014-86-11 165.09 166.16 164.69 165.43 19588400.0
20 data = web.DataReader(symbol, 'yahoo', start_date, end_date) 2014-06-12 165.76 166.65 165.62 165.96 2286800.8
21 2014-86-13 166.17 167.87 165.42 165.89 1746400.0
22 2014-06-16 165.52 166.53 164.45 165.85 1618700.0
23 for index, row in data.iterrows(): 2014-06-17 165.64 168.75 165.45 168.22 2437200.0
24 print index.date(}, '\t', row['Open'], '\t', row['High'], \ 2014-06-18 167.89 170.1 167.29 169.86 2873200.0
25 \t', row['Low'], '\t's row['Clese’], "\t', row['Volume'] 2014-06-19 170.6 170,16 168.93 169.73 2289808.0
26 2014-06-20 179.32 171.08 169.42 169.84 4676500.0
2014-86-23 170.18 170.62 169.21 170.24 1738500.0
2014-06-24 169.55 170.55 167.95 168.23 1608000.0
2014-86-25 167.82 169.82 167.4 168.38 1601200.0
2014-06-26 167.0 168.11 166.37 168.81 2131200.0 (]
2014-06-27 167.25 167.65 166.37 166.78 3111200.0
Tn I61: =)
History log _ Python console
Console @ &
—,| © Python1 X | [ Kemel 16582 X £ A
NOTE: When using the “ipython kemel' entry paint, Ctrl-C will not work. B
To exit, you will have to explicitly quit this process, by either sending (]
“quit” fron & client, or using Cerl-\ in UNIX-Tike environments.
o cand anca_shout_thie _cas hrbnesdlatthub comtiauthan tauthon i couas 2040 5
Permissions: ®___ End-oFlines: LF __Encoding: UTF-8 Line: 26 Column: 1 Memory: 57 %

The left-hand side of the Spyder IDE is the place where you write Python code.
The middle panel on the right-hand side is the IPython console that runs the code.

[102]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Transforming data

Along with the data in the DataFrame, you can optionally pass index (row
labels) and columns (column labels). The row and column labels can be accessed
respectively, by accessing the index and columns attributes. For example, you
can revisit the screenshot of table. csv and see that the column names returned
by Yahoo! Finance are Date, Open, High, Low, Close, Volume, and Adj Close,
respectively. DataReader uses Date as the index of the returned DataFrame. The
remaining column names become the column labels of the DataFrame.

The last for-loop in chapter05_001.py is also worth some remarks. DataFrame has a
function, iterrows (), for iterating over its rows as (index, columns) pairs. Therefore,
the for-loop uses iterrows () to iterate the daily stock quotes and we simply print
out the index (that is converted to a string by the date () function), and the Open,
High, Low, Close, Volume columns by passing the respective column labels to the
row. Adj Close is a close price with adjustments of stock split, merge, and dividend.
We do not use this, as we want to focus on pure prices.

Please be aware that stock quote data from the different sources might have different
formats and, needless to say, different column names. Therefore, we need to take
care of such a subtle difference, when mapping them to our standardized data
model. DataFrame provides a very handy way to retrieve the data by column names
and a few useful functions to manipulate the index and columns. We can make use
of them to standardize the data format, as shown in chapter05 002.py:

# -*- coding: utf-8 -*-
# program: chapter05 002.py

## web is the shorthand alias of pandas.io.data
import pandas.io.data as web
import datetime

## we want to retrieve the historical daily stock quote of
## Goldman Sachs from Yahoo! Finance for the period

## between 1-Jan-2012 and 28-Jun-2014

symbol = 'GS'

start date = datetime.datetime (2012, 1, 1)

end date = datetime.datetime (2014, 6, 28)

## data is a DataFrame holding the daily stock quote
data = web.DataReader (symbol, 'yahoo', start date, end date)

## standardize the column names

[103]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

## rename index column to price_date to match the Cassandra table
data.index.names=['price date']

## drop extra column 'Adj Close'
data = data.drop(['Adj Close'l, axis=1)

## rename the columns to match the respective columns in Cassandra

data = data.rename (columns={'Open':'open price', \
'"High':'high price', \
'Low':'low _price', \
'Close':'close price', \

'"Volume': 'volume'})

## use a for-loop to print out the transformed data
for index, row in data.iterrows() :

print index.date(), '\t', row['open price'l, '\t', \
row['high price'l, '\t', \
row['low price'l, '\t', \
row['close price'l, '\t', \

row['volume']

Storing data in Cassandra

Before storing the retrieved data in Cassandra, we need to create the keyspace and
table in the Cassandra database. We will create a keyspace called packtcdma and a
table called quote in chapter05 003.py to hold the Historical Data, as shown in the
following code:

# -*- coding: utf-8 -*-
# program: chapter05 003.py

## import Cassandra driver library
from cassandra.cluster import Cluster

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ()

## create keyspace packtcdma if not exists

## currently it runs on a single-node cluster

session.execute ("CREATE KEYSPACE IF NOT EXISTS packtcdma " + \
"WITH replication" + \

[104]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

"={'class':'SimpleStrategy', " + \
"'replication factor':1}")

## use packtcdma keyspace
session.set keyspace('packtcdma')

## execute CQL statement to create quote table if not exists
session.execute ('CREATE TABLE IF NOT EXISTS quote (' + \

'symbol varchar,' + \

'price time timestamp,' + \

'open price float,' + \

'high price float,' + \

'low _price float,' + \

'close price float,' + \

'volume double,' + \

'PRIMARY KEY (symbol, price time)) ')

## close Cassandra connection
cluster.shutdown ()

The comments of the code are sufficient to explain what it is doing. Now, we have
the Historical Data repository ready and what follows is to store the received data
into it. This is exactly the purpose of chapter05_004.py in which a Python function
is created to insert the data, as shown in the following code:

# -*- coding: utf-8 -*-
# program: chapter05 004.py

## import Cassandra driver library
from cassandra.cluster import Cluster
from decimal import Decimal

## function to insert historical data into table quote
## ss: Cassandra session
## sym: stock symbol
## d: standardized DataFrame containing historical data
def insert quote(ss, sym, d):
## CQL to insert data, ? is the placeholder for parameters
insert _cql = 'INSERT INTO quote (' + \
'symbol, price time, open price, high price,' + \
'low _price, close price, volume' + \
') VALUES (' + \
', 7, 0?2, ?, ?, ?, 2" + \
l)l

## prepare the insert CQL as it will run repeatedly

[105]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

insert stmt = ss.prepare(insert cql)

## set decimal places to 4 digits
getcontext () .prec = 4

## loop thru the DataFrame and insert records
for index, row in d.iterrows() :
ss.execute (insert stmt, \
[sym, index, \

Decimal (row['open price'l), \
Decimal (row['high price'l), \
Decimal (row['low_price'l), \
Decimal (row['close price'l), \
Decimal (row['volume']) \

1

Although chapter05_004.py contains less than ten lines of code, it is rather
complicated and needs some explanation.

We can create a function in Python using the keyword def. This must be followed
by the function name and the parenthesized list of formal parameters. The code
that form the body of the function starts in the next line, indented by a tab. Thus, in
chapter05_004.py, the function name is insert guote () with three parameters,
namely, ss, sym, and d.

Indentation in Python

In Python, leading whitespace (spaces and tabs) at the beginning of a
. logical line is used to compute the indentation level of the line, which
% in turn is used to determine the grouping of statements. Be very
/" careful of this. Most of the Python IDE has features to check against
the indentations. The article on the myths about indentation of Python
is worth reading, which is available at http: //www.secnetix.de/
olli/Python/block indentation.hawk.

The second interesting thing is the prepare () function. It is used to prepare CQL
statements that are parsed by Cassandra and then saved for later use. When the
driver uses a prepared statement, it only needs to send the values of parameters to
bind. This lowers network traffic and CPU utilization as a result of the avoidance of
re-parsing the statement each time.

The placeholders for prepared statements are ? characters so that the parameters are
passed in sequence. This method is called positional parameter passing.

[106]

www.it-ebooks.info


http://www.secnetix.de/olli/Python/block_indentation.hawk
http://www.secnetix.de/olli/Python/block_indentation.hawk
http://www.it-ebooks.info/

Chapter 5

The last segment of code is a for-loop that iterates through the DataFrame and inserts
each row into the quote table. We also use the Decimal () function to cast the string
into numeric value.

Putting them all together

All pieces of Python code can be combined to make the Data Feed Provider. To make
the code cleaner, the code fragment for the collection of stock quote is encapsulated
in a function called collect data () and that for data transformation in transform
yahoo () function. The complete program, chapter05_005.py, is listed as follows:.

# -*- coding: utf-8 -*-
# program: chapter05 005.py

## import Cassandra driver library
from cassandra.cluster import Cluster
from decimal import Decimal

## web is the shorthand alias of pandas.io.data
import pandas.io.data as web
import datetime

## function to insert historical data into table quote
## ss: Cassandra session
## sym: stock symbol
## d: standardized DataFrame containing historical data
def insert quote(ss, sym, d):
## CQL to insert data, ? is the placeholder for parameters
insert cqgl = "INSERT INTO quote (" + \
"symbol, price time, open price, high price," + \
"low price, close price, volume" + \
") VALUES (" + \
", 2,02, 2, ?, 2?2, 2" + \
|l>|l
## prepare the insert CQL as it will run repeatedly
insert stmt = ss.prepare(insert cql)

## set decimal places to 4 digits
getcontext () .prec = 4

## loop thru the DataFrame and insert records
for index, row in d.iterrows() :
ss.execute (insert stmt, \
[sym, index, \

[107]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

Decimal (row['open price'l), \
Decimal (row['high price'l), \
Decimal (row['low_price'l), \
Decimal (row['close price'l), \
Decimal (row['volume']) \

1

## retrieve the historical daily stock quote from Yahoo! Finance
## Parameters
## sym: stock symbol
## sd: start date
## ed: end date
def collect data(sym, sd, ed):
## data is a DataFrame holding the daily stock quote
data = web.DataReader (sym, 'yahoo', sd, ed)
return data

## transform received data into standardized format
## Parameter
## d: DataFrame containing Yahoo! Finance stock quote
def transform yahoo(d) :

## drop extra column 'Adj Close'

dl = d.drop(['Adj Close'], axis=1)

## standardize the column names
## rename index column to price_date

dl.index.names=['price date']

## rename the columns to match the respective columns

dl = dl.rename (columns={'Open':'open price', \
'"High':'high price', \
'Low':'low _price', \
'Close':'close price', \

'"Volume': 'volume'})
return dl

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ('packtcdma')

symbol = 'GS'
start date = datetime.datetime (2012, 1, 1)

[108]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

end date = datetime.datetime (2014, 6, 28)

## collect data
data = collect data(symbol, start date, end date)

## transform Yahoo! Finance data
data = transform yahoo (data)

## insert historical data
insert quote(session, symbol, data)

## close Cassandra connection
cluster.shutdown ()

Stock Screener

The Stock Screener retrieves historical data from the Cassandra database and applies

technical analysis techniques to produce alerts. It has four components:

1. Retrieve historical data over a specified period

2. Program a technical analysis indicator for time-series data
3. Apply the screening rule to the historical data
4

Produce alert signals

Data Scoper

To utilize technical analysis techniques, a sufficient optimal number of stock
quote data is required for calculation. We do not need to use all the stored data,
and therefore a subset of data should be retrieved for processing. The following
code, chapte05_006.py, retrieves the historical data from the table quote within
a specified period:

# -*- coding: utf-8 -*-
# program: chapter05 006.py

import pandas as pd
import numpy as np

## function to insert historical data into table quote
## ss: Cassandra session

## sym: stock symbol

## sd: start date

## ed: end date

[109]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

## return a DataFrame of stock quote
def retrieve data(ss, sym, sd, ed):
## CQL to select data, ? is the placeholder for parameters

select_cqgl = "SELECT * FROM quote WHERE symbol=? " + \
"AND price time >= ? AND price time <= ?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [sym, sd, ed])

## initialize an index array
idx = np.asarray([])

## initialize an array for columns
cols = np.asarray([])

## loop thru the query resultset to make up the DataFrame
for r in result:
idx = np.append(idx, [r.price time])
cols = np.append(cols, [r.open price, r.high price, \
r.low price, r.close price, r.volume])

## reshape the 1-D array into a 2-D array for each day
cols = cols.reshape (idx.shape[0], 5)

## convert the arrays into a pandas DataFrame
df = pd.DataFrame (cols, index=idx, \
columns=['close price', 'high price', \
'low price', 'close price', 'volume'l])
return df

The first portion of the function should be easy to understand. It executes a
select_cql query for a particular stock symbol over a specified date period.

The clustering column, price_time, makes range query possible here. The query
result set is returned and used to fill two NumPy arrays, idx for index, and cols
for columns. The cols array is then reshaped as a two-dimensional array with rows
of prices and volume for each day. Finally, both idx and cols arrays are used to
create a DataFrame to return df.

