Cassandra High
Availability

Harness the power of Apache Cassandra to build scalabie,
fault-tolerant, and readily available applications

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra High Availability

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Cassandra High Availability
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers
What vou need for this book

Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Cassandra’s Approach to High Availability
ACID

The monolithic architecture
The master-slave architecture
Sharding
Master failover
Cassandra’s solution
Cassandra’s architecture
Distributed hash table
Replication
Replication across data centers
Tunable consistency
The CAP theorem

Summary
2. Data Distribution

Hash table fundamentals
Distributing hash tables

Consistent hashing
The mechanics of consistent hashing

Token assignment
Manually assigned tokens

www.it-ebooks.info

http://www.it-ebooks.info/

vnodes

How vnodes improve availability
Adding and removing nodes
Node rebuilding
Heterogeneous nodes

Partitioners

Hotspots

Effects of scaling out using ByteOrderedPartitioner
A time-series example

Summary

3. Replication

The replication factor
Replication strategies
SimpleStrategy
NetworkTopologyStrategy
Snitches
Maintaining the replication factor when a node fails
Consistency conflicts
Consistency levels
Repairing data
Balancing the replication factor with consistency
Summary

4. Data Centers

Use cases for multiple data centers

Live backup
Failover

Load balancing
Geographic distribution
Online analysis
Analysis using Hadoop
Analysis using Spark
Data center setup
RackInferringSnitch
PropertyFileSnitch
GossipingPropertyFileSnitch
Cloud snitches
Replication across data centers
Setting the replication factor
Consistency in a multiple data center environment
The anatomy of a replicated write
Achieving stronger consistency between data centers

Summary
5. Scaling Out

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the right hardware configuration
Scaling out versus scaling up
Growing your cluster

Adding nodes without vnodes

Adding nodes with vnodes
How to scale out

Adding a data center
How to scale up
Upgrading in place
Scaling up using data center replication
Removing nodes
Removing nodes within a data center
Decommissioning a data center
Other data migration scenarios
Snitch changes
Summary

6. High Availability Features in the Native Java Client

Thrift versus the native protocol

Setting up the environment
Connecting to the cluster
Executing statements

Prepared statements
Batched statements

Caution with batches

Handling asynchronous requests

Running queries in parallel
Load balancing

Failing over to a remote data center
Downgrading the consistency level
Defining your own retry policy
Token awareness
Tying it all together
Falling back to QUORUM

Summary
7. Modeling for High Availability

How Cassandra stores data

Implications of a log-structured storage
Understanding compaction

Size-tiered compaction

Leveled compaction

Date-tiered compaction
CQL under the hood

Single primary key
Compound keys

www.it-ebooks.info

http://www.it-ebooks.info/

Partition keys

Clustering columns
Composite partition keys
The importance of the storage model
Understanding queries
Query by key
Range queries

Denormalizing with collections
How collections are stored

Sets
Lists

Maps
Working with time-series data
Designing for immutability
Modeling sensor data
Queries
Time-based ordering
Using a sentinel value
Satisfying our queries
When time is all that matters
Working with geospatial data
Summary

8. Antipatterns

Multikey queries
Secondary indices

Secondary indices under the hood
Distributed joins

Deleting data
Garbage collection
Resurrecting the dead
Unexpected deletes
The problem with tombstones
Expiring columns
TTL antipatterns
When null does not mean empty
Cassandra is not a queue
Unbounded row growth

Summary

9. Failing Gracefully

Knowledge is power
Monitoring via Java Management Extensions
Using OpsCenter

Choosing a management toolset
Logging

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra logs
Garbage collector logs

Monitoring node metrics
Thread pools
Column family statistics
Finding latency outliers
Communication metrics
When a node goes down
Marking a downed node

Handling a downed node
Handling slow nodes
Backing up data
Taking a snapshot
Incremental backups
Restoring from a snapshot
Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra High Availability

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra High Availability

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Production reference: 1221214
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-912-6

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

Credits

Author

Robbie Strickland
Reviewers
Richard Low
Jimmy Mardell
Rob Murphy
Russell Spitzer

Commissioning Editor

Kunal Parikh
Acquisition Editors
Richard Harvey

Owen Roberts

Content Development Editors

Samantha Gonsalves
Azharuddin Sheikh
Technical Editor
Ankita Thakur
Copy Editors
Pranjali Chury
Merilyn Pereira
Project Coordinator
Sanchita Mandal
Proofreaders
Simran Bhogal
Maria Gould
Ameesha Green
Paul Hindle

Indexer

Rekha Nair
Graphics

www.it-ebooks.info

http://www.it-ebooks.info/

Sheetal Aute

Disha Haria

Abhinash Sahu
Production Coordinator
Alwin Roy

Cover Work

Alwin Roy

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Robbie Strickland got involved in the Apache Cassandra project in 2010, and he initially
went into production with the 0.5 release. He has made numerous contributions over the
years, including his work on drivers for C# and Scala, and multiple contributions to the
core Cassandra codebase. In 2013, he became the very first certified Cassandra developer,
and in 2014, DataStax selected him as an Apache Cassandra MVP.

While this is Robbie’s first published technical book, he has been an active speaker and
writer in the Cassandra community and is the founder of the Atlanta Cassandra Users
Group. Other examples of his writing can be found on the DataStax blog, and he has
conducted numerous webinars and spoken at many conferences over the years.

I would like to thank my wife for encouraging me to go forward with this project and for
continuing to be supportive throughout the significant time commitment required to write
a book. Also, I am truly appreciative of my excellent reviewers: Richard Low, Jimmy
Mardell, Rob Murphy, and Russell Spitzer. They helped keep me honest, and their deep
expertise added materially to the quality of the content. I would also like to thank the
entire staff at Packt Publishing who were involved in the book’s publishing process.
Lastly, I want to thank Logan Johnson who initially pointed me toward Cassandra. The
risk has paid off, and Logan is responsible for starting me off on this path.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Richard Low has worked with Cassandra since Version 0.6 and has managed and
supported some of the largest Cassandra deployments. He has contributed fixes and
features to the project and has helped many users build their first Cassandra deployment.
He is a regular speaker at Cassandra events and a contributor to Cassandra online forums.

Jimmy Mardell is a senior software engineer and Cassandra contributor who has spent
the last 4 years working with large distributed systems using Cassandra. Since 2013, he
has been leading a database infrastructure team at Spotify, focusing on improving the
Cassandra ecosystem at Spotify and empowering other teams to operate Cassandra
clusters. Jimmy likes algorithms and competitive programming and won the programming
competition Google Code Jam in 2003.

Rob Murphy is a solutions engineer at DataStax with more than 16 years of experience in
the field of data-driven application development and design. Rob’s background includes
work with most RDMS platforms as well as DataStax/Apache Cassandra, Hadoop,
MongoDB, Apache Accumulo, and Apache Spark. His passion for solving “data
problems” goes beyond the system level to the data itself. Rob has a Master’s degree in
Predictive Analytics from Northwestern University with a specific research interest in
machine learning and predictive algorithms at the “Internet scale”.

Russell Spitzer received his PhD in Bioinformatics from UCSF in 2013, where he
became increasingly interested in data analytics and distributed computation. He followed
these interests and joined DataStax, the enterprise company behind the Apache Cassandra
distributed database. At DataStax, he works on the testing and development of the
integration between Cassandra and other groundbreaking open source technologies, such
as Spark, Solr, and Hadoop.

I would like to thank my wife, Maggie, who put up with a lot of late-night laptop screen
glow so that I could help out with this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

@ PACKT! i1

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Preface

Cassandra is a fantastic data store and is certainly well suited as the foundation for a
highly available system. In fact, it was built for such a purpose: to handle Facebook’s
messaging service. However, it hasn’t always been so easy to use, with its early Thrift
interface and unfamiliar data model causing many potential users to pause—and in many
cases for a good reason.

Fortunately, Cassandra has matured substantially over the last few years. I used to advise
people to use Cassandra only if nothing else would do the job because the learning curve
for it was quite high. However, the introduction of newer features such as CQL and
vnodes has changed the game entirely.

What once appeared complex and overly daunting now comes across as deceptively
simple. A SQL-like interface masks the underlying data structure, whose familiarity can
lure an unsuspecting new user into dangerous traps. The moral of this story is that it’s not
a relational database, and you still need to know what it’s doing under the hood.

Imparting this knowledge is the core objective of this book. Each chapter attempts to
demystify the inner workings of Cassandra so that you no longer have to work blindly
against a black box data store. You will learn to configure, design, and build your system
based on a fundamentally solid foundation.

The good news is that Cassandra makes the task of building massively scalable and
incredibly reliable systems relatively straightforward, presuming you understand how to
partner with it to achieve these goals.

Since you are reading this book, I presume you are either already using Cassandra or
planning to do so, and that you’re interested in building a highly available system on top
of it. If so, I am confident that you will meet with success if you follow the principles and
guidelines offered in the chapters that follow.

www.it-ebooks.info

http://www.it-ebooks.info/

What this book covers

Chapter 1, Cassandra’s Approach to High Availability, is an introduction to concepts
related to system availability and the problems that have been encountered historically
while trying to make data stores highly available. This chapter outlines Cassandra’s
solutions to these problems.

Chapter 2, Data Distribution, outlines the core mechanisms that underlie Cassandra’s
distributed hash table model, including consistent hashing and partitioner
implementations.

Chapter 3, Replication, offers an in-depth look at the data replication architecture used in
Cassandra, with a focus on the relationship between consistency levels and replication
factors.

Chapter 4, Data Centers, enables you to thoroughly understand Cassandra’s robust data
center replication capabilities, including deployment on EC2 and building separate
clusters for analysis using Hadoop or Spark.

Chapter 5, Scaling Out, is a discussion on the tools, processes, and general guidance
required to properly increase the size of your cluster.

Chapter 6, High Availability Features in the Native Java Client, covers the new native
Java driver and its availability-related features. We’ll discuss node discovery, cluster-
aware load balancing, automatic failover, and other important concepts.

Chapter 7, Modeling for High Availability, explains the important concepts you need to
understand while modeling highly available data in Cassandra. CQL, keys, wide rows, and
denormalization are among the topics that will be covered.

Chapter 8, Antipatterns, complements the data modeling chapter by presenting a set of
common antipatterns that proliferate among inexperienced Cassandra developers. Some
patterns include queues, joins, high delete volumes, and high cardinality secondary
indexes among others.

Chapter 9, Failing Gracefully, helps the reader to understand how to deal with various
failure cases, as failure in a large distributed system is inevitable. We’ll examine a number
of possible failure scenarios, and discuss how to detect and resolve them.

www.it-ebooks.info

http://www.it-ebooks.info/

What you need for this book

This book assumes you have access to a running Cassandra installation that’s at least as
new as release 1.2.x. Some features discussed will be applicable only to the 2.0.x series,
and we will point these out when this applies. Users of versions older than 1.2.x can still
gain a lot from the content, but there will be some portions that do not directly translate to
those versions.

For Chapter 6, High Availability Features in the Native Java Client, coverage of the Java
driver, you will need the Java Development Kit 1.7 and a suitable text editor to write Java
code. All command-line examples assume a Linux environment since this is the only
supported operating system for use with a production Cassandra system.

www.it-ebooks.info

http://www.it-ebooks.info/

Who this book is for

This book is for developers and system administrators who are interested in building an
advanced understanding of Cassandra’s internals for the purpose of deploying high
availability services using it as a backing data store. This is not an introduction to
Cassandra, so those who are completely new would be well served to find a suitable
tutorial before diving into this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “The
PropertyFileSnitch configuration allows an administrator to precisely configure the
topology of the network by means of a properties file named cassandra-
topology.properties.”

A block of code is set as follows:

CREATE KEYSPACE AddressBook
WITH REPLICATION = {
‘class’ : ‘NetworkTopologyStrategy’,
‘del’ : 3,
‘dc2’ : 2
s
When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:
CREATE KEYSPACE AddressBook
WITH REPLICATION = {
‘class’ : ‘SimpleStrategy’,
‘replication_factor’ : 3

+

Any command-line input or output is written as follows:

nodetool status

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Then, fill in the host,
port, and your credentials in the dialog box and click on the Connect button.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to

https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter 1. Cassandra’s Approach to High
Availability

What does it mean for a data store to be “highly available”? When designing or
configuring a system for high availability, architects typically hope to offer some
guarantee of uptime even in the presence of failure. Historically, it has been sufficient for
the vast majority of systems to be available for less than 100 percent of the time, with
some attempting to achieve the “five nines”, or 99.999, percent uptime.

The exact definition of high availability depends on the requirements of the application.
This concept has gained increasing significance in the context of web applications, real-
time systems, and other use cases that cannot afford any downtime. Database systems
must not only guarantee system uptime, the ability to fulfill requests, but also ensure that
the data itself remains available.

Traditionally, it has been difficult to make databases highly available, especially the
relational database systems that have dominated the scene for the last couple of decades.
These systems are most often designed to run on a single large machine, making it
challenging to scale out to multiple machines.

Let’s examine some of the reasons why many popular database systems have difficulty
being deployed in high availability configurations, as this will allow us to have a greater
understanding of the improvements that Cassandra offers. Exploring these reasons can
help us to put aside previous assumptions that simply don’t translate to the Cassandra
model.

Therefore, in this chapter, we’ll cover the following topics:

The atomicity, consistency, isolation and durability (ACID) properties
Monolithic architecture

Master-slave architecture, covering sharding and leader election
Cassandra’s approach to achieve high availability

www.it-ebooks.info

http://www.it-ebooks.info/

ACID

One of the most significant obstacles that prevents traditional databases from achieving
high availability is that they attempt to strongly guarantee the ACID properties:

e Atomicity: This guarantees that database updates associated with a transaction occur
in an all-or-nothing manner. If some part of the transaction fails, the state of the
database remains unchanged.

e Consistency: This assures that the integrity of data will be preserved across all
instances of that data. Changes to a value in one location will definitely be reflected
in all other locations.

e Isolation: This attempts to ensure that concurrent transactions that manipulate the
same data do so in a controlled manner, essentially isolating in-process changes from
other clients. Most traditional relational database systems provide various levels of
isolation with different guarantees at each level.

e Durability: This ensures that all writes are preserved in nonvolatile storage, most
commonly on disk.

Database designers most commonly achieve these properties via write masters, locks,
elaborate storage area networks, and the like—all of which tend to sacrifice availability.
As a result, achieving some semblance of high availability frequently involves bolt-on
components, log shipping, leader election, sharding, and other such strategies that attempt
to preserve the original design.

www.it-ebooks.info

http://www.it-ebooks.info/

The monolithic architecture

The simplest design approach to guarantee ACID properties is to implement a monolithic
architecture where all functions reside on a single machine. Since no coordination among
nodes is required, the task of enforcing all the system rules is relatively straightforward.

Increasing availability in such architectures typically involves hardware layer
improvements, such as RAID arrays, multiple network interfaces, and hot-swappable
drives. However, the fact remains that even the most robust database server acts as a
single point of failure. This means that if the server fails, the application becomes
unavailable. This architecture can be illustrated with the following diagram:

0

—_ —

= -

Application s
Database Server

—

=

Application

A common means of increasing capacity to handle requests on a monolithic architecture is
to move the storage layer to a shared component such as a storage area network (SAN)
or network attached storage (NAS). Such devices are usually quite robust with large
numbers of disks and high-speed network interfaces. This approach is shown in a
modification of the previous diagram, which depicts two database servers using a single
NAS.

www.it-ebooks.info

http://www.it-ebooks.info/

i

=

Database Server

—— ——

Application Database Server

Application

MNetwork Attached
Storage

You’ll notice that while this architecture increases the overall request handling capacity of
the system, it simply moves the single failure point from the database server to the storage
layer. As a result, there is no real improvement from an availability perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

The master-slave architecture

As distributed systems have become more commonplace, the need for higher capacity
distributed databases has grown. Many distributed databases still attempt to maintain
ACID guarantees (or in some cases only the consistency aspect, which is the most difficult
in a distributed environment), leading to the master-slave architecture.

In this approach, there might be many servers handling requests, but only one server can
actually perform writes so as to maintain data in a consistent state. This avoids the
scenario where the same data can be modified via concurrent mutation requests to
different nodes. The following diagram shows the most basic scenario:

—
-\-_._________‘

Master (R/W)

--.._________‘-

Application

uoneoliday

= =

Slave (read-only)

-—-..__________-

Application

Slave (read-only)
Database cluster

However, we still have not solved the availability problem, as a failure of the write master
would lead to application downtime. It also means that writes do not scale well, since they
are all directed to a single machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Sharding

A variation on the master-slave approach that enables higher write volumes is a technique
called sharding, in which the data is partitioned into groups of keys, such that one or
more masters can own a known set of keys. For example, a database of user profiles can
be partitioned by the last name, such that A-M belongs to one cluster and N-Z belongs to
another, as follows:

[

=
T—
Master (R/W)

ﬁ-...

ﬁh-
S =y >
= et T
g Application e =
o =
[1H] O
o =

"—'f._? —

e
'.-II-..!

Slave (read-only)

S

/
=3l

Application

Slave (read-only) Slave (read-only)
A-M Database cluster Database cluster

An astute observer will notice that both master-slave and sharding introduce failure points
on the master nodes, and in fact the sharding approach introduces multiple points of
failure—one for each master! Additionally, the knowledge of where requests for certain
keys go rests with the application layer, and adding shards requires manual shuffling of
data to accommodate the modified key ranges.

Some systems employ shard managers as a layer of abstraction between the application
and the physical shards. This has the effect of removing the requirement that the
application must have knowledge of the partition map. However, it does not obviate the
need for shuffling data as the cluster grows.

www.it-ebooks.info

http://www.it-ebooks.info/

Master failover

A common means of increasing availability in the event of a failure on a master node is to
employ a master failover protocol. The particular semantics of the protocol vary among
implementations, but the general principle is that a new master is appointed when the
previous one fails. Not all failover algorithms are equal; however, in general, this feature
increases availability in a master-slave system.

Even a master-slave database that employs leader election suffers from a number of
undesirable traits:

Applications must understand the database topology

Data partitions must be carefully planned

Writes are difficult to scale

A failover dramatically increases the complexity of the system in general, and
especially so for multisite databases

¢ Adding capacity requires reshuffling data with a potential for downtime

Considering that our objective is a highly available system, and presuming that scalability
is a concern, are there other options we need to consider?

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra’s solution

The reality is that not every transaction in every application requires full ACID
guarantees, and ACID properties themselves can be viewed as more of a continuum where
a given transaction might require different degrees of each property.

Cassandra’s approach to availability takes this continuum into account. In contrast to its
relational predecessors—and even most of its NoSQL contemporaries—its original
architects considered availability as a key design objective, with the intent to achieve the
elusive goal of 100 percent uptime. Cassandra provides numerous knobs that give the user
highly granular control of the ACID properties, all with different trade-offs.

The remainder of this chapter offers an introduction to Cassandra’s high availability
attributes and features, with the rest of the book devoted to help you to make use of these
in real-world applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra’s architecture

Unlike either monolithic or master-slave designs, Cassandra makes use of an entirely peer-
to-peer architecture. All nodes in a Cassandra cluster can accept reads and writes, no
matter where the data being written or requested actually belongs in the cluster. Internode
communication takes place by means of a gossip protocol, which allows all nodes to
quickly receive updates without the need for a master coordinator.

This is a powerful design, as it implies that the system itself is both inherently available
and massively scalable. Consider the following diagram:

h_q
208
Ep\\. =

—a —_— % —
"--.._______‘-f
Cassandra

Cassandra Cassandra
—
=

Application

Uoneoidoy

’ Q Replication
I

Application

1l

=

Cassandra

—ay
Cassandra ps)
\

Cassandra

www.it-ebooks.info

http://www.it-ebooks.info/

Note that in contrast to the monolithic and master-slave architectures, there are no special
nodes. In fact, all nodes are essentially identical, and as a result Cassandra has no single
point of failure—and therefore no need for complex sharding or leader election. But how
does Cassandra avoid sharding?

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed hash table

Cassandra is able to achieve both availability and scalability using a data structure that
allows any node in the system to easily determine the location of a particular key in the
cluster. This is accomplished by using a distributed hash table (DHT) design based on
the Amazon Dynamo architecture.

As we saw in the previous diagram, Cassandra’s topology is arranged in a ring, where
each node owns a particular range of data. Keys are assigned to a specific node using a
process called consistent hashing, which allows nodes to be added or removed without
having to rehash every key based on the new range.

The node that owns a given key is determined by the chosen partitioner. Cassandra ships
with several partitioner implementations or developers can define their own by
implementing a Java interface.

These topics will be covered in greater detail in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication

One of the most important aspects of a distributed data store is the manner in which it
handles replication of data across the cluster. If each partition were only stored on a single
node, the system would effectively possess many single points of failure, and a failure of
any node could result in catastrophic data loss. Such systems must therefore be able to
replicate data across multiple nodes, making the occurrence of such loss less likely.

Cassandra has a sophisticated replication system, offering rack and data center awareness.
This means it can be configured to place replicas in such a manner so as to maintain
availability even during otherwise catastrophic events such as switch failures, network
partitions, or data center outages. Cassandra also includes a mechanism that maintains the
replication factor during node failures.

Replication across data centers

Perhaps the most unique feature Cassandra provides to achieve high availability is its
multiple data center replication system. This system can be easily configured to replicate
data across either physical or virtual data centers. This facilitates geographically dispersed
data center placement without complex schemes to keep data in sync. It also allows you to
create separate data centers for online transactions and heavy analysis workloads, while
allowing data written in one data center to be immediately reflected in others.

Chapters 3, Replication, and Chapter 4, Data Centers, will provide a complete discussion
of Cassandra’s extensive replication features.

www.it-ebooks.info

http://www.it-ebooks.info/

Tunable consistency

Closely related to replication is the idea of consistency, the C in ACID that attempts to
keep replicas in sync. Cassandra is often referred to as an eventually consistent system, a
term that can cause fear and trembling for those who have spent many years relying on the
strong consistency characteristics of their favorite relational databases. However, as
previously discussed, consistency should be thought of as a continuum, not as an absolute.

With this in mind, Cassandra can be more accurately described as having tunable
consistency, where the precise degree of consistency guarantee can be specified on a per-
statement level. This gives the application architect ultimate control over the trade-offs
between consistency, availability, and performance at the call level—rather than forcing a
one-size-fits-all strategy onto every use case.

The CAP theorem

Any discussion of consistency would be incomplete without at least reviewing the CAP
theorem. The CAP acronym refers to three desirable properties in a replicated system:

e Consistency: This means that the data should appear identical across all nodes in the
cluster

e Availability: This means that the system should always be available to receive
requests

¢ Partition tolerance: This means that the system should continue to function in the
event of a partial failure

In 2000, computer scientist Eric Brewer from the University of California, Berkeley,
posited that a replicated service can choose only two of the three properties for any given
operation.

The CAP theorem has been widely misappropriated to suggest that entire systems must
choose only two of the properties, which has led many to characterize databases as either
AP or CP. In fact, most systems do not fit cleanly into either category, and Cassandra is no
different.

Brewer himself addressed this misguided interpretation in his 2012 article, CAP Twelve
Years Later: How the “Rules” Have Changed:

... all three properties are more continuous than binary. Availability is obviously
continuous from 0 to 100 percent, but there are also many levels of consistency, and
even partitions have nuances, including disagreement within the system about
whether a partition exists

In that same article, Brewer also pointed out that the definition of consistency in ACID
terms differs from the CAP definition. In ACID, consistency refers to the guarantee that
all database rules will be followed (unique constraints, foreign key constraints, and the
like). The consistency in CAP, on the other hand, as clarified by Brewer refers only to
single-copy consistency, a strict subset of ACID consistency.

www.it-ebooks.info

http://www.it-ebooks.info/

Note

When considering the various trade-offs of Cassandra’s consistency level options, it’s
important to keep in mind that the CAP properties exist on a continuum rather than as
binary choices.

The bottom line is that it’s important to bear this continuum in mind when designing a
system based on Cassandra. Refer to Chapter 3, Replication, for additional details on
properly tuning Cassandra’s consistency level under a variety of circumstances.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

By now, you should have a solid understanding of Cassandra’s approach to availability
and why the fundamental design decisions were made. In the later chapters, we’ll take a
deeper look at the following ideas:

Configuring Cassandra for high availability
Designing highly available applications on Cassandra
Avoiding common antipatterns

Handling various failure scenarios

By the end of this book, you should possess a solid grasp of these concepts and be
confident that you’ve successfully deployed one of the most robust and scalable database
platforms available today.

However, we need to take it a step at a time, so in the next few chapters, we will build a
deeper understanding of how Cassandra manages data. This foundation will be necessary
for the topics covered later in the book. We’ll start with a discussion of Cassandra’s data
placement strategy in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Data Distribution

Cassandra’s peer-to-peer architecture and scalability characteristics are directly tied to its
data placement scheme. Cassandra employs a distributed hash table data structure that
allows data to be stored and retrieved by a key quickly and efficiently. Consistent hashing
is the core of this strategy as it enables all nodes to understand where data exists in the
cluster without complicated coordination mechanisms.

In this chapter, we’ll cover the following topics:

The fundamentals of distributed hash tables

Cassandra’s consistent hashing mechanism

Token assignment, both manual and using virtual nodes (vnodes)
The implications of Cassandra’s partitioner implementations
Formation of hotspots in the cluster

By the time you finish this chapter, you should have a deep understanding of these
concepts. Let’s begin with some basics about hash tables in general, and then we can delve
deeper into Cassandra’s distributed hash table implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Hash table fundamentals

Most developers have experience with hash tables in some form, as nearly all
programming languages include hash table implementations. Hash tables store data by
applying a hash function to the object, which determines its placement in an underlying
array.

While a detailed description of hashing algorithms is out of scope of this book, it is
sufficient for you to understand that a hash function simply maps any input data object
(which might be any size) to some expected output. While the input might be large, the
output of the hash function will be a fixed number of bits.

In a typical hash table design, the result of the hash function is divided by the number of
array slots; the remainder then becomes the assigned slot number. Thus, the slot can be
computed using hash(o) % n, where o is the object and n is the number of slots. Consider
the following hash table with names as keys and addresses as values:

0 | 123 Main
1
2
John 3 | 55 Pine
Jane
George
Sue 96 | 576 9th
O7 | 21 Juniper
Hash function 08
hash(o) % n 99

In the preceding diagram, the values in the table on the left represent keys, which are
hashed using the hash function to produce the index of the slot where the value is stored.
Our input objects (John, Jane, George, and Sue), are put through the hash function, which
results in an integer value. This value becomes the index in an array of street addresses.
We can look up the street address of a given name by computing its hash, then accessing
the resulting array index.

This method works well when the number of slots is stable or when the order of the
elements can be managed in a predictable way by a single owner. There are additional
complexities in hash table design, specifically around avoiding hash collisions, but the
basic concept remains straightforward.

However, the situation gets a bit more complicated when multiple clients of the hash table
need to stay in sync. All these clients need to consistently produce the same hash result
even as the elements themselves might be moving around. Let’s examine the distributed
hash table architecture and the means by which it solves this problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributing hash tables

When we take the basic idea of a hash table and partition it out to multiple nodes, it gives
us a distributed hash table (DHT). Each node in the DHT must share the same hash
function so that hash results on one node match the results on all others.

In order to determine the location of a given piece of data in the cluster, we need some
means to associate an object with the node that owns it. We can ask every node in the
cluster, but this will be problematic for at least two important reasons: first, this strategy
doesn’t scale well as the overhead will grow with the number of nodes; second, every
node in the cluster will have to be available to answer requests in order to definitively
state that a given item does not exist. A shared index can address this, but the result will be
additional complexity and another point of failure.

Therefore, a key objective of the hash function in a DHT is to map a key to the node that
owns it, such that a request can be made to the correct node. However, the simple hash
function discussed previously is no longer appropriate to map data to a node. The simple
hash is problematic in a distributed system because n translates to the number of nodes in
the cluster—and we know that n changes as nodes are added or removed. To illustrate this,
we can modify our hash table to store pointers to machine IP addresses instead of street
addresses.

0 |10.10.1.1
1 110.10.1.2
2 110.10.1.3
John 3 | 10.10.1:4
Jane
George
Sue 96 | 10.10.1.95
97 | 10.10.1.96
Hash function 98 | 10.10.1.97
hash(o) % n 991 10.10.1.98

In this case, keys are mapped to a specific machine in the distributed hash table that holds
the value for the key. Now, each key in the table can be mapped to its location in the
cluster with a simple lookup. However, if we alter the cluster size (by adding or removing
nodes), the result of the computation—and therefore the node mapping—changes for
every object! Let’s see what happens when a node is removed from the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

g || 101011
1 110.160.1.2
2 1310.10.1.3
John 3 14646-44
Jane
George
S 95 [10.10.1.95
96 | 10.10.1.96
e e 97 | 10.10.1.97
u |
hash(0) % n 98 | 10.10.1.98

When a node is removed from the cluster, the result is that the subsequent hash buckets
are shifted, which causes the keys to point to different nodes. Note that after removing
node 3, the number of buckets is reduced. As previously described, this changes the result
of the hash function, causing the old mappings to become unusable. This will be
catastrophic as all key lookups will point to the wrong node.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistent hashing

To solve the problem of locating a key in a distributed hash table, we use a technique
called consistent hashing. Introduced as a term in 1997, consistent hashing was originally
used as a means of routing requests among large numbers of web servers. It’s easy to see
how the Web can benefit from a hash mechanism that allows any node in the network to
efficiently determine the location of an object, in spite of the constant shifting of nodes in
and out of the network. This is the fundamental objective of consistent hashing.

www.it-ebooks.info

http://www.it-ebooks.info/

The mechanics of consistent hashing

With consistent hashing, the buckets are arranged in a ring with a predefined range; the
exact range depends on the partitioner being used. Keys are then hashed to produce a
value that lies somewhere along the ring. Nodes are assigned a range, which is computed

as follows:

Range start]|[Range end |

Token value || Next token value - 1|

Note

The following examples assume that the default Murmur3Partitioner is used. For more
information on this partitioner, take a look at the documentation at

http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architecture

For a five-node cluster, a ring with evenly distributed token ranges would look like the
following diagram, presuming the default Murmur3Partitioner is used:

I

4: 1844674407370955161

5: 5534023222112865484

1: -9223372036854 775808

: -5534023222112865485

3: -1844674407370955162

In the preceding diagram, the primary replica for each key is assigned to a node based on
its hashed value. Each node is responsible for the region of the ring between itself
(inclusive) and its predecessor (exclusive).

This diagram represents data ranges (the letters) and the nodes (the numbers) that own
these ranges. It might also be helpful to visualize this in a table form, which might be
more familiar to those who have used the nodetool ring command to view Cassandra’s

topology.

ode]Range start

[Range end |

|5534023222112865485 ||-9223372036854775808|

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architecturePartitionerM3P_c.html
http://www.it-ebooks.info/

| 9223372036854775807||-5534023222112865485|
| 5534023222112865484

-1844674407370955162|

-1844674407370955161

1844674407370955161 |

I

1844674407370955162 ||5534023222112865484 |

When Cassandra receives a key for either a read or a write, the hash function is applied to
the key to determine where it lies in the range. Since all nodes in the cluster are aware of
the other nodes’ ranges, any node can handle a request for any other node’s range. The
node receiving the request is called the coordinator, and any node can act in this role. If a

key does not belong to the coordinator’s range, it forwards the request to replicas in the
correct range.

Following the previous example, we can now examine how our names might map to a
hash, using the Murmur3 hash algorithm. Once the values are computed, they can be
matched to the range of one of the nodes in the cluster, as follows:

‘N ame | ment|
3916187946103363496| |
||4290246218330003133 | |

Hash value

George || 7281444397324228783 |
|| 8489302296308032607]f2 |

The placement of these keys might be easier to understand by visualizing their position in
the ring.

