Mastering Apache Cassandra

Get comfortable with the fastest NoSQL database,
its architecture, key programming patterns, infrastructure
management, and more!

PACKT

Mastering Apache Cassandra

Get comfortable with the fastest NoSQL database, its
architecture, key programming patterns, infrastructure
management, and more!

Nishant Neeraj

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mastering Apache Cassandra

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013
Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-268-1
www . packtpub.com

Cover Image by Tanmay Vora (tanmay . vora@gmail . com)

Credits

Author
Nishant Neeraj

Reviewers
Peter Larsson

Ravi Saraswathi

Paul Weinstein

Acquisition Editor
Owen Roberts

Lead Technical Editor
Anila Vincent

Technical Editors
Tanvi Bhatt

Jalasha D'costa
Kapil Hemnani

Proshonijit Mitra

Copy Editors
Tanvi Gaitonde

Dipti Kapadia
Sayanee Mukherjee
Kirti Pai

Adithi Shetty

Project Coordinator
Anugya Khurana

Proofreader
Jonathan Todd

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator

Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Nishant Neeraj (http://naishe. in) is a software engineer at the BrightContext
corporation. He builds software that can handle massive in-stream data, process it,
and store it reliably, efficiently, and most importantly, quickly. He also manages the
cloud infrastructure and makes sure that things stay up no matter what hit the data
center in the middle of hardware failures and sudden surges of data inflow.

He has six years of experience in building web applications in Java as a backend
engineer. He has been using Cassandra in production-ready web applications since
Version 0.6 in 2010. His interests lie in building scalable applications for large data
sets. He works with Java, MySQL, Cassandra, Twitter Storm, Amazon Web Services,
JavaScript, and Linux on a daily basis, and he has recently developed an interest in
Machine Learning, Data Analysis, and Data Science in general.

Acknowledgments

It would have been difficult for me to complete this book without the support of a
large number of people.

First, would like to thank the people at BrightContext (http://www.
brightcontext .com) for giving me the opportunity to do a lot of experiments with
distributed computing and cloud infrastructure, and especially Leo Scott, Arunn
Rajagopalan, and Steven Fusco for their technical suggestions.

A lot of credit goes to the online resources that helped me learn about the various
technologies in this book. In the context of this book, I would like to acknowledge

the people at Cassandra's mailing list, Jonathan Ellis and Christian Hasker of

DataStax (http://www.datastax.com/), Aaron Morton of The Last Pickle (http://
thelastpickle.com/about.html), Julian Browne (http://www.julianbrowne.com/)
for one of the most excellent articles on the CAP theorem, Dave Gardner (http: //www.
davegardner.me.uk/), and DataStax for their exhaustive documentation.

On a more personal note, my siblings Rashmi, Deepshikha, and Rajat have provided
invaluable support during the writing process, tolerating my highs and lows as I
put together the final draft on top of an already busy schedule. Thanks to my friends
Nihar and Tauseef, who kept me motivated, and thanks to my nieces Pariwa and
Kittoo, without whom this book would have been completed a month earlier, but
with a lot less fun. Lastly, thanks to my parents for their inspiration.

I'd like to express my gratitude to everyone at Packt Publishing involved in
development and production of this book. I'd like to thank Anugya Khurana for
keeping me on my toes to make sure things happen as they were scheduled, Anila
Vincent, Peter Larsson, and Paul Weinstein for patiently going through the first draft
and providing valuable feedbacks.

I am indebted to the FOSS (http://en.wikipedia.org/wiki/Free and open-
source_software) community for providing excellent tools that are at par with their
commercial counterparts. Cassandra is one of the greatest examples of the success

of open source. Until the final draft, this book was written using only free and open
source software such as Ubuntu, LibreOffice Writer, LibreOffice Draw, Git, VIM,
Cassandra, PyCassa, Hadoop, Nagios, and others.

About the Reviewers

Peter Larsson is a passionate software engineer and an open source evangelist. He
has spent 28 years of his career creating software and commercially successful software
products. And at all times, he has had the privilege to work with state-of-the-art
technology in collaboration with very talented fellow workers. His special skills are

in the fields of systems architecture and high-level design, and he views technology
from a holistic perspective. Back in the 90s, he pioneered agile ways of working and
used Java in large-scale product development organizations. Peter has a wide range

of experience from different business domains, but with emphasis on telecom and high
volume transaction systems.

I would like to thank my great colleagues at Callista Enterprise, for
making every day a learning experience.

Ravi Saraswathi is an IT executive with more than 20 years of global professional
experience. Ravi has expertise in aligning business and IT, SOA implementation,

IT strategy, cloud infrastructure design, IT operations, security, architecture,

and performance tuning. He has a proven track record of successfully delivering
large-scale technical projects and solutions. He is an expert in open source and
vendor-based middleware products. From his experience, Ravi gained a solid
understanding of the tools and technologies needed to create large-scale web-based
software and services.

He currently heads the middleware engineering group for a highly reputed Fortune
500 financial company. He has spoken at several international conferences such as
Apache, WebLogic conferences, and Java User Group meetings. His professional
focus is on technical management, SOA, middleware architecture, and infrastructure
design. He is the author of the book titled Oracle SOA BPEL Process Manager

11gR1 - A Hands-on Tutorial.

He holds a Master's degree in Technology Management from George Mason
University and has a Bachelor of Engineering degree in Electronics and
Communication Engineering from Karnataka University. He holds a CIO University
Certificate from Federal CIO University, General Services Administration, United
States. He also has extensive experience in architecting and designing solutions using
various Oracle fusion and open source middleware products.

He is an aspiring leader and entrepreneur. He has founded a successful IT
consulting company. He has trained many associates in Fusion Middleware 11g to
gain the skills for developing and designing solutions using Oracle SOA Suite and
Service Bus. He actively contributes to the online community for open source and
commercial middleware products, SOA, cloud, BPM, and infrastructure architecture
technologies.

He holds various IT certifications such as TOGAF, Java, ITIL, Oracle, and
WebLogic. His interests include open source containers, Java, infrastructure
architecture, troubleshooting methodologies, and software design. He blogs
at www.ravisaraswathi.com.

I would like to thank my family for supporting my efforts in
reviewing this book.

Paul Weinstein started working in the computer industry when he learned

his first programming language. He has yet to look back, as the wondering road
delivered his personal understanding of technology to a wide variety of locations,
from public elementary schools and political campaigns to pioneering open source
companies and local businesses.

At Orbit Media Studios, Paul works alongside Orbit's team of developers. His focus
is on optimizing Orbit's development and operations and connecting the codebase
with the server infrastructure.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www . Packt Pub . com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

IE\ PACKT! i1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
¢ Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

To my parents

Dr Sushila Devi & Ratan Kumar who are like most of the parents - caring
and worried. They are unorthodox and inspiring, but above all, if I am a
computer, they authored the kernel.

Table of Contents

Preface 1
Chapter 1: Quick Start 7
Introduction to Cassandra 7
Distributed database 8
High availability 8
Replication 8
Multiple data centers 9

A brief introduction to a data model 9
Installing Cassandra locally 10
CRUD with cassandra-cli 12
Cassandra in action 16
Modeling data 17
Writing code 20
Setting up 20
Application 22
Summary 27
Chapter 2: Cassandra Architecture 29
Problems in the RDBMS world 29
Enter NoSQL 30
The CAP theorem 31
Consistency 31
Availability 32
Partition-tolerance 33
Significance of the CAP theorem 33
Cassandra 35
Cassandra architecture 36
Ring representation 37
How Cassandra works 38

Write in action

Table of Contents

Read in action 40
Components of Cassandra 43
Messaging service 43
Gossip 43
Failure detection 45
Partitioner 46
Replication 48
Log Structured Merge tree 51
CommitLog 52
MemTable 54
SSTable 55
Compaction 58
Tombstones 59
Hinted handoff 61
Read repair and Anti-entropy 62
Summary 64
Chapter 3: Design Patterns 65
The Cassandra data model 66
The counter column 69
The expiring column 70
The super column 72
The column family 73
Keyspaces 75
Data types — comparators and validators 75
Writing a custom comparator 77
The primary index 79
The wide-row index 80
Simple groups 80
Sorting for free, free as in speech 81
An inverse index with a super column family 83
An inverse index with composite keys 86
The secondary index 88
Patterns and antipatterns 92
Avoid storing an entity in a single column (wherever possible) 92
Atomic update 93
Managing time series data 95
Wide-row time series 95
High throughput rows and hotspots 97
Advanced time series 101
Avoid super columns 102
Transaction woes 103
Use expiring columns 105
batch _mutate 106

Summary 107

Lii]

Table of Contents

Chapter 4: Deploying a Cluster 109
Evaluating requirements 110
Hard disk capacity 110
RAM 112
CPU 112
Nodes 12
Network 113
System configurations 113
Optimizing user limits 113
Swapping memory 114
Clock synchronization 115
Disk readahead 116
The required software 117
Installing Oracle Java 6 117
RHEL and CentOS systems 118
Debian and Ubuntu systems 119
Installing the Java Native Access (JNA) library 121
Installing Cassandra 121
Installing from a tarball 121
Installing from ASFRepository for Debian/Ubuntu 122
Anatomy of the installation 123
Cassandra binaries 123
Configuration files 125
Configuring a Cassandra cluster 126
The cluster name 127
The seed node 127
Listen, broadcast, and RPC addresses 128
Initial token 129
Partitioners 129
The random partitioner 130
The byte-ordered partitioner 131
The Murmur3 partitioner 132
Snitches 132
SimpleSnitch 133
PropertyFileSnitch 133
GossipingPropertyFileSnitch 134
RackInferringSnitch 134
EC2Snitch 135
EC2MultiRegionSnitch 135
Replica placement strategies 136
SimpleStrategy 136
NetworkTopologyStrategy 136

[iii]

Table of Contents

Launching a cluster with a script 140
Creating a keyspace 145
Authorization and authentication 146
Summary 147
Chapter 5: Performance Tuning 149
Stress testing 149
Performance tuning 153
Write performance 153
Read performance 153
Choosing the right compaction strategy 154
Size tiered compaction strategy 154
Leveled compaction 154
Row cache 155
Key cache 156
Cache settings 156
Enabling compression 158
Tuning the bloom filter 159
More tuning via cassandra.yaml 160
index_interval 161
commitlog_sync 161
column_index_size_in_kb 162
commitlog_total_space_in_mb 162
Tweaking JVM 163
Java heap 163
Garbage collection 163
Other JVM options 164
Scaling horizontally and vertically 165
Network 165
Summary 166
Chapter 6: Managing a Cluster — Scaling, Node Repair,
and Backup 167
Scaling 168
Adding nodes to a cluster 168
Removing nodes from a cluster 173
Removing a live node 173
Removing a dead node 175
Replacing a node 176
Backup and restoration 180
Using Cassandra bulk loader to restore the data 182
Load balancing 183
Priam — managing large clusters on AWS 184
Summary 185

Table of Contents

Chapter 7: Monitoring 187
Cassandra JMX interface 187
Accessing MBeans using JConsole 189
Cassandra nodetool 191
Monitoring with nodetool 192
cfstats 192
netstats 193
ring and describering 194
tpstats 196
compactionstats 198

info 198
Administrating with nodetool 199
drain 199
decommission 199
move 199
removetoken 200
repair 200
upgradesstable 201
snapshot 202
DataStax OpsCenter 202
OpsCenter Features 203
Installing OpsCenter and an agent 204
Prerequisites 204
Running a Cassandra cluster 206
Installing OpsCenter from Tarball 206
Setting up an OpsCenter agent 208
Monitoring and administrating with OpsCenter 209
Other features of OpsCenter 210
Nagios — monitoring and notification 210
Installing Nagios 211
Prerequisites 211
Preparation 212
Installation 213
Nagios plugins 216
Cassandra log 225
Enabling Java Options for GC Logging 227
Troubleshooting 228
High CPU usage 229
High memory usage 229
Hotspots 230
OpenJDK may behave erratically 231
Disk performance 231
Slow snapshot 232
Getting help from the mailing list 232

Summary 232
[v]

Table of Contents

Chapter 8: Integration 235
Using Hadoop 236
Hadoop and Cassandra 237
Introduction to Hadoop 238
HDFS — Hadoop Distributed File System 238
Data management 239
Hadoop MapReduce 240
Reliability of data and process in Hadoop 242
Setting up local Hadoop 243
Testing the installation 246
Cassandra with Hadoop MapReduce 249
ColumnFamilylnputFormat 249
ColumnFamilyOutputFormat 250
ConfigHelper 250
Wide-row support 251
Bulk loading 251
Secondary index support 252
Cassandra and Hadoop in action 252
Executing, debugging, monitoring, and looking at results 257
Hadoop in Cassandra cluster 259
Cassandra filesystem 260
Integration with Pig 260
Installing Pig 261
Integrating Pig and Cassandra 264
Cassandra and Solr 266
Development note on Solandra 268
DataStax Enterprise — the next level Solr integration 268
Summary 269
Chapter 9: Introduction to CQL 3 and Cassandra 1.2 271
CQL - the Cassandra Query Language 271
CAQL 3 for Thrift refugees 272
Wide rows 272
Composite columns 274
CQL 3 basics 275
The CREATE KEYSPACE query 276
The CREATE TABLE query 276
Compact storage 279
Creating a secondary index 280
The INSERT query 281
The SELECT query 282

select expression 282

The WHERE clause

283

[vil

Table of Contents

The ORDER BY clause 286
The LIMIT clause 287
The USING CONSISTENCY clause 287
The UPDATE query 287
The DELETE query 288
The TRUNCATE query 289
The ALTER TABLE query 289
Adding a new column 290
Dropping an existing column 290
Modifying the data type of an existing column 291
Altering table options 292
The ALTER KEYSPACE query 292
BATCH querying 293
The DROP INDEX query 293
The DROP TABLE query 293
The DROP KEYSPACE query 293
The USE statement 294
What's new in Cassandra 1.27? 294
Virtual Nodes 294
Off-heap Bloom filters 296
JBOD improvements 296
Parallel leveled compaction 297
Murmur3 partitioner 297
Atomic batches 298
Query profiling 298
Collections support 298
Sets 299
Lists 300
Maps 300
Support for programming languages 301
Summary 303

Index 305

[vii]

Preface

Back in 2007, Twitter users experienced the fail whale, occasionally captioned with
"Too many tweets...". On August 3, 2013, Twitter posted a new record of high tweets
rate of 143,199 per second, and we rarely see the fail whale. Many things changed
since 2007. People and things connected to the Internet have increased exponentially.
Cloud computing and hardware on demand has become cheap and easily available.
Distributed computing and the NoSQL paradigm has taken off with a plethora of
freely available, robust, proven, and open source projects to store large data sets
and then process and visualize the data. Big data has become a cliché. With massive
amounts of data that get generated at a very high speed via people or machines,

our capability to store and analyze the data has increased. Cassandra is one of the
most successful data stores that scales linearly, is easy to deploy and manage, and is
blazing fast.

This book is about Cassandra and its ecosystem. The aim of this book is to take you
through the basics of Apache Cassandra to understand what goes on under the hood.
The book has three broad goals: the first is to help you to make the right design
decisions and understand the patterns and anti-patterns, the second is to enable you
to manage infrastructure and rainy days, and the third is to introduce you to some

of the tools that work with Cassandra to monitor and manage Cassandra and to
analyze the big data that you have inside it.

The book does not take a purist approach, rather a practical one. You will come to
know proprietary tools, GitHub projects, shell scripts, third-party monitoring tools,
and enough references to go beyond this book and dive deeper if you want.

What this book covers

Chapter 1, Quick Start, is about getting excited and gaining instant gratification. If
you have no prior experience with Cassandra, you leave this chapter with enough
information to get yourself started on the next big project.

Preface

Chapter 2, Cassandra Architecture, covers design decisions and Cassandra's internal
plumbing. If you have never worked with a distributed system, this chapter has a lot
of useful distributed design concepts. This chapter will be helpful for the rest of the
book when we look at patterns and infrastructure management. It will also help you
to understand the discussion of the Cassandra mailing list and JIRA. It is a theoretical
chapter; you may skip it and come back later.

Chapter 3, Design Patterns, discusses various design decisions and their pros

and cons. You will learn about Cassandra limitations and capabilities. If you are
planning to write a program that uses Cassandra, this is the chapter for you. Do not
miss Chapter 9, Introduction to CQL 3 and Cassandra 1.2 for CQL.

Chapter 4, Deploying a Cluster, is a full chapter about how to deploy a cluster correctly.
Once you have gone through the chapter, you will realize it is not really hard to
deploy a cluster. It is probably one of the simplest distributed systems.

Chapter 5, Performance Tuning, explains how to get the most out of the hardware
the cluster is deployed on. Usually you will not need to rotate lots of knobs and
the default is just fine.

Chapter 6, Managing a Cluster, is about the daily DevOps drills. For example, scaling
up a cluster, shrinking it down, replacing a dead node, and balancing the data load
across the cluster.

Chapter 7, Monitoring, talks about the various tools that you can use to monitor
Cassandra. If you already have a monitoring system, you would probably
want to plug Cassandra health monitoring to it, or you may choose to use
dedicated Cassandra monitoring tools.

Chapter 8, Integration, Shows how to integrate Cassandra with other tools. Cassandra
is about large data sets, fast writes, and reads terabytes of data. What is the use of
data if you can't analyze it? Cassandra can be smoothly integrated with various
Hadoop projects, and integrating with tools such as Spark and Twitter Storm is just
as easy. This chapter gives you an introduction to get you started with setting up
Cassandra and Hadoop setup.

Chapter 9, Introduction to CQL 3 and Cassandra 1.2, fills the version gap. At the time

of writing this book, Cassandra's latest version was 1.1.11. The complete book uses
that version and the Thrift API to connect to Cassandra. Cassandra 1.2 was released
later and Cassandra 2.0 is also expected to be released anytime now. CQL 3 is the
preferred way to query Cassandra, and Cassandra 1.2 has some interesting upgrades.

[2]

Preface

What you need for this book

If you have any development experience, this book should be easy to follow. A
beginner level knowledge of Unix commands, Python, and some Java is good to
speed up the understanding, but they are not absolute requirements.

In terms of software and hardware, a machine with 1 GB RAM and a dual core
processor is the minimum requirement. For all practical purposes, any modern
machine (your laptop from 2007 or newer) is good. You should have the following
software installed: Python, Java development kit 6 (JDK), Cassandra 1.1.x, and
Hadoop 1.1.x. The examples in this book are done in Ubuntu 11.10/13.04 and
CentOS 5.5. So, if you have a Linux/Unix/OS X machine, that would be hugely
beneficial. You may need to look for a Windows equivalent if it is your environment.

Who this book is for

This book is for anyone who is curious about Cassandra. A beginner can start from
Chapter 1, Quick Start, and learn all the way up to advanced topics. If you have an
intermediate level of experience, that is, you have worked on a toy project or better
with Cassandra, you may skip to Chapter 2, Cassandra Architecture.

A DevOps engineer is probably the best job title who needs to read the
book end to end. If you wear multiple hats during the day (very common in
startups) — writing code, managing infrastructure, working on analytics, and
evangelizing your product— you may find this book extremely useful.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Fire up your shell and type in
$CASSANDRA HOME/bin/cassandra -f£."

[31]

Preface

A block of code is set as follows:

[default@unknown] USE crud;
Authenticated to keyspace: crud
[default@crud] CREATE COLUMN FAMILY test cf
. WITH
. DEFAULT_ VALIDATION CLASS = UTF8Type AND
. KEY VALIDATION CLASS = LongType AND
. COMPARATOR = UTF8Type;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default@unknown] USE crud;
Authenticated to keyspace: crud
[default@crud] CREATE COLUMN FAMILY test_cf
. WITH
. DEFAULT_ VALIDATION CLASS = UTF8Type AND
. KEY VALIDATION CLASS = LongType AND
. COMPARATOR = UTF8Type;

New terms and important words are shown in bold.

% Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

[4]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise in and you are interested in either writing or contributing to a
book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you. You may also clone authors GitHub page
for this book at https://github.com/naishe/mastering cassandra.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub. com/support.

[51]

http://www.PacktPub.com/
http://www.PacktPub.com/support

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

mailto:copyright@packtpub.com

Quick Start

Welcome to Cassandra and congratulations for choosing a database that beats most
of the NoSQL databases in performance. Cassandra is a powerful database based
on solid fundamentals and well tested by companies such as Facebook, Twitter, and
Netflix. This chapter is an introduction to Cassandra. The aim is to get you through
with a proof-of-concept project to set the right state of mind for the rest of the book.

In the following sections, we will see a simple Create, Read, Update, and Delete
(CRUD) operation in Cassandra's command-line interface (CLI). After that, we
will model, program, and execute a simple blogging application to see Cassandra in
action. If you have a beginner-level experience with Cassandra, you may opt to skip
this chapter.

Introduction to Cassandra
Quoting from Wikipedia:

Apache Cassandra is an open source distributed database management system
designed to handle large amounts of data across many commodity servers,
providing high availability with no single point of failure. Cassandra offers robust
support for clusters spanning multiple datacenters, with asynchronous masterless
replication allowing low latency operations for all clients.

It may be too complicated to digest as a one-liner. Let's break it into pieces and see
what it means.

Quick Start

Distributed database

In computing, distributed means something spread across more than one machine —
it may be data or processes. In the context of Cassandra, it means that the data is
distributed across multiple machines. So, why does it matter? This relates to many
things: it means that no single node (a machine in a cluster is usually called a node)
holds all the data, but just a chunk of it. It means that you are not limited by the
storage and processing capabilities of a single machine. If data gets larger, add more
machines. Need more parallelism, add more machines. This means that a node going
down does not mean that all the data is lost (we will cover this issue soon).

If a distributed mechanism is well designed, it will scale with a number of nodes.
Cassandra is one of the best examples of such a system. It scales almost linearly with
regard to performance, when we add new nodes. This means Cassandra can handle
the behemoth of data without wincing.

_ Check out an excellent paper on the NoSQL database
& comparison titled Solving Big Data Challenges for Enterprise
s Application Performance Management at http://v1ldb.org/
pvldb/vol5/pl1724 tilmannrabl v1db2012.pdf.

High availability

We will discuss availability in the next chapter. For now, assume availability is the
probability that we query and the system just works. A high availability system is
the one that is ready to serve any request at any time. High availability is usually
achieved by adding redundancies. So, if one part fails, the other part of the system
can serve the request. To a client, it seems as if everything worked fine.

Cassandra is a robust software. Nodes joining and leaving are automatically taken
care of. With proper settings, Cassandra can be made failure resistant. That means
that if some of the servers fail, the data loss will be zero. So, you can just deploy
Cassandra over cheap commodity hardware or a cloud environment, where
hardware or infrastructure failures may occur.

Replication

Continuing from the last two points, Cassandra has a pretty powerful replication
mechanism (we will see more details in the next chapter). Cassandra treats every node
in the same manner. Data need not be written on a specific server (master) and you
need not wait until the data is written to all the nodes that replicate this data (slaves).

[8]

Chapter 1

So, there is no master or slave in Cassandra and replication happens asynchronously.
This means that the client can be returned with success as a response as soon as the
data is written on at least one server. We will see how we can tweak these settings to
ensure the number of servers we want to have data written on before the client returns.

We can derive a couple of things from this: when there is no master or slave, we can
write to any node for any operation. Since we have the ability to choose how many
nodes to read from or write to, we can tweak it to achieve very low latency (read or
write from one server).

Multiple data centers

Expanding from a single machine to a single data center cluster or multiple data
center is very trivial. We will see later in this book that we can use this data center
setting to make a real-time replicating system across data centers. We can use each
data center to perform different tasks without overloading the other data centers.
This is a powerful support when you do not have to worry about whether the users
in Japan with a data center in Tokyo and the users in the US with a data center in
Virginia are in sync or not.

These are just broad strokes of Cassandra's capabilities. We will explore more in
the upcoming chapters. This chapter is about getting excited.

A brief introduction to a data model

Cassandra has three containers, one within another. The outermost container is
Keyspace. You can think of Keyspace as a database in the RDBMS land. Next,

you will see the column family, which is like a table. Within a column family are
columns, and columns live under rows. Each row is identified by a unique row key,
which is like the primary key in RDBMS.

(Keyspace N

Column Family

RowKey | ColumnName1 | | ColumnName2 | | ColumnName3 |
Valuel Value2 Value3

Userid#123 | email | | password | | user_name |
jdoe@acme.com d131dd02c5e6eecd John Doe

The Cassandra data model

[o]

Quick Start

Things were pretty monotonous until now, as you already knew everything that we
talked about from RDBMS. The difference is in the way Cassandra treats this data.
Column families, unlike tables, can be schema free (schema optional). This means
you can have different column names for different rows within the same column
family. There may be a row that has user name, age, phone_office, and phone_
home, while another row can have user name, age, phone_office, office_address,
and email. You can store about two billion columns per row. This means it can be
very handy to store time series data, such as tweets or comments on a blog post. The
column name can be a timestamp of these events. In a row, these columns are sorted
by natural order; therefore, we can access the time series data in a chronological or
reverse chronological order, unlike RDBMS, where each row just takes the space as
per the number of columns in it. The other difference is, unlike RDBMS, Cassandra
does not have relations. This means relational logic will be needed to be handled at
the application level. This means we may want to denormalize things because there
is no join.

Rows are identified by a row key. These row keys act as partitioners. Rows are
distributed across the cluster, creating effective auto-shading. Each server holds a
range(s) of keys. So, if balanced, a server with more nodes will have a fewer number
of rows per node. All these concepts will be repeated in detail in the later chapters.

Installing Cassandra locally

Installing Cassandra in your local machine for experimental or development
purposes is as easy as downloading and unzipping the tarball (the . tar compressed
file). For development purposes, Cassandra does not have any extreme requirements.
Any modern computer with 1 GB of RAM and a dual core processor is good to test
the water. Anything higher than that is great. All the examples in this chapter are
done on a laptop with 4 GB of RAM, a dual core processor, and the Ubuntu 13.04
operating system. Cassandra is supported on all major platforms; after all, it's Java.
Here are the steps to install Cassandra locally:

1. Install Oracle Java 1.6 (Java 6) or higher. Installing the JVM is sufficient, but
you may need the Java Development Kit (JDK) if you are planning to code
in Java.

[% Hadoop examples in the later part of this book use Java code.]

Check if you have Java
~$ java -version
java version "1.7.0_21"

[10]

Chapter 1

Java (TM) SE Runtime Environment (build 1.7.0 21-bl1l)
Java HotSpot (TM) 64-Bit Server VM (build 23.21-b01, mixed mode)

If you do not have Java, you may want to follow the installation details for
your machine from the Oracle Java website (http://www.oracle.com/
technetwork/java/javase/downloads/index.html).

Download Cassandra 1.1.x version from the Cassandra website,
http://archive.apache.org/dist/cassandra/. This book uses
Cassandra 1.1.11, which was the latest at the time of writing this book.

. By the time you read this book, you might have version 1.2.x or
% Cassandra 2.0, which have some differences. So, better stick to the
s 1.1.x version. We will see how to work with later versions and the
new stuff that they offer in a later chapter.

Uncompress this file to a suitable directory.

Download Cassandra

$ wget http://archive.apache.org/dist/cassandra/l.1.11/apache-
cassandra-1.1.11-bin.tar.gz

Untar to /home/nishant/apps/
$ tar xvzf apache-cassandra-1.l1.1l-bin.tar.gz -C /home/nishant/
apps/

The unzipped file location is /home /nishant/apps/apache-
cassandra-1.1.11. Let's call this location CASSANDRA HOME. Wherever we
refer to CASSANDRA_HOME in this book, always assume it to be the location
where Cassandra is installed.

Configure a directory where Cassandra will store all the data. Edit
$CASSANDRA HOME/conf/cassandra.yaml.

Set a cluster name using the following code:

cluster name: 'nishant sandbox'

Set the data directory using the following code:

data file directories:
- /home/nishant/apps/data/cassandra/data

Set the commit log directory:

commitlog_directory: /home/nishant/apps/data/cassandra/commitlog

[11]

Quick Start

7. Set the saved caches directory:

saved caches directory: /home/nishant/apps/data/cassandra/saved_
caches

8. Set the logging location. Edit $SCASSANDRA HOME/conf/log4j-server.
properties:

log4j.appender.R.File=/tmp/cassandra.log

With this, you are ready to start Cassandra. Fire up your shell, and type in
$CASSANDRA HOME/bin/cassandra -£.In this command, - £ stands for foreground.
You can keep viewing the logs and Ctrl + C to shut the server down. If you want

to run it in the background, do not use the - £ option. The server is ready when you
see Bootstrap/Replace/Move completed! Now serving reads in the startup
log as shown:

$ /home/nishant/apps/apache-cassandra-1.1.11/bin/cassandra -f

Xss = -ea -javaagent:/home/nishant/apps/apache-cassandra-1.1.11/
bin/../lib/jamm-0.2.5.jar -XX:+UseThreadPriorities
-XX:ThreadPriorityPolicy=42 -Xmsl024M -Xmx1024M -Xmn200M

-XX: +HeapDumpOnOutOfMemoryError -Xssl80k

INFO 20:16:02,297 Logging initialized
[-- snip --]
INFO 20:16:08,386 Node localhost/127.0.0.1 state jump to normal

INFO 20:16:08,394 Bootstrap/Replace/Move completed! Now serving
reads.

CRUD with cassandra-cli

Cassandra is up and running. Let's test the waters. Just do a complete CRUD (create,
retrieve, update, and delete) operation in cassandra-cli. The following snippet shows
the complete operation. cassandra-cli can be accessed from $CASSANDRA HOME/bin/
cassandra-cli. It is the Cassandra command-line interface. You can learn more
about it in the Appendix.

Log into cassandra-cli

$ /home/nishant/apps/apache-cassandra-1.1.11/bin/cassandra-cli -h
localhost

Connected to: "nishant sandbox" on localhost/9160
Welcome to Cassandra CLI version 1.1.11

Type 'help;' or '?' for help.
Type 'quit;' or 'exit;' to quit.

[12]

Chapter 1

Create a keyspace named crud. Note that we are not using a lot of the options that
we may set to a Keyspace during its creation. We are just using the defaults. We will
learn about those options in the Keyspaces section in Chapter 3, Design Patterns.

[default@unknown] CREATE KEYSPACE crud;
e9f103f5-9fb8-38c9-aac8-8e6e58£91148
Waiting for schema agreement...

schemas agree across the cluster

Create a column family test_cf. Again, we are using just the default settings.

The advanced settings will come later in this book. The ellipses in the preceding
command are not a part of the command. It gets added by cassandra-cli as a notation
of continuation from the previous line. Here, DEFAULT VALIDATION CLASS is the
default type of value you are going to store in the columns, KEY VALIDATION_ CLASS
is the type of row key (the primary key), and COMPARATOR is the type of column
name. Now, you must be thinking why we call it comparator and not something like
COLUMN NAME VALIDATION CLASS like other attributes. The reason is column names
perform an important task — sorting. Columns are validated and sorted by the class
that we mention as comparator. We will see this property in a couple of paragraphs.
The important thing is that you can write your own comparator and create data to be
stored and fetched in custom order. We will see how to create a custom comparator
in the Writing a custion comparator section in Chapter 3, Design Patterns.

[default@unknown] USE crud;
Authenticated to keyspace: crud
[default@crud] CREATE COLUMN FAMILY test_cf
... WITH
... DEFAULT VALIDATION CLASS = UTF8Type AND
... KEY VALIDATION CLASS = LongType AND
... COMPARATOR = UTF8Type;
256297£8-1d96-3ba9-9061-7964684c932a
Waiting for schema agreement...

schemas agree across the cluster

It is fairly easy to insert the data. The pattern is COLUMN_FAMILY [ROW_KEY] [COLUMN_
NAME] = COLUMN_VALUE.

[default@crud] SET test cf[l] ['first column name'] = 'first value';
Value inserted.

Elapsed time: 71 msec(s).

[default@crud] SET test cf[l] ['2nd column name'] = 'some text value';
Value inserted.

Elapsed time: 2.59 msec(s).

[13]

Quick Start

Retrieval is as easy, with a couple of ways to get data. To retrieve all the columns in
arow, perform GET COLUMN_FAMILY NAME [ROW_KEY]; to get a particular column, do
GET COLUMN_FAMILY NAME [ROW_KEY] [COLUMN_NAME]. To get N rows, perform LIST
with the LIMIT operation using the following pattern:

[default@crud] GET test cf[1];

=> (column=2nd column name, value=some text value,
timestamp=1376234991712000)

=> (column=first column name, value=first wvalue,
timestamp=1376234969488000)

Returned 2 results.

Elapsed time: 92 msec(s).

Did you notice how columns are printed in an alphabetical order and not in the
order of the insertion?

Deleting a row or column is just specifying the column or the row to the
DEL command:

Delete a column
[default@crud] DEL test cf[1] ['2nd column name'];

column removed.

column is deleted

[default@crud] GET test cf[1];

=> (column=first column name, value=first wvalue,
timestamp=1376234969488000)

Returned 1 results.

Elapsed time: 3.38 msec(s).

Updating a column in a row is nothing but inserting the new value in that column.
Insert in Cassandra is like upsert that some RDBMS vendors offer:

[default@crud] SET test cf[l] ['first column name'] = 'insert is
basically upsert :)'; B B B

Value inserted.

Elapsed time: 2.44 msec(s).

the column is updated.

[default@crud] GET test cf[1];

=> (column=first column name, value=insert is basically upsert :),
timestamp=1376235103158000)

Returned 1 results.

Elapsed time: 3.31 msec(s).

[14]

Chapter 1

To view a schema, you may use the sHOW SCHEMA command. It shows the details of

the specified schema. In fact, it prints the command to create the keyspace and all the

column families in it with all available options. Since we did not set any option, we
see all the default values for the options:

[default@crud] SHOW SCHEMA crud;
create keyspace crud

with placement strategy = 'NetworkTopologyStrategy'
and strategy options = {datacenterl : 1}
and durable writes = true;

use crud;

create column family test_cf

with column type = 'Standard'

and comparator = 'UTF8Type'

and default validation class = 'UTF8Type'
and key validation class = 'LongType'

and read_repair_ chance = 0.1

and dclocal read repair chance = 0.0

and gc_grace = 864000
and min_compaction_ threshold = 4
and max_compaction_threshold = 32

and replicate_on_write = true

and compaction strategy = 'org.apache.cassandra.db.compaction.
SizeTieredCompactionStrategy'

and caching = 'KEYS ONLY'

and compression options = {'sstable compression' : 'org.apache.

cassandra.io.compress.SnappyCompressor'};

Another thing that one might want to do, which is pretty common when learning
Cassandra, is the ability to wipe all the data in a column family. TRUNCATE is the
command to do that for us:

clean test cf
[default@crud] TRUNCATE test cf;
test cf truncated.

list all the data in test cf
[default@crud] LIST test cf;
Using default limit of 100

Using default column limit of 100

0 Row Returned.
Elapsed time: 41 msec(s) .

[15]

Quick Start

Dropping column family or keyspace is as easy as mentioning the entity type and
name after the DROP command. Here is a demonstration:

Drop test cf
[default@crud] drop column family test_cf;
29d44ab2-e4ab-3e22-a8ab-19de0Oc40aaab
Waiting for schema agreement...

schemas agree across the cluster

No more test cf in the schema

[defaultecrud] show schema crud;

create keyspace crud
with placement strategy = 'NetworkTopologyStrategy'
and strategy options = {datacenterl : 1}
and durable writes = true;

use crud;

Drop keyspace

[default@crud] drop keyspace crud;

45583a34-0cde-3d7d-a754-b7536d7dd3at

Waiting for schema agreement...
schemas agree across the cluster

No such schema
[default@unknown] show schema crud;
Keyspace 'crud' not found.

Exit from cassandra-cli
[default@unknown] exit;

é’%@i\ Notice that all the commands must end with a semicolon.

Cassandra in action

There is no better way to learn a technology than doing a proof of concept with it. This
section will work on a very simple application to get you familiarized with Cassandra.
We will build the backend of a simple blogging application where a user can:

* Create a blogging account

* Publish posts

[16]

Chapter 1

Have people comment on those posts

Have people upvote or downvote a post or a comment

Modeling data

In the RDBMS world, you would glance over the entities and think about relations
while modeling the application. Then you will join tables to get the required data.
There is no join in Cassandra. So, we will have to denormalize things. Looking at the
previously mentioned specifications, we can say that:

We need a blog metadata column family to store the blog name and other
global information, such as the blogger's username and password.

We will have to pull posts for the blog. Ideally, sorted in reverse
chronological order.

We will also have to pull all the comments for each post when we are seeing
the post page.

We will also have to have counters for the upvotes and downvotes for posts
and comments.

So, we can have a blog metadata column family for fixed user attributes. With posts,
we can do many things, such as the following;:

We can have a dynamic column family of super type (super column
family —a super column is a column that holds columns), where a row key is
the same as a user ID. The column names are timestamps for when the post
was published, and the columns under the super column hold attributes of
the post, which include the title, text, author's name, time of publication, and
so on. But this is a bad idea. I recommend that you don't use super columns.
We will see super columns and why it is not preferred in the Avoid super
columns section in Chapter 3, Design Patterns.

We can use composite columns in place of super columns. You can think of a
composite column as a row partitioned in chunks by a key. For example, we
take a column family that has CompositeType columns, where the two types
that make a composite column are LongType (for timestamp) and UTF8Type
(for attributes). We can pull posts grouped by the timestamp, which will
have all the attributes.

[17]

Quick Start

See the following figure. If it is too confusing as of now, do not worry; we
will cover this in detail later.

POSTS_COLUMN_FAMILY

E" 1376369938(||[1376369938) | | L376369936 1379131503 (1379131503 | | 1379131503
text it stamp et it istamp
m ithe itle
N My First ... Post #1 ... 13763699 My Sec ... Post #2 ... 13791315
- 38 03 »

Writing time series grouped data using composite columns

Although a composite column family does the job of storing posts, it is not
ideal. A couple of things to remember:

o

A row can have a maximum of two billion columns. If each post
is denoted by three attributes, a user can post a maximum of
two-thirds of a billion posts, which might be OK. And if it is not,
we still have solutions.

We can bucket the posts. For example, we just store the posts made in
a month, in one row. We will cover the concept of bucketing later.

The other problem with this approach is that an entire row lives on one machine. The
disk must be large enough to store the data.

In this particular case, we need not be worried about this. The problem is something
else. Let's say a user has very popular posts and is responsible for 40 percent of the
total traffic. Since we have all the data in a single row, and a single row lives on a
single machine (and the replicas), those machines will be queried 40 percent of the
time. So, if you have a replication factor of two, and there are 20 Cassandra servers,
the two servers that hold the particular blog will be serving more than 40 percent of
the reads. This is called a hotspot.

It would be a good idea to share the posts across all the machines. This means we need
to have one post per row (because rows are shared). This will make sure that the data
is distributed across all the machines, and hence avoid hotspots and the fear of getting
your disk out of space. We wouldn't be limited by a two-billion limit either.

But, now we know that the rows are not sorted. We need our posts to be arranged

by time. So, we need a row that can hold the row keys of the posts in a sorted order.
This again brings the hotspot and the limit of two billion. We may have to avoid it by
some sort of bucketing, depending on what the demand of the application is.

[18]

Chapter 1

So, we have landed somewhere similar to what we would have in a RDBMS posts
column family. It's not necessary that we always end up like this. You need to
consider what the application's demand is and accordingly design the things
around that.

Similar to the post, we have comment. Unlike posts, comments are associated
with posts and not the user. Then we have upvotes and downvotes. We may have
two counter column families for post votes and comment votes, each holding the
upvotes and downvotes columns.

post_votes
post_id
upvotes comment_votes
downvotes comment_id
upvotes
[EISE downvotes
post_id
blog_md title comments
blog_name text comment_id
name author_name comment
email blog_name author
password timestamp timestamp
blog_posts post_comments
blog_name post _id
<timestamp of post=> <timestamp of comment>

Schema based on the discussion

The bold letters in the preceding diagram refer to the row keys. You can think of

a row key as the primary key in a database. There are two dynamic or wide row
column families: blog_posts and post_comments. They hold the relationship
between a blog and its posts, and a post with its comments, respectively. These
column families have column names as timestamps and the values that these

columns store is the row key to the posts and comments column families, respectively.

[19]

Quick Start

Writing code

Time to start something tangible! In this section, we will see how to get a working
code for the preceding schema. Our main goal is to be able to create a user, write

a post, post a comment, upvote and downvote them, and to fetch the posts. The

code in this section and in many parts of this book is in Python — the reason being
Python's conciseness, readability, and easy-to-understand approach (XKCD - Python,
http://xked.com/353/). Python is an executable pseudocode (Thinking in Python
- Python is executable pseudocode. Perl is executable line noise. http://mindview.
net/Books/Python/ThinkingInPython.html). Even if you have never worked in
Python or do not want to use Python, the code should be easy to understand. So,

we will use Pycassa, a Python client for Cassandra. In this example, we will not

use CQL 3, as it is still in beta in Cassandra 1.1.11. You may learn about CQL3 in
Chapter 9, Introduction to CQL 3 and Cassandra 1.2, and about Pycassa from its GitHub
repository at http://pycassa.github.io/pycassa/.

Setting up

Setting up involves creating a keyspace and a column family. It can be done via
cassandra-cli or cqlsh or the Cassandra client library. We will see how this is done
using cassandra-cli later in this book, so let's see how we do it programmatically
using Pycassa. For brevity, the trivial parts of the code are not included.

Downloading the example code

\ You can download the example code files for all Packt books you have
< purchased from your account at http: //www. packtpub.com. If you
Q purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you,
or from the author's Github page at https://github.com/naishe/
mastering cassandra. -

SystemManager is responsible for altering schema. You connect to a Cassandra node,
and perform schema tweaks.

from pycassa.system manager import *
sys = SystemManager ('localhost:9160')

Creating a keyspace requires some options to be passed on. Do not worry about
them at this point. For now, think about the following code, as it sets the simplest
configurations for a single node cluster that is good for a developer laptop:

sys.create keyspace('blog ks', SIMPLE STRATEGY,
{'replication factor': '1'})

[20]

Chapter 1

Creating a column family requires you to pass a keyspace and column family name;
the rest are set to default. For static column families (the ones having a fixed number
of columns), we will set column names. Other important parameters are row key
type, column name type, and column value types. So, here is how we will create all
the column families:

Blog metadata column family (static)

sys.create column family('blog ks', 'blog md', comparator type=UTF8
TYPE, key validation class=UTF8 TYPE)

sys.alter column('blog ks', 'blog md', 'name',6 UTF8 TYPE)

sys.alter column('blog ks', 'blog md', 'email', UTF8 TYPE)

sys.alter column('blog ks', 'blog md', 'password',K UTF8 TYPE)

avoiding keystrokes by storing some parameters in a variable

cf _kwargs0 = {'key validation class': TIME UUID TYPE, 'comparator
type' :UTF8 TYPE}

Posts column family (static)

sys.create column family('blog ks', 'posts', **cf kwargsoO)
sys.alter column('blog ks', 'posts', 'title', UTF8_TYPE)
sys.alter column('blog ks', 'posts', 'text',K UTF8 TYPE)
sys.alter column('blog ks', 'posts', 'blog name',6 UTF8 TYPE)
sys.alter column('blog ks', 'posts', 'author name',6 UTF8 TYPE)
sys.alter column('blog ks', 'posts', 'timestamp', DATE TYPE)

Comments column family (static)

sys.create column family('blog ks', 'comments',6 **cf kwargsoO)
sys.alter column('blog ks', 'comments', 'comment', UTF8 TYPE)
sys.alter column('blog ks', 'comments', 'author', UTF8 TYPE)
sys.alter column('blog ks', 'comments', 'timestamp', DATE TYPE)

Create a time series wide column family to keep comments
and posts in chronological order

cf _kwargsl = {'comparator type': LONG TYPE, 'default validation_
class': TIME UUID TYPE, 'key validation class': UTF8 TYPE}

cf _kwargs2 = {'comparator type': LONG TYPE, 'default validation_
class': TIME UUID TYPE, 'key validation class': TIME UUID TYPE}

sys.create column family('blog ks', 'blog posts', **cf kwargsl)
sys.create column family('blog ks', 'post comments', **cf kwargs2)

Counters for votes (static)

[21]

Quick Start

cf_kwargs = {'default validation class':COUNTER COLUMN TYPE,
'comparator type': UTF8 TYPE, 'key validation class':TIME UUID TYPE }

Blog vote counters

sys.create column family('blog ks', 'post votes',6 **cf kwargs)
sys.alter column('blog ks', 'post votes', 'upvotes', COUNTER_COLUMN
TYPE)

sys.alter column('blog ks', 'post votes', 'downvotes', COUNTER COLUMN
TYPE)

Comments votes counter

sys.create column family('blog ks', 'comment votes', **cf kwargs)
sys.alter column('blog ks', 'comment votes', 'upvotes', COUNTER
COLUMN TYPE)

sys.alter column('blog ks', 'comment votes', 'downvotes', COUNTER_

COLUMN_TYPE)
We are done with setting up. A couple of things to remember:

* A static column family does not restrict you to storing arbitrary columns.
* Aslong as the validation satisfies, you can store and fetch data.

* Wouldn't it be nice if you could have the votes column sitting next to the
posts column and the comments column? Unfortunately, counter columns do
not mix with any other types. So, we need to have a separate column family.

Application

This section discusses a very basic blog application. The code sample included
here will show you the basic functionality. It is quite easy to take it from here
and start building an application of your own. In a typical application, you'd
initialize a connection pool at the start of the application. Use it for the lifetime
of the application and close it when your application shuts down. Here is some
initialization code:

from pycassa.pool import ConnectionPool

from pycassa.columnfamily import ColumnFamily

from pycassa.cassandra.ttypes import NotFoundException
import uuid, time

from Markov import Markov

from random import randint, choice

cpool = ConnectionPool (keyspace='blog ks', server
list=['localhost:9160'])

blog metadata = ColumnFamily(cpool, 'blog md')

[22]

Chapter 1

posts = ColumnFamily (cpool, 'posts')

comments = ColumnFamily (cpool, 'comments')

blog posts = ColumnFamily (cpool, 'blog posts')

post comments = ColumnFamily (cpool, 'post comments')
post votes = ColumnFamily (cpool, 'post votes!')
comment votes = ColumnFamily (cpool, 'comment votes')

Create a new blog using the following code:

def add blog(blog name, author name, email, passwd):
blog metadata.insert (blog name, {'name': author name, 'email':
email, 'password': passwd})

Insert a new post and comment using the following code:

def add post(title, text, blog name, author name) :
post _id = uuid.uuidl ()
timestamp = int(time.time() * le6)
posts.insert (post_id, {'title':title, 'text': text, 'blog name':
blog name, 'author name': author name, 'timestamp':int (time.time())})
blog posts.insert (blog name, {timestamp: post_id})
return post_ id

def add comment (post id, comment, comment auth) :
comment id = uuid.uuidl ()

timestamp = int(time.time() * 1leé6)
comments.insert (comment id, {'comment': comment, 'author':
comment auth, 'timestamp': int(time.time())})

post_comments.insert (post_id, {timestamp: comment id})
return comment id

Not having a relational setup in Cassandra, you have to manage relationships on
your own. We insert the data in a posts or comments column family and then add
this entry's key to another column family that has the row key as a blog name and
the data sorted by their timestamp. This does two things: one, we can read all the
posts for a blog if we know the blog name. The other fringe benefit of this is that we
have post IDs sorted in a chronological order. So, we can pull posts ordered by the
date of creation.

Updating vote counters is as easy as mentioned in the following code:

def vote post (post id, downvote = False):
if (downvote) :
post_votes.add(post id, 'downvotes')
else:
post _votes.add(post_id, 'upvotes')

[23]

Quick Start

def vote comment (comment id, downvote = False):
if (downvote) :
comment votes.add(comment id, 'downvotes')
else:
comment votes.add(comment id, 'upvotes')

With all this done, we are able to do all the creation-related stuff. We can create a
blog, add a post, comment on it, and upvote or downvote posts or comments. Now,
a user visiting the blog may want to see the list of posts. So, we need to pull out the
latest 10 posts and show them to the user. However, it is not very encouraging to a
visitor if you just list 10 blog posts spanning a really lengthy page to scroll. We want
to keep it short, interesting, and a bit revealing. If we just show the title and a small
part of the post, we have fixed the scroll issue. The next thing is making it interesting.
If we show the number of upvotes and downvotes to a post, a visitor can quickly
decide whether to read the post, based on the votes. The other important piece is the
number of comments that each post has received. It is an interesting property that
states that the more comments, the more interesting a post is.

Ultimately, we have the date when the article was written. A recent article is more
attractive than an older one on the same topic. So, we need to write a getter method
that pulls a list with all this information. Here is how we go about it:

def get post list (blog name, start='', page size=10):
next = None

Get latest page size (10) items starting from a€mstartd€l column

name
try:
gets posts in reverse chronological order. The last column is
extra.
It is the oldest, and will have lowest timestamp
post_ids = blog posts.get (blog name, column start = start, column

count = page size+l, column reversed = True)
except NotFoundException as e:
return ([], next)

if we have items more than the page size, that means we have the
next item
if (len(post_ids) > page size):

#iget the timestamp of the oldest item, it will be the first item
on the next page

timestamp next = min(post ids.keys())

next = timestamp next

remove the extra item from posts to show

[24]

Chapter 1

del post ids[timestamp next]
pull the posts and votes
post id vals = post ids.values()
postlist = posts.multiget (post id vals)
votes = post votes.multiget (post id vals)

merge posts and votes and yeah, trim to 100 chars.
Ideally, you'd want to strip off any HTML tag here.

post summary list = list()
for post id, post in postlist.iteritems():
post['post id'] = post id
post ['upvotes'] =
post ['downvotes'] = 0
try:

vote = votes.get (post_ id)
if 'upvotes' in vote.keys():
post ['upvotes'] = vote['upvotes']
if 'downvotes' in vote.keys():
post ['downvotes'] = vote['downvotes']
except NotFoundException:
pass

text = str(post['text'])
substringing to create a short version
if (len(text) > 100):

post['text'] = text[:100] + '... [Read morel'
else:

post['text'] = text
comments count = 0

try:

comments count = post comments.get count (post id)
except NotFoundException:

pass

post ['comments count'] = comments count

Note we do not need to go back to blog metadata CF as we have
stored the values in posts CF
post_summary list.append (post)

return (post summary list, next)

This is probably the most interesting piece of code till now with a lot of things
happening. First, we pull the list of the latest 10 post_id values for the given blog. We
use these IDs to get all the posts and iterate in the posts. For each post, we pull out the
number of upvotes and downvotes. The text column is trimmed to 100 characters.
We also get the count of comments. These items are packed and sent back.

[25]

Quick Start

One key thing is the next variable. This variable is used for pagination. In an
application, when you have more than a page size of items, you show the previous
and/or next buttons. In this case, we slice the wide row that holds the timestamp
and post_ids values in chunks of 10. As you can see the method signature, it needs
the starting point to pull items. In our case, the starting point is the timestamp of the
post that comes next to the last item of this page.

The actual code simulates insertions and retrievals. It uses the Alice in
Wonderland text to generate a random title, content and comments, and upvotes and
downvotes. One of the simulation results the following output as a list of items:

ITS DINNER, AND ALL ASSOCIATED FILES OF FORMATS [votes: +16/-8]

Alice ventured to ask. 'Suppose we change the subject,' the March Hare
will be linked to the general... [Read more]

-- Jim Ellis on 2013-08-16 06:16:02

[8 comment (s)]

—— % - - * - - % - - k - - k - - %k - - %k - - %

THEM BACK AGAIN TO THE QUEEN, 'AND HE TELL [votes: +9/-4]

were using it as far as they used to say "HOW DOTH THE LITTLE BUSY
BEE, " but it all is! I'll try and... [Read more]

-- Jim Ellis on 2013-08-16 06:16:02

[7 comment (s)]

—— % - - * - - % - - k - - k - - %k - - %k - - % __

GET SOMEWHERE, ' ALICE ADDED AN [votes: +15/-6]

Duchess sang the second copy is also defective, you may choose to give
the prizes?' quite a new kind... [Read more]

-- Jim Ellis on 2013-08-16 06:16:02

[10 comment (s)]

—— % - - * - - % - - k - - k - - %k - - %k - - % __

[26]

Chapter 1

SHE WOULD KEEP, THROUGH ALL HER COAXING. HARDLY WHAT [votes: +14/-0]

rising to its feet, 'I move that the way out of the sea.' 'I couldn't
afford to learn it.' said the ... [Read more]

-- Jim Ellis on 2013-08-16 06:16:02

[12 comment (s)]

—— k - - * - - % __- - % - - % - - %k - - % - - % __

Once you understand this, the rest is very simple. If you wanted to show a full post,
use post_id from this list and pull the full row from the posts column family. With
all the other fetchings (votes, title, and so on) similar to the aforementioned code, we
can pull all the comments on the post and fetch the votes on each of the comments.
Deleting a post or a comment requires you to manually delete all the relationships
that we made during creation. Updates are similar to insert.

Summary

We have made a start with Cassandra. You can set up your local machine, play with
cassandra-cli (see Chapter 9, Introduction to CQL 3 and Cassandra 1.2 for cqlsh), and
write a simple program that uses Cassandra on the backend. It seems like we are all
done. But, it's not so. Cassandra is not all about ease in modeling or being simple to
code around with (unlike RDBMS). It is all about speed, availability, and reliability.
The only thing that matters in a production setup is how quickly and reliably

your application can serve a fickle-minded user. It does not matter if you have an
elegant database architecture with the third normal form, or if you use a functional
programming language and follow the Don't Repeat Yourself (DRY) principle
religiously. Cassandra and many other modern databases, especially in the NoSQL
space, are there to provide you with speed. Cassandra stands out in the herd with its
blazing fast-write performance and steady linear scalability (this means if you double
the node, you double the speed of execution).

[27]

Quick Start

The rest of the book is aimed at giving you a solid understanding of the various
aspects of Cassandra— one chapter at a time.

You will learn the internals of Cassandra and the general programming
pattern for Cassandra.

Setting up a cluster and tweaking to get the maximum out of Cassandra for
your use case is also discussed.

Infrastructure maintenance —nodes going down, scaling up and down,
backing the data up, keeping vigil monitoring, and getting notified about an
interesting event on your Cassandra setup will be covered.

Cassandra is easy to use with the Apache Hadoop and Apache Pig tools, as
we will see simple examples of this.

Finally, Cassandra 1.2 and CQL3 are some of the most revolutionary things
that happened to Cassandra recently. There is a chapter dedicated to
Cassandra 1.2 and CQL3, which gives you enough to get going with

the new changes.

The best thing about these chapters is that there is no prerequisite. Most of these

are started from the basics to get you familiar with the concept and then taken to an
advanced level. So, if you have never used Hadoop, do not worry. You can still get a
simple setup up and running with Cassandra.

[28]

Cassandra Architecture

This chapter aims to set you into a perspective where you can see the evolution of the
NoSQL paradigm. It starts with a discussion of common problems that an average
developer faces when the application starts to scale up and software components
cannot keep up with it. Then, we'll see what can be assumed as a thumb rule in the
NoSQL world: the CAP theorem that says to choose any two out of consistency,
availability, and partition-tolerance. As we discuss, we realize how important it

is to serve the customers (availability) than to be correct (consistency) all the time.
However, we cannot afford to be wrong (inconsistent) for a long time. The customers
wouldn't like to see that the items are in stock, but the checkout is failing. Cassandra
comes into the picture with its tunable consistency.

We take a quick peep into all the actions that go on when a read or mutate happens.
This leaves us with lots of fancy terms. Next, we move on to see these terms in full
glory with explanation as we discuss various parts of the Cassandra design. We

will also see how close yet how far Cassandra is when compared with its precursors
and inspiration databases, such as Google's BigTable and Amazon's Dynamo. We
happen to meet with some of the modern and efficient data structures, such as Bloom
filters and Merkle tree, and algorithms, such as gossip protocol, phi accrual failure
detectors, and log-structured merge trees.

Problems in the RDBMS world

RDBMS is a great approach. It keeps data consistent, is good for OLTP (http://
en.wikipedia.org/wiki/Online_ transaction_processing), provides access to
good grammar, and manipulates data supported by all the popular programming
languages. It was tremendously successful for the last 40 years (the relational data
model in its first avatar: Codd, E.F. (1970), A Relational Model of Data for Large Shared
Data Banks). However, in the early 2000s, big companies, such as Google (BigTable,
http://research.google.com/archive/bigtable.html) and Amazon that have
gigantic load on their databases to serve, started to feel bottlenecked with RDBMS.

Cassandra Architecture

If you ever used an RDBMS for a non-trivial web application, you must have faced
problems, such as slow queries due to complex joins, expensive vertical scaling, and
problems in horizontal scaling. Due to these problems, indexing takes a long time. At
some point you choose to replicate the data, there is still some locking, and this hurts
availability. That means under heavy load, locking will cause the user experience

to deteriorate.

Although replication gives some relief, a busy slave may not catch up with the
master (or there may be a connectivity glitch between the master and the slave).
Consistency of such systems cannot be guaranteed (replication in MySQL is available
at http://www.databasejournal.com/features/mysqgl/article.php/3355201/
Database-Replication-in-MySQL.htm). With growth of the application, the
demand to scale the backend gets more pressing, and the developer teams decide to
add a caching layer (such as Memcached) at the top of the database. This alleviates
some load off the database, but now the developers need to maintain the object states
at two places: in the database and the caching layer. Although some ORMs provide a
built-in caching mechanism, they have their own issues: larger memory requirement,
and polluted application code with mapping code. In order to achieve more from
RDBMS, we start to denormalize the database to avoid joins, and keep the aggregates
in the columns to avoid statistical queries.

Sharding or horizontal scaling is another way to distribute the load. Sharding in
itself is a good idea, but it adds too much manual work, plus the knowledge of
sharding creeps into the application code. Sharded databases make the operational
tasks (backup, schema alteration, and adding index) difficult (hardships of sharding
is available at http://www.mysglperformanceblog.com/2009/08/06/why-you-
dont-want-to-shard/).

There are ways to loosen up consistency by providing various isolation levels. But
concurrency is just one part. Maintaining relational integrity, difficulties in managing
data that cannot be accommodated on one machine, and difficult recovery were all
making the traditional database systems hard to be accepted in the rapidly growing
Big Data world. Companies needed a tool that can support hundreds of terabytes of
data on the ever-failing commodity hardware reliably.

Enter NoSQL

NoSQL is a blanket term for the databases that solve the scalability issues that

are common among relational databases. This term, in its modern meaning, was
first coined by Eric Evans (NoSQL naming available at http://blog.sym-1link.
com/2009/10/30/nosqgl_whats_in a name.html). It should not be confused with
the database named NoSQL (NoSQL: the database available at http://www.strozzi.
it/cgi-bin/CSA/tw7/I/en US/nosgl/Home$%2 OPage).

[30]

Chapter 2

The NoSQL solutions provide scalability and high availability, but may not
guarantee ACID: atomicity, consistency, isolation, and durability in transactions.
Many of the NoSQL solutions including Cassandra sit on the other extreme of ACID,
named BASE (Basically Available, Soft-state, Eventual consistency).

The CAP theorem

In 2000, Eric Brewer (Wikipedia page available at http://en.wikipedia.org/wiki/
Eric_Brewer %28scientist%29), in his keynote speech at the ACM Symposium,
said that one cannot guarantee consistency in a distributed system. This was his
conjecture based on his experience with the distributed systems. This conjecture
was later formally proved by Nancy Lynch and Seth Gilbert in 2002 (Brewer's
Conjecture and the Feasibility of Consistent, Available at Partition-tolerant Web Services,
and ACMSIGACT News, Volume 33, Issue 2 (2002), page 51 to 59 available at http://
lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf) It says, if we
have a distributed system where data is replicated at two distinct locations and two
conflicting requests arrive —one at each location —when the communication link
between the two servers is broken. If the system (the cluster) has obligations to be
highly available (a response, even when some components of the system are failing),
one of the two responses will be inconsistent with what a system with no replication
(no partitioning, single copy) would have returned. To understand it better, let us
take an example to learn the terminologies. These terms will be used frequently
throughout this book.

Let's say you are planning to read George Orwell's book titled Nineteen Eighty-Four
(1984, The Novel available at http://en.wikipedia.org/wiki/Nineteen Eighty-
Four) over the Christmas vacation. A day before the holidays start, you logged in to
your favorite online book store to find out that there is only one copy left. You add it
to your cart. But then you realize that you need to buy something else to be eligible
for free shipping. You start to browse the website for any other item that you might
buy. To make the situation interesting, let's say there is another customer who is
trying to buy Nineteen Eighty-Four at the same time.

Consistency

In a distributed system, consistency will be defined as one that responds with the
same output for the same request at the same time across all the replicas. Loosely,
one can say a consistent system is one where each server returns the right response
to each request.

[31]

Cassandra Architecture

In our book-buying example, we have only one copy of Nineteen Eighty-Four. So,
only one of the two customers is going to get the book delivered from this store. In a
consistent system, only one can check out the book from the payment page. As soon
as one customer makes the payment, the number of Nineteen Eighty-Four books in
stock will get decremented by one and one quantity of Nineteen Eighty-Four will be
added to the order of that customer. When the second customer tries to check out
his shopping cart, the system tells that the book is not available any more.

Relational databases are good for this task because they comply with the ACID
properties. If both the customers make the request at the same time, one customer
will have to wait till the other customer is done with the processing, and the database
is made consistent. This may add a few milliseconds of wait to the customer who
came later.

An eventual consistent (where consistency of data across the distributed servers
may not be guaranteed immediately) database system may have showed both the
customers availability of the book at the time of check-out. This will lead to a back
order, and one of the customers will be paid back. This may or may not be a good
policy. A large number of back orders may affect the shop's reputation and there
may also be financial repercussions.

Availability
Availability in simplest term is responsiveness. A system that's always available

to serve. The funny thing about availability is that sometimes a system becomes
unavailable exactly when you need it the most.

In our example, one day before Christmas, everyone is buying gifts. Millions of
people are searching, adding items to their carts, buying, and applying for discount
coupons. If one server goes down due to overload, the rest of the servers get even
more loaded now, because the request from the dead server is getting redirected to
the rest of the machines. Dominoes start to fall. Now the site is down. When it comes
online again, it faces a storm of requests from all the people who are hurrying to
place their order because the offer end time is even closer, or probably acting quickly
before the site goes down again.

Availability is the key component for extremely loaded services. Bad availability
leads to bad user experience, dissatisfied customers, and financial losses.

[32]

Chapter 2

Partition-tolerance

Partition-tolerance is a system that can operate during the network partition. The
network will be allowed to lose arbitrarily many messages sent from one node to
another. This means a cable between the two nodes is chopped, but the system
still works.

Legends

= Relational Databases
*Column Oriented

® Key Value Store
+Document Store

(Al clients always have same view of data]

= RDBMS * Big Table

= AsterData * Hbase

= GreenPlum * HyperTable

* i +MongoDB

Yertica + TerraStore
®Redis
®MemacheDB
Pick Two
((All clients can always read and write (The system is functional in spite of network partition)

@ ¢ Dynamo * Cassandra +CouchDB @
+Riak

o Voldemort
e Tokyo Cabinet

Figure 2.1. Database classification based on CAP Theorem

An example of a partition-tolerant system is a system with real-time data replication.
A system where data is replicated across two datacenters, the availability will not be
affected, even if a datacenter goes down.

Significance of the CAP theorem

Once you decide to scale up, the first thing that comes to mind is vertical scaling,
which means putting beefier servers with a bigger RAM, a more powerful processor,
and bigger disks. For further scaling, you need to go horizontal, which means
adding more servers. Once your system becomes distributed, the CAP theorem
starts to play. That means, in a distributed system, you can choose only two out of
consistency, availability, and partition-tolerance. So, let us see how choosing two out
of the three options affect the system behavior as follows:

CA system: In this system, you drop partition-tolerance for consistency and
availability. This happens when you put everything related to a transaction on one
machine or a system that fails like an atomic unit, for example, a rack. This system
will have serious problems in scaling.

[33]

Cassandra Architecture

CP system: The opposite of a CA system is a CP system. In a CP system, availability is
sacrificed for consistency and partition-tolerance. What does this mean? If the system
is available to serve the requests, data will be consistent. In the event of a node failure,
some data will not be available. A sharded database is an example of such a system.

AP system: An available and partition-tolerance system is like an always-on system
on risk of producing conflicting results in the event of network partition. This is good
for user experience, your application stays available, and inconsistency in rare events
may be alright for some use cases. In the book example, it may not be such a bad idea
to back order a few unfortunate customers due to inconsistency of the system than
having a lot of users to return without making any purchase because of the system's
poor availability.

Eventual consistent aka BASE system: The AP system makes more sense when
viewed from an uptime perspective —it's simple and provides good user experience.
But, an inconsistent system is not good for anything, certainly not good for business.
It may be acceptable that one customer for the book Nineteen Eighty-Four gets a back
order. But if it happens more often, the users would be reluctant to use the service. It
will be great if the system can fix itself (read repair) as soon as the first inconsistency
is observed. Or, maybe there are processes dedicated to fix the inconsistency of a
system when a partition failure is fixed or a dead node comes back to life. Such
systems are called Eventual Consistent Systems.

Eventual consistent system with no communication failure

D
g

1.a Node N1 and
N2 in consistent

state with same
data VO

1.b Node N1 is applied
with an update from VO to
V1. Propagates over
network this change
reaches to N2

1.c The data stays
consistent over next
requests

Eventual consistent system with network partitioning

v1a v1ﬂ@%¢
o

2.a Node N1
andN2 in
consistent
state with
same data VO

2.b Node N1 is
update from VO
to V2. The update
could not be
applied to N2
dues to
communication
failure

2.c Obligated to
availability the two
nodes return
inconsistent results

2.d On network
restoration, the
new change gets
communicated to
Node 2, and
system becomes
consistent

Figure 2.2: Life of an eventual consistent system

[34]

Chapter 2

Quoting Wikipedia, "[In a distributed system] given a sufficiently long time over
which no changes [in system state] are sent, all updates can be expected to propagate
eventually through the system and the replicas will be consistent." (Eventual
Consistency available at http://en.wikipedia.org/wiki/Eventual_consistency)

Eventual Consistent Systems are also called BASE, a made-up term to represent that
these systems are on one end of the spectrum, which has traditional databases with
the ACID properties on the opposite end.