[110]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Time-series data

As a simple illustration, we use a 10-day Simple Moving Average (SMA) as

the technical analysis signal for stock screening. pandas provides a rich set of
functions to work with time-series data. The SMA can be easily computed by
the rolling mean () function, as shown in chapter05 007.py:

# -*- coding: utf-8 -*-
# program: chapter05 007.py

import pandas as pd

## function to compute a Simple Moving Average on a DataFrame
## d: DataFrame
## prd: period of SMA
## return a DataFrame with an additional column of SMA
def sma(d, prd):
d['sma'] = pd.rolling mean(d.close price, prd)
return d

The screening rule

When SMA is calculated, we can apply a screening rule in order to look for trading
signals. A very simple rule is adopted: a buy-and-hold signal is generated whenever
a trading day whose close price is higher than 10-day SMA. In Python, it is just a one
liner by virtue of pandas power. Amazing! Here is an example:

# -*- coding: utf-8 -*-
# program: chapter05 008.py

## function to apply screening rule to generate buy signals
## screening rule, Close > 10-Day SMA
## d: DataFrame
## return a DataFrame containing buy signals
def signal close higher than smalo0 (d) :
return d[d.close price > d.sma]

The Stock Screener engine

Until now, we coded the components of the Stock Screener. We now combine them
together to generate the Alert List, as shown in the following code:

# -*- coding: utf-8 -*-
# program: chapter05 009.py

## import Cassandra driver library

[111]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

from cassandra.cluster import Cluster

import pandas as pd

import numpy as np

import datetime

##
##
##
##
##
##

function to insert historical data into table quote
ss: Cassandra session

sym: stock symbol

sd: start date

ed: end date

return a DataFrame of stock quote

def retrieve data(ss, sym, sd, ed):

## CQL to select data, ? is the placeholder for parameters

select_cqgl = "SELECT * FROM quote WHERE symbol=? " + \
"AND price time >= ? AND price time <= ?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [sym, sd, ed])

## initialize an index array
idx = np.asarray([])

## initialize an array for columns
cols = np.asarray([])

## loop thru the query resultset to make up the DataFrame
for r in result:
idx = np.append(idx, [r.price time])
cols = np.append(cols, [r.open price, r.high price, \
r.low price, r.close price, r.volume])

## reshape the 1-D array into a 2-D array for each day
cols = cols.reshape(idx.shape[0], 5)

## convert the arrays into a pandas DataFrame

df = pd.DataFrame (cols, index=idx, \
columns=['open price', 'high price', \
'low price', 'close price', 'volume'l])

[112]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

return df

## function to compute a Simple Moving Average on a DataFrame
## d: DataFrame
## prd: period of SMA
## return a DataFrame with an additional column of SMA
def sma(d, prd):
d['sma'] = pd.rolling mean(d.close price, prd)
return d

## function to apply screening rule to generate buy signals
## screening rule, Close > 10-Day SMA
## d: DataFrame
## return a DataFrame containing buy signals
def signal close higher than smalo0 (d) :
return d[d.close price > d.sma]

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default

session = cluster.connect ('packtcdma')

## scan buy-and-hold signals for GS over 1 month since 28-Jun-2012
symbol = 'GS'

start date = datetime.datetime (2012, 6, 28)

end date = datetime.datetime (2012, 7, 28)

## retrieve data
data = retrieve data(session, symbol, start date, end date)

## close Cassandra connection
cluster.shutdown ()

## compute 10-Day SMA
data = sma(data, 10)

## generate the buy-and-hold signals
alerts = signal close higher than smal0 (data)

## print out the alert list
for index, r in alerts.iterrows() :
print index.date(), '\t', r['close price'l

[113]

www.it-ebooks.info


http://www.it-ebooks.info/

First-cut Design and Implementation

Test run

An End-to-End Test consists of two parts. First, we test and verify chaptero5_005.
py, which is the complete Data Feed Provider module. Then run chapter05_005.py
in Spyder. Historical stock quote data should be stored in the Cassandra database.
Then run and verify the Stock Screener module, chaptero5_009.py, also in Spyder.

A sample screen of the test run is shown in the following screenshot. The Alert List
should have seven buy-and-hold trading signals:

L Spyder (Python 2.7)

Fle Edit Search Souce Run Debug Consoles Tools View Help
> e S Hbla %22 E RO L [nome/kan Ve + ¢

Editor - dra-D: _009.py @ Object inspector @ &)
™, | 2 chapter0S_006.py X | 2 chapter05_007.py X # chapter05_008.py X < chapter0s_009.py X 14 -, Source Console % | Object | range v| E3 =)

1 [4] E

2

f I

4

5 from cassandra.cluster import Cluster Here you can get halp of any objact by

6 pressing Ctrlsl in front of it, either on the

7import pandas as pd Editor or the Console. 5

8 import numpy as np Help can alsa be shown sutomatically after

9 import datetine writing a left parenthesis next to an object. =

4—? Object inspector | Variable explorer | File explorer | Profiler

12 IPython console @ |

13 —, B console 21126/A X =

14 .

: In [31]: runfile('/home/kan/Cassandra-Data- i

17 def retrieve data(ss, sym. sd, ed): Modeling/chapters_009.py", wdtr="/hone/kan/Cassandra-Data-

18 Modeling')

19 select_cql = "SELECT * FROM quote WHERE symbol=? " + \ N EEay S e

20 "AND price_time >= ? AND price_time <= 2" 2012-07-17 979800033569

2 2012-87-18 96.5100021362

23 select_stmt = ss.prepare(select_cql) gggg;’gé 3:'3233332‘232

5 .

;g 2012-87-27 101.63999939

26 result = ss.execute(select_stmt, [sym, sd, ed

i ( _ [sy! D In [32]:

28

29 idx = np.asarray([])

30

2l

32 cols = np.asarray([])

33 =

33 History log  Python console

35 for r in result: Console & |

36 idx = np.append(idx, [r.price_time]) ~ [ Yomel 21126 T

37 cols = np.append(cols, [r.open_price, r.high_price, \ — D) O com * Be ot

38 r.low_price, r.close_price, r.volume]) =

39 To connect snather client to this kernel, use:

a8 -existing kernel-21126. son

41 cols = cols.reshape(idx.shape[®], 5) =] =)

Permissions: ®___End-oFlines: LF __Encoding: UTF-8 Line: s Column: 38 Memory: 58 %

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Summary

This chapter was rather jam-packed. We designed a simple stock screening
application that collects stock quote data from Yahoo! Finance, which uses
Cassandra as its repository. The system environment of the application was

also introduced with brief setup instructions. Then we developed the application
in Python with a step-by-step explanation. Despite of using one Cassandra table,
the basic row manipulation logic has been demonstrated.

In the next chapter, we will continue enhancing the Stock Screener Application
to collect stock quote data of a bunch of stocks and optimize the application with
several refinements.

[115]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

Traditionally, changes are usually not welcomed and are avoided as much as
possible by a relational database developer. However, business changes every day,
especially in the present fast-paced era. The delayed response to business changes
of a system using a relational database deteriorates the agility and even threatens
the survival of the enterprise. With the advancement of NoSQL and other related
technologies, we now have alternatives to embrace such business changes.

By continuing with the enhancements of the Stock Screener Application developed
in Chapter 5, First-cut Design and Implementation, the techniques of how to evolve an
existing Cassandra data model will be explained in detail. Meanwhile, the techniques
of modeling by query will be demonstrated as well. The source code of the Stock
Screener Application will then be modified accordingly. By the end of this chapter, a
complete technical analysis application on stocks will be developed. You can use it as
a foundation to quickly develop your own.

Evolving the data model

The Stock Screener Application created in Chapter 5, First-cut Design and Implementation,
is good enough to retrieve and analyze a single stock at one time. However, scanning
just a single stock looks very limited in practical use. A slight improvement can be
made here; it can handle a bunch of stocks instead of one. This bunch of stocks will

be stored as Watch List in the Cassandra database.

Accordingly, the Stock Screener Application will be modified to analyze the stocks
in the Watch List, and therefore it will produce alerts for each of the stocks being
watched based on the same screening rule.

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

For the produced alerts, saving them in Cassandra will be beneficial for backtesting
trading strategies and continuous improvement of the Stock Screener Application.
They can be reviewed from time to time without having to review them on the fly.

_ Backtesting is a jargon used to refer to testing a trading strategy,
% investment strategy, or a predictive model using existing historical
= data. It is also a special type of cross-validation applied to time
series data.

In addition, when the number of the stocks in the Watch List grows to a few
hundred, it will be difficult for a user of the Stock Screener Application to recall
what the stocks are by simply referring to their stock codes. Hence, it would be
nice to have the name of the stocks added to the produced alerts to make them
more descriptive and user-friendly.

Finally, we might have an interest in finding out how many alerts were generated
on a particular stock over a specified period of time and how many alerts were
generated on a particular date. We will use CQL to write queries to answer these
two questions. By doing so, the modeling by query technique can be demonstrated.

The enhancement approach

The enhancement approach consists of four change requests in total. First, we will
conduct changes in the data model and then the code will be enhanced to provide the
new features. Afterwards, we will test run the enhanced Stock Screener Application
again. The parts of the Stock Screener Application that require modifications are
highlighted in the following figure.

[118]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

It is remarkable that two new components are added to the Stock Screener Application.
The first component, Watch List, governs Data Mapper and Archiver to collect

stock quote data of those stocks in the Watch List from Yahoo! Finance. The second
component is Query. It provides two Queries on Alert List for backtesting purposes:

f Y
Watch List
o -
Id ™
Data Feed
Provider
Data Feed
Data Feed
Adapter

4—“_
A

\
>
Historical
Data
Historical Data
> - X
k
scsrt::ner S ) Technical
creening Data Scoper Analysis
Rule Signal

A

Alert List

Query

e N
M

[119]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

Watch List

Watch List is a very simple table that merely stores the stock code of its constituents.
It is rather intuitive for a relational database developer to define the stock code as the
primary key, isn't it? Nevertheless, remember that in Cassandra, the primary key is
used to determine the node that stores the row. As Watch List is expected to not be

a very long list, it would be more appropriate to put all of its rows on the same node
for faster retrieval. But how can we do that?

We can create an additional column, say watch_list_code, for this particular
purpose. The new table is called watchlist and will be created in the packtcdma
keyspace. The CQL statement is shown in chapter06_001.py:

# -*- coding: utf-8 -*-
# program: chapter06 001l.py

## import Cassandra driver library
from cassandra.cluster import Cluster

## function to create watchlist
def create watchlist (ss):
## create watchlist table if not exists
ss.execute ('CREATE TABLE IF NOT EXISTS watchlist (' + \
'watch list code varchar,' + \
'symbol varchar,' + \
'"PRIMARY KEY (watch list code, symbol))')

## insert AAPL, AMZN, and GS into watchlist

ss.execute ("INSERT INTO watchlist (watch list code, " + \
"symbol) VALUES ('WS01l', 'AAPL')")

ss.execute ("INSERT INTO watchlist (watch list code, " + \
"symbol) VALUES ('WS01l', 'AMZN')")

ss.execute ("INSERT INTO watchlist (watch list code, " + \
"symbol) VALUES ('WS0l', 'GS')")

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ()

## use packtcdma keyspace
session.set keyspace('packtcdma')

## create watchlist table

[120]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

create watchlist (session)

## close Cassandra connection
cluster.shutdown ()

The create watchlist function creates the table. Note that the watchlist table
has a compound primary key made of watch_list_code and symbol. A Watch List
called wso1 is also created, which contains three stocks, AaPL, AMZN, and GS.

Alert List

In Chapter 5, First-cut Design and Implementation, Alert List is very rudimentary. It is
produced by a Python program and enumerates the date when the close price was
above its 10-day SMA, that is, the signal and the close price at that time. Note that
there were no stock code and stock name.

We will create a table called alertlist to store the alerts with the code and name

of the stock. The inclusion of the stock name is to meet the requirement of making
the Stock Screener Application more user-friendly. Also, remember that joins are not
allowed and denormalization is really the best practice in Cassandra. This means that
we do not mind repeatedly storing (duplicating) the stock name in the tables that
will be queried. A rule of thumb is one table for one query; as simple as that.

The alertlist table is created by the CQL statement, as shown in chapter06_002.py:

# -*- coding: utf-8 -*-
# program: chapter06 002.py

## import Cassandra driver library
from cassandra.cluster import Cluster

## function to create alertlist
def create alertlist(ss):
## execute CQL statement to create alertlist table if not exists

ss.execute ('CREATE TABLE IF NOT EXISTS alertlist (' + \
'symbol varchar,' + \
'price_time timestamp,' + \

'stock name varchar,' + \
'signal price float,' + \
'"PRIMARY KEY (symbol, price time))"')

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default

[121]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

session = cluster.connect ()

## use packtcdma keyspace
session.set keyspace ('packtcdma')

## create alertlist table
create alertlist (session)

## close Cassandra connection
cluster.shutdown ()

The primary key is also a compound primary key that consists of symbol and
price time.

Adding the descriptive stock name

Until now, the packtcdma keyspace has three tables, which are alertlist, quote,
and watchlist. To add the descriptive stock name, one can think of only adding a
column of stock name to alertlist only. As seen in the previous section, this has
been done. So, do we need to add a column for quote and watchlist?

It is, in fact, a design decision that depends on whether these two tables will be
serving user queries. What a user query means is that the table will be used to
retrieve rows for a query raised by a user. If a user wants to know the close price
of Apple Inc. on June 30, 2014, it is a user query. On the other hand, if the Stock
Screener Application uses a query to retrieve rows for its internal processing, it is
not a user query. Therefore, if we want quote and watchlist to return rows for
user queries, they need the stock name column; otherwise, they do not need it.

The watchlist table is only for internal use by the current design, and so it need not
have the stock name column. Of course, if in future, the Stock Screener Application
allows a user to maintain Watch List, the stock name should also be added to the
watchlist table.