5: 5534023222112865484
Jane: 4290246218330003133

1: -9223372036854 775808
4: 1844674407370955161

Sue: -8489302296308032607

George: -7281444397324228783

: -5534023222112865485

3: -1844674407370955162
John: -3916187946103363496

www.it-ebooks.info

http://www.it-ebooks.info/

The hash value of the name keys determines their placement in the cluster

Now that you understand the basics of consistent hashing, let’s turn our focus to the
mechanism by which Cassandra assigns data ranges.

www.it-ebooks.info

http://www.it-ebooks.info/

Token assignment

In Cassandra terminology, the start of the hash range is called a token, and until version
1.2, each node was assigned a single token in the manner discussed in the previous
section. Version 1.2 introduced the option to use vnodes, as the feature is officially termed.
vnodes became the default option in the 2.0 release.

Cassandra determines where to place data using the tokens assigned to each node. Nodes
learn about these token assignments via gossip. Additional replicas are then placed based
on the configured replication strategy and snitch. More details about replica placement can
be found in Chapter 3, Replication.

www.it-ebooks.info

http://www.it-ebooks.info/

Manually assigned tokens

If you’re running a version prior to 1.2 or if you have chosen not to use vnodes, you will
have to assign tokens manually. This is accomplished by setting the initial token in
cassandra.yaml.

Manual token assignment introduces a number of potential issues:

¢ Adding and removing nodes: When the size of the ring changes, all tokens must be
recomputed and then assigned to their nodes using nodetool move. This causes a
significant amount of administrative overhead for a large cluster.

¢ Node rebuilds: In case of a node rebuild, only a few nodes can participate in
bootstrapping the replacement, leading to significant service degradation. We’ll
discuss this in detail later in this chapter.

e Hotspots: In some cases, the relatively large range assigned to each node can cause
hotspots if data is not evenly distributed.

e Heterogeneous clusters: With every node assigned a single token, the expectation is
that all nodes will hold the same amount of data. Attempting to subdivide ranges to
deal with nodes of varying sizes is a difficult and error-prone task.

Because of these issues, the use of vnodes is highly recommended for any new
installation. For existing installations, migrating to vnodes will improve the performance,
reliability, and administrative requirements of your cluster, especially during topology
changes and failure scenarios.

Tip
Use vnodes whenever possible to avoid issues with topology changes, node rebuilds,
hotspots, and heterogeneous clusters.

If you must continue to manually assign tokens, make sure to set the correct value for
initial token whenever any nodes are added or removed. Failure to do so will almost
always result in an unbalanced ring. For information about how to generate tokens, refer
to the DataStax documentation at
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGen’

You can then use the values you generate as the initial_token settings for your nodes,
with each node getting one of the values. It’s best to always assign your tokens to the
nodes in the same order to avoid unnecessary shuffling of data.

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.it-ebooks.info/

vnodes

The concept behind vnodes is straightforward. Instead of a single token assigned to each
node, it is now possible to specify the number of tokens using the num_tokens
configuration property in cassandra.yaml. The default value is 256, which is sufficient
for most use cases.

Note

When using vnodes, use nodetool status instead of nodetool ring as the latter will
output a row for every token across the cluster. Using nodetool status results in a much
more readable output.

The following diagram illustrates a cluster without vnodes compared to one with vnodes
enabled:

Before vnodes After vnodes

In the preceding diagram, each numbered node is represented as a slice of the ring, where
the tokens are represented as letters. Note that tokens are assigned randomly. Remember
that the letters represent ranges of data. You’ll notice that there are more ranges than nodes
after enabling vnodes, and each node now owns multiple ranges.

How vnodes improve availability

While technically the cluster remains available during topology changes and node
rebuilds, the level of degraded service has the potential to impact availability if the system
remains under significant load. vnodes offer a simple solution to the problems associated
with manually assigned tokens. Let’s examine the reasons why this is the case.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding and removing nodes

There are many reasons to change the size of a cluster. Perhaps you’re increasing capacity
for an anticipated growth in data or transaction volume, or maybe you’re adding a data
center for increased availability.

Considering that the objective is to handle greater load or provide additional redundancy,
any significant performance degradation while adding or bootstrapping a new node is
unacceptable as it counteracts these goals. Often in modern high-scale applications, slow
is the same as unavailable. Equally important is to ensure that new nodes receive a
balanced share of the data.

vnodes improve the bootstrapping process substantially because:

e More nodes can participate in data transfer: Since the token ranges are more
dispersed throughout the cluster, adding a new node involves ranges from a greater
number of the existing nodes. As a result, machines involved in the transfer end up
under less load than without vnodes, thus increasing availability of those ranges.

o Token assignment is automatic: Cassandra handles the allocation of tokens, so
there’s no need to manually recalculate and reassign a new token for every node in
the cluster. As a result, the ring becomes naturally balanced on its own.

Node rebuilding

Rebuilding a node is a relatively common operation in a large cluster, as nodes will fail for
a variety of reasons. Cassandra provides a mechanism to automatically rebuild a failed
node using replicated data.

When each node owns only a single token, that node’s entire data set is replicated to a
number of nodes equal to the replication factor minus one. For example, with a replication
factor of three, all the data on a given node will be replicated to two other nodes
(replication will be covered in detail in Chapter 3, Replication). However, Cassandra will
only use one replica in the rebuild operation.

So in this case, a rebuild operation involves three nodes, placing a high load on all three.
Imagine that we have a six-node cluster, and node 2 has failed, requiring a rebuild. In the
following diagram, note that each node only contains replicas for three tokens, preventing
two of the nodes from participating in the rebuild:

www.it-ebooks.info

http://www.it-ebooks.info/

In the rebuilding of node 2, only nodes 1, 3, and 4 can participate because they contain the
required replicas. We can assume that reads and writes continue during this process. With
one node down and three working hard to rebuild it, we now have only two out of six
nodes operating at full capacity! Even worse, token ranges A and B reside entirely on
nodes that are being taxed by this process, which can result in overburdening the entire
cluster due to slow response times for these operations.

vnodes provide significant benefits over manual token management for the rebuild
process, as they distribute the load over many more nodes. This concept is the same as the
benefit gained during the bootstrapping process. Since each node contains replicas for a
larger (and random) variety of the available tokens, Cassandra can use these replicas in the
rebuild process. Consider the following diagram of the same rebuild using vnodes:

www.it-ebooks.info

http://www.it-ebooks.info/

With vnodes, all nodes can participate in rebuilding node 2 because the tokens are spread
more evenly across the cluster. In the preceding diagram, you can see that rebuilding node
2 now involves the entire cluster, thus distributing the workload more evenly. This means
each individual node is doing less work than without vnodes, resulting in greater
operational stability.

Heterogeneous nodes

While it might be straightforward to initially build your Cassandra cluster with machines
that are all identical, at some point older machines will need to be replaced with newer
ones. This can create issues while manually assigning tokens since it can become difficult
to effectively choose the right tokens to produce a balanced result. This is especially
problematic when adding or removing nodes, as it would become necessary to recompute
the tokens to achieve a proper balance.

vnodes ease this effort by allowing you to specify a number of tokens, instead of having to
determine specific ranges. It is much easier to choose a proportionally larger number for
newer, more powerful nodes than it is to determine proper token ranges.

www.it-ebooks.info

http://www.it-ebooks.info/

Partitioners

You might recall from the earlier discussion of distributed hash tables that keys are
mapped to nodes via an implementation-specific hash function. In Cassandra’s
architecture, this function is determined by the partitioner you choose. This is a cluster-
wide setting specified in cassandra.yaml. As of version 1.2, there are three options:

e Murmur3Partitioner: This produces an even distribution of data across the cluster
using the MurmurHash algorithm. This is the default as of version 1.2, and should not
be changed as it is measurably faster than the RandomPartitioner.

e RandomPartitioner: This is similar to the Murmur3Partitioner, except that it
computes an MD5 hash. This was the default prior to version 1.2.

e ByteOrderedPartitioner: This places keys in byte order (lexically) around the ring.
This partitioner should generally be avoided for reasons explained in this section.

The only reason to switch from the default Murmur3Partitioner to ByteOrderedPartitioner
would be to enable range queries on keys (range queries on columns are always possible).
However, this decision must be carefully weighed as there is a high likelihood that you’ll
end up with hotspots.

www.it-ebooks.info

http://www.it-ebooks.info/

Hotspots

Let’s assume, for example, that you’re storing an address book, where the keys represent
the last name of the contact. You want to use ByteOrderedPartitioner so you can search for
all names between Smith and Watson. Using 2000 United States Census data as a guide,
let’s assume the distribution is as follows:

12

10

8

6 | | | |

4

2

0 . . . — e
ABCDEFGHI]JKLMNOPQRSTUVWIXYZ

w First letter of surname (% of indicence)

As one would expect, last names in the United States are not evenly distributed by the first
letter. In fact, the distribution is quite uneven and this imbalance translates directly to the
data stored in Cassandra. If we presume that each node owns a subset of the keys
alphabetically, the result will resemble the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

When using the ByteOrderedPartitioner, a table with the last name as the key is likely to
result in uneven data distribution. The preceding diagram clearly shows that the resulting
distribution produces hotspots in nodes 1 and 4, while node 5 is significantly
underutilized. One perhaps less obvious side effect of this imbalance is the impact on
reads and writes. If we presume that both reads and writes follow the same distribution as
the data itself (which is a logical assumption in this specific case), the heavier data nodes
will also be required to handle more operations than the lighter data nodes.

Effects of scaling out using ByteOrderedPartitioner

As is often the case in large systems, scaling out does not help to address this problem. In
fact, the imbalance only gets worse when nodes are added. Using the same data
distribution from the previous example, let’s increase the size of the cluster to 13 nodes to
illustrate this point:

www.it-ebooks.info

http://www.it-ebooks.info/

The effects of hotspotting increased with the cluster size

Obviously, we now have a significant problem. While in the five-node cluster, only one
node was significantly underutilized, the larger cluster has eight out of 13 nodes doing half
or less than half of the work as compared to the other nodes! In fact, two of the nodes own
almost no data at all.

A time-series example

Perhaps the most common use case for Cassandra is storing time-series data. Let’s assume
our use case involves writing log-style data, where we’re always writing current
timestamps and reading from relatively recent ranges of time. These are typical operations
involved in time-series use cases, so it’s natural to ask, “How can I query my data by date
range?”.

You’ll recall that range queries on columns in Cassandra are possible using any partitioner,
but only the ByteOrderedPartitioner allows key-based range queries. Thus it’s a common
mistake to build a time-series model using time as a key, and rely on ordering from the
ByteOrderedPartitioner to perform range queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s assume we have a six-node cluster where the key corresponds to the time of day. If
you are always writing current time, your writes will always go to a single node! Even
worse, presuming you are reading recent ranges, your reads will also go to that same node.
The following diagram illustrates what happens when log data is being written while the
application is also requesting recent logs:

ﬂode 6 'rj/{:rde 1
20- 23 00-03 |
\ — 05:30 - MyApp - Process started

= (JE 31 - MyApp - Initializing
{]5.32 MyApp - Reading data

Mode 5 '| [Node 2]

\15-19 ' 04y

= select * from logs where time >= 5 and time < 6

Node 4 ' Nade 3
12- 15 08-11 fll
_:—"-‘/

Time-series reads and writes using the ByteOrderdPartitioner will concentrate on a small
subset of nodes. As you can see, node 2 is the only node doing any work. Each time the
hour shifts, the workload will move to the next node in the ring. While the distribution of
data in this model might be balanced (or it might not, depending on whether the
application is busier at certain times), the workload will always experience hotspots.

We will discuss some more appropriate time-series data modeling techniques in detail in
Chapter 7, Modeling for High Availability. For now, consider it sufficient that you
understand the implications of choosing the ByteOrderedPartitioner over one of the other
options that uses a random hash function.

Note

In almost all cases, the Murmur3Partitioner is the right choice. Use of the
ByteOrderedPartitioner (or OrderPreservingPartitioner prior to version 1.2) should be used
with great caution, and can usually be avoided by altering the data model.

If you choose to use ByteOrderedPartitioner, just remember that you will need to keep a
close watch on your data distribution. Also, you will have to ensure that your reads and
writes can be accomplished without overloading a subset of your nodes. In practice, it’s
rarely necessary to store keys in order if you model your data correctly.

In Chapter 7, Modeling for High Availability, we’ll discuss a number of data modeling
strategies that can enable range queries without the drawbacks of the
ByteOrderedPartitioner. For now, it’s best to assume that the Murmur3Partitioner is the
safest choice, and this follows the recommendation made by Cassandra’s core developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

At this point, you should have a strong grasp of Cassandra’s data distribution architecture,
including consistent hashing, tokens, vnodes, and partitioners, as well as some of the
causes of data hotspots. Your understanding of these fundamentals will help you to make
sound design decisions that enable you to scale your cluster effectively and get the most
out of your infrastructure investment.

In this chapter and the previous one, we made reference to replication and its related
concepts a number of times. In the next chapter, we’ll discuss replication in depth as
replication is very important in determining the availability of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Replication

Replication is perhaps the most critical feature of a distributed data store, as it would
otherwise be impossible to make any sort of availability guarantee in the face of a node
failure. As you learned in Chapter 1, Cassandra’s Approach to High Availability,
Cassandra employs a sophisticated replication system that allows fine-grained control over
replica placement and consistency guarantees.

In this chapter, we’ll explore Cassandra’s replication mechanism in depth, including the
following topics:

The replication factor

How replicas are placed

How Cassandra resolves consistency issues

Maintaining replication factor during node failures
Consistency levels

Choosing the right replication factor and consistency level

At the end of this chapter, you’ll be able understand how to configure replication and tune
consistency for your specific use cases. You’ll be able to intelligently choose options that
will provide the fault tolerance and consistency guarantees that are appropriate for your
application.

Let’s start with the basics: how Cassandra determines the number of replicas to be created
and where to locate them in the cluster. We’ll begin the discussion with a feature that
you’ll encounter the very first time you create a keyspace: the replication factor.

www.it-ebooks.info

http://www.it-ebooks.info/

The replication factor

On the surface, setting the replication factor seems to be a fundamentally straightforward
idea. You configure Cassandra with the number of replicas you want to maintain (during
keyspace creation), and the system dutifully performs the replication for you, thus
protecting you when something goes wrong. So by defining a replication factor of three,
you will end up with a total of three copies of the data. There are a number of variables in
this equation, and we’ll cover many of these in detail in this chapter. Let’s start with the
basic mechanics of setting the replication factor.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication strategies

One thing you’ll quickly notice is that the semantics to set the replication factor depend on
the replication strategy you choose. The replication strategy tells Cassandra exactly how
you want replicas to be placed in the cluster.

There are two strategies available:

e sSimpleStrategy: This strategy is used for single data center deployments. It is fine to
use this for testing, development, or simple clusters, but discouraged if you ever
intend to expand to multiple data centers (including virtual data centers such as those
used to separate analysis workloads).

e NetworkTopologyStrategy: This strategy is to be used when you have multiple data
centers, or if you think you might have multiple data centers in the future. In other
words, you should use this strategy for your production cluster.

SimpleStrategy

As a way of introducing this concept, we’ll start with an example using SimpleStrategy.
The following Cassandra Query Language (CQL) block will allow us to create a
keyspace called AddressBook with three replicas:

CREATE KEYSPACE AddressBook
WITH REPLICATION = {
‘class’ : ‘SimpleStrategy’,
‘replication_factor’ : 3
3
You will recall from the previous chapter’s section on token assignment that data is
assigned to a node via a hash algorithm, resulting in each node owning a range of data.
Let’s take another look at the placement of our example data on the cluster. Remember the
keys are first names, and we determined the hash using the Murmur3 hash algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Jane: 4290246218330003133

IAAET VTATAGERA £ « Q99 TINIERRATTRRNA
4:1844674407370955161 1: -92233720268547 75808

Sue: -8489302296308032607

George: -7281444397324228783

3: -1844674407370955162 2: -5534023222112865485

John: -3916187946103363496

The primary replica for each key is assigned to a node based on its hashed value. Each
node is responsible for the region of the ring between itself (inclusive) and its predecessor
(exclusive).

While using SimpleStrategy, Cassandra will locate the first replica on the owner node
(the one determined by the hash algorithm), then walk the ring in a clockwise direction to
place each additional replica, as follows:

Jane: 1

- Jane: 2
John: 3

il

John: 2 George: 1
George: 3 Sue: 1
Jane: 3

Sue: 3

John: 1
George: 2
Sue: 2

www.it-ebooks.info

http://www.it-ebooks.info/

Additional replicas are placed in adjacent nodes when using manually assigned tokens

In the preceding diagram, the keys in bold represent the primary replicas (the ones placed
on the owner nodes), with subsequent replicas placed in adjacent nodes, moving clockwise
from the primary.

Although each node owns a set of keys based on its token range(s), there is no concept of
a master replica. In Cassandra, unlike make other database designs, every replica is equal.
This means reads and writes can be made to any node that holds a replica of the requested
key.

If you have a small cluster where all nodes reside in a single rack inside one data center,
SimpleStrategy will do the job. This makes it the right choice for local installations,
development clusters, and other similar simple environments where expansion is unlikely
because there is no need to configure a snitch (which will be covered later in this section).

For production clusters, however, it is highly recommended that you use
NetworkTopologyStrategy instead. This strategy provides a number of important features
for more complex installations where availability and performance are paramount.

NetworkTopologyStrategy

When it’s time to deploy your live cluster, NetworkTopologyStrategy offers two
additional properties that make it more suitable for this purpose:

e Rack awareness: Unlike SimpleStrategy, which places replicas naively, this feature
attempts to ensure that replicas are placed in different racks, thus preventing service
interruption or data loss due to failures of switches, power, cooling, and other similar
events that tend to affect single racks of machines.

¢ Configurable snitches: A snitch helps Cassandra to understand the topology of the
cluster. There are a number of snitch options for any type of network configuration.
We’ll cover snitches in detail later in this chapter.

Here’s a basic example of a keyspace using NetworkTopologyStrategy:

CREATE KEYSPACE AddressBook
WITH REPLICATION = {
‘class’ : ‘NetworkTopologyStrategy’,
‘de1’ : 3,
‘dec2’ : 2
3
In this example, we’re telling Cassandra to place three replicas in a data center called dc1
and two replicas in a second data center called dc2. We’ll spend more time discussing data
centers in Chapter 4, Data Centers, but for now it is sufficient to point out that the data
center names must match those configured in the snitch.

www.it-ebooks.info

http://www.it-ebooks.info/

Snitches

As discussed earlier, Cassandra is able to intelligently place replicas across the cluster if
you provide it with enough information about your topology. You give this insight to
Cassandra through a snitch, which is set using the endpoint_snitch property in
cassandra.yaml. The snitch is also used to help Cassandra route client requests to the
closest nodes to reduce network latency.

As of version 2.0, there are eight available snitch options (and you can write your own as
well):

e SimpleSnitch: This snitch is a companion to the SimpleStrategy replication
strategy. It is designed for simple single data center configurations.

e RackInferringsSnitch: As the name implies, this snitch attempts to infer your
network topology. Using this snitch is discouraged because it assumes that your IP
addressing scheme reflects your data center and rack configuration. For this to work
properly, your addresses must be in the following form:

10 . 100 . 20 . 30

data center rack node

e PropertyFileSnitch: Using this snitch allows the administrator to define which
nodes belong in certain racks and data centers. You can configure this using
cassandra-topology.properties. Each node in the cluster must be configured
identically. You should generally prefer GossipingPropertyFileSnitch because it
handles the addition or removal of nodes without the need to update every node’s
properties file.

® GossipingPropertyFileSnitch: Unlike PropertyFileSnitch, where the entire
topology must be defined on every node, this snitch allows you to configure each
node with its own rack and data center, and then Cassandra gossips this information
to the other nodes.

e Cloudstacksnitch: This snitch sets data centers and racks using Cloudstack’s
country, location, and availability zone.

e GoogleCloudsnitch: For Google Cloud deployments, this snitch automatically sets
the region as the data center and the availability zone as the rack.

e Ec2Snitch: This is similar to GoogleCloudsSnitch, but for single-region EC2
deployments. This snitch also sets the region as the data center and the availability
zone as the rack.

e EC2MultiRegionSnitch: This snitch assigns data centers and racks identically to
EC2Snitch, with the difference being that it supports using public IP addresses for
cross-data center communications.

Tip

www.it-ebooks.info

http://www.it-ebooks.info/

For production installations, it is almost always best to choose
GossipingPropertyFileSnitch in physical data center environments and the
appropriate cloud snitch in cloud environments.

Since much of the configuration related to snitches pertains to the topology of our data
center, we will save our detailed treatment of this topic for Chapter 4, Data Centers, which
will cover Cassandra’s multiple data center features in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Maintaining the replication factor when a node fails

One key way in which Cassandra maintains fault tolerance even during node failure is
through a mechanism called hinted handoff. If you have set hinted_handoff_enabled to
true in cassandra.yaml (which is the default), and one of the replica nodes is
unreachable during a write, then the system will store a hint on the coordinator node (the
node that receives the write). This hint contains the data itself along with information
about where it belongs in the cluster. Hints are replayed to the replica node once the
coordinator learns via gossip that the replica node is back online.

By default, Cassandra stores hints for up to three hours to avoid hint queues growing too
long. This time window can be configured using the max_hint_window_in_ms property in
cassandra.yaml. After this time period, it is necessary to run a repair to restore
consistency. Chapter 9, Failing Gracefully, will include more in-depth coverage of hinted
handoff and how to ensure that your system recovers from longer node outages.

Now that we’ve covered the basics of replication, it’s time to move on to the closely
related topic of consistency. In most configurations, there will inevitably be occasions
when not all replicas of a given bit of data are up to date. The specifics of how and when
this occurs will be outlined later in this chapter. For now, let’s find out how Cassandra
handles those conflicts when they arise.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistency conflicts

In Chapter 1, Cassandra’s Approach to High Availability, we discussed Cassandra’s
tunable consistency characteristics. For any given call, it is possible to achieve either
strong consistency or eventual consistency. In the former case, we can know for certain
that the copy of the data that Cassandra returns will be the latest. In the case of eventual
consistency, the data returned may or may not be the latest, or there may be no data
returned at all if the node is unaware of newly inserted data. Under eventual consistency;, it
is also possible to see deleted data if the node you’re reading from has not yet received the
delete request.

Depending on the read_repair_chance setting and the consistency level chosen for the
read operation (more on this in the anti-entropy section later in this chapter), Cassandra
might block the client and resolve the conflict immediately, or this might occur
asynchronously. If data in conflict is never requested, the system will resolve the conflict
the next time nodetool repair is run.

How does Cassandra know there is a conflict? Every column has three parts: key, value,
and timestamp. Cassandra follows last-write-wins semantics, which means that the
column with the latest timestamp always takes precedence.

Now, let’s discuss one of the most important knobs a developer can turn to determine the
consistency characteristics of their reads and writes.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistency levels

On every read and write operation, the caller must specify a consistency level, which lets
Cassandra know what level of consistency to guarantee for that one call. The following
table details the various consistency levels and their effects on both read and write
operations:

Consi
onsistency Reads (Writes
level
L Data must be written to at least one node, but permits writes via hinted handoff. Effectively allows a write to any node, even
ANY This is not supported for reads. . S . . . - .
if all nodes containing the replica are down. A subsequent read might be impossible if all replica nodes are down.
ONE The replica from the closest node will be returned. Da[E} l.ﬂllSl be written to at least one replica node (both commit log and memtable). Unlike ANY, hinted handoff writes are not
sufficient.
TWO The replicas from the two closest nodes will be returned. The same as ONE, except two replicas must be written.
THREE The replicas from the three closest nodes will be returned. The same as ONE, except three replicas must be written.
QUORUM Replicas from a quorum of nodes will be compared, and the replica with the JJData must be written to a quorum of replica nodes (both commit log and memtable) in the entire cluster, including all data
latest timestamp will be returned. centers.
SERIAL Permits reading uncommitted data as long as it represents the current state. Similar to QUORUM, except that writes are conditional based on the support for lightweight transactions.

Any uncommitted transactions will be committed as part of the read.

Similar to ONE, except that the read will be returned by the closest replica in

|Ihe local data center. “

LOCAL_ONE Similar to ONE, except that the write must be acknowledged by at least one node in the local data center.

Similar to QUORUM, except that only replicas in the local data center are

Similar to QUORUM, except the quorum must only be met using the local data center.
compared.

LOCALQUORUM‘

LOCAL_SERIAL|ISimilar to SERIAL, except only local replicas are used. Similar to SERIAL, except only writes to local replicas must be acknowledged.

The opposite of LOCAL_QUORUM; requires each data center to produce a

EACH_QUORUM
quorum of replicas, then returns the replica with the latest timestamp.

The opposite of LOCAL_QUORUM; requires a quorum of replicas to be written in each data center.

Replicas from all nodes in the entire cluster (including all data centers) will
be compared, and the replica with the latest timestamp will be returned.

ALL Data must be written to all replica nodes (both commit log and memtable) in the entire cluster, including all data centers.

As you can see, there are numerous combinations of read and write consistency levels, all
with different ultimate consistency guarantees. To illustrate this point, let’s assume that
you would like to guarantee absolute consistency for all read operations. On the surface, it
might seem as if you would have to read with a consistency level of ALL, thus sacrificing
availability in the case of node failure.

But there are alternatives depending on your use case. There are actually two additional
ways to achieve strong read consistency:

e Write with consistency level of ALL: This has the advantage of allowing the read
operation to be performed using ONE, which lowers the latency for that operation. On
the other hand, it means the write operation will result in UnavailableException if
one of the replica nodes goes offline.

¢ Read and write with QUORUM or LOCAL_QUORUM: Since QUORUM and
LOCAL_QUORUM both require a majority of nodes, using this level for both the write and
the read will result in a full consistency guarantee (in the same data center when

www.it-ebooks.info

http://www.it-ebooks.info/

using LOCAL_QUORUM), while still maintaining availability during a node failure.

You should carefully consider each use case to determine what guarantees you actually
require. For example, there might be cases where a lost write is acceptable, or occasions
where a read need not be absolutely current. At times, it might be sufficient to write with a
level of QUORUM, then read with ONE to achieve maximum read performance, knowing you
might occasionally and temporarily return stale data. Cassandra gives you this flexibility,
but it’s up to you to determine how to best employ it for your specific data requirements.
A good rule of thumb to attain strong consistency is that the read consistency level plus
write consistency level should be greater than the replication factor.

Tip
If you are unsure about which consistency levels to use for your specific use case, it’s
typically safe to start with LOCAL_QUORUM (or QUORUM for a single data center) reads and

writes. This configuration offers strong consistency guarantees and good performance
while allowing for the inevitable replica failure.

It is important to understand that even if you choose levels that provide less stringent
consistency guarantees, Cassandra will still perform anti-entropy operations
asynchronously in an attempt to keep replicas up to date.

www.it-ebooks.info

http://www.it-ebooks.info/

Repairing data

Cassandra employs a multifaceted anti-entropy mechanism that keeps replicas in synch.
Data repair operations generally fall into three categories:

¢ Synchronous read repair: When a read operation requires comparing multiple
replicas, Cassandra will initially request a checksum from the other nodes. If the
checksum doesn’t match, the full replica is sent and compared with the local version.
The replica with the latest timestamp will be returned and the old replica will be
updated. This means that in normal operations, old data is repaired when it is
requested.

e Asynchronous read repair: Each table in Cassandra has a setting called
read_repair_chance (as well as its related setting, dclocal _read_repair_chance),
which determines how the system treats replicas that are not compared during a read.
The default setting of 0.1 means that 10 percent of the time, Cassandra will also
repair the remaining replicas during read operations.

e Manually running repair: A full repair (using nodetool repair) should be run
regularly to clean up any data that has been missed as part of the previous two
operations. At a minimum, it should be run once every gc_grace_seconds, which is
set in the table schema and defaults to 10 days.

One might ask what the consequence would be of failing to run a repair operation within
the window specified by gc_grace_seconds. The answer relates to Cassandra’s
mechanism to handle deletes. As you might be aware, all modifications (or mutations) are
immutable, so a delete is really just a marker telling the system not to return that record to
any clients. This marker is called a tombstone.

Cassandra performs garbage collection on data marked by a tombstone each time a
compaction occurs. If you don’t run the repair, you risk deleted data reappearing
unexpectedly. In general, deletes should be avoided when possible as the unfettered
buildup of tombstones can cause significant issues. For more information on this topic,
refer to Chapter 8, Antipatterns.

Note

In the course of normal operations, Cassandra will repair old replicas when they records
are requested. Thus, it can be said that read repair operations are lazy, such that they only
occur when required.

With all these options for replication and consistency, it can seem daunting to choose the
right combination for a given use case. Let’s take a closer look at this balance to help
bring some additional clarity to the topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Balancing the replication factor with
consistency

There are many considerations when choosing a replication factor, including availability,
performance, and consistency. Since our topic is high availability, let’s presume your
desire is to maintain data availability in the case of node failure.

It’s important to understand exactly what your failure tolerance is, and this will likely be
different depending on the nature of the data. The definition of failure is probably going to
vary among use cases as well, as one case might consider data loss a failure, whereas
another accepts data loss as long as all queries return.

Achieving the desired availability, consistency, and performance targets requires
coordinating your replication factor with your application’s consistency level
configurations. In order to assist you in your efforts to achieve this balance, let’s consider
a single data center cluster of 10 nodes and examine the impact of various configuration
combinations:

Write Read
RF Consistency|JAvailabilit Use cases
I cL cL Y Y
ONE ONE
1 JIQUORUMIIQUORUMIIConsistent ||Doesn’t tolerate any replica loss Data can be lost and availability is not critical, such as analysis clusters
|| || ||Evenlual Tolerates loss of one replica Maximum read performance and low write latencies are required, and sometimes returning stale data is acceptable
QUORUM Tolerates I f li d
. olerates loss of one replica on reads,)
Consistent . P Read-heavy workloads where some downtime for data ingest is acceptable (improves read latencies)
but none on writes
QUORUM Tolerates I f li it
. olerates loss of one replica on writes, S
2 J|ONE Consistent P (Write-heavy workloads where read consistency is more important than availability
but none on reads
| ||Eventual Tolerates loss of two replicas Maximum read and write performance are required, and sometimes returning stale data is acceptable
Tolerates loss of one replica on write andjJJRead throughput and availability are paramount, while write performance is less important, and sometimes returning stale data is
QUORUMJJONE Eventual P ghpi y are p p p g
two on reads acceptable
QuorUMl|Eventual Tolerates loss of two replicas on write Low write latencies and availability are paramount, while read performance is less important, and sometimes returning stale data is
and one on reads acceptable
| QUORUMHQUORUMNIConsistent [{Tolerates loss of one replica Consistency is paramount, while striking a balance between availability and read/write performance
. Tolerates loss of two replicas on reads, P
Consistent 5 Additional fault tolerance and consistency on reads is paramount at the expense of write performance and availability
but none on writes
5 lone Consistent Tolerates loss of two replicas on writes, JJLow write latencies and availability are paramount, but read consistency must be guaranteed at the expense of performance and
but none on reads availability
5 |lany Eventual Tolerates loss of all replicas on write and [jJMaximum write and read performance and availability are paramount, and often returning stale data is acceptable (note that hinted writes
two on read are less reliable than the guarantees offered at CL ONE)
Tolerates loss of all replicas on write and . . R . . .
3 J|ANY QUORUMIIEventual one on read Maximum write performance and availability are paramount, and sometimes returning stale data is acceptable
5 |lany Consistent Tolerates loss of all replicas on writes, (Write throughput and availability are paramount, and clients must all see the same data, even though they might not see all writes
but none on reads immediately

www.it-ebooks.info

http://www.it-ebooks.info/

[Il Il Il Il

As you can see, there are numerous possibilities to consider when choosing these values,
especially in a scenario involving multiple data centers. This discussion will give you
greater confidence as you design your applications to achieve the desired balance.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we introduced the foundational concepts of replication and consistency. In
our discussion, we outlined the importance of the relationship between replication factor
and consistency level, and their impact on performance, data consistency, and availability.

