Couchbase
Essentials

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Essentials

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Couchbase Essentials
Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Getting Comfortable with Couchbase

The NoSQL landscape

NoSQL taxonomies

Installing Couchbase
Installing Couchbase on Linux

Installing Couchbase on Windows

Installing Couchbase on Mac OS X

Ports

Running Couchbase for the first time

Exploring the Couchbase Console

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase architecture

Couchbase clusters

Replication

Balancing and rebalancing
Couchbase SDKs

RAM matters

Summary

2. Using Couchbase CRUD Operations
The Couchbase SDKs

Basic operations
Connecting to your cluster
Creating and updating a record
Reading and deleting records
Advanced CRUD operations
Temporary keys
Appending and incrementing data
Storing complex types
Concurrency and locking

Asynchronous operations

Durability operations

Summary

3. Creating Secondary Indexes with Views

Couchbase documents

Couchbase indexes

MapReduce

Map functions

Reduce functions

Couchbase MapReduce
Basic mapping

Basic reducing

Couchbase views

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Console

Development views

Design documents

Creating a view
Querying views

Grouping

Key queries

Eventual consistency

Couchbase SDKs and views

Summary
4. Advanced Views

Querying by type

Nested collections

Range queries

Multiple keys per document
Compound indexes
Grouping keys

Emitting values
Querying with beer-sample

Querying all documents by type

Counting breweries by location

Finding beer documents by brewery

Collated views

Summary

5. Introducing N1QL
Installing N1QL
Simple queries

Null or missing properties
String utilities

Aggregation and math

Complex structures

www.it-ebooks.info

http://www.it-ebooks.info/

Working with collections

Joins

SDK support
Summary
6. Designing a Schema-less Data Model

Key design
Keys, metadata, and RAM
Predictable keys
Unpredictable keys
Storing keys
Key restrictions

Document design
Denormalization
Object-to-document mappings
Data types
Document separation
Object schemas
Schema-less structure changes

Object and document properties

Document relationships

Finalizing the schema

Summary
7. Creating a To-do App with Couchbase

A simple to-do schema
Working with SDKs
A brief overview of MVC
Using SDK clients

Creating a task

Listing tasks

Showing only incomplete tasks

Nested tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
A. Couchbase SDKs

Couchbase Java SDK

Current version

How to obtain it
The basics
Couchbase .NET SDK

Current version

How to obtain it
The basics
Couchbase PHP SDK

Current version

How to obtain it

The basics
The Couchbase Node.js SDK

Current version

How to obtain it
The basics
Couchbase Python SDK

Current version

How to obtain it
The basics
Couchbase Ruby SDK

Current version

How to obtain it
The basics
Couchbase C SDK

Current version

How to obtain it

Index

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Essentials

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Essentials
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1200215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-449-3

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author

John Zablocki
Reviewers

Roy Enjoy

Philip Hanson
Aleksandar Micovic
Chris Wilkinson
Commissioning Editor
Pramila Balan
Acquisition Editors
Richard Gall

Richard Brookes-Bland
Content Development Editor
Kirti Patil

Technical Editors
Shashank Desai

Rikita Poojari

Copy Editor

Vikrant Phadke

Project Coordinator
Nidhi Joshi
Proofreaders

Safis Editing

Maria Gould

Paul Hindle

Indexer

Rekha Nair

Production Coordinator
Nilesh R. Mohite
Cover Work

www.it-ebooks.info

http://www.it-ebooks.info/

Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

John Zablocki is the director of information technology at EF High School Exchange
Year in Cambridge, Massachusetts, USA. Previously, he worked at Couchbase Inc. as a
developer advocate, maintaining the .NET SDK and delivering training to customers and
users alike. John is the author of O’Reilly’s Orchard CMS. He is a frequent presenter at
community events and has run Code Camps and user groups. He holds a Master’s degree
in computer science from Rensselaer at Hartford, where he became an enthusiast of open
source technology. John can be approached online at http://about.me/johnzablocki and
around Cambridge with his daughter, Mary Katherine; his dog, Lady; and his Fender
Jaguar.

www.it-ebooks.info

http://about.me/johnzablocki
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Roy Enjoy started to improve his geeky skills with a Commodore 64, some QBasic, and
lots of Boulderdash. Then, the Internet exploded after bulletin board systems. Since it is
always a shovel man who gets paid first in a gold rush, he decided to thrive within web
technologies.

After finishing courses in a couple of IT-oriented schools and playing with a large number
of different languages, frameworks, and databases, he worked in different parts of the
world, including India, Australia, Turkey, the Netherlands, and Serbia. He is currently
living in Australia, and he is trying to learn 3D animation / VFX programming and
computer-generated imagery these days.

As an open source evangelist, Roy maintains an API documentation and source code
search engine for the Python programming language, named pydoc.net, which is also an
open source project.

Philip Hanson is a full-time professional software developer with a diverse background
ranging from micro-ISV SaaS to capital-e enterprise development. He continues to
experiment with new languages, techniques, and approaches to solve the world’s
problems.

Aleksandar Micovi¢ started programming at the age of 12. Many years later, he
graduated from the University of Toronto with a degree in computer science. Today, he’s a
professional software engineer and consultant in Belgrade, Serbia, with clients spanning
across the globe. When he’s not working, he enjoys cooking, reading, and traveling. You
can contact him at http://aleksandarmicovic.com/.