However, for quote, it is a bit tricky. As the stock name should be retrieved from the
Data Feed Provider, which is Yahoo! Finance in our case, the most suitable time to
get it is when the corresponding stock quote data is retrieved. Hence, a new column
called stock name is added to quote, as shown in chapter06 003.py:

# -*- coding: utf-8 -*-
# program: chapter06 003.py

## import Cassandra driver library

[122]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

from cassandra.cluster import Cluster

## function to add stock_name column
def add stockname to quote(ss):
## add stock_name to quote
ss.execute ('ALTER TABLE quote ' + \
'ADD stock name varchar')

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ()

## use packtcdma keyspace
session.set keyspace('packtcdma')

## add stock_name column
add_stockname to quote(session)

## close Cassandra connection
cluster.shutdown ()

It is quite self-explanatory. Here, we use the ALTER TABLE statement to add the
stock_name column of the varchar data type to quote.

Queries on alerts

As mentioned previously, we are interested in two questions:

* How many alerts were generated on a stock over a specified period of time?

* How many alerts were generated on a particular date?

For the first question, alertlist is sufficient to provide an answer. However,
alertlist cannot answer the second question because its primary key is composed
of symbol and price_time. We need to create another table specifically for that
question. This is an example of modeling by query.

[123]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

Basically, the structure of the new table for the second question should resemble the
structure of alertlist. We give that table a name, alert_by date, and create it as
shown in chapter06 004.py:

# -*- coding: utf-8 -*-
# program: chapter06 004.py

## import Cassandra driver library
from cassandra.cluster import Cluster

## function to create alert by date table
def create alertbydate(ss) :
## create alert by date table if not exists

ss.execute ('CREATE TABLE IF NOT EXISTS alert by date (' + \
'symbol varchar,' + \
'price_time timestamp,' + \

'stock_name varchar,' + \
'signal price float,' + \
'PRIMARY KEY (price time, symbol))"')

## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ()

## use packtcdma keyspace
session.set keyspace('packtcdma')

## create alert by date table
create alertbydate (session)

## close Cassandra connection
cluster.shutdown ()

When compared to alertlist in chapter06_002.py, alert_by_date only
swaps the order of the columns in the compound primary key. One might think
that a secondary index can be created on alertlist to achieve the same effect.
Nonetheless, in Cassandra, a secondary index cannot be created on columns that
are already engaged in the primary key. Always be aware of this constraint.

We now finish the modifications on the data model. It is time for us to enhance the
application logic in the next section.

[124]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Enhancing the code

Regarding the new requirements to be incorporated into the Stock Screener
Application, Watch List is created, and we will continue to implement the
code for the remaining changes in this section.

Data Mapper and Archiver

Data Mapper and Archiver are components of the Data Feed Provider module, and
its source code file is chapter05 005.py. Most of the source code can be left intact;
we only need to add code to:

1. Load Watch List for a Watch List code and retrieve data feed based on that

2. Retrieve the name of the stocks and store it in the quote table

The modified source code is shown in chapter06 005.py:

# -*- coding: utf-8 -*-
# program: chapter06_005.py

## import Cassandra driver library
from cassandra.cluster import Cluster
from decimal import *

## web is the shorthand alias of pandas.io.data
import pandas.io.data as web
import datetime

## import BeautifulSoup and requests
from bs4 import BeautifulSoup
import requests

## function to insert historical data into table quote
## ss: Cassandra session
## sym: stock symbol
## d: standardized DataFrame containing historical data
## sn: stock name
def insert quote(ss, sym, d, sn):
## CQL to insert data, ? is the placeholder for parameters
insert_cgl = "INSERT INTO quote (" + \
"symbol, price time, open price, high price," + \
"low_price, close price, volume, stock name" + \
") VALUES (?, ?, ?, ?, ?, 2, 2, ?)"
## prepare the insert CQL as it will run repeatedly

[125]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

insert stmt = ss.prepare(insert cql)

## set decimal places to 4 digits
getcontext () .prec = 4

## loop thru the DataFrame and insert records
for index, row in d.iterrows() :
ss.execute (insert stmt, \
[sym, index, \

Decimal (row['open price'l), \
Decimal (row['high price'l), \
Decimal (row['low_price'l), \
Decimal (row['close price'l), \
Decimal (row['volume']l), \

snl)

Here, we changed the INSERT statement to store the stock name into quote in the
insert quote function. We then add a function called 1oad watchlist:

## retrieve the historical daily stock quote from Yahoo! Finance
## Parameters
## sym: stock symbol
## sd: start date
## ed: end date
def collect data(sym, sd, ed):
## data is a DataFrame holding the daily stock quote
data = web.DataReader (sym, 'yahoo', sd, ed)
return data

## transform received data into standardized format
## Parameter
## d: DataFrame containing Yahoo! Finance stock quote
def transform yahoo(d) :

## drop extra column 'Adj Close'

dl = d.drop(['Adj Close'], axis=1)

## standardize the column names
## rename index column to price_date
dl.index.names=['price date']

## rename the columns to match the respective columns

dl = dl.rename (columns={'Open':'open price', \
'"High':'high price', \
'Low':'low _price', \
'Close':'close price', \

[126]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

'"Volume': 'volume'})

return dl

## function to retrieve watchlist
## ss: Cassandra session
## ws: watchlist code
def load watchlist(ss, ws):
## CQL to select data, ? is the placeholder for parameters
select _cqgl = "SELECT symbol FROM watchlist " + \
"WHERE watch list code=?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [ws])

## initialize the stock array
stw = []

## loop thru the query resultset to make up the DataFrame
for r in result:
stw.append (r.symbol)

return stw

Here, the new function, 1oad_watchlist, submits a SELECT query on watch_list to
retrieve the stocks to be watched of a particular Watch List code; it then returns a list
of symbo1l:

## function to retrieve stock name from Yahoo!Finance
## sym: stock symbol
def get stock name (sym) :
url = 'http://finance.yahoo.com/g/hp?s=' + sym + \
'+Historical+Prices'
r = requests.get (url)
soup = BeautifulSoup (r.text)
data = soup.findAll('h2"')
return datal[2].text

def testcase001():
## create Cassandra instance

cluster = Cluster()

## establish Cassandra connection, using local default

[127]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

session = cluster.connect ('packtcdma')

start date = datetime.datetime (2012, 1, 1)
end date = datetime.datetime (2014, 6, 28)

## load the watchlist
stocks watched = load watchlist (session, "WSO01")

## iterate the watchlist
for symbol in stocks watched:
## get stock name
stock name = get stock name (symbol)

## collect data
data = collect data(symbol, start date, end date)

## transform Yahoo! Finance data
data = transform yahoo (data)

## insert historical data
insert quote (session, symbol, data, stock name)

## close Cassandra connection
cluster.shutdown ()

testcase001 ()

The change here is a new function named get_stock_name, which sends a web service
request to Yahoo! Finance and extracts the name of the stock from the returned HTML
page. We use a Python package called BeautifulSoup to make the extraction of an
element from a HTML page very convenient. The get_stock_name function then
returns the stock name.

BeautifulSoup is a library designed for quick turnaround projects
+ such as screen scraping. It primarily parses any text given to it and
finds anything wanted through the tree traversal of the parsed text.
’ More information can be found at http://www.crummy .com/
software/BeautifulSoup/.

[128]

www.it-ebooks.info


http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.it-ebooks.info/

Chapter 6

A for loop is used to iterate through the Watch List to retrieve the stock name and the
stock quote data. In addition, as we need to store the stock name in the quote table, the
insert_quote function accepts the stock name as a new parameter and requires a little
modification on the INSERT statement and the for loop accordingly.

That is all about the changes on Data Mapper and Archiver.

Stock Screener Engine

We will use the source code of Stock Screener Engine in Chapter 5, First-cut Design and
Implementation to include the enhancements; to do so, we will perform the following:

1. Similar to Data Mapper and Archiver, we will load Watch List for a Watch
List code and scan for alerts on each stock.

Retrieve stock quote data with the stock name column from the quote table.

Save the alerts into alertlist.

The modified source code is shown in chapter06 006.py:

# -*- coding: utf-8 -*-
# program: chapter06 006.py

## import Cassandra driver library
from cassandra.cluster import Cluster

import pandas as pd
import numpy as np
import datetime

## import Cassandra BatchStatement library
from cassandra.query import BatchStatement

from decimal import *

## function to insert historical data into table quote

## ss: Cassandra session

## sym: stock symbol

## sd: start date

## ed: end date

## return a DataFrame of stock quote

def retrieve data(ss, sym, sd, ed):
## CQL to select data, ? is the placeholder for parameters
select_cgl = "SELECT * FROM quote WHERE symbol=? " + \

[129]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

"AND price time >= ? AND price time <= ?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [sym, sd, ed])

## initialize an index array
idx = np.asarray([])

## initialize an array for columns
cols = np.asarray([])

## loop thru the query resultset to make up the DataFrame
for r in result:
idx = np.append(idx, [r.price time])
cols = np.append(cols, [r.open price, r.high price, \
r.low price, r.close price, \
r.volume, r.stock name])

## reshape the 1-D array into a 2-D array for each day
cols = cols.reshape(idx.shape[0], 6)

## convert the arrays into a pandas DataFrame
df = pd.DataFrame (cols, index=idx, \

columns=['open price', 'high price', \
'low _price', 'close price', \
'volume', 'stock name'l])

return df

As we have included the stock name in the query resultset, we need to modify the
SELECT statement in the retrieve data function:

## function to compute a Simple Moving Average on a DataFrame
## d: DataFrame
## prd: period of SMA
## return a DataFrame with an additional column of SMA
def sma(d, prd):
d['sma'] = pd.rolling mean(d.close price, prd)
return d

## function to apply screening rule to generate buy signals
## screening rule, Close > 10-Day SMA
## d: DataFrame

[130]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

## return a DataFrame containing buy signals

def signal close higher than smalo0 (d) :

return d[d.close price > d.smal

## function to retrieve watchlist

## ss: Cassandra session

## ws: watchlist code
def load watchlist(ss, ws):

##
##
##

## CQL to select data, ? is the placeholder for parameters
select_cqgl = "SELECT symbol FROM watchlist " + \
"WHERE watch list code=?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [ws])

## initialize the stock array
stw = []

## loop thru the query resultset to make up the DataFrame
for r in result:
stw.append (r.symbol)

return stw
function to insert historical data into table quote

ss: Cassandra session
sym: stock symbol

## d: standardized DataFrame containing historical data

##

sn: stock name

def insert alert(ss, sym, sd, cp, sn):

## CQL to insert data, ? is the placeholder for parameters
insert cqll = "INSERT INTO alertlist (" + \

"symbol, price time, signal price, stock name" +\

") VALUES (?, ?, ?, ?)"

## CQL to insert data, ? is the placeholder for parameters
insert cqgl2 = "INSERT INTO alert by date (" + \

"symbol, price time, signal price, stock name" +\

") VALUES (?, ?, ?, ?2)"

## prepare the insert CQL as it will run repeatedly

[131]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

insert stmtl = ss.prepare(insert cgll)
insert stmt2 = ss.prepare(insert cqgl2)

## set decimal places to 4 digits
getcontext () .prec = 4

## begin a batch
batch = BatchStatement ()

## add insert statements into the batch
batch.add(insert stmtl, [sym, sd, cp, snl)
batch.add(insert stmt2, [sym, sd, cp, snl)

## execute the batch
ss.execute (batch)

def testcase002():
## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ('packtcdma')

start date = datetime.datetime (2012, 6, 28)
end date = datetime.datetime (2012, 7, 28)

## load the watch list
stocks watched = load watchlist (session, "WSO01")

for symbol in stocks watched:
## retrieve data
data = retrieve data(session, symbol, start date, end date)

## compute 10-Day SMA
data = sma(data, 10)

## generate the buy-and-hold signals
alerts = signal close higher than smal0 (data)

## save the alert list
for index, r in alerts.iterrows() :
insert_alert (session, symbol, index, \
Decimal (r['close price'l), \

[132]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

r['stock name'])

## close Cassandra connection
cluster.shutdown ()

testcase002 ()

At the bottom of chapter06_006.py, the for loop is responsible for iterating
watchlist loaded by the new load_watchlist function, which is the same
function as in chapter06_005.py and does not require further explanation.
Another for loop inside saves the scanned alerts into alertlist by calling
the new insert alert function.

Before explaining the insert_alert function, let us jump to the retrieve_data
function at the top. The retrieve_data function is modified to return the name of
the stock as well and hence the cols variable now contains six columns. Scroll down
a bitto insert_alert.

The insert_alert function, as its name suggests, saves the alert into alertlist
and alert_by date. It has two INSERT statements for these two tables, respectively.
The INSERT statements are almost identical except for the name of the table.
Obviously, they are repeated, and this is what denormalization means. We also
apply a new feature of Cassandra 2.0 here, known as batch. A batch combines
multiple data modification language (DML) statements into a single logical, atomic
operation. The Cassandra Python driver from DataStax supports this feature by

the BatchStatement package. We create a batch by calling the BatchStatement ()
function, then add the prepared INSERT statements into the batch, and finally
execute it. If either INSERT statement comes across an error during commit, all
DML statements in the batch will not be executed. Therefore, it is analogous to a
transaction in a relational database.

Queries on Alerts

The last modification to the Stock Screener Application is the enquiry functions on
alerts that are useful for backtesting and performance measurement. We write two
queries to answer the two questions, which are as follows:

* How many alerts were generated on a stock over a specified period of time?

* How many alerts were generated on a particular date?