By now, you should be able to make sound decisions specific to your use cases. This
chapter might serve as a handy reference in the future as it can be challenging to keep all
these details in mind.

In the previous two chapters, we’ve been gradually expanding from how Cassandra
locates individual pieces of data to its strategy to replicate it and keep it consistent.

In the next chapter, we’ll take things a step further and take a look at its multiple data
center capabilities, as no highly available system is truly complete without the ability to
distribute itself geographically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Data Centers

One of Cassandra’s most compelling high availability features is its support for multiple
data centers. In fact, this feature gives it the capability to scale reliably with a level of ease
that few other data stores can match.

In this chapter, we’ll explore Cassandra’s data center support, covering the following
topics:

Use cases for multiple data centers

Using a separate data center for online analytics
Replication across data centers

An in-depth look at configuring snitches
Multiregion EC2 implementations

Consistency levels for multiple data centers

Database administrators have struggled for many years to reliably replicate data across
multiple geographies—a task that is made especially difficult when the system attempts to
maintain ACID guarantees. The best we could typically hope for was to keep a relatively
recent backup for failover purposes.

Distributed database designs have made this easier, but many of these still require
complex configurations and have significant limitations while replicating across data
centers. Cassandra allows you to maintain a complete set of replicas in more than one data
center with relative ease. Let’s start by examining some of the reasons why users might
want to deploy multiple data centers.

As we look at each option, think about your own use cases and in which category they
might fall. Doing so will help you to make the right deployment decisions to make the best
use of your Cassandra investment.

www.it-ebooks.info

http://www.it-ebooks.info/

Use cases for multiple data centers

There are several key use cases that involve deploying Cassandra across multiple data
centers, including the obvious failover and load balancing scenarios. Let’s examine a few
of these cases.

www.it-ebooks.info

http://www.it-ebooks.info/

Live backup

Traditional database backups involve taking periodic snapshots of the data and storing
them offsite in case the system fails. In such a case, there will be downtime as a new
system is brought up and the data is restored. This strategy also inevitably leads to data
loss for the time period between the last backup and the point of failure.

Cassandra supports these types of backups, and we will discuss this in greater depth in
Chapter 9, Failing Gracefully. While snapshot backups are still useful to protect against
data corruption or accidental updates, Cassandra’s data center support can be used to
provide a current backup for cases such as hardware failures.

The basic idea involves setting up a second data center that maintains a current set of
replicas that can be used to rebuild the primary cluster, should a catastrophic event cause
the loss of an entire data center.

For this use case, it is typically sufficient to maintain a smaller cluster with a replication
factor of one, as the system will never be used to accept live reads or writes. The primary
consideration in this case is the storage capacity to handle the same quantity of data as the
live data center.

www.it-ebooks.info

http://www.it-ebooks.info/

Failover

A failover scenario is very similar to the backup use case we just discussed, except that the
backup data center is generally allocated similar resources as the primary cluster.
Additionally, while a single replica might suffice for a backup data center, generally
speaking, a failover data center should be configured with the same replication factor as
the primary since it might take over responsibility for the full application load in the event
of a failure.

It’s also important to consider whether you expect your failover data center to handle a full
production load. Presuming you do have this expectation, you will need to ensure that it
has adequate capacity to handle this. Having a hot failover data center protects you from a
common single point of failure—the power supply to your hosts. In EC2, you can choose
to configure your hosts to run in multiple availability zones, as each is supplied with a
separate power source. If you do this while using the EC2 snitch, be sure to allocate your
nodes evenly across zones, as the snitch will place replicas across multiple zones. Failure
to do this can lead to hotspots.

Tip
It would be ill-advised to assume that you can maintain a small failover data center, and
then simply add multiple nodes if a failure occurs. The additional overhead of

bootstrapping the new nodes will actually reduce capacity at a critical point when the
capacity is needed most.

www.it-ebooks.info

http://www.it-ebooks.info/

Load balancing

In some cases, applications might be configured to route traffic to any node in the cluster
without taking into account a specific data center. This has the effect of load balancing the
requests across multiple data centers, and can be useful in cases where the data centers
share a high bandwidth connection.

In this instance, the objective is to provide redundancy, so each data center must be able to
handle the entire application load, similar to the failover scenario. However, there are a
couple of important considerations when choosing this approach:

e Absolute consistency is expensive to guarantee in this scenario because doing so
typically requires replicating the data across higher latency connections. If strong
consistency is paramount for your use case, you should consider employing a
geographic distribution model as described in the next section.

e This usage pattern is most appropriate for use cases where eventual consistency is
acceptable, such as event capture, time-series data, and logging where the primary
read case involves offline data analysis rather than real-time queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Geographic distribution

Often, application architects will find it necessary for latency reasons to send requests to a
data center located near the originator or to mitigate the potential impact of natural
disasters. This is particularly useful for systems that span the globe, where routing all
requests to a central location is impractical. The ability to locate data centers in strategic
global locations around the world can be an indispensable feature in these scenarios.

This approach is often desirable for applications where both performance and strong
consistency are important. The reason for this is that clients are guaranteed to make
requests to a single data center, enabling the use of the LOCAL_QUORUM consistency level—
which means they won’t suffer a performance penalty by waiting for a remote data center
to acknowledge the write. The following diagram illustrates this configuration:

5 ":3'.{%__?_,-'-' p "o : MNorth American
TCa ! Data Center

N LOCAL_QUORUM R/W . .
F, - e Zr
f“q I S T O

g T European
Data Center

SI9)U8D BIEP U8amlaq Jus)sisuo Ajjenjuang

Ry

% /1" LOCAL QUORUM RAW
WK &

e Asian
Data Center

www.it-ebooks.info

http://www.it-ebooks.info/

A variation on this idea would be key distribution, where the data is partitioned using
some other differentiator (such as last name). With this scheme, the data centers might be
located near each other geographically, but the load is split between them based on
something other than the client’s location.

In either of these scenarios, the idea is that clients should detect the failure of a data center
and fall back on one of the others. There is a possibility of reading old data if it was
written with a local consistency level, but in many cases stale data is better than
application downtime. This can be visualized as follows:

LOCAL_QUORUM B/W
with some stale reads

LOCAL_QUORUM R/W

—=
|

3 =T European
Data Center

In this scenario, the North American data center experiences a failure, which requires
clients in North America to redirect to the European data center during the outage.
Obviously, the European data center must have sufficient capacity to handle the additional
load.

It’s important to make sure that your application is capable of handling this scenario, as
the latency will increase and reads might produce some stale data. A good strategy is to
limit the interaction with the database to only those operations that are critical to the
continuous functioning of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Online analysis

So far, we’ve discussed use cases that might be obvious to experienced database users. But
Cassandra supports an additional scenario that is particularly useful in the context of a
NoSQL database that doesn’t provide a built-in ad hoc query mechanism. The use of a
data center for analysis purposes has become commonplace among Cassandra users, as it
provides the benefits of a scalable NoSQL solution with the power of modern data
analysis tools.

Traditional data analysis, referred to as Online Analytical Processing (OLAP), typically
involves taking normalized data from the transactional relational database and moving it
into a denormalized form for faster analysis. This process involves significant extract,
transform, and load (ETL) overhead, which inherently results in a delay in analyzing the
data.

Cassandra’s support for multiple data centers, in combination with its robust integrations
with the Hadoop and Spark frameworks, allows users to conduct sophisticated batch or
real-time analysis using live data with no ETL overhead. This is accomplished by
dedicating a separate data center for analysis, then isolating this data center from live
traffic.

For many use cases, a single replica is sufficient for an analysis data center, as short
periods of downtime are frequently acceptable for batch analysis purposes. However, if
you require 100 percent uptime for your analysis workloads, you might need to specify a
higher replication factor. Additional replicas also mean that the analysis data center is less
likely to drop writes, especially while heavy analysis jobs are running. Also, make sure to
run repair regularly to keep data consistent.

There are currently two popular open source analysis projects with excellent Cassandra
integration:

e Hadoop: Cassandra has included support for Hadoop since the very early revisions,
and the DataStax Enterprise offering even provides a replacement for Hadoop
Distributed File System (HDFS) called CassandraFS. Having said that, while
Hadoop was quite revolutionary at its introduction, it is beginning to show its age.

e Spark: The Spark project has gained significant traction in a very short period of
time, primarily as an in-memory replacement for Hadoop. The excellent open source
integration with Cassandra, supported by DataStax, allows much faster and more
elegant analysis work to be performed against native Cassandra data. If you don’t
already have a significant Hadoop investment, the Spark integration is most likely the
better choice.

Regardless of which path you choose, it’s important to realize that the old OLAP
paradigms no longer apply.

The key to successfully processing large amounts of distributed data is to bring the
processing to the data, rather than the data to the processing. This was the key innovation
with MapReduce.

www.it-ebooks.info

http://www.it-ebooks.info/

In this new world of large datasets, shipping data across the network using complex ETL
processes is no longer a viable solution. We must co-locate the processing framework with
the database. Let’s explore how to do this using both Hadoop and Spark.

Analysis using Hadoop

Hadoop is actually an ecosystem comprising of multiple projects, a full discussion of
which would be too much for this chapter. For our purposes, we will simply point out the
important processes and how they should be deployed with Cassandra.

Under the covers, Hadoop makes extensive use of HDFS to write temporary data to disk.
HDFS components include NameNode and SecondaryNameNode (which live on a master
node), and DataNodes (which hold the data itself). If you use DataStax Enterprise, these
components are replaced by CassandraFS, which uses Cassandra as the underlying file
system.

The actual analysis work is performed by the MapReduce framework, which consists of a
JobTracker (which you will install on the master) and TaskTrackers (which are co-located
on DataNodes).

The canonical Cassandra-Hadoop integration places DataNodes and TaskTrackers on each
Cassandra node in the analysis data center. This allows the data owned by each node to be
processed locally, rather than having to be retrieved from across the network. This idea is
fundamental to the ability to process large amounts of data in an efficient manner. In fact,
shuffling data across the network is typically the most significant time sink in any analysis
work. The following diagram shows how this configuration looks:

Cassandra
TaskTracker
DataMNode

Cassandra
TaskTracker
DataNode

rd g, ¥
MNameNMNode Cassandra Cassandra
SecondaryNameNode TaskTracker TaskTracker
JobTracker DataMNode DataMNode
LY A

Analysis Data
Center

Cassandra
TaskTracker
DataNode

Cassandra
TaskTracker
DataNode

The canonical Hadoop-Cassandra topology involves co-locating TaskTrackers and
DataNodes with the Cassandra instances. If you have an existing Hadoop installation, you
may be tempted to try to move data from Cassandra into that cluster. However, a better

www.it-ebooks.info

http://www.it-ebooks.info/

strategy is to install Cassandra on that cluster. Alternatively, you can use a separate cluster
to process your Cassandra data, then move the results into your existing cluster.

In any case, migration to Spark is worth considering, as it is a much more modern attempt
at distributed data processing.

Analysis using Spark

To use Spark to analyze Cassandra data, you will essentially be replacing the MapReduce
component of your Hadoop installation with the Spark processes. The Spark Master
process replaces the JobTracker, and the Slave processes take over the job of the
TaskTrackers, as follows:

Cassandra
Spark Slave
DataMNode

Cassandra
Spark Slave
DataNode

Spark Master
NameNode
SecondaryNameNode

Cassandra
Spark Slave
DataNode

Cassandra
Spark Slave
DataNode

L A

Analysis Data
Center

Cassandra
Spark Slave
DataNode

Cassandra
Spark Slave
DataNode

While Spark appears to be rapidly gaining traction in the analysis space, many of the
existing tools and frameworks are built around Hadoop and MapReduce. Additionally, a
large number of users have existing investments in the Hadoop ecosystem, which might
make a wholesale move to Spark impractical.

The good news is that these two can live together in harmony. In fact, you can simply add
Spark processes to your existing infrastructure, provided that you have sufficient resources
to do so. You can also employ two analysis data centers: one for Hadoop jobs and one for
Spark jobs. Cassandra offers tremendous flexibility in this manner.

Now that we’ve covered the basic scenarios where multiple data centers prove useful, let’s
deep dive into data center configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Data center setup

The mechanism to define a data center depends on the snitch that you specify in
cassandra.yaml. Take a look at the previous chapter if you need a refresher on the various
types of snitches. You’ll recall that the snitch’s role is to tell Cassandra what your network
topology looks like, so it can know how to place replicas across your cluster. While
configuring a snitch, it’s important to make sure that the host names resolved by the snitch
match those in your schema.

With this in mind, let’s take a closer look at what configuration looks like for each of the
snitch options.

www.it-ebooks.info

http://www.it-ebooks.info/

RackInferringSnitch

There really isn’t any configuration to be performed on RackInferringSnitch, as long as
your IP addressing scheme matches your topology. Specifically, it uses the second, third,
and fourth octets to define data center, rack, and node, respectively, as follows:

10 = 100 . 20 = 30
data center rack node

This strategy can work well for simple deployments in physical data centers where IP
addresses can be predicted reliably. The problem is that this rarely works out well over the
long term, as network requirements often change over time. Also, ensuring all network
administrators abide by these rules can be difficult. In general, it’s better to use one of the
other more explicit snitches.

Tip
As a general rule, it is preferable to deploy a single rack in each data center as opposed to
using the rack awareness feature. This applies to any snitch that allows specifying racks.

While the initial configuration might be straightforward, it can be difficult to scale the
multiple rack strategy.

Rack configurations have a tendency to change over time, and often the people who
manage the hardware are not the same people who handle Cassandra configuration. In this
case, simplicity is often the best strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

PropertyFileSnitch

The PropertyFilesnitch configuration allows an administrator to precisely configure the
topology of the network by means of a properties file named cassandra-
topology.properties. The following is an example configuration, representing a cluster
with three data centers, where the first two have two racks each and the analysis cluster
has a single rack:

US East Data Center
50.11.22.33 =DC1:RAC1
50.11.22.44 =DC1:RAC1
50.11.22.55 =DC1:RAC1
50.11.33.33 =DC1:RAC2
50.11.33.44 =DC1:RAC2
50.11.33.55 =DC1:RAC2

US West Data Center

172.11.22.33 =DC2:RAC1
172.11.22.44 =DC2:RAC1
172.11.22.55 =DC2:RAC1
172.11.33.33 =DC2:RAC2
172.11.33.44 =DC2:RAC2
172.11.33.55 =DC2:RAC2

Analysis Cluster

172.11.44.11 =DC3:RAC1
172.11.44.22 =DC3:RAC1
172.11.44.33 =DC3:RAC1

Default for unspecified nodes
default =DC3:RAC1

The following diagram shows what this cluster would look like visually:

www.it-ebooks.info

http://www.it-ebooks.info/

RAC1 @ @ RAC2 RAC1 @ @ RAC2

\ DC1 50.11.xx.xx B \ DC2 172.11.5%x.xx Y,

DC3 172.11.44 .xx

This example demonstrates a cluster with two physical data centers and one virtual data
center used for analysis. It is worth noting that in the specific case shown earlier,

RackInferringSnitch would automatically choose essentially the same topology since
the IP addresses conform to its required scheme.

www.it-ebooks.info

http://www.it-ebooks.info/

GossipingPropertyFileSnitch

One of the principal challenges when using the PropertyFileSnitch is that the
configuration file must be kept in sync on all nodes. This can be difficult, as the file is
reloaded automatically without restarting. While modern cluster management tools
certainly ease this burden, the GossipingPropertyFileSnitch solves the problem
completely.

Rather than using cassandra-topology.properties, you can specify the data center and
rack membership for each node in its own configuration file. In each node’s
$CASSANDRA_HOME/conf directory, you’ll need to place a file called cassandra-
rackdc.properties, which should conform to the following example:

dc =DC1

rack =RAC1

Uncomment the following line to make this snitch prefer the internal ip

when possible, as the Ec2MultiRegionSnitch does.
prefer_local=true

Once this file is in place (and the GossipingPropertyFileSnitch is selected in
cassandra.yaml), as the name implies, Cassandra will gossip the data center and rack
information to the other nodes in the cluster. This eliminates the requirement for a
centralized configuration, and in general conforms to the principles behind Cassandra’s
peer-to-peer architecture in a better manner.

Thus far, we’ve examined snitches that work well when you control the network
configuration on your nodes as is the case with physical, noncloud data centers. With the
proliferation of cloud deployments on Amazon’s EC2 infrastructure, this is not always the
case.

www.it-ebooks.info

http://www.it-ebooks.info/

Cloud snitches

Amazon EC2, Google Cloud, and CloudStack can be excellent places to run Cassandra, as
much work has been put into getting it right. This section will focus on EC2 deployments,
as they are currently the most common. But the general principles apply to all the cloud
snitches.

If you’re planning on going this route, be sure to check out the plethora of fantastic open
source tools available from Netflix, who has put significant time and energy into
perfecting the art of deploying and running Cassandra on EC2. Their engineering blog
also has loads of great content that’s worth a look.

This book will avoid making any recommendations for specific instance types or
configurations, as requirements are unique for different use cases. However, an exception
is that running on ephemeral SSDs is highly recommended, as you will see tremendous
performance gains from doing so.

When the time comes to configure Cassandra on EC2, the EC2MultiRegionSnitch will
come in handy. If you already manage deployments on EC2, you must be aware of the
frequently transient nature of its network configurations. This snitch is designed to ease
the burden of managing this often troublesome issue.

When using the EC2MultiRegionSnitch configuration, data center and rack configuration
will be tied directly to region and availability zone, respectively. Thus, a node in the US-
East region, availability zone 1a, will be assigned to a data center named us-east and a
rack named 1a.

Additionally, since many deployments involve virtual data centers that are logically
separated but located in the same physical region, this snitch allows you to specify a suffix
to be applied to the data center name. This involves setting the dc_suffix property in
cassandra-rackdc.properties, as follows:

dc_suffix=_live
With this suffix in place, the data center will now be named us-east_1live.
Note

When deploying Cassandra in EC2 with the multiregion snitch, make sure to set your
broadcast_address to the external IP address, and your rpc_address and
listen_address to the internal IP address. These values can be found in cassandra.yaml.
This will allow your nodes to communicate across data centers while keeping your client
traffic local to the data center in which it resides.

In order to achieve the greatest amount of protection from failures in EC2, it is advisable
to deploy your nodes across multiple availability zones in each region. Amazon’s
availability zones operate as isolated locations with high bandwidth network connections
between them, and Cassandra’s rack awareness features can guarantee replica placement
in multiple zones. Keep in mind that you need to evenly distribute nodes across
availability zones to achieve even replica distribution.

The following diagram shows an example of an optimal configuration, with data centers in

www.it-ebooks.info

http://www.it-ebooks.info/

two regions in addition to an analysis cluster. This is similar to the diagram shown
previously using PropertyFileSnitch.

e

4 4 -2 e
Node 1 Node 10

Zone la Zone 1b

b us-east live 3 \ us-west o

us-east_analysis

A

When using a cloud snitch, data centers correlate to regions, while racks are assigned
based on availability zones. This topology mirrors the previous example, except the

naming convention uses AWS regions and availability zones. In the us-east data center,
dc_suffix is defined as live for the nodes that accept live traffic, and analysis for the
nodes isolated for read-heavy analytics workloads.

You should now have a good understanding of how to configure your cluster for multiple

data centers. Now, let’s explore how Cassandra replicates data across these data centers,

and how multiple data centers influence the balance between consistency, availability, and

performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication across data centers

In the previous chapters, we touched on the idea that Cassandra can automatically
replicate across multiple data centers. There are other systems that allow similar
replication; however, the ease of configuration and general robustness set Cassandra apart.
Let’s take a detailed look at how this works.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting the replication factor

You will recall from Chapter 3, Replication, that specifics about replication are configured
via CQL at the keyspace level. Since we’re on the topic of multiple data centers, it’s
important to understand that you’ll always have to use the NetworkTopologyStrategy,
since the SimpleStrategy does not allow you to set replication factor for each data center.

Using our example physical topology from the PropertyFileSnitch section, the following
statement will create a keyspace, users, with three replicas in each of our two live data
centers, as well as one in the analysis data center:

CREATE KEYSPACE users

WITH REPLICATION = {
‘class’: ‘NetworkTopologyStrategy’,

‘DC1': 3,
‘DC2': 3,
‘DC3': 1

H

Now, each column in the database will have seven replicas in total, dispersed across five
distinct racks in two different data centers—without any complex configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistency in a multiple data center environment

In this section, we will take a look at how Cassandra moves data from one data center to
another. It is easy to understand the concept of replication in a local context, but it might
seem more difficult to grasp the idea that Cassandra can seamlessly transfer large amounts
of data across high-latency connections in real time.

As you might now suspect, the precise replication behavior depends on your chosen
consistency level. In the previous chapter, we explored each consistency level in detail, as
well as its impact on availability, consistency, and performance.

In a multiple data center environment, it is extremely important to remember that using a
nonlocal consistency level (ALL, ONE, TWO, THREE, QUORUM, SERIAL, or EACH_QUORUM) might
have an impact on performance. This is because these consistency levels do not always
route requests to the local data center; they will generally prefer local nodes, but there is
no locality guarantee. If you do this, you will end up with a scenario that resembles the
following diagram (assuming clients in both data centers):

' European DC
_ Marth American DC % urop ¥,

When nonlocal consistency levels are used, requests can be routed anywhere in the cluster.
Obviously, sending traffic across the Atlantic Ocean will have a serious impact on client
performance, which is why it’s so critical that application architects and operations
personnel work together to make sure consistency levels match the deployed data center
configurations. You can imagine how the situation can become even less tenable with the
addition of more data centers!

As an alternative to the previous scenario, it is nearly always preferable to use a local
consistency level (LOCAL_ONE, LOCAL_QUORUM, or LOCAL_SERIAL) to ensure you’re only
working against the local data center, resulting in a far more performant configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication
4P

. Eumr}ean DC)

\ Morth American DC

When using local consistency levels, requests are sent only to nodes in the specified data
center. Also, you must make sure your client is only aware of the local nodes. If you’re
using the native Java driver, you can read about how to do this in Chapter 6, High
Availability Features in the Native Java Client. Otherwise, consult the documentation for
the driver you are using or consider moving to one of the newer native drivers.

Note

Note that it is not sufficient to simply provide your client with the local node list and then
attempt to use a global consistency level (ALL, ONE, TWO, THREE, QUORUM, or SERIAL). This is
because once the operation hits the database, Cassandra will not restrict fulfillment of the
consistency requirements to the local data center. If you intend to satisfy the consistency
guarantee locally, you must use a local consistency level (LOCAL_ONE, LOCAL_QUORUM, or
LOCAL_SERIAL).

Additionally, if your client connects to a remote node using a local consistency level, the
consistency level will be fulfilled using nodes in the remote data center. This is because
locality is measured relative to the coordinator node, not to the client.

The anatomy of a replicated write

It is important to fully grasp what’s going on when you perform a write in a multiple data
center environment in order to avoid common pitfalls and make sure you achieve your
desired consistency goals.

To start with, we will assume your clients generally need to be aware of updates as soon as
they are written. We have discussed the fact that it’s possible to achieve strong consistency
using QUORUM reads and writes, but what happens in the case of LOCAL_QUORUM, which is
typically the suggested default? Let’s examine this situation in detail.

We will assume that we have two live data centers in a geographically distributed
configuration: one in North America and the second in Europe. Each data center has a
client application that’s responsible for performing reads and writes local to that data
center using LOCAL_QUORUM for both.

www.it-ebooks.info

http://www.it-ebooks.info/

We have established that local reads and writes will be strongly consistent (refer to
Chapter 3, Replication, for a review of the reasons behind this), so the question is what
consistency guarantees do we have between data centers?

Client
LOCAL QUORUM R/W

Client
h..DCAL_QUGRUM R/W

%)
C i1
¥ L N\ £ T
Node 1 | |Node 4 | * Node 7| |Node 10!
Y—. - X : g Replication Fi Y Y
i Strong A / . Strong .
_ ode <) Consistency \ ode J_,- Node & Consistency -
(Node 3| (Node 6] & Node 9] [Node 12/
Morth American DC European DC

With LOCAL_QUORUM reads and writes, data inside a data center is strongly consistent, but
what happens to inter-data center consistency? To answer this question, let’s examine the
high-level path a write takes from the time the client sends it to Cassandra:

1. The client sends a write request using the LOCAL_QUORUM consistency level.

2. The node that receives the request is called the coordinator, and is responsible for
ensuring that the consistency level guarantees are met prior to acknowledging the
write.

3. The coordinator determines the nodes that should own the replicas using consistent
hashing (refer to Chapter 2, Data Distribution, for more details) and then sends the
writes to those nodes, including one in each remote data center, which then acts as
coordinator inside that data center.

4. Since we’re using LOCAL_QUORUM, the coordinator will only wait for the majority of
replica owning nodes in the local data center to acknowledge the write. This implies
that there might be down hosts who have not yet received the write and are therefore
inconsistent.

If you have paid close attention to the flow, you might have noticed that step 4 includes a
guarantee that at least a majority of local nodes received the write, so we know that a
LOCAL_QUORUM read will result in strong consistency. However, there was no guarantee that
any remote writes succeeded. In fact, it’s entirely possible that only the local data center
was operational at the time of the request.

Tip
Based on the Cassandra write path, we must conclude that LOCAL_QUORUM writes inside a

data center exhibit strong consistency when paired with LOCAL_QUORUM reads, whereas the
same pattern results in eventual consistency between data centers.

www.it-ebooks.info

http://www.it-ebooks.info/

Thus, we can complete our diagram as follows:

Client Client
h..DCAL_QUGRUM R/W > LOCAL QUORUM R/W
s\ 7 I
Node 1 | |Node 4 | * Node 7| |Node 10!
Y 4 — X _ *REplicationk . = 4
Strong | \ & . Strong |
| = —
_Nﬂde o Consistency \ _Nﬂde - - e o Consistency e
c
2 ;
'Node 3| [Node 6| & Node 9] [Node 12/
Morth American DC European DC

With LOCAL_QUORUM reads and writes, we get eventual consistency between data centers.
This level of guarantee is appropriate for many use cases, especially where users are being
routed to a single data center for the vast majority of the time. In this instance, eventual
consistency would be acceptable, since traveling across continents takes enough time that
the second data center would have received the writes by the time the individual had
completed their travels.

But in some cases, you might want or need to guarantee consistency in a remote data

center, but you cannot afford to pay the cost by using a global consistency level at write
time.

Achieving stronger consistency between data centers

There are a number of reasons why you might want to know for sure that your remote data
is consistent with the originating data center. For example, you might need to ensure that
your analytics include the most up-to-date data, or you might be reconciling bank
transactions that occurred in another data center. Either way, you want to know prior to
running your analysis or reconciliation job that your data is as recent as possible.

The solution to this dilemma is to run nodetool repair more frequently. Typically, it is
advised that users run a repair at least once every gc_grace_seconds, but in some cases
you might want to run repair more frequently. If you want to make sure a remote data
center is as consistent as possible, you can choose to run repair more frequently as this
will make sure all your data is consistent with the originating data center.

Tip
Keep in mind that the repair process is quite intensive, so be sure to stagger the process

such that only a subset of your nodes is involved in a repair at any given time. If you must

maintain availability during repair, a higher replication factor might be needed to satisfy
consistency guarantees.

With version 2.1, you can choose to run incremental repair, which can be run much more

www.it-ebooks.info

http://www.it-ebooks.info/

often as it is a much more lightweight weight process.

As we discussed in Chapter 1, Cassandra’s Approach to High Availability, consistency in
a distributed database is a complex and multifaceted problem. This is even more the case
when nodes in the database are dispersed across multiple geographical regions.
Fortunately, as we have demonstrated, Cassandra provides the tools needed to handle this
job.

The key to succeed in large-scale deployments of the sort we have covered in this chapter
is to design your solution holistically. A common traditional approach to these problems
has been to model the data independently of the infrastructure, then retrofit later to scale
the solution.

You’ve likely chosen Cassandra because you have outgrown this approach, so don’t make
the mistake of applying old ideas to the new technology. Consider how your replication
factor, data center configuration, cluster size, consistency levels, and analytics approach
all work together to produce your desired result.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

After reading this chapter and the previous one, you should have a solid understanding of
how Cassandra ensures that your data is available when required and protected from loss
due to node or data center failure. By now, you should be able to set up and configure a
cluster across multiple geographical regions, and be familiar enough with data centers to
begin the journey to analyze your live data without cumbersome and expensive ETL
processes.

So far we’ve focused on what it takes to get started with a solid Cassandra foundation for
your application. In the next chapter, we will talk about what it looks like when your use
case grows beyond your original plan and you need to scale out your cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Scaling Out

In the old days, a significant increase in system traffic would cause excitement for the
sales organization and strike fear in the hearts of the operations team. Fortunately,
Cassandra makes the process of scaling out a relatively pain-free affair, so both your sales
and operations teams can enjoy the fruits of your success.

This chapter will give you a complete rundown of the processes, tools, and design
considerations when adding nodes or data centers to your topology. In this chapter, we’ll
cover the following topics:

Choosing the right hardware configuration
Scaling out versus scaling up

Adding nodes

The bootstrapping process

Adding a data center

Sizing your cluster correctly

It goes without saying that making proper choices regarding the underlying infrastructure
is a key component in achieving good performance and high availability. Conversely, poor
choices can lead to a host of issues, and recovery can sometimes be difficult.

Let’s begin the chapter with some guidance on choosing hardware that’s compatible with
Cassandra’s design.

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the right hardware configuration

There are a number of points to consider when deciding on a node configuration,
including disk sizes, memory requirements, and the number of processor cores. The right
choices depend quite a bit on your use case and whether you are on a physical or virtual
infrastructure, but we will discuss some general guidelines here.

Since Cassandra is designed to be deployed in large-scale clusters on commodity
hardware, an important consideration is whether to use fewer large nodes or a greater
number of smaller nodes.

Regardless of whether you use physical or virtual machines, there are a few key principles
to keep in mind:

e More RAM equals faster reads, so the more you have, the better they will perform.
This is because Cassandra can take advantage of its cache capabilities as well as
larger memory tables. More space for memory tables means fewer scans to the on-
disk SSTables. More memory also results in better file system caching, which
reduces disk operations, but not if you allocate it to the JVM heap. Most of the time,
the default JVM heap size is sufficient, as Cassandra stores its O(n) structures (those
that grow with data set size) off-heap. In general, you should not use more than 8 GB
of heap on the JVM.

e More processors equal faster writes. This is because Cassandra is able to efficiently
utilize all available processors, and writes are generally CPU-bound. While this
might seem counter-intuitive, it holds true because Cassandra’s highly efficient log-
structured storage introduces very little overhead.

e Disk utilization is highly dependent on data volume and compaction strategy.
Obviously, you will need more disk space if you intend to store more data. What
might be less obvious is the dependence on your compaction strategy. In the worst
case, SizeTieredCompactionStrategy can use up to 50 percent more disk space than
the data itself. As an upper bound, try to limit the amount of data on each node to 1-2
TB.