Cassandra is one such system that provides high availability, and partition-tolerance
at the cost of consistency, which is tunable. The preceding figure shows a partition-
tolerant Eventual Consistent System.

Cassandra

Cassandra is distributed, decentralized, fault tolerant, eventually consistent, linearly
scalable, and a column-oriented data store. This means Cassandra is made to easily
deploy over a cluster of machines located at geographically different places. There

is no central master server, so no single point of failure, no bottleneck, data is
replicated, and a faulty node can be replaced without any downtime. It's eventually
consistent. It is linearly scalable, which means with a greater number of nodes, the
requests served per second per node would not go down. Also, the total throughput
of the system will increase with each node being added. And finally, it's column
oriented, much like a map (or better, a map of sorted maps) or a table with flexible
columns where each column is essentially a key-value pair. So, you can add columns
as you go, and each row can have a different set of columns (key-value pairs). It does
not provide any relational integrity. It is up to the application developer to perform
relation management.

So, if Cassandra is so good at everything, why not everyone drop whatever
database they are using and jump start with Cassandra? This is a natural question.
We'll discuss in a later chapter what Cassandra is not good at, but there may be
several obvious reasons, such as not everyone needs a super-scalable data store,
and some are good with rather slow, but cozy RDBMS tools. Some applications
require strong ACID compliance, such as a booking system. If you are a person who
goes by statistics, you'd ask how Cassandra fares with other existing data stores.
TilmannRabl et al in their paper, Solving Big Data Challenges for Enterprise Application
Performance Management (http://v1ldb.org/pvldb/vol5/pl724_tilmannrabl_
v1db2012.pdf), told that, "In terms of scalability, there is a clear winner throughout
our experiments. Cassandra achieves the highest throughput for the maximum
number of nodes in all experiments with a linear increasing throughput from one

to 12 nodes. This comes at the price of a high write and read latency. Cassandra's
performance is best for high insertion rates."

[35]

Cassandra Architecture

If you go through the paper, Cassandra wins in almost all the criteria. Equipped with
proven concepts of distributed computing, made to reliably serve from commodity
servers, and simple and easy maintenance, Cassandra is one of the most scalable,
fastest, and very robust NoSQL database. So, the next natural question is what makes
Cassandra so blazing fast? Let us dive deeper into the Cassandra architecture.

Cassandra architecture

Cassandra is a relative latecomer in the distributed data-store war. It takes
advantage of two proven and closely similar data-store mechanisms, namely Google

BigTable, a distributed storage system for structured data, 2006 (http://static.
googleusercontent. com/external_content /untrusted_dl cp/research.

google.com/en//archive/bigtable-0sdi06.pdf [2006]), and Amazon Dynamo,
Amazon's highly available key-value store, 2007 (http://www.read.seas.harvard.
edu/~kohler/class/cs239-w08/decandial7dynamo.pdf [2007])

'S 180000 [
= 160000 [
S 140000 [
& 120000 [
g 100000 [
S 80000 [
3 60000 [
%30 40000 [
o 20000 [
= 0
Number of Nodes
Cassandra —+— Voldemort ----x--- Redis ---#&--
HBase ~~7~~ VoltDB =& MySQL — &~

Figure 2.3: Read throughputs shows linear scaling of Cassandra

Like BigTable, it has tabular data presentation. It is not tabular in the strictest
sense. It is rather a dictionary-like structure where each entry holds another sorted
dictionary/map. This model is more powerful than the usual key-value store and
it is named as column family. The properties such as Eventual Consistency and
decentralization are taken from Dynamo.

[36]

Chapter 2

We'll discuss column family in detail in a later chapter. For now, assume a column
family as a giant spreadsheet, such as MS Excel. But unlike spreadsheets, each row

is identified by a row key with a number (token), and unlike spreadsheets, each cell
can have its own unique name within the row. The columns in the rows are sorted by
this unique column name. Also, since the number of rows is allowed to be very large
(1.7%(10)"38), we distribute the rows uniformly across all the available machines by
dividing the rows in equal token groups. These rows create a Keyspace. Keyspace is
a set of all the tokens (row IDs).

Ring representation

Cassandra cluster is denoted as a ring. The idea behind this representation is to
show token distribution. Let's take an example. Assume that there is a partitioner
that generates tokens from zero to 127 and you have four Cassandra machines to
create a cluster. To allocate equal load, we need to assign each of the four nodes to
bear an equal number of tokens. So, the first machine will be responsible for tokens
one to 32, the second will hold 33 to 64, the third, 65 to 96, and the fourth, 97 to 127
and 0. If you mark each node with the maximum token number that it can hold, the
cluster looks like a ring. (Figure 2.22) Partitioner is the hash function that determines
the range of possible row keys. Cassandra uses a partitioner to calculate the token
equivalent to a row key (row ID).

Owns tokens 1 to 32

Cassandra Ring

Owns tokens 97 to

127, and O Owns tokens 33 to 64

Owns tokens 65 to 96

Figure 2.4: Token ownership and distribution in a balanced Cassandra ring

[37]

Cassandra Architecture

When you start to configure Cassandra, one thing that you may want to set is the
maximum token number that a particular machine could hold. This property can
be set in the Cassandra.yaml file as initial_token. One thing that may confuse a
beginner is that the value of the initial token is what the last token owns. Be aware
that nodes can be rebalanced and these tokens can be changed as the new nodes
join or old nodes get discarded. This is the initial token because this is just the initial
value, and it may be changed later.

How Cassandra works

Diving into various components of Cassandra without having a context is really
a frustrating experience. It does not makes sense why you are studying SSTable,
MemTable, and Log Structured Merge (LSM) tree without being able to see how
they fit into functionality and performance guarantees that Cassandra gives. So,
first, we will see Cassandra's write and read mechanism. It is possible that some
of the terms that we encounter during this discussion may not be immediately
understandable. The terms are explained in detail later in the chapter. A rough
overview of the Cassandra components is as shown in the following figure:

Cassandra API | | Cassandra Tools

Storage Layer

Failure Detector | | Compaction Manager

Messaging Layer

|
|
Partitioner | | Replicator |
|
|

Figure 2.5: Main components of the Cassandra service

The main class of Storage Layer is StorageProxy. It handles all the requests.
Messaging Layer is responsible for internode communications like gossip. Apart
from this, process-level structures keep a rough idea about the actual data containers
and where they live. There are four data buckets that you need to know. MemTable
is a hash table-like structure that stays in memory. It contains actual column data.
SSTable is the disk version of MemTables. When MemTables are full, SSTables are
persisted to the hard disk. Bloom filters is a probabilistic data structure that lives

in memory. It helps Cassandra to quickly detect which SSTable does not have the
requested data. CommitLog is the usual commit log that contains all the mutations
that are to be applied. It lives on the disk and helps to replay uncommitted changes.

With this primer, we can start looking into how write and read works in Cassandra.
We will see more explanation later.

[38]

Chapter 2

Write in action

To write, clients need to connect to any of the Cassandra nodes and send a write
request. This node is called as the coordinator node. When a node in Cassandra
cluster receives a write request, it delegates it to a service called StorageProxy.
This node may or may not be the right place to write the data to. The task of
StorageProxy is to get the nodes (all the replicas) that are responsible to hold the
data that is going to be written. It utilizes a replication strategy to do that. Once the
replica nodes are identified, it sends the RowMutation message to them, the node
waits for replies from these nodes, but it does not wait for all the replies to come.

It only waits for as many responses as are enough to satisfy the client's minimum
number of successful writes defined by ConsistencyLevel. So, the following figure
and steps after that show all that can happen during a write mechanism:

Data Center 1 Data Center 2 Data Center 3

memtables

[0 [

Write Request, data: vO

system.hints

mmit|log
Q

Figure 2.6: A simplistic representation of the write mechanism. The figure on the left represents the node-local
activities on receipt of the write request

1. If FailureDetector detects that there aren't enough live nodes to satisfy
ConsistencyLevel, the request fails.

2. If FailureDetector gives a green signal, but writes time-out after the request
is sent due to infrastructure problems or due to extreme load, StorageProxy
writes a local hint to replay when the failed nodes come back to life. This is
called hinted handoff.

[39]

Cassandra Architecture

One might think that hinted handoff may be responsible for
Cassandra's eventual consistency. But it's not entirely true. If
the coordinator node gets shut down or dies due to hardware
% failure and hints on this machine cannot be forwarded, eventual
consistency will not occur. The Anti-entropy mechanism is
responsible for consistency rather than hinted handoff.
Anti-entropy makes sure that all replicas are in sync.

If the replica nodes are distributed across datacenters, it will be a bad idea

to send individual messages to all the replicas in other datacenters. It rather
sends the message to one replica in each datacenter with a header instructing
it to forward the request to other replica nodes in that datacenter.

Now, the data is received by the node that should actually store that data.
The data first gets appended to CommitLog, and pushed to a MemTable for
the appropriate column family in the memory.

When MemTable gets full, it gets flushed to the disk in a sorted structure
named SSTable. With lots of flushes, the disk gets plenty of SSTables. To
manage SSTables, a compaction process runs. This process merges data from
smaller SSTables to one big sorted file.

Read in action

Similar to a write case, when StorageProxy of the node that a client is connected
to gets the request, it gets a list of nodes containing this key based on Replication
Strategy. storageProxy then sorts the nodes based on their proximity to itself.
The proximity is determined by the Snitch function that is set up for this cluster.
Basically, there are the following types of Snitch:

Simplesnitch: A closer node is the one that comes first when moving
clockwise in the ring. (A ring is when all the machines in the cluster are
placed in a circular fashion with each having a token number. When you
walk clockwise, the token value increases. At the end, it snaps back to the
first node.)

[40]

Chapter 2

* AbstractNetworkTopologySnitch: Implementation of the Snitch function
works like this: nodes on the same rack are closest. The nodes in the same
datacenter but in different rack are closer than those in other datacenters,
but farther than the nodes in the same rack. Nodes in different datacenters
are the farthest. To a node, the nearest node will be the one on the same rack.
If there is no node on the same rack, the nearest node will be the one that
lives in the same datacenter, but on a different rack. If there is no node in the
datacenter, any nearest neighbor will be the one in the other datacenter.

* DynamicSnitch: This Snitch determines closeness based on recent
performance delivered by a node. So, a quick-responding node is perceived
closer than a slower one, irrespective of their location closeness or closeness
in the ring. This is done to avoid overloading a slow-performing node.

Now that we have the list of nodes that have desired row keys, it's time to pull data
from them. The coordinator node (the one that the client is connected to) sends a
command to the closest node to perform read (we'll discuss local read in a minute)
and return the data. Now, based on ConsistencyLevel, other nodes will send a
command to perform a read operation and send just the digest of the result. If we
have Read Repair (discussed later) enabled, the remaining replica nodes will be sent
a message to compute the digest of the command response.

Let's take an example: say you have five nodes containing a row key K (that is,
replication factor (RF) equals 5). Your read ConsistencyLevel is three. Then the
closest of the five nodes will be asked for the data. And the second and third closest
nodes will be asked to return the digest. We still have two left to be queried. If read
Repair is not enabled, they will not be touched for this request. Otherwise, these
two will be asked to compute digest. The request to the last two nodes is done in
the background, after returning the result. This updates all the nodes with the most
recent value, making all replicas consistent. So, basically, in all scenarios, you will
have a maximum one wrong response. But with correct read and write consistency
levels, we can guarantee an up-to-date response all the time.

[41]

Cassandra Architecture

Let's see what goes within a node. Take a simple case of a read request looking

for a single column within a single row. First, the attempt is made to read from
MemTable, which is rapid-fast since there exists only one copy of data. This is the
fastest retrieval. If the data is not found there, Cassandra looks into SSTable. Now,
remember from our earlier discussion that we flush MemTables to disk as SSTables
and later when compaction mechanism wakes up, it merges those SSTables. So, our
data can be in multiple SSTables.

Data Center 1 Data Center 2 Data Center 3

”—@ 4 @“‘
- H ~ o

:

’

MemTable

BF BF BF
\/ 5STabl \/ SSTabl \/ SSTabl

10 1l 12
Older SSTable—————»

! @ Read Request, data: keyO

Figure 2.7: A simplified representation of the read mechanism. The bottom image shows processing on the read
node. Numbers in circles shows the order of the event. BF stands for Bloom Filter

Each SSTable is associated with its Bloom Filter built on the row keys in the SSTable.
Bloom Filters are kept in memory, and used to detect if an SSTable may contain (false
positive) the row data. Now, we have the SSTables that may contain the row key.
The SSTables get sorted in reverse chronological order (latest first).

[42]

Chapter 2

Apart from Bloom Filter for row keys, there exists one Bloom Filter for each row in
the SSTable. This secondary Bloom Filter is created to detect whether the requested
column names exist in the SSTable. Now, Cassandra will take SSTables one by one
from younger to older. And use the index file to locate the offset for each column
value for that row key and the Bloom filter associated with the row (built on the
column name). On Bloom filter being positive for the requested column, it looks into
the SSTable file to read the column value. Note that we may have a column value
in other yet-to-be-read SSTables, but that does not matter, because we are reading
the most recent SSTables first, and any value that was written earlier to it does not
matter. So, the value gets returned as soon as the first column in the most recent
SSTable is allocated.

Components of Cassandra

We have gone through how read and write takes place in highly distributed
Cassandra clusters. It's time to look into individual components of it a little deeper.

Messaging service

Messaging service is the mechanism that manages internode socket communication
in a ring. Communications, for example, gossip, read, read digest, write, and so on,
processed via a messaging service, can be assumed as a gateway messaging server
running at each node.

To communicate, each node creates two socket connections per node. This implies
that if you have 101 nodes, there will be 200 open sockets on each node to handle
communication with other nodes. The messages contain a verb handler within
them that basically tells the receiving node a couple of things: how to deserialize
the payload message and what handler to execute for this particular message. The
execution is done by the verb handlers (sort of an event handler). The singleton that
orchestrates the messaging service mechanism is org.apache.cassandra.net.
MessagingService.

Gossip

Cassandra uses the gossip protocol for internode communication. As the name
suggests, the protocol spreads information in the same way an office rumor does.
It can also be compared to a virus spread. There is no central broadcaster, but the
information (virus) gets transferred to the whole population. It's a way for nodes to
build the global map of the system with a small number of local interactions.

[43]

Cassandra Architecture

Cassandra uses gossip to find out the state and location of other nodes in the ring
(cluster). The gossip process runs every second and exchanges information with

at the most three other nodes in the cluster. Nodes exchange information about
themselves and other nodes that they come to know about via some other gossip
session. This causes all the nodes to eventually know about all the other nodes. Like
everything else in Cassandra, gossip messages have a version number associated
with it. So, whenever two nodes gossip, the older information about a node gets
overwritten with a newer one. Cassandra uses an Anti-entropy version of gossip
protocol that utilizes Merkle trees (discussed later) to repair unread data.

Implementation-wise the gossip task is handled by the org.apache.cassandra.

gms . Gossiper class. Gossiper maintains a list of live and dead endpoints (the
unreachable endpoints). At every one-second interval, this module starts a gossip
round with a randomly chosen node. A full round of gossip consists of three
messages. A node X sends a syn message to a node Y to initiate gossip. Y, on receipt
of this syn message, sends an ack message back to X. To reply to this ack message, X
sends an ack2 message to Y completing a full message round.

Node X gossips with Node Y: Message Exchanges

1. GossipDigestSynMessage >

X \< 2. GossipDigestAckMessage / Y
/ 3. GossipDigestAck2Message &
>

Figure 2.8: Two nodes gossiping

The Gossiper module is linked to failure detection. The module on hearing one of
these messages updates FailureDetector with the liveness information that it has
gained. If it hears a GossipShutdownMessage, the module marks the remote node
as dead in FailureDetector.

The node to be gossiped with is chosen based on the following rules:

* Gossip to a random live endpoint
* Gossip to a random unreachable endpoint

e [If the node in #1 was not a seed node or the number of live nodes is less than
the number of seeds, gossip to a random seed

[44]

Chapter 2

Seed Node

Seed nodes are the nodes that are first contacted by a newly joining
. node when they first start up. Seed nodes help the newly started node to
% discover other nodes in the cluster. It is suggested to have more than one
~ seed node in a cluster.Seed node is nothing like a master in a master-
slave mechanism. It is just another node that helps newly joining nodes to
bootstrap gossip protocol. Seeds, hence, are not a single point of failure
(SPOF) and neither have any other purpose that makes them superior.

Failure detection

Failure detection is one of the fundamental features of any robust and distributed
system. A good failure detection mechanism implementation makes a fault-tolerant
system such as Cassandra. The failure detector that Cassandra uses is a variation

of The ¢ accrual failure detector (2004) by Xavier Défago et al. (The phi accrual
detector research paper is available at http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.106.3350.)

The idea behind a FailureDetector is to detect a communication failure and take
appropriate actions based on the state of the remote node. Unlike traditional failure
detectors, phi accrual failure detector does not emit a Boolean alive or dead (true or
false, trust or suspect) value. Instead, it gives a continuous value to the application
and the application is left to decide the level of severity and act accordingly. This
continuous suspect value is called phi (). So, how does ¢ get calculated?

Let's say we are observing a heartbeat sent from a process on a remote machine.
Assume that the latest heartbeat arrived at time Tlast, current time tnow, and
Plater (t) be the probability that the heartbeat will arrive t time unit later than
the last heartbeat. Then ¢ can be calculated as follows:

(t

later now last

o(t,) = -log, (P))

Let's observe this formula informally using common sense. On a sunny day, when
everything is fine and heartbeat is at a constant interval at. The probability of the
next heartbeat will keep increasing towards 1 as (t__ - T, _) At.So, the value of ¢

will go up. If a heartbeat is not received in At, the more we depart away from at, the
chances are that something has gone wrong.

[45]

Cassandra Architecture

The lower the value of P, _ becomes, and the value of ¢ keeps on increasing as
shown in the following figure:

t

Time —»

Figure 2.9: The curve shows a heartbeat arrival distribution estimate based on past samples. It is used to
calculate the value of ¢ based on the last arrival, T , and t .

One may question where we send a heartbeat in Cassandra. Gossip has it.

Gossip and Failure Detection: During gossip sessions, each node maintains a list

of the arrival timestamps of gossip messages from other nodes. This list is basically a
sliding window, which, in turn, is used to calculate p,_ _ . One may set the sensitivity
of pthres threshold.

The best explanation of failure detector can be found in Cassandra research
paper (http ://www.cs.cornell.edu/projects/1ladis2009/papers/lakshman-
ladis2009.pdf):

Given some threshold ¢, and assuming that we decide to suspect a node A when
¢ =1, then the likelihood that we will make a mistake (that is, the decision will

be contradicted in the future by the reception of a late heartbeat) is about 10%.
The likelihood is about 1% with ¢ = 2, 0.1% with ¢ = 3, and so on. Every node in
the system maintains a sliding window of inter-arrival times of gossip messages
from other nodes in the cluster. The distribution of these inter-arrival times is
determined and o is calculated.

Partitioner

Cassandra is a distributed database management system. This means it takes a

single logical database and distributes it over one or more machines in the database
cluster. So, when you insert some data in Cassandra, it assigns each row to a row
key; and based on that row key, Cassandra assigns that row to one of the nodes that's
responsible for managing it.

Let's try to understand this. Cassandra inherits the data model from Google's
BigTable (BigTable research paper can be found at http://research.google.
com/archive/bigtable.html.). This means we can roughly assume that the data
is stored in some sort of a table that has an unlimited number of columns (not
unlimited, Cassandra limits the maximum number of columns to be two billion)
with rows binded with a unique key, namely, row key.

[46]

Chapter 2

Now, your terabytes of data on one machine will be restrictive from multiple

points of views. One is disk space, another being limited parallel processing, and

if not duplicated, a source of single point of failure. What Cassandra does is, it
defines some rules to slice data across rows and assigns which node in the cluster

is responsible for holding which slice. This task is done by a partitioner. There are
several types of partitioners to choose from. We'll discuss them in detail in Chapter 4,
Deploying a Cluster, under the Partitioners section. In short, Cassandra (as of Version
1.2) offers three partitioners as follows:

* RandomPartitioner: It uses MD5 hashing to distribute data across the
cluster. Cassandra 1.1.x and precursors have this as the default partitioner.

* Murmur3Partitioner: It uses Murmur hash to distribute the data.
It performs better than RandomPartitioner. It is the default partitioner
from Cassandra Version 1.2 onwards.

* ByteOrderPartitioner: Keeps keys distributed across the cluster by key
bytes. This is an ordered distribution, so the rows are stored in lexical order.
This distribution is commonly discouraged because it may cause a hotspot.

One of the key benefits of partitioning data is that it allows the cluster to grow
incrementally. What any partitioning algorithm does is it gives a consistent
divisibility of data across all available nodes. The key that a node is assigned to by
the partitioner also determines the node's position in the ring. Since partitioning

is a global setting, any node in the cluster can calculate which nodes to look for

in a given row key. This ability to calculate data-holding nodes without knowing
anything other than the row key, enables any node to calculate what node to forward
requests to. This makes the node selection process a single-hop mechanism.

/P

@
@ Ring @

@

Figure 2.10: A Cassandra ring with alphabetical partitioner shows keys owned
by the nodes and data replication

[47]

Cassandra Architecture

Another benefit of good partitioning is that the addition or removal of a node

only affects the neighbors of the arriving or departing node. How so? Figure 2.10
shows what a Dynamo (http://www.read.seas.harvard.edu/~kohler/class/
cs239-w08/decandia07dynamo.pdf) or a Cassandra cluster looks like; it looks like
aring. In this particular figure, each node is assigned with a letter as its token ID.
So, the partitioner here is something that slices row keys based on their alphabetical
ordering. When a data arrives to a node, the row key tells its position in the cluster.
Then, while walking clockwise in the cluster, the first node with a position (token
ID) larger than or equal to the row key's position (row key converted to a token

ID) becomes responsible for that data. This way, each node in the cluster becomes
responsible for the region in the cluster between it (inclusive) and its previous node
(exclusive). So, node D will keep keys starting with B, C, and D.

Another frequently used terminology for a Cassandra cluster is ring. This is because
the last node wraps around the first one, thus making the system look like a ring.

In the preceding figure, the first node A is responsible for wrapping up from the

last node V. So, it holds the data from W to Z to A. If a node D disappears from the
system, the only node that gets affected is the node G, which now has to carry data
from B to G. If we add a node X (between V and A), node A will offload some of its
rows to the new node X. Particularly, A will stream out rows starting from W to X to
node X and will become responsible for data from Y to A.

Now that we have observed that partitioning has such a drastic effect on the data
movement and distribution, one may think that a bad partitioner can lead to uneven
data distribution. In fact, our example ring in the previous paragraph might be a
bad partitioner. For a data set, where terms with a specific starting letter has very
high population than the terms with other letters, the ring will be lopsided. A

good partitioner is one that is quick to calculate the position from the row key and
distributes the row keys evenly; something like a partitioner based on consistent
hashing algorithm.

Replication

Cassandra runs on commodity hardware, and works reliably in network partitions.
However, this comes with a cost: replication. To avoid data inaccessibility in case a
node goes down or becomes unavailable, one must replicate data to more than one
node. Replication brings features such as fault tolerance and no single point of failure
to the system. Cassandra provides more than one strategy to replicate the data, and
one can configure the replication factor while creating keyspace. It will be discussed
in detail in Chapter xx.

[48]

Chapter 2

Replication is tightly binded to consistency level (CL). Consistency level can be
thought of as an answer to the question: how many replicas must respond positively
to declare a successful operation? If you have read consistency level three, that
means a client will be returned a successful read as soon as three replicas respond
with the data. Same goes for write. For write consistency three, at least three replicas
must respond that the write to them was successful. Obviously, replication factor
must be greater than any consistency level, else there will never be enough replicas
to write to or read from successfully.

. Do not confuse replication factor with the number of nodes in
& the system. Replication factor is the number of copies of a data.
2" The number of nodes just affects how much data a node will
hold based on the configured partitioner.

Replication should be thought of as an added redundancy. One should never have a
replication factor of 1 in their production environment. If you think having multiple
writes to different replicas will slow down the writes, you can set up a favorable
consistency level. Cassandra offers a set of consistency levels including CL ZERO for
fire and forget, and CL ALL for all replica success. This is where so-called tunable
consistency of Cassandra is. The following table shows all the consistency levels:

WRITE READ
Consistency level Meaning Consistency level Meaning
ZERO Fire and forget
ANY Success on hinted
handoff write
ONE First replica returned ~ ONE First replica returned
successfully successfully
QUORUM N/2 + 1 replica success QUORUM N/2 + 1 replica success
ALL All replica success ALL All replica success

[49]

Cassandra Architecture

The notorious R+W> N inequality: Imagine you have the replication factor as

3. That means your data will be stored in three nodes. They may or may not be
consistent. You have write consistency level as one, and read consistency level as
one. A write happens to the first replica node (N1) and is returned to the user. This
means that while a read happens, unfortunately that read lands on a second replica
(N2). Since consistency level is equal to one, it will just read this node and return the
value. This will be inconsistent as the write hasn't propagated yet. This will be made
consistent after the read happens as a part of read repair. But the first read is wrong.

Y New ¢ Old

W= R=2

Figure 2.11: Read and write ona R + W > N system

The concept of weak and strong consistency comes here. Weak consistency is the

one where read repair takes place after returning the result to the client. And strong
consistency is the one where repair happens before returning the result. Basically,

a weak consistency is the one that may return inconsistent results. If you have an N
replica, to ensure that your reads always result in the latest value, you must write and
read from as many nodes that ensure at least one node overlaps. So, if you write to W
nodes and read from R nodes such that R+W > N, there must be at least one node that is
common in both read and write. And that will ensure that you have the latest data. See
Figure 2.11. So, ZERO and ANY consistency levels are weak consistency. ALL is strong.
ONE for read and ALL for write or vice versa will make a strongly consistent system. A
system with QUORUM for both read and write is a strongly consistent system. Again, the
idea is to make sure that between the reads and the writes at least one node overlaps.
While we are on this topic, it may be worth noticing that the higher the consistency
level, the slower the operation. So, if you want a superfast write and not-so-fast read
and you also want the system to be strongly consistent, you may opt for a consistency
level oNE for the writes and ALL for the reads.

[50]

Chapter 2

Log Structured Merge tree

Cassandra (also, HBase) is heavily influenced by Log Structured Merge (LSM). It
uses an LSM tree-like mechanism to store data on a disk. The writes are sequential
(in append fashion) and the data storage is contiguous. This makes writes in
Cassandra superfast, because there is no seek involved. Contrast this with an RBDMS
system that is based on the B+ Tree (http://en.wikipedia.org/wiki/B%2B_tree)
implementation.

LSM tree advocates the following mechanism to store data: note down the arriving
modification into a log file (CommitLog), push the modification/new data into
memory (MemTable) for faster lookup, and when the system has gathered enough
updates in memory or after a certain threshold time, flush this data to a disk in a
structured store file (SSTable). The logs corresponding to the updates that are
flushed can now be discarded.

Log Structured Merge Tree with K+1 components

Met‘:ge /\\Aer i j Merge M%\

Disc

Figure 2.12: Log Structured Merge (LSM) Trees

The Log-Structured Merge-Tree (LSM-Tree)(1996) by Patrick O'Neil et

al is available at http://citeseerx.ist .psu.edu/viewdoc/
g summary?doi=10.1.1.44.2782.

[51]

Cassandra Architecture

The preceding paper suggests multicomponent LSM trees, where data from
memory is flushed into a smaller tree on disk for a quicker merge. When this tree
fills up, it rolls them into a bigger tree. So, if you have K trees with the first tree
being the smallest and the Kth being the largest, the memory gets flushed into the
first tree, which when full, performs a rolling merge to the second tree, and so on.
The change eventually lands up onto the Kth tree. This is a background process
(similar to the compaction process in Cassandra). Cassandra differs a little bit where
memory-resident data is flushed into immutable SSTables, which are eventually
merged into one big SSTable by a background process. Like any other disk-resident
access tree, popular pages are buffered into memory for faster access. Cassandra has
a similar concept with key cache and row cache (optional) mechanisms.

We'll see the LSM tree in action in the context of Cassandra in the next three sections.

CommitLog

One of the promises that Cassandra makes to the end users is durability. In
conventional terms (or in ACID terminology), durability guarantees that a successful
transaction (write, update) will survive permanently. This means once Cassandra
says write successful that means the data is persisted and will survive system
failures. It is done the same way as in any DBMS that guarantees durability: by
writing the replayable information to a file before responding to a successful write.
This log is called the CommitLog in the Cassandra realm.

This is what happens. Any write to a node gets tracked by org.apache.cassandra.
db . commitlog.CommitLog, which writes the data with certain metadata into the
CommitLog file in such a manner that replaying this will recreate the data. The
purpose of this exercise is to ensure there is no data loss. If due to some reason

the data could not make it into MemTable or SSTable, the system can replay the
CommitLog to recreate the data.

CommitLog, MemTable, and SSTable in a node are tightly coupled. Any write
operation gets written to the CommitLog first and then MemTable gets updated.
MemTable, based on certain criteria, gets flushed to a disk in immutable files called
SSTable. The data in CommitLogs gets purged after its corresponding data in
MemTable gets flushed to SSTable. See Figure 2.13.

Also, there exists one single CommitLog per node server. Like any other logging
mechanism, CommitLog is set to rolling after a certain size. (Why a single
CommitLog? Why not one CommitLog per column family?)

[52]

Chapter 2

Read Google's Bigtable paper, Bigtable: A Distributed Storage System

for Structured Data, available at http: //research.google.com/
’ archive/bigtable.html.

@

Figure 2.13: CommitLog, MemTable, and SSTable in action

Let's quickly go a bit deeper into implementation. All the classes that deal

with the CommitLog management reside under org.apache. cassandra.
db.commitlog package. The CommitLog singleton is a facade for all the operations.
The implementations of ICommitLogExecutorService are responsible for write
commands to the CommitLog file. Then there is a CommitLogSegment class. It
manages a single CommitLog file, writes serialized write (mutation) to CommitLog,
and it holds a very interesting property, cfLastWrite. cfELastWrite is a map with
key as the column family name and value as an integer that represents the position
(offset) in the CommitLog file where the last mutation for that column family

is written. It can be thought of as a cursor one cursor per column family. When
MemTable of a column family is flushed, the segments containing those mutations
are marked as clean (for that particular column family). And when a new write
arrives, it is marked dirty with offset at the latest mutation.

[53]

Cassandra Architecture

In the event of failure (hardware crash, abrupt shutdown), this is how CommitLog
helps the system to recover:

1. Each CommitLog segment is iterated in ascending timestamp.

2. Lowest ReplayPosition (offset till which the data is persisted in SSTable) is
chosen from SSTable metadata.

3. The log entry is replayed for a column family if the position of the log entry
is greater than the replay position in the latest SSTable metadata.

4. After the log replay is done, all the MemTables are force flushed to a disk,
and all the CommitLog segments are recycled.

MemTable

MemTable is an in-memory representation of column family. It can be thought of as
a cached data. MemTable is sorted by key. Data in MemTable is sorted by row key.
Unlike commitLog, which is append-only, MemTable does not contain duplicates.
A new write with a key that already exists in the MemTable overwrites the older
record. This being in memory is both fast and efficient. The following is an example:

Write 1: {k1: [{c1, v1}, {c2, v2}, {c3, v3}1}

In CommitLog (new entry, append) :
{k1: [{c1, vi},{c2, v2}, {c3, v3}1}

In MemTable (new entry, append) :
{k1: [{c1, v1i}, {c2, v2}, {3, v3}1}

Write 2: {k2: [{c4, va}l}

In CommitLog (new entry, append) :
{k1: [{c1, v1i}, {c2, v2}, {3, v3}1}
{k2: [{ca, v4}1}

In MemTable (new entry, append) :
{k1: [{c1, v1i}, {c2, v2}, {3, v3}1}
{k2: [{ca, v4}1}

Write 3: {k1: [{c1, v5}, {c6, v6}1}
In CommitLog (old entry, append) :

{k1: [{c1, v1i}, {c2, v2}, {3, v3}1}
{k2: [{ca, v4}1}

[54]

Chapter 2

{k1: [{c1, vs}, {c6, v6}1}

In MemTable (old entry, update):
{k1: [{c1, v5}, {c2, v2}, {c3, v3}, {c6, v6}1}
{k2: [{ca, va}l}

Cassandra Version 1.1.1 uses SnapTree (https://github.com/nbronson/snaptree)
for MemTable representation, which claims it to be "... a drop-in replacement for
ConcurrentSkipListMap, with the additional guarantee that clone () is atomic and
iteration has snapshot isolation." See also copy-on-write and compare-and-swap
(http://en.wikipedia.org/wiki/Copy-on-write, http://en.wikipedia.org/
wiki/Compare-and- swap).

Any write gets written first to CommitLog and then to MemTable.

SSTable

SSTable is a disk representation of the data. MemTables gets flushed to disk to
immutable SSTables. All the writes are sequential, which makes this process fast.
So, the faster the disk speed, the quicker the flush operation.

The SSTables eventually get merged in the compaction process and the data gets
organized properly into one file. This extra work in compaction pays off
during reads.

SSTables have three components: Bloom filter, index files, and datafiles.

Bloom filter

Bloom filter is a litmus test for the availability of certain data in storage (collection).
But unlike a litmus test, a Bloom filter may result in false positives: that is, it says
that a data exists in the collection associated with the Bloom filter, when it actually
does not. A Bloom filter never results in a false negative. That is, it never states that a
data is not there while it is. The reason to use Bloom filter, even with its false-positive
defect, is because it is superfast and its implementation is really simple.

Cassandra uses Bloom filters to determine whether an SSTable has the data for a
particular row key. Bloom filters are unused for range scans, but they are good
candidates for index scans. This saves a lot of disk I/O that might take in a full
SSTable scan, which is a slow process. That's why it is used in Cassandra, to avoid
reading many, many SSTables, which can become a bottleneck.

[55]

Cassandra Architecture

How Bloom filter works: Bloom filter in its simplest form can be assumed as a bit
array of length 1, with all elements set to zero. It also has k predefined hash functions
associated with it. See Figure 2.14 as shown:

O 14 1 1 0 O 1 0 1 O

Figure 2.14: Bloom filter in action. It uses three hash functions and sets the corresponding bit
in the array to 1 (it might already be 1)

Bloom
Filter,

To add a key to a Bloom filter (at the time of entering data in the associated collection),
k hashes are calculated using k predefined hash functions. A modulus of each hash
value is taken using array length 1, and the value at this array position is set to 1.

The following pseudo code shows what happens when a value v is inserted in
Bloom filter:

//calculate hash, mod it to get location in bit array

°

arrayIndexl = md5(v) % arrayLength

)

arrayIndex2 = shal(v) % arrayLength
) % arrayLength

arrayindex3 = murmur (v

//set all those indexes to 1

bitArray[arrayIndexl] = 1
bitArray[arrayIndex2] = 1
bitArray[arrayIndex3] = 1

To query the existence of a key in the Bloom filter, the process is similar. Take the
key and calculate the predefined hash values. Take mod with bit array length. Look
into those locations. If it turns out that at least one of those array locations have zero
value in it, it is sure that this value was never inserted in this Bloom filter and hence
does not exist in the associated collection. On the other hand, if all values are 1s,
this means the value may exist in the collection associated with this Bloom filter. We
cannot guarantee its presence in the collection because it is possible that there exists
other k keys whose ith hash function filled the same spot in the array as the jth
hash of the key that we are looking for.

[56]

Chapter 2

Removal of a key from Bloom filter as in its original avatar is not possible. One may
break multiple keys because multiple keys may have the same index bit set to 1 in
the array for different hashes. Counting Bloom filter solves these issues by changing
the bit array into an integer array where each element works as a counter; insertion
increments the counter and deletion decrements.

Effectiveness of Bloom filter depends on the size of the collection it is applied to.
The bigger the collection associated with the Bloom filter, the higher the frequency
of false positives (because the array will be more densely packed with 1s). Another
thing that governs Bloom filter is the quality of a good hash function. A good hash
function will distribute hash values evenly in the array, and it will be fast. One does
not look at the cryptic strength of the hash function here, so Murmur3 hash will be
preferred over SHA1 hash.

Index files

Index files are companion files of SSTables. The same as Bloom filter, there exists
one index file per SSTable. It contains all the row keys in the SSTable and its offset
at which the row starts in the datafile.

At startup, Cassandra reads every 128th key (configurable) into the memory
(sampled index). When the index is looked for a row key (after Bloom filter hinted
that the row key might be in this SSTable), Cassandra performs a binary search on
the sampled index in memory. Followed by a positive result from the binary search,
Cassandra will have to read a block in the index file from the disk starting from the
nearest value lower than the value that we are looking for.

Let's take an example; see Figure 2.16. Cassandra is looking for a row key 404. It is
not in MemTable. On querying the Bloom filter of a certain SSTable, Cassandra gets a
positive nod that this SSTable may contain the row. Next is to look into the SSTable.
But before we start scanning the SSTable or the index file, we can get some help from
the sampled index in memory. Looking through the sampled index, Cassandra finds
out that there exists a row key 400 and another 624. So, the row fragments may be in
this SSTable. But more importantly, the sampled index tells the offset about the 400
entry in the index file. Cassandra now scans the SSTable from 400 and gets to the
entry for 404. This tells Cassandra the offset of the entry for the 404 key in SSTable
and it reads from there.

Yes, may be.
Scan from 400

Sequential Scan

Bloom Filter in Memory Sampled Index in Memory Index File on Disc

Figure 2.15: Cassandra SSTable index in action

[57]

Cassandra Architecture

If you followed the example, you must have observed that the smaller the sampling
size, the more the number of keys in the memory; the smaller the size of the block
to read on disk, the faster the results. This is a trade-off between memory usage and
performance.

Datafiles

Datafiles are the actual data. They contain row keys, metadata, and columns (partial
or full). Reading data from datafiles is just one disk seek followed by a sequential
read, as offset to a row key is already obtained from the associated index file.

Compaction

As we discussed earlier in the section (See Figure 2.8), a read require may require
Cassandra to read across multiple SSTables to get a result. This is wasteful, costs
multiple (disk) seeks, may require a conflict resolution, and if there are too many,
SSTables were created. To handle this problem, Cassandra has a process in place,
namely, compaction. Compaction merges multiple SSTable files into one. Off

the shelf, Cassandra offers two types of compaction mechanism: Size Tiered
Compaction Strategy and Level Compaction Strategy (Chapter 5, Performance
Tuning, under the Choosing the right compaction strategy section). This section
stays focused on the Size Tiered Compaction mechanism for better understanding.

The compaction process starts when the number of SSTables on disk reaches a
certain threshold (N: configurable). Although the merge process is a little I/ O
intensive, it benefits in the long term with a lower number of disk seeks during
reads. Apart from this, there are a few other benefits of compaction as follows:

* Removal of expired tombstones (Cassandra v0.8+)
* Merging row fragments

* Rebuilds primary and secondary indexes

Merge is not as painful as it may seem, because SSTables are already sorted.
(Remember merge-sort?) Merge results into larger files, but old files are not deleted
immediately. For example, let's say you have compaction threshold set to four.
Cassandra initially creates SSTables of the same size as MemTable. When the number
of SSTables surpasses the threshold, the compaction thread triggers. This compacts
the four equal-sized SSTables into one. Temporarily, you will have two times the
total SSTable data on your disk. Another thing to note is that SSTables that get
merged have the same size. So, when the four SSTables get merged to give a larger
SSTable of size, say G, the buckets for the rest to-be-filled SSTables will be G each. So,
the next compaction is going to take an even larger space while merging.

[58]

Chapter 2

The SSTables, after merging, are marked as deleteable. They get deleted at a garbage
collection cycle of the JVM or when Cassandra restarts.

The compaction process happens on each node and does not affect others; this is
called minor compaction. This is automatically triggered, system controlled, and
regular. There is more than one type of compaction setting that exits in Cassandra.
We'll see them again in detail in Chapter 5, Performance Tuning, under the Choosing
the right compaction strategy section. Another league of compaction is called,
obviously, major compaction.

What's a major compaction? Major compaction takes all the SSTables, and merges
it to one single SSTable. It is somewhat confusing when you see that a minor
compaction merges SSTables and a major one does it too. There is a slight difference;
for example, if we take Size Tiered Compaction Strategy, it merges the tables of the
same size. So, if your threshold is four, Cassandra will start to merge when it finds
four same-sized SSTables. If your system starts with four SSTables of size X, after the
compaction you will end up with one SSTable of size 4X. Next time when you have
four X-sized SSTables you will end up with two 4X tables, and so on. (These larger
SSTables will get merged after 16 X-sized SSTables gets merged into four 4X tables.)
After a really long time you will end up with a couple of really big SSTables, a
handful of large SSTables, and many smaller SSTables. This is a result of continuous
minor compaction. So, you may need to hop a couple of SSTables to get data for

a query. Then, you run a major compaction and all the big and small SSTables get

merged into one. This is the only benefit of major compaction.

B Major compaction may not be the best idea after Cassandra v0.8+. 7
There are a couple of reasons for this. One reason is automated minor
compaction no longer runs after a major compaction is executed. So, this
adds up manual intervention or doing extra work (such as setting a cron

% job) to perform regular major compaction. The performance gain after

g major compaction may deteriorate with time. Major compaction creates
large SSTable. The larger the SSTable, the higher the false positive rate
from the Bloom filter. Large SSTable will have large index, it will take
longer to perform binary search for them.

Tombstones

Cassandra is a complex system with its data distributed among CommitLogs,
MemTables, and SSTables on a node. The same data is then replicated over replica
nodes. So, like everything else in Cassandra, deletion is going to be eventful.
Deletion, to an extent, follows an update pattern except Cassandra tags the deleted
data with a special value, and marks it as a tombstone. This marker helps future
queries, compaction, and conflict resolution. Let's step further down and see what
happens when a column from a column family is deleted.

[59]

Cassandra Architecture

A client connected to a node (coordinator node, but it may not be the one holding
the data that we are going to mutate), issues a delete command for a column C,

in a column family CF. If the consistency level is satisfied, the delete command

gets processed. When a node, containing the row key, receives a delete request, it
updates or inserts the column in MemTable with a special value, namely, tombstone.
The tombstone basically has the same column name as the previous one; the value

is set to UNIX epoch. The timestamp is set to what the client has passed. When a
MemTable is flushed to SSTable, all tombstones go into it as any regular column.

On the read side, when the data is read locally on the node and it happens to have
multiple versions of it in different SSTables, they are compared and the latest value
is taken as the result of reconciliation. If a tombstone turns out to be a result of
reconciliation, it is made a part of the result that this node returns. So, at this level,
if a query has a deleted column, this exists in the result. But the tombstones will
eventually be filtered out of the result before returning it back to the client. So, a
client can never see a value that is a tombstone.

For consistency levels more than one, the query is executed on as many replicas as
the consistency level. The same as a regular read process, data from the closest node
and a digest from the remaining nodes is obtained (to satisfy the consistency level).
If there is a mismatch such as the tombstone is not yet propagated to all the replicas,
a partial read repair is triggered, where the final view of the data is sent to all the
nodes that were involved in this read to satisfy the consistency level.

One thing where delete differs from update is a compaction. A compaction removes
a tombstone only if its (the tombstone's) garbage collection's grace seconds (t) are
over. This t is called GcGraceseconds (configurable). So, do not expect that a major
deletion will free up a lot of space immediately.

What happens to a node that was holding a data that was deleted (in other live
replicas) when this node was down? If a tombstone still exists in any of the replica
nodes, the delete information will eventually be available to the previously dead
node. But a compaction occurs at GCGraceSeconds, after the deletion will kick the
old tombstones out. This is a problem, because no information about the deleted
column is left. Now, if a node, that was dead all the time during GcGraceSeconds,
wakes up and sees that it has some data that no other node has, it will treat this data
as a fresh data and assuming a write failure, it will replicate the data over all the
other replica nodes. The old data will resurrect and replicate, and may reappear in
client results.

Although GCcGraceseconds is 10 days by default, before which any sane system
admin will bring the node back in, or discard the node completely. But it is
something to watch out for and repair nodes occasionally.

[60]

Chapter 2

Hinted handoff

When we last talked about durability, we observed Cassandra provides CommitLogs
to provide write durability. This is good. But what if the node, where the writes are
going to be, is itself dead? No communication will keep anything new to be written
to the node. Cassandra, inspired by Dynamo, has a feature called hinted handoff. In
short, it's the same as taking a quick note locally that X cannot be contacted. Here is
the mutation (operation that requires modification of the data such as insert, delete,
and update) M that will be required to be replayed when it comes back.

The coordinator node (the node which the client is connected to) on receipt of a
mutation/write request, forwards it to appropriate replicas that are alive. If this
fulfills the expected consistency level, write is assumed successful. The write requests
to a node that does not respond to a write request or is known to be dead (via gossip)
and is stored locally in the system.hints table. This hint contains the mutation.
When a node comes to know via gossip that a node is recovered, it replays all the
hints it has in store for that node. Also, every 10 minutes, it keeps checking any
pending hinted handoffs to be written.

Why worry about hinted handoff when you have written to satisfy consistency
level? Wouldn't it eventually get repaired? Yes, that's right. Also, hinted handoff
may not be the most reliable way to repair a missed write. What if the node that has
hinted handoff dies? This is a reason why we do not count on hinted handoff as a
mechanism to provide consistency (except for the case of the consistency level, ANY)
guarantee; it's a single point of failure. The purpose of hinted handoff is, one, to
make restored nodes quickly consistent with the other live ones; and two, to provide
extreme write availability when consistency is not required.

The way extreme write availability is obtained is at the cost of consistency. One
can set consistency level for writes to aNY. What happens next is, if all the replicas
that are meant to hold this value are down, Cassandra will just write a local hinted
handoff and return write success to the client. There is one caveat; the handoff can
be on any node. So, a read for the data that we have written as a hint will not be
available as long as the replicas are dead plus until the hinted handoff is replayed.
But it is a nice feature.

There is a slight difference where hinted handoff is stored in Cassandra's
different versions. Prior to Cassandra 1.0, hinted handoff is stored on one
% of the replica nodes that can be communicated with. From Version 1.0+
= (including 1.0), handoff can be written on the coordinator node (the node
which the client is connected to).

Removing a node from a cluster causes deletion of hinted handoff stored for that
node. All hints for deleted records are dropped.

[61]

Cassandra Architecture

Read repair and Anti-entropy

Cassandra promises eventual consistency and read repair is the process which does
that part. Read repair, as the name suggests, is the process of fixing inconsistencies
among the replicas at the time of read. What does that mean? Let's say we have three
replica nodes 2, B, and ¢ that contain a data x. During an update, X is updated to x1
in replicas A and B. But it is failed in replica ¢ for some reason. On a read request for
data X, the coordinator node asks for a full read from the nearest node (based on the
configured Snitch) and digest of data X from other nodes to satisfy consistency level.
The coordinator node compares these values (something like digest (full_X) ==
digest_from node_C).If it turns out that the digests are the same as the digests of
full read, the system is consistent and the value is returned to the client. On the other
hand, if there is a mismatch, full data is retrieved and reconciliation is done and

the client is sent the reconciled value. After this, in background, all the replicas are
updated with the reconciled value to have a consistent view of data on each node.
See Figure 2.1 as shown:

Repair I
4_

[Repar |

<_
Repair

c2 full(x)

wncile
digest(x)

4

Figure 2.16: Image showing read repair dynamics. 1. Client queries for data x, from a node C (coordinator). 2.
C gets data from replicas R1, R2, and R3; reconciles. 3. Sends reconciled data to client. 4. If there is a mismatch
across replicas, repair is invoked.

So, we have got a consistent view on read. What about the data that is inserted,

but never read? Hinted handoff is there, but we do not rely on hinted handoff for
consistency. What if the node containing hinted handoff data dies, and the data that
contains the hint is never read? Is there a way to fix them without read? This brings
us to the Anti-entropy architecture of Cassandra (borrowed from Dynamo).

Anti-entropy compares all the replicas of a column family and updates the replica to
the latest. This happens during major compaction. It uses Merkle tree to determine
discrepancy among the replicas and fixes it.

[62]

Chapter 2

Merkle tree

Merkle tree (A digital signature Based On A Conventional Encryption Function by
Merkle, R. (1988), available at http://www.cse.msstate.edu/~ramkumar/merkle2.
pdf .) is a hash tree where leaves of the tree hashes hold actual data in a column
family and non-leaf nodes hold hashes of their children. The unique advantage of
Merkle tree is a whole subtree can be validated just by looking at the value of the
parent node. So, if nodes on two replica servers have the same hash values, then

the underlying data is consistent and there is no need to synchronize. If one node
passes the whole Merkle tree of a column family to another node, it can determine
all the inconsistencies.

L] 5
hash hash) (hash ((hash] hash lﬁ\'m] hash

[Data1] (Data2)Data3) (Data4] (Datai] (Data2)(iEER) (Data4

Node 1 Node 2

Figure 2.17: Merkle tree to determine mismatch in hash values at parent nodes due to the difference in
underlying data

To exemplify, Figure 2.17 shows the Merkle tree from two nodes with inconsistent
data. A process comparing these two trees would know that there is something
inconsistent, because the hash value stored in the top node does not match. It can
descend down and know that the right subtree is likely to have an inconsistency.
And then the same process is repeated until it finds out all the data that mismatches.

[63]

Cassandra Architecture

Summary

By now, you are familiar with all the nuts and bolts of Cassandra. We have discussed
how the pressure to make data stores to web scale inspired a rather not-so-common
database mechanism to come to the mainstream; how CAP theorem governs the
behavior of such databases. We have seen that Cassandra shines out among its

peers. Then, we dipped our toes into the big picture of Cassandra read and write
mechanisms. This left us with lots of fancy terms. Further, we looked into the
definition of these words, components that drive Cassandra and their influence

on its behavior.

It is understandable that it may be a lot to take in for someone new to NoSQL
systems. It is okay if you do not have complete clarity at this point. As you start
working with Cassandra, tweaking it, experimenting with it, and going through
the Cassandra mailing list discussions or talks, you will start to come across stuff
that you have read in this chapter and it will start to make sense, and perhaps you
may want to come back and refer to this chapter to improve clarity.

It is not required to understand this chapter fully to be able to write queries,
set up clusters, maintain clusters, or do anything else related to Cassandra.
A general sense of this chapter will take you far enough to work extremely
well with Cassandra-based projects.

How does this knowledge help us in building an application? Isn't it just about
learning Thrift or CQL API and get going? You might be wondering why you need
to know about compaction and storage mechanism when all you need to do is to
deliver an application that has a superfast backend. It is not obvious at this point
why we are learning this, but as we move ahead with developing an application,
we will come to realize that knowledge about underlying storage mechanism helps.
In later chapters, when we will learn about deploying a cluster, performance tuning,
maintenance, and integrating with other tools such as Apache Hadoop, you may
find this chapter useful. At this point, we are ready to learn some of the common use
cases, and how they utilize various features of Cassandra. The next chapter is about
knowing how to use Cassandra.

[64]

Design Patterns

This chapter will introduce you to some of the most commonly used patterns in
application development. A lot of these models originated from the way Cassandra
internally stores the data and the fact that there is no relational integrity. The chapter
has two parts: one discusses data models and the patterns that emerge from the data
models, and the other part exploits Cassandra's non-relational ability to store large
amounts of data per row.

Although many patterns are discussed in this chapter, it certainly doesn't cover all
the cases. Coming up with an innovative modeling approach from a very specific
and obscure problem you encounter depends on your imagination. But no matter
what the problem is, the most efficient approach is to attack the problem by keeping
the following things in mind:

* Denormalize, denormalize, and denormalize: Forget about old-school 3NF
(read more about Normal Forms at https://en.wikipedia.org/wiki/
Database normalization#Normal forms). In Cassandra, the fewer the
network trips, the better the performance. Denormalize wherever you can for
quicker retrieval and let application logic handle the responsibility of reliably
updating all the redundancies.

* Rows are gigantic and sorted: The giga-sized rows (a row can accommodate
two billion columns) can be used to store sortable and sliceable columns.
Need to sort comments by timestamp? Need to sort bids by quoted price? Put
in a column with the appropriate comparator (you can always write your
own comparator).

* One row, one machine: Each row stays on one machine. Rows are
not sharded across nodes. So beware of this. A high-demand row
may create a hotspot.

Design Patterns

* From query to model: Unlike RDBMS, where you model most of the
tables with entities in the application and then run analytical queries to
get data out of it, Cassandra has no such provision. So you may need to
denormalize your model in such a way that all your queries stay limited
to a bunch of simple commands such as get, slice, count, multi_get,
and some simple indexed searches.

Before you go ahead with this chapter, please note that the data
model uses Pycassa, a Python client for Cassandra, and the Cassandra
command-line interface shell called cassandra-cli to demonstrate
various programming aspects of Cassandra. Also, it might be a good
idea to learn about the Thrift interface for Cassandra. It will help you
understand when we talk about GET, MULTIGET SLICE, SLICE, and
other operations. At the time of writing of this book, CQL 3 was in

its beta, so the examples are done using the Thrift interface. Thrift is
supported across all the versions of Cassandra and will continue to
be supported in future versions. CQL 3 is poised to be the preferred
interfacing language from Cassandra 1.2 onward. Here are a couple of
resources from the book that can help you:

* Refer to the online documentation and Apache Cassandra Wiki
for a quick tutorial on Thrift API, Pycassa, and cassandra-cli.

* Refer to Chapter 9, Introduction to CQL 3 and Cassandra 1.2 for an
introduction to CQL 3 and how to think in terms of CQL 3 when
you are coming from a Thrift world.

* Itis very important to have full code in hand while working
through this book. The examples in this chapter are just a
relevant snippet from the full code that fits into the context.

The full code for all examples and other relevant material can
be downloaded from the author's GitHub account (https://
github.com/naishe/mastering cassandra) or the
download page for this book on the publisher's website
(http://www.packtpub.com/support).

The Cassandra data model

To a person coming across from the relational database world to the NoSQL world,
it would seem like a pretty featureless system. First, there is no relational integrity,

then there is a whole different approach for defining a query before modeling your
tables, which is quite the opposite of what we learned, that is, to model entities and
then think of queries.

[66]

Chapter 3

It may be confusing if you keep thinking in terms of a relational setup and
translating it to an equivalent Cassandra representation. So forget about tables,
foreign keys, joins, cascade delete, update on insert, and the like, when we speak in
the context of Cassandra. If it helps, think of a problem you are dealing with. For
example, you need to show number of votes by day and by city. We cannot run a
sort or a group by; instead, we will have a column family, which will have counter
as the data type and date as column names (at this point, if you start to think like
an RDBMS person, you'll think how would you create a table whose columns are
dynamic! Well, you can't, but you have smart functions there: sort and group. In
Cassandra, your application manages these). Every time a vote is cast for city A, we
look up the column family, go to the row by its city name, then find and update the
column by date. If you did not understand this quick tour, it's fine. We'll see them
again later in this chapter.

4 Keyspace)
: 1
Column Family
4 N\
RowKey | ColumnNamel | | ColumnName2 | | ColumnName3
Valuel Value2 Value3
AN J
4 N\
Userid#123 | . email | | password | | user_name
jdoe@acme.com d131dd02c5ebeecsd John Doe
AN J
- J
Figure 3.1: The Cassandra data model
CQL 3 may be a big relief to people from the relational background. It
@@j%‘\ lets you express queries and schema in a way much closer to SQL. The
g internal representation of the data may be different.

In the heart of Cassandra lie three structures: column family, column, and super
column. There is a container entity for these three entities called keyspace. In our
discussion, we'll use the ground-up approach where we will start with the smallest
unit, the column, and go up to the top-level container, Keyspace . Column.

[67]

Design Patterns

The column is the atomic unit of the Cassandra data model. It is the smallest
component that can be operated on. Columns are contained within a column family.
A column is essentially a key-value pair. The word column is confusing; it creates

a mental image of a tabular structure where a column is a unit vertical block that
stores the value referred by the heading of the column. This is not entirely true

with Cassandra. Cassandra's columns are best represented by a tuple with the first
element as a name/key and the second as a value. The key of a column is commonly
referred to as a column name or a column key.

A column can be represented as a map of key/column name, value, and timestamp. A
timestamp is used to resolve conflicts during read repair or to reconcile two writes that
happen to the same column at the same time; the one written later wins. A timestamp
is a client-supplied data, and since it is critical to write a resolution, it is a good idea

to have all your client application servers clock-synchronized (refer to NTP, http://
en.wikipedia.org/wiki/Clock_synchronization#Network Time Protocol).

A column, much like a relational system
{

name: "username",

value: "Leo Scott",

timestamp: 1366048948904

A column with its name as timestamp, value as page-viewed
{
name: 1366049577,
value: "http://foo.com/bar/view?itemId=123&ref=email",
timestamp: 1366049578003

}

This is an example of two columns; the first looks more like a traditional column,
and one would expect each row of the users column family to have one userName
column. The latter is more like a dynamic column. Its name is the timestamp when
a user accesses a web page and the value is the URL of the page.

Further in this book, we'll ignore the t imestamp field whenever we refer to a column
because it is generally not needed for application use and is used by Cassandra
internally. A column can be viewed as shown in the following figure:

name
value

Figure 3.2: Representing a column

[68]

Chapter 3

The counter column

A counter column is a special-purpose column to keep count. A client application
can increment or decrement it by an integer value. Counter columns cannot be mixed
with regular or any other column types (as of Cassandra v1.2). When we have to

use a counter, we either plug it into an existing counter column family or create a
separate column family with the validator as CounterColumnFamily.

Counters require tight consistency, and this makes it a little complex for Cassandra.
Under the hood, Cassandra tracks distributed counters and uses system-generated
timestamps. So clock synchronization is crucial.

The counter column family behaves a little differently than the regular ones.
Cassandra makes a read once in the background when a write for a counter column
occurs. So it reads the counter value before updating, which ensures that all the
replicas are consistent. We can leverage this property while writing since the data is
always consistent. While writing to a counter column, we can use a consistency level,
ONE. We know from Chapter 2, Cassandra Architecture, that the lower the consistency
level, the faster the read/write operation. The counter writes can be

very fast without risking a false read.

Clock synchronization can easily be achieved with NTP
%j%“ (http://www.ntp.org) daemon (ntpd). In general, it's
g a good idea to keep your servers in sync.

Here is an example of a column family with counter columns in it and the way to
update it:
[default@mastering cassandra] create column family votes by candidate
with
default validation class = CounterColumnType and

key validation class = UTF8Type and
comparator = UTF8Type;

aB84caeec-b3dd-3484-9011-5c292e04105d

[default@mastering cassandra] incrvotes by candidate['candidatel']
['voterl'] by 5;

Value incremented.

[-- snip multiple increment commands --]

[69]

Design Patterns

[default@mastering cassandra] list votes by candidate;

Using default limit of 100

Using default column limit of 100
RowKey: candidate?2

=> (counter=voterl, value=3)
RowKey: candidatel

=> (counter=voterl, value=5)

=> (counter=voter2, value=-4)

2 Rows Returned.

There is an optional attribute that can be used with counter columns called
replicate on write. When set to true, this attribute tells Cassandra to write to all
the replicas irrespective of the consistency level set by the client. It should always be
set to true for the counter columns. The default value is true for counter columns
(except for the Versions 0.8.1 and 0.8.2).

Please note that counter updates are not idempotent. In the event of
a write failure, the client will have no idea if the write operation
% succeeded. A retry to update the counter columns may cause the
columns to be updated twice —leading to the column value to be
incremented or decremented by twice the value intended.

The expiring column

A column is referred to as an expiring column if an optional time-to-live (TTL)
attribute is added to it. The expiring column will be deleted after the TTL is reached
from the time of insertion. This means that the client cannot see it in the result.

On insertion of a TTL-containing column, the coordinator node sets a deletion
timestamp by adding the current local time to the TTL provided. The column expires
when the local time of a querying node goes past the set expiration timestamp. The
deleted node is marked for deletion with a tombstone and is removed during a
compaction after the expiration timestamp or during repair. Expiring columns take
eight bytes of extra space to record the TTL. Here is an example:

Create column family normally

[default@mastering cassandra] create column family user session
with
default validation class = UTF8Type and

[70]

Chapter 3

key validation class = UTF8Type and
comparator = UTF8Type;

0055e984-d3e9-3b74-9a48-89b63a6e371d

Add a regular column

[default@mastering cassandra] set user session['userl'] ['keep
loggedin'] = 'false';

Add a column with 60s TTL
[default@mastering cassandra] set

user session['userl'] ['session data'] = '{sessionKey: "ee207430-a6b2-
1le2-9e96-0800200c9a66", via: "mobileApp"}'

with ttl = 60;

Retrieve the column family data immediately
[default@mastering cassandra] list user session;

RowKey: userl

=> (column=keep loggedin, value=false, ..)

=> (column=session data, value={sessionKey: "ee207430-a6b2-11e2-9e96-
0800200c9a66", via: "mobileApp"}, .., ttl=60)

Wait for more than 60 seconds, retrieve again
[default@mastering cassandra] list user session;

RowKey: userl
=> (column=keep loggedin, value=false, ..)

A few things to be noted about expiring columns:

e The TTL is in seconds, so the smallest TTL can be one second

* You can change the TTL by reinserting the column (that is, read the column,
update the TTL, and insert the column)

* Although the client does not see the expired column, the space is kept
occupied until the compaction is triggered, but note that tombstones
take a rather small space

Expiring columns can have some good utility; they remove the need of constantly
watching cron-like tasks that delete the data that has expired or not required any
more. For example, an expiring shopping coupon or a user session can be stored
with a TTL.

[71]

Design Patterns

The super column

A super column is a column containing more columns. It contains an ordered map of
columns and subcolumns. It is often used for denormalization by putting multiple
rows of a column family in one single row, which can be used as a materialized view
on data retrieval. Refer to the following diagram:

i Apple | Samsung
Mobiles| (sorted) > | e
y ‘l iPhone 4 |H| iPhone 4s | :‘lGaIaxy S2+|H| Galaxy S4 |
; /n/i4 /m/ids i fmes2p i /mvesd ...
__ _______________________________ _/J | _____________
~~ ——
Super Column Column

Figure 3.2: A row of super columns

The diagram shows a row of super columns that contains one brand per super
column, and each super column has subcolumns that contain models of the brands
corresponding to that super column. Each subcolumn, in turn, holds values of

the relative URL. So where can it be used? One good place is online shops such as
Amazon. They show drop downs of categories such as books, mobiles, and many
more. You can hover your mouse over the mobiles' menu, and a submenu shows up
with brand names such as Apple, Samsung, and many more. You scroll down to the
submenu to find links to the detail pages for each model of the mobile. To show this,
all you needed to do is click on the mobile row, which contains the super columns
that contain the models with URLs.

Although the idea of super columns seems pretty lucrative, it has some
serious drawbacks:

* Toread a single subcolumn value, you will need to deserialize all the
subcolumns of a super column

* A secondary index cannot be created on the subcolumns

. CQL 3 does not support super columns. DataStax
% (http://www.datastax.com) suggests not using a super column.
L Use composite keys instead of super columns. It performs better than
a super column and covers most of the use cases for super columns.

[72]

Chapter 3

The column family

A column family is a collection of rows where each row is a key-value pair. The
key to a row is called a row key and the value is a sorted collection of columns.
Essentially, a column family is a map with its keys as row keys and values as an
ordered collection of columns. To define a column family, you need to provide a
comparator that determines the sorting order of columns within a row.

Internally, each column family is stored in a file of its own, and there is no relational
integrity between two column families. So one should keep all related information
that the application might require in the column family.

In a column family, the row key is unique and serves as the primary key. It is used to
identify and get/set records to a particular row of a column family.

Although a column family looks like a table from the relational database world,

it is not. When you use CQL, it is treated as a table, but having an idea about the
underlying structure helps in designing —how the columns are sorted, sliced, and
persisted, and the fact that it's a schema-free map of maps.

LA (nw) s)
2013-04-17
9502 102 || 31415 || 11011 |
CA SF
2013-04-18
2 9
[N N J

Figure 3.3: A dynamic column family showing daily hits on a website; each column represents a city, and the
column value is the number of hits from that city

There are dynamic and static column families also known as wide and narrow
column families respectively, but I will follow the dynamic and static terminologies
here. These are two design patterns in Cassandra that take advantage of its flexibility
to fit into application requirements.

A dynamic column family utilizes the column family's ability to store an arbitrary
number of columns (key-value pairs). A typical use of a dynamic column family is

for statistics aggregation, for example, to store the number of hits to a certain web
page from various cities on a day-by-day basis. It will be cumbersome to make a

static column family with all the cities of the world as the column names. (Plus, the
developer can get some coffee in the time it would take to type in all the cities.) A time
series data may be another example. Figure 3.3 displays a dynamic column family.

[73]

Design Patterns

The following is the syntax:

[default@mastering cassandra] create column family daily hits
with

default validation class = CounterColumnType

and key validation class = LongType

and comparator = UTF8Type;

Let's take a moment to see what's going on here. We ask Cassandra to create a
column family named daily_hits whose column values will be validated for
CounterColumnType because that's what default validation classis. The
row keys are going to be of the type dictated by key_validation_class, which is
LongType, because we are storing the Unix epoch (the time since January 01, 1970)
in days. And finally, the column names will be sorted by comparator, which is the
UTF8Type text. We'll look into validators and comparators shortly.

A static column family is vaguely close to a table in relational database systems.