[133]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

As we have used denormalization on the data model, it is very easy to execute.
For the first query, see chapter06_007.py:

# -*- coding: utf-8 -*-
# program: chapter06 007.py

## import Cassandra driver library
from cassandra.cluster import Cluster

import pandas as pd
import numpy as np
import datetime

## execute CQL statement to retrieve rows of
## How many alerts were generated on a particular stock over
## a specified period of time?
def alert over daterange(ss, sym, sd, ed):
## CQL to select data, ? is the placeholder for parameters
select _cql = "SELECT * FROM alertlist WHERE symbol=? " + \
"AND price_time >= ? AND price_time <= ?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [sym, sd, ed])

## initialize an index array
idx = np.asarray([])

## initialize an array for columns
cols = np.asarray([])

## loop thru the query resultset to make up the DataFrame
for r in result:
idx = np.append(idx, [r.price_ time])
cols = np.append(cols, [r.symbol, r.stock name, \
r.signal pricel)

## reshape the 1-D array into a 2-D array for each day
cols = cols.reshape (idx.shape[0], 3)

## convert the arrays into a pandas DataFrame
df = pd.DataFrame (cols, index=idx, \

[134]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

columns=['symbol', 'stock name', \
'signal price'])
return df

def testcase001():
## create Cassandra instance
cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ()

## use packtcdma keyspace
session.set keyspace('packtcdma')

## scan buy-and-hold signals for GS

## over 1 month since 28-Jun-2012

symbol = 'GS'

start date = datetime.datetime (2012, 6, 28)
end date = datetime.datetime (2012, 7, 28)

## retrieve alerts
alerts = alert over daterange(session, symbol, \

start date, end date)

for index, r in alerts.iterrows() :

print index.date(), '\t', \
r['symbol']l, '\t', \
r['stock name'l, '\t', \

r['signal price']

## close Cassandra connection
cluster.shutdown ()

testcase001 ()

A function named alert over daterange is defined to retrieve the rows relevant to
the first question. Then it transforms the CQL resultset to a pandas DataFrame.

Then we can come up with a query for the second question with reference to the
same logic in chapter06_007.py. The source code is shown in chapter06_008.py:

# -*- coding: utf-8 -*-
# program: chapter06 008.py

## import Cassandra driver library

[135]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

from cassandra.cluster import Cluster

import pandas as pd
import numpy as np
import datetime

## execute CQL statement to retrieve rows of
## How many alerts were generated on a particular stock over
## a specified period of time?
def alert on date(ss, dd):
## CQL to select data, ? is the placeholder for parameters
select_cqgl = "SELECT * FROM alert by date WHERE " + \
"price time=?"

## prepare select CQL
select stmt = ss.prepare(select cql)

## execute the select CQL
result = ss.execute(select stmt, [dd])

## initialize an index array
idx = np.asarray([])

## initialize an array for columns
cols = np.asarray([])

## loop thru the query resultset to make up the DataFrame
for r in result:
idx = np.append(idx, [r.symbol])
cols = np.append(cols, [r.stock name, r.price time, \
r.signal pricel)

## reshape the 1-D array into a 2-D array for each day
cols = cols.reshape(idx.shape[0], 3)

## convert the arrays into a pandas DataFrame

df = pd.DataFrame (cols, index=idx, \
columns=['stock name', 'price time', \
'signal price'])

return df

def testcase001():
## create Cassandra instance

[136]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

cluster = Cluster()

## establish Cassandra connection, using local default
session = cluster.connect ()

## use packtcdma keyspace
session.set keyspace('packtcdma')

## scan buy-and-hold signals for GS
over 1 month since 28-Jun-2012

on date = datetime.datetime (2012, 7, 13)

## retrieve alerts
alerts = alert on date(session, on_date)

## print out alerts
for index, r in alerts.iterrows() :
print index, '\t', \
r['stock name'l, '\t', \

r['signal price']

## close Cassandra connection
cluster.shutdown ()

testcase001 ()

Once again, denormalization is a friend of Cassandra. It does not require a foreign
key, referential integrity, or table join.

Implementing system changes

We can now implement the changes to the system one-by-one:

1.

First we run chapter06_001.py through to chapter06_004.py in sequence
to make changes to the data model.

Then we execute chapter06_005.py to retrieve stock quote data for the Watch
List. It is worth mentioning that UPSERT is a very nice feature of Cassandra.
We do not encounter a duplicate primary key while we insert the same row
into a table. It simply updates the row if the row already exists or inserts the
row otherwise. It makes the data manipulation logic neat and clean.

Further, we run chatper06_006.py to store the alerts by scanning over the
stock quote data of each stock in the Watch List.

[137]

www.it-ebooks.info


http://www.it-ebooks.info/

Enhancing a Version

4. Finally, we execute chapter06_007.py and chapter06_008.py to enquire
alertlist and alert_by date, respectively. Their sample test results are
shown in the following figure:

6 fle  Cde Seanh  Source Men Debug  Consoles  Taoh  View  Hep
Wb b Sepe o opia R E R AN e 4 (Ao =& 4+
Tebon - Pearmmhan Covsansis D Mg hapter 8,508, oy =
3 haptert Bl py A Croptens D0ReT K B
==,

L/
I

5 from castandra.cluster inport Cluster

Tirgert pandas as pd

Ldel alert_on_date(ss, di):

seloct_cql = “SELECT * FAUA alort_by_dabo AERE - = }

In [17]: runfilel’/h 86 B0T.py", wdlrs' fhorefkan/Cassandra-Data

odo

I OomEg

2 lect_atat = 33.pre sele 012-87-12 65 94, BIFFIE6ATL
" E ilactotont.a. ik pripaapaiac oty T TEN R T The Gold=an Sachs Growa, Lnc, 97, 4100003052
K% 20128718 G5 The Goldean Sachs Growp, Inc. 97 . GEGOE03E52
1 result = osuta{ salnc (2411 20138717 [~ The Goldman Sachs Groep, Inc. 97, SE0AE11569
4 wslt = 3. embcuta(satactstnt, - [9d]} 2012.87.18 s Tho Coldman Sachs Crows, Inc 96 5160621362
[ -] - 2012-87 &5 The Coldsan Sachs Grewp, Inc,
3% ixm rraycl & The Gald=en Sochs Growd, Inc, 23, 1600036621
5 T g eyt The Geldsen Sachs Growma, lnc. 91, TR 35621
. The Goldesn Sachs Growp, Tnc. 470812707
— e . The Goldwen Sachs Groen, Inc, 95. 955955084
o PR The Galdwan Sachs ne 98, ES5#T5505
L The Golde 181, 639939
for ¢ in resalts N— R —_—
E dx = np.sppend(idx, [r.symbol]) 18 e kan; fng/chapterss_808.py", wdkr='fhorafkan/Cassandra-0ata
B e ; o § odeling')
SO = eapen e, [ atackminey oo tines | ML gple Inc. [AARL) €84.96997703
EMIN Amaron.com Tmc. (AMIN) 218.3R99993%
@ The Guldnen Sechs Group. Inc. (G5)  97.4300083852
cols = cols. resheped tdn. shano[ 8], 1) T
df = pd.DataFrane(c ndaxsidx, |
; [ stock. pas |
el
return df
46 det testcaseldd():
cluster = Cluster()
1 Sy i S

Summary

This chapter extends the Stock Screener Application by a number of enhancements.
We made changes to the data model to demonstrate the modeling by query
techniques and how denormalization can help us achieve a high-performance
application. We also tried the batch feature provided by Cassandra 2.0.

Note that the source code in this chapter is not housekept and can be refactored
somehow. However, because of the limit on the number of pages, it is left as an
exercise for the reader.

The Stock Screener Application is now running on a single node cluster.

In the next chapter, we will delve into the considerations and procedures of expanding
it to a larger cluster, which is quite common in real-life production systems.

[138]

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

We have explored the development of the Stock Screener Application in previous
chapters; it is now time to consider how to deploy it in the production environment.
In this chapter, we will discuss the most important aspects of deploying a Cassandra
database in production. These aspects include the selection of an appropriate
combination of replication strategy, snitch, and replication factor to make up a
fault-tolerant, highly available cluster. Then we will demonstrate the procedure to
migrate our Cassandra development database of the Stock Screener Application to a
production database. However, cluster maintenance is beyond the scope of this book.

Moreover, a live production system that continuously operates certainly requires
monitoring of its health status. We will cover the basic tools and techniques of
monitoring a Cassandra cluster, including the nodetool utility, JMX and MBeans,
and system log.

Finally, we will explore ways of boosting the performance of Cassandra other than
using the defaults. Actually, performance tuning can be made at several levels,
from the lowest hardware and system configuration to the highest application
coding techniques. We will focus on the Java Virtual Machine (JVM) level, because
Cassandra heavily relies on its underlying performance. In addition, we will touch
on how to tune caches for a table.

Replication strategies

This section is about the data replication configuration of a Cassandra cluster. It will
cover replication strategies, snitches, and the configuration of the cluster for the Stock
Screener Application.

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

Data replication

Cassandra, by design, can work in a huge cluster across multiple data centers all
over the globe. In such a distributed environment, network bandwidth and latency
must be critically considered in the architecture, and careful planning in advance is
required, otherwise it would lead to catastrophic consequences. The most obvious
issue is the time clock synchronization — the genuine means of resolving transaction
conflicts that can threaten data integrity in the whole cluster. Cassandra relies on
the underlying operating system platform to provide the time clock synchronization
service. Furthermore, a node is highly likely to fail at some time and the cluster
must be resilient to this typical node failure. These issues have to be thoroughly
considered at the architecture level.

Cassandra adopts data replication to tackle these issues, based on the idea of using
space in exchange of time. It simply consumes more storage space to make data
replicas so as to minimize the complexities in resolving the previously mentioned
issues in a cluster.

Data replication is configured by the so-called replication factor in a keyspace. The
replication factor refers to the total number of copies of each row across the cluster.
So a replication factor of 1 (as seen in the examples in previous chapters) means that
there is only one copy of each row on one node. For a replication factor of 2, two
copies of each row are on two different nodes. Typically, a replication factor of 3 is
sufficient in most production scenarios.

All data replicas are equally important. There are neither master nor slave replicas.
So data replication does not have scalability issues. The replication factor can be
increased as more nodes are added. However, the replication factor should not be
set to exceed the number of nodes in the cluster.

Another unique feature of Cassandra is its awareness of the physical location of
nodes in a cluster and their proximity to each other. Cassandra can be configured
to know the layout of the data centers and racks by a correct IP address assignment
scheme. This setting is known as replication strategy and Cassandra provides two
choices for us: simpleStrategy and NetworkTopologyStrategy.

SimpleStrategy

SimpleStrategy is used on a single machine or on a cluster in a single data center.
It places the first replica on a node determined by the partitioner, and then the
additional replicas are placed on the next nodes in a clockwise fashion without
considering the data center and rack locations. Even though this is the default
replication strategy when creating a keyspace, if we ever intend to have more

than one data center, we should use NetworkTopologyStrategy instead.

[140]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

NetworkTopologyStrategy

NetworkTopologyStrategy becomes aware of the locations of data centers and racks
by understanding the IP addresses of the nodes in the cluster. It places replicas in the
same data center by the clockwise mechanism until the first node in another rack is
reached. It attempts to place replicas on different racks because the nodes in the same
rack often fail at the same time due to power, network issues, air conditioning, and
so on.

As mentioned, Cassandra knows the physical location from the IP addresses of the
nodes. The mapping of the IP addresses to the data centers and racks is referred to

as a snitch. Simply put, a snitch determines which data centers and racks the nodes
belong to. It optimizes read operations by providing information about the network
topology to Cassandra such that read requests can be routed efficiently. It also affects
how replicas can be distributed in consideration of the physical location of data
centers and racks.

There are many types of snitches available for different scenarios and each comes
with its pros and cons. They are briefly described as follows:
* simplesnitch: This is used for single data center deployments only

* DynamicSnitch: This monitors the performance of read operations from
different replicas, and chooses the best replica based on historical performance

* RackInferringSnitch: This determines the location of the nodes by data
center and rack corresponding to the IP addresses

* PropertyFileSntich: This determines the locations of the nodes by data
center and rack

* GossipingPropertyFileSnitch: This automatically updates all nodes using
gossip when adding new nodes

e EC2Snitch: This is used with Amazon EC2 in a single region
* EC2MultiRegionSnitch: This is used with Amazon EC2 in multiple regions

* GoogleCloudsnitch: This is used with Google Cloud Platform across one or
more regions

* CloudstackSnitch: This is used for Apache Cloudstack environments

Snitch Architecture

For more detailed information, please refer to the documentation
%‘%‘ made by DataStax at http: //www.datastax.com/

documentation/cassandra/2.1/cassandra/architecture/

architectureSnitchesAbout c.html.

[141]

www.it-ebooks.info


http://www.datastax.com/documentation/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
http://www.datastax.com/documentation/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
http://www.datastax.com/documentation/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
http://www.it-ebooks.info/

Deployment and Monitoring

The following figure illustrates an example of a cluster of eight nodes in four racks
across two data centers using RackInferringSnitch and a replication factor of
three per data center:

Data Center 1 Data Center 2
123, 1. xXX. XXX 1232 XK. XXX
Rack 1 Rack 2 Rack 1 Rack 2

123.1.Lxxx | ... PO 0 1. P TP S o oL ST SRR 123.2.1.xxx 123.2.2.55%

- -4

Ci?) _Node2 Ci‘D _Node2

snitch setting.

- 1
‘Q All nodes in the cluster must use the same ]

Let us look at the IP address assignment in Data Center 1 first. The IP addresses are
grouped and assigned in a top-down fashion. All the nodes in Data Center 1 are in
the same 123.1.0.0 subnet. For those nodes in Rack 1, they are in the same 123.1.1.0
subnet. Hence, Node 1 in Rack 1 is assigned an IP address of 123.1.1.1 and Node

2 in Rack 1 is 123.1.1.2. The same rule applies to Rack 2 such that the IP addresses
of Node 1 and Node 2 in Rack 2 are 123.1.2.1 and 123.1.2.2, respectively. For Data
Center 2, we just change the subnet of the data center to 123.2.0.0 and the racks and
nodes in Data Center 2 are then changed similarly.