Chris Wilkinson has spent years in the software development industry after attaining a
degree in Computer Games Programming at the University of Teesside. After making the
move into business IT upon leaving the university, Chris has worked all over the world,
developing Java applications for businesses in many verticals, including finance,
aerospace, and the public sector. Specialized in web and big data technologies, Chris now
manages the development team for Askaris Information Technology, a new start-up
business developing software for some of the largest oilfield drilling companies in the
world.

www.it-ebooks.info

http://aleksandarmicovic.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Not too long ago, I was fortunate enough to have worked for Couchbase Inc. with the
developer solutions team. In my role as a developer advocate, I had two primary
responsibilities: maintaining the Couchbase .NET SDK and training Couchbase users on
how to develop for Couchbase Server.

During my tenure on the SDK team, I worked with hundreds of developers around the
world who were using Couchbase Server for a wide variety of solutions. Some were using
Couchbase Server for its distributed caching abilities, while others needed a model that
could support near-real-time analytics over a flexible schema. I was always impressed
with Couchbase Server’s ability to handle such a vast number of development scenarios.

Through the countless meetings I had with the development community and customers
alike, it became clear to me that NoSQL is far from a technology fad. Along with cloud
computing and mobile services, NoSQL has become a part of the fabric from which
modern applications are woven.

As with relational databases before them, NoSQL databases such as Couchbase Server are
quickly nearing the “required knowledge” status for application developers. Modern
applications that need to reach a massive scale or require greater data model flexibility
have found success with non-relational systems.

It is a tremendous opportunity to be able to share my experience at Couchbase with you,
the reader. This is an exciting technology, and this book contains the tools you need to get
started with Couchbase development.

www.it-ebooks.info

http://www.it-ebooks.info/

What this book covers

Chapter 1, Getting Comfortable with Couchbase, introduces Couchbase Server and
provides details on obtaining and installing it. It also walks you through setting up
Couchbase Server for the first time.

Chapter 2, Using Couchbase CRUD Operations, provides an overview of basic Couchbase
Server operations. Basic SDK usage is demonstrated while exploring the various CRUD
API methods.

Chapter 3, Creating Secondary Indexes with Views, explains in detail the programming
model of MapReduce. After this exploration, the basics of using MapReduce within
Couchbase Server are explored.

Chapter 4, Advanced Views, explores common view patterns for Couchbase development,
following on the previous chapter’s discussion of MapReduce.

Chapter 5, Introducing N1QL, introduces the prerelease Couchbase query language,
N1QL.

Chapter 6, Designing a Schema-less Data Model, discusses many of the design options
that must be considered when building Couchbase Server applications. Both key/value and
document schemas are covered.

Chapter 7, Creating a To-do App with Couchbase, provides an overview on how to
convert Couchbase Server to a basic to-do application.

Appendix, Couchbase SDKs, contains a brief introduction to the official Couchbase
SDKs, including installation and basic usage.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What you need for this book

In order to follow along with the examples in this book, you will need to install Couchbase
Server 3.0.x. Installer packages are available for Windows, Mac OS X, and multiple Linux
distributions. Couchbase Server comes in both Community and Enterprise editions, and
either will work.

The SDK examples shown in this book mostly use the .NET and Couchbase Server SDKs,
though any SDK can be used. To try out the SDK samples, you will need to have a
development environment for your chosen language and the SDK itself. Details on where
to obtain and install both the server and the clients are provided early in the book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Who this book is for

This book is for those application developers who want greater flexibility and scalability
for their software. Whether you are familiar with other NoSQL databases or have used
only relational systems, this book will provide you with enough background for you to
proceed at your own pace. If you are new to NoSQL document databases, the design
discussions and introductory material will give you the information you need to get started
with Couchbase.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and explanations of their
meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “To
update an existing document, we use the replace operation.”

A block of code is set as follows:

function(doc, meta) {
emit(meta.id, null);

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

function(doc, meta) {
if (doc.type == "beer") {
emit(null, null);

3
}

Any command-line input or output is written as follows:

./cbg-engine-couchbase http://localhost:8091

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Brewery documents in
the beer-sample bucket contain address information.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Getting Comfortable with
Couchbase

Couchbase Server has quickly emerged as one of the leading NoSQL databases. Known
for powering apps and sites such as Viber, PayPal, LinkedIn, and eBay, Couchbase Server
easily serves up terabytes to petabytes of data. Whether used as a distributed cache or a
document database, Couchbase Server has become a significant contributor to the growth
of the Internet as a whole.

Long before the term NoSQL started to grace the pages of blogs, tech journals, and
investor balance sheets, a technology called Memcached was providing life support for
relational databases. As these systems attempted to reach the scale demanded by modern,
Internet-based applications, it was clear that Memcached could help. Still widely used
today, Memcached is a distributed key/value store used to provide a caching layer for
applications.

Some of the developers on the open source Memcached project saw the potential to take
the system beyond a simple cache. They introduced new features such as a binary
protocol, better cluster management, and most importantly, persistence. This new and
durable offshoot of Memcached became known as Membase. A company of the same
name was formed to support the project (it is still open source) and provide customers
with support in their production environments.