A static column family has some predefined column names and their validators.
But this does not prevent you from adding random columns on the fly. A column
family that represents a user is a typical example of a static column family. The
major benefit of a static family is validation. You define validation class ona per
column basis, and so you can control what column should have what data type. The
client will reject an incompatible data type. Consider the following code:

Typical definition of static column family
[default@mastering cassandra] create column family users
with

comparator = UTF8Type and

key validation class = UTF8Type and
column metadata = [

{column name: username, validation class: UTF8Type},
column name: email, validation class: UTF8Type},

{column name: last login, validation class: DateType},
{column name: is admin, validation class: BooleanType}

] ’

Insert something valid

[default@mastering cassandra] set users|['username'] ['userl'] = 'Leo
Scott';

something invalid

[default@mastering cassandra] set users['userl']['is admin'] = 'Yes';

java.lang.RuntimeException: org.apache.cassandra.db.marshal.
MarshalException: unable to make boolean from 'Yes'

[74]

Chapter 3

extend to undefined fields

[default@mastering cassandra] set users['userl']['state'] =
utf8 ('VA') ;

Observe

[default@mastering cassandra] get users['userl'];

=> (column=state, value=VA, timestamp=...)

=> (column=username, value=Leo Scott, timestamp=...)

Keyspaces

Keyspaces are the outermost shells of Cassandra containers. It contains column
families and super column families. It can be roughly imagined as a database of a
relational database system. Its purpose is to group column families. In general, one
application uses one keyspace, much like RDBMS.

Keyspaces hold properties such as replication factors and replica placement
strategies, which are globally applied to each column family in the keyspace.
Keyspaces are global management points for an application. Here is an example:

[default@unknown] create keyspace mastering cassandra
. with placement strategy = SimpleStrategy
. and strategy options = {replication factor: 1};

We will discuss more on storage configurations in Chapter 4, Deploying a Cluster.

Data types — comparators and validators

Comparators and validators are the mechanisms used to define and validate data types
of components (row key, column names, and column values) in a column family:

* Validators: Validators are the means to fix data types for row keys and
column values. In a column family, the key_validation_class command
specifies the data type for row keys, default_validation class specifies
the data type of column values, and the column_metadata property is used
to specify the data type for individual column names.

* Comparators: Comparators specify the data type of a column name. In a row,
columns are sorted; this property determines the order of the columns in a
row. The comparator is specified by a comparator keyword while creating
the column family.

[75]

Design Patterns

In a dynamic column family, where any number of columns may be present,

it becomes crucial to decide how the columns will be sorted. An example of this
would be a column family that stores the daily stock values minute-by-minute in
the row. A natural comparator for this case will be DateType. Since the columns
will be sorted by a timestamp, a slice query can pull all the variation to a stock

value from 11 A.M. to 1 P.M.

For static column families, columns' sorting does not matter that much and the
column name is generally a character string.

If comparators and validators are not set, hex byte array (BytesType) is assumed.
Although comparators and validators seem the same from their description, one
crucial difference between them is that validators can be added or modified in a
column definition at any time but comparators can't. So a little thinking on how the
columns need to be sorted before implementing the solution may be worth the effort.

As of Cassandra 1.2, the following basic data types are supported (refer to
http://www.datastax.com/docs/1.2/cqgl_cli/using cli#about-data-types-

comparators-and-val idators):

Type CQL type Description
AsciiType ascii US-ASCII character string
BooleanType boolean True or false
BytesType blob Arbitrary hexadecimal bytes (no validation)
CounterColumnType counter Distributed counter value (8-byte long)
DateType timestamp Date plus time, encoded as 8 bytes since epoch
DecimalType decimal Variable-precision decimal
DoubleType double 8-byte floating point
FloatType float 4-byte floating point
InetAddressType inet IP address string in xxx . xxx . xxx . xxx form
Int32Type int 4-byte integer
IntegerType varint Arbitrary-precision integer
LongType bigint 8-byte long
TimeUUIDType timeuuid Type 1 UUID only (CQL3)
text,
UTF8Type varchar UTF-8 encoded string
UUIDType uuid Type 1 or type 4 UUID

[76]

Chapter 3

Cassandra 1.2 also supports collection types, such as set, 1ist, and map. This means
one can add and retrieve collections without having ad hoc methods such as having
multiple columns for multiple shipping addresses with column names patterned as
shipping_addrl, shipping_addr2.. ., or just bundling the whole set of shipping
addresses as one long UTF8Type deserialized JSON.

Writing a custom comparator

With the number of comparators provided by Cassandra, chances are that you'll
never need to write one of your own. But if there must be some column ordering that
cannot be achieved or worked around using the given comparators, you can always
write your own. For example, sorting with UTF8Type is case sensitive; capital letters
come before small letters as seen in the following code:

[default@mastering cassandra] list daily hits;
RowKey: 15812

=> (counter=CA, value=9502)

=> (counter=MA, value=123)

=> (counter=NY, value=31415)

=> (counter=la, value=6023)

=> (counter=ma, value=43)

One may want to have a case-insensitive sorting. To write a custom comparator,

you need to extend org.apache.cassandra.db.marshal.AbstractType<T> and
implement the abstract methods. Once you are done with your comparator and
supporting classes, package them into a JAR file and copy this file to Cassandra's 1ib
directory on all the servers you want this comparator to be on. It may be a good idea
to look into the org.apache.cassandra.db.marshal package and observe how the
comparators are implemented. Here is an example. The following snippet shows a
custom comparator that orders the columns by the length of the column name, which
behaves mostly like UTF8Type except for the ordering;:

public class LengthComparator extends AbstractType<Strings> {

public static final LengthComparator instance = new
LengthComparator () ;

public int compare (ByteBuffer ol, ByteBuffer o2) {

return (getString(ol).length() - getString(o2) .length()) ;

// Rest of the methods utilize UTF8Type for operations

}

[77]

Design Patterns

You can view the complete code online. One thing to note is if you don't declare
an instance singleton, Cassandra will throw an exception at the startup. Compile
this class and put the JAR or .class file in the $CASSANDRA_HOME/1ib folder. You
can see the JAR file listed in the Cassandra startup log in the classpath listing.
Here is an example of a column family creation, insertion, and retrieval using this
comparator. You will see that the columns are ordered in the increasing length of
their column names:

Create Column Family with Custom Comparator
[default@MyKeyspace] CREATE COLUMN FAMILY custom comparator

WITH
KEY VALIDATION CLASS = LongType AND
COMPARATOR = 'in.naishe.mc.comparator.LengthComparator' AND

DEFAULT VALIDATION CLASS = UTF8Type;

Insert some data

[default@MyKeyspace] SET custom comparator[l] ['hello'] = 'world';
[default@MyKeyspace] SET custom comparator[1l] ['hell'] = 'whirl';
[default@MyKeyspace] SET custom comparator[l] ['he'] = 'she';
[default@MyKeyspace] SET custom comparator[1l] ['mimosa pudica'] = 'some
plant';

[default@MyKeyspace] SET custom comparator[l] ['a'] = 'smallest col
name' ;

Get Data, columns are ordered by column name length
[default@MyKeyspace] get custom comparator[1];

=> (column=a, value=smallest col name, timestamp=1375673015868000)
=> (column=he, value=she, timestamp=1375672967041000)

=> (column=hell, value=whirl, timestamp=1375672959028000)

=> (column=hello, value=world, timestamp=1375672928673000)

=> (column=mimosa pudica, value=some plant,
timestamp=1375672990036000) Indexes

Indexing a database is a means to improve the retrieval speed of data. Before
Cassandra 0.7, there was only one type of index — the default one —which is
the index on row keys.

If you are coming from the RDBMS world, you may be a bit disappointed with what
Cassandra has to offer in terms of indexing. Cassandra indexing is a little inferior.

It is better to think of indexes as hash keys. In this topic, we'll discuss a little on

the primary index or row key index, then we'll move to use cases where we'll see a
couple of handy techniques to create an index on column names (secondary index)
like effect. Next is the secondary index; we'll discuss a little on it, its pros and cons,
and the help that it provides in keeping the boilerplate code down.

[78]

Chapter 3

The primary index

A primary key or row key is the unique identifier of a row, in much the same

way as the primary key of a table from a relational database system. It provides
quick and random access to the rows. Since the rows are sharded among the servers
of the ring, each server just has a subset of rows, and hence, primary keys are
distributed too. Cassandra uses the partitioner (cluster-level setting) and replica
placement strategy (keyspace-level setting) to locate the respective node in the ring
to access a particular row. On a node, an index file and sample index is maintained
locally that can be looked up via binary search followed by a short sequential read
(see Chapter 1, Quick Start).

The problem with primary keys is that their location is governed by partitioners.
Partitioners use a hash function to convert a row key into a unique number (called
token) and then write/read that key to/from the node that owns this token. This
means that if you use a partitioner that does not use a hash that follows the key's
natural ordering, chances are that you can't sequentially read the keys just by accessing
the next token on the node. The following snippet shows an example of this. The row
keys 1234 and 1235 should naturally fall next to each other if they are not altered (or

if an order-preserving partitioner is used). However, if we take a consistent MD5 hash
of these values, we can see that the two values are far away from each other. There is a
good chance that they might not even live on the same machine.

ROW KEY | MD5 HASH VALUE

________ o o o o o
1234 | 81dc9bdb52d04dc20036dbd8313ed055
1235 | 9996535e07258a7bbfd8b132435c5962

Let's take an example of two partitioners: ByteOrderPartitioner that preserves
lexical ordering by bytes, and RandomPartitioner that uses MD5 hash to generate
arow key. Let's assume that we have a users_visits column family with a row
key, <city> <userIds.ByteOrderPartioner will let you iterate through rows to
get more users from the same city in much the same way as a Sortedmap interface.
(Refer to http://docs.oracle.com/javase/6/docs/api/java/util/SortedMap.
html). However, in RandomPartioner, the key being the MD5 hash value of
<city>_<userIds, the two consecutive userIds from the same city may lie on

two different nodes. So, we cannot just iterate and expect grouping to work, like
accessing entries of HashMap.

It may be useful to keep in mind that queries, such as the range slice query, pull
rows from the start row key to the end row key provided by the user. If the user is
not using an order-preserving partitioner, the rows returned will not be ordered by
the key; rather, they'll be orders by the partitioner that is set.

[79]

Design Patterns

We will see partitioners in more detail in Chapter 4, Deploying a Cluster,
section Partioners. But using the obviously better-looking partitioner,
ByteOrderPartitioner, is assumed to be a bad practice. There are a couple
of reasons for this, the major reason being an uneven row key distribution
across nodes. This can potentially cause a hotspot in the ring.

The wide-row index

For any real application, one necessarily needs information grouped by criteria and
to be able to be searched by search criteria. Secondary indexes came into existence in
Version 0.7, so the natural question is how were these types of requirements fulfilled
before it? The answer is a wide-row index, aka manual index, aka alternate index.
Basically, we create a column family that holds the row keys of other column families
as its columns, and the row key of this column family is the value we wanted to group
by. We can use this in the city-user example that we discussed in the previous section.
Instead of relying on the primary key, we can create a column family that has city as
the row key and user ID as the column name (and probably, username as the column
value to cache it in such a manner that we do not pull data from the parent column
family unless we need more details other than the username) —all done. Whenever
you need to get users by their city names, you can select the row of that city.

Before we go ahead and discuss some of the patterns using a wide-row index, the
one thing that should be kept in mind is that a lot of these cases can be handled by
secondary indexes, and it would be worth counting the pros and cons of using a
wide-row pattern versus a secondary index.

Simple groups

The idea is simple: you create a column family with its row keys as the name of the
group (the group by predicate in SQL) and the column names as the row keys of the
column family that you wanted to group.

Let's take an example of a social networking application that lets users create groups
and other people can join it. You have a users column family and groups column
family. You make another column family that holds a user per group and call it
group_users. This will have the group's row key as the row key, and the user's row
key as the column name. Does it ring a bell? It's the same thing as a join table or link
table in a many-to-many relationship in the RDBMS world.

[80]

Chapter 3

Another use case is grouping by field. Let's say your application provides hotel
search facilities where you can select a city and see the hotels. Or perhaps your
video-streaming website offers a tagging mechanism as a part of video metadata and
you wanted users to click on the tags and see the videos with the same tags —it is

the same logic. We create a column family named tag_videos where each row key
is a tag and the columns are row keys of the videos columns' family. On clicking a
tag, we just load the whole row from tag_videos for that tag and show it to the user
(with pagination, perhaps):

tag_videos column family

e N

271 314159
Euler L Pie is lie

Funny

. J/
T

2 | e023 |
)

The answer JL The Mole coe

5804 [9324

H Foo
bar/ baz " Jeee
v BN
Tags as row keys Video Id as column names Video title as column values

Figure 3.4: An example of grouping by tag name

One improvement can be made with this mechanism to add some meaningful values
to the columns. For example, it may be worth storing the video title as the column
value. This will save an extra query to the videos table. Just pull the columns, and
show the names. Pull more data when and if required.

Sorting for free, free as in speech

Unlike row keys, columns are sorted by the comparator that you provide. If you
provide a UTF8Type comparator, the columns will be sorted in a string order. In the
video tag example, you may want videos to be sorted by the username of the user who
uploaded the video. You may just set up the column key as <userName>: <videoId>
(note that the separator can be confusing if either of the values that make a column
name have a separator as a part of it) and now, you get videos for a given tag sorted by
the username. You can range slice the column or further filter the videos for a given tag
by a particular user. Here is a sample of the code:

#Get hold of CFs
vidCF = ColumnFamily (con, 'videos')
tagCF = ColumnFamily(con, 'tag videos')

[81]

Design Patterns

#insert in videos as well as tag index CF
vidCF.insert (

rowKey, #<title>:<uploaders>
'title':title,

'user name':uploader,
'runtime in sec':runtime,

'tags _csv': tags #this is CSV string of tags

1)

for tag in tags.split(','):
tagCF.insert (
tag.strip() .lower (), #index CF's row-key = tag
{
#key=<uploader> <rowKeyOfVideosCF>, value=<title>
uploader+ " " + rowKey: title

1
)i

#retrieve video details grouped by tag

tag = 'action'
movies = tagCF.get(tag.strip() .lower())
for key, val in movies.iteritems() :
vidId = key.split (' ') [1]
movieDetail = vidCF.get (vidId)
print ''!'

{{
user: {0},
movie: {1}
tags: {2}

’

}}' ' format (movieDetail ['user name'], movieDetail['title'],
movieDetail['tags csv'])

#Result for tag='action' sorted by user name
user: Kara,
movie: Olympus Has Fallen,
tags: action, thriller

user: Kara,

movie: The Croods,

[82]

Chapter 3

tags: animation, action, mystery

user: Leo Scott,
movie: Oblivion,
tags: action, mystery, sci-fi

user: Sally,
movie: G.I. Joe: Retaliation,
tags: action, adventure

}

Push all in one: In Cassandra, there is often more than one way to skin a cat. Our
previous approach uses multiple rows, one for each tag name. But you can very
well push all the tags in one single row. You may just have one single row, perhaps
named tag_index, with column names as <tag>_ <videoIds and comparator as
UTF8Type. Since the columns are sorted, you can slice the row with column names
starting with the desired tag.

tag_videos column family

_ [Fo0:5894 | Fo0:9324 | Funny:271 |[Funny:314159| Funny:42 |[Funny:6023 |
tag_index
| bar || baz || Euler || Pie is lie || The answer || The Mole l

o00

Figure 3.5: Indexing all videos by tag in one row

There are a couple of drawbacks with this approach: one, a row is entirely

stored on one machine (and the replicas too). If it's a frequently accessed index,
these machines may get excessively loaded. Two, the number of columns per row

is limited to approximately two billion, and if you happen to be having more videos,
this may be an issue.

An inverse index with a super column family

In the previous section, we saw a common pattern where we put column names as

a concatenated string of two properties of another object —username and video ID.
In an even simpler version, we just dumped all the movies into one row with the
column name as a tag appended with a separator and video ID. One thing that was
etched in the previous implementation is the fact that if our chosen separator is a part
of either of the strings that we concatenate, it will be a nightmare splitting them to
get an attribute value. What if there are more than two attributes to create a column
name? Conjure a super column, a column of columns.

[83]

Design Patterns

The idea is simple: a super column is a level two nesting. Let's work out some
tagging problems using a super column. It may not seem super advantageous
over what we had with the string concatenation mechanism, but we can see
cleaner decoupling here.

tag_videos super column family

Ui (Kara w (Thomas w
o761 |[sos0 |||| 3845 || 1234 |
ThePort || Apache ||| Rendy || Sequel |
—— (XX)
7000
Strom coo
(YY)
YY)
Figure 3.6: An inverse index with a super column
The code is as follows:
Tag insertion in super-column
for tag in tags.split(','):
tagCF.insert (
tag.strip() .lower (), #row-key = tag name
{
uploader: { #level 1 nesting = uploader name
vidId: title #level 2 nesting: key=videoId, value=title
}
}
)
Fetch videos by tag, grouped by users
tagCF = ColumnFamily (connection, 'tag videos sup')
movies = tagCF.get(tag.strip() .lower())
for key, val in movies.iteritems() : #level 1 iteration
username = key
Some string formatting print '''
{{
{0}:''' . format (username)
for k, v in val.iteritems() : #level 2 iteration
print '''\t{{{0}=> {1}}}'''.format(k, v)

[84]

Chapter 3

print ''!'

}l!l

Result
tag: action
{
Kara:
{Olympus Has Fallen:Kara=> Olympus Has Fallen}
{The Croods:Kara=> The Croods}

Leo Scott:
{Oblivion:Leo Scott=> Oblivion}

Sally:
{G.I. Joe: Retaliation:Sally=> G.I. Joe: Retaliation}
{Scary Movie:Sally=> Scary MoVie}

}

This is the exact same code as we had in the previous section with two exceptions:

* It uses a super column to store and retrieve the tag index

* We did not have to use string operations to fetch the video ID

Let's see what we gain by using super columns. One thing that's clear is that we
avoided the dangers of manually splitting strings. We have a cleaner structure now.
This is a typical use case for super columns.

All good again! Let's think of the situation where we dumped all the tags in a
row. Can we convert that into a super-column-based index to something like the
following snippet?

tag_index:

[

tagl: [
{userl: [{rowKeyl: videoIdl}, {rowKey2: videoId2},...1},
{user2: [{rowKey3: videoId3}, {rowKey4: videoId4},...l},
]l
tag2: [

[85]

Design Patterns

{user4: [{rowKey9: videoId9}, {rowKey7: videoId7},...1},
{user2: [{rowKey3: videoId3}, {rowKey8: videoId8},...1},

1,

]

Basically, we are asking for one more level of nesting, that is, subcolumns, in order
to be able to have a column family or subcolumns of a subcolumn. Unfortunately,
Cassandra just provides two levels of nesting. This takes us back to having some sort
of ad hoc mechanism at a subcolumn level, something like having subcolumn names
as <username>:<videoIds.

An inverse index with composite keys

The super-column-based approach did give some relief, but it is not the best solution.
Plus, it has its own limitation such as one-level nesting. Subcolumns are not sorted;
they are just a bunch of unordered key-value pairs. Super columns, although not
deprecated, are not really preferred by the Cassandra community. The general
consensus is to use composite columns and avoid super columns. It is a better,
cleaner, and elegant solution and it scales much better.

Composite column names: Composite column names are made of

multiple components. They can be viewed as ordered tuples of multiple types.

For example, this is a composite column name: (username, city, age, SSN,
loginTimestamp). The components are UTF8Type, UTF8Type, IntType, UTF8Type,
and DateType, in that order.

There is a very interesting long-hauled discussion on the Cassandra
%ji\ bug tracker. You can observe how CompositeType evolved at
’ https://issues.apache.org/jira/browse/CASSANDRA-2231.

Composite types behave much in the same way as normal comparators do: columns
are sorted by them, names are validated with definitions, and slice queries can

be executed. Plus, you don't need to manage the ad hoc arrangement for keys

with multiple components such as in string concatenation. Composite keys are
deserialized as a tuple and easily used on the client side.

The sorting of composite comparators works in the same way as the SQL query
order by fieldl, field2, ... does.Columns getsorted by the first component
of the key and then within each first component, it is ordered by the second
component, and so on. Validation is done for each component individually. And
slice can be applied to each component in the order in which they appear in the
column family definition.

[86]

Chapter 3

Out of the box, Cassandra provides two composite types: static CompositeType,
which can have a fixed number of components that are ordered, and
DynamicCompositeType, which can have any number of components of all the
types defined at the column family creation in any order. So let's use the static
CompositeType column names to get rid of super columns and string concatenation
as shown in the following code snippet:

Tag insertion in super-column
for tag in tags.split(','):
tagCF.insert (

tag.strip() .lower (), #row-key = tag name
{
uploader: { #level 1 nesting = uploader name
rowKey: title #level 2 nesting:

key=videoId, value=title

Fetch videos by tag, grouped by users
tagCF = ColumnFamily(con, 'tag videos sup')
movies = tagCF.get(tag.strip() .lower())

for key, val in movies.iteritems(): #level 1 iteration
username = key
print '"!
{{
{o}:"'' . format (username)
for k, v in val.iteritems(): #level 2 iteration
print "' \t{{{0}=> {1}}}'''.format (k, V)
print '"!
}lll
Result

tag: action

{

Kara:

{Olympus Has Fallen:Kara=> Olympus Has Fallen}
{The Croods:Kara=> The Croods}

Leo Scott:
{Oblivion:Leo Scott=> Oblivion}

Sally:
{G.I. Joe: Retaliation:Sally=> G.I. Joe: Retaliation}
{Scary Movie:Sally=> Scary MoVie}

[87]

Design Patterns

Let's stop for a moment and think about the applicability of composite columns.

You can have tags on a video page. On clicking a tag, you can show a whole list of
videos just by pulling a row from the tag_videos index column family. If you have
a composed key, such as <title>:<lengths>:<usernames>:<rowkeys, you can get all
the details shown in the list, plus you may have the thumbnail's URI as the column
value to be displayed next to each list item. Time series data can be stored and

sorted by timestamps that can later be pulled to view the history, and the timestamp
can be pulled off the composite column name. These are just a couple of examples;
composite type is a really powerful tool to come up with innovative solutions.

. Check for composite column support in the Cassandra driver API you are
% using. Pycassa, for example, does not support DynamicCompositeType
= as of Version 1.8.0. But it is likely to be available anytime now (refer to
https://github.com/pycassa/pycassa/pull/183).

The secondary index

Working through previous examples, a relational database person would think that
all this manual management of a custom index family is a little too much work. In
RDBMS, one can just perform . . .where user_name = 'Kara'.If the data is large,
one can index it to one user_name value and improve read/search by taxing the
writes. If one wanted to just get the videos that are longer than a minute's runtime,
itis going to be . . .where user name = 'Kara' and runtime_in sec> 60.
Cassandra Version 0.6 and the earlier versions had no way of doing something like
this without holding denormalized data in a separate column family, much like a
materialized view. Similar to what we have been discussing, Version 0.7 or higher
has a secondary index and it is well supported by CQL and client APIs.

The indexes that are created on columns are called secondary indexes. Secondary
indexes —much the same way as a primary index —are similar to hashes and are
not like a B-Tree, which is commonly used in relational databases and filesystems.
This means you can run the equality operator on secondary indexes, but a range
query or inequality cannot be done (actually, you can, but we'll see that case later
on) on index columns.

Let's take our old video example and search for all the videos uploaded by a
particular user without having to use an index column family. Later, we'll try to get
all the videos by a user that are shorter than 7,500 seconds. Check the following code:

Please note: The symbol \ is used for line continuation.
It means that the next line is a continuation of current
line and treated as single

[88]

Chapter 3

line. They are kept in separate line due to formatting issues.

creating index on columns

sys = SystemManager ('localhost:9160') #assume default installation
sys.create index (keyspace, 'videos', 'user name',6 UTF8 TYPE)
sys.create index (keyspace, 'videos', 'runtime in sec', INT TYPE)

criteria: where user name= <username>
username criteria = \
create index expression('user name', username)

criteria: where runtime <= <max length>

#LTE? Less than or equals

length criteria = \

create index expression('runtime in sec', max length, LTE)

query: where user name = 'Sally'
#just pull 3

user only clause = \
create index clause([username criterial, count=3)

movies by user = \
videoCF.get indexed slices(user only clause)

print movie (movies by user)

query: where user name = 'Sally' and runtime < 7500
#pull all
user runtime clause = \

create index clause([username criteria, length criterial)

movies by user runtime = \
videoCF.get indexed slices(user runtime clause)

print '''-- movies for username: {} \
and length <= {} --'''.format (username, max_length)

print movie (movies by user runtime)

results
-- movies for username: Sally --

{

[89]

Design Patterns

user: Sally,
title: Scary MoVie,
runtime: 7610

}
{

user: Sally,
title: Oz the Great and Powerful,
runtime: 7800

}

{

user: Sally,
title: The Place Beyond the Pines,
runtime: 6610

}

-- movies for username: Sally and length <= 7500 -
{
user: Sally,
title: The Place Beyond the Pines,
runtime: 6610
}
{

user: Sally,
title: G.I. Joe: Retaliation,
runtime: 7410

}

So now that we are excited by the secondary index, let's try to get all the movies
that are smaller than 7,500 seconds across all the users using the following code:

Fetch using in equality

Intended to fail, At least on equality necessary!
runtime clause = \

create index clause([length criterial)

movies by runtime = \
videoCF.get indexed slices (runtime clause)

print movie (movies by runtime)
Result

InvalidRequestException (why='No indexed columns present in index
clause with operator EQ')

[90]

Chapter 3

Oops! But, we were kind of expecting that, as a secondary index is much like a hash
map. What we were not expecting is how the inequality worked in the query that
was running along with an equality (for example, where user name = 'Sally'
and runtime <=7500). Ideally, it should fail there as well. The secret behind this
magic is in memory comparison. The result, returned from the equality operation,
gets sliced in the memory on the coordinator node.

So, now that we have seen that the secondary index is good but not so great, let's
demystify the secondary index further. The first thing to keep in mind is that though
a secondary index seems similar to a traditional database index, it is inferior to it. In
fact, the mechanism itself is different. Under the hood, indexes are stored in their own
column family and cannot be accessed by users. They are synchronized with the node
local data, which means the index column family will always be locally consistent.

This hidden column family has a row key as the index value and the columns are
corresponding row keys of the column family whose data we are indexing. Did

this ring a bell? Remember this, we have done the same thing in an earlier section,
Simple groups, with tags as the row key and the video column family's row key as
column names in our manual index. But there is a fine distinction between the two.
Each node just indexes the data on the local machine — this means if the replication
factor is RF, each node will have data on RF number of nodes; so, each node will have
indexes for them. This way, each query needs to touch at least the NUMBER_OF NODES
/ RF value in the secondary index. While in manually managed cases we are going to
touch just one node — the one that has the row corresponding to the index value. Row
and index updates are performed as a single atomic operation. But a manual index
requires to be managed by application logic, while a secondary index is managed by
Cassandra. Also, keeping a manual index restricts the upper bound of the number of
row keys per index to be equal to the row limit, which is two billion. The automated
index just needs to store the data on that node, so it's a bit more spacious than the
manual index.

A word of caution

It is recommended to use secondary indexes with columns having low
cardinality. Indexes on the columns such as day_of_week, tag, city,

M and item_ type are expected to have a limited number of values, so they
are good for secondary indexes. On the other hand, values that are almost
unique to each row are a bad idea. So, t imestamp, video title, geo
coordinate, and item name are bad choices.

Cardinality: A fancy word for the number of items in a set. A week has
cardinality equal to 7 as it has seven distinct elements —one for each day.

[91]

Design Patterns

Patterns and antipatterns

One of the main difficulties that a developer who is new to the NoSQL paradigm
faces is the lack of an example solution to a similar question they are facing. There

is plenty of documentation available on how to do things in a traditional RDBMS,
and a developer gets some degree of comfort on implementing an already-examined
pattern. This is not true with NoSQL data stores. There are many techniques that are
being used, which are relatively inefficient. One such example is the use of super
columns, which we saw in The super column section. With time, more and more best
practices and dos and don'ts are emerging. Here we will see some of the commonly
advised usage patterns for Cassandra.

Avoid storing an entity in a single column
(wherever possible)

It is a bad idea to store the whole entity in a single column of a column family. Apart
from losing the ability to directly access granular data from a row, extra overhead of
parsing the column back to an object (deserialization and associated risk), and poor
readability in CLI, there are more losses made using this mechanism.

Let's take an example of the users column family. Obviously, it is a no-brainer
object. No one will dump the user object in one column. The decision is to be taken
when you want to have an address field whether to dump the address in a single
column as a JSON string or have individual columns for each attribute. The decision
largely depends on the particular use of this sub-object in the application. It is,
perhaps, fine to keep it as a JSON string if the application just needs this to be pasted
as a shipping address. And edits are all or none. But it might be a problem if you
wanted to group users by the zipcode value or allow users and administrators to
edit parts of the address.

* Extra effort in read, modify, and write: If you have the whole object in one
single column, you will have to read the column that bears the read access for
the whole object. Then, parse it, change the particular bit of the object, and
write back to column. This is inefficient. Cassandra provides atomic column
operations (remember from Chapter 1, Quick Start, columns have a timestamp
attribute that decides which of the two conflicting updates wins). So, two
users are editing two separate fields of the same object/row at the same time.
Both will be persisted without stepping on each other's toes. While in the case
of a blob store, the last write will win if you do not read beforehand, which
is again extra work. There are chances of failure if Cassandra has a weak
consistency setting. Refer to Chapter 1, Quick Start, for more information.

[92]

Chapter 3

* No secondary index: Secondary indexes are applied to columns.
If everything is in one column, a secondary index cannot be applied
to a fragment of it. In the previously mentioned users examples,
if one wanted to group users by zipcode, it has to be a column.

Obviously, this is bad; what's the solution? It depends on how creative
one can be with data and application constraints to exploit Cassandra's
features for performance gain.

* Fixing the example: Let's take the video-tagging example from the previous
section; it has a column named tags_csv that stores the tags. This treats
tags as a single column CSV value, which might be OK for an application
that lets users click on the tags and see all the videos with that tag. (We have
a separate column family for that.) What if we wanted administrators and
users to delete or edit individual tags by clicking on the tiny cross next to
each tag? If we just overwrite the complete CSV, one of the two changes will
survive. And the read-update-write will be an overhead. The best option is to
have one tag per column. There can be two situations:

[e]

Limited tags: If the application constraints a maximum of five tags
per video, having five columns defined with the column names tag1,
tag2, ..., and tags can be a valid solution.

Unlimited tags: Cassandra provides flexibility in terms of the
number of columns that a row in a column family can hold. A neat
design can be achieved by storing tags as columns with column
names defined as tag:<tag_name> and values as the tag names.

for tag in tags.split(','):
row['tag:{}'.format (tag.strip().lower())] = tag.strip()

Atomic update

We need to mutate the exact columns that are needed to be mutated. Unlike RDBMS
where you need to lock at least a row (refer to http://dev.mysqgl.com/doc/
refman/5.0/en/innodb-locks-set.html), Cassandra provides a more granular
locking — at the column level. Also, the general practice in dealing with RDBMS is

to update the entire row. If you are using an ORM, you may persist all the columns
of a row even if there is only one field that is actually changed. On the contrary, it

is neither required nor recommended in Cassandra to save all the components of a
row to update a field. The following diagram shows two cases: case 1, a row update,
shows a situation where two users A and B have read a row at time t . User A
changes a column, then updates the complete row (all the columns). User B updates
some other column, and they too persists all the columns in the row. Remember that
B still has the old value for the column that was updated by A.

[93]

Design Patterns

It effectively reverts the change made by user A. These sort of issues can be avoided
in Cassandra by updating only the columns that change. In that scenario, unless two
users update the same column, things will be fine. Do not view a row as a unit. Think
of a row as a collection of columns, and treat columns as independent, smallest
storage units.

OO0 -4
00000 000080

C]CJCJC].D——’///A

\}
/
4

1. Row update

o Seas \
aeanee 8 en @
anen o .

i

m(

[2. Atomic Column update]

Figure 3.7: Images showing two scenarios where two clients: one, perform the read-update-write to the whole
row, resulting in one change per row to survive, even when the changes are non-conflicting; and two, the
atomic-column-wise update leads to more valid changes, and both writes survive

The idea is to let parallel writes happen at the column level, and let Cassandra's
in-built conflict resolution deal with it. This also eliminates any race condition that
might occur in the read-update-write situation where the complete row is read by
two users, one updating column A and the other updating column B. If these writes
happen at the same time, only one of these changes will survive.

[94]

Chapter 3

Managing time series data

Time series data is a sequence of data points taken with the timestamp to represent
an activity. Time series is everywhere; it is even more pronounced with the advent
of real-time (web) applications. Twitter is probably the most common example of
time series data—tweets. It's massive, geographically distributed, and real time. But
it is not limited to that: data from sensors (flight simulations, GPS-tagged movement
tracking), single-processing data, financial data, click tracking, log analysis data,
user activity, (massive online) real-time messaging, results of real-time message
processing — these are just some of the sources.

In many cases, the rate of data input is so high that traditional databases cannot
keep up, due to relational constraints, management overheads, and locking. Also,
the data usually is too large to be handled by a single machine, and queries start to
crawl. This is where the NoSQL paradigm shines, and Cassandra with its lightning-
fast writes and fault-tolerant nature is the best choice. Let's see some of the common
patterns to store time series in Cassandra.

. It may be worth reading the paper Solving Big Data Challenges for
% Enterprise Application Performance Management, by TilmannRabl et al,
o 2012 (http://vldb.org/pvldb/vol5/pl724 tilmannrabl
v1db2012.pdf).

Wide-row time series

The simplest mechanism to store a time series is to store all the data related to a
given activity in a single row with a column type as TimeUUID (or timestamp) and
the data serialized as the column value. This is a powerful approach for multiple
reasons. All the data for a given activity can be pulled by just one disk seek if the row
is not already in memory. And since a row stays on one node (and on its replicas), it
means Cassandra does not require to jump to different nodes to get the time series.
The rows are sorted in advance, so one can get sorted —chronologically or reverse —
and sliced data just by making one request.

[95]

Design Patterns

To sort timestamp- or TimeUUID-based columns in reverse
_ chronological order or reversed order, you can either set
a the comparator type to reversed=True or use column_
= reversed=True while fetching data. The former gives
a slight performance benefit in case most of your queries
require data to be sorted in latest-first order.

(1367169141660931 1(1367169372659683 W
USER

1234 L {page: /iphoneb, event: J L{page: /payment, event:J
(X X)

click, el: button#buy,...} click, el: a#cancel,...}

Figure 3.8: A time series with data serialized as JSON in a single column

The code looks pretty unimpressive, but it works (you can see a tiny simulation of
concurrent writes of time series events and you can validate the order):

column family definition

event log comp = TimeUUIDType (reversed=True)
sys.create column family (keyspace, 'event log',6 super=False,
comparator type=event log comp)

insertion
rowkey = event['user']
timestamp = datetime.datetime.utcnow /()

colval = json.dumps (event)
eventsCF.insert (rowkey, {timestamp: colval})

We earlier discussed how bad it is to store data in a column as a blob. This requires
extra work and can result in a race condition with simultaneous edits where two
users update two parts of the blob. Here, only one will survive. The reason to prefer
this approach over any other approach is that the ability to quickly access data
trumps over almost any other factor that another approach provides. In many of the
time series data, you will observe that you probably want to keep the time data point
as immutable —it's history, and history does not mutate. So the column data being
read-only, storing the object as a blob will not have a lot of negative impact.

If you are coming from the RDBMS world, this must be hard to digest. You may
wonder why we can't use a pattern where we have an index column family that
stores empty columns with column names, such as TimeUUID, and have another
column family that has a row key the same as the column name, which stores

the data in the columns of this column family. This will give us a nice and neat
normalized database. Every time you need to access the data, slice the index column

[96]

Chapter 3

family and the multi_get user to pull the data off the other column family.

This is a bad idea. Although it gives you the flexibility to edit individual columns of
each data point in the time series, it comes with an expensive get operation scattered
across multiple nodes. In any medium- to large-sized application, the time series
data and slices are usually giants. So multi_get is really going to suffer. The key
takeaway here is to avoid normalization —chances are that the time series is non-
editable and not so big a blob.

-
1367169141660931 1367169372659683
USER
1234 J L J
\ : XX
_____________ :
"4 |
s N N 7 N
USER element event /" page
1234: /
13671691
41660931|| button#buy click /| /payment
- J A\ /000
v
4 N [N [N\
USER element event page
1234:
13671693
72659683 a#cancel click /payment
- J J /o000

Figure 3.9: The time series data, a little more normalized, may cause heavy multi-get call

The next natural question that comes to mind is that the row has a practical hard
limit on numbers if the column value it can store is two billion. What if the time
series exceeds it every other day?

High throughput rows and hotspots

If your application is filling up a row at 1,000 writes/sec or if you have a row that
gets updated and accessed at a really high rate and the nodes that hold that row (one
row is held on one machine) would get exceptionally high read /write requests and
create a hotspot in the cluster, you'd run out of columns in less than a month (about
23 days). For example, you are recording the users' agreements and disagreements
during the U.S. presidential debates and displaying the aggregate in real time. If

you are a popular site, chances are that you will get thousands of write requests per
second, and you will be pushing changes every 50 ms to the users, displaying close
to an instant mood swing to the public. This will create a hotspot, which is not good.

[97]

Design Patterns

A hotspot in a distributed system somewhat kills the purpose of having lots of
machines as many of the machines are underutilized and a couple of them are
overloaded in terms of request processing and CPU utilization. Not to mention,

a failure of these busy nodes in such a busy hour will be a disaster. So, we have two
problems with wide-rowed time series data: one, the row exhausts, and the other is
the hotspot. In both these situations, the solution is simple: distribute the data across
multiple rows.

Rows divided into timeslots: If it is possible to divide the writes into
multiple timeslots, much like fixed interval buckets, the data can be stored in
chunks. In this key, the row key contains an extra component, a timestamp
of the start of the timeslot. For example, a process that fills up a row at 1,000
columns/second can utilize a daily (or fortnightly) bucket, where each row
contains data just for one day. The row key for such a column family may
look something like this:

<row-key>:<timestamp of start of day>

Data for presidential

debate
1367107200 000
Apr 28, 2013 oo

Apr 29, 2013 VOO

president_debate: || 1367179267000

president_debate: | | 1367265309314
1367193600 YY)

Figure 3.10: Rows as buckets for one day's data

While this does solve the issue of rows getting overflowed, it does not really
address the hotspot issue with real-time read /write access to a bucket.

Multiplexing writes within timeslots: Let's observe the previous situation
in the context of a really busy day in the life of a real-time application. On
a busy day, lots of reads and writes will go to a bucket dated that day.
This means a majority of the requests (ingesting data and reading data off
to clients immediately) hit only the nodes that contain today's data. If we
want to distribute I/O across the nodes, we need to store to and read from
different rows.

[98]

Chapter 3

Writes - N [N [N
@ USER123:1 Vi va
@ ' USER123:2 V2 V5 il §§
@ USER123:3 V3
" . J VAN J
Time
(V1 V2 V3 V4 V5. J« Read

Figure 3.11: The schematics of multiplexed write and read to avoid a hotspot

The solution is to write the data in multiple rows with each having an index
attribute along with their timeslot. The write operation either randomly (with
equal probability) chooses an index for the appropriate bucket, or just writes
to different indexes in the round-robin manner. The following code shows
the main parts of this mechanism:

Downloading the example code

You can download the example code files for all Packt books you have
KY purchased from your account at http: //www.packtpub. com. If you
Q purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.
You may also clone authors GitHub page for this book at https://
github.com/naishe/mastering cassandra.

insertion

choose a random index between 1 to number of row splits
muxid = random.randint (1, MUX)

rowkey = '{0}:{1}'.format (user, muxid)

column type is TimeUUIDType
timestamp = datetime.datetime.utcnow /()

#serialize, event is just a JSON
colval = json.dumps (event)
eventsCF.insert (rowkey, {timestamp: colval})

[99]

Design Patterns

fetching
accumulate all the rows the data multiplexed to

rowKeys =
rows =
Merge!
merge =

["{0}:{1}'.format (userId, i+l) for i in range(4)]

for row in rows:

logCF.multiget (rowKeys)
(not the best way to merge and order,

{}

but concise)

merge = dict (merge.items () + rows[row] .items())
#order
final = collections.OrderedDict (
sorted (merge.items (), reverse=True))
#Result

#Individual rows that the data was split to
>> user-784b9158-5233-454e-8dcf-c229cdffl2c6:1

Insertion Timestamp:
Insertion Timestamp:
Insertion Timestamp:

1367230574 .4
1367230573.78
1367230573.48

>> user-784b9158-5233-454e-8dcf-c229cdffl2ce:2

Insertion Timestamp:
Insertion Timestamp:

1367230574 .4
1367230574.09

>> user-784b9158-5233-454e-8dcf-c229cdffl2c6e:3

Insertion Timestamp:
Insertion Timestamp:

1367230574.19
1367230573.68

>> user-784b9158-5233-454e-8dcf-c229cdffl2ce:4

Insertion Timestamp:
Insertion Timestamp:

The Merged result

1367230573.99
1367230573.58

insertion timestamp: 1367230574.4

insertion timestamp: 1367230574.4

insertion timestamp: 1367230574.19
insertion timestamp: 1367230574.09
insertion timestamp: 1367230573.99
insertion timestamp: 1367230573.78
insertion timestamp: 1367230573.68
insertion timestamp: 1367230573.58
insertion timestamp: 1367230573.48

[100]

Chapter 3

The gain in performance and relatively balanced load across nodes
. due to distributed writing come with some overhead of work. Any
% read request requires amulti get (perhaps slice too) call across
L all the indexes for those row keys followed by a merge operation
similar to the merge-sort's merge step, which is O (N) . So, you
probably want to slice just a small part enough to keep it effective.

e Isn't multi_get evil?: We learned in the previous section of putting TimeUUID
as a row and values in a separate column family, where the timestamp row
works as an index, and we also performed a get every time we needed to get
actual data. But here we seem to support that, with the difference being the
magnitude of multi_get. In the former case, if we try to pull 10,000 records,
it will cost us 10,000 multi_get calls, but in the latter case, we are rarely
going to multiplex more than 100 rows, which is OK. The first case does not
give any benefit, while the latter saves the chances of having hotspots in the
cluster, which is a considerable gain.

Advanced time series

For most of the cases, a simple time series will do the job and you wouldn't even
need to bother about multiplexing. The bucketing pattern to store daily time series

in one row is fairly common and logically simple. But, sometimes, it requires having
a flexible pattern. For example, if you are in a company that accumulates users'
reaction on predefined topics or events (and you are popular too!) on a day-to-day
basis, the application is going to have normal-to-low load, which can perhaps be in
the order of 1,000 requests per second per topic. This can easily be accommodated in
the timestamped rows —one row for each topic each day. Or perhaps multiplex it by
a factor of 10, so you have 10 rows per day per topic. And here comes the Super Bowl
finals. Your servers start to spew tens of thousands of requests (assuming your array
of application servers are large/strong enough to pass on the load to Cassandra)
every second. You will want to disperse it to probably 100 rows. So, you need a
mechanism that dynamically decides how many rows to split the input into based on
the rate of request arrival.

There are a couple of ways to do it. Once your application decides that this input is
going to have N number of splits, you need to have it stored somewhere. You can
either use a counter column family or a normal column family; call it the metadata
column family.

[101]

Design Patterns

There are two approaches to this. One, the application can cache the multiplexing
value for a given time series data at the time of the first read/write request that
comes for it and then update it every couple of seconds. It is not going to be bad if
the knowledge about the number of splits is a little delayed because we are going

to merge from all the rows during retrieval anyway. Two, pull metadata about
multiplexes on every write, but that's an extra network trip —which may bite you.
The key idea to understand here is that for a given input, split counts are not going
to change very frequently, and it's certainly not going to come down. If it does, you'd
either lose some data in the bottom splits or you will have to first move the data back
to the upper rows.

| Superbowl2012 || USEduPolicy2012 |
| 42 | 1

FEED_MUX_COUNTER

debate_feed CF
|| Superbowl2012:20130203:1 | J((J((Jeee |
|[Superbowi2012:20130208:2 () (T J(Jese |
o

||Superbowl2012:20130203:42|DDD... |

Figure 3.12: Dynamic multiplexing in action: FEED_MUX_COUNTER stores which time series is going
to have how many splits

Many of these patterns are bound by your creativity to come up with an efficient
solution using the tooling that Cassandra provides.

Avoid super columns

We have studied super columns earlier, and we kind of never gave much attention to
it. The reason behind trying this is that we should avoid using super columns due to
the multiple inefficiencies it brings into the system. Super columns can almost every
time be converted to a better-performing alternative, such as composite columns. The
reasons to eliminate super columns are jotted down as follows:

* Arequest for a subcolumn caused deserialization of all the subcolumns. So if
you have a large number of subcolumns, the operation is going to be slowed.
* Unlike columns, subcolumns are not ordered.

¢ There are no indexes on subcolumns.

[102]

Chapter 3

With the performance hit and the inability to have practically unbound subcolumns,
super columns are more of a problem than a solution.

Although super columns are not deprecated, and not likely to be
deprecated by the API, the implementation is proposed to change to

using composite columns instead of super columns. It may appear in
’ Cassandra 2.0+ (refer to https://issues.apache.org/jira/

browse/CASSANDRA-3237).

Transaction woes

A transaction is a sequence of operations that form a single unit of work. A
transaction transforms the database from one consistent state (statel) to another
(state2). Itis an all or none system; either the whole transaction would succeed or
the whole transaction would fail. In either case, the database —after a successful or
unsuccessful transaction —will either be in statel or state2. Someone coming from
the RDBMS world would know the fairly common transactional store produce that
defines a transaction. A transaction in RDBMS looks like this:

CREATE PROCEDURE exec_ trade (buyer CHAR(10), seller CHAR(10), amount
DECIMAL(10,2))

BEGIN

/* READ */
DECLARE curr_ balanceDECIMAL (12, 2) ;
SELECT balance INTO curr balance
FROM accounts
WHERE id = buyer;
IF (curr balance> amount) THEN

/* WRITE */
UPDATE accounts
SET balance = balance - amount
where id = buyer;

/* WRITE */
UPDATE accounts
SET balance = balance + amount
where id = seller;
ENDIF

END

[103]

Design Patterns

Cassandra does not make an ACID promise like tradition databases, and with its
disregard to ACID compliance, lets Cassandra perform way faster and scale much
larger than any relational databases. This also means Cassandra is not suitable for

a transactional database; or rather vanilla Cassandra cannot make transactional
guarantees. In this case, application developers have two choices to go for. The first
approach is to use relational databases, such as MySQL, PostgreSQL, Oracle, or the
like, complementary to Cassandra. So, basically, you end up having two data stores
that handle two sides of reliability. Relational databases can be used for transactional
guarantees to handle payments and Cassandra for superfast reads and writes.

The second approach is fairly complicated, and it uses external synchronization
libraries such as Cages (for Zookeeper) or Netflix's Curator (for Zookeeper). A
detailed discussion on these third-party libraries is out of the scope of this book.

You may access a more detailed article on Cages at http://rial0l.wordpress.
com/2010/05/12/1locking-and-transactions-over-cassandra-using-cages/.In
case this page is not available, there is a PDF version of this that can be accessed here.

Cages provides a construct similar to a stored produce (as mentioned previously)
using zkTransaction and ZkMultiLock classes. A client gets hold of all the
necessary locks followed by mutations that are needed to be performed via
ZkTransaction. Finally, the transaction is committed and the lock is relinquished.

Internally, Cages maintains a "before" state for each lock. If something goes wrong
during the transaction, all the states are reverted back to this "before" state.

void executeTrade (String buyer, String seller, BidDecimal amount) {

ZkMultiLockmlock = new ZkMultiLock() ;
mlock.addWriteLock ("/accounts/" + buyer) ;
mlock.addWriteLock ("/accounts/" + seller);
mlock.acquire () ;

try {
// 1. check that buyer has sufficient funds

//

// 2. perform mutations using transaction object
ZkTransaction transaction = new
ZkTransaction (NoSQL.Cassandra) ;
transaction.begin (mlock) ;
try {

// 3. debit buyer's account

transaction. insert (

buyer,

[104]

Chapter 3

"accounts",
bytes ("balance"),
bytes (newBalance)) ;

// 4. credit seller's account

//

} finally {
transaction.commit () ;

}

} finally {
mlock.release () ;
}
}

It is important to note here that one must go through a detailed

study of these transaction providers and perform extensive tests
’ before using them in production.

Use expiring columns

Expiring columns has been discussed earlier as well. In cases where you need to
store data that will not matter after a certain period of time, expiring columns may
be used. Expiring coupons, storing session data, and temporary results are some
example usages of expiring columns. Let's see a case of session management using an
expiring column. One may argue to have Memcached as a session store, which is a
valid argument. A couple of things to consider: if you do not use Memcached, using
it just for session management adds the extra overhead of another system. There is
no way to avoid data loss (or store sessions permanently) during instances where a
Memcached server needed to restart. There are alternate solutions to cope (refer to
http://dormando.livejournal.com/495593.html) with session data loss if the
Memcached server goes down. But they are not clean.

The idea of a session is to hold the users' current session data on the server and
provide user experience based on the data. This data is scrapped after X minutes of
the users' inactivity. (Please note that the session data may not include user activity
monitoring, as you would want to keep the activity data for a long term for further
analysis.) The simplest solution would be to just use expiring columns to store a
user's session data with the column name as session_id and the value may be a
serialized JSON. Every time a user loads a page or performs an activity, just reset
the TTL of the column corresponding to the session_id.

[105]

Design Patterns

This is fine, but you have to make a trip to Cassandra nodes every time a user
activity is detected. One may want to cache the session data locally, perhaps, in the
HashMap. This adds a little complexity. To solve this issue, one may keep session
data in a local HashMap on each server. Along with the session data, have last_
accessed_timestamp and access_count too. Each applicability server has a thread
that executes every T minutes (T < TTL) and overwrites the session data for all the
session_id values with TTL = TTL - (current timestamp - last accessed
timestamp), if access_count> 0. What happens here is that we keep a local
HashMap. If a session was ever touched, we up the counter and note down when
the user last accessed the server. The counter is the basis of what TTLs have to be
updated in Cassandra.

The latter is not an ideal solution, and someone with a keen eye can find a slim
chance of session deletion when the TTL causes a session data in Cassandra to be
deleted. Meanwhile, the server holding the data in the local HashMap goes down.
But that's a risk that majorly saves us frequent trips over the network to get and
update session data. If it is not really critical to have exact session deletion time,
adding some extra time to TTL (TTL + T) may reduce the risk to some extent.

One thing you get with any centralized session store is a distributed session.
So application users may jump from one server to another, new machines can be
added, or a machine can be taken down for maintenance without any repercussion:

TTL = 100 minutes s Server dies
TTL

. updates every 3 . here, after user
minutes accessed

time
—_—
|
=0 t=99/t=100 =102
TTL reset User did not Session data S
to t=100 touch app deleted from e
until this Cassandra

Figure 3.13: A possible case of session data loss with the session being stored locally and also on Cassandra in
an expiring column

batch_mutate

batch_mutate is a way to mutate data in one go. It has some benefits over performing
multiple single mutations, but the major gain is lesser network round trips. If
something fails, batch_mutate instances can be re-run safely and completely once
again. It is idempotent, so the data gets overwritten instead of getting appended. It
can be used to group a set of operations that constitute a task.

[106]

Chapter 3

Until Cassandra 1.2, batches were not atomic. If you wanted
atomicity in the traditional RDBMS sense (all or none), you would
have to to rely on some sort of arrangement such as Zookeeper.
Cassandra 1.2 introduces atomic batches; read more about it at
http://www.datastax.com/dev/blog/atomic-batches-in-
L5 cassandra-1-2.

That said, one must be aware about the performance hit due to atomic
batches in 1.2. It reduces the performance of batch mutate by
about 30 percent as reported in the article. You may still use regular
batches in 1.2 if atomicity is not a big deal.

Summary

The ability to effectively utilize a database's potential is more of an art than science.

It is important to know the capabilities and things that have already been achieved
by other people. But at the same time, you need to stay creative to mix and match the
patterns to meet the requirements and goals within the limits of available resources.
This chapter is probably the most important chapter from the perspective of an
application developer. Starting from storage components of Cassandra to some of the
common patterns to solve the common use cases, this chapter builds a solid footing
for you to code your application confidently.

Cassandra's code base is developing at a rapid pace. With this fast-paced
development, new features are getting added quickly at the same time and
lesser-known patterns and bad design decisions are getting deprecated.
CQL 3 is a good example of this.

CQL3 prevents use of antipatterns to some extent. It also gives a much friendlier
SQL-like interface than Thrift. CQL 2 is deprecated and the much expected
deprecation — super column is heavily condemned. It is a good idea to keep an eye
on the new developments in Cassandra. The Apache Cassandra website, mailing list,
and DataStax website are good places to stay up-to-date with the latest Cassandra
developments.

Having applications ready to perform their best is a good idea, and it is equally
important to have a capable infrastructure to serve the expectations. Setting up

a Cassandra cluster is simple, and easier than most of the distributed software
deployments. Out of the box, Cassandra comes with good defaults for most of the
cases. So, if you have deployed your cluster before reading the next chapter, chances
are that you are not far away from your optimal setting, and you just need to read
the next chapter to make sure that everything is fine.

[107]

Deploying a Cluster

So, you have played a bit with Cassandra on your local machine and read
something about how great it scales. Now it's time to evaluate all the tall
claims that Cassandra makes.

This chapter deals with cluster deployment and the decision that you need to make
that will affect a number of nodes, types of machines, and tweaks in the Cassandra
configuration file. We start with hardware evaluations and then dive into operating-
system-level tweaks, followed by prerequisite software and how to install them.
Once the base machine is ready, we will discuss the Cassandra installation —which
is fairly easy. The rest of the chapter talks about various settings available, what fits
in which situation, the pros and cons, and so on. Having been equipped with all
this information, you are ready to launch your first cluster. The chapter provides

a working code that deploys Cassandra on N number of nodes, sets the entire
configuration, and starts Cassandra, effectively launching each node in about 40
seconds, thus enabling you to get going with an eight-node cluster in about five
minutes. Toward the end of the chapter, it briefly discusses client-connection
security as in Version 1.1.11.

Code pattern: All the shell commands mentioned in this chapter
follow a pattern. Each line starting with a # sign is just a comment
. forreaders to clarify the context. Each line starting with a $ signis a
% command (excluding the beginning $ sign). Some longer commands
I may be broken into multiple lines for reading clarity. If a command is

broken, the end of the line contains a line-continuation character —a
backslash (\). Each line that does not have either of these symbols is
the output of a command. Please follow this pattern unless specified.

Deploying a Cluster

Evaluating requirements

It is generally a good idea to examine what kind of load Cassandra is going to face
when deployed on a production server. It does not have to be accurate, but some
sense of traffic can give a little more clarity to what you expect from Cassandra
(criteria for load tests), whether you really need Cassandra (the halo effect), or if

you can bear all the expenses that a running Cassandra cluster can incur on a daily
basis (the value proposition). Let's see how to choose various hardware specifications
for a specific need.

Hard disk capacity

A rough disk space calculation of the user that will be stored in Cassandra involves
adding up data stored in three data components on disk: commit logs, SSTable, index
file, and bloom filter. When compared to the data that is incoming and the data on
disk, you need to take account of the database overheads associated with each data.
The data on disk can be about two times as large as raw data. Disk usage can be
calculated using the following code:

Size of one normal column
column_size (in bytes) = column_name_size + column_val_size
+ 15

Size of an expiring or counter column
col_size (in bytes) = column name_size + column_val_size
+ 23

Size of a row
row_size (bytes) = size of all columns + row key size + 23

Primary index file size
index size (bytes) = number of rows * (32 + mean key size)

Additional space consumption due to replication
replication overhead = total data size *
(replication factor - 1)

Apart from this, the disk also faces high read-write during compaction. Compaction
is the process that merges SSTables to improve search efficiency. The important thing
about compaction is that it may, in the worst case, utilize as much space as occupied
by user data. So, it is a good idea to have a large space left.

[110]

Chapter 4

We'll discuss this again, but it depends on the choice of compaction_strategy thatis
applied. For LeveledCompactionStrategy, having 10 percent space left is enough; for
SizeTieredCompactionStrategy, it requires 50 percent free disk space in the worst
case. Here are some rules of thumb with regard to disk choice and disk operations:

Commit logs and datafiles on separate disks: Commit logs are updated on
each write and are read-only for startups, which is rare. A data directory, on
the other hand, is used to flush MemTables into SSTables, asynchronously;
it is read through and written on during compaction; and most importantly,
it might be looked up by a client to satisfy the consistency level. Having the
two directories on the same disk may potentially cause a block to the client
operation.

RAID 0: Cassandra performs in built replication by means of a replication
factor; so, it does not possess any sort of hardware redundancy. If one
node dies completely, the data is available on other replica nodes, with

no difference between the two. This is the reason that RAID 0 (http://
en.wikipedia.org/wiki/RAID#RAID 0) is the most preferred RAID level.
Another reason is improved disk performance and extra space.

Filesystem: If one has choices, XFS (XFS filesystem: http://en.wikipedia.
org/wiki/xXFs) is the most preferred filesystem for Cassandra deployment.
XFS supports 16 TB on a 32-bit architecture, and a whopping 8 EiB
(Exabibyte) on 64-bit machines. Due to the storage space limitations, the
ext4, ext3, and ext2 filesystems (in that order) can be considered to be used
for Cassandra.

SCSI and SSD: With disks, the guideline is faster and better. SCSI is
faster than SATA, and SSD is faster than SCSI. Solid State Drives (SSD)
are extremely fast as there is no moving part. It is suggested to use rather
low-priced consumer SSD for Cassandra, as enterprise-grade SSD has no
particular benefit over it.

No EBS on EC2: This is specific to Amazon Web Services (AWS) users.
AWS' Elastic Block Store (EBS: http://aws.amazon.com/ebs/) is strongly
discouraged for the purpose of storing Cassandra data—either of data
directories or commit log storage. Poor throughput and issues such as getting
unusably slow, instead of cleanly dying, is a major roadblock of the network-
attached storage.

Instead of using EBS, use ephemeral devices attached to the instance (also
known as an instance store). Instance stores are fast and do not suffer any
problems like EBS. Instance stores can be configured as RAID 0 to utilize
them even further.

[111]

Deploying a Cluster

RAM

Larger memory boosts Cassandra performance from multiple aspects. More memory
can hold larger MemTables, which means that fresh data stays for a longer duration
in memory and leads to fewer disk accesses for recent data. This also implies that
there will be fewer flushes (less frequent disk IO) of MemTable to SSTable; and the
SSTables will be larger and fewer. This leads to improved read performance as lesser
SSTables are needed to scan during a lookup. Larger RAM can accommodate larger
row cache, thus decreasing disk access.

For any sort of production setup, a RAM capacity less than 8 GB is not suggested.
Memory above 16 GB is preferred.

CPU

Cassandra is highly concurrent —compaction, writes, and getting results from
multiple SSTables and creation of one single view to clients, and all are CPU
intensive. It is suggested to use an 8-core CPU, but anything with a higher
core will just be better.

For a cloud-based setup, a couple of things to keep in mind:

* A provider that gives a CPU-bursting feature should be preferred.
One such provider is Rackspace.

* AWS Micro instances should be avoided for any serious work. There are
many reasons for this. It comes with EBS storage and no option to use an
instance store. But the deal-breaker issue is CPU throttling that makes it
useless for Cassandra. If one performs a CPU-intensive task for 10 seconds
or so, CPU usage gets restricted on micro instances. However, they may be
good (cheap), if one just wants to get started with Cassandra.

Nodes

Each node in the ring is responsible for a set of row keys. Nodes have a token assigned
to them on startup either via bootstrapping during startup or by the configuration file.
Each node stores keys from the last node's token (excluded) to the current node's token
(included). So, the greater the number of nodes, the lesser the number of keys per
node; the fewer the number of requests to be served by each node, the better

the performance.

In general, a large number of nodes is good for Cassandra. It is a good idea to keep
300 GB to 500 GB disk space per node to start with, and to back calculate the number
of nodes you may need for your data. One can always add more nodes and change
tokens on each node.

[112]

Chapter 4

Network

As with any other distributed system, Cassandra is highly dependent on a network.
Although Cassandra is tolerant to network partitioning, a reliable network with
less outages are better preferred for the system —less repairs, less inconsistencies.

A congestion-free, high speed (Gigabit or higher), reliable network is pretty important
as each read-write, replication, moving/draining node puts heavy load on a network.

System configurations

Operating system configurations play a significant role in enhancing Cassandra
performance. On a dedicated Cassandra server, resources must be tweaked to utilize
the full potential of the machine.

Cassandra runs on a JVM, so it can be run on any system that has a JVM. It is
recommended to use a Linux variant (CentOS, Ubuntu, Fedora, RHEL, and so on) for
Cassandra's production deployment. There are many reasons for this. Configuring
system-level settings are easier. Most of the production servers rely on Linux-like
systems for deployment. As of April 2013, 65 percent of servers use it. The best
toolings are available on Linux: ss# and pssH commands such as top, free, df, and
ps to measure system performance, and excellent filesystems, for example ext4 and
xFSs. There are built-in mechanisms to watch the rolling log using tail, and there are
excellent editors such as Vim and Emacs. And they're all free!

More on the usage share of operating systems at

http://en.wikipedia.org/wiki/Usage share

of operating systems#Summary.

We will assume a Linux-like system for the rest of the book, unless mentioned
otherwise. If you are unfamiliar with Linux, there is an excellent book to cover
everything you needed to know about it: "Linux Administration Handbook" by
Nemeth, Snyder, and Hein.

Optimizing user limits

The 1imits.conf file (located at /etc/security/) gives a simple mechanism to

set resource limits to users. To make Cassandra work without choking, it must be
provided with higher resource availability, which can be easily done by this file.
Add/update the following values to various resources (you need to have root access
to do this):

* goftnofile 32768

[113]

Deploying a Cluster

* hard nofile 32768
root soft nofile 32768
root hard nofile 32768
* softmemlock unlimited

* hard memlock unlimited

root gsoft memlock unlimited

root hard memlock unlimited

* goft as unlimited

* hard as unlimited

root soft as unlimited

root hard as unlimited

If you are using cloud, you may want to set and store the values mentioned in the
following list to your machine image file:

nofile: By default, a Linux-based system has an upper cap on the number

of open files. This may cause trouble for a moderately large setup. Reading/
writing may involve a large number of file accesses. Apart from this, node-to-
node communication is socket-based, that is, it takes one file descriptor per
socket. So, having a setting that allows a high number of concurrently open
file descriptors is a good idea.

A file descriptor can be anything below 2% for RHEL and family. 32768 (=
2%). This is a good range of values to start with.

memlock: If you are coming from a relational database background, memlock
is chiefly used for a huge page. The memlock parameter specifies how much
memory any * = wild card user can lock in its address space. It can be set
to unlimited or the maximum value of RAM in KB.

The rest of the settings in the preceding configuration are just for hard and soft
limits. In actuality, both are set to unlimited. For more information about 1imits.
conf, refer to http://linux.die.net/man/5/1limits.conf.

This and the other limit configurations can be seen by issuing the ulimit -a
command.

Swapping memory

Swap is bad for Cassandra, especially in the production setup. It is advisable to
disable swap on a production machine (assuming it's a dedicated Cassandra server).
Basically, swap space is an area on the secondary storage (hard drive) that works as
extended memory. Swap is used when the total memory required by processes is
more than the available memory.

[114]

Chapter 4

The operating system moves memory segments (also known as pages) from or

to the swap area to free up memory; this is called paging. Reading from secondary
storage to access these pages is painfully slow when compared to access from the
main memory. This is a major performance hit. (More on paging performance at
http://en.wikipedia.org/wiki/Paging#Performance.)

Cassandra is fault tolerant, so we can trade the possibility of a node going down for
a speedy response when it is up. That is a quick node death by the Out-Of-Memory
(OOM) killer due to memory crunch, which is better than a sluggish system.

To disable swap permanently, you need to edit /etc/£fstab (requires root access)
and comment out all the lines containing the type swap by putting # at the beginning
of the line, as shown in the following code snippet:

#/dev/sda3 none swap sw 0 O

To immediately/temporarily switch off swap, execute the following command:

$ sudoswapoff --all

Clock synchronization

We have learned from section. The Cassandra data model, Chapter 3, Design Patterns
that Cassandra uses timestamp for conflict resolution. It is very important to have
clocks on each server and client machines to be synchronized with a reliable central
clock to avoid unexpected overwrites.

The most common way to do this is by using the Network Time Protocol (NTP)
daemon. It sets and maintains the system time in synchronism with the time server
with time resolution to milliseconds. You may check if your system has NTP
installed and running by executing ntpg -p.

Here is how you install and configure NTP:

Install (Fedora/RHEL/CentOS)

yum install ntp

Install (Debian/Ubuntu)

sudo apt-get install ntp

Configure time servers (likely, configured already)
vi /etc/ntp.conf #open with editor, root access needed
Add server(s) and save

server pool.ntp.org

Restart NTP service

/etc/init.d/ntpd restart

Force immediate update

Uy FH Uy H Ur F r F 0 HF

ntpdate pool.ntp.org

[115]

Deploying a Cluster

u Although we have mentioned that the timestamp for the
S column is provided by the client, it is not true for CQL. CQL
Q uses server-side timestamp unless specified, specifically by
the USING TIMESTAMP clause.

Even if you do not use CQL, it does not lessen the importance of synchronization
on the server-side expiring columns, and tombstone removal does require time to
be correctly set. In general, it is advisable to have your production servers (of any
application) to be time-synchronized.

With Amazon Web Services or any other cloud service, it is a
general perception that depending on a hardware clock is a safe
bet. This is not correct. There may be situations when time on these
virtual instances gets drifted. In AWS EC2 instances, to be able to
* setup NTP, you need to disable sync with the clock on the physical
% machine. You can do that by using the following command:

$ echo 1 > /proc/sys/xen/independent wallclock

This is transient, but to make it permanent you can edit /etc/
sysctl.conf by adding the following code line:

xXen.independent_wallclock=1

Disk readahead

readahead boosts sequential access to the disk by reading a little more data than
requested, ahead of time to mitigate some effect of slow disk reads. This is called
readahead. This means less frequent requests to the disk.