¢ Solid-state drives (SSDs) are a good choice. For many use cases, simply moving to
SSDs from spinning disks can be the most cost effective way to boost performance.
In fact, SSDs should be the default choice since they provide tremendous benefit
without any real drawbacks.

e Do not use shared storage because Cassandra is designed to use local storage. Shared
storage configurations introduce unwanted bottlenecks and subvert Cassandra’s peer-
to-peer design. They also introduce an unnecessary single point of failure.

e Cassandra needs at least two disks: one for the commit log and one for data
directories. This is somewhat less important when using SSDs as they handle parallel
writes better than spinning disks.

Note

For physical hardware, anything between 16 GB and 64 GB of RAM seems to be a
good compromise between price and performance, whereas 16 GB should be

www.it-ebooks.info

http://www.it-ebooks.info/

considered ideal for virtual hardware.

When choosing the right number of CPUs, eight-core processors are currently a good
choice for dedicated machines. CPU performance varies among cloud vendors, so it’s
a good idea to consult the vendor and/or perform your own benchmarks.

These simple guidelines will help you to get the most out of your hardware or cloud
infrastructure investment and form a solid foundation for a high performance and highly
available cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling out versus scaling up

So you know it’s time to add more muscle to your cluster, but how do you know whether
to scale up or out?

If you’re not familiar with the difference, scaling up refers to converting existing
infrastructure into better or more robust hardware (or instance types in cloud
environments). This can mean adding storage capacity, increasing memory, moving to
newer machines with more cores, and so on.

Scaling out simply means adding more machines that roughly match the specifications of
the existing machines. Since Cassandra scales linearly with its peer-to-peer architecture,
scaling out is often more desirable.

Note

In general, it is better to replace physical hardware components incrementally rather than
all at one time. This is because in large systems, failures tend to occur after hardware ages
to a certain point, which is statistically likely to happen simultaneously for some subset of
your nodes.

For example, purchasing a large amount of drives from a single source at one time is
likely to result in a sudden onslaught of drive failures as they near the end of their service
life.

How do you know which is the better strategy? To arrive at an answer, you can ask
yourself a few questions about your existing infrastructure:

e Have there been significant advances in hardware (or cloud instance types, in the
case of EC2, Rackspace, and so on), such that scaling up yields more benefit for the
cost than adding nodes? Refer to the excellent article from Netflix at
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html,
which discusses the benefits of moving to SSDs rather than adding nodes.

¢ Did you start with hardware that was too small because you were bound by the
limitations of early Cassandra versions or a cloud provider’s offerings at the time?

¢ Do you have existing hardware to repurpose for use as a Cassandra cluster that is
better than your current hardware?

If the answer to any of the preceding questions is yes, then scaling up might be your best
option. If the answer is no, it might still be better to scale up, depending on what extra
resource you hope to gain by scaling up and the cost-benefit ratio. If, for example, you
only require more storage but not more CPU or IOPS, then adding disks is probably
cheaper. If you require a bit more memory for the cache, then add some memory if your
nodes can take more.

However, upgrading the motherboard to take more memory is unlikely to be cost-
effective, so adding nodes is a better choice. Fortunately, Cassandra makes scaling out
painless. Regardless of which path you choose, you will need to know how to add nodes
to your cluster.

www.it-ebooks.info

http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://www.it-ebooks.info/

Growing your cluster

The process of adding a node to an existing Cassandra cluster ranges from simple when
vnodes are used to somewhat tedious if you manually assign tokens. Let’s start with the

manual case, as the vnodes process is a subset of this.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding nodes without vnodes

As previously mentioned, the procedure to add a node to a cluster without vnodes enabled
is straightforward, if not a bit tedious. The first step is to determine the new total cluster
size, then compute tokens for all nodes.

To compute tokens, follow the DataStax documentation at

http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGen’
There are also several useful online tools to help you, such as the ones that you will find at

http://www.geroba.com/cassandra/cassandra-token-calculator/.

Once you have the new tokens, complete the following steps to add your new nodes to the
cluster:

1. Run repair to ensure that all nodes contain the most recent data. Failure to do this can
result in data loss, as the new node might bootstrap data from a node that doesn’t
contain the latest replicas.

2. Make sure Cassandra is installed, but do not start the process. If you use a package
manager, be aware that Cassandra will start automatically. If so, you will need to stop
the process before proceeding.

3. On new nodes, in cassandra.yaml, set the addresses to their proper values, along

with the cluster name, seeds, and endpoint snitch. Then set the initial_ token value

to the node’s assigned token using the tokens calculated prior to beginning this
process.

Start the Cassandra daemon on the new node.

Wait for at least two minutes before starting the bootstrap process on another node. A

good practice is to watch the Cassandra log as it starts to make sure there are no

errors.

6. Once all new nodes are up, run nodetool move on old nodes to assign new tokens on
one node at a time. This is unnecessary if you are doubling the cluster size as the
token assignments on old nodes will remain the same.

7. After this process has been completed on all new and existing nodes, run nodetool
cleanup on old nodes to purge old data that now belongs to the new nodes. You
should do this on one node at a time.

ok

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.it-ebooks.info/

Adding nodes with vnodes

The primary difference when using vnodes is that you do not have to generate or set
tokens as this happens automatically, and there is no need to run nodetool move. Instead
of setting the initial_token property, you should set the num_tokens property in

accordance with the desired data distribution. Larger values represent proportionally larger

nodes in your cluster, with 256 being the default. If all your nodes are the same size, this

default should be sufficient.

Over time, your cluster might naturally become heterogeneous in terms of node size and

capacity. In the past, when using manually assigned tokens, this presented a challenge as it

was difficult to determine the proper tokens that would result in a balanced cluster.

With vnodes, you can simply set the num_tokens property to a larger number for larger
nodes. For example, if your typical node owns 256 tokens, when adding a node with twice
the capacity, you should set its num_tokens property to 512.

If you want to keep track of the bootstrapping process, you can run nodetool netstats to

view the progress. Once the streaming has completed, the output of this command is as

follows:

Mode: NORMAL

Nothing streaming to /x.X.x.X
Nothing streaming from /x.x.Xx.Xx
Read Repalr Statistics:
Attempted: 1

Mismatch (Blocking): 0

Mismatch (Background): 0

Pool Name Active
Commands n/a
Responses n/a

Pending Completed
0 1
0 12345

Once the Mode status reports as NORMAL, this indicates the node is ready to serve requests.

Now that you know how to add a node, let’s examine the two paths to increase the
capacity of your cluster, starting with scaling out.

www.it-ebooks.info

http://www.it-ebooks.info/

How to scale out

Scaling out typically involves adding nodes to your current cluster, but might also mean
adding an entire data center. If you simply need to add nodes to an existing data center,
you might have guessed that you must only follow the steps to add a node, as described in
the previous section on that topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a data center

Adding a new data center to your cluster is similar to initializing a new multinode cluster.
As this is not a basic tutorial on Cassandra, we will assume you already know how to do
this. Before starting your nodes in the new data center, be sure to keep in mind the
following additional details:

¢ You must use NetworkTopologyStrategy with an appropriate snitch. If you have not
already chosen a data center-aware snitch, the recommendation is to use the
GossipingPropertyFileSnitch configuration for non-cloud installations, or the
appropriate cloud snitch for cloud-based installations. Refer to Chapter 4, Data
Centers, for more information on configuring snitches.

e Set auto_bootstrap to false. This property is set to true by default, and if left as
true will cause the node to immediately start transferring data from the existing data
center. The correct procedure is to wait and run a rebuild after all nodes are online.

e Configure the seeds. It is a good idea to include at least a couple nodes from each
data center as seeds in cassandra.yaml.

e Update the appropriate properties files. If you’re using the
GossipingPropertyFileSnitch configuration, add the cassandra-
rackdc.properties file on each new node. If you have chosen
PropertyFileSnitch, you will need to update cassandra-topology.properties on
all nodes (a restart is not required on existing nodes).

Note

Prior to changing your keyspace definition, make sure that you change the
consistency levels on your clients so they reflect the desired guarantees. Failing to do
this might result in slow response times and UnavailableExceptions, as Cassandra
attempts to satisfy the target consistency level using your new data center.

This is especially true when moving from a single data center environment (where
your calls are likely, for example, to be QUORUM rather than LOCAL_QUORUM). When
adding data centers beyond the second, it should be less of a concern. Refer to
Chapter 6, High Availability Features in the Native Java Client, for more details if
you’re using the native driver.

Once your new nodes are online, you will need to change your keyspace properties to
reflect your desired replication factor for each data center. For example, suppose you
previously had a data center named DC1 and your new data center is called bc2, and you
wanted both DC1 and DC2 to have three replicas, you would issue the following CQL
statement:

ALTER KEYSPACE [your_keyspace]
WITH REPLICATION = {

‘class’ : ‘NetworkTopologyStrategy’,
‘pDC1’ : 3,
‘DC2" : 3

Iy

www.it-ebooks.info

http://www.it-ebooks.info/

Note that you only need to do this on one node as your schema will be gossiped to all
nodes in all data centers.

After you set your desired replication factor, you will need to execute a rebuild operation
on each node in the new data center:

nodetool rebuild — [name of data center]

The rebuild will ensure that nodes in the new data center receive up-to-date replicas from
the existing data center. It’s important to include the data center name when issuing this
command or the rebuild operation will not copy any data. You can safely run this on all
nodes at once, provided your existing data center can handle the additional load. If you are
in doubt about this, it might be wise to run the rebuild on one node at a time to avoid
potential problems.

www.it-ebooks.info

http://www.it-ebooks.info/

How to scale up

Properly scaling up your Cassandra cluster is not a difficult process, but it does require
you to carefully follow established procedures to avoid undesirable side effects. There are
two general approaches to consider:

e Upgrade in place: Upgrading in place involves taking each node out of the ring, one
at a time, bringing its new replacement online, and allowing the new node to
bootstrap. This choice makes the most sense if a subset of your cluster needs
upgrading rather than an entire data center. To upgrade an entire data center, it might
be preferable to allow replication to automatically build the new nodes. This
assumes, of course, that your replication factor is greater than one.

¢ Using data center replication: Since Cassandra already supports bringing up
another data center via replication, you can use this mechanism to populate your new
hardware with existing data and then switch to the new data center when replication
is complete.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading in place

If you have determined that your best strategy is to upgrade a subset of your existing
nodes, you will need to take the node offline so that the cluster sees its status as down,
which can be confirmed using nodetool status:

Datacenter: dc1

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving
— Address

UN 10.10.10.1

UN 10.10.10.2

DN 10.10.10.3

UN 10.10.10.4

You can see in this excerpt of the output that the node at the 16.10.10. 3 address is labeled
DN, which indicates that Cassandra sees it as down. Once you have confirmed this, you
should make a note of the address (and the token if you are using manually assigned
tokens).

You are now ready to begin the process of replacing the node, which simply involves
following the previously outlined steps for adding a node with the following minor
exceptions:

e If using vnodes with a packaged installation, add the following line to
/usr/share/cassandra/cassandra-env.sh prior to starting Cassandra:

JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=[o0ld_address]

¢ If using vnodes with a tarball installation, when starting Cassandra, use the following
option:
bin/cassandra -Dcassandra.replace_address=[0ld_address]

¢ If you are manually assigning tokens, set initial_token to the old node’s token
minus one, and run nodetool repair on each keyspace on the new node after
bootstrapping is complete. You will also need to decommission the old node.

You will need to repeat this process for each node that you want to upgrade, and make
sure you execute the procedure one node at a time. In addition, you should consider
running a repair after each node replacement. If only two of three nodes contain the latest
data for some particular token range and you’re replacing one of these nodes, Cassandra
might end up copying the data from the node with the older data. Thus, you would only
have the latest data on one node; if this node is replaced next, you would lose the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling up using data center replication

If you have a large data center and intend to replace all the hardware in that data center,
the simplest way to handle this is to use Cassandra’s replication mechanism to do the hard
work for you. Once the new data center is ready to receive traffic, you can simply redirect
client requests to it. At this point, you will be able to safely decommission the old data
center.

To accomplish this, you should follow the procedure to add a data center, which was
outlined earlier in this chapter. Once your new data center is online, you should perform
the following steps:

f—

Validate that all new nodes are online using nodetool status.

2. Redirect all client traffic to the new data center and make sure that there are no
remaining clients connected before proceeding.

3. Run nodetool repair on nodes in any other data centers (besides the one you’re
decommissioning) to ensure that any data that was updated on the old data center is
propagated to the rest of the cluster.

4. Use the ALTER KEYSPACE command to remove any references to the old data center,
as described in the earlier section on adding data centers.

5. Run nodetool decommission on each of the old nodes to permanently remove it

from the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Removing nodes

While the material in this chapter is primarily focused on adding capacity to your cluster,
there might be times when reducing capacity is what you’re hoping to accomplish. There
can be a number of valid reasons for doing this. Perhaps you experience smaller
transaction volumes than originally anticipated for a new application, or you might change
your data retention plan. In some cases you might want to move to a smaller cluster with
more capable nodes, especially in cloud environments where this transition is made easier.

Regardless of your reasons for doing so, knowing how to remove nodes from your cluster
will certainly come in handy at some point in your Cassandra experience. Let’s take a look
at this process now.

www.it-ebooks.info

http://www.it-ebooks.info/

Removing nodes within a data center

Fortunately, the process to remove a node is quite simple:

1. Run nodetool repair on all your keyspaces. This will ensure that any updates
which might be present only on the node you’re removing will be preserved in the
remaining nodes.

2. Presuming the node is online, run nodetool decommission on the node you’re
retiring. This process will move the retiring node’s token ranges to other nodes in the
ring and then copy replicas to their appropriate locations based on the new token
assignments. As mentioned previously, you can use nodetool netstats to keep
track of each node’s progress during this operation.

3. If you’re manually assigning tokens, you must reassign all your tokens so that your
distribution is even. This procedure is outlined in an earlier section in this chapter.

4. Validate that the node has been removed using nodetool status. If the node has
been properly removed, it should no longer appear in the list output of this command.

www.it-ebooks.info

http://www.it-ebooks.info/

Decommissioning a data center

If you want to remove an entire data center, the process closely mirrors what we outlined
earlier in the section on scaling up via data center replication. For clarity however, let’s
repeat just the important steps here:

1. Run nodetool repair on nodes in any other data centers (besides the one that you’re
decommissioning) to ensure any data that was updated on the old data center is
propagated to the rest of the cluster.

2. Use the ALTER KEYSPACE command to remove any references to the old data center as
described in the earlier section on adding data centers.

3. Run nodetool decommission on each of the old nodes to permanently remove it
from the cluster.

Note

Given the coordination required between multiple teams to successfully execute
major topology changes, it is often advisable to appoint a single knowledgeable
person who can oversee this process to ensure that all the proper steps are taken. This
simple step can help to avoid significant issues. Even better, automated cluster
management tools such as Puppet, Chef, or Priam can make this process much easier.

By now, you should be familiar with the various possible operations to add and remove
nodes or data centers. As you can see, these processes require planning and coordination
between application designers, DevOps team members, and your infrastructure team. The
consequences of improper execution of any of these processes can be quite substantial.

www.it-ebooks.info

http://www.it-ebooks.info/

Other data migration scenarios

At times, you might need to migrate large amounts of data from one cluster to another. A
common reason for this is the need to transition data between networks that cannot see
each other, or moving from classic Amazon EC2 to a newer virtual private cloud
infrastructure.

If you find yourself in this situation, you can use these steps to ensure a smooth transition
to the new infrastructure:

1. Set up your new cluster. Using the information you learned in this chapter, configure
your cluster and duplicate the schema from your existing cluster.

2. Change your application to write to both clusters. This is certainly the most

significant change, as it likely requires code changes in your application.

Verify that you are receiving writes to both clusters to avoid potential data loss.

Create a snapshot of your old cluster using the nodetool snapshot command.

Load the snapshot data into your new cluster using the sstableloader command.

This command actually streams the data into the cluster rather than performing a

blind copy, which means that your configured replication strategy will be honored.

6. Switch your application to point only to the new cluster.

7. Decommission the old cluster by running nodetool decommission on each of the old
nodes.

A

It’s possible to skip the step that requires your application to direct traffic to both clusters,
provided you can schedule sufficient downtime. The problem is that it’s difficult to
accurately predict how long the load will take, and considering the subject matter of this
book, it’s likely that your application cannot sustain this downtime.

One final topic that’s worth covering when talking about increasing cluster capacity is the
possibility that you might need to change snitches. Often users will start with
SimpleSnitch, then find that they want to add a data center later, which requires one of
the data center-aware snitches. If done incorrectly, snitch changes can be problematic, so
let’s discuss the proper way to handle this scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

Snitch changes

As you will recall from Chapter 4, Data Centers, the snitch tells Cassandra what your
network topology looks like, and therefore affects data placement in the cluster. If you
haven’t inserted any data, or if the change doesn’t alter your topology, you can change the
snitch without consequence. Otherwise, multiple steps are required as well as a full cluster
restart, which will result in downtime.

How do you know if your topology has changed? If you’re not adding or removing nodes
while changing the snitch, your topology has not changed. Presuming no change, the
following procedure should be used to change snitches:

1. Update your topology properties files, which means cassandra-
topology.properties or cassandra-rackdc.properties, depending on which
snitch you specify. In the case of the PropertyFileSnitch, make sure all nodes have
the same file. For GossipingPropertyFileSnitch or EC2MultiRegionSnitch, each
node should have a file indicating its place in the topology.

2. Update the snitch in cassandra.yaml. You’ll need to do this for every node in the
cluster.

3. Restart all nodes, one at a time. Any time you make a change to cassandra.yaml,
you must restart the node.

If you need to change your topology, you have two options:

e You can go ahead and make the change all at once, then shut down the entire cluster
at one time. When you restart the cluster, your new topology will take effect.

¢ You can change the snitch (by following the previous steps) prior to making any
topology changes. Once you have finished the snitch change procedure, you can then
change your topology without having to restart your nodes.

Tip
If you’re just starting out with Cassandra, it’s best to plan for cluster growth from the
beginning. Go ahead and choose either GossipingPropertyFileSnitch or

EC2MultiRegionsSnitch (for EC2 deployments) as this will help to avoid
complications later when you inevitably decide to expand your cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter covered quite a few procedures to handle a variety of cluster changes, from
adding a single node to expanding with a new data center to migrating your entire cluster.

While it is unreasonable to expect anyone to commit all these processes to memory, let
this chapter serve as a reference for the times when these events occur. Most importantly,
take note of these scenarios so you can know when it’s time to read the manual rather than
just trying to figure it out on your own. Distributed databases can be wonderful when
handled correctly, but quite unforgiving when misused.

We spent the last five chapters looking at a variety of mostly administrative and design
related concepts, but now it’s time to dig in and look at some application code. In the next
chapter, we will take a look at the relatively new native client library (specifically, the Java
variant, although there are also drivers for C# and Python that follow similar principles).

The new driver has a number of interesting features related to high availability, so it’s time
to put on your developer’s hat as we transition from the database to the application layer.
As you likely know from past experience, a properly architected client application is every
bit as important as a correctly configured database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. High Availability Features in the
Native Java Client

If you are relatively new to Cassandra, you may be unaware that the native client libraries
from DataStax are a recent development. In fact, prior to their introduction, there were
numerous libraries (and forks of those projects) just for the Java language. Throw in the
other languages, each with their own idiosyncrasies, and you’d know that the situation was
really quite dire.

Complicating the scenario was the lack of any universally accepted query mechanism as
CQL was initially poorly received. The only real common ground to describe queries and
data models was the underlying Thrift protocol. While this worked reasonably well for
early adopters, it made assimilation of newer users quite difficult. It is a testament to
Cassandra’s extraordinary architecture, speed, and scalability that it was able to survive
those early days.

After several revisions of CQL, the introduction of a native binary protocol, and
DataStax’s work on a modern CQL-based native driver, we are fortunately in a much
better place now than we were just a couple of years ago. In fact, the modern
implementation of CQL is roughly 50 times faster than the equivalent Thrift query.

In this chapter, we will introduce the native Java driver and discuss its high availability
features, covering the following topics:

Thrift versus the native protocol
Client basics

Asynchronous requests

Load balancing

Failover policies

Retries

Note

While the chapter will focus specifically on the Java implementation, there are also
similar drivers for Python and C#. Though the specific implementation details may
vary among languages, the basic concepts will prove useful no matter which driver
you end up using.

It’s also worth noting that in most cases, it will be worth transitioning to the native Java
driver if you’re using another JVM-based language (such as Scala, Clojure, and Groovy),
even though your language of choice may have another community-supported Thrift-
based driver available.

www.it-ebooks.info

http://www.it-ebooks.info/

Thrift versus the native protocol

Cassandra users fall into two general categories. The first category consists of those who
have been using it for a while and have grown accustomed to working directly with
storage rows via a Thrift-based client, and second, those who are relatively new to
Cassandra and are confused by the role Thrift plays in the modern Cassandra world.
Hopefully, we can clear up the confusion and set both groups on the right path. Thrift is an
RPC mechanism combined with a code generator, and for several years it formed the
underlying protocol layer for clients communicating with Cassandra. This allowed the
early developers of Cassandra itself to focus on the database rather than the clients. But, as
we hinted at in the introduction, there are numerous negative side effects of this strategy:

e There was no common language to describe data models and queries as each client
implemented different abstractions on top of the underlying Thrift protocol.

e Thrift was limited to the lowest common denominator implementation for all the
supported languages, which proved to be a significant handicap as more advanced
APIs became desirable.

e All requests were executed synchronously as Thrift has no built-in support for
asynchronous calls.

e All query results had to be materialized into memory on both the server and the
client. This forced clients to implement cumbersome paging techniques when
requesting large datasets to avoid exceeding available memory on either the client or
the server. Limitations in the protocol itself also made optimization difficult.

For these reasons, the Thrift protocol is essentially deprecated in the favor of the newer
binary protocol, which supports more advanced features such as cursors, batches, prepared
statements, and cluster awareness.

If you’re still not convinced that you should migrate away from your favorite Thrift-based
library, keep reading to learn about some of the great new features in the native driver.
Even the popular Astyanax driver from Netflix now uses the native protocol under the
hood.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the environment

To get the most out of this chapter, you should prepare your development environment
with the following prerequisites:

¢ Java Development Kit (JDK) 1.7 for your platform, which can be obtained at
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-
1880260.html.

¢ Integrated Development Environment (IDE) or any text editor of your choice.

e FEither a local Cassandra installation, or the ability to connect to a remote cluster.

e The DataStax native Java driver for your Cassandra version. If you’re using Maven
for dependency management, add the following lines of code to your pom. xml file:

<dependency>
<groupId>com.datastax.cassandra</groupId>
<artifactId>cassandra-driver-core</artifactId>
<version>[version_number]</version>
</dependency>

If you’re using the 1.x driver, you may notice that it has a significant number of
dependencies (compared to only four with the 2.x version). For this reason, you should
make use of a dependency management tool, such as Maven, Ivy, or SBT.

Now that you’re set up for coding, you should get familiar with some of the basics of the
driver. The first step is to establish a connection to your Cassandra cluster, so we will start
by doing just that.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.it-ebooks.info/

Connecting to the cluster

To get connected, start by creating a Cluster reference, which you will construct using a
builder pattern. You will specify each additional option by chaining method calls together
to produce the desired configuration, then finally, calling the build() method to initialize
the Cluster instance.

Let’s build a cluster that’s initialized with a list of possible initial contact points:

private Cluster cluster; // defined at class level

// you should only build the cluster once per app

cluster = Cluster.builder()
.addContactPoints(“10.10.10.1"”, “10.10.10.2", “10.10.10.3")
Lbuild();

Note

You should only have one instance of Cluster in your application for each physical
cluster as this class controls the list of contact points and key connection policies such as
compression, failover, request routing, and retries.

While this basic example will suffice to play around with the driver locally, the Cluster
builder supports a number of additional options that are relevant for maintaining a highly
available application, which we will explore throughout this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Executing statements

While the Cluster acts as a central place to manage connection-level configuration
options, you will need to establish a Session instance to perform actual work against the
cluster. This is done by calling the connect () method on your Cluster instance. Here, we
connect to the contacts keyspace:

private Session session; // defined at class level
session = cluster.connect(“contacts”);

Once you have created the Session, you will be able to execute CQL statements as
follows:
String insert = “INSERT INTO contact (id, email) " +

“VALUES (" +

“bd297650-2885-11e4-8c21-0800200c9a66, " +
“!contact@example.com’ " +

Y7) ; n ’.

session.execute(insert);

You can submit any valid CQL statement to the execute () method, including schema
modifications.

Note

Unless you have a large number of keyspaces, you should create one Session instance for
each keyspace in your application, because it provides connection pooling and controls the
node selection policy (it uses a round-robin approach by default). The Session is thread-
safe, so it can be shared among multiple clients.

www.it-ebooks.info

http://www.it-ebooks.info/

Prepared statements

One key improvement provided by the native driver (and Cassandra 1.2+) is its support for
prepared statements. Readers with a background in traditional relational databases will be
familiar with the concept. Essentially, the statement is preparsed at the time it is prepared,
with placeholders left for parameters to be bound at execution time.

Using the driver’s PreparedStatement is straightforward:

String insert = “INSERT INTO contacts.contact (id, email) " +
“VALUES (?,?);";

PreparedStatement stmt = session.prepare(insert);

BoundStatement boundInsert = stmt.bind(
UUID.fromString(“bd297650-2885-11e4-8c21-0800200c9a66"),
“contact@example.com”

);

session.execute(boundInsert);

Use prepared statements whenever you need to execute the same statement repeatedly, as
this will reduce parsing overhead on the server. However, do not create the same prepared
statement multiple times, as this will actually degrade performance. You should prepare
statements only once and reuse them for multiple executions.

www.it-ebooks.info

http://www.it-ebooks.info/

Batched statements

If you are using the 2.x driver, you can also use prepared statements with batches. When
statements are grouped into a batch, they are executed atomically and without multiple
network calls. This can be useful when you need either all or none of your statements to
succeed.

Here’s an example of preparing and executing a batch using the statement prepared in the
previous code snippet:

BatchStatement batch = new BatchStatement();

batch.add(stmt.bind(
UUID.fromString(“bd297650-2885-11e4-8c21-0800200c9a66"),
“contact@example.com”

));
batch.add(stmt.bind(

UUID.fromString(“a012a000-2899-11e4-8c21-0800200c9a66"),
“othercontact@example.com”

));

session.execute(batch);
Caution with batches

While batches can be quite useful when they’re needed, you should be aware of some
pitfalls associated with them:

e They are atomic, but not isolated. This means clients will be able to see the
incremental updates as they happen. The exception is updates to a single partition,
which are isolated.

e They are slower. Specifically, the atomicity guarantee introduces approximately a 30
percent performance penalty across the batch. Sometimes this is worth it, but it
means you shouldn’t automatically assume batching multiple requests is better than
multiple single requests. To avoid this penalty, you can use unlogged batches, which
turn off atomicity and provide increased performance over multiple statements
executed against the same partition.

e They are all or nothing. In other words, either all statements fail or all succeed. This
has the effect of increasing latency as you have to wait for responses for all the
statements.

e They are unordered. Batching applies the same timestamp to all mutations in the
batch, so statements don’t actually execute in the provided ordering.

e Don’t use them with prepared statements to update many sparse columns. It’s
tempting to prepare a single statement with a number of parameters for use in a large
batch. This works fine if you always supply all the parameters, but don’t assume you
can insert nulls for missing columns, as inserting nulls creates tombstones. Refer to
Chapter 8, Antipatterns, for details on why creating large numbers of tombstones is
an antipattern.

Now that you’re familiar with the basic client concepts, it’s time to delve into the more
advanced features, beginning with the ability to execute requests asynchronously.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling asynchronous requests

Since Cassandra is designed for significant scale, it follows that most applications using it
would be designed with similar scalability in mind. One principle characteristic of high
performance applications is that they do not block threads unnecessarily, and instead
attempt to maximize available resources.

As previously discussed, one of the downsides to the older Thrift protocol was its lack of
support for asynchronous requests. Fortunately, this situation has been remedied with the
native driver, making the process of building scalable applications on top of Cassandra
significantly easier.

Tip
Blocking on I/0, such as with calls to Cassandra, can cause significant bottlenecks in

high-throughput applications. Since a slow application can be the same as a dead
application, you should use the asynchronous API to avoid blocking whenever possible.

If you are familiar with the java.util.concurrent package, and the Future class
specifically, the asynchronous API will look familiar. Here’s a basic example:
String query = “SELECT * FROM contact " +

“WHERE id = bd297650-2885-11e4-8c21-0800200c9a66;";

ResultSetFuture f = session.executeAsync(query);
ResultSet rs = f.getUninterruptibly();

Obviously, this is a naive example as it will simply block on the call to
getUninterruptibly(), but it should give you a sense of the basic API.

www.it-ebooks.info

http://www.it-ebooks.info/

Running queries in parallel

One common use case for the asynchronous API is to make multiple calls in parallel, then
collect the results. This can be accomplished easily:

String query = “SELECT * FROM contact WHERE id = ?;”;
BoundStatement q1 = session.prepare(query).bind(
UUID.fromString(“bd297650-2885-11e4-8c21-0800200c9a66")
),
BoundStatement 2 = session.prepare(query).bind(
UUID.fromString(“a012a000-2899-11e4-8c21-0800200c9a66")
);
ResultSetFuture f1
ResultSetFuture f2

session.executeAsync(ql);
session.executeAsync(qg2);

try {
ResultSet rsi fl.getUninterruptibly(5, TimeUnit.SECONDS);

ResultSet rs2 f2.getUninterruptibly(5, TimeUnit.SECONDS);
// do something with results

} catch (Exception e) {
// handle exception

}

A closer inspection of the ResultSetFuture class reveals that it inherits from both
java.util.concurrent.Future and
com.google.common.util.concurrent.ListenableFuture, which is from Google’s
Guava library. The Guava Futures class provides a useful construct to collect multiple
Future results into a single list of values, which can be helpful when aggregating queries.
It can be used as follows:

Future<List<ResultSet>>future = Futures.allAsList(
session.executeAsync(ql),
session.executeAsync(q2)

)

try {
List<ResultSet> results = future.get(5, TimeUnit.SECONDS);

// do something with results

} catch (ExecutionException e) {
// handle exception

}

While the preceding code snippet is more straightforward, there is one disadvantage of
doing it this way. A call to ResultSetFuture.getUninterruptibly() will throw helpful
Cassandra-specific exceptions, while Future.get () throws the more generic
ExecutionException. It’s also worth noting that the Future returned by allAsList () will
only be successful if all component Futures succeed.

www.it-ebooks.info

http://www.it-ebooks.info/

Load balancing

Since Cassandra is a distributed database with the ability to add and remove nodes easily,
it’s important for the client to be able to send requests to new nodes that join the cluster, or
to stop sending requests to removed or dead nodes.

Some databases use special middleman processes to broker requests to available nodes,
thus relieving the client of the requirement to maintain a list of hosts. Since Cassandra is a
peer-to-peer system, with no special nodes or broker processes, the client must be aware of
the topology of the cluster.

You should not use a load balancer between the client and Cassandra, as the client handles
this via its load balancing policies. Adding a separate load balancer will actually prevent
the client from understanding the cluster, which is what allows it to perform many of its
duties.

Behind the scenes, the native driver connects to the cluster and learns about the topology
of the ring. While other legacy Thrift-based clients were able to make use of an RPC call
to describe the cluster, the metadata obtained by the native client is much richer. You can
get a good sense of the type of information available by taking a look at the Metadata
class, which can be obtained by calling the getMetadata() method on your Cluster
instance.