Membase quickly gained popularity with developers who needed massive scalability.
From start-ups to stalwarts, this new database was becoming one of the disruptive
technologies that would forever change the way applications store data. Around the same
time, developers were starting to demand more flexibility from their databases. A
seemingly infinite number of web applications were built using Object Relational
Mappers (ORM) such as ActiveRecord, Hibernate, and SQLAlchemy.

ORMs attempt to simplify the object-to-relational mapping problems often associated with
working with a highly normalized database. The basic problem is that the relational model
does not always look like an object-oriented model. ORMs hide the underlying data model
from the application layer, often by way of a significant amount of configuration. ORMs
also provide relational databases with a new lifeline.

One open source project that attempted to solve the object-to-relational mapping problem
by doing away with the relational side of things was CouchDB. The developers of
CouchDB built a database that, in their own words, was for developers and by developers.
Tables, columns, and rows were replaced by documents stored as JSON. The net result
was a system that stored data in structures similar to those found in the application layer.

Eventually, as both Membase and CouchDB matured, the developers of both systems
came together for what is one of the most important chocolate-meets-peanut-butter
moments in database history. The extremely scalable and reliable Membase would
eventually be married to the ever-flexible and developer-friendly CouchDB. Each database

www.it-ebooks.info

http://www.it-ebooks.info/

would take part of its maiden name in the merger, which was called Couchbase.

Today, Couchbase is responsible for developing and supporting Couchbase Server. The
combined products still remain open source but are no longer tied to their parent projects.
While many of the features of Couchbase were inspired by CouchDB and Memcached, the
code is anything but a “copy-and-paste” from the parent projects. Make no mistake about
it! Couchbase is a standalone product optimized to be better than two otherwise great
projects.

www.it-ebooks.info

http://www.it-ebooks.info/

The NoSQL landscape

In the crowded market of NoSQL databases, Couchbase Server is one of the dominant
players. Its performance sets the bar high for its competitors. The rich feature set of
Couchbase Server also sets a new standard for what is expected from NoSQL databases.
As NoSQL is still a nascent field, Couchbase Server seems destined to influence its future.

All relational databases tend to be the same animal. Whether you’re using SQL Server or
MySQL, you could expect to find the same basic set of features. You store your data in
rows with strictly defined columns inside a table. You then modify your data using SQL’s
INSERT and UPDATE statements. You retrieve your data using SQL queries. In contrast,
NoSQL databases vary wildly from one system to the next. However, there are some
features you would expect to find across various NoSQL taxonomies.

Perhaps the most common feature in NoSQL databases is the lack of an imposed structure
on your data. While in practice, structures tend to be defined by your application layer, it
is permissible that your NoSQL records are like snowflakes—no two records are the same.
This flexibility has made NoSQL databases popular with developers, who no longer have
to work within the constraints of a relational schema and ORMs.

Another feature (or lack of a feature) that you could expect to find in NoSQL databases is
the lack of explicit ACID transactions. In other words, you won’t be able to wrap a series
of insertions or updates within a transaction. However, this does not mean that ACID
properties are not supported in NoSQL databases.

Atomicity is widely supported in NoSQL databases. Partial writes are not possible. Either
an entire record is written or nothing is written. Consistency in NoSQL ranges from
eventual (delayed) consistency to strict consistency. Isolation is implicit, which means
that a read will never return values from an update in progress. Like consistency,
durability varies within NoSQL databases and is generally tunable.

The importance of full ACID compliance in NoSQL is somewhat diminished. Often, the
need for transactions is dictated by the relational model, where related data is stored in one
or more tables. In NoSQL databases, it is common to write related data to a single
structure or record. In other words, a single NoSQL update or insertion might require
several updates or inserts in the relational world.

This modeling difference also reduces the need for features such as joins or strict
referential integrity. When records are stored in a denormalized fashion, a single query
may bring back the required object graph.

Of course, it’s likely that you will still need to make use of relational concepts in your
NoSQL data model. Full denormalization is often impractical in NoSQL. In these cases,
the applications that consume the data face an increased burden of being responsible for
handling the details that a relational database typically would have dealt with.

Beyond these basic features, NoSQL systems tend to become more and more disparate.
Instead, you will be more likely to find similar features between databases in the same

www.it-ebooks.info

http://www.it-ebooks.info/

NoSQL category. For example, CouchDB and MongoDB are both document stores. While
they are fundamentally very different databases, they are more similar to each other than
either of them is to a graph database such as Neo4j or a column database such as
Cassandra. In the next section, I’ll discuss the different categories of NoSQL databases
and describe how Couchbase fits into the big picture.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

NoSQL taxonomies

There are many different categories of NoSQL database. A broad definition of NoSQL
might consider everything from XML databases to cloud-based BLOB storage as parts of
the NoSQL landscape. However, in practice only a few NoSQL databases are widely used,
with the vast majority of developer mind share belonging to only two categories,
key/value and document stores.

Key/value stores are popular because of their simplicity. Records are stored and retrieved
via a key much like programmers use hash tables or dictionary structures to store data in
the memory. These systems tend to be highly performant.

Document stores are arguably the most popular of NoSQL databases, driven primarily by
the flexibility they offer. Documents are typically stored in a JSON or JSON-like
structure. JSON, being a notation for describing object graphs, is a natural fit for object-
oriented applications.

While nearly all popular NoSQL databases fall into one category or another, Couchbase is
both a key/value and a document store. Records are written to and read from Couchbase
using a key/value API. When those records are stored as JSON documents, Couchbase
provides document indexing, allowing queries on arbitrary properties in the document
structure.