The RackInferringSnitch deserves a more detailed explanation. It assumes that
the network topology is known by properly assigned IP addresses based on the
following rule:

IP address = <arbitrary octet>.<data center octet>.<rack octet>.<node octet>

The formula for IP address assignment is shown in the previous paragraph. With this
very structured assignment of IP addresses, Cassandra can understand the physical
location of all nodes in the cluster.

[142]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Another thing that we need to understand is the replication factor of the three replicas
that are shown in the previous figure. For a cluster with NetworkToplogyStrategy,
the replication factor is set on a per data center basis. So in our example, three replicas
are placed in Data Center 1 as illustrated by the dotted arrows in the previous
diagram. Data Center 2 is another data center that must have three replicas. Hence,
there are six replicas in total across the cluster.

We will not go through every combination of the replication factor, snitch and
replication strategy here, but we should now understand the foundation of how
Cassandra makes use of them to flexibly deal with different cluster scenarios in
real-life production.

Setting up the cluster for Stock Screener
Application

Let us return to the Stock Screener Application. The cluster it runs on in Chapter 6,
Enhancing a Version, is a single-node cluster. In this section, we will set up a cluster
of two nodes that can be used in small-scale production. We will also migrate the
existing data in the development database to the new fresh production cluster. It
should be noted that for quorum reads/writes, it's usually best practice to use an
odd number of nodes.

System and network configuration

The steps of installation and setup of the operating system and network
configuration are assumed to be done. Moreover, both nodes should have
Cassandra freshly installed. The system configuration of the two nodes is
identical and shown as follows:

* OS: Ubuntu 12.04 LTS 64-bit

* Processor: Intel Core i7-4771 CPU @3.50GHz x 2

*  Memory: 2 GB

* Disk: 20 GB

[143]

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

Global settings

The cluster is named Test Cluster, in which both the ubtc01 and ubtc02 nodes are in
the same rack, RACK1, and in the same data center, NY1. The logical architecture of the
cluster to be set up is depicted in the following diagram:

GossipingPropertyFileSnitch -
‘~ ubtc02  /

. Test Cluster e

In order to configure a Cassandra cluster, we need to modify a few properties in
the main configuration file, cassandra.yaml, for Cassandra. Depending on the
installation method of Cassandra, cassandra.yaml is located in different directories:

* Package installation: /etc/cassandra/

* Tarball installation: <install locations/conf/

The first thing to do is to set the properties in cassandra.yaml for each node. As
the system configuration of both nodes is the same, the following modification on
cassandra.yanml settings is identical to them:

-seeds: ubtcOl

listen address:

rpc_address: 0.0.0.0

endpoint snitch: GossipingPropertyFileSnitch
auto bootstrap: false

[144]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

The reason for using GossipingPropertyFileSnitch is that we want the Cassandra
cluster to automatically update all nodes with the gossip protocol when adding a
new node.

Apart from cassandra.yaml, we also need to modify the data center and rack
properties in cassandra-rackdc.properties in the same location as cassandra.
yaml. In our case, the data center is NY1 and the rack is RACK1, as shown in the
following code:

dc=NY1
rack=RACK1

Configuration procedure
The configuration procedure of the cluster (refer to the following bash shell scripts:
setup_ubtc0l.sh and setup ubtc02.sh) is enumerated as follows:
1. Stop Cassandra service:
ubtc0l:~$ sudo service cassandra stop

ubtc02:~$ sudo service cassandra stop

2. Remove the system keyspace:
ubtc0l:~$ sudo rm -rf /var/lib/cassandra/data/system/*
ubtc02:~$ sudo rm -rf /var/lib/cassandra/data/system/*

3. Modify cassandra.yaml and cassandra-rackdc.properties in both nodes
based on the global settings as specified in the previous section

4. Start the seed node ubtco1 first:

ubtc0l:~$ sudo service cassandra start

5. Then start ubtco02:

ubtc02:~$ sudo service cassandra start

6. Wait for a minute and check if ubtc01 and ubtc02 are both up and running:
ubtc01l:~$ nodetool status

[145]

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

A successful result of setting up the cluster should resemble something similar to the
following screenshot, showing that both nodes are up and running;:

/Down

Help

Ty <) X packt £F

nodetool status

|/ State=Normal/Leaving/Joining/Moving

Address

Load

Tokens Owns Host ID Rack

UN 192.168.164.151 2.76 MB 256 51.8% ce3769d3-a032-43b3-9daa-e27112425ef5 RACK1
P UN  192.168.164.152 2.33 MB 256 48.2% 49d9cdde-c393-4331-8cla-fBeac52c2a78 RACK1
packt@ubtcol:~5

L
%
a
=]

1 OcC

Legacy data migration procedure

We now have the cluster ready but it is empty. We can simply rerun the Stock
Screener Application to download and fill in the production database again.
Alternatively, we can migrate the historical prices collected in the development
single-node cluster to this production cluster. In the case of the latter approach,
the following procedure can help us ease the data migration task:

1. Take a snapshot of the packcdma keyspace in the development database
(ubuntu is the hostname of the development machine):

ubuntu:~$ nodetool snapshot packtcdma

Record the snapshot directory, in this example, 1412082842986

To play it safe, copy all SSTables under the snapshot directory to a temporary
location, say ~/temp/:

ubuntu:~$ mkdir ~/temp/

ubuntu:
ubuntu:
ubuntu:

ubuntu:

~$ mkdir
~$ mkdir
~$ mkdir
~$ mkdir

~/temp/packtcdma/
~/temp/packtcdma/alert by date/
~/temp/packtcdma/alertlist/
~/temp/packtcdma/quote/

[146]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

ubuntu:~$ mkdir ~/temp/packtcdma/watchlist/

ubuntu:~$ sudo cp -p /var/lib/cassandra/data/packtcdma/alert by
date/snapshots/1412082842986/* ~/temp/packtcdma/alert by date/

ubuntu:~$ sudo cp -p /var/lib/cassandra/data/packtcdma/alertlist/
snapshots/1412082842986/* ~/temp/packtcdma/alertlist/

ubuntu:~$ sudo cp -p /var/lib/cassandra/data/packtcdma/quote/
snapshots/1412082842986/* ~/temp/packtcdma/quote/

ubuntu:~$ sudo cp -p /var/lib/cassandra/data/packtcdma/watchlist/
snapshots/1412082842986/* ~/temp/packtcdma/watchlist/

Open cqlsh to connect to ubtc01 and create a keyspace with the appropriate
replication strategy in the production cluster:

ubuntu:~$ cqglsh ubtc0l

cqglsh> CREATE KEYSPACE packtcdma WITH replication = {'class':
'NetworkTopologyStrategy', 'NY1l': '2'};

Create the alert by date, alertlist, quote, and watchlist tables:
cglsh> CREATE TABLE packtcdma.alert by date (

price time timestamp,

symbol varchar,

signal price float,

stock name varchar,

PRIMARY KEY (price time, symbol));
cqglsh> CREATE TABLE packtcdma.alertlist (

symbol varchar,

price time timestamp,

signal price float,

stock name varchar,

PRIMARY KEY (symbol, price time));
cqglsh> CREATE TABLE packtcdma.quote (

symbol varchar,

price time timestamp,

close price float,

high price float,

low price float,

open price float,

stock name varchar,

volume double,

PRIMARY KEY (symbol, price time));

[147]

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

cglsh> CREATE TABLE packtcdma.watchlist (
watch list code varchar,
symbol varchar,
PRIMARY KEY (watch list code, symbol));

6. Load the SSTables back to the production cluster using the sstableloader
utility:
ubuntu:~$ cd ~/temp
ubuntu:~/temp$ sstableloader -d ubtc0l packtcdma/alert by date
ubuntu:~/temp$ sstableloader -d ubtc0l packtcdma/alertlist
ubuntu:~/temp$ sstableloader -d ubtc0l packtcdma/quote
ubuntu:~/temp$ sstableloader -d ubtc0l packtcdma/watchlist

7. Check the legacy data in the production database on ubtco2:
cqglsh> select * from packtcdma.alert by date;
cqglsh> select * from packtcdma.alertlist;
cglsh> select * from packtcdma.quote;

cqglsh> select * from packtcdma.watchlist;

Although the previous steps look complicated, it is not difficult to understand what
they want to achieve. It should be noted that we have set the replication factor per
data center as 2 to provide data redundancy on both nodes, as shown in the CREATE
KEYSPACE statement. The replication factor can be changed in future if needed.

Deploying the Stock Screener Application

As we have set up the production cluster and moved the legacy data into it, it is time
to deploy the Stock Screener Application. The only thing needed to modify is the code
to establish Cassandra connection to the production cluster. This is very easy to do
with Python. The code in chapter06_006.py is modified to work with the production
cluster as chapter07 001.py. A new test case named testcase003 () is created to
replace testcase002 (). To save pages, the complete source code of chapter07_001.
py is not shown here; only the testcase003 () function is depicted as follows:

# -*- coding: utf-8 -*-
# program: chapter07 001.py

# other functions are not shown for brevity

def testcase003():
## create Cassandra instance with multiple nodes

[148]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

cluster = Cluster(['ubtc0l', 'ubtc02'])

## establish Cassandra connection, using local default
session = cluster.connect ('packtcdma')

start date = datetime.datetime (2012, 6, 28)
end date = datetime.datetime (2013, 9, 28)

## load the watch list
stocks watched = load watchlist (session, "WSO01")

for symbol in stocks watched:
## retrieve data
data = retrieve data(session, symbol, start date, end date)

## compute 10-Day SMA
data = sma(data, 10)

## generate the buy-and-hold signals
alerts = signal close higher than smal0 (data)

## save the alert list
for index, r in alerts.iterrows() :
insert alert (session, symbol, index, \
Decimal (r['close price'l), \
r['stock name'])

## close Cassandra connection
cluster.shutdown ()

testcase003 ()

The cluster connection code right at the beginning of the testcase003 () function
is passed with an array of the nodes to be connected (ubtco01 and ubtco02). Here we
adopted the default RoundrobinPolicy as the connection load balancing policy.

It is used to decide how to distribute requests among all possible coordinator
nodes in the cluster. There are many other options which are described in the
driver API documentation.

Cassandra Driver 2.1 Documentation

% For the complete API documentation of the Python Driver 2.1 for
/S Apache Cassandra, you can refer to http://datastax.github.
io/python-driver/api/index.html.

[149]

www.it-ebooks.info


http://datastax.github.io/python-driver/api/index.html
http://datastax.github.io/python-driver/api/index.html
http://www.it-ebooks.info/

Deployment and Monitoring

Monitoring

As the application system goes live, we need to monitor its health day-by-day.
Cassandra provides a number of tools for this purpose. We will introduce some
of them with pragmatic recommendations. It is remarkable that each operating
system also provides a bunch of tools and utilities for monitoring, for example,
top, df, du on Linux and Task Manager on Windows. However, they are beyond
the scope of this book.

Nodetool

The nodetool utility should not be new to us. It is a command-line interface used to
monitor Cassandra and perform routine database operations. It includes the most
important metrics for tables, server, and compaction statistics, and other useful
commands for administration.

Here are the most commonly used nodetool options:

* status: This provides a concise summary of the cluster, such as the state,
load, and IDs

* netstats: This gives the network information for a node, focusing on read
repair operations

* info: This gives valuable node information including token, on disk load,
uptime, Java heap memory usage, key cache, and row cache

* tpstats: This provides statistics about the number of active, pending, and
completed tasks for each stage of Cassandra operations by thread pool

* cfstats: This gets the statistics about one or more tables, such as
read-and-write counts and latencies, metrics about SSTable, memtable,
bloom filter, and compaction.

A detailed documentation of nodetool can be referred to at http://
%j%“ www.datastax.com/documentation/cassandra/2.0/
’ cassandra/tools/toolsNodetool r.html.

[150]

www.it-ebooks.info


http://www.datastax.com/documentation/cassandra/2.0/cassandra/tools/toolsNodetool_r.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/tools/toolsNodetool_r.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/tools/toolsNodetool_r.html
http://www.it-ebooks.info/

Chapter 7

JMX and MBeans

Cassandra is written in the Java language and so it natively supports Java Management
Extensions (JMX). We may use JConsole, a JMX-compliant tool, to monitor Cassandra.

JConsole

JConsole is included with Sun JDK 5.0 and higher versions. However, it
%@\\ consumes a significant amount of system resources. It is recommended

that you run it on a remote machine rather than on the same host as a

Cassandra node.