But this has its disadvantage as well. If your system is performing high frequency
random reads and writes, a high readahead would translate them into magnified
reads/writes —much higher I/O than actually is. This will slow the system down.
(It also piles up memory with the data that you do not actually need.)

To view the current value of readahead (RA), execute blockdev --report as shown
in the following command lines:

$ sudo blockdev --report

RO RASSZ BSZ StartSec Size Device
rw256 512 4096 0 320072933376 /dev/sda
rw256 512 4096 2048 104857600 /dev/sdal

[116]

Chapter 4

rw256 512 4096 206848 73295462400 /dev/sda2
rw256 512 1024 143362110 1024 /dev/sda3

In the preceding example, RA is 256 blocks of a sector size (SSZ) 512 bytes. So, 512 *
256 bytes = 128 KB.

Unfortunately, the commonly suggested value of RA is 65536, or 32 MB! This is very
bad for a Cassandra setup. Do not use this high value for readahead. It is suggested
to set the readahead to 512. Here is how to do that:

set RA, may require sudoer permission
$ sudoblockdev --setra 512 /dev/<device>

To make this setting permanent, it can be placed in a local run-config file (location
/etc/rc.local).

The required software

Cassandra runs over a JVM, and this is all you need to get Cassandra up and
running. Any platform that has the JVM can have Cassandra. At the time of writing,
Java's latest version was Java SE 7. However, it is highly recommended to use Oracle
Java 6 for Cassandra, to avoid unexplainable bugs due to any inconsistency in the
Java version or vendor implementation.

The other thing that one should consider for the production setup is to have the
Java Native Access (JNA) library. It provides access to the native platform's shared
libraries. JNA can be configured to disallow swapping JVM, and hence, improving
Cassandra memory usage.

Installing Oracle Java 6

The default installation of Linux systems usually contains the Open]JDK Java
Runtime Environment (JRE). This should either be removed or you can keep
Open]DK, but set the default JRE as Oracle JRE. This guide will assume a 64-bit
system. To check whether your system has JRE, and what version of it executes,
run the java -version command in the shell:

Check Java (important fields are highlighted)
$ java -version

java version "1.6.0_24"

OpendDK Runtime Environment (IcedTea6é 1.11.11) (amazon-61.1.11.11.53.
amznl-x86_ 64)

OpendDK 64-Bit Server VM (build 20.0-bl2, mixed mode)

[117]

Deploying a Cluster

RHEL and CentOS systems

We are going to follow three basic steps for installing Oracle Java 6 for RHEL
and CentOS systems:

1.

Downloading the binary file from the Oracle website: JRE 6 can

be downloaded from Oracle's website at http://www.oracle.com/
technetwork/java/javase/downloads/jre6-downloads-1637595.html.
Unfortunately, as of the time of writing of this book, you couldn't perform
wget to download this file from the command line. This is due to the fact that
Oracle mandates the users to accept the Oracle Binary Code License before
downloading can commence. The easiest way that I find is to accept and
download the file on your work desktop and then copy it to the server

using scp.

Choose the Linux x64-rpm.bin version to download in order to install it
on RHEL-like systems.

Installing a JRE: Set the downloaded file executable, and execute it.

$ chmod a+x jre-6u34-linux-x64-rpm.bin
$ sudo ./jre-6u34-linux-x64-rpm.bin

Note that the 6u34 part of the filename may be different for
= you. It was the latest version at the time of writing of this book.

Configuring Oracle JRE as default: If you have OpenJDK on your server
machine, you will have to set it as an alternative, and use Oracle JRE by
default. The RHEL family has a utility called alternatives inspired by
Debian's update-dependencies utility for conflict resolution in cases where
there exists multiple software that perform similar functionalities, but the
user will prefer one software to be the default for those functions.

alternatives takes four parameters to install a software as
default: a symbolic link to where the software is to be installed, the
% generic name of the software, the actual path of where the software
is installed, and a priority that determines which software is to be
chosen by default. The highest-priority software is set to the default.

The following code block will go through the details of the process:

See the details Default: OpendDK, priority: 16000
$ alternatives --display java
java - status is auto.

[118]

Chapter 4

link currently points to /usr/lib/jvm/jre-1.6.0-openjdk.x86 64/
bin/java
/usr/lib/jvm/jre-1.6.0-openjdk.x86 64/bin/java - priority 16000

Install Oracle JRE with HIGHER preference
$ sudo alternatives --install /usr/bin/java java /usr/java/
jrel.6.0 34/bin/java 31415

See the details

$ alternatives --display java

java - status is auto.

link currently points to /usr/java/jrel.6.0 34/bin/java

/usr/lib/jvm/jre-1.6.0-openjdk.x86 64/bin/java - priority 16000
[-- snip --]

/usr/java/jrel.6.0 34/bin/java - priority 31415
[-- snip --]

Current 'best' version is /usr/java/jrel.6.0_34/bin/java.

View the current version

$ java -version

java version "1.6.0_34"

Java (TM) SE Runtime Environment (build 1.6.0 34-b04)

Java HotSpot (TM) 64-Bit Server VM (build 20.9-b04, mixed mode)

sudo alternatives --config java can be used to switch the default version.

Once all this is done, the Bash profile can be updated to have Java HOME. To do this,
you need to append the following line in ~/.bashrc:

export JAVA HOME=/usr/java/jrel.6.0 34

Debian and Ubuntu systems

We are going to follow three basic steps for installing Oracle Java 6 for Debian and
Ubuntu systems:

1.

Downloading the binary file from the Oracle website: JRE 6 can

be downloaded from Oracle's website at http://www.oracle.com/
technetwork/java/javase/downloads/jre6-downloads-1637595.html.
Unfortunately, as of the time of writing this book, you couldn't perform
wget to download this file from the command line. This is due to the fact
that Oracle mandates the users to accept the Oracle Binary Code License
before downloading can commence. The easiest way that I find is to accept
and download the file on your work desktop and then copy it to the server
using scp.

[119]

Deploying a Cluster

Choose the Linux x64.bin version to download. (Do not download the RPM
version of the binary for Debian-like systems.)

2. Installing JRE: Installing involves setting the binary file to executable and
running it as super user. This extracts the contents to the current working
directory. You may require to move it to a desirable location. Then set this
as a top-priority alternative.

Execute the downloaded binary
$ sudo chmod a+x jre-6u34-linux-x64.bin
$ sudo ./jre-6u34-linux-x64.bin

Move extracted directory to an appropriate location
$ sudo mkdir -p /usr/java/latest
$ sudo mv jrel.6.0 34 /usr/java/latest/

3. Configuring Oracle JRE as default: To use Oracle Java as the default JRE,
it is required to set it as the default alternative. To do this, use Debian/
Ubuntu's built-in utility —update-alternatives. It is used to provide priority
to the software that performs the same functions. In our case, we want Oracle
JRE to be preferred over the other JREs in the system. So, we will install
Oracle JRE as an alternative and manually set it as default. If you do not want
to manually set the default for a user, an alternative with higher priority is
chosen as the default. So, one may give Oracle JRE alternative as a very high
value and skip manually setting the preference.

Install JRE as an alternative with priority 1

$ sudo update-alternatives --install /usr/bin/java java \
/usr/java/latest/jrel.6.0_34/bin/java 1

update-alternatives: using /usr/java/latest/jrel.6.0 34/bin/java
to provide /usr/bin/java (java) in auto mode.

Check current JRE

$ java -version

java version "1.6.0 34"

Java (TM) SE Runtime Environment (build 1.6.0 34-b04)

Java HotSpot (TM) 64-Bit Server VM (build 20.9-b04, mixed mode)

Set is a default, or if last command does not show
Oracle JRE.

$ sudo update-alternatives --set java \
/usr/java/latest/jrel.6.0_34/bin/java

[120]

Chapter 4

View all alternatives
$ sudo update-alternatives --display java
java - manual mode
link currently points to /usr/java/latest/jrel.6.0_34/bin/java
/usr/java/latest/jrel.6.0_34/bin/java - priority 1
Current 'best' version is '/usr/java/latest/jrel.6.0_34/bin/java’.

Now is a good time to update your Bash shell profile with gava_HOME. Open
~/ .bashrc and append the following to this file:

export JAVA HOME=/usr/java/latest/jrel.6.0 34

It may require calling source ~/.bashrc to reload the configuration file.

Installing the Java Native Access (JNA) library

The installer for JNA is available to all the decently modern operating systems.
Cassandra requires JNA 3.4 or higher. JNA can be installed manually; see the details
at https://github.com/twall/jna

* Toinstall JNA on RHEL/CentOS, run the following command:

$ yum install jna
* Toinstall JNA on Debian/Ubuntu, run the following command:

$ sudo apt-get install libjna-java

Installing Cassandra

With JVM ready, installing Cassandra is as easy as downloading the appropriate

tarball from the Apache Cassandra download page, http://cassandra.apache.
org/download, and untarring it. On Debian or Ubuntu, you may choose either to
install from a . tar file or from an Apache Software Foundation repository.

Installing from a tarball

This guide assumes that Cassandra is installed in the /opt directory, the datafiles in
the /cassandra-data directory, and the system logs in /var/log/cassandra. These
are just some conventions that were chosen by me. You may choose a location that
suits you best:

Download. Please select appropriate version and
URL from http://cassandra.apache.org/download page
$ wget \

[121]

Deploying a Cluster

http://mirror.sdunix.com/apache/cassandra/1.1.11/apache-cassandra-
1.1.11-bin.tar.gz

[-- snip --]

Saving to: 'apache-cassandra-1.1.11l-bin.tar.gz'

extract
$ tar xzf apache-cassandra-1.1.11l-bin.tar.gz

(optional) Symbolic link to easily switch versions in
future without having to change dependent scripts
In -s apache-cassandra-1.1.11 cassandra

Ur #H F#*

Installing from ASFRepository for
Debian/Ubuntu

Apache Software Foundation provides Debian packages for different versions of
Cassandra to directly install it from the repository. To list the packages, run the
following command:

Edit sources
$ sudo vi /etc/apt/sources.list

Also, append the following three lines:

Cassandra repo
deb http://www.apache.org/dist/cassandra/debian 11X main
deb-src http://www.apache.org/dist/cassandra/debian 11x main

Next, execute sudo apt-get update, as shown in the following code:

$ sudo apt-get update

Ign http://security.ubuntu.com natty-security InRelease

[-- snip --]

GPG error: http://www.apache.org 11x InRelease: The following
signatures couldn't be verified because the public key is not
available: NO_ PUBKEY 4BD736A82B5C1B00

If you get this error, add the public keys as shown:

$ gpg --keyserver pgp.mit.edu --recv-keys F758CE318D77295D
$ gpg --export --armor F758CE318D77295D | sudo apt-key add -

$ gpg --keyserver pgp.mit.edu --recv-keys 2B5C1B00
$ gpg --export --armor 2B5C1B00 | sudo apt-key add -

[122]

Chapter 4

Now, you can install Cassandra using the following commands:

$ sudo apt-get update
$ sudo apt-get install cassandra

This installation does most of the system-wide configurations for you. It makes

all the executables available to the $PATH system path, copies the configuration file to
/etc/cassandra, and adds the . init script to set up proper JVM and ulimits. It also
sets run-1level, so Cassandra starts at boot as "cassandra" user.

Anatomy of the installation

There are a couple of programs and files that one must know about to work
effectively with Cassandra. These things come to use during investigation,
maintenance, configuration, and optimization.

Depending on how the installation is done, the file may be available at different
locations. For a tarball installation, everything is neatly packaged under the directory
where Cassandra is installed: binaries under the bin directory and the configuration
file under the conf directory. For repository-based installations, binaries are
available in /usr/bin and /usr/sbin directories; and configuration files under /
etc/cassandra and /etc/default/cassandra.

Cassandra binaries

These contain executables for various tasks. Let's take a quick glance at them:

* cassandra: It starts the Cassandra daemon using default configuration. To
start Cassandra in the foreground, use the - £ option. You can use Ctrl + C
to kill Cassandra and view logs on the console. One may also use -p <pid_
file> to have a handle and to kill Cassandra running in the background by
using kill 'cat <pid files'.

If Cassandra is installed from the repository, it must have created a service
for it. So, one should use sudo service cassandra start, sudo service

cassandra stop, and sudo service cassandra status to start, stop, and
query the status of Cassandra.

* cassandra-cli: Cassandra's command-line interface (CLI) gives a very
basic access to execute simple commands to modify and access keyspaces
and column families. More discussion on Cassandra's CLI can be found at
http://wiki.apache.org/cassandra/CassandracCli. The typical use of
Cassandra looks like this:

cassandra-cli -h <hostname> -p <port> -k <keyspaces

[123]

Deploying a Cluster

A file of statements can be passed to the CLI using the - £ option.

* cglsh: This is a command-line interface to execute CQL queries. The default
version is CQL 3 as of Cassandra Version 1.1.*. It may change in Version
1.2.0+. One may switch to CQL 3 using the -cql3 switch. Typically, the
cqlsh connect command looks like this:

cglsh <hostname> <port> -k <keyspaces>

* json2sstable and sstable2json: As the name suggests, they represent
the yin and yang of serializing and deserializing the data in SSTable. It can
be vaguely assumed to be similar to the mysgqldump --xml <database>
command, except that it works in the JSON format.

* sstable2json provides SSTable as JSON, and json2sstable takes JSON
to materialize a functional SSTable.

* sstable2json may have the following three options:

[e]

-k: the keys to be dumped

o

-x: the keys to be excluded
° -erit makes sstable2json to dump just keys, no column family data
One can use the -k or -x switches up to 500 times. A general sstable2json
executable looks like this:

sstable2json -k <keyls> -k <key2> <sstable paths>

* sstable_path must be the full path to SSTable such as /cassandra-data/
data/mykeyspace/mykeyspace-hc-1.data. Also, the key variable must be a
hex string.

* sstablekeys: This is essentially sstable2json with a -e switch.

* sstableloader: This is used to bulk load to Cassandra. One can simply copy
SSTable datafiles and load to another Cassandra setup without much hassle.
Essentially, sstableloader reads the datafiles and streams to the current
Cassandra setup as specified by Cassandra's YAML file. We will see this tool
in more detail in section Using Cassandra bulk loader to restore the data,
Chapter 6, Managing a Cluster - Scaling, Node Repair, and Backup.

[124]

Chapter 4

Configuration files

Cassandra has a central configuration file named cassandra.yaml. It contains cluster
settings, node-to-node communication specifications, performance-related settings,
authentication, security, and backup settings.

Apart from this, there are the 1og4j-server.properties and cassandra-
topology.properties files. The 1log47j-server.properties file is used to tweak
Cassandra logging settings. The only thing that one may want to change in this file
is the following line so that we can change the location where logs are located:

log4j.appender.R.File=/var/log/cassandra/system.log

The cassandra-topology.properties file is to be filled with cluster-specific
values if you use PropertyFileSnich. We'll discuss more on this in this chapter.

cassandra.yaml and other files can be accessed from the conf directory under
the installation directory for a tarball installation. For a repository installation, the
cassandra.yaml file and others can be found under /etc/cassandra.

Setting up Cassandra's data directory and commit log
directory

As discussed earlier, one should configure the data directory and the commit log
directory to separate disk drives to improve performance. The cassandra.yaml
file holds all these configurations and more.

AWS EC2 users: Although it is emphasized to have data and commit
logs on two drives, for EC2 instance store instances, it is suggested to
» set up the RAIDO configuration and use it for both the data directories
& and the commit log. It performs better than having one of those on the
25 .
root device and the other on ephemeral.

EBS-backed instances are a bad choice for a Cassandra installation
due to slow I/O performance, and the same goes for any NAS setup.

[125]

Deploying a Cluster

To update data directories, edit the following lines in cassandra.yaml:

directories where Cassandra should store data on disk.
data file directories:
- /var/lib/cassandra/data

Change /var/1lib/cassandra/data to a directory that is suitable for your setup.
You may as well add more directories spanning different hard disks. Then change
the commit log directory as shown in the following code:

commit log
commitlog directory: /var/lib/cassandra/commitlog

Edit this to set a desired location.

These directories (data or commit log) must be available for write. If it is not a fresh
install, one may want to migrate data from the old data directories and the commit
log directory to new ones.

Configuring a Cassandra cluster

Now that you have a single node setup, you may start Cassandra by executing
<cassandra_installation>/bin/cassandra for a tarball install or by running
sudo service cassandra start for a repository installation. (We'll see later in
this chapter how to write a . init script for Cassandra and set it up to start on boot.)
However, it needs a couple of configuration tweaks in order to get a Cassandra
cluster working.

If you look at cassandra.yaml, you will find that it has the following six sections:
* Cluster setup properties: These are basically startup properties, file location,
ports, replica placement strategies, and inter-node communication settings.

* Performance tuning properties: These help in setting up appropriate values
to system/network resources based on your setup.

* Client connection properties: These help in setting up the behavior of client-
to-node connectivity, things such as number of requests per client, maximum
number of threads (clients), and much more.

* Inter-node communication: This section contains configurations for node-to-
node communication within a cluster. These include hinted handoff settings
and failure detection settings.

* Backup settings: These settings are Cassandra-automated backup items.

* Authorization and authentication settings: This provides protected access to
the cluster. The default is to allow all.

[126]

Chapter 4

In most of the cases, you will never have to bother about client connection properties
and inter-node communication settings. Even by default, the configuration is

very smart and robust for any modern-day computer. The rest of this chapter will
discuss the cluster setup properties and various options that Cassandra provides

out of the box. Security will be discussed briefly. In the section Authorization and
authentication, we will tune Cassandra using various properties in cassandra.yaml.

The cluster name

A cluster name is used to logically group nodes that belong to the same cluster.
It works as a namespace for nodes. In a multiple cluster environment, it works
as a preventive mechanism for nodes of a cluster to join one another.

It is always a good idea to give a meaningful cluster name, even if you have a
single cluster at the time. Consider cassandra.yaml:

cluster name: 'MyAppMainCluster'

It is suggested to change the cluster name before you launch the cluster. Changing
the cluster name when the cluster is up and running throws an exception. This is
because the cluster name resides in the system keyspace, and as of Version 1.1.11,
you cannot edit the system keyspace. (It was possible in some older versions.)

If you have to change the cluster name, there is an unofficial trick to do that. A cluster
name is stored in the LocationInfo column family of the system keyspace. So, you
need to stop the nodes, change the cassandra.yaml file with a new cluster name,
and delete the contents of the <data_directorys/system/LocationInfo directory
(or just move the contents elsewhere so that you can replace them if something goes
wrong). On restarting the node, you can see when you connect to a local node via
cassandra-cli that you are welcomed to a new cluster name. This process needs

to be repeated for all the nodes in the cluster.

The seed node

A seed node is the one that a newly-launched node consults to, to know about the
cluster. Although gossip (refer to section Gossip, Chapter 2, Cassandra Architecture) is
the way how nodes know one another, but to a new node, seeds are the first nodes
that it will know and start a gossip with. And, eventually, all nodes will know its
presence and it will know about the other nodes.

[127]

Deploying a Cluster

There must be at least one seed node in a cluster. Seed nodes should be a rather
stable node. One may configure more than one seed node for added redundancy
and increased availability of seed nodes. In cassandra.yaml, seed nodes are a
comma-separated list of seed addresses:

seed provider:
- class_name: org.apache....SimpleSeedProvider
parameters:
Ex: "<ipls>,<ip2>,<ip3>"
- seeds: "cl.mydomain.com,c2.mydomain.com"

Listen, broadcast, and RPC addresses

A listen address is the address that nodes use to connect to one another for
communication/ gossip. It is important to set this to the private IP of the machine.
If it is not set, it picks up the hostname value, which if incorrectly configured can
cause problems.

A broadcast address is the public address of the node. If it is not set, it will take
whatever value the listen address bears. It is generally required only if you are
setting up Cassandra to multiple data centers.

EC2 users: With multiple data center installation, you need to use EC2
_ Snitch. listen address may be set to blank because AWS assigns a
% hostname that is based on a private IP, but you may set it to a private IP
L or private DNS. broadcast address must be a public IP or a public
DNS. Also, remember not to forget to open storage_port (default is
7000) in your security group that holds Cassandra instances.

An RPC address is for client connections to the node. It can be anything — the IP
address, hostname, or 0.0.0.0. If not set, it will take the hostname.

In cassandra.yaml, these properties look like the following:

listen_address is not set, so it takes hostname.
listen address:

broadcast is commented. So, it is what listen address is.
broadcast address: 1.2.3.4

rpc_address is not set, so it is hostname.

rpc_address:

[128]

Chapter 4

Initial token

An initial token is a number assigned to a node that decides the range of keys that it
will hold. A node basically holds the tokens ranging from the previous node's token
(the node that holds a token immediately less than the current node) T_, + 1 to the
current node's token T .

In cassandra.yaml, you may mention an initial token as follows:

initial_ token: 85070591730234615865843651857942052864

It is important to choose initial tokens wisely to make sure the data is evenly
distributed across the cluster. If you do not assign initial tokens to the nodes at

the start of a new cluster, it may get automatically assigned, which may lead to a
hotspot. However, adding a new node is relatively smart. If you do not mention an
initial token to the new node, Cassandra will take a node that is loaded the most
number of times and assign the new node a key that splits the token's own loaded
node into half. It is possible to load balance a running cluster, and it is fairly easy.
We'll learn more about load balancing in the section Load balancing, Chapter 6,
Managing a Cluster — Scaling, Node Repair, and Backup. The next logical question is
how do we determine the initial token for a node? It depends on the partitioner that
you are using. And basically, we divide the whole range of keys that the partitioner
supports into N equal parts, where N is the total number of nodes in the cluster.
Then we assign each node a number. We will see this in the next section.

Partitioners

By assigning initial tokens, what we have done is created buckets of keys. What
determines which key goes to what bucket? It is partitioner. A partitioner generates
a hash value of the row key; based on the hash value, Cassandra determines to which
"bucket" (node) this row needs to go. This is a good way in which hash will always
generate a unique number for a row key. So, this is also what is used to determine
the node to read from.

Like everything else in Cassandra, partitioner is a pluggable interface. You can
implement your own partitioner by implementing org.apache. cassandra.dht.
IPartitioner and drop the .class or .jar file in Cassandra's 1ib directory.

Here is how you mention the preference for partitioner in cassandra.yaml:

partitioner: org.apache.cassandra.dht.RandomPartitioner

[129]

Deploying a Cluster

In most cases, the default partitioner is generally good for you. It distributes keys
evenly. As of Version 1.1.11, the default is RandomPartitioner, but in 1.2 or higher,
this is going to be changed to a more efficient version, Murmur3Partitioner.

Be warned that it is a pretty critical decision to choose a partitioner, because this
determines what data stays where. It affects the SSTable structure. If you decide
to change it, you need to clean the data directory. So, whatever decision is made
for the partitioner at the start of the cluster is likely to stay for the life of the storage.

Cassandra provides three partitioners by default.

. Actually, there are five. But two are deprecated, so we will
% not be discussing them here. It is not recommended to use
= them. They are OrderPreservingPartitioner and
CollatingOrderPreservingPartitioner.

The random partitioner

The random partitioner is the default partitioner till Version 1.1. It uses MD5 hash
to generate hash values for row keys. Since hashes are not generated in any orderly
manner, it does not guarantee any ordering. This means that two lexicographically
close row keys can possibly be thrown into two different nodes. This random
assignment of token to a key is what makes it suitable for even distribution of keys
among nodes. This means it is highly unlikely that a balanced node is ever going to
have hotspots.

The keys generated by a random partitioner may vary in the range of 0 to 2'# - 1.
So, for the ith node in an N nodes cluster, the initial token can be calculated by 2127
* (i - 1) / N.The following is a simple Python code to generate the complete
sequence of initial tokens for a random partitioner of a cluster of eight nodes:

running in Python shell

>>>nodes = 8

>>> print ("\n".join(["Node #" + str(i+1l) +": " + str((2 ** 127)*i/
nodes) for i in xrange (nodes) 1))

Node #1: O

Node #2: 21267647932558653966460912964485513216
Node #3: 42535295865117307932921825928971026432
Node #4: 638029437976759618993827388934565396438
Node #5: 85070591730234615865843651857942052864
Node #6: 106338239662793269832304564822427566080
Node #7: 127605887595351923798765477786913079296
Node #8: 148873535527910577765226390751398592512

[130]

Chapter 4

The byte-ordered partitioner

A byte-ordered partitioner, as the name suggests, generates tokens for row keys that
are in the order of hexadecimal representations of the key. This makes it possible
that rows are ordered by row keys and can iterate through rows as iterating through
an ordered list. But this benefit comes with a major drawback: hotspots. The reason
for the creation of a hotspot is uneven distribution of data across a cluster. If you
have a cluster with 26 nodes, a partitioner such as ByteOrderedpartitioner, and
each node is responsible for one letter. So, the first node is responsible for all the
keys starting with A, the second for B, and so on. A column family that uses the
usernames as row keys will have uneven data distribution across the ring. The data
distribution will be skewed with nodes X, Q, and Z being very light, and nodes A
and S being heavily loaded. This is bad for multiple reasons, but the most important
one is generating a hotspot. The nodes with more data will be accessed more than
the ones with less data. The overall performance of a cluster may be dropped down
to the number of requests that a couple of highly loaded nodes can serve.

The best way to assign the initial token to a cluster using ByteOrderedPartitioner
is to sample data and determine what keys are the best to assign as initial tokens to
ensure an equally balanced cluster.

Let's take a hypothetical case where your keys of all keyspaces can be represented by
five character strings from "00000" to "zzzzz". Here is how we generate initial tokens
in Python:

>>> start = int("00000".encode('hex'), 16)
>>> end = int("zzzzz".encode('hex'), 16)
>>> range = end - start

>>> nodes = 8
>>> print "\n".join(["Node #" + str(i+l) + ": %032x" % (start +
range*i/nodes) for i in xrange (nodes) 1)

Node #1: 00000000000000000000003030303030
Node #2: 00000000000000000000003979797979
Node #3: 000000000000000000000042c2c2c2c2
Node #4: 00000000000000000000004c0c0c0c0b
Node #5: 00000000000000000000005555555555
Node #6: 00000000000000000000005e9e9e9e9e
Node #7: 000000000000000000000067e7e7e7e7
Node #8: 00000000000000000000007131313130

Remember, this is just an example; in a real case you will decide this only after
evaluating the data. Or, probably want to have initial tokens assigned by UUIDs.

[131]

Deploying a Cluster

The Murmur3 partitioner

The Murmur3 partitioner is the new default for Cassandra Version 1.2 or higher.

If you are starting a new cluster, it is suggested to keep the Murmur3 partitioner. It is
not order preserving, and it has all the features of a random partitioner plus it is fast
and provides better performance than a random partitioner. One difference with a
random partitioner is that it generates token values between -2° and +2%.

If you are migrating from a previous version to 1.2 or higher, please make sure that
you are using the same partitioner as the previous one. If you were using a default,
it is likely that you were using a random partitioner. This will cause trouble, if you
have not edited cassandra.yaml to change the new default Murmur3 partitioner
back to a random partitioner.

To generate initial tokens, we'll again apply our familiar formula, but this time the
start position is not zero, so the range of tokens is (end - start): +263 - (-263) =
264. Here is the simple Python script to do this:

>>> nodes = 8
>>> print "\n".join(["Node #" + str(i+l) + ": " + str(-(2 ** 63) + (2
** 64)*1i/nodes) for i in xrange (nodes)])

Node #1: -9223372036854775808
Node #2: -6917529027641081856
Node #3: -4611686018427387904
Node #4: -2305843009213693952
Node #5: 0

Node #6: 2305843009213693952

Node #7: 4611686018427387904

Node #8: 6917529027641081856

Snitches

Snitches are the way to tell Cassandra about the topology of cluster, and about nodes'
locations and their proximities. There are two tasks that snitches help Cassandra
with. They are as follows:

* Replica placement: As discussed in the section Replication from Chapter 2,
Cassandra Architecture, depending on the configured replication factor, data
gets written to more than one node. And snitches are the decision-making
mechanism where the replicas are sent to. An efficient snitch will send place
replicas in a manner that provides the highest availability of data.

* Efficient read and write routing: Snitches are all about defining cluster
schema, and thus they help Cassandra in deciding the most efficient path
to perform reads and writes.

[132]

Chapter 4

Similar to partitioners, snitches are pluggable. You can plug in your own custom
snitch by extending org.apache.cassandra.locator.EndPointSnitch. The
PropertyFileEndPointSnitch class can be used as a guideline on how to write a
snitch. To configure a snitch, you need to alter endpoint_snitch in cassandra.yaml:

endpoint snitch: SimpleSnitch

For custom snitches, mention the fully-qualified class name of the snitch, assuming
you have dropped the custom snitch .class/ . jar file in Cassandra's 1ib directory.

Out of the box, Cassandra provides the snitches detailed in the following sections.

SimpleSnitch

SimpleSnitch is basically a do-nothing snitch. If you see the code, it basically
returns rackl and datacenterl for whatever IP address the endpoint has. Since it
discards any information that may be retrieved from the IP address, it is appropriate
for installations where data center-related information is not available, or all the
nodes are in the same data center.

This is the default snitch as of Version 1.1.11.

PropertyFileSnitch

PropertyFileSnitch is a way to explicitly tell Cassandra the relative location of
various nodes in the clusters. It gives you a means to handpick the nodes to group
under a data center and a rack. The location definition of each node in the cluster
is stored in a configuration file, cassandra-topology.properties, which can be
found under the conf directory (for a tarball installation, it is <installations>/
conf; for repository installations, it is /etc/cassandra). Note that if you are using
PropertyFileSnitch, all the nodes must have an identical topology file.

cassandra-topology.properties is a standard properties file with keys as the IP
address of the node and value as <data-center-names: <rack-name>; it is up to you
what data center name and what rack name you give. Two nodes with the same data
center name will be treated as nodes within a single data center. And two nodes with
the same data center name and rack name combo will be treated as two nodes on the
same rack.

Here is an example topology file:

Cassandra Node IP=Data Center:Rack
Data-center 1

10.110.6.30=DC1:RAC1
10.110.6.11=DC1:RAC1
10.110.4.30=DC1:RAC2

[133]

Deploying a Cluster

Data-center 2
10.120.8.10=DC2:RAC1
10.120.8.11=DC2:RAC1

Data-center 3
10.130.1.13=DC3:RAC1
10.130.2.10=DC3:RAC2

default for unknown nodes
default=DC1:RACO

DCcx and RACX are commonly used patterns to denote a data center and a rack
respectively. But you are free to choose anything that suits you. The default
option is to take care of any node that is not listed in PropertyFileSnitch.

GossipingPropertyFileSnitch

Even with all the fancy naming and grouping, one thing that keeps bugging in
PropertyFileSnitch is the manual effort to keep the topology files updated with
every addition or removal of the node. GossipingPropertyFileSnitch is there
to solve this problem. This snitch uses the gossip mechanism to propagate the
information about the node's location.

In each node, you put a file named cassandra-rackdc.properties under the conf
directory. This file contains two things: the name of the node's data center and the
name of the node's rack. It looks like this:

dc=DC3
rack=RAC2

RacklinferringSnitch

If simplesnitch is one end of the spectrum, where snitch does not assume anything,
RackInferringSnitch is the other extreme of the spectrum. RackInferringSnitch
uses an IP address to guess the data center and rack of the node. It assumes that

the second octet of the IP address uniquely denotes a data center, and the third

octet uniquely represents a rack within a data center. So, for 10.110.6.30, 10.110.6.4,
10.110.2.42, and 10.108.10.1, this snitch assumes that the first two nodes reside in the
same data center and in the same rack, while the third node lives in the same data
center but in a different rack. It assumes that the fourth node exists in a different data
center than the rest of the nodes in the example:

10.110.6.30

[134]

Chapter 4

This can be dangerous to use if your machines do not use this pattern for IP
assignment to the machines in data centers.

EC2Snitch

Ec2Snitch is a snitch specially written for Amazon AWS installations. It uses the
node's local metadata to get its availability zone and then breaks it into pieces to
determine the rack and data center. Please note that rack and data center determined
this way do not correspond to the physical location of hardware in Amazon's cloud
facility, but it gives a pretty nice abstraction.

Ec2Snitch treats the region name as the data center name and availability zone as
the rack name. It does not work cross-region. So, effectively, Ec2Snitch is the same
as a single data center setup. If one of your nodes is in us-east-1a and another in
us-east-1b, it means that you have two nodes in a data center named us-east in
two racks, 1a and 1b.

EC2MultiRegionSnitch

Ec2snitch does not work well if you decide to keep nodes across different EC2
regions. The reason being EC2sSnitch uses private IPs, which will not work across
regions (but do work across availability zones in a region).

If your cluster spans multiple regions, you should use Ec2MultiRegionSnitch.

EC2 users: If you plan to distribute nodes in different regions, there is
more than just a proper snitch that is needed to make nodes successfully
communicate with one another. You need to change the following:

* broadcast_address: This should be the public IP or public
DNS of the node.

* listen address: This should be set to a private IP or DNS.
s But if not set, the hostname on EC2 is generally derived from the
private IP, which is fine.

* endpoint_snitch: This should be set to
Ec2MultiRegionSnitch.

* storage port: The default 7000 is fine, but remember to open
this port in the security group that holds Cassandra instances. -

[135]

Deploying a Cluster

Replica placement strategies

Apart from putting data in various buckets based on nodes' tokens, Cassandra has
to replicate the data depending on what replication factor is associated with the
keyspace. Replica placement strategies come into action when Cassandra has to
decide where a replica is needed to be placed.

There are two strategies that can be used based on the demand and structure of
the cluster.

SimpleStrategy

SimpleStrategy places the data on the node that owns it based on the configured
partitioner. It then moves to the next node (toward a higher bucket), places a replica,
moves to the next node and places another, and so on, until the replication factor

is met.

SimpleStrategy is blind to cluster topology. It does not check whether the next node
to place the replica in is in the same rack or not. Thus, this may not be the most
robust strategy to use to store data. What happens if all three replicas of a key range
are physically located in the same rack (assuming RF=3) and there is a power failure
of that rack; you lose access to some data until power is restored. This leads us into a
rather smarter strategy, NetworkTopologyStrategy.

Although we discussed how bad simpleStrategy can be, this is the default strategy.
Plus, if you do not know the placement or any configuration details of your data
center and you decide to stay in a single data center, NetworkTopologyStrategy
cannot help you much.

NetworkTopologyStrategy

NetworkTopologyStrategy, as the name suggests, is a data-center- and rack-aware
replica placement strategy. NetworkTopologyStrategy tries to avoid the pitfalls of
SimpleStrategy by considering the rack name and data center names that it figures
out from the configured snitch. With the appropriate strategy option, stating
how many replicas go to which data centers, NetworkTopologyStrategy is a very
powerful and robust-mirrored database system.

NetworkTopologyStrategy requires the system admin to put a little extra
thought into deciding appropriate values for initial tokens for multiple data
center installations. For a single data center setup, initial tokens make up an
evenly divided token range assigned to various nodes.

[136]

Chapter 4

NetworkTopologyStrategy and multiple data center setups

Here is the issue with multiple data center setups. Suppose you have two data
centers with each having three nodes in it; here is what the keyspace looks like:

CREATE KEYSPACE myKS
WITH placement strategy = 'NetworkTopologyStrategy'
AND strategy options={DC1:3, DC2:3};

It says that there are at least six nodes in the ring; keep three copies of each row in
DC1 and three more copies in DC2.

Assume the system actually has four nodes in each data center, and you calculated
the initial token by dividing the possible token range into eight equidistant values.
If you assign the first four tokens to four nodes in Dc1 and the rest to the nodes in
Dc2, you will end up having a lopsided data distribution.

Let's take an example. Say we have a partitioner that generates tokens from 0 to 200.
The token distribution, if done in the way previously mentioned, will have a resulting
ring that looks like the following figure. Since the replication factor is bound by the
data center, all the data from 25 to 150 will go to one single node in Data Center 1,
while other nodes in the data center will owe a relatively smaller number of keys.

The same happens to Data Center 2, which has one overloaded node.

This creates a need for a mechanism that balances nodes within each data center.

The first option is to divide the partitioner range by the number of nodes in each data
center and assign the values to nodes in data centers. But, it wouldn't work, because
no two nodes can have the same token.

Token Range: [0, 200]

Data Center 1

Dat Center 2

(50, 751\

(75, 100]

\
|
|
1
1

1

!

Figure 4.1: Multiple data centers - even key distribution causing lopsided nodes

[137]

Deploying a Cluster

There are two ways to avoid this imbalance in key distribution:

* Offsetting tokens slightly: This mechanism is the same as the one that we
just discussed. The algorithm is as follows:

1. Calculate the token range as if each data center is a ring.

2. Offset the values that are duplicated by a small amount. Say by 1 or
10 or 100.

Here is an example. Let's say we have a cluster spanning three data centers.
Data-center 1 and Data-center 2 each has three nodes, and Data-center
3 has two nodes. We use RandomPartitioner. Here is the split (the final
value is used, the duplicates are offset):

Duplicates are offsett, final are assigned

Data-center 1:
nodel:
0 (final)

node2 :
56713727820156410577229101238628035242 (final)

node3:
113427455640312821154458202477256070485 (final)

Data-center 2:

nodel:

0 (duplicate, offset to avoid collision)
1 (final)

node2 :
56713727820156410577229101238628035242 (duplicate, offset)
56713727820156410577229101238628035243 (final)

node3:
113427455640312821154458202477256070485 (duplicate, offset)
113427455640312821154458202477256070486 (final)

Data-center 3:

nodel:

0 (duplicate, offset)
2 (final)

node2 :
85070591730234615865843651857942052864 (final)

If you draw the ring and re-evaluate the token ownership, you will find that
all the data centers have balanced nodes.

[138]

Chapter 4

Alternating token assignment: This is a much simpler technique than the
previous one, but it works when all the data centers have an equal number of
nodes, which is a pretty common setup.

In this methodology, we divide the token range by the total number of
nodes across all the clusters. Then we take the first token value, assign it to
anode in Data-center 1, take a second token and assign it to a node in the
second data center, and so on. Keep revolving through the data centers and
assigning the next initial token to nodes until all the nodes are done (and all
the tokens are exhausted).

For a three data centers' setup, with each having two nodes, here are the
details:

$ python -c 'print "\n".join([str((2 ** 127)*i/6) for i in
xrange (6) 1)

0
28356863910078205288614550619314017621
56713727820156410577229101238628035242
85070591730234615865843651857942052864
113427455640312821154458202477256070485
141784319550391026443072753096570088106
Data-centerl: nodel

0

Data-center2: nodel
28356863910078205288614550619314017621

Data-center3: nodel
56713727820156410577229101238628035242

Data-centerl: node2
85070591730234615865843651857942052864

Data-center2: node2
113427455640312821154458202477256070485

Data-center3: node2
141784319550391026443072753096570088106

[139]

Deploying a Cluster

Launching a cluster with a script

Now that we have configured the machines, we know the cluster settings to carry
out, what snitch to use, and what should be the initial tokens, we'll download the
latest Cassandra install on multiple machines, set it up, and start it. But it is too
much work to do it manually.

We will see a custom script that does all these for us —after all we are dealing with
a large data and a large number of machines, so doing all manually can be prone to
error and exhausting (and more importantly, there's no fun!). This script is available
on GitHub at https://github.com/naishe/mastering_cassandra. You may
tweak it as per your needs and work with it.

There are two scripts: install cassandra.shand upload and execute.sh.

The former is the one that is supposed to be executed on the to-be Cassandra

nodes, and the latter is the one that uploads the former to all the nodes, passes the
appropriate initial token, and executes it. It is the latter that you need to execute on
your local machine and make sure both scripts are in the same directory from where
you are executing. If you are planning to use this script, you may need to change a
couple of variables at the top.

Here is the script configured to set up a three-node cluster on Amazon EC2
machines. Please note that it uses EC2snitch, so it does not need to set up any
snitch configuration file as it would have, if it was using PropertyFileSnitch
or GossippingPropertyFileSnitch. If you are using those snitches, you may
need to upload those files to appropriate locations in remote machines too:

#install_cassandra.sh

#!/bin/bash
set -e

This script does the following:
1. downloadcassandra

2. create directories

3. updatescassandra.yaml with
cluster name

seeds

listen_address

rpc_address

initial_token

endpoint_snitch

4. start Cassandra

#SYNOPSYS
function printHelp () {

[140]

Chapter 4

cat << EOF
Synopsis:
$0 <initial token>
Downloads, installs, configures, and starts Cassandra.
Required Parameters:
<initial token>: initial token for this node

EOF
}
if [$# -1t 1] ; then
printHelp
exit 1
fi
VARIABLES !!! EDIT AS YOUR CONFIG

download url='http://mirror.sdunix.com/apache/cassandra/1.1.11/apache-
cassandra-1.1.11-bin.tar.gz'

name='apache-cassandra-1.1.11"
install dir='/opt'
data_dir='/mnt/cassandra-data’
logging dir='/mnt/cassandra-logs'

CASSANDRA CONFIG !!! EDIT AS YOUR CONFIG
cluster name='"My Cluster"'

seeds="'"10.99.9.67""' #yeah, the double quotes within the quotes!
listen address="'"

rpc_address=""

initial token="s$1"

endpoint snitch="Ec2Snitch"
cassandra_user="$2"

echo "--- DOWNLOADING CASSANDRA"
wget -P /tmp/ ${download url}

echo "--- EXTRACTING..."
sudo tar xzf /tmp/apache-cassandra-1.1.1l-bin.tar.gz -C ${install dir}

echo "--- SETTING UP SYM-LINK"
sudo 1n -s ${install dir}/${name} ${install dir}/cassandra

echo "--- CREATE DIRECTORIES"
sudo mkdir -p ${data dir}/data ${data dir}/commitlog ${logging dir}
sudo chown -R ${USER} ${data dir} ${logging dir}

[141]

Deploying a Cluster

echo "--- UPDATING CASSANDRA YAML (in place)"

sudo cp ${install dir}/cassandra/conf/cassandra.yaml ${install dir}/
cassandra/conf/cassandra.yaml .BKP

sudo sed -i \
-e "s/"cluster name.*/cluster name: ${cluster name}/g" \
-e "s/\(\-\s*seeds:\).*/\1 ${seeds}/g" \
-e "s/*listen address.*/listen address: ${listen address}/g" \
-e "s/”rpc_address.*/rpc_address: ${rpc_address}/g" \
-e "s/%initial token.*/initial token: ${initial token}/g" \
-e "s/"endpoint_ snitch.*/endpoint snitch: ${endpoint snitch}/g" \
-e "s|/var/lib/cassandra/data|${data_dir}/data|g" \
-e "s|/var/lib/cassandra/commitlog|${data_dir}/commitlog|g" \
-e "s|/var/lib/cassandra/saved_caches|${data_dir}/saved caches|g" \
${install_dir}/cassandra/conf/cassandra.yaml
sudo sed -i \
-e "s|/var/log/cassandra/system.log|${logging dir}/system.log|g" \
${install dir}/cassandra/conf/log4j-server.properties

echo "--- STARTING CASSANDRA"
NOHUP, ignore SIGNUP signal to kill Cassandra Daemon
nohup ${install dir}/cassandra/bin/cassandra> ${logging dir}/startup.

log &

sleep 5

echo "--- INSTALLATION FINISHED"

The following is a code for upload and execute.sh
#!/bin/bash

set -e

This script:

- takes array of node addresses

- generates initial-tokens for RandomPartitioner

- uploads the install_ cassandra.sh and executes it

!!! Change these variables to suit your settings

identity file="${HOME}/.ec2/prodadmin.pem"

remote user="ec2-user"

install script="${HOME}/Desktop/install cassandra.sh"

servers=('cl.mydomain.com' 'c2.mydomain.com' 'c2.mydomain.com')

[142]

Chapter 4

nodes=${#servers [@] }

init tokens=('python -c "print ' '.join([str((2 ** 127)*i/${nodes})
for i in xrange(${nodes}) 1)"')

i=0

for server in ${servers[e@]} ; do

ikey=${init_tokens[$il}

echo ">> Uploading script to ${server} to remote user's home"
scp -1 ${identity file} ${install script} ${remote
user}@${server}:~/install cassandra.sh

echo ">> Executing script with initial key=${ikey}"
ssh -t -i ${identity file} ${remote user}es${server} "sudo chmod a+x
~/install cassandra.sh && ~/install cassandra.sh ${ikey}"

echo ">> Installation finished for server: ${server}"
echo M o o e o o e e e e e e e e e e e e e n
i=$((S$1i+1))

done

echo ">> Cluster initialization is Finished."
exit 0;

When the author executes this script for the demonstration of a three-nodes cluster, it
takes less than two minutes to get up and running. Here is how it looks:

$./upload _and execute.sh

>> Uploading script to cl.mydomain.com to remote user's home
install cassandra.sh 100% 2484 2.4KB/s 00:00

>> Executing script with initial key=0

--- DOWNLOADING CASSANDRA

[-- snip --]

Saving to: '/tmp/apache-cassandra-1.1.11l-bin.tar.gz'
100% [=========>] 1,29,73,061 ©598KB/s in 22s

--- EXTRACTING...

--- SETTING UP SYM-LINK

--- CREATE DIRECTORIES

--- UPDATING CASSANRA YAML (in place)

--- STARTING CASSANDRA

--- INSTALLATION FINISHED

>> Installation finished for server: cl.mydomain.com

[143]

Deploying a Cluster

>> Uploading script to c2.mydomain.com to remote user's home

[--

snip --]

>> Executing script with initial key=56713727820156410577229101238628
035242

[--

DOWNLOADING CASSANDRA
snip --]

EXTRACTING. ..
SETTING UP SYM-LINK
CREATE DIRECTORIES
UPDATING CASSANRA YAML (in place)
STARTING CASSANDRA
INSTALLATION FINISHED
snip --]

>> Uploading script to c3.mydomain.com to remote user's home

[--

snip -]
DOWNLOADING CASSANDRA
snip --]

EXTRACTING. ..

SETTING UP SYM-LINK

CREATE DIRECTORIES

UPDATING CASSANRA YAML (in place)
STARTING CASSANDRA

INSTALLATION FINISHED

>> Cluster initialization is Finished.

Let's check what newly-launched cluster looks like:

Figure 4.2: The ring query showing all three nodes are up and running with tokens equally distributed
among them

[144]

Chapter 4

Creating a keyspace

It may strike you as odd why creating a keyspace is discussed here in a chapter that
is oriented more toward system administration tasks. The reason to do this is that
keyspace creation is hard-linked with the way you have set the snitch.

Unless you are using SimpleSnitch, you should use NetworkTopologyStrategy
as the replica placement strategy. It needs to know the replication factor for the
keyspace for each data center.

So, if you have propertyFileSnitch or GossipingPropertyFileSnitch, your
keyspace creation looks like the following code:

CREATE KEYSPACE myKS
WITH placement strategy = 'NetworkTopologyStrategy'
AND strategy options={DC1:3, DC2:3};

Here, strategy options has keys as data center names defined in snitch
configuration files and values are replication factors in each data center.

In EC2-related snitches, Ec2MultiRegionSnitch or Ec2Snitch, the data center name
is nothing but the name of the region as it appears in the availability zone. So, for us-
east-1la, the data center is us-east. The command to create a space is as follows (for
EC2MultiRegionSnitch):

CREATE KEYSPACE myKS
WITH placement strategy = 'NetworkTopologyStrategy'
AND strategy options={us-east:3,us-west:3};

So, if you have set the replication factor smartly, and your queries make use of the
right consistency level, your request will never have to travel beyond the one data
center (if all the replicas in that data center are up).

For simplesnitch, you just specify replication_factor as the strategy option as it
is oblivious to the data center or the rack.

createkeyspacemyKS
with placement_ strategy = 'SimpleStrategy’
and strategy options = {replication_factor : 2}

[145]

Deploying a Cluster

Authorization and authentication

By default, Cassandra is open to everyone who has access to Cassandra's node
address and port. Since most of the time it's just your applications that access
Cassandra and generally the whole application ecosystem is heavily guarded (by
VPN, VPC, and firewall), it may not bother you that Cassandra has no security.

To configure some sort of authentication and authorization mechanism, one may use
the simple authenticator that is provided by Cassandra. SimpleAuthenticator is not
great; it has a pretty vanilla security mechanism. To enable SimpleAuthenticator,
you need to replace the allow-all configuration in cassandra.yaml:

authenticator: org.apache.cassandra.auth.SimpleAuthenticator
authority: org.apache.cassandra.auth.SimpleAuthority

Apart from this, it is a file-based security, so you need to provide two files: one for
the username and password, namely, passwd.properties, and another for user
permission on keyspaces or column families, called access.properties. Here is
how they are formatted:

passwd.properties
leonardo=p@zzwd
tjadmin=cmplx314159

access.properties
myAppKeyspace.<rw>=1leonardo, tjadmin

analyticsKS.<rw>=tjadmin

analyticsKS.raw_apache log cf.<ro>=leonardo

Basically, the passwd file is a simple key-value pair, where the key is the username
and the value is the password. The access property file provides a simple blanket
permission. The way the access.properties file is formatted is as follows:

<keyspace>[.<column family>].<permission> = <user name>

The first fragment is keyspace, the second can optionally be the column family
name in that keyspace, and the third is permission. The permission parameter
has to be one of read-only, <ro>, or read-write, <rw>, type (with angled brackets).

Once you are done with security settings, you need to change the way Cassandra
starts. You need to add these files as Java default properties (assuming you kept it
under the /conf directory). Here is what Cassandra's start commands look like:

$ cassandra -Dpasswd.properties=conf/passwd.properties -Daccess.
properties=conf/access.properties

[146]

Chapter 4

If you do not want to distort your start command, the same effect can be achieved
by adding these default properties to JavA_oPTS in the Cassandra shell script
(bin/cassandra). Assuming /opt/cassandra is where Cassandra is installed,
append the following code (after placing a space):

$ cassandra -Dpasswd.properties=/opt/cassandra/conf/passwd.properties
-Daccess.properties=/opt/cassandra/conf/access.properties

to this:

cassandra_ parms="-Dlog4j.configuration=1log4j-server.properties
-Dlog4j.defaultInitOverride=true"s

This is pretty basic authentication, which definitely does not serve the needs of all.

It requires files to manually manage authentication on all nodes. You may write
your own authenticator and authority mechanism by implementing org.apache.
cassandra.auth.IAuthenticator and org.apache.cassandra.auth.IAuthority
interfaces, respectively. Another reason to dislike these is because from Version

1.0 or higher, they are moved to the examples directory and they are permanently
removed from 1.2.2 or higher. They are replaced by cassandraAuthorizer and
PasswordAuthenticator. Cassandra 1.2.2 or higher has many new and improved
security features. If you are using Version 1.2.2 or higher, refer to Chapter 9,
Introduction to CQL 3 and Cassandra 1.2.

Summary

We have done a complete cluster installation. It is not as difficult as it seems. Once
we have fixed the variables and decided what hardware requirement is needed,

it is just a matter of running a shell script that downloads, installs, and configures
Cassandra. Multiple data center setups are equally simple, when you figure out
initial tokens. Many variables depend on your particular use case, but if you do not
have a particular specification in mind, go with the suggested ones or the default
one. It is generally good.

Setting up a cluster is probably a one-time task for an organization. It is likely that
your first cluster will be just a couple of nodes. It is equally likely that you will stick
with that cluster for first production, or at least till you plan to make the first release
with Cassandra in your system. In production, the first couple of things that comes
to everyone's mind are whether the software is tuned to perform its best? What
happens when things start to break? What if we needed to ramp up the servers?
How safe is our data? How would we know if things are failing? Where to look

for help about things that no one in the team knows? Chances are that you will be
expected to answer these questions. So, you would want to know the answers before
you are asked them. The next few chapters are about all these questions.

[147]

Performance Tuning

Cassandra is all about speed — quick installation, fast reads, and fast writes. You
have got your application optimized, minimized network trips by batching, and
denormalized the data to get maximum information in one request, but still the
performance is not what you read over the Web and in various blogs. You start to
doubt if the claims actually measure. Hold! You may need to tune things up.

This chapter will discuss how to get a sense of a Cassandra cluster's capacity and
have a performance number handy to back up your claims. It then dives into the
various settings that affect read and write throughputs, a couple of JVM tuning
parameters, and finally a short discussion on how scaling horizontally and vertically
can improve the performance.

Stress testing

Before you start to claim the performance numbers of your Cassandra backend based
on numbers that you have read elsewhere, it is important to perform your own stress
testing. It is very easy to do that in Cassandra as it provides special tooling for stress
testing. It is a good idea to customize the parameters of the stress test to represent

a use case that is closer to what your application is going to do. And this will save

a lot of heated discussion later due to discrepancies in the load test and the actual
throughput that the software is able to pull out of the setting.

The load test tool is found under the Cassandra installation directory under tools as
tools/bin/cassandra-stress. Here are some useful parameters:

-d, --nodes: CSV list of nodes to run the queries against

-0, --operation: Operation to perform, default: insert

-R, --replication-strategy: Replication strategy, def: Simple
-0, --strategy-properties: in <dc>:<RF>,<dcl>:<RF1l> format

-U, --comparator: column comparator

Performance Tuning

-e, --consistency-level: consistency level, default: ONE
-c¢, --columns: Number of columns per key, default: 5

-n, --num-keys: Number of keys, default: 1Mn

-S, --column-size: Size of column values, default: 34 bytes
-L, --enable-cgl: Perform operations using CQL

Let's take an example application, say a chat application that stores each chat session
in a row and each message in a separate column. Let's assume that each session has
an average message transfer of 500 messages (500 columns), each message has 100
UTEF8 characters (300 bytes/column), our servers are located in an Amazon EC2
environment but in a single region (Ec2Snitch, NetworkTopologyStrategy), the
columns are sorted by time (the TimeUUIDType comparator), and that we want to
read and write consistency level 2 (for 3 server configurations of ours, R + W > N).

We will load test this against a three servers setup which has all defaults and in
which initial token is equidistant. Each machine has the following specification
(standard M1.large instances):

Memory: 7.5 GiB

CPU: 2 Virtual cores with 2 ECU each, 64 bit
Hard disc: 840 GiB (RAIDO)

OS: CentOS 5.4

Cassandra: version 1.1.11

Here is the test run command:

$ tools/bin/cassandra-stress \
-d 10.99.9.67,10.147.171.159,10.114.189.54 \
-0 INSERT \
-R org.apache.cassandra.locator.NetworkTopologyStrategy \
-0 us-east:2 \
-U TimeUUIDType \
-e QUORUM
-c 5\
-S 300 \
-y Standard \
-t 200 \
-n 1000000 \
-F 10000

[150]

Chapter 5

It says insert 1 million records with 5 columns in a row, under 10,000 unique row
keys in a standard column family using 200 threads, sorted by TimeuuID, with
consistency level as QuoruM. This will ensure that each row roughly has 500 columns.
The test result shows that the inserts rate stays about 5000 inserts per second. There
are a couple of blips, maybe due to a MemTable flush or a compaction in the process.
This is shown in the following figure.

On the same setup, let's execute a read stress test:

$ tools/bin/cassandra-stress \

-d 10.99.9.67,10.147.171.159,10.114.189.54 \

-0 READ \

-R org.apache.cassandra.locator.NetworkTopologyStrategy \
-0 us-east:2 \

-U TimeUUIDType \

-e QUORUM \

-c¢ 5\

-S 300 \

-y Standard \

-t 200 \
-n 1000000 \
-F 10000
Write Stress Test
2000 3 M1.large Nodes, RF: 2, 1Mn Inserts 0.07
0.06
0.05
0.04 g
3
&u}%
3 OﬂEg
1000 interval_op_rate 0.01
avg_latency
0 0

10 20 30 40 50 60 70 80 91 101 111 121 131 141 151 161 171 182 192 195

Time Elapsed (in sec)

Figure 5.1: Result of write stress test

[151]

Performance Tuning

With these parameters, the reads stay just below 8000 reads per second.
The reads stay rather stable. The statistics for the read performance is
described in the following figure.

This is the most basic stress test that gives an overall idea of what can be achieved
from a Cassandra setup. There may be multiple intrinsic (bad choices, high I/O
due to frequent MemTable flushes, and so on) or extrinsic (locking in application
code, poor inter-node connectivity, and so on) configurations that can differ the
performance of your setup from what is mentioned here. But you should run

this test anyway to get the baseline statistics of your system.

Not all test cases can be stress tested using Cassandra's built-in stress tool. Based
on what your application does, you may need to write your own stress test that
represents your application's model behavior.

Another load test mechanism that is worth looking at is Yahoo! Cloud Serving
Benchmark (YCSB). You can read more on YCSB at https://github.com/
brianfrankcooper/YCSB/wiki/Getting-Started. It is a framework with which
you can add a database interface as a plugin and run a load against it. Cassandra is

one of the many databases that it supports out of the box. Details of this tool are out

of the scope of this book, but you can easily learn how to use it from its excellent
documentation on GitHub.

Read Stress Test
3 M1.large Nodes, CL: QUORUM, 1Mn Reads
9000 0.09
0.08
0.07
0.06
0.05
0.04

0.03

Reads per second

0.02

interval_op_rate
1000 == 0.01

s gy |atency
0 0
10 20 30 40 50 60 7O 80 91 1M 111 121 131 141 145

Time Elapsed (in seconds)

Average Latency

Figure 5.2: Result of read stress test

[152]

Chapter 5

Performance tuning

With stress tests completed, you might have identified the key areas for
improvement. The broadest area that you can categorize performance tuning into
is the read and write performance area. But there may be worries such as the I/O
contention (compaction tuning) on servers. Apart from these, there may be several
external factors, for example, slow disk, shared resources (such as shared CPU),
and connectivity issues. We are not going to discuss external factors here. The
assumption is that you will have sufficient resources allocated to the Cassandra
servers. This section will discuss various tweaks to get Cassandra performing the
best that it can within the given resources.

Write performance

Cassandra writes are sequential; all it needs to do is to append to commit log and
put in memory. There is not much that can be done internally to Cassandra settings
to tweak writes. However, if disk writes are fast, and somehow 1/O contentions can
be lowered due to multiple things that happen in the Cassandra life cycle, such as
flushing MemTable to disk, compaction, and writes to commit logs, it can boost the
write performance.

So, having fast disks, and having commit logs and datafiles in separate dedicated
hard disks directly attached to the system, will improve write throughput.

Read performance

Reading in Cassandra is rather complicated. It may need to read from the memory

or from the hard drive, and it may need to aggregate multiple fragments of data
from different SSTables, it may require to get data across multiple nodes, take care

of tombstones, and validate, digest, and get tombstones back to the client. But the
common pattern of increasing the read performance in Cassandra is the same as any
other data system —caching: to keep the most frequent data in memory, minimize
disk access, and keep search path/hops small on disk. Also, a fast network and lesser
networks access as well as a low read consistency level may help.

[153]

Performance Tuning

Choosing the right compaction strategy

With each flush of a MemTable, an immutable SSTable gets created. So, with time,
there will be numerous SSTables if their numbers are not limited by an external
process. The main problem with this is slow read speed. A search may need to hop
through multiple SSTables to fetch the requested data. The compaction process
executes repeatedly to merge these SSTables into one larger SSTable, which has a
cleaned-up version of the data that was scattered in fragments into different smaller
SSTables littered with tombstones. This also means that compaction is pretty disk
I/O intensive, so the longer and more frequently it runs, the more contention it will
produce for other Cassandra processes that require to read from or write to the disc.

Cassandra provides two compaction strategies as of Version 1.1.11. A compaction
strategy is a column family level setting, so you can set an appropriate compaction
strategy for a column family based on its behavior.

Size tiered compaction strategy

This is the default strategy. The way it works is as soon as the min_threadhold
(default value is 4) number of equal-sized SSTables are available, they get compacted
into one big SSTable. As the compacted SSTables get bigger and bigger, it is rare

that large SSTables gets compacted further. This leaves some very large SSTables
and many smaller SSTables. This also means that row updates will be scattered in
multiple SSTables and we will require more time to process multiple SSTables to get
the fragments of a row.

With the occasional burst of I/O load during compaction,
SizeTieredCompactionStrategy is a good fit where rows are inserted and never
mutated. This will ensure that all the bits of rows are in one SSTable. This is a write
and I/O friendly strategy.

Leveled compaction

LeveledCompactionStrategy is a relatively new introduction to Cassandra, and the
concepts are taken from Google's LevelDB project. Unlike size tiered compaction,
this has many small and fixed sized SSTables grouped into levels. Within a level, the
SSTables do not have any overlap. Leveled compaction works in such a way that for
most cases, a row will require to access just one SSTable. This is a big advantage over
the size tiered version. It makes LeveledCompactionStrategy a better choice for
reading heavy column families. Updates are favored in level compaction as it tries to
spread rows as low as possible.

[154]

Chapter 5

The downside of leveled compaction is high I/O. There is no apparent benefit if data
is of write-once type. It's because in that case, even with the size tiered strategy, the
data is going to stay in one SSTable.

Anyone coming from the traditional database world who has ever worked on
scaling up read requests and speeding up data retrievals knows that caching is the
most effective way to speed up the reads. It prevents database hits for the data that
is already fetched (in the recent past) for the price of extra RAM that the caching
mechanism uses to store the data temporarily. So, you have a third-party caching
system such as Memcached that manages it for you. The nasty side of third-party
caching mechanisms is the whole managing-the-distributed-cache part. It may
intrude into the application code.

Cassandra provides an inbuilt caching mechanism that can be really helpful if
your application requires heavy read capability. There are two types of caches in
Cassandra, row cache and key cache. Refer to the following figure:

| Get Row |
In RowCache? Yes h-< Retumn Data :>
Mo
In KeyCache? Yes
Mo
[__ Scan of Index file J—l-| Read data from disk |—|-| Set data to Row Cache

Figure 5.3: How caching works

Row cache

Row cache is true caching in the sense that it caches a complete row of data and
returns immediately without touching the hard drive. It is fast and complete. Row
cache stores data off heap (if JNA is available), which means it will be unaffected by
the garbage collector.

Cassandra is capable of storing really large rows of data with about 2 billion columns
in it. This means that the cache is going to take up as much space, which may not

be what you wanted. So, while row cache is generally good to boost the read speed,
it is best suited for not-so-large rows. So, you can cache the users column family

in row cache, but it will be a bad idea to have the users browsing history or
users_click_pattern column family in a row cache.

[155]

Performance Tuning

Key cache

Key cache is to store the row keys in memory. Key caches are default for a column
family. It does not take much space but it boosts performance to a large extent (but
less than the row cache). As of Cassandra Version 1.1.11, it assigns a minimum of 100
MB or 5 percent of the JVM heap memory to the key cache.

Key caches contain information about the location of the row in SSTables, so it's just
one disk seek to retrieve the data. This simplifies the process of looking through a
sampled index and then scanning the index file for the key range. Since it does not
take up as much space as a row cache, you can have a large number of keys cached
in a relatively small amount of memory.

Cache settings

The general rule of thumb is, for all normal purposes, a key cache is good enough.
You may tweak a key cache to stretch its limits. You'd buy more for a little increase
in the key cache settings. Row caching, on the other hand, needs a little thinking to
do. A good fit data for row cache is same as a good fit data for a third-party caching
mechanism; the data should be read mostly, and mutated occasionally. Rows with
a smaller number of columns are better suited. Before you go ahead with cache
tweaking, you may want to check the current cache usage. You can use jConsole
as discussed in Chapter 7, Monitoring, to see the cache hit. In jconsole, the cache
statistics can be obtained by expanding the org.apache.cassandra.db menu. It
shows the cache hit rate and the number of hits and the cache size for a particular
node and column family.

Cache settings are mostly global as of Version 1.1.11. The settings can be altered in
cassandra.yaml. At column family level, the only choices that you have are what
cache type to use or if you should use any cache at all. The options are: all, keys_
only, rows_only, and none. The all option is to use both caches; the none option is
to use none of the two. Here is an example:

CREATE COLUMN FAMILY rowcachedCF WITH COMPARATOR = UTF8Type AND
CACHING = rows_only;

Here are the caching specific settings in cassandra.yaml:

* key cache_size_ in mb: By default, this is set to 100 MB or 5 percent of the
heap size. To disable it globally, set it to zero.

* key cache save period: The time after which the cache is saved to disk to
avoid a cold start. A cold start is when a node starts afresh and gets marred
by lots of requests; with no caching at the time of start, it will take some
time to get a cache loaded with the most requested keys. During this time,
responses may be sluggish.

[156]

Chapter 5

The caches are saved under a directory as described by the saved_caches_
directory setting in the .yaml file. We configured this during the cluster
deployment in Chapter 4, Deploying a Cluster. The default value for this setting
is 14,400 seconds:

key_cache _keys_to_save: Number of keys to save. It is commented to
store all the keys. In general, it is okay to let it be commented.

row_cache_size_in mb: Row caching is disabled by default by setting this
attribute to zero. Set it to an appropriate positive integer. It may be worth
taking a look at nodetool -h <hostname> cfstats and taking the row
mean size and the number of keys into account.

row_cache save period: Similar to key cache save period, this saves
the cache to the saved caches directory after the prescribed time. Unlike key
caches, row caches are bigger, and saving to disk is an I/ O expensive task to
do. Compared to the fuss of saving a row cache, it does not give proportional
benefit. It is okay to leave it as zero, that is, disabled.

row_cache keys to save:Same as key cache keys to_ save.

row_cache_provider: Out of the box, Cassandra provides two mechanisms
to enable a row cache:

[e]

SerializingCacheProvider: A modern cache provider that stores
data off-heap. It is faster and has a smaller memory footprint than
the other implementation. It is the default cache provider and it is
preferred to read-heavy and mutate-light types of environment,
which is where caching shines, anyway. Being off-heap means a
smaller JVM heap, which means faster garbage collection and hence
smaller GC pauses.

ConcurrentLinkedHashCacheProvider: In JVM heap caching, its
performance is low than the other cache mechanism. It performs
better for update-heavy cases with its update feature in place.

You can plug in your own cache provider by putting a.jar or .class file in
Cassandra's installation's 1ib directory and mentioning a fully-qualified class
name as row_cache_provider. The class must implement org. apache.
cassandra.cache.IRowCacheProvider.