Importantly, Couchbase does not sacrifice features to achieve its duplicity. Though it
might seem that such a hybrid system would necessarily be lacking in either its key/value
or document capabilities, Couchbase feels complete. As a key/value store, Couchbase
offers a rich API based on its Membase heritage. As a document store, Couchbase
supports the most important features from its “pure document relative” — CouchDB.

Two data storage models also provide developers with a great deal of flexibility.
Applications may be optimized using different approaches for different features; for
example, a social game might make use of Couchbase’s key/value interface to achieve
scaling when collecting or serving vast amount of data. That same application could then
use the document interface to retrieve aggregate statistics on players.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Couchbase

There are two editions of Couchbase available for download — Community and
Enterprise. While both editions are largely the same, there are two key differences. The
Community Edition is free to use for development and in your production systems.
However, there is no guarantee that patches (critical or small) will be made to this build in
a timely manner. This edition is intended primarily for development, or for those
developers who are okay with relying on free support (that is, the Couchbase forums).

The Couchbase Server Enterprise Edition requires the acceptance of an End User License
Agreement (EULA), with the user agreeing to install it on no more than two production
nodes. Use of more than two nodes requires the purchase of a support license. There are a
variety of support levels available. Enterprise Edition also receives priority patches and
new features ahead of the Community Edition. It is recommended for use in mission-
critical systems.

For the examples in this book, there are no meaningful differences between the two
editions. As such, we’ll use the Community Edition. How you install Couchbase Server
will depend on your operating system. Once it is installed, maintaining and developing the
server is generally the same experience on both Windows and Linux.

To get started, open your browser and go to http://www.couchbase.com/download. Here,
you’ll find the latest binaries. At the time of writing this book, the latest Enterprise Edition
is 2.5.1 and the latest Community Edition is 2.2.0.

www.it-ebooks.info

http://www.couchbase.com/download
http://www.it-ebooks.info/

Installing Couchbase on Linux

The Couchbase team maintains 32-bit and 64-bit builds for Ubuntu, CentOS, and Red Hat
Linux. After downloading the package on Ubuntu, run the following command to install
it:

sudodpkg -icouchbase-server-enterprise_2.2.0_x86_64.deb

For CentOS or Red Hat installation, run this command:

sudo rpm --install couchbase-server-enterprise_2.2.0_x86_64.rpm

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Couchbase on Windows

For Windows 7, Windows 8, and Windows Server, there is a setup program. Simply
download the installer, run the .exe file, and follow the steps of the wizard. When you
install Couchbase on a Windows machine, you’ll see the following prompt:

o The default number of ephemeral ports (MaxUserPort) may be

insufficient. See KB-196271. Would you like to increase this to 600007

Ephemeral port warning

By default, the highest port number that TCP may assign to an application requesting a
user port is 5000 on Windows systems. This value is generally sufficient for development
purposes, but in production deployments, Couchbase requires a greater number. For the
purpose of this book, leaving your default settings as they are is safe.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Couchbase on Mac OS X

Finally, if you’re developing on a Mac, there is a development-only build available. After
downloading the Mac package, double-click to unzip it. Then drag the contents into your
Applications directory. For obvious reasons, the Mac release is for development only.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ports

Couchbase Server is constructed using a series of components, each requiring access to a
different port. It’s common to encounter errors when trying to use Couchbase for the first
time, due to blocked ports. You’re more likely to have fewer port restrictions on your
development machine than on your production servers, but it’s still important to make sure
you have at least ports 8091, 8092, 11210, and 11211 open. Running a cluster requires
more port access, but for development, you’ll need to have the web admin accessible
(8091) and the API and client endpoint ports open (8092, 11210, and 11211).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running Couchbase for the first time

One feature that really sets Couchbase apart from the other NoSQL databases is its
administrative interface. When you install Couchbase, you also get this powerful web app
to manage your server. Moreover, the admin tool is simply a wrapper over a RESTful
management API supported by the server. In other words, any action you can perform
with the admin GUI can also be performed via your favorite DevOps tools.

You can get to the Couchbase Server web admin by opening your browser and going to
http://localhost:8091. If you’ve just completed installing Couchbase, there may be a
brief delay between the startup of the server and the startup of the admin. Refresh a couple
of times, and you should see something like this:

b - localhost £ = G | | Couchbase Consale (2.2.0)

"

Couchbase

Always scalable,
always on NoSQL

Couchbase Console for new install

The Couchbase Web Console provides a setup utility to get your cluster up and running.
Click on the blue Setup button to begin. The following screenshot shows the
configuration screen:

www.it-ebooks.info

http://www.it-ebooks.info/

CONFIGURE SERVER Step 1 of 5

Configure Disk Storage

Databases Path. c:/Program Files/Couchbase/Serverivar/lib/couchbase/data

Free: 132 GB
Indices Path: c:/Program Files/Couchbase/Server/var/lib/couchbase/data
Free: 132 GB

Configure Server Hostname

Hostname: 127.0.01

Join Cluster / Start new Cluster

If you want to add this server to an existing Couchbase Cluster, select
"Join a cluster now". Alternatively, you may create a new Couchbase
Cluster by selecting "Start a new cluster”.

