
www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra	High	Availability

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents
Cassandra	High	Availability

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
Why	subscribe?
Free	access	for	Packt	account	holders

Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support
Errata
Piracy
Questions

1.	Cassandra’s	Approach	to	High	Availability

ACID
The	monolithic	architecture
The	master-slave	architecture
Sharding
Master	failover

Cassandra’s	solution
Cassandra’s	architecture
Distributed	hash	table
Replication

Replication	across	data	centers
Tunable	consistency

The	CAP	theorem
Summary

2.	Data	Distribution

Hash	table	fundamentals
Distributing	hash	tables

Consistent	hashing
The	mechanics	of	consistent	hashing

Token	assignment
Manually	assigned	tokens

www.it-ebooks.info

http://www.it-ebooks.info/

vnodes
How	vnodes	improve	availability
Adding	and	removing	nodes
Node	rebuilding
Heterogeneous	nodes

Partitioners
Hotspots

Effects	of	scaling	out	using	ByteOrderedPartitioner
A	time-series	example

Summary

3.	Replication

The	replication	factor
Replication	strategies

SimpleStrategy
NetworkTopologyStrategy

Snitches
Maintaining	the	replication	factor	when	a	node	fails

Consistency	conflicts
Consistency	levels
Repairing	data

Balancing	the	replication	factor	with	consistency
Summary

4.	Data	Centers

Use	cases	for	multiple	data	centers
Live	backup
Failover
Load	balancing
Geographic	distribution
Online	analysis

Analysis	using	Hadoop
Analysis	using	Spark

Data	center	setup
RackInferringSnitch
PropertyFileSnitch
GossipingPropertyFileSnitch
Cloud	snitches

Replication	across	data	centers
Setting	the	replication	factor
Consistency	in	a	multiple	data	center	environment

The	anatomy	of	a	replicated	write
Achieving	stronger	consistency	between	data	centers

Summary

5.	Scaling	Out

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing	the	right	hardware	configuration
Scaling	out	versus	scaling	up
Growing	your	cluster
Adding	nodes	without	vnodes
Adding	nodes	with	vnodes

How	to	scale	out
Adding	a	data	center

How	to	scale	up
Upgrading	in	place
Scaling	up	using	data	center	replication

Removing	nodes
Removing	nodes	within	a	data	center
Decommissioning	a	data	center

Other	data	migration	scenarios
Snitch	changes
Summary

6.	High	Availability	Features	in	the	Native	Java	Client

Thrift	versus	the	native	protocol
Setting	up	the	environment
Connecting	to	the	cluster
Executing	statements
Prepared	statements
Batched	statements

Caution	with	batches
Handling	asynchronous	requests
Running	queries	in	parallel

Load	balancing
Failing	over	to	a	remote	data	center
Downgrading	the	consistency	level

Defining	your	own	retry	policy
Token	awareness

Tying	it	all	together
Falling	back	to	QUORUM

Summary

7.	Modeling	for	High	Availability

How	Cassandra	stores	data
Implications	of	a	log-structured	storage

Understanding	compaction
Size-tiered	compaction
Leveled	compaction
Date-tiered	compaction

CQL	under	the	hood
Single	primary	key
Compound	keys

www.it-ebooks.info

http://www.it-ebooks.info/

Partition	keys
Clustering	columns
Composite	partition	keys

The	importance	of	the	storage	model
Understanding	queries
Query	by	key
Range	queries
Denormalizing	with	collections

How	collections	are	stored
Sets
Lists
Maps

Working	with	time-series	data
Designing	for	immutability
Modeling	sensor	data

Queries
Time-based	ordering
Using	a	sentinel	value
Satisfying	our	queries
When	time	is	all	that	matters

Working	with	geospatial	data
Summary

8.	Antipatterns

Multikey	queries
Secondary	indices
Secondary	indices	under	the	hood

Distributed	joins
Deleting	data
Garbage	collection
Resurrecting	the	dead
Unexpected	deletes
The	problem	with	tombstones
Expiring	columns

TTL	antipatterns
When	null	does	not	mean	empty
Cassandra	is	not	a	queue

Unbounded	row	growth
Summary

9.	Failing	Gracefully

Knowledge	is	power
Monitoring	via	Java	Management	Extensions

Using	OpsCenter
Choosing	a	management	toolset

Logging

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra	logs
Garbage	collector	logs

Monitoring	node	metrics
Thread	pools
Column	family	statistics
Finding	latency	outliers
Communication	metrics

When	a	node	goes	down
Marking	a	downed	node
Handling	a	downed	node
Handling	slow	nodes

Backing	up	data
Taking	a	snapshot
Incremental	backups
Restoring	from	a	snapshot

Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra	High	Availability

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra	High	Availability
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2014

Production	reference:	1221214

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-912-6

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

Credits
Author

Robbie	Strickland

Reviewers

Richard	Low

Jimmy	Mårdell

Rob	Murphy

Russell	Spitzer

Commissioning	Editor

Kunal	Parikh

Acquisition	Editors

Richard	Harvey

Owen	Roberts

Content	Development	Editors

Samantha	Gonsalves

Azharuddin	Sheikh

Technical	Editor

Ankita	Thakur

Copy	Editors

Pranjali	Chury

Merilyn	Pereira

Project	Coordinator

Sanchita	Mandal

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Paul	Hindle

Indexer

Rekha	Nair

Graphics

www.it-ebooks.info

http://www.it-ebooks.info/

Sheetal	Aute

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Alwin	Roy

Cover	Work

Alwin	Roy

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Author
Robbie	Strickland	got	involved	in	the	Apache	Cassandra	project	in	2010,	and	he	initially
went	into	production	with	the	0.5	release.	He	has	made	numerous	contributions	over	the
years,	including	his	work	on	drivers	for	C#	and	Scala,	and	multiple	contributions	to	the
core	Cassandra	codebase.	In	2013,	he	became	the	very	first	certified	Cassandra	developer,
and	in	2014,	DataStax	selected	him	as	an	Apache	Cassandra	MVP.

While	this	is	Robbie’s	first	published	technical	book,	he	has	been	an	active	speaker	and
writer	in	the	Cassandra	community	and	is	the	founder	of	the	Atlanta	Cassandra	Users
Group.	Other	examples	of	his	writing	can	be	found	on	the	DataStax	blog,	and	he	has
conducted	numerous	webinars	and	spoken	at	many	conferences	over	the	years.

I	would	like	to	thank	my	wife	for	encouraging	me	to	go	forward	with	this	project	and	for
continuing	to	be	supportive	throughout	the	significant	time	commitment	required	to	write
a	book.	Also,	I	am	truly	appreciative	of	my	excellent	reviewers:	Richard	Low,	Jimmy
Mårdell,	Rob	Murphy,	and	Russell	Spitzer.	They	helped	keep	me	honest,	and	their	deep
expertise	added	materially	to	the	quality	of	the	content.	I	would	also	like	to	thank	the
entire	staff	at	Packt	Publishing	who	were	involved	in	the	book’s	publishing	process.
Lastly,	I	want	to	thank	Logan	Johnson	who	initially	pointed	me	toward	Cassandra.	The
risk	has	paid	off,	and	Logan	is	responsible	for	starting	me	off	on	this	path.

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Reviewers
Richard	Low	has	worked	with	Cassandra	since	Version	0.6	and	has	managed	and
supported	some	of	the	largest	Cassandra	deployments.	He	has	contributed	fixes	and
features	to	the	project	and	has	helped	many	users	build	their	first	Cassandra	deployment.
He	is	a	regular	speaker	at	Cassandra	events	and	a	contributor	to	Cassandra	online	forums.

Jimmy	Mårdell	is	a	senior	software	engineer	and	Cassandra	contributor	who	has	spent
the	last	4	years	working	with	large	distributed	systems	using	Cassandra.	Since	2013,	he
has	been	leading	a	database	infrastructure	team	at	Spotify,	focusing	on	improving	the
Cassandra	ecosystem	at	Spotify	and	empowering	other	teams	to	operate	Cassandra
clusters.	Jimmy	likes	algorithms	and	competitive	programming	and	won	the	programming
competition	Google	Code	Jam	in	2003.

Rob	Murphy	is	a	solutions	engineer	at	DataStax	with	more	than	16	years	of	experience	in
the	field	of	data-driven	application	development	and	design.	Rob’s	background	includes
work	with	most	RDMS	platforms	as	well	as	DataStax/Apache	Cassandra,	Hadoop,
MongoDB,	Apache	Accumulo,	and	Apache	Spark.	His	passion	for	solving	“data
problems”	goes	beyond	the	system	level	to	the	data	itself.	Rob	has	a	Master’s	degree	in
Predictive	Analytics	from	Northwestern	University	with	a	specific	research	interest	in
machine	learning	and	predictive	algorithms	at	the	“Internet	scale”.

Russell	Spitzer	received	his	PhD	in	Bioinformatics	from	UCSF	in	2013,	where	he
became	increasingly	interested	in	data	analytics	and	distributed	computation.	He	followed
these	interests	and	joined	DataStax,	the	enterprise	company	behind	the	Apache	Cassandra
distributed	database.	At	DataStax,	he	works	on	the	testing	and	development	of	the
integration	between	Cassandra	and	other	groundbreaking	open	source	technologies,	such
as	Spark,	Solr,	and	Hadoop.

I	would	like	to	thank	my	wife,	Maggie,	who	put	up	with	a	lot	of	late-night	laptop	screen
glow	so	that	I	could	help	out	with	this	book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why	subscribe?
	

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Preface
Cassandra	is	a	fantastic	data	store	and	is	certainly	well	suited	as	the	foundation	for	a
highly	available	system.	In	fact,	it	was	built	for	such	a	purpose:	to	handle	Facebook’s
messaging	service.	However,	it	hasn’t	always	been	so	easy	to	use,	with	its	early	Thrift
interface	and	unfamiliar	data	model	causing	many	potential	users	to	pause—and	in	many
cases	for	a	good	reason.

Fortunately,	Cassandra	has	matured	substantially	over	the	last	few	years.	I	used	to	advise
people	to	use	Cassandra	only	if	nothing	else	would	do	the	job	because	the	learning	curve
for	it	was	quite	high.	However,	the	introduction	of	newer	features	such	as	CQL	and
vnodes	has	changed	the	game	entirely.

What	once	appeared	complex	and	overly	daunting	now	comes	across	as	deceptively
simple.	A	SQL-like	interface	masks	the	underlying	data	structure,	whose	familiarity	can
lure	an	unsuspecting	new	user	into	dangerous	traps.	The	moral	of	this	story	is	that	it’s	not
a	relational	database,	and	you	still	need	to	know	what	it’s	doing	under	the	hood.

Imparting	this	knowledge	is	the	core	objective	of	this	book.	Each	chapter	attempts	to
demystify	the	inner	workings	of	Cassandra	so	that	you	no	longer	have	to	work	blindly
against	a	black	box	data	store.	You	will	learn	to	configure,	design,	and	build	your	system
based	on	a	fundamentally	solid	foundation.

The	good	news	is	that	Cassandra	makes	the	task	of	building	massively	scalable	and
incredibly	reliable	systems	relatively	straightforward,	presuming	you	understand	how	to
partner	with	it	to	achieve	these	goals.

Since	you	are	reading	this	book,	I	presume	you	are	either	already	using	Cassandra	or
planning	to	do	so,	and	that	you’re	interested	in	building	a	highly	available	system	on	top
of	it.	If	so,	I	am	confident	that	you	will	meet	with	success	if	you	follow	the	principles	and
guidelines	offered	in	the	chapters	that	follow.

www.it-ebooks.info

http://www.it-ebooks.info/

What	this	book	covers
Chapter	1,	Cassandra’s	Approach	to	High	Availability,	is	an	introduction	to	concepts
related	to	system	availability	and	the	problems	that	have	been	encountered	historically
while	trying	to	make	data	stores	highly	available.	This	chapter	outlines	Cassandra’s
solutions	to	these	problems.

Chapter	2,	Data	Distribution,	outlines	the	core	mechanisms	that	underlie	Cassandra’s
distributed	hash	table	model,	including	consistent	hashing	and	partitioner
implementations.

Chapter	3,	Replication,	offers	an	in-depth	look	at	the	data	replication	architecture	used	in
Cassandra,	with	a	focus	on	the	relationship	between	consistency	levels	and	replication
factors.

Chapter	4,	Data	Centers,	enables	you	to	thoroughly	understand	Cassandra’s	robust	data
center	replication	capabilities,	including	deployment	on	EC2	and	building	separate
clusters	for	analysis	using	Hadoop	or	Spark.

Chapter	5,	Scaling	Out,	is	a	discussion	on	the	tools,	processes,	and	general	guidance
required	to	properly	increase	the	size	of	your	cluster.

Chapter	6,	High	Availability	Features	in	the	Native	Java	Client,	covers	the	new	native
Java	driver	and	its	availability-related	features.	We’ll	discuss	node	discovery,	cluster-
aware	load	balancing,	automatic	failover,	and	other	important	concepts.

Chapter	7,	Modeling	for	High	Availability,	explains	the	important	concepts	you	need	to
understand	while	modeling	highly	available	data	in	Cassandra.	CQL,	keys,	wide	rows,	and
denormalization	are	among	the	topics	that	will	be	covered.

Chapter	8,	Antipatterns,	complements	the	data	modeling	chapter	by	presenting	a	set	of
common	antipatterns	that	proliferate	among	inexperienced	Cassandra	developers.	Some
patterns	include	queues,	joins,	high	delete	volumes,	and	high	cardinality	secondary
indexes	among	others.

Chapter	9,	Failing	Gracefully,	helps	the	reader	to	understand	how	to	deal	with	various
failure	cases,	as	failure	in	a	large	distributed	system	is	inevitable.	We’ll	examine	a	number
of	possible	failure	scenarios,	and	discuss	how	to	detect	and	resolve	them.

www.it-ebooks.info

http://www.it-ebooks.info/

What	you	need	for	this	book
This	book	assumes	you	have	access	to	a	running	Cassandra	installation	that’s	at	least	as
new	as	release	1.2.x.	Some	features	discussed	will	be	applicable	only	to	the	2.0.x	series,
and	we	will	point	these	out	when	this	applies.	Users	of	versions	older	than	1.2.x	can	still
gain	a	lot	from	the	content,	but	there	will	be	some	portions	that	do	not	directly	translate	to
those	versions.

For	Chapter	6,	High	Availability	Features	in	the	Native	Java	Client,	coverage	of	the	Java
driver,	you	will	need	the	Java	Development	Kit	1.7	and	a	suitable	text	editor	to	write	Java
code.	All	command-line	examples	assume	a	Linux	environment	since	this	is	the	only
supported	operating	system	for	use	with	a	production	Cassandra	system.

www.it-ebooks.info

http://www.it-ebooks.info/

Who	this	book	is	for
This	book	is	for	developers	and	system	administrators	who	are	interested	in	building	an
advanced	understanding	of	Cassandra’s	internals	for	the	purpose	of	deploying	high
availability	services	using	it	as	a	backing	data	store.	This	is	not	an	introduction	to
Cassandra,	so	those	who	are	completely	new	would	be	well	served	to	find	a	suitable
tutorial	before	diving	into	this	book.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
PropertyFileSnitch	configuration	allows	an	administrator	to	precisely	configure	the
topology	of	the	network	by	means	of	a	properties	file	named	cassandra-
topology.properties.”

A	block	of	code	is	set	as	follows:
CREATE	KEYSPACE	AddressBook

		WITH	REPLICATION	=	{	

				‘class’	:	‘NetworkTopologyStrategy’,

				‘dc1’	:	3,

				‘dc2’	:	2

		};

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:
CREATE	KEYSPACE	AddressBook

		WITH	REPLICATION	=	{	

				‘class’	:	‘SimpleStrategy’,

				‘replication_factor’	:	3

		};

Any	command-line	input	or	output	is	written	as	follows:

#	nodetool	status

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Then,	fill	in	the	host,
port,	and	your	credentials	in	the	dialog	box	and	click	on	the	Connect	button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter	1.	Cassandra’s	Approach	to	High
Availability
What	does	it	mean	for	a	data	store	to	be	“highly	available”?	When	designing	or
configuring	a	system	for	high	availability,	architects	typically	hope	to	offer	some
guarantee	of	uptime	even	in	the	presence	of	failure.	Historically,	it	has	been	sufficient	for
the	vast	majority	of	systems	to	be	available	for	less	than	100	percent	of	the	time,	with
some	attempting	to	achieve	the	“five	nines”,	or	99.999,	percent	uptime.

The	exact	definition	of	high	availability	depends	on	the	requirements	of	the	application.
This	concept	has	gained	increasing	significance	in	the	context	of	web	applications,	real-
time	systems,	and	other	use	cases	that	cannot	afford	any	downtime.	Database	systems
must	not	only	guarantee	system	uptime,	the	ability	to	fulfill	requests,	but	also	ensure	that
the	data	itself	remains	available.

Traditionally,	it	has	been	difficult	to	make	databases	highly	available,	especially	the
relational	database	systems	that	have	dominated	the	scene	for	the	last	couple	of	decades.
These	systems	are	most	often	designed	to	run	on	a	single	large	machine,	making	it
challenging	to	scale	out	to	multiple	machines.

Let’s	examine	some	of	the	reasons	why	many	popular	database	systems	have	difficulty
being	deployed	in	high	availability	configurations,	as	this	will	allow	us	to	have	a	greater
understanding	of	the	improvements	that	Cassandra	offers.	Exploring	these	reasons	can
help	us	to	put	aside	previous	assumptions	that	simply	don’t	translate	to	the	Cassandra
model.

Therefore,	in	this	chapter,	we’ll	cover	the	following	topics:

	
The	atomicity,	consistency,	isolation	and	durability	(ACID)	properties
Monolithic	architecture
Master-slave	architecture,	covering	sharding	and	leader	election
Cassandra’s	approach	to	achieve	high	availability

www.it-ebooks.info

http://www.it-ebooks.info/

ACID
One	of	the	most	significant	obstacles	that	prevents	traditional	databases	from	achieving
high	availability	is	that	they	attempt	to	strongly	guarantee	the	ACID	properties:

	
Atomicity:	This	guarantees	that	database	updates	associated	with	a	transaction	occur
in	an	all-or-nothing	manner.	If	some	part	of	the	transaction	fails,	the	state	of	the
database	remains	unchanged.
Consistency:	This	assures	that	the	integrity	of	data	will	be	preserved	across	all
instances	of	that	data.	Changes	to	a	value	in	one	location	will	definitely	be	reflected
in	all	other	locations.
Isolation:	This	attempts	to	ensure	that	concurrent	transactions	that	manipulate	the
same	data	do	so	in	a	controlled	manner,	essentially	isolating	in-process	changes	from
other	clients.	Most	traditional	relational	database	systems	provide	various	levels	of
isolation	with	different	guarantees	at	each	level.
Durability:	This	ensures	that	all	writes	are	preserved	in	nonvolatile	storage,	most
commonly	on	disk.

Database	designers	most	commonly	achieve	these	properties	via	write	masters,	locks,
elaborate	storage	area	networks,	and	the	like—all	of	which	tend	to	sacrifice	availability.
As	a	result,	achieving	some	semblance	of	high	availability	frequently	involves	bolt-on
components,	log	shipping,	leader	election,	sharding,	and	other	such	strategies	that	attempt
to	preserve	the	original	design.

www.it-ebooks.info

http://www.it-ebooks.info/

The	monolithic	architecture
The	simplest	design	approach	to	guarantee	ACID	properties	is	to	implement	a	monolithic
architecture	where	all	functions	reside	on	a	single	machine.	Since	no	coordination	among
nodes	is	required,	the	task	of	enforcing	all	the	system	rules	is	relatively	straightforward.

Increasing	availability	in	such	architectures	typically	involves	hardware	layer
improvements,	such	as	RAID	arrays,	multiple	network	interfaces,	and	hot-swappable
drives.	However,	the	fact	remains	that	even	the	most	robust	database	server	acts	as	a
single	point	of	failure.	This	means	that	if	the	server	fails,	the	application	becomes
unavailable.	This	architecture	can	be	illustrated	with	the	following	diagram:

A	common	means	of	increasing	capacity	to	handle	requests	on	a	monolithic	architecture	is
to	move	the	storage	layer	to	a	shared	component	such	as	a	storage	area	network	(SAN)
or	network	attached	storage	(NAS).	Such	devices	are	usually	quite	robust	with	large
numbers	of	disks	and	high-speed	network	interfaces.	This	approach	is	shown	in	a
modification	of	the	previous	diagram,	which	depicts	two	database	servers	using	a	single
NAS.

www.it-ebooks.info

http://www.it-ebooks.info/

You’ll	notice	that	while	this	architecture	increases	the	overall	request	handling	capacity	of
the	system,	it	simply	moves	the	single	failure	point	from	the	database	server	to	the	storage
layer.	As	a	result,	there	is	no	real	improvement	from	an	availability	perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

The	master-slave	architecture
As	distributed	systems	have	become	more	commonplace,	the	need	for	higher	capacity
distributed	databases	has	grown.	Many	distributed	databases	still	attempt	to	maintain
ACID	guarantees	(or	in	some	cases	only	the	consistency	aspect,	which	is	the	most	difficult
in	a	distributed	environment),	leading	to	the	master-slave	architecture.

In	this	approach,	there	might	be	many	servers	handling	requests,	but	only	one	server	can
actually	perform	writes	so	as	to	maintain	data	in	a	consistent	state.	This	avoids	the
scenario	where	the	same	data	can	be	modified	via	concurrent	mutation	requests	to
different	nodes.	The	following	diagram	shows	the	most	basic	scenario:

However,	we	still	have	not	solved	the	availability	problem,	as	a	failure	of	the	write	master
would	lead	to	application	downtime.	It	also	means	that	writes	do	not	scale	well,	since	they
are	all	directed	to	a	single	machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Sharding
A	variation	on	the	master-slave	approach	that	enables	higher	write	volumes	is	a	technique
called	sharding,	in	which	the	data	is	partitioned	into	groups	of	keys,	such	that	one	or
more	masters	can	own	a	known	set	of	keys.	For	example,	a	database	of	user	profiles	can
be	partitioned	by	the	last	name,	such	that	A-M	belongs	to	one	cluster	and	N-Z	belongs	to
another,	as	follows:

An	astute	observer	will	notice	that	both	master-slave	and	sharding	introduce	failure	points
on	the	master	nodes,	and	in	fact	the	sharding	approach	introduces	multiple	points	of
failure—one	for	each	master!	Additionally,	the	knowledge	of	where	requests	for	certain
keys	go	rests	with	the	application	layer,	and	adding	shards	requires	manual	shuffling	of
data	to	accommodate	the	modified	key	ranges.

Some	systems	employ	shard	managers	as	a	layer	of	abstraction	between	the	application
and	the	physical	shards.	This	has	the	effect	of	removing	the	requirement	that	the
application	must	have	knowledge	of	the	partition	map.	However,	it	does	not	obviate	the
need	for	shuffling	data	as	the	cluster	grows.

www.it-ebooks.info

http://www.it-ebooks.info/

Master	failover
A	common	means	of	increasing	availability	in	the	event	of	a	failure	on	a	master	node	is	to
employ	a	master	failover	protocol.	The	particular	semantics	of	the	protocol	vary	among
implementations,	but	the	general	principle	is	that	a	new	master	is	appointed	when	the
previous	one	fails.	Not	all	failover	algorithms	are	equal;	however,	in	general,	this	feature
increases	availability	in	a	master-slave	system.

Even	a	master-slave	database	that	employs	leader	election	suffers	from	a	number	of
undesirable	traits:

	
Applications	must	understand	the	database	topology
Data	partitions	must	be	carefully	planned
Writes	are	difficult	to	scale
A	failover	dramatically	increases	the	complexity	of	the	system	in	general,	and
especially	so	for	multisite	databases
Adding	capacity	requires	reshuffling	data	with	a	potential	for	downtime

Considering	that	our	objective	is	a	highly	available	system,	and	presuming	that	scalability
is	a	concern,	are	there	other	options	we	need	to	consider?

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra’s	solution
The	reality	is	that	not	every	transaction	in	every	application	requires	full	ACID
guarantees,	and	ACID	properties	themselves	can	be	viewed	as	more	of	a	continuum	where
a	given	transaction	might	require	different	degrees	of	each	property.

Cassandra’s	approach	to	availability	takes	this	continuum	into	account.	In	contrast	to	its
relational	predecessors—and	even	most	of	its	NoSQL	contemporaries—its	original
architects	considered	availability	as	a	key	design	objective,	with	the	intent	to	achieve	the
elusive	goal	of	100	percent	uptime.	Cassandra	provides	numerous	knobs	that	give	the	user
highly	granular	control	of	the	ACID	properties,	all	with	different	trade-offs.

The	remainder	of	this	chapter	offers	an	introduction	to	Cassandra’s	high	availability
attributes	and	features,	with	the	rest	of	the	book	devoted	to	help	you	to	make	use	of	these
in	real-world	applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra’s	architecture
Unlike	either	monolithic	or	master-slave	designs,	Cassandra	makes	use	of	an	entirely	peer-
to-peer	architecture.	All	nodes	in	a	Cassandra	cluster	can	accept	reads	and	writes,	no
matter	where	the	data	being	written	or	requested	actually	belongs	in	the	cluster.	Internode
communication	takes	place	by	means	of	a	gossip	protocol,	which	allows	all	nodes	to
quickly	receive	updates	without	the	need	for	a	master	coordinator.

This	is	a	powerful	design,	as	it	implies	that	the	system	itself	is	both	inherently	available
and	massively	scalable.	Consider	the	following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Note	that	in	contrast	to	the	monolithic	and	master-slave	architectures,	there	are	no	special
nodes.	In	fact,	all	nodes	are	essentially	identical,	and	as	a	result	Cassandra	has	no	single
point	of	failure—and	therefore	no	need	for	complex	sharding	or	leader	election.	But	how
does	Cassandra	avoid	sharding?

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed	hash	table
Cassandra	is	able	to	achieve	both	availability	and	scalability	using	a	data	structure	that
allows	any	node	in	the	system	to	easily	determine	the	location	of	a	particular	key	in	the
cluster.	This	is	accomplished	by	using	a	distributed	hash	table	(DHT)	design	based	on
the	Amazon	Dynamo	architecture.

As	we	saw	in	the	previous	diagram,	Cassandra’s	topology	is	arranged	in	a	ring,	where
each	node	owns	a	particular	range	of	data.	Keys	are	assigned	to	a	specific	node	using	a
process	called	consistent	hashing,	which	allows	nodes	to	be	added	or	removed	without
having	to	rehash	every	key	based	on	the	new	range.

The	node	that	owns	a	given	key	is	determined	by	the	chosen	partitioner.	Cassandra	ships
with	several	partitioner	implementations	or	developers	can	define	their	own	by
implementing	a	Java	interface.

These	topics	will	be	covered	in	greater	detail	in	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication
One	of	the	most	important	aspects	of	a	distributed	data	store	is	the	manner	in	which	it
handles	replication	of	data	across	the	cluster.	If	each	partition	were	only	stored	on	a	single
node,	the	system	would	effectively	possess	many	single	points	of	failure,	and	a	failure	of
any	node	could	result	in	catastrophic	data	loss.	Such	systems	must	therefore	be	able	to
replicate	data	across	multiple	nodes,	making	the	occurrence	of	such	loss	less	likely.

Cassandra	has	a	sophisticated	replication	system,	offering	rack	and	data	center	awareness.
This	means	it	can	be	configured	to	place	replicas	in	such	a	manner	so	as	to	maintain
availability	even	during	otherwise	catastrophic	events	such	as	switch	failures,	network
partitions,	or	data	center	outages.	Cassandra	also	includes	a	mechanism	that	maintains	the
replication	factor	during	node	failures.

Replication	across	data	centers
Perhaps	the	most	unique	feature	Cassandra	provides	to	achieve	high	availability	is	its
multiple	data	center	replication	system.	This	system	can	be	easily	configured	to	replicate
data	across	either	physical	or	virtual	data	centers.	This	facilitates	geographically	dispersed
data	center	placement	without	complex	schemes	to	keep	data	in	sync.	It	also	allows	you	to
create	separate	data	centers	for	online	transactions	and	heavy	analysis	workloads,	while
allowing	data	written	in	one	data	center	to	be	immediately	reflected	in	others.

Chapters	3,	Replication,	and	Chapter	4,	Data	Centers,	will	provide	a	complete	discussion
of	Cassandra’s	extensive	replication	features.

www.it-ebooks.info

http://www.it-ebooks.info/

Tunable	consistency
Closely	related	to	replication	is	the	idea	of	consistency,	the	C	in	ACID	that	attempts	to
keep	replicas	in	sync.	Cassandra	is	often	referred	to	as	an	eventually	consistent	system,	a
term	that	can	cause	fear	and	trembling	for	those	who	have	spent	many	years	relying	on	the
strong	consistency	characteristics	of	their	favorite	relational	databases.	However,	as
previously	discussed,	consistency	should	be	thought	of	as	a	continuum,	not	as	an	absolute.

With	this	in	mind,	Cassandra	can	be	more	accurately	described	as	having	tunable
consistency,	where	the	precise	degree	of	consistency	guarantee	can	be	specified	on	a	per-
statement	level.	This	gives	the	application	architect	ultimate	control	over	the	trade-offs
between	consistency,	availability,	and	performance	at	the	call	level—rather	than	forcing	a
one-size-fits-all	strategy	onto	every	use	case.

The	CAP	theorem
Any	discussion	of	consistency	would	be	incomplete	without	at	least	reviewing	the	CAP
theorem.	The	CAP	acronym	refers	to	three	desirable	properties	in	a	replicated	system:

	
Consistency:	This	means	that	the	data	should	appear	identical	across	all	nodes	in	the
cluster
Availability:	This	means	that	the	system	should	always	be	available	to	receive
requests
Partition	tolerance:	This	means	that	the	system	should	continue	to	function	in	the
event	of	a	partial	failure

In	2000,	computer	scientist	Eric	Brewer	from	the	University	of	California,	Berkeley,
posited	that	a	replicated	service	can	choose	only	two	of	the	three	properties	for	any	given
operation.

The	CAP	theorem	has	been	widely	misappropriated	to	suggest	that	entire	systems	must
choose	only	two	of	the	properties,	which	has	led	many	to	characterize	databases	as	either
AP	or	CP.	In	fact,	most	systems	do	not	fit	cleanly	into	either	category,	and	Cassandra	is	no
different.

Brewer	himself	addressed	this	misguided	interpretation	in	his	2012	article,	CAP	Twelve
Years	Later:	How	the	“Rules”	Have	Changed:

…	all	three	properties	are	more	continuous	than	binary.	Availability	is	obviously
continuous	from	0	to	100	percent,	but	there	are	also	many	levels	of	consistency,	and
even	partitions	have	nuances,	including	disagreement	within	the	system	about
whether	a	partition	exists

In	that	same	article,	Brewer	also	pointed	out	that	the	definition	of	consistency	in	ACID
terms	differs	from	the	CAP	definition.	In	ACID,	consistency	refers	to	the	guarantee	that
all	database	rules	will	be	followed	(unique	constraints,	foreign	key	constraints,	and	the
like).	The	consistency	in	CAP,	on	the	other	hand,	as	clarified	by	Brewer	refers	only	to
single-copy	consistency,	a	strict	subset	of	ACID	consistency.

www.it-ebooks.info

http://www.it-ebooks.info/

Note
When	considering	the	various	trade-offs	of	Cassandra’s	consistency	level	options,	it’s
important	to	keep	in	mind	that	the	CAP	properties	exist	on	a	continuum	rather	than	as
binary	choices.

The	bottom	line	is	that	it’s	important	to	bear	this	continuum	in	mind	when	designing	a
system	based	on	Cassandra.	Refer	to	Chapter	3,	Replication,	for	additional	details	on
properly	tuning	Cassandra’s	consistency	level	under	a	variety	of	circumstances.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
By	now,	you	should	have	a	solid	understanding	of	Cassandra’s	approach	to	availability
and	why	the	fundamental	design	decisions	were	made.	In	the	later	chapters,	we’ll	take	a
deeper	look	at	the	following	ideas:

	
Configuring	Cassandra	for	high	availability
Designing	highly	available	applications	on	Cassandra
Avoiding	common	antipatterns
Handling	various	failure	scenarios

By	the	end	of	this	book,	you	should	possess	a	solid	grasp	of	these	concepts	and	be
confident	that	you’ve	successfully	deployed	one	of	the	most	robust	and	scalable	database
platforms	available	today.

However,	we	need	to	take	it	a	step	at	a	time,	so	in	the	next	few	chapters,	we	will	build	a
deeper	understanding	of	how	Cassandra	manages	data.	This	foundation	will	be	necessary
for	the	topics	covered	later	in	the	book.	We’ll	start	with	a	discussion	of	Cassandra’s	data
placement	strategy	in	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Data	Distribution
Cassandra’s	peer-to-peer	architecture	and	scalability	characteristics	are	directly	tied	to	its
data	placement	scheme.	Cassandra	employs	a	distributed	hash	table	data	structure	that
allows	data	to	be	stored	and	retrieved	by	a	key	quickly	and	efficiently.	Consistent	hashing
is	the	core	of	this	strategy	as	it	enables	all	nodes	to	understand	where	data	exists	in	the
cluster	without	complicated	coordination	mechanisms.

In	this	chapter,	we’ll	cover	the	following	topics:

	
The	fundamentals	of	distributed	hash	tables
Cassandra’s	consistent	hashing	mechanism
Token	assignment,	both	manual	and	using	virtual	nodes	(vnodes)
The	implications	of	Cassandra’s	partitioner	implementations
Formation	of	hotspots	in	the	cluster

By	the	time	you	finish	this	chapter,	you	should	have	a	deep	understanding	of	these
concepts.	Let’s	begin	with	some	basics	about	hash	tables	in	general,	and	then	we	can	delve
deeper	into	Cassandra’s	distributed	hash	table	implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Hash	table	fundamentals
Most	developers	have	experience	with	hash	tables	in	some	form,	as	nearly	all
programming	languages	include	hash	table	implementations.	Hash	tables	store	data	by
applying	a	hash	function	to	the	object,	which	determines	its	placement	in	an	underlying
array.

While	a	detailed	description	of	hashing	algorithms	is	out	of	scope	of	this	book,	it	is
sufficient	for	you	to	understand	that	a	hash	function	simply	maps	any	input	data	object
(which	might	be	any	size)	to	some	expected	output.	While	the	input	might	be	large,	the
output	of	the	hash	function	will	be	a	fixed	number	of	bits.

In	a	typical	hash	table	design,	the	result	of	the	hash	function	is	divided	by	the	number	of
array	slots;	the	remainder	then	becomes	the	assigned	slot	number.	Thus,	the	slot	can	be
computed	using	hash(o)	%	n,	where	o	is	the	object	and	n	is	the	number	of	slots.	Consider
the	following	hash	table	with	names	as	keys	and	addresses	as	values:

In	the	preceding	diagram,	the	values	in	the	table	on	the	left	represent	keys,	which	are
hashed	using	the	hash	function	to	produce	the	index	of	the	slot	where	the	value	is	stored.
Our	input	objects	(John,	Jane,	George,	and	Sue),	are	put	through	the	hash	function,	which
results	in	an	integer	value.	This	value	becomes	the	index	in	an	array	of	street	addresses.
We	can	look	up	the	street	address	of	a	given	name	by	computing	its	hash,	then	accessing
the	resulting	array	index.

This	method	works	well	when	the	number	of	slots	is	stable	or	when	the	order	of	the
elements	can	be	managed	in	a	predictable	way	by	a	single	owner.	There	are	additional
complexities	in	hash	table	design,	specifically	around	avoiding	hash	collisions,	but	the
basic	concept	remains	straightforward.

However,	the	situation	gets	a	bit	more	complicated	when	multiple	clients	of	the	hash	table
need	to	stay	in	sync.	All	these	clients	need	to	consistently	produce	the	same	hash	result
even	as	the	elements	themselves	might	be	moving	around.	Let’s	examine	the	distributed
hash	table	architecture	and	the	means	by	which	it	solves	this	problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributing	hash	tables
When	we	take	the	basic	idea	of	a	hash	table	and	partition	it	out	to	multiple	nodes,	it	gives
us	a	distributed	hash	table	(DHT).	Each	node	in	the	DHT	must	share	the	same	hash
function	so	that	hash	results	on	one	node	match	the	results	on	all	others.

In	order	to	determine	the	location	of	a	given	piece	of	data	in	the	cluster,	we	need	some
means	to	associate	an	object	with	the	node	that	owns	it.	We	can	ask	every	node	in	the
cluster,	but	this	will	be	problematic	for	at	least	two	important	reasons:	first,	this	strategy
doesn’t	scale	well	as	the	overhead	will	grow	with	the	number	of	nodes;	second,	every
node	in	the	cluster	will	have	to	be	available	to	answer	requests	in	order	to	definitively
state	that	a	given	item	does	not	exist.	A	shared	index	can	address	this,	but	the	result	will	be
additional	complexity	and	another	point	of	failure.

Therefore,	a	key	objective	of	the	hash	function	in	a	DHT	is	to	map	a	key	to	the	node	that
owns	it,	such	that	a	request	can	be	made	to	the	correct	node.	However,	the	simple	hash
function	discussed	previously	is	no	longer	appropriate	to	map	data	to	a	node.	The	simple
hash	is	problematic	in	a	distributed	system	because	n	translates	to	the	number	of	nodes	in
the	cluster—and	we	know	that	n	changes	as	nodes	are	added	or	removed.	To	illustrate	this,
we	can	modify	our	hash	table	to	store	pointers	to	machine	IP	addresses	instead	of	street
addresses.

In	this	case,	keys	are	mapped	to	a	specific	machine	in	the	distributed	hash	table	that	holds
the	value	for	the	key.	Now,	each	key	in	the	table	can	be	mapped	to	its	location	in	the
cluster	with	a	simple	lookup.	However,	if	we	alter	the	cluster	size	(by	adding	or	removing
nodes),	the	result	of	the	computation—and	therefore	the	node	mapping—changes	for
every	object!	Let’s	see	what	happens	when	a	node	is	removed	from	the	cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

When	a	node	is	removed	from	the	cluster,	the	result	is	that	the	subsequent	hash	buckets
are	shifted,	which	causes	the	keys	to	point	to	different	nodes.	Note	that	after	removing
node	3,	the	number	of	buckets	is	reduced.	As	previously	described,	this	changes	the	result
of	the	hash	function,	causing	the	old	mappings	to	become	unusable.	This	will	be
catastrophic	as	all	key	lookups	will	point	to	the	wrong	node.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistent	hashing
To	solve	the	problem	of	locating	a	key	in	a	distributed	hash	table,	we	use	a	technique
called	consistent	hashing.	Introduced	as	a	term	in	1997,	consistent	hashing	was	originally
used	as	a	means	of	routing	requests	among	large	numbers	of	web	servers.	It’s	easy	to	see
how	the	Web	can	benefit	from	a	hash	mechanism	that	allows	any	node	in	the	network	to
efficiently	determine	the	location	of	an	object,	in	spite	of	the	constant	shifting	of	nodes	in
and	out	of	the	network.	This	is	the	fundamental	objective	of	consistent	hashing.

www.it-ebooks.info

http://www.it-ebooks.info/

The	mechanics	of	consistent	hashing
With	consistent	hashing,	the	buckets	are	arranged	in	a	ring	with	a	predefined	range;	the
exact	range	depends	on	the	partitioner	being	used.	Keys	are	then	hashed	to	produce	a
value	that	lies	somewhere	along	the	ring.	Nodes	are	assigned	a	range,	which	is	computed
as	follows:

Range	start Range	end

Token	value Next	token	value	-	1

Note
The	following	examples	assume	that	the	default	Murmur3Partitioner	is	used.	For	more
information	on	this	partitioner,	take	a	look	at	the	documentation	at
http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architecturePartitionerM3P_c.html

For	a	five-node	cluster,	a	ring	with	evenly	distributed	token	ranges	would	look	like	the
following	diagram,	presuming	the	default	Murmur3Partitioner	is	used:

In	the	preceding	diagram,	the	primary	replica	for	each	key	is	assigned	to	a	node	based	on
its	hashed	value.	Each	node	is	responsible	for	the	region	of	the	ring	between	itself
(inclusive)	and	its	predecessor	(exclusive).

This	diagram	represents	data	ranges	(the	letters)	and	the	nodes	(the	numbers)	that	own
these	ranges.	It	might	also	be	helpful	to	visualize	this	in	a	table	form,	which	might	be
more	familiar	to	those	who	have	used	the	nodetool	ring	command	to	view	Cassandra’s
topology.

Node Range	start Range	end

1 5534023222112865485 -9223372036854775808

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architecturePartitionerM3P_c.html
http://www.it-ebooks.info/

2 -9223372036854775807 -5534023222112865485

3 -5534023222112865484 -1844674407370955162

4 -1844674407370955161 1844674407370955161

5 1844674407370955162 5534023222112865484

When	Cassandra	receives	a	key	for	either	a	read	or	a	write,	the	hash	function	is	applied	to
the	key	to	determine	where	it	lies	in	the	range.	Since	all	nodes	in	the	cluster	are	aware	of
the	other	nodes’	ranges,	any	node	can	handle	a	request	for	any	other	node’s	range.	The
node	receiving	the	request	is	called	the	coordinator,	and	any	node	can	act	in	this	role.	If	a
key	does	not	belong	to	the	coordinator’s	range,	it	forwards	the	request	to	replicas	in	the
correct	range.

Following	the	previous	example,	we	can	now	examine	how	our	names	might	map	to	a
hash,	using	the	Murmur3	hash	algorithm.	Once	the	values	are	computed,	they	can	be
matched	to	the	range	of	one	of	the	nodes	in	the	cluster,	as	follows:

Name Hash	value Node	assignment

John -3916187946103363496 3

Jane 4290246218330003133 5

George -7281444397324228783 2

Sue -8489302296308032607 2

The	placement	of	these	keys	might	be	easier	to	understand	by	visualizing	their	position	in
the	ring.

www.it-ebooks.info

http://www.it-ebooks.info/

The	hash	value	of	the	name	keys	determines	their	placement	in	the	cluster

Now	that	you	understand	the	basics	of	consistent	hashing,	let’s	turn	our	focus	to	the
mechanism	by	which	Cassandra	assigns	data	ranges.

www.it-ebooks.info

http://www.it-ebooks.info/

Token	assignment
In	Cassandra	terminology,	the	start	of	the	hash	range	is	called	a	token,	and	until	version
1.2,	each	node	was	assigned	a	single	token	in	the	manner	discussed	in	the	previous
section.	Version	1.2	introduced	the	option	to	use	vnodes,	as	the	feature	is	officially	termed.
vnodes	became	the	default	option	in	the	2.0	release.