One of the chief strengths in this approach is that you can configure intelligent load
balancing and failover policies at the application level. Some policies act as wrappers
around others, in a quasi-decorator pattern. Ultimately, the load balancer determines which
node will end up coordinating the request. Internally, Cassandra will use its own
mechanisms when communicating with the rest of the cluster.

The driver offers five load balancing policies out of the box:

e RoundRobinPolicy: As the name implies, this policy will execute requests in a
round-robin fashion to all the known nodes.

e DCAwareRoundRobinPolicy: This policy also executes requests in a round-robin
fashion, but insures that requests are routed only to the hosts in the local data center.
Keep in mind that this does not obviate the need to satisfy crossdata center
consistency levels (such as QUORUM). It merely limits client connections to local
nodes. This policy is the default lower-level policy and is typically wrapped by a
higher-level implementation.

e LatencyAwarePolicy: If you want the driver to keep track of the query latencies for
each node, then route requests only to the fastest node; this policy will fit the bill.
LatencyAwarePolicy acts as a wrapper around a child policy, and there are several
properties you can set to tune its behavior.

e WhitelListRoundRobinPolicy: If you want the client to only talk to specific hosts,
this policy will enable that behavior. However, it will not attempt to send requests to
unavailable hosts.

e TokenAwarePolicy: This wrapper policy will make the best effort to select replicas
for the given key in the local data center; otherwise, it will use the child policy to

www.it-ebooks.info

http://www.it-ebooks.info/

locate hosts.
Tip
The DCAwareRoundRobinPolicy wrapped by the TokenAwarePolicy is a good place to
start if you’re unsure about the right strategy. In fact, this is the default in version 2.0.2 of

the driver. You should only add latency awareness as a tuning measure if you experience
issues.

Let’s examine some load balancing strategies in detail, and see how they might help us
increase availability in the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Failing over to a remote data center

The foundation of any robust load balancing strategy is DCAwareRoundRobinPolicy,
because we’ll assume you will be deploying to more than one data center. However, the
implementation hides an interesting failover feature in the constructor overrides, which is
worth a look.

In Chapter 4, Data Centers, we discussed several use cases for multiple data centers, with
failover being one key scenario. If your desire is to fail over to a backup data center, and
should replicas in your client’s primary data center fail, you might be interested in the two
additional parameters you can pass to the DCAwareRoundRobinPolicy constructor, which
are mentioned here:

e usedHostsPerRemoteDc: This vaguely named parameter allows you to specify a
number of hosts in a remote data center that can be used by this client, should your
local data center fail to satisfy the request. Note that by default, this will be ignored
for LOCAL_ONE and LOCAL_QUORUM consistency levels.

e allowRemoteDCsForLocalConsistencyLevel: If set to true, this overrides the
restriction on LOCAL_ONE and LOCAL_QUORUM requests. This should be enabled with
caution, as it essentially breaks the consistency level policy. You should consider
using another consistency level rather than enabling this feature.

Keep in mind that enabling fallback to remote hosts will likely result in degraded
performance due to network latency, but this can be preferable to a wholesale failure of
the application. A slow system and a down system often look the same, so you may be
failing over to the remote data center even when all nodes in the local data center are up.
The good news is that the policy is intelligent enough to make all possible efforts to satisfy
requests locally before attempting to connect to remote nodes. In most cases this only
makes sense when using a numbered consistency level such as ONE, TwO, or THREE.

Note

There is an important consideration when deciding whether to allow remote fallback. If
you’re relying on LOCAL_QUORUM reads and writes to maintain overall consistency, during
the failover condition this consistency guarantee will be temporarily broken.

www.it-ebooks.info

http://www.it-ebooks.info/

Downgrading the consistency level

While failing over to a remote data center may be the right strategy in some cases, there is
another option to deal with potential node failures in the local data center. The driver
offers a flexible retry policy interface that allows you to temporarily downgrade the
consistency level during a failure.

For example, you may want your application to write at a consistency level of
LOCAL_QUORUM with a replication factor of three. If your client is unable to write to two
replicas, the request will fail. In some cases it may be preferable for the write to succeed
on a single node, even if that results in potentially stale reads.

You can enable this feature with its default behavior by using the
DowngradingConsistencyRetryPolicy class as follows:

private Cluster cluster; // defined at class level

cluster = cluster.builder()
.addContactPoints(“10.10.10.1"”, “10.10.10.2", “10.10.10.3")
.withRetryPolicy(DowngradingConsistencyRetryPolicy.INSTANCE)
Lbuild();

Defining your own retry policy

It is also possible to specify your own behavior by implementing the RetryPolicy
interface. In the following naive example, we override the onReadTimeout () method to
always try at a consistency level of ONE as long as we have received at least one response
but not previously retried. For timeouts, we defer to a default policy:

public class MyRetryPolicy implements RetryPolicy {
private RetryPolicy defaultPolicy =
DowngradingConsistencyRetryPolicy.INSTANCE;

public MyRetryPolicy() {}

@Override
public RetryDecision onReadTimeout(Statement statement,
ConsistencylLevel cl, int requiredResponses,
int receivedResponses, boolean dataRetrieved,
int nbRetry) {
if (nbRetry != 0)
return RetryDecision.rethrow();
else if (receivedResponses > 0)
return RetryDecision.retry(ConsistencyLevel.ONE);
else
return RetryDecision.rethrow();
}

@Override

public RetryDecision onWriteTimeout(Statement stmt,
ConsistencylLevel cl, WriteType type, int regAcks,
int recAcks, int nbRetry) {

return defaultPolicy.onWriteTimeout(stmt, cl, type,
reqAcks, recAcks, nbRetry);

www.it-ebooks.info

http://www.it-ebooks.info/

@Override

public RetryDecision onUnavailable(Statement stmt,
ConsistencylLevel cl, int reqRep, int aliveRep,
int nbRetry) {

return defaultPolicy.onUnavailable(stmt, cl, reqRep,
aliveRep, nbRetry);
}

}

You can also override the methods to handle write timeouts (onwriteTimeout) and
UnavailableExceptions (onUnavailable). In many cases, however, the
DowngradingConsistencyRetryPolicy will provide the desired functionality. Specifically,
it will lower the consistency level on all operations such that it can be successful but will
attempt to maintain the highest level possible. Since exceptions are essentially overlooked
in these cases, it can be helpful to wrap the handler in a LoggingRetryPolicy so you will
know when it happens.

A RetryPolicy can also be specified at the statement level, which is often more useful
than applying a one-size-fits-all policy globally:
Statement stmt = // create statement

session.execute(stmt.setRetryPolicy(
DowngradingConsistencyRetryPolicy.INSTANCE));

If you decide to implement your own RetryPolicy, make sure to test it thoroughly under
simulated failure conditions so you can be confident that it will behave as you believe it
will.

Keep in mind that both failover policies and those that downgrade consistency level are a
tradeoff between consistency and availability. You will have to determine which is most
important in any given circumstance. In many cases it is a lesser-of-two-evils decision, as
neither situation can be ideal.

Tip

In general, you should be very careful when retrying to only do so at a single point in the
call chain; for example, if client A calls service B, which then calls service C, which
makes a request to Cassandra, ideally you should only perform retries in the outermost

service. If all services implement retries, the number grows exponentially and can result in
a distributed denial-of-service attack from your own users.

www.it-ebooks.info

http://www.it-ebooks.info/

Token awareness

With older Thrift-based drivers, the client is naive in regards to the location of the data in
the cluster. It simply chooses a node (typically randomly or using a round-robin scheme)
and executes the query against that node. As a result, the coordinator often does not
contain a replica for the requested key, which means additional nodes must participate to
satisfy the request. The following diagram illustrates this point:

Thrift Client
request key "A"
from random node
(CL=QUORUM)

Coordinator doesn't have "A", so it
must request from Nodes 1 and 2

By contrast, much in the same way that the Hadoop and Spark drivers operate, the native
driver is able to determine the token ranges owned by each node in the cluster. This is a
significant advantage, as the TokenAwarePolicy load balancer can route requests to known
owners of the requested key rather than blindly choosing an available node. This can be
visualized as follows:

Native Client
requests key "A’
(CL=QUORUM)

Native client knows where keys are,
so it requests a replica directly

This feature is provided when using the TokenAware load balancing policy, which is
enabled by default as in version 2.0.2 of the driver. You can enable it in the previous
versions as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

private Cluster cluster; // defined at class level
cluster = cluster.builder()
.addContactPoints(“10.10.10.1"”, “10.10.10.2", “10.10.10.3")
.withLoadBalancingPolicy(
new TokenAwarePolicy(new DCAwareRoundRobinPolicy()))
Lbuild();

In most cases the TokenAwarePolicy is a great place to start. You will see the benefit of
reduced latencies as you avoid situations where the node that receives your request is
unable to serve or write the replica, and therefore must forward the request to one of the
replica owners.

We have now covered all the pieces you need to maximize your application’s ability to
stay running during node failures. It’s time to make use of these features in a cohesive

strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

Tying it all together

In attempting to develop a comprehensive approach to handling failure, we will start by
assuming that you prefer consistency when possible but want your application to remain
available even if the desired consistency level cannot be satisfied; you are also willing to
experience slower client response rather than denying requests.

With these ideas in mind, we can tie the concepts you have learned throughout this chapter
together in a policy that answers this demand. Take a look at the following example,
which makes use of the previously discussed features:

// defined at class level

String localDC = “DC1”;

ConsistencylLevel defaultCL = ConsistencylLevel.LOCAL_QUORUM;
private Cluster cluster;

// initialized once per application
cluster = cluster.builder()
.addContactPoints(“10.10.10.1"”, “10.10.10.2", “10.10.10.3")
.withRetryPolicy(new LoggingRetryPolicy(
DowngradingConsistencyRetryPolicy.INSTANCE))
.withLoadBalancingPolicy(new TokenAwarePolicy/(
new DCAwareRoundRobinPolicy(localDC, 2)))
.withQueryOptions(
new QueryOptions().setConsistencylLevel(defaultCL))
Lbuild();

This implementation exhibits the following characteristics:

o If sufficient replicas exist in the local data center, both reads and writes will default to
LOCAL_QUORUM, and therefore queries will be strongly consistent.

e If sufficient replicas do not exist in the local data center, the consistency level will
downgrade to either ONE, TWO, or THREE. The decision as to which is used is based on
the highest level achievable that is at least one less than the originally requested level.

e Our DCAwareRoundRobinPolicy will continue to try to satisfy consistency level using
only local nodes if possible, avoiding unnecessary trips to the remote data center as
long as the local data center can fulfill the downgraded consistency level.

o If all else fails, we have set the usedHostsPerRemoteDc parameter to two in the
DCAwareRoundRobinPolicy constructor. So if the local data center cannot produce a
sufficient number of replicas to satisfy a consistency level of ONE, the policy allows it
to contact a remote data center to fulfill the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Falling back to QUORUM

While this policy may fit the bill for many use cases, some users may prefer to initially
fallback to QUORUM rather than ONE, Two, or THREE. Consider that, at a replication factor of
three, a LOCAL_QUORUM request will fall immediately to ONE using our previously proposed
strategy because only two replicas are necessary to satisfy the original consistency level.

The implication is that we have only one remaining live replica out of a total of three,
which could be considered as a precarious situation. It is possible that both down replicas
are in fact lost, and even that there may be some fundamental problems in the data center
itself. In this case, if we fall back to writing at QUORUM instead of ONE, we are guaranteed to
get at least one replica immediately persisted in a remote data center, thus protecting the
write from a complete data center failure.

Unfortunately, there is no simple configuration to enable this policy, so we must
implement our own. As in the earlier example, we will simply use the
DowngradingConsistencyRetryPolicy for most cases since we really only want a slight
modification in its behavior. Specifically, we need to override onunavailable, as this
controls the response when insufficient replicas are available to satisfy the requested
consistency level. We let the default policy handle the timeout exceptions. Here’s the
implementation:

public class QuorumFallbackPolicy implements RetryPolicy {

private RetryPolicy defaultPolicy =
DowngradingConsistencyRetryPolicy.INSTANCE;

public static final QuorumFallbackPolicy INSTANCE =
new QuorumFallbackPolicy();

private QuorumFallbackPolicy() {}

@Override

public RetryDecision onUnavailable(Statement stmt,
ConsistencylLevel cl, int regRep, int aliveRep,
int nbRetry) {

if (nbRetry == 0 &&
ConsistencylLevel.LOCAL_QUORUM == cl)
return RetryDecision.retry(
ConsistencyLevel.QUORUM);

else if (nbRetry == 1)

return RetryDecision.retry(
ConsistencyLevel.ONE);

else

return defaultPolicy.onUnavailable(
stmt, cl, regRep, aliveRep, nbRetry);

}

@Override

public RetryDecision onReadTimeout(Statement stmt,
ConsistencylLevel cl, int regRes, int recRes,
boolean dataRet, int nbRetry) {

www.it-ebooks.info

http://www.it-ebooks.info/

return defaultPolicy.onReadTimeout(stmt, cl, reqRes,
recRes, dataRet, nbRetry);

}

@Override

public RetryDecision onWriteTimeout(Statement stmt,
ConsistencylLevel cl, WriteType type, int regAcks, int
recAcks, int nbRetry) {

return defaultPolicy.onWriteTimeout(stmt, cl, type,
reqAcks, recAcks, nbRetry);

3
}

This retry policy first checks whether the current consistency level is LOCAL_QUORUM and
this is the first retry. If so, it resets the level to QUORUM. If the QUORUM fails,
onUnavailable() will be called again with the nbRetry count set to 1. In this case, the
default is to simply throw the exception, so we need to check for nbRetry == 1 and
perform a second retry at consistency level ONE. Finally, it falls back to the default policy.

Note that this policy introduces a good bit of overhead in the failure case as it allows for
two retries (and therefore a total of three calls per request). It would be advisable to
monitor the number of failures, and simply start making calls at a different consistency
level until the underlying cause of the failure condition is remedied. Otherwise, you will
end up with numerous retries for each success, potentially compounding the issue.

In other words, use this strategy as an initial triage measure, but allowing it to continue for
a long period of time could result in additional trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, you learned the value of the native driver as a tool to assist you in
developing a highly available application built on top of Cassandra. Hopefully, it has been
apparent that this objective involves a partnership between the application and the
database, and that poor decisions on either end can dramatically affect availability.

However, the native driver has a wealth of functionality beyond what is covered here, so it
would be worth your while to spend some time understanding its features and subtleties,
as with any new piece of software.

In the next chapter, we will look at another aspect of designing highly available
applications on Cassandra. We’ll explore how the right data models can make or break
your system, and what to do to ensure success.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Modeling for High Availability

A well-designed data model is central to availability in Cassandra, while a poorly chosen
model can substantially handicap your application’s resiliency. This idea may seem
counterintuitive to those with backgrounds in relational database systems, but this chapter
may very well be the most critical one in this book.

It’s not that data models are unimportant in relational systems, but they are especially
critical when attempting to maintain availability in a large distributed database. In fact,
this topic is probably the least understood and most difficult aspect of transitioning to
Cassandra.

The data modeling problem is somewhat exacerbated by a familiar SQL-style syntax that
can lure unsuspecting users into believing they already understand the necessary
principles. In reality, the similarity between CQL and SQL ends with syntax. The
underlying data structure is vastly different, and therefore a new approach to designing
your data model is required.

In this chapter, we will cover the fundamentals of successful data modeling in Cassandra,
which include the following topics:

Understanding the storage layer
Compaction

Translating CQL to the storage layer
Designing for immutability
Modeling time-series data

Modeling geospatial data

After reading this chapter, you will understand the principles of effective data modeling,
and hopefully the shroud of mystery surrounding CQL will be lifted. We’ll begin by taking
a look at Cassandra’s on-disk data structure, as a solid grasp of this will allow you to
understand why certain models work well while others do not.

www.it-ebooks.info

http://www.it-ebooks.info/

How Cassandra stores data

Database systems use a variety of structures to represent data on disk. Most traditional
relational systems use a tabular approach, which enables random access queries supported
by these systems. However, in order to achieve Cassandra’s hallmark write performance, it
must avoid these sorts of random access disk seeks because random disk I/O tends to be a
significant bottleneck. Instead, the system employs a log-structured storage engine, which
allows it to write data sequentially to both a commit log and to Cassandra’s permanent
structure, SSTables.

www.it-ebooks.info

http://www.it-ebooks.info/

Implications of a log-structured storage

When a write is received, it is written simultaneously to the commit log and to a
memtable. Note that the commit log is what provides durability of writes in Cassandra.
Memtables are then periodically flushed to disk in the form of immutable SSTables.

This storage scheme has several important implications related to data modeling:

e Writes are immutable. Since writes are always essentially append operations,
updating data involves simply writing the new value with a higher timestamp (every
column is written with a timestamp attached to it).

e The last write wins. If multiple versions of a column exist on disk (as will be the case
in an update), the latest value will be returned when that column is queried. All
inserts are actually upserts, as there is no distinction between the two under the hood.

e Columns cannot be physically deleted. Immutability implies that data isn’t actually
deleted when a DELETE statement is executed. Instead, a null column value is inserted,
covering up the old value. This value is referred to as a tombstone. Deletes and
tombstones will be covered in detail in the next chapter.

e Sequential queries are fast. Also referred to as range queries, any query that results in
reading data sequentially on disk will maximize read performance, as it takes
advantage of the underlying storage structure. In general, Cassandra restricts you to
sequential queries, although there are several examples of queries that break this rule.
We will look at range queries in this chapter, while other types will be dealt with in
the next chapter.

One consequence of an append-only data structure is that old values must periodically be
purged to avoid accumulating unnecessary junk data over time. For example, old values
that have been replaced by newer ones should be purged. Also since SSTables are
immutable, we often end up with columns from the same partition existing in multiple
files. This slows read performance, so we need a mechanism to manage this situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding compaction

Cassandra deals with this build-up of SSTables over time by means of a process called
compaction. Compaction aggregates rows from multiple files into a single file, and in the
process it removes old data and purges tombstones. However, housekeeping is only one
reason to do this; the other objective is to improve read performance by moving data for a
given key into a single SSTable, thereby reducing the disk I/O required to read each key.

The exact mechanism that governs the compaction process depends on which compaction
strategy you choose. There are three strategies that currently ship with Cassandra
(although you can implement your own):

e Size-tiered compaction: This strategy causes SSTables to be compacted when there
are multiple files of a similar size (the default is four). In update-heavy workloads, a
row may exist in many SSTables at once, resulting in reduced read performance.

e Leveled compaction: This strategy assigns SSTables to levels, where each level
represents tables that are ten times larger than the next lower level. It guarantees
tables in the same level won’t overlap, and results in the vast majority of rows being
read from a single SSTable. This is good for read-heavy workloads, but if you don’t
perform updates or deletes, or query large ranges across a partition, the additional I/O
may not be worth the cost.

¢ Date-tiered compaction: Available as of 2.0.11 or 2.1.1, this strategy groups data
into SSTables by write time. If you’re working with time-series data, this strategy can
help avoid reading across multiple SSTables when querying a time range.

Let’s look at these compaction strategies in detail so you can make an informed decision
about which is right for your use case.

www.it-ebooks.info

http://www.it-ebooks.info/

Size-tiered compaction

Size-tiered compaction has been around in Cassandra since the early days, and prior to
Version 1.0 it was the only available option. The basic premise is that SSTables are chosen
for compaction based on size buckets.

When the compaction process finds multiple SSTables (the default is four) of a similar
size, it will compact those tables into a single SSTable. Eventually, there will be four
larger tables, which will be compacted again into one table.

The following diagram shows the progression through the compaction process:

Compacted into one 55Table

*

[[Mg

Compacted into one 35Table

*

1 e

With size-tiered compaction, similarly sized tables are compacted into larger tables once a
certain number are accumulated.

Each stage results in smaller tables being combined into larger ones, such that ultimately
after multiple compactions, the resulting SSTable distribution will resemble the following
chart:

www.it-ebooks.info

http://www.it-ebooks.info/

This represents the final distribution using size-tiered compaction after multiple passes.

Size-tiered compaction has some disadvantages, which may or may not be important for
your use case:

e It can require a lot of extra disk space, as much as twice the used disk space if there
are no deletes or updates. This is because the tables are copied during compaction, so
the data will be duplicated while the process is running. This is especially important
for operations because it means you must have as much free space as your largest
SSTables or they won’t be able to compact.

e A row can exist in multiple SSTables, which can result in a degradation of read
performance. This is especially true if you perform many updates or deletes.

If you have very write-heavy workloads or your writes are generally immutable, size-
tiered compaction can be a good strategy. Otherwise, you should probably choose leveled
compaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Leveled compaction

Introduced in version 1.0, leveled compaction attempts to create SSTables that are fixed in
size and then grouped into levels based on their size, with each level being ten times the
size of the previous level. A key trait of leveled compaction is that within a level there are
no overlapping tables. This minimizes the number of files that need to be checked in a
given level, because a partition can only exist in at most one (and most likely zero)
SSTable per level.

The algorithm is straightforward. New SSTables are placed in the first level, called LO,
after which they are immediately compacted with the overlapping tables in the next level,
L1. As L1 becomes filled, extra tables are moved to L2, and so on.

This process introduces several improvements over size-tiered compaction for workloads
involving lots of reads or updates:

e [t uses much less space than size-tiered compaction, reducing the worst case to
around ten times the size of the SSTable being compacted. Since SSTables are much
smaller using this strategy, this amounts to a reduction in space complexity.

e Much less space is wasted by old rows, at most 10 percent.

¢ Read performance is often improved, as 90 percent of all reads will require a lookup
in only a single SSTable.

Since compaction plays such a critical role in reducing disk usage and providing optimal
read performance, it is important to choose the right strategy for your workload. As the
compaction process can be intensive, you can choose to throttle it using the
compaction_throughput_mb_per_sec setting in cassandra.yaml. The default is 16
MBps, which may be sufficient for many workloads. As with any tuning, you should
measure the impact of compaction prior to changing this setting.

Tip
Starting in version 2.0, the leveled compaction strategy has introduced a hybrid approach,

where the process switches to size-tiered compaction when Cassandra is unable to keep up
with the load. The max_threshold property determines when this occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

Date-tiered compaction

Starting in versions 2.0.11 and 2.1.1, you can make use of a new date-tiered compaction
strategy, which groups data into SSTables based on the write time. This can be helpful for
time-series models where the most frequent query patterns involve reading the most recent
data. If you use TTLs, Cassandra can group data expiring at the same time into the same
SSTables, which allows it to simply remove the table without having to run compaction.

Now that you understand the high-level structure of Cassandra’s storage engine, the next
step is to examine how various data models translate to the underlying storage layer. These
concepts will help you design models that take full advantage of Cassandra’s unique
characteristics.

www.it-ebooks.info

http://www.it-ebooks.info/

CQL under the hood

At this point, most users should be aware that CQL has replaced Thrift as the standard
(and therefore recommended) interface to work with Cassandra. However, it remains
largely misunderstood, as its resemblance to common SQL has left both Thrift veterans
and Cassandra newcomers confused about how it translates to the underlying storage
layer. This fog must be lifted if you hope to create data models that scale, perform, and
ensure availability.

As we begin this section, it is important to understand that the CQL data representation
does not always match the underlying storage structure. This can be challenging for those
accustomed to Thrift-based operations, as those were performed directly against the
storage layer. However, CQL introduces an abstraction on top of the storage rows and only
maps directly in the simplest of schemas.

Tip
If you want to be successful at modeling and querying data in Cassandra, keep in mind
that while CQL improves the learning curve, it is not SQL. You must understand what’s

happening under the covers, or you will end up with data models that are poorly suited to
Cassandra. As we’ll discuss in the next chapter, indices are rarely the answer.

So let’s pull back the curtain and look at what our CQL statements translate to at the
storage layer, starting with a simple table.

www.it-ebooks.info

http://www.it-ebooks.info/

Single primary key

The first model we will examine is a straightforward table, which we’ll call books with a
single primary key, title:
CREATE TABLE books (
title text,
author text,
year int,
PRIMARY KEY (title)
);

We can then insert some data, as follows:

INSERT INTO books (title, author, year)

VALUES (‘Patriot Games’, ‘Tom Clancy’, 1987);
INSERT INTO books (title, author, year)

VALUES (‘Without Remorse’, ‘Tom Clancy’, 1993);

Finally, we can read our newly inserted rows:
SELECT * FROM books;

title | author | year
——— I

Without Remorse | Tom Clancy | 1993
Patriot Games | Tom Clancy | 1987

What we’ve done so far looks a lot like ANSI SQL, and in fact, these statements would
have been valid when run against most modern relational systems. But we know that
something very different is happening under the hood.

To see what this looks like at the storage layer, we can use the old command-line interface,
cassandra-cli, which allows us to interact directly with storage rows. This CLI is
deprecated and will likely disappear in the 3.0 release, but for now we can use it to inspect
the books table we created using CQL. Listing the contents of our table produces the
following output:

RowKey: Without Remorse

=> (name=, value=, timestamp=1393102991499000)

=> (name=author, value=Tom Clancy, timestamp=1393102991499000)
=> (name=year, value=1993, timestamp=1393102991499000)

RowKey: Patriot Games

=> (name=, value=, timestamp=1393102991499100)

=> (name=author, value=Tom Clancy, timestamp=1393102991499100)
=> (name=year, value=1987, timestamp=1393102991499100)

As you can see, this is nearly a direct mapping to the CQL rows, except that we have an
empty column at the beginning of each row (which is not a mistake; it is used internally by
Cassandra).

Let’s point out a couple of important features of this data. First, you will recall from
Chapter 2, Data Distribution, that the row key is distributed randomly using a hash
algorithm, so the results are returned in no particular order. By contrast, columns are
stored in sorted order by name, using the natural ordering of the type. In this case, author
comes before year lexicographically, so it appears first in the list. These are critical points,

www.it-ebooks.info

http://www.it-ebooks.info/

as they are central to effective data modeling.

www.it-ebooks.info

http://www.it-ebooks.info/

Compound keys

Now let’s look at a slightly more complex example, one which uses a compound key. In
this case, we’ll create a new table, authors, with a compound key using name, year, and
title:

CREATE TABLE authors (
name text,
year int,
title text,
isbn text,
publisher text,
PRIMARY KEY (name, year, title)

);

This is what our data looks like after inserting two CQL rows:

name | year | title | isbn | publisher
—_———te S R — E —

Tom Clancy | 1987 | Patriot Games | 0-399-13241-4 | Putnam
Tom Clancy | 1993 | wWithout Remorse | 0-399-13825-0 | Putnam

This is where CQL can begin to cause confusion for those who are unfamiliar with what’s
happening at the storage layer. To make sense of this, it’s important to understand the
difference between partition keys and clustering columns.

Partition keys

When declaring a primary key, the first field in the list is always the partition key. This
translates directly to the storage row key, which is randomly distributed in the cluster via
the hash algorithm. In general, you must provide the partition key when issuing queries, so
that Cassandra will know which nodes contain the requested data.

Clustering columns

The remaining fields in the primary key declaration are called clustering columns, and
these determine the ordering of the data on disk. However, they are not part of the
partition key, so they do not help determine the nodes on which the data will reside, but
they play a key role in determining the kinds of queries you can run against your data as
we will see in the remainder of this section.

Thus, the breakdown of the fields in the primary key is as follows:

PRIMARY KEY (partition_key, clusteringl, clustering2)

Now that you know the difference, it’s time to see what our authors table looks like in its
storage layer representation (with the timestamp and internal columns omitted for clarity):
RowKey: Tom Clancy

=> (name=1987:Patriot Games:ISBN, value=0-399-13241-4)

=> (name=1987:Patriot Games:publisher, value=Putnam)

=> (name=1993:Without Remorse:ISBN, value=0-399-13825-0)
=> (name=1993:Without Remorse:publisher, value=Putnam)

You will note that our two CQL rows translated to a single storage row, because both of
our inserts used the same partition key. Perhaps, what’s more interesting is the location of

www.it-ebooks.info

http://www.it-ebooks.info/

our year and title column values. They are stored as parts of the column name, rather
than column values!

Those who are experienced with Thrift-based data models will recognize this structure,
which is referred to as composite columns. You can also observe that the rows are sorted
first by year, then by title, which is the way we specified them in our primary key
declaration. It is also possible to reverse the stored sort order by adding the wITH
CLUSTERING ORDER BY clause, as follows:

CREATE TABLE authors (
name text,
year int,
title text,
isbn text,
publisher text,
PRIMARY KEY (name, year, title)
) WITH CLUSTERING ORDER BY (year DESC);

Then, when selecting our rows, we can see that the ordering starts with the latest year and
ends with the earliest:

name | year | title | isbn | publisher
_——t S E —

Tom Clancy | 1993 | Without Remorse | 0-399-13825-0 | Putnam
Tom Clancy | 1987 | Patriot Games | 0-399-13241-4 | Putnam

While this may seem to be a trivial point, it can matter a great deal depending on the types
of queries you intend to run on your data. We will examine these implications later in this
chapter when we discuss queries.

Composite partition keys

In the previous examples, we demonstrated the use of a single partition key with multiple
clustering columns. However, it’s also possible to create a multipart (or composite)
partition key. The most common reason for doing this is to improve data distribution
characteristics. A prime example of this is the use of time buckets as keys when modeling
time-series data. We will cover this in detail in the time-series section of this chapter.

For now, let’s see what it looks like to create a composite partition key:

CREATE TABLE authors (
name text,
year int,
title text,
isbn text,
publisher text,
PRIMARY KEY ((name, year), title)

),

The difference, in case it’s not obvious, is the addition of parentheses around the name and
year columns, which specifies that these two columns should form the composite partition
key. This leaves title as the only remaining clustering column.

At the storage layer, this has the effect of moving the year from a component of the
column name to a component of the row key, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

RowKey: Tom Clancy:1993

=> (name=Without Remorse:isbn, value=0-399-13241-4)

=> (name=Without Remorse:publisher, value=5075746e616d)
RowKey: Tom Clancy:1987

=> (name=Patriot Games:isbn, value=0-399-13825-0)

=> (name=Patriot Games:publisher, value=5075746e616d

www.it-ebooks.info

http://www.it-ebooks.info/

The importance of the storage model

You may be wondering why it matters how the data is stored internally. In fact, it matters a
great deal for several important reasons:

e Your queries must respect the underlying storage. Cassandra doesn’t allow ad hoc
queries of the sort that you can perform using SQL on a relational system. If you
don’t understand how the data is stored, at best you will be constantly frustrated by
the error messages you receive when you try to query your data, and at worst you will
suffer poor performance.

¢ You must choose your partition key carefully because it must be known at query
time, and must also distribute well across the cluster. Make sure you avoid models
where even a small number of keys will contain huge numbers of columns as this will
impact data distribution.

e Because of its log-structured storage, Cassandra handles range queries very well. A
range query simply means that you select a range of columns for a given key, in the
order they are stored.

¢ You have to carefully order your clustering columns because the order affects the sort
order of your data on disk and therefore determines the kinds of queries you can
perform.

Proper data modeling in Cassandra requires you to structure your data in terms of your
queries. This is backward compared to the approach taken in most relational models,
where normalization is typically the objective. With Cassandra, you must consider your
queries first.

With these principles in mind, let’s examine what happens when you run different kinds of
queries, so you can better understand how to structure your data.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding queries

In order to make sense of the various types of queries, we will start with a common data
model to be used across the following examples. For this data model, we will return to the
authors table, with name as the partition key, followed by year and title as clustering
columns. We’ll also sort the year in descending order. This table can be created as
follows:

CREATE TABLE authors (
name text,
year int,
title text,
isbn text,
publisher text,
PRIMARY KEY (name, year, title)
) WITH CLUSTERING ORDER BY (year DESC);

Also, for the purpose of these examples, we will assume a replication factor of three and
consistency level of QUORUM.

www.it-ebooks.info

http://www.it-ebooks.info/

Query by key
We’ll start with a basic query by key:
SELECT * FROM authors WHERE name = ‘Tom Clancy’;

For this simple select, the query makes the request to the coordinator node, which in this
case owns a replica for our key. The coordinator then retrieves the row from another
replica node to satisfy the quorum. Thus, we need a total of two nodes to satisfy the query.