If you start a new cluster the "Per Server RAM Quota" you set below will
define the amount of RAM each server provides to the Couchbase Cluster.
This value will be inherited by all servers subsequently joining the cluster,
s0 please set appropriately.

® Start a new cluster.

RAM Available: 8104 MB

Per Server RAM Quota: 4862 MB (256 MB — 7080 MB)

O Join a cluster now.

T Next

Configuring the server

The options found in step 1 of the configuration screen are fairly straightforward. The first
two fields are the paths where Couchbase will store data and indexes. The server hostname
uniquely identifies a node in a cluster. I’ll discuss clusters in more detail later in this
chapter. For now, you can think of a cluster as a collection of Couchbase server instances,
or nodes, with the same buckets.

www.it-ebooks.info

http://www.it-ebooks.info/

For development, it’s generally useful to set this to 127.0.0.1. Basically, you want to
ensure that whatever hostname you choose, it is not subject to change, as could be the case
when running in the cloud or attaching the cluster to a network outside of your home or
office.

The final option is whether to start a new cluster or connect to an existing cluster. In our
case, we’ll obviously be starting a new cluster. In a production environment, you’d want to
maximize the amount of RAM available to your node. For development purposes, you are
free to choose a lesser amount. The important thing to note here is that the amount of
RAM you allocate will be required by each node in your cluster. If you click on the Join a
cluster now option, you’ll be asked to provide the address of a node in the cluster and the
cluster credentials, as shown here:

O Start a new cluster.

® Join a cluster now.
IP Address: 127.0.0.1
Username: Administrator

Password:

Connecting to a new cluster

Click on Next to be brought to step 2, where you’ll be asked whether you want to install
one of the two available sample buckets. We’ll dig into buckets in the next step, so for
now, just check the beer-sample bucket. That’s the sample data source we’ll use as we
explore the development APIs. The following screen shows the sample buckets to be
selected:

www.it-ebooks.info

http://www.it-ebooks.info/

SAMPLE BUCKETS Step 2 of 5

Sample Data and MapReduce

Sample buckets are available to demonstrate the power of Couchbase
Server. These samples contain data and sample MapReduce queries.

Available Samples

beer-sample
gamesim-sample

Sample buckets

In step 3, you’re prompted to configure the default bucket for the new cluster. Couchbase
buckets are loosely analogous to databases in relational systems. If you’ve used MySQL,
SQL Server, or any other relational database server, you know that you must create an
object called a database in which you’ll create your tables and other database objects.
Similarly, with Couchbase Server, a bucket is a container for the documents and indexes
you’ll store.

You must have at least one bucket on your cluster, and during the setup you are required to
create a bucket named default. As you can see in the next screenshot, you are not
allowed to change the name of this first bucket. You do, however, have other decisions to
make about the default bucket.

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE DEFAULT BUCKET Step 3 of 5

Bucket Settings

Bucket Name: default
Bucket Type: ® Couchbase
() Memcached
Memory Size

Cluster quota (256 MB)

Per Node RAM Quota: 156 MB e

Other Buckets {100 MB) This Bucket {156 MB) Free (D B)

Total bucket size = 156 MB (156 MB x 1 node)

Replicas

Enable Mumber of replica (backup) copies

[] Index replicas
Disk Read-Write Concurrency

Provision number of reader/writer workers: 3 @ (Min = 2, Max = 8)

Flush

] Enable

Bucket configuration

Couchbase, a being of Membase and therefore of Memcached lineage, fully supports the
Memcached binary protocol. What this means is that Couchbase Server can be used as a
stand-in replacement for a Memcached cluster. If you’re currently using Memcached as a
distributed cache for your application, you would be able to replace it with Couchbase
Server and a Memcached bucket.

If you set the bucket type to Memcached, your bucket won’t be persistent, and it won’t be
able to take advantage of the document capabilities that Couchbase provides. Even for use
as a distributed cache, a Couchbase bucket is almost always the right choice. Couchbase
disk writes are performed asynchronously, and it’s unlikely that your application will be
impeded by I/0O problems. We’ll stick to Couchbase buckets for this text, but it’s important

www.it-ebooks.info

http://www.it-ebooks.info/

to understand the difference between these two bucket types.

Because Couchbase relies heavily on RAM to achieve its blazingly fast performance, it’s
important to allocate as much RAM as possible to your bucket. I’ll discuss Couchbase
Server’s architecture towards the end of this chapter, but for now, know that more RAM
generally means better performance. For development purposes, feel free to allocate the
minimum amount of RAM required for each node (for instance, 100 MB).

Couchbase Server supports replication within your cluster. When you set up a bucket, you
may choose to replicate the data to up to three other nodes. Replication will also be
discussed at the end of this chapter. Since we are using a single-node cluster, uncheck the
Enable option.

Couchbase allows you to specify the number of reader/writer workers to allocate for a
bucket. This setting exists to allow administrators to optimize disk I/0. We’ll leave the
default value, 3, in place. If you enable Flush on your buckets, you’ll have the ability to
remove all documents from a bucket with a single command. This action is like truncating
all the tables in your relational database, so obviously it should be set only when
absolutely necessary.

In step 4, the wizard simply asks whether you wish to receive update notifications, and
allows you to sign up for Couchbase’s community update e-mails. Neither choice will
affect the setup. The fifth and final step is to set up a username and password for cluster
administration.