Cassandra	determines	where	to	place	data	using	the	tokens	assigned	to	each	node.	Nodes
learn	about	these	token	assignments	via	gossip.	Additional	replicas	are	then	placed	based
on	the	configured	replication	strategy	and	snitch.	More	details	about	replica	placement	can
be	found	in	Chapter	3,	Replication.

www.it-ebooks.info

http://www.it-ebooks.info/

Manually	assigned	tokens
If	you’re	running	a	version	prior	to	1.2	or	if	you	have	chosen	not	to	use	vnodes,	you	will
have	to	assign	tokens	manually.	This	is	accomplished	by	setting	the	initial_token	in
cassandra.yaml.

Manual	token	assignment	introduces	a	number	of	potential	issues:

	
Adding	and	removing	nodes:	When	the	size	of	the	ring	changes,	all	tokens	must	be
recomputed	and	then	assigned	to	their	nodes	using	nodetool	move.	This	causes	a
significant	amount	of	administrative	overhead	for	a	large	cluster.
Node	rebuilds:	In	case	of	a	node	rebuild,	only	a	few	nodes	can	participate	in
bootstrapping	the	replacement,	leading	to	significant	service	degradation.	We’ll
discuss	this	in	detail	later	in	this	chapter.
Hotspots:	In	some	cases,	the	relatively	large	range	assigned	to	each	node	can	cause
hotspots	if	data	is	not	evenly	distributed.
Heterogeneous	clusters:	With	every	node	assigned	a	single	token,	the	expectation	is
that	all	nodes	will	hold	the	same	amount	of	data.	Attempting	to	subdivide	ranges	to
deal	with	nodes	of	varying	sizes	is	a	difficult	and	error-prone	task.

Because	of	these	issues,	the	use	of	vnodes	is	highly	recommended	for	any	new
installation.	For	existing	installations,	migrating	to	vnodes	will	improve	the	performance,
reliability,	and	administrative	requirements	of	your	cluster,	especially	during	topology
changes	and	failure	scenarios.

Tip
Use	vnodes	whenever	possible	to	avoid	issues	with	topology	changes,	node	rebuilds,
hotspots,	and	heterogeneous	clusters.

If	you	must	continue	to	manually	assign	tokens,	make	sure	to	set	the	correct	value	for
initial_token	whenever	any	nodes	are	added	or	removed.	Failure	to	do	so	will	almost
always	result	in	an	unbalanced	ring.	For	information	about	how	to	generate	tokens,	refer
to	the	DataStax	documentation	at
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html

You	can	then	use	the	values	you	generate	as	the	initial_token	settings	for	your	nodes,
with	each	node	getting	one	of	the	values.	It’s	best	to	always	assign	your	tokens	to	the
nodes	in	the	same	order	to	avoid	unnecessary	shuffling	of	data.

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.it-ebooks.info/

vnodes
The	concept	behind	vnodes	is	straightforward.	Instead	of	a	single	token	assigned	to	each
node,	it	is	now	possible	to	specify	the	number	of	tokens	using	the	num_tokens
configuration	property	in	cassandra.yaml.	The	default	value	is	256,	which	is	sufficient
for	most	use	cases.

Note
When	using	vnodes,	use	nodetool	status	instead	of	nodetool	ring	as	the	latter	will
output	a	row	for	every	token	across	the	cluster.	Using	nodetool	status	results	in	a	much
more	readable	output.

The	following	diagram	illustrates	a	cluster	without	vnodes	compared	to	one	with	vnodes
enabled:

In	the	preceding	diagram,	each	numbered	node	is	represented	as	a	slice	of	the	ring,	where
the	tokens	are	represented	as	letters.	Note	that	tokens	are	assigned	randomly.	Remember
that	the	letters	represent	ranges	of	data.	You’ll	notice	that	there	are	more	ranges	than	nodes
after	enabling	vnodes,	and	each	node	now	owns	multiple	ranges.

How	vnodes	improve	availability
While	technically	the	cluster	remains	available	during	topology	changes	and	node
rebuilds,	the	level	of	degraded	service	has	the	potential	to	impact	availability	if	the	system
remains	under	significant	load.	vnodes	offer	a	simple	solution	to	the	problems	associated
with	manually	assigned	tokens.	Let’s	examine	the	reasons	why	this	is	the	case.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	and	removing	nodes

There	are	many	reasons	to	change	the	size	of	a	cluster.	Perhaps	you’re	increasing	capacity
for	an	anticipated	growth	in	data	or	transaction	volume,	or	maybe	you’re	adding	a	data
center	for	increased	availability.

Considering	that	the	objective	is	to	handle	greater	load	or	provide	additional	redundancy,
any	significant	performance	degradation	while	adding	or	bootstrapping	a	new	node	is
unacceptable	as	it	counteracts	these	goals.	Often	in	modern	high-scale	applications,	slow
is	the	same	as	unavailable.	Equally	important	is	to	ensure	that	new	nodes	receive	a
balanced	share	of	the	data.

vnodes	improve	the	bootstrapping	process	substantially	because:

	
More	nodes	can	participate	in	data	transfer:	Since	the	token	ranges	are	more
dispersed	throughout	the	cluster,	adding	a	new	node	involves	ranges	from	a	greater
number	of	the	existing	nodes.	As	a	result,	machines	involved	in	the	transfer	end	up
under	less	load	than	without	vnodes,	thus	increasing	availability	of	those	ranges.
Token	assignment	is	automatic:	Cassandra	handles	the	allocation	of	tokens,	so
there’s	no	need	to	manually	recalculate	and	reassign	a	new	token	for	every	node	in
the	cluster.	As	a	result,	the	ring	becomes	naturally	balanced	on	its	own.

Node	rebuilding

Rebuilding	a	node	is	a	relatively	common	operation	in	a	large	cluster,	as	nodes	will	fail	for
a	variety	of	reasons.	Cassandra	provides	a	mechanism	to	automatically	rebuild	a	failed
node	using	replicated	data.

When	each	node	owns	only	a	single	token,	that	node’s	entire	data	set	is	replicated	to	a
number	of	nodes	equal	to	the	replication	factor	minus	one.	For	example,	with	a	replication
factor	of	three,	all	the	data	on	a	given	node	will	be	replicated	to	two	other	nodes
(replication	will	be	covered	in	detail	in	Chapter	3,	Replication).	However,	Cassandra	will
only	use	one	replica	in	the	rebuild	operation.

So	in	this	case,	a	rebuild	operation	involves	three	nodes,	placing	a	high	load	on	all	three.
Imagine	that	we	have	a	six-node	cluster,	and	node	2	has	failed,	requiring	a	rebuild.	In	the
following	diagram,	note	that	each	node	only	contains	replicas	for	three	tokens,	preventing
two	of	the	nodes	from	participating	in	the	rebuild:

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	rebuilding	of	node	2,	only	nodes	1,	3,	and	4	can	participate	because	they	contain	the
required	replicas.	We	can	assume	that	reads	and	writes	continue	during	this	process.	With
one	node	down	and	three	working	hard	to	rebuild	it,	we	now	have	only	two	out	of	six
nodes	operating	at	full	capacity!	Even	worse,	token	ranges	A	and	B	reside	entirely	on
nodes	that	are	being	taxed	by	this	process,	which	can	result	in	overburdening	the	entire
cluster	due	to	slow	response	times	for	these	operations.

vnodes	provide	significant	benefits	over	manual	token	management	for	the	rebuild
process,	as	they	distribute	the	load	over	many	more	nodes.	This	concept	is	the	same	as	the
benefit	gained	during	the	bootstrapping	process.	Since	each	node	contains	replicas	for	a
larger	(and	random)	variety	of	the	available	tokens,	Cassandra	can	use	these	replicas	in	the
rebuild	process.	Consider	the	following	diagram	of	the	same	rebuild	using	vnodes:

www.it-ebooks.info

http://www.it-ebooks.info/

With	vnodes,	all	nodes	can	participate	in	rebuilding	node	2	because	the	tokens	are	spread
more	evenly	across	the	cluster.	In	the	preceding	diagram,	you	can	see	that	rebuilding	node
2	now	involves	the	entire	cluster,	thus	distributing	the	workload	more	evenly.	This	means
each	individual	node	is	doing	less	work	than	without	vnodes,	resulting	in	greater
operational	stability.

Heterogeneous	nodes

While	it	might	be	straightforward	to	initially	build	your	Cassandra	cluster	with	machines
that	are	all	identical,	at	some	point	older	machines	will	need	to	be	replaced	with	newer
ones.	This	can	create	issues	while	manually	assigning	tokens	since	it	can	become	difficult
to	effectively	choose	the	right	tokens	to	produce	a	balanced	result.	This	is	especially
problematic	when	adding	or	removing	nodes,	as	it	would	become	necessary	to	recompute
the	tokens	to	achieve	a	proper	balance.

vnodes	ease	this	effort	by	allowing	you	to	specify	a	number	of	tokens,	instead	of	having	to
determine	specific	ranges.	It	is	much	easier	to	choose	a	proportionally	larger	number	for
newer,	more	powerful	nodes	than	it	is	to	determine	proper	token	ranges.

www.it-ebooks.info

http://www.it-ebooks.info/

Partitioners
You	might	recall	from	the	earlier	discussion	of	distributed	hash	tables	that	keys	are
mapped	to	nodes	via	an	implementation-specific	hash	function.	In	Cassandra’s
architecture,	this	function	is	determined	by	the	partitioner	you	choose.	This	is	a	cluster-
wide	setting	specified	in	cassandra.yaml.	As	of	version	1.2,	there	are	three	options:

	
Murmur3Partitioner:	This	produces	an	even	distribution	of	data	across	the	cluster
using	the	MurmurHash	algorithm.	This	is	the	default	as	of	version	1.2,	and	should	not
be	changed	as	it	is	measurably	faster	than	the	RandomPartitioner.
RandomPartitioner:	This	is	similar	to	the	Murmur3Partitioner,	except	that	it
computes	an	MD5	hash.	This	was	the	default	prior	to	version	1.2.
ByteOrderedPartitioner:	This	places	keys	in	byte	order	(lexically)	around	the	ring.
This	partitioner	should	generally	be	avoided	for	reasons	explained	in	this	section.

The	only	reason	to	switch	from	the	default	Murmur3Partitioner	to	ByteOrderedPartitioner
would	be	to	enable	range	queries	on	keys	(range	queries	on	columns	are	always	possible).
However,	this	decision	must	be	carefully	weighed	as	there	is	a	high	likelihood	that	you’ll
end	up	with	hotspots.

www.it-ebooks.info

http://www.it-ebooks.info/

Hotspots
Let’s	assume,	for	example,	that	you’re	storing	an	address	book,	where	the	keys	represent
the	last	name	of	the	contact.	You	want	to	use	ByteOrderedPartitioner	so	you	can	search	for
all	names	between	Smith	and	Watson.	Using	2000	United	States	Census	data	as	a	guide,
let’s	assume	the	distribution	is	as	follows:

As	one	would	expect,	last	names	in	the	United	States	are	not	evenly	distributed	by	the	first
letter.	In	fact,	the	distribution	is	quite	uneven	and	this	imbalance	translates	directly	to	the
data	stored	in	Cassandra.	If	we	presume	that	each	node	owns	a	subset	of	the	keys
alphabetically,	the	result	will	resemble	the	following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

When	using	the	ByteOrderedPartitioner,	a	table	with	the	last	name	as	the	key	is	likely	to
result	in	uneven	data	distribution.	The	preceding	diagram	clearly	shows	that	the	resulting
distribution	produces	hotspots	in	nodes	1	and	4,	while	node	5	is	significantly
underutilized.	One	perhaps	less	obvious	side	effect	of	this	imbalance	is	the	impact	on
reads	and	writes.	If	we	presume	that	both	reads	and	writes	follow	the	same	distribution	as
the	data	itself	(which	is	a	logical	assumption	in	this	specific	case),	the	heavier	data	nodes
will	also	be	required	to	handle	more	operations	than	the	lighter	data	nodes.

Effects	of	scaling	out	using	ByteOrderedPartitioner
As	is	often	the	case	in	large	systems,	scaling	out	does	not	help	to	address	this	problem.	In
fact,	the	imbalance	only	gets	worse	when	nodes	are	added.	Using	the	same	data
distribution	from	the	previous	example,	let’s	increase	the	size	of	the	cluster	to	13	nodes	to
illustrate	this	point:

www.it-ebooks.info

http://www.it-ebooks.info/

The	effects	of	hotspotting	increased	with	the	cluster	size

Obviously,	we	now	have	a	significant	problem.	While	in	the	five-node	cluster,	only	one
node	was	significantly	underutilized,	the	larger	cluster	has	eight	out	of	13	nodes	doing	half
or	less	than	half	of	the	work	as	compared	to	the	other	nodes!	In	fact,	two	of	the	nodes	own
almost	no	data	at	all.

A	time-series	example
Perhaps	the	most	common	use	case	for	Cassandra	is	storing	time-series	data.	Let’s	assume
our	use	case	involves	writing	log-style	data,	where	we’re	always	writing	current
timestamps	and	reading	from	relatively	recent	ranges	of	time.	These	are	typical	operations
involved	in	time-series	use	cases,	so	it’s	natural	to	ask,	“How	can	I	query	my	data	by	date
range?”.

You’ll	recall	that	range	queries	on	columns	in	Cassandra	are	possible	using	any	partitioner,
but	only	the	ByteOrderedPartitioner	allows	key-based	range	queries.	Thus	it’s	a	common
mistake	to	build	a	time-series	model	using	time	as	a	key,	and	rely	on	ordering	from	the
ByteOrderedPartitioner	to	perform	range	queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s	assume	we	have	a	six-node	cluster	where	the	key	corresponds	to	the	time	of	day.	If
you	are	always	writing	current	time,	your	writes	will	always	go	to	a	single	node!	Even
worse,	presuming	you	are	reading	recent	ranges,	your	reads	will	also	go	to	that	same	node.
The	following	diagram	illustrates	what	happens	when	log	data	is	being	written	while	the
application	is	also	requesting	recent	logs:

Time-series	reads	and	writes	using	the	ByteOrderdPartitioner	will	concentrate	on	a	small
subset	of	nodes.	As	you	can	see,	node	2	is	the	only	node	doing	any	work.	Each	time	the
hour	shifts,	the	workload	will	move	to	the	next	node	in	the	ring.	While	the	distribution	of
data	in	this	model	might	be	balanced	(or	it	might	not,	depending	on	whether	the
application	is	busier	at	certain	times),	the	workload	will	always	experience	hotspots.

We	will	discuss	some	more	appropriate	time-series	data	modeling	techniques	in	detail	in
Chapter	7,	Modeling	for	High	Availability.	For	now,	consider	it	sufficient	that	you
understand	the	implications	of	choosing	the	ByteOrderedPartitioner	over	one	of	the	other
options	that	uses	a	random	hash	function.

Note
In	almost	all	cases,	the	Murmur3Partitioner	is	the	right	choice.	Use	of	the
ByteOrderedPartitioner	(or	OrderPreservingPartitioner	prior	to	version	1.2)	should	be	used
with	great	caution,	and	can	usually	be	avoided	by	altering	the	data	model.

If	you	choose	to	use	ByteOrderedPartitioner,	just	remember	that	you	will	need	to	keep	a
close	watch	on	your	data	distribution.	Also,	you	will	have	to	ensure	that	your	reads	and
writes	can	be	accomplished	without	overloading	a	subset	of	your	nodes.	In	practice,	it’s
rarely	necessary	to	store	keys	in	order	if	you	model	your	data	correctly.

In	Chapter	7,	Modeling	for	High	Availability,	we’ll	discuss	a	number	of	data	modeling
strategies	that	can	enable	range	queries	without	the	drawbacks	of	the
ByteOrderedPartitioner.	For	now,	it’s	best	to	assume	that	the	Murmur3Partitioner	is	the
safest	choice,	and	this	follows	the	recommendation	made	by	Cassandra’s	core	developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
At	this	point,	you	should	have	a	strong	grasp	of	Cassandra’s	data	distribution	architecture,
including	consistent	hashing,	tokens,	vnodes,	and	partitioners,	as	well	as	some	of	the
causes	of	data	hotspots.	Your	understanding	of	these	fundamentals	will	help	you	to	make
sound	design	decisions	that	enable	you	to	scale	your	cluster	effectively	and	get	the	most
out	of	your	infrastructure	investment.

In	this	chapter	and	the	previous	one,	we	made	reference	to	replication	and	its	related
concepts	a	number	of	times.	In	the	next	chapter,	we’ll	discuss	replication	in	depth	as
replication	is	very	important	in	determining	the	availability	of	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	Replication
Replication	is	perhaps	the	most	critical	feature	of	a	distributed	data	store,	as	it	would
otherwise	be	impossible	to	make	any	sort	of	availability	guarantee	in	the	face	of	a	node
failure.	As	you	learned	in	Chapter	1,	Cassandra’s	Approach	to	High	Availability,
Cassandra	employs	a	sophisticated	replication	system	that	allows	fine-grained	control	over
replica	placement	and	consistency	guarantees.

In	this	chapter,	we’ll	explore	Cassandra’s	replication	mechanism	in	depth,	including	the
following	topics:

	
The	replication	factor
How	replicas	are	placed
How	Cassandra	resolves	consistency	issues
Maintaining	replication	factor	during	node	failures
Consistency	levels
Choosing	the	right	replication	factor	and	consistency	level

At	the	end	of	this	chapter,	you’ll	be	able	understand	how	to	configure	replication	and	tune
consistency	for	your	specific	use	cases.	You’ll	be	able	to	intelligently	choose	options	that
will	provide	the	fault	tolerance	and	consistency	guarantees	that	are	appropriate	for	your
application.

Let’s	start	with	the	basics:	how	Cassandra	determines	the	number	of	replicas	to	be	created
and	where	to	locate	them	in	the	cluster.	We’ll	begin	the	discussion	with	a	feature	that
you’ll	encounter	the	very	first	time	you	create	a	keyspace:	the	replication	factor.

www.it-ebooks.info

http://www.it-ebooks.info/

The	replication	factor
On	the	surface,	setting	the	replication	factor	seems	to	be	a	fundamentally	straightforward
idea.	You	configure	Cassandra	with	the	number	of	replicas	you	want	to	maintain	(during
keyspace	creation),	and	the	system	dutifully	performs	the	replication	for	you,	thus
protecting	you	when	something	goes	wrong.	So	by	defining	a	replication	factor	of	three,
you	will	end	up	with	a	total	of	three	copies	of	the	data.	There	are	a	number	of	variables	in
this	equation,	and	we’ll	cover	many	of	these	in	detail	in	this	chapter.	Let’s	start	with	the
basic	mechanics	of	setting	the	replication	factor.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication	strategies
One	thing	you’ll	quickly	notice	is	that	the	semantics	to	set	the	replication	factor	depend	on
the	replication	strategy	you	choose.	The	replication	strategy	tells	Cassandra	exactly	how
you	want	replicas	to	be	placed	in	the	cluster.

There	are	two	strategies	available:

	
SimpleStrategy:	This	strategy	is	used	for	single	data	center	deployments.	It	is	fine	to
use	this	for	testing,	development,	or	simple	clusters,	but	discouraged	if	you	ever
intend	to	expand	to	multiple	data	centers	(including	virtual	data	centers	such	as	those
used	to	separate	analysis	workloads).
NetworkTopologyStrategy:	This	strategy	is	to	be	used	when	you	have	multiple	data
centers,	or	if	you	think	you	might	have	multiple	data	centers	in	the	future.	In	other
words,	you	should	use	this	strategy	for	your	production	cluster.

SimpleStrategy
As	a	way	of	introducing	this	concept,	we’ll	start	with	an	example	using	SimpleStrategy.
The	following	Cassandra	Query	Language	(CQL)	block	will	allow	us	to	create	a
keyspace	called	AddressBook	with	three	replicas:
CREATE	KEYSPACE	AddressBook

		WITH	REPLICATION	=	{	

				‘class’	:	‘SimpleStrategy’,

				‘replication_factor’	:	3

		};

You	will	recall	from	the	previous	chapter’s	section	on	token	assignment	that	data	is
assigned	to	a	node	via	a	hash	algorithm,	resulting	in	each	node	owning	a	range	of	data.
Let’s	take	another	look	at	the	placement	of	our	example	data	on	the	cluster.	Remember	the
keys	are	first	names,	and	we	determined	the	hash	using	the	Murmur3	hash	algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

The	primary	replica	for	each	key	is	assigned	to	a	node	based	on	its	hashed	value.	Each
node	is	responsible	for	the	region	of	the	ring	between	itself	(inclusive)	and	its	predecessor
(exclusive).

While	using	SimpleStrategy,	Cassandra	will	locate	the	first	replica	on	the	owner	node
(the	one	determined	by	the	hash	algorithm),	then	walk	the	ring	in	a	clockwise	direction	to
place	each	additional	replica,	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Additional	replicas	are	placed	in	adjacent	nodes	when	using	manually	assigned	tokens

In	the	preceding	diagram,	the	keys	in	bold	represent	the	primary	replicas	(the	ones	placed
on	the	owner	nodes),	with	subsequent	replicas	placed	in	adjacent	nodes,	moving	clockwise
from	the	primary.

Although	each	node	owns	a	set	of	keys	based	on	its	token	range(s),	there	is	no	concept	of
a	master	replica.	In	Cassandra,	unlike	make	other	database	designs,	every	replica	is	equal.
This	means	reads	and	writes	can	be	made	to	any	node	that	holds	a	replica	of	the	requested
key.

If	you	have	a	small	cluster	where	all	nodes	reside	in	a	single	rack	inside	one	data	center,
SimpleStrategy	will	do	the	job.	This	makes	it	the	right	choice	for	local	installations,
development	clusters,	and	other	similar	simple	environments	where	expansion	is	unlikely
because	there	is	no	need	to	configure	a	snitch	(which	will	be	covered	later	in	this	section).

For	production	clusters,	however,	it	is	highly	recommended	that	you	use
NetworkTopologyStrategy	instead.	This	strategy	provides	a	number	of	important	features
for	more	complex	installations	where	availability	and	performance	are	paramount.

NetworkTopologyStrategy
When	it’s	time	to	deploy	your	live	cluster,	NetworkTopologyStrategy	offers	two
additional	properties	that	make	it	more	suitable	for	this	purpose:

	
Rack	awareness:	Unlike	SimpleStrategy,	which	places	replicas	naively,	this	feature
attempts	to	ensure	that	replicas	are	placed	in	different	racks,	thus	preventing	service
interruption	or	data	loss	due	to	failures	of	switches,	power,	cooling,	and	other	similar
events	that	tend	to	affect	single	racks	of	machines.
Configurable	snitches:	A	snitch	helps	Cassandra	to	understand	the	topology	of	the
cluster.	There	are	a	number	of	snitch	options	for	any	type	of	network	configuration.
We’ll	cover	snitches	in	detail	later	in	this	chapter.

Here’s	a	basic	example	of	a	keyspace	using	NetworkTopologyStrategy:
CREATE	KEYSPACE	AddressBook

		WITH	REPLICATION	=	{	

				‘class’	:	‘NetworkTopologyStrategy’,

				‘dc1’	:	3,

				‘dc2’	:	2

		};

In	this	example,	we’re	telling	Cassandra	to	place	three	replicas	in	a	data	center	called	dc1
and	two	replicas	in	a	second	data	center	called	dc2.	We’ll	spend	more	time	discussing	data
centers	in	Chapter	4,	Data	Centers,	but	for	now	it	is	sufficient	to	point	out	that	the	data
center	names	must	match	those	configured	in	the	snitch.

www.it-ebooks.info

http://www.it-ebooks.info/

Snitches
As	discussed	earlier,	Cassandra	is	able	to	intelligently	place	replicas	across	the	cluster	if
you	provide	it	with	enough	information	about	your	topology.	You	give	this	insight	to
Cassandra	through	a	snitch,	which	is	set	using	the	endpoint_snitch	property	in
cassandra.yaml.	The	snitch	is	also	used	to	help	Cassandra	route	client	requests	to	the
closest	nodes	to	reduce	network	latency.

As	of	version	2.0,	there	are	eight	available	snitch	options	(and	you	can	write	your	own	as
well):

	
SimpleSnitch:	This	snitch	is	a	companion	to	the	SimpleStrategy	replication
strategy.	It	is	designed	for	simple	single	data	center	configurations.
RackInferringSnitch:	As	the	name	implies,	this	snitch	attempts	to	infer	your
network	topology.	Using	this	snitch	is	discouraged	because	it	assumes	that	your	IP
addressing	scheme	reflects	your	data	center	and	rack	configuration.	For	this	to	work
properly,	your	addresses	must	be	in	the	following	form:

PropertyFileSnitch:	Using	this	snitch	allows	the	administrator	to	define	which
nodes	belong	in	certain	racks	and	data	centers.	You	can	configure	this	using
cassandra-topology.properties.	Each	node	in	the	cluster	must	be	configured
identically.	You	should	generally	prefer	GossipingPropertyFileSnitch	because	it
handles	the	addition	or	removal	of	nodes	without	the	need	to	update	every	node’s
properties	file.
GossipingPropertyFileSnitch:	Unlike	PropertyFileSnitch,	where	the	entire
topology	must	be	defined	on	every	node,	this	snitch	allows	you	to	configure	each
node	with	its	own	rack	and	data	center,	and	then	Cassandra	gossips	this	information
to	the	other	nodes.
CloudstackSnitch:	This	snitch	sets	data	centers	and	racks	using	Cloudstack’s
country,	location,	and	availability	zone.
GoogleCloudSnitch:	For	Google	Cloud	deployments,	this	snitch	automatically	sets
the	region	as	the	data	center	and	the	availability	zone	as	the	rack.
EC2Snitch:	This	is	similar	to	GoogleCloudSnitch,	but	for	single-region	EC2
deployments.	This	snitch	also	sets	the	region	as	the	data	center	and	the	availability
zone	as	the	rack.
EC2MultiRegionSnitch:	This	snitch	assigns	data	centers	and	racks	identically	to
EC2Snitch,	with	the	difference	being	that	it	supports	using	public	IP	addresses	for
cross-data	center	communications.

Tip

www.it-ebooks.info

http://www.it-ebooks.info/

For	production	installations,	it	is	almost	always	best	to	choose
GossipingPropertyFileSnitch	in	physical	data	center	environments	and	the
appropriate	cloud	snitch	in	cloud	environments.

Since	much	of	the	configuration	related	to	snitches	pertains	to	the	topology	of	our	data
center,	we	will	save	our	detailed	treatment	of	this	topic	for	Chapter	4,	Data	Centers,	which
will	cover	Cassandra’s	multiple	data	center	features	in	detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Maintaining	the	replication	factor	when	a	node	fails
One	key	way	in	which	Cassandra	maintains	fault	tolerance	even	during	node	failure	is
through	a	mechanism	called	hinted	handoff.	If	you	have	set	hinted_handoff_enabled	to
true	in	cassandra.yaml	(which	is	the	default),	and	one	of	the	replica	nodes	is
unreachable	during	a	write,	then	the	system	will	store	a	hint	on	the	coordinator	node	(the
node	that	receives	the	write).	This	hint	contains	the	data	itself	along	with	information
about	where	it	belongs	in	the	cluster.	Hints	are	replayed	to	the	replica	node	once	the
coordinator	learns	via	gossip	that	the	replica	node	is	back	online.

By	default,	Cassandra	stores	hints	for	up	to	three	hours	to	avoid	hint	queues	growing	too
long.	This	time	window	can	be	configured	using	the	max_hint_window_in_ms	property	in
cassandra.yaml.	After	this	time	period,	it	is	necessary	to	run	a	repair	to	restore
consistency.	Chapter	9,	Failing	Gracefully,	will	include	more	in-depth	coverage	of	hinted
handoff	and	how	to	ensure	that	your	system	recovers	from	longer	node	outages.

Now	that	we’ve	covered	the	basics	of	replication,	it’s	time	to	move	on	to	the	closely
related	topic	of	consistency.	In	most	configurations,	there	will	inevitably	be	occasions
when	not	all	replicas	of	a	given	bit	of	data	are	up	to	date.	The	specifics	of	how	and	when
this	occurs	will	be	outlined	later	in	this	chapter.	For	now,	let’s	find	out	how	Cassandra
handles	those	conflicts	when	they	arise.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistency	conflicts
In	Chapter	1,	Cassandra’s	Approach	to	High	Availability,	we	discussed	Cassandra’s
tunable	consistency	characteristics.	For	any	given	call,	it	is	possible	to	achieve	either
strong	consistency	or	eventual	consistency.	In	the	former	case,	we	can	know	for	certain
that	the	copy	of	the	data	that	Cassandra	returns	will	be	the	latest.	In	the	case	of	eventual
consistency,	the	data	returned	may	or	may	not	be	the	latest,	or	there	may	be	no	data
returned	at	all	if	the	node	is	unaware	of	newly	inserted	data.	Under	eventual	consistency,	it
is	also	possible	to	see	deleted	data	if	the	node	you’re	reading	from	has	not	yet	received	the
delete	request.

Depending	on	the	read_repair_chance	setting	and	the	consistency	level	chosen	for	the
read	operation	(more	on	this	in	the	anti-entropy	section	later	in	this	chapter),	Cassandra
might	block	the	client	and	resolve	the	conflict	immediately,	or	this	might	occur
asynchronously.	If	data	in	conflict	is	never	requested,	the	system	will	resolve	the	conflict
the	next	time	nodetool	repair	is	run.

How	does	Cassandra	know	there	is	a	conflict?	Every	column	has	three	parts:	key,	value,
and	timestamp.	Cassandra	follows	last-write-wins	semantics,	which	means	that	the
column	with	the	latest	timestamp	always	takes	precedence.

Now,	let’s	discuss	one	of	the	most	important	knobs	a	developer	can	turn	to	determine	the
consistency	characteristics	of	their	reads	and	writes.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistency	levels
On	every	read	and	write	operation,	the	caller	must	specify	a	consistency	level,	which	lets
Cassandra	know	what	level	of	consistency	to	guarantee	for	that	one	call.	The	following
table	details	the	various	consistency	levels	and	their	effects	on	both	read	and	write
operations:

Consistency
level Reads Writes

ANY This	is	not	supported	for	reads. Data	must	be	written	to	at	least	one	node,	but	permits	writes	via	hinted	handoff.	Effectively	allows	a	write	to	any	node,	even
if	all	nodes	containing	the	replica	are	down.	A	subsequent	read	might	be	impossible	if	all	replica	nodes	are	down.

ONE The	replica	from	the	closest	node	will	be	returned. Data	must	be	written	to	at	least	one	replica	node	(both	commit	log	and	memtable).	Unlike	ANY,	hinted	handoff	writes	are	not
sufficient.

TWO The	replicas	from	the	two	closest	nodes	will	be	returned. The	same	as	ONE,	except	two	replicas	must	be	written.

THREE The	replicas	from	the	three	closest	nodes	will	be	returned. The	same	as	ONE,	except	three	replicas	must	be	written.

QUORUM
Replicas	from	a	quorum	of	nodes	will	be	compared,	and	the	replica	with	the
latest	timestamp	will	be	returned.

Data	must	be	written	to	a	quorum	of	replica	nodes	(both	commit	log	and	memtable)	in	the	entire	cluster,	including	all	data
centers.

SERIAL
Permits	reading	uncommitted	data	as	long	as	it	represents	the	current	state.
Any	uncommitted	transactions	will	be	committed	as	part	of	the	read.

Similar	to	QUORUM,	except	that	writes	are	conditional	based	on	the	support	for	lightweight	transactions.

LOCAL_ONE
Similar	to	ONE,	except	that	the	read	will	be	returned	by	the	closest	replica	in
the	local	data	center.

Similar	to	ONE,	except	that	the	write	must	be	acknowledged	by	at	least	one	node	in	the	local	data	center.

LOCAL_QUORUM
Similar	to	QUORUM,	except	that	only	replicas	in	the	local	data	center	are
compared.

Similar	to	QUORUM,	except	the	quorum	must	only	be	met	using	the	local	data	center.

LOCAL_SERIAL Similar	to	SERIAL,	except	only	local	replicas	are	used. Similar	to	SERIAL,	except	only	writes	to	local	replicas	must	be	acknowledged.

EACH_QUORUM
The	opposite	of	LOCAL_QUORUM;	requires	each	data	center	to	produce	a
quorum	of	replicas,	then	returns	the	replica	with	the	latest	timestamp.

The	opposite	of	LOCAL_QUORUM;	requires	a	quorum	of	replicas	to	be	written	in	each	data	center.

ALL
Replicas	from	all	nodes	in	the	entire	cluster	(including	all	data	centers)	will
be	compared,	and	the	replica	with	the	latest	timestamp	will	be	returned. Data	must	be	written	to	all	replica	nodes	(both	commit	log	and	memtable)	in	the	entire	cluster,	including	all	data	centers.

As	you	can	see,	there	are	numerous	combinations	of	read	and	write	consistency	levels,	all
with	different	ultimate	consistency	guarantees.	To	illustrate	this	point,	let’s	assume	that
you	would	like	to	guarantee	absolute	consistency	for	all	read	operations.	On	the	surface,	it
might	seem	as	if	you	would	have	to	read	with	a	consistency	level	of	ALL,	thus	sacrificing
availability	in	the	case	of	node	failure.

But	there	are	alternatives	depending	on	your	use	case.	There	are	actually	two	additional
ways	to	achieve	strong	read	consistency:

	
Write	with	consistency	level	of	ALL:	This	has	the	advantage	of	allowing	the	read
operation	to	be	performed	using	ONE,	which	lowers	the	latency	for	that	operation.	On
the	other	hand,	it	means	the	write	operation	will	result	in	UnavailableException	if
one	of	the	replica	nodes	goes	offline.
Read	and	write	with	QUORUM	or	LOCAL_QUORUM:	Since	QUORUM	and
LOCAL_QUORUM	both	require	a	majority	of	nodes,	using	this	level	for	both	the	write	and
the	read	will	result	in	a	full	consistency	guarantee	(in	the	same	data	center	when

www.it-ebooks.info

http://www.it-ebooks.info/

using	LOCAL_QUORUM),	while	still	maintaining	availability	during	a	node	failure.

You	should	carefully	consider	each	use	case	to	determine	what	guarantees	you	actually
require.	For	example,	there	might	be	cases	where	a	lost	write	is	acceptable,	or	occasions
where	a	read	need	not	be	absolutely	current.	At	times,	it	might	be	sufficient	to	write	with	a
level	of	QUORUM,	then	read	with	ONE	to	achieve	maximum	read	performance,	knowing	you
might	occasionally	and	temporarily	return	stale	data.	Cassandra	gives	you	this	flexibility,
but	it’s	up	to	you	to	determine	how	to	best	employ	it	for	your	specific	data	requirements.
A	good	rule	of	thumb	to	attain	strong	consistency	is	that	the	read	consistency	level	plus
write	consistency	level	should	be	greater	than	the	replication	factor.

Tip
If	you	are	unsure	about	which	consistency	levels	to	use	for	your	specific	use	case,	it’s
typically	safe	to	start	with	LOCAL_QUORUM	(or	QUORUM	for	a	single	data	center)	reads	and
writes.	This	configuration	offers	strong	consistency	guarantees	and	good	performance
while	allowing	for	the	inevitable	replica	failure.

It	is	important	to	understand	that	even	if	you	choose	levels	that	provide	less	stringent
consistency	guarantees,	Cassandra	will	still	perform	anti-entropy	operations
asynchronously	in	an	attempt	to	keep	replicas	up	to	date.

www.it-ebooks.info

http://www.it-ebooks.info/

Repairing	data
Cassandra	employs	a	multifaceted	anti-entropy	mechanism	that	keeps	replicas	in	synch.
Data	repair	operations	generally	fall	into	three	categories:

	
Synchronous	read	repair:	When	a	read	operation	requires	comparing	multiple
replicas,	Cassandra	will	initially	request	a	checksum	from	the	other	nodes.	If	the
checksum	doesn’t	match,	the	full	replica	is	sent	and	compared	with	the	local	version.
The	replica	with	the	latest	timestamp	will	be	returned	and	the	old	replica	will	be
updated.	This	means	that	in	normal	operations,	old	data	is	repaired	when	it	is
requested.
Asynchronous	read	repair:	Each	table	in	Cassandra	has	a	setting	called
read_repair_chance	(as	well	as	its	related	setting,	dclocal_read_repair_chance),
which	determines	how	the	system	treats	replicas	that	are	not	compared	during	a	read.
The	default	setting	of	0.1	means	that	10	percent	of	the	time,	Cassandra	will	also
repair	the	remaining	replicas	during	read	operations.
Manually	running	repair:	A	full	repair	(using	nodetool	repair)	should	be	run
regularly	to	clean	up	any	data	that	has	been	missed	as	part	of	the	previous	two
operations.	At	a	minimum,	it	should	be	run	once	every	gc_grace_seconds,	which	is
set	in	the	table	schema	and	defaults	to	10	days.

One	might	ask	what	the	consequence	would	be	of	failing	to	run	a	repair	operation	within
the	window	specified	by	gc_grace_seconds.	The	answer	relates	to	Cassandra’s
mechanism	to	handle	deletes.	As	you	might	be	aware,	all	modifications	(or	mutations)	are
immutable,	so	a	delete	is	really	just	a	marker	telling	the	system	not	to	return	that	record	to
any	clients.	This	marker	is	called	a	tombstone.

Cassandra	performs	garbage	collection	on	data	marked	by	a	tombstone	each	time	a
compaction	occurs.	If	you	don’t	run	the	repair,	you	risk	deleted	data	reappearing
unexpectedly.	In	general,	deletes	should	be	avoided	when	possible	as	the	unfettered
buildup	of	tombstones	can	cause	significant	issues.	For	more	information	on	this	topic,
refer	to	Chapter	8,	Antipatterns.

Note
In	the	course	of	normal	operations,	Cassandra	will	repair	old	replicas	when	they	records
are	requested.	Thus,	it	can	be	said	that	read	repair	operations	are	lazy,	such	that	they	only
occur	when	required.

With	all	these	options	for	replication	and	consistency,	it	can	seem	daunting	to	choose	the
right	combination	for	a	given	use	case.	Let’s	take	a	closer	look	at	this	balance	to	help
bring	some	additional	clarity	to	the	topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Balancing	the	replication	factor	with
consistency
There	are	many	considerations	when	choosing	a	replication	factor,	including	availability,
performance,	and	consistency.	Since	our	topic	is	high	availability,	let’s	presume	your
desire	is	to	maintain	data	availability	in	the	case	of	node	failure.

It’s	important	to	understand	exactly	what	your	failure	tolerance	is,	and	this	will	likely	be
different	depending	on	the	nature	of	the	data.	The	definition	of	failure	is	probably	going	to
vary	among	use	cases	as	well,	as	one	case	might	consider	data	loss	a	failure,	whereas
another	accepts	data	loss	as	long	as	all	queries	return.

Achieving	the	desired	availability,	consistency,	and	performance	targets	requires
coordinating	your	replication	factor	with	your	application’s	consistency	level
configurations.	In	order	to	assist	you	in	your	efforts	to	achieve	this	balance,	let’s	consider
a	single	data	center	cluster	of	10	nodes	and	examine	the	impact	of	various	configuration
combinations:

RF Write
CL

Read
CL Consistency Availability Use	cases

1

ONE

QUORUM

ALL

ONE

QUORUM

ALL

Consistent Doesn’t	tolerate	any	replica	loss Data	can	be	lost	and	availability	is	not	critical,	such	as	analysis	clusters

2 ONE ONE Eventual Tolerates	loss	of	one	replica Maximum	read	performance	and	low	write	latencies	are	required,	and	sometimes	returning	stale	data	is	acceptable

2
QUORUM

ALL

ONE Consistent Tolerates	loss	of	one	replica	on	reads,
but	none	on	writes Read-heavy	workloads	where	some	downtime	for	data	ingest	is	acceptable	(improves	read	latencies)

2 ONE

QUORUM

ALL

Consistent Tolerates	loss	of	one	replica	on	writes,
but	none	on	reads Write-heavy	workloads	where	read	consistency	is	more	important	than	availability

3 ONE ONE Eventual Tolerates	loss	of	two	replicas Maximum	read	and	write	performance	are	required,	and	sometimes	returning	stale	data	is	acceptable

3 QUORUM ONE Eventual Tolerates	loss	of	one	replica	on	write	and
two	on	reads

Read	throughput	and	availability	are	paramount,	while	write	performance	is	less	important,	and	sometimes	returning	stale	data	is
acceptable

3 ONE QUORUM Eventual Tolerates	loss	of	two	replicas	on	write
and	one	on	reads

Low	write	latencies	and	availability	are	paramount,	while	read	performance	is	less	important,	and	sometimes	returning	stale	data	is
acceptable

3 QUORUM QUORUM Consistent Tolerates	loss	of	one	replica Consistency	is	paramount,	while	striking	a	balance	between	availability	and	read/write	performance

3 ALL ONE Consistent Tolerates	loss	of	two	replicas	on	reads,
but	none	on	writes Additional	fault	tolerance	and	consistency	on	reads	is	paramount	at	the	expense	of	write	performance	and	availability

3 ONE ALL Consistent Tolerates	loss	of	two	replicas	on	writes,
but	none	on	reads

Low	write	latencies	and	availability	are	paramount,	but	read	consistency	must	be	guaranteed	at	the	expense	of	performance	and
availability

3 ANY ONE Eventual Tolerates	loss	of	all	replicas	on	write	and
two	on	read

Maximum	write	and	read	performance	and	availability	are	paramount,	and	often	returning	stale	data	is	acceptable	(note	that	hinted	writes
are	less	reliable	than	the	guarantees	offered	at	CL	ONE)

3 ANY QUORUM Eventual Tolerates	loss	of	all	replicas	on	write	and
one	on	read Maximum	write	performance	and	availability	are	paramount,	and	sometimes	returning	stale	data	is	acceptable

3 ANY ALL Consistent Tolerates	loss	of	all	replicas	on	writes,
but	none	on	reads

Write	throughput	and	availability	are	paramount,	and	clients	must	all	see	the	same	data,	even	though	they	might	not	see	all	writes
immediately

www.it-ebooks.info

http://www.it-ebooks.info/

As	you	can	see,	there	are	numerous	possibilities	to	consider	when	choosing	these	values,
especially	in	a	scenario	involving	multiple	data	centers.	This	discussion	will	give	you
greater	confidence	as	you	design	your	applications	to	achieve	the	desired	balance.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	introduced	the	foundational	concepts	of	replication	and	consistency.	In
our	discussion,	we	outlined	the	importance	of	the	relationship	between	replication	factor
and	consistency	level,	and	their	impact	on	performance,	data	consistency,	and	availability.