We can launch JConsole by typing jconsole in a terminal. Assuming that we want
to monitor the local node, when the New Connection dialog box pops up, we type

localhost:7199 (7199 is the port number of JMX) in the Remote Process textbox,

as depicted in the following screenshot:

[x]
M New Connection

Local Process:

MNarne PID
sun.tools.jconsole. JConsole | 9253

® Remote Process:

[localost: 7199

Usage: l;;hostnamegt;lt;portgt; OR service:jmslt;protocolgk;lt;sapgt;
Username: Password:

Cancel | | Connect
[151]

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

After having connected to the local Cassandra instance, we will see a well-organized
GUI showing six separate tabs placed horizontally on the top, as seen in the
following screenshot:

Java Monitoring & Management Console

CE LEREERIELE

Refresh

i localhost: 7199

The tabs of the GUI are explained as follows:
* Overview: This displays overview information about the JVM and
monitored values

* Memory: This displays information about heap and non-heap memory usage
and garbage collection metrics

* Threads: This displays information about thread use

* Classes: This displays information about class loading

* VM Summary: This displays information about the JVM

* MBeans: This displays information about specific Cassandra metrics

and operations

Furthermore, Cassandra provides five MBeans for JConsole. They are briefly
introduced as follows:

* org.apache.cassandra.db: This includes caching, table metrics,
and compaction

* org.apache.cassandra.internal: These are internal server operations
such as gossip and hinted handoff

[152]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

* org.apache.cassandra.metrics: These are various metrics of the
Cassandra instance such as cache and compaction

* org.apache.cassandra.net: This has Inter-node communication including
FailureDetector, MessagingService and StreamingService

* org.apache.cassandra.request: These include tasks related to read, write,
and replication operations

MBeans

An Managed Bean (MBean) is a Java object that represents a
*  manageable resource such as an application, a service, a component,
%ﬁ‘ or a device running in the JVM. It can be used to collect statistics
on concerns such as performance, resource usage, or problems, for
getting and setting application configurations or properties, and
notifying events like faults or state changes.

The system log

The most rudimentary, yet the most powerful, monitoring tool is Cassandra's system
log. The default location of the system log is named system. log under /var/log/
cassandra/. It is simply a text file and can be viewed or edited by any text editor.
The following screenshot shows an extract of system. log:

T o
. ColumnFamily='batchlog')
2 cells
INFO [Batchlog ] 4 @ 136246 ¢ (11 ) Enqueuing flush of Memtable-batchlog@2éo

41/77921 4 .
INFO [FlushWriter - Writing Memtable-batchl 235641/779215 sertialized/
11 ytes ops
INFO [FlushWri 4-18-81 8 3 L Completed flushing; nothing n to be retatned.
| position was R
(line 785) Engueuing flush of able-batch

Writing Memtable-batchl

np .
4-Data.db’
INFO [€
.java (line 785) Enqueuing flush of Memtable-sstable activ
-Java (line 331) Writing Memtable-sstable_ activi

[FlushHriter : 81:58,718 Memtable r 37 mpleted flushing
ble - i1-Data.db (296 bytes) c on Repl =itio

[153]

www.it-ebooks.info


http://www.it-ebooks.info/

Deployment and Monitoring

This piece of log looks long and weird. However, if you are a Java developer and
you are familiar with the standard log library, Log4j, it is pretty straightforward.
The beauty of Log4j is the provision of different log levels for us to control the
granularity of the log statements to be recorded in system.log. As shown in the
previous figure, the first word of each line is INFO, meaning that the log statement
is a piece of information. Other log level choices include FATAL, ERROR, WARN, DEBUG,
and TRACE, from the least verbose to the most verbose.

The system log is very valuable in troubleshooting problems as well. We may
increase the log level to DEBUG or TRACE for troubleshooting. However, running
a production Cassandra cluster in the DEBUG or TRACE mode will degrade its
performance significantly. We must use them with great care.

We can change the standard log level in Cassandra by adjusting the 1og47 .
rootLogger property in log4j-server.properties in the Cassandra configuration
directory. The following screenshot shows the content of 1og4j-server.properties
in ubtc02:

D @™ File Edit View Search Terminal Help

http:/,

ou should probably set pattern to Xc instead of X1.

o a rolling log file as well as stdout
di

ppender
nLayout
Ed{HH:mm: s

RollingFileappender

#1og41. Logge
lagge

It is important to mention that system. log and 1log4j-server.properties are only
responsible for a single node. For a cluster of two nodes, we will have two system.
log and two log4j-server.properties on the respective nodes.

[154]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Performance tuning

Performance tuning is a large and complex topic that in itself can be a whole course.
We can only scratch the surface of it in this short section. Similar to monitoring in the
last section, operating system-specific performance tuning techniques are beyond the
scope of this book.

Java virtual machine

Based on the information given by the monitoring tools and the system log, we can
discover opportunities for performance tuning. The first things we usually watch
are the Java heap memory and garbage collection. JVM's configuration settings

are controlled in the environment settings file for Cassandra, cassandra-env.sh,
located in /etc/cassandra/. An example is shown in the following screenshot:

™ File Edit View Search Terminal Help Ty ) X packt &

ap when accessed via JMX, see CASSANDRA-6541
UnloadingEnabled”

We can give periodic tasks
with client workload

. See
ead-priorities-workaround.htal

p uld b t
the-world pauses during resi

in memory on tup to prevent any

sandra- ‘date +%s’ -pid55.hprof”

Basically, it already has the boilerplate options calculated to be optimized for the
host system. It is also accompanied with explanation for us to tweak specific JVM
parameters and the startup options of a Cassandra instance when we experience

real issues; otherwise, these boilerplate options should not be altered.

* A detailed documentation on how to tune JVM for Cassandra can
%j%‘\ be found at http://www.datastax.com/documentation/
’ cassandra/2.0/cassandra/operations/ops_tune jvm_c.html.

[155]

www.it-ebooks.info


http://www.datastax.com/documentation/cassandra/2.0/cassandra/operations/ops_tune_jvm_c.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/operations/ops_tune_jvm_c.html
http://www.it-ebooks.info/

Deployment and Monitoring

Caching

Another area we should pay attention to is caching. Cassandra includes integrated
caching and distributes cache data around the cluster. For a cache specific to a table,
we will focus on the partition key cache and the row cache.

Partition key cache

The partition key cache, or key cache for short, is a cache of the partition index for a
table. Using the key cache saves processor time and memory. However, enabling just
the key cache makes the disk activity actually read the requested data rows.

Row cache

The row cache is similar to a traditional cache. When a row is accessed, the entire
row is pulled into memory, merging from multiple SSTables when required, and
cached. This prevents Cassandra from retrieving that row using disk I/ O again,
which can tremendously improve read performance.

When both row cache and partition key cache are configured, the row cache returns
results whenever possible. In the event of a row cache miss, the partition key cache
might still provide a hit that makes the disk seek much more efficient.

However, there is one caveat. Cassandra caches all the rows of a partition when
reading that partition. So if the partition is large or only a small portion of the
partition is read every time, the row cache might not be beneficial. It is very easy to
be misused and consequently the JVM will be exhausted, causing Cassandra to fail.
That is why the row cache is disabled by default.

We usually enable either the key or row cache for a table,
=" not both at the same time.

Monitoring cache

Either the nodetool infocommand or JMX MBeans can provide assistance in
monitoring cache. We should make changes to cache options in small, incremental
adjustments, and then monitor the effects of each change using the nodetool utility.
The last two lines of output of the nodetool infocommand, as seen in the following
figure, contain the Row Cache and Key Cache metrics of ubtc02:

[156]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Ty ) X packt &
nodetool info
Lth -T/--t e all 256 tokens)

5436 (bytes), capacity 58331648 ( , 373 hits, 418 requests, NaN recent hit rate, 14480 e period in sec

@ (b aclty @ (by hits, @ requests, NaN recent hit rate, @ save perilod in se
sandras l

In the event of high memory consumption, we can consider tuning data caches.

Enabling/disabling cache

We use the CQL to enable or disable caching by altering the cache property of a
table. For instance, we use the ALTER TABLE statement to enable the row cache
for watchlist:

ALTER TABLE watchlist WITH caching=''ROWS ONLY'';

Other available table caching options include ALL, KEYS_ONLY and NONE. They are
quite self-explanatory and we do not go through each of them here.

+ Further information about data caching can be found at http: //www.
% datastax.com/documentation/cassandra/2.0/cassandra/
e operations/ops_ configuring caches c.html.

[157]

www.it-ebooks.info


http://www.datastax.com/documentation/cassandra/2.0/cassandra/operations/ops_configuring_caches_c.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/operations/ops_configuring_caches_c.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/operations/ops_configuring_caches_c.html
http://www.it-ebooks.info/

Deployment and Monitoring

Summary

This chapter highlights the most important aspects of deploying a Cassandra cluster
into the production environment. Cassandra can be taught to understand the physical
location of the nodes in the cluster in order to intelligently manage its availability,
scalability and performance. We deployed the Stock Screener Application to the
production environment, though the scale is small. It is also valuable for us to learn
how to migrate legacy data from a non-production environment.

We then learned the basics of monitoring and performance tuning which are a must
for a live running system. If you have experience in deploying other database and
system, you may well appreciate the neatness and simplicity of Cassandra.

In the next chapter, we will have a look at the supplementary information pertinent
to application design and development. We will also summarize of the essence of
each chapter.

[158]

www.it-ebooks.info


http://www.it-ebooks.info/

Final Thoughts

In the previous chapters, we went through a quick journey of developing a technical
analysis application in Python using Cassandra. We started from the theoretical basic
knowledge and proceeded step-by-step to design and develop a running application.
Even though you are a novice in computer programming, you should have no
trouble reading the chapters in a sequence.

We now come to the final chapter of this book. We will take a look at the supplementary
information pertinent to application design and development. Then we will quickly
review the basics of each chapter in order to wrap up this book.

Supplementary information

Here, we will take a glance at the supplementary information on client drivers,
security features, backup and restore.

Client drivers

A driver eases the burden of an application developer to deal with the repetitive,
low-level nitty-gritty of communicating with the underlying database. The application
developer can then focus on her/his efforts in writing business logic.

As Cassandra is growing popular, drivers are developed for the contemporary
programming languages. This greatly simplifies the workload of an application
developer, who was used to the clumsy Thrift APL

Drivers for different languages

A list of the commonly used Cassandra drivers and their corresponding
> supported programming languages can be seen at PlanetCassandra
http://planetcassandra.org/client-drivers-tools/.

www.it-ebooks.info


http://planetcassandra.org/client-drivers-tools/
http://www.it-ebooks.info/

Final Thoughts

A great number of Cassandra drivers available nowadays is still growing and many
of them are open source. If you really want production support, then DataStax is
worth your consideration.

A few comments on the selection of a driver are provided as follows:

* First, the programming language to be supported is the single most
important constraint. The communication protocol then comes into play.
Thrift APl is long-lived, yet rather difficult to use. Unless you need to
support an application working with an older version of a Cassandra
cluster, a driver providing CQL support is highly recommended and it
will align the data modeling techniques that are introduced in this book.
The implementation of the data model will be much easier as well.

e Another selection factor is the additional features that the driver offers, for
example, node failure detection, node failover, automatic load balancing,
and performance.

PlanetCassandra also provides crispy tutorials on how to get started with the client
drivers, as shown in the following screenshot:

ERRRY & CettingSta x \ual

L4 c planetcassandra.org/g

'f O % PLANET
— CASS&NDRA GETTING STARTED TUTORIALS COMMUNITY DOWNLOADS BLOG
= Getting Started with M Getting Started with Apache Cassandra and Java (Part )
Drivers By Hebecra Mills, Apache Cassandra Junior Evangelist {i@rebocamills)
l On this page, y¢ nough 1o get started with No3QL Apache Cassandra and Java, including how 10 install, ry out some
JAVA [PART ) basic commands an
2 i JAVA (PART I Requirements
4 FYTHON (PART 1)
. PYTHON (PART )
a PYTHON (PART 111}
- C# [ NET
"a" NODE.JS
G0
RUBY (PART I) Setup
RUBY (PART I} For this dems, we're ole application. Open a text editor and create a java file with a
' public closs Gett
Fj public static vold main(String[] orgs) {
an
i
- We alio need to download the driver hese. Omee it" need to expand it in
[— your working directory. Then we b path when we

[160]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Security

Security is a broad and complex topic. From the perspective of application
development, authentication, authorization and inter-node encryption are
the most fundamental security measures to safeguard a production application.

Authentication

In Cassandra, authentication is based on an internally controlled login username
and password. The login username and password are stored in the system_auth.
credentials table. The internal authentication is disabled, by default. We can
configure Cassandra in order to enable it by modifying cassandra.yaml. We
also need to increase the replication factor of the system_auth keyspace, as the
system_auth keyspace is no different and might fail as well!

Once the internal authentication is enabled, we can use the superuser account and
CQL statements such as CREATE USER, ALTER USER, DROP USER, and LIST USERS
to create and manage user authentication.

Authorization

Similarly, Cassandra provides internal authorization to work hand-in-hand with
internal authentication. It borrows the practices from the traditional database
GRANT/REVOKE paradigm in order to manage permissions on the schema objects.

The tables in the system keyspace are granted read permission, by default, to every
authenticated user. For user-created keyspace and the objects inside, we can also
use CQL statements, namely, GRANT, REVOKE, and LIST PERMISSIONS to manage
the object permission.

Inter-node encryption

Cassandra provides inter-node encryption that protects data transferred among
nodes, including gossip communication, in a cluster using Secure Sockets Layer
(SSL). All nodes must have all the relevant SSL certificates on all nodes. The
encryption can be applied to the traffic between all nodes, data centers, or racks.

[161]

www.it-ebooks.info


http://www.it-ebooks.info/

Final Thoughts

We must set the server encryption options in the cassandra.yaml file on each
node in order to enable the inter-node encryption option and the configuration
settings of the keystore and truststore files, as shown in the following screenshot:

File Edit Terminal Help

# Enab r disable inter-node encryption

# Default settings are TLS vl, RSA 1024-bit keys (it is imperative that

# users generate their own keys) SA_WITH_AES 128 CBC SHA as the cipher

# suite for authentication, key exchange and encryption of the actual data transfers.
# Use the DHE/ECDHE ciphers if running in FIPS 140 compliant mode.