[157]

Performance Tuning

Enabling compression

Column family compression is a very effective mechanism to improve read and
write throughput. As you might expect, (any) compression leads to a compact
representation of data at the cost of some CPU cycles. Enabling compression on

a column family makes the disk representation of the data (SSTables) terse. That
means efficient disk utilization, lesser I/O, and a little extra burden to the CPU.
In case of Cassandra, the tradeoff between I/O and the CPU, due to compression,
almost always yields favorable results. The cost of CPU performing compression
and decompression is less than what it takes to read more data from a disc.

Compression setting is done column family wise; if you do not mention any
compression mechanism, SnappyCompressor is applied to the column family
by default. Here is how you assign a compression type:

Create column family with compression settings
CREATE COLUMN FAMILY compressedCF
WITH compression options =

{

'sstable_compression':'SnappyCompressor',
'chunk_length kb':64

} I
Let's see what compression options we have:

* sstable_compression: This parameter specifies which compressor
is used to compress a disk representation of an SSTable when a
MemTable is flushed. Compression takes place at the time of flush. As
of Cassandra Version 1.1.11, it provides two compressors out of the box:
SnappyCompressor and DeflateCompressor.

\ Cassandra Version 1.2.2+ has another compressor named
5 LZ4Compressor. LZ4 is 50 percent faster than Snappy compression.
Q If you think that it may worth reading more about it, read this JIRA
ticket https:/ /issues.apache.org/jira/browse/ CASSANDRA-5038

* SnappyCompressor is faster to deflate, but less effective in terms
of compression when compared to DeflateCompressor. This means
that snappyCompressor will take up a little extra space, but it will have
higher read speed.

* Like everything else in Cassandra, compressors are pluggable. You can
write your own compressor by implementing org.apache. cassandra.
io.compress. ICompressor, compiling the compressor, and putting the
.class or .jar files in the 1ib directory. Provide the fully-qualified class
name of the compression as sstable compression.

[158]

Chapter 5

* chunk_length kb: Chunk length is the smallest slice of the row that gets
decompressed during reads. Depending on the query pattern and the median
size of the rows, this parameter can be tweaked in such a way that it is big
enough to not have to deflate multiple chunks, but it should be small enough
to not have to decompress excessive unnecessary data. Practically, it is hard
to guesstimate this. The most common suggestion is to keep it as 64 KB if you
do not have any idea.

* Compression can be added, removed, or altered anytime during the lifetime
of a column family. In general, compression always boosts performance
and it is a great way to maximize the utilization of disk space. Compression
gives double to quadruple reduction in data size when compared to an
uncompressed version. So, you should always set a compression to start
with; it can be disabled pretty easily:

Disable Compression
UPDATE COLUMN FAMILY compressedCF
WITH compression options = null;

It must be noted that enabling compression may not immediately halve the
space used by SSTables. The compression is applied to the SSTables that get
created after the compression is enabled. With time, as compaction merges
SSTables, older SSTables get compressed.

Tuning the bloom filter

Accessing a disk is the most expensive task. Cassandra thinks twice before needing
to read from a disk. The bloom filter can help to identify which SSTables may contain
the row that the client has requested. But the bloom filter, being a problematic data
structure, yields false positives (refer to Chapter 1, Quick Start). The more the false
positives, the more the SSTables need to be read before realizing whether the row
actually exists in the SSTable or not.

False positive ratio is basically the probability of getting a true value from the bloom
filter of an SSTable for a key that does not exist in it. In simpler words, if the false
positive ratio is 0.5, chances are that 50 percent of the time you end up looking into
an index file for the key, but it is not there. So, why not set the false positive ratio to
zero; never have to make a disk touch without being 100 percent sure. Well, it comes
with a cost—memory consumption. If you remember from Chapter 1, Quick Start,

the smaller the size of the bloom filter, the smaller the memory consumption; the
more the likelihood of the collision of hashes, the higher the false positive. So, as
you decrease the false positive value, your memory consumption shoots up. So, we
need a balance here.

[159]

Performance Tuning

The default value of the bloom filter false positive ratio is set to 0.000744. To disable
the bloom filter, that is, to allow all the queries to SSTable —all false positive — this
ratio needs to be set to 1.0. You may need to bypass the bloom filter by setting

the false positive ratio to 1 if you have to scan all SSTables for data mining or other
analytical applications.

Here is how you can create a column family with false positive chance as 0.01:

Create column family with false positive chance = 0.01
CREATE COLUMN FAMILY myCFwithHighFP
WITH bloom filter fp chance = 0.01;

You may alter the false positive chance on an up-and-running cluster without any
need to reboot. But the false positive chance is applied only to the newer SSTables —
created by means of flush or via compaction.

You can always see the bloom filter chance by running the describe command in
cassandra-cli or by running a nodetool request for cfstats. Node tool displays
the current ratio too.

Incassandra-cli

describe myCFwithHighFP;
ColumnFamily: myCFwithHighFP
[-- snip -]

Bloom Filter FP chance: 0.01
[-- snip --1

In case you want to force the new value of false positive across all nodes, you need
to execute upgradesstable on the column family via nodetool.

enforcing new settings to all the sstables of a CF
$ /opt/cassandra/bin/nodetool -h 10.147.171.159 \
upgradesstablesmyKeyspacemyCFwithHighFP

More tuning via cassandra.yaml

cassandra.yaml is the hub of almost all the global settings for the node or the
cluster. It is well documented, and you can learn very easily by reading this
documentation. Listed here are some of those properties from Cassandra Version
1.1.11 and short descriptions of them. It is suggested that a reader should refer
cassandra.yaml of his version of Cassandra and read the details there.

[160]

Chapter 5

index_interval

Each SSTable is accompanied by a primary index that tells you which row is where
(offset) in the SSTable. It is inefficient to read a primary index from a disk to seek
from SSTables; moreover, if the bloom filter was false positive, it is a waste of
computational power. Cassandra keeps the sampled index values in memory, which
is a subset of the primary index. A sampled index is created by choosing one entry
out of all index_interval entries from the primary index. This means that the
smaller the index_interval, the larger the sampled index, the larger the memory
usage, the lesser the disk lookups, the better the read performance.

The default is 128. It is suggested to use between the values 128 and 512. To avoid
storing too many samples (that overshoots memory) or too few samples (so that
samples do not provide much leverage compared to directly reading from the
primary index), you may use a decent default index interval with a larger key cache
size to get a much better performance than index_interval alone.

commitlog_sync

As we know from Chapter 1, Quick Start, Cassandra provides durable writes by the
virtue of appending the new writes to the commit logs. This is not entirely true. To
guarantee that each write is made in such a manner that a hard reboot/crash does
not wash off any data, it must be fsync'd to the disk. Flushing commit logs after each
write is detrimental to write performance due to slow disk seeks. Instead of doing
that, Cassandra periodically (by default, commitlog_sync: periodic) flushes the
data to the disk after an interval described by commitlog sync_period_in ms

in milliseconds. But Cassandra does not wait for the commit logs to synchronize;

it immediately acknowledges the write. This means that if a heavy write is

going on and a machine crashes, you will lose at the most the data written in the
commitlog_sync_period_in_ms window. But you should not really worry; we have
a replication factor and consistency level to help recover this loss, unless you are
unlucky enough that all the replicas die in the same instant.

fsync () transfers (flushes) all modified in-core data of (that
. is, modified buffer cache pages for) the file referred to by
% the file descriptor £d to the disk device (or other permanent
L storage device) so that all changed information can be retrieved
even after the system crashed or was rebooted. Read more on
http://linux.die.net/man/2/fsync.

[161]

Performance Tuning

The commitlog_ sync method gives high performance at some risk. To someone
who is paranoid about data loss, Cassandra provides a guarantee write option, set
commitlog sync to batch mode. In the batch mode, Cassandra accrues all the writes
to go to the commit logs and then fsyncs after commitlog_sync_batch_window
in_ms, which is usually set to a smaller value such as 50 milliseconds. This avoids
the problem of flushing to disk after every write, but the durability guarantee forces
the acknowledgement to be done only after the flush is done or the batch window is
over; whichever is sooner. This means the batch modes will always be slower than
the periodic modes.

For most practical cases, the default value periodic and default £sync () period
of 10 seconds will do just fine.

column_index_size_in_kb

This property tells Cassandra to add a column index if the size of a row (serialized
size) grows beyond the KBs mentioned by this property. In other words, if the row
size is 314 KB and column_index_size in kb is 64 KB, there will be a column index
with at least five entries, each containing the start and the finish column name in the
chunk and its offset and width.

So, if the row contains many columns (wide rows) or you have columns with really
large values, you may want to up the default. This has a con. For large column
indexes in KB, Cassandra will need to read at least this much amount of data; even a
single column with small rows and small values needs to be read. On the other hand,
too small value for this property, large index data will need to be read at each access.
The default is okay for most cases.

commitlog_total _space_in_mb

The commit log file is memory mapped. This means the file takes the address space.
Cassandra flushes any unflushed MemTable that exists in the oldest mmap'd commit
log segment to disk. Thinking from the I/O point of view, it does not make sense to
keep this property small, because the total space of smaller commit logs will be filled
up quickly, requiring frequent writes to the disk and higher disk I/O. On the other
hand, we do not want commit logs to hog all the memory. Note that the data that
was not flushed to the disk in the event of a shutdown is replayed from the commit
log. So, the larger the commit log, the more the replay time will take upon restart.

The default for 32-bit JVM is 32 MB and for 64-bit JVM is 1024 MB. You may tune it
based on the memory availability on the node.

[162]

Chapter 5

Tweaking JVM

Cassandra runs in JVM (Java Virtual Machine) —all the threading, memory
management, processes, and the interaction with underlying OS is done by Java.
Investing time to optimize JVM settings to speed up Cassandra operations pays off.
We will see that the general assumptions, such as setting Java, heap too high to eat
up most of the system's memory, and may not be a good idea.

Java heap

If you look into conf/cassandra-env. sh, you will see nicely written logic such as
does the following: max (min(1/2 ram, 1024MB),min(1/4 ram, 8GB).This means
that the max heap depends on the system memory as Cassandra chooses a decent
default, which is:

* Max heap = 50 percent for a system with less than 2 GB of RAM
* Max heap =1 GB for 2 GB to 4 GB RAM

* Max heap = 25 percent for a system with 4 GB to 32 GB of RAM
* Max heap = 8 GB for 32 GB onwards RAM

The reason to not go down with large heap is the garbage collection that does not

do well for more than 8 GB. High heaps may also lead to poor page caches of the
underlying operating system. In general, the default serves good enough. In case you
choose to alter the heap size, you need to edit cassandra-env.sh and set MAX HEAP
SIZE to the appropriate value.

Garbage collection

Further down cassandra-env.sh, you may find the garbage collection setting;:

GC tuning options

JVM_OPTS="$JVM_OPTS -XX:+UseParNewGC"

JVM_OPTS="$JVM_ OPTS -XX:+UseConcMarkSweepGC"
JVM_OPTS="$JVM_OPTS -XX:+CMSParallelRemarkEnabled"
JVM_OPTS=" $JVM_OPTS -XX:SurvivorRatio=8"
JVM_OPTS:"$JVM_OPTS -XX:MaxTenuringThreshold=1"
JVM_OPTS="$JVM_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JVM_OPTS="$JVM OPTS -XX:+UseCMSInitiatingOccupancyOnly"
JVM_OPTS:"$JVM_OPTS -XX:+UseTLAB"

[163]

Performance Tuning

Cassandra, by default, uses the concurrent mark and sweep garbage collector (CMS
GCQ). It performs garbage collection concurrently with the execution of Cassandra
and pauses for a very short while. This is a good candidate for high performance
applications such as Cassandra. With a concurrent collector, a parallel version of the
young generation copying collector is used. And thus, we have UsepParNewGC, which
is a parallel copy collector that copies surviving objects in young generation from
Eden to Survivor spaces and from there to old generation —it is written to work with
concurrent collectors such as CMS GC.

Further more, cMSParallelRemarkEnabled reduces the pauses during the
remark phase.

The other garbage settings do not impact garbage collection significantly. However,
low values for cMSInitiatingOccupancyFraction may lead to frequent garbage
collection, because concurrent collection starts if occupancy of the tenured generation
grows above the initial occupancy. cMSInitiatingOccupancyFraction sets the
percentage of current tenured generation size.

If you decide to debug the garbage collection, it is a good idea to use tools such as
JConsole in order to look into how frequent garbage collection takes place, CPU
usage, and so on. You may also want to uncomment the GC logging options in
cassandra-env.sh to see what's going on beneath.

If you decide to increase Java heap size over 6 GB, it may be interesting
to switch the garbage collection settings too. Garbage First Garbage
. Collector (G1 GC) is shipped with Oracle Java 7 update 4+. It is
% claimed to work reliably on larger heap sizes. Also, it is suggested that
L= applications currently running on CMS GC will be benefited by G1 GC

in more ways than one. (Read more about G1 GCon http://www.
oracle.com/technetwork/java/javase/tech/gl-intro-
jsp-135488.html.)

Other JVM options

Compressed Ordinary Object Pointers (OOPs): In 64-bit JVM, OOPs normally have
the same size as the machine pointer, that is, 64-bit. This causes a larger heap size
requirement on a 64-bit machine for the same application when compared to the
heap size requirement on a 32-bit machine. Compressed OOP options help to keep
the heap size smaller on 64-bit machines. (Read more about compressed OOPs on
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-
enhancements-7. html#compressedOop.)

[164]

Chapter 5

It is generally suggested to run Cassandra on Oracle Java 6. Compressed OOPs are
supported and activated by default from Java SE Version 6u23+. For earlier releases,
you need to explicitly activate this by passing the -XX: +UseCompressedOops flag.

Enable Java Native Access (JNA): Please refer to Chapter 3, Design Patterns for
specific information regarding how to install the JNA library for your operating
system. JNA gives Cassandra access to native OS libraries (shared libraries, DLLs).
Cassandra uses JNA for off-heap row caching that does not get swapped and in
general gives favorable performance results on reads and writes. If no JNA exists,
Cassandra falls back to on-heap row caching, which has a negative impact on
performance. JNA also the helps while taking backups; snapshots are created with
help of JNA which would have taken much longer with fork and Java.

Scaling horizontally and vertically

We will see scaling in more detail in Chapter 6, Managing a Cluster - Scaling, Node
Repair, and Backup, but let's discuss scaling in context of performance tuning. As we
know, Cassandra is linearly horizontally scalable. So, adding more nodes in Cassandra
will result in a proportional gain in performance. This is called horizontal scaling.

The other thing that we have observed is that Cassandra reads are memory and
disk speed bound. So, having larger memory, allocating more memory to caches,
and dedicated and fast spinning hard discs (or solid state drives) will boost the
performance. Having high processing power with multi-core processors will help
compression, decompression, and garbage collection to run more smoothly. So,
having a beefy server will help improve overall performance. In today's cloud age,
it is economical to use lots of cheap and low-end machines than to use a couple of
expensive but high I/O, high CPU, and high memory machines.

Network

Cassandra, like any other distributed system, has network as one of the important
aspects that can vary performance. Cassandra needs to make calls across networks
for both reads and writes. A slow network can therefore be a bottleneck for the
performance. It is suggested to use a gigabit network and redundant network
interfaces. In a system with more than one network interface, it is recommended
to bind listen address for clients (Thrift) to one network interface card and
rpc_address to another.

[165]

Performance Tuning

Summary

Starting with the stress test, we got a sense of how good a given Cassandra setup will
do under an artificially standardized load. This may or may not reflect the particular
use case that you are planning to use Cassandra for. You may tweak the stress test
parameters to get closer to your test case. But if needed, you should simulate a load
that represents the load condition that you are expecting on Cassandra. This will
give you a basis of what to look out for when tuning. It will be helpful to keep some
profiling running at OS level to gauge which resource is being depleted — things
such as jConsole, nodetool cfstats, and tpstats, and Linux commands such

as iostats, vmstats, top, df, and free can help to look through what's getting
heated up or if everything is okay. We will see these tools in more detail in Chapter 6,
Managing a Cluster - Scaling, Node Repair, and Backup.

Now that we have some idea of how our system is performing and what might need
some tweaking, we can go ahead and make step-by-step changes. You may find that
probably most of the defaults are good enough and that you only need to change

a couple of them, which is better than just going and turning all the knobs and not
knowing what affected the performance.

The production demands, sometimes, to not leave enough time to tweak various bits
of Cassandra and wait to see how it affects the performance. The easiest thing to do
in such scenarios is to throw in more servers on a quick call. This is the best way to
up the performance. But once things come back to normal, it may be worth investing
some time in analyzing the settings on the nodes to ensure that they are serving the
best they can from the given hardware.

In the next chapter, we will see different ways to tackle everyday DevOps

problems —how to scale up when traffic is high, how to replace a dead node, and
other issues. In a later chapter, we will see how to keep tabs on various performance
statistics. We will see that the learning in this and in the next couple of chapters
comes to help when troubleshooting is an issue.

[166]

Managing a Cluster — Scaling,
Node Repair, and Backup

As a system grows, or an application gets matured, or the cloud infrastructure starts
to warn of failure of the underlying hardware, or probably you have got hit by

the TechCrunch effect, you may need to do one of these things: repair, backup, or
scale up/down. Or, perhaps, the management decides to have another data center
set up just for analysis of data (maybe using Hadoop) without affecting the user's
experience for which the data is served from the existing data center. These tasks
come as an integral part of a system administrator's day job. Fortunately, all these
tasks are fairly easy in Cassandra and there is a lot of documentation available for it.

In this chapter, we will go through Cassandra's built-in DevOps tool and the discuss
on scaling a cluster up and shrinking it down. We will also see how one can replace a
dead node or just remove it, and let other nodes bear the extra load. Further, we will
briefly see backup and restoration. We will observe how Cassandra tried its best to
accommodate the changes, but most of the operations leave the cluster unbalanced —
in the sense that tokens to each machine are not uniformly distributed. The load
balancing section shows how easy it is to rebalance the cluster.

Although most of the tasks are mechanical and really simple to automate, it may be
a burden to maintain a large cluster. The last section briefly introduces Priam, a Java-
based web application, to simplify many operational tasks.

TechCrunch Effect is basically sudden surge of traffic to
* your website when the popular technical news website
http://techcrunch.com features your company/
g application. Itis generally referred to indicate the
tsunami of traffic that comes via all the PR sources.

Managing a Cluster - Scaling, Node Repair, and Backup

Scaling

Adding more nodes to Cassandra (scaling up) or shrinking the number of nodes
(scaling down) is a pretty straightforward task. In a smaller and moderate-sized
Cassandra cluster setup (say, fewer than 25 nodes), it can be easily managed by
doing the tasks manually. But in larger clusters, the whole process can be automated
by writing appropriate shell script to perform the task.

Adding nodes to a cluster

Cassandra is one of the purest distributed systems where all the nodes are identical.
So, adding a new node is just a matter of launching a Cassandra service with almost
the same parameters as any other machine in the ring. In a cloud environment such
as Amazon Web Services, it is a pretty common practice to have a machine image of
Cassandra that contains the blueprint of a Cassandra node. Each time you have to
add a node to the cluster, you launch the AMI, tweak a couple of parameters that are
specific to the node, and done. It is as simple as that.

To add a new node to the cluster, you need to have a Cassandra setup that has:

* Setup node's identity: Edit cassandra.yaml to set the following
appropriately:

o

cluster name: It is the same as the other nodes in the cluster where
this node is joining in.

listen address: Set it to the IP or the hostname where other nodes
connect the Cassandra service on this node to. Be warned that leaving
this field empty may not be a good idea. It will assume listen
address is the same as the hostname, which may or may not be
correct. In Amazon EC2, it is usually just right.

broadcast_address: It may be needed to set for a multi data center
Cassandra installation.

* Seed node: Each node must know the seed node to be able to initialize the
gossip (refer to the Gossip section of Chapter 2, Cassandra Architecture, for
gossip), learn about the topology, and let other nodes know about itself.

* Initial token: It is the data range this node is going to be responsible for.
One can just leave the initial token and Cassandra will assign the token by
choosing the middle of a token range of the most loaded node. This is the
fastest way to make a lopsided cluster. The nodes should be well balanced.

Apart from these settings, any customization in other nodes cassandra.yaml should
be made into new nodes configuration.

[168]

Chapter 6

Now that the node is ready, here are the steps to add new nodes:

1.

Initial tokens: Depending on the type of partitioner that you are using
for the key distribution, you will need to recalculate the initial tokens
for each node in the system (refer to the Initial token section of Chapter 4,
Deploying a Cluster, for initial token calculation). This means older nodes are

going to have different data sets than they originally owned. However, there

are a couple of smart tricks in the initial token assignment.

i

ii.

iii.

N-folding the capacity: If you are doubling, triplicating, or
increasing the capacity N times, you'll find that the initial token
generated includes older initial tokens. Say, for example, you

had a 3-node cluster with initial tokens as 0, t/3, and 2t/3. If you
decide to triple the capacity by adding six more nodes, the new
tokens should be 0, t/9, ...t/3, ...2t/3, and... 8t/9. The trick here is
to leave the tokens that are already in use in the existing cluster,
and assign the rest of the nodes with the remaining tokens. This
saves extra move commands to adjust the tokens. You just launch
the new nodes and wait till data streams out to all the nodes.

Rebalance later: This is the most common technique among
those who have started with Cassandra. The idea is not to bother
about imbalance. You can just launch new nodes. Cassandra

will assign it with a token value, that is, the middle value of the
highest loaded node. This, as expected, does a pretty decent job
in removing hotspots from the cluster (and many times this is
what you want when you are adding a new node). Once the data
streaming between the nodes is done, the cluster may or may not
be perfectly balanced. You may want to load balance now. (Refer
to the Load Balancing section in this chapter.)

Right token to right node: This is the most complex but the

most common case. Usually, you do not go for doubling or
quadrupling the cluster. It is more like you are asked to add

two new nodes. In this case, you calculate the tokens for the

new configuration, edit the new nodes' cassandra.yaml, and

set initial tokens to them (no specific choice).You start them and
move the data around the nodes so that the nodes comply with
the new initial tokens that we calculated. (We'll see how to do this
later in this chapter.)

Start a new node: With the initial token assigned or not assigned to the new
nodes, we should start the nodes one by one. It is recommended to have a
pause of at least two minutes between two consecutive nodes start. These

two minutes are to make sure that the other nodes know about this new node

via gossip.

[169]

Managing a Cluster - Scaling, Node Repair, and Backup

3. Move data: If adding a new node has skewed the data distributed in
the cluster, we may need to move the data around in such a way that each
node has equal share of the token range. This can be done using nodetool.
You need to run nodetool move NEW INITIAL TOKEN on each node.

4. Cleanup: Move does not really move the data from one machine to another;
it copies the data instead. This leaves nodes with unused old data. To clean
this data, execute nodetool cleanup on each node.

Following is a demonstration adding of a node into a 3-node cluster, that is,
the expansion of a 3-node cluster into a 4-node cluster.

Ring status: Use nodetool -h HOSTNAME ring to see the current ring distribution.

$ /opt/cassandra/bin/nodetool -h 10.99.9.67 ring

Address Effective-Ownership Token
113427455640312821154458202477256070485

10.99.9.67 66.67% 0

10.147.171.159 66.67% 6713727820156410577229101238628035242

10.114.189.54 66.67% 13427455640312821154458202477256070485

Some columns are removed from the result to fit the width

The previous sample looks pretty balanced with three nodes and a replication
factor of 2.

New tokens: Adding additional nodes is going to split the token range into
four. Instead of calculating the tokens manually, we'll let the tools provided
by Cassandra do it for us. Let's see what they are.

$ /opt/cassandra/tools/bin/token-generator 4

DC #1:
Node #1: 0
Node #2: 42535295865117307932921825928971026432
Node #3: 85070591730234615865843651857942052864
Node #4: 127605887595351923798765477786913079296

A couple of things: Be aware that token numbers are partitioner
dependent and in this case it was RandomPartitioner. The other thing
. isif you see the old and new tokens, you will realize that the first node is
% not going to be touched. It is already set to the correct value. Also, it will
= be profitable in the old node, 2. The old node 3 gets assigned to the token
values of node 2 and node 3 in the new configuration. This way we'll
minimize data movement across the nodes (streaming). The new node
will have the initial token as described by node 4 in the previous result.

[170]

Chapter 6

Start the new node: Edit cassandra.yaml of the new node to set the appropriate
value of the cluster name, initial token, seed node, listen address, and any other
customization as per the environment (such as broadcast address, snitch, security,
datafile, and so on). Now, start the node by issuing the cassandra command or
starting the Cassandra service. Wait for a couple of minutes as the new node gets
introduced with the cluster. The cluster now looks pretty lopsided:

$ /opt/cassandra/bin/nodetool -h 10.99.9.67 ring

Address EO* Token
127605887595351923798765477786913079296

10.99.9.67 33.33% 0

10.147.171.159 58.33% 56713727820156410577229101238628035242
10.114.189.54 66.67% 113427455640312821154458202477256070485
10.166.54.134 41.67% 127605887595351923798765477786913079296

*EO = Effective ownership

Move tokens: Let's balance the nodes by moving data around. We need not touch
Node #1 and Node #4. We need to move data from Node #2 and Node #3. They are
the ones with wrong tokens. Here is how:

Move data on Node #2

$ /opt/cassandra/bin/nodetool -h 10.147.171.159 move 42535295865117307932
921825928971026432

Cassandra is still unbalanced.
Move data on Node #3

$ /opt/cassandra/bin/nodetool -h 10.114.189.54 move 850705917302346158658
43651857942052864

This is a blocking operation. That means you will need to wait till the process
finishes. In a really large cluster with huge data, it may take some time to move the
data. Be patient. This operation moves data. It heavily burdens the network and the
data size on disks may change. So, it is not ideal to do this task when your site is
running at peak traffic. Perform this task at a relatively slow traffic time.

It may be useful to watch streaming statistics on the node by using nodetool
netstats. Here is an example of how that looks (sampled every one second):

$ for i in {1..300} ; do /opt/cassandra/bin/nodetool -h 10.114.189.54
netstats; sleep 1; done

[171]

Managing a Cluster - Scaling, Node Repair, and Backup

Mode: NORMAL
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 1371882
Responses n/a 0 7871820

Mode: MOVING
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 1371882
Responses n/a 0 7871823
[-- snip --]

Mode: MOVING
Streaming to: /10.99.9.67

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-1-
Data.db sections=1 progress=8126464/20112794 - 40%

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-2-
Data.db sections=1 progress=0/15600228 - 0%

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 1371882
Responses n/a 0 7871925

Mode: NORMAL
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 1371882
Responses n/a 0 7871934

[172]

Chapter 6

After the move is done, the balancing is done. The latest cluster now looks
much better:

$ /opt/cassandra/bin/nodetool -h 10.99.9.67 ring

Address EO* Token
127605887595351923798765477786913079296

10.99.9.67 50.00% 0

10.147.171.159 50.00% 42535295865117307932921825928971026432

10.114.189.54 50.00% 85070591730234615865843651857942052864

10.166.54.134 50.00% 127605887595351923798765477786913079296

*EO = Effective-Ownership

Cleanup: Now that everything is done and there is relatively low traffic on the
database, it is a good time to clean the useless data from each node.

$ /opt/cassandra/bin/nodetool -h 10.114.189.54 cleanup
$ /opt/cassandra/bin/nodetool -h 10.99.9.67 cleanup

$ /opt/cassandra/bin/nodetool -h 10.147.171.159 cleanup
$ /opt/cassandra/bin/nodetool -h 10.166.54.134 cleanup

Now, we are done with adding a new node to the system.

Removing nodes from a cluster

It may not always be desired to have a high number of nodes up all the time. It adds
to the cost and maintenance overheads. In many situations where one has scaled

up to cope with a sudden surge in the traffic (for high I/O) or to avoid a hotspot for
a while, it may be required to retire some machines and come back to the normal
operation mode. Another reason to remove a node is hardware or communication
failure, like a dead node that needs to be ejected out of the ring.

Removing a live node

Removing a live node is to stream the data out of the node to its neighbors. The
command to remove a live node is nodetool decommission. That's all. You are
done with removing a live node. It will take some time to stream the data and you
may need to rebalance the cluster.

[173]

Managing a Cluster - Scaling, Node Repair, and Backup

Here is what decommissioning a node looks like. Assume that the ring is the same as
when we added one node to a 3-node cluster. The following command will show the
process of decommissioning a live node:

$ /opt/cassandra/bin/nodetool -h 10.166.54.134 decommission

This will decommission the node at 10.166.54.134. It is a blocking process, which
means the command-line interface (CLI) will wait till the decommissioning gets
done. Here is what netstats on the node looks like:

$ for i in {1..300} ; do /opt/cassandra/bin/nodetool -h 10.166.54.134
netstats; sleep 1; done

Mode: NORMAL
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 7
Responses n/a 0 139736

Mode: LEAVING
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 7
Responses n/a 0 139784

Mode: LEAVING

Streaming to: /10.99.9.67

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-10-
Data.db sections=1 progress=9014392/9014392 - 100%

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-9-
Data.db sections=1 progress=0/33779859 - 0%

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-8-
Data.db sections=1 progress=0/7298715 - 0%

[174]

Chapter 6

Streaming to: /10.147.171.159

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-9-

Data.db sections=1 progress=15925248/53814752 - 29%

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 7
Responses n/a 0 139886

Mode: DECOMMISSIONED
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 7
Responses n/a 0 139967

Obviously, it leaves the ring imbalanced:

$ /opt/cassandra/bin/nodetool -h 10.99.9.67 ring

Address EO* Token
85070591730234615865843651857942052864

10.99.9.67 75.00% 0

10.147.171.159 75.00% 42535295865117307932921825928971026432
10.114.189.54 50.00% 85070591730234615865843651857942052864

*EO= Effective-Ownership

Removing a dead node

Removing a dead node is similar to decommissioning except for the fact that data is
streamed from replica nodes to other nodes instead of streaming from the node that

is being replaced. The command to remove a dead node from the cluster is:

$ nodetool -h HOSTNAME removetoken TOKEN ASSIGNED TO THE NODE

So, if you've decided to remove a node that owned a token, 85070591730234615865

843651857942052864, you just run:

$ nodetool -h 10.99.9.67 removetoken 85070591730234615865843651857942052

864

[175]

Managing a Cluster - Scaling, Node Repair, and Backup

It has a similar effect on the ring as nodetool decommission. But decommission
or disablegossip cannot be used with a dead node. It may require moving/
rebalancing the cluster tokens after this.

_ It must be noted that decommissioning or removing a token does
% not remove the data from the node that is being removed from
s~ the system. If you plan to reuse the node, you must clean the
data directories manually.

Replacing a node

Once in a while, a dead node needs to be replaced. This means you just wanted an
exact replacement instead of just removal. Here are the steps:

1. Note down the dead node's token.

2. Set the new node's initial token as the dead node's token minus one.
This node is going to own the new data, so you must make sure that
the data directories are empty to avoid any conflict.

3. Configure cassandra.yaml appropriately. Similar to the way we did
when adding a new node. (Refer to the Adding nodes to a cluster section
in this chapter.)

4. Let the bootstrap complete and see the node appear in the nodetool
ring listing.

5. Perform a nodetool repair for each keyspace for integrity.

6. Perform nodetool removetoken for the old node.

Let us see this in action. The example cluster here has three nodes and a replication
factor of 2. One of the nodes is down. We will replace it with a new node.

Here is what the current ring looks like:
$ bin/nodetool -h 10.99.9.67 ring
Address Status EO* Token

113427455640312821154458202477256

070484

10.99.9.67 Up 66.67% 0

10.147.171.159 Up 66.67% 567137278201564105772291012386280
35242

10.114.189.54 Down 66.67% 113427455640312821154458202477256
070484

* EO stands for Effective-ownership

[176]

Chapter 6

As you can see, we need to replace the third node, 10.114.189.54. We fired up a
new machine, installed Cassandra, altered cassandra.yaml to match the cluster
specifications, and set up the listen address and data directory. We also made sure
that the data directories (commit log, saved caches, and data) are blank. Since this
node is going to replace a node with token 1134274556403128211544582024772560
70484, we are setting the new node's initial_ tokenas 11342745564031282115445
8202477256070483. By default auto_bootstrap is true, which is good.

cassandra.yaml on replacement node

initial token: 113427455640312821154458202477256070483

We start the Cassandra service on the node. Looking at the logs, it seems it has got all
the information it needed:

Cassandra log, joining the cluster with dead-node

INFO 08:30:34,841 JOINING: schema complete

INFO 08:30:34,842 JOINING: waiting for pending range calculation
INFO 08:30:34,842 JOINING: calculation complete, ready to bootstrap
INFO 08:30:34,843 JOINING: getting bootstrap token

INFO 08:30:34,849 Enqueuing flush of Memtable-
LocationInfo@2039197494 (36/45 serialized/live bytes, 1 ops)

INFO 08:30:34,849 Writing Memtable-LocationInfo@2039197494 (36/45
serialized/live bytes, 1 ops)

INFO 08:30:34,873 Completed flushing /mnt/cassandra-data/data/system/
LocationInfo/system-LocationInfo-hf-6-Data.db (87 bytes) for commitlog
position ReplayPosition (segmentId=1371630629459, position=30209)

INFO 08:30:34,875 JOINING: sleeping 30000 ms for pending range setup
INFO 08:30:43,856 InetAddress /10.114.189.54 is now dead.

INFO 08:31:04,875 JOINING: Starting to bootstrap...

INFO 08:31:05,685 Finished streaming session 4 from /10.147.171.159
INFO 08:31:09,108 Finished streaming session 3 from /10.99.9.67

INFO 08:31:10,613 Finished streaming session 1 from /10.99.9.67

INFO 08:31:10,622 Finished streaming session 2 from /10.147.171.159

[177]

Managing a Cluster - Scaling, Node Repair, and Backup

Now that the new node has joined, the nodetool ring still does not seem to
be right.

$ bin/nodetool -h 10.99.9.67 ring

Address Status EO* Token

113427455640312821154458202477256070484

10.99.9.67 Up 33.33% O

10.147.171.159 Up 66.67% 56713727820156410577229101238628035242
10.166.54.134 Up 66.67% 113427455640312821154458202477256070483
10.114.189.54 Down 33.33% 113427455640312821154458202477256070484

* EO stands for Effective-ownership

This means we need to remove the dead node from the cluster. But before we go
ahead and remove the node, let's just repair the keyspaces to make sure that the
nodes are consistent.

$ bin/nodetool -h 10.99.9.67 repair Keyspacel

[2013-06-19 08:40:55,336] Starting repair command #1, repairing 2 ranges
for keyspaceKeyspacel

[2013-06-19 08:41:01,297] Repair session f4el1f830-d8bb-11e2-0000-
23f6cbfag94fd for range (113427455640312821154458202477256070484,0]
finished

[2013-06-19 08:41:01,298] Repair session f86bbb30-d8bb-11e2-0000-
23f6cbfag94fd for range (113427455640312821154458202477256070483,1134274
55640312821154458202477256070484] failed with error java.io.IOException:
Cannot proceed on repair because a neighbor (/10.114.189.54) is dead:
session failed

[2013-06-19 08:41:01,298] Repair command #1 finished
$ bin/nodetool -h 10.99.9.67 repair mytest

[2013-06-19 08:41:25,867] Starting repair command #2, repairing 2 ranges
for keyspacemytest

[178]

Chapter 6

[2013-06-19 08:41:26,377] Repair session 0712f3b0-d8bc-11e2-0000-
23f6cbfag94fd for range (113427455640312821154458202477256070484,0]
finished

[2013-06-19 08:41:26,377] Repair session 075ea2b0-d8bc-11e2-0000-
23f6cbfag94fd for range (113427455640312821154458202477256070483,1134274
55640312821154458202477256070484] failed with error java.io.IOException:
Cannot proceed on repair because a neighbor (/10.114.189.54) is dead:
session failed

[2013-06-19 08:41:26,377] Repair command #2 finished

Now, let's remove the dead node. We will use the same technique of nodetool
removetoken as we did in the Removing a dead node section in this chapter. The
cluster looks good after removal.

Remove dead node

$ bin/nodetool -h 10.99.9.67 removetoken 11342745564031282115445820247725
6070484

Ring status
$ bin/nodetool -h 10.99.9.67 ring

Address Status EO* Token
113427455640312821154458202477256070483

10.99.9.67 Up 66.67% 0
10.147.171.159 Up 66.67% 56713727820156410577229101238628035242
10.166.54.134 Up 66.67% 113427455640312821154458202477256070483

* EO stands for Effective-ownership

If, for some reason, you are unable to perform the replacement using the previous
method, there is an alternative approach. Here are the steps to replace a node with a
new one:

1. Set the new (replacement) node's IP the same as the one that died.

2. Configure cassandra.yaml appropriately.

3. Setinitial_ token the same as the token assigned to the dead node. Start
the substitute node.

[179]

Managing a Cluster - Scaling, Node Repair, and Backup

The cluster will assume that the dead node came alive. Run nodetool repair on all
the keyspaces. This will stream the data to the new node.

In Cassandra 1.0 and onwards, a dead node can be replaced with a new node by the
property cassandra.replace_token=<Tokens. Set this property using the -D option
while starting Cassandra. Make sure the data directories are empty on the new node
and run a nodetool repair after the node is up.

The two alternative approaches (inserting a node with a new token versus replacing
the node with the same token) have different perspectives of how the fix is made.
The former approach inserts a node between the dead node and the previous

node. We leave just one token to the dead node. This one token gets assigned to

the node next to the dead node when we remove the dead node from the ring. The
latter approach, however, is like saying the dead node came back to life but lost

its memory. So, the replica nodes fill it in. There is no specific preference on which
method one should prefer. Choose the one convenient to you.

Backup and restoration

Cassandra provides a simple backup tool to take a backup and incremental snapshots:
nodetool snapshot. The snapshot command flushes MemTables to the disk and
creates a backup by creating a hard link to SSTables (SSTables are immutable).

Hard link is a directory entry associated with a file data on a

filesystem. It can roughly be assumed as an alias to a file that
/— refers to the location where data is stored. It is unlike a soft link

that just aliases filenames, not the actual underlying data.

These hard links stay under the data directory, which is placed under
<keyspace>/<column_family>/snapshots.

The general plan to take a backup of a cluster roughly follows the steps described:

1. Take a snapshot: Take a snapshot of each node one by one. The snapshot
command provides an option to specify whether to back up the whole
keyspace or just the selected column families.

2. Move to a safe location: Taking a snapshot is just half of the story. To be able
to restore the database at a later point, you need to move these snapshots
to a location that cannot be affected by the node's hardware failure or the
node's unavailability. One of the easiest things to do is to move the data to a
network-attached storage. To AWS users, it is fairly common to back up the
snapshots in the S3 bucket.

[180]

Chapter 6

3. Clean the snapshots: Once you are done with backing the snapshots up,
you need to clean them. nodetool clearsnapshot cleans all the snapshots
on a node.

It is important to understand that creating snapshots creates hard links to the
datafiles. These datafiles do not get deleted when they get obsolete, because

they are saved for backup. This extraneous disk can be avoided by clearsnapshot
after the snapshots are copied to a different location.

For really large datasets, it may be hard to take a daily backup of the entire keyspace.
Plus, it is expensive to transfer large data over a network to move the snapshots to a
safe location. You can take a snapshot at first, and copy it to a safe location. Once this
is done, all we need to do is move the incremental data. This is called incremental
backup. To enable incremental backup to a node, you need to edit cassandra.yaml
and set incremental backups: true. This will cause the creation of hard links in
the backup's directory under the data directory.

So, you have snapshots with incremental backup, and you have a backup of all the
SSTables created after the snapshot is taken. Incremental backups have the same
problem as snapshots. They are hard links; they delete obsolete datafiles that are not
to be deleted. It is recommended to run clearsnapshot before a new snapshot is
created and make sure that the backup's directory has no incremental backup.

Taking a backup is just half the story. Backups are meaningful when they are
restored in case of node replacement or perhaps to launch a whole new cluster from
the backup data of another cluster. There is more than one way to restore a node.
We will see two approaches here. The first is to just paste the appropriate files to the
appropriate location. Here are the suggested steps:

1. Shut down the node to restore. Clean the .db files for the column
family from the data directory. It is located under <data_
directoys>/<keyspace>/<column_familys. Do not delete anything other
than the . db files. Also, delete the commit logs from the commit log directory.

2. From the backup, take the snapshot directory that you wanted to replace.
Paste the content of everything in that snapshot directory to the data
directory mentioned in the previous step.

3. If you have enabled incremental backup, you may want to take them into
account too. You need to paste all the incremental backup taken from your
backup (it is situated under <data directorys/<keyspace>/<column_
family>/backups) to the data directory, the same as we did with snapshots
in the previous step.

4. Restart the node.

[181]

Managing a Cluster - Scaling, Node Repair, and Backup

A couple of things to note:

If you are restoring the complete cluster, shut down the cluster while restoring,
and restore the nodes one by one.

1. Once the restoration process is done, execute nodetool repair.

2. If you are trying to restore on a completely new machine that has no idea about
the keyspace that is being restored, it may be worth checking the schema for
the keyspace and the column family that you wanted to restore. The schema
can be queried by executing show schema; in the Cassandra-cli console. You
may need to create them to be able to get the restoration working,.

Using Cassandra bulk loader to restore the
data

An alternative technique to load the data to Cassandra is using the sstableloader
utility. It can be found under the bin directory of the Cassandra installation. This
tool is especially useful when the number of nodes and the replication strategy

is changed, because unlike the copy method, it streams appropriate data parts to
appropriate nodes, based on the configuration.

Assuming that you have - Index.db and -Data. db files with you, here are the steps
to use sstableloader:

1. Check the node's schema. If it does not have the keyspaces and the column
families that are being restored, create the appropriate keyspaces and the
column families.

2. Create a directory with the same name as the keyspace that is being loaded.
Inside this directory, all the column families' data (the . db files) that are
being restored should be kept in a directory with the name same as the
column family name. For example, if you are restoring a column family
myCF in keyspace mykeyspace, all the mykeyspace-myCF-hf-x-Data.db
and mykeyspace-myCF-hf-x-Index.db (Where x is an integer) should be
placed within a directory structure: mykeyspace/myCF/.

3. Finally, execute bin/sstableloadermykeyspace.

Cassandra bulk loader simplified the task to an extent that one can just store the
backup in the exact same directory structure as required by sstableloader and
whenever a restoration is required just download the backup directory and execute
sstableloader.

It can be observed that the backup step is very mechanical and can easily be
automated to take a daily backup using the Cron job and the shell script. It may
be a good idea to clearsnapshot once in a while, and take a snapshot from then on.

[182]

Chapter 6

Backup

Coming from the traditional database, one thinks that data backup is
an essential part of data management. Data must be backed up daily,
stored in a hard disk, and stored in a safe place. This is a good idea. It gets
harder and inefficient to achieve this as the data size grows to terabytes.
- With Cassandra, you may set up a configuration that makes it really
% hard to lose data. A setup with three data centers in Virginia (US East),
e California (US West), and Tokyo (Japan), where data is replicated across
all three data centers, you will seldom need to worry about data. If you
are the nervous type, you may have a Cron job backing up the data from
one of the data centers, at every time interval up to which you may take
a risk. With this setup, in the rare event of the two US data centers going
down, you can serve the users without any repercussions. Things will
catch up as soon as the data centers come back up.

Load balancing

A balanced Cassandra cluster is one where each node owns an equal number of keys.
This means when you query nodetool ring, a balanced cluster will show the same
percentage for all the nodes under the owns or Effective Ownership columns. If
the data is not uniformly distributed between the keys, even with equal ownership
you will see some nodes are more occupied by the data than others.

We use RandomPartitioner or Murmur3Partitioner to avoid this sort of

lopsided cluster.

Anytime a new node is added or a node is decommissioned, the token distribution
gets skewed. Normally, one always wants to have Cassandra fairly load balanced to
avoid hotspots. Fortunately, it is very easy to load balance. Here is the two-step load
balancing process.

1. Calculate the initial tokens based on the partitioner that you are using. It
can be manually generated by equally dividing the token range for a given
partitioner among the number of nodes. Or, you can use tools/bin/token-
generator to generate tokens for you. For example, the following snippet
generates the tokens for two data centers with each having three nodes:

$ tools/bin/token-generator 3 3

DC #1:
Node #1: O
Node #2: 56713727820156410577229101238628035242
Node #3: 113427455640312821154458202477256070484

[183]

Managing a Cluster - Scaling, Node Repair, and Backup

DC #2:
Node #1: 169417178424467235000914166253263322299
Node #2: 55989722784154413846455963776007251813

Node #3: 112703450604310824423685065014635287055

2. Please note that these tokens are generated for RandomPartitioner. That
means it is good for default Cassandra 1.1.x, but not for default Cassandra
1.2.x or higher. Cassandra 1.2.x and higher uses Murmur3Partitioner as
default. Murmur has a different key range.

3. Now that we have tokens, we need to call:

bin/nodetool -h <node to_move> move <token numbers>

The trick here is to assign a new token to a node that is closest to it. This will allow
faster balancing as there will be less data to move. Live example of how load
balancing is done is covered under the topic Adding nodes to a cluster in this chapter,
where we add a node to the cluster, which makes the cluster lopsided. We finally
balance it by moving tokens around.

It is actually very easy to write a shell or Python script that takes the ring and then
balances it automatically. For someone using RandomPartitioner, there is a GitHub
project, Cassandra-Balancer (https://github.com/tivv/cassandra-balancer),
which calculates the tokens for a node and moves the data. So, instead of writing one
of your own you can just use this groovy script. Execute on each node, one by one,
and you are done.

Priam — managing large clusters on AWS

Cassandra is probably the best example of out-of-bound success of the community-
driven open source project. Netflix contributes heavily to Cassandra projects.
Netflix's cluster management tool, Priam, simplifies the administration of large
clusters over Amazon Web Service's EC2 cloud platform. Unfortunately, detailed
discussion on Priam is out of the scope of this book. The wiki page of the project is
not extensive either.

Priam is a Java-based web application, primarily for the following tasks:

* Token assignment
* Backup and restoration
* Configuration management

* API to query Cassandra metrics

[184]

Chapter 6

As an advice, for a small cluster setup (say, under 25 nodes), it is suggested to stick
with simple automation based on nodetool and perhaps a shell or Python script. It
will keep the administration simple. Priam requires too many parameters to set it up
and perhaps it is more work for smaller clusters than to manage it manually.

More information about Priam, setup, and scaling procedures can be learned from
its GitHub page: https://github.com/Netflix/Priam/wiki.

Summary

So we know how to move around data and manage Cassandra instances to

handle the production situations. Cassandra provides simple one-liner commands

to perform various complicated maintenance tasks to make life easy. Scaling up,
scaling down, removing live or dead nodes, and load balancing are pleasantly simple
and can be automated based on your configuration using scripts. Backups fall in the
same category, but restoration can be a bit tricky. With the Cassandra data model,
built-in replication, and support for multiple data center setup, one may configure
Cassandra such that it may never need a backup. Also, for really large databases, it
may be impractical to siphon out data instead of using replication. It may make sense
to back up in a case where the database is not very large and one uses a replication
factor of 1. In such a case, going down a node may cause loss of data. However, rRF=1
is a bad idea in production setup and backup can just restore the data until the latest
backup is made.

Priam gives a decent option to move on from the nodetool-based mechanism to a
more sophisticated tool. If you are just starting out, or have a small cluster, it is not
worth the effort it takes to configure Priam. It is a good suggestion for large cluster
owners. Moreover, Priam is built to support the AWS infrastructure and tied to

the AWS configuration. So, it may not be useful to everyone. One may consider
DataStax's OpsCenter for such tasks. We will discuss OpsCenter in the next chapter.

This chapter gives you enough knowledge to tackle an infrastructure issue. Now,
you, as an operations person, need to keep a watch on how things are doing without
losing your sleep and waking up from nightmares. The next chapter will walk you
through the various ways to monitor and recognize problems, and troubleshoot the
Cassandra infrastructure in detail.

[185]

Monitoring

Monitoring is the key to provide reliable service. For a distributed software,
monitoring becomes more important and more complex. Fortunately, Cassandra
has an excellent tool built-in for it. It is called nodetool. Apart from this, there are
third-party tools to monitor Cassandra.

The purpose of monitoring is to be able to catch a problem before or as soon as it
happens and resolve it. So, this chapter will be a mix of monitoring, management
(comes with monitoring tools), and very quick troubleshooting tips. It gets you
familiarized with the JMX interface that Cassandra provides and then moves on
to accessing it via JConsole. Cassandra's nodetool —the application to monitor
and administer Cassandra —is discussed in detail. Further, DataStax OpsCenter
(community version), which is an excellent web-based tool that stores performance
history, is discussed. Nagios is another tool that can be used to not only monitor
Cassandra but also the complete infrastructure with heterogeneous components.
Nagios is a veteran monitoring tool. It is a pretty simple, intuitive, extendable, and
robust tool. It provides monitoring along with e-mail notification.

Cassandra JMX interface

Cassandra has a powerful JMX interface to monitor almost all of its aspects. Java
Management Extension (JMX) is a standard part of Java SE (standard edition) 5.0
and onward. It provides a standard interface to manage and monitor resources
such as applications, devices, JVM settings, and services. The way JMX technology
manages and monitors a resource is called Managed Beans (MBeans). JMX
defines standard connectors that enable us to access JMX agents remotely. With
this introductory JMX knowledge, let's see what Cassandra offers us to control or
monitor almost all of its aspects using JMX.

Monitoring

This discussion is sufficient to get you to work with JMX in the

context of Cassandra. Learn more about it at http://docs.

oracle.com/javase/tutorial/jmx/TOC.html.

Cassandra exposes JMX MBeans in different packages. These are:

The org.apache.cassandra.internal package: This package includes
MBeans that inform us about internal operations. So, you can view the
status of AntiEntropy, FlushWriter, gossip, hinted handoff, response stage,
migration and stream stages, pending range calculation, and commit log
archival. Other than getting internal status statistics, there is not much that
can be done with these MBeans.

The org.apache.cassandra.db package: This is probably the most interesting
MBean package. It includes vital metrics and actionable operational items.
MBeans gives statistics and commands for the following database components:
cache management, column family, commit log, compaction control, hinted
handoff management, storage service (general ring statistics and operations),
and storage proxy (client read /write statistics).

The org.apache.cassandra.net package: This package contains statistics
on network communication within the cluster. It has some interesting
Mbeans such as FailureDetector, gossip, inter-node messaging, and data
stream status.

The org.apache.cassandra.request package: One can view pending and
completed tasks at different stages. The stages listed under this package are:
mutation stage, read repair stage, read stage, replicate on write stage, and
read response stage.

The org.apache.cassandra.metrics package: It includes statistics about
client read and write. Specifically, the number of requests that are timed out
and those that have thrown UnavailableException, that is, not enough
replicas available to satisfy the operation with the given consistency level
or, maybe, many replicas are down.

Cassandra is designed around Staged Event Driven Architecture (SEDA). At very
high levels, it chunks a task into multiple stages, each having their own thread pool
and event queue. To read more about SEDA visit http: //www.eecs.harvard.
edu/~mdw/proj/seda.

[188]

Chapter 7

Accessing MBeans using JConsole

JConsole is a built-in utility in JDK 5+. You can access it from $JAVA_HOME/bin/
jconsole. It is a JVM monitoring tool and allows you to access MBeans in the Java
application to which JConsole is connected to. It allows you to monitor the CPU,
memory, thread pools, heap information, and other important JVM-related things.

To peek into the insides of Cassandra, launch JConsole. The GUI shows two options

to connect to—Local Process and Remote Process. If you are running JConsole on the
same machine as Cassandra, you will see the option to connect to Cassandra in the
drop-down under the Local Process radio button. However, it is not recommended to
run JConsole on the same machine as Cassandra. This is because JConsole takes a large
amount of system resources and can hamper Cassandra's performance. So, unless you
just want to test Cassandra on your local machine, it may not be a good idea to have
Cassandra and JConsole running on the same machine.

The JConsole summary tab is shown in the following screenshot:

=

-~

Java Monitering & Management Console

Connection Window Help

(==
Overview | Memory | Threads | Classes| VM Ssummary | MBeans <&
Time Range: |AlLL v
Heap Memory Usage Threads
800 Mb 200
700 Mb
600 Mb 150
500 Mb]
400 Mb 100 |
300 Mb |
200 Mb = S04 | e —y | L
T00Mb { |
oombl |C 0
23:30 ao.00 23:30 ao.00
2013-06-30 2013-06-30
Used:679.9 Mb Committed: 1.3 Gb Max: 1.9 Cb Live:41 Peak 139 Total: 538
Classes CPU Usage
4,000 80%
e 70%
3,000 60% I‘I
50%
2,000 40%
30%
1,000 20%
10%
0 0% “
23:30 0000 23:30 00:00
2013-06-30 2013-06-30
Loaded: 3,402 Unloaded:0 Total: 3,402 CPU Usage: 0.2%
|&| servicegmx:rmiz//findi/rmi./{ec2-174-129-145-160.compute-1.amazon..

Figure 7.1: JConsole summary tab

[189]

Monitoring

To connect to a remote machine, you need to select the Remote process radio button
and fill in the URL of the Cassandra node. The format is:

CASSANDRAHOST is address of remote Cassandra node
service:jmx:rmi:///jndi/rmi://CASSANDRAHOST:7199/jmxrmi

If you have a firewall or port blocking the Cassandra node, you may face some issues
in connection.

AWS Users: It requires some work to get JConsole connected to your Cassandra
instance running within EC2 from outside the security group without compromising
its security. The suggested way is to connect via an SSH tunnel. Setting up an

SSH tunnel is outside the scope of this book. You may refer to articles online.

One of the online articles for using an SSH tunnel to connect to JConsole is:
http://simplygenius.com/2010/08/jconsole-via-socks-ssh-tunnel . html.

You may want to add your local machine's external IP to Cassandra's
security group and open all the TCP ports (0 to 65535) to it. By doing

% this, you are compromising the security of the server. It is not a
recommended way to get around this problem. Remember to remove
this entry once you are done with the JConsole task.

In case you have a server set up with different internal and external IPs, you may
need to configure an RMI hostname. Open config/cassandra-env.sh, and add the
hostname parameter for J]MX as part of JvM_oPTs in the following manner:

JVM_OPTS="$JVM_OPTS -Djava.rmi.server.hostname=174.129.145.160"
JVM_OPTS="$JVM OPTS -Dcom.sun.management.jmxremote.port=$JMX PORT"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.ssl=false"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.authenticate=false"

Amazon Web Services (AWS) users may need to put a public DNS name provided
for the Cassandra node. Once you are connected to the node, you can see an
overview of the JVM on that node; see Figure 7.1. Look through the tabs and analyze
them more closely. Interestingly, you can see a spike in the memory usage, CPU
usage, and thread counts. This is the duration in which a sample stress was running,.

To execute various JMX operations provided via JConsole, you will need to switch to
the MBeans tab. Expand the various menu items in the bar on the left-hand side of
the screen. The interesting ones are under org.apache.cassandra.*. For example, you
can clear the value of hinted handoff for a node that is dead before the configured
timeout (max_hint window_in_ms) for that node arrives (see Error! Reference source
not found.).

[190]

Chapter 7

As a matter of taste, some people prefer VisualVM over JConsole. VisualVM
does not provide JMX support out of the box. However, it is fairly easy to add
a VisualVM-MBeans plugin to enable such functionality. VisualVM combines
JConsole, jstat, jinfo, jstack, and jmap. This is available in versions starting from
JDK 6 and can be accessed at $JDK_HOME/bin/jvisualvm.

Details on VisualVM are outside the scope of this book, but you can learn about
them at https://visualvm.java. net/jmx_connections.html.

Cassandra nodetool

The nodetool utility is a command-line utility that comes out of the box

with Cassandra. You can access it from $CASSANDRA HOME/bin/nodetool.

It communicates with JMX to perform operational and monitoring tasks exposed

by MBeans. It is much easier to use than JConsole. We have already seen a bit

of nodetool in the previous chapter. The nodetool utility is a great tool for
administration and monitoring. The following section will discuss some of the useful
functionalities of nodetool. Most of the nodetool commands are obvious and can be
easily learned by reading the help text. Unfortunately, there is no help option, but it
prints help messages anyway.

The following screenshot shows how to invoke methods via JConsole:

Owerview | Memory | Threads | Classes| VM Summary | MEBeans

» IMImplementation Cperation invocation

com.sun.management void

javalang deleteHintsForEndpoint | (p1 10.166.54.1324]
java.util Llogaing
org.apache.cassandra.db
B @ Caches
ColumnFamilies

@ Commitlog

@ CompactionManager —
DynamicEndpointsnitch 6 Method successFully invoked
@ Endpointsnitchinfo

@ HintedHandoffiManager

» @@ StorageProxy |_Q’/ OK
= @ StorageService
org.apache.cassandra.internal
org.apache.cassandra.metrics
org.apache.cassandra.net
org.apache.cassandrarequest

4 vVVV

void

4 vVVYVVYVW

T VvVVVW

Java.util List listEndpointsPendingHints | ()

Figure 7.2: Invoking methods via JConsole

[191]

Monitoring

The standard way to execute any command on a Cassandra node using nodetool is
as follows:

nodetool -h CASSANDRA HOST [-p JMX PORT -u JMX USERNAME -pw JMX PASSWORD]
COMMAND

In general, you do not need to provide JMX_PORT, JMX_ USERNAME, and JMX_PASSWORD
unless you've explicitly configured them. The following sections discuss the coMMAND
keyword in the previous command.

Monitoring with nodetool

The nodetool utility provides some of the basic, yet very informative, statistics of
Cassandra. This is often used to take a quick glance at how Cassandra is doing and
to monitor it. This section will introduce you to some of the interesting commands
that nodetool offers to monitor Cassandra.

cfstats

cfstats stands for column family statistics; it comprises details about every
significant statistic regarding all the column families in the ring and across all the
keyspaces. Executing cfstats looks like the following code (all these are per-node
data):
$ bin/nodetool -h 'hostname' cfstats
Keyspace: Keyspacel
Read Count: 74426
Read Latency: 0.1452843092467686 ms.
Write Count: 333208
Write Latency: 0.035750168063191756 ms.
Pending Tasks: 0
Column Family: Standardl
SSTable count: 2
Space used (live): 110260160
Space used (total): 110260160
Number of Keys (estimate): 333312
Memtable Columns Count: 0
Memtable Data Size: 0
Memtable Switch Count: 7
Read Count: 74426

[192]

Chapter 7

Read Latency: 0.145 ms.

Write Count: 333208

Write Latency: NaN ms.

Pending Tasks: 0

Bloom Filter False Posgitives: 56

Bloom Filter False Ratio: 0.00101

Bloom Filter Space Used: 625888

Compacted row minimum size: 311

Compacted row maximum size: 372

Compacted row mean size: 372

A few important statistics are as follows:

Read Latency and Write Latency: These provide the average time elapsed
in performing these operations. It may be nice to look at if you see the
throughput is slow.

Read Count and Write Count: These can provide a general idea of how
frequently a column family is accessed. It may be an indicator of how busy a
column family is.

Pending Tasks: Lots of pending tasks are an indication of an overloaded
node. Maybe one should look into rebalancing the cluster or, probably,
adding more machines or improving the node's hardware.

Space Used (live and total): The live statistic represents the space used by
the SSTables in use. The total statistic is the total space used by the SSTable.
The total statistic is always greater than or equal to the live statistic due to the
existence of deleted, but yet-to-be-removed, data. All these data are in bytes
(just bytes, not kilobytes or megabytes).

Number of Keys and Maximum Row Size: This can help you to estimate a
rough size for the row cache for the column family, if you decide to use it.

netstats

The netstats command is to view the network statistics (streaming information) of
the node within the ring. This is a very useful tool, especially during maintenance
work, such as moving, repairing, removing the node (decommission), or starting up
a new one.

[193]

Monitoring

The following snippet shows various stages of the node as provided by netstats
while a node is being decommissioned:

$ bin/nodetool -h 10.147.171.159 netstats
Mode: LEAVING
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 0
Responses n/a 0 1410

$ bin/nodetool -h 10.147.171.159 netstats
Mode: LEAVING
Streaming to: /10.166.54.134

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-9-
Data.db sections=1 progress=6898944/6898944 — 100%

/mnt/cassandra-data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-8-
Data.db sections=1 progress=0/97061952 - 0%

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 0
Responses n/a 0 1412

$ bin/nodetool -h 10.147.171.159 netstats
Mode: DECOMMISSIONED
Not sending any streams.

Not receiving any streams.

Pool Name Active Pending Completed
Commands n/a 0 0
Responses n/a 0 1507

ring and describering

The ring command is the most frequently used command. It shows you all the
members in the ring and the tokens they are assigned to. It also shows their individual
percentage ownership, which can help you determine if the ring is lopsided.

[194]

Chapter 7

$ bin/nodetool -h 10.147.171.159 ring

Address DC Rack Status State Load Oowns Token
11342745564
03128211544
58202477256
070483

10.99.9.67 us-east 1b Up Normal 97.45 MB 33.33% 0

10.147.171.159 wus-east 1b Up Normal 105.23 MB 33.33% 56713727820
15641057722
91012386280
35242

10.166.54.134 us-east 1b Up Normal 96.99 MB 33.33% 11342745564
03128211544
58202477256

070483

ring [<Keyspace>] is usually just sufficient, but using the describering
[<Keyspace_name>] command,, makes the output look like the following output:
$ bin/nodetool -h 10.147.171.159 describering Keyspacel
Schema Version:b8d7527e-85a5-37ef-86bl-35ef9e64afls
TokenRange:
TokenRange (
start_token:o0,
end token:56713727820156410577229101238628035242,
endpoints: [10.147.171.159],
rpc_endpoints: [10.147.171.159],
endpoint details: [
EndpointDetails(
host:10.147.171.159,
datacenter:us-east,
rack:1b)
1)

[195]

Monitoring

TokenRange (
start token:56713727820156410577229101238628035242,
end token:113427455640312821154458202477256070483,
endpoints: [10.166.54.134],
rpc_endpoints: [10.166.54.134],
endpoint details: [
EndpointDetails(
host:10.166.54.134,
datacenter:us-east,
rack:1b)
1)
TokenRange (

start token:113427455640312821154458202477256070483,
end token:O0,
endpoints:[10.99.9.67],
rpc_endpoints:[10.99.9.67],
endpoint details: [
EndpointDetails(
host:10.99.9.67,
datacenter:us-east,
rack:1b)

1)

tpstats

tpstats stands for thread pool statistics. This is an important measure of how
much pressure the node is bearing at a given instant. You can see task counts that
are running, pending, completed, and blocked in various stages. The rule of thumb
is that more pending tasks indicate a performance bottleneck. The following
command-line output shows the result of a tpstats usage:

$ bin/nodetool -h 10.147.171.159 tpstats
Pool Name Active Pending Completed Blocked ATB*
ReadStage 0 0 74426 0 0

[196]

Chapter 7

RequestResponseStage
MutationStage
ReadRepairStage
ReplicateOnWriteStage
GossipStage
AntiEntropyStage
MigrationStage
MemtablePostFlusher
StreamStage
FlushWriter

MiscStage
PendingRangeCalculator
commitlog archiver
AntiEntropySessions
InternalResponseStage

HintedHandoff

Message type
RANGE_SLICE

READ REPAIR
BINARY

READ

MUTATION
REQUEST_ RESPONSE

*ATB = All time blocked

O O O O O O O O O O o o o o o o

Dropped

o O o o o o

O O O O O O O O O O o o o o o o

815033
333235
0

0
1096434
60

5

18

0

18

w v N O O

O O O O O O O O O o o o o o o o

It also displays various types of message drops that happen due to various reasons.
These message drops may or may not be significant to you. A message to a node
that does not get processed within the limits of rpc_timeout_in ms (cassandra.
yaml) is dropped so that the coordinator node does not keep waiting. This means
the coordinator node will get a timeout response for executing a request made to the
node. For example, a read request may get a couple of timeouts, but the user will
get the data as long as there are sufficient replicas that return valid responses for the
request such that the consistency level of the query is satisfied. For a write or mutate
request, this means that the node that has timed out is in an inconsistent state. It
will get fixed either during a read repair or an anti-entropy repair. If you get lots of
dropped messages, it may be worth investigating what is going on in the node.

[197]

Monitoring

One may relate thread pools getting backed up to dropping messages in tpstats:
there are more tasks that can be processed by the threads within timeout limits.

compactionstats

The compactionstats command shows the compaction process running in the
instant. Compaction is a CPU and I/O-intensive task. It may temporarily increase
used disk space. So, it may be a good idea to check if any compaction is running if
there is no obvious indication from other monitoring statistics but you suddenly
see high I/O, CPU, or space consumption.

$ bin/nodetool -h 10.147.171.159 compactionstats

pending tasks: 0

Active compaction remaining time : n/a

info

The info command prints an overall bird's-eye view of the node's health. This
command can be used to get a quick summary of the node. Some of the labels, such
as heap size and recent cache hit rate, may give you some sense of how the node is
doing.

$ bin/nodetool -h 10.147.171.159 info

Token : 56713727820156410577229101238628035242
Gossip active : true

Thrift active : true

Load : 105.23 MB

Generation No : 1372274081

Uptime (seconds) : 344212

Heap Memory (MB) : 613.87 / 1844.00

Data Center : us-east

Rack : 1b

Exceptions : 0

Key Cache : size 3095424 (bytes), capacity 96468960 (bytes), 18981

hits, 74562 requests, 0.254 recent hit rate, 14400 save period in seconds

Row Cache : size 0 (bytes), capacity 0 (bytes), 0 hits, 0
requests, NaN recent hit rate, 0 save period in seconds

[198]

Chapter 7

Administrating with nodetool

We have seen some usage of nodetool while setting up the Cassandra cluster in
Chapter 4, Deploying a Cluster, and during various maintenance tasks in Chapter 6,
Managing a Cluster. We will see some more administrative tooling in this section.

drain

The drain command makes the node stop listening from other nodes and clients. It
flushes all the data to SSTables. No more write commands are processed. This is a
handy tool if you want to safely shut down Cassandra to upgrade it.