By	now,	you	should	be	able	to	make	sound	decisions	specific	to	your	use	cases.	This
chapter	might	serve	as	a	handy	reference	in	the	future	as	it	can	be	challenging	to	keep	all
these	details	in	mind.

In	the	previous	two	chapters,	we’ve	been	gradually	expanding	from	how	Cassandra
locates	individual	pieces	of	data	to	its	strategy	to	replicate	it	and	keep	it	consistent.

In	the	next	chapter,	we’ll	take	things	a	step	further	and	take	a	look	at	its	multiple	data
center	capabilities,	as	no	highly	available	system	is	truly	complete	without	the	ability	to
distribute	itself	geographically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	Data	Centers
One	of	Cassandra’s	most	compelling	high	availability	features	is	its	support	for	multiple
data	centers.	In	fact,	this	feature	gives	it	the	capability	to	scale	reliably	with	a	level	of	ease
that	few	other	data	stores	can	match.

In	this	chapter,	we’ll	explore	Cassandra’s	data	center	support,	covering	the	following
topics:

	
Use	cases	for	multiple	data	centers
Using	a	separate	data	center	for	online	analytics
Replication	across	data	centers
An	in-depth	look	at	configuring	snitches
Multiregion	EC2	implementations
Consistency	levels	for	multiple	data	centers

Database	administrators	have	struggled	for	many	years	to	reliably	replicate	data	across
multiple	geographies—a	task	that	is	made	especially	difficult	when	the	system	attempts	to
maintain	ACID	guarantees.	The	best	we	could	typically	hope	for	was	to	keep	a	relatively
recent	backup	for	failover	purposes.

Distributed	database	designs	have	made	this	easier,	but	many	of	these	still	require
complex	configurations	and	have	significant	limitations	while	replicating	across	data
centers.	Cassandra	allows	you	to	maintain	a	complete	set	of	replicas	in	more	than	one	data
center	with	relative	ease.	Let’s	start	by	examining	some	of	the	reasons	why	users	might
want	to	deploy	multiple	data	centers.

As	we	look	at	each	option,	think	about	your	own	use	cases	and	in	which	category	they
might	fall.	Doing	so	will	help	you	to	make	the	right	deployment	decisions	to	make	the	best
use	of	your	Cassandra	investment.

www.it-ebooks.info

http://www.it-ebooks.info/

Use	cases	for	multiple	data	centers
There	are	several	key	use	cases	that	involve	deploying	Cassandra	across	multiple	data
centers,	including	the	obvious	failover	and	load	balancing	scenarios.	Let’s	examine	a	few
of	these	cases.

www.it-ebooks.info

http://www.it-ebooks.info/

Live	backup
Traditional	database	backups	involve	taking	periodic	snapshots	of	the	data	and	storing
them	offsite	in	case	the	system	fails.	In	such	a	case,	there	will	be	downtime	as	a	new
system	is	brought	up	and	the	data	is	restored.	This	strategy	also	inevitably	leads	to	data
loss	for	the	time	period	between	the	last	backup	and	the	point	of	failure.

Cassandra	supports	these	types	of	backups,	and	we	will	discuss	this	in	greater	depth	in
Chapter	9,	Failing	Gracefully.	While	snapshot	backups	are	still	useful	to	protect	against
data	corruption	or	accidental	updates,	Cassandra’s	data	center	support	can	be	used	to
provide	a	current	backup	for	cases	such	as	hardware	failures.

The	basic	idea	involves	setting	up	a	second	data	center	that	maintains	a	current	set	of
replicas	that	can	be	used	to	rebuild	the	primary	cluster,	should	a	catastrophic	event	cause
the	loss	of	an	entire	data	center.

For	this	use	case,	it	is	typically	sufficient	to	maintain	a	smaller	cluster	with	a	replication
factor	of	one,	as	the	system	will	never	be	used	to	accept	live	reads	or	writes.	The	primary
consideration	in	this	case	is	the	storage	capacity	to	handle	the	same	quantity	of	data	as	the
live	data	center.

www.it-ebooks.info

http://www.it-ebooks.info/

Failover
A	failover	scenario	is	very	similar	to	the	backup	use	case	we	just	discussed,	except	that	the
backup	data	center	is	generally	allocated	similar	resources	as	the	primary	cluster.
Additionally,	while	a	single	replica	might	suffice	for	a	backup	data	center,	generally
speaking,	a	failover	data	center	should	be	configured	with	the	same	replication	factor	as
the	primary	since	it	might	take	over	responsibility	for	the	full	application	load	in	the	event
of	a	failure.

It’s	also	important	to	consider	whether	you	expect	your	failover	data	center	to	handle	a	full
production	load.	Presuming	you	do	have	this	expectation,	you	will	need	to	ensure	that	it
has	adequate	capacity	to	handle	this.	Having	a	hot	failover	data	center	protects	you	from	a
common	single	point	of	failure—the	power	supply	to	your	hosts.	In	EC2,	you	can	choose
to	configure	your	hosts	to	run	in	multiple	availability	zones,	as	each	is	supplied	with	a
separate	power	source.	If	you	do	this	while	using	the	EC2	snitch,	be	sure	to	allocate	your
nodes	evenly	across	zones,	as	the	snitch	will	place	replicas	across	multiple	zones.	Failure
to	do	this	can	lead	to	hotspots.

Tip
It	would	be	ill-advised	to	assume	that	you	can	maintain	a	small	failover	data	center,	and
then	simply	add	multiple	nodes	if	a	failure	occurs.	The	additional	overhead	of
bootstrapping	the	new	nodes	will	actually	reduce	capacity	at	a	critical	point	when	the
capacity	is	needed	most.

www.it-ebooks.info

http://www.it-ebooks.info/

Load	balancing
In	some	cases,	applications	might	be	configured	to	route	traffic	to	any	node	in	the	cluster
without	taking	into	account	a	specific	data	center.	This	has	the	effect	of	load	balancing	the
requests	across	multiple	data	centers,	and	can	be	useful	in	cases	where	the	data	centers
share	a	high	bandwidth	connection.

In	this	instance,	the	objective	is	to	provide	redundancy,	so	each	data	center	must	be	able	to
handle	the	entire	application	load,	similar	to	the	failover	scenario.	However,	there	are	a
couple	of	important	considerations	when	choosing	this	approach:

	
Absolute	consistency	is	expensive	to	guarantee	in	this	scenario	because	doing	so
typically	requires	replicating	the	data	across	higher	latency	connections.	If	strong
consistency	is	paramount	for	your	use	case,	you	should	consider	employing	a
geographic	distribution	model	as	described	in	the	next	section.
This	usage	pattern	is	most	appropriate	for	use	cases	where	eventual	consistency	is
acceptable,	such	as	event	capture,	time-series	data,	and	logging	where	the	primary
read	case	involves	offline	data	analysis	rather	than	real-time	queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Geographic	distribution
Often,	application	architects	will	find	it	necessary	for	latency	reasons	to	send	requests	to	a
data	center	located	near	the	originator	or	to	mitigate	the	potential	impact	of	natural
disasters.	This	is	particularly	useful	for	systems	that	span	the	globe,	where	routing	all
requests	to	a	central	location	is	impractical.	The	ability	to	locate	data	centers	in	strategic
global	locations	around	the	world	can	be	an	indispensable	feature	in	these	scenarios.

This	approach	is	often	desirable	for	applications	where	both	performance	and	strong
consistency	are	important.	The	reason	for	this	is	that	clients	are	guaranteed	to	make
requests	to	a	single	data	center,	enabling	the	use	of	the	LOCAL_QUORUM	consistency	level—
which	means	they	won’t	suffer	a	performance	penalty	by	waiting	for	a	remote	data	center
to	acknowledge	the	write.	The	following	diagram	illustrates	this	configuration:

www.it-ebooks.info

http://www.it-ebooks.info/

A	variation	on	this	idea	would	be	key	distribution,	where	the	data	is	partitioned	using
some	other	differentiator	(such	as	last	name).	With	this	scheme,	the	data	centers	might	be
located	near	each	other	geographically,	but	the	load	is	split	between	them	based	on
something	other	than	the	client’s	location.

In	either	of	these	scenarios,	the	idea	is	that	clients	should	detect	the	failure	of	a	data	center
and	fall	back	on	one	of	the	others.	There	is	a	possibility	of	reading	old	data	if	it	was
written	with	a	local	consistency	level,	but	in	many	cases	stale	data	is	better	than
application	downtime.	This	can	be	visualized	as	follows:

In	this	scenario,	the	North	American	data	center	experiences	a	failure,	which	requires
clients	in	North	America	to	redirect	to	the	European	data	center	during	the	outage.
Obviously,	the	European	data	center	must	have	sufficient	capacity	to	handle	the	additional
load.

It’s	important	to	make	sure	that	your	application	is	capable	of	handling	this	scenario,	as
the	latency	will	increase	and	reads	might	produce	some	stale	data.	A	good	strategy	is	to
limit	the	interaction	with	the	database	to	only	those	operations	that	are	critical	to	the
continuous	functioning	of	the	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Online	analysis
So	far,	we’ve	discussed	use	cases	that	might	be	obvious	to	experienced	database	users.	But
Cassandra	supports	an	additional	scenario	that	is	particularly	useful	in	the	context	of	a
NoSQL	database	that	doesn’t	provide	a	built-in	ad	hoc	query	mechanism.	The	use	of	a
data	center	for	analysis	purposes	has	become	commonplace	among	Cassandra	users,	as	it
provides	the	benefits	of	a	scalable	NoSQL	solution	with	the	power	of	modern	data
analysis	tools.

Traditional	data	analysis,	referred	to	as	Online	Analytical	Processing	(OLAP),	typically
involves	taking	normalized	data	from	the	transactional	relational	database	and	moving	it
into	a	denormalized	form	for	faster	analysis.	This	process	involves	significant	extract,
transform,	and	load	(ETL)	overhead,	which	inherently	results	in	a	delay	in	analyzing	the
data.

Cassandra’s	support	for	multiple	data	centers,	in	combination	with	its	robust	integrations
with	the	Hadoop	and	Spark	frameworks,	allows	users	to	conduct	sophisticated	batch	or
real-time	analysis	using	live	data	with	no	ETL	overhead.	This	is	accomplished	by
dedicating	a	separate	data	center	for	analysis,	then	isolating	this	data	center	from	live
traffic.

For	many	use	cases,	a	single	replica	is	sufficient	for	an	analysis	data	center,	as	short
periods	of	downtime	are	frequently	acceptable	for	batch	analysis	purposes.	However,	if
you	require	100	percent	uptime	for	your	analysis	workloads,	you	might	need	to	specify	a
higher	replication	factor.	Additional	replicas	also	mean	that	the	analysis	data	center	is	less
likely	to	drop	writes,	especially	while	heavy	analysis	jobs	are	running.	Also,	make	sure	to
run	repair	regularly	to	keep	data	consistent.

There	are	currently	two	popular	open	source	analysis	projects	with	excellent	Cassandra
integration:

	
Hadoop:	Cassandra	has	included	support	for	Hadoop	since	the	very	early	revisions,
and	the	DataStax	Enterprise	offering	even	provides	a	replacement	for	Hadoop
Distributed	File	System	(HDFS)	called	CassandraFS.	Having	said	that,	while
Hadoop	was	quite	revolutionary	at	its	introduction,	it	is	beginning	to	show	its	age.
Spark:	The	Spark	project	has	gained	significant	traction	in	a	very	short	period	of
time,	primarily	as	an	in-memory	replacement	for	Hadoop.	The	excellent	open	source
integration	with	Cassandra,	supported	by	DataStax,	allows	much	faster	and	more
elegant	analysis	work	to	be	performed	against	native	Cassandra	data.	If	you	don’t
already	have	a	significant	Hadoop	investment,	the	Spark	integration	is	most	likely	the
better	choice.

Regardless	of	which	path	you	choose,	it’s	important	to	realize	that	the	old	OLAP
paradigms	no	longer	apply.

The	key	to	successfully	processing	large	amounts	of	distributed	data	is	to	bring	the
processing	to	the	data,	rather	than	the	data	to	the	processing.	This	was	the	key	innovation
with	MapReduce.

www.it-ebooks.info

http://www.it-ebooks.info/

In	this	new	world	of	large	datasets,	shipping	data	across	the	network	using	complex	ETL
processes	is	no	longer	a	viable	solution.	We	must	co-locate	the	processing	framework	with
the	database.	Let’s	explore	how	to	do	this	using	both	Hadoop	and	Spark.

Analysis	using	Hadoop
Hadoop	is	actually	an	ecosystem	comprising	of	multiple	projects,	a	full	discussion	of
which	would	be	too	much	for	this	chapter.	For	our	purposes,	we	will	simply	point	out	the
important	processes	and	how	they	should	be	deployed	with	Cassandra.

Under	the	covers,	Hadoop	makes	extensive	use	of	HDFS	to	write	temporary	data	to	disk.
HDFS	components	include	NameNode	and	SecondaryNameNode	(which	live	on	a	master
node),	and	DataNodes	(which	hold	the	data	itself).	If	you	use	DataStax	Enterprise,	these
components	are	replaced	by	CassandraFS,	which	uses	Cassandra	as	the	underlying	file
system.

The	actual	analysis	work	is	performed	by	the	MapReduce	framework,	which	consists	of	a
JobTracker	(which	you	will	install	on	the	master)	and	TaskTrackers	(which	are	co-located
on	DataNodes).

The	canonical	Cassandra-Hadoop	integration	places	DataNodes	and	TaskTrackers	on	each
Cassandra	node	in	the	analysis	data	center.	This	allows	the	data	owned	by	each	node	to	be
processed	locally,	rather	than	having	to	be	retrieved	from	across	the	network.	This	idea	is
fundamental	to	the	ability	to	process	large	amounts	of	data	in	an	efficient	manner.	In	fact,
shuffling	data	across	the	network	is	typically	the	most	significant	time	sink	in	any	analysis
work.	The	following	diagram	shows	how	this	configuration	looks:

The	canonical	Hadoop-Cassandra	topology	involves	co-locating	TaskTrackers	and
DataNodes	with	the	Cassandra	instances.	If	you	have	an	existing	Hadoop	installation,	you
may	be	tempted	to	try	to	move	data	from	Cassandra	into	that	cluster.	However,	a	better

www.it-ebooks.info

http://www.it-ebooks.info/

strategy	is	to	install	Cassandra	on	that	cluster.	Alternatively,	you	can	use	a	separate	cluster
to	process	your	Cassandra	data,	then	move	the	results	into	your	existing	cluster.

In	any	case,	migration	to	Spark	is	worth	considering,	as	it	is	a	much	more	modern	attempt
at	distributed	data	processing.

Analysis	using	Spark
To	use	Spark	to	analyze	Cassandra	data,	you	will	essentially	be	replacing	the	MapReduce
component	of	your	Hadoop	installation	with	the	Spark	processes.	The	Spark	Master
process	replaces	the	JobTracker,	and	the	Slave	processes	take	over	the	job	of	the
TaskTrackers,	as	follows:

While	Spark	appears	to	be	rapidly	gaining	traction	in	the	analysis	space,	many	of	the
existing	tools	and	frameworks	are	built	around	Hadoop	and	MapReduce.	Additionally,	a
large	number	of	users	have	existing	investments	in	the	Hadoop	ecosystem,	which	might
make	a	wholesale	move	to	Spark	impractical.

The	good	news	is	that	these	two	can	live	together	in	harmony.	In	fact,	you	can	simply	add
Spark	processes	to	your	existing	infrastructure,	provided	that	you	have	sufficient	resources
to	do	so.	You	can	also	employ	two	analysis	data	centers:	one	for	Hadoop	jobs	and	one	for
Spark	jobs.	Cassandra	offers	tremendous	flexibility	in	this	manner.

Now	that	we’ve	covered	the	basic	scenarios	where	multiple	data	centers	prove	useful,	let’s
deep	dive	into	data	center	configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Data	center	setup
The	mechanism	to	define	a	data	center	depends	on	the	snitch	that	you	specify	in
cassandra.yaml.	Take	a	look	at	the	previous	chapter	if	you	need	a	refresher	on	the	various
types	of	snitches.	You’ll	recall	that	the	snitch’s	role	is	to	tell	Cassandra	what	your	network
topology	looks	like,	so	it	can	know	how	to	place	replicas	across	your	cluster.	While
configuring	a	snitch,	it’s	important	to	make	sure	that	the	host	names	resolved	by	the	snitch
match	those	in	your	schema.

With	this	in	mind,	let’s	take	a	closer	look	at	what	configuration	looks	like	for	each	of	the
snitch	options.

www.it-ebooks.info

http://www.it-ebooks.info/

RackInferringSnitch
There	really	isn’t	any	configuration	to	be	performed	on	RackInferringSnitch,	as	long	as
your	IP	addressing	scheme	matches	your	topology.	Specifically,	it	uses	the	second,	third,
and	fourth	octets	to	define	data	center,	rack,	and	node,	respectively,	as	follows:

This	strategy	can	work	well	for	simple	deployments	in	physical	data	centers	where	IP
addresses	can	be	predicted	reliably.	The	problem	is	that	this	rarely	works	out	well	over	the
long	term,	as	network	requirements	often	change	over	time.	Also,	ensuring	all	network
administrators	abide	by	these	rules	can	be	difficult.	In	general,	it’s	better	to	use	one	of	the
other	more	explicit	snitches.

Tip
As	a	general	rule,	it	is	preferable	to	deploy	a	single	rack	in	each	data	center	as	opposed	to
using	the	rack	awareness	feature.	This	applies	to	any	snitch	that	allows	specifying	racks.
While	the	initial	configuration	might	be	straightforward,	it	can	be	difficult	to	scale	the
multiple	rack	strategy.

Rack	configurations	have	a	tendency	to	change	over	time,	and	often	the	people	who
manage	the	hardware	are	not	the	same	people	who	handle	Cassandra	configuration.	In	this
case,	simplicity	is	often	the	best	strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

PropertyFileSnitch
The	PropertyFileSnitch	configuration	allows	an	administrator	to	precisely	configure	the
topology	of	the	network	by	means	of	a	properties	file	named	cassandra-
topology.properties.	The	following	is	an	example	configuration,	representing	a	cluster
with	three	data	centers,	where	the	first	two	have	two	racks	each	and	the	analysis	cluster
has	a	single	rack:
#	US	East	Data	Center

50.11.22.33	=DC1:RAC1

50.11.22.44	=DC1:RAC1

50.11.22.55	=DC1:RAC1

50.11.33.33	=DC1:RAC2

50.11.33.44	=DC1:RAC2

50.11.33.55	=DC1:RAC2

#	US	West	Data	Center

172.11.22.33	=DC2:RAC1

172.11.22.44	=DC2:RAC1

172.11.22.55	=DC2:RAC1

172.11.33.33	=DC2:RAC2

172.11.33.44	=DC2:RAC2

172.11.33.55	=DC2:RAC2

#	Analysis	Cluster

172.11.44.11	=DC3:RAC1

172.11.44.22	=DC3:RAC1

172.11.44.33	=DC3:RAC1

#	Default	for	unspecified	nodes

default	=DC3:RAC1

The	following	diagram	shows	what	this	cluster	would	look	like	visually:

www.it-ebooks.info

http://www.it-ebooks.info/

This	example	demonstrates	a	cluster	with	two	physical	data	centers	and	one	virtual	data
center	used	for	analysis.	It	is	worth	noting	that	in	the	specific	case	shown	earlier,
RackInferringSnitch	would	automatically	choose	essentially	the	same	topology	since
the	IP	addresses	conform	to	its	required	scheme.

www.it-ebooks.info

http://www.it-ebooks.info/

GossipingPropertyFileSnitch
One	of	the	principal	challenges	when	using	the	PropertyFileSnitch	is	that	the
configuration	file	must	be	kept	in	sync	on	all	nodes.	This	can	be	difficult,	as	the	file	is
reloaded	automatically	without	restarting.	While	modern	cluster	management	tools
certainly	ease	this	burden,	the	GossipingPropertyFileSnitch	solves	the	problem
completely.

Rather	than	using	cassandra-topology.properties,	you	can	specify	the	data	center	and
rack	membership	for	each	node	in	its	own	configuration	file.	In	each	node’s
$CASSANDRA_HOME/conf	directory,	you’ll	need	to	place	a	file	called	cassandra-
rackdc.properties,	which	should	conform	to	the	following	example:
dc	=DC1

rack	=RAC1

#	Uncomment	the	following	line	to	make	this	snitch	prefer	the	internal	ip

when	possible,	as	the	Ec2MultiRegionSnitch	does.

#	prefer_local=true

Once	this	file	is	in	place	(and	the	GossipingPropertyFileSnitch	is	selected	in
cassandra.yaml),	as	the	name	implies,	Cassandra	will	gossip	the	data	center	and	rack
information	to	the	other	nodes	in	the	cluster.	This	eliminates	the	requirement	for	a
centralized	configuration,	and	in	general	conforms	to	the	principles	behind	Cassandra’s
peer-to-peer	architecture	in	a	better	manner.

Thus	far,	we’ve	examined	snitches	that	work	well	when	you	control	the	network
configuration	on	your	nodes	as	is	the	case	with	physical,	noncloud	data	centers.	With	the
proliferation	of	cloud	deployments	on	Amazon’s	EC2	infrastructure,	this	is	not	always	the
case.

www.it-ebooks.info

http://www.it-ebooks.info/

Cloud	snitches
Amazon	EC2,	Google	Cloud,	and	CloudStack	can	be	excellent	places	to	run	Cassandra,	as
much	work	has	been	put	into	getting	it	right.	This	section	will	focus	on	EC2	deployments,
as	they	are	currently	the	most	common.	But	the	general	principles	apply	to	all	the	cloud
snitches.

If	you’re	planning	on	going	this	route,	be	sure	to	check	out	the	plethora	of	fantastic	open
source	tools	available	from	Netflix,	who	has	put	significant	time	and	energy	into
perfecting	the	art	of	deploying	and	running	Cassandra	on	EC2.	Their	engineering	blog
also	has	loads	of	great	content	that’s	worth	a	look.

This	book	will	avoid	making	any	recommendations	for	specific	instance	types	or
configurations,	as	requirements	are	unique	for	different	use	cases.	However,	an	exception
is	that	running	on	ephemeral	SSDs	is	highly	recommended,	as	you	will	see	tremendous
performance	gains	from	doing	so.

When	the	time	comes	to	configure	Cassandra	on	EC2,	the	EC2MultiRegionSnitch	will
come	in	handy.	If	you	already	manage	deployments	on	EC2,	you	must	be	aware	of	the
frequently	transient	nature	of	its	network	configurations.	This	snitch	is	designed	to	ease
the	burden	of	managing	this	often	troublesome	issue.

When	using	the	EC2MultiRegionSnitch	configuration,	data	center	and	rack	configuration
will	be	tied	directly	to	region	and	availability	zone,	respectively.	Thus,	a	node	in	the	US-
East	region,	availability	zone	1a,	will	be	assigned	to	a	data	center	named	us-east	and	a
rack	named	1a.

Additionally,	since	many	deployments	involve	virtual	data	centers	that	are	logically
separated	but	located	in	the	same	physical	region,	this	snitch	allows	you	to	specify	a	suffix
to	be	applied	to	the	data	center	name.	This	involves	setting	the	dc_suffix	property	in
cassandra-rackdc.properties,	as	follows:
dc_suffix=_live

With	this	suffix	in	place,	the	data	center	will	now	be	named	us-east_live.

Note
When	deploying	Cassandra	in	EC2	with	the	multiregion	snitch,	make	sure	to	set	your
broadcast_address	to	the	external	IP	address,	and	your	rpc_address	and
listen_address	to	the	internal	IP	address.	These	values	can	be	found	in	cassandra.yaml.
This	will	allow	your	nodes	to	communicate	across	data	centers	while	keeping	your	client
traffic	local	to	the	data	center	in	which	it	resides.

In	order	to	achieve	the	greatest	amount	of	protection	from	failures	in	EC2,	it	is	advisable
to	deploy	your	nodes	across	multiple	availability	zones	in	each	region.	Amazon’s
availability	zones	operate	as	isolated	locations	with	high	bandwidth	network	connections
between	them,	and	Cassandra’s	rack	awareness	features	can	guarantee	replica	placement
in	multiple	zones.	Keep	in	mind	that	you	need	to	evenly	distribute	nodes	across
availability	zones	to	achieve	even	replica	distribution.

The	following	diagram	shows	an	example	of	an	optimal	configuration,	with	data	centers	in

www.it-ebooks.info

http://www.it-ebooks.info/

two	regions	in	addition	to	an	analysis	cluster.	This	is	similar	to	the	diagram	shown
previously	using	PropertyFileSnitch.

When	using	a	cloud	snitch,	data	centers	correlate	to	regions,	while	racks	are	assigned
based	on	availability	zones.	This	topology	mirrors	the	previous	example,	except	the
naming	convention	uses	AWS	regions	and	availability	zones.	In	the	us-east	data	center,
dc_suffix	is	defined	as	live	for	the	nodes	that	accept	live	traffic,	and	analysis	for	the
nodes	isolated	for	read-heavy	analytics	workloads.

You	should	now	have	a	good	understanding	of	how	to	configure	your	cluster	for	multiple
data	centers.	Now,	let’s	explore	how	Cassandra	replicates	data	across	these	data	centers,
and	how	multiple	data	centers	influence	the	balance	between	consistency,	availability,	and
performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication	across	data	centers
In	the	previous	chapters,	we	touched	on	the	idea	that	Cassandra	can	automatically
replicate	across	multiple	data	centers.	There	are	other	systems	that	allow	similar
replication;	however,	the	ease	of	configuration	and	general	robustness	set	Cassandra	apart.
Let’s	take	a	detailed	look	at	how	this	works.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	the	replication	factor
You	will	recall	from	Chapter	3,	Replication,	that	specifics	about	replication	are	configured
via	CQL	at	the	keyspace	level.	Since	we’re	on	the	topic	of	multiple	data	centers,	it’s
important	to	understand	that	you’ll	always	have	to	use	the	NetworkTopologyStrategy,
since	the	SimpleStrategy	does	not	allow	you	to	set	replication	factor	for	each	data	center.

Using	our	example	physical	topology	from	the	PropertyFileSnitch	section,	the	following
statement	will	create	a	keyspace,	users,	with	three	replicas	in	each	of	our	two	live	data
centers,	as	well	as	one	in	the	analysis	data	center:
CREATE	KEYSPACE	users

		WITH	REPLICATION	=	{

				‘class’:	‘NetworkTopologyStrategy’,

				‘DC1’:	3,

				‘DC2’:	3,

				‘DC3’:	1

		};

Now,	each	column	in	the	database	will	have	seven	replicas	in	total,	dispersed	across	five
distinct	racks	in	two	different	data	centers—without	any	complex	configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Consistency	in	a	multiple	data	center	environment
In	this	section,	we	will	take	a	look	at	how	Cassandra	moves	data	from	one	data	center	to
another.	It	is	easy	to	understand	the	concept	of	replication	in	a	local	context,	but	it	might
seem	more	difficult	to	grasp	the	idea	that	Cassandra	can	seamlessly	transfer	large	amounts
of	data	across	high-latency	connections	in	real	time.

As	you	might	now	suspect,	the	precise	replication	behavior	depends	on	your	chosen
consistency	level.	In	the	previous	chapter,	we	explored	each	consistency	level	in	detail,	as
well	as	its	impact	on	availability,	consistency,	and	performance.

In	a	multiple	data	center	environment,	it	is	extremely	important	to	remember	that	using	a
nonlocal	consistency	level	(ALL,	ONE,	TWO,	THREE,	QUORUM,	SERIAL,	or	EACH_QUORUM)	might
have	an	impact	on	performance.	This	is	because	these	consistency	levels	do	not	always
route	requests	to	the	local	data	center;	they	will	generally	prefer	local	nodes,	but	there	is
no	locality	guarantee.	If	you	do	this,	you	will	end	up	with	a	scenario	that	resembles	the
following	diagram	(assuming	clients	in	both	data	centers):

When	nonlocal	consistency	levels	are	used,	requests	can	be	routed	anywhere	in	the	cluster.
Obviously,	sending	traffic	across	the	Atlantic	Ocean	will	have	a	serious	impact	on	client
performance,	which	is	why	it’s	so	critical	that	application	architects	and	operations
personnel	work	together	to	make	sure	consistency	levels	match	the	deployed	data	center
configurations.	You	can	imagine	how	the	situation	can	become	even	less	tenable	with	the
addition	of	more	data	centers!

As	an	alternative	to	the	previous	scenario,	it	is	nearly	always	preferable	to	use	a	local
consistency	level	(LOCAL_ONE,	LOCAL_QUORUM,	or	LOCAL_SERIAL)	to	ensure	you’re	only
working	against	the	local	data	center,	resulting	in	a	far	more	performant	configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

When	using	local	consistency	levels,	requests	are	sent	only	to	nodes	in	the	specified	data
center.	Also,	you	must	make	sure	your	client	is	only	aware	of	the	local	nodes.	If	you’re
using	the	native	Java	driver,	you	can	read	about	how	to	do	this	in	Chapter	6,	High
Availability	Features	in	the	Native	Java	Client.	Otherwise,	consult	the	documentation	for
the	driver	you	are	using	or	consider	moving	to	one	of	the	newer	native	drivers.

Note
Note	that	it	is	not	sufficient	to	simply	provide	your	client	with	the	local	node	list	and	then
attempt	to	use	a	global	consistency	level	(ALL,	ONE,	TWO,	THREE,	QUORUM,	or	SERIAL).	This	is
because	once	the	operation	hits	the	database,	Cassandra	will	not	restrict	fulfillment	of	the
consistency	requirements	to	the	local	data	center.	If	you	intend	to	satisfy	the	consistency
guarantee	locally,	you	must	use	a	local	consistency	level	(LOCAL_ONE,	LOCAL_QUORUM,	or
LOCAL_SERIAL).

Additionally,	if	your	client	connects	to	a	remote	node	using	a	local	consistency	level,	the
consistency	level	will	be	fulfilled	using	nodes	in	the	remote	data	center.	This	is	because
locality	is	measured	relative	to	the	coordinator	node,	not	to	the	client.

The	anatomy	of	a	replicated	write
It	is	important	to	fully	grasp	what’s	going	on	when	you	perform	a	write	in	a	multiple	data
center	environment	in	order	to	avoid	common	pitfalls	and	make	sure	you	achieve	your
desired	consistency	goals.

To	start	with,	we	will	assume	your	clients	generally	need	to	be	aware	of	updates	as	soon	as
they	are	written.	We	have	discussed	the	fact	that	it’s	possible	to	achieve	strong	consistency
using	QUORUM	reads	and	writes,	but	what	happens	in	the	case	of	LOCAL_QUORUM,	which	is
typically	the	suggested	default?	Let’s	examine	this	situation	in	detail.

We	will	assume	that	we	have	two	live	data	centers	in	a	geographically	distributed
configuration:	one	in	North	America	and	the	second	in	Europe.	Each	data	center	has	a
client	application	that’s	responsible	for	performing	reads	and	writes	local	to	that	data
center	using	LOCAL_QUORUM	for	both.

www.it-ebooks.info

http://www.it-ebooks.info/

We	have	established	that	local	reads	and	writes	will	be	strongly	consistent	(refer	to
Chapter	3,	Replication,	for	a	review	of	the	reasons	behind	this),	so	the	question	is	what
consistency	guarantees	do	we	have	between	data	centers?

With	LOCAL_QUORUM	reads	and	writes,	data	inside	a	data	center	is	strongly	consistent,	but
what	happens	to	inter-data	center	consistency?	To	answer	this	question,	let’s	examine	the
high-level	path	a	write	takes	from	the	time	the	client	sends	it	to	Cassandra:

	
1.	 The	client	sends	a	write	request	using	the	LOCAL_QUORUM	consistency	level.
2.	 The	node	that	receives	the	request	is	called	the	coordinator,	and	is	responsible	for

ensuring	that	the	consistency	level	guarantees	are	met	prior	to	acknowledging	the
write.

3.	 The	coordinator	determines	the	nodes	that	should	own	the	replicas	using	consistent
hashing	(refer	to	Chapter	2,	Data	Distribution,	for	more	details)	and	then	sends	the
writes	to	those	nodes,	including	one	in	each	remote	data	center,	which	then	acts	as
coordinator	inside	that	data	center.

4.	 Since	we’re	using	LOCAL_QUORUM,	the	coordinator	will	only	wait	for	the	majority	of
replica	owning	nodes	in	the	local	data	center	to	acknowledge	the	write.	This	implies
that	there	might	be	down	hosts	who	have	not	yet	received	the	write	and	are	therefore
inconsistent.

If	you	have	paid	close	attention	to	the	flow,	you	might	have	noticed	that	step	4	includes	a
guarantee	that	at	least	a	majority	of	local	nodes	received	the	write,	so	we	know	that	a
LOCAL_QUORUM	read	will	result	in	strong	consistency.	However,	there	was	no	guarantee	that
any	remote	writes	succeeded.	In	fact,	it’s	entirely	possible	that	only	the	local	data	center
was	operational	at	the	time	of	the	request.

Tip
Based	on	the	Cassandra	write	path,	we	must	conclude	that	LOCAL_QUORUM	writes	inside	a
data	center	exhibit	strong	consistency	when	paired	with	LOCAL_QUORUM	reads,	whereas	the
same	pattern	results	in	eventual	consistency	between	data	centers.

www.it-ebooks.info

http://www.it-ebooks.info/

Thus,	we	can	complete	our	diagram	as	follows:

With	LOCAL_QUORUM	reads	and	writes,	we	get	eventual	consistency	between	data	centers.
This	level	of	guarantee	is	appropriate	for	many	use	cases,	especially	where	users	are	being
routed	to	a	single	data	center	for	the	vast	majority	of	the	time.	In	this	instance,	eventual
consistency	would	be	acceptable,	since	traveling	across	continents	takes	enough	time	that
the	second	data	center	would	have	received	the	writes	by	the	time	the	individual	had
completed	their	travels.

But	in	some	cases,	you	might	want	or	need	to	guarantee	consistency	in	a	remote	data
center,	but	you	cannot	afford	to	pay	the	cost	by	using	a	global	consistency	level	at	write
time.

Achieving	stronger	consistency	between	data	centers
There	are	a	number	of	reasons	why	you	might	want	to	know	for	sure	that	your	remote	data
is	consistent	with	the	originating	data	center.	For	example,	you	might	need	to	ensure	that
your	analytics	include	the	most	up-to-date	data,	or	you	might	be	reconciling	bank
transactions	that	occurred	in	another	data	center.	Either	way,	you	want	to	know	prior	to
running	your	analysis	or	reconciliation	job	that	your	data	is	as	recent	as	possible.

The	solution	to	this	dilemma	is	to	run	nodetool	repair	more	frequently.	Typically,	it	is
advised	that	users	run	a	repair	at	least	once	every	gc_grace_seconds,	but	in	some	cases
you	might	want	to	run	repair	more	frequently.	If	you	want	to	make	sure	a	remote	data
center	is	as	consistent	as	possible,	you	can	choose	to	run	repair	more	frequently	as	this
will	make	sure	all	your	data	is	consistent	with	the	originating	data	center.

Tip
Keep	in	mind	that	the	repair	process	is	quite	intensive,	so	be	sure	to	stagger	the	process
such	that	only	a	subset	of	your	nodes	is	involved	in	a	repair	at	any	given	time.	If	you	must
maintain	availability	during	repair,	a	higher	replication	factor	might	be	needed	to	satisfy
consistency	guarantees.

With	version	2.1,	you	can	choose	to	run	incremental	repair,	which	can	be	run	much	more

www.it-ebooks.info

http://www.it-ebooks.info/

often	as	it	is	a	much	more	lightweight	weight	process.

As	we	discussed	in	Chapter	1,	Cassandra’s	Approach	to	High	Availability,	consistency	in
a	distributed	database	is	a	complex	and	multifaceted	problem.	This	is	even	more	the	case
when	nodes	in	the	database	are	dispersed	across	multiple	geographical	regions.
Fortunately,	as	we	have	demonstrated,	Cassandra	provides	the	tools	needed	to	handle	this
job.

The	key	to	succeed	in	large-scale	deployments	of	the	sort	we	have	covered	in	this	chapter
is	to	design	your	solution	holistically.	A	common	traditional	approach	to	these	problems
has	been	to	model	the	data	independently	of	the	infrastructure,	then	retrofit	later	to	scale
the	solution.

You’ve	likely	chosen	Cassandra	because	you	have	outgrown	this	approach,	so	don’t	make
the	mistake	of	applying	old	ideas	to	the	new	technology.	Consider	how	your	replication
factor,	data	center	configuration,	cluster	size,	consistency	levels,	and	analytics	approach
all	work	together	to	produce	your	desired	result.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
After	reading	this	chapter	and	the	previous	one,	you	should	have	a	solid	understanding	of
how	Cassandra	ensures	that	your	data	is	available	when	required	and	protected	from	loss
due	to	node	or	data	center	failure.	By	now,	you	should	be	able	to	set	up	and	configure	a
cluster	across	multiple	geographical	regions,	and	be	familiar	enough	with	data	centers	to
begin	the	journey	to	analyze	your	live	data	without	cumbersome	and	expensive	ETL
processes.

So	far	we’ve	focused	on	what	it	takes	to	get	started	with	a	solid	Cassandra	foundation	for
your	application.	In	the	next	chapter,	we	will	talk	about	what	it	looks	like	when	your	use
case	grows	beyond	your	original	plan	and	you	need	to	scale	out	your	cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Scaling	Out
In	the	old	days,	a	significant	increase	in	system	traffic	would	cause	excitement	for	the
sales	organization	and	strike	fear	in	the	hearts	of	the	operations	team.	Fortunately,
Cassandra	makes	the	process	of	scaling	out	a	relatively	pain-free	affair,	so	both	your	sales
and	operations	teams	can	enjoy	the	fruits	of	your	success.

This	chapter	will	give	you	a	complete	rundown	of	the	processes,	tools,	and	design
considerations	when	adding	nodes	or	data	centers	to	your	topology.	In	this	chapter,	we’ll
cover	the	following	topics:

	
Choosing	the	right	hardware	configuration
Scaling	out	versus	scaling	up
Adding	nodes
The	bootstrapping	process
Adding	a	data	center
Sizing	your	cluster	correctly

It	goes	without	saying	that	making	proper	choices	regarding	the	underlying	infrastructure
is	a	key	component	in	achieving	good	performance	and	high	availability.	Conversely,	poor
choices	can	lead	to	a	host	of	issues,	and	recovery	can	sometimes	be	difficult.

Let’s	begin	the	chapter	with	some	guidance	on	choosing	hardware	that’s	compatible	with
Cassandra’s	design.

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing	the	right	hardware	configuration
There	are	a	number	of	points	to	consider	when	deciding	on	a	node	configuration,
including	disk	sizes,	memory	requirements,	and	the	number	of	processor	cores.	The	right
choices	depend	quite	a	bit	on	your	use	case	and	whether	you	are	on	a	physical	or	virtual
infrastructure,	but	we	will	discuss	some	general	guidelines	here.

Since	Cassandra	is	designed	to	be	deployed	in	large-scale	clusters	on	commodity
hardware,	an	important	consideration	is	whether	to	use	fewer	large	nodes	or	a	greater
number	of	smaller	nodes.

Regardless	of	whether	you	use	physical	or	virtual	machines,	there	are	a	few	key	principles
to	keep	in	mind:

	
More	RAM	equals	faster	reads,	so	the	more	you	have,	the	better	they	will	perform.
This	is	because	Cassandra	can	take	advantage	of	its	cache	capabilities	as	well	as
larger	memory	tables.	More	space	for	memory	tables	means	fewer	scans	to	the	on-
disk	SSTables.	More	memory	also	results	in	better	file	system	caching,	which
reduces	disk	operations,	but	not	if	you	allocate	it	to	the	JVM	heap.	Most	of	the	time,
the	default	JVM	heap	size	is	sufficient,	as	Cassandra	stores	its	O(n)	structures	(those
that	grow	with	data	set	size)	off-heap.	In	general,	you	should	not	use	more	than	8	GB
of	heap	on	the	JVM.
More	processors	equal	faster	writes.	This	is	because	Cassandra	is	able	to	efficiently
utilize	all	available	processors,	and	writes	are	generally	CPU-bound.	While	this
might	seem	counter-intuitive,	it	holds	true	because	Cassandra’s	highly	efficient	log-
structured	storage	introduces	very	little	overhead.
Disk	utilization	is	highly	dependent	on	data	volume	and	compaction	strategy.
Obviously,	you	will	need	more	disk	space	if	you	intend	to	store	more	data.	What
might	be	less	obvious	is	the	dependence	on	your	compaction	strategy.	In	the	worst
case,	SizeTieredCompactionStrategy	can	use	up	to	50	percent	more	disk	space	than
the	data	itself.	As	an	upper	bound,	try	to	limit	the	amount	of	data	on	each	node	to	1-2
TB.
Solid-state	drives	(SSDs)	are	a	good	choice.	For	many	use	cases,	simply	moving	to
SSDs	from	spinning	disks	can	be	the	most	cost	effective	way	to	boost	performance.
In	fact,	SSDs	should	be	the	default	choice	since	they	provide	tremendous	benefit
without	any	real	drawbacks.
Do	not	use	shared	storage	because	Cassandra	is	designed	to	use	local	storage.	Shared
storage	configurations	introduce	unwanted	bottlenecks	and	subvert	Cassandra’s	peer-
to-peer	design.	They	also	introduce	an	unnecessary	single	point	of	failure.
Cassandra	needs	at	least	two	disks:	one	for	the	commit	log	and	one	for	data
directories.	This	is	somewhat	less	important	when	using	SSDs	as	they	handle	parallel
writes	better	than	spinning	disks.