# NOTE: No custom encryption options are enabled at the moment

# The available internode options are : all, none, dc, rack

f set to dc cassandra will encrypt the traffic between the DCs
f set to rack cassandra will encrypt the traffic between the racks

jsse/fls EPLTGuldL html#CreateKeystore

, server_encryption_options:
internode encryption: none
keystore: conf/.keystore
keystore_p
[ .truststore
ssword: cassandra
# More advanced defaults below:
# protocol: TLS
algorithm: Sunx509
store type: JKS
# cipher_suites: [TLS RSA WITH_AES 128 CBC SHA,TLS_RSA WITH AES 256 CBC SHA,TLS DHE RSA WITH AES 128 (BC S
WITH AES 256 CBC SHA,TLS ECDHE RSA NITH AES 128 CBC SHA,TLS_ ECDHE RSA WITH AES 756 CBC_SHA]
# require client auth: false

Backup and restore

Backup is an interesting topic in a large distributed system such as Cassandra. It is
very likely that the data volume will be gigantic and the number of nodes will be
large. Making a consistent backup of the whole cluster can be very tricky.

In my opinion, backup is optional in Cassandra, in contrast to the must-have regular
backups of a traditional database. The need of backing up a Cassandra cluster

really depends on the chosen deployment strategies. For example, if the nodes of a
cluster are distributed in geographically dispersed areas like New York, Tokyo, and
London, and the replication factor is set to three or above, it might be beneficial to
explicitly have an external backup of the data in the cluster. This example cluster
has built-in resilience and each piece of data has a number of replicas serving as a
backup of itself. The chance of the simultaneous failure of all the three geographical
areas is rather low.

[162]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Of course, you might still make regular backups of the cluster if you need to
comply with policies, regulations, and so on. Maybe you want to have the so-called
point-in-time recovery available for the system. In these cases, a managed backup is
a must. However, this will definitely complicate the whole system architecture.

All in all, this is a design decision for your implementation.

Useful websites

Here are some of the useful websites for us to get up-to-date Cassandra information.

Apache Cassandra official site

The official Cassandra website, http://cassandra.apache.org/, is always the first
place to go for any information. The latest released version information can be found
on its home page. You might get the source code there if you want to dive deep into
the heart of Cassandra or if you want to install a Cassandra instance back to square
one by building from the source code.

Just akin to other projects under the Apache Software Foundation, you are welcome
to contribute to the community. You can also find out how to join this enthusiastic
team of developers in order to improve such a great NoSQL database.

You can also find a link to another website called PlanetCassandra, which is worth a
separate introduction.

[163]

www.it-ebooks.info


http://cassandra.apache.org/
http://www.it-ebooks.info/

Final Thoughts

PlanetCassandra

PlanetCassandra, http://planetcassandra.org/, is a community service website
supported by DataStax, a commercial company, that provides production-ready
Apache Cassandra products and services:

Planet Cassandra | All of your NoSQL Apache Cassandra resources In one place - Google Chrome

lava SEDev x | DThankYoul = ¥ “ Maven-Do = 7 N Cinteractiv = ¥ i ORCL Histo: = ¥ W] jsoup Javal = ¥ FunctionLi: x ERSEY &* Planet Cas: x Yoy
< *» C planetcassandra.org

g C*PLANET
CASSANDRA GETTING STARTED TUTORIALS COMMUNITY DOWNLOADS BLOG

JOIN Y

INVOLVED MEETUP CASES

e
i Lyon, FR: Apache Cossandra — Bullding Scalable Jave Applications
In-Person Trainings
H Meetups Warsaw, PL: Apachas Cassandra - Bullding Scalable Javs Applications
-)

READ TECHNICAL USE

Webinars
London, UN: Apache Cassandra — Core Concents, Skills and Tools
| Cassandra Conferances
DataStax Events Online: Apache Gassandra — Operalions and Perfarmance Tuning
= Related Conferencas
o Lendeon, UK: Apache Cassandra — Data Medeling
w__\
| —
(s

This website deals more with the collaboration aspects of the Cassandra community.
We can look for meetups, involvements, webinars, conferences and events, and
even educational training courses there. The most valuable section of the website is
the Apache Cassandra Use Cases that is a repository of the companies who run their
applications on Apache Cassandra and enjoy the real benefits from it.

[164]

www.it-ebooks.info


http://planetcassandra.org/
http://www.it-ebooks.info/

Chapter 8

The repository is categorized by several dimensions, namely, Product Catalog/Playlist,
Recommendation/Personalization, Fraud Detection, Messaging, IOT/Sensor Data,
and Undefined. Each entry of the repository has a name and a brief introduction of

the company of the use case, and how it uses Cassandra to drive the business. You
certainly can learn and generate some ideas by learning from the use cases.

A must-read is the Netflix case study. The use case is a personalization system that
understands each person's unique habits and preferences and bring to light products
and items that a user might be unaware of and not looking for. The challenges were

to acquire affordable capacity in order to store and process immense amounts of data,
to address a single point of failure with Oracle's legacy relational architecture, and to
achieve business agility for international expansion. Netflix used a commercial version
of Cassandra that delivers 100 percent uptime and cost-effective scale across multiple
data centers. The results are stunning, which are as follows:

* First, the throughput of the system is more than 10 million transactions
per second

* Second, the creation and management of the new data clusters across various
regions is nearly effortless

* Lastly, customer viewing and log data can be captured in the finest detail
in Cassandra

It is highly recommended that you read this, especially for those of you who are
considering to migrate from a relational database to Cassandra.

DataStax

The Cassandra version used in this book is an open source one that can be obtained
freely on the Internet. It is good enough for most systems. However, many companies
still look for enterprise grade products built on Cassandra and the related support,
training, and consultancy services. DataStax, http://www.datastax.com/, iS one

of them.

[165]

www.it-ebooks.info


http://www.datastax.com/
http://www.it-ebooks.info/

Final Thoughts

DataStax serves to compile the most comprehensive Cassandra documentation,
as shown in the following screenshot. The documentation is freely available on its
website. It also develops and provides support to the client drivers for Java, C#,
Python, and so on:

oAy < Document

< c www.datastax.com
Documen latlon FREE VIRTUAL TRAIMING
L he Ca dra with
The General, Administrator, and Developer inks guide you to key topies in DataStax o | aomongheraifo
| Enferprise 4.5, its complementary Cassandra 2.0, and the Java, C¥, Node.js, and Python anling training.

driver documentation.

Develapers - looking for tutorialks and more getting started materiaks that will help you gquickly
get up to speed with Cassandra and DataStax Enterprise? Visit our Developer Ceniral page

Calch a mistake in our docs? We love it when smart people ke you help us to do betler.
Let us know what needs to change. Tweet us BDataStaxDocs or Contact Us.

Eariler documentation is available in 1he archives,

Common Tasks

General A 3 D

Cuide = installing & single node chuster and begnning information

Drivers | Java | C# | Node

B NEFELTEEE

r
s

f

DataStax offers an enterprise version of Apache Cassandra, known as DataStax
Enterprise, with enhanced features such as advanced security and management
tools that simplify the day-to-day system management of a Cassandra cluster.

DataStax Enterprise includes a powerful enterprise system management tool,
OpsCenter, to allow administrators to easily grasp the status and performance
of the system through a dashboard. It monitors the cluster and triggers alerts or
notifications of changes in the cluster. Backup and restore operations are greatly
streamlined as well.

DataStax Enterprise also extends Cassandra to support Apache Hadoop and Solr,
as an integrated enterprise platform.

[166]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Hadoop integration

Cassandra integrated with Hadoop can be a powerful platform for Big Data
Analytics. Cassandra has been able to directly integrate with Hadoop since its
Version 0.6. It began with MapReduce support. Since then, the support has matured
significantly and now includes native support for Pig and Hive. Cassandra's Hadoop
support implements the same interface as Hadoop Distributed File System (HDEFES)
in order to achieve input data locality.

Cassandra provides the ColumnFamilyInputFormat and ColumnFamilyOutputFormat
classes for direct integration with Hadoop from MapReduce programs. It involves data
being read directly from Cassandra column families in MapReduce mappers and does
include data movement.

Setup and configuration involves overlaying a Hadoop cluster on Cassandra nodes,
configuring a separate server for the Hadoop JobTracker, and installing a Hadoop
TaskTracker and DataNode on each Cassandra node.

Setup and configuration procedures
The detailed procedures of integrating Cassandra with Hadoop can
be found at:

a/%‘\ * http://www.datastax.com/documentation/
cassandra/2.1/cassandra/configuration/
configHadoop.html

* http://wiki.apache.org/cassandra/HadoopSupport
The nodes in the Cassandra data center can draw from data in the HDFS DataNode
as well as from Cassandra. The JobTracker receives the MapReduce input from the
client application. It then sends a MapReduce job request to the TaskTrackers and
optional clients, for example, MapReduce and Pig. The data is written to Cassandra
and the results are sent back to the client.

DataStax has also created a simple way to use Hadoop with Cassandra and built it
into the enterprise version.

[167]

www.it-ebooks.info


http://www.datastax.com/documentation/cassandra/2.1/cassandra/configuration/configHadoop.html
http://www.datastax.com/documentation/cassandra/2.1/cassandra/configuration/configHadoop.html
http://www.datastax.com/documentation/cassandra/2.1/cassandra/configuration/configHadoop.html
http://wiki.apache.org/cassandra/HadoopSupport
http://www.it-ebooks.info/

Final Thoughts

Summary

We started from Chapter 1, Bird's Eye View of Cassandra, to review the basics of
Cassandra. We then touched on the important facets of data modeling in Cassandra,
such as Modeling by query technique, the wealthy set of data types, and the indexes.
These techniques and knowledge are put together into an example data analysis
application in the stock trading domain called Stock Screener Application. We
walked through and explained every single detail of the application, although at

a fast pace. We also illustrated how to enhance the first-cut version with changes

on the data model and coding to demonstrate the great flexibility provided

by Cassandra. We then turned to plan and migrate the enhanced system to a
production-ready cluster with considerations on the replication strategy, snitch,
replication factor, the basic monitoring and performance tuning tools.

I really enjoyed writing this book for you and I sincerely hope that it is as useful
for you when it comes to rapidly using Cassandra in real-world projects, as it has
been fun for me. Your comments are always welcomed and you can contact me
through Packt Publishing.

As Sir Winston Churchill said:

"Now this is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning."

[168]

www.it-ebooks.info


http://www.it-ebooks.info/

Index

A C

Alert List 91, 96, 121 caching
ALLOW FILTERING clause 86 about 156
Amazon Dynamo 12,16 cache, disabling 157
Anaconda cache, enabling 157
about 99 cache, monitoring 156, 157
URL 99 partition key cache 156
Apache Cassandra 13 row cache 156
Apache HBase 13 CAP theorem 15
ASCII data type 53 Cassandra
Atomic-Consistency-Isolation-Durability about 14
(ACID) 17 data, storing 104-106
authentication 161 features 25
authorization 161 high-level architecture 17-24
auto-sharding 16 implementation 50
URL, for official website 163
B URL, for source code 51
Cassandra CLI 52
backup 162 Cassandra data model
BeautifulSoup 128 collections 34
benefits, NoSQL 9 consideration 28
Berkeley DB 12 counter column 35
Big Data 8 logical data structure 29
BigDecimal data type 55 Map data structure 29
bigint data type 54 no foreign key 34
BLOB constant 54 no join 34
BLOB data type 54 no sequence 35
bloom filter 22 secondary index 36
boolean data type 55 SortedMap data structure 29
bucketing 44, 45 Time-To-Live (TTL) 35
ByteOrderedPartitioner unique architecture 28
about 82 Cassandra driver 99

limitations 82 Cassandra Query Language. See CQL

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra read consistency levels
ALL 24
EACH_QUORUM 24
LOCAL_QUORUM 24
ONE 24
QUORUM 24
THREE 24
TWO 24
Cassandra Version 2.0.9 97
Cassandra write consistency levels
ALL 22
ANY 22
EACH_QUORUM 22
LOCAL_QUORUM 22
ONE 22
QUORUM 22
THREE 22
TWO 22
client drivers
about 159
selecting 160
CloudstackSnitch 141
cluster 18
cluster, setting up for Stock Screener
Application
about 143
configuration procedure 145, 146
global settings 144
legacy data migration procedure 146-148
system and network configuration 143
code design, Stock Screener Application
about 101
Data Feed Provider 101
Stock Screener 109
code enhancement, Stock Screener
Application
about 125
Data Mapper and Archiver 125-128
alerts, querying 133-137
Stock Screener Engine 129-133

column family
about 31
structure 31, 32
column-family store, NoSQL database 13
Comma Separated Values (CSV) 93
composite partition key
about 74-78
time-series data 79, 80
compound primary key 74-78
consistent hashing 19
Coordinated Universal Time (UTC) 60
CouchDB 13
counter column 35
counter data type 63
CQL
about 25, 45,47
data types 49
CQL command-line client 48, 49
CQL keywords
reference link 48
cqlsh 48,49
CQL statements
about 47, 48
data definition statements 47, 48
data manipulation statements 47
query statements 47