Coordinator retrieves one
additional replica to satisfy RF

SELECT *
FROM authors
WHERE name = ‘Tom Clancy'’

A simple query by key requires two nodes to satisfy a QUORUM read. At the storage layer,
this query first locates the partition key, and then scans all the columns in the natural sort
order of the column, as shown in the following screenshot:

RowKey: Tom Clancy

=> (name=1996 : Executive Orders : publisher, value=Putnam)

=> (name=1996 : Executive Orders : ISBN, value=0-399-13825-0)
==> (name=1994 : Debt of Honor : publisher, value=Putnham)

=> (name=1994 : Debt of Honor : ISBN, value=0-399-13826-1)

=> (name=1993 : Without Remorse : publisher, value=Putnam)

== (name=1993 : Without Remorse : ISBN, value=0-399-13825-0)
== (name=1991 : The Sum of All Fears : publisher, value=Putnam)

== (hame=1991 : The Sum of All Fears : ISBN, value=0-399-13241-6)

== (name=1987 : Patriot Games : publisher, value=Putnam)
== (name=1987 : Patriot Games : ISBN, value=0-399-13241-4)

W

So even though this appears to be a simple query by key, at the storage layer it actually
translates to a range query.

www.it-ebooks.info

http://www.it-ebooks.info/

Range queries

If this basic query results in a range query, let’s see what happens when we specifically
request a range:

SELECT * FROM authors WHERE name = ‘Tom Clancy’ AND year >= 1993;

In this case, we’re still selecting a single partition, so the query must only check with two

nodes as in the previous example. The difference is that in this case, Cassandra simply
scans the columns until it finds one that fails the query predicate.

RowKey: Tom Clancy
== (name=1996 : Executive Orders : publisher, value=Putnam)
=> (name=1996 : Executive Orders : ISBN, value=0-399-13825-0)
== (name=1994 : Debt of Honor : publisher, value=Putnam)
== (name=1994 : Debt of Honor : ISBN, value=0-399-13826-1)
=> (name=1993 : Without Remorse : publisher, value=Putnam)
== (name=1993 : Without Remorse : ISBN, value=0-399-13825-0)
== (name=1991 : The Sum of All Fears : publisher, value=Putnam)
¥ => (name=1991 : The Sum of All Fears : ISBN, value=0-399-13241-6)

e

== (name=1987 : Patriot Games : publisher, value=Putnam)
== (name=1987 : Patriot Games : ISEN, value=0-399-13241-4)

Once it finds the year 1991, Cassandra knows there are no more records to scan.
Therefore, this query is efficient because it must only read the required number of
columns plus one.

To recap, there are three key points you should take from this discussion:

e Sequential queries are fast because they take advantage of Cassandra’s natural sort
order at the storage layer.

¢ Queries by key and the combination of key plus clustering column are sequential at
the storage layer, which of course means they are optimal.

e Write your data the way you intend to read it. Or, put another way, model your data in
terms of your queries, not the other way around. Following this rule will help you
avoid the most common data modeling pitfalls that plague those who are
transitioning from a relational database.

Now that we’ve covered the basics of how to build data models that make optimal use of
the storage layer, let’s look at one of Cassandra’s newer features: collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Denormalizing with collections

If you recall, earlier in this chapter we stated that you must write your data the way you
intend to read it. Collections can enable us to accomplish this goal by allowing us to
denormalize our data.

If you come from a relational background, this can initially be difficult to grasp. But it is
extremely important, as normalized models tend to force applications to produce client-
side joins. Using the authors table as an example, let’s consider how we would model this
in a normalized database.

We would of course start with an authors table, and the one-to-many relationship between
authors and books would be modeled with a second table. Each table would have an ID,
and the books table would have an authorID as a foreign key. The result would be similar
to the following MySQL tables:
CREATE TABLE authors (

authorID int,

name varchar(50),
PRIMARY KEY (authorID)

)

CREATE TABLE books (
bookID int,
authorID int,
name varchar(100),
year int,
INDEX auth_ind (authorID),
FOREIGN KEY (authorID) REFERENCES authors(authorID)

)

In a relational database, we can execute a query joining these two tables together, which is
a common operation. However, imagine what would happen if we emulated this model in

Cassandra. In order to retrieve a list of books and the associated author, we would have to

request each book, then author separately, resulting a query for each book plus the one for
the author. This query would likely require many nodes to satisfy.

Even worse, there is no way to retrieve a list of books for a given author. This is because
this model would not allow us to query for books by authorIb. We need a saner model,
and collections can help us solve this, as we did with our earlier example. An authors
table with a collection of books, as in our earlier examples, gives us the ability to perform
a single query to retrieve everything we need.

In order to be able to read your data by partition key, and in stored sort order, it is often
necessary to write data in more than one way, for example, if you need to query both
books for an author and an author for a book, you will need to write this data in two tables.

While it might be tempting to use secondary indices as a means of avoiding denormalizing
your data, this is rarely a sound strategy. For more information on why this is the case, see
the next chapter on antipatterns, where we cover secondary indices in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

How collections are stored

The introduction of collections to CQL addresses some of the concerns that frequently
arose regarding Cassandra’s primitive data model. They add richer capabilities that give
developers more flexibility when modeling certain types of data.

Cassandra supports three collection types: sets, lists, and maps. In this section, we will
examine each of these and take a look at how they’re stored under the hood. But first, it’s
important to understand some basic rules regarding collections:

The size of each item in a collection must not be more than 64 KB
A maximum of 64,000 items may be stored in a single collection
Querying a collection always returns the entire collection
Collections are best used for relatively small, bounded datasets

With those rules in mind, we can examine each type of collection in detail, starting with
sets.

www.it-ebooks.info

http://www.it-ebooks.info/

Sets

A set in CQL is very similar to a set in your favorite programming language. It is a unique
collection of items. This means that it does not allow duplicates. In most languages sets
have no specific ordering; Cassandra, however, stores them in their natural sort order, as
you might expect.

Here is an example of a table of authors that contains a set of books:

CREATE TABLE authors (
name text,
books set<text>,
PRIMARY KEY (name)

),
We can then insert some values as follows:

INSERT INTO authors (name, books)
VALUES (‘Tom Clancy’, {‘Without Remorse’, ‘Patriot Games'’});

UPDATE authors
SET books = books + {‘Red Storm Rising’}
WHERE name = ‘Tom Clancy’;

Cassandra also supports removing items from a set using the UPDATE statement:

UPDATE authors
SET books = books - {‘Red Storm Rising’}
WHERE name = ‘Tom Clancy’;

At the storage layer, set values are stored as column names with the values left blank. This
guarantees uniqueness as any attempt to rewrite the same item would simply result in
overwriting the old column name. The storage representation of the books set would look
like the following screenshot:

RowKey: Tom Clancy
=> (name=books : 50617472696f742047616d6573, value=)
=> (name=books : 576974686f75742052656d6f727365, value=)

o R

set name item (in byte representation)

You can see that the name of the set is stored as the first component of the composite
column name and the item as the second component. Unfortunately, Cassandra does not
support a contains operation, so you must retrieve the entire set and perform this on the
client. However, sets can be quite useful as a container for unique items in a variety of
data models.

www.it-ebooks.info

http://www.it-ebooks.info/

Lists

At the CQL level, lists look very similar to sets. In the following table, we substitute the
set of books from the previous example for a list:
CREATE TABLE authors (

name text,

books list<text>,
PRIMARY KEY (name)

);

Insertion is also similar to the set syntax, except that the curly braces are traded for
brackets:

INSERT INTO authors (name, books)
VALUES (‘Tom Clancy’, [‘Without Remorse’, ‘Patriot Games’]);

Since lists are ordered, CQL supports prepend and append operations that involve simply
placing the item as either the first (prepend) or second (append) operand:
UPDATE authors

SET books = books + [‘Red Storm Rising’]
WHERE name = ‘Tom Clancy’;

UPDATE authors
SET books = [‘Red Storm Rising’] + books
WHERE name = ‘Tom Clancy’;

To delete an item, you can refer to it by name:

UPDATE authors
SET books = books - [‘Red Storm Rising’]
WHERE name = ‘Tom Clancy’;

Unlike the set, the list structure at the storage layer places the list item in the column
value, and the column name instead contains a UUID for ordering purposes. Here’s what it
looks like:

RowKey: Tom Clancy
=> (name=books:d36de8b0305011e4a0dddbbeade718be, value=576974686f)
=> (name=books:d36de8b1305011e4a0dddbbeade718be, value=506174726)

www.it-ebooks.info

http://www.it-ebooks.info/

Maps

Lastly, maps are a highly useful structure, as they can offer similar flexibility to the old
dynamic column names that many grew accustomed to in the Thrift days, as long as the
total number of columns is kept to a reasonable number. Just remember that many of the
models that used dynamic columns in Thrift (such as time-series data) should make use of
clustering columns. On the other hand, maps can be helpful for cases where some fields
may be unknown up front. For example, we can use a map to store not only the book title,
but the year as well. Here is what that would look like:
CREATE TABLE authors (

name text,

books map<text, int>,
PRIMARY KEY (name)

);
To insert or update an entire map, use the following syntax:

INSERT INTO authors (name, books)
VALUES (‘Tom Clancy’,
{‘Without Remorse’:1993, ‘Patriot Games’:1987});

You can also insert or update a single key using an array-like syntax, as follows:

UPDATE authors
SET books[‘Red Storm Rising’] = 1986
WHERE name = ‘Tom Clancy’;

Specific values can also be removed by using a DELETE statement:

DELETE books[‘Red Storm Rising’]
FROM authors WHERE name = ‘Tom Clancy’;

At the storage layer, maps look very similar to lists, except the ordering ID is replaced by
the map key:
RowKey: Tom Clancy

=> (name=books:50617472696f742047616d6573, value=000007c3)
=> (name=books:576974686f75742052656d61727365, value=000007c9)

As you can see, all these collection types make use of composite columns in the same
manner as clustering columns. However, keep in mind that there is currently no range
query functionality for collections, so in many cases clustering columns will be a better
choice.

At this point, you should have a good understanding of the building blocks for a solid
Cassandra data model. While every use case is different, there are some general themes we
can examine to help you think through your own unique model. So now let’s have a look
at some of these common patterns, beginning with what’s likely the most common use of
Cassandra: time-series data.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with time-series data

For most of the last couple decades, data modeling has centered around the relationships
among various entities. A person has one account, but one or more phone numbers. That
same person has one or more addresses (such as home and work). A person can belong to
one or more groups, which can in turn contain many people.

We modeled these relationships using foreign keys and join tables, and we built queries by
joining multiple tables together to produce the desired result. However, in recent years, we
introduced another dimension to our data: time. Now we’re interested in more than just
how entities are connected, but how their relationships change over time. For example,
while we previously were concerned only about a set of fixed locations associated with a
person, we now have mobile phones with GPS radios in pockets and purses all over the
world. This makes it possible to produce a timeline of a person’s movements by marrying
time and location.

Introducing time into the equation causes significant challenges for a traditional relational
database because it dramatically increases the volume and velocity of data, putting a strain
on the monolithic model. Fortunately, Cassandra is perfectly suited for this sort of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for immutability

An interesting and important difference between modeling relationships versus modeling
time-series data is that relational data tends to be mutable whereas time-series data is
generally immutable. Mutable data is unstable because it may change at any moment. This
makes it more complicated to guarantee we have the most up-to-date version. Immutable
data, by contrast, is stable, which means we can avoid many of the complexities associated
with data that can change over time.

Tip
If you find yourself struggling with modeling a particular problem in Cassandra, consider

reimagining the model as immutable time-series data. This strategy often results in an
obvious solution to what appeared to be an intractable problem.

Immutability is a desirable property in a Cassandra data model as updates and deletes can
add complexity related to consistency and performance (remember that SSTables are
immutable). Often the easiest way to guarantee immutability is to simply add a time
component to your data model. Let’s take a look at how we can do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling sensor data

We’ll start with a ubiquitous use case: sensor data. Sensor readings are inherently time-
oriented, and our world is filled with all manner of sensors. As with any Cassandra data
model, the first order of business is to examine our intended query patterns.

Queries

For this use case, given a specific sensor, we want to be able to answer two primary
questions in real time:

e What is the current sensor reading?
e What were the readings between time x and time y?

To answer the first question, our model must allow us to retrieve only the latest value, so
we know we must order the data by a timestamp. Since the data will be ordered by time,
we should also be able to support the second query, as it involves selecting a range of
times. As you learned earlier in this chapter, Cassandra does well with ranges based on
sort order.

Time-based ordering

We have established that we must know the partition key at query time, and that the key
must distribute well across the cluster. Since we’re going to look up the data by sensor ID,
one option might be to use this ID as the partition key. We can then store the timestamp as
a clustering column in order to get time-based ordering. Here’s what that model would
look like:

CREATE TABLE sensor_readings (
sensorID uuid,
timestamp int,
reading decimal,
PRIMARY KEY (sensorID, timestamp)
) WITH CLUSTERING ORDER BY (timestamp DESC);

If you consider our earlier discussion about how this type of model translates to the
storage layer, it should be clear that this could be problematic. If we presume that sensors
will continue to collect data indefinitely, the result of this data model will be unbounded
row growth. This is because each new CQL row for a given sensor is actually adding
columns to the same storage row. Eventually, this model will result in an unsustainable
number of columns in each row with no easy way to archive off old data. It would be
tempting to resolve this by simply deleting a range of values at the end of the partition, but
this is actually an antipattern. See the next chapter for more details on why this is a bad
idea.

Using a sentinel value

There is a simple way to address this. We can add a time bucket to the partition key, such
that the key is comprised of both the sensorID and the time bucket, where the time bucket
is a timestamp rounded to some interval. This gives us a known time-based value to use as
a means of further partitioning our data, and also allows us to easily find keys that can be

www.it-ebooks.info

http://www.it-ebooks.info/

safely archived. The time bucket is an example of a sentinel, and is a useful construct in a
number of models where you need better distribution than your natural key provides.

With this in mind, here is a modification of the sensor_readings table:

CREATE TABLE sensor_readings (

sensorID uuid,

time_bucket int,

timestamp int,

reading decimal,

PRIMARY KEY ((sensorID, time_bucket), timestamp)
) WITH CLUSTERING ORDER BY (timestamp DESC);

When choosing values for your time buckets, a rule of thumb is to select an interval that
allows you to perform the bulk of your queries using only two buckets. The more buckets
you query, the more nodes will be involved to produce your result. For more information
on this, refer to Chapter 8, Antipatterns.

Satisfying our queries

So the question remains: how does this model allow us to perform the two queries we said
were required for our use case? Well, we have seen that we can ask for the data for a
specific sensor as the time bucket can be computed at query time. To do this, we compute
a time_bucket value that corresponds to the current timestamp rounded down to the start
of the time interval.

We can then obtain the latest reading as follows:

SELECT * FROM sensor_readings
WHERE sensorID = 53755080-4676-11e4-916Cc-0800200c9a66
AND time_bucket = 1411840800 LIMIT 1;

For the second query, we want a range from time x to time y for a given sensor. Since our
timestamp is a clustering column, this is also possible:

SELECT * FROM sensor_readings

WHERE sensorID = 53755080-4676-11e4-916Cc-0800200c9a66

AND time_bucket IN (1411840800, 1411844400)

AND timestamp >= 1411841700
AND timestamp <= 1411845300;

Thus, we have answered both our queries with a model that scales and performs well, and
that doesn’t require a large number of nodes to participate. This time-series model should
form the basis of many of your use cases, whether they initially appear to be time-series
data or not.

When time is all that matters

In the previous example, we were looking for time-ordered data for a given object; in this
case a sensor. However, there are cases when what we really need is to simply get a list of
the latest readings from all sensors. We need a different model to address this because our
previous model required that we know which sensor we were querying.

It would be tempting to simply remove sensorID from the primary key, using only
time_bucket as the partition key. The problem with this strategy is that all writes and
most reads would be against a single partition key. This would create a single hotspot that

www.it-ebooks.info

http://www.it-ebooks.info/

would move around the cluster as the interval changed.

As aresult, it is imperative that you determine some sentinel value that can be used in
place of the sensor1D, and that is not time-oriented, for example, sensor type or sensorID
% x (where x is some predefined value) could be a good value. In practice, I have found
that this use case is rare, or that the real use case requires a queue. Using Cassandra, or
most databases for that matter, a queue is an antipattern. You can read more about this and
other antipatterns in the next chapter.

Understanding how to model time-series data is an essential skill that you will employ
over and over again as you work with various types of data in Cassandra. When in doubt
about how to model a given use case, start by viewing it as time-series data. You will find
that the model fits more often than not.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with geospatial data

Another very common use of Cassandra is to store and query geospatial data. Typically,
the objective with this type of data is to find points near a given location. The challenge is
to find a key that can be used to narrow down the potential list of locations, and to avoid
querying many keys at once.

While there is more than one possible data structure that can be used for this purpose,
geohashing has a number of benefits that make it worth considering. A geohash is a base
32 representation of a geographic area, where each additional digit represents greater
precision. The property of geohashes that makes them particularly suited for geospatial
searches is that adding a level of precision to a given geohash results in an area contained
within the lower-precision value.

We can visualize this using the following diagram, which shows a geohash, dnhe3, with a
number of more precise geohashes contained within it. All of the smaller geohashes begin
with the dnhe3 prefix:

dnhO3p dnhO3r dnh03x

dnhO3n dnh03q dnhO3w

dnh03] dnhO3m dnhO3t

dnh03

Essentially, geohashes represent the globe as a binary search tree, starting with each
hemisphere as the first node. One benefit of using this method over other data structures is
that there is a single scheme that is universally recognized, similar to using latitude and
longitude to represent a point.

www.it-ebooks.info

http://www.it-ebooks.info/

To represent searchable data, we can use a low-precision geohash as the partition key, and
then the full geohash can be stored as a clustering column. The chosen precision will
determine how many keys must be queried to produce results to fill the search space. So
our data model will be as follows:
CREATE TABLE geo_search (

geo_key text,

geohash text,

place_name text,
PRIMARY KEY (geo_key, geohash)

);

Let’s assume we want to store locations with a range of approximately 2.5 km. This
translates to a geo_key precision of five digits. Using this as our model, an insert would
look like:

INSERT INTO geo_search (geo_key, geohash, place_name)
VALUES (‘dnh@3’, ‘dnh@3pt4’, ‘Green Grocery Store’);

If necessary, you can also insert values with keys at multiple precision levels, enabling
either coarse or fine-grained queries. To query for points near a location, you can simply
compute the geohash of the location, then truncate it to the precision level of the key.
Once you have this value, a simple select produces the desired results; for example, to find
points near Green Grocery Store, use the following query:

SELECT * FROM geo_search WHERE geo_key = ‘dnh@3’;

Note that dnhe3 is simply the full geohash of Green Grocery Store truncated down to five
digits to match the precision of the key. Depending on the search area, it may be necessary
to request more than one key. This strategy allows you to model and query geospatial data
with minimal cost and overhead across a large Cassandra cluster.

You can also easily imagine combining geohashing with time-series data to keep track of
location changes over time. This can be accomplished by creating a partition key
consisting of the time bucket and low-precision geohash. This model allows you to query
a range of time for a given location.

While your data model may vary from the two approaches covered here, you will likely
find that querying by time and space will be common use cases. This section has prepared
you to tackle those data models with confidence.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we laid a general foundation for data modeling that should give you the
tools you need to correctly reason about your specific use cases. We covered a lot of
ground, including Cassandra’s storage engine and how your CQL gets translated to that
underlying model, as well as a guide for modeling time-series and geospatial data.

But there are also a number of mistakes people make when modeling data for Cassandra
and we will talk about these in the next chapter. Be sure to read on so you can avoid these
common pitfalls.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Antipatterns

When working with a new or unfamiliar technology, we might find ourselves struggling to
apply it to the problem at hand. This is why it is a common practice in software
engineering to seek out established design patterns. Such patterns provide guide rails to
keep us headed in the right direction, and therefore avoid the traps that await those who try
to figure it out on their own.

Design patterns are established through the (often painful) experience of early technology
adopters who have blazed the trails and provided us with nicely groomed paths. However,
with any given technology, we find some commonly used trails lead to dangers in the
woods. In software design, we call these antipatterns.

In the previous chapter, we focused on how to model your data correctly to take advantage
of Cassandra’s natural sorting and distribution properties. This chapter, by contrast, will
take the opposite approach. We will expose many of the well-worn but dangerous paths so
that you can avoid these common pitfalls.

Specifically, we will deal with the following topics:

Multikey queries
Secondary indices
Distributed joins

Deletes (and tombstones)
Unbounded row growth

Those who have been around the block with Cassandra can likely point to a time when
they were lured unsuspectingly into at least one of the traps in the previous list. For the
benefit of everyone else, let’s fully explore each of these topics to help others steer clear of
the dangers.

In many ways, this chapter is an extension of the previous chapter as we will be using the
same terminology to discuss data models and their representation at the storage layer. If
you are unfamiliar with these concepts, it would be advisable to review the previous
chapter to avoid confusion regarding the terminology.

One common theme with most of the antipatterns we will discuss is that they often appear
to work fine on a smaller scale. But once you grow your dataset or cluster size, you can
end up with increased latencies, failing queries, and availability problems. Some of these
patterns can be used very carefully under specific circumstances, but you must clearly
understand the limitations.

The first pattern we will examine involves a query pattern that results in some subtle
consequences.

www.it-ebooks.info

http://www.it-ebooks.info/

Multikey queries

You will recall from the previous chapter that Cassandra is most efficient when querying a
range of columns on disk. All our examples assumed a replication factor of three with
QUORUM reads and writes. We will follow the same conventions with the examples in this
chapter.

With this in mind, let’s make use of the authors schema we introduced in the previous
chapter:
CREATE TABLE authors (

name text,

year int,

title text,

publisher text,

isbn text,
PRIMARY KEY (name, year, title)

);

Using this schema, let’s say we want to retrieve a number of books from a list of known
authors. Obviously, we can write a separate query for each author, but Cassandra also
provides a familiar SQL-style syntax to specify multiple partition keys using the IN
clause:

SELECT * FROM authors

WHERE name IN (

‘Tom Clancy’,

‘Malcolm Gladwell’,
‘Dean Koontz’

)i

The question is how will Cassandra fulfill this request? As we have discussed numerous
times throughout this book, the system will hash the partition key, name in this case, and
assign replicas to nodes based on the hash. Using the three authors in our query as
examples, we will end up with a distribution resembling the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

The distribution of keys across a six-node cluster using a replication factor of three

The important characteristic to note in this distribution is that the keys are dispersed
randomly throughout the cluster. If we also remember that a QUORUM read requires
consulting with at least two out of three replicas, it is easy to see how this query will result
in consulting many nodes. In the following diagram, our client makes a request to one of
the nodes, which will act as a coordinator. The coordinator must then make requests to at
least two replicas for each key in the query:

Coordinator must request
two replicas for each key

SELECT * FROM authors
WHERE name IN |
‘Tom Clancy'
‘Malcolm Gladwell’,
‘Dean EKoontz’

et

The IN clause in the query (in the preceding diagram) results in consulting a total of four
nodes to satisfy the query.

www.it-ebooks.info

http://www.it-ebooks.info/

The end result is that we required four out of six nodes to fulfill this query! If any one of
these calls fails, the entire query will fail. It is easy to see how a query with many keys can
require participation from every node in the cluster.

When using the IN clause, it’s best to keep the number of keys small. There are valid use
cases for this clause, such as querying across time buckets for time-series models, but in
such cases you should try to size your buckets such that you only need, at most, two in
order to fulfill the request.

In fact, it is often advisable to issue multiple queries in parallel as opposed to utilizing the
IN clause. While the IN clause may save you from multiple network requests to Cassandra,
the coordinator must do more work. You can often reduce overall latency and workload
with several token aware queries (see Chapter 6, High Availability Features in the Native
Java Client, for more details on this concept), as you’ll be dealing directly with the nodes
that contain the data.

There is an additional benefit to running separate queries rather than a single multikey
query. When using the IN clause, if any one key times out you will have to retry the entire
query. On the other hand, using separate queries allows you to retry only the query that
timed out.

www.it-ebooks.info

http://www.it-ebooks.info/

Secondary indices

If range queries can be considered optimal for Cassandra’s storage engine, queries based
on a secondary index fall at the other end of the spectrum. Secondary indices have been
part of Cassandra since the 0.7 release, and they are certainly an alluring feature. In fact,
for those who are accustomed to modeling data in relational databases, creating an index is
often a go-to strategy to achieve better query performance. However, as with most aspects
of the transition to Cassandra, this strategy translates poorly.

To start, let’s get familiar with what secondary indices are and how they work. First off,
secondary indices are the only type of index that Cassandra will manage for you, so the
terms index and secondary index actually refer to the same mechanism. The purpose of an
index is to allow query-by-value functionality, which is not supported naturally. This
should be a clue as to the potential danger involved in relying on the index functionality.

As an example, suppose we want to be able to query authors for a given publisher. Using
our previous authors table, remember that the publisher column has no special
properties. It is a simple text column, which means that by default we cannot filter rows
based on its value. We can take a look at what happens when attempting to do so, as in the
following query:

SELECT * FROM authors
WHERE publisher = ‘Putnam’;

Running this query results in the following error message, indicating that we’re trying to
query by the value of a nonindexed column:

Bad Request: No indexed columns present in by-columns clause with Equal
operator

The obvious remedy is to simply create an index on publisher, as follows:

CREATE INDEX authors_publisher
ON authors (publisher);

Now we can filter on publisher, so our problems are solved, right? Not exactly! Let’s
look closely at what Cassandra does to make this work.

www.it-ebooks.info

http://www.it-ebooks.info/

Secondary indices under the hood

At the storage layer, a secondary index is simply another column family, where the key is
the value of the indexed column, and the columns contain the row keys of the indexed
table. This can be a bit confusing to describe, so let’s visualize it.

Imagine our authors table contains the following CQL rows:

Name Title Publisher |

1987]|Patriot Games |JPutnam

Headline |

Random House|

Tom Clancy

Cold Fire

Anne Rice 1998]{Pandora

Random House|

--“
2
=

Charles Dickens]§1838}JOliver Twist

Dean Koontz | 1991

An index on publisher would then look like this at the storage layer:

RowKey: Putnam
=> (name=Tom Clancy, value=)

RowKey: Headline

=> (name=Dean Koontz, value=)

RowKey: Random House

=> (name=Anne Rice, value=)

=> (name=Charles Dickens, value=)

So a query filtering on publisher will use the index to find each author name, then query
all the authors by key. This is similar to using the IN clause since we must query replicas
for every key with an entry in the index.

However, it’s actually even worse than the IN clause because of a very important
difference between indices and standard tables. Cassandra co-locates index entries with
their associated original table keys. In other words, you will end up with a key for Random
House in author_publishers on every node that has keys for Anne Rice or Charles
Dickens in authors.

To make this a bit clearer, the following diagram shows how our co-located authors table
and author_publisher index might be distributed across a four-node cluster:

www.it-ebooks.info

http://www.it-ebooks.info/

Node 1 Node 2
Authors

"Tom Clancy" : "Putnam”
"Anne Rice" : "Random House"
"Dean Koontz" : "Headline"

Authors

"Tom Clancy" : "Putnam”

"Charles Dickens" : "Random House"
"Anne Rice" : "Random House"

Index

"Putnam” : "Tom Clancy"
"Random House" : "Anne Rice"
"Headline" ; "Dean Koontz"

Index

"Putnam” : "Tom Clancy"
"Random House" : "Anne Rice",

"Charles Dickens"

Node 3 Node 4
Authors

"Charles Dickens" : "Random House"
"Anne Rice" : "Random House"
“Dean Koontz" : "Headline"

Authors

“Tom Clancy" : "Putnam”

"Dean Koontz" : "Headline"

"Charles Dickens" : "Random House"
Index

"Random House" ;: "Anne Rice",

"Charles Dickens"
"Headline" : "Dean Koontz"

Index

"Putnam” : "Tom Clancy"

"Headline" : "Dean Koontz"
"Random House" : "Charles Dickens"

Index entries are located on the node where the indexed key is stored

The objective of using this approach is to be able to determine which nodes own indexed
keys, as well as to obtain the keys themselves in a single request. However, the problem is

we have no idea which token ranges contain indexed keys until we ask each range. So now
we end up with the query pattern shown in the following diagram:

Coordinator must request
two replicas for each indexed value
plus two for each original table key

SELECT * FROM authors
WHERE publisher = ‘Random House';

RH = Random House indexed value
AR = Anne Rice row

CD = Charles Dickens row

A secondary index query requires consulting with all nodes in the cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Obviously, the use of secondary indices has an enormous impact on both performance and
availability since all nodes must participate in fulfilling the query. While this could be
acceptable for occasional queries, trying to do this with critical, high-volume queries will
be problematic. In a distributed system with many nodes, there is a high likelihood that at
least one node will be unable to respond. For this reason, it’s best to avoid using them in
favor of writing your own indices or choosing another data model entirely.

Tip

If you decide to use a secondary index for a use case where performance and availability
are not critical, make sure to only index on low cardinality values as high cardinality
indices do not scale well. But don’t go so low that your index is rendered useless. For

example, Booleans are bad, as are UUIDs, but birth year could be a reasonable column to
index.

Often you will find that your chosen data model does not satisfy all your queries. If this is
the case you should write your own index manually in your application. For example, to
look up authors for a publisher, instead of creating the authors_publisher index, you
could write the same data using publisher as your key:

CREATE TABLE publishers (
name text,
author text,
title text,
isbn text,
year int,
PRIMARY KEY (name, author, title)

)i

Now you will be able to query the data efficiently by using either author or publisher.
Of course you must manage the index in your application such that any time the data
changes you will have to update both. However, this is generally a much better approach
than using secondary indices for critical queries.

Interestingly, secondary indices are actually one form of a more general antipattern that’s
just as common. Let’s take a look at this concept now.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed joins

With relational databases, we write different data entities in their own tables, and then we
join them to form the desired view at query time. If we apply this idea to a database like
Cassandra, we end up with a distributed join.

New Cassandra developers, especially those who come from a relational database
background, are particularly prone to follow this pattern. In the previous chapter, we
mentioned that denormalization is key to successful data modeling in Cassandra, and our
discussion of secondary indices can help explain the reasons for this.

Note

If you find yourself querying multiple large tables, then joining them in your application
based on some shared key, you are performing a distributed join. This should almost
always be avoided in favor of a denormalized data model. The only exception is for very
small lookup tables that can fit easily in memory. Otherwise, you should always write
your data the way you intend to read it.

At this point you should be familiar enough with distributed join patterns to know why
they should be avoided, so it’s time to move on to another common source of problems in
Cassandra: deletes.

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting data

We have established that Cassandra employs a log-structured storage engine, where all
writes are immutable appends to the log. The implication is that data cannot actually be
deleted at the time a DELETE statement is issued. Cassandra solves this by writing a marker,
called a tombstone, with a timestamp greater than the previous value. This has the effect of
overwriting the previous value with an empty one, which will then be compiled in
subsequent queries for that column in the same manner as any other update. The actual
value of the tombstone is set to the time of deletion, which is used to determine when the
tombstone can be removed.

www.it-ebooks.info

http://www.it-ebooks.info/

Garbage collection

Eventually these tombstones are reconciled with earlier values as part of the compaction
process, where the earlier values are discarded. Refer to Chapter 7, Modeling for High
Availability, for more details on how compaction works. There are two possibilities for
when data can be physically deleted and tombstones collected.