Note
For	physical	hardware,	anything	between	16	GB	and	64	GB	of	RAM	seems	to	be	a
good	compromise	between	price	and	performance,	whereas	16	GB	should	be

www.it-ebooks.info

http://www.it-ebooks.info/

considered	ideal	for	virtual	hardware.

When	choosing	the	right	number	of	CPUs,	eight-core	processors	are	currently	a	good
choice	for	dedicated	machines.	CPU	performance	varies	among	cloud	vendors,	so	it’s
a	good	idea	to	consult	the	vendor	and/or	perform	your	own	benchmarks.

These	simple	guidelines	will	help	you	to	get	the	most	out	of	your	hardware	or	cloud
infrastructure	investment	and	form	a	solid	foundation	for	a	high	performance	and	highly
available	cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling	out	versus	scaling	up
So	you	know	it’s	time	to	add	more	muscle	to	your	cluster,	but	how	do	you	know	whether
to	scale	up	or	out?

If	you’re	not	familiar	with	the	difference,	scaling	up	refers	to	converting	existing
infrastructure	into	better	or	more	robust	hardware	(or	instance	types	in	cloud
environments).	This	can	mean	adding	storage	capacity,	increasing	memory,	moving	to
newer	machines	with	more	cores,	and	so	on.

Scaling	out	simply	means	adding	more	machines	that	roughly	match	the	specifications	of
the	existing	machines.	Since	Cassandra	scales	linearly	with	its	peer-to-peer	architecture,
scaling	out	is	often	more	desirable.

Note
In	general,	it	is	better	to	replace	physical	hardware	components	incrementally	rather	than
all	at	one	time.	This	is	because	in	large	systems,	failures	tend	to	occur	after	hardware	ages
to	a	certain	point,	which	is	statistically	likely	to	happen	simultaneously	for	some	subset	of
your	nodes.

For	example,	purchasing	a	large	amount	of	drives	from	a	single	source	at	one	time	is
likely	to	result	in	a	sudden	onslaught	of	drive	failures	as	they	near	the	end	of	their	service
life.

How	do	you	know	which	is	the	better	strategy?	To	arrive	at	an	answer,	you	can	ask
yourself	a	few	questions	about	your	existing	infrastructure:

	
Have	there	been	significant	advances	in	hardware	(or	cloud	instance	types,	in	the
case	of	EC2,	Rackspace,	and	so	on),	such	that	scaling	up	yields	more	benefit	for	the
cost	than	adding	nodes?	Refer	to	the	excellent	article	from	Netflix	at
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html,
which	discusses	the	benefits	of	moving	to	SSDs	rather	than	adding	nodes.
Did	you	start	with	hardware	that	was	too	small	because	you	were	bound	by	the
limitations	of	early	Cassandra	versions	or	a	cloud	provider’s	offerings	at	the	time?
Do	you	have	existing	hardware	to	repurpose	for	use	as	a	Cassandra	cluster	that	is
better	than	your	current	hardware?

If	the	answer	to	any	of	the	preceding	questions	is	yes,	then	scaling	up	might	be	your	best
option.	If	the	answer	is	no,	it	might	still	be	better	to	scale	up,	depending	on	what	extra
resource	you	hope	to	gain	by	scaling	up	and	the	cost-benefit	ratio.	If,	for	example,	you
only	require	more	storage	but	not	more	CPU	or	IOPS,	then	adding	disks	is	probably
cheaper.	If	you	require	a	bit	more	memory	for	the	cache,	then	add	some	memory	if	your
nodes	can	take	more.

However,	upgrading	the	motherboard	to	take	more	memory	is	unlikely	to	be	cost-
effective,	so	adding	nodes	is	a	better	choice.	Fortunately,	Cassandra	makes	scaling	out
painless.	Regardless	of	which	path	you	choose,	you	will	need	to	know	how	to	add	nodes
to	your	cluster.

www.it-ebooks.info

http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://www.it-ebooks.info/

Growing	your	cluster
The	process	of	adding	a	node	to	an	existing	Cassandra	cluster	ranges	from	simple	when
vnodes	are	used	to	somewhat	tedious	if	you	manually	assign	tokens.	Let’s	start	with	the
manual	case,	as	the	vnodes	process	is	a	subset	of	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	nodes	without	vnodes
As	previously	mentioned,	the	procedure	to	add	a	node	to	a	cluster	without	vnodes	enabled
is	straightforward,	if	not	a	bit	tedious.	The	first	step	is	to	determine	the	new	total	cluster
size,	then	compute	tokens	for	all	nodes.

To	compute	tokens,	follow	the	DataStax	documentation	at
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
There	are	also	several	useful	online	tools	to	help	you,	such	as	the	ones	that	you	will	find	at
http://www.geroba.com/cassandra/cassandra-token-calculator/.

Once	you	have	the	new	tokens,	complete	the	following	steps	to	add	your	new	nodes	to	the
cluster:

	
1.	 Run	repair	to	ensure	that	all	nodes	contain	the	most	recent	data.	Failure	to	do	this	can

result	in	data	loss,	as	the	new	node	might	bootstrap	data	from	a	node	that	doesn’t
contain	the	latest	replicas.

2.	 Make	sure	Cassandra	is	installed,	but	do	not	start	the	process.	If	you	use	a	package
manager,	be	aware	that	Cassandra	will	start	automatically.	If	so,	you	will	need	to	stop
the	process	before	proceeding.

3.	 On	new	nodes,	in	cassandra.yaml,	set	the	addresses	to	their	proper	values,	along
with	the	cluster	name,	seeds,	and	endpoint	snitch.	Then	set	the	initial_token	value
to	the	node’s	assigned	token	using	the	tokens	calculated	prior	to	beginning	this
process.

4.	 Start	the	Cassandra	daemon	on	the	new	node.
5.	 Wait	for	at	least	two	minutes	before	starting	the	bootstrap	process	on	another	node.	A

good	practice	is	to	watch	the	Cassandra	log	as	it	starts	to	make	sure	there	are	no
errors.

6.	 Once	all	new	nodes	are	up,	run	nodetool	move	on	old	nodes	to	assign	new	tokens	on
one	node	at	a	time.	This	is	unnecessary	if	you	are	doubling	the	cluster	size	as	the
token	assignments	on	old	nodes	will	remain	the	same.

7.	 After	this	process	has	been	completed	on	all	new	and	existing	nodes,	run	nodetool
cleanup	on	old	nodes	to	purge	old	data	that	now	belongs	to	the	new	nodes.	You
should	do	this	on	one	node	at	a	time.

www.it-ebooks.info

http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.it-ebooks.info/

Adding	nodes	with	vnodes
The	primary	difference	when	using	vnodes	is	that	you	do	not	have	to	generate	or	set
tokens	as	this	happens	automatically,	and	there	is	no	need	to	run	nodetool	move.	Instead
of	setting	the	initial_token	property,	you	should	set	the	num_tokens	property	in
accordance	with	the	desired	data	distribution.	Larger	values	represent	proportionally	larger
nodes	in	your	cluster,	with	256	being	the	default.	If	all	your	nodes	are	the	same	size,	this
default	should	be	sufficient.

Over	time,	your	cluster	might	naturally	become	heterogeneous	in	terms	of	node	size	and
capacity.	In	the	past,	when	using	manually	assigned	tokens,	this	presented	a	challenge	as	it
was	difficult	to	determine	the	proper	tokens	that	would	result	in	a	balanced	cluster.

With	vnodes,	you	can	simply	set	the	num_tokens	property	to	a	larger	number	for	larger
nodes.	For	example,	if	your	typical	node	owns	256	tokens,	when	adding	a	node	with	twice
the	capacity,	you	should	set	its	num_tokens	property	to	512.

If	you	want	to	keep	track	of	the	bootstrapping	process,	you	can	run	nodetool	netstats	to
view	the	progress.	Once	the	streaming	has	completed,	the	output	of	this	command	is	as
follows:

Mode:	NORMAL

Nothing	streaming	to	/x.x.x.x

Nothing	streaming	from	/x.x.x.x

Read	Repair	Statistics:

Attempted:	1

Mismatch	(Blocking):	0

Mismatch	(Background):	0

Pool	Name																				Active			Pending						Completed

Commands																								n/a									0														1

Responses																							n/a									0										12345

Once	the	Mode	status	reports	as	NORMAL,	this	indicates	the	node	is	ready	to	serve	requests.

Now	that	you	know	how	to	add	a	node,	let’s	examine	the	two	paths	to	increase	the
capacity	of	your	cluster,	starting	with	scaling	out.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	scale	out
Scaling	out	typically	involves	adding	nodes	to	your	current	cluster,	but	might	also	mean
adding	an	entire	data	center.	If	you	simply	need	to	add	nodes	to	an	existing	data	center,
you	might	have	guessed	that	you	must	only	follow	the	steps	to	add	a	node,	as	described	in
the	previous	section	on	that	topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	a	data	center
Adding	a	new	data	center	to	your	cluster	is	similar	to	initializing	a	new	multinode	cluster.
As	this	is	not	a	basic	tutorial	on	Cassandra,	we	will	assume	you	already	know	how	to	do
this.	Before	starting	your	nodes	in	the	new	data	center,	be	sure	to	keep	in	mind	the
following	additional	details:

	
You	must	use	NetworkTopologyStrategy	with	an	appropriate	snitch.	If	you	have	not
already	chosen	a	data	center-aware	snitch,	the	recommendation	is	to	use	the
GossipingPropertyFileSnitch	configuration	for	non-cloud	installations,	or	the
appropriate	cloud	snitch	for	cloud-based	installations.	Refer	to	Chapter	4,	Data
Centers,	for	more	information	on	configuring	snitches.
Set	auto_bootstrap	to	false.	This	property	is	set	to	true	by	default,	and	if	left	as
true	will	cause	the	node	to	immediately	start	transferring	data	from	the	existing	data
center.	The	correct	procedure	is	to	wait	and	run	a	rebuild	after	all	nodes	are	online.
Configure	the	seeds.	It	is	a	good	idea	to	include	at	least	a	couple	nodes	from	each
data	center	as	seeds	in	cassandra.yaml.
Update	the	appropriate	properties	files.	If	you’re	using	the
GossipingPropertyFileSnitch	configuration,	add	the	cassandra-
rackdc.properties	file	on	each	new	node.	If	you	have	chosen
PropertyFileSnitch,	you	will	need	to	update	cassandra-topology.properties	on
all	nodes	(a	restart	is	not	required	on	existing	nodes).

Note
Prior	to	changing	your	keyspace	definition,	make	sure	that	you	change	the
consistency	levels	on	your	clients	so	they	reflect	the	desired	guarantees.	Failing	to	do
this	might	result	in	slow	response	times	and	UnavailableExceptions,	as	Cassandra
attempts	to	satisfy	the	target	consistency	level	using	your	new	data	center.

This	is	especially	true	when	moving	from	a	single	data	center	environment	(where
your	calls	are	likely,	for	example,	to	be	QUORUM	rather	than	LOCAL_QUORUM).	When
adding	data	centers	beyond	the	second,	it	should	be	less	of	a	concern.	Refer	to
Chapter	6,	High	Availability	Features	in	the	Native	Java	Client,	for	more	details	if
you’re	using	the	native	driver.

Once	your	new	nodes	are	online,	you	will	need	to	change	your	keyspace	properties	to
reflect	your	desired	replication	factor	for	each	data	center.	For	example,	suppose	you
previously	had	a	data	center	named	DC1	and	your	new	data	center	is	called	DC2,	and	you
wanted	both	DC1	and	DC2	to	have	three	replicas,	you	would	issue	the	following	CQL
statement:
ALTER	KEYSPACE	[your_keyspace]

WITH	REPLICATION	=	{

		‘class’	:	‘NetworkTopologyStrategy’,

		‘DC1’	:	3,

		‘DC2’	:	3

};

www.it-ebooks.info

http://www.it-ebooks.info/

Note	that	you	only	need	to	do	this	on	one	node	as	your	schema	will	be	gossiped	to	all
nodes	in	all	data	centers.

After	you	set	your	desired	replication	factor,	you	will	need	to	execute	a	rebuild	operation
on	each	node	in	the	new	data	center:

nodetool	rebuild	—	[name	of	data	center]

The	rebuild	will	ensure	that	nodes	in	the	new	data	center	receive	up-to-date	replicas	from
the	existing	data	center.	It’s	important	to	include	the	data	center	name	when	issuing	this
command	or	the	rebuild	operation	will	not	copy	any	data.	You	can	safely	run	this	on	all
nodes	at	once,	provided	your	existing	data	center	can	handle	the	additional	load.	If	you	are
in	doubt	about	this,	it	might	be	wise	to	run	the	rebuild	on	one	node	at	a	time	to	avoid
potential	problems.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	scale	up
Properly	scaling	up	your	Cassandra	cluster	is	not	a	difficult	process,	but	it	does	require
you	to	carefully	follow	established	procedures	to	avoid	undesirable	side	effects.	There	are
two	general	approaches	to	consider:

	
Upgrade	in	place:	Upgrading	in	place	involves	taking	each	node	out	of	the	ring,	one
at	a	time,	bringing	its	new	replacement	online,	and	allowing	the	new	node	to
bootstrap.	This	choice	makes	the	most	sense	if	a	subset	of	your	cluster	needs
upgrading	rather	than	an	entire	data	center.	To	upgrade	an	entire	data	center,	it	might
be	preferable	to	allow	replication	to	automatically	build	the	new	nodes.	This
assumes,	of	course,	that	your	replication	factor	is	greater	than	one.
Using	data	center	replication:	Since	Cassandra	already	supports	bringing	up
another	data	center	via	replication,	you	can	use	this	mechanism	to	populate	your	new
hardware	with	existing	data	and	then	switch	to	the	new	data	center	when	replication
is	complete.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading	in	place
If	you	have	determined	that	your	best	strategy	is	to	upgrade	a	subset	of	your	existing
nodes,	you	will	need	to	take	the	node	offline	so	that	the	cluster	sees	its	status	as	down,
which	can	be	confirmed	using	nodetool	status:

Datacenter:	dc1

Status=Up/Down

|/	State=Normal/Leaving/Joining/Moving	

—		Address									…

UN		10.10.10.1						…

UN		10.10.10.2						…

DN		10.10.10.3						…

UN		10.10.10.4						…

You	can	see	in	this	excerpt	of	the	output	that	the	node	at	the	10.10.10.3	address	is	labeled
DN,	which	indicates	that	Cassandra	sees	it	as	down.	Once	you	have	confirmed	this,	you
should	make	a	note	of	the	address	(and	the	token	if	you	are	using	manually	assigned
tokens).

You	are	now	ready	to	begin	the	process	of	replacing	the	node,	which	simply	involves
following	the	previously	outlined	steps	for	adding	a	node	with	the	following	minor
exceptions:

	
If	using	vnodes	with	a	packaged	installation,	add	the	following	line	to
/usr/share/cassandra/cassandra-env.sh	prior	to	starting	Cassandra:
JVM_OPTS=”$JVM_OPTS	-Dcassandra.replace_address=[old_address]

If	using	vnodes	with	a	tarball	installation,	when	starting	Cassandra,	use	the	following
option:
bin/cassandra	–Dcassandra.replace_address=[old_address]

If	you	are	manually	assigning	tokens,	set	initial_token	to	the	old	node’s	token
minus	one,	and	run	nodetool	repair	on	each	keyspace	on	the	new	node	after
bootstrapping	is	complete.	You	will	also	need	to	decommission	the	old	node.

You	will	need	to	repeat	this	process	for	each	node	that	you	want	to	upgrade,	and	make
sure	you	execute	the	procedure	one	node	at	a	time.	In	addition,	you	should	consider
running	a	repair	after	each	node	replacement.	If	only	two	of	three	nodes	contain	the	latest
data	for	some	particular	token	range	and	you’re	replacing	one	of	these	nodes,	Cassandra
might	end	up	copying	the	data	from	the	node	with	the	older	data.	Thus,	you	would	only
have	the	latest	data	on	one	node;	if	this	node	is	replaced	next,	you	would	lose	the	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling	up	using	data	center	replication
If	you	have	a	large	data	center	and	intend	to	replace	all	the	hardware	in	that	data	center,
the	simplest	way	to	handle	this	is	to	use	Cassandra’s	replication	mechanism	to	do	the	hard
work	for	you.	Once	the	new	data	center	is	ready	to	receive	traffic,	you	can	simply	redirect
client	requests	to	it.	At	this	point,	you	will	be	able	to	safely	decommission	the	old	data
center.

To	accomplish	this,	you	should	follow	the	procedure	to	add	a	data	center,	which	was
outlined	earlier	in	this	chapter.	Once	your	new	data	center	is	online,	you	should	perform
the	following	steps:

	
1.	 Validate	that	all	new	nodes	are	online	using	nodetool	status.
2.	 Redirect	all	client	traffic	to	the	new	data	center	and	make	sure	that	there	are	no

remaining	clients	connected	before	proceeding.
3.	 Run	nodetool	repair	on	nodes	in	any	other	data	centers	(besides	the	one	you’re

decommissioning)	to	ensure	that	any	data	that	was	updated	on	the	old	data	center	is
propagated	to	the	rest	of	the	cluster.

4.	 Use	the	ALTER	KEYSPACE	command	to	remove	any	references	to	the	old	data	center,
as	described	in	the	earlier	section	on	adding	data	centers.

5.	 Run	nodetool	decommission	on	each	of	the	old	nodes	to	permanently	remove	it
from	the	cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Removing	nodes
While	the	material	in	this	chapter	is	primarily	focused	on	adding	capacity	to	your	cluster,
there	might	be	times	when	reducing	capacity	is	what	you’re	hoping	to	accomplish.	There
can	be	a	number	of	valid	reasons	for	doing	this.	Perhaps	you	experience	smaller
transaction	volumes	than	originally	anticipated	for	a	new	application,	or	you	might	change
your	data	retention	plan.	In	some	cases	you	might	want	to	move	to	a	smaller	cluster	with
more	capable	nodes,	especially	in	cloud	environments	where	this	transition	is	made	easier.

Regardless	of	your	reasons	for	doing	so,	knowing	how	to	remove	nodes	from	your	cluster
will	certainly	come	in	handy	at	some	point	in	your	Cassandra	experience.	Let’s	take	a	look
at	this	process	now.

www.it-ebooks.info

http://www.it-ebooks.info/

Removing	nodes	within	a	data	center
Fortunately,	the	process	to	remove	a	node	is	quite	simple:

	
1.	 Run	nodetool	repair	on	all	your	keyspaces.	This	will	ensure	that	any	updates

which	might	be	present	only	on	the	node	you’re	removing	will	be	preserved	in	the
remaining	nodes.

2.	 Presuming	the	node	is	online,	run	nodetool	decommission	on	the	node	you’re
retiring.	This	process	will	move	the	retiring	node’s	token	ranges	to	other	nodes	in	the
ring	and	then	copy	replicas	to	their	appropriate	locations	based	on	the	new	token
assignments.	As	mentioned	previously,	you	can	use	nodetool	netstats	to	keep
track	of	each	node’s	progress	during	this	operation.

3.	 If	you’re	manually	assigning	tokens,	you	must	reassign	all	your	tokens	so	that	your
distribution	is	even.	This	procedure	is	outlined	in	an	earlier	section	in	this	chapter.

4.	 Validate	that	the	node	has	been	removed	using	nodetool	status.	If	the	node	has
been	properly	removed,	it	should	no	longer	appear	in	the	list	output	of	this	command.

www.it-ebooks.info

http://www.it-ebooks.info/

Decommissioning	a	data	center
If	you	want	to	remove	an	entire	data	center,	the	process	closely	mirrors	what	we	outlined
earlier	in	the	section	on	scaling	up	via	data	center	replication.	For	clarity	however,	let’s
repeat	just	the	important	steps	here:

	
1.	 Run	nodetool	repair	on	nodes	in	any	other	data	centers	(besides	the	one	that	you’re

decommissioning)	to	ensure	any	data	that	was	updated	on	the	old	data	center	is
propagated	to	the	rest	of	the	cluster.

2.	 Use	the	ALTER	KEYSPACE	command	to	remove	any	references	to	the	old	data	center	as
described	in	the	earlier	section	on	adding	data	centers.

3.	 Run	nodetool	decommission	on	each	of	the	old	nodes	to	permanently	remove	it
from	the	cluster.

Note
Given	the	coordination	required	between	multiple	teams	to	successfully	execute
major	topology	changes,	it	is	often	advisable	to	appoint	a	single	knowledgeable
person	who	can	oversee	this	process	to	ensure	that	all	the	proper	steps	are	taken.	This
simple	step	can	help	to	avoid	significant	issues.	Even	better,	automated	cluster
management	tools	such	as	Puppet,	Chef,	or	Priam	can	make	this	process	much	easier.

By	now,	you	should	be	familiar	with	the	various	possible	operations	to	add	and	remove
nodes	or	data	centers.	As	you	can	see,	these	processes	require	planning	and	coordination
between	application	designers,	DevOps	team	members,	and	your	infrastructure	team.	The
consequences	of	improper	execution	of	any	of	these	processes	can	be	quite	substantial.

www.it-ebooks.info

http://www.it-ebooks.info/

Other	data	migration	scenarios
At	times,	you	might	need	to	migrate	large	amounts	of	data	from	one	cluster	to	another.	A
common	reason	for	this	is	the	need	to	transition	data	between	networks	that	cannot	see
each	other,	or	moving	from	classic	Amazon	EC2	to	a	newer	virtual	private	cloud
infrastructure.

If	you	find	yourself	in	this	situation,	you	can	use	these	steps	to	ensure	a	smooth	transition
to	the	new	infrastructure:

	
1.	 Set	up	your	new	cluster.	Using	the	information	you	learned	in	this	chapter,	configure

your	cluster	and	duplicate	the	schema	from	your	existing	cluster.
2.	 Change	your	application	to	write	to	both	clusters.	This	is	certainly	the	most

significant	change,	as	it	likely	requires	code	changes	in	your	application.
3.	 Verify	that	you	are	receiving	writes	to	both	clusters	to	avoid	potential	data	loss.
4.	 Create	a	snapshot	of	your	old	cluster	using	the	nodetool	snapshot	command.
5.	 Load	the	snapshot	data	into	your	new	cluster	using	the	sstableloader	command.

This	command	actually	streams	the	data	into	the	cluster	rather	than	performing	a
blind	copy,	which	means	that	your	configured	replication	strategy	will	be	honored.

6.	 Switch	your	application	to	point	only	to	the	new	cluster.
7.	 Decommission	the	old	cluster	by	running	nodetool	decommission	on	each	of	the	old

nodes.

It’s	possible	to	skip	the	step	that	requires	your	application	to	direct	traffic	to	both	clusters,
provided	you	can	schedule	sufficient	downtime.	The	problem	is	that	it’s	difficult	to
accurately	predict	how	long	the	load	will	take,	and	considering	the	subject	matter	of	this
book,	it’s	likely	that	your	application	cannot	sustain	this	downtime.

One	final	topic	that’s	worth	covering	when	talking	about	increasing	cluster	capacity	is	the
possibility	that	you	might	need	to	change	snitches.	Often	users	will	start	with
SimpleSnitch,	then	find	that	they	want	to	add	a	data	center	later,	which	requires	one	of
the	data	center-aware	snitches.	If	done	incorrectly,	snitch	changes	can	be	problematic,	so
let’s	discuss	the	proper	way	to	handle	this	scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

Snitch	changes
As	you	will	recall	from	Chapter	4,	Data	Centers,	the	snitch	tells	Cassandra	what	your
network	topology	looks	like,	and	therefore	affects	data	placement	in	the	cluster.	If	you
haven’t	inserted	any	data,	or	if	the	change	doesn’t	alter	your	topology,	you	can	change	the
snitch	without	consequence.	Otherwise,	multiple	steps	are	required	as	well	as	a	full	cluster
restart,	which	will	result	in	downtime.

How	do	you	know	if	your	topology	has	changed?	If	you’re	not	adding	or	removing	nodes
while	changing	the	snitch,	your	topology	has	not	changed.	Presuming	no	change,	the
following	procedure	should	be	used	to	change	snitches:

	
1.	 Update	your	topology	properties	files,	which	means	cassandra-

topology.properties	or	cassandra-rackdc.properties,	depending	on	which
snitch	you	specify.	In	the	case	of	the	PropertyFileSnitch,	make	sure	all	nodes	have
the	same	file.	For	GossipingPropertyFileSnitch	or	EC2MultiRegionSnitch,	each
node	should	have	a	file	indicating	its	place	in	the	topology.

2.	 Update	the	snitch	in	cassandra.yaml.	You’ll	need	to	do	this	for	every	node	in	the
cluster.

3.	 Restart	all	nodes,	one	at	a	time.	Any	time	you	make	a	change	to	cassandra.yaml,
you	must	restart	the	node.

If	you	need	to	change	your	topology,	you	have	two	options:

	
You	can	go	ahead	and	make	the	change	all	at	once,	then	shut	down	the	entire	cluster
at	one	time.	When	you	restart	the	cluster,	your	new	topology	will	take	effect.
You	can	change	the	snitch	(by	following	the	previous	steps)	prior	to	making	any
topology	changes.	Once	you	have	finished	the	snitch	change	procedure,	you	can	then
change	your	topology	without	having	to	restart	your	nodes.

Tip
If	you’re	just	starting	out	with	Cassandra,	it’s	best	to	plan	for	cluster	growth	from	the
beginning.	Go	ahead	and	choose	either	GossipingPropertyFileSnitch	or
EC2MultiRegionSnitch	(for	EC2	deployments)	as	this	will	help	to	avoid
complications	later	when	you	inevitably	decide	to	expand	your	cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	covered	quite	a	few	procedures	to	handle	a	variety	of	cluster	changes,	from
adding	a	single	node	to	expanding	with	a	new	data	center	to	migrating	your	entire	cluster.

While	it	is	unreasonable	to	expect	anyone	to	commit	all	these	processes	to	memory,	let
this	chapter	serve	as	a	reference	for	the	times	when	these	events	occur.	Most	importantly,
take	note	of	these	scenarios	so	you	can	know	when	it’s	time	to	read	the	manual	rather	than
just	trying	to	figure	it	out	on	your	own.	Distributed	databases	can	be	wonderful	when
handled	correctly,	but	quite	unforgiving	when	misused.

We	spent	the	last	five	chapters	looking	at	a	variety	of	mostly	administrative	and	design
related	concepts,	but	now	it’s	time	to	dig	in	and	look	at	some	application	code.	In	the	next
chapter,	we	will	take	a	look	at	the	relatively	new	native	client	library	(specifically,	the	Java
variant,	although	there	are	also	drivers	for	C#	and	Python	that	follow	similar	principles).

The	new	driver	has	a	number	of	interesting	features	related	to	high	availability,	so	it’s	time
to	put	on	your	developer’s	hat	as	we	transition	from	the	database	to	the	application	layer.
As	you	likely	know	from	past	experience,	a	properly	architected	client	application	is	every
bit	as	important	as	a	correctly	configured	database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	High	Availability	Features	in	the
Native	Java	Client
If	you	are	relatively	new	to	Cassandra,	you	may	be	unaware	that	the	native	client	libraries
from	DataStax	are	a	recent	development.	In	fact,	prior	to	their	introduction,	there	were
numerous	libraries	(and	forks	of	those	projects)	just	for	the	Java	language.	Throw	in	the
other	languages,	each	with	their	own	idiosyncrasies,	and	you’d	know	that	the	situation	was
really	quite	dire.

Complicating	the	scenario	was	the	lack	of	any	universally	accepted	query	mechanism	as
CQL	was	initially	poorly	received.	The	only	real	common	ground	to	describe	queries	and
data	models	was	the	underlying	Thrift	protocol.	While	this	worked	reasonably	well	for
early	adopters,	it	made	assimilation	of	newer	users	quite	difficult.	It	is	a	testament	to
Cassandra’s	extraordinary	architecture,	speed,	and	scalability	that	it	was	able	to	survive
those	early	days.

After	several	revisions	of	CQL,	the	introduction	of	a	native	binary	protocol,	and
DataStax’s	work	on	a	modern	CQL-based	native	driver,	we	are	fortunately	in	a	much
better	place	now	than	we	were	just	a	couple	of	years	ago.	In	fact,	the	modern
implementation	of	CQL	is	roughly	50	times	faster	than	the	equivalent	Thrift	query.

In	this	chapter,	we	will	introduce	the	native	Java	driver	and	discuss	its	high	availability
features,	covering	the	following	topics:

	
Thrift	versus	the	native	protocol
Client	basics
Asynchronous	requests
Load	balancing
Failover	policies
Retries

Note
While	the	chapter	will	focus	specifically	on	the	Java	implementation,	there	are	also
similar	drivers	for	Python	and	C#.	Though	the	specific	implementation	details	may
vary	among	languages,	the	basic	concepts	will	prove	useful	no	matter	which	driver
you	end	up	using.

It’s	also	worth	noting	that	in	most	cases,	it	will	be	worth	transitioning	to	the	native	Java
driver	if	you’re	using	another	JVM-based	language	(such	as	Scala,	Clojure,	and	Groovy),
even	though	your	language	of	choice	may	have	another	community-supported	Thrift-
based	driver	available.

www.it-ebooks.info

http://www.it-ebooks.info/

Thrift	versus	the	native	protocol
Cassandra	users	fall	into	two	general	categories.	The	first	category	consists	of	those	who
have	been	using	it	for	a	while	and	have	grown	accustomed	to	working	directly	with
storage	rows	via	a	Thrift-based	client,	and	second,	those	who	are	relatively	new	to
Cassandra	and	are	confused	by	the	role	Thrift	plays	in	the	modern	Cassandra	world.
Hopefully,	we	can	clear	up	the	confusion	and	set	both	groups	on	the	right	path.	Thrift	is	an
RPC	mechanism	combined	with	a	code	generator,	and	for	several	years	it	formed	the
underlying	protocol	layer	for	clients	communicating	with	Cassandra.	This	allowed	the
early	developers	of	Cassandra	itself	to	focus	on	the	database	rather	than	the	clients.	But,	as
we	hinted	at	in	the	introduction,	there	are	numerous	negative	side	effects	of	this	strategy:

	
There	was	no	common	language	to	describe	data	models	and	queries	as	each	client
implemented	different	abstractions	on	top	of	the	underlying	Thrift	protocol.
Thrift	was	limited	to	the	lowest	common	denominator	implementation	for	all	the
supported	languages,	which	proved	to	be	a	significant	handicap	as	more	advanced
APIs	became	desirable.
All	requests	were	executed	synchronously	as	Thrift	has	no	built-in	support	for
asynchronous	calls.
All	query	results	had	to	be	materialized	into	memory	on	both	the	server	and	the
client.	This	forced	clients	to	implement	cumbersome	paging	techniques	when
requesting	large	datasets	to	avoid	exceeding	available	memory	on	either	the	client	or
the	server.	Limitations	in	the	protocol	itself	also	made	optimization	difficult.

For	these	reasons,	the	Thrift	protocol	is	essentially	deprecated	in	the	favor	of	the	newer
binary	protocol,	which	supports	more	advanced	features	such	as	cursors,	batches,	prepared
statements,	and	cluster	awareness.

If	you’re	still	not	convinced	that	you	should	migrate	away	from	your	favorite	Thrift-based
library,	keep	reading	to	learn	about	some	of	the	great	new	features	in	the	native	driver.
Even	the	popular	Astyanax	driver	from	Netflix	now	uses	the	native	protocol	under	the
hood.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	environment
To	get	the	most	out	of	this	chapter,	you	should	prepare	your	development	environment
with	the	following	prerequisites:

	
Java	Development	Kit	(JDK)	1.7	for	your	platform,	which	can	be	obtained	at
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-
1880260.html.
Integrated	Development	Environment	(IDE)	or	any	text	editor	of	your	choice.
Either	a	local	Cassandra	installation,	or	the	ability	to	connect	to	a	remote	cluster.
The	DataStax	native	Java	driver	for	your	Cassandra	version.	If	you’re	using	Maven
for	dependency	management,	add	the	following	lines	of	code	to	your	pom.xml	file:
<dependency>

		<groupId>com.datastax.cassandra</groupId>

		<artifactId>cassandra-driver-core</artifactId>

		<version>[version_number]</version>

</dependency>

If	you’re	using	the	1.x	driver,	you	may	notice	that	it	has	a	significant	number	of
dependencies	(compared	to	only	four	with	the	2.x	version).	For	this	reason,	you	should
make	use	of	a	dependency	management	tool,	such	as	Maven,	Ivy,	or	SBT.

Now	that	you’re	set	up	for	coding,	you	should	get	familiar	with	some	of	the	basics	of	the
driver.	The	first	step	is	to	establish	a	connection	to	your	Cassandra	cluster,	so	we	will	start
by	doing	just	that.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.it-ebooks.info/

Connecting	to	the	cluster
To	get	connected,	start	by	creating	a	Cluster	reference,	which	you	will	construct	using	a
builder	pattern.	You	will	specify	each	additional	option	by	chaining	method	calls	together
to	produce	the	desired	configuration,	then	finally,	calling	the	build()	method	to	initialize
the	Cluster	instance.

Let’s	build	a	cluster	that’s	initialized	with	a	list	of	possible	initial	contact	points:
private	Cluster	cluster;	//	defined	at	class	level

//	you	should	only	build	the	cluster	once	per	app

cluster	=	Cluster.builder()

		.addContactPoints(“10.10.10.1”,	“10.10.10.2”,	“10.10.10.3”)

		.build();

Note
You	should	only	have	one	instance	of	Cluster	in	your	application	for	each	physical
cluster	as	this	class	controls	the	list	of	contact	points	and	key	connection	policies	such	as
compression,	failover,	request	routing,	and	retries.

While	this	basic	example	will	suffice	to	play	around	with	the	driver	locally,	the	Cluster
builder	supports	a	number	of	additional	options	that	are	relevant	for	maintaining	a	highly
available	application,	which	we	will	explore	throughout	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Executing	statements
While	the	Cluster	acts	as	a	central	place	to	manage	connection-level	configuration
options,	you	will	need	to	establish	a	Session	instance	to	perform	actual	work	against	the
cluster.	This	is	done	by	calling	the	connect()	method	on	your	Cluster	instance.	Here,	we
connect	to	the	contacts	keyspace:
private	Session	session;	//	defined	at	class	level

session	=	cluster.connect(“contacts”);

Once	you	have	created	the	Session,	you	will	be	able	to	execute	CQL	statements	as
follows:
String	insert	=	“INSERT	INTO	contact	(id,	email)	”	+

		“VALUES	(”	+

		“bd297650-2885-11e4-8c21-0800200c9a66,”	+

		“‘contact@example.com’	”	+

“);”;

session.execute(insert);

You	can	submit	any	valid	CQL	statement	to	the	execute()	method,	including	schema
modifications.

Note
Unless	you	have	a	large	number	of	keyspaces,	you	should	create	one	Session	instance	for
each	keyspace	in	your	application,	because	it	provides	connection	pooling	and	controls	the
node	selection	policy	(it	uses	a	round-robin	approach	by	default).	The	Session	is	thread-
safe,	so	it	can	be	shared	among	multiple	clients.

www.it-ebooks.info

http://www.it-ebooks.info/

Prepared	statements
One	key	improvement	provided	by	the	native	driver	(and	Cassandra	1.2+)	is	its	support	for
prepared	statements.	Readers	with	a	background	in	traditional	relational	databases	will	be
familiar	with	the	concept.	Essentially,	the	statement	is	preparsed	at	the	time	it	is	prepared,
with	placeholders	left	for	parameters	to	be	bound	at	execution	time.

Using	the	driver’s	PreparedStatement	is	straightforward:
String	insert	=	“INSERT	INTO	contacts.contact	(id,	email)	”	+

		“VALUES	(?,?);”;

PreparedStatement	stmt	=	session.prepare(insert);

BoundStatement	boundInsert	=	stmt.bind(

		UUID.fromString(“bd297650-2885-11e4-8c21-0800200c9a66”),

		“contact@example.com”

);

session.execute(boundInsert);

Use	prepared	statements	whenever	you	need	to	execute	the	same	statement	repeatedly,	as
this	will	reduce	parsing	overhead	on	the	server.	However,	do	not	create	the	same	prepared
statement	multiple	times,	as	this	will	actually	degrade	performance.	You	should	prepare
statements	only	once	and	reuse	them	for	multiple	executions.

www.it-ebooks.info

http://www.it-ebooks.info/

Batched	statements
If	you	are	using	the	2.x	driver,	you	can	also	use	prepared	statements	with	batches.	When
statements	are	grouped	into	a	batch,	they	are	executed	atomically	and	without	multiple
network	calls.	This	can	be	useful	when	you	need	either	all	or	none	of	your	statements	to
succeed.

Here’s	an	example	of	preparing	and	executing	a	batch	using	the	statement	prepared	in	the
previous	code	snippet:
BatchStatement	batch	=	new	BatchStatement();

batch.add(stmt.bind(

		UUID.fromString(“bd297650-2885-11e4-8c21-0800200c9a66”),

		“contact@example.com”

));

batch.add(stmt.bind(

		UUID.fromString(“a012a000-2899-11e4-8c21-0800200c9a66”),

		“othercontact@example.com”

));

session.execute(batch);

Caution	with	batches
While	batches	can	be	quite	useful	when	they’re	needed,	you	should	be	aware	of	some
pitfalls	associated	with	them:

	
They	are	atomic,	but	not	isolated.	This	means	clients	will	be	able	to	see	the
incremental	updates	as	they	happen.	The	exception	is	updates	to	a	single	partition,
which	are	isolated.
They	are	slower.	Specifically,	the	atomicity	guarantee	introduces	approximately	a	30
percent	performance	penalty	across	the	batch.	Sometimes	this	is	worth	it,	but	it
means	you	shouldn’t	automatically	assume	batching	multiple	requests	is	better	than
multiple	single	requests.	To	avoid	this	penalty,	you	can	use	unlogged	batches,	which
turn	off	atomicity	and	provide	increased	performance	over	multiple	statements
executed	against	the	same	partition.
They	are	all	or	nothing.	In	other	words,	either	all	statements	fail	or	all	succeed.	This
has	the	effect	of	increasing	latency	as	you	have	to	wait	for	responses	for	all	the
statements.
They	are	unordered.	Batching	applies	the	same	timestamp	to	all	mutations	in	the
batch,	so	statements	don’t	actually	execute	in	the	provided	ordering.
Don’t	use	them	with	prepared	statements	to	update	many	sparse	columns.	It’s
tempting	to	prepare	a	single	statement	with	a	number	of	parameters	for	use	in	a	large
batch.	This	works	fine	if	you	always	supply	all	the	parameters,	but	don’t	assume	you
can	insert	nulls	for	missing	columns,	as	inserting	nulls	creates	tombstones.	Refer	to
Chapter	8,	Antipatterns,	for	details	on	why	creating	large	numbers	of	tombstones	is
an	antipattern.

Now	that	you’re	familiar	with	the	basic	client	concepts,	it’s	time	to	delve	into	the	more
advanced	features,	beginning	with	the	ability	to	execute	requests	asynchronously.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling	asynchronous	requests
Since	Cassandra	is	designed	for	significant	scale,	it	follows	that	most	applications	using	it
would	be	designed	with	similar	scalability	in	mind.	One	principle	characteristic	of	high
performance	applications	is	that	they	do	not	block	threads	unnecessarily,	and	instead
attempt	to	maximize	available	resources.

As	previously	discussed,	one	of	the	downsides	to	the	older	Thrift	protocol	was	its	lack	of
support	for	asynchronous	requests.	Fortunately,	this	situation	has	been	remedied	with	the
native	driver,	making	the	process	of	building	scalable	applications	on	top	of	Cassandra
significantly	easier.

Tip
Blocking	on	I/O,	such	as	with	calls	to	Cassandra,	can	cause	significant	bottlenecks	in
high-throughput	applications.	Since	a	slow	application	can	be	the	same	as	a	dead
application,	you	should	use	the	asynchronous	API	to	avoid	blocking	whenever	possible.

If	you	are	familiar	with	the	java.util.concurrent	package,	and	the	Future	class
specifically,	the	asynchronous	API	will	look	familiar.	Here’s	a	basic	example:
String	query	=	“SELECT	*	FROM	contact	”	+

		“WHERE	id	=	bd297650-2885-11e4-8c21-0800200c9a66;”;

ResultSetFuture	f	=	session.executeAsync(query);

ResultSet	rs	=	f.getUninterruptibly();

Obviously,	this	is	a	naïve	example	as	it	will	simply	block	on	the	call	to
getUninterruptibly(),	but	it	should	give	you	a	sense	of	the	basic	API.

www.it-ebooks.info

http://www.it-ebooks.info/

Running	queries	in	parallel
One	common	use	case	for	the	asynchronous	API	is	to	make	multiple	calls	in	parallel,	then
collect	the	results.	This	can	be	accomplished	easily:
String	query	=	“SELECT	*	FROM	contact	WHERE	id	=	?;”;

BoundStatement	q1	=	session.prepare(query).bind(

		UUID.fromString(“bd297650-2885-11e4-8c21-0800200c9a66”)

);

BoundStatement	q2	=	session.prepare(query).bind(

		UUID.fromString(“a012a000-2899-11e4-8c21-0800200c9a66”)

);

ResultSetFuture	f1	=	session.executeAsync(q1);

ResultSetFuture	f2	=	session.executeAsync(q2);

try	{

		ResultSet	rs1	=	f1.getUninterruptibly(5,	TimeUnit.SECONDS);

		ResultSet	rs2	=	f2.getUninterruptibly(5,	TimeUnit.SECONDS);

		//	do	something	with	results

}	catch	(Exception	e)	{

		//	handle	exception

}

A	closer	inspection	of	the	ResultSetFuture	class	reveals	that	it	inherits	from	both
java.util.concurrent.Future	and
com.google.common.util.concurrent.ListenableFuture,	which	is	from	Google’s
Guava	library.	The	Guava	Futures	class	provides	a	useful	construct	to	collect	multiple
Future	results	into	a	single	list	of	values,	which	can	be	helpful	when	aggregating	queries.
It	can	be	used	as	follows:
Future<List<ResultSet>>future	=	Futures.allAsList(

		session.executeAsync(q1),

		session.executeAsync(q2)

);

try	{

		List<ResultSet>	results	=	future.get(5,	TimeUnit.SECONDS);

		//	do	something	with	results

}	catch	(ExecutionException	e)	{

		//	handle	exception

}

While	the	preceding	code	snippet	is	more	straightforward,	there	is	one	disadvantage	of
doing	it	this	way.	A	call	to	ResultSetFuture.getUninterruptibly()	will	throw	helpful
Cassandra-specific	exceptions,	while	Future.get()	throws	the	more	generic
ExecutionException.	It’s	also	worth	noting	that	the	Future	returned	by	allAsList()	will
only	be	successful	if	all	component	Futures	succeed.

www.it-ebooks.info

http://www.it-ebooks.info/

Load	balancing
Since	Cassandra	is	a	distributed	database	with	the	ability	to	add	and	remove	nodes	easily,
it’s	important	for	the	client	to	be	able	to	send	requests	to	new	nodes	that	join	the	cluster,	or
to	stop	sending	requests	to	removed	or	dead	nodes.