Drain the data to SSTables
$ bin/nodetool -h 10.147.171.159 drain

can't connect to it.
$ bin/cassandra-cli -h 10.147.171.159

org.apache.thrift.transport.TTransportException: java.net.
ConnectException: Connection refused

at org.apache.thrift.transport.TSocket.open (TSocket.java:183)

decommission

We have seen decommission during node removal in the Removing nodes from cluster
section in Chapter 6, Managing a Cluster. Decommissioning is a way to remove a live
node from the cluster. It streams all the data that it has to a replica node or a node
that will be responsible for the data after the node that is being decommissioned dies.

move

Decommissioning or adding a new node usually imbalances the cluster. To reassign
a different token ID to a node, you need to execute the following command:

$ bin/nodetool -h NODE_IP TO CHANGE_ TOKEN move NEW TOKEN

Like decommission, the move command streams data off the node. These may create
large network traffic and affect performance temporarily. These tasks should be
done during the time the application is relatively free. Refer to Chapter 6, Managing a
Cluster, for more on move.

[199]

Monitoring

removetoken

To completely remove a node from a ring, the removetoken command is used.

We have seen it earlier in the Removing a dead node section in Chapter 6, Managing a
Cluster. Once removetoken is executed, the key range that the to-be-removed node
holds gets streamed to the other node that now owns the responsibility for that key
range. This streaming is done from other replicas of the node.

The removetoken command provides three options:

* removetoken <tokens: Removes the specified token
* removetoken force: Forces pending token removal operations to occur

* removetoken status: Displays the status of this operation

repair

Nodetool's repair command performs pretty useful maintenance tasks. It helps
the cluster avoid returning data from the dead (the re-appearance of deleted data).
It is highly recommended to run repair periodically on the whole cluster to avoid
forgotten deletes. The time period between two consecutive repairs should be less

than the value assigned to gc_grace_seconds (configured per column family, the
default is 10 days).

Hinted handoff is useful only as long as there is no hardware failure that lasts more
than the value assigned to max_hint_window_in ms. So, it is generally a good idea
to set up a cron job for your production machines that executes nodetool repair
for all the nodes.

The way forgotten deletes come back can be explained with an example. Let's say
you have two nodes, A and B, with the data X replicated between them. If you
issue a delete action with cL.ONE when B is down, the client will get success,

and hinted handoff will make a note to resend the request to B when it comes
back. If, unfortunately, B does not come back before hinted handoff is cleared,
GCGraceSeconds wipes the data from node A. Now, if B comes back to life,
Cassandra will treat the deleted row as a new row that is not replicated to A (it will
be copied to A during read repair). Running a node repair has no way of fixing the
problem, now that GCGraceSeconds have been exceeded.

nodetool repair has the following format:

nodetool -h HOSTNAME repair [Keyspace] [cfnames] [-pr]

[200]

Chapter 7

So, repair can be executed for a node or a given keyspace or a list of column families.
There is an interesting option called primary range, denoted by -pr. The primary
range option just repairs the range that the node owns. Without the primary range
option, however, the command forces Cassandra to repair the node as well as all

the replicas. So, if you are planning to repair a whole cluster, you should use the

-pr switch; otherwise, you are duplicating the task rF times. The following are the
scenarios for the repair command:

* Periodic repair: Periodic repair should be executed on every node
periodically within gc_grace_seconds, normally within 10 days. Running
the repair weekly, timed at a relatively low traffic zone, is a good idea.
Periodic repair is suggested to be executed with the -pr option.

* Outage: When a node goes down long enough to get hinted handoff, since
the node may have been deleted, repair should be executed. Note that you
should not use the -pr option in this case.

A typical complete node repair looks as follows:

$ bin/nodetool -h 10.99.9.67 repair
[2013-07-01 06:44:46,768] Nothing to repair for keyspace 'system!'

[2013-07-01 06:44:46,776] Starting repair command #3, repairing 1 ranges
for keyspace Keyspacel

[2013-07-01 06:44:46,777] Repair session b83f6b80-e219-11e2-0000-
23f6cbfag94fd for range (113427455640312821154458202477256070483,0]
finished

[2013-07-01 06:44:46,777] Repair command #3 finished

[2013-07-01 06:44:46,795] Starting repair command #4, repairing 2 ranges
for keyspace mytest

[2013-07-01 06:44:47,828] Repair session b84251b0-e219-11e2-0000-
23f6cbfag94fd for range (0,113427455640312821154458202477256070483]
finished

[2013-07-01 06:44:47,842] Repair session b8924670-e219-11e2-0000-
23f6cbfag94fd for range (113427455640312821154458202477256070483,0]
finished

[2013-07-01 06:44:47,842] Repair command #4 finished

upgradesstable

This command rebuilds SSTables. It is generally used during upgrades or during the
compression ratio changes.

[201]

Monitoring

snapshot

The nodetool snapshot we have seen earlier while taking a backup (refer to Chapter 6,
Managing a Cluster) basically creates hard links for SSTables in the snapshots folder,
to be used to restore the node. There is a command to remove the snapshot; it is
called clearsnapshot. The command has the following options:

Create snapshot

nodetool -h CASSANDRA HOST snapshot [Keyspaces...] -cf [columnfamilyName]
-t [snapshotName]

Remove snapshots

nodetool -h CASSANDRA HOST clearsnapshot [Keyspaces...] -t [snapshotName]

There are more commands that nodetool provides that we have not discussed here.
In general, we have discussed the commands that you will find frequently. The

rest of the commands can be learned from the help text provided by nodetool.

The nodetool documentation can be found online.

Nodetool documentation on Apache Cassandra wiki:
% http://wiki.apache.org/cassandra/NodeTool.
s

The relatively newer documentation on DataStax:
http://www.datastax.com/docs/1.1/references/nodetool.

DataStax OpsCenter

DataStax (http://www.datastax.com) is the leading company that provides
commercial support for Cassandra. At the time of writing of this book, DataStax
claimed to employ more than 90 percent of Cassandra committers. DataStax provides
an easy-to-use, web-based utility — OpsCenter — that is little more than a GUI
wrapper over Cassandra's JMX instrumentation. OpsCenter provides a clean, simple,
and intuitive interface to manage and monitor a Cassandra cluster. This section will
briefly go over OpsCenter.

[202]

Chapter 7

@ S @ DataStax OpsCenter - Chromium
DatasStax OpsCenter

1] ec2-174-129-145- ompuke-1.amazonaws.com

Report

DATASTAX My Cluster

Add Nodes | Configure Cluster | Rebalance Cluster | Restart Cluster

DASHBOARD
Hostname Token A ‘Status Load (cpu)
~ CLUSTER
ip-10-166-54-134 113427455 Active 2106 MB
* RING VIEW ip-10-99-9-67 o Active 975 MB

= PHYSICAL VIEW ip-10-147-171-159 567137278... Active 1052 MB Actions...

View Metrics
* LIST VIEW

Configure
PERFORMANCE Start
SCHEMA

Restart

DA XPLORER Cleanup

Compact
Flush

EDIT CLUSTER... Repair
Perform GC

EVENT LOG

Decommission
Drain
Move

Figure 7.3: DataStax OpsCenter Cluster View and Actionable Items

DataStax provides two versions of OpsCenter: an enterprise version and a
community version. The enterprise version has more features, official support,

and is paid. The community version can be downloaded and used for free in a
production environment. You may download and evaluate the enterprise version
for free for development purposes. In this section, we will briefly go over installing,
configuring, monitoring, and administrating a single data center, 3-node cluster
using OpsCenter's community version.

OpsCenter Features

OpsCenter is a superset of nodetool. It provides all the functionality of nodetool,
displays metrics in an intuitive way, and also provides administrative tooling beyond
the default toolset that comes with Cassandra. The following is a short list of features:

* Centralized view of all the clusters: Options to visualize a cluster in
different modes: ring view, list view, and view by data centers.

* Manage cluster configuration: Edit and update cluster-wide configuration
from the web console.

[203]

Monitoring

Visualize performance: OpsCenter actually stores the performance history

over time. This can help you visualize performance in various time windows:

20 minutes, hourly, daily, weekly, and monthly.

Add a new node: On your local cluster, you can ask OpsCenter to add
another node by providing the node address and credentials (of a sudoer),

and choosing the appropriate DataStax package, which is basically Cassandra

and OpsCenter packaged in a user-friendly way by DataStax.

OpsCenter's enterprise edition has more advanced features, as follows:

° New cluster addition from GUI

o

Downloadable diagnostic information

[e]

Single-click cluster rebalancing
Multiple cluster management

Alerts and e-mail notification

. If you are on AWS EC2, OpsCenter allows you to automatically
% add a new node to your existing cluster. This node is basically an
= instance of DataStax AMI with the appropriate Cassandra version
that you have chosen.

Installing OpsCenter and an agent

OpsCenter installation comprises two parts: installation of the OpsCenter web interface

on one machine and installation of agents on each Cassandra node. The web interface
and nodes communicate with one an other to be able to display information.

Prerequisites

Java 6: The machines where you are planning to install a web interface or
agents must have Java 6; or any version that is specifically not lower than
version 1.6.0_19. Java 7 is not recommended. The version can be checked
for as follows:

$ java -version
java version "1.6.0_34"
Java (TM) SE Runtime Environment (build 1.6.0_34-b04)

Java HotSpot (TM) 64-Bit Server VM (build 20.9-b04, mixed mode)

[204]

Chapter 7

Python 2.6+: The web interface is Python-based and utilizes the Twisted
package. Python's recommended version is 2.6+. It may or may not work
with Python 3. Use the following command to find out the version of Python
installed on your computer:

yes, UPPERCASE V
$ python -V
Python 2.6.8

sysstat: sysstat is a bundle of system monitoring utilities. It provides
statistics about CPU usage, memory usage, space monitoring, I/ O activity
information, network statistics, and some other data about system resources.
The presence of this can be checked by executing the following command:

iostat is one the utilities in sysstat. V is uppercase.
$ iostat -V
sysstat version 9.0.4

(C) Sebastien Godard (sysstat <at> orange.fr)

If it is not already installed, use the following commands depending on
your Linux distribution:
CentOS or RHEL like systems

sudo apt-get install sysstat

Ubuntu or Debian like systems

yum install sysstat

OpenSSL: OpenSSL is an optional component. OpsCenter uses a secure
connection to communicate within the OpsCenter web interface and agents
by default. If you are just testing OpsCenter, you are running within a secure
internal network, or there is no appropriate OpenSSL implementation for
the platform, you may just avoid this step by adding the following lines in
SOPSCENTER HOME/conf/opscenterd.conf

[agents]
use_ssl = false

You will also need to update the agent's conf/address.yaml file using:

use ssl: 0

[205]

Monitoring

In case you want SSL to be enabled, make sure you have the correct OpenSSL
version installed for your platform.

$ openssl version

OpenSSL 1.0.le-fips 11 Feb 2013

DataStax provides the following compatibility list for OpenSSL with
OpsCenter:

Version Operating System

0.9.8 CentOS 5.x, Debian, Mac OS X, Oracle Linux 5.5, RHEL 5.x, SuSe
Enterprise 11.x, Ubuntu, and Windows
1.0.0 CentOS 6.x, Oracle Linux 6.1, and RHEL 6.x

In case you have the 1.0. 0 version on an operating system that requires version
0.9.8 for OpsCenter to work, installing a 0. 9. 8 version may solve the problem. It
may not be ideal to have two versions of OpenSSL. The following code shows how
a server with CentOS 5.x with the 1. 0.0 version was fixed (OpsCenter requires
version 0.9.8). Please note that this may not be an ideal solution and it can
potentially break some other functionality.

$ yum install openssl098e

Bad practice!

$ sudo 1ln -s /usr/libé4/libssl.so.0.9.8e \
/usr/1lib64/1libssl.s0.0.9.8

$ sudo 1ln -s /usr/lib64/libcrypto.so.0.9.8e \
/usr/lib64/libcrypto.s0.0.9.8

Running a Cassandra cluster

You need to have a running Cassandra cluster that can communicate with
OpsCenter's web interface machine.

Installing OpsCenter from Tarball

DataStax provides different binaries packaged specifically for different operating
systems. One may download an RPM package, a Deb package, or an MSI (Windows)
package based on what operating system one is using. In this section, we will use the
Tarball archive because it works across several platforms (Linux, Mac OS X).

[206]

Chapter 7

View all the download options for OpsCenter Community
%@‘\ Edition at http://planetcassandra.org/Download/
’ DataStaxCommunityEdition.

1. Download and untar:
Download latest OpsCenter
$ wget \
http://downloads.datastax.com/community/opscenter.tar.gz
Untar

$ tar -xzf opscenter.tar.gz

2. Edit conf/opscenterd. conf and insert the appropriate hostname,
OpsCenter's port number, and SSL setting (if required):

vi conf/opscenterd.conf

[webserver]

port = 80

interface = 10.147.171.159 #IP of OpsCenter machine
[agents]

use_ssl = false

3. Start the OpsCenter web server:
Use -f to start in foreground

SOPSCENTER_HOME/bin/opscenter

In the command above, S$OPSCENTER HOME is just a reference

to the OpsCenter installation location.

If the web server starts without any error, you should be able to access OpsCenter
from your browser. Make sure the security settings allow the port mentioned in
opscenterd. conf. When no agent is added, it will ask you to create a new cluster or
join an existing cluster. This is the time to set up agents on each Cassandra node.

[207]

Monitoring

Setting up an OpsCenter agent

The ways OpsCenter works is that there are agents that the web interface of
OpsCenter talks to. These agents collect data points and send commands to the
nodes. See the following figure:

Web Interface

OpsCenter

Figure 7.4: OpsCenter in action

An agent is available within the OpsCenter directory under the agent directory.
You need to set up the agent and then copy the agent directory to all other nodes.
Then, start the agents. The following are the steps to set up the agent:

1. Go to the agent's directory:
cd $OPSCENTER HOME/agent

2. Set up the agent:
bin/setup OPSCENTER IP

Here, OPSCENTER_IP: is the address of the machine hosting OpsCenter.
This updates the SAGENT HOME/conf/address.yaml file.

3. If you have SSL disabled, add use_ss1: o:
address.yaml
stomp interface: "10.147.171.159"

use ssl: 0

[208]

Chapter 7

4. Once this is done and the agent directory is copied across all nodes,
start the agents on each node by executing the following command:

Execute this from agent directory, user -f for foreground
$ bin/opscenter-agent
5. After OpsCenter and the agents are up, open OpsCenter in the browser,

click on Join existing cluster, and provide the node IPs (data of a single
node should be sufficient).

Monitoring and administrating with
OpsCenter

OpsCenter exposes all the functionality of JMX via a web console. This means
everything that we were able to do using nodetool, we can do with OpsCenter.
Most of the node-level administrative options are available by clicking on the node
(under the cluster view menu) and then clicking on the Action button.

For cluster-wide operations, there are menus under the cluster view page. You can
add a node, change the configuration file cluster-wide, and perform a rolling restart
of the cluster. In the paid version, you can create a cluster, add more than one cluster
to OpsCenter, download information to diagnose a problem, and generate reports.

20m H Da Week Mont 1 7312:30AM -7 3 12:50AM

Write Requests (cai Grapn) 0S: Disk Utilization (st rar

M Total A ge

0S: Load (et Gras Read Requests (e Gras

M Total

Figure 7.5: A subset of monitoring options by OpsCenter

[209]

Monitoring

OpsCenter provides a plethora of attributes to keep a tab on. It covers Cassandra-
specific attributes like read / write requests, pending tasks in different stages, row
and key cache hit rate; column family-specific statistics like pending read and writes,
SSTables' size and count, and so on; and operating system resource-specific statistics
such as CPU, memory, disk usage, network, and some more. Basically, a superset of
monitoring options is provided by nodetool. To add more plots to the Performance
screen, you need to click on the Add Graph button and select the appropriate graph.
To make this setting permanent, save this plot setting by choosing Save as... from the
drop-down menu next to the Performance Metrics heading.

Other features of OpsCenter

Apart from operational tasks, OpsCenter can be pretty useful to add, remove,
or modify keyspaces. The Schema screen provides options to play with keyspaces
and column families.

Another interesting feature is the Data Explorer screen. This provides a visually
pleasing interface to browse keyspace and column families. You can also search
within a column family by the row key.

OpsCenter provides security features; it allows us to enable SSL for the OpsCenter web
console, a simple authentication mechanism for OpsCenter. Advanced configuration
and setup is outside the scope of this book; refer to the official DataStax documentation
for this at http://www.datastax.com/docs/opscenter/index.

Nagios — monitoring and notification

Nagios (http://www.nagios.org) is an open source monitoring and notification
utility. It enables users to monitor various resources, such as CPU, memory, disk
usage, network status, reachability, HTTP status, testing web page rendering, and
various checks using Nagios-compatible sensors. There is a giant list of Nagios
plugins that covers the monitoring of almost all popular services and software.

The best thing with Nagios is its plugin architecture. You can write a simple plugin
for custom resource monitoring. So, effectively, anything where its state can be
measured, can be monitored via Nagios. This section will discuss, very briefly,
Nagios setup and how it can be enabled to monitor system resources and Cassandra.

[210]

Chapter 7

Installing Nagios

Nagios ships in different packages, such as DIY, student, professional, and business,
based on a number of features and support; you may visit the Nagios website and
choose one based on your needs. With the number of free plugins, the Nagios

free version is generally a good option. In this section, we will see how to install
and configure the Nagios free version (from the source) on a CentOS machine.
These instructions should work on any RHEL variant. For Ubuntu- or Debian-
like environments, you may need to look for an apt -get equivalent of the yum
commands in the script. Based on your Linux distribution, the Nagios distribution
can be installed from additional repositories. It may or may not be the latest and
greatest among Nagios, but it eases a lot of installation hassles. We use tarball
installation for this book to keep things generic.

Prerequisites

The Nagios server (PHP-based) has some dependencies to be fulfilled before you can
start installing it.

* PHP: You will need to have a PHP processor to run Nagios. Check its
availability using the following command:

$ php -v

PHP 5.3.26 (cli) (built: Jun 24 2013 18:08:10)

Copyright (c) 1997-2013 The PHP Group

Zend Engine v2.3.0, Copyright (c) 1998-2013 Zend Technologies

If PHP does not exist, install it.

$ sudo yum install php

* httpd: The Apache httpd web server serves as the frontend to a PHP-based
Nagios web application. To check whether you have httpd or not, execute the
following command:

$ httpd -v
Server version: Apache/2.2.24 (Unix)

Server built: May 20 2013 21:12:45

If httpd does not exist, install it.

$ sudo yum install httpd

[211]

Monitoring

* GCC compiler: Check for the installed version of GCC compiler using the
following command:

$ gcc -v
Using built-in specs.
COLLECT_GCC=gcc

COLLECT LTO_ WRAPPER=/usr/libexec/gcc/x86 64-amazon-linux/4.6.3/
lto-wrapper

Target: x86 64-amazon-linux

Configured with: ../configure --prefix=/usr --mandir=/usr/
share/man --infodir=/usr/share/info --with-bugurl=http://
bugzilla.redhat.com/bugzilla --enable-bootstrap --enable-shared
--enable-threads=posix --enable-checking=release --with-system-
zlib --enable-_ cxa atexit --disable-libunwind-exceptions
--enable-gnu-unique-object --enable-linker-build-id --enable-
languages=c, c++,0bjc,obj-c++,,fortran,ada,go,lto --enable-
plugin --disable-libgcj --with-tune=generic --with-arch 32=1686
--build=x86_64-amazon-linux

Thread model: posix

gcc version 4.6.3 20120306 (Red Hat 4.6.3-2) (GCC)

Install it, if it does not exist:

$ sudo yum install gcc glibc glibc-common

* GD graphics library: GD is a dynamic graphics development library to
generate various formats of dynamically generated images. Unfortunately,
there is no quick way to see GD installation. To install GD Library, execute
the following command:

$ yum install gd gd-devel

Preparation

Before we jump into installing Nagios, we need to set up a user account and a group
for Nagios.

sudo -1i

useradd -m nagios

passwd nagios

groupadd nagcmd

usermod -a -G nagcmd nagios

$
$
$
$
$
$

usermod -a -G nagcmd apache

[212]

Chapter 7

Installation

Nagios installation can be divided into four parts: installing Nagios, configuring
Apache httpd, installing plugins, and setting up Nagios as a service.

Installing Nagios
The following are the steps to install Nagios from tarball:

1. Download tarball from the Nagios download page and untar it:

$ wget http://prdownloads.sourceforge.net/sourceforge/nagios/
nagios-3.5.0.tar.gz

$ tar xzf nagios-3.5.0.tar.gz

2. Install Nagios from the source:

$ cd nagios

$./configure -with-command-group=nagcmd

$ make all

$ sudo make install \
install-base \
install-cgis \
install-html \
install-exfoliation \
install-config \
install-init \
install-commandmode \

fullinstall

3. Nagios is installed now. Update the contact details before you move to the
next step:

$ sudo vi /usr/local/nagios/etc/objects/contacts.cfg

define contact(

contact name nagiosadmin ; Short name of user
use generic-contact ; Inherit default values
alias Nagios Admin ; Full name of user
email YOUR _EMAIL ID ; *SET EMAIL ADDRESS*

[213]

Monitoring

Configuring Apache httpd
1. Set Apache httpd with the appropriate Nagios configuration:
$ sudo make install-webconf

/usr/bin/install -c -m 644 sample-config/httpd.conf /etc/httpd/
conf.d/nagios.conf

%* Nagios/Apache conf file installed *

2. Set the password for the Nagios web console for the user nagiosadmin:
$ sudo htpasswd -c¢ /usr/local/nagios/etc/htpasswd.users
nagiosadmin

3. Restart Apache httpd:

$ sudo service httpd restart

Installing Nagios plugins
1. Download and untar Nagios plugins from the Nagios website's plugins

page, http://www.nagios.org/download/plugins/ using the following
commands:

$ wget http://prdownloads.sourceforge.net/sourceforge/nagiosplug/
nagios-plugins-1.4.16.tar.gz

$ tar xzf nagios-plugins-1.4.16.tar.gz

2. Install the plugin:
$ cd nagios-plugins-1.4.16
$./configure --with-nagios-user=nagios -with-nagios-group=nagios
$ make

$ make install

Warning! If you get an error such as check_http.c:312:9:
error: 'ssl version' undeclared (first use in this
function) while trying to execute . /configure or make, your
. system probably lacks the 1ibss1 library. To resolve this issue,
% execute the following commands:
= On RHEL- or CentOS-like systems:
yum install openssl-devel -y

On Debian- or Ubuntu-like systems:

sudo apt-get install libssl-dev

3. Re-run ./configure, then make clean, then make.

[214]

Chapter 7

Setting up Nagios as a service
Everything is set; let's set Nagios as service:

$ sudo chkconfig --add nagios

$ sudo chkconfig nagios on

Check if the default configuration is good to go and start the Nagios service:

Check configuration file
$ sudo /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
[-- snip --]
Website: http://www.nagios.org
Reading configuration data...
Read main config file okay...

Processing object config file '/usr/local/nagios/etc/objects/commands.
cfg'...

[-- snip --]

Processing object config file '/usr/local/nagios/etc/objects/localhost.
cfg'...

Read object config files okay...
Running pre-flight check on configuration data...
[-- snip --]
Total Warnings: 0
Total Errors: 0

Things look okay - No serious problems were detected during the pre-
flight check

Start Nagios as a service

$ sudo service nagios start
Now you are ready to see the Nagios web console. Open the http://NAGIOS_HOST

ADDRESS/nagios URL in your browser. You should be able to see the Nagios home
page with a couple of default checks on the Nagios host.

[215]

Monitoring

Nagios plugins

Nagios' power comes from a lot of plugin libraries available for it. There are
sufficient default plugins provided as a part of the base package to perform decent
resource monitoring. For advanced or non-standard monitoring, you will have

to either download it from somewhere, such as the Nagios plugins directory or
GitHub, or you will have to write a plugin of your own. Writing a custom plugin is
very simple. There are only two requirements: the plugin should be executable via
command prompt, and the plugin should return with the following exit values:

* 0 implying OK state

* 1 implying warning state
* 2 implying critical state

* 3 implying unknown state

This means you are free to choose your programming language and tooling. As long
as you follow these two specifications, your plugin can be used in Nagios.

Nagios plugins directory:
http://exchange.nagios.org/directory/Plugins
%> Nagios plugins projects on GitHub:
https://github.com/search?g=nagios+plugin&type=Repo
sitories&ref=searchresults

Nagios plugins for Cassandra

There are a few Cassandra-specific plugins in the Nagios plugins directory.

There is a promising project on GitHub, namely, Nagios Cassandra Monitor
(https://github.com/dmcnelis/NagiosCassandraMonitor); it seems a little
immature, but worth evaluating. In this subsection, we will use a JMX-based plugin
that is not Cassandra-specific. We will use this plugin to connect to Cassandra nodes
and query heap usage. This will tell us about two things: whether or not it can
connect to Cassandra (which can be treated as an indication of whether or not the
Cassandra process is up) and what the heap usage is.

[216]

Chapter 7

The following are the steps to get the JMX plugin installed. All these operations take
place on the Nagios machine and not on Cassandra nodes.

1.

Download the plugins from http://exchange.nagios.org/directory/
Plugins/Java-Applications-and-Servers/check jmx/details.
Untar and navigate to the 1ibexec directory:

$ tar xvzf check jmx.tgz

$ cd check jmx/nagios/plugin/

$ sudo cp check jmx jmxquery.jar /usr/local/nagios/libexec/

Assign them proper ownership and run a test:
$ cd /usr/local/nagios/libexec/

$ sudo chown nagios:nagios check jmx jmxquery.jar
Replace 10.99.9.67 with your Cassandra node:

$./check jmx -U
service:jmx:rmi:///jndi/rmi://10.99.9.67:7199/jmxrmi -0 java.
lang:type=Memory -A HeapMemoryUsage -K used -I HeapMemoryUsage -J
used -vvvv -w 4248302272 -c 5498760192

JMX OK HeapMemoryUsage.used=1217368912{committed=1932525568;init=1
953497088 ;max=1933574144;used=1217368912}

Executing remote plugins via an NRPE plugin

NRPE is a plugin to execute plugins on remote hosts. One may think of it as
OpsCenter and its agents (see the following figure). With NRPE, Nagios can monitor
remote host resources, such as memory, CPU, disk, network, and can execute any
plugin on a remote machine.

Host 1
Nagjos Plugin +
NRPE + xinetd

Nagjos Web Interface

L

Nagios
Nagios Plugin + NRPE

Host 2
Nagios Plugin +
NRPE + xinetd

Host 3
Nagjos Plugin +
NRPE + xinetd

Figure 7.6: Nagios with NRPE plugin in action

[217]

Monitoring

NRPE installation has to be done on the Nagios machine as well as all the
other machines where we want to execute a Nagios plugin locally, for example,
to monitor the CPU usage.

Installing NRPE on host machines

First, you need to create a nagios user and a nagios group and set the user with a
password as discussed in the Preparation subsection in this chapter. After that, install
the Nagios plugin as mentioned in the Installing Nagios plugins section in this chapter.
Now you may proceed to the NRPE installation.

1.

Install xinetd if it does not already exist:

$ sudo yum install xinetd

Download the NRPE daemon and plugin from the NRPE Nagios page at
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/
NRPE--2D-Nagios-Remote-Plugin-Executor/details and install them:

Download and untar NRPE

$ wget http://downloads.sourceforge.net/project/nagios/nrpe-2.x/
nrpe-2.14/nrpe-2.14.tar.gz

$ tar xvzf nrpe-2.14.tar.gz

make and install daemon and plugin, configure xinetd
cd nrpe-2.14

./configure

make all

sudo make install-plugin

sudo make install-daemon

sudo make install-daemon-config

v vr vr vr vr Wvr v HF*

make install-xinetd

After this, you need to make sure each host machine accepts requests coming
from Nagios. For this, you need to edit /etc/xinetd.d/nrpe to add the
Nagios host address to it. In the following code snippet below, you need to
replace NAGIOS_HOST ADDRESS with the actual Nagios host address:

edit /etc/xinetd.d/nrpe
only_from = 127.0.0.1 NAGIOS HOST ADDRESS

edit /etc/services append this

nrpe 5666/tcp # NRPE

[218]

Chapter 7

Restart and test if xinet is functional:

Restart xinetd

$ sudo service xinetd restart
Stopping xinetd: [FAILED]
Starting xinetd: [OK]

Check if it's listening

$ netstat -at | grep nrpe

tcp 0 0 *:nrpe * ok LISTEN

Check NRPE plugin

$ /usr/local/nagios/libexec/check nrpe -H localhost

NRPE v2.14

Try to invoke a plugin via NRPE

$ /usr/local/nagios/libexec/check nrpe -H localhost -c check load

OK - load average: 0.01, 0.04, 0.06|loadl:0.010;15.000;30.000;0;
10ad5=0.040;10.000;25.000;0; l1loadl5=0.060;5.000;20.000;0;

Now we have the machine ready to be monitored via NRPE.

Installing NRPE plugin on a Nagios machine

Installing NRPE plugin on a Nagios machine is a subset of the task that we did for
the remote host machine. All you need to do is install the NRPE plugin and nothing
else. The following are the steps:

wvr vr vr »vr vr N W

wget http://downloads.sourceforge.net/project/nagios/nrpe-2.x/nrpe-
.14 /nrpe-2.14.tar.gz

tar xvzf nrpe-2.14.tar.gz
cd nrpe-2.14

./configure

make all

sudo make install-plugin

Test if plugin is working, you should replace 10.99.9.67
with one of the machine's address with NRPE + xinetd

/usr/local/nagios/libexec/check nrpe -H 10.99.9.67

NRPE v2.14

[219]

Monitoring

Setting things up to monitor

In this section, we will talk about how to set up CPU, disk, and Cassandra
monitoring. However, the detail is enough to enable you to set up any
Nagios plugin and configure monitoring.

Monitoring CPU and disk space: These are the tests that need to be executed

on remote machines. So, we may need to configure NRPE configuration to allow
those plugins to be executed remotely. This configuration is stored in /usr/local/
nagios/etc/nrpe.cfg. If you do not find the plugin that you wanted to execute or
you want to change the parameters to be passed to the plugin, this is the place; to
achieve that, use the following set of commands:

edit /usr/local/nagios/etc/nrpe.cfg

command [check users]=/usr/local/nagios/libexec/check users -w 5 -c 10

command [check load]=/usr/local/nagios/libexec/check load -w 15,10,5 -c
30,25,20

command [check _hdall=/usr/local/nagios/libexec/check disk -w 20% -c 10% -p
/dev/hdal

[-- snip --]
#custom commands *add your commands herex*

EC2 ephemeral storage root disk

command [check sdall=/usr/local/nagios/libexec/check disk -w 20% -c 10% -p
/dev/sdal

[220]

Chapter 7

Have a look at the following screenshot:

Nagios Core - Chromium

N Nagios Core %

{ o ec2-67-202-63-154.compute-1.amazonaws.com, el =
A 1S
N H ¢ | Current Network Status Host Status Totals Service Status Totals
a g ' os Last Updated: Thu Jul 4 09:43:23 UTC 2013 Up Down Unreachable Pending Ok Warning Unknown Critical Pending
Nagiess Corerm 350 i Ello][o o B[o |[o o [o |
Nagios® Core™ 3.5.0 - www.nagios.org
General Logged in as nagiosadmin All Problems All Types All Problems All Types
Home R View History For all hosts
Documentation View Notifications For All Hosts
View Host Status Detail For All Hosts
Current Status . o
h ; Service Status Details For All Hosts
Tactical Overview
Map)
Hosts imit Results: | 100 ¥
Services -
Host Groups Host*% sService *% Status *# LastCheck *% Duration *% Attempt ## Status Information
JMK OK
gt‘i?maw cassandral Cassandra |OK 07-04-2013 09:48:40 0d Oh 10m 43s 13 enphtemoryUsage used
Service Groups check
Summary cPU OK 07-04-2013 09:40:09 0Od Oh 9m 14s 13 OK - load average: 0.00, C
Grid
Problems check disk OK 07-04-2013 09:41:38 Od Oh 7m 455 13 DISK OK - free space: / 5¢
Services Current . .
(Unhandled) localhost Load OK 07-04-2013 09:48:08 0Od 19h 16m 155 1/4 OK - load average: 0.00, O
Hosts Current
(Unhandled) Users oK 07-04-2013 09:48:46 0Od 19h 15m 37s 14 USERS OK - 2 users curr{
Netwark
Outages PING OK 07-04-2013 09:45:01 0Od 19h 14m 225 1/4 PING OK - Packet loss =0
Quick Search: E:r?rtiun oK 07-04-2013 09:45:38 0Od 19h 13m 455 14 DISK OK - free space: / 57
I SSH |E| OK 07-04-2013 09:46:16 Od 19h 13m7s 14 SS5H OK - OpenSSH_6.1 |
Total
OK 07-04-2013 09:47:31 0Od 19h 11m 525 1/4 PROCS OK: 40 processes
Reports Processes mees -
Availability
Trends hd hd
» 4 »

Figure 7.7: Nagios interface monitoring local and remote resources

As you can see, we have a CPU check (check_load) and a disk check already
provided by the default configuration. However, if I wanted to monitor the /dev/
sda1 device for space availability, I would add a new check, check_sda1, for this.

Setting up a JMX monitor: For Cassandra, we want to check the JVM heap usage
via JMX. Since this executes on the local machine (Nagios) to connect to the JMX
service on the remote machine, we do not need to use NRPE for this. So, we have

nothing to do here.

[221]

Monitoring

Updating configuration: The best part of Nagios is its configuration. With a little
trick and grouping, you can make a fine configuration that can scale to hundreds

of machines. All configurations in Nagios are text-based with JSON-ish syntax.

You can have files organized in whichever way you want and let Nagios know
where the files are. For this particular case, the /usr/local/nagios/etc/objects/
cassandrahosts.cfg file is created. This file houses all the information related to
monitoring. The following code is what it looks like (see the comments in bold):

A machine to be monitored
DEFINE ALL CASSANDRA HOSTS HERE

define host{

use linux-server

host name cassandral

alias Cassandra Machine
address 10.99.9.67

}

create logical groupings, manageable, saves typing
HOST GROUP TO COLLECTIVELY CALL ALL CASSANDRA HOSTS

define hostgroup(
hostgroup name cassandra grp
alias Cassandra Group
members cassandral ;this is CSV of
;hosts defined above

A service defines what command to execute on what hosts
MONITORING SERVICES

A service that executes locally
#Check Cassandra on remote machines

define service(

use generic-service
hostgroup name cassandra_ grp

service description Cassandra

check command check cas ;defined below

}

A service that gets executed remotely via NRPE
check disk space status

[222]

Chapter 7

define service(

use generic-service
hostgroup_ name cassandra_grp

service description check disk

check command check nrpel!check sdal
}

check CPU status
define service(
use generic-service
hostgroup name cassandra grp
service description check CPU
check command check nrpel!check load

}

A command is a template of a command line call, here:

$USER1S$ is plugin directory, nagios/libexec

$SHOSTADRRESSS resolves to the address defined in

host block above, hosts are chosen from the service that
calls this command

define custom commands

check JVM heap usage using JMX,

warn if > 3.7G, mark critical if > 3.85G

define command {
command name check cas

command_line $USER1$/check jmx -U service:jmx:rmi:///
jndi/rmi://$HOSTADDRESSS:7199/jmxrmi -O java.lang:type=Memory -2A
HeapMemoryUsage -K used -I HeapMemoryUsage -J used -vvvv -w 3700000000
-c 3850000000

}

Letting Nagios know about the new configuration: We have created a new
configuration file that Nagios does not know about. We need to register it
in /usr/local/nagios/etc/nagios.cfg; append the following line to this file:

#icustom file *ADD YOUR FILES HERE*
cfg file=/usr/local/nagios/etc/objects/cassandrahosts.cfg

Test the configuration and you are done.

$ sudo /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
Nagios Core 3.5.0

[-- snip --]

[223]

Monitoring

Reading configuration data...
Read main config file okay...

Processing object config file '/usr/local/nagios/etc/objects/commands.
cfg'...

Processing object config file '/usr/local/nagios/etc/objects/contacts.
cfg'...

Processing object config file '/usr/local/nagios/etc/objects/timeperiods.
cfg'...

Processing object config file '/usr/local/nagios/etc/objects/templates.
cfg'...

Processing object config file '/usr/local/nagios/etc/objects/
cassandrahosts.cfg'. ..

Processing object config file '/usr/local/nagios/etc/objects/localhost.
cfg'...

Read object config files okay...
Running pre-flight check on configuration data...
[-- snip --]
Total Warnings: 0
Total Errors: 0

Things look okay - No serious problems were detected during the pre-
flight check

Restart Nagios by executing sudo service nagios restart.

Monitoring and notification using Nagios

Nagios has built-in support to send mails whenever an interesting event, such as

a warning, an error, or a service coming back to the OK state, occurs. By default, it
uses the mail command, so if your mail is configured correctly, you should see mails
when you execute the following command:

substitute YOUR EMAIL ADDRESS with your email id.
/usr/bin/printf "%b" "Hi Nishant, \nthis is Nagios." | /bin/mail -s
"Nagios test mail" YOUR_EMAIL_ ADDRESS

If this does not reach your mail box or the spam folder, you should check your
configuration. If you do not have the mail utility installed already, execute the
following command:

mail utility on RHEL like OS

$ sudo yum install mailx

[224]

Chapter 7

On Ubuntu or Debian derivatives

$ sudo apt-get install mailutils

If you are not happy with the mailing option or want to change the mailer to
send mail via a specific mail provider like Gmail, you should dig into the plugins
directory or GitHub to find appropriate alternatives.

Nagios provides a pretty intuitive GUI—a web-based console that immediately
highlights anything that is wrong with any service or host. Apart from displaying
the immediate state, Nagios also stores the history of monitored events. There are
many reporting capabilities that provide a complete infrastructure status overview.
One can easily generate a histogram that states the performance of a service. Refer to
the following diagram:

Thu Jun 27 09:59:15 2013 to Thu Jul 4 09:59:15 2013

EVENT TYPE MIN MAX sum AVG

Recovery (OF

o o o o
B o & k

Number of Events

mmmmmmmmmmmmmmmmmmmmmm

Day of the Month

Figure 7.8: An auto generated histogram report from Nagios

There are many reporting options; options to disable the alerts during a scheduled
downtime of infrastructure. It may be worth playing around the Nagios GUI to learn
about the various options.

Cassandra log

Last, but not least, Cassandra log is a good tool for monitoring what is going on
inside Cassandra. However, monitoring the logfile is an extremely non-scalable
option. So, if you are starting with anything fewer than five Cassandra machines,
you may consider occasionally looking into their logfiles. The most common use of
the Cassandra log is to perform the postmortem for a failure when you do not have
any other monitoring and reporting mechanism in place.

[225]

Monitoring

The location of the 1og43j log can be found out from Cassandra's conf/log47j-
server.properties file

This has been altered during installation

log4j.appender.R.File=/mnt/cassandra-logs/system.log

As long as you view this file filled with lines, starting with INFO, you may think the
system has been behaving alright. Lines with WARN may or may not be interesting.

For example, it is OK to have some WARN:Ss in the system as shown in the
following system:

INFO [MemoryMeter:1] 2013-05-24 12:31:39,099 Memtable.java
(line 213) CFS(Keyspace='Keyspacel', ColumnFamily='Standardl')
liveRatio is 1.0 (just-counted was 1.0).
calculation took 3mg for 325 columns
WARN [MemoryMeter:1] 2013-05-24 12:31:39,135 Memtable.java
(line 197) setting live ratio to minimum of 1.0
instead of 0.8662032831217121

But, some warnings may be a definite sign of danger and should be fixed to avoid a
catastrophe (it may not be a big deal if you have RF and CL set properly).

May be a future crash due to lack of disk space

WARN [CompactionExecutor:45] 2013-05-24 17:34:03,709
CompactionTask.java (line 82) insufficient space to compact all
requested files SSTableReader (path='/mnt/cassandra-
data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-34-
Data.db'), SSTableReader (path='/mnt/cassandra-
data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-35-
Data.db'), SSTableReader (path='/mnt/cassandra-
data/data/Keyspacel/Standardl/Keyspacel-Standardl-hf-28-
Data.db"')

An ERROR should always be attended to. It usually answers buts and whys about
Cassandra behavior, points out incorrect configuration, tells you about what to do
next, and what to change in the read/write pattern.

oh snap! Dave was right about horizontal scaling.

ERROR [FlushWriter:7] 2013-05-24 17:35:21,617 AbstractCassandraDaemon.
java (line 132) Exception in thread Thread[FlushWriter:7,5,main]
java.lang.RuntimeException: Insufficient disk space to flush 71502048
bytes

[-- snip --]

WARN [CompactionExecutor:46] 2013-05-24 17:35:26,871 FileUtils.

java (line 116) Failed closing IndexWriter (/mnt/cassandra-data/data/
Keyspacel/Standardl/Keyspacel-Standardl-tmp-hf-42)
java.io.IOException: No space left on device

[226]

Chapter 7

Cassandra logs are great. If you find yourself looking too frequently into it, you
probably need a better monitoring mechanism. Also, if you feel like getting blinded
by the abundance of information, you may change the log a level up from INFO to
WARN in the 1og4j-server.properties file. It is suggested not to turn on the DEBUG
mode, unless you are editing the Cassandra code base and debugging the changes.
It may lead to lots of I/O activity and may affect the performance.

Enabling Java Options for GC Logging

JVM options provide a nice way to monitor Java applications. It is not specific to
Cassandra. One may set various -Xx options as part of arguments when starting the
Java application. In Cassandra, these options can be enabled by uncommenting the
lines with -xx. The following is the list of the options:

GC logging options -- uncomment to enable

JVM_OPTS="$JVM OPTS -XX:+PrintGCDetails"

JVM_OPTS="$JVM OPTS -XX:+PrintGCDateStamps"

JVM_OPTS="$JVM OPTS -XX:+PrintHeapAtGC"

JVM_OPTS="$JVM OPTS -XX:+PrintTenuringDistribution"
JVM_OPTS="$JVM OPTS -XX:+PrintGCApplicationStoppedTime"
JVM_OPTS="$JVM OPTS -XX:+PrintPromotionFailure"
JVM_OPTS="$JVM OPTS -XX:PrintFLSStatistics=1"

JVM_OPTS="$JVM OPTS -Xloggc:/var/log/cassandra/gc-'date +%s'.log"

H oH H H H H H H H*

If you are using JDK 6u34 7u2 or later you can enable GC log

rotation

don't stick the date in the log name if rotation is on.
JVM_OPTS="$JVM OPTS -Xloggc:/var/log/cassandra/gc.log"
JVM_OPTS="$JVM OPTS -XX:+UseGCLogFileRotation"

JVM_OPTS="$JVM OPTS -XX:NumberOfGCLogFiles=10"

JVM_OPTS="$JVM OPTS -XX:GCLogFileSize=10M"

It is pretty obvious what these options do. In case you wanted to enable some of
these options, the following table shows what they mean:

Option Description
-XX:+PrintGCDetails Prints more details at garbage collection.
-XX:+PrintGCDateStamps Prints GC events with the date and time rather

than with a timestamp that we get using
-XX:+PrintGCTimeStamps.

-XX:+PrintHeapAtGC Prints detailed GC information, including heap
occupancy before and after GC.

[227]

Monitoring

Option Description
-XX:+PrintTenuring Prints tenuring age information.
Distribution
-XX:+PrintGC Prints the net time of every stop-the-world event.
ApplicationStoppedTime
-XX:+PrintPromotion Prints the size of the objects that fail promotion.
Failure

-XX:PrintFLSStatistics=1 Prints free list statistics for each young or old
collection (FLS = Free List Space).

The rest of the options are for log location, log size, and rolling log counts.

Troubleshooting

We have learned cluster configuration, repairing and scaling, and, finally,
monitoring. The purpose of all this learning is for you to keep the production
environment up and running smoothly. You chose the right ingredients to set up

a cluster that fits your need, but there may be node failures, high CPU usage, high
memory usage, disk space issues, network failures, and, probably, performance
issues with time. Most of this information you will get from the monitoring tool
that you have configured. You will need to take necessary action depending on the
problems that you are facing.

Usually, one goes about finding these issues via various tools that we've discussed
in the past. You may want to extend the list of tools to include Linux tooling for
investigation, such as netstat and tcpdump for network debugging' vmstat, free,
top, and dstat for memory statistics; perf, top, dstat, and uptime for CPU; and
iostat, iotop, and df for disk usage.

So, how would you know there is a problem? With a decent monitoring setup and

a vigilant system-admin, the problems usually come to one's knowledge via alerts
sent by the monitoring system. It may be a mail from OpsCenter or a critical message
from Nagios or from your home-grown JMX-based monitoring system. Another way
to see the issues is as performance degradation at a certain load. You may find that
your application is acting weird or abnormally slow. You dig into the error and find
out that the Cassandra calls are taking a really long time, more than expected. The
other, and scarier, way the problems come to one's notice is on production. Things
have been working decently in the test environment and you suddenly start seeing
frequent garbage collection calls or the production servers start to scream, "Too many
open files."

[228]

Chapter 7

In many of the error scenarios, the solution is a simple one. For cases such as where
AWS notifies an instance shutdown due to underlying hardware degradation, the fix
is to replace the node with a new one. For a disk full issue, you may add either a new
node or just more hard disks and add the location to the data directories setting in
Cassandra—yaml. The following are a few troubleshooting tips. Most of these things
you might have known from the previous chapters.

High CPU usage

High CPU usage can be associated with frequent garbage collections (GC). If you
see a lot of GC call information in Cassandra logs and if they take longer than one
second to finish, it means the system has loaded the JVM with the garbage collector.

The easiest fix is to add more nodes. Another option can be increasing the JVM
heap size (adding more RAM, if required) and tweak the garbage collector setting
for Cassandra.

Compaction is a CPU-intensive process; you may expect a spike during compaction.
You should plan to perform a nodetool compact during relatively silent hours. The
same goes for repair; execute nodetool repair during low load.

High memory usage

Before we dive into memory usage, it is useful to point out that providing a lot of
RAM to the Java heap may not always help. We have learned in a previous chapter
that Cassandra automatically sets the heap memory, which is good in most cases. If

you are planning to override it, note that garbage collection does not do well beyond
an 8 GB heap.

There are a couple of things you should check when debugging for high memory
usage. Bloom filter's false positive ratio can lead to large memory usage. For smaller
error rates in the Bloom filter, we need a larger memory. In case you find the Bloom
filter to be the culprit and decide to increase the false positive ratio, remember that
the recommended maximum value for the false positive value is 0. 1; performance
starts to degrade after this. This may not be applicable to Cassandra 1.2 and onward
where the Bloom filter is managed off-heap.

Continuing the subject of off-heap, another thing that you might want to look into
is row caches. Row caches are stored off-heap, if you have the JNA installed. If there
is no JNA, the row cache falls back onto the on-heap memory —adding to the used
heap memory. It may lead to frequent GC calls.

[229]

Monitoring

High memory usage can be a result of pulling lots of rows in one go. Look into
such queries. Cassandra 1.2 onward has a trace feature that can help you find
such queries.

Hotspots

A hotspot in a cluster is a node or a small set of nodes that show abnormally high
resource usage. In the context of Cassandra, it will be the nodes in the cluster that
get abnormally high hits or show high resource usage compared to other nodes.

A poorly balanced cluster can cause some nodes to own a high number of keys. If
the request for each key has equal probability, the nodes with the higher numbers of
ownership will have to serve a high number of requests. Rebalancing the cluster may
fix this issue.

Ordered partitioners, such as ByteOrderedPartitioner, usually have a hard time
making sure that each key range has an equal amount of data, unless the data coming
for each key range has the same probability. It is suggested that you rework the
application to avoid dependency on key ordering and use Murmur3pPartitioner or
RandomOrderPartitioner, unless you have a very strong reason to depend on byte
order partitioning. Refer to the Partitioners section in Chapter 4, Deploying a Cluster.

High-throughput-wide columns may cause a hotspot. We know that a row resides
on one server (actually, on all the replicas). If we have a row that gets written to and/
or read from at a really high rate, the node gets loaded disproportionately (and the
other nodes are probably idle). A good idea is to bucket the row key. For example,
assume you are a popular website; if you decide to document a live presidential
debate by recording everything told by the candidates, host, and audiences and
stream this data live, you allow users to scroll back and forth to see the past records.
In this case, if you decide to use a single row, you are creating a hotspot. The ideal
thing would be to break the row key into buckets like <rowKey>: <bucket_id> and
round robin the buckets to store the data. Keys are being distributed across the
nodes; now you have the load distributed on multiple machines. To fetch the data,
you may want to multiget slice the buckets and merge them into the application.
The merging should be fast because the rows are already sorted. Refer to the High
throughput rows and hotspots section in Chapter 3, Design Patterns.

Another cause of hotspots can be wrong token assignment in a multi-data-center
setup (refer to Chapter 4, Deploying a Cluster). If you have two nodes, A and B, in data
center 1, and two nodes, B and C, in data center 2, you calculate equidistant tokens
and assign them to A, B, C, and D in increasing order. It seems OK, but it actually
makes node A and node C hotspots.

[230]

Chapter 7

Ideally, one should assign alternate tokens in different data centers. So, A should
get the first token, C should get the second, B the third, and D the fourth. If there are
three data centers, pick one from each and assign increasing tokens, then go for the
second, and so on.

OpendDK may behave erratically

Linux distros ship with Open Java and OpenJDK. Cassandra does not
officially support any variant of the JVM other than Oracle/Sun Java 1.6.
Open Java may cause some weird issues, such as the GC pausing for very
long and performance degradation. The safest thing to do is to remove Open
Java and install the suggested version.

Disk performance

Amazon Web Services users often find Elastic Block Storage (EBS) lucrative
to use from performance and reliability points of view. Unfortunately, it is a
bad idea to use them.

EBS with Cassandra: It slows down the disk I/O speed. It can cause slow
reads and writes. If you are using EBS, try comparing it with the instance store
(ephemeral storage) with the RAIDO setup.

If you see Too many open files or any other resource-related issue, the first

thing to check is ulimit -a to see all available system resources. You can edit

this setting by editing /etc/security/limits.conf and setting it to the following
recommended setting;:

* gsoft nofile 32768

* hard nofile 32768

root soft nofile 32768

root hard nofile 32768

* gsoft memlock unlimited

* hard memlock unlimited
root soft memlock unlimited
root hard memlock unlimited
* gsoft as unlimited

* hard as unlimited

root soft as unlimited

root hard as unlimited

[231]

Monitoring

Slow shapshot

Creation of a snapshot for backup purposes is done by creating a hard link to
SSTables. In the absence of JNA, it is done by using /bin/1n by fork and exec to
create a hard link. This is observably slow with thousands of SSTables. So, if you are
seeing an abnormally high snapshot time, check if you have the JNA configured.

Getting help from the mailing list

Cassandra is a robust and fault-tolerant software. It is possible that your production
is running as expected while something is broken within. Replication and eventual
consistency can help you to build a robust application on top of Cassandra, but it is
important to keep an eye on monitoring statistics.

The tools that have been discussed in this and previous chapters should help you
get enough information about what went wrong. You should be able to fix common
problems using these tools. But sometimes it is a good idea to ask about a stubborn
issue on the friendly Cassandra mailing list: userecassandra.apache.org.

When asking a question on the mailing list, provide as many statistics as you can
gather around the problem. Nodetool's cfstats, tpstats, and ring are common
ways to get Cassandra-specific statistics. You may want to check the Cassandra logs,
enable gvMm_opTs for GC-related statistics, and profile using Java jhat or JConsole.
Apart from this, server specifications, such as memory, CPU, network, and disk stats
provide crucial insights. Among other things, one may mention replication factor,
compaction strategy, consistency level, and column family specifications as required.

Summary

Setting up proper monitoring of your infrastructure is the most recommended and
the most disregarded suggestion to a development team, especially in startups where
teams are small, resources are limited, and fast development is the only priority. It
usually goes hand-in-hand with lethargy to go through a painfully long mechanical
process to set up a system. The importance of monitoring is best understood when

a failure that could have been avoided occurs at a critical hour. Monitoring is an
important tool to show the reliability of a system.

[232]

Chapter 7

With multiple tools in hand, you are knowledgeable to take your weapon of choice.
Starting with JConsole, which enables you to view the status of Cassandra internals,
the JVM, and you may tweak and control some parameters. It is a bit tricky to get

it working. Plus, it is a resource hog. On the other hand, nodetool is a powerful
utility. It can help you get the internal stats and performs many administrative
tasks. However, it is a command-line tool. So, probably, the managers are not going
to like this. Plus, it shows an instantaneous status. It is not meant to gather status.
This is where OpsCenter comes into the picture. With really simple installation and
the ability to store performance history and resource monitoring, it is hands-down
the best option to monitor Cassandra. But, the free version does not have an alert
mechanism, report generation, and some other options such as auto load balancing.
The other downside of it is that it is a whole different system to monitor just
Cassandra. If you have a heterogeneous system with application servers, RDBMS, a
stand-alone application, and a website, you would probably want something that can
monitor everything and you can see the complete picture in one place. Nagios and
its plugins take over. It allows you to monitor almost anything that can be measured
in at least OK and CRITICAL states. Unlike the community version of OpsCenter,
Nagios provides a nice interface to generate reports and an in-built mailing alert
mechanism. All these can be extended by custom-written plugins. Nagios is open
source with a very large and enthusiastic community.

Choose a tool or a set of tools that fit your environment. In many cases, having
Nagios to monitor Cassandra, CPU, memory, ping, and disk statistics is good
enough. Others may want a dedicated monitoring and management tool such as
OpsCenter. There are still others who just write a code that utilizes the JMX interface
to monitor particular statistics. It is really up to you.

Cassandra is a big data store. What is the use of a big data store if you can't analyze
it to extract interesting statistics? Fortunately, Cassandra provides hooks to smoothly
integrate it with various Apache Hadoop projects like Hadoop MapReduce, Pig, and
Hive. It can be used as a corpus store for Solr. Cassandra plays well with low latency
stream processing tools such as Twitter Storm and can be seamlessly integrated with
the Spark project (http://spark-project.org). The next chapter is all about using
analytical tools with Cassandra.

[233]

Integration

Big Data is the latest trend in the technical community and industry in general.
Cassandra and many other NoSQL solutions solve a major part of the problem: storage
of a large amount of data set in a scalable manner while keeping the mutations and
retrieval queries superfast. But this is just half the picture. A major part is processing. A
database that provides better integration with analytical tools such as Apache Hadoop,
Twitter Storm, Pig, Spark, and other platforms will be a preferable choice.

Cassandra provides native support to Hadoop MapReduce, Pig, Hive, and Oozie. It
is a matter of tiny changes to get the Hadoop family up and working with Cassandra.
There are a couple of independently developed projects that use Cassandra as
storage. One of the most popular projects is Solandra. Solandra provides Cassandra
integration with Solr. However, it does not magically enable you to test search in
Cassandra. Cassandra serves just as a backend.

Third-party supports for Hadoop and Solr have taken Cassandra to the next step in
terms of integration. Third-party proprietary tooling such as DataStax Enterprise
edition for Cassandra makes it easy to work with Hadoop and actually text search
Cassandra using Solr.

Cassandra is a very powerful database engine. We have seen its salient features as
a single software entity. In this chapter we will see how Cassandra can be used as a
data store for third-party software such as Hadoop MapReduce, Pig, and Apache Solr.

Integration

) L
This chapter does not cover Cassandra integration with Hive and Oozie.
To learn about Cassandra integration with Oozie, refer to:

http://wiki.apache.org/cassandra/HadoopSupport#Oozie

Hive can be integrated with Cassandra via independent projects such as
https://github.com/riptano/hive old on GitHub. But it seems
- deprecated, so it is suggested to not use it. There are ongoing efforts to
% bring Hive integration to Cassandra as its native part. If you are planning
~= to use Cassandra with Hive, keep watch on this issue at:

https://issues.apache.org/jira/browse/CASSANDRA-4131

DataStax Enterprise editions have built-in Cassandra-enabled Hive
MapReduce clients; you may want to check them out at:

http://www.datastax.com/docs/datastax_enterprise3.0/
solutions/about_hive

Using Hadoop

Hadoop is for data processing. So is Matlab, R, Octave, Python (NLTK and many
other libraries for data analysis), and SAS, you may say. They are great tools, but
they are good for data that can fit in memory. It means you can churn a couple

of GBs to maybe 10s of GBs, and the rate of processing depends on the CPU on

that machine, maybe 16 cores. This poses a big restriction. The data is no more

in GB limits at Internet scale. In the age of billions of cell phones (an estimated

6.8 billion cell users at the end of 2012; source: http://mobithinking.com/
mobile—marketing—tools/latest—mobile—stats/a#subscribers), we are
generating a humongous amount of data every second (Twitter reports 143,199
Tweets per second; source: https://blog.twitter.com/2013/new-tweets-
per-second-record-and-how) by checking in places, tagging photos, uploading
videos, commenting, messaging, purchasing, dining, running (fitness apps monitor
your activities), and many other activities that we do; we literally record events
somewhere. It does not stop at organic data generation. A lot of data, a lot more
than organic data, is generated by machines (http://en.wikipedia.org/wiki/
Machine-generated_data). Web logs, financial market data, data from various
sensors (including ones in your cell phone), machine part data, and many more

are such examples. Health, genomics, and medical science have some of the most
interesting Big Data corpus ready to be analyzed and inferred. To give you a glimpse
of how big genetic data can be, we should check data from 1,000 genome projects
(http://www.1000genomes.org/). This data is available for free (there are storage
charges) to be used by anyone. The genome data for (only) 1,700 individuals makes a
corpus of 200 terabytes. It is doubtful that any conventional in-memory computation
tool such as R or Matlab can do it. Hadoop helps you process the data of that extent.

[236]

Chapter 8

Hadoop is an example of distributed computing, so you can scale beyond a single
computer. Hadoop virtualizes the storage and processors. This means you can
roughly treat a 10-machine Hadoop cluster as one machine with 10 times the
processing power and 10 times storage capacity than a single one. With multiple
machines parallely processing the data, Hadoop is the best fit for large unstructured
data sets. It can help you to clean data (data munging) and can perform data
transformation too. HDFS provides a redundant distributed data storage. Effectively,
it can work as your extract, transform, and load (ETL) platform.

Hadoop and Cassandra

In the age of Big Data analytics, there are hardly any data-rich companies that do not
want their data to be extracted, evaluated, and inferred to provide more business
inside. In the past, analyzing large data sets (structured or unstructured) that span
terabytes or petabytes used to be expensive and a technically challenging task to a
team; distributed computing was harder to keep track of, and hardware to support
this kind of infrastructure was not financially feasible to everyone.

What changed the demography completely in favor of medium and small companies
are a couple of things. Hardware prices dropped down to earth. Memories and
processing powers of computing units increased dramatically at the same time.
Hardware on demand came into the picture. You can spend about 20 dollars to rent
about a 100 virtual machines with quad-core (virtual) processors, 7.5 GB RAM, and
840 GB of ephemeral storage (you can plug in gigantic network-attached storages
that are permanent) from Amazon Web Services for one hour. There are multiple
vendors that provide this sort of cloud infrastructure. However, the biggest leap

in making Big Data analysis commonplace is the availability of extremely high,
quality free, and open source solutions that abstract the developers from managing
distributed systems. These software made it possible to plug in various algorithms
and use the system as a black box to take care of getting the data, applying the
routines, and returning the results. Hadoop is the most prominent name in this field.
Currently, it is the de-facto standard of Big Data processing.

At the time of writing this book, this is the specification of an AWS
% M1]large machine. The pricing estimate is based on the hourly
T price of on-demand instances at USD 0.24 per hour.

Hadoop deserves a book of its own. If you wanted to learn about Hadoop, you may
want to refer to Yahoo!'s excellent tutorial on this subject (http://developer.
yahoo.com/hadoop/tutorial/index.html). This section will give a simplistic
introduction to Hadoop, which is by no means complete. If you are already familiar
with Hadoop, you may skip this section.

[237]

Integration

Introduction to Hadoop

Apache Hadoop is an open source implementation of two famous white papers
from Google: Google File System (GFS) (http://research.google.com/archive/
gfs.html) and Google MapReduce (http://research.google.com/archive/
mapreduce . html). Vanilla Hadoop consists of two modules: Hadoop Distributed
File System (HDFS) and MapReduce (MR). HDFS and MR are implementations

of GFS and Google MapReduce, respectively. One may consider HDFS as a storage
module and MapReduce as a processing module.

HDFS — Hadoop Distributed File System

Let's start with an example. Assume you have 1 TB of data to read from a single
machine with a single hard disk. Assuming the disk read rate is 100 MBps, it will
take about 2 hours and 45 minutes to read the file. If you could split this data over 10
hard disks and read them all in parallel, it would have decreased the read time by

10 —more or less. From a layman's perspective, this is what HDFS does; it breaks the
data into fixed sized blocks (default is 64 MB) and distributes them over a number
of slave machines.

HDEFS is a filesystem that runs on top of a regular filesystem. Production installations
generally have ext3 filesystems running beneath HDFS. By distributing data across
several nodes, the storage layer can scale to a very large virtual storage that scales
linearly. To provide reliability to store data, the data is stored with redundancy. Each
block is replicated three times by default. HDFS is architected in such a way that
each data block gets replicated to different servers and if possible on different racks.
This saves data from disk, server, or complete rack failure. In the event of a disk or

a server failure, data is replicated to a new location to meet the replication factor. If
this reminds you of Cassandra, or any other distributed system, you are on the right
track. But as we will see very soon, unlike Cassandra, HDFS has a single point of
failure due to its master-slave design.

Despite all these good features, HDFS has a few shortcomings too.
1. HDFS is optimized for streaming. This means that there is no random access
to a file. It may not utilize the maximum data transfer rate.
NameNode (discussed later) is a single point of unavailability for HDFS.
HDFS is better suited for large files.

The append method is not supported by default. However, one can change
the configuration to allow the append method.

[238]

Chapter 8

Data management

HDFS uses the master-slave mechanism to distribute data across multiple servers.
The master node is usually backed by a powerful machine so that it does not fail. The
slave machines are data nodes; these are commodity hardware. The reason of master
nodes being beefy machines is that it is a single point failure. If the master node (that
is, the NameNode) goes down, the storage is down — unlike the Cassandra model. To
load the data to HDFS, the client connects to the master node and sends an upload
request. The master node tells the client to send parts of data to various data nodes.
Note that data does not stream through the master node. It just directs the client to
appropriate data nodes and maintains the metadata about the location of various
parts of a file.

Write FileA=[blockA, blockB, blockC]

| Write blockA |————»
Client «—{ Writeto Dn2, Dn1, and DN4 |——— NameNode

N

DataNodel D DataNode4
DataNode2 DataNodeb

DataNodeX DataNodeY

Figure 8.1: Client makes a request to NameNode to write a block. NameNode returns the nodes where the block
is to be written. Client picks one DataNode from the nodes list in the previous step and forwards to other nodes

There are two processes one needs to know about to understand how the data is
distributed and managed by HDEFS.

NameNode

NameNode process is the one that runs on a master server. Its job is to keep
metadata about the files that are stored in the data nodes. If the NameNode is down,
the slaves have no idea how to make sense of the block stored. So, it is crucial to have
NameNode on redundant hardware. In general, in a Hadoop cluster, there is just one
master NameNode.

[239]

Integration

DataNodes

DataNodes are the slaves. They are the machines that actually contain the data. The
DataNode process manages the data blocks on the local machine. DataNodes keep
on checking with the master node as in a sort of heartbeat. This enables the master to
replicate the data if one of the slaves dies.

Data never goes via NameNode. DataNodes are the ones responsible for streaming
the data out.

NameNode and DataNodes work in harmony to provide a scalable and giant virtual
filesystem that is oblivious to the underlying hardware or the operating system. The
way data read or write takes place is as follows:

1. Client makes a write request for a block of a file to the master, the
NameNode server.

2. NameNode returns a list of servers that the block is copied to (in a replicated
manner, a block is copied at many places as replication is configured).

3. Client makes an is-ready request to one of the to-be-written-on DataNodes.
This node forwards the request to the next node, which will forward it to the
next, until all the nodes to write the data on acknowledge OK.

4. On receipt of the OK message, a client starts to stream the data to one of the
data nodes that internally streams the data to the next replica node and so on.

5. Once the block gets written successfully, slaves notify the master. The slave
connected to the client returns a success.

6. Figure 8.1 shows the data flow when a Hadoop client (CLI or Java) makes a
request to write a block to HDEFS.

Hadoop MapReduce

MapReduce or MR is a very simple concept once you know it. It is algorithm 101:
divide and conquer. The job is broken into small independent tasks and distributed
across multiple machines; the result gets sorted and merged together to generate
the final result. The ability to distribute a large computational burden over multiple
servers into a small computational load over multiple servers enables a Hadoop
programmer to have effectively limitless CPU capability for data analysis. MR is the
processing part of Hadoop; it virtualizes the CPU. Figure 8.2 depicts this process.

[240]

Chapter 8

As an end user, you need to write a Mapper and a Reducer for the tasks you need to
get done. The Hadoop framework performs the heavy lifting of getting data from a
source and splitting it into maps of keys and values based on what the data source is.
It may be a line from a text file, a row from a relational database, or a key-value from
the Cassandra column family. These maps of key-value pairs (indicated as Input key-
val pairs in the next figure) are forwarded to the Mapper that you have provided to
Hadoop. Mapper performs unit tasks of the key-value pair; for example, for a word
count task, you may want to remove punctuations, split the words by whitespace,
iterate in this split array of words, forward key as an individual word, and set value
as one. These make the intermediate key-value pair, as indicated in the next figure.

These results are sorted by the key and forwarded to the Reducer interface that you
provided. Reducers can use this property, that coming tuples have the same key.
Understanding the last sentence is important to a beginner. What it means is that
you can just iterate in the incoming iterator and do things such as group or count—
basically reduce or fold the map by key.