D

data caching
reference link 157
Data Definition Language (DDL) 37
data duplication 44
Data Feed Provider
about 91
Data Feed 95
Data Feed Adapter 95
Data Mapper and Archiver 95
data, storing in Cassandra 104-106
data, transforming 103

collections stock quote, collecting 101, 102
about 34, 64-66 summarizing 107
list 34, 66 tasks 101
map 34, 67 data manipulation statements 47
reference link 66 Data Mapper and Archiver 95, 119
set 34, 66 data modeling, by query

column 30 about 36

[170]

www.it-ebooks.info


http://www.it-ebooks.info/

Cassandra version 38-43

relational version 36-38
data modeling considerations

about 44

bucketing 44, 45

data duplication 44

sorting 44

time-series data 45

valueless column 45

wide row 44

data model, Stock Screener Application

enhancement approach 118
evolving 117, 118

data modification language (DML) 133

Data Platforms Landscape Map 8
data replication 140
Data Scoper 96,109,110
DataStax

about 97, 165, 166

URL 165
data types, CQL

ASCII 49,53

bigint 49, 54

BLOB 49, 54

boolean 49, 55

counter 49, 63

decimal 49, 55

double 49, 55

example 51, 52

float 49, 55

inet 49, 56, 57

int 49, 57

text 49, 57

timestamp 50, 59, 60

timeuuid 50, 61

UUID 50, 62

varchar 50, 62

varint 50, 62
date bucket pattern 80
dateOf() function 61
decimal data type 55
denormalization 34, 44
document-based repository, NoSQL

database 13

double data type 55
DynamicSnitch 141

E

EC2MultiRegionSnitch 141
EC2Snitch 141

end-of-day (EOD) 91
End-to-End Test run 114

enhancement approach, Stock Screener

Application
about 118
Alert List 121,122

descriptive stock name, adding 122, 123

alerts, querying 123,124

Watch List 120, 121
EODData

URL 92
epidemic protocol 21
Eventual Consistency 16

F

Failure detection 21
financial analysis 90
float data type 55
FlockDB 14
fundamental analysis 90

G

Google BigTable 13,15
GoogleCloudSnitch 141
Google Finance

URL 92
gossip 20
GossipingPropertyFileSnitch 141
graph database, NoSQL database 14

H

Hadoop Distributed File
System (HDFS) 167

Hadoop integration

about 167

URL, for procedure 167
hashmap 12
high-level architecture, Cassandra

Failure detection 21

gossip 21

[171]

www.it-ebooks.info


http://www.it-ebooks.info/

partitioning 18, 19

read path 23

repair mechanism 24

replication 19

seed node 20

snitch 20

write path 21,23
Historical Data 91

idempotent 35

impedance mismatch 11

implementation, Cassandra 50

inet data type 56, 57

initial data model 93, 94

int data type 57

integrated development
environment (IDE) 99

Internet Engineering Task Force (IETF) 29

Internet Protocol (IP) 57

inter-node encryption 161

IP Version 4 (IPv4) 56

IP Version 6 (IPv6) 56,57

ISO 8601 60

J

Java Native Access (JNA) 97
Java Runtime Environment (JRE)
about 97
URL 97
JavaScript Object Notation (JSON) 13
Java Virtual Machine (JVM)
about 97,139, 155
configuration settings 155
installing 97
reference link, for documentation 155

key/value pair store, NoSQL database 12

L

list 34, 66
logical data structure
about 29
column 30
column family 31, 32
keyspace 32
row 30, 31
super column 33
super column family 33

Managed Bean. See MBeans

map 34, 67

Map data structure 29

maxTimeuuid() function 61

MBeans 151-153

MBeans, for JConsole
org.apache.cassandra.db 152
org.apache.cassandra.internal 152
org.apache.cassandra.metrics 153
org.apache.cassandra.net 153
org.apache.cassandra.request 153

minTimeuuid() function 61

MongoDB 13

monitoring 150

multiple secondary indexes 85

Murmur3Partitioner 81

N

Neo4] 14
Netflix
about 14

JConsole URL, for case study 14
about 151 NetworkTopologyStrategy 141
launching 151 nodetool
MBeans 152 about 150
tabs 152 reference link, for documentation 150
JMX 151 nodetool, options
cfstats 150
K info 150
netstats 150
keyspace 18, 32,140 status 150
[172]

www.it-ebooks.info


http://www.it-ebooks.info/

tpstats 150
non-reserved keywords 48
NoSQL
about 8
benefits 9
URL 8
NoSQL databases
limitations 10
overview 10,11
types 12
NoSQL databases, types
column-family store 13
document-based repository 13
graph database 14
key/value pair store 12
now() function 61

(0

open price, high price, low price, close price
and volume (OHLCV) 92
operating system 96

P

paging 82
pandas
about 101
URL 101
partitioner
about 81
ByteOrderedPartitioner 82
Murmur3Partitioner 81
paging 82
RandomPartitioner 81
TOKEN() function 82
partitioning 18,19
partition key cache 156
performance tuning
about 155
caching 156
Java Virtual Machine (JVM) 155
Phi Accrual Failure Detection Algorithm 21

URL 159, 164
price action, stock
close price 91
high price 91
low price 91
open price 91
primary index
about 71-74
differentiating, with secondary index 83
primary key 71
processing flow, Stock Screener
Application 94-96
programming language 98
PropertyFileSntich 141
Python 2.7
installing, in Ubuntu 98
Python Driver 2.0
URL 99
Python Driver 2.1
reference link, for API documentation 149

Q

Query 119
query statements 47

R

RackInferringSnitch
about 141
using 142
RandomPartitioner 81
read path 23
relational database 7
remote procedure call (RPC) 33
repair mechanisms
anti-entropy 25
hinted handoff 24
read repair 24
replication strategies
about 19, 139
data replication 140
NetworkTopologyStrategy 141

pip SimpleStrategy 140
about 99 Request for Comments (RFC) 29
URL 99 reserved keywords 48
PlanetCassandra restore 162
about 164, 165 Riak 12
[173]

www.it-ebooks.info


http://www.it-ebooks.info/

row 30, 31
row cache 156

S

screening rule 96, 111
Screen Rule 96
secondary index
about 36, 83-85
caveats 84
differentiating, with primary index 83
don'ts 86, 87
do's 86, 87
multiple secondary indexes 85
reference link 86
Secure Sockets Layer (SSL) 161
security
about 161
authentication 161
authorization 161
inter-node encryption 161
seed node 20
set 34, 66
Simple Moving Average (SMA) 111
SimpleSnitch 141
SimpleStrategy 140
snitch
about 20, 141
CloudstackSnitch 141
DynamicSnitch 141
EC2MultiRegionSnitch 141
EC25nitch 141
GoogleCloudSnitch 141
GossipingPropertyFileSnitch 141
PropertyFileSntich 141
RackInferringSnitch 141
SimpleSnitch 141
SortedMap data structure 29
Sorted String Table (SSTable) 15
sorting 44
sort order 31
stock quote data
about 91-93
collecting 101, 102
Stock Screener Application
about 90, 91, 109

cluster, setting up 143
code design 101
components 109

Data Scoper 109, 110
deploying 148, 149
development 101
engine 111

enhancing 117
financial analysis 90-93
initial data model 93, 94
overview 89
processing flow 94
screening rule 111
stock quote data 91-93
time-series data 111

Stock Screener Application, enhancements

code, enhancing 125
data model, evolving 117, 118
system changes, implementing 137, 138
Stock Screener engine 96,111
super column 33
super column family 33
system design
about 96
Cassandra driver 99
Cassandra Version 2.0.9 97
IDE 99
Java Native Access (JNA) 97
Java Runtime Environment (JRE) 97
operating system 96
programming language 98, 99
system overview 100
system log 153,154

T

technical analysis 90
Technical Analysis Signals 96
Test Cluster 144
text data type 57
Thrift 33
time-series data 45,79, 80
timestamp data type

about 59, 60

versus timeuuid data type 62
Time-To-Live (TTL) 30, 35

[174]

www.it-ebooks.info


http://www.it-ebooks.info/

timeuuid data type 61
TOKEN() function 82
tools, for monitoring

about 150

JMX 151

MBeans 151

nodetool 150

system log 153, 154
tuple type 67-69
type1 UUID

versus type 4 UUID 62

U

ubtc01 node 144
ubtc02 node 144

\'

valueless column 45
varchar data type 62
varint data type 62

w

Watch List 119, 120

websites, for Cassandra information
about 163
Apache Cassandra official site 163
DataStax 165, 166
Hadoop integration 167
PlanetCassandra 164, 165

WHERE clause 85

Ubuntu wide row 44
URL 96 write path 21

Universal Unique ID (UUID) 29

unixTimestampOf() function 61 Y

UPSERT 73 .

user-defined types (UDT) 67-69 Yahoo! Finance

UUID data type 62 URL 52

[175]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Cassandra Data Modeling and Analysis

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info


http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Learning Cassandra for

Administrators
ISBN: 978-1-78216-817-1 Paperback: 120 pages

Optimize high-scale data by tuning and
troubleshooting using Cassandra

1. Install and set up a multi datacenter Cassandra.

Le arning Cacsandra 2. Troubleshoot and tune Cassandra.

for Administrators 3. Covers CAP tradeoffs, physical/hardware
limitations, and helps you understand the magic.

4. Tune your kernel, JVM, to maximize the
performance.

Cassandra Design Patterns
ISBN: 978-1-78328-880-9 Paperback: 88 pages

Understand and apply Cassandra design and
usage patterns, and solve real-world business
or technical problems

1. Learn how to identify real-world use cases
that Cassandra solves easily, in order to use
it effectively.

Cassandra
Design Patterns

2. Identify and apply usage and design patterns to
solve specific business and technical problems
including technologies that work in tandem
with Cassandra.

3. A hands-on guide that will show you the
strengths of the technology and help you apply
Cassandra design patterns to data models.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Mastering Apache Cassandra
ISBN: 978-1-78216-268-1 Paperback: 340 pages

Get comfortable with the fastest NoSQL database, its
architecture, key programming patterns, infrastructure
management, and more!

1. Complete coverage of all aspects of Cassandra.

2. Discusses prominent patterns, pros and cons,
and use cases.

Mastering Apache Cassandra

3. Contains briefs on integration with
other software.

Instant Cassandra Query
Language
ISBN: 978-1-78328-271-5 Paperback: 54 pages

A practical, step-by-step guide for quickly getting
started with Cassandra Query Language

1. Learn something new in an Instant!
A short, fast, focused guide delivering
! | immediate results.

Cassandra Query s C b ¢ ly used
Language . overs the most frequently used constructs

using practical examples.

3. Dive deeper into CQL, TTL, batch operations,
Amresh Singh ; and more.

4. Learn how to shed Thrift and adopt a
CQL-based binary protocol.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Bird's Eye View of Cassandra
	What is NoSQL?
	NoSQL Database types
	Key/value pair store
	Column-family store
	Document-based repository
	Graph database


	What is Cassandra?
	Google BigTable
	Amazon Dynamo

	Cassandra's high-level architecture
	Partitioning
	Replication
	Snitch
	Seed node
	Gossip and Failure detection
	Write path
	Read path
	Repair mechanism

	Features of Cassandra
	Summary

	Chapter 2: Cassandra Data Modeling
	What is unique to the Cassandra data model?
	Map and SortedMap
	Logical data structure
	Column
	Row
	Column family
	Keyspace
	Super column and super column family

	Collections
	No foreign key
	No join
	No sequence
	Counter
	Time-To-Live
	Secondary index

	Modeling by query
	Relational version
	Cassandra version

	Data modeling considerations
	Data duplication
	Sorting
	Wide row
	Bucketing
	Valueless column
	Time-series data

	Cassandra Query Language
	Summary

	Chapter 3: CQL Data Types
	Introduction to CQL
	CQL statements
	CQL command-line client – cqlsh
	Native data types
	Cassandra implementation
	A not-so-long example
	ASCII
	Bigint
	BLOB
	Boolean
	Decimal
	Double
	Float
	Inet
	Int
	Text
	Timestamp
	Timeuuid
	UUID
	Varchar
	Varint
	Counter

	Collections
	Set
	List
	Map

	User-defined type and tuple type
	Summary

	Chapter 4: Indexes
	Primary index
	Compound primary key and composite partition key
	Time-series data

	Partitioner
	Murmur3Partitioner
	RandomPartitioner
	ByteOrderedPartitioner
	Paging and token function

	Secondary indexes
	Multiple secondary indexes
	Secondary index do's and don'ts

	Summary

	Chapter 5: First-cut Design and Implementation
	Stock Screener Application
	An introduction to financial analysis
	Stock quote data
	Initial data model
	Processing flow

	System design
	The operating system
	Java Runtime Environment
	Java Native Access
	Cassandra version
	Programming language
	Cassandra driver
	The integrated development environment
	The system overview

	Code design and development
	Data Feed Provider
	Collecting stock quote
	Transforming data
	Storing data in Cassandra
	Putting them all together

	Stock Screener
	Data Scoper
	Time-series data
	The screening rule
	The Stock Screener engine


	Test run
	Summary

	Chapter 6: Enhancing a Version
	Evolving the data model
	The enhancement approach
	Watch List
	Alert List
	Adding the descriptive stock name
	Queries on alerts


	Enhancing the code
	Data Mapper and Archiver
	Stock Screener Engine
	Queries on Alerts


	Implementing system changes
	Summary

	Chapter 7: Deployment and Monitoring
	Replication strategies
	Data replication
	SimpleStrategy
	NetworkTopologyStrategy
	Setting up the cluster for Stock Screener Application
	System and network configuration
	Global settings
	Configuration procedure
	Legacy data migration procedure
	Deploying the Stock Screener Application


	Monitoring
	Nodetool
	JMX and MBeans
	The system log

	Performance tuning
	Java virtual machine
	Caching
	Partition key cache
	Row cache
	Monitoring cache
	Enabling/disabling cache


	Summary

	Chapter 8: Final Thoughts
	Supplementary information
	Client drivers
	Security
	Authentication
	Authorization
	Inter-node encryption

	Backup and restore

	Useful websites
	Apache Cassandra official site
	PlanetCassandra
	DataStax
	Hadoop integration

	Summary

	Index