Some	databases	use	special	middleman	processes	to	broker	requests	to	available	nodes,
thus	relieving	the	client	of	the	requirement	to	maintain	a	list	of	hosts.	Since	Cassandra	is	a
peer-to-peer	system,	with	no	special	nodes	or	broker	processes,	the	client	must	be	aware	of
the	topology	of	the	cluster.

You	should	not	use	a	load	balancer	between	the	client	and	Cassandra,	as	the	client	handles
this	via	its	load	balancing	policies.	Adding	a	separate	load	balancer	will	actually	prevent
the	client	from	understanding	the	cluster,	which	is	what	allows	it	to	perform	many	of	its
duties.

Behind	the	scenes,	the	native	driver	connects	to	the	cluster	and	learns	about	the	topology
of	the	ring.	While	other	legacy	Thrift-based	clients	were	able	to	make	use	of	an	RPC	call
to	describe	the	cluster,	the	metadata	obtained	by	the	native	client	is	much	richer.	You	can
get	a	good	sense	of	the	type	of	information	available	by	taking	a	look	at	the	Metadata
class,	which	can	be	obtained	by	calling	the	getMetadata()	method	on	your	Cluster
instance.

One	of	the	chief	strengths	in	this	approach	is	that	you	can	configure	intelligent	load
balancing	and	failover	policies	at	the	application	level.	Some	policies	act	as	wrappers
around	others,	in	a	quasi-decorator	pattern.	Ultimately,	the	load	balancer	determines	which
node	will	end	up	coordinating	the	request.	Internally,	Cassandra	will	use	its	own
mechanisms	when	communicating	with	the	rest	of	the	cluster.

The	driver	offers	five	load	balancing	policies	out	of	the	box:

	
RoundRobinPolicy:	As	the	name	implies,	this	policy	will	execute	requests	in	a
round-robin	fashion	to	all	the	known	nodes.
DCAwareRoundRobinPolicy:	This	policy	also	executes	requests	in	a	round-robin
fashion,	but	insures	that	requests	are	routed	only	to	the	hosts	in	the	local	data	center.
Keep	in	mind	that	this	does	not	obviate	the	need	to	satisfy	crossdata	center
consistency	levels	(such	as	QUORUM).	It	merely	limits	client	connections	to	local
nodes.	This	policy	is	the	default	lower-level	policy	and	is	typically	wrapped	by	a
higher-level	implementation.
LatencyAwarePolicy:	If	you	want	the	driver	to	keep	track	of	the	query	latencies	for
each	node,	then	route	requests	only	to	the	fastest	node;	this	policy	will	fit	the	bill.
LatencyAwarePolicy	acts	as	a	wrapper	around	a	child	policy,	and	there	are	several
properties	you	can	set	to	tune	its	behavior.
WhiteListRoundRobinPolicy:	If	you	want	the	client	to	only	talk	to	specific	hosts,
this	policy	will	enable	that	behavior.	However,	it	will	not	attempt	to	send	requests	to
unavailable	hosts.
TokenAwarePolicy:	This	wrapper	policy	will	make	the	best	effort	to	select	replicas
for	the	given	key	in	the	local	data	center;	otherwise,	it	will	use	the	child	policy	to

www.it-ebooks.info

http://www.it-ebooks.info/

locate	hosts.

Tip
The	DCAwareRoundRobinPolicy	wrapped	by	the	TokenAwarePolicy	is	a	good	place	to
start	if	you’re	unsure	about	the	right	strategy.	In	fact,	this	is	the	default	in	version	2.0.2	of
the	driver.	You	should	only	add	latency	awareness	as	a	tuning	measure	if	you	experience
issues.

Let’s	examine	some	load	balancing	strategies	in	detail,	and	see	how	they	might	help	us
increase	availability	in	the	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Failing	over	to	a	remote	data	center
The	foundation	of	any	robust	load	balancing	strategy	is	DCAwareRoundRobinPolicy,
because	we’ll	assume	you	will	be	deploying	to	more	than	one	data	center.	However,	the
implementation	hides	an	interesting	failover	feature	in	the	constructor	overrides,	which	is
worth	a	look.

In	Chapter	4,	Data	Centers,	we	discussed	several	use	cases	for	multiple	data	centers,	with
failover	being	one	key	scenario.	If	your	desire	is	to	fail	over	to	a	backup	data	center,	and
should	replicas	in	your	client’s	primary	data	center	fail,	you	might	be	interested	in	the	two
additional	parameters	you	can	pass	to	the	DCAwareRoundRobinPolicy	constructor,	which
are	mentioned	here:

	
usedHostsPerRemoteDc:	This	vaguely	named	parameter	allows	you	to	specify	a
number	of	hosts	in	a	remote	data	center	that	can	be	used	by	this	client,	should	your
local	data	center	fail	to	satisfy	the	request.	Note	that	by	default,	this	will	be	ignored
for	LOCAL_ONE	and	LOCAL_QUORUM	consistency	levels.
allowRemoteDCsForLocalConsistencyLevel:	If	set	to	true,	this	overrides	the
restriction	on	LOCAL_ONE	and	LOCAL_QUORUM	requests.	This	should	be	enabled	with
caution,	as	it	essentially	breaks	the	consistency	level	policy.	You	should	consider
using	another	consistency	level	rather	than	enabling	this	feature.

Keep	in	mind	that	enabling	fallback	to	remote	hosts	will	likely	result	in	degraded
performance	due	to	network	latency,	but	this	can	be	preferable	to	a	wholesale	failure	of
the	application.	A	slow	system	and	a	down	system	often	look	the	same,	so	you	may	be
failing	over	to	the	remote	data	center	even	when	all	nodes	in	the	local	data	center	are	up.
The	good	news	is	that	the	policy	is	intelligent	enough	to	make	all	possible	efforts	to	satisfy
requests	locally	before	attempting	to	connect	to	remote	nodes.	In	most	cases	this	only
makes	sense	when	using	a	numbered	consistency	level	such	as	ONE,	TWO,	or	THREE.

Note
There	is	an	important	consideration	when	deciding	whether	to	allow	remote	fallback.	If
you’re	relying	on	LOCAL_QUORUM	reads	and	writes	to	maintain	overall	consistency,	during
the	failover	condition	this	consistency	guarantee	will	be	temporarily	broken.

www.it-ebooks.info

http://www.it-ebooks.info/

Downgrading	the	consistency	level
While	failing	over	to	a	remote	data	center	may	be	the	right	strategy	in	some	cases,	there	is
another	option	to	deal	with	potential	node	failures	in	the	local	data	center.	The	driver
offers	a	flexible	retry	policy	interface	that	allows	you	to	temporarily	downgrade	the
consistency	level	during	a	failure.

For	example,	you	may	want	your	application	to	write	at	a	consistency	level	of
LOCAL_QUORUM	with	a	replication	factor	of	three.	If	your	client	is	unable	to	write	to	two
replicas,	the	request	will	fail.	In	some	cases	it	may	be	preferable	for	the	write	to	succeed
on	a	single	node,	even	if	that	results	in	potentially	stale	reads.

You	can	enable	this	feature	with	its	default	behavior	by	using	the
DowngradingConsistencyRetryPolicy	class	as	follows:
private	Cluster	cluster;	//	defined	at	class	level

cluster	=	cluster.builder()

		.addContactPoints(“10.10.10.1”,	“10.10.10.2”,	“10.10.10.3”)

		.withRetryPolicy(DowngradingConsistencyRetryPolicy.INSTANCE)

		.build();

Defining	your	own	retry	policy
It	is	also	possible	to	specify	your	own	behavior	by	implementing	the	RetryPolicy
interface.	In	the	following	naïve	example,	we	override	the	onReadTimeout()	method	to
always	try	at	a	consistency	level	of	ONE	as	long	as	we	have	received	at	least	one	response
but	not	previously	retried.	For	timeouts,	we	defer	to	a	default	policy:
public	class	MyRetryPolicy	implements	RetryPolicy	{

private	RetryPolicy	defaultPolicy	=

		DowngradingConsistencyRetryPolicy.INSTANCE;

public	MyRetryPolicy()	{}

@Override

public	RetryDecision	onReadTimeout(Statement	statement,

		ConsistencyLevel	cl,	int	requiredResponses,

		int	receivedResponses,	boolean	dataRetrieved,	

		int	nbRetry)	{

		if	(nbRetry	!=	0)

			return	RetryDecision.rethrow();

		else	if	(receivedResponses	>	0)

			return	RetryDecision.retry(ConsistencyLevel.ONE);

		else

			return	RetryDecision.rethrow();

}

@Override

public	RetryDecision	onWriteTimeout(Statement	stmt,

		ConsistencyLevel	cl,	WriteType	type,	int	reqAcks,	

		int	recAcks,	int	nbRetry)	{

		return	defaultPolicy.onWriteTimeout(stmt,	cl,	type,

			reqAcks,	recAcks,	nbRetry);

}

www.it-ebooks.info

http://www.it-ebooks.info/

@Override

public	RetryDecision	onUnavailable(Statement	stmt,

		ConsistencyLevel	cl,	int	reqRep,	int	aliveRep,

		int	nbRetry)	{

		return	defaultPolicy.onUnavailable(stmt,	cl,	reqRep,

			aliveRep,	nbRetry);

}

}

You	can	also	override	the	methods	to	handle	write	timeouts	(onWriteTimeout)	and
UnavailableExceptions	(onUnavailable).	In	many	cases,	however,	the
DowngradingConsistencyRetryPolicy	will	provide	the	desired	functionality.	Specifically,
it	will	lower	the	consistency	level	on	all	operations	such	that	it	can	be	successful	but	will
attempt	to	maintain	the	highest	level	possible.	Since	exceptions	are	essentially	overlooked
in	these	cases,	it	can	be	helpful	to	wrap	the	handler	in	a	LoggingRetryPolicy	so	you	will
know	when	it	happens.

A	RetryPolicy	can	also	be	specified	at	the	Statement	level,	which	is	often	more	useful
than	applying	a	one-size-fits-all	policy	globally:
Statement	stmt	=	//	create	statement

session.execute(stmt.setRetryPolicy(

		DowngradingConsistencyRetryPolicy.INSTANCE));

If	you	decide	to	implement	your	own	RetryPolicy,	make	sure	to	test	it	thoroughly	under
simulated	failure	conditions	so	you	can	be	confident	that	it	will	behave	as	you	believe	it
will.

Keep	in	mind	that	both	failover	policies	and	those	that	downgrade	consistency	level	are	a
tradeoff	between	consistency	and	availability.	You	will	have	to	determine	which	is	most
important	in	any	given	circumstance.	In	many	cases	it	is	a	lesser-of-two-evils	decision,	as
neither	situation	can	be	ideal.

Tip
In	general,	you	should	be	very	careful	when	retrying	to	only	do	so	at	a	single	point	in	the
call	chain;	for	example,	if	client	A	calls	service	B,	which	then	calls	service	C,	which
makes	a	request	to	Cassandra,	ideally	you	should	only	perform	retries	in	the	outermost
service.	If	all	services	implement	retries,	the	number	grows	exponentially	and	can	result	in
a	distributed	denial-of-service	attack	from	your	own	users.

www.it-ebooks.info

http://www.it-ebooks.info/

Token	awareness
With	older	Thrift-based	drivers,	the	client	is	naïve	in	regards	to	the	location	of	the	data	in
the	cluster.	It	simply	chooses	a	node	(typically	randomly	or	using	a	round-robin	scheme)
and	executes	the	query	against	that	node.	As	a	result,	the	coordinator	often	does	not
contain	a	replica	for	the	requested	key,	which	means	additional	nodes	must	participate	to
satisfy	the	request.	The	following	diagram	illustrates	this	point:

By	contrast,	much	in	the	same	way	that	the	Hadoop	and	Spark	drivers	operate,	the	native
driver	is	able	to	determine	the	token	ranges	owned	by	each	node	in	the	cluster.	This	is	a
significant	advantage,	as	the	TokenAwarePolicy	load	balancer	can	route	requests	to	known
owners	of	the	requested	key	rather	than	blindly	choosing	an	available	node.	This	can	be
visualized	as	follows:

This	feature	is	provided	when	using	the	TokenAware	load	balancing	policy,	which	is
enabled	by	default	as	in	version	2.0.2	of	the	driver.	You	can	enable	it	in	the	previous
versions	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

private	Cluster	cluster;	//	defined	at	class	level

cluster	=	cluster.builder()

		.addContactPoints(“10.10.10.1”,	“10.10.10.2”,	“10.10.10.3”)

		.withLoadBalancingPolicy(

				new	TokenAwarePolicy(new	DCAwareRoundRobinPolicy()))

		.build();

In	most	cases	the	TokenAwarePolicy	is	a	great	place	to	start.	You	will	see	the	benefit	of
reduced	latencies	as	you	avoid	situations	where	the	node	that	receives	your	request	is
unable	to	serve	or	write	the	replica,	and	therefore	must	forward	the	request	to	one	of	the
replica	owners.

We	have	now	covered	all	the	pieces	you	need	to	maximize	your	application’s	ability	to
stay	running	during	node	failures.	It’s	time	to	make	use	of	these	features	in	a	cohesive
strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

Tying	it	all	together
In	attempting	to	develop	a	comprehensive	approach	to	handling	failure,	we	will	start	by
assuming	that	you	prefer	consistency	when	possible	but	want	your	application	to	remain
available	even	if	the	desired	consistency	level	cannot	be	satisfied;	you	are	also	willing	to
experience	slower	client	response	rather	than	denying	requests.

With	these	ideas	in	mind,	we	can	tie	the	concepts	you	have	learned	throughout	this	chapter
together	in	a	policy	that	answers	this	demand.	Take	a	look	at	the	following	example,
which	makes	use	of	the	previously	discussed	features:
//	defined	at	class	level

String	localDC	=	“DC1”;

ConsistencyLevel	defaultCL	=	ConsistencyLevel.LOCAL_QUORUM;

private	Cluster	cluster;

//	initialized	once	per	application

cluster	=	cluster.builder()

		.addContactPoints(“10.10.10.1”,	“10.10.10.2”,	“10.10.10.3”)

		.withRetryPolicy(new	LoggingRetryPolicy(

				DowngradingConsistencyRetryPolicy.INSTANCE))

		.withLoadBalancingPolicy(new	TokenAwarePolicy(

				new	DCAwareRoundRobinPolicy(localDC,	2)))

		.withQueryOptions(

				new	QueryOptions().setConsistencyLevel(defaultCL))

		.build();

This	implementation	exhibits	the	following	characteristics:

	
If	sufficient	replicas	exist	in	the	local	data	center,	both	reads	and	writes	will	default	to
LOCAL_QUORUM,	and	therefore	queries	will	be	strongly	consistent.
If	sufficient	replicas	do	not	exist	in	the	local	data	center,	the	consistency	level	will
downgrade	to	either	ONE,	TWO,	or	THREE.	The	decision	as	to	which	is	used	is	based	on
the	highest	level	achievable	that	is	at	least	one	less	than	the	originally	requested	level.
Our	DCAwareRoundRobinPolicy	will	continue	to	try	to	satisfy	consistency	level	using
only	local	nodes	if	possible,	avoiding	unnecessary	trips	to	the	remote	data	center	as
long	as	the	local	data	center	can	fulfill	the	downgraded	consistency	level.
If	all	else	fails,	we	have	set	the	usedHostsPerRemoteDc	parameter	to	two	in	the
DCAwareRoundRobinPolicy	constructor.	So	if	the	local	data	center	cannot	produce	a
sufficient	number	of	replicas	to	satisfy	a	consistency	level	of	ONE,	the	policy	allows	it
to	contact	a	remote	data	center	to	fulfill	the	request.

www.it-ebooks.info

http://www.it-ebooks.info/

Falling	back	to	QUORUM
While	this	policy	may	fit	the	bill	for	many	use	cases,	some	users	may	prefer	to	initially
fallback	to	QUORUM	rather	than	ONE,	TWO,	or	THREE.	Consider	that,	at	a	replication	factor	of
three,	a	LOCAL_QUORUM	request	will	fall	immediately	to	ONE	using	our	previously	proposed
strategy	because	only	two	replicas	are	necessary	to	satisfy	the	original	consistency	level.

The	implication	is	that	we	have	only	one	remaining	live	replica	out	of	a	total	of	three,
which	could	be	considered	as	a	precarious	situation.	It	is	possible	that	both	down	replicas
are	in	fact	lost,	and	even	that	there	may	be	some	fundamental	problems	in	the	data	center
itself.	In	this	case,	if	we	fall	back	to	writing	at	QUORUM	instead	of	ONE,	we	are	guaranteed	to
get	at	least	one	replica	immediately	persisted	in	a	remote	data	center,	thus	protecting	the
write	from	a	complete	data	center	failure.

Unfortunately,	there	is	no	simple	configuration	to	enable	this	policy,	so	we	must
implement	our	own.	As	in	the	earlier	example,	we	will	simply	use	the
DowngradingConsistencyRetryPolicy	for	most	cases	since	we	really	only	want	a	slight
modification	in	its	behavior.	Specifically,	we	need	to	override	onUnavailable,	as	this
controls	the	response	when	insufficient	replicas	are	available	to	satisfy	the	requested
consistency	level.	We	let	the	default	policy	handle	the	timeout	exceptions.	Here’s	the
implementation:
public	class	QuorumFallbackPolicy	implements	RetryPolicy	{

private	RetryPolicy	defaultPolicy	=

		DowngradingConsistencyRetryPolicy.INSTANCE;

public	static	final	QuorumFallbackPolicy	INSTANCE	=	

		new	QuorumFallbackPolicy();

private	QuorumFallbackPolicy()	{}

@Override

public	RetryDecision	onUnavailable(Statement	stmt,

		ConsistencyLevel	cl,	int	reqRep,	int	aliveRep,

		int	nbRetry)	{

		if	(nbRetry	==	0	&&	

			ConsistencyLevel.LOCAL_QUORUM	==	cl)

			return	RetryDecision.retry(

				ConsistencyLevel.QUORUM);

		else	if	(nbRetry	==	1)

			return	RetryDecision.retry(

				ConsistencyLevel.ONE);

		else

			return	defaultPolicy.onUnavailable(

				stmt,	cl,	reqRep,	aliveRep,	nbRetry);

}

@Override

public	RetryDecision	onReadTimeout(Statement	stmt,

		ConsistencyLevel	cl,	int	reqRes,	int	recRes,

		boolean	dataRet,	int	nbRetry)	{

www.it-ebooks.info

http://www.it-ebooks.info/

		return	defaultPolicy.onReadTimeout(stmt,	cl,	reqRes,

			recRes,	dataRet,	nbRetry);

}

@Override

public	RetryDecision	onWriteTimeout(Statement	stmt,

		ConsistencyLevel	cl,	WriteType	type,	int	reqAcks,	int

		recAcks,	int	nbRetry)	{

		return	defaultPolicy.onWriteTimeout(stmt,	cl,	type,

			reqAcks,	recAcks,	nbRetry);

}

}

This	retry	policy	first	checks	whether	the	current	consistency	level	is	LOCAL_QUORUM	and
this	is	the	first	retry.	If	so,	it	resets	the	level	to	QUORUM.	If	the	QUORUM	fails,
onUnavailable()	will	be	called	again	with	the	nbRetry	count	set	to	1.	In	this	case,	the
default	is	to	simply	throw	the	exception,	so	we	need	to	check	for	nbRetry	==	1	and
perform	a	second	retry	at	consistency	level	ONE.	Finally,	it	falls	back	to	the	default	policy.

Note	that	this	policy	introduces	a	good	bit	of	overhead	in	the	failure	case	as	it	allows	for
two	retries	(and	therefore	a	total	of	three	calls	per	request).	It	would	be	advisable	to
monitor	the	number	of	failures,	and	simply	start	making	calls	at	a	different	consistency
level	until	the	underlying	cause	of	the	failure	condition	is	remedied.	Otherwise,	you	will
end	up	with	numerous	retries	for	each	success,	potentially	compounding	the	issue.

In	other	words,	use	this	strategy	as	an	initial	triage	measure,	but	allowing	it	to	continue	for
a	long	period	of	time	could	result	in	additional	trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	you	learned	the	value	of	the	native	driver	as	a	tool	to	assist	you	in
developing	a	highly	available	application	built	on	top	of	Cassandra.	Hopefully,	it	has	been
apparent	that	this	objective	involves	a	partnership	between	the	application	and	the
database,	and	that	poor	decisions	on	either	end	can	dramatically	affect	availability.

However,	the	native	driver	has	a	wealth	of	functionality	beyond	what	is	covered	here,	so	it
would	be	worth	your	while	to	spend	some	time	understanding	its	features	and	subtleties,
as	with	any	new	piece	of	software.

In	the	next	chapter,	we	will	look	at	another	aspect	of	designing	highly	available
applications	on	Cassandra.	We’ll	explore	how	the	right	data	models	can	make	or	break
your	system,	and	what	to	do	to	ensure	success.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	Modeling	for	High	Availability
A	well-designed	data	model	is	central	to	availability	in	Cassandra,	while	a	poorly	chosen
model	can	substantially	handicap	your	application’s	resiliency.	This	idea	may	seem
counterintuitive	to	those	with	backgrounds	in	relational	database	systems,	but	this	chapter
may	very	well	be	the	most	critical	one	in	this	book.

It’s	not	that	data	models	are	unimportant	in	relational	systems,	but	they	are	especially
critical	when	attempting	to	maintain	availability	in	a	large	distributed	database.	In	fact,
this	topic	is	probably	the	least	understood	and	most	difficult	aspect	of	transitioning	to
Cassandra.

The	data	modeling	problem	is	somewhat	exacerbated	by	a	familiar	SQL-style	syntax	that
can	lure	unsuspecting	users	into	believing	they	already	understand	the	necessary
principles.	In	reality,	the	similarity	between	CQL	and	SQL	ends	with	syntax.	The
underlying	data	structure	is	vastly	different,	and	therefore	a	new	approach	to	designing
your	data	model	is	required.

In	this	chapter,	we	will	cover	the	fundamentals	of	successful	data	modeling	in	Cassandra,
which	include	the	following	topics:

	
Understanding	the	storage	layer
Compaction
Translating	CQL	to	the	storage	layer
Designing	for	immutability
Modeling	time-series	data
Modeling	geospatial	data

After	reading	this	chapter,	you	will	understand	the	principles	of	effective	data	modeling,
and	hopefully	the	shroud	of	mystery	surrounding	CQL	will	be	lifted.	We’ll	begin	by	taking
a	look	at	Cassandra’s	on-disk	data	structure,	as	a	solid	grasp	of	this	will	allow	you	to
understand	why	certain	models	work	well	while	others	do	not.

www.it-ebooks.info

http://www.it-ebooks.info/

How	Cassandra	stores	data
Database	systems	use	a	variety	of	structures	to	represent	data	on	disk.	Most	traditional
relational	systems	use	a	tabular	approach,	which	enables	random	access	queries	supported
by	these	systems.	However,	in	order	to	achieve	Cassandra’s	hallmark	write	performance,	it
must	avoid	these	sorts	of	random	access	disk	seeks	because	random	disk	I/O	tends	to	be	a
significant	bottleneck.	Instead,	the	system	employs	a	log-structured	storage	engine,	which
allows	it	to	write	data	sequentially	to	both	a	commit	log	and	to	Cassandra’s	permanent
structure,	SSTables.

www.it-ebooks.info

http://www.it-ebooks.info/

Implications	of	a	log-structured	storage
When	a	write	is	received,	it	is	written	simultaneously	to	the	commit	log	and	to	a
memtable.	Note	that	the	commit	log	is	what	provides	durability	of	writes	in	Cassandra.
Memtables	are	then	periodically	flushed	to	disk	in	the	form	of	immutable	SSTables.

This	storage	scheme	has	several	important	implications	related	to	data	modeling:

	
Writes	are	immutable.	Since	writes	are	always	essentially	append	operations,
updating	data	involves	simply	writing	the	new	value	with	a	higher	timestamp	(every
column	is	written	with	a	timestamp	attached	to	it).
The	last	write	wins.	If	multiple	versions	of	a	column	exist	on	disk	(as	will	be	the	case
in	an	update),	the	latest	value	will	be	returned	when	that	column	is	queried.	All
inserts	are	actually	upserts,	as	there	is	no	distinction	between	the	two	under	the	hood.
Columns	cannot	be	physically	deleted.	Immutability	implies	that	data	isn’t	actually
deleted	when	a	DELETE	statement	is	executed.	Instead,	a	null	column	value	is	inserted,
covering	up	the	old	value.	This	value	is	referred	to	as	a	tombstone.	Deletes	and
tombstones	will	be	covered	in	detail	in	the	next	chapter.
Sequential	queries	are	fast.	Also	referred	to	as	range	queries,	any	query	that	results	in
reading	data	sequentially	on	disk	will	maximize	read	performance,	as	it	takes
advantage	of	the	underlying	storage	structure.	In	general,	Cassandra	restricts	you	to
sequential	queries,	although	there	are	several	examples	of	queries	that	break	this	rule.
We	will	look	at	range	queries	in	this	chapter,	while	other	types	will	be	dealt	with	in
the	next	chapter.

One	consequence	of	an	append-only	data	structure	is	that	old	values	must	periodically	be
purged	to	avoid	accumulating	unnecessary	junk	data	over	time.	For	example,	old	values
that	have	been	replaced	by	newer	ones	should	be	purged.	Also	since	SSTables	are
immutable,	we	often	end	up	with	columns	from	the	same	partition	existing	in	multiple
files.	This	slows	read	performance,	so	we	need	a	mechanism	to	manage	this	situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding	compaction
Cassandra	deals	with	this	build-up	of	SSTables	over	time	by	means	of	a	process	called
compaction.	Compaction	aggregates	rows	from	multiple	files	into	a	single	file,	and	in	the
process	it	removes	old	data	and	purges	tombstones.	However,	housekeeping	is	only	one
reason	to	do	this;	the	other	objective	is	to	improve	read	performance	by	moving	data	for	a
given	key	into	a	single	SSTable,	thereby	reducing	the	disk	I/O	required	to	read	each	key.

The	exact	mechanism	that	governs	the	compaction	process	depends	on	which	compaction
strategy	you	choose.	There	are	three	strategies	that	currently	ship	with	Cassandra
(although	you	can	implement	your	own):

	
Size-tiered	compaction:	This	strategy	causes	SSTables	to	be	compacted	when	there
are	multiple	files	of	a	similar	size	(the	default	is	four).	In	update-heavy	workloads,	a
row	may	exist	in	many	SSTables	at	once,	resulting	in	reduced	read	performance.
Leveled	compaction:	This	strategy	assigns	SSTables	to	levels,	where	each	level
represents	tables	that	are	ten	times	larger	than	the	next	lower	level.	It	guarantees
tables	in	the	same	level	won’t	overlap,	and	results	in	the	vast	majority	of	rows	being
read	from	a	single	SSTable.	This	is	good	for	read-heavy	workloads,	but	if	you	don’t
perform	updates	or	deletes,	or	query	large	ranges	across	a	partition,	the	additional	I/O
may	not	be	worth	the	cost.
Date-tiered	compaction:	Available	as	of	2.0.11	or	2.1.1,	this	strategy	groups	data
into	SSTables	by	write	time.	If	you’re	working	with	time-series	data,	this	strategy	can
help	avoid	reading	across	multiple	SSTables	when	querying	a	time	range.

Let’s	look	at	these	compaction	strategies	in	detail	so	you	can	make	an	informed	decision
about	which	is	right	for	your	use	case.

www.it-ebooks.info

http://www.it-ebooks.info/

Size-tiered	compaction
Size-tiered	compaction	has	been	around	in	Cassandra	since	the	early	days,	and	prior	to
Version	1.0	it	was	the	only	available	option.	The	basic	premise	is	that	SSTables	are	chosen
for	compaction	based	on	size	buckets.

When	the	compaction	process	finds	multiple	SSTables	(the	default	is	four)	of	a	similar
size,	it	will	compact	those	tables	into	a	single	SSTable.	Eventually,	there	will	be	four
larger	tables,	which	will	be	compacted	again	into	one	table.

The	following	diagram	shows	the	progression	through	the	compaction	process:

With	size-tiered	compaction,	similarly	sized	tables	are	compacted	into	larger	tables	once	a
certain	number	are	accumulated.

Each	stage	results	in	smaller	tables	being	combined	into	larger	ones,	such	that	ultimately
after	multiple	compactions,	the	resulting	SSTable	distribution	will	resemble	the	following
chart:

www.it-ebooks.info

http://www.it-ebooks.info/

This	represents	the	final	distribution	using	size-tiered	compaction	after	multiple	passes.

Size-tiered	compaction	has	some	disadvantages,	which	may	or	may	not	be	important	for
your	use	case:

	
It	can	require	a	lot	of	extra	disk	space,	as	much	as	twice	the	used	disk	space	if	there
are	no	deletes	or	updates.	This	is	because	the	tables	are	copied	during	compaction,	so
the	data	will	be	duplicated	while	the	process	is	running.	This	is	especially	important
for	operations	because	it	means	you	must	have	as	much	free	space	as	your	largest
SSTables	or	they	won’t	be	able	to	compact.
A	row	can	exist	in	multiple	SSTables,	which	can	result	in	a	degradation	of	read
performance.	This	is	especially	true	if	you	perform	many	updates	or	deletes.

If	you	have	very	write-heavy	workloads	or	your	writes	are	generally	immutable,	size-
tiered	compaction	can	be	a	good	strategy.	Otherwise,	you	should	probably	choose	leveled
compaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Leveled	compaction
Introduced	in	version	1.0,	leveled	compaction	attempts	to	create	SSTables	that	are	fixed	in
size	and	then	grouped	into	levels	based	on	their	size,	with	each	level	being	ten	times	the
size	of	the	previous	level.	A	key	trait	of	leveled	compaction	is	that	within	a	level	there	are
no	overlapping	tables.	This	minimizes	the	number	of	files	that	need	to	be	checked	in	a
given	level,	because	a	partition	can	only	exist	in	at	most	one	(and	most	likely	zero)
SSTable	per	level.

The	algorithm	is	straightforward.	New	SSTables	are	placed	in	the	first	level,	called	L0,
after	which	they	are	immediately	compacted	with	the	overlapping	tables	in	the	next	level,
L1.	As	L1	becomes	filled,	extra	tables	are	moved	to	L2,	and	so	on.

This	process	introduces	several	improvements	over	size-tiered	compaction	for	workloads
involving	lots	of	reads	or	updates:

	
It	uses	much	less	space	than	size-tiered	compaction,	reducing	the	worst	case	to
around	ten	times	the	size	of	the	SSTable	being	compacted.	Since	SSTables	are	much
smaller	using	this	strategy,	this	amounts	to	a	reduction	in	space	complexity.
Much	less	space	is	wasted	by	old	rows,	at	most	10	percent.
Read	performance	is	often	improved,	as	90	percent	of	all	reads	will	require	a	lookup
in	only	a	single	SSTable.

Since	compaction	plays	such	a	critical	role	in	reducing	disk	usage	and	providing	optimal
read	performance,	it	is	important	to	choose	the	right	strategy	for	your	workload.	As	the
compaction	process	can	be	intensive,	you	can	choose	to	throttle	it	using	the
compaction_throughput_mb_per_sec	setting	in	cassandra.yaml.	The	default	is	16
MBps,	which	may	be	sufficient	for	many	workloads.	As	with	any	tuning,	you	should
measure	the	impact	of	compaction	prior	to	changing	this	setting.

Tip
Starting	in	version	2.0,	the	leveled	compaction	strategy	has	introduced	a	hybrid	approach,
where	the	process	switches	to	size-tiered	compaction	when	Cassandra	is	unable	to	keep	up
with	the	load.	The	max_threshold	property	determines	when	this	occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

Date-tiered	compaction
Starting	in	versions	2.0.11	and	2.1.1,	you	can	make	use	of	a	new	date-tiered	compaction
strategy,	which	groups	data	into	SSTables	based	on	the	write	time.	This	can	be	helpful	for
time-series	models	where	the	most	frequent	query	patterns	involve	reading	the	most	recent
data.	If	you	use	TTLs,	Cassandra	can	group	data	expiring	at	the	same	time	into	the	same
SSTables,	which	allows	it	to	simply	remove	the	table	without	having	to	run	compaction.

Now	that	you	understand	the	high-level	structure	of	Cassandra’s	storage	engine,	the	next
step	is	to	examine	how	various	data	models	translate	to	the	underlying	storage	layer.	These
concepts	will	help	you	design	models	that	take	full	advantage	of	Cassandra’s	unique
characteristics.

www.it-ebooks.info

http://www.it-ebooks.info/

CQL	under	the	hood
At	this	point,	most	users	should	be	aware	that	CQL	has	replaced	Thrift	as	the	standard
(and	therefore	recommended)	interface	to	work	with	Cassandra.	However,	it	remains
largely	misunderstood,	as	its	resemblance	to	common	SQL	has	left	both	Thrift	veterans
and	Cassandra	newcomers	confused	about	how	it	translates	to	the	underlying	storage
layer.	This	fog	must	be	lifted	if	you	hope	to	create	data	models	that	scale,	perform,	and
ensure	availability.

As	we	begin	this	section,	it	is	important	to	understand	that	the	CQL	data	representation
does	not	always	match	the	underlying	storage	structure.	This	can	be	challenging	for	those
accustomed	to	Thrift-based	operations,	as	those	were	performed	directly	against	the
storage	layer.	However,	CQL	introduces	an	abstraction	on	top	of	the	storage	rows	and	only
maps	directly	in	the	simplest	of	schemas.

Tip
If	you	want	to	be	successful	at	modeling	and	querying	data	in	Cassandra,	keep	in	mind
that	while	CQL	improves	the	learning	curve,	it	is	not	SQL.	You	must	understand	what’s
happening	under	the	covers,	or	you	will	end	up	with	data	models	that	are	poorly	suited	to
Cassandra.	As	we’ll	discuss	in	the	next	chapter,	indices	are	rarely	the	answer.

So	let’s	pull	back	the	curtain	and	look	at	what	our	CQL	statements	translate	to	at	the
storage	layer,	starting	with	a	simple	table.

www.it-ebooks.info

http://www.it-ebooks.info/

Single	primary	key
The	first	model	we	will	examine	is	a	straightforward	table,	which	we’ll	call	books	with	a
single	primary	key,	title:
CREATE	TABLE	books	(

		title	text,

		author	text,

		year	int,

		PRIMARY	KEY	(title)

);

We	can	then	insert	some	data,	as	follows:
INSERT	INTO	books	(title,	author,	year)	

VALUES	(‘Patriot	Games’,	‘Tom	Clancy’,	1987);

INSERT	INTO	books	(title,	author,	year)	

VALUES	(‘Without	Remorse’,	‘Tom	Clancy’,	1993);

Finally,	we	can	read	our	newly	inserted	rows:
SELECT	*	FROM	books;

title											|	author					|	year

–––––—+––––+––

Without	Remorse	|	Tom	Clancy	|	1993

			Patriot	Games	|	Tom	Clancy	|	1987

What	we’ve	done	so	far	looks	a	lot	like	ANSI	SQL,	and	in	fact,	these	statements	would
have	been	valid	when	run	against	most	modern	relational	systems.	But	we	know	that
something	very	different	is	happening	under	the	hood.

To	see	what	this	looks	like	at	the	storage	layer,	we	can	use	the	old	command-line	interface,
cassandra-cli,	which	allows	us	to	interact	directly	with	storage	rows.	This	CLI	is
deprecated	and	will	likely	disappear	in	the	3.0	release,	but	for	now	we	can	use	it	to	inspect
the	books	table	we	created	using	CQL.	Listing	the	contents	of	our	table	produces	the
following	output:
RowKey:	Without	Remorse

=>	(name=,	value=,	timestamp=1393102991499000)

=>	(name=author,	value=Tom	Clancy,	timestamp=1393102991499000)

=>	(name=year,	value=1993,	timestamp=1393102991499000)

RowKey:	Patriot	Games

=>	(name=,	value=,	timestamp=1393102991499100)

=>	(name=author,	value=Tom	Clancy,	timestamp=1393102991499100)

=>	(name=year,	value=1987,	timestamp=1393102991499100)

As	you	can	see,	this	is	nearly	a	direct	mapping	to	the	CQL	rows,	except	that	we	have	an
empty	column	at	the	beginning	of	each	row	(which	is	not	a	mistake;	it	is	used	internally	by
Cassandra).

Let’s	point	out	a	couple	of	important	features	of	this	data.	First,	you	will	recall	from
Chapter	2,	Data	Distribution,	that	the	row	key	is	distributed	randomly	using	a	hash
algorithm,	so	the	results	are	returned	in	no	particular	order.	By	contrast,	columns	are
stored	in	sorted	order	by	name,	using	the	natural	ordering	of	the	type.	In	this	case,	author
comes	before	year	lexicographically,	so	it	appears	first	in	the	list.	These	are	critical	points,

www.it-ebooks.info

http://www.it-ebooks.info/

as	they	are	central	to	effective	data	modeling.

www.it-ebooks.info

http://www.it-ebooks.info/

Compound	keys
Now	let’s	look	at	a	slightly	more	complex	example,	one	which	uses	a	compound	key.	In
this	case,	we’ll	create	a	new	table,	authors,	with	a	compound	key	using	name,	year,	and
title:
CREATE	TABLE	authors	(

		name	text,

		year	int,

		title	text,

		isbn	text,

		publisher	text,

		PRIMARY	KEY	(name,	year,	title)

);

This	is	what	our	data	looks	like	after	inserting	two	CQL	rows:
name							|	year	|	title											|	isbn										|	publisher

––––+––+–––––—+–––––+–––—

Tom	Clancy	|	1987	|			Patriot	Games	|	0-399-13241-4	|				Putnam

Tom	Clancy	|	1993	|	Without	Remorse	|	0-399-13825-0	|				Putnam

This	is	where	CQL	can	begin	to	cause	confusion	for	those	who	are	unfamiliar	with	what’s
happening	at	the	storage	layer.	To	make	sense	of	this,	it’s	important	to	understand	the
difference	between	partition	keys	and	clustering	columns.

Partition	keys
When	declaring	a	primary	key,	the	first	field	in	the	list	is	always	the	partition	key.	This
translates	directly	to	the	storage	row	key,	which	is	randomly	distributed	in	the	cluster	via
the	hash	algorithm.	In	general,	you	must	provide	the	partition	key	when	issuing	queries,	so
that	Cassandra	will	know	which	nodes	contain	the	requested	data.

Clustering	columns
The	remaining	fields	in	the	primary	key	declaration	are	called	clustering	columns,	and
these	determine	the	ordering	of	the	data	on	disk.	However,	they	are	not	part	of	the
partition	key,	so	they	do	not	help	determine	the	nodes	on	which	the	data	will	reside,	but
they	play	a	key	role	in	determining	the	kinds	of	queries	you	can	run	against	your	data	as
we	will	see	in	the	remainder	of	this	section.

Thus,	the	breakdown	of	the	fields	in	the	primary	key	is	as	follows:
PRIMARY	KEY	(partition_key,	clustering1,	clustering2)

Now	that	you	know	the	difference,	it’s	time	to	see	what	our	authors	table	looks	like	in	its
storage	layer	representation	(with	the	timestamp	and	internal	columns	omitted	for	clarity):
RowKey:	Tom	Clancy

=>	(name=1987:Patriot	Games:ISBN,	value=0-399-13241-4)

=>	(name=1987:Patriot	Games:publisher,	value=Putnam)

=>	(name=1993:Without	Remorse:ISBN,	value=0-399-13825-0)

=>	(name=1993:Without	Remorse:publisher,	value=Putnam)

You	will	note	that	our	two	CQL	rows	translated	to	a	single	storage	row,	because	both	of
our	inserts	used	the	same	partition	key.	Perhaps,	what’s	more	interesting	is	the	location	of

www.it-ebooks.info

http://www.it-ebooks.info/

our	year	and	title	column	values.	They	are	stored	as	parts	of	the	column	name,	rather
than	column	values!

Those	who	are	experienced	with	Thrift-based	data	models	will	recognize	this	structure,
which	is	referred	to	as	composite	columns.	You	can	also	observe	that	the	rows	are	sorted
first	by	year,	then	by	title,	which	is	the	way	we	specified	them	in	our	primary	key
declaration.	It	is	also	possible	to	reverse	the	stored	sort	order	by	adding	the	WITH
CLUSTERING	ORDER	BY	clause,	as	follows:
CREATE	TABLE	authors	(

		name	text,

		year	int,

		title	text,

		isbn	text,

		publisher	text,

		PRIMARY	KEY	(name,	year,	title)

)	WITH	CLUSTERING	ORDER	BY	(year	DESC);

Then,	when	selecting	our	rows,	we	can	see	that	the	ordering	starts	with	the	latest	year	and
ends	with	the	earliest:
name							|	year	|	title											|	isbn										|	publisher

–––—+––+–––––—+–––––+–––—

Tom	Clancy	|	1993	|	Without	Remorse	|	0-399-13825-0	|				Putnam

Tom	Clancy	|	1987	|			Patriot	Games	|	0-399-13241-4	|				Putnam

While	this	may	seem	to	be	a	trivial	point,	it	can	matter	a	great	deal	depending	on	the	types
of	queries	you	intend	to	run	on	your	data.	We	will	examine	these	implications	later	in	this
chapter	when	we	discuss	queries.