If a delete occurs while the data is still in the memtable, (and therefore not yet flushed to
disk), the existing data will be immediately replaced by the tombstone. Otherwise, the
tombstone is simply written to the memtable. In either case, it will eventually get flushed
to disk, where it will continue to live until it is garbage collected.

For a tombstone to be deleted, two events must occur. First, the age of the tombstone must
exceed the value of gc_grace_seconds, as specified in cassandra.yaml. Once this time
has elapsed, the next compaction to run on the SSTable containing the tombstone will
cause it to be purged as long as the compaction includes all SSTables covered by the
tombstone.

www.it-ebooks.info

http://www.it-ebooks.info/

Resurrecting the dead

An astute observer may have noticed a potential problem with tombstones in an eventually
consistent system. Let’s assume multiple replicas exist for a given column, yet only one
has recorded the tombstone. If one of the nodes remains down past gc_grace_seconds
without a repair operation, when it finally comes back online it will still contain the old
data and be unaware of the delete. Any subsequent repair will then recreate the old data on
other nodes as if the delete had never occurred.

Tip
To ensure that deleted data never resurfaces, make sure to run repair at least once every

gc_grace_seconds, and never let a node stay down longer than this time period.

Now that you understand how Cassandra handles deletes, let’s take a look at the
operations that result in a delete. You may be surprised that there are several ways to
produce a delete, beyond the obvious DELETE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Unexpected deletes

Of course you can explicitly delete a column using the DELETE statement, but you may be
surprised that a tombstone will be generated for every affected storage layer column. To
make this clear, let’s remind ourselves about the structure of a single CQL row as
represented at the storage layer:

RowKey: Tom Clancy

=> (name=1987:Patriot Games:ISBN, value=0-399-13241-4)
=> (name=1987:Patriot Games:publisher, value=Putnam)

To this point we have been using a simplified version of the storage row representation. In
fact, there is a third column used as an internal marker, which has been omitted for clarity.
So then, let’s remove the Patriot Games entry, as follows:

DELETE FROM authors

WHERE name = ‘Tom Clancy’

AND year = 1987
AND title = ‘Patriot Games’;

Using cqlsh with tracing turned on (by setting TRACING ON in cqlsh), we then attempt to
read the newly deleted record:

SELECT * FROM authors

WHERE name = ‘Tom Clancy’

AND year = 1987
AND title = ‘Patriot Games’;

If you carefully examine the resulting trace, you will notice a line resembling the
following:

Read ©® live and 3 tombstoned cells
So what happened? Our query that returned zero records actually had to read three
tombstones to produce the results! The important point to remember is that tombstones

cover single storage layer columns, so deleting a CQL row with many columns results in
many tombstones.

www.it-ebooks.info

http://www.it-ebooks.info/

The problem with tombstones

You may be wondering why we spent so much time discussing tombstones in a chapter on
antipatterns. The previous example should provide a hint as to the reason. When a query
requires reading tombstones, Cassandra must perform many reads to return your results.

In addition, a query for a key in an SSTable that has only tombstones associated with it
will still pass through the bloom filter because the system must reconcile tombstones with
other replicas. Since the bloom filter is designed to prevent unnecessary reads for missing
data, this means Cassandra will perform extra reads after data has been deleted.

Now that you understand the basics of deletes and the problems associated with them, it’s
important to point out the other ways that deletes can be generated—sometimes in ways
you would not expect.

www.it-ebooks.info

http://www.it-ebooks.info/

Expiring columns

Cassandra offers us a handy feature for purging old data through setting an expiration
time, called a TTL, at the column level. There are many valid reasons to set TTL values,
and they can help to avoid unbounded data accumulation over time. Setting a TTL on a
column is straightforward, and can be accomplished using either an INSERT or UPDATE
statement as follows (note that TTL values are in seconds):

INSERT INTO authors (name, title, year)

VALUES (‘Tom Clancy’, ‘Patriot Games’, 1987)
USING TTL 86400;

UPDATE authors USING TTL 86400
SET publisher = ‘Putnam’

WHERE name = ‘Tom Clancy’

AND title = ‘Patriot Games’
AND year = 1987,

This can be useful when dealing with ephemeral data, but you must take care when
employing this strategy because an expired column results in a tombstone as in any other
form of delete.

TTL antipatterns

A common reason to expire columns is in the case of time-series data. Imagine we want to
display a feed of comments associated with a news article, where the newest post appears
on top. To avoid holding onto them indefinitely, we set them to expire after a few hours.

So we end up with a model that resembles the following query:

CREATE TABLE comments (

articleID uuid,

timestamp int,

username text,

comment text,

PRIMARY KEY (articleID, timestamp, username)
) WITH CLUSTERING ORDER BY (timestamp DESC);

We then insert new comments with a three-hour TTL:

INSERT INTO comments (articleID, timestamp, username, comment)
VALUES (36f08b19-fc6d-4930-81f6-6704f627ca83,

1413146590, ‘rs_atl’, ‘Nice article!’)
USING TTL 10800,

It’s important to note that this model is perfectly acceptable, so far. Where we can run into
problems is when we naively attempt to query for the latest values. It can be tempting to
assume that we can simply query everything for a given articleID, with the expectation
that old columns will simply disappear. In other words, we perform the following query:

SELECT * FROM comments
WHERE articleID = 36f08b19-fc6d-4930-81f6-6704f627ca83;

In some ways this expectation is correct. Old values will disappear from the result set, and
for a period of time this query will perform perfectly well. But gradually we will
accumulate tombstones as columns reach their expiration time, and this query requires that

www.it-ebooks.info

http://www.it-ebooks.info/

we read all columns in the storage row. Eventually, we will reach a point where Cassandra
will be reading more tombstones than real values!

The solution is simple. We must add a range filter on timestamp, which will tell Cassandra
to stop scanning columns at approximately as far back in time as the tombstones start. In

this case, we don’t want to read any columns older than three hours, so our new query
looks like this:

SELECT * FROM comments
WHERE articleID = 36f08b19-fc6d-4930-81f6-6704f627ca83
AND timestamp > [current_time - 10800];

Note that you will have to calculate the timestamp in your application, as CQL does not
currently support arithmetic operations.

To sum up, expiring columns can be highly useful as long as you use them wisely. Make
sure your usage pattern avoids reading excessive numbers of tombstones. Often you can
use range filters to accomplish this goal. Also, adding a row limit using the LIMIT clause
can help to make sure you don’t inadvertently return a large number of rows.

www.it-ebooks.info

http://www.it-ebooks.info/

When null does not mean empty

There is an even subtler (and more insidious) way to inadvertently create tombstones: by
inserting null values. Let’s take a look at how we might cause this situation unwittingly.

We know that Cassandra stores columns sparsely. This means that unspecified values
simply aren’t written. So it would seem logical that setting a column to null would result
in a missing column. In fact, writing a null is the same thing as explicitly deleting a
column, and therefore a tombstone is written for that column.

There is a simple reason why this is the case. While Cassandra supports separate INSERT
and UPDATE statements, all writes are fundamentally the same under the covers. And
because all writes are simply append operations, there is no way for the system to know
whether a previous value exists for the column. Therefore, Cassandra must actually write a
tombstone in order to guarantee any old values are deleted.

While it may seem as though this would be easy to avoid—by just not writing null values
—it is fairly easy to mistakenly allow this to happen when using prepared statements.
Imagine a data model that includes many sparsely populated columns; it is tempting to
create a single prepared statement with all potential columns and then set the unused
columns to null. It is also possible that callers of an insert method might pass in null
values. If this condition is not checked, it is easy to see how tombstones could be
accumulated without realizing this is happening.

When using prepared statements, you must prepare a separate statement for each
permutation of your query parameters; or, if this is not practical, you can create a single
INSERT or UPDATE statement for each field, then conditionally include them in a batch
when they are not null.

To wrap up our discussion of deletes, let’s look at a common antipattern involving deletes.

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra is not a queue

The idea of using a database as a durable queue is certainly not a new one. For many
years, people have been misappropriating relational databases for use as queues. On the
surface, it may seem that Cassandra would work well as a distributed durable queue as it
easily supports querying based on insertion order. Here is an example data model that
would serve this use case:
CREATE TABLE queue (

name text,

timestamp int,

item text,
PRIMARY KEY (name, timestamp)

);
We could then support an enqueue operation with a simple insert, perhaps including an
expiration time to avoid holding onto irrelevant items:

INSERT INTO queue (name, timestamp, item)
VALUES (‘to_do’, 1413146590, ‘Learn Scala’);

A dequeue operation would involve querying the first (which equates to the oldest in this
case) item, then deleting it:
SELECT * FROM queue

WHERE name = ‘to_do’
ORDER BY timestamp ASC LIMIT 1;

DELETE FROM queue
WHERE name = ‘to_do’
AND timestamp = [timestamp_of_dequeued_item];

Based on our discussion of deletes and tombstones, it should be obvious that we’ll be
creating three tombstones for every dequeue operation (one for the marker column and
one for each non-clustering column). While this may seem similar to the earlier example
where we were constantly reading and deleting comments, there is an important
distinction.

In the article comments model, we were reading from one end of the range (the latest
comments) and deleting from the other end (the earliest comments). This allowed us to
scan from the head of the range without the risk of reading any tombstones, and simply
apply a range filter to make sure we never read so far that we encountered any at the other
end. With the queue model we are doing the opposite: we are reading and deleting from
the same end of the range. The result, over time, looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

o o
» —>
Columns read Columns read
Queue on first dequeue Queue after 1 dequeue
o o
> >
Columns read Columns read
Queue after 2 dequeue Queue after 3 dequeue
B Live column Tombstone

The queue pattern results in accumulating tombstones at the head of the range

As you can see from the previous diagram, with each dequeue operation three tombstones
(the marker plus clustering columns) are added to the head of the queue. Then, when we
run a query to obtain the actual head, we must scan through all these tombstones before
reaching it. Obviously this is not a sustainable strategy, which is why the queue is an
antipattern.

Tip

When building your data models, beware of strategies that are actually queues
masquerading as something else. In general, it’s important to avoid data structures where
you must perform many deletes on a range of data you will frequently read. With large

datasets, you can end up reading more tombstones than actual values, and your application
may grind to a halt.

To sum up, remember that databases typically make poor queues. If you need a queue,
choose a system that was designed to support that use case. There are a number of

www.it-ebooks.info

http://www.it-ebooks.info/

excellent distributed queues available, so avoid the temptation to use Cassandra for this
purpose.

Also, this is a good time to offer a reminder of the advice given in the previous chapter to
write data immutably. If you avoid deletes where possible, many of the issues from this
section can be avoided naturally.

www.it-ebooks.info

http://www.it-ebooks.info/

Unbounded row growth

Now let’s take a look at the counterpoint problem to deletes, when data for a given key
grows without bounds. This is a surprisingly easy situation to get yourself into, especially
if you do not understand how Cassandra stores your data on disk. Perhaps the best antidote
to unbounded row growth is to read and understand the previous chapter, which offers the
foundational knowledge to help you avoid this scenario.

To clarify, this section is not a warning against unbounded growth of your dataset in
general. We have established that Cassandra scales linearly, so you can continue to add
data as long as you have capacity in your cluster. Instead, we are referring to a model
where a given partition key continues to accumulate columns with no end in sight. We
briefly touched on this in Chapter 7, Modeling for High Availability, but the topic deserves
a full treatment.

We can imagine a typical scenario using the sensor_readings data model described in the
previous chapter. Here is a reminder of what it looks like:
CREATE TABLE sensor_readings (

sensorID uuid,

timestamp int,

reading decimal,
PRIMARY KEY (sensorID, timestamp)

);
There are two fundamental problems with this model:

e Data will be collected for a given sensor indefinitely, and in many cases at a very
high frequency

e With sensor1ID as the partition key, the row will grow by two columns for every
reading (one marker and one reading)

It should be noted that this is not actually a problem in terms of queries, provided that they
are limited either by a row count or a reasonable range filter on timestamp. Instead, you
should recall from Chapter 2, Data Distribution, that the unit of distribution across the
cluster is the partition key, in this case sensor1ID. It is therefore possible with this model
that a single key might become so large that it could outgrow a single node.

For this reason, it is important to choose a reasonable partition key that will prevent
unbounded row growth. For time-series data, this typically means adding a time bucket to
the partition key as described in the time-series section in the previous chapter. In fact,
most models with the potential to suffer from this problem will be time-based, so the
bucketing solution is typically the best strategy to avoid this situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we discussed some common data modeling patterns to avoid. However, it
would be impossible to cover every bad choice a user might make, so it’s important to
focus on understanding the fundamentals of sound design. This will give you a foundation
that will allow you to make correct data modeling decisions on whatever problem you
may encounter.

As we have also seen in this chapter, sometimes Cassandra isn’t the right tool for the
problem at hand. Hopefully, you can now recognize when this is the case, and choose the
right tool for the right job.

It is now time to wrap up this book by taking a look at ways in which things can go wrong
when running Cassandra. While it is a highly fault-tolerant system, you will rest easy if
you know what to do when the unexpected happens.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9. Failing Gracefully

Technology organizations, from the CTO to the system administrators, have spent
countless hours over the years trying to prevent their database systems from experiencing
failure. This is because failure typically meant downtime for the application or, even
worse, a loss of critical data.

As we discussed in Chapter 1, Cassandra’s Approach to High Availability, attempts to
make these systems highly available often required a significant amount of human
intervention to restore functionality in the case of a failure. Cassandra, as you have
learned, was designed from the ground up to consider failure as a normal operational state.
This is because in a large distributed system, the chance that at any given moment a piece
of hardware will fail is relatively high, so the system must know how to deal with those
problems.

But even a robust system such as Cassandra, which is designed to handle failure scenarios
without losing data or compromising availability, requires vigilance and know-how to
keep things running smoothly day in and day out. As we near the end of this book, let’s
take a moment to examine some of the things that can go bump in the night, and how we
might handle these situations. Fortunately, Cassandra provides a number of tools to deal
with many of the common failure scenarios that can present themselves from time to time.

In this chapter, we will cover the following topics:

Monitoring Cassandra

Failure detection

Logging

Recovering from node failures
Backups

www.it-ebooks.info

http://www.it-ebooks.info/

Knowledge is power

Of course the first step in handling anomalous situations is to be aware that something is
amiss. As proponents of the Unix philosophy have famously stated, a system must not just
function well, but it must be seen to function well. This is called the rule of transparency,
and in essence it admonishes application designers to build systems that provide visibility
into their inner workings.

Taking this a step further, we might add that we should be able to know that the system is
working even when we aren’t looking. There are times when you may be actively
watching the cluster, for example, when adding or removing nodes or deploying a new
application. However, more often than not, you will have your attention turned elsewhere
when the unexpected occurs. It is during these periods that you will need to rely on
automated monitoring to alert you that there is trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring via Java Management Extensions

Fortunately, Cassandra makes this easy by providing numerous Java Management
Extensions (JMX) targets that publish all manner of statistics to give you a window into
the state and health of the system. You do not need to know a lot about JMX to be able to
use it effectively. Essentially, it is a standard mechanism by which applications built on the
Java Virtual Machine (JVM) can expose metrics and management functions via a
common interface.

There are numerous tools to monitor JMX targets, from the simple JConsole, which ships
with the JDK, to sophisticated automated monitoring tools that can alert administrators or
even take action based on a set of rules. A simple tool is sufficient to explore the various
targets and learn more about JMX in general, but for production deployments you will
want to make use of an automated tool that can work across your entire cluster.

By default, Cassandra listens for JMX connections on port 7199. To connect to a remote
host for monitoring, you will need to configure JMX to allow remote connections. A
detailed documentation to accomplish this can be found on Oracle’s website at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html.

Once you have configured your Cassandra hosts to allow remote JMX connections, you
can connect using any JMX client. Assuming you have a JDK installed on your local
computer, you can connect using JConsole by following these steps:

1. First, open a terminal and start JConsole using the jconsole command. Then, fill in
the host, port, and your credentials in the dialog box, and click on the Connect
button:

3 JConsole: New Connection

\!J New Connection

Local Process:
Name PID
sun.tools.jconsole.JConsole 10.50.44.102:7199 11074

(*) Remote Process:
X.X.%.%:7199

Usage Enamie port R service:jma

Username: admin Password: esssssss

Connect Cancel

2. Once JConsole connects to the remote host, you will see an overview of basic

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
http://www.it-ebooks.info/

statistics for the host, such as memory and CPU utilization. To access the Cassandra-
specific information, choose the MBeans tab at the top of the window.

In this tab, you can see a list of available MBean categories, some of which are
provided by default in the JVM and others that are specific to the application; in this
case, those starting with org.apache.cassandra.

If you expand one of the Cassandra categories, this will expose the various objects
that can be inspected. Under each object, you can either view attributes or perform
operations on the object. For example, if you open the org.apache.cassandra.db
category, then expand the Caches object; you will have access to a variety of
statistics, such as hit rates, cache sizes, and the like. You can also perform operations
such as clearing the row or key caches:

| Overview = Memory = Threads | Classes = VM Summary [0S0 =fim
¥ | org.apache.cassandra.db -Attribute values
b @ BatchlogManager Name Value
» @ BlacklistedDirectories KeyCacheCapacitylnBytes 104857600
" 9 s o .

Y KeyCacheHits 22654
KeyCacheHits KeyCacheKeysToSave 2147483647
RowCacheHits KeyCacheRecentHitRate NaN
KeyCacheRequests KeyCacheRequests 22984
RanacheRequest:s ﬁzgzzﬂz;a:eePermdlnSecnnds i;;iga
KeyCacheRecentHitRate RowCacheCapacitylnBytes 0
RowCacheRecentHitRate RowCacheCapacitylnMB 0
RowCacheSavePeriodinSecond RowCacheEntries 0
KeyCacheSavePeriodinSecond: RowCacheHits 0
RowCacheCapacitylnBytes Rnw[acheKeysToS;ve 2147483647
RowCacheCapacitylnM3 RowCacheRecentHitRate NaN

RowCacheRequests 0
KeyCacheCapacitylnBytes ||| RowCacheSavePeriodInSeconds 0
KeyCacheCapacitylnMB RowCacheSize 0
RowCacheSize
RowCacheEntries
KeyCacheSize
KeyCacheEntries
KeyCacheKeysToSave
RowCacheKeysToSave
b Operations
¥ || ColumnFamilies
F @@ Commitlog
b @ CompactionManager
b @ DynamicEndpointSnitch
b @ EndpointSnitchinfo
b @ HintedHandoffManager
¥ || IndexColumnFamilies , -
o | Refresh |

While this may be helpful to work with a local Cassandra instance or explore the available
attributes and operations, JConsole is not a practical tool to manage an entire cluster. A
generic, graphical tool such as JConsole can also be unwieldy when trying to perform
simple tasks on remote servers. For this reason, Cassandra ships with a useful command-
line utility called nodetool, which exposes many of the JMX statistics and operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpsCenter

DataStax also provides an excellent web-based Cassandra administration tool called
OpsCenter that interfaces with JMX to provide a cluster-wide view of your system. It
also exposes management functions that allow you to perform system-wide changes
without manually editing configuration files or calling JMX functions on every node
individually.

To install OpsCenter on your cluster, download the appropriate package from
http://www.datastax.com/documentation/opscenter/5.0/opsc/install/opsclnstallation_g.html

OpsCenter offers a variety of useful tools to ease the Cassandra management workload,
especially repair, configuration, and topology changes. There are community and
enterprise versions of OpsCenter that provide different levels of functionality.

www.it-ebooks.info

http://www.datastax.com/documentation/opscenter/5.0/opsc/install/opscInstallation_g.html
http://www.it-ebooks.info/

Choosing a management toolset

There is a vast array of third-party products and processes available to manage and
monitor distributed systems, and as such the topic cannot be adequately covered in this
book. However, this chapter will offer you an overview of the most important monitoring
targets so you can configure your chosen tool correctly.

When choosing a toolset to manage your cluster, at a minimum, you will need it to be able
to perform the following functions:

e Automatically deploy and configure new nodes: You will quickly realize the
necessity for this as your cluster size grows and the process of scaling out manually
becomes cumbersome.

¢ Keep your configuration in sync across the nodes: Specifically, this means
managing cluster topology files and each machine’s cassandra.yaml configuration.
Open source options such as Chef and Puppet are excellent choices for these kinds of
tasks.

¢ Perform rolling cluster changes: Changes that require a node restart, such as
configuration changes or version upgrades, will need to be rolled out to a subset of
your nodes at a given time.

e Monitor kernel-level metrics: These include primarily resource utilization details,
such as CPU, disk, and memory at the operating system level. Since Cassandra stores
a number of important data structures off-heap, simply monitoring the JVM process
itself is not sufficient.

e Monitor JMX targets: You will certainly want to know when a key metric falls out
of an acceptable range, and many monitoring tools offer this capability. As you
become more experienced with Cassandra, you may also want the tool to take action
to resolve the problem without human intervention. But at the very least you need to
be aware that something is awry.

For smaller installations, a minimal combination of shell scripts, cron jobs, and a simple
JMX monitoring tool may be sufficient. But large clusters will demand higher levels of
sophistication in this category. When evaluating tools and procedures to monitor and
manage Cassandra in Amazon EC2, consult the Netflix engineering blog
(http://techblog.netflix.com/search/label/Cassandra) and their GitHub site, as they have
contributed significant amounts of their knowledge and tooling to the community.

www.it-ebooks.info

http://techblog.netflix.com/search/label/Cassandra
http://www.it-ebooks.info/

Logging

In addition to keeping an eye on JMX statistics, there are several levels of logfiles that
should be monitored so they can be analyzed in case of failure. Ideally, you should use
some sort of log aggregation (such as Flume, FluentD, or Splunk) to make it easier to
make sense of logs. Also, aggregation ensures that catastrophic node failures don’t prevent
you from recovering logs from the problematic hosts, which may be the most important bit
of diagnostic data available.

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra logs

Cassandra itself provides two logs and both are located in the configured logging
directory, which is /var/log/cassandra by default. The first, system. log, is a rolling log
of Cassandra’s log4j output. The second, output.log, shows standard output and standard
error and is overwritten on startup.

If you are experiencing an issue that warrants lower-level logging than the default INFO
level, you can adjust the logging level by editing 1og4j-server.properties (in the
config directory). The level is determined by the following line:

log4j.rootLogger=INFO, stdout,R

To obtain more granular logging, change INFO to either DEBUG or TRACE. Trace-level output
is extremely verbose, so it is recommended that you first use DEBUG, as that level should be
sufficient for troubleshooting purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

Garbage collector logs

As is the case with any JVM-based application, garbage collection is a significant factor in
the performance of Cassandra. In certain classes of problems, where Cassandra did not
necessarily fail outright but suffered significant performance issues, having the GC logs is
a helpful aid in determining the underlying cause.

GC logging can be enabled in Cassandra by simply uncommenting a few lines in
$CASSANDRA_HOME/conf/cassandra-env.sh:

GC logging options — uncomment to enable

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDetails”

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDateStamps”

JVM_OPTS="$JVM_OPTS -XX:+PrintHeapAtGC”

JVM_OPTS="$JVM_OPTS -XX:+PrintTenuringDistribution”
JVM_OPTS="$JVM_OPTS -XX:+PrintGCApplicationStoppedTime”
JVM_OPTS="$JVM_OPTS -XX:+PrintPromotionFailure”

JVM_OPTS="$JVM_OPTS -XX:PrintFLSStatistics=1"
JVM_OPTS="$JVM_OPTS -Xloggc:/var/log/cassandra/gc- date +%s .log”
If you are using JDK 6u34 7u2 or later you can enable GC log rotation
don’t stick the date in the log name if rotation is on.
JVM_OPTS="$JVM_OPTS -Xloggc:/var/log/cassandra/gc.log”
JVM_OPTS="$JVM_OPTS -XX:+UseGCLogFileRotation”
JVM_OPTS="$JVM_OPTS -XX:NumberOfGCLogFiles=10"
JVM_OPTS="$JVM_OPTS -XX:GCLogFileSize=10M"

The easiest way to view and understand these logs is to use a viewer designed to parse and
make sense of them for you. There are a number of such tools available. If you would like
to learn more about how to read and understand GC logs, check out the post on the Oracle

site at https://blogs.oracle.com/poonam/entry/understanding g1_gc_logs.

In addition to Cassandra and GC logs, you should also make sure to keep detailed
application logs to diagnose issues with connections, queries, and other such problems that
may display symptoms on the client. The native drivers offer useful information in their
logs that may be helpful in determining the cause of a variety of issues.

www.it-ebooks.info

https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
http://www.it-ebooks.info/

Monitoring node metrics

Whether you are using JMX monitoring software or the nodetool utility, it is important to
know what statistics are worth watching. The names and locations of specific attributes
can vary depending upon the Cassandra version, but the key ideas remain the same.

The objective here is to give you an understanding of the available statistics so you will
know how to choose the proper monitoring targets. We will use nodetool for this purpose
as its options tend to be more stable. You should find it straightforward to locate the
equivalent JMX MBean.

www.it-ebooks.info

http://www.it-ebooks.info/

Thread pools

Cassandra’s design employs a staged event-driven architecture (SEDA) that essentially
comprises message queues (containing events) feeding into thread pools (or stages). The
stages fire off messages to other stages via a messaging service. There are stages to handle
a variety of tasks.

Running nodetool tpstats provides detailed information about what’s happening at each
of the stages. A buildup of pending tasks in any of the pools is an indication that there’s
something wrong, for example, a lot of pending operations in the mutation stage means
that writes are backing up (writes are internally referred to as mutations). As a result, it is
wise to monitor pending thread pool messages as they can be a leading indicator of
potential issues.

The following truncated output of the nodetool tpstats command shows what you
might see in the case of a backlog of mutations:

Pool Name Active Pending Completed
ReadStage 0 0 4531423
RequestResponseStage 0 0 109089295
MutationStage 0 53425 49501952

There can be any number of reasons why such a situation may occur, but it is imperative
that you become aware of the situation as soon as possible, especially if the symptoms are
cluster-wide. If a single node is experiencing this kind of difficulty, it may be an indicator
of an impending hardware failure or some other situation that would require an
intervention to remedy it.

www.it-ebooks.info

http://www.it-ebooks.info/

Column family statistics

Internally, tables map to column families, which are the underlying storage structure. The
nodetool cfstats command offers a wealth of data points that provide a complete
picture of each table in your schema. You can provide a specific keyspace to this
command, which helps to limit the verbosity of its output.

When we run this command, we get an output resembling the following snippet:

Keyspace: test_keyspace

Read Count: 383953

Read Latency: 0.9053452870533634 ms.

Write Count: 125031

Write Latency: 0.14220190992633827 ms.

Pending Tasks: 0
Table: test
SSTable count: 2
Space used (live), bytes: 1135025
Space used (total), bytes: 1136661
SSTable Compression Ratio: 0.916869063329679
Number of keys (estimate): 12544
Memtable cell count: 0
Memtable data size, bytes: 0
Memtable switch count: 10
Local read count: 383953
Local read latency: 0.045 ms
Local write count: 125031
Local write latency: 0.055 ms
Pending tasks: ©0
Bloom filter false positives: 0
Bloom filter false ratio: 0.00000
Bloom filter space used, bytes: 16824
Compacted partition minimum bytes: 43
Compacted partition maximum bytes: 103
Compacted partition mean bytes: 50
Average live cells per slice (last five minutes): 0.0
Average tombstones per slice (last five minutes): 0.0

In general, the keyspace-level statistics at the top are not particularly useful as they are
aggregates across all the tables in the keyspace. Instead, pay particular attention to local
read and write metrics as well as pending tasks because these data points can offer insight
into issues with specific tables. Often an issue with a single table can expose problems
with a data model.

In addition, you should keep an eye on average tombstones per slice, as this will tell you
how much of your read workload is being consumed by scanning tombstones. A high
number here is a clear indicator of either a problem with your data model or issues with
your query patterns. Review Chapter 8, Antipatterns, for more information on deletes and
tombstones to understand how this can happen and what to do to avoid the situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Finding latency outliers

Another useful tool for diagnosing table-specific issues is the nodetool cfhistograms
command. In older versions of Cassandra, the output of this command can be quite
confusing to understand, and unfortunately it has changed multiple times in recent
versions. You can review the documentation for specifics on how to interpret the output
for your version.

The basic idea, regardless of version, is to provide a histogram of read and write latencies
per table. The easiest way to understand the data is to actually plot it on a graph using a
spreadsheet or something similar. This tool gives additional insight beyond average
latencies, which can be deceiving, as they can be skewed by outliers. Using nodetool
cfhistograms allows you to see those outliers more clearly. For example, when using
version 2.0 or later, you will see output resembling the following snippet:

Write Latency (microseconds)
50 us: 1
60 us: 195
72 us: 1029
86 us: 876
103 us: 433
124 us: 170
149 us: 208
179 us: 247

To turn this output into a histogram, you will use the value on the left as the x axis offset
and the value on the right as the y axis. In this example, there were 1,029 requests that
took 72 microseconds. OpsCenter also provides a more helpful rendering of this data.

www.it-ebooks.info

http://www.it-ebooks.info/

Communication metrics

Cassandra provides a useful tool to determine the current state of its communications, both
with other nodes and with connected clients. The nodetool netstats command offers a
particularly helpful insight into the status of read repair operations, data streaming, and
pending client requests.

The following output shows a Cassandra node in the normal state:

Mode: NORMAL

Not sending any streams.
Not receiving any streams.
Read Repair Statistics:
Attempted: 1

Mismatch (Blocking): 0
Mismatch (Background): 0

Pool Name Active Pending Completed
Commands n/a 0 0
Responses n/a 0 0

During read repair, bootstrapping, and loading from a snapshot, Cassandra exchanges data
between nodes via a process called streaming. The netstats command will display
details about which nodes are streaming to and from the requested node. As of version 2.0,
streaming was redesigned to improve traceability by associating a specific stream plan
with each operation. This plan has a UUID associated with it, which can be observed in
this netstats snippet:

Mode: NORMAL
Bulk Load fdf4cc70-10e9-11e3-bed0-27ba85b87hf8
/192.168.1.163
Receiving 3 files, 28437084 bytes total
/var/lib/cassandra/data/Keyspacel/Standardl/Keyspacel-
Standardl-tmp-ja-4-Data.db 9244384/9244384 bytes(100%) received from
/192.168.1.163
/var/lib/cassandra/data/Keyspacel/Standardl/Keyspacel-
Standardl-tmp-ja-5-Data.db 9249617/9249617 bytes(100%) received from
/192.168.1.163
/var/lib/cassandra/data/Keyspacel/Standardl/Keyspacel-
Standardl-tmp-ja-6-Data.db 5635715/9943083 bytes(56%) received from
/192.168.1.163

Once you have this ID, you can search through the Cassandra log to find entries related to
this stream. This can be very helpful if a stream operation appears to be taking too long or
has become stuck.

Thus far we have discussed a variety of ways in which you can monitor and detect failures
using the available tooling. However, Cassandra also has its own mechanisms to manage
failure scenarios. Let’s take a moment to look at how these processes help us sleep well at
night, knowing that the system will keep functioning even when things go awry.

www.it-ebooks.info

http://www.it-ebooks.info/

When a node goes down

In a cluster of any significant size, nodes are bound to become unresponsive for a variety
of reasons. Fortunately, Cassandra has a sophisticated mechanism called the failure
detector that is designed to determine when this has occurred, then mark the node as
down.