Intermediate
key-val
pairs

100111...~, {k1 vi} ‘ {pnau} 410111...
110011... (" Reduce 11011,
00010... {k2"’2} JEEEE {P2 q2}>< 11101...

Y - m | e @\ i}
\ {k.i2}

. {Im,jm}
. |2
10101... = {knwn} ~ {pm,qm}/v 11110...

N J PN AN J \ J
1. Split 2. Map 3. Collect & Sort 4. Reduce 5. Store

(Framework) (Your Code) (Framework) (Your Code) (Framework)

Input Output

Figure 8.2: Hadoop MapReduce framework in action (simplified)

The reduced values are then stored in a storage of your choice that can be HDFS,
RDBMS, Cassandra, or one of the many other storage options.

[241]

Integration

There are two main processes that you should know about in the context of
Hadoop MapReduce.

JobTracker

Similar to NameNode, JobTracker is a master process that governs the execution of
worker threads such as TaskTracker. Like any master-slave architecture, JobTracker
is a single point of failure. So, it is advisable to have a robust hardware and
redundancy built into the machine that has a JobTracker running.

JobTracker's responsibility includes estimating the number of Mapper tasks from
the input split, for example, file splits from HDFS via InputFormat. It uses already
configured values as numbers of Reducer tasks. Client application can use JobClient
to submit jobs to JobTracker and inquire status.

TaskTracker

Like the DatalNode in the case of HDFS, the TaskTracker is the actual execution

unit of Hadoop. It creates a child JVM for Mapper and Reducer tasks. The maximum
number of tasks (Mapper and Reducer tasks) can be set independently. TaskTracker
may re-use the child JVMs to improve efficiency.

Reliability of data and process in Hadoop

Hadoop is a very robust and reliable architecture. It is meant to be run on
commodity hardware and hence takes care of failure automatically. It detects
failure of a task and retries the failed tasks. It is fault tolerant. A down DataNode
is replicated (redundant) and a system heals by itself, in case of unavailability

of a DataNode.

Hadoop allows servers to join the cluster or leave it without any repercussion. Rack-
aware storage of data saves the cluster against disk failures, rack/machine power
failure, and even a complete rack going down.

Figure 8.3 shows the famous schema of reliable Hadoop infrastructure using
commodity hardware for slaves and heavy-duty servers (top of the rack) for

the masters. Please note that these are physical servers as they are in the data

centers. Later, when discussing using Cassandra as a data store, we will use a ring
representation. Even in that case, the physical configuration may be the same as the
one represented in Figure 8.3, but the logical configuration, as we have been seeing
throughout this book, will be a ring-like structure to emphasize the token distribution.

[242]

Chapter 8

Setting up local Hadoop

This section will discuss how to set up Hadoop 1.x on your local machine. At the time
of this writing, Hadoop is transitioning from Version 1 to Version 2. Version 2 has
disruptive changes and is presumably better than Version 1. HDEFS is federated in

the new version. The Apache documentation says this version scales the NameNode
service horizontally using multiple independent NameNodes. This should ideally
avoid single point of failure that NameNodes faced in the previous version. The other
major improvement is in the new MapReduce frameworks, for example, MRNextGen,
MRv2, and Yet Another Resource Negotiator (YARN). More about the new version
can be learned on the Apache website (What is YARN? http://hadoop.apache.org/
docs/current /hadoop-yarn/hadoop-yarn-site/YARN. html). Here are the steps

to get Hadoop Version 1 working on a Linux machine. To keep things generic,

I have used a zipped download to install Hadoop. One may use a binary package

for a specific platform without much change in instructions.

(_swreH) (_switcH)
(_SWITCH » (C_SWITCH) SWITCH
[NameNode] [JobTracker]
Cowerr)| |Conemn)
Covn) |Cower)
(o | |(Coner]
Rack 1 Rack 2 Rack N

Figure 8.3: Hadoop Infrastructure: Heavy-duty master nodes at the top of the rack servers.
Each rack has a rack switch. Slaves run DataNode and TaskTracker services. Racks are connected
through 10GE switches. Note that not all racks will have a master server

Make sure you can add secure shell (SSH) to your local host using a key-based
password-less login. If you can't, generate and set a key pair as described in the
following command line:

Generate key pair

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id dsa

Generating public/private dsa key pair.

Your identification has been saved in /home/ec2-user/.ssh/id dsa.
Your public key has been saved in /home/ec2-user/.ssh/id dsa.pub.

[243]

Integration

The key fingerprint is:
6a:dc:53:04:8a:52:50:9f:dd:2a:2€:99:04:86:41:f4 ec2-user@ip-10-147-

171-159

The key's randomart image is:
+--[DSA 1024]----+
| +o.00 . |
| o.. o+ o0 |
|. +E. + . o |
| . o o |
| s |
| =+ |
| + =0 |
| o |
| |
R +

Add public key to authorized keys
$ cat ~/.ssh/id _dsa.pub >> ~/.ssh/authorized keys

At this point, you should be able to add SSH to your machine by issuing

ssh localhost.

You may need to install the SSH server if you do not have it installed
already. In Ubuntu, execute this:

% sudo apt-get install openssh-server
A

In RHEL variants, do this:

yum install openssh-server

The first step is to download and extract Hadoop 1.x Version to a desired location:

Download Hadoop

$ wget http://mirrors.gigenet.com/apache/hadoop/common/hadoop-1.1.2/
hadoop-1.1.2-bin.tar.gz

Extract
$ tar xvzf hadoop-1.1.2-bin.tar.gz

Create a soft link for easy access and updates without disrupting

PATH
$ 1n -s hadoop-1.1.2 hadoop
$ cd hadoop

[244]

Chapter 8

Let's assume the directory where the Hadoop tarball is extracted is $HADOOP_HOME.
You need to configure Hadoop to get it working. We will perform the minimalistic
configuration that gets Hadoop working in a pseudo-cluster mode where your
single machine works as a master node with JobTracker and NameNode, and slave
node with TaskTracker and DataNode. Remember, this is not a production-ready
configuration.

Edit $SHADOOP_HOME/conf/core-site.xml, and add the following;:

<configurations>

<propertys
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</propertys>

</configurations>

Edit SHADOOP_HOME/conf /hdfs-site.xml, and add the replication parameter for the
data blocks:

<configurations>

<propertys>
<name>dfs.replication</name>
<values>l</value>

</propertys>

</configurations>

Edit $HADOOP HOME/conf /mapred-site.xml, and set:

<configurations>

<property>
<name>mapred.job.tracker</name>
<values>localhost:9001</value>
</property>

</configurations

Now, it is almost done. Except, you need to tell Hadoop where Java lives.
Edit SHADOOP_HOME/conf /hadoop-env.sh and add an export statement for
JAVA_ HOME like this:

The java implementation to use. Required.
export JAVA HOME=/usr/lib/j2sdkl.5-sun
export JAVA HOME=/opt/jdk

We are done. Next is testing the installation.

[245]

Integration

Testing the installation

Before we start testing the newly installed Hadoop, we need to format the
NameNode to prepare the HDFS. We haven't provided any directory to HDEFS,
so it will default to /tmp, which may not survive a machine reboot.

$ bin/hadoop namenode -format

13/07/20 22:36:39 INFO namenode.NameNode: STARTUP_ MSG:

/**

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = marla/127.0.1.1

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 1.1.2

STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/common/

branches/branch-1.1 -r 1440782; compiled by 'hortonfo' on Thu Jan 31
02:03:24 UTC 2013
L L ey
13/07/20 22:36:39 INFO util.GSet: VM type = 64-bit

13/07/20 22:36:39 INFO util.GSet: 2% max memory = 17.77875 MB
13/07/20 22:36:39 INFO util.GSet: capacity 2”21 = 2097152 entries

13/07/20 22:36:39 INFO util.GSet: recommended=2097152, actual=2097152

13/07/20 22:36:40 INFO namenode.FSNamesystem: fsOwner=nishant

[-- snip --]

13/07/20 22:36:41 INFO common.Storage: Image file of size 113 saved in 0
seconds.

13/07/20 22:36:41 INFO namenode.FSEditLog: closing edit log: position=4,
editlog=/tmp/hadoop-nishant/dfs/name/current/edits

13/07/20 22:36:41 INFO namenode.FSEditLog: close success: truncate to 4,
editlog=/tmp/hadoop-nishant/dfs/name/current/edits

13/07/20 22:36:41 INFO common.Storage: Storage directory /tmp/hadoop-
nishant/dfs/name has been successfully formatted.

13/07/20 22:36:41 INFO namenode.NameNode: SHUTDOWN MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at marla/127.0.1.1

**/

You may observe that the storage directory is set to /tmp/hadoop-nishant/dfs/
name by default. You may change it to a sensible location by editing configuration
XML. But it will serve a purpose to demonstrate capability.

[246]

Chapter 8

Let's start everything up and see if we are OK.

Start all Hadoop services locally
$ bin/start-all.sh

startingnamenode, logging to /home/nishant/apps/hadoop-1.1.2/libexec/../
logs/hadoop-nishant-namenode-marla.out

localhost: starting datanode, logging to /home/nishant/apps/hadoop-1.1.2/
libexec/../logs/hadoop-nishant-datanode-marla.out

localhost: starting secondarynamenode, logging to /home/nishant/apps/
hadoop-1.1.2/1ibexec/../logs/hadoop-nishant-secondarynamenode-marla.out

startingjobtracker, logging to /home/nishant/apps/hadoop-1.1.2/
libexec/../logs/hadoop-nishant-jobtracker-marla.out

localhost: starting tasktracker, logging to /home/nishant/apps/
hadoop-1.1.2/1ibexec/../logs/hadoop-nishant-tasktracker-marla.out

Test if all services are running
hadoopls jps

11816 DataNode

12158 JobTracker

11506 NameNode

12486 Jps

12408 TaskTracker

12064 SecondaryNameNode

jps is a built-in tool provided by Oracle JDK. It lists all the Java processes running
on the machine. The previous snippet shows that all the Hadoop processes are up.
Let's execute an example and see if things are actually working.

Upload everything under conf directory to "in" directory in HDFS

$ bin/hadoop fs -put conf in

#View the contents (some columns and rows are omitted for brevity)
$ bin/hadoop fs -1s in
Found 16 items

-rw-r--r-- nishant supergroup 7457 /user/nishant/in/capacity-scheduler.
xml

-rw-r--r-- nishant supergroup 535 /user/nishant/in/configuration.xsl
[-- snip --1

-rw-r--r-- nishant supergroup 243 /user/nishant/in/ssl-client.xml.
example

[247]

Integration

-rw-r--r-- nishant supergroup 195 /user/nishant/in/ssl-server.xml.
example

-rw-r--r-- nishant supergroup 382 /user/nishant/in/taskcontroller.cfg

All set, so it's time to execute an example to it. We will run an example that greps all
the words that match the dfs [a-z.]+ regular expression across all the files under
the in folder and returns the counts in a folder called out.

Execute grep example
$ bin/hadoop jar hadoop-examples-*.jar grep in out 'dfsl[a-z.]+'

13/07/20 23:36:01 INFO util.NativeCodeLoader: Loaded the native-hadoop
library

13/07/20 23:36:01 WARN snappy.LoadSnappy: Snappy native library not
loaded

13/07/20 23:36:01 INFO mapred.FileInputFormat: Total input paths to
process : 16

13/07/20 23:36:02 INFO mapred.JobClient: Running job:
job 201307202304 0001

13/07/20 23:36:03 INFO mapred.JobClient: map 0% reduce 0%
13/07/20 23:36:12 INFO mapred.JobClient: map 12% reduce 0%
[-- snip --]

13/07/20 23:36:41 INFO mapred.JobClient: map 87% reduce 20%
13/07/20 23:36:45 INFO mapred.JobClient: map 100% reduce 29%
13/07/20 23:36:52 INFO mapred.JobClient: map 100% reduce 100%

13/07/20 23:36:53 INFO mapred.JobClient: Job complete:
job 201307202304 0001

13/07/20 23:36:53 INFO mapred.JobClient: Counters: 30

[-- snip stats --]

13/07/20 23:37:12 INFO mapred.JobClient: Reduce output records=3
13/07/20 23:37:12 INFO mapred.JobClient: Map output records=3

Result of the MapReduce execution

bin/hadoop fs -cat out/*

#

$

1 dfs.replication

1 dfs.server.namenode.
1

dfsadmin

[248]

Chapter 8

Congratulations, you have just executed a job using MapReduce. It was a bit of a
boring task. You could have executed the grep command on your Linux machine that
runs much faster than this. But it gives a couple of important insights. One, that the
configuration works, and the other is, it is not always the best thing to do everything
using Hadoop; for some tasks it is better to use the tools that are best suited to them.
We will see more on this when we discuss the cons of Hadoop later in this chapter.

Cassandra with Hadoop MapReduce

Cassandra provides built-in support for Hadoop. If you have ever written

a MapReduce program, you will find out that writing a MapReduce task

with Cassandra is quite similar to how one would write a MapReduce task

for the data stored in HDFS. Cassandra supports input to Hadoop with
ColumnFamilyInputFormat and output with ColumnFamilyOutputFormat
classes, respectively. Apart from these, you will need to put Cassandra-specific
settings for Hadoop via configHelper. These three classes are enough to get you
started. One other class that might be worth looking at is BulkOutputFormat. All
these classes are under the org.apache. cassandra.hadoop. * package.

To be able to compile the MapReduce code that uses Cassandra as a

data source or data sink, you must have cassandra-all.jar in your
= classpath. You will also need to make Hadoop to be able to see jars in the

Cassandra library. We will discuss this later in this chapter.

Let's understand the classes that we will be using to get Cassandra working for our
MapReduce problem.

ColumnFamilylnputFormat

ColumnFamilyInputFormat is an implementation of org.apache .hadoop.mapred.
InputFormat (or mapreduce in newer API). So, its implementation is dictated by
the InputFormat class specifications. Hadoop uses this class to get data for the
MapReduce tasks. It describes how to read data from column families into the
Mapper instances.

[249]

Integration

The other job of columnFamilyInputFormat (or any implementation of
InputFormat) is to fragment input data into small chunks that get fed to map tasks.
Cassandra has columnInputsplit for this purpose. One can configure the number of
rows per InputSplit via ConfigHelper.setInputSplitSize. But there is a caveat.
It uses multiple get_slice_ range queries for each Inputsplit, so, as Cassandra
documentation says, a smaller value will build up call overhead; on the other hand,
too large a value may cause out-of-memory issues. Larger values are better for
performance, so if you are planning to play with this parameter do some calculation
based on median column size to avoid memory overflow. Trial and error can be
handy. The default split size is 64 x 1024 rows.

ColumnFamilyOutputFormat

OutputFormat is the mechanism of writing the result from MapReduce to a
permanent (usually) storage. Cassandra implements Hadoop's outputFormat,
that is, ColumnFamilyOutputFormat. It enables Hadoop to write the result from
the reduce task as column family rows. It is implemented such that the results are
written, to the column family, in batches. This is a performance improvement and
this mechanism is called lazy write-back caching.

ConfigHelper

ConfigHelper is a gateway to configure Cassandra-specific settings for Hadoop. It
is a pretty plain utility class that validates the settings passed and sets into Hadoop's
org.apache.hadoop.conf.Configuration instance for the job. This configuration
is made available to the Mapper and the Reducer.

ConfigHelper saves developers from inputting a wrong property name because all
the properties are set using a method; any typo will appear at compile time. It may
be worth looking at JavaDoc for configHelper. Here are some of the commonly
used methods:

* setInputInitialAddress:Itcan be a hostname or private IP of one of the
Cassandra nodes.

* SetInputRpcPort: It will set the RPC port address if it has been altered from
default. If not set, it uses default thrift port 9160.

* setInputPartitioner: It will set the appropriate partitioner according
to the underlying Cassandra storage setting.

* SetInputColumnFamily: It will set the column family details to be able
to pull data from.

[250]

Chapter 8

* SetInputSlicePredicate: It will set the columns that are pulled from the
column family to provide Mapper to work on.

* SetOutputInitialAddress: It will set the address of the Cassandra cluster
(one of the nodes) where the result is being published; it is usually similar to
InputInitialAddress

* SetOutputRpcPort: It will set the RPC port to cluster where the result
is stored.

* SetOutputPartitioner:Itis the partitioner used in the output cluster.

* SetOutputColumnFamily: It will set the column family details to store
results in.

Since Version 1.1, Cassandra added support to wide-row column families,
bulk loading, and secondary indexes.

Wide-row support

Earlier, having multimillions of columns was a problem in Cassandra Hadoop
integration. It was pulling a row per call limited by Slicepredicate. Version 1.1
onward, you can pass the wide-row Boolean parameter as true, as shown in the
following snippet:

ConfigHelper.setInputColumnFamily (
conf,

keyspace,

inCF,

true// SET WIDEROW = TRUE

)i

When wide row is true, the rows are fed to the Mapper one column at a time
that is, you will iterate column by column.

Bulk loading

BulkOutputFormat is another utility that Cassandra provides to improve the write
performance of jobs that result in large data. It streams the data in binary format,
which is much quicker than inserting one by one. It uses sSTableLoader to do this.
Refer to ssTableLoader in the Using Cassandra bulk loader to restore the data
section in Chapter 6, Managing a Cluster - Scaling, Node Repair, and Backup.

Job job = new Job(conf) ;
job.setOutputFormatClass (BulkOutputFormat.class) ;

[251]

Integration

Secondary index support

One can use secondary index when pulling data from Cassandra to pass it on to the
job. This is another improvement. It makes Cassandra shift the data and pass only
the relevant data to Hadoop, instead of Hadoop burning the CPU cycles to weed out
the data that is not going to be used in the computation. It lowers the overhead of
passing extra data to Hadoop. Here is an example.

IndexExpression electronicltems =
new IndexExpression (
ByteBufferUtil.bytes ("item category"),
IndexOperator.EQ,
ByteBufferUtil.bytes ("electronics")
)

IndexExpression soldAfter2012 =
new IndexExpression (
ByteBufferUtil.bytes("sell year"),
IndexOperator.GT,
ByteBufferUtil.bytes (2012)
)

ConfigHelper.setInputRange (conf, Arrays.asList(electronicItems,
soldAfter2012)) ;

The previous code returns the rows that fall in the electronics category and were
sold after the year 2012.

Cassandra and Hadoop in action

So, with more than enough (rather boring) theory, we are ready to get some
excitement. In this section, we will do a word count of a book. It will be more
interesting than the grep example.

In this example we load Lewis Carroll's novel Alice in Wonderland
(http://en.wikipedia.org/wiki/Alice%Z7s_Adventures_in_Wonderland)

in Cassandra. To prepare this data, we read the text file line by line and store 500
lines in one row. The row names are formatted as row_1, row_2, and so on and the
columns in each row have names such as col_1, col_2, and so on. Each row has at
most 500 columns and each column has one line from the file.

[252]

Chapter 8

To avoid noises, we have removed punctuations from the lines during the load.
We could certainly do the noise reduction in the MapReduce code, but we wanted
to keep it simple. What follows is the code and its explanation. It is suggested to
download the code either from the author's GitHub account or from the publisher's
website. Keep it handy while reading this chapter. The code is eventually compiled
and submitted to Hadoop MapReduce to execute the compiled jar file. We use the
Maven command mvn clean install to compile and create a jar file. If you are
unaware of Maven or are new to Java, you can compile the files using appropriate
dependencies or jar files in the classpath. Refer to the pom.xm1 file in the project to
know what jar files you need to compile the example in Java.

Assuming that we have data ready in Cassandra to run MapReduce on it, we will
write Mapper, Reducer, and a main method. Here is the Mapper:

public static class WordMapper
extends Mapper<ByteBuffer, SortedMap<ByteBuffer, IColumn>, Text,
IntWritable>{
private static final IntWritable ONE = new IntWritable(1l);
private Text word = new Text () ;

@Override

protected void map (ByteBuffer key,
SortedMap<ByteBuffer, IColumn> cols,
Context context)

throws IOException, InterruptedException {

//Iterate through the column values

for (IColumn col: cols.values()) {
String val = ByteBufferUtil.string(col.value()) ;
StringTokenizer tokenizer = new StringTokenizer (val) ;

while (tokenizer.hasMoreTokens())
word. set (tokenizer.nextToken()) ;
context.write (word, ONE) ;

}

This is what our Mapper looks like. To a person who has some experience in writing
MapReduce programs, this does not deviate much from a regular Mapper. A couple
of things to note:

1. Cassandra feeds a sorted map to Mapper. This is sorted by column name
and it is basically column-name, column-value pair.

2. The key is of type ByteBuf fer and it is the row key.

[253]

Integration

3.

Use org.apache.cassandra.utils.ByteBufferUtil to convert
ByteBuf fer to meaningful types.

If you want to process column by column, loop through the columns
sorted map.

Write out the output that you want this Mapper to forward to Reducer.
The values that you write to context is sorted and grouped by the
framework and forwarded to the Reducer.

Now that we have done the basic task of splitting the text in each column and
forwarding them with key as word and value as one, in order to count each
word, we need to get all the words that were forwarded by Mapper at one
place so that we can just iterate in the grouped key-value pairs of word and
1, and update a counter until all the occurrences of that word exhausts. Here
is what our Mapper looks like:

public static class WordReducer
extends Reducer<Text, IntWritable, ByteBuffer, List<Mutation>>{

@Override
protected void reduce (Text key,
Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value: Values){
sum = sum + value.get () ;

Column col = new Column() ;

col.setName (ByteBufferUtil.bytes ("count")) ;
col.setValue (ByteBufferUtil.bytes (sum)) ;
col.setTimestamp (System.currentTimeMillis ()) ;

Mutation mutation = new Mutation() ;
mutation.setColumn_or_ supercolumn (new
ColumnOrSuperColumn ()) ;
mutation.getColumn or supercolumn () .setColumn(col) ;
context.write (
ByteBufferUtil.bytes (key.toString()),
Collections.singletonList (mutation)

) ;

[254]

Chapter 8

Reducer is a little more interesting than Mapper. It is because we are doing two things.
One, we are counting the number of grouped elements that come to Reducer. From
our Mapper, we know that it is grouped by word. So at the end of looping through
the values, we will get the number of instances of that word. The second thing that we
are doing here is storing this value to Cassandra. Instead of outputting the result to
HDFS, we store it in Cassandra with row key as word, and we add a column named
count that will hold the value that we just obtained in the previous step. You can see
that there is no environment-specific configuration done here; we just instruct what to
store in Cassandra and how, and we are done. So, the question arises, where do we set
all the environment-specific and Cassandra-specific settings? The answer is in the main
method. Here is what the main method for this particular example looks like. But in
any Cassandra-based Hadoop project, it will not vary much.

public class CassandraWordCount extends Configured implements Tool
[-- snip --1

public int run(String[] args) throws Exception {
Job job = new Job(getConf (), "cassandrawordcount") ;
job.setJarByClass (getClass ()) ;

// Anything you set in conf will be available to Mapper and Reducer
Configuration conf = job.getConfiguration() ;

// set mapper and reducer
job.setMapperClass (WordMapper.class) ;
job.setReducerClass (WordReducer.class) ;

// Cassandra Specific settings for ingesting CF
ConfigHelper.setInputInitialAddress (conf, Setup.CASSANDRA HOST

ADDR) ;

ConfigHelper.setInputRpcPort (conf, String.valueOf (Setup.CASSANDRA
RPC_PORT)) ;

ConfigHelper.setInputPartitioner (conf, RandomPartitioner.class.
getName ()) ;

ConfigHelper.setInputColumnFamily (conf, Setup.KEYSPACE, Setup.
INPUT CF) ;

SliceRange sliceRange = new SliceRange (
ByteBufferUtil.bytes(""),
ByteBufferUtil.bytes(""),
false,

Integer.MAX VALUE) ;

SlicePredicate predicate = new SlicePredicate()

[255]

Integration

.setSlice range (sliceRange) ;
ConfigHelper.setInputSlicePredicate (conf, predicate);

job.setInputFormatClass (ColumnFamilyInputFormat.class) ;

// Cassandra specific output setting

ConfigHelper.setOutputInitialAddress (conf, Setup.CASSANDRA HOST
ADDR) ;

ConfigHelper.setOutputRpcPort (conf, String.valueOf (Setup.
CASSANDRA_RPC_PORT)) ;

ConfigHelper.setOutputPartitioner (conf, RandomPartitioner.class.
getName ()) ;

ConfigHelper.setOutputColumnFamily (conf, Setup.KEYSPACE, Setup.
OUTPUT CF) ;

// set output class types
job.setOutputKeyClass (ByteBuffer.class) ;
job.setOutputValueClass (List.class) ;
job.setOutputFormatClass (ColumnFamilyOutputFormat.class) ;

job.setMapOutputKeyClass (Text.class) ;
job.setMapOutputValueClass (IntWritable.class) ;

// ~verbose
job.waitForCompletion (true) ;
return O0;

}

public static void main(String[] args) throws Exception({
ToolRunner.run (new Configuration(), new CassandraWordCount (),
args) ;
System.exit (0) ;

}

}

All right, lots of things, but nothing that we do not know about. Starting from the
main method, we provide an instance of our main class and any parameter that is
passed from the command-line interface and we kick off ToolRunner. ToolRunner
executes the run method, where all the settings for environment and Cassandra are.
We also tell where our Mapper and producer for this job are.

We tell Hadoop how to pull data from Cassandra by providing SlicePredicate
where we pull a complete row by not setting the start column name, the end column
name, and setting the count to two billion. One may want to modify and just set
wide row to true and achieve the same without worrying about slicepredicate.

[256]

Chapter 8

Executing, debugging, monitoring, and
looking at results

To execute this example, compile the code and create a jar file. Add any
required external libraries or dependency to the classpath or edit conf /hadoop-
env.sh and add the location of the jars. One of the hard requirements to get all
this Cassandra-related stuff running is to have the Cassandra library directory in
Hadoop's classpath. To do that, edit $HADOOP_HOME/conf /hadoop-env.sh and
update the classpath like this:

$ conf/hadoop-env.sh

Extra Java CLASSPATH elements.Optional.

export HADOOP CLASSPATH=

export HADOOP_ CLASSPATH=/home/nishant/apps/cassandrall/lib/*:$HADOOP
CLASSPATH

Make sure Hadoop and Cassandra are completely up and running. To execute your
MapReduce program, submit the jar file to Hadoop with the appropriate classpath,
if needed, and the fully qualified class name of the main class.

$ bin/hadoop jar materingcassadra-0.0.1-SNAPSHOT.jar \
in.naishe.mc.CassandraWordCount

localhost Hadoop Map/Reduce Administration - Chromium

| 7 localhost Hadoop Map/Re %

€ » @ | localhost - e E ‘_g =

Quick Links |«
Scheduling Info
Running Jobs
Retired Jobs
Local Logs

Completed Jobs

Jobid Started |Priority |User |Name glgrnzﬁete .T::;I
Sun Jul

. 2 e i 100.00% |

job_201307212007_0001 FSOTOBAS NORMAL | nishant | cassandrawordcount
2013
Sun Jul

job_201307212007_0002 35‘28'39 NORMAL | nishant | cassandrawordcount | 100.00% |2
ISf ' I——
2013

-

¥

Figure 8.4: The Hadoop JobTracker GUL. It enables users to watch running jobs and completion; most
importantly, you can see logs, system outs, and system error streams by drilling into job IDs

[257]

Integration

Hadoop provides a pretty simple web-based GUI to monitor and view debug logs,
system out stream messages, and system error stream messages. One can monitor
the status of a running, failed, or previously run job details. By default, this portal

is available at the following URL: http://JOBTRACKER_ADDRESS:50030. So, if you
are running everything locally, the address will be http://localhost:50030. The
preceding figure shows a screenshot of the page. You can click on a job link and view
details. On the job detail page, you can see logs for Mapper or Reducer processes.

As per our Reducer configuration, the results can be accessed from Cassandra from
the appropriate column family. You may observe the result there. So, as expected,
you will find the in highest use, and there are a decent number of references to
Alice, Hatter, and Cat.

cglsh:testks> select * from resultCF where key = 'the';
KEY | count

_______ fmmmm e

the | 1664

cglsh:testks> select * from resultCF where key = 'Alice';
KEY | count

_______ fmmmm e

Alice | 377

cglsh:testks> select * from resultCF where key = 'Hatter';
KEY | count

________ bmm e e

Hatter | 54

cglsh:testks> select * from resultCF where key = 'Cat';

KEY | count

o Hadoop

Node 6 R Master

-~ \] Cassandra N
Hadoop

Analytical
Data center

Transational
Data center

. Cassandra
N Hadoop
Node 4 |

Figure 8.5: Typical setup for analytics with Cassandra and Hadoop

[258]

Chapter 8

Hadoop in Cassandra cluster

The production version of Hadoop and Cassandra combination needs to go into a
separate cluster. The first obvious issue is you probably wouldn't want Hadoop to
keep pulling Cassandra nodes, hampering Cassandra performance to end users. The
general pattern to avoid this is to split the ring into two data centers. Since Cassandra
automatically and immediately replicates the changes between data centers, they
will be in sync always. What's more, you can assign one of the data centers as a
transactional with a higher replication factor and the other as an analytical data
center with a replication factor of 1. The analytical data center is the one used by
Hadoop without affecting the transactional data center a bit.

Now, you do not really need to have two physically separated data centers to
make this configuration work. Remember NetworkTopologyStrategy? (Refer to
the NetworkTopologyStrategy section in Chapter 4, Deploying a Cluster.) You can
tweak Cassandra thinking there are two data centers by just assigning the nodes
that you wanted to use for analytics in a different data center. You may need to use
PropertyFileSnitch and specify the details about data centers in a cassandra-
toplogy.properties file. So, your keyspace creation looks something like this:

createkeyspacemyKeyspace
withplacement strategy = 'NetworkTopologyStrategy'
andstrategy options = {TX DC : 2, HDP DC: 1};

The previous statement defines two data centers: Tx_Dc for transactional purposes
and #HDP_DC for Hadoop to do analytics. A node in a transactional data center has a
snitch configured like this:

Transaction Data Center
192.168.1.1=TX DC:RAC1
192.168.1.2=TX DC:RAC1

192.168.2.1=TX DC:RAC2

Analytics Data Center
192.168.1.3=HDP_DC:RAC1

192.168.2.2=HDP_DC:RAC2
192.168.2.3=HDP_DC:RAC2

For new/unknown/unassigned nodes
default=TX DC:RAC1

[259]

Integration

We are mostly done setting up machines. A couple of things to remember:

* Install TaskTracker and DataNode processes on each node in an analytical
data center.

* Do not have a node that has Cassandra running on it and has running
services for TaskTracker and DataNode. Use a separate robust machine
to install the master services, such as JobTracker and NameNode.

e Make sure conf/hadoop-env.sh has all the jar files that need to execute
the MapReduce program as a part of the HADOOP_CLASSPATH variable.

* With all these configurations, your Cassandra cluster should be ready
to serve analytical results to all the concerned people.

Cassandra filesystem

Configuring Hadoop backed by Cassandra may give the illusion that we are
replacing HDFS, because we take data from Cassandra and dump the results into it.
It is not true. Hadoop still needs NameNode and DataNodes for various activities
such as storing intermediate results, jar files, and static data. So, essentially, you are
backed by no single point of failure (SPOF) database but you are still bounded by
SPOFs such as NameNode and JobTracker.

DataStax, a leading company in professional support for Cassandra, provides a
solution to it. Its enterprise offering of Cassandra DataStax Enterprise product has

a built-in Cassandra File System (CFS), which is HDFS compatible. CFS smartly
uses Cassandra as an underlying storage. What this gives to an end user is simplicity
in configuration and no need to have DataNode, NameNode, and secondary
NameNode running.

More detail about CFS is out of the scope of this book. You may read more about CFS
on the DataStax blog, Cassandra File System Design, at http://www.datastax.com/
dev/blog/cassandra-file-system-design.

Integration with Pig

Configuring Hadoop with Cassandra in itself is quite some work. Writing verbose
and long Java code to do something as trivial as word count is a turn-off to a high-
level user like a data analyst. Wouldn't it be nice if we had a SQL-like interpreter that
converts commands to MapReduce programs for us? Pig is exactly that tool.

[260]

Chapter 8

Hadoop does not only support Java but also MapReduce programs

can be written more concisely in multiple languages such as Scala,
’ Python, C++ (Pipes), R, and many adapter languages.

Pig provides a SQL-like language called Pig Latin. One can write complex
MapReduce programs using Pig Latin. You can create a set of intermediate variables
that are a result of an operation and it can be used in subsequent operations, in the
same way a stored procedure in RDBMS would. Finally, the output of an operation
can be displayed on a screen or can be stored in a permanent storage such as HDFS
or Cassandra.

Installing Pig

Pig installation is very simple; what is hard is getting it to work with Hadoop and
Cassandra nicely. To install Pig, just download the latest version of Pig and untar it.

$ wget http://www.eng.lsu.edu/mirrors/apache/pig/pig-0.11.1/pig-
0.11.1.tar.gz

$ tar xvzf pig-0.11.1.tar.gz

$ In -s pig-0.11.1 pig

Lets call this directory $p1G_HOME. Ideally, you should just execute $PIG_HOME/bin/
pig and the Pig console should start to work given that your Cassandra and Hadoop

are up and working. Unfortunately, it does not. Documentation, at the time of writing,
is not adequate to configure Pig. To get Pig started, you need to do the following:

1. Set Hadoop's installation directory as a HADOOP_PREFIX variable.
2. Add all the jar files in the Cassandra 1ib directory to PIG_CLASSPATH.

3. Add udf.import.list to the Pig options variable, P1G_0PTS, in this way:

export PIG OPTS="$PIG OPTS -Dudf.import.list=org.apache.cassandra.
hadoop.pig";

4. Set one of the Cassandra nodes' address, Cassandra RPC port, and Cassandra
partitioner to PIG_INITIAL ADDRESS, PIG _RPC_PORT, and PIG PARTITIONER
respectively.

[261]

Integration

You may write a simple shell script that does this for you. Here is a shell script that
accommodates the four steps (assuming $CASSANDRA_HOME points to the Cassandra
installation directory):

export CASSANDRA HOME=/home/nishant/apps/cassandrall

for cassandra jar in $CASSANDRA HOME/lib/*.jar; do
CLASSPATH=$CLASSPATH: $cassandra_jar

done
export PIG_CLASSPATH=$PIG_CLASSPATH:$CLASSPATH;

export PIG OPTS="$PIG OPTS -Dudf.import.list=org.apache.cassandra.
hadoop.pig";

export HADOOP_ PREFIX=/home/nishant/apps/hadoop
export PIG INITIAL ADDRESS=localhost;
export PIG_RPC PORT=9160;

export PIG PARTITIONER=org.apache.cassandra.dht.RandomPartitioner;

If everything goes OK and Cassandra and Hadoop are up, you may access the Pig
console to execute queries in an interactive mode.

pig$ bin/pig

2013-07-22 13:32:22,709 [main] INFO org.apache.pig.Main - Apache Pig
version 0.11.1 (rl459641) compiled Mar 22 2013, 02:13:53

2013-07-22 13:32:22,710 [main] INFO org.apache.pig.Main - Logging error
messages to: /home/nishant/apps/pig-0.11.1/pig 1374480142703 .1log

2013-07-22 13:32:22,757 [main] INFO org.apache.pig.impl.util.Utils -
Default bootup file /home/nishant/.pigbootup not found

2013-07-22 13:32:23,080 [main] INFO org.apache.pig.backend.hadoop.
executionengine.HExecutionEngine - Connecting to hadoop file system at:
hdfs://localhost:9000

2013-07-22 13:32:24,133 [main] INFO org.apache.pig.backend.hadoop.
executionengine.HExecutionEngine - Connecting to map-reduce job tracker
at: localhost:9001

grunt >

Let's copy some Hadoop XML files into HDFS and run a word count on it.

Load all the files in $HADOOP HOME/conf to pigdata in HDFS
$ bin/hadoop fs -put conf pigdata

[262]

Chapter 8

--- in pig console ---
load all the files from HDFS
grunt> A = load './pigdata' ;

loop line by line in all the input files from A split them into
words

grunt> B = foreach A generate flatten(TOKENIZE ((chararray)$0)) as
word;

Group the tokenized words into variable C, groub by attribute
a€eworda€

grunt> C = group B by word;

Generare a map of number of terms in each group and group name
grunt> D = foreach C generate COUNT (B), group;

print this map to console
grunt> dump D;

If it works, you will see an output something like this:

(31, for)
(2,get)
(4,jks)
(12, job)
(1,1o09)
(1, map)
(2, max)
(1,pid)
(8,set)
(1,si9)
(1,ssh)
(83, the)
(1, two)
(6,use)
(3,via)

(3,who)

[263]

Integration

Integrating Pig and Cassandra

By getting Hadoop working with Cassandra, we are almost done and ready to use
the Pig console to get data from Cassandra and store results back to Cassandra. One
thing that you need to know is what storage method is used to store and retrieve
data from Cassandra. It is CassandraStorage () that you will be using in your Pig
Latin to transfer data to and from Cassandra. Usage is exactly the same as you would
use PigStorage ().

In Pig, the data structure that is used to store/get data to/from Cassandra is a tuple
of row key and a bag of tuples, where each tuple is a column name and column value
pair, such as this:

(ROW KEY, { (COL1, VAL1l), (COL2, VAL2), (COL3, VAL3), ...})

Here is an example of word count from the Cassandra table. This example uses the
same data ("Alice in Wonderland" book) as we did when we showed the MapReduce
example with Cassandra. The book is split into lines and each row contains 500 lines
in 500 columns. There are a total of six rows.

Pull Data from dataCF column family under testks Keyspace
grunt> rows = LOAD 'cassandra://testks/dataCF' USING
CassandraStorage () ;

grunt> cols = FOREACH rows GENERATE flatten (columns) ;
grunt> vals FOREACH cols GENERATE flatten (TOKENIZE ((chararray) $1))
as word;

grunt> grps = group vals by word;

grunt> cnt = foreach grps generate group, COUNT (valg), 'count' as
cent;

grunt> grp by word = group cnt by $0;

grunt> cagg = foreach grp by word generate group, cnt. (ccnt, $1);

Put Data into resultlCF column family under testks Keyspace

grunt> STORE cagg into 'cassandra://testks/resultlCF' USING
CassandraStorage () ;

2013-07-22 14:12:45,144 [main] INFO org.apache.pig.tools.pigstats.
ScriptState - Pig features used in the script: GROUP_BY

[-- snip --]

2013-07-22 14:12:50,464 [main] INFO org.apache.pig.backend.hadoop.
executionengine.mapReducelayer.MapReducelauncher - Processing aliases
cnt, cols,grps, rows,vals

2013-07-22 14:12:50,464 [main] INFO org.apache.pig.backend.
hadoop.executionengine.mapReducelayer.MapReduceLauncher - detailed
locations: M: rows[6,7],cols[7,7],vals[8,7],cnt[10,6],g9rps([9,7] C:
cnt [10,6] ,9rps[9,7] R: cnt[10,6]

[264]

Chapter 8

[-- snip --]

2013-07-22 14:13:45,626 [main] INFO org.apache.pig.backend.hadoop.
executionengine.mapReducelLayer.MapReducelLauncher - 97% complete
2013-07-22 14:13:49,669 [main] INFO org.apache.pig.backend.hadoop.

executionengine.mapReducelLayer.MapReducelLauncher - 100%

[-- snip --]

Input (s) :

Successfully read 6 records
dataCF"

Output (s) :

Successfully stored 4440 records in:

[-- snip --]

2013-07-22 14:13:49,693

[main]

complete

(360 bytes) from: "cassandra://testks/

"cassandra://testks/resultl1CF"

INFO org.apache.pig.backend.hadoop.

executionengine.mapReducelayer .MapReducelLauncher - Success!

Let's look at the result that is stored in result1crF and compare it with the

previous result.

cglsh> use testks;
cglsh:testks> select *
KEY | count

_____ fom e
the | 1666
cglsh:testks> select *
KEY | count

_______ fom e

Alice | 377
cglsh:testks> select *
KEY | count
________ fmmmm oo
Hatter | 54

cglsh:testks> select *
KEY | count

from

from

from

from

resultlCF where key = 'the';
resultCF where key = 'Alice';
resultCF where key = 'Hatter';
resultCF where key = 'Cat';

There is a small difference in the counting of the, but that's likely due to the split that
I use and the split function that Pig uses.

[265]

Integration

Please note that the Pig Latin that we have used here may be very inefficient. The
purpose of this example is to show Cassandra and Pig integration. To learn about Pig
Latin, look into the Pig documentation. Apache Pig's official tutorial (http://pig.
apache.org/docs/r0.11.1/start.html#tutorial) is recommended reading to
know more about it.

Cassandra and Solr

Apache Solr is a text search platform written on top of Apache Lucene. Solr uses
the Lucene search library and provides a simpler interface to manage indexes and
perform search over a variety of sources such as RDBMS, text, and rich documents,
for example, PDF and Word. Solr can be started as an independent Java web service
on any application container such as Tomcat or Jetty.

Lucene, Solr, and search mechanism/indexing each require a separate book of their
own. We will keep this section brief. You may learn about Solr from the Apache Solr
wiki page (http://wiki.apache.org/solr/).

In this section we will see how we can use Cassandra to serve as a database backend
of Solr. So, we will have Solr running on top of Cassandra. Please note that this does
not give us the ability to text search in Cassandra.

Solandra (https://github.com/tjake/Solandra) is an open source project that
allows you to set up Cassandra to be used as storage for Solr. To configure Solandra,
you need to follow the steps mentioned:

$ git clone https://github.com/tjake/Solandra.git

Cloning into 'Solandra’'...

[-- snip --]

$ cd Solandra

$ ant -Dcassandra=/opt/cassandrallcassandra-dist

$ SCASSANDRA HOME/bin/solandra

INFO 11:41:52,784 Starting Messaging Service on port 7000

[-- snip --]

INFO 11:41:53,063 Bootstrap/Replace/Move completed! Now serving reads.
INFO 11:41:53,116 Binding thrift service to localhost/127.0.0.1:9160

[-- snip --]
INFO 11:41:54,547 QuerySenderListener done.
INFO 11:41:54,547 [] Registered new searcher Searcher@63ab3977 main

INFO 11:41:54,548 user.dir=/home/nishant/apps/solandra/Solandra
INFO 11:41:54,548 SolrDispatchFilter.init() done
INFO 11:41:54,551 Started SocketConnector@0.0.0.0:8983

[266]

Chapter 8

Now Solr is ready to serve. You can post data to it to index. For a large-scale data
search in a cluster environment, you will need to have embedded Solandra running
on each node of the ring. This way Solandra makes Solr as scalable as Cassandra.
Let's check Solr with Cassandra by executing one of the built-in examples.

$ cd $SOLANDRA HOME/reuters-demo/

$./l-download-data.sh

[-- snip --]

Data downloaded, now run ./2-import-data.sh

$./2-import-data.sh

Posted schema.xml to http://localhost:8983/solandra/schema/reuters
Loading data to solandra, note: this importer uses a slow xml parser

READING FILE: /home/nishant/apps/solandra/Solandra/reuters-demo/data/
reut2-002.sgm

- reut2-002.sgm(0) title(1.0)={JAGUAR SEES STRONG GROWTH IN NEW MODEL
SALES }

- reut2-002.sgm(1l) title(1.0)={OCCIDENTAL PETROLEUM COMMON STOCK
OFFERING RAISED TO 36 MLN SHARES

!

- reut2-002.sgm(2) title(1.0)={CCC ACCEPTS BONUS BID ON WHEAT FLOUR TO
IRAQ}

- reut2-002.sgm(3) title(l.O):{DIAMOND SHAMROCK RAISES CRUDE POSTED
PRICES ONE DLR, EFFECTIVE MARCH 4, WTI NOW 17.00 DLRS/BBL

}

- reut2-002.sgm(4) title(1.0)={NORD RESOURCES CORP <NRD> 4TH QTR NET}
[-- snip --]

Data loaded, now open ./website/index.html in your favorite browser!

If you observe, all this does is it downloads some data and posts it to Solr the same
way you would do for regular Solr. You can open . /website/index.html to play
with Solr (see the next figure).

It is sometimes confusing to someone who first learns about Solandra; it seems that
it provides a text search facility to Cassandra. If you want to achieve something like
that, you will have to make two calls: one to update Solr by posting appropriate
changes to it and the other to make those changes in Cassandra. The good thing is
you do not need to run two Cassandra instances for Solr and your application.

[267]

Integration

Development note on Solandra

Solandra is a pretty impressive project. One of the saddening things about this
project is that it is no longer actively developed. At the time of writing, the Solandra
project was last updated a year ago. The owner of the project has moved to DataStax
to provide more efficient integration of Solr with Cassandra and a text search
capability to Cassandra that one always wished for (we will discuss briefly about
this in the next section).

The project seems to be in a decent working condition, but it may not be
recommended for production-ready deployments. If you are planning to use
Solandra, test it rigorously.

Solandra Demo - Chromium

|| Solandra Demo

@ | [filey///home/nishant/apps/solandra/Solandra/reuters-demo/website/index.html - ‘Tj H I‘;

. crash AV R
Solandra Demonstration

Browse Reuters business news from 1987

<1 >displaying 1 to 10 of 10

INDEX TRADING NOT TO BLAME FORWALL STREET FALL
vall street WASHINGTON, March 23 - A report by the U.S. Securities and Exchange Commission (|
Textcrash concluded that index trading was not to blame for the two-day stock market drop that occurred
11-12, 1986 The report, made public today, concluded that index trading magnified but was n¢
Search cause of last fall's two-day 120-poi

NEW LEADER COMING TO U.S. SEC IN CHALLENGING ERA

Current Selection

Top Topics
WASHINGTON, June 19 - President Reagan's nominee as top policeman for the nation's secy
markets will inheritan agency challenged by an insider trading scandal, wild stock price gyra
and & host of uncertainties stemming from the globalization of financial markets. David Ruder,
year-old Republican law

lerest money-1x LOUVRE REAFFIRMATION NOT ENOUGH - UK. ANALYSTS

Top Organisations LONDON, Oct 20 - U.S. And West German reaffirmation of support for the Louvre Accord ci

cure the fundamental problems bedevilling the world economy which lie behind the c

collapse in swock markets, London economists said. "There’s going t have 10 be ¢

acknowledgementthat the dollar is going to be

Tan Evchannas

Figure 8.6: Solandra in action

DataStax Enterprise — the next level Solr integration

DataStax Enterprise solution for Cassandra comes with built-in Solr integration to
provide a text search facility directly from column families. DataStax documentation
says that its Solr implementation is two to four folds faster than Solandra.

To learn more about Solr in the DataStax offering, you may visit their blog
on the URL http://www.datastax.com/dev/blog/cassandra-with-solr-
integration-details.

[268]

Chapter 8

Summary

So, we can store large data and run MapReduce on them to analyze the data. We can
also set up Hadoop in such a manner that it does not impact the transactional part
of Cassandra in a negative way. We also know how to set up Pig for those who want
to quickly assemble an analysis instead of writing lengthy Java code. We can also
power Solr searches by Cassandra, making Solr more scalable than it already is.

With a plethora of analytical tooling available in the market, you may or may not
choose Cassandra. Maybe you could perform stream analysis that does not require
data to be stored and analyzed later; for example, if you decide to apply multiple
operations on live streaming tweets and show the result immediately, you would
likely use a tool such as Twitter Storm. Although there is no explicit project to guide
you on how to do that, it is pretty simple to configure Twitter as Storm Spout, which
will emit the tweet stream to the next Bolt, get it processed and forwarded to the next
Bolt, and finally you can use the Cassandra Java driver to simply store the result.

It is as simple as that. You may want to put a queue between Bolt and Cassandra

as a buffer if you find Tweets are too fast for Cassandra. But normally, you wouldn't
need that.

Some distributed computation tools such as Spark have people developing nice
integration tools such as Calliope (http://tuplejump.github.io/calliope/).
In general, you wouldn't be disappointed for choosing Cassandra because there
is no documentation available to integrate it with a relatively popular framework.

Cassandra is a rapidly developing project. The changes and feature additions in this
open source project takes place once in six months and doesn't happen in many big
label proprietary applications. You get faster, stronger, and better Cassandra for free
(obviously, there are technical debts) every half year. While this is a great thing, it
comes with a pain point —new learning. To be able to upgrade, you will need to know
new ways to do things. There may be changes that require you to change things at
code level to keep pace with Cassandra. Most times, you could just upgrade Cassandra
and things will work as expected. But you may not be taking benefit of new features.
The next chapter is about the current edition of Cassandra, Cassandra 1.2.x. It has
many new features, new ways to do things, and new ways to visualize the data.

[269]

Introduction to CQL 3 and
Cassandra 1.2

Cassandra is a rapidly developing project. Massive improvements, features, supports,
and extensions are added with every release. At the start of this book, Cassandra 1.1.x
was the most stable version. At the time of writing this chapter, 1.2.x has been well
matured and thoroughly tested. CQL is becoming a de facto Cassandra language,
and Thrift API, although promised to be supported indefinitely, is dying slowly.

It is nice to see Cassandra from Thrift lenses, because it transparently shows what
the underlying storage structure is. However, it requires lots of mind bending to get
the picture. CQL on the other hand is feature laden, terse, and an SQL-like language.
This chapter will generally dive into an informal introduction to CQL 3. We will

see some of the most impacting features of Cassandra 1.2.x. It will also have some
assorted topics remotely related to Cassandra.

CQL - the Cassandra Query Language

CQL is an SQL-like querying language for Cassandra. This book concentrates

on Cassandra version 1.1.x, which is a sort of transition version from a querying
perspective. It has Thrift API fully functional and well tested. It has CQL version 2,
which does not give a lot of leverage against Thrift version. It also has CQL 3

beta version.

CQL 3 is a big step foward compared to Thrift or CQL 2. It has a lot of usability
features and it is less verbose than Thrift. The main thing that distinguishes CQL 3
from the other two is it is the future. Thrift is not going to get abandoned, but it is
not going to get any updates either. CQL 2 is likely to be removed. CQL 3 will be the
most preferred way to interact with Cassandra going forward.

Introduction to CQL 3 and Cassandra 1.2

You need to use CQL shell (cqlsh) to be able to execute CQL queries.
In Cassandra 1.1.x, the default cqlsh console provides support to CQL
2. In order to use CQL 3 via cqlsh, use:

%‘ SCASSANDRA HOME/bin/cglsh -3

In all the places in this chapter, CQL refers to CQL 3. If there is a
discussion about CQL 2, it is mentioned explicitly.

A little history on CQL:

Thrift RPC has been the primary way to communicate with Cassandra. But Thrift has
a couple of issues, namely, being verbose and hard to digest for people migrating
from SQL. CQL 2 was an effort to fix these issues and bring it closer to SQL. It

had its own problems —wide-row insertion was unintuitive, client code needed to
decompose the composite columns, count does not count columns but rows, and a
few more issues. Ultimately, CQL 2 was just a good syntactic sugar for Thrift with
some inefficiency. Cassandra 1.1 comes with CQL 3-beta that uses the learning from
CQL 2. It is much easier than CQL 2, but if you are coming from a Thrift world,

it may require a little learning to understand how CQL 3 represents the same
underlying column family differently.

CQL 3 for Thrift refugees

This section gives a quick overview on CQL 3. It is possible that new features get
added as Cassandra evolves. Someone experienced working with Thrift API will
have a hard time getting their head around the CQL 3 representation. Let's see a

couple of changes when going from Thrift API to CQL 3.

Wide rows

Wide rows in Thrift are transposed in CQL 3 —columns are treated as rows. So, a
wide row in the Thrift world is just a table with three columns, namely key, which
is the row key, columni, which is the column name in Thrift realm, and a column
named value, which is the value stored in the column. Here is an example:

Create a wide row column family in Thrift (cassandra-cli)
[defaultecgltest] CREATE COLUMN FAMILY WideRowThrift

WITH

KEY VALIDATION CLASS = UUIDType AND

COMPARATOR = DateType AND

DEFAULT VALIDATION CLASS = UTF8Type;

[272]

Chapter 9

Insert some rows
[defaulte@ecgltest] SET WideRowThrift [fa408aff-a55b-4a52-b4b7-
2314bb5bb86f] [1374742812] = 'New chat session';

View the wide row in Thrift-way

[default@cqgltest] list WideRowThrift;

[-- snip --]

RowKey: 72da9dla-4802-47b4-ab50-249a8ea00038

=> (column=1970-01-17 03:22:20+0530, value=some textl,
timestamp=1374740832800000)

=> (column=1970-01-17 03:22:20+0530, value=some text2,
timestamp=1374740870667000)

=> (column=1970-01-17 03:22:20+0530, value=some text3,
timestamp=1374740893446000)

RowKey: fa408aff-a55b-4a52-b4b7-2314bb5bb86f

=> (column=1970-01-02 19:41:14+0530, value=Message #2,
timestamp=1374742875637000)

=> (column=1970-01-17 03:22:22+0530, value=New chat session,
timestamp=1374742833147000)

=> (column=1970-01-17 03:22:22+0530, value=Message #1,
timestamp=1374742854154000)

[-- snip --1]

This is the old way of looking at wide rows. CQL 3 treats it this way (in cqlsh, see the
following figure):

cqlsh:cgltest> select * from "WideRowThrift";

T2da9d1a-4802-47b4-ab50-249a8ca00038 | 1970-81-17 03:2 B+8530 | some textl
T2da9d1a-4802-47b4-ab50-249a8eab0038 1970-01-17 03:2 0530 | some text2
T2da%d1a-4802-47b4-ab50-24%a8eab0038 | 1970-01-1T € @530 | some text3
fad4bBaff-as55b-4a52-bab7-2314bb5bbB6f | 1970-01-02 15 440530 | Message #2
fa408aff-a55b-4a52-bab7-2314bb5bb8sf | 1979-81-17 03:2 2+0530 | Mew chat session
fad08aff-a55b-4a52-b4bT-2314bb5bb86T | 1970-01-1T7 03:22:22+0530 | Message #1

Figure 9.1: Wide row gets transposed in CQL 3

If you are from a relational database world, it will be easier for you to see that it
seems like a table that has a non-unique key. Also, a unique key can be created by
combining key and columni. In Thrift terms, if we assume a thrift column value as
a cell, each cell in a row can be uniquely identified by using a compound key, a row
key, and a column name. This leads us to the difference in terminology between
Thrift and CQL 3.

[273]

Introduction to CQL 3 and Cassandra 1.2

To avoid confusion between Thrift and CQL 3 representation of the same underlying
data, people use a different terminology for CQL 3. A row in CQL 3 means a row in a
static column family, but in a dynamic column family, such as the one above a row in
CQL, it means a row with columns row key, column name, and column value. Note
that the underlying representation is unchanged. It is still a wide row in Thrift terms.
A row key in a wide row works as a partition in CQL 3 representation. A column in
the Thrift world is just a cell in CQL 3 —the same way you see a cell in a spreadsheet.

Composite columns

We have seen how a dynamic column is transposed. When you use a composite
column name in Thrift, you are basically composing two or more columns into one,
in terms of an RDBMS. This means a composite column name in Thrift is two or
more columns in CQL 3. Let's see an example:

Thrift - composite column

[defaultecgltest] CREATE COLUMN FAMILY CompositeCol
WITH

KEY VALIDATION CLASS = UUIDType

AND

COMPARATOR = 'CompositeType (DateType, IntegerType)'
AND

DEFAULT VALIDATION CLASS = UTF8Type;

Insert some values

[defaultecgltest] SET CompositeCol [6606f5b4-c536-4413-8d3d-
63fa6f22a876] ['1374774648000:1'] = '10.110.6.4"';

[-- snip --]

View column family in Thrift
[defaultecgltest] list CompositeCol;

[-- snip --]

RowKey: 6606f5b4-c536-4413-8d3d-63fa6f22a876

=> (column=1974-05-11 08\:48\:11+0530:3, value=10.110.6.30,
timestamp=1374774565946000)

=> (column=2013-07-25 23\:20\:48+0530:1, value=10.110.6.4,
timestamp=1374774694423000)

=> (column=2013-07-25 23\:21\:08+0530:3, value=10.110.6.4,
timestamp=1374774771822000)

1 Row Returned.
Elapsed time: 4.35 msec(s).

[274]

Chapter 9

This represents a column family that tracks users' login with composite key as
timestamp and an integer role that the user uses to log in to the system. The value
is the IP of the machine used to access the system. CQL 3 breaks composite column
names into its components —each component represents a column. The same
column family looks like this in CQL 3:

cglsh:cgltest> select * from "CompositeCol";

key | columni | column2 | value

—————————————————————————— e e St
6606f5b4-c536-4413-8d3... | 1974-05-11 08:48:11+0530 | 3] 10.110.6.30
6606£5b4-c536-4413-8d3... | 2013-07-25 23:20:48+0530 | 1] 10.110.6.4
6606£5b4-c536-4413-8d3... | 2013-07-25 23:21:08+0530 | 3| 10.110.6.4

It may require some focus to understand the presentations in Thrift and CQL 3, but
once you get the idea of transpose, you can easily see both the pictures and justify it.

We will see some more stuff like compact storage and collections in CQL 3 in the
next section. In general, CQL 3 is an effort to make RDBMS/ table-minded people
understand the storage. One may argue that the actual data storage structure differs
from what CQL 3 shows, while Thrift has a much more accurate representation. But
CQL 3 is the future. It restricts users to avoid anti-patterns and

it is much more brain-friendly to a new person.

CQL 3 basics

This section is a brief introduction to CQL 3 on Cassandra 1.1.x. We will see queries
and discuss options available. For more formal query definitions, please refer to the
Cassandra CQL 3 documentation that is appropriate for the Cassandra version that
you are using. One of the good sources for this is the Apache CQL 3 documentation
and the DataStax Cassandra documentation. Most of the queries that are mentioned
here should work in 1.1.x as well as in 1.2.x versions, but the queries are not tested
against 1.2.x and further versions.

Apache CQL 3 documentation at http://cassandra.apache.org/

doc/cqgl3/CQL.html.

Cassandra CQL documentation at http://www.datastax.com/
docs/1l.1/references/cqgl/index.

[275]

Introduction to CQL 3 and Cassandra 1.2

The CREATE KEYSPACE query

Creating keyspace just requires keyspace name, strategy class, and options for

the specific strategy class as mandatory elements. Keyspace name has the same
restrictions as Java variable naming has. Keyspace names should be alpha-numeric
and they must start with an alphabet.

CREATE KEYSPACE "MyKeyspacel"

with

STRATEGY CLASS = SimpleStrategy

and

STRATEGY OPTIONS:REPLICATION FACTOR = 2;

Double quotes around the keyspace name are not mandatory. If you do not use
quotes, the casing will be ignored and the name will be stored in lowercase.

STRATEGY_CLASS has two options: SimpleStrategy and NetworkTopologyStrategy.
Refer to section Replica placement strategies from Chapter 4, Deploying a Cluster,
for details.

If you use SimpleStrategy, all you need to specify is REPLICATION FACTOR as
a part of STRATEGY_ OPTIONS.

If you use NetworkTopologyStrategy, you will need to specify the replication factor
for each data center. Something like this:

CREATE KEYSPACE "MyKeyspacel"

with

STRATEGY_CLASS = NetworkTopologyStrategy
and

STRATEGY OPTIONS:DC1l = 2

and

STRATEGY_ OPTIONS:DC2

1;

The preceding statement basically says to set the replication factor to 2 in the
data center DC1 and the replication factor to 1 in the data center Dc2.

Apart from this there is another optional parameter called DURABLE_WRITES.
Its value can be true or false, depending on your need.

The CREATE TABLE query

A table is the way CQL 3 chooses to call a column family. Always translate a table
to a column family, if you are used to seeing things the Thrift way.

[276]

Chapter 9

In the simplest form creating a table is just like an SQL table creation
(except, obviously, for foreign keys and some other constraints).
The other settings are for the column family and are set to a sensible default.

create table with default settings
CREATE TABLE simpletable
(
id UUID PRIMARY KEY,
name VARCHAR,
age INT,
aboutMe TEXT
) ;

let's see what are the default assignments
cglsh:MyKeyspace>DESC TABLE simpletable;

CREATE TABLE simpletable (

id uuid PRIMARY KEY,

aboutme text,

age int,

name text

) WITH

comment=""' AND

caching='KEYS ONLY' AND

read repair chance=0.100000 AND

gc_grace_ seconds=864000 AND

replicate on write='true' AND

compaction strategy class='SizeTieredCompactionStrategy' AND
compression parameters:sstable compression='SnappyCompressor';

The latter CREATE TABLE command in the previous snippet is interesting.
Apart from describing everything that constitutes that column family/table,

it also prints the command to create this table with all the optional parameters.
Let's see the optional parameters quickly.

1. comment: Itis used to store any comment or information that anyone might
be interested in while looking at the table.

2. caching: As we know from section Cache settings, Chapter 5, Performance
Tuning, there are four caching options available to a column family. These
options can be KEYS_ONLY, ROWS_ONLY, ALL, and NONE. The default option
is KEYS_ONLY. If you have no idea about caching, leave it to the default.

It is generally a good option.

3. read_repair chance: It denotes the chance to query extra nodes than
what the consistency level dictates for read-repairs. Refer to section Read
repair and Anti-entropy from Chapter 2, Cassandra Architecture for read-repairs.

[277]

Introduction to CQL 3 and Cassandra 1.2

4. gc_grace_ seconds: It determines the duration to wait after deletion to
remove the tombstones.

5. replicate on_ write: This is a boolean variable that can be set to true
or false based on whether you want to replicate the data on write. This can
be set to false only for column families/tables with counter column values.
It is not advisable to turn this to false.

6. compaction_strategy class: The approach that you wanted to take
on SSTable compression for this column family. Refer section Choosing
the right compaction strategy, Chapter 5, Performance Tuning, for details.
There are two options available: SizeTieredCompactionStrategy and
LeveledCompactionStrategy. The former option is the default option.

7. compression parameters:sstable compression: This command sets
the type of compressor you wanted to use for a column family. There
are two compressors available out of the box: snappyCompressor and
DeflateCompressor. SnappyCompressor is the default compressor.

8. To disable compression, use an empty string " (two single quotes without
anything in between).

9. compression parameters:chunk length kb:SSTable unit block size
to be compressed by the specified compressor. The larger the chunk length,
the better the compression. But a large block size affects the amount of
the data read negatively. Read more on compression in section Enabling
compression from Chapter 5, Performance Tuning, The default value is 64,
which implies 64 kilobytes.

10. compression_parameters:crc_check chance: The probability of
validating checksums during reads. Always check that by default this
parameter is 1. It helps avoid corrupted data to move across replicas.

It can be set to any value between 0 and 1, both included. To disable CRC,
set it to zero, but this is not a good idea.

Here is an example of a completely customized CREATE TABLE command with all the
anti-default settings:

CREATE TABLE non_default table (
id uuid PRIMARY KEY,
aboutme text,
age int,
name text

) WITH
comment="'test c' AND
caching="ALL' AND
read repair chance=0.900000 AND
gc_grace_seconds=432000 AND
replicate on write='false' AND
compaction strategy class='LeveledCompactionStrategy' AND

[278]

Chapter 9

compression parameters:chunk length kb='128' AND
compression parameters:sstable compression='DeflateCompressor' AND
compression parameters:crc_check chance=0.5;

Compact storage

Compact storage is a true representation of wide rows. Have a look at the
following statement:

Wide row definition in CQL 3 with compact storage

CREATE TABLE compact cf

(key BIGINT, columnl VARCHAR, column2 varchar, PRIMARY KEY (key,
columnl))

WITH COMPACT STORAGE;

In a case where you want to have a row key, a column name — it may be of
composite type, and a column value, the preceding statement is exactly the
same as the following:

Wide row definition in cassandra-cli
CREATE COLUMN FAMILY compact cf

WITH

KEY VALIDATION CLASS = LongType

AND COMPARATOR = UTF8Type

AND DEFAULT VALIDATION CLASS = UTF8Type;

Compact storage is generally discouraged, especially if you are starting with CQL
3. There are a couple of reasons for this. First, like wide rows in Thrift, you can
have just one value per column name. Speaking in terms of CQL 3, if you declare a
compact storage, you will have all but one column that is not a part of the primary
key. It is because compact storage takes all the first components of primary keys to
be column names (in THE Thrift realm) and the first component is treated as a row
key. It makes the structure rigid. A non-compact table does this by representing the
column name as a static slice of a wide row. So, a non-compact wide row in CQL
looks like this:

cglsh:MyKeyspace> CREATE TABLE non_compact cf
(key BIGINT, columnl VARCHAR, column2 varchar, value VARCHAR, PRIMARY
KEY (key, columnl)) ;

cglsh:MyKeyspace> INSERT INTO non compact cf (key, columnl, column2,
value)
VALUES (1, 'textl', 'text2',K 'wvall');

cglsh:MyKeyspace> SELECT * FROM non_compact cf;
key | columnl | column2 | value

Introduction to CQL 3 and Cassandra 1.2

This is basically a smartly sliced materialized row sort of thing when you see it from
the Thrift perspective:

[default@MyKeyspace] LIST non_ compact cf;

[-- snip --]

RowKey: 1

=> (column=textl:column2, value=text2, timestamp=1375074891655000)
=> (column=textl:value, value=vall, timestamp=1375074891655001)

You can see that non-key columns just create a static slice for a given column name.

The second reason to discourage compact storage is static tables with collections
(please note that collections are introduced in Cassandra 1.2.x, so this is not valid
in older versions). Static tables, as one would expect, should have no dynamic
parts. So, the column names should be simple UTF8Type, but that is not true. It uses
CompositeType internally, the reason being a new feature to support— collections.
We will see collections support later in this chapter under the Collections support
section. A collection provides the ability to store sets, lists, and maps as column
values, and to get them working you need to have composite column names. So,
the following code snippet will fail:

cglsh:my keyspace> CREATE TABLE compact with set

(id INT PRIMARY KEY, name VARCHAR, emails SET<VARCHAR>)

WITH COMPACT STORAGE;

Bad Request: Collection types are not supported with COMPACT STORAGE

The bottom line is unless you are sure that you are not going to modify a table,
do not use compact storage. It provides a little storage benefit at the cost of major
impairment in flexibility.