Composite	partition	keys
In	the	previous	examples,	we	demonstrated	the	use	of	a	single	partition	key	with	multiple
clustering	columns.	However,	it’s	also	possible	to	create	a	multipart	(or	composite)
partition	key.	The	most	common	reason	for	doing	this	is	to	improve	data	distribution
characteristics.	A	prime	example	of	this	is	the	use	of	time	buckets	as	keys	when	modeling
time-series	data.	We	will	cover	this	in	detail	in	the	time-series	section	of	this	chapter.

For	now,	let’s	see	what	it	looks	like	to	create	a	composite	partition	key:
CREATE	TABLE	authors	(

		name	text,

		year	int,

		title	text,

		isbn	text,

		publisher	text,

		PRIMARY	KEY	((name,	year),	title)

);

The	difference,	in	case	it’s	not	obvious,	is	the	addition	of	parentheses	around	the	name	and
year	columns,	which	specifies	that	these	two	columns	should	form	the	composite	partition
key.	This	leaves	title	as	the	only	remaining	clustering	column.

At	the	storage	layer,	this	has	the	effect	of	moving	the	year	from	a	component	of	the
column	name	to	a	component	of	the	row	key,	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

RowKey:	Tom	Clancy:1993

=>	(name=Without	Remorse:isbn,	value=0-399-13241-4)

=>	(name=Without	Remorse:publisher,	value=5075746e616d)

––––––-

RowKey:	Tom	Clancy:1987

=>	(name=Patriot	Games:isbn,	value=0-399-13825-0)

=>	(name=Patriot	Games:publisher,	value=5075746e616d

www.it-ebooks.info

http://www.it-ebooks.info/

The	importance	of	the	storage	model
You	may	be	wondering	why	it	matters	how	the	data	is	stored	internally.	In	fact,	it	matters	a
great	deal	for	several	important	reasons:

	
Your	queries	must	respect	the	underlying	storage.	Cassandra	doesn’t	allow	ad	hoc
queries	of	the	sort	that	you	can	perform	using	SQL	on	a	relational	system.	If	you
don’t	understand	how	the	data	is	stored,	at	best	you	will	be	constantly	frustrated	by
the	error	messages	you	receive	when	you	try	to	query	your	data,	and	at	worst	you	will
suffer	poor	performance.
You	must	choose	your	partition	key	carefully	because	it	must	be	known	at	query
time,	and	must	also	distribute	well	across	the	cluster.	Make	sure	you	avoid	models
where	even	a	small	number	of	keys	will	contain	huge	numbers	of	columns	as	this	will
impact	data	distribution.
Because	of	its	log-structured	storage,	Cassandra	handles	range	queries	very	well.	A
range	query	simply	means	that	you	select	a	range	of	columns	for	a	given	key,	in	the
order	they	are	stored.
You	have	to	carefully	order	your	clustering	columns	because	the	order	affects	the	sort
order	of	your	data	on	disk	and	therefore	determines	the	kinds	of	queries	you	can
perform.

Proper	data	modeling	in	Cassandra	requires	you	to	structure	your	data	in	terms	of	your
queries.	This	is	backward	compared	to	the	approach	taken	in	most	relational	models,
where	normalization	is	typically	the	objective.	With	Cassandra,	you	must	consider	your
queries	first.

With	these	principles	in	mind,	let’s	examine	what	happens	when	you	run	different	kinds	of
queries,	so	you	can	better	understand	how	to	structure	your	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding	queries
In	order	to	make	sense	of	the	various	types	of	queries,	we	will	start	with	a	common	data
model	to	be	used	across	the	following	examples.	For	this	data	model,	we	will	return	to	the
authors	table,	with	name	as	the	partition	key,	followed	by	year	and	title	as	clustering
columns.	We’ll	also	sort	the	year	in	descending	order.	This	table	can	be	created	as
follows:
CREATE	TABLE	authors	(

		name	text,

		year	int,

		title	text,

		isbn	text,

		publisher	text,

		PRIMARY	KEY	(name,	year,	title)

)	WITH	CLUSTERING	ORDER	BY	(year	DESC);

Also,	for	the	purpose	of	these	examples,	we	will	assume	a	replication	factor	of	three	and
consistency	level	of	QUORUM.

www.it-ebooks.info

http://www.it-ebooks.info/

Query	by	key
We’ll	start	with	a	basic	query	by	key:
SELECT	*	FROM	authors	WHERE	name	=	‘Tom	Clancy’;

For	this	simple	select,	the	query	makes	the	request	to	the	coordinator	node,	which	in	this
case	owns	a	replica	for	our	key.	The	coordinator	then	retrieves	the	row	from	another
replica	node	to	satisfy	the	quorum.	Thus,	we	need	a	total	of	two	nodes	to	satisfy	the	query.

A	simple	query	by	key	requires	two	nodes	to	satisfy	a	QUORUM	read.	At	the	storage	layer,
this	query	first	locates	the	partition	key,	and	then	scans	all	the	columns	in	the	natural	sort
order	of	the	column,	as	shown	in	the	following	screenshot:

So	even	though	this	appears	to	be	a	simple	query	by	key,	at	the	storage	layer	it	actually
translates	to	a	range	query.

www.it-ebooks.info

http://www.it-ebooks.info/

Range	queries
If	this	basic	query	results	in	a	range	query,	let’s	see	what	happens	when	we	specifically
request	a	range:
SELECT	*	FROM	authors	WHERE	name	=	‘Tom	Clancy’	AND	year	>=	1993;

In	this	case,	we’re	still	selecting	a	single	partition,	so	the	query	must	only	check	with	two
nodes	as	in	the	previous	example.	The	difference	is	that	in	this	case,	Cassandra	simply
scans	the	columns	until	it	finds	one	that	fails	the	query	predicate.

Once	it	finds	the	year	1991,	Cassandra	knows	there	are	no	more	records	to	scan.
Therefore,	this	query	is	efficient	because	it	must	only	read	the	required	number	of
columns	plus	one.

To	recap,	there	are	three	key	points	you	should	take	from	this	discussion:

	
Sequential	queries	are	fast	because	they	take	advantage	of	Cassandra’s	natural	sort
order	at	the	storage	layer.
Queries	by	key	and	the	combination	of	key	plus	clustering	column	are	sequential	at
the	storage	layer,	which	of	course	means	they	are	optimal.
Write	your	data	the	way	you	intend	to	read	it.	Or,	put	another	way,	model	your	data	in
terms	of	your	queries,	not	the	other	way	around.	Following	this	rule	will	help	you
avoid	the	most	common	data	modeling	pitfalls	that	plague	those	who	are
transitioning	from	a	relational	database.

Now	that	we’ve	covered	the	basics	of	how	to	build	data	models	that	make	optimal	use	of
the	storage	layer,	let’s	look	at	one	of	Cassandra’s	newer	features:	collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Denormalizing	with	collections
If	you	recall,	earlier	in	this	chapter	we	stated	that	you	must	write	your	data	the	way	you
intend	to	read	it.	Collections	can	enable	us	to	accomplish	this	goal	by	allowing	us	to
denormalize	our	data.

If	you	come	from	a	relational	background,	this	can	initially	be	difficult	to	grasp.	But	it	is
extremely	important,	as	normalized	models	tend	to	force	applications	to	produce	client-
side	joins.	Using	the	authors	table	as	an	example,	let’s	consider	how	we	would	model	this
in	a	normalized	database.

We	would	of	course	start	with	an	authors	table,	and	the	one-to-many	relationship	between
authors	and	books	would	be	modeled	with	a	second	table.	Each	table	would	have	an	ID,
and	the	books	table	would	have	an	authorID	as	a	foreign	key.	The	result	would	be	similar
to	the	following	MySQL	tables:
CREATE	TABLE	authors	(

		authorID	int,

		name	varchar(50),

		PRIMARY	KEY	(authorID)

)

CREATE	TABLE	books	(

		bookID	int,

		authorID	int,

		name	varchar(100),

		year	int,

		INDEX	auth_ind	(authorID),

		FOREIGN	KEY	(authorID)	REFERENCES	authors(authorID)

)

In	a	relational	database,	we	can	execute	a	query	joining	these	two	tables	together,	which	is
a	common	operation.	However,	imagine	what	would	happen	if	we	emulated	this	model	in
Cassandra.	In	order	to	retrieve	a	list	of	books	and	the	associated	author,	we	would	have	to
request	each	book,	then	author	separately,	resulting	a	query	for	each	book	plus	the	one	for
the	author.	This	query	would	likely	require	many	nodes	to	satisfy.

Even	worse,	there	is	no	way	to	retrieve	a	list	of	books	for	a	given	author.	This	is	because
this	model	would	not	allow	us	to	query	for	books	by	authorID.	We	need	a	saner	model,
and	collections	can	help	us	solve	this,	as	we	did	with	our	earlier	example.	An	authors
table	with	a	collection	of	books,	as	in	our	earlier	examples,	gives	us	the	ability	to	perform
a	single	query	to	retrieve	everything	we	need.

In	order	to	be	able	to	read	your	data	by	partition	key,	and	in	stored	sort	order,	it	is	often
necessary	to	write	data	in	more	than	one	way,	for	example,	if	you	need	to	query	both
books	for	an	author	and	an	author	for	a	book,	you	will	need	to	write	this	data	in	two	tables.

While	it	might	be	tempting	to	use	secondary	indices	as	a	means	of	avoiding	denormalizing
your	data,	this	is	rarely	a	sound	strategy.	For	more	information	on	why	this	is	the	case,	see
the	next	chapter	on	antipatterns,	where	we	cover	secondary	indices	in	detail.

www.it-ebooks.info

http://www.it-ebooks.info/

How	collections	are	stored
The	introduction	of	collections	to	CQL	addresses	some	of	the	concerns	that	frequently
arose	regarding	Cassandra’s	primitive	data	model.	They	add	richer	capabilities	that	give
developers	more	flexibility	when	modeling	certain	types	of	data.

Cassandra	supports	three	collection	types:	sets,	lists,	and	maps.	In	this	section,	we	will
examine	each	of	these	and	take	a	look	at	how	they’re	stored	under	the	hood.	But	first,	it’s
important	to	understand	some	basic	rules	regarding	collections:

	
The	size	of	each	item	in	a	collection	must	not	be	more	than	64	KB
A	maximum	of	64,000	items	may	be	stored	in	a	single	collection
Querying	a	collection	always	returns	the	entire	collection
Collections	are	best	used	for	relatively	small,	bounded	datasets

With	those	rules	in	mind,	we	can	examine	each	type	of	collection	in	detail,	starting	with
sets.

www.it-ebooks.info

http://www.it-ebooks.info/

Sets
A	set	in	CQL	is	very	similar	to	a	set	in	your	favorite	programming	language.	It	is	a	unique
collection	of	items.	This	means	that	it	does	not	allow	duplicates.	In	most	languages	sets
have	no	specific	ordering;	Cassandra,	however,	stores	them	in	their	natural	sort	order,	as
you	might	expect.

Here	is	an	example	of	a	table	of	authors	that	contains	a	set	of	books:
CREATE	TABLE	authors	(

		name	text,

		books	set<text>,

		PRIMARY	KEY	(name)

);

We	can	then	insert	some	values	as	follows:
INSERT	INTO	authors	(name,	books)	

VALUES	(‘Tom	Clancy’,	{‘Without	Remorse’,	‘Patriot	Games’});

UPDATE	authors	

SET	books	=	books	+	{‘Red	Storm	Rising’}	

WHERE	name	=	‘Tom	Clancy’;

Cassandra	also	supports	removing	items	from	a	set	using	the	UPDATE	statement:
UPDATE	authors	

SET	books	=	books	-	{‘Red	Storm	Rising’}	

WHERE	name	=	‘Tom	Clancy’;

At	the	storage	layer,	set	values	are	stored	as	column	names	with	the	values	left	blank.	This
guarantees	uniqueness	as	any	attempt	to	rewrite	the	same	item	would	simply	result	in
overwriting	the	old	column	name.	The	storage	representation	of	the	books	set	would	look
like	the	following	screenshot:

You	can	see	that	the	name	of	the	set	is	stored	as	the	first	component	of	the	composite
column	name	and	the	item	as	the	second	component.	Unfortunately,	Cassandra	does	not
support	a	contains	operation,	so	you	must	retrieve	the	entire	set	and	perform	this	on	the
client.	However,	sets	can	be	quite	useful	as	a	container	for	unique	items	in	a	variety	of
data	models.

www.it-ebooks.info

http://www.it-ebooks.info/

Lists
At	the	CQL	level,	lists	look	very	similar	to	sets.	In	the	following	table,	we	substitute	the
set	of	books	from	the	previous	example	for	a	list:
CREATE	TABLE	authors	(

		name	text,

		books	list<text>,

		PRIMARY	KEY	(name)

);

Insertion	is	also	similar	to	the	set	syntax,	except	that	the	curly	braces	are	traded	for
brackets:
INSERT	INTO	authors	(name,	books)	

VALUES	(‘Tom	Clancy’,	[‘Without	Remorse’,	‘Patriot	Games’]);

Since	lists	are	ordered,	CQL	supports	prepend	and	append	operations	that	involve	simply
placing	the	item	as	either	the	first	(prepend)	or	second	(append)	operand:
UPDATE	authors

SET	books	=	books	+	[‘Red	Storm	Rising’]

WHERE	name	=	‘Tom	Clancy’;

UPDATE	authors

SET	books	=	[‘Red	Storm	Rising’]	+	books

WHERE	name	=	‘Tom	Clancy’;

To	delete	an	item,	you	can	refer	to	it	by	name:
UPDATE	authors

SET	books	=	books	-	[‘Red	Storm	Rising’]

WHERE	name	=	‘Tom	Clancy’;

Unlike	the	set,	the	list	structure	at	the	storage	layer	places	the	list	item	in	the	column
value,	and	the	column	name	instead	contains	a	UUID	for	ordering	purposes.	Here’s	what	it
looks	like:
RowKey:	Tom	Clancy

=>	(name=books:d36de8b0305011e4a0dddbbeade718be,	value=576974686f)

=>	(name=books:d36de8b1305011e4a0dddbbeade718be,	value=506174726)

www.it-ebooks.info

http://www.it-ebooks.info/

Maps
Lastly,	maps	are	a	highly	useful	structure,	as	they	can	offer	similar	flexibility	to	the	old
dynamic	column	names	that	many	grew	accustomed	to	in	the	Thrift	days,	as	long	as	the
total	number	of	columns	is	kept	to	a	reasonable	number.	Just	remember	that	many	of	the
models	that	used	dynamic	columns	in	Thrift	(such	as	time-series	data)	should	make	use	of
clustering	columns.	On	the	other	hand,	maps	can	be	helpful	for	cases	where	some	fields
may	be	unknown	up	front.	For	example,	we	can	use	a	map	to	store	not	only	the	book	title,
but	the	year	as	well.	Here	is	what	that	would	look	like:
CREATE	TABLE	authors	(

		name	text,

		books	map<text,	int>,

		PRIMARY	KEY	(name)

);

To	insert	or	update	an	entire	map,	use	the	following	syntax:
INSERT	INTO	authors	(name,	books)

VALUES	(‘Tom	Clancy’,	

		{‘Without	Remorse’:1993,	‘Patriot	Games’:1987});

You	can	also	insert	or	update	a	single	key	using	an	array-like	syntax,	as	follows:
UPDATE	authors

SET	books[‘Red	Storm	Rising’]	=	1986

WHERE	name	=	‘Tom	Clancy’;

Specific	values	can	also	be	removed	by	using	a	DELETE	statement:
DELETE	books[‘Red	Storm	Rising’]

FROM	authors	WHERE	name	=	‘Tom	Clancy’;

At	the	storage	layer,	maps	look	very	similar	to	lists,	except	the	ordering	ID	is	replaced	by
the	map	key:
RowKey:	Tom	Clancy

=>	(name=books:50617472696f742047616d6573,	value=000007c3)

=>	(name=books:576974686f75742052656d6f727365,	value=000007c9)

As	you	can	see,	all	these	collection	types	make	use	of	composite	columns	in	the	same
manner	as	clustering	columns.	However,	keep	in	mind	that	there	is	currently	no	range
query	functionality	for	collections,	so	in	many	cases	clustering	columns	will	be	a	better
choice.

At	this	point,	you	should	have	a	good	understanding	of	the	building	blocks	for	a	solid
Cassandra	data	model.	While	every	use	case	is	different,	there	are	some	general	themes	we
can	examine	to	help	you	think	through	your	own	unique	model.	So	now	let’s	have	a	look
at	some	of	these	common	patterns,	beginning	with	what’s	likely	the	most	common	use	of
Cassandra:	time-series	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	time-series	data
For	most	of	the	last	couple	decades,	data	modeling	has	centered	around	the	relationships
among	various	entities.	A	person	has	one	account,	but	one	or	more	phone	numbers.	That
same	person	has	one	or	more	addresses	(such	as	home	and	work).	A	person	can	belong	to
one	or	more	groups,	which	can	in	turn	contain	many	people.

We	modeled	these	relationships	using	foreign	keys	and	join	tables,	and	we	built	queries	by
joining	multiple	tables	together	to	produce	the	desired	result.	However,	in	recent	years,	we
introduced	another	dimension	to	our	data:	time.	Now	we’re	interested	in	more	than	just
how	entities	are	connected,	but	how	their	relationships	change	over	time.	For	example,
while	we	previously	were	concerned	only	about	a	set	of	fixed	locations	associated	with	a
person,	we	now	have	mobile	phones	with	GPS	radios	in	pockets	and	purses	all	over	the
world.	This	makes	it	possible	to	produce	a	timeline	of	a	person’s	movements	by	marrying
time	and	location.

Introducing	time	into	the	equation	causes	significant	challenges	for	a	traditional	relational
database	because	it	dramatically	increases	the	volume	and	velocity	of	data,	putting	a	strain
on	the	monolithic	model.	Fortunately,	Cassandra	is	perfectly	suited	for	this	sort	of	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing	for	immutability
An	interesting	and	important	difference	between	modeling	relationships	versus	modeling
time-series	data	is	that	relational	data	tends	to	be	mutable	whereas	time-series	data	is
generally	immutable.	Mutable	data	is	unstable	because	it	may	change	at	any	moment.	This
makes	it	more	complicated	to	guarantee	we	have	the	most	up-to-date	version.	Immutable
data,	by	contrast,	is	stable,	which	means	we	can	avoid	many	of	the	complexities	associated
with	data	that	can	change	over	time.

Tip
If	you	find	yourself	struggling	with	modeling	a	particular	problem	in	Cassandra,	consider
reimagining	the	model	as	immutable	time-series	data.	This	strategy	often	results	in	an
obvious	solution	to	what	appeared	to	be	an	intractable	problem.

Immutability	is	a	desirable	property	in	a	Cassandra	data	model	as	updates	and	deletes	can
add	complexity	related	to	consistency	and	performance	(remember	that	SSTables	are
immutable).	Often	the	easiest	way	to	guarantee	immutability	is	to	simply	add	a	time
component	to	your	data	model.	Let’s	take	a	look	at	how	we	can	do	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling	sensor	data
We’ll	start	with	a	ubiquitous	use	case:	sensor	data.	Sensor	readings	are	inherently	time-
oriented,	and	our	world	is	filled	with	all	manner	of	sensors.	As	with	any	Cassandra	data
model,	the	first	order	of	business	is	to	examine	our	intended	query	patterns.

Queries
For	this	use	case,	given	a	specific	sensor,	we	want	to	be	able	to	answer	two	primary
questions	in	real	time:

	
What	is	the	current	sensor	reading?
What	were	the	readings	between	time	x	and	time	y?

To	answer	the	first	question,	our	model	must	allow	us	to	retrieve	only	the	latest	value,	so
we	know	we	must	order	the	data	by	a	timestamp.	Since	the	data	will	be	ordered	by	time,
we	should	also	be	able	to	support	the	second	query,	as	it	involves	selecting	a	range	of
times.	As	you	learned	earlier	in	this	chapter,	Cassandra	does	well	with	ranges	based	on
sort	order.

Time-based	ordering
We	have	established	that	we	must	know	the	partition	key	at	query	time,	and	that	the	key
must	distribute	well	across	the	cluster.	Since	we’re	going	to	look	up	the	data	by	sensor	ID,
one	option	might	be	to	use	this	ID	as	the	partition	key.	We	can	then	store	the	timestamp	as
a	clustering	column	in	order	to	get	time-based	ordering.	Here’s	what	that	model	would
look	like:
CREATE	TABLE	sensor_readings	(

		sensorID	uuid,

		timestamp	int,

		reading	decimal,

		PRIMARY	KEY	(sensorID,	timestamp)

)	WITH	CLUSTERING	ORDER	BY	(timestamp	DESC);

If	you	consider	our	earlier	discussion	about	how	this	type	of	model	translates	to	the
storage	layer,	it	should	be	clear	that	this	could	be	problematic.	If	we	presume	that	sensors
will	continue	to	collect	data	indefinitely,	the	result	of	this	data	model	will	be	unbounded
row	growth.	This	is	because	each	new	CQL	row	for	a	given	sensor	is	actually	adding
columns	to	the	same	storage	row.	Eventually,	this	model	will	result	in	an	unsustainable
number	of	columns	in	each	row	with	no	easy	way	to	archive	off	old	data.	It	would	be
tempting	to	resolve	this	by	simply	deleting	a	range	of	values	at	the	end	of	the	partition,	but
this	is	actually	an	antipattern.	See	the	next	chapter	for	more	details	on	why	this	is	a	bad
idea.

Using	a	sentinel	value

There	is	a	simple	way	to	address	this.	We	can	add	a	time	bucket	to	the	partition	key,	such
that	the	key	is	comprised	of	both	the	sensorID	and	the	time	bucket,	where	the	time	bucket
is	a	timestamp	rounded	to	some	interval.	This	gives	us	a	known	time-based	value	to	use	as
a	means	of	further	partitioning	our	data,	and	also	allows	us	to	easily	find	keys	that	can	be

www.it-ebooks.info

http://www.it-ebooks.info/

safely	archived.	The	time	bucket	is	an	example	of	a	sentinel,	and	is	a	useful	construct	in	a
number	of	models	where	you	need	better	distribution	than	your	natural	key	provides.

With	this	in	mind,	here	is	a	modification	of	the	sensor_readings	table:
CREATE	TABLE	sensor_readings	(

		sensorID	uuid,

		time_bucket	int,

		timestamp	int,

		reading	decimal,

		PRIMARY	KEY	((sensorID,	time_bucket),	timestamp)

)	WITH	CLUSTERING	ORDER	BY	(timestamp	DESC);

When	choosing	values	for	your	time	buckets,	a	rule	of	thumb	is	to	select	an	interval	that
allows	you	to	perform	the	bulk	of	your	queries	using	only	two	buckets.	The	more	buckets
you	query,	the	more	nodes	will	be	involved	to	produce	your	result.	For	more	information
on	this,	refer	to	Chapter	8,	Antipatterns.

Satisfying	our	queries

So	the	question	remains:	how	does	this	model	allow	us	to	perform	the	two	queries	we	said
were	required	for	our	use	case?	Well,	we	have	seen	that	we	can	ask	for	the	data	for	a
specific	sensor	as	the	time	bucket	can	be	computed	at	query	time.	To	do	this,	we	compute
a	time_bucket	value	that	corresponds	to	the	current	timestamp	rounded	down	to	the	start
of	the	time	interval.

We	can	then	obtain	the	latest	reading	as	follows:
SELECT	*	FROM	sensor_readings

WHERE	sensorID	=	53755080-4676-11e4-916c-0800200c9a66

AND	time_bucket	=	1411840800	LIMIT	1;

For	the	second	query,	we	want	a	range	from	time	x	to	time	y	for	a	given	sensor.	Since	our
timestamp	is	a	clustering	column,	this	is	also	possible:
SELECT	*	FROM	sensor_readings

WHERE	sensorID	=	53755080-4676-11e4-916c-0800200c9a66

AND	time_bucket	IN	(1411840800,	1411844400)

AND	timestamp	>=	1411841700

AND	timestamp	<=	1411845300;

Thus,	we	have	answered	both	our	queries	with	a	model	that	scales	and	performs	well,	and
that	doesn’t	require	a	large	number	of	nodes	to	participate.	This	time-series	model	should
form	the	basis	of	many	of	your	use	cases,	whether	they	initially	appear	to	be	time-series
data	or	not.

When	time	is	all	that	matters

In	the	previous	example,	we	were	looking	for	time-ordered	data	for	a	given	object;	in	this
case	a	sensor.	However,	there	are	cases	when	what	we	really	need	is	to	simply	get	a	list	of
the	latest	readings	from	all	sensors.	We	need	a	different	model	to	address	this	because	our
previous	model	required	that	we	know	which	sensor	we	were	querying.

It	would	be	tempting	to	simply	remove	sensorID	from	the	primary	key,	using	only
time_bucket	as	the	partition	key.	The	problem	with	this	strategy	is	that	all	writes	and
most	reads	would	be	against	a	single	partition	key.	This	would	create	a	single	hotspot	that

www.it-ebooks.info

http://www.it-ebooks.info/

would	move	around	the	cluster	as	the	interval	changed.

As	a	result,	it	is	imperative	that	you	determine	some	sentinel	value	that	can	be	used	in
place	of	the	sensorID,	and	that	is	not	time-oriented,	for	example,	sensor	type	or	sensorID
%	x	(where	x	is	some	predefined	value)	could	be	a	good	value.	In	practice,	I	have	found
that	this	use	case	is	rare,	or	that	the	real	use	case	requires	a	queue.	Using	Cassandra,	or
most	databases	for	that	matter,	a	queue	is	an	antipattern.	You	can	read	more	about	this	and
other	antipatterns	in	the	next	chapter.

Understanding	how	to	model	time-series	data	is	an	essential	skill	that	you	will	employ
over	and	over	again	as	you	work	with	various	types	of	data	in	Cassandra.	When	in	doubt
about	how	to	model	a	given	use	case,	start	by	viewing	it	as	time-series	data.	You	will	find
that	the	model	fits	more	often	than	not.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	geospatial	data
Another	very	common	use	of	Cassandra	is	to	store	and	query	geospatial	data.	Typically,
the	objective	with	this	type	of	data	is	to	find	points	near	a	given	location.	The	challenge	is
to	find	a	key	that	can	be	used	to	narrow	down	the	potential	list	of	locations,	and	to	avoid
querying	many	keys	at	once.

While	there	is	more	than	one	possible	data	structure	that	can	be	used	for	this	purpose,
geohashing	has	a	number	of	benefits	that	make	it	worth	considering.	A	geohash	is	a	base
32	representation	of	a	geographic	area,	where	each	additional	digit	represents	greater
precision.	The	property	of	geohashes	that	makes	them	particularly	suited	for	geospatial
searches	is	that	adding	a	level	of	precision	to	a	given	geohash	results	in	an	area	contained
within	the	lower-precision	value.

We	can	visualize	this	using	the	following	diagram,	which	shows	a	geohash,	dnh03,	with	a
number	of	more	precise	geohashes	contained	within	it.	All	of	the	smaller	geohashes	begin
with	the	dnh03	prefix:

Essentially,	geohashes	represent	the	globe	as	a	binary	search	tree,	starting	with	each
hemisphere	as	the	first	node.	One	benefit	of	using	this	method	over	other	data	structures	is
that	there	is	a	single	scheme	that	is	universally	recognized,	similar	to	using	latitude	and
longitude	to	represent	a	point.

www.it-ebooks.info

http://www.it-ebooks.info/

To	represent	searchable	data,	we	can	use	a	low-precision	geohash	as	the	partition	key,	and
then	the	full	geohash	can	be	stored	as	a	clustering	column.	The	chosen	precision	will
determine	how	many	keys	must	be	queried	to	produce	results	to	fill	the	search	space.	So
our	data	model	will	be	as	follows:
CREATE	TABLE	geo_search	(

		geo_key	text,

		geohash	text,

		place_name	text,

		PRIMARY	KEY	(geo_key,	geohash)

);

Let’s	assume	we	want	to	store	locations	with	a	range	of	approximately	2.5	km.	This
translates	to	a	geo_key	precision	of	five	digits.	Using	this	as	our	model,	an	insert	would
look	like:
INSERT	INTO	geo_search	(geo_key,	geohash,	place_name)

VALUES	(‘dnh03’,	‘dnh03pt4’,	‘Green	Grocery	Store’);

If	necessary,	you	can	also	insert	values	with	keys	at	multiple	precision	levels,	enabling
either	coarse	or	fine-grained	queries.	To	query	for	points	near	a	location,	you	can	simply
compute	the	geohash	of	the	location,	then	truncate	it	to	the	precision	level	of	the	key.
Once	you	have	this	value,	a	simple	select	produces	the	desired	results;	for	example,	to	find
points	near	Green	Grocery	Store,	use	the	following	query:
SELECT	*	FROM	geo_search	WHERE	geo_key	=	‘dnh03’;

Note	that	dnh03	is	simply	the	full	geohash	of	Green	Grocery	Store	truncated	down	to	five
digits	to	match	the	precision	of	the	key.	Depending	on	the	search	area,	it	may	be	necessary
to	request	more	than	one	key.	This	strategy	allows	you	to	model	and	query	geospatial	data
with	minimal	cost	and	overhead	across	a	large	Cassandra	cluster.

You	can	also	easily	imagine	combining	geohashing	with	time-series	data	to	keep	track	of
location	changes	over	time.	This	can	be	accomplished	by	creating	a	partition	key
consisting	of	the	time	bucket	and	low-precision	geohash.	This	model	allows	you	to	query
a	range	of	time	for	a	given	location.

While	your	data	model	may	vary	from	the	two	approaches	covered	here,	you	will	likely
find	that	querying	by	time	and	space	will	be	common	use	cases.	This	section	has	prepared
you	to	tackle	those	data	models	with	confidence.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	laid	a	general	foundation	for	data	modeling	that	should	give	you	the
tools	you	need	to	correctly	reason	about	your	specific	use	cases.	We	covered	a	lot	of
ground,	including	Cassandra’s	storage	engine	and	how	your	CQL	gets	translated	to	that
underlying	model,	as	well	as	a	guide	for	modeling	time-series	and	geospatial	data.

But	there	are	also	a	number	of	mistakes	people	make	when	modeling	data	for	Cassandra
and	we	will	talk	about	these	in	the	next	chapter.	Be	sure	to	read	on	so	you	can	avoid	these
common	pitfalls.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Antipatterns
When	working	with	a	new	or	unfamiliar	technology,	we	might	find	ourselves	struggling	to
apply	it	to	the	problem	at	hand.	This	is	why	it	is	a	common	practice	in	software
engineering	to	seek	out	established	design	patterns.	Such	patterns	provide	guide	rails	to
keep	us	headed	in	the	right	direction,	and	therefore	avoid	the	traps	that	await	those	who	try
to	figure	it	out	on	their	own.

Design	patterns	are	established	through	the	(often	painful)	experience	of	early	technology
adopters	who	have	blazed	the	trails	and	provided	us	with	nicely	groomed	paths.	However,
with	any	given	technology,	we	find	some	commonly	used	trails	lead	to	dangers	in	the
woods.	In	software	design,	we	call	these	antipatterns.

In	the	previous	chapter,	we	focused	on	how	to	model	your	data	correctly	to	take	advantage
of	Cassandra’s	natural	sorting	and	distribution	properties.	This	chapter,	by	contrast,	will
take	the	opposite	approach.	We	will	expose	many	of	the	well-worn	but	dangerous	paths	so
that	you	can	avoid	these	common	pitfalls.

Specifically,	we	will	deal	with	the	following	topics:

	
Multikey	queries
Secondary	indices
Distributed	joins
Deletes	(and	tombstones)
Unbounded	row	growth

Those	who	have	been	around	the	block	with	Cassandra	can	likely	point	to	a	time	when
they	were	lured	unsuspectingly	into	at	least	one	of	the	traps	in	the	previous	list.	For	the
benefit	of	everyone	else,	let’s	fully	explore	each	of	these	topics	to	help	others	steer	clear	of
the	dangers.

In	many	ways,	this	chapter	is	an	extension	of	the	previous	chapter	as	we	will	be	using	the
same	terminology	to	discuss	data	models	and	their	representation	at	the	storage	layer.	If
you	are	unfamiliar	with	these	concepts,	it	would	be	advisable	to	review	the	previous
chapter	to	avoid	confusion	regarding	the	terminology.

One	common	theme	with	most	of	the	antipatterns	we	will	discuss	is	that	they	often	appear
to	work	fine	on	a	smaller	scale.	But	once	you	grow	your	dataset	or	cluster	size,	you	can
end	up	with	increased	latencies,	failing	queries,	and	availability	problems.	Some	of	these
patterns	can	be	used	very	carefully	under	specific	circumstances,	but	you	must	clearly
understand	the	limitations.

The	first	pattern	we	will	examine	involves	a	query	pattern	that	results	in	some	subtle
consequences.

www.it-ebooks.info

http://www.it-ebooks.info/

Multikey	queries
You	will	recall	from	the	previous	chapter	that	Cassandra	is	most	efficient	when	querying	a
range	of	columns	on	disk.	All	our	examples	assumed	a	replication	factor	of	three	with
QUORUM	reads	and	writes.	We	will	follow	the	same	conventions	with	the	examples	in	this
chapter.

With	this	in	mind,	let’s	make	use	of	the	authors	schema	we	introduced	in	the	previous
chapter:
CREATE	TABLE	authors	(

		name	text,

		year	int,

		title	text,

		publisher	text,

		isbn	text,

		PRIMARY	KEY	(name,	year,	title)

);

Using	this	schema,	let’s	say	we	want	to	retrieve	a	number	of	books	from	a	list	of	known
authors.	Obviously,	we	can	write	a	separate	query	for	each	author,	but	Cassandra	also
provides	a	familiar	SQL-style	syntax	to	specify	multiple	partition	keys	using	the	IN
clause:
SELECT	*	FROM	authors

WHERE	name	IN	(

‘Tom	Clancy’,

‘Malcolm	Gladwell’,

‘Dean	Koontz’

);

The	question	is	how	will	Cassandra	fulfill	this	request?	As	we	have	discussed	numerous
times	throughout	this	book,	the	system	will	hash	the	partition	key,	name	in	this	case,	and
assign	replicas	to	nodes	based	on	the	hash.	Using	the	three	authors	in	our	query	as
examples,	we	will	end	up	with	a	distribution	resembling	the	following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

The	distribution	of	keys	across	a	six-node	cluster	using	a	replication	factor	of	three

The	important	characteristic	to	note	in	this	distribution	is	that	the	keys	are	dispersed
randomly	throughout	the	cluster.	If	we	also	remember	that	a	QUORUM	read	requires
consulting	with	at	least	two	out	of	three	replicas,	it	is	easy	to	see	how	this	query	will	result
in	consulting	many	nodes.	In	the	following	diagram,	our	client	makes	a	request	to	one	of
the	nodes,	which	will	act	as	a	coordinator.	The	coordinator	must	then	make	requests	to	at
least	two	replicas	for	each	key	in	the	query:

The	IN	clause	in	the	query	(in	the	preceding	diagram)	results	in	consulting	a	total	of	four
nodes	to	satisfy	the	query.

www.it-ebooks.info

http://www.it-ebooks.info/

The	end	result	is	that	we	required	four	out	of	six	nodes	to	fulfill	this	query!	If	any	one	of
these	calls	fails,	the	entire	query	will	fail.	It	is	easy	to	see	how	a	query	with	many	keys	can
require	participation	from	every	node	in	the	cluster.

When	using	the	IN	clause,	it’s	best	to	keep	the	number	of	keys	small.	There	are	valid	use
cases	for	this	clause,	such	as	querying	across	time	buckets	for	time-series	models,	but	in
such	cases	you	should	try	to	size	your	buckets	such	that	you	only	need,	at	most,	two	in
order	to	fulfill	the	request.

In	fact,	it	is	often	advisable	to	issue	multiple	queries	in	parallel	as	opposed	to	utilizing	the
IN	clause.	While	the	IN	clause	may	save	you	from	multiple	network	requests	to	Cassandra,
the	coordinator	must	do	more	work.	You	can	often	reduce	overall	latency	and	workload
with	several	token	aware	queries	(see	Chapter	6,	High	Availability	Features	in	the	Native
Java	Client,	for	more	details	on	this	concept),	as	you’ll	be	dealing	directly	with	the	nodes
that	contain	the	data.

There	is	an	additional	benefit	to	running	separate	queries	rather	than	a	single	multikey
query.	When	using	the	IN	clause,	if	any	one	key	times	out	you	will	have	to	retry	the	entire
query.	On	the	other	hand,	using	separate	queries	allows	you	to	retry	only	the	query	that
timed	out.

www.it-ebooks.info

http://www.it-ebooks.info/

Secondary	indices
If	range	queries	can	be	considered	optimal	for	Cassandra’s	storage	engine,	queries	based
on	a	secondary	index	fall	at	the	other	end	of	the	spectrum.	Secondary	indices	have	been
part	of	Cassandra	since	the	0.7	release,	and	they	are	certainly	an	alluring	feature.	In	fact,
for	those	who	are	accustomed	to	modeling	data	in	relational	databases,	creating	an	index	is
often	a	go-to	strategy	to	achieve	better	query	performance.	However,	as	with	most	aspects
of	the	transition	to	Cassandra,	this	strategy	translates	poorly.

To	start,	let’s	get	familiar	with	what	secondary	indices	are	and	how	they	work.	First	off,
secondary	indices	are	the	only	type	of	index	that	Cassandra	will	manage	for	you,	so	the
terms	index	and	secondary	index	actually	refer	to	the	same	mechanism.	The	purpose	of	an
index	is	to	allow	query-by-value	functionality,	which	is	not	supported	naturally.	This
should	be	a	clue	as	to	the	potential	danger	involved	in	relying	on	the	index	functionality.

As	an	example,	suppose	we	want	to	be	able	to	query	authors	for	a	given	publisher.	Using
our	previous	authors	table,	remember	that	the	publisher	column	has	no	special
properties.	It	is	a	simple	text	column,	which	means	that	by	default	we	cannot	filter	rows
based	on	its	value.	We	can	take	a	look	at	what	happens	when	attempting	to	do	so,	as	in	the
following	query:
SELECT	*	FROM	authors

WHERE	publisher	=	‘Putnam’;

Running	this	query	results	in	the	following	error	message,	indicating	that	we’re	trying	to
query	by	the	value	of	a	nonindexed	column:
Bad	Request:	No	indexed	columns	present	in	by-columns	clause	with	Equal

operator

The	obvious	remedy	is	to	simply	create	an	index	on	publisher,	as	follows:
CREATE	INDEX	authors_publisher

ON	authors	(publisher);

Now	we	can	filter	on	publisher,	so	our	problems	are	solved,	right?	Not	exactly!	Let’s
look	closely	at	what	Cassandra	does	to	make	this	work.

www.it-ebooks.info

http://www.it-ebooks.info/

Secondary	indices	under	the	hood
At	the	storage	layer,	a	secondary	index	is	simply	another	column	family,	where	the	key	is
the	value	of	the	indexed	column,	and	the	columns	contain	the	row	keys	of	the	indexed
table.	This	can	be	a	bit	confusing	to	describe,	so	let’s	visualize	it.

Imagine	our	authors	table	contains	the	following	CQL	rows:

Name Year Title Publisher

Tom	Clancy 1987 Patriot	Games Putnam

Dean	Koontz 1991 Cold	Fire Headline

Anne	Rice 1998 Pandora Random	House

Charles	Dickens 1838 Oliver	Twist Random	House

An	index	on	publisher	would	then	look	like	this	at	the	storage	layer:
RowKey:	Putnam

=>	(name=Tom	Clancy,	value=)

RowKey:	Headline

=>	(name=Dean	Koontz,	value=)

RowKey:	Random	House

=>	(name=Anne	Rice,	value=)

=>	(name=Charles	Dickens,	value=)

So	a	query	filtering	on	publisher	will	use	the	index	to	find	each	author	name,	then	query
all	the	authors	by	key.	This	is	similar	to	using	the	IN	clause	since	we	must	query	replicas
for	every	key	with	an	entry	in	the	index.

However,	it’s	actually	even	worse	than	the	IN	clause	because	of	a	very	important
difference	between	indices	and	standard	tables.	Cassandra	co-locates	index	entries	with
their	associated	original	table	keys.	In	other	words,	you	will	end	up	with	a	key	for	Random
House	in	author_publishers	on	every	node	that	has	keys	for	Anne	Rice	or	Charles
Dickens	in	authors.

To	make	this	a	bit	clearer,	the	following	diagram	shows	how	our	co-located	authors	table
and	author_publisher	index	might	be	distributed	across	a	four-node	cluster:

www.it-ebooks.info

http://www.it-ebooks.info/

Index	entries	are	located	on	the	node	where	the	indexed	key	is	stored

The	objective	of	using	this	approach	is	to	be	able	to	determine	which	nodes	own	indexed
keys,	as	well	as	to	obtain	the	keys	themselves	in	a	single	request.	However,	the	problem	is
we	have	no	idea	which	token	ranges	contain	indexed	keys	until	we	ask	each	range.	So	now
we	end	up	with	the	query	pattern	shown	in	the	following	diagram:

A	secondary	index	query	requires	consulting	with	all	nodes	in	the	cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Obviously,	the	use	of	secondary	indices	has	an	enormous	impact	on	both	performance	and
availability	since	all	nodes	must	participate	in	fulfilling	the	query.	While	this	could	be
acceptable	for	occasional	queries,	trying	to	do	this	with	critical,	high-volume	queries	will
be	problematic.	In	a	distributed	system	with	many	nodes,	there	is	a	high	likelihood	that	at
least	one	node	will	be	unable	to	respond.	For	this	reason,	it’s	best	to	avoid	using	them	in
favor	of	writing	your	own	indices	or	choosing	another	data	model	entirely.

Tip
If	you	decide	to	use	a	secondary	index	for	a	use	case	where	performance	and	availability
are	not	critical,	make	sure	to	only	index	on	low	cardinality	values	as	high	cardinality
indices	do	not	scale	well.	But	don’t	go	so	low	that	your	index	is	rendered	useless.	For
example,	Booleans	are	bad,	as	are	UUIDs,	but	birth	year	could	be	a	reasonable	column	to
index.