After completing the wizard, you’ll be presented with a Cluster Overview page. When
this page first loads, it’s possible that you’ll see a brief notification that the node is down
while the bucket is activated. You’re also likely to see a notification that the sample bucket
is being loaded. Once ready, your cluster should show as healthy with active buckets, as in
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Coal)
Couchbase

#& Cluster Overview Server Nodes

Cluster Overview

Cluster

Data Buckets Views

XDCR Log

= Suppord Forums = About = Sign Out

Settings

Total Allecated (256 MB)

Total in Cluster (256 MB)

oo

In Use (65.5 MB)

Usable Free Space (130 GB)

Disk Overview [

Unused (191 MB)

Unallocated (0 B)

Total Cluster Storage (220 GB)

J

In Use (32.2 MB) Other Data (90.4 GB) Free (130 GB)
Buckets (2 buckets active)
Operations per second Disk fetches per second
200 0.8
150 08
100 0.4
50 0.2
0 0
12:12pm 12:15pm 12:12pm 12:15pm
Servers

Active Servers: 1

. Servers Failed Over. 0

. Servers Down: 0

. Servers Pending Rebalance: 0

Initialization

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Couchbase Console

At this point, we’ll take a quick tour of the other tabs found in the Couchbase Console,
starting with the Server Nodes tab. When you click on this view first, you’ll see a list of
all active servers in your cluster. In our case, we have only one active server. For each of
the nodes, you’ll also see its status (Up or Down) and some vital stats such as RAM and
CPU usage. Note that in the following screenshot, I clicked on the arrow next to the node
name to reveal additional details about the node.

You'’ll also notice a button labeled Pending Rebalance next to the active servers. Nodes
that appear in this list are those that are part of the cluster, but will not be fully active until
they’ve been rebalanced. I'll discuss rebalancing at the end of this chapter. You’ll also see
options to trigger a rebalance and add another node to the cluster.

] 4
Couchbase
#& Cluster Overview Server Nodes Data Buckets Views XDCR L Setiings
Servers
A Fail Over Warning: At least two servers are required to provide replication!
Ve (-te\ e Pending Rebalance Rebalance Add Server
Server Node Name RAM Usage Swap Usage CPU Usage Data/Disk Usage Items (Active / Replica)
W 127.0.0.1 up Il 32.5% 33.6% 27.3% Houpd e
L = = -
Server Name: 127.0.0.1:8001 Uptime: 2 hours, 7 minutes, 15 seconds
0S: windows Version: 2.2 .0 community edition (build-837-rel)
Memory' Cache
Dynamic RAM: Couchbase Quota (256 MB) Total (7.91 GB)
I
In Use (64.2 MB) or Data {2.65 GE Free {(5.21 GB)
Disk Storage
. Disk One: Total (220 GB)
v ..varflibfcouchbass/data
In Use (36.2 MB) Other Data (90.4 GB Free (130 GB)

The Server Nodes tab

The Data Buckets tab lists all the buckets for a cluster. At this point, you should see both
the beer-sample and default buckets. I expanded the beer-sample bucket in the following
screenshot to reveal more detailed information about the bucket. You’ll see options for
viewing bucket documents and views. You may edit your existing buckets or create new
buckets. You’ll also see important stats such as item count and RAM and disk usage. We’ll
explore these options in more detail in the rest of the book.

www.it-ebooks.info

http://www.it-ebooks.info/

) i . . 5i

Couchbase

n Out

1=}

#& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Data Buckets

Couchbase Buckets Create New Data Bucket

Bucket Name Nodes ltem Count Opsisec Disk Fetches/sec RAM/Quota Usage Data/Disk Usage

W beer-sample @ 7303 0 0 Sp s A Documents = Views
Access Control: Authentication Replicas: 1 replica copy Compaction: Mot active Compact Edit

Cache Size

Cluster quota (256 MB)

Oonaric RAM Quo: 1043 —

Other Buckets (156 MB) Thiz Bucket (100 MB) Free (0 B)

Storage Size

Persistence Enabled: Yes

Disk Usage: 28.2MB Other Data (92.6 GB) Total Cluster Storage (220 GB})
Data Usage: 27.5MB
Ofther Buckets (8.06 MB) This Bucket (28.2 MB} Free (128 GH)
p default [& 0 0 0 T e Documents | Views
The Data Buckets tab

Chapter 3, Creating Secondary Indexes with Views, and Chapter 4, Advanced Views, will
cover Views in detail, so for now we’ll skip over this tab. Cross-data-center replication, or
XDCR, allows you to create unidirectional or bidirectional replications of two clusters.
XDCR is beyond the scope of this book, but know that you can manage it here. The Log
tab shows the running server log. Some messages are only for information, while some
expose failures on your server. On the Settings tab, you can perform a variety of tasks
from adding a sample bucket to activating auto-failover.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase architecture

Before we move on to developing with Couchbase, it’s useful to understand the general
Couchbase architecture. While coding against a single-node cluster should generally be no
different than coding against a 10-node cluster, supporting a production application does
require deeper understanding of what could go wrong, as your application needs to scale
out. In the following sections, I’ll describe in more detail some of the concepts we’ve
already seen, and the basics of how a Couchbase cluster operates.