Most node failures result from temporary conditions, such as network issues. Therefore,
Cassandra assumes the node will eventually come back online, and that permanent cluster
changes will be executed explicitly using nodetool.

www.it-ebooks.info

http://www.it-ebooks.info/

Marking a downed node

Each node keeps track of the state of other nodes in the cluster by means of an accrual
failure detector (or phi failure detector). This detector evaluates the health of other nodes
based on a sliding window of gossip message arrival times. It computes the statistical
distribution of those arrival times per node, thus taking into account the current state of the
network rather than using naive thresholds or timeouts.

The ultimate result of the failure detection algorithm is a value, called phi, which
corresponds to the probability that the next gossip message will be received within a
certain amount of time. You can specify the phi value that determines when a node is
marked as down by setting the phi_convict_threshold configuration value in
cassandra.yaml.

The default for phi_convict_threshold is 8, which should be sufficient for most
situations. If you are running in Amazon EC2, you should consider increasing the value to
12, which takes into account the more contentious network environment. In general, lower
values favor earlier detection at the cost of unnecessarily marking a host, while higher
values will result in longer detection times but will be less likely to mark a functioning
host as down.

Note that there is no master list of downed nodes. Each node manages its own list of the
state of its peers. To see the current list of peer states maintained by a given node, use the
nodetool status command.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling a downed node

Once a node has been marked as unreachable, Cassandra will stop sending traffic to that
node. However, other nodes will continue to try to reach the downed host periodically to
determine whether it has recovered.

During this downtime, any replicas destined for the downed node will be stored as hints
on whichever node acted as the coordinator for the write, assuming you have enabled
hinted handoff (see Chapter 3, Replication, for more details on how this works). So there
will likely be many nodes in the cluster holding hints for the downed node. Assuming the
node comes back online before the time window set in max_hint_window_in_ms (in
cassandra.yaml), the hints will be replayed and the replicas restored.

If the host does not recover before the configured time window has elapsed, the hints will
be discarded. In this case, it will be necessary to run nodetool repair on the newly
recovered host to restore the lost replicas. Furthermore, it is possible that the downed node
itself had stored hints that were never replayed, which is yet another reason to run regular
repair operations across your cluster.

In general, it is wise to attempt to restore downed hosts during the hint window if you’re
using hinted handoff, as this will mitigate potential data loss or consistency issues. If you
need to permanently remove a node from the cluster, you should run nodetool
decommission on that node so that Cassandra can properly redistribute data and inform
other nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling slow nodes

Sometimes a node may not become entirely unresponsive, but may be slower than others
in the cluster. Cassandra employs a dynamic snitch to attempt to steer clear of slower
nodes when routing read requests (this doesn’t work for writes, since all replicas are
always contacted, and then Cassandra simply waits for the consistency level to be
satisfied).

When performing a read, the coordinator node only requests the full replica from one
node, then asks for checksums from other nodes based on the consistency level. The
dynamic snitch algorithm attempts to prefer lower latency nodes when requesting the
entire record, thus improving read performance. The algorithm takes into account a variety
of factors, including recent performance and whether the node in question is currently
undergoing a compaction.

As of version 2.0.2, Cassandra added a feature called rapid read protection, which helps
to prevent slow nodes from causing requests to time out. If a request happens to be routed
to a slow node, Cassandra can detect this condition and proactively make the request to
another node while waiting for the original node to respond. This allows the client to
avoid a timeout if the second request returns within the request timeout period.

This feature can be enabled as either a fixed time or as a read latency percentile, as
follows:

ALTER TABLE authors WITH speculative_retry
ALTER TABLE authors WITH speculative_retry

‘10ms’;
‘99percentile’;

Keep in mind that rapid read protection only helps when the consistency level is lower
than the replication factor. In other words, you cannot expect improvement if you request
all replicas. However, in other cases, enabling this feature can substantially improve
availability during failure scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

Backing up data

While Cassandra itself goes a long way toward reducing the possibility of data loss, it
cannot prevent loss or corruption due to administrative or application-level mistakes. For
this reason, it is still advisable to maintain backups of critical tables to allow you to
recover to a known good point in the past.

www.it-ebooks.info

http://www.it-ebooks.info/

Taking a snapshot

Fundamentally, backing up data in Cassandra involves taking a snapshot of the SSTable
for a given keyspace at a moment in time, as it must have all the tables in order to properly
recover if needed. You can create a snapshot using nodetool as follows:

nodetool snapshot [keyspace_name]

This will create hard links to the current SSTables in that keyspace’s snapshots directory
(located inside the data directory, which is located at
/var/lib/cassandra/data/[keyspace_name] by default), under a directory name based
on the Unix epoch at the time the snapshot is generated. The advantage of this approach is
that the hard link does not require any additional disk space. However, you should be sure
to remove old snapshots as they will continue to accumulate if not deleted regularly.

An important point to recognize when using the nodetool snapshot command is that this
builds a snapshot for the target node only. In order to build a snapshot for the entire
cluster, you must run this on every node.

If it isn’t obvious, hard linking files on the local node does not help you recover lost or
corrupted data in the event of a failure. So you will need to have a process to copy the
snapshots to an offsite location. With a large database, the size of the dataset can
discourage frequent backups, which is why version 1.0 introduced a feature to help
alleviate this burden.

www.it-ebooks.info

http://www.it-ebooks.info/

Incremental backups

In most cases, there is no need to snapshot an entire keyspace for every backup as most of
the data has already been transferred offsite. If you only want the changes from the last
snapshot, you can turn on incremental backups by setting incremental_backups to true
in cassandra.yaml. This feature is disabled by default.

You will recall from earlier in this book that SSTables are immutable, and they are flushed
to disk periodically as memtables reach a defined threshold. The incremental backup
process works by hard linking each new SSTable as it is flushed to disk, thereby providing
a backup that’s as up to date as the last flush. The combination of the latest snapshot and
any incremental backups created since that snapshot create the most recent possible
picture of the state of the keyspace, making more granular recovery possible.

Tip
Make sure to periodically remove old snapshots and backups as Cassandra does not do
this automatically. Otherwise, you will end up with increased disk utilization over time. A

logical time to remove incremental backups is on creation of a new snapshot or after you
have moved them to an off-site location.

www.it-ebooks.info

http://www.it-ebooks.info/

Restoring from a snapshot

Unfortunately, the procedure to restore from a snapshot is less trivial than the initial
snapshot creation process. Before starting the restore procedure, it is important to first
truncate the table. If you fail to truncate the table, you will lose any data that was deleted
after the backup occurred. This is because the tombstones written to cover that data will
have higher timestamps than the restored data.

Restoring from backup can be accomplished in one of two ways:

e Shutting down the node, removing old commit logs and SSTables, copying the
backups to the node, and then restarting the node
e Using the sstableloader utility to load the snapshot

Considering that the first option requires a significant amount of node downtime, we will
focus on the second option. To restore using the sstableloader option, complete the
following steps:

1. Copy the snapshots into a directory structure that matches the following pattern:
[keyspace]/[table]/[snapshots]. This is a hard requirement for the tool to pick up
the correct files.

2. Run the following command:

sstableloader -d hostl,host2,host3 [keyspace]/[table]

Ideally, you should not run this operation from a Cassandra node as the operation will
consume significant resources on that node. Note that this process will stream data to the
appropriate nodes, and the host list is simply a set of initial contact points. You can also
run many of these loaders concurrently to reduce the overall load time. It is also possible
to throttle the amount of bandwidth used by the sstableloader process by specifying the
-t option.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Handling failure in a distributed system is nontrivial and requires extra vigilance on the
part of the system designers. This is especially true in a stateful, coordinated database such
as Cassandra. Fortunately, the architects of Cassandra have done an excellent job in
building a resilient, fault-tolerant system that is designed from the ground up to be highly
available.

We have covered a lot of ground in this book, from the basics of distributed database
design to building scalable Cassandra data models. While not exhaustive by any means,
hopefully the topics covered have helped you to gain confidence as you design and deploy
your Cassandra-backed applications.

As you take the next step in your journey with Cassandra, participate by sharing your
experience and learning from others. The project has a strong community of individuals
and businesses who are committed to building the most scalable and resilient database in
the world, and we value contribution at any level.

Thank you for taking the time to read this book, and good luck as you build game-
changing applications!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

e ACID

o about / ACID
ALL, consistency level / Consistency levels
ANY, consistency level / Consistency levels
asynchronous read repair / Repairing data
asynchronous requests

o handling / Handling asynchronous requests

o queries, executing in parallel / Running queries in parallel
e atomicity, ACID / ACID

e availability, CAP theorem / The CAP theorem

www.it-ebooks.info

http://www.it-ebooks.info/

B

e batched statements
o executing / Batched statements
o pitfalls / Caution with batches
e ByteOrderedPartitioner
o URL / Partitioners
o about / Partitioners

o used, for scaling out / Effects of scaling out using ByteOrderedPartitioner

www.it-ebooks.info

http://www.it-ebooks.info/

e CAP theorem

o about / The CAP theorem

o consistency / The CAP theorem

o availability / The CAP theorem

o partition tolerance / The CAP theorem
e (Cassandra

o solution / Cassandra’s solution
architecture / Cassandra’s architecture
token, assigning / Token assignment
replication factor / The replication factor
data storage / How Cassandra stores data
monitoring, via Java Management Extensions (JMX) / Monitoring via Java

Management Extensions

o monitoring, URL / Monitoring via Java Management Extensions
e (Cassandra architecture

o about / Cassandra’s architecture
o distributed hash table (DHT) / Distributed hash table
o replication / Replication
o tunable consistency / Tunable consistency
e (CassandraFS

o about / Online analysis
e (Cassandra logs

o about / Cassandra logs
e (Cassandra Query Language (CQL) / SimpleStrategy
¢ CloudstackSnitch / Snitches
e cluster connection
o creating / Connecting to the cluster
e clustering columns
o about / Clustering columns
e collections
o about / Denormalizing with collections
o using / Denormalizing with collections
o sets / How collections are stored, Sets
o lists / Lists
o maps / Maps
e columns
o expiring / Expiring columns
e communication metrics / Communication metrics
e compaction
about / Understanding compaction
o size-tiered compaction / Understanding compaction, Size-tiered compaction
o leveled compaction / Understanding compaction, Leveled compaction
o date-tiered compaction / Understanding compaction, Date-tiered compaction

O O O O O

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

e composite partition key

o about / Composite partition keys
o creating / Composite partition keys
e compound key
o using / Compound keys
o partition key / Partition keys
o clustering columns / Clustering columns

o composite partition key / Composite partition keys
e consistency

o between data centers, achieving / Achieving stronger consistency between data
centers
e consistency, ACID / ACID
e consistency, CAP theorem / The CAP theorem
e consistency conflicts
o about / Consistency conflicts
e consistency levels
o about / Consistency levels
ANY / Consistency levels
ONE / Consistency levels
TWO / Consistency levels
THREE / Consistency levels
QUORUM / Consistency levels
SERIAL / Consistency levels
LOCAL_ONE / Consistency levels
LOCAL_QUORUM / Consistency levels
LOCAL_SERIAL / Consistency levels
EACH_QUORUM / Consistency levels
o ALL / Consistency levels
e consistent hashing
o about / Consistent hashing
o working / The mechanics of consistent hashing
e CQL
o about / CQL under the hood
o storage model / The importance of the storage model
e CQL statements
o with single primary key / Single primary key
o with compound key / Compound keys

O 0O 0O O 0O 0O o o o o

www.it-ebooks.info

http://www.it-ebooks.info/

data, backing up

o about / Backing up data
o snapshot, taking / Taking a snapshot
o incremental backups / Incremental backups
o snapshot, restoring from / Restoring from a snapshot
data center
o multiple data centers, use cases / Use cases for multiple data centers

o setup / Data center setup
o adding / Adding a data center
o nodes, removing / Removing nodes within a data center

o decommissioning / Decommissioning a data center
data center, setup

o RackInferringSnitch / RackInferringSnitch

o PropertyFileSnitch / PropertyFileSnitch

o GossipingPropertyFileSnitch / GossipingPropertyFileSnitch

o Cloud snitches / Cloud snitches
data center replication

o used, for scaling up / Scaling up using data center replication
data centers, replication

o about / Replication across data centers

o replication factor, setting / Setting the replication factor
data deleting

o about / Deleting data
garbage collection / Garbage collection, Resurrecting the dead
unexpected deletes / Unexpected deletes
tombstones, issues / The problem with tombstones
columns, expiring / Expiring columns

o TTL antipatterns / TTL antipatterns
data migration

o scenarios / Other data migration scenarios
data repair operations

o about / Repairing data

o synchronous read repair / Repairing data

o asynchronous read repair / Repairing data

o manually running repair / Repairing data
DataStax documentation

o URL / Manually assigned tokens
data storage, Cassandra

o log-structured storage, implications / Implications of a log-structured storage
date-tiered compaction

o about / Understanding compaction, Date-tiered compaction
DCAwareRoundRobinPolicy

o about / Load balancing

O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

o usedHostsPerRemoteDc parameter / Failing over to a remote data center
o allowRemoteDCsForLocalConsistencyLevel parameter / Failing over to a
remote data center
dequeue operation
o about / Cassandra is not a queue
development environment, native Java driver

o setting up / Setting up the environment
o prerequisites / Setting up the environment
distributed hash table (DHT) / Distributed hash table

o about / Distributing hash tables
distributed joins

o about / Distributed joins
downed node
o about / When a node goes down

o marking / Marking a downed node

o handling / Handling a downed node
durability, ACID / ACID

www.it-ebooks.info

http://www.it-ebooks.info/

EACH_QUORUM, consistency level / Consistency levels
EC2MultiRegionSnitch / Snitches

EC2Snitch / Snitches

enqueue operation

o about / Cassandra is not a queue
extract, transform, and load (ETL)

o about / Online analysis

www.it-ebooks.info

http://www.it-ebooks.info/

F

e failover
o about / Failover

www.it-ebooks.info

http://www.it-ebooks.info/

garbage collection

o about / Garbage collection, Resurrecting the dead
garbage collector logs

o about / Garbage collector logs
geographic distribution

o about / Geographic distribution
geospatial data

o storing / Working with geospatial data

o querying / Working with geospatial data
GoogleCloudSnitch / Snitches

GossipingPropertyFileSnitch / Snitches, GossipingPropertyFileSnitch

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop
o used, for online analysis / Analysis using Hadoop
Hadoop Distributed File System (HDFS)

o about / Online analysis
hardware configuration

o selecting / Choosing the right hardware configuration
hash table
o fundamentals / Hash table fundamentals
o distributed hash table (DHT) / Distributing hash tables
heterogeneousclusters / Manually assigned tokens
heterogeneous nodes / Heterogeneous nodes
hotspots
o about / Hotspots
o scaling out, with ByteOrderedPartitioner / Effects of scaling out using

ByteOrderedPartitioner
o time-series example / A time-series example

www.it-ebooks.info

http://www.it-ebooks.info/

¢ Integrated Development Environment (IDE)

o about / Setting up the environment
e isolation, ACID / ACID

www.it-ebooks.info

http://www.it-ebooks.info/

¢ Java Development Kit (JDK)

o about / Setting up the environment

o URL / Setting up the environment
e Java Management Extensions (JMX)

o used, for monitoring Cassandra / Monitoring via Java Management Extensions
e Java Virtual Machine (JVM) / Monitoring via Java Management Extensions

www.it-ebooks.info

http://www.it-ebooks.info/

LatencyAwarePolicy

o about / Load balancing
leveled compaction
o about / Understanding compaction, Leveled compaction

o advantages / Leveled compaction
lists

o about / Lists
Live backup
o about / Live backup
load balancing
o about / Load balancing, Load balancing
o failing over, to remote data center / Failing over to a remote data center
o consistency level, downgrading / Downgrading the consistency level

o retry policy, defining / Defining your own retry policy
o token awareness / Token awareness

load balancing, policies
RoundRobinPolicy / Load balancing
DCAwareRoundRobinPolicy / Load balancing
LatencyAwarePolicy / Load balancing
WhiteListRoundRobinPolicy / Load balancing
TokenAwarePolicy / Load balancing
LOCAL_ONE, consistency level / Consistency levels
LOCAL_QUORUM, consistency level / Consistency levels
LOCAL_SERIAL, consistency level / Consistency levels
log-structured storage

o implications / Implications of a log-structured storage
logging

o about/ Logging

o (Cassandra logs / Cassandra logs

o garbage collector logs / Garbage collector logs

(¢]

O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

e management toolset

e}

e}

selecting / Choosing a management toolset
selecting, pointers / Choosing a management toolset

e manual token assignment

e}

potential issues / Manually assigned tokens

® maps

e}

about / Maps

e master-slave architecture

e}

e}

e}

about / The master-slave architecture
sharding / Sharding
traits / Master failover

e monitoring, Cassandra

e}

e}

e}

via Java Management Extensions / Monitoring via Java Management Extensions

OpsCenter used / Using OpsCenter
management toolset, selecting / Choosing a management toolset

e monolithic architecture

e}

about / The monolithic architecture

e multikey queries

e}

about / Multikey queries

e multiple data centers

e}

O O O O O

e}

e}

e}

e}

use cases / Use cases for multiple data centers
Live backup / Live backup

failover / Failover

load balancing / Load balancing

geographic distribution / Geographic distribution
online analysis / Online analysis

environment, consistency / Consistency in a multiple data center environment

multiple data centers environment, consistency

replicated write, anatomy / The anatomy of a replicated write
consistency between data centers, achieving / Achieving stronger consistency
between data centers

Murmur3Partitioner

URL / The mechanics of consistent hashing

www.it-ebooks.info

http://www.it-ebooks.info/

e native protocol
o versus Thrift / Thrift versus the native protocol
e Netflix

o URL / Scaling out versus scaling up
¢ Netflix engineering blog

o URL / Choosing a management toolset
e network attached storage (NAS) / The monolithic architecture
e NetworkTopologyStrategy, replication

o about / Replication strategies, NetworkTopologyStrategy
o rack awareness / NetworkTopologyStrategy

o snitches, configurable / NetworkTopologyStrategy
e node

o failure, replication factor maintaining on / Maintaining the replication factor
when a node fails
e node metrics
o monitoring / Monitoring node metrics
o thread pools / Thread pools
o column family statistics / Column family statistics
o latency outliers, finding / Finding latency outliers
o communication metrics / Communication metrics
e nodes

o adding / Manually assigned tokens, Growing your cluster

removing / Manually assigned tokens, Removing nodes
rebuilds / Manually assigned tokens

adding, without vnodes / Adding nodes without vnodes

adding, with vnodes / Adding nodes with vnodes

removing, within data center / Removing nodes within a data center
o data center, decommissioning / Decommissioning a data center

¢ nodetool netstats command / Communication metrics

¢ nodetool tpstats command / Thread pools

e null values
o about / When null does not mean empty, Cassandra is not a queue

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

e ONE, consistency level / Consistency levels

online analysis

o Hadoop used / Analysis using Hadoop
o Spark used / Analysis using Spark
Online Analytical Processing (OLAP)

o about / Online analysis
OpsCenter

o using / Using OpsCenter
o installing, URL / Using OpsCenter

www.it-ebooks.info

http://www.it-ebooks.info/

partitioners
about / Partitioners
Murmur3Partitioner / Partitioners
RandomPartitioner / Partitioners
ByteOrderedPartitioner / Partitioners
hotspots / Hotspots
partition key
o declaring / Partition keys
partition tolerance, CAP theorem / The CAP theorem

phi / Marking a downed node
prepared statements

o executing / Prepared statements
primary key

o using / Single primary key
PropertyFileSnitch / Snitches, PropertyFileSnitch

(¢]

(¢]

(¢]

(¢]

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

Q

e queries

o about / Understanding queries

o creating, with key / Query by key
o range queries, creating / Range queries

o denormalizing, with collections / Denormalizing with collections
e QUORUM, consistency level / Consistency levels

www.it-ebooks.info

http://www.it-ebooks.info/

RackInferringSnitch / Snitches, RackInferringSnitch
RandomPartitioner

o about / Partitioners

o URL / Partitioners
range queries

o creating / Range queries
rapid read protection / Handling slow nodes
replicated write

o anatomy / The anatomy of a replicated write
replication

o about / Replication

o across data centers / Replication across data centers, Replication across data
centers

o factor, setting / Setting the replication factor
replication factor
o about / The replication factor
o maintaining, on node failure / Maintaining the replication factor when a node
fails

o balancing, with consistency / Balancing the replication factor with consistency
replication strategies

o about / Replication strategies

o SimpleStrategy / Replication strategies, SimpleStrategy

o NetworkTopologyStrategy / Replication strategies, NetworkTopologyStrategy
retry policy

o defining / Defining your own retry policy

o implementation / Tying it all together

o fallback to QUORUM / Falling back to QUORUM
RoundRobinPolicy

o about / Load balancing
rule of transparency

o about / Knowledge is power

www.it-ebooks.info

http://www.it-ebooks.info/

scaling out
o versus scaling up / Scaling out versus scaling up
o steps / How to scale out
o data center, adding / Adding a data center
scaling up
o versus scaling out / Scaling out versus scaling up
o steps / How to scale up
o upgrading, in place / How to scale up, Upgrading in place
o data center replication, using / How to scale up, Scaling up using data center
replication
secondary indices
o about / Secondary indices
o under hood / Secondary indices under the hood
sensor data model
o about / Modeling sensor data

queries / Queries
time-based ordering / Time-based ordering

sentinel value, using / Using a sentinel value
time-ordered data, querying / Satisfying our queries
querying / When time is all that matters
SERIAL, consistency level / Consistency levels
sets
o about / Sets
sharding, master-slave architecture / Sharding
SimpleSnitch / Snitches
SimpleStrategy, replication / Replication strategies, SimpleStrategy
size-tiered compaction
o about / Understanding compaction, Size-tiered compaction
o disadvantages / Size-tiered compaction

O O O O O

slow nodes
o handling / Handling slow nodes
snapshot

o taking / Taking a snapshot
o restoring / Restoring from a snapshot

snitch
o changing / Snitch changes
snitches

o about / Snitches, Cloud snitches
SimpleSnitch / Snitches
RackInferringSnitch / Snitches
PropertyFileSnitch / Snitches
GossipingPropertyFileSnitch / Snitches
CloudstackSnitch / Snitches

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

o GoogleCloudSnitch / Snitches

o EC2Snitch / Snitches

o EC2MultiRegionSnitch / Snitches
Solid-state drives (SSDs) / Choosing the right hardware configuration
Spark

o about / Online analysis

o used, for online analysis / Analysis using Spark
staged event-driven architecture (SEDA) / Thread pools
statements

o executing / Executing statements

o prepared statements, executing / Prepared statements

o batched statements, executing / Batched statements
storage area network (SAN) / The monolithic architecture
storage model

o importance / The importance of the storage model
synchronous read repair / Repairing data

www.it-ebooks.info

http://www.it-ebooks.info/

thread pools
o about / Thread pools
Thrift
o versus native protocol / Thrift versus the native protocol
o about / Thrift versus the native protocol
o disadvantages / Thrift versus the native protocol
time-series data
o working with / Working with time-series data
o designing, for immutability / Designing for immutability
o sensor data, modeling / Modeling sensor data
time-series example / A time-series example
token
o assigning / Token assignment
o assigning, manual method / Manually assigned tokens
o virtual nodes (vnodes) / vnodes
token awareness
o about / Token awareness
TokenAwarePolicy

o about / Load balancing
tombstone

o about / Deleting data
tombstones

o issues / The problem with tombstones
TTL antipatterns

o about / TTL antipatterns
tunable consistency, Cassandra

o about / Tunable consistency

o CAP theorem / The CAP theorem

www.it-ebooks.info

http://www.it-ebooks.info/

U

e unbounded row growth
o about / Unbounded row growth

www.it-ebooks.info

http://www.it-ebooks.info/

\"

¢ virtual nodes (vnodes)
o about / vnodes
availability, improving / How vnodes improve availability

adding / Adding and removing nodes
removing / Adding and removing nodes
bootstrapping process / Adding and removing nodes

rebuilding / Node rebuilding
o heterogeneous nodes / Heterogeneous nodes

e vnodes

o using / Adding nodes with vnodes

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

A%

e WhiteListRoundRobinPolicy
o about / Load balancing

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Cassandra High Availability
Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support

Errata

Piracy

Questions

1. Cassandra’s Approach to High Availability

ACID

The monolithic architecture

The master-slave architecture

Sharding
Master failover

Cassandra’s solution

Cassandra’s architecture
Distributed hash table

Replication
Replication across data centers

Tunable consistency
The CAP theorem

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
2. Data Distribution

Hash table fundamentals

Distributing hash tables

Consistent hashing

The mechanics of consistent hashing
Token assignment

Manually assigned tokens

vnodes

How vnodes improve availability
Adding and removing nodes

Node rebuilding

Heterogeneous nodes

Partitioners

Hotspots

Effects of scaling out using ByteOrderedPartitioner
A time-series example

Summary

3. Replication
The replication factor

Replication strategies

SimpleStrategy
NetworkTopologyStrategy
Snitches

Maintaining the replication factor when a node fails

Consistency conflicts
Consistency levels

Repairing data
Balancing the replication factor with consistency

Summary
4. Data Centers

Use cases for multiple data centers

www.it-ebooks.info

http://www.it-ebooks.info/

Live backup

Failover

Load balancing

Geographic distribution

Online analysis

Analysis using Hadoop

Analysis using Spark

Data center setup

RackInferringSnitch

PropertyFileSnitch

GossipingPropertyFileSnitch

Cloud snitches

Replication across data centers

Setting the replication factor

Consistency in a multiple data center environment
The anatomy of a replicated write

Achieving stronger consistency between data centers
Summary

5. Scaling Out

Choosing the right hardware configuration

Scaling out versus scaling up
Growing your cluster

Adding nodes without vnodes

Adding nodes with vnodes

How to scale out

Adding a data center

How to scale up

Upgrading in place
Scaling up using data center replication

Removing nodes

Removing nodes within a data center

Decommissioning a data center

www.it-ebooks.info

http://www.it-ebooks.info/

Other data migration scenarios

Snitch changes

Summary
6. High Availability Features in the Native Java Client

Thrift versus the native protocol

Setting up the environment
Connecting to the cluster
Executing statements

Prepared statements
Batched statements

Caution with batches

Handling asynchronous requests
Running queries in parallel

Load balancing

Failing over to a remote data center
Downgrading the consistency level
Defining vour own retry policy

Token awareness

Tying it all together
Falling back to QUORUM

Summary
7. Modeling for High Availability

How Cassandra stores data

Implications of a log-structured storage

Understanding compaction

Size-tiered compaction

Leveled compaction

Date-tiered compaction
CQL under the hood

Single primary key
Compound keys

Partition keys

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering columns
Composite partition keys

The importance of the storage model

Understanding queries
Query by key
Range queries

Denormalizing with collections
How collections are stored

Sets
Lists

Maps

Working with time-series data
Designing for immutability
Modeling sensor data

Queries

Time-based ordering

Using a sentinel value

Satisfying our queries
When time is all that matters

Working with geospatial data

Summary
8. Antipatterns

Multikey queries

Secondary indices

Secondary indices under the hood

Distributed joins

Deleting data

Garbage collection

Resurrecting the dead

Unexpected deletes

The problem with tombstones

Expiring columns

www.it-ebooks.info

http://www.it-ebooks.info/

TTL antipatterns
When null does not mean empty

Cassandra is not a queue
Unbounded row growth

Summary

9. Failing Gracefully
Knowledge is power
Monitoring via Java Management Extensions
Using OpsCenter

Choosing a management toolset
Logging

Cassandra logs

Garbage collector logs
Monitoring node metrics
Thread pools

Column family statistics
Finding latency outliers

Communication metrics

When a node goes down
Marking a downed node

Handling a downed node

Handling slow nodes
Backing up data

Taking a snapshot

Incremental backups
Restoring from a snapshot

Summary
Index

www.it-ebooks.info

http://www.it-ebooks.info/

	Cassandra High Availability
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Cassandra's Approach to High Availability
	ACID
	The monolithic architecture
	The master-slave architecture
	Sharding
	Master failover
	Cassandra's solution
	Cassandra's architecture
	Distributed hash table
	Replication
	Replication across data centers
	Tunable consistency
	The CAP theorem
	Summary
	2. Data Distribution
	Hash table fundamentals
	Distributing hash tables
	Consistent hashing
	The mechanics of consistent hashing
	Token assignment
	Manually assigned tokens
	vnodes
	How vnodes improve availability
	Adding and removing nodes
	Node rebuilding
	Heterogeneous nodes
	Partitioners
	Hotspots
	Effects of scaling out using ByteOrderedPartitioner
	A time-series example
	Summary
	3. Replication
	The replication factor
	Replication strategies
	SimpleStrategy
	NetworkTopologyStrategy
	Snitches
	Maintaining the replication factor when a node fails
	Consistency conflicts
	Consistency levels
	Repairing data
	Balancing the replication factor with consistency
	Summary
	4. Data Centers
	Use cases for multiple data centers
	Live backup
	Failover
	Load balancing
	Geographic distribution
	Online analysis
	Analysis using Hadoop
	Analysis using Spark
	Data center setup
	RackInferringSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	Cloud snitches
	Replication across data centers
	Setting the replication factor
	Consistency in a multiple data center environment
	The anatomy of a replicated write
	Achieving stronger consistency between data centers
	Summary
	5. Scaling Out
	Choosing the right hardware configuration
	Scaling out versus scaling up
	Growing your cluster
	Adding nodes without vnodes
	Adding nodes with vnodes
	How to scale out
	Adding a data center
	How to scale up
	Upgrading in place
	Scaling up using data center replication
	Removing nodes
	Removing nodes within a data center
	Decommissioning a data center
	Other data migration scenarios
	Snitch changes
	Summary
	6. High Availability Features in the Native Java Client
	Thrift versus the native protocol
	Setting up the environment
	Connecting to the cluster
	Executing statements
	Prepared statements
	Batched statements
	Caution with batches
	Handling asynchronous requests
	Running queries in parallel
	Load balancing
	Failing over to a remote data center
	Downgrading the consistency level
	Defining your own retry policy
	Token awareness
	Tying it all together
	Falling back to QUORUM
	Summary
	7. Modeling for High Availability
	How Cassandra stores data
	Implications of a log-structured storage
	Understanding compaction
	Size-tiered compaction
	Leveled compaction
	Date-tiered compaction
	CQL under the hood
	Single primary key
	Compound keys
	Partition keys
	Clustering columns
	Composite partition keys
	The importance of the storage model
	Understanding queries
	Query by key
	Range queries
	Denormalizing with collections
	How collections are stored
	Sets
	Lists
	Maps
	Working with time-series data
	Designing for immutability
	Modeling sensor data
	Queries
	Time-based ordering
	Using a sentinel value
	Satisfying our queries
	When time is all that matters
	Working with geospatial data
	Summary
	8. Antipatterns
	Multikey queries
	Secondary indices
	Secondary indices under the hood
	Distributed joins
	Deleting data
	Garbage collection
	Resurrecting the dead
	Unexpected deletes
	The problem with tombstones
	Expiring columns
	TTL antipatterns
	When null does not mean empty
	Cassandra is not a queue
	Unbounded row growth
	Summary
	9. Failing Gracefully
	Knowledge is power
	Monitoring via Java Management Extensions
	Using OpsCenter
	Choosing a management toolset
	Logging
	Cassandra logs
	Garbage collector logs
	Monitoring node metrics
	Thread pools
	Column family statistics
	Finding latency outliers
	Communication metrics
	When a node goes down
	Marking a downed node
	Handling a downed node
	Handling slow nodes
	Backing up data
	Taking a snapshot
	Incremental backups
	Restoring from a snapshot
	Summary
	Index