Often	you	will	find	that	your	chosen	data	model	does	not	satisfy	all	your	queries.	If	this	is
the	case	you	should	write	your	own	index	manually	in	your	application.	For	example,	to
look	up	authors	for	a	publisher,	instead	of	creating	the	authors_publisher	index,	you
could	write	the	same	data	using	publisher	as	your	key:
CREATE	TABLE	publishers	(

		name	text,

		author	text,

		title	text,

		isbn	text,

		year	int,

		PRIMARY	KEY	(name,	author,	title)

);

Now	you	will	be	able	to	query	the	data	efficiently	by	using	either	author	or	publisher.
Of	course	you	must	manage	the	index	in	your	application	such	that	any	time	the	data
changes	you	will	have	to	update	both.	However,	this	is	generally	a	much	better	approach
than	using	secondary	indices	for	critical	queries.

Interestingly,	secondary	indices	are	actually	one	form	of	a	more	general	antipattern	that’s
just	as	common.	Let’s	take	a	look	at	this	concept	now.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed	joins
With	relational	databases,	we	write	different	data	entities	in	their	own	tables,	and	then	we
join	them	to	form	the	desired	view	at	query	time.	If	we	apply	this	idea	to	a	database	like
Cassandra,	we	end	up	with	a	distributed	join.

New	Cassandra	developers,	especially	those	who	come	from	a	relational	database
background,	are	particularly	prone	to	follow	this	pattern.	In	the	previous	chapter,	we
mentioned	that	denormalization	is	key	to	successful	data	modeling	in	Cassandra,	and	our
discussion	of	secondary	indices	can	help	explain	the	reasons	for	this.

Note
If	you	find	yourself	querying	multiple	large	tables,	then	joining	them	in	your	application
based	on	some	shared	key,	you	are	performing	a	distributed	join.	This	should	almost
always	be	avoided	in	favor	of	a	denormalized	data	model.	The	only	exception	is	for	very
small	lookup	tables	that	can	fit	easily	in	memory.	Otherwise,	you	should	always	write
your	data	the	way	you	intend	to	read	it.

At	this	point	you	should	be	familiar	enough	with	distributed	join	patterns	to	know	why
they	should	be	avoided,	so	it’s	time	to	move	on	to	another	common	source	of	problems	in
Cassandra:	deletes.

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting	data
We	have	established	that	Cassandra	employs	a	log-structured	storage	engine,	where	all
writes	are	immutable	appends	to	the	log.	The	implication	is	that	data	cannot	actually	be
deleted	at	the	time	a	DELETE	statement	is	issued.	Cassandra	solves	this	by	writing	a	marker,
called	a	tombstone,	with	a	timestamp	greater	than	the	previous	value.	This	has	the	effect	of
overwriting	the	previous	value	with	an	empty	one,	which	will	then	be	compiled	in
subsequent	queries	for	that	column	in	the	same	manner	as	any	other	update.	The	actual
value	of	the	tombstone	is	set	to	the	time	of	deletion,	which	is	used	to	determine	when	the
tombstone	can	be	removed.

www.it-ebooks.info

http://www.it-ebooks.info/

Garbage	collection
Eventually	these	tombstones	are	reconciled	with	earlier	values	as	part	of	the	compaction
process,	where	the	earlier	values	are	discarded.	Refer	to	Chapter	7,	Modeling	for	High
Availability,	for	more	details	on	how	compaction	works.	There	are	two	possibilities	for
when	data	can	be	physically	deleted	and	tombstones	collected.

If	a	delete	occurs	while	the	data	is	still	in	the	memtable,	(and	therefore	not	yet	flushed	to
disk),	the	existing	data	will	be	immediately	replaced	by	the	tombstone.	Otherwise,	the
tombstone	is	simply	written	to	the	memtable.	In	either	case,	it	will	eventually	get	flushed
to	disk,	where	it	will	continue	to	live	until	it	is	garbage	collected.

For	a	tombstone	to	be	deleted,	two	events	must	occur.	First,	the	age	of	the	tombstone	must
exceed	the	value	of	gc_grace_seconds,	as	specified	in	cassandra.yaml.	Once	this	time
has	elapsed,	the	next	compaction	to	run	on	the	SSTable	containing	the	tombstone	will
cause	it	to	be	purged	as	long	as	the	compaction	includes	all	SSTables	covered	by	the
tombstone.

www.it-ebooks.info

http://www.it-ebooks.info/

Resurrecting	the	dead
An	astute	observer	may	have	noticed	a	potential	problem	with	tombstones	in	an	eventually
consistent	system.	Let’s	assume	multiple	replicas	exist	for	a	given	column,	yet	only	one
has	recorded	the	tombstone.	If	one	of	the	nodes	remains	down	past	gc_grace_seconds
without	a	repair	operation,	when	it	finally	comes	back	online	it	will	still	contain	the	old
data	and	be	unaware	of	the	delete.	Any	subsequent	repair	will	then	recreate	the	old	data	on
other	nodes	as	if	the	delete	had	never	occurred.

Tip
To	ensure	that	deleted	data	never	resurfaces,	make	sure	to	run	repair	at	least	once	every
gc_grace_seconds,	and	never	let	a	node	stay	down	longer	than	this	time	period.

Now	that	you	understand	how	Cassandra	handles	deletes,	let’s	take	a	look	at	the
operations	that	result	in	a	delete.	You	may	be	surprised	that	there	are	several	ways	to
produce	a	delete,	beyond	the	obvious	DELETE	statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Unexpected	deletes
Of	course	you	can	explicitly	delete	a	column	using	the	DELETE	statement,	but	you	may	be
surprised	that	a	tombstone	will	be	generated	for	every	affected	storage	layer	column.	To
make	this	clear,	let’s	remind	ourselves	about	the	structure	of	a	single	CQL	row	as
represented	at	the	storage	layer:
RowKey:	Tom	Clancy

=>	(name=1987:Patriot	Games:ISBN,	value=0-399-13241-4)

=>	(name=1987:Patriot	Games:publisher,	value=Putnam)

To	this	point	we	have	been	using	a	simplified	version	of	the	storage	row	representation.	In
fact,	there	is	a	third	column	used	as	an	internal	marker,	which	has	been	omitted	for	clarity.
So	then,	let’s	remove	the	Patriot	Games	entry,	as	follows:
DELETE	FROM	authors

WHERE	name	=	‘Tom	Clancy’

AND	year	=	1987

AND	title	=	‘Patriot	Games’;

Using	cqlsh	with	tracing	turned	on	(by	setting	TRACING	ON	in	cqlsh),	we	then	attempt	to
read	the	newly	deleted	record:
SELECT	*	FROM	authors

WHERE	name	=	‘Tom	Clancy’

AND	year	=	1987

AND	title	=	‘Patriot	Games’;

If	you	carefully	examine	the	resulting	trace,	you	will	notice	a	line	resembling	the
following:
Read	0	live	and	3	tombstoned	cells

So	what	happened?	Our	query	that	returned	zero	records	actually	had	to	read	three
tombstones	to	produce	the	results!	The	important	point	to	remember	is	that	tombstones
cover	single	storage	layer	columns,	so	deleting	a	CQL	row	with	many	columns	results	in
many	tombstones.

www.it-ebooks.info

http://www.it-ebooks.info/

The	problem	with	tombstones
You	may	be	wondering	why	we	spent	so	much	time	discussing	tombstones	in	a	chapter	on
antipatterns.	The	previous	example	should	provide	a	hint	as	to	the	reason.	When	a	query
requires	reading	tombstones,	Cassandra	must	perform	many	reads	to	return	your	results.

In	addition,	a	query	for	a	key	in	an	SSTable	that	has	only	tombstones	associated	with	it
will	still	pass	through	the	bloom	filter	because	the	system	must	reconcile	tombstones	with
other	replicas.	Since	the	bloom	filter	is	designed	to	prevent	unnecessary	reads	for	missing
data,	this	means	Cassandra	will	perform	extra	reads	after	data	has	been	deleted.

Now	that	you	understand	the	basics	of	deletes	and	the	problems	associated	with	them,	it’s
important	to	point	out	the	other	ways	that	deletes	can	be	generated—sometimes	in	ways
you	would	not	expect.

www.it-ebooks.info

http://www.it-ebooks.info/

Expiring	columns
Cassandra	offers	us	a	handy	feature	for	purging	old	data	through	setting	an	expiration
time,	called	a	TTL,	at	the	column	level.	There	are	many	valid	reasons	to	set	TTL	values,
and	they	can	help	to	avoid	unbounded	data	accumulation	over	time.	Setting	a	TTL	on	a
column	is	straightforward,	and	can	be	accomplished	using	either	an	INSERT	or	UPDATE
statement	as	follows	(note	that	TTL	values	are	in	seconds):
INSERT	INTO	authors	(name,	title,	year)

VALUES	(‘Tom	Clancy’,	‘Patriot	Games’,	1987)

USING	TTL	86400;

UPDATE	authors	USING	TTL	86400

SET	publisher	=	‘Putnam’

WHERE	name	=	‘Tom	Clancy’

AND	title	=	‘Patriot	Games’

AND	year	=	1987;

This	can	be	useful	when	dealing	with	ephemeral	data,	but	you	must	take	care	when
employing	this	strategy	because	an	expired	column	results	in	a	tombstone	as	in	any	other
form	of	delete.

TTL	antipatterns
A	common	reason	to	expire	columns	is	in	the	case	of	time-series	data.	Imagine	we	want	to
display	a	feed	of	comments	associated	with	a	news	article,	where	the	newest	post	appears
on	top.	To	avoid	holding	onto	them	indefinitely,	we	set	them	to	expire	after	a	few	hours.

So	we	end	up	with	a	model	that	resembles	the	following	query:
CREATE	TABLE	comments	(

		articleID	uuid,

		timestamp	int,

		username	text,

		comment	text,

		PRIMARY	KEY	(articleID,	timestamp,	username)

)	WITH	CLUSTERING	ORDER	BY	(timestamp	DESC);

We	then	insert	new	comments	with	a	three-hour	TTL:
INSERT	INTO	comments	(articleID,	timestamp,	username,	comment)

VALUES	(36f08b19-fc6d-4930-81f6-6704f627ca83,	

								1413146590,	‘rs_atl’,	‘Nice	article!’)

USING	TTL	10800;

It’s	important	to	note	that	this	model	is	perfectly	acceptable,	so	far.	Where	we	can	run	into
problems	is	when	we	naively	attempt	to	query	for	the	latest	values.	It	can	be	tempting	to
assume	that	we	can	simply	query	everything	for	a	given	articleID,	with	the	expectation
that	old	columns	will	simply	disappear.	In	other	words,	we	perform	the	following	query:
SELECT	*	FROM	comments

WHERE	articleID	=	36f08b19-fc6d-4930-81f6-6704f627ca83;

In	some	ways	this	expectation	is	correct.	Old	values	will	disappear	from	the	result	set,	and
for	a	period	of	time	this	query	will	perform	perfectly	well.	But	gradually	we	will
accumulate	tombstones	as	columns	reach	their	expiration	time,	and	this	query	requires	that

www.it-ebooks.info

http://www.it-ebooks.info/

we	read	all	columns	in	the	storage	row.	Eventually,	we	will	reach	a	point	where	Cassandra
will	be	reading	more	tombstones	than	real	values!

The	solution	is	simple.	We	must	add	a	range	filter	on	timestamp,	which	will	tell	Cassandra
to	stop	scanning	columns	at	approximately	as	far	back	in	time	as	the	tombstones	start.	In
this	case,	we	don’t	want	to	read	any	columns	older	than	three	hours,	so	our	new	query
looks	like	this:
SELECT	*	FROM	comments

WHERE	articleID	=	36f08b19-fc6d-4930-81f6-6704f627ca83

AND	timestamp	>	[current_time	–	10800];

Note	that	you	will	have	to	calculate	the	timestamp	in	your	application,	as	CQL	does	not
currently	support	arithmetic	operations.

To	sum	up,	expiring	columns	can	be	highly	useful	as	long	as	you	use	them	wisely.	Make
sure	your	usage	pattern	avoids	reading	excessive	numbers	of	tombstones.	Often	you	can
use	range	filters	to	accomplish	this	goal.	Also,	adding	a	row	limit	using	the	LIMIT	clause
can	help	to	make	sure	you	don’t	inadvertently	return	a	large	number	of	rows.

www.it-ebooks.info

http://www.it-ebooks.info/

When	null	does	not	mean	empty
There	is	an	even	subtler	(and	more	insidious)	way	to	inadvertently	create	tombstones:	by
inserting	null	values.	Let’s	take	a	look	at	how	we	might	cause	this	situation	unwittingly.

We	know	that	Cassandra	stores	columns	sparsely.	This	means	that	unspecified	values
simply	aren’t	written.	So	it	would	seem	logical	that	setting	a	column	to	null	would	result
in	a	missing	column.	In	fact,	writing	a	null	is	the	same	thing	as	explicitly	deleting	a
column,	and	therefore	a	tombstone	is	written	for	that	column.

There	is	a	simple	reason	why	this	is	the	case.	While	Cassandra	supports	separate	INSERT
and	UPDATE	statements,	all	writes	are	fundamentally	the	same	under	the	covers.	And
because	all	writes	are	simply	append	operations,	there	is	no	way	for	the	system	to	know
whether	a	previous	value	exists	for	the	column.	Therefore,	Cassandra	must	actually	write	a
tombstone	in	order	to	guarantee	any	old	values	are	deleted.

While	it	may	seem	as	though	this	would	be	easy	to	avoid—by	just	not	writing	null	values
—it	is	fairly	easy	to	mistakenly	allow	this	to	happen	when	using	prepared	statements.
Imagine	a	data	model	that	includes	many	sparsely	populated	columns;	it	is	tempting	to
create	a	single	prepared	statement	with	all	potential	columns	and	then	set	the	unused
columns	to	null.	It	is	also	possible	that	callers	of	an	insert	method	might	pass	in	null
values.	If	this	condition	is	not	checked,	it	is	easy	to	see	how	tombstones	could	be
accumulated	without	realizing	this	is	happening.

When	using	prepared	statements,	you	must	prepare	a	separate	statement	for	each
permutation	of	your	query	parameters;	or,	if	this	is	not	practical,	you	can	create	a	single
INSERT	or	UPDATE	statement	for	each	field,	then	conditionally	include	them	in	a	batch
when	they	are	not	null.

To	wrap	up	our	discussion	of	deletes,	let’s	look	at	a	common	antipattern	involving	deletes.

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra	is	not	a	queue
The	idea	of	using	a	database	as	a	durable	queue	is	certainly	not	a	new	one.	For	many
years,	people	have	been	misappropriating	relational	databases	for	use	as	queues.	On	the
surface,	it	may	seem	that	Cassandra	would	work	well	as	a	distributed	durable	queue	as	it
easily	supports	querying	based	on	insertion	order.	Here	is	an	example	data	model	that
would	serve	this	use	case:
CREATE	TABLE	queue	(

		name	text,

		timestamp	int,

		item	text,

		PRIMARY	KEY	(name,	timestamp)

);

We	could	then	support	an	enqueue	operation	with	a	simple	insert,	perhaps	including	an
expiration	time	to	avoid	holding	onto	irrelevant	items:
INSERT	INTO	queue	(name,	timestamp,	item)

VALUES	(‘to_do’,	1413146590,	‘Learn	Scala’);

A	dequeue	operation	would	involve	querying	the	first	(which	equates	to	the	oldest	in	this
case)	item,	then	deleting	it:
SELECT	*	FROM	queue

WHERE	name	=	‘to_do’

ORDER	BY	timestamp	ASC	LIMIT	1;

DELETE	FROM	queue

WHERE	name	=	‘to_do’

AND	timestamp	=	[timestamp_of_dequeued_item];

Based	on	our	discussion	of	deletes	and	tombstones,	it	should	be	obvious	that	we’ll	be
creating	three	tombstones	for	every	dequeue	operation	(one	for	the	marker	column	and
one	for	each	non-clustering	column).	While	this	may	seem	similar	to	the	earlier	example
where	we	were	constantly	reading	and	deleting	comments,	there	is	an	important
distinction.

In	the	article	comments	model,	we	were	reading	from	one	end	of	the	range	(the	latest
comments)	and	deleting	from	the	other	end	(the	earliest	comments).	This	allowed	us	to
scan	from	the	head	of	the	range	without	the	risk	of	reading	any	tombstones,	and	simply
apply	a	range	filter	to	make	sure	we	never	read	so	far	that	we	encountered	any	at	the	other
end.	With	the	queue	model	we	are	doing	the	opposite:	we	are	reading	and	deleting	from
the	same	end	of	the	range.	The	result,	over	time,	looks	like	this:

www.it-ebooks.info

http://www.it-ebooks.info/

The	queue	pattern	results	in	accumulating	tombstones	at	the	head	of	the	range

As	you	can	see	from	the	previous	diagram,	with	each	dequeue	operation	three	tombstones
(the	marker	plus	clustering	columns)	are	added	to	the	head	of	the	queue.	Then,	when	we
run	a	query	to	obtain	the	actual	head,	we	must	scan	through	all	these	tombstones	before
reaching	it.	Obviously	this	is	not	a	sustainable	strategy,	which	is	why	the	queue	is	an
antipattern.

Tip
When	building	your	data	models,	beware	of	strategies	that	are	actually	queues
masquerading	as	something	else.	In	general,	it’s	important	to	avoid	data	structures	where
you	must	perform	many	deletes	on	a	range	of	data	you	will	frequently	read.	With	large
datasets,	you	can	end	up	reading	more	tombstones	than	actual	values,	and	your	application
may	grind	to	a	halt.

To	sum	up,	remember	that	databases	typically	make	poor	queues.	If	you	need	a	queue,
choose	a	system	that	was	designed	to	support	that	use	case.	There	are	a	number	of

www.it-ebooks.info

http://www.it-ebooks.info/

excellent	distributed	queues	available,	so	avoid	the	temptation	to	use	Cassandra	for	this
purpose.

Also,	this	is	a	good	time	to	offer	a	reminder	of	the	advice	given	in	the	previous	chapter	to
write	data	immutably.	If	you	avoid	deletes	where	possible,	many	of	the	issues	from	this
section	can	be	avoided	naturally.

www.it-ebooks.info

http://www.it-ebooks.info/

Unbounded	row	growth
Now	let’s	take	a	look	at	the	counterpoint	problem	to	deletes,	when	data	for	a	given	key
grows	without	bounds.	This	is	a	surprisingly	easy	situation	to	get	yourself	into,	especially
if	you	do	not	understand	how	Cassandra	stores	your	data	on	disk.	Perhaps	the	best	antidote
to	unbounded	row	growth	is	to	read	and	understand	the	previous	chapter,	which	offers	the
foundational	knowledge	to	help	you	avoid	this	scenario.

To	clarify,	this	section	is	not	a	warning	against	unbounded	growth	of	your	dataset	in
general.	We	have	established	that	Cassandra	scales	linearly,	so	you	can	continue	to	add
data	as	long	as	you	have	capacity	in	your	cluster.	Instead,	we	are	referring	to	a	model
where	a	given	partition	key	continues	to	accumulate	columns	with	no	end	in	sight.	We
briefly	touched	on	this	in	Chapter	7,	Modeling	for	High	Availability,	but	the	topic	deserves
a	full	treatment.

We	can	imagine	a	typical	scenario	using	the	sensor_readings	data	model	described	in	the
previous	chapter.	Here	is	a	reminder	of	what	it	looks	like:
CREATE	TABLE	sensor_readings	(

		sensorID	uuid,

		timestamp	int,

		reading	decimal,

		PRIMARY	KEY	(sensorID,	timestamp)

);

There	are	two	fundamental	problems	with	this	model:

	
Data	will	be	collected	for	a	given	sensor	indefinitely,	and	in	many	cases	at	a	very
high	frequency
With	sensorID	as	the	partition	key,	the	row	will	grow	by	two	columns	for	every
reading	(one	marker	and	one	reading)

It	should	be	noted	that	this	is	not	actually	a	problem	in	terms	of	queries,	provided	that	they
are	limited	either	by	a	row	count	or	a	reasonable	range	filter	on	timestamp.	Instead,	you
should	recall	from	Chapter	2,	Data	Distribution,	that	the	unit	of	distribution	across	the
cluster	is	the	partition	key,	in	this	case	sensorID.	It	is	therefore	possible	with	this	model
that	a	single	key	might	become	so	large	that	it	could	outgrow	a	single	node.

For	this	reason,	it	is	important	to	choose	a	reasonable	partition	key	that	will	prevent
unbounded	row	growth.	For	time-series	data,	this	typically	means	adding	a	time	bucket	to
the	partition	key	as	described	in	the	time-series	section	in	the	previous	chapter.	In	fact,
most	models	with	the	potential	to	suffer	from	this	problem	will	be	time-based,	so	the
bucketing	solution	is	typically	the	best	strategy	to	avoid	this	situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	discussed	some	common	data	modeling	patterns	to	avoid.	However,	it
would	be	impossible	to	cover	every	bad	choice	a	user	might	make,	so	it’s	important	to
focus	on	understanding	the	fundamentals	of	sound	design.	This	will	give	you	a	foundation
that	will	allow	you	to	make	correct	data	modeling	decisions	on	whatever	problem	you
may	encounter.

As	we	have	also	seen	in	this	chapter,	sometimes	Cassandra	isn’t	the	right	tool	for	the
problem	at	hand.	Hopefully,	you	can	now	recognize	when	this	is	the	case,	and	choose	the
right	tool	for	the	right	job.

It	is	now	time	to	wrap	up	this	book	by	taking	a	look	at	ways	in	which	things	can	go	wrong
when	running	Cassandra.	While	it	is	a	highly	fault-tolerant	system,	you	will	rest	easy	if
you	know	what	to	do	when	the	unexpected	happens.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	9.	Failing	Gracefully
Technology	organizations,	from	the	CTO	to	the	system	administrators,	have	spent
countless	hours	over	the	years	trying	to	prevent	their	database	systems	from	experiencing
failure.	This	is	because	failure	typically	meant	downtime	for	the	application	or,	even
worse,	a	loss	of	critical	data.

As	we	discussed	in	Chapter	1,	Cassandra’s	Approach	to	High	Availability,	attempts	to
make	these	systems	highly	available	often	required	a	significant	amount	of	human
intervention	to	restore	functionality	in	the	case	of	a	failure.	Cassandra,	as	you	have
learned,	was	designed	from	the	ground	up	to	consider	failure	as	a	normal	operational	state.
This	is	because	in	a	large	distributed	system,	the	chance	that	at	any	given	moment	a	piece
of	hardware	will	fail	is	relatively	high,	so	the	system	must	know	how	to	deal	with	those
problems.

But	even	a	robust	system	such	as	Cassandra,	which	is	designed	to	handle	failure	scenarios
without	losing	data	or	compromising	availability,	requires	vigilance	and	know-how	to
keep	things	running	smoothly	day	in	and	day	out.	As	we	near	the	end	of	this	book,	let’s
take	a	moment	to	examine	some	of	the	things	that	can	go	bump	in	the	night,	and	how	we
might	handle	these	situations.	Fortunately,	Cassandra	provides	a	number	of	tools	to	deal
with	many	of	the	common	failure	scenarios	that	can	present	themselves	from	time	to	time.

In	this	chapter,	we	will	cover	the	following	topics:

	
Monitoring	Cassandra
Failure	detection
Logging
Recovering	from	node	failures
Backups

www.it-ebooks.info

http://www.it-ebooks.info/

Knowledge	is	power
Of	course	the	first	step	in	handling	anomalous	situations	is	to	be	aware	that	something	is
amiss.	As	proponents	of	the	Unix	philosophy	have	famously	stated,	a	system	must	not	just
function	well,	but	it	must	be	seen	to	function	well.	This	is	called	the	rule	of	transparency,
and	in	essence	it	admonishes	application	designers	to	build	systems	that	provide	visibility
into	their	inner	workings.

Taking	this	a	step	further,	we	might	add	that	we	should	be	able	to	know	that	the	system	is
working	even	when	we	aren’t	looking.	There	are	times	when	you	may	be	actively
watching	the	cluster,	for	example,	when	adding	or	removing	nodes	or	deploying	a	new
application.	However,	more	often	than	not,	you	will	have	your	attention	turned	elsewhere
when	the	unexpected	occurs.	It	is	during	these	periods	that	you	will	need	to	rely	on
automated	monitoring	to	alert	you	that	there	is	trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring	via	Java	Management	Extensions
Fortunately,	Cassandra	makes	this	easy	by	providing	numerous	Java	Management
Extensions	(JMX)	targets	that	publish	all	manner	of	statistics	to	give	you	a	window	into
the	state	and	health	of	the	system.	You	do	not	need	to	know	a	lot	about	JMX	to	be	able	to
use	it	effectively.	Essentially,	it	is	a	standard	mechanism	by	which	applications	built	on	the
Java	Virtual	Machine	(JVM)	can	expose	metrics	and	management	functions	via	a
common	interface.

There	are	numerous	tools	to	monitor	JMX	targets,	from	the	simple	JConsole,	which	ships
with	the	JDK,	to	sophisticated	automated	monitoring	tools	that	can	alert	administrators	or
even	take	action	based	on	a	set	of	rules.	A	simple	tool	is	sufficient	to	explore	the	various
targets	and	learn	more	about	JMX	in	general,	but	for	production	deployments	you	will
want	to	make	use	of	an	automated	tool	that	can	work	across	your	entire	cluster.

By	default,	Cassandra	listens	for	JMX	connections	on	port	7199.	To	connect	to	a	remote
host	for	monitoring,	you	will	need	to	configure	JMX	to	allow	remote	connections.	A
detailed	documentation	to	accomplish	this	can	be	found	on	Oracle’s	website	at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html.

Once	you	have	configured	your	Cassandra	hosts	to	allow	remote	JMX	connections,	you
can	connect	using	any	JMX	client.	Assuming	you	have	a	JDK	installed	on	your	local
computer,	you	can	connect	using	JConsole	by	following	these	steps:

	
1.	 First,	open	a	terminal	and	start	JConsole	using	the	jconsole	command.	Then,	fill	in

the	host,	port,	and	your	credentials	in	the	dialog	box,	and	click	on	the	Connect
button:

2.	 Once	JConsole	connects	to	the	remote	host,	you	will	see	an	overview	of	basic

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
http://www.it-ebooks.info/

statistics	for	the	host,	such	as	memory	and	CPU	utilization.	To	access	the	Cassandra-
specific	information,	choose	the	MBeans	tab	at	the	top	of	the	window.

3.	 In	this	tab,	you	can	see	a	list	of	available	MBean	categories,	some	of	which	are
provided	by	default	in	the	JVM	and	others	that	are	specific	to	the	application;	in	this
case,	those	starting	with	org.apache.cassandra.

4.	 If	you	expand	one	of	the	Cassandra	categories,	this	will	expose	the	various	objects
that	can	be	inspected.	Under	each	object,	you	can	either	view	attributes	or	perform
operations	on	the	object.	For	example,	if	you	open	the	org.apache.cassandra.db
category,	then	expand	the	Caches	object;	you	will	have	access	to	a	variety	of
statistics,	such	as	hit	rates,	cache	sizes,	and	the	like.	You	can	also	perform	operations
such	as	clearing	the	row	or	key	caches:

While	this	may	be	helpful	to	work	with	a	local	Cassandra	instance	or	explore	the	available
attributes	and	operations,	JConsole	is	not	a	practical	tool	to	manage	an	entire	cluster.	A
generic,	graphical	tool	such	as	JConsole	can	also	be	unwieldy	when	trying	to	perform
simple	tasks	on	remote	servers.	For	this	reason,	Cassandra	ships	with	a	useful	command-
line	utility	called	nodetool,	which	exposes	many	of	the	JMX	statistics	and	operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	OpsCenter
DataStax	also	provides	an	excellent	web-based	Cassandra	administration	tool	called
OpsCenter	that	interfaces	with	JMX	to	provide	a	cluster-wide	view	of	your	system.	It
also	exposes	management	functions	that	allow	you	to	perform	system-wide	changes
without	manually	editing	configuration	files	or	calling	JMX	functions	on	every	node
individually.

To	install	OpsCenter	on	your	cluster,	download	the	appropriate	package	from
http://www.datastax.com/documentation/opscenter/5.0/opsc/install/opscInstallation_g.html

OpsCenter	offers	a	variety	of	useful	tools	to	ease	the	Cassandra	management	workload,
especially	repair,	configuration,	and	topology	changes.	There	are	community	and
enterprise	versions	of	OpsCenter	that	provide	different	levels	of	functionality.

www.it-ebooks.info

http://www.datastax.com/documentation/opscenter/5.0/opsc/install/opscInstallation_g.html
http://www.it-ebooks.info/

Choosing	a	management	toolset
There	is	a	vast	array	of	third-party	products	and	processes	available	to	manage	and
monitor	distributed	systems,	and	as	such	the	topic	cannot	be	adequately	covered	in	this
book.	However,	this	chapter	will	offer	you	an	overview	of	the	most	important	monitoring
targets	so	you	can	configure	your	chosen	tool	correctly.

When	choosing	a	toolset	to	manage	your	cluster,	at	a	minimum,	you	will	need	it	to	be	able
to	perform	the	following	functions:

	
Automatically	deploy	and	configure	new	nodes:	You	will	quickly	realize	the
necessity	for	this	as	your	cluster	size	grows	and	the	process	of	scaling	out	manually
becomes	cumbersome.
Keep	your	configuration	in	sync	across	the	nodes:	Specifically,	this	means
managing	cluster	topology	files	and	each	machine’s	cassandra.yaml	configuration.
Open	source	options	such	as	Chef	and	Puppet	are	excellent	choices	for	these	kinds	of
tasks.
Perform	rolling	cluster	changes:	Changes	that	require	a	node	restart,	such	as
configuration	changes	or	version	upgrades,	will	need	to	be	rolled	out	to	a	subset	of
your	nodes	at	a	given	time.
Monitor	kernel-level	metrics:	These	include	primarily	resource	utilization	details,
such	as	CPU,	disk,	and	memory	at	the	operating	system	level.	Since	Cassandra	stores
a	number	of	important	data	structures	off-heap,	simply	monitoring	the	JVM	process
itself	is	not	sufficient.
Monitor	JMX	targets:	You	will	certainly	want	to	know	when	a	key	metric	falls	out
of	an	acceptable	range,	and	many	monitoring	tools	offer	this	capability.	As	you
become	more	experienced	with	Cassandra,	you	may	also	want	the	tool	to	take	action
to	resolve	the	problem	without	human	intervention.	But	at	the	very	least	you	need	to
be	aware	that	something	is	awry.

For	smaller	installations,	a	minimal	combination	of	shell	scripts,	cron	jobs,	and	a	simple
JMX	monitoring	tool	may	be	sufficient.	But	large	clusters	will	demand	higher	levels	of
sophistication	in	this	category.	When	evaluating	tools	and	procedures	to	monitor	and
manage	Cassandra	in	Amazon	EC2,	consult	the	Netflix	engineering	blog
(http://techblog.netflix.com/search/label/Cassandra)	and	their	GitHub	site,	as	they	have
contributed	significant	amounts	of	their	knowledge	and	tooling	to	the	community.

www.it-ebooks.info

http://techblog.netflix.com/search/label/Cassandra
http://www.it-ebooks.info/

Logging
In	addition	to	keeping	an	eye	on	JMX	statistics,	there	are	several	levels	of	logfiles	that
should	be	monitored	so	they	can	be	analyzed	in	case	of	failure.	Ideally,	you	should	use
some	sort	of	log	aggregation	(such	as	Flume,	FluentD,	or	Splunk)	to	make	it	easier	to
make	sense	of	logs.	Also,	aggregation	ensures	that	catastrophic	node	failures	don’t	prevent
you	from	recovering	logs	from	the	problematic	hosts,	which	may	be	the	most	important	bit
of	diagnostic	data	available.

www.it-ebooks.info

http://www.it-ebooks.info/

Cassandra	logs
Cassandra	itself	provides	two	logs	and	both	are	located	in	the	configured	logging
directory,	which	is	/var/log/cassandra	by	default.	The	first,	system.log,	is	a	rolling	log
of	Cassandra’s	log4j	output.	The	second,	output.log,	shows	standard	output	and	standard
error	and	is	overwritten	on	startup.

If	you	are	experiencing	an	issue	that	warrants	lower-level	logging	than	the	default	INFO
level,	you	can	adjust	the	logging	level	by	editing	log4j-server.properties	(in	the
config	directory).	The	level	is	determined	by	the	following	line:
log4j.rootLogger=INFO,stdout,R

To	obtain	more	granular	logging,	change	INFO	to	either	DEBUG	or	TRACE.	Trace-level	output
is	extremely	verbose,	so	it	is	recommended	that	you	first	use	DEBUG,	as	that	level	should	be
sufficient	for	troubleshooting	purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

Garbage	collector	logs
As	is	the	case	with	any	JVM-based	application,	garbage	collection	is	a	significant	factor	in
the	performance	of	Cassandra.	In	certain	classes	of	problems,	where	Cassandra	did	not
necessarily	fail	outright	but	suffered	significant	performance	issues,	having	the	GC	logs	is
a	helpful	aid	in	determining	the	underlying	cause.

GC	logging	can	be	enabled	in	Cassandra	by	simply	uncommenting	a	few	lines	in
$CASSANDRA_HOME/conf/cassandra-env.sh:
#	GC	logging	options	—	uncomment	to	enable

JVM_OPTS=”$JVM_OPTS	-XX:+PrintGCDetails”

JVM_OPTS=”$JVM_OPTS	-XX:+PrintGCDateStamps”

JVM_OPTS=”$JVM_OPTS	-XX:+PrintHeapAtGC”

JVM_OPTS=”$JVM_OPTS	-XX:+PrintTenuringDistribution”

JVM_OPTS=”$JVM_OPTS	-XX:+PrintGCApplicationStoppedTime”

JVM_OPTS=”$JVM_OPTS	-XX:+PrintPromotionFailure”

#	JVM_OPTS=”$JVM_OPTS	-XX:PrintFLSStatistics=1”

JVM_OPTS=”$JVM_OPTS	-Xloggc:/var/log/cassandra/gc-`date	+%s`.log”

#	If	you	are	using	JDK	6u34	7u2	or	later	you	can	enable	GC	log	rotation

#	don’t	stick	the	date	in	the	log	name	if	rotation	is	on.

JVM_OPTS=”$JVM_OPTS	-Xloggc:/var/log/cassandra/gc.log”

JVM_OPTS=”$JVM_OPTS	-XX:+UseGCLogFileRotation”

JVM_OPTS=”$JVM_OPTS	-XX:NumberOfGCLogFiles=10”

JVM_OPTS=”$JVM_OPTS	-XX:GCLogFileSize=10M”

The	easiest	way	to	view	and	understand	these	logs	is	to	use	a	viewer	designed	to	parse	and
make	sense	of	them	for	you.	There	are	a	number	of	such	tools	available.	If	you	would	like
to	learn	more	about	how	to	read	and	understand	GC	logs,	check	out	the	post	on	the	Oracle
site	at	https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs.

In	addition	to	Cassandra	and	GC	logs,	you	should	also	make	sure	to	keep	detailed
application	logs	to	diagnose	issues	with	connections,	queries,	and	other	such	problems	that
may	display	symptoms	on	the	client.	The	native	drivers	offer	useful	information	in	their
logs	that	may	be	helpful	in	determining	the	cause	of	a	variety	of	issues.

www.it-ebooks.info

https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
http://www.it-ebooks.info/

Monitoring	node	metrics
Whether	you	are	using	JMX	monitoring	software	or	the	nodetool	utility,	it	is	important	to
know	what	statistics	are	worth	watching.	The	names	and	locations	of	specific	attributes
can	vary	depending	upon	the	Cassandra	version,	but	the	key	ideas	remain	the	same.

The	objective	here	is	to	give	you	an	understanding	of	the	available	statistics	so	you	will
know	how	to	choose	the	proper	monitoring	targets.	We	will	use	nodetool	for	this	purpose
as	its	options	tend	to	be	more	stable.	You	should	find	it	straightforward	to	locate	the
equivalent	JMX	MBean.

www.it-ebooks.info

http://www.it-ebooks.info/

Thread	pools
Cassandra’s	design	employs	a	staged	event-driven	architecture	(SEDA)	that	essentially
comprises	message	queues	(containing	events)	feeding	into	thread	pools	(or	stages).	The
stages	fire	off	messages	to	other	stages	via	a	messaging	service.	There	are	stages	to	handle
a	variety	of	tasks.

Running	nodetool	tpstats	provides	detailed	information	about	what’s	happening	at	each
of	the	stages.	A	buildup	of	pending	tasks	in	any	of	the	pools	is	an	indication	that	there’s
something	wrong,	for	example,	a	lot	of	pending	operations	in	the	mutation	stage	means
that	writes	are	backing	up	(writes	are	internally	referred	to	as	mutations).	As	a	result,	it	is
wise	to	monitor	pending	thread	pool	messages	as	they	can	be	a	leading	indicator	of
potential	issues.

The	following	truncated	output	of	the	nodetool	tpstats	command	shows	what	you
might	see	in	the	case	of	a	backlog	of	mutations:

Pool	Name																				Active			Pending						Completed

ReadStage																									0									0								4531423

RequestResponseStage														0									0						109089295

MutationStage																					0					53425							49501952

There	can	be	any	number	of	reasons	why	such	a	situation	may	occur,	but	it	is	imperative
that	you	become	aware	of	the	situation	as	soon	as	possible,	especially	if	the	symptoms	are
cluster-wide.	If	a	single	node	is	experiencing	this	kind	of	difficulty,	it	may	be	an	indicator
of	an	impending	hardware	failure	or	some	other	situation	that	would	require	an
intervention	to	remedy	it.

www.it-ebooks.info

http://www.it-ebooks.info/

Column	family	statistics
Internally,	tables	map	to	column	families,	which	are	the	underlying	storage	structure.	The
nodetool	cfstats	command	offers	a	wealth	of	data	points	that	provide	a	complete
picture	of	each	table	in	your	schema.	You	can	provide	a	specific	keyspace	to	this
command,	which	helps	to	limit	the	verbosity	of	its	output.

When	we	run	this	command,	we	get	an	output	resembling	the	following	snippet:

Keyspace:	test_keyspace

		Read	Count:	383953

		Read	Latency:	0.9053452870533634	ms.

		Write	Count:	125031

		Write	Latency:	0.14220190992633827	ms.

		Pending	Tasks:	0

				Table:	test

				SSTable	count:	2

				Space	used	(live),	bytes:	1135025

				Space	used	(total),	bytes:	1136661

				SSTable	Compression	Ratio:	0.916869063329679

				Number	of	keys	(estimate):	12544

				Memtable	cell	count:	0

				Memtable	data	size,	bytes:	0

				Memtable	switch	count:	10

				Local	read	count:	383953

				Local	read	latency:	0.045	ms

				Local	write	count:	125031

				Local	write	latency:	0.055	ms

				Pending	tasks:	0

				Bloom	filter	false	positives:	0

				Bloom	filter	false	ratio:	0.00000

				Bloom	filter	space	used,	bytes:	16824

				Compacted	partition	minimum	bytes:	43

				Compacted	partition	maximum	bytes:	103

				Compacted	partition	mean	bytes:	50

				Average	live	cells	per	slice	(last	five	minutes):	0.0

				Average	tombstones	per	slice	(last	five	minutes):	0.0

In	general,	the	keyspace-level	statistics	at	the	top	are	not	particularly	useful	as	they	are
aggregates	across	all	the	tables	in	the	keyspace.	Instead,	pay	particular	attention	to	local
read	and	write	metrics	as	well	as	pending	tasks	because	these	data	points	can	offer	insight
into	issues	with	specific	tables.	Often	an	issue	with	a	single	table	can	expose	problems
with	a	data	model.

In	addition,	you	should	keep	an	eye	on	average	tombstones	per	slice,	as	this	will	tell	you
how	much	of	your	read	workload	is	being	consumed	by	scanning	tombstones.	A	high
number	here	is	a	clear	indicator	of	either	a	problem	with	your	data	model	or	issues	with
your	query	patterns.	Review	Chapter	8,	Antipatterns,	for	more	information	on	deletes	and
tombstones	to	understand	how	this	can	happen	and	what	to	do	to	avoid	the	situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Finding	latency	outliers
Another	useful	tool	for	diagnosing	table-specific	issues	is	the	nodetool	cfhistograms
command.	In	older	versions	of	Cassandra,	the	output	of	this	command	can	be	quite
confusing	to	understand,	and	unfortunately	it	has	changed	multiple	times	in	recent
versions.	You	can	review	the	documentation	for	specifics	on	how	to	interpret	the	output
for	your	version.

The	basic	idea,	regardless	of	version,	is	to	provide	a	histogram	of	read	and	write	latencies
per	table.	The	easiest	way	to	understand	the	data	is	to	actually	plot	it	on	a	graph	using	a
spreadsheet	or	something	similar.	This	tool	gives	additional	insight	beyond	average
latencies,	which	can	be	deceiving,	as	they	can	be	skewed	by	outliers.	Using	nodetool
cfhistograms	allows	you	to	see	those	outliers	more	clearly.	For	example,	when	using
version	2.0	or	later,	you	will	see	output	resembling	the	following	snippet:
Write	Latency	(microseconds)

		50	us:	1

		60	us:	195

		72	us:	1029

		86	us:	876

103	us:	433

124	us:	170

149	us:	208

179	us:	247

To	turn	this	output	into	a	histogram,	you	will	use	the	value	on	the	left	as	the	x	axis	offset
and	the	value	on	the	right	as	the	y	axis.	In	this	example,	there	were	1,029	requests	that
took	72	microseconds.	OpsCenter	also	provides	a	more	helpful	rendering	of	this	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Communication	metrics
Cassandra	provides	a	useful	tool	to	determine	the	current	state	of	its	communications,	both
with	other	nodes	and	with	connected	clients.	The	nodetool	netstats	command	offers	a
particularly	helpful	insight	into	the	status	of	read	repair	operations,	data	streaming,	and
pending	client	requests.

The	following	output	shows	a	Cassandra	node	in	the	normal	state:

Mode:	NORMAL

Not	sending	any	streams.

Not	receiving	any	streams.