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase clusters

Fundamental to all Couchbase deployments is the notion of a cluster. This is a common
term in the NoSQL world and generally refers to a collection of nodes performing
operations on a data store in tandem. However, how nodes in a cluster behave varies
significantly across NoSQL products. In some systems, all nodes are peers, with no
differences. In others, clusters are set up in master-slave configurations.

In a Couchbase cluster, nodes are interchangeable. Each node contains a cluster manager,
which is responsible for knowing the status of other nodes in the cluster, and for allowing
other nodes to know its status. As each node has its own cluster manager component, this
allows Couchbase Server to scale out linearly with no single point of failure.

www.it-ebooks.info

http://www.it-ebooks.info/

Replication

One of the most important tasks of the cluster manager is to ensure that all of the data is
available to clients. Couchbase Server replication works by making one node the master
node for a given document, while up to three slave nodes maintain a replica of that
document. In case the cluster manager detects a node failure, it is responsible for
promoting replicas to the primary node.

www.it-ebooks.info

http://www.it-ebooks.info/

Balancing and rebalancing

Sharding is the notion of distributing data evenly across the nodes of a cluster. In most
sharded systems, the admin is responsible for picking a shard key to be used for data
distribution. For example, a Users table might be sharded on a Username field. If the shard
key turns out to be poorly distributed (imagine 30 percent of users having usernames
starting with T), then the nodes will not be well balanced.

Couchbase, in contrast, is auto-sharded and guarantees balance. Recall that Couchbase
documents are stored using a key/value approach. Though the user supplies the key,
Couchbase SDKs use a strong and cryptographic hash on each key to guarantee that keys
will be evenly distributed across a cluster. This hashing action considers the topology of
the cluster, which means that whether there are 2 or 20 nodes, the keys will still be
balanced.

Even though the SDKs and the server work together to ensure proper sharding, in case a
node (or nodes) goes offline, that balance will temporarily be broken. This is because
replicas are promoted. As nodes are added or removed from a cluster, the cluster manager
will work to rebalance the data across the nodes. A newly added node may not be ready to
fully join the cluster until a rebalance has been performed. As alluded to earlier, this task
may be done using the Couchbase Console.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase SDKs

We’ll explore the Couchbase SDK and relevant APIs in detail over the next few chapters.
But to complete our discussion on balancing and rebalancing, it’s useful to understand the
process from client to cluster. When an SDK is initialized in a client application, it makes
a persistent connection to the cluster over a RESTful API. This API broadcasts a JSON
message containing the cluster’s topology. As nodes are added or removed, the cluster
sends a new message with an updated topology.

This behavior sets Couchbase apart from other databases, whether relational or
nonrelational. Most database systems have a central point of communication that is
responsible for client communications. Couchbase owes some of its massive throughput to
its smart clients. Eliminating the bottleneck of a man-in-the-middle allows performance
levels to reach a massive scale. On a cluster with only four nodes, Couchbase is capable of
achieving nearly 1 million operations per second.

Returning to the idea of balancing data across nodes, there’s an additional detail that I
didn’t mention. The cluster maintains an abstraction known as vBuckets, which are used
to direct a key to the correct server. Rather than mapping a key directly to a node,
Couchbase SDKs map the key to one of the vBuckets. The endpoint for a vBucket is
provided to the client as part of its topology message from the cluster. Regardless of the
number of nodes, the number of vBuckets remains the same. The keys always hash to the
same vBucket, even if the cluster changes the endpoint of the vBucket.

While you’ll generally not need to worry about the existence of vBuckets, it is important
to understand what happens on the client as the cluster changes its topology. The client
maintains a map of vBuckets to the nodes. If that map changes due to a node failure, brief
client failures may appear while the map is updated.

Tip

The only case where you’re likely to care about vBuckets is if you are developing an
application using Mac OS X. On this platform, Couchbase Server uses 64 vBuckets
instead of the standard 1024. While this difference generally won’t impact your

development, it will impede your ability to move data from your local server to another
cluster running Linux or Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

RAM matters

Couchbase is a “RAM first, disk second” database. Both the reads and writes are
optimized to use RAM. On the write side, documents are written to the memory first and
then flushed asynchronously to the disk. While volatile memory might not seem optimal
for a database, remember that Couchbase will replicate your data on up to three nodes.
Additionally, there are API methods that require a disk write before a write to RAM is
considered a success.

On the read side, Couchbase maintains metadata about documents in the RAM to provide
faster retrieval. Couchbase will also attempt to store as many documents as it is able to in
the memory for faster access. Less available RAM means that Couchbase will need to
fetch more documents from the disk. Couchbase uses a most recently used (MRU)
algorithm to determine which documents are cached and which are evicted. The current
beta version, Couchbase Server 3.0, will allow caching and eviction strategies to be tuned.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

As we saw, Couchbase is an extremely flexible and scalable database. It offers a set of
complimentary key/value and document features not found in any other database. In the
next few chapters, we’ll explore these features in detail. You will learn how and when to
use them.

We also set up our single-node Couchbase cluster. Our default and sample buckets were
created. We explored the Couchbase Console and discussed cluster architecture. With this
knowledge in hand, you’re ready to dig into application development with Couchbase.