Creating a secondary index

Secondary indexes can be created on a static column family, on named columns.
You can create a secondary index only after defining the table. It is a good practice to
provide a name to the index, but it is optional.

CREATE INDEX
index name ON

table name (column name) ;

The previous query creates an index named index_name on a table named
table name for a column named column name.

[280]

Chapter 9

The INSERT query

The insert query looks exactly the same as SQL, except there are a few extra optional
parameters that you can set, such as TTL (Time To Live), TIMESTAMP, and obviously,
CONSISTENCY. These three have their usual meaning.

INSERT INTO

simpletable (id, name, age)

VALUES

('£7alcb71-50b4-4128-a805-fc3cd0cl623c', 'Foo Bar', '42')
USING

CONSISTENCY QUORUM

and

TTL 864000

and

TIMESTAMP 1374893426000;

A few things worth noting:
* Did you notice how there is no equal sign after the TTL or TIMESTAMP

keywords?

* Although Cassandra is a schema-optional database, CQL 3 does not allow
you to add any random column without declaring it during table creation.
If you try to insert an unknown column, you will get an error.

* (Cassandra 1.2.x and onward does not have the CONSISTENCY setting.

To view the remaining TTL and write TIMESTAMP, you can always query using special
functions for each column. Here is an example:

cglsh:MyKeyspace> select name, age, WRITETIME (name), TTL(age) from

simpletable;
name | age | writetime (name) | ttl(age)
—————————— e il st
Leon Kik | 59 | 1374893123000 | 853426
Foo Bar | 42 | 1374893426000 | 855792

Note that insert is basically upsert (update or insert). Insertion on an existing key will
overwrite the contents.

[281]

Introduction to CQL 3 and Cassandra 1.2

The SELECT query

The select statement has pseudo SQL select like pattern. There are fine prints while
using select, if you are coming from SQL development. The caveats are due to the
difference between the underlying storage mechanisms. The Cassandra storage
model is different from a fixed tabular or B-tree-like structure. The general structure
looks like this:

SELECT <select expression>
FROM <column family names

USING CONSISTENCY <consistency levels> //OPTIONAL

WHERE <AND separated where clauses> //OPTIONAL

ORDER BY <orderable field> //OPTIONAL SUBCLAUSE
LIMIT <limit number> //OPTIONAL

The simplest select query is just pulling all the columns from a column family.
Since we do not specify a limit, it returns 10,000 records as default. Here's what
it looks like:

SELECT * FROM select test;

id | age | location | name

————————————————————————————————————— e s il
Sbc25ea7-1636-4a54-b292-bc0877653d24 | 15 | LA | name4
367d2c7e-d878-4211-8021-3e92cb2a45£f5 | 13 | VA | name2
ae64284b-5413-41b8-a446-£dcd373c8fcO | 14 | NY | name3
98cf99b9-8c93-4b64-bd06-a3c91£57e5b9 | 12 | TX | namel

Notice that the rows are unordered. They are not ordered by key. They are

not in the order of insertion. Basically, an order is not preserved since we use
RandomPartitioner in cassandra.yaml. For more on partitioners, read section
Partitioner from Chapter 2, Cassandra Architecture.

Let's see what all those terms within angled brackets in the previous snippet mean.

select expression

select expression can be a * to select all the columns of a CQL row. To select
specific columns, use comma-separated column names to be fetched. One can apply
WRITETIME and TTL functions on column names to retrieve the timestamp that was
set during the latest write of that column and TTL tells about the remaining time of
that particular cell after which it will be deleted and marked as a tombstone.

[282]

Chapter 9

COUNT (*) is another function that can be used to fetch a number of CQL columns for
a particular query. It looks exactly the same as an SQL count function.

select count (*) from select test;
count

The WHERE clause

This clause is used to narrow down the result set by specifying constraints. The
WHERE clause in CQL is not as fancy as it is in the SQL world and it is where you
need to understand what you can or cannot do with Cassandra.

The WHERE clause supports only the AND conjunction. There is no Or conjunction.
You can only use the columns that compose PRIMARY KEY or have a secondary
index created on them. But you cannot use a partition key (or a row key in Thrift
terms) with an inequality. Here are a few examples on the data we inserted in the
previous example:

WHERE clause with equality sign on partitioning key
cglsh:MyKeyspace> select * from select test where

id = 'ae64284b-5413-41b8-a446-£dcd373c8£fcO’;

id | age | location | name
—————————————————————————————————————— B e e At
ae64284b-5413-41b8-a446-£fdcd373¢c8£fc0 | 14 | NY | name3

Inequality is not supported
cglsh:MyKeyspace> select * from select test where
id >= 'ae64284b-5413-41b8-a446-fdcd373c8fcO';

Bad Request: Only EQ and IN relation are supported on first component
of the PRIMARY KEY for RandomPartitioner (unless you use the token()
function)

#If you have to use inequality you may use token comparison, it may or

may not serve your purpose.
cglsh:MyKeyspacel> select * from select test where
token (id) >= token('ae64284b-5413-41b8-a446-fdcd373c8fc0') ;

id | age | location | name
—————————————————————————————————————— B e e At
ae64284b-5413-41b8-a446-£fdcd373¢c8£fc0 | 14 | NY | name3
98cf99b9-8c93-4b64-bd06-a3c91£57e5b9 | 12 | TX | namel

[283]

Introduction to CQL 3 and Cassandra 1.2

The trick to use inequality with partition keys is to use the token function. However,
it may not help you. What it does is it creates a token of the partition key based on
the partitioner that you are using (RandomPartitioner, ByteOrderPartitioner,
and so on) and uses it to fetch the rows with matching tokens. It may not make
sense to use tokens for rows in case of RandomPartitioner, but be aware that in
ByteOrderPartitioner case, the tokens are ordered by bytes, so it may or may

not be lexicographically ordered.

You can, however, use the IN keyword to provide a comma-separated list of
partition keys to pull the rows for them. 1IN follows the same format as in SQL.

There is another caveat with compound keys. If you use compound keys, the
selection is limited to contiguous CQL 3 rows. It is much easier to think in terms of
SLICE from Thrift. The Thrift columns or CQL 3 cells are ordered entities. You can
apply SLICE only to continuous regions. This example will clarify why this happens:

Create table
cglsh:MyKeyspace> CREATE TABLE where clause test

(id int, name varchar, role int, message text, PRIMARY KEY (id, name,
role));

Insert some data

cglsh:MyKeyspace> INSERT INTO where clause test (id, name, role,
message)

VALUES (1, 'A Smith', 3, 'Hi! everyone') ;

cglsh:MyKeyspace> INSERT INTO where clause test (id, name, role,
message)

VALUES (2, 'B Washington', 2, 'Logging out') ;

cglsh:MyKeyspace> INSERT INTO where clause test (id, name, role,
message)

VALUES (2, 'B Washington', 3, 'Logging in');

cglsh:MyKeyspace> INSERT INTO where clause test (id, name, role,
message)

VALUES (2, 'A Smith', 1, 'Creating new tickets');
cglsh:MyKeyspace> INSERT INTO where clause test (id, name, role,
message)

VALUES (2, 'B Washington', 4, 'Added new employees');

How it looks in CQL point of view
cglsh:MyKeyspace> SELECT * FROM where clause test;

id | name | role | message

[284]

Chapter 9

A Smith
A Smith

| Hi! everyone
|
Washington |
|
|

Creating new tickets

B
B Washington Logging in
B

1 3|
2 | 1
2 | 2 | Logging out
2 | 3|
2 | Washington 4 | Added new employees

Let's experiment with a few select queries:

Get all users logged via machine id = 2, named 'B Washington' as a
role less than equal 3 (3 = manager priviledge, say).
cglsh:MyKeyspace> SELECT * FROM where clause test WHERE id = 2 AND
name = 'B Washington' AND role <= 3;

id | name | role | message

2 | B Washington | 2 | Logging out
2 | B Washington | 3 | Logging in

get all the users logged in from machine is = 2 as manager (role =
3) and name anything lexically greater than 'A'

cglsh:MyKeyspace> SELECT * FROM where clause test WHERE id = 2 AND
name > 'A' AND role = 3;

Bad Request: PRIMARY KEY part role cannot be restricted (preceding
part name is either not restricted or by a non-EQ relation)

get all the users logged into the system from machine id = 2 as a
manager (role =3) irrespective of their names.
cglsh:MyKeyspace> SELECT * FROM where clause test WHERE id = 2 AND

role = 3;
Bad Request: PRIMARY KEY part role cannot be restricted (preceding
part name is either not restricted or by a non-EQ relation)

It is a bit frustrating for a beginner that you can see the columns just like in an
RDBMS; you can run some of the queries but you cannot run some others that look
closely similar. The answer lies in the underlying representation. When we defined
the composite key, the data for each composite key does not actually go in separate
rows. Instead, the first part of the compound key is the row key and the rest is just
secondary keys creating partitions in a wide row. This view can be seen using Thrift.

incassandra-cli

[default@MyKeyspacel] list where clause test;
Using default 1limit of 100

Using default column limit of 100

[285]

Introduction to CQL 3 and Cassandra 1.2

=> (column=A Smith:3:message, value=Hi! everyone,
timestamp=1374934726143000)

RowKey: 2

=> (column=A Smith:1:message, value=Creating new tickets,
timestamp=1374934870771000)

=> (column=B Washington:2:message, value=Logging out,
timestamp=1374934807710000)

=> (column=B Washington:3:message, value=Logging in,
timestamp=1374934836937000)

=> (column=B Washington:4:message, value=Added new employees,
timestamp=1374934915607000)

2 Rows Returned.
Elapsed time: 84 msec(s) .

Now, you can see why we cannot use inequality in any of the primary keys but the
last one.

The ORDER BY clause

ORDER BY enables ordering of the rows by the second component of the primary key,
even if your primary key contains more than two components. The reason again is
the same as we discussed in the previous section, when discussing the WHERE clause
for tables with compound keys. ORDER BY can order only one column and there must
be a valid wHERE clause before it. Here is an example:

cglsh:MyKeyspace> SELECT * FROM where clause test WHERE id = 2 ORDER
BY name DESC;

2 | B Washington Added new employees

|
2 | B Washington | Logging in
2 | B Washington | Logging out
2 | |

A Smith Creating new tickets

You can sort in a descending order by specifying the DESC keyword. The ascending
column value is default if nothing is mentioned. To explicitly mention ascending, use
the asc keyword.

[286]

Chapter 9

The LIMIT clause

The limit clause works the same way as in an RDBMS. It limits the number of

rows to be returned to the user. It can be used to perform pagination. If nothing is
mentioned, CQL limits the results to 10,000 rows. Use 1imit to fetch either more or
fewer results than the default 1imit value.

limiting resulting rows to 2 of total 4 rows
cglsh:MyKeyspacel> SELECT * FROM where clause test LIMIT 2;

id | name | role | message
et oo Hmmmmmm oo
1 | A Smith | 3 Hi! everyone
2 | A sSmith | 1 | Creating new tickets

The USING CONSISTENCY clause

In Cassandra 1.1.x, you can specify the consistency level for a read request.
For example:

Consistency clause in Cassandra 1.1.x select query

cglsh:MyKeyspace> SELECT * FROM where clause test USING CONSISTENCY
QUORUM LIMIT 2;

id | name | role | message
et oo Hmmmmmm oo
1 | A Smith | 3 Hi! everyone
2 | A Smith | 1 | Creating new tickets

The UPDATE query

The UPDATE query is basically an upsert query, which means that it will update the
specified column for the given row or rows in existence, else it will create the column
and/or the row. It is the same thing as insert except it has a different syntax.

In its simplest form, UPDATE is the same as an SQL update:

Updating a column requires complete information about PRIMARY KEY

cglsh:MyKeyspace> UPDATE where clause test SET message = 'Deleting old
tickets' WHERE id = 2 AND name = 'A Smith' AND role = 1;

Column is updated
cglsh:MyKeyspace> SELECT * FROM where clause test;
id | name | role | message

Introduction to CQL 3 and Cassandra 1.2

A Smith
A Smith

| Hi! everyone
|
Washington |
|
|

|

| Deleting old tickets
| Logging out
| Logging in
|

N NN DND R
B W N R Ww

B
B Washington
B

|
|
|
|
| Washington

Added new employees

A non-existing column in UPDATE statement can lead to new column or
row row creation

cglsh:MyKeyspacel> UPDATE where clause test SET message = 'This row
will be inserted' WHERE id = 3 AND name = 'W Smith' AND role = 1;

New row is created!
cglsh:MyKeyspacel> SELECT * FROM where clause test;

id | name | role | message

R ST 4o e
1| A Smith | 3| Hi! everyone
2 | A Smith | 1| Deleting old tickets
2 | B Washington | 2 | Logging out
2 | B Washington | 3| Logging in
2 | B Washington | 4 | Added new employees
3| W Smith | 1 | This row will be inserted

There are a few optional elements for the UPDATE statement and they are the same as
the optional elements for the SELECT statement. These are TTL, write TIMESTAMP, and
CONSISTENCY level. These must be specified before the SET keyword:

UPDATE where_clause_test
USING
CONSISTENCY QUORUM AND
TIMESTAMP 1374945623000 AND

TTL 84600
SET

MESSAGE = 'Fixing bugs.'
WHERE

id = 2 AND

name = 'A Smith' AND

role = 1;

The DELETE query

The DELETE query deletes columns by marking them with a tombstone and a
timestamp. These columns are deleted after gc_grace_period ends. Refer to the
Tombstones section in Chapter 2, Cassandra Architecture, for more details.

[288]

Chapter 9

Unlike SQL, in CQL, you can delete specified columns from a row. A simple query
looks like an SQL delete query with the columns to be deleted mentioned before the
FROM keyword.

before deletion
cglsh:MyKeyspace> SELECT * FROM my table;

id | address | age | name

e +----- +t----------
1| 36, Keyye Blvd, NJ | 42 | John Doe
2 | 277, Block 4, James St | 31 | Sam Woe

Delete the address for id = 1
cglsh:MyKeyspace> DELETE address FROM my table WHERE id = 1;

Deleted column is shown as null
cglsh:MyKeyspace> SELECT * FROM my table;

id | address | age | name

e T +----- $o-mmm-mo - -
1| null | 42 | John Doe
2 | 277, Block 4, James St | 31 | Sam Woe

There are two optional parameters: CONSISTENCY and tombstone creation
TIMESTAMP. These can be specified before the WHERE keyword like this:

DELETE address FROM my_ table
USING

CONSISTENCY ALL AND
TIMESTAMP 1374945623000
WHERE id = 2;

The TRUNCATE query

Truncate is like the DELETE FROM TABLE_NAME query in SQL without any WHERE
clause. It deletes all the data in the column family. The syntax is like this:

TRUNCATE my table;

The ALTER TABLE query

The ALTER TABLE query performs four tasks: adding a new column, dropping an
existing column, altering the type of a column, and changing the table options.

[289]

Introduction to CQL 3 and Cassandra 1.2

Adding a new column

Adding a new column follows a syntax like this:

ALTER TABLE my_ table ADD email varchar;

Existing data is not validated, so there may or may not be an existing column in
the rows.

Dropping an existing column

Dropping an existing column is not the same as deleting data and removing the
column name from the metadata. It is just the latter. On the DrROP query execution,
the column family metadata loses the column definition that is being dropped but
the data in the existing rows still stays. Let's delete the address column from the
my_table column family and see what happens:

Existind data in my_ table
cglsh:MyKeyspace> SELECT * FROM my table;

id | address | age | email | name
e e e T T T +omm- - R
1| 36, Keyye Blvd, NJ | 42 | null | John Doe
2 | 277, Block 4, James St | 31 | null | Sam Woe

Drop the address column
cglsh:MyKeyspace> ALTER TABLE my table DROP address;

CQL does not show it.
cglsh:MyKeyspace> SELECT * FROM my table;

id | age | email | name
R R et Hmmmmmm oo
1 | 42 | null | John Doe
2 | 31| null | Sam Woe

But it exists, let's use Thrift call (cassandra-cli console)
[default@MyKeyspace] list my table;

[-- snip --]

RowKey: 1

=>(column=address, value=36, Keyye Blvd, NJ,
timestamp=1374948385939000)

=> (column=age, value=42, timestamp=1374948385939001)

=> (column=name, value=John Doe, timestamp=1374948385939002)

[290]

Chapter 9

=>(column=address, value=277, Block 4, James St,
timestamp=1374948401402000)

=> (column=age, value=31, timestamp=1374948401402001)
=> (column=name, value=Sam Woe, timestamp=1374948401402002)

Modifying the data type of an existing column

The syntax to change the data type of an existing column looks like this:

ALTER TABLE my tablel ALTER name TYPE int;

The bad thing about this is it does not check the data type of the underlying existing
cells. This may lead to a problem if you modify a column to a type that is not
compatible to the existing data. It may cause problems during deserialization.

Exisiting data - name is a varchar type
cglsh:MyKeyspace> SELECT * FROM my table;

id | age | email | name
R R et Hmmmmmm oo
1 | 42 | null | John Doe
2| 31| null | Sam Woe

altered the name column to an incompatible type
cglsh:MyKeyspace> ALTER TABLE my_ table ALTER name TYPE int;

accessing the columns throws deserialization exception
cglsh:MyKeyspace> SELECT * FROM my table;

id | age | email | name
——m b — - - et e
1| 42 | null | 'John Doe'
2| 31| null | 'Sam Woe'
Failed to decode value 'John Doe' (for column 'name') as int: unpack

requires a string argument of length 4

Failed to decode value 'Sam Woe' (for column 'name') as int: unpack
requires a string argument of length 4

[291]

Introduction to CQL 3 and Cassandra 1.2

Altering table options

The table's options that were used during the table creation can be altered using this
command. Here is a sample of that:

cglsh:MyKeyspace> ALTER TABLE my table WITH comment = 'updated caching
to none' and caching = NONE;

cglsh:MyKeyspace>DESC TABLE my table;

CREATE TABLE my_ table (

id int PRIMARY KEY,

age int,

email text,

name int

) WITH

comment='updated caching to none' AND

caching='NONE' AND

read repair chance=0.100000 AND

gc_grace seconds=864000 AND

replicate on write='true' AND

compaction strategy class='SizeTieredCompactionStrategy' AND
compression parameters:sstable compression='SnappyCompressor';

The ALTER KEYSPACE query

ALTER KEYSPACE lets you change all the aspects of a keyspace that are available
during keyspace creation. The query looks very similar to CREATE KEYSPACE
specifications. Here is an example:

CREATE KEYSPACE "MyKespace"
WITH strategy class = NetworkTopologyStrategy
AND strategy options:DCl = 2
AND strategy options:DC2 = 2
AND durable writes=false;

This updates the placement strategy and sets durable writes as false.

CQL is a case-insensitive query language. This means the query is
. toLowerCase and processed. If you have created a column family
% or keyspaces that contains uppercase letters using the Thrift interface
L or using double quotes to preserve case in CQL, you would not be
able to access it in CQL without putting double quotes around it as
we did in the previous query.

[292]

Chapter 9

BATCH querying

BATCH enables users to execute a set of data modification operations such as INSERT,
UPDATE, and DELETE, to club into a single logical execution. CONSISTENCY level and
TIMESTAMP may be provided at the batch level that is applied to all the statements
under the batch. An example of a batch is as follows:

BEGIN BATCH USING CONSISTENCY ALL TIMESTAMP 1374983889000

INSERT INTO my tablel (id, name, age, email) VALUES (42, 'Cameleon
Woe', 59, 'email not available')

UPDATE my tablel SET name = 'Leon Woe' WHERE id = 42
DELETE email FROM my tablel WHERE id = 42
APPLY BATCH;

Note that there is no semicolon after the individual statements inside the batch.
Semicolon is the delimiter, so it should be applied at the end of BATCH. Execution
will break if you place a semicolon within the BATCH statement.

The DROP INDEX query

DROP INDEX drops secondary indexes from a table. The syntax is like this:
DROP INDEX index name;

index name is the name of the index that you provided during index creation. If
you haven't provided a name for the index during creation, the index_name can be
replaced with <table name>_<column_name>_idx. For example, an unnamed index
for a column name in a table named users will be referred to as users _name_idxin
the DROP INDEX statement.

The DROP TABLE query

It deletes the table and all its contents. The syntax follows an SQL pattern.

DROP TABLE my table;

The DROP KEYSPACE query

It deletes the keyspace and all the tables that it contains.

DROP KEYSPACE my keyspace;

[293]

Introduction to CQL 3 and Cassandra 1.2

The USE statement

The USE statement tells the client to connect to a specified keyspace. After this
statement is issued, the client's current session gets authorized to use tables and
indexes in the current keyspace. The syntax is like this:

USE my keyspace;

What's new in Cassandra 1.2?

At the time of writing this book, Cassandra 1.2 is released with massive
improvements over its precursor. Cassandra version 2.0 is set to release in August
2013, which is Cassandra 1.2 plus a few major features such as improvements in
repair and compaction, triggers (as an RDBMS provides), eager retries, and compare
and set (CAS) features. Version 1.2, with all its disruptive changes, can be thought of
as a step to version 2.0. However, by the time this book is available to you, you might
want to use Cassandra 2.0 or Cassandra 1.1.x for your production setup. This section
will briefly cover new features in 1.2. It does not break the concepts that we learned
throughout this book; it adds some more to that.

Virtual Nodes

Virtual Nodes (VNodes) are introduced to solve two major problems of
previous versions:

* Change in cluster leads to heavy load on some nodes: The addition,
removal, or restoration of a node causes heavy data transfer on the nodes
that share the replica for the node in question. That is, if a node is added, for
instance, it will be streamed in data from the nodes that contain that data.

It is likely that the majority of the nodes are not involved in pushing data
to this new node. So, some nodes are very busy and some are not. VNodes
solves this problem by making nodes to be responsible for more than one
range. See Figure 9.2.

* Manual load balancing: Whenever a new node is added or a node is
removed, the cluster gets imbalanced. This is not a desired state. It leads to
recalculation of tokens and balancing nodes by nodes. It is time consuming
and error prone. VNodes solves this issue.

[294]

Chapter 9

The idea behind VNodes is simple. In a situation of a 30-node cluster with a
replication factor of 3, imagine a case where one of the nodes dies and we add a new
replacement node for it. In Cassandra versions before 1.2.0, we would have lost one
replica for each three ranges that lived on the dead nodes. We still have six replicas
for the three ranges that the dead node held, spread in the remaining 29 nodes.
When we replace the dead node, three of those six replicas will stream the data to

a new node. We are heavy-loading three nodes, but the remaining 26 nodes are not
contributing in bootstrapping of the new node. This is inefficient.

VNodes makes a node responsible for multiple ranges. As if each of their physical
node hosts multiple virtual nodes, and each virtual node is responsible for a slice of
data. For the sake of argument, assume each node as 32 virtual nodes. In a cluster
of 30 machines, you have 960 VNodes. If a physical node dies, and you launch

a new machine, this machine will require 32 ranges. If VNodes are distributed
homogeneously, it is likely that all the remaining 29 nodes will be used to stream
data to the new node. You get faster restoration, because you are streaming the
data in a more parallelized way than before. See Figure 9.3.

VNodes is not activated by default. So, if you are upgrading from an older version,
do not worry about compatibility. To enable VNodes, you need to edit cassandra.
yaml to uncomment and set num_tokens to some value. A decent default is 256 for
a mid-sized cluster. Here is the snippet from cassandra.yaml:

If you already have a cluster with 1 token per node,
and wish to migrate to

multiple tokens per node,

see http://wiki.apache.org/cassandra/Operations
num_tokens: 256

Restoring a Node
No VNodes

Requires {(300,400),
(200,300), (100,200)}

Figure 9.2: Restoring a node in Cassandra without virtual nodes enabled, assuming partitioner ranges
from 0 to 599

[295]

Introduction to CQL 3 and Cassandra 1.2

The higher the virtual nodes, the more the token slices. This means there will be
more uniform distribution of ranges across the cluster. However, a large number of
slices will also make it hard to keep track of the slices. It will cost more to calculate
which key lives where. So, a general rule of thumb is 256 num_tokens per node.

Off-heap Bloom filters

In Cassandra 1.2, Bloom filters and compaction metadata is moved to native memory.
This is done to help reduce frequent garbage collection to some extent. Please note
that off-heap operations require you to install JNA. Please read the section Installing
the Java Native Access (INA) library from Chapter 4, Deploying a Cluster.

JBOD improvements

Just a bunch of disks (JBOD) has the potential to make the node go down even if
one of the disks go down. Cassandra version 1.2's new configurations tackle this
issue. There is a new option, disk_failure_policy, to handle it differently.

Refer to JBOD at http://en.wikipedia.org/wiki/Non-RAID
= drive architectures#JBOD.

There are three settings to this configuration:

1. stop: On a disk error, the node will be available. One may still connect via
JMX to troubleshoot.

2. best_effort: Cassandra will try its best to get things working as much as
possible. Due to its inability to write, it will blacklist this node for writes but
serve reads. If there is a read problem, it will just serve the data from the
SSTables that are still in a readable state. This can be a problem if you are
using consistency level oNE. If the data is not updated on the broken node,
you might be serving stale data.

[296]

Chapter 9

R\é§toring a Node
77~ 8x6 VNodes
. RF =3

|0
o|[0o
N9
= (o=
N) o

N
Q)
(@)
O
N
1)

Figure 9.3: Replacing a dead node with VNodes enabled uses all nodes to stream data, assuming partitioner
ranges from 0 to 599 and num_tokens = 8 on each serverImage

3. ignore: This retains the same behavior of JBOD as in previous versions
of Cassandra. It is suggested to not use this option. Use stop or
best_effort options.

Parallel leveled compaction

Leveled compaction has been upgraded to run multiple compaction processes
in parallel. The number of compactors can be controlled by tweaking the
concurrent_compactors setting in cassandra.yaml:

concurrent_compactors defaults to the number of cores.
Uncomment to make compaction mono-threaded, the pre-0.8 default.
concurrent compactors: 8

Earlier, only one leveled compactor could run at a time for a given table.

Murmur3 partitioner

Murmur3 partitioner is available in 1.2. It is not compatible with
RandomPartitioner from previous releases. This partitioner is claimed to provide a
three- to five-time performance gain compared to RandomPartitioner.

[297]

Introduction to CQL 3 and Cassandra 1.2

Please note Murmur3Partitioner is the default partitioner for
+ version 1.2 onward. If you are upgrading from an older version,
% make sure you change this setting back to what you had in the
’ previous Cassandra setup. Not changing partitioners to the
appropriate settings will cause Cassandra to not start up.

Atomic batches

Atomic batches in version 1.2 guarantee that if one part of a batch succeeds, all of

it will. The improvement here is the fact that the batch is first written to the system
table. It is removed once the batch is executed. This has some performance penalty.
So, in case you wanted to use super-fast, but relatively risky batch updates, you may
use the UNLOGGED keyword in the BATCH statement like BEGIN UNLOGGED BATCH.

Replaying failed batches are usually safe in general except for the counter cases
as they are not idempotent. Replaying counter queries will have side effects. For
a batched counter updated, use BEGIN COUNTER BATCH.

Query profiling

Cassandra 1.2 provides a query profiling tool that lets you analyze the performance
of queries and view which action is taking how much time; a detailed overview
much like EXPLAIN from the RDBMS world.

In cqlsh, you can turn on profiling by executing tracing on before running a
statement to trace.

Collections support

In CQL 3 there is either a static family or a dynamic family. In case you wanted to
store multiple shipping addresses or multiple credit card details or multiple e-mail
IDs in the users table, you will need to have a static column family for static entities
user_name, age, passwords, and so on. You will need to have a dynamic column
family that can store any number of shipping records. But it is a pain. In Thrift, you
would have just created a tag-like column name in the same column family. CQL 3
provides a very nice extension of this approach, instead of you managing the tags;

it gives you three collections based on the same idea that work pretty neatly. CQL 3
supports list, set, and map collections.

[298]

Chapter 9

Sets

Here are some examples of operations on a set:

Creating a table with shipping addr as set of text type
cglsh:my keyspace> CREATE TABLE users
(id int primary key, name varchar, shipping addr set<texts>);

Inserting values to as set
cglsh:my keyspace> INSERT INTO users (id, name, shipping addr)
VALUES (1, 'John Doe', {'some addrl', 'some addr2'});

CQL interprets it as a single entity
cglsh:my keyspace> SELECT * FROM users;

1 | John Doe | {some addrl, some addr2}

Adding more elements to set. Set does not allow duplicates
cglsh:my keyspace> UPDATE users SET

shipping addr = shipping addr + {'new addrl', 'new addr2', 'some
addri'}
WHERE id = 1;

No terms are repeated
cglsh:my keyspace> SELECT * FROM users;

1 | John Doe | {new addrl, new addr2, some addrl, some addr2}

Removing elements from set

cglsh:my keyspace> UPDATE users SET

shipping addr = shipping addr - { 'someaddrl'}
WHERE id = 1;

Set is denoted by a set of curly brackets.

[299]

Introduction to CQL 3 and Cassandra 1.2

Lists

Lists follow the same patterns for creating, inserting, adding, and removing entities.

There are two differences. First, list is denoted with square brackets —[]; and second,
a list can have duplicate items. Removal of items from a list will remove all instances
of it.

cglsh:my keyspace> CREATE TABLE session record
(id uuid primary key, user varchar, activity list<texts);

cglsh:my keyspace> INSERT INTO session record (id, user, activity)

VALUES (3c71c50a-9686-4313-a045-3bdc908b9816, 'Jack P', ['logged
in']);

cglsh:my keyspace> UPDATE session record SET
activity = activity + ['closed open bug']
WHERE id = 3c71c50a-9686-4313-a045-3bdc908b9816;

[-- snip --]

cglsh:my keyspace> UPDATE session record SET
activity = activity + ['closed open bug']

WHERE id = 3c¢71c50a-9686-4313-a045-3bdc908b9816;

[-- snip --]

cglsh:my keyspace> SELECT * FROM session record;

id | activity | user

_________ fm o o e oo

3c..16 | [logged in, closed open bug, added bug, closed open bug,
logged out] | Jack P

Maps
Maps are dictionaries-like structures. Maps have unique keys. Here are some typical
usages of map in CQL:

Creating map column is pretty similar to set or list
cglsh:my keyspace> CREATE TABLE map test
(id int primary key, txt varchar, some map map<int, varchars);

elements in map follow Python dictionary or JSON like structure
cglsh:my keyspace> INSERT INTO map_ test (id, txt, some map)
values (1, 'txt 1', {42: 'hello world'});

[300]

Chapter 9

adding is a bit different than that for set or list
cglsh:my keyspace> UPDATE map_ test SET

some map[314] = 'pi is a lie’

WHERE id = 1;

updating a record requires its unique key to be known

cglsh:my keyspace> UPDATE map_ test SET some map[42] = 'Hello
Cassandra' WHERE id = 1;

cglsh:my keyspace> select * from map test;
id | some_map | txt
1 | {42: Hello Cassandra, 314: pi is a lie} | txt 1

Element deletion is done by key.
cglsh:my keyspace> delete some map[314] from map test where id = 1;

Collections in Cassandra 1.2 greatly enhance the user experience. It is probably the
most motivating feature to upgrade from the previous version to Cassandra 1.2. Note
that collections look deceptively similar to Java collections with generics. However,
unlike Java, you cannot nest elements to have multiple-level collections.

Support for programming languages

Cassandra is supported by most of the major programming languages. Most of
these libraries are open source, and rigorously tested. The libraries provide fail-
over support and connection pooling ability. The latest driver lists can be viewed
athttp://wiki.apache.org/cassandra/ClientOptions. Here is a list of some
drivers that support CQL 3:

* Java: You can find the DataStax Java driver at https://github.com/
datastax/java-driver and the Hector Java client at http://hector-
client.github.io/hector/build/html/index.html

* Python: You can download the drivers for Pythons such as Pycassa at
http://github.com/pycassa/pycassa and the DataStax Python CQL
driver at https://github.com/datastax/python-driver

* Node.js: You can find the Node.js driver Helenus at https://github.com/
simplereach/helenus

e PHP: You can find the Cassandra PDO driver at http://code.google.
com/a/apache-extras.org/p/cassandra-pdo/

[301]

Introduction to CQL 3 and Cassandra 1.2

e C++: You can find the LibCQL C++ driver at https://github.com/mstump/
libcgl

e NET: Find the DataStax C# driver at http://github.com/datastax/
csharp-driver

* Ruby: Find the cql-rb Ruby driver at https://github.com/iconara/cql-rb
¢ Closure: Find the Alia driver at https://github.com/mpenet/alia

The Cassandra community wiki advises to use CQL 3 driver for new projects. If
you are using an old version or wanted to use Thrift API, you may look into a list
of drivers supporting Thrift for various languages at this web page: http://wiki.
apache.org/cassandra/ClientOptionsThrift

Here is a quick example of CQL with the DataStax CQL driver:

$ python

Python 2.7.4 (default, Apr 19 2013, 18:28:01)

[GCC 4.7.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>from cassandra.cluster import Cluster

>>>cluster = Cluster(['localhost'])

>>>session = cluster.connect ()

No handlers could be found for logger "cassandra.metadata"

>>>gsession.execute ("DROP KEYSPACEcqgl test")

>>>gsession.execute ("CREATE KEYSPACEcqgl test WITH replication =
{'class':'SimpleStrategy', 'replication factor':1}")

>>>session.execute ("USE cgl test")

>>>session.execute ("CREATE TABLE users (id VARCHAR PRIMARY KEY, name
VARCHAR, email VARCHAR, passwdVARCHAR, subscription typeINT)")

>>>gession.execute ("insert into users (id, name, email, passwd,
subscription type) values ('jamesefargo.com', 'James Gray',6 'Jjames@
fargo.com', 'pe@sswdl23', 3)")

>>>session.execute ("select * from users")
[Row (id=u'james@fargo.com', email=u'james@fargo.com', name=u'James
Gray', passwd=u'p@sswdl23',6 subscription type=3)]

>>>gession.execute ("insert into users (id, name, email, passwd,
subscription type) values ('jane@fargo.com',6 'Jane Jessy', 'jane@
fargo.com', 's3crate', 1)")

>>>session.execute ("select * from users")

[302]

Chapter 9

[Row (id=u'jane@fargo.com', email=u'jane@fargo.com', name=u'Janedessy',
passwd=u's3crate', subscription type=1), Row(id=u'james@fargo.com',
email=u'james@fargo.com', name=u'James Gray',6 passwd=u'p@sswdl23',
subscription type=3)]

>>>gsession.execute ("DELETE FROM users where id = 'james@fargo.com'")
>>>session.execute ("select * from users")

[Row (id=u'jane@fargo.com', email=u'jane@fargo.com', name=u'Janedessy',
passwd=u's3crate', subscription type=1)]

>>>cluster.shutdown ()

This is just a quick example to show you how easy it is to use CQL 3 with
Python. However, for a real project, you might want to use connection pooling,
prepared statement, and batches. Please read the full documentation for details
at http://datastax.github.io/python-driver/api/index.html.

Summary

We have seen CQL 3 add big leaps in Cassandra usability. It is easier to understand
for someone moving from SQL development to Cassandra. At the same time, to

a Thrift developer, it is again a rework to rewire the map-of-maps schema-free
structure of Cassandra to the transposed version of that.

Cassandra 1.2 has been a nice upgrade. It strengthens CQL 3 by adding syntactic
sugar to storage techniques to provide collections support. CQL 3 is laconic and
supported by all leading programming languages. Apart from CQL, VNodes are the
other major development. VNodes is extremely useful for mid-to-large Cassandra
setup. VNodes alleviates the load generated by ring alteration by distributing
responsibility to stream out across a larger number of nodes and by making the
bootstrap process more parallel. A side effect of this load balancing task gets solved
automatically. There are other smaller performance boosts for version 1.2.

Cassandra 2.0 is proposed in the latter half of 2013. It will have some improvements,
and legacy systems might not be supported. Some of the exciting features of
version 2.x are the ability to provide JAR files as triggers, so one can send a
registration mail as soon as a new row is inserted in the users table. Compare and
Set (CAS) enables clients to update a column by checking if its value matches the
provided value. For example, UPDATE loans SET debt = debt + 10000 WHERE
user_id = 6£757ca0-dd32-4149-b46d-8£f2b744cab02 IF DEBT = 31415.

[303]

Symbols

-XX:PrintFLSStatistics=1 option 228
-XX:+PrintGCApplicationStoppedTime op-
tion 228
-XX:+PrintGCDateStamps option 227
-XX:+PrintGCDetails option 227
-XX:+PrintHeapAtGC option 227
-XX:+PrintPromotionFailure option 228
-XX:+PrintTenuringDistribution option 228

A

AbstractNetworkTopologySnitch 41
access property 146
ACID properties 35
Action button 209
Add Graph button 210
address field 92
advanced time series 101, 102
agent directory 208
ALTER KEYSPACE query 292
alternate index. See wide-row index
alternatives utility 118
ALTER TABLE query
about 289
data type of existing column,
modifying 291
existing column, dropping 290
new column, adding 290
table options, altering 292
Amazon 29
Amazon Web Services. See AWS
Anti-entropy mechanism 40, 62
antipatterns 92
Apache CQL 3 documentation

Index

URL 275
Apache Solr
about 266
integrating, with Cassandra 266
Wiki page 266
AP system 34
architecture, Cassandra
about 36
ring representation 37
Atomic batches 298
atomic update 93, 94
availability, CAP theorem 32
AWS
about 111
large clusters, managing 184, 185
users 190

B

backup tool 180, 181
BASE properties 31
Basically Available, Soft-state, Eventual
consistency. See BASE properties
batch_mutate 106
BATCH querying 293
BigTable
URL 29
bloom filter
about 38, 55, 296
data files 58
disabling 160
index files 57
tuning 159, 160
working 56
broadcast_address 168
byte-ordered partitioner

about 131
working 131
ByteOrderPartitioner 47

C

C++
URL 302
cache settings 156
Cages library 104
CAP theorem
about 31
availability 32
consistency 31, 32
importance 33, 34, 35
partition-tolerance 33
cardinality 91
Cassandra
about 7, 35,149, 271
administrating, nodetool utility used 199-
202
architecture 36
blog application 22-27
code, writing 20
components 43
data model 66-91
data, modeling 17-19
distributed database 8
downloading, URL 121
high availability 8
installation anatomy 123-126
installing 121
installing, from ASFRepositoy 122,123
installing, from tarball 121
installing, in local machine 10-12
JMX interface 187-191
monitoring, nodetool utility used 192-198
nodetool utility 191
read, in action 40-42
replication §, 9
required software 117
requirements, evaluating 110
troubleshooting 228, 229
working 38
write, in action 39, 40
Cassandra 1.2
about 294

Atomic batches 298
Bloom filters 296
Murmur3 partitioner 297
Parallel levelled compaction 297
query profiling tool 298
Cassandra binaries
cassandra 123
cassandra-cli 123
cqlsh 124
json2sstable 124
sstable2json 124
sstable2json, options 124
sstablekeys 124
sstableloader 124
sstable_path 124
Cassandra bulk loader
using, to restore data 182, 183
cassandra-cli
CRUD with 12-15
Cassandra cluster
authentication 146, 147
authorization 146, 147
configuring 126-145
Cassandra cluster authentication 146, 147
Cassandra cluster authorization 146, 147
Cassandra cluster configuration
cluster launching, script used 140-144
cluster name 127
initial token 129
keyspace, creating 145
partitioner 129-132
Replica placing, strategies 136-139
seed node 127, 128
snitches 132-135
Cassandra CQL documentation
URL 275
Cassandra data model
about 67, 68
column family 73, 74
counter column 69, 70
data types 75-91
diagram 67
expiring column 70, 71
keyspaces 75
super column 72
Cassandra File System. See CFS
Cassandra Hadoop integration

[306]

about 237
word count example 252-256
word count example, debugging 257
word count example, executing 257
word count example, monitoring 258
word count example results, viewing 258
Cassandra installation anatomy
Cassandra binaries 123, 124
configuration files 125, 126
Cassandra log
about 225
Java options, enabling for GC logging 227,
228
working 225, 226
Cassandra Pig integration
about 260-265
Pig installation 261
Cassandra Query Language. See CQL
Cassandra setup
about 168
nodes identity, setting up 168
Cassandra Solr integration 266, 267
CassandraStorage() 264
Cassandra troubleshooting
disk performance 231
high CPU usage 229
high memory usage 229
hotspots 230
mailing list 232
OpenJDK behaviour 231
slow snapshot 232
Cassandra, with Hadoop MapReduce
about 249
ColumnFamilylnputFormat 249
ColumnFamilyOutputFormat 250
ConfigHelper 250
cassandra.yaml
about 160
column_index_size_in_kb 162
commitlog_sync 161
commitlog_total_space_in_mb 162
index_interval 161
cassandra.yaml, settings
key_cache_save_period 156
key_cache_size_in_mb 156
CA system 33
CFS 260

cfstats command

about 192

executing, code 192

statistics 193
chunk_length_kb 159
cleanup 173
clearsnapshot command 202
CLI 123
Closure

URL 302
cluster

about 37

launching, script used 140-144

nodes, adding 168-170

nodes, removing 173
cluster name

about 127

working 127
cluster_name 168
clusters

large clusters on AWS, managing 184, 185
CMSlInitiatingOccupancyFraction 164
code pattern 109
collection support

about 298

lists 300

maps 300

set, operations 299
column

about 68

representating, diagram 68
column family

about 73

daily_hits 74

diagram 73

dynamic 73

static 73,74
ColumnFamilyInputFormat 249
ColumnFamilyOutputFormat 250
column family statistics. See cfstats com-

mand

column_index_size_in_kb 162
column_metadata property 75
COMMAND keyword 192
command-line interface. See CLI
CommitLog 38, 52,53
commit log directory, Cassandra

[307]

setting up 125,126 methods 250

commitlog_sync 161 ConfigHelper, Cassandra Hadoop
commitlog_total_space_in_mb 162 integration
compaction bulk loading 251
about 58,59, 110 secondary index support 252
major compaction 59 wide row support 251
minor compaction 59 consistency, CAP theorem 31, 32
compaction process 40 consistency level (CL) 49
compactionstats command 198 coordinator node 39
compaction strategy counter column
leveled 154 about 69
right compaction strategy, selecting 154 example 69
size tiered 154 replicate_on_write 70
compaction_strategy_class 278 working 69,70
compact storage 279, 280 CounterColumnFamily validator 69
comparator CP system 34
about 75 CPU 112
setting 76 CQL
comparator keyword 75 about 271
compare and set (CAS) 294 history 272
components, Cassandra CQL3
anti-entropy mechanism 62 ALTER KEYSPACE query 292
CommitLog 52, 53 ALTER TABLE query 289
compaction 58, 59 basics 275
failure detector 45 BATCH querying 293
gossip protocol 43, 44 Compact storage 279, 280
hinted handoff 61 CREATE KEYSPACE query 276
Log Structured Merge tree 51 CREATE TABLE query 276, 278
MemTable 54 DELETE query 288
messaging service 43 DROP INDEX query 293
partitioner 46, 47, 48 DROP KEYSPACE query 293
read repair mechanism 62 DROP TABLE query 293
replication 48, 49, 50 for Thrift refugees 272
SSTable 55 INSERT query 281
tombstones 59, 60 LIMIT clause 287
Composite column names 86 ORDER BY clause 286
compression secondary index, creating 280
enabling 158, 159 select expression 282
compression_parameters:chunk_length_kb SELECT query 282
278 TRUNCATE query 289
compression_parameters:crc_check_chance UPDATE query 287
278 USE statement 294
ConcurrentLinkedHashCacheProvider 157 USING CONSISTENCY clause 287
concurrent mark and sweep garbage WHERE clause 283, 284, 285
collector (CMS GC) 164 CQL 3, for Thrift refugees
ConfigHelper composite columns 274, 275
about 250 wide rows 272-274

[308]

CQL shell (cqlsh) 272
CREATE KEYSPACE query 276
Create, Read, Update, and Delete (CRUD)

from Tarball 206
OpsCenter agent, setting up 208, 209
prerequisites 204-206

about 7 DataStax OpsCenter installation,
with cassandra-cli 12-14 prerequisites
CREATE TABLE query 276, 278 Java 6 204

Curator library 104
custom comparator

OpenSSL 205, 206
Python 2.6+ 205

writing 77 sysstat 205
data types
D about 75

Cassandra 1.2 supporting 76, 77

column, sorting 81, 83

custom comparator, writing 77, 78
defining, comparators used 75

inverse index, with composite keys 86-88
inverse index, with super column family

daemon (ntpd) 69
datacenters
multiple 9
data directory, Cassandra
setting up 125, 126

Data Explorer screen 210

data files 58

data management, Hadoop
about 239
DataNodes 240
NameNode 239

data model 9,10

DataNodes 240

DataStax
about 260
OpsCenter 202
URL 72,202

DataStax Enterprise
about 268
URL 268

DataStax OpsCenter
about 202
administrating with 209, 210
Cluster View, screenshot 203
community version 203
enterprise version 203
features 203
installing 204
monitoring with 209, 210
other features 210
screenshot 208
URL 210
versions 203

DataStax OpsCenter installation
Cassandra cluster, running 206

83, 84
primary index 79, 80
secondary index 88-91
simple groups 80, 81
validating, validators used 75
wide-row index 80
dead node
removing 175,176
decommission 176
decommission command 199
DELETE query 288, 289

describering [<Keyspace_name>]

command 195

disablegossip 176
drain command 199
DROP INDEX query 293
DROP KEYSPACE query 293
DROP TABLE query 293
dynamic column family

about 73

column, sorting 76

syntax 74
DynamicSnitch 41
Dynamo 36

E

EBS
about 111
used, for troubleshooting 231

[309]

EC2MultiRegionSnitch 135
Ec2Snitch 135
EC2 Snitch 128
EC2 users 128
EiB (Exabibyte) 111
Elastic Block Store. See EBS
Eventual Consistent Systems 34, 35
expiring column

about 70,71

example 70,71

using 105, 106

working 70

F

failure detection 45
FailureDetector 39, 45

G

garbage collection 163
Garbage First Garbage Collector (G1 GC)
164
gc_grace_seconds 278
Google BigTable 36
Google File System (GFS)
URL 238
Google MapReduce
URL 238
Gossip and Failure Detection 46
Gossiper module 44
GossipingPropertyFileSnitch 134
gossip protocol 43, 44
group functions 67
groups column family 80

H

Hadoop
about 236, 238
Cassandra, integrating with 237
data management 239
HDEFS 238
in Cassandra cluster 259, 260
installation, testing 246-249
reliability 242
setting up 243-245
using 236

Hadoop Distributed File System. See HDFS

Hadoop MapReduce
about 240, 241
JobTracker 242
TaskTracker 242
hard disk capacity
calculating 110, 111
calculating, rules 111
hard disk capacity calculation
CPU 112
network 113
nodes 112
RAM 112
HDEFS
about 238
ext3 filesystems 238
features 238
shortcomings 238
high throughput hotspots 97-101
high throughput rows 97-101
hinted handoff 39, 61
horizontal scaling 30
hostname parameter 190
hotspot 18

index files 57
index_interval 161
info command 198, 199
initial token
about 129, 168
tricks 169, 170
working 129
initial_token 150
INSERT query 281
installation
Cassandra, on local machine 10-12
instance store 111
inverse index
with composite keys 86-88
with super column family 84, 85
with super column family 83

J

Java
heap 163

[310]

URL 301
Java Development Kit (JDK) 10
Java Management Extension. See JMX

interface

Java Native Access. See JNA library
Java Native Access (JNA) 165
Java Runtime Environment. See JRE
java -version command 117
Java Virtual Machine. See JVM
JBOD

improvements 296, 297
JConsole

used, for MBeans accessing 189-191
JConsole methods 191
JConsole summary tab 190
JMX interface

about 187,189

JConsole used, for MBeans accessing 189-

191

MBeans packages 188

URL 188
JMX plugin

installing, steps 217
JNA library

about 117

installing 121
JobTracker, Hadoop MapReduce 242
JRE

about 117

configuring 118

installing 118
JRE 6

downloading, URL 118
Just a bunch of disks. See JBOD
JVvM

garbage collection 163, 164

Java heap 163

options 164

tweaking 163

K

key cache 156
key_cache_keys_to_save 157
key_cache_save_period 156, 157
key_cache_size_in_mb 156

Keyspace

about 9, 37,75

creating 145

properties 75

setting up 20
key_validation_class command 75
key variable 124

L

Level Compaction Strategy 58
LeveledCompactionStrategy 154
libexec directory 217

LIMIT clause 287

Linux x64.bin version 120

Linux x64-rpm.bin version 118
listen_address 168

load balancing 183,184

load test tool 149

Local Process radio button 189
Log Structured Merge (LSM) 38, 51

major compaction 59
Managed Beans. See MBeans
manual index. See wide-row index
map 68
MapReduce frameworks examples
MRNextGen 243
MRv2 243
Yet Another Resource Negotiator
(YARN) 243
MapReduce (MR). See Hadoop MapReduce
maps 300
MBeans
about 187
accessing, JConsole used 189, 190
packages 188
MBeans packages
org.apache.cassandra.db package 188
org.apache.cassandra.internal package 188
org.apache.cassandra.metrics package 188
org.apache.cassandra.net package 188
org.apache.cassandra.request package 188
MBeans tab 190
memlock parameter 114
MemTable 38, 54

[311]

Merkle tree 44, 63

Messaging Layer 38

messaging service 43

methods, ConfigHelper
SetInputColumnFamily 250
setInputlnitial Address 250
setInputPartitioner 250
SetInputRpcPort 250
SetInputSlicePredicate 251
SetOutputColumnFamily 251
SetOutputlnitial Address 251
SetOutputPartitioner 251
SetOutputRpcPort 251

minor compaction 59

min_threadhold 154

move command 199

Murmur3 partitioner
about 47,132, 297
working 132

N

Nagios
about 210
installing 211, 213
URL 210
used, for monitoring 224, 225
used, for notification 224, 225
Nagios installation
Apache httpd, configuring 214
Nagios plugins 216-225
Nagios plugins, installing 214
Nagios, setting up as service 215
preparation 212
prerequisites 211
prerequisites, GCC compiler 212
prerequisites, GD graphics library 212
prerequisites, httpd 211
prerequisites, PHP 211
steps 213
Nagios plugins
about 216
configuration, updating 222-224
CPU, monitoring 220, 221
directory, URL 216
disk space, monitoring 220, 221
for Cassandra 216

GitHub, URL 216
JMX monitor, setting up 221
setting up 220
NameNode 239
narrow column family. See static column
family
NET
URL 302
netstats command
about 193
snippet 194
network 113,165
Network Time Protocol. See NTP
NetworkTopologyStrategy
about 136
multiple data center setups 137-139
new tokens 170
Node.js
URL 301
nodes
about 8,112
adding, to cluster 168, 169
dead node, removing 175
live node, removing 173
new node, starting 171
removing 179, 180
removing, from cluster 173
replacing 176, 178
nodetool utility
about 187,191
administrating with 199-202
cfstats command 192, 193
compactionstats command 198
decommission command 199
drain command 199
info command 198, 199
monitoring with 192-197
move command 199
netstats command 193, 194
removetoken command 200
repair command 200, 201
ring command 194, 195, 196
snapshot command 202
tpstats command 196, 197
upgradesstable command 201
Normal Forms

URL 65

[312]

NoSQL 30, 31
notorious R+W> N inequality 50
NRPE plugin
installing, on host machine 218, 219
installing, on Nagios machine 219
used, for remote plugins executing 217-219
NTP
about 115
configuring 115
installing 115

(0

OLTP
URL 29
OpenSSL
about 205
versions 206
Oracle Java 6
installing 117
Oracle Java 6 installation
CentOS system 118, 119
Debian system 119-121
RHEL system 118,119
Ubuntu system 119-121
ORDER BY clause 286
Ordinary Object Pointers (OOPs) 164
Out-Of-Memory (OOM) 115

P

pages 115
paging 115
partitioner
about 37, 46, 47, 48,129
ByteOrderPartitioner 79
RandomPartioner 79
types 130
types, byte-ordered partitioner 131
types, Murmur3 partitioner 132
types, random partitioner 130
using 79
working 129
partition-tolerance, CAP theorem 33
patterns
about 92
usage, for Cassandra 92
patterns usage

atomic update 93, 94
batch_mutate 106
expiring column, using 105, 106
single column entity storage, avoiding 92,
93
super columns, avoiding 102
time series data, managing 95-102
transaction, cons 104, 105
transaction woes 103
Performance Metrics heading 210
Performance screen 210
performance testing
about 153
bloom filter, tuning 159, 160
cache, settings 156, 157
compaction strategy, leveled 154
compaction strategy, size tiered 154
compression, enabling 158
key cache 156
read performance 153
right compaction strategy, selecting 154
row cache 155
write performance 153
permission parameter 146
phi (¢) 45
PHP
URL 301
Pig
about 261
documentation, URL 266
installing 261, 263
primary index
about 79
working 79, 80
programming languages
support for 301-303
PropertyFileSnitch 133,134
Pycassa 20
Python 20
URL 301
Python 2.6+ 205

Q

query profiling tool 298
QUORUM 151

[313]

R

RA 116,117
RackInferringSnitch 134, 135
Rackspace 112
RAM 112
random partitioner
about 130
working 130
RandomPartitioner 47
RDBMS
about 29
issues 30
readahead. See RA
read performance 153
Read Repair 41
read_repair_chance 277
read repair mechanism 62
Remote process radio button 190
removetoken command
about 200
options 200
options, removetoken force 200
options, removetoken status 200
options, removetoken <token> 200
repair command
about 200
format 200
scenarios 201
scenarios, outage 201
scenarios, periodic repair 201
working 200
Replica placement strategies
about 136
NetworkTopologyStrategy 136-139
SimpleStrategy 136
replica placement strategy 79
replicate_on_write 278
replication 30-50
replication factor (RF) 41
Replication Strategy 40
requirements evaluation
hard-disk capacity 110, 111
hard-disk capacity, CPU 112
hard-disk capacity, network 113
hard-disk capacity, node 112
hard-disk capacity, RAM 112

restoring

cluster 182
ring 37,48
ring command

about 194

ring [<Keyspace>] 195
ring status 170
row cache 155
row_cache_keys_to_save 157
row_cache_provider 157
row_cache_save_period 157
row_cache_size_in_mb 157
row key 73
Ruby

URL 302

S

scaling 168
Schema screen 210
script

used, for cluster launching 140-144
secondary index

about 88

code 88,90

creating 280

working 91
sector size (SSZ) 117
secure shell (SSH) 243
SEDA

about 188

URL 188
seed node

about 45,127, 168

broadcast address 128

listen address 128

RPC address 128
select expression 282
SELECT query 282
SerializingCacheProvider 157
SetInputColumnFamily method 250
setInputPartitioner method 250
SetInputRpcPort method 250
SetInputSlicePredicate method 251
SetOutputColumnFamily method 251
SetOutputInitial Address method 251
SetOutputPartitioner method 251

[314]

SetOutputRpcPort method 251
sharding 30
SHOW SCHEMA command 15
simple groups 80, 81
SimpleSnitch 40, 133
SimpleStrategy 136
single point of failure (SPOF) 45, 260
Size Tiered Compaction Strategy 58, 154
SnappyCompressor 158
snapshot
cleaning 181
taking 180
snapshot command
about 180, 202
options 202
snitches
about 132
EC2MultiRegionSnitch 135
Ec2Snitch 135
efficient read and write, routing 132, 133
GossipingPropertyFileSnitch 134
PropertyFileSnitch 133, 134
RackInferringSnitch 134
replica placement 132
SimpleSnitch 133
Snitch function 40
software requirements
JNA library, installing 121
Oracle Java 6, installing 117-121
Solandra
about 268
development note 268
URL 266
Solid State Drives. See SSD
Solr. See Apache Solr
sort functions 67
SSD 111
SSTable
about 38, 55
Bloom filter 55, 56
sstable_compression 158
Staged Event Driven Architecture. See
SEDA
static column family
about 74
code 74
column, sorting 76

Storage Layer 38
StorageProxy class 38
STRATEGY_CLASS
options 276
stress testing 149-152
super column
about 72
avoiding 102
avoiding, reasons 102
diagram 72
drawbacks 72
sysstat 205
system configurations
about 113
clock, synchronizing 115, 116
disk RA 116
memory, swapping 114
user limits, optimizing 113, 114
SystemManager 20

T

TaskTracker, Hadoop MapReduce 242
thread pool statistics. See tpstats command
time series data
advanced time series 101, 102
high-throughput hotspots 97-101
high-throughput rows 97-101
managing 95
wide-row time series 95-97
timestamp attribute 92
time-to-live attribute. See TTL
TimeUUID 151
tokens
about 79
moving 171,173
tombstone 59, 60
total statistic 193
tpstats command
about 196
usage output 196, 197
transaction
about 103
disadvantages 103, 104
TRUNCATE command 15
TRUNCATE query 289
TTL (Time To Live) 70, 281

[315]

tunable 49

U

ulimit -a command 114
update-alternatives utility 120
update-dependencies utility 118
UPDATE query 287, 288
upgradesstable command 201
userName column 68

user object 92

users column family 68, 80

USE statement 294

USING CONSISTENCY clause 287
UTF8Type comparator 81, 83
UTE8Type text 74

\"

validators
about 75
setting 76
Virtual Nodes. See VNodes
VisualVM
about 191
URL 191
VNodes 294, 296

w

WHERE clause 283, 284, 285
wide column family. See dynamic column
family
wide-row index 80
wide-row time series
about 95-97
issues 98
solution 98
write performance 153

Y

Yahoo! Cloud Serving Benchmark. See
YCSB 152
Yet Another Resource Negotiator (YARN)
URL 243

Y4

ZkMultiLock class 104
ZKkTransaction class 104

[316]

open source

community experience distilled

PUBLISHING

Thank you for buying
Mastering Apache Cassandra

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Cassandra
High Performance Cookbook

Cassandra High Performance

Cookbook
ISBN: 978-1-84951-512-2 Paperback: 310 pages

Over 150 recipes to design and optimize large-scale
Apache Cassandra deployments

1. Get the best out of Cassandra using this
efficient recipe bank

2. Configure and tune Cassandra components to
enhance performance

3. Deploy Cassandra in various environments and
monitor its performance

4. Well illustrated, step-by-step recipes to make
all tasks look easy!

Short | Fast | Focuse

Apache Cassandra for
Developers Starter

Vivek Mishra

Instant Apache Cassandra for

Developers Starter
ISBN: 978-1-78216-390-9 Paperback: 50 pages

Start developing with Cassandra and learn how to
handle big data

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate results

2. Tune and optimize Cassandra to handle big data

3. Learn all about the Cassandra Query Language
and Cassandra-CLI

4. Practical examples of Cassandra’s Java APIs

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Scaling Big Data with Hadoop

and Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages
Learn exciting new ways to build efficient, high

performance enterprise search repositories for Big
Data using Hadoop and Solr

1. Understand the different approaches of making
Scaling Big Data with Solr work on Big Data as well as the benefits
Hadoop and Solr

and drawbacks

2. Learn from interesting, real-life use cases for
Big Data search along with sample code

3. Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr

Instant Cassandra Query
Language
ISBN: 978-1-78328-271-5 Paperback: 54 pages

A practical, step-by-step guide for quickly getting
started with Cassandra Query Language

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

Short | Fas.t | F-J-:us-z
Cassandra Query
Language 2. Covers the most frequently used constructs
ol S PR using practical examples

3. Dive deeper into CQL, TTL, batch operations,
Amresh Singh [PACKT] and more

4. Learn how to shed Thrift and adopt a
CQL-based binary protocol

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Quick Start
	Introduction to Cassandra
	Distributed database
	High availability
	Replication
	Multiple data centers

	A brief introduction to a data model
	Installing Cassandra locally
	CRUD with cassandra-cli
	Cassandra in action
	Modeling data
	Writing code
	Setting up
	Application

	Summary

	Chapter 2: Cassandra Architecture
	Problems in the RDBMS world
	Enter NoSQL
	The CAP theorem
	Consistency
	Availability
	Partition-tolerance

	Significance of the CAP theorem

	Cassandra
	Cassandra architecture
	Ring representation
	How Cassandra works
	Write in action
	Read in action

	Components of Cassandra
	Messaging service
	Gossip
	Failure detection
	Partitioner
	Replication
	Log Structured Merge tree
	CommitLog
	MemTable
	SSTable
	Compaction
	Tombstones
	Hinted handoff
	Read repair and Anti-entropy

	Summary

	Chapter 3: Design Patterns
	The Cassandra data model
	The counter column
	The expiring column
	The super column
	The column family
	Keyspaces
	Data types – comparators and validators
	Writing a custom comparator
	The primary index
	The wide-row index
	Simple groups
	Sorting for free, free as in speech
	An inverse index with a super column family
	An inverse index with composite keys
	The secondary index

	Patterns and antipatterns
	Avoid storing an entity in a single column (wherever possible)
	Atomic update
	Managing time series data
	Wide-row time series
	High throughput rows and hotspots
	Advanced time series

	Avoid super columns
	Transaction woes
	Use expiring columns
	batch_mutate

	Summary

	Chapter 4: Deploying a Cluster
	Evaluating requirements
	Hard disk capacity
	RAM
	CPU
	Nodes
	Network

	System configurations
	Optimizing user limits
	Swapping memory
	Clock synchronization
	Disk readahead

	The required software
	Installing Oracle Java 6
	RHEL and CentOS systems
	Debian and Ubuntu systems

	Installing the Java Native Access (JNA) library

	Installing Cassandra
	Installing from a tarball
	Installing from ASFRepositoy for
Debian/Ubuntu
	Anatomy of the installation
	Cassandra binaries
	Configuration files

	Configuring a Cassandra cluster
	The cluster name
	The seed node
	Listen, broadcast, and RPC addresses

	Initial token
	Partitioners
	The random partitioner
	The byte-ordered partitioner
	The Murmur3 partitioner

	Snitches
	SimpleSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	RackInferringSnitch
	EC2Snitch
	EC2MultiRegionSnitch

	eplica placement strategies
	SimpleStrategy
	NetworkTopologyStrategy

	Launching a cluster with a script
	Creating a keyspace

	Authorization and authentication
	Summary

	Chapter 5: Performance Tuning
	Stress testing
	Performance tuning
	Write performance
	Read performance
	Choosing the right compaction strategy
	Size tiered compaction strategy
	Leveled compaction
	Row cache
	Key cache
	Cache settings
	Enabling compression
	Tuning the bloom filter

	More tuning via cassandra.yaml
	index_interval
	commitlog_sync
	column_index_size_in_kb
	commitlog_total_space_in_mb

	Tweaking JVM
	Java heap
	Garbage collection
	Other JVM options

	Scaling horizontally and vertically
	Network

	Summary

	Chapter 6: Managing Cluster – Scaling, Node Repair, and Backup
	Scaling
	Adding nodes to a cluster
	Removing nodes from a cluster
	Removing a live node
	Removing a dead node

	Replacing a node
	Backup and restoration
	Using Cassandra bulk loader to restore the data

	Load balancing
	Priam – managing large clusters on AWS
	Summary

	Chapter 7: Monitoring
	Cassandra JMX interface
	Accessing MBeans using JConsole

	Cassandra nodetool
	Monitoring with nodetool
	cfstats
	netstats
	ring and describering
	tpstats
	compactionstats
	info

	Administrating with nodetool
	drain
	decommission
	move
	removetoken
	repair
	upgradesstable
	snapshot

	DataStax OpsCenter
	OpsCenter Features
	Installing OpsCenter and an agent
	Prerequisites
	Running a Cassandra cluster
	Installing OpsCenter from Tarball
	Setting up an OpsCenter agent

	Monitoring and administrating with OpsCenter
	Other features of OpsCenter

	Nagios – monitoring and notification
	Installing Nagios
	Prerequisites
	Preparation
	Installation
	Nagios plugins

	Cassandra log
	Enabling Java Options for GC Logging

	Troubleshooting
	High CPU usage
	High memory usage
	Hotspots
	Open JDK may behave erratically
	Disk performance
	Slow snapshot
	Getting help from the mailing list

	Summary

	Chapter 8: Integration
	Using Hadoop
	Hadoop and Cassandra
	Introduction to Hadoop
	HDFS – Hadoop Distributed File System
	Data management
	Hadoop MapReduce
	Reliability of data and process in Hadoop

	Setting up local Hadoop
	Testing the installation

	Cassandra with Hadoop MapReduce
	ColumnFamilyInputFormat
	ColumnFamilyOutputFormat
	ConfigHelper
	Wide-row support
	Bulk loading
	Secondary index support

	Cassandra and Hadoop in action
	Executing, debugging, monitoring, and looking at results

	Hadoop in Cassandra cluster
	Cassandra filesystem

	Integration with Pig
	Installing Pig
	Integrating Pig and Cassandra

	Cassandra and Solr
	Development note on Solandra
	DataStax Enterprise – the next level Solr integration

	Summary

	Chapter 9: Introduction to CQL 3 and Cassandra 1.2
	CQL – the Cassandra Query Language
	CQL 3 for Thrift refugees
	Wide rows
	Composite columns

	CQL 3 basics
	The CREATE KEYSPACE query
	The CREATE TABLE query
	Compact storage
	Creating a secondary index
	The INSERT query
	The SELECT query
	select expression
	The WHERE clause
	The ORDER BY clause
	The LIMIT clause
	The USING CONSISTENCY clause
	The UPDATE query
	The DELETE query
	The TRUNCATE query
	The ALTER TABLE query
	Adding a new column
	Dropping an existing column
	Modifying the data type of an existing column
	Altering table options

	The ALTER KEYSPACE query
	BATCH querying
	The DROP INDEX query
	The DROP TABLE query
	The DROP KEYSPACE query
	The USE statement

	What's new in Cassandra 1.2?
	Virtual Nodes
	Off-heap Bloom filters
	JBOD improvements
	Parallel leveled compaction
	Murmur3 partitioner
	Atomic batches
	Query profiling
	Collections support
	Sets
	Lists
	Maps

	Support for programming languages
	Summary

	Index