Read	Repair	Statistics:

Attempted:	1

Mismatch	(Blocking):	0

Mismatch	(Background):	0

Pool	Name																				Active			Pending						Completed

Commands																								n/a									0														0

Responses																							n/a									0														0

During	read	repair,	bootstrapping,	and	loading	from	a	snapshot,	Cassandra	exchanges	data
between	nodes	via	a	process	called	streaming.	The	netstats	command	will	display
details	about	which	nodes	are	streaming	to	and	from	the	requested	node.	As	of	version	2.0,
streaming	was	redesigned	to	improve	traceability	by	associating	a	specific	stream	plan
with	each	operation.	This	plan	has	a	UUID	associated	with	it,	which	can	be	observed	in
this	netstats	snippet:

Mode:	NORMAL

Bulk	Load	fdf4cc70-10e9-11e3-bed0-27ba85b87bf8

				/192.168.1.163

								Receiving	3	files,	28437084	bytes	total

												/var/lib/cassandra/data/Keyspace1/Standard1/Keyspace1-

Standard1-tmp-ja-4-Data.db	9244384/9244384	bytes(100%)	received	from

/192.168.1.163

												/var/lib/cassandra/data/Keyspace1/Standard1/Keyspace1-

Standard1-tmp-ja-5-Data.db	9249617/9249617	bytes(100%)	received	from

/192.168.1.163

												/var/lib/cassandra/data/Keyspace1/Standard1/Keyspace1-

Standard1-tmp-ja-6-Data.db	5635715/9943083	bytes(56%)	received	from

/192.168.1.163

Once	you	have	this	ID,	you	can	search	through	the	Cassandra	log	to	find	entries	related	to
this	stream.	This	can	be	very	helpful	if	a	stream	operation	appears	to	be	taking	too	long	or
has	become	stuck.

Thus	far	we	have	discussed	a	variety	of	ways	in	which	you	can	monitor	and	detect	failures
using	the	available	tooling.	However,	Cassandra	also	has	its	own	mechanisms	to	manage
failure	scenarios.	Let’s	take	a	moment	to	look	at	how	these	processes	help	us	sleep	well	at
night,	knowing	that	the	system	will	keep	functioning	even	when	things	go	awry.

www.it-ebooks.info

http://www.it-ebooks.info/

When	a	node	goes	down
In	a	cluster	of	any	significant	size,	nodes	are	bound	to	become	unresponsive	for	a	variety
of	reasons.	Fortunately,	Cassandra	has	a	sophisticated	mechanism	called	the	failure
detector	that	is	designed	to	determine	when	this	has	occurred,	then	mark	the	node	as
down.

Most	node	failures	result	from	temporary	conditions,	such	as	network	issues.	Therefore,
Cassandra	assumes	the	node	will	eventually	come	back	online,	and	that	permanent	cluster
changes	will	be	executed	explicitly	using	nodetool.

www.it-ebooks.info

http://www.it-ebooks.info/

Marking	a	downed	node
Each	node	keeps	track	of	the	state	of	other	nodes	in	the	cluster	by	means	of	an	accrual
failure	detector	(or	phi	failure	detector).	This	detector	evaluates	the	health	of	other	nodes
based	on	a	sliding	window	of	gossip	message	arrival	times.	It	computes	the	statistical
distribution	of	those	arrival	times	per	node,	thus	taking	into	account	the	current	state	of	the
network	rather	than	using	naïve	thresholds	or	timeouts.

The	ultimate	result	of	the	failure	detection	algorithm	is	a	value,	called	phi,	which
corresponds	to	the	probability	that	the	next	gossip	message	will	be	received	within	a
certain	amount	of	time.	You	can	specify	the	phi	value	that	determines	when	a	node	is
marked	as	down	by	setting	the	phi_convict_threshold	configuration	value	in
cassandra.yaml.

The	default	for	phi_convict_threshold	is	8,	which	should	be	sufficient	for	most
situations.	If	you	are	running	in	Amazon	EC2,	you	should	consider	increasing	the	value	to
12,	which	takes	into	account	the	more	contentious	network	environment.	In	general,	lower
values	favor	earlier	detection	at	the	cost	of	unnecessarily	marking	a	host,	while	higher
values	will	result	in	longer	detection	times	but	will	be	less	likely	to	mark	a	functioning
host	as	down.

Note	that	there	is	no	master	list	of	downed	nodes.	Each	node	manages	its	own	list	of	the
state	of	its	peers.	To	see	the	current	list	of	peer	states	maintained	by	a	given	node,	use	the
nodetool	status	command.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling	a	downed	node
Once	a	node	has	been	marked	as	unreachable,	Cassandra	will	stop	sending	traffic	to	that
node.	However,	other	nodes	will	continue	to	try	to	reach	the	downed	host	periodically	to
determine	whether	it	has	recovered.

During	this	downtime,	any	replicas	destined	for	the	downed	node	will	be	stored	as	hints
on	whichever	node	acted	as	the	coordinator	for	the	write,	assuming	you	have	enabled
hinted	handoff	(see	Chapter	3,	Replication,	for	more	details	on	how	this	works).	So	there
will	likely	be	many	nodes	in	the	cluster	holding	hints	for	the	downed	node.	Assuming	the
node	comes	back	online	before	the	time	window	set	in	max_hint_window_in_ms	(in
cassandra.yaml),	the	hints	will	be	replayed	and	the	replicas	restored.

If	the	host	does	not	recover	before	the	configured	time	window	has	elapsed,	the	hints	will
be	discarded.	In	this	case,	it	will	be	necessary	to	run	nodetool	repair	on	the	newly
recovered	host	to	restore	the	lost	replicas.	Furthermore,	it	is	possible	that	the	downed	node
itself	had	stored	hints	that	were	never	replayed,	which	is	yet	another	reason	to	run	regular
repair	operations	across	your	cluster.

In	general,	it	is	wise	to	attempt	to	restore	downed	hosts	during	the	hint	window	if	you’re
using	hinted	handoff,	as	this	will	mitigate	potential	data	loss	or	consistency	issues.	If	you
need	to	permanently	remove	a	node	from	the	cluster,	you	should	run	nodetool
decommission	on	that	node	so	that	Cassandra	can	properly	redistribute	data	and	inform
other	nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling	slow	nodes
Sometimes	a	node	may	not	become	entirely	unresponsive,	but	may	be	slower	than	others
in	the	cluster.	Cassandra	employs	a	dynamic	snitch	to	attempt	to	steer	clear	of	slower
nodes	when	routing	read	requests	(this	doesn’t	work	for	writes,	since	all	replicas	are
always	contacted,	and	then	Cassandra	simply	waits	for	the	consistency	level	to	be
satisfied).

When	performing	a	read,	the	coordinator	node	only	requests	the	full	replica	from	one
node,	then	asks	for	checksums	from	other	nodes	based	on	the	consistency	level.	The
dynamic	snitch	algorithm	attempts	to	prefer	lower	latency	nodes	when	requesting	the
entire	record,	thus	improving	read	performance.	The	algorithm	takes	into	account	a	variety
of	factors,	including	recent	performance	and	whether	the	node	in	question	is	currently
undergoing	a	compaction.

As	of	version	2.0.2,	Cassandra	added	a	feature	called	rapid	read	protection,	which	helps
to	prevent	slow	nodes	from	causing	requests	to	time	out.	If	a	request	happens	to	be	routed
to	a	slow	node,	Cassandra	can	detect	this	condition	and	proactively	make	the	request	to
another	node	while	waiting	for	the	original	node	to	respond.	This	allows	the	client	to
avoid	a	timeout	if	the	second	request	returns	within	the	request	timeout	period.

This	feature	can	be	enabled	as	either	a	fixed	time	or	as	a	read	latency	percentile,	as
follows:
ALTER	TABLE	authors	WITH	speculative_retry	=	‘10ms’;

ALTER	TABLE	authors	WITH	speculative_retry	=	‘99percentile’;

Keep	in	mind	that	rapid	read	protection	only	helps	when	the	consistency	level	is	lower
than	the	replication	factor.	In	other	words,	you	cannot	expect	improvement	if	you	request
all	replicas.	However,	in	other	cases,	enabling	this	feature	can	substantially	improve
availability	during	failure	scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

Backing	up	data
While	Cassandra	itself	goes	a	long	way	toward	reducing	the	possibility	of	data	loss,	it
cannot	prevent	loss	or	corruption	due	to	administrative	or	application-level	mistakes.	For
this	reason,	it	is	still	advisable	to	maintain	backups	of	critical	tables	to	allow	you	to
recover	to	a	known	good	point	in	the	past.

www.it-ebooks.info

http://www.it-ebooks.info/

Taking	a	snapshot
Fundamentally,	backing	up	data	in	Cassandra	involves	taking	a	snapshot	of	the	SSTable
for	a	given	keyspace	at	a	moment	in	time,	as	it	must	have	all	the	tables	in	order	to	properly
recover	if	needed.	You	can	create	a	snapshot	using	nodetool	as	follows:

nodetool	snapshot	[keyspace_name]

This	will	create	hard	links	to	the	current	SSTables	in	that	keyspace’s	snapshots	directory
(located	inside	the	data	directory,	which	is	located	at
/var/lib/cassandra/data/[keyspace_name]	by	default),	under	a	directory	name	based
on	the	Unix	epoch	at	the	time	the	snapshot	is	generated.	The	advantage	of	this	approach	is
that	the	hard	link	does	not	require	any	additional	disk	space.	However,	you	should	be	sure
to	remove	old	snapshots	as	they	will	continue	to	accumulate	if	not	deleted	regularly.

An	important	point	to	recognize	when	using	the	nodetool	snapshot	command	is	that	this
builds	a	snapshot	for	the	target	node	only.	In	order	to	build	a	snapshot	for	the	entire
cluster,	you	must	run	this	on	every	node.

If	it	isn’t	obvious,	hard	linking	files	on	the	local	node	does	not	help	you	recover	lost	or
corrupted	data	in	the	event	of	a	failure.	So	you	will	need	to	have	a	process	to	copy	the
snapshots	to	an	offsite	location.	With	a	large	database,	the	size	of	the	dataset	can
discourage	frequent	backups,	which	is	why	version	1.0	introduced	a	feature	to	help
alleviate	this	burden.

www.it-ebooks.info

http://www.it-ebooks.info/

Incremental	backups
In	most	cases,	there	is	no	need	to	snapshot	an	entire	keyspace	for	every	backup	as	most	of
the	data	has	already	been	transferred	offsite.	If	you	only	want	the	changes	from	the	last
snapshot,	you	can	turn	on	incremental	backups	by	setting	incremental_backups	to	true
in	cassandra.yaml.	This	feature	is	disabled	by	default.

You	will	recall	from	earlier	in	this	book	that	SSTables	are	immutable,	and	they	are	flushed
to	disk	periodically	as	memtables	reach	a	defined	threshold.	The	incremental	backup
process	works	by	hard	linking	each	new	SSTable	as	it	is	flushed	to	disk,	thereby	providing
a	backup	that’s	as	up	to	date	as	the	last	flush.	The	combination	of	the	latest	snapshot	and
any	incremental	backups	created	since	that	snapshot	create	the	most	recent	possible
picture	of	the	state	of	the	keyspace,	making	more	granular	recovery	possible.

Tip
Make	sure	to	periodically	remove	old	snapshots	and	backups	as	Cassandra	does	not	do
this	automatically.	Otherwise,	you	will	end	up	with	increased	disk	utilization	over	time.	A
logical	time	to	remove	incremental	backups	is	on	creation	of	a	new	snapshot	or	after	you
have	moved	them	to	an	off-site	location.

www.it-ebooks.info

http://www.it-ebooks.info/

Restoring	from	a	snapshot
Unfortunately,	the	procedure	to	restore	from	a	snapshot	is	less	trivial	than	the	initial
snapshot	creation	process.	Before	starting	the	restore	procedure,	it	is	important	to	first
truncate	the	table.	If	you	fail	to	truncate	the	table,	you	will	lose	any	data	that	was	deleted
after	the	backup	occurred.	This	is	because	the	tombstones	written	to	cover	that	data	will
have	higher	timestamps	than	the	restored	data.

Restoring	from	backup	can	be	accomplished	in	one	of	two	ways:

	
Shutting	down	the	node,	removing	old	commit	logs	and	SSTables,	copying	the
backups	to	the	node,	and	then	restarting	the	node
Using	the	sstableloader	utility	to	load	the	snapshot

Considering	that	the	first	option	requires	a	significant	amount	of	node	downtime,	we	will
focus	on	the	second	option.	To	restore	using	the	sstableloader	option,	complete	the
following	steps:

	
1.	 Copy	the	snapshots	into	a	directory	structure	that	matches	the	following	pattern:

[keyspace]/[table]/[snapshots].	This	is	a	hard	requirement	for	the	tool	to	pick	up
the	correct	files.

2.	 Run	the	following	command:

sstableloader	-d	host1,host2,host3	[keyspace]/[table]

Ideally,	you	should	not	run	this	operation	from	a	Cassandra	node	as	the	operation	will
consume	significant	resources	on	that	node.	Note	that	this	process	will	stream	data	to	the
appropriate	nodes,	and	the	host	list	is	simply	a	set	of	initial	contact	points.	You	can	also
run	many	of	these	loaders	concurrently	to	reduce	the	overall	load	time.	It	is	also	possible
to	throttle	the	amount	of	bandwidth	used	by	the	sstableloader	process	by	specifying	the
-t	option.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Handling	failure	in	a	distributed	system	is	nontrivial	and	requires	extra	vigilance	on	the
part	of	the	system	designers.	This	is	especially	true	in	a	stateful,	coordinated	database	such
as	Cassandra.	Fortunately,	the	architects	of	Cassandra	have	done	an	excellent	job	in
building	a	resilient,	fault-tolerant	system	that	is	designed	from	the	ground	up	to	be	highly
available.

We	have	covered	a	lot	of	ground	in	this	book,	from	the	basics	of	distributed	database
design	to	building	scalable	Cassandra	data	models.	While	not	exhaustive	by	any	means,
hopefully	the	topics	covered	have	helped	you	to	gain	confidence	as	you	design	and	deploy
your	Cassandra-backed	applications.

As	you	take	the	next	step	in	your	journey	with	Cassandra,	participate	by	sharing	your
experience	and	learning	from	others.	The	project	has	a	strong	community	of	individuals
and	businesses	who	are	committed	to	building	the	most	scalable	and	resilient	database	in
the	world,	and	we	value	contribution	at	any	level.

Thank	you	for	taking	the	time	to	read	this	book,	and	good	luck	as	you	build	game-
changing	applications!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
	

ACID
about	/	ACID

ALL,	consistency	level	/	Consistency	levels
ANY,	consistency	level	/	Consistency	levels
asynchronous	read	repair	/	Repairing	data
asynchronous	requests

handling	/	Handling	asynchronous	requests
queries,	executing	in	parallel	/	Running	queries	in	parallel

atomicity,	ACID	/	ACID
availability,	CAP	theorem	/	The	CAP	theorem

www.it-ebooks.info

http://www.it-ebooks.info/

B
	

batched	statements
executing	/	Batched	statements
pitfalls	/	Caution	with	batches

ByteOrderedPartitioner
URL	/	Partitioners
about	/	Partitioners
used,	for	scaling	out	/	Effects	of	scaling	out	using	ByteOrderedPartitioner

www.it-ebooks.info

http://www.it-ebooks.info/

C
	

CAP	theorem
about	/	The	CAP	theorem
consistency	/	The	CAP	theorem
availability	/	The	CAP	theorem
partition	tolerance	/	The	CAP	theorem

Cassandra
solution	/	Cassandra’s	solution
architecture	/	Cassandra’s	architecture
token,	assigning	/	Token	assignment
replication	factor	/	The	replication	factor
data	storage	/	How	Cassandra	stores	data
monitoring,	via	Java	Management	Extensions	(JMX)	/	Monitoring	via	Java
Management	Extensions
monitoring,	URL	/	Monitoring	via	Java	Management	Extensions

Cassandra	architecture
about	/	Cassandra’s	architecture
distributed	hash	table	(DHT)	/	Distributed	hash	table
replication	/	Replication
tunable	consistency	/	Tunable	consistency

CassandraFS
about	/	Online	analysis

Cassandra	logs
about	/	Cassandra	logs

Cassandra	Query	Language	(CQL)	/	SimpleStrategy
CloudstackSnitch	/	Snitches
cluster	connection

creating	/	Connecting	to	the	cluster
clustering	columns

about	/	Clustering	columns
collections

about	/	Denormalizing	with	collections
using	/	Denormalizing	with	collections
sets	/	How	collections	are	stored,	Sets
lists	/	Lists
maps	/	Maps

columns
expiring	/	Expiring	columns

communication	metrics	/	Communication	metrics
compaction

about	/	Understanding	compaction
size-tiered	compaction	/	Understanding	compaction,	Size-tiered	compaction
leveled	compaction	/	Understanding	compaction,	Leveled	compaction
date-tiered	compaction	/	Understanding	compaction,	Date-tiered	compaction

www.it-ebooks.info

http://www.it-ebooks.info/

composite	partition	key
about	/	Composite	partition	keys
creating	/	Composite	partition	keys

compound	key
using	/	Compound	keys
partition	key	/	Partition	keys
clustering	columns	/	Clustering	columns
composite	partition	key	/	Composite	partition	keys

consistency
between	data	centers,	achieving	/	Achieving	stronger	consistency	between	data
centers

consistency,	ACID	/	ACID
consistency,	CAP	theorem	/	The	CAP	theorem
consistency	conflicts

about	/	Consistency	conflicts
consistency	levels

about	/	Consistency	levels
ANY	/	Consistency	levels
ONE	/	Consistency	levels
TWO	/	Consistency	levels
THREE	/	Consistency	levels
QUORUM	/	Consistency	levels
SERIAL	/	Consistency	levels
LOCAL_ONE	/	Consistency	levels
LOCAL_QUORUM	/	Consistency	levels
LOCAL_SERIAL	/	Consistency	levels
EACH_QUORUM	/	Consistency	levels
ALL	/	Consistency	levels

consistent	hashing
about	/	Consistent	hashing
working	/	The	mechanics	of	consistent	hashing

CQL
about	/	CQL	under	the	hood
storage	model	/	The	importance	of	the	storage	model

CQL	statements
with	single	primary	key	/	Single	primary	key
with	compound	key	/	Compound	keys

www.it-ebooks.info

http://www.it-ebooks.info/

D
	

data,	backing	up
about	/	Backing	up	data
snapshot,	taking	/	Taking	a	snapshot
incremental	backups	/	Incremental	backups
snapshot,	restoring	from	/	Restoring	from	a	snapshot

data	center
multiple	data	centers,	use	cases	/	Use	cases	for	multiple	data	centers
setup	/	Data	center	setup
adding	/	Adding	a	data	center
nodes,	removing	/	Removing	nodes	within	a	data	center
decommissioning	/	Decommissioning	a	data	center

data	center,	setup
RackInferringSnitch	/	RackInferringSnitch
PropertyFileSnitch	/	PropertyFileSnitch
GossipingPropertyFileSnitch	/	GossipingPropertyFileSnitch
Cloud	snitches	/	Cloud	snitches

data	center	replication
used,	for	scaling	up	/	Scaling	up	using	data	center	replication

data	centers,	replication
about	/	Replication	across	data	centers
replication	factor,	setting	/	Setting	the	replication	factor

data	deleting
about	/	Deleting	data
garbage	collection	/	Garbage	collection,	Resurrecting	the	dead
unexpected	deletes	/	Unexpected	deletes
tombstones,	issues	/	The	problem	with	tombstones
columns,	expiring	/	Expiring	columns
TTL	antipatterns	/	TTL	antipatterns

data	migration
scenarios	/	Other	data	migration	scenarios

data	repair	operations
about	/	Repairing	data
synchronous	read	repair	/	Repairing	data
asynchronous	read	repair	/	Repairing	data
manually	running	repair	/	Repairing	data

DataStax	documentation
URL	/	Manually	assigned	tokens

data	storage,	Cassandra
log-structured	storage,	implications	/	Implications	of	a	log-structured	storage

date-tiered	compaction
about	/	Understanding	compaction,	Date-tiered	compaction

DCAwareRoundRobinPolicy
about	/	Load	balancing

www.it-ebooks.info

http://www.it-ebooks.info/

usedHostsPerRemoteDc	parameter	/	Failing	over	to	a	remote	data	center
allowRemoteDCsForLocalConsistencyLevel	parameter	/	Failing	over	to	a
remote	data	center

dequeue	operation
about	/	Cassandra	is	not	a	queue

development	environment,	native	Java	driver
setting	up	/	Setting	up	the	environment
prerequisites	/	Setting	up	the	environment

distributed	hash	table	(DHT)	/	Distributed	hash	table
about	/	Distributing	hash	tables

distributed	joins
about	/	Distributed	joins

downed	node
about	/	When	a	node	goes	down
marking	/	Marking	a	downed	node
handling	/	Handling	a	downed	node

durability,	ACID	/	ACID

www.it-ebooks.info

http://www.it-ebooks.info/

E
	

EACH_QUORUM,	consistency	level	/	Consistency	levels
EC2MultiRegionSnitch	/	Snitches
EC2Snitch	/	Snitches
enqueue	operation

about	/	Cassandra	is	not	a	queue
extract,	transform,	and	load	(ETL)

about	/	Online	analysis

www.it-ebooks.info

http://www.it-ebooks.info/

F
	

failover
about	/	Failover

www.it-ebooks.info

http://www.it-ebooks.info/

G
	

garbage	collection
about	/	Garbage	collection,	Resurrecting	the	dead

garbage	collector	logs
about	/	Garbage	collector	logs

geographic	distribution
about	/	Geographic	distribution

geospatial	data
storing	/	Working	with	geospatial	data
querying	/	Working	with	geospatial	data

GoogleCloudSnitch	/	Snitches
GossipingPropertyFileSnitch	/	Snitches,	GossipingPropertyFileSnitch

www.it-ebooks.info

http://www.it-ebooks.info/

H
	

Hadoop
used,	for	online	analysis	/	Analysis	using	Hadoop

Hadoop	Distributed	File	System	(HDFS)
about	/	Online	analysis

hardware	configuration
selecting	/	Choosing	the	right	hardware	configuration

hash	table
fundamentals	/	Hash	table	fundamentals
distributed	hash	table	(DHT)	/	Distributing	hash	tables

heterogeneousclusters	/	Manually	assigned	tokens
heterogeneous	nodes	/	Heterogeneous	nodes
hotspots

about	/	Hotspots
scaling	out,	with	ByteOrderedPartitioner	/	Effects	of	scaling	out	using
ByteOrderedPartitioner
time-series	example	/	A	time-series	example

www.it-ebooks.info

http://www.it-ebooks.info/

I
	

Integrated	Development	Environment	(IDE)
about	/	Setting	up	the	environment

isolation,	ACID	/	ACID

www.it-ebooks.info

http://www.it-ebooks.info/

J
	

Java	Development	Kit	(JDK)
about	/	Setting	up	the	environment
URL	/	Setting	up	the	environment

Java	Management	Extensions	(JMX)
used,	for	monitoring	Cassandra	/	Monitoring	via	Java	Management	Extensions

Java	Virtual	Machine	(JVM)	/	Monitoring	via	Java	Management	Extensions

www.it-ebooks.info

http://www.it-ebooks.info/

L
	

LatencyAwarePolicy
about	/	Load	balancing

leveled	compaction
about	/	Understanding	compaction,	Leveled	compaction
advantages	/	Leveled	compaction

lists
about	/	Lists

Live	backup
about	/	Live	backup

load	balancing
about	/	Load	balancing,	Load	balancing
failing	over,	to	remote	data	center	/	Failing	over	to	a	remote	data	center
consistency	level,	downgrading	/	Downgrading	the	consistency	level
retry	policy,	defining	/	Defining	your	own	retry	policy
token	awareness	/	Token	awareness

load	balancing,	policies
RoundRobinPolicy	/	Load	balancing
DCAwareRoundRobinPolicy	/	Load	balancing
LatencyAwarePolicy	/	Load	balancing
WhiteListRoundRobinPolicy	/	Load	balancing
TokenAwarePolicy	/	Load	balancing

LOCAL_ONE,	consistency	level	/	Consistency	levels
LOCAL_QUORUM,	consistency	level	/	Consistency	levels
LOCAL_SERIAL,	consistency	level	/	Consistency	levels
log-structured	storage

implications	/	Implications	of	a	log-structured	storage
logging

about	/	Logging
Cassandra	logs	/	Cassandra	logs
garbage	collector	logs	/	Garbage	collector	logs

www.it-ebooks.info

http://www.it-ebooks.info/

M
	

management	toolset
selecting	/	Choosing	a	management	toolset
selecting,	pointers	/	Choosing	a	management	toolset

manual	token	assignment
potential	issues	/	Manually	assigned	tokens

maps
about	/	Maps

master-slave	architecture
about	/	The	master-slave	architecture
sharding	/	Sharding
traits	/	Master	failover

monitoring,	Cassandra
via	Java	Management	Extensions	/	Monitoring	via	Java	Management	Extensions
OpsCenter	used	/	Using	OpsCenter
management	toolset,	selecting	/	Choosing	a	management	toolset

monolithic	architecture
about	/	The	monolithic	architecture

multikey	queries
about	/	Multikey	queries

multiple	data	centers
use	cases	/	Use	cases	for	multiple	data	centers
Live	backup	/	Live	backup
failover	/	Failover
load	balancing	/	Load	balancing
geographic	distribution	/	Geographic	distribution
online	analysis	/	Online	analysis
environment,	consistency	/	Consistency	in	a	multiple	data	center	environment

multiple	data	centers	environment,	consistency
replicated	write,	anatomy	/	The	anatomy	of	a	replicated	write
consistency	between	data	centers,	achieving	/	Achieving	stronger	consistency
between	data	centers

Murmur3Partitioner
URL	/	The	mechanics	of	consistent	hashing

www.it-ebooks.info

http://www.it-ebooks.info/

N
	

native	protocol
versus	Thrift	/	Thrift	versus	the	native	protocol

Netflix
URL	/	Scaling	out	versus	scaling	up

Netflix	engineering	blog
URL	/	Choosing	a	management	toolset

network	attached	storage	(NAS)	/	The	monolithic	architecture
NetworkTopologyStrategy,	replication

about	/	Replication	strategies,	NetworkTopologyStrategy
rack	awareness	/	NetworkTopologyStrategy
snitches,	configurable	/	NetworkTopologyStrategy

node
failure,	replication	factor	maintaining	on	/	Maintaining	the	replication	factor
when	a	node	fails

node	metrics
monitoring	/	Monitoring	node	metrics
thread	pools	/	Thread	pools
column	family	statistics	/	Column	family	statistics
latency	outliers,	finding	/	Finding	latency	outliers
communication	metrics	/	Communication	metrics

nodes
adding	/	Manually	assigned	tokens,	Growing	your	cluster
removing	/	Manually	assigned	tokens,	Removing	nodes
rebuilds	/	Manually	assigned	tokens
adding,	without	vnodes	/	Adding	nodes	without	vnodes
adding,	with	vnodes	/	Adding	nodes	with	vnodes
removing,	within	data	center	/	Removing	nodes	within	a	data	center
data	center,	decommissioning	/	Decommissioning	a	data	center

nodetool	netstats	command	/	Communication	metrics
nodetool	tpstats	command	/	Thread	pools
null	values

about	/	When	null	does	not	mean	empty,	Cassandra	is	not	a	queue

www.it-ebooks.info

http://www.it-ebooks.info/

O
	

ONE,	consistency	level	/	Consistency	levels
online	analysis

Hadoop	used	/	Analysis	using	Hadoop
Spark	used	/	Analysis	using	Spark

Online	Analytical	Processing	(OLAP)
about	/	Online	analysis

OpsCenter
using	/	Using	OpsCenter
installing,	URL	/	Using	OpsCenter

www.it-ebooks.info

http://www.it-ebooks.info/

P
	

partitioners
about	/	Partitioners
Murmur3Partitioner	/	Partitioners
RandomPartitioner	/	Partitioners
ByteOrderedPartitioner	/	Partitioners
hotspots	/	Hotspots

partition	key
declaring	/	Partition	keys

partition	tolerance,	CAP	theorem	/	The	CAP	theorem
phi	/	Marking	a	downed	node
prepared	statements

executing	/	Prepared	statements
primary	key

using	/	Single	primary	key
PropertyFileSnitch	/	Snitches,	PropertyFileSnitch

www.it-ebooks.info

http://www.it-ebooks.info/

Q
	

queries
about	/	Understanding	queries
creating,	with	key	/	Query	by	key
range	queries,	creating	/	Range	queries
denormalizing,	with	collections	/	Denormalizing	with	collections

QUORUM,	consistency	level	/	Consistency	levels

www.it-ebooks.info

http://www.it-ebooks.info/

R
	

RackInferringSnitch	/	Snitches,	RackInferringSnitch
RandomPartitioner

about	/	Partitioners
URL	/	Partitioners

range	queries
creating	/	Range	queries

rapid	read	protection	/	Handling	slow	nodes
replicated	write

anatomy	/	The	anatomy	of	a	replicated	write
replication

about	/	Replication
across	data	centers	/	Replication	across	data	centers,	Replication	across	data
centers
factor,	setting	/	Setting	the	replication	factor

replication	factor
about	/	The	replication	factor
maintaining,	on	node	failure	/	Maintaining	the	replication	factor	when	a	node
fails
balancing,	with	consistency	/	Balancing	the	replication	factor	with	consistency

replication	strategies
about	/	Replication	strategies
SimpleStrategy	/	Replication	strategies,	SimpleStrategy
NetworkTopologyStrategy	/	Replication	strategies,	NetworkTopologyStrategy

retry	policy
defining	/	Defining	your	own	retry	policy
implementation	/	Tying	it	all	together
fallback	to	QUORUM	/	Falling	back	to	QUORUM

RoundRobinPolicy
about	/	Load	balancing

rule	of	transparency
about	/	Knowledge	is	power

www.it-ebooks.info

http://www.it-ebooks.info/

S
	

scaling	out
versus	scaling	up	/	Scaling	out	versus	scaling	up
steps	/	How	to	scale	out
data	center,	adding	/	Adding	a	data	center

scaling	up
versus	scaling	out	/	Scaling	out	versus	scaling	up
steps	/	How	to	scale	up
upgrading,	in	place	/	How	to	scale	up,	Upgrading	in	place
data	center	replication,	using	/	How	to	scale	up,	Scaling	up	using	data	center
replication

secondary	indices
about	/	Secondary	indices
under	hood	/	Secondary	indices	under	the	hood

sensor	data	model
about	/	Modeling	sensor	data
queries	/	Queries
time-based	ordering	/	Time-based	ordering
sentinel	value,	using	/	Using	a	sentinel	value
time-ordered	data,	querying	/	Satisfying	our	queries
querying	/	When	time	is	all	that	matters

SERIAL,	consistency	level	/	Consistency	levels
sets

about	/	Sets
sharding,	master-slave	architecture	/	Sharding
SimpleSnitch	/	Snitches
SimpleStrategy,	replication	/	Replication	strategies,	SimpleStrategy
size-tiered	compaction

about	/	Understanding	compaction,	Size-tiered	compaction
disadvantages	/	Size-tiered	compaction

slow	nodes
handling	/	Handling	slow	nodes

snapshot
taking	/	Taking	a	snapshot
restoring	/	Restoring	from	a	snapshot

snitch
changing	/	Snitch	changes

snitches
about	/	Snitches,	Cloud	snitches
SimpleSnitch	/	Snitches
RackInferringSnitch	/	Snitches
PropertyFileSnitch	/	Snitches
GossipingPropertyFileSnitch	/	Snitches
CloudstackSnitch	/	Snitches

www.it-ebooks.info

http://www.it-ebooks.info/

GoogleCloudSnitch	/	Snitches
EC2Snitch	/	Snitches
EC2MultiRegionSnitch	/	Snitches

Solid-state	drives	(SSDs)	/	Choosing	the	right	hardware	configuration
Spark

about	/	Online	analysis
used,	for	online	analysis	/	Analysis	using	Spark

staged	event-driven	architecture	(SEDA)	/	Thread	pools
statements

executing	/	Executing	statements
prepared	statements,	executing	/	Prepared	statements
batched	statements,	executing	/	Batched	statements

storage	area	network	(SAN)	/	The	monolithic	architecture
storage	model

importance	/	The	importance	of	the	storage	model
synchronous	read	repair	/	Repairing	data

www.it-ebooks.info

http://www.it-ebooks.info/

T
	

thread	pools
about	/	Thread	pools

Thrift
versus	native	protocol	/	Thrift	versus	the	native	protocol
about	/	Thrift	versus	the	native	protocol
disadvantages	/	Thrift	versus	the	native	protocol

time-series	data
working	with	/	Working	with	time-series	data
designing,	for	immutability	/	Designing	for	immutability
sensor	data,	modeling	/	Modeling	sensor	data

time-series	example	/	A	time-series	example
token

assigning	/	Token	assignment
assigning,	manual	method	/	Manually	assigned	tokens
virtual	nodes	(vnodes)	/	vnodes

token	awareness
about	/	Token	awareness

TokenAwarePolicy
about	/	Load	balancing

tombstone
about	/	Deleting	data

tombstones
issues	/	The	problem	with	tombstones

TTL	antipatterns
about	/	TTL	antipatterns

tunable	consistency,	Cassandra
about	/	Tunable	consistency
CAP	theorem	/	The	CAP	theorem

www.it-ebooks.info

http://www.it-ebooks.info/

U
	

unbounded	row	growth
about	/	Unbounded	row	growth

www.it-ebooks.info

http://www.it-ebooks.info/

V
	

virtual	nodes	(vnodes)
about	/	vnodes
availability,	improving	/	How	vnodes	improve	availability
adding	/	Adding	and	removing	nodes
removing	/	Adding	and	removing	nodes
bootstrapping	process	/	Adding	and	removing	nodes
rebuilding	/	Node	rebuilding
heterogeneous	nodes	/	Heterogeneous	nodes

vnodes
using	/	Adding	nodes	with	vnodes

www.it-ebooks.info

http://www.it-ebooks.info/

W
	

WhiteListRoundRobinPolicy
about	/	Load	balancing

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents
Cassandra	High	Availability

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Cassandra’s	Approach	to	High	Availability

ACID

The	monolithic	architecture

The	master-slave	architecture

Sharding

Master	failover

Cassandra’s	solution

Cassandra’s	architecture

Distributed	hash	table

Replication

Replication	across	data	centers

Tunable	consistency

The	CAP	theorem

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

2.	Data	Distribution

Hash	table	fundamentals

Distributing	hash	tables

Consistent	hashing

The	mechanics	of	consistent	hashing

Token	assignment

Manually	assigned	tokens

vnodes

How	vnodes	improve	availability

Adding	and	removing	nodes

Node	rebuilding

Heterogeneous	nodes

Partitioners

Hotspots

Effects	of	scaling	out	using	ByteOrderedPartitioner

A	time-series	example

Summary

3.	Replication

The	replication	factor

Replication	strategies

SimpleStrategy

NetworkTopologyStrategy

Snitches

Maintaining	the	replication	factor	when	a	node	fails

Consistency	conflicts

Consistency	levels

Repairing	data

Balancing	the	replication	factor	with	consistency

Summary

4.	Data	Centers

Use	cases	for	multiple	data	centers

www.it-ebooks.info

http://www.it-ebooks.info/

Live	backup

Failover

Load	balancing

Geographic	distribution

Online	analysis

Analysis	using	Hadoop

Analysis	using	Spark

Data	center	setup

RackInferringSnitch

PropertyFileSnitch

GossipingPropertyFileSnitch

Cloud	snitches

Replication	across	data	centers

Setting	the	replication	factor

Consistency	in	a	multiple	data	center	environment

The	anatomy	of	a	replicated	write

Achieving	stronger	consistency	between	data	centers

Summary

5.	Scaling	Out

Choosing	the	right	hardware	configuration

Scaling	out	versus	scaling	up

Growing	your	cluster

Adding	nodes	without	vnodes

Adding	nodes	with	vnodes

How	to	scale	out

Adding	a	data	center

How	to	scale	up

Upgrading	in	place

Scaling	up	using	data	center	replication

Removing	nodes

Removing	nodes	within	a	data	center

Decommissioning	a	data	center

www.it-ebooks.info

http://www.it-ebooks.info/

Other	data	migration	scenarios

Snitch	changes

Summary

6.	High	Availability	Features	in	the	Native	Java	Client

Thrift	versus	the	native	protocol

Setting	up	the	environment

Connecting	to	the	cluster

Executing	statements

Prepared	statements

Batched	statements

Caution	with	batches

Handling	asynchronous	requests

Running	queries	in	parallel

Load	balancing

Failing	over	to	a	remote	data	center

Downgrading	the	consistency	level

Defining	your	own	retry	policy

Token	awareness

Tying	it	all	together

Falling	back	to	QUORUM

Summary

7.	Modeling	for	High	Availability

How	Cassandra	stores	data

Implications	of	a	log-structured	storage

Understanding	compaction

Size-tiered	compaction

Leveled	compaction

Date-tiered	compaction

CQL	under	the	hood

Single	primary	key

Compound	keys

Partition	keys

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering	columns

Composite	partition	keys

The	importance	of	the	storage	model

Understanding	queries

Query	by	key

Range	queries

Denormalizing	with	collections

How	collections	are	stored

Sets

Lists

Maps

Working	with	time-series	data

Designing	for	immutability

Modeling	sensor	data

Queries

Time-based	ordering

Using	a	sentinel	value

Satisfying	our	queries

When	time	is	all	that	matters

Working	with	geospatial	data

Summary

8.	Antipatterns

Multikey	queries

Secondary	indices

Secondary	indices	under	the	hood

Distributed	joins

Deleting	data

Garbage	collection

Resurrecting	the	dead

Unexpected	deletes

The	problem	with	tombstones

Expiring	columns

www.it-ebooks.info

http://www.it-ebooks.info/

TTL	antipatterns

When	null	does	not	mean	empty

Cassandra	is	not	a	queue

Unbounded	row	growth

Summary

9.	Failing	Gracefully

Knowledge	is	power

Monitoring	via	Java	Management	Extensions

Using	OpsCenter

Choosing	a	management	toolset

Logging

Cassandra	logs

Garbage	collector	logs

Monitoring	node	metrics

Thread	pools

Column	family	statistics

Finding	latency	outliers

Communication	metrics

When	a	node	goes	down

Marking	a	downed	node

Handling	a	downed	node

Handling	slow	nodes

Backing	up	data

Taking	a	snapshot

Incremental	backups

Restoring	from	a	snapshot

Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

	Cassandra High Availability
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Cassandra's Approach to High Availability
	ACID
	The monolithic architecture
	The master-slave architecture
	Sharding
	Master failover
	Cassandra's solution
	Cassandra's architecture
	Distributed hash table
	Replication
	Replication across data centers
	Tunable consistency
	The CAP theorem
	Summary
	2. Data Distribution
	Hash table fundamentals
	Distributing hash tables
	Consistent hashing
	The mechanics of consistent hashing
	Token assignment
	Manually assigned tokens
	vnodes
	How vnodes improve availability
	Adding and removing nodes
	Node rebuilding
	Heterogeneous nodes
	Partitioners
	Hotspots
	Effects of scaling out using ByteOrderedPartitioner
	A time-series example
	Summary
	3. Replication
	The replication factor
	Replication strategies
	SimpleStrategy
	NetworkTopologyStrategy
	Snitches
	Maintaining the replication factor when a node fails
	Consistency conflicts
	Consistency levels
	Repairing data
	Balancing the replication factor with consistency
	Summary
	4. Data Centers
	Use cases for multiple data centers
	Live backup
	Failover
	Load balancing
	Geographic distribution
	Online analysis
	Analysis using Hadoop
	Analysis using Spark
	Data center setup
	RackInferringSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	Cloud snitches
	Replication across data centers
	Setting the replication factor
	Consistency in a multiple data center environment
	The anatomy of a replicated write
	Achieving stronger consistency between data centers
	Summary
	5. Scaling Out
	Choosing the right hardware configuration
	Scaling out versus scaling up
	Growing your cluster
	Adding nodes without vnodes
	Adding nodes with vnodes
	How to scale out
	Adding a data center
	How to scale up
	Upgrading in place
	Scaling up using data center replication
	Removing nodes
	Removing nodes within a data center
	Decommissioning a data center
	Other data migration scenarios
	Snitch changes
	Summary
	6. High Availability Features in the Native Java Client
	Thrift versus the native protocol
	Setting up the environment
	Connecting to the cluster
	Executing statements
	Prepared statements
	Batched statements
	Caution with batches
	Handling asynchronous requests
	Running queries in parallel
	Load balancing
	Failing over to a remote data center
	Downgrading the consistency level
	Defining your own retry policy
	Token awareness
	Tying it all together
	Falling back to QUORUM
	Summary
	7. Modeling for High Availability
	How Cassandra stores data
	Implications of a log-structured storage
	Understanding compaction
	Size-tiered compaction
	Leveled compaction
	Date-tiered compaction
	CQL under the hood
	Single primary key
	Compound keys
	Partition keys
	Clustering columns
	Composite partition keys
	The importance of the storage model
	Understanding queries
	Query by key
	Range queries
	Denormalizing with collections
	How collections are stored
	Sets
	Lists
	Maps
	Working with time-series data
	Designing for immutability
	Modeling sensor data
	Queries
	Time-based ordering
	Using a sentinel value
	Satisfying our queries
	When time is all that matters
	Working with geospatial data
	Summary
	8. Antipatterns
	Multikey queries
	Secondary indices
	Secondary indices under the hood
	Distributed joins
	Deleting data
	Garbage collection
	Resurrecting the dead
	Unexpected deletes
	The problem with tombstones
	Expiring columns
	TTL antipatterns
	When null does not mean empty
	Cassandra is not a queue
	Unbounded row growth
	Summary
	9. Failing Gracefully
	Knowledge is power
	Monitoring via Java Management Extensions
	Using OpsCenter
	Choosing a management toolset
	Logging
	Cassandra logs
	Garbage collector logs
	Monitoring node metrics
	Thread pools
	Column family statistics
	Finding latency outliers
	Communication metrics
	When a node goes down
	Marking a downed node
	Handling a downed node
	Handling slow nodes
	Backing up data
	Taking a snapshot
	Incremental backups
	Restoring from a snapshot
	Summary
	Index