If you’ve used either Memcached or CouchDB, you’ll find the next three chapters to be
somewhat familiar. In the next chapter, we’re going to dig deep into Couchbase’s
key/value API. As we’ll see, at first it will look a lot like Memcached, but it’ll quickly go
above and beyond.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Using Couchbase CRUD
Operations

Couchbase Server has a vast and powerful key/value API. There are basic operations to
read and write values. There are facilities for easy and quick modification of simple data
types. There are also methods used to manage concurrency with locks. You’ll even find
advanced key/value API methods that allow you to verify persistence and replication. In
this chapter, we’re going to explore the key/value interface in detail.

In order to examine this API, you’ll need to install one of the Couchbase SDKs. While the
Couchbase Console provides tools to insert and update documents, it doesn’t expose the
Couchbase CRUD API to the user in any way. To get a full feel for the Couchbase
key/value API, we’re going to jump right into using an SDK.

www.it-ebooks.info

http://www.it-ebooks.info/

The Couchbase SDKs

The Couchbase team supports a number of SDKs, also known as Couchbase client
libraries. At the time of writing this book, there are official libraries for Java, .NET, PHP,
Ruby, Python, C, and Node.js. There are also community-supported libraries for Perl,
Erlang, Go, and other platforms.

In this chapter, we’ll explore a few of these clients. You should install the library for the
platform with which you are most comfortable. Many of the clients are available through
package managers such as .NET’s NuGet or Python’s pip. Visit
http://www.couchbase.com/communities to find instructions about installation. Each
community has a Getting Started guide that details how to obtain your chosen SDK, as
shown next:

Couchbase .NET Community

Are you a .NET developer who's building an app using Couchbase Server? If you have questions to ask or
answers to share, you'll find what you are looking for here in our .NET Community.

Getting Started with Couchbase on .NET

Getting Started Tutorial API Reference

Learn the basics of working with Build a full-blown Couchbase web Discover the full set of APl calls

Couchbase and .NET. app using .NET. you can use with Couchbase.
&) LEARN MORE € LEARN MORE &) LEARN MORE

Getting a client up and running in your environment of choice is beyond the scope of this
chapter. If you wish to follow along with the examples, then you should run through the
Getting Started tutorial for your platform. In the final chapter, we’ll work through building
a to-do list application, where we’ll explore SDK usage in more detail. If you get stuck, be
sure to check out the community forums.

www.it-ebooks.info

http://www.couchbase.com/communities
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Basic operations

Couchbase Server’s key/value API includes standard CRUD operations, and each of the
SDKs contains corresponding CRUD methods. We’ll begin our API exploration by
demonstrating how to insert and retrieve a record from our default bucket. If you’re
following along, make sure you read the Getting Started guide’s description on how to
configure your client for use.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting to your cluster

Before reading from or writing to a Couchbase Server bucket, you must first configure
your client. The basic setup is consistent across all SDKs. You first connect to the cluster
and then open a connection to a bucket, as follows:

var cluster = new Cluster();
var bucket = cluster.OpenBucket();

In the preceding C# snippet, the client assumes that the cluster is located on localhost
(127.0.0.1), and the bucket you’re connecting to is default. You can also set these
values explicitly, like this:

var cluster = new Cluster("127.0.0.1");
var bucket = cluster.OpenBucket("default");

If you have multiple nodes in your cluster, you can supply multiple nodes when creating
the cluster. If your bucket has a password, you can also specify that when opening the
bucket:

var cluster = new Cluster("192.168.0.1", "192.168.0.2");
var bucket = cluster.OpenBucket("beer-sample", "b33rs@mpl3");

It’s also possible to manage your cluster using SDKs. For example, if you want to create a
bucket programmatically in .NET, you can use the ClusterManager class and its
management APIs:

var mgr = cluster.CreateManager("Administrator", "password");
mgr.CreateBucket("beer-sample");

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and updating a record

With any database system, create is the CRUD method with which you’ll generally begin
creating a record (assuming you have no data yet). There are a couple of different methods
for creating a record in a Couchbase bucket, the simplest of which is add. The add method
takes a key and a corresponding value. Then it inserts the pair into your bucket:

client.add("message", "Hello, Couchbase World!")

The preceding Python snippet demonstrates adding a record with a value of Hello,
Couchbase World! and a message key. If no record with a message key existed when you
ran this code, a record will be created. If you try to run the same code again, you’ll receive
an error. The add method fails when trying to write a value to an existing key.

If you want to update the message record, then you should use the replace method. This
method performs an update to a document with an existing key. The following Python
snippet demonstrates how to use this method:

client.replace("message", "Hello, Couchbase World!")

In the preceding example, the Hello, Couchbase World! value will be replaced with
Hello, Couchbase SDK World!, leaving a document with a message key and a Hello,
Couchbase World! value. Similar to add, the replace method will fail if you try to update
a record using a key that does not exist.

You might be wondering how to work around these potential failures. Fortunately,
Couchbase provides a third CRUD operation called set. The set operation behaves as a
combination of both add and replace. If you try to set a record with a key that does not
exist, set will perform an add operation. If you try to set a value for a key that does exist,
set will perform a replace operation.

client.replace("message", "Hello, Couchbase World!")

You'’ll realize that using the set method is generally the easiest option. However, there
will be occasions where using add or replace makes more sense. For example, using add
instead of set would allow you to have keys based on a user’s nickname without worrying
about a collision wiping out an existing record.

For bulk operations, some SDKs support a multi_set operation. When using this method,
you supply a dictionary structure instead of a single key and value. The keys and values
from the dictionary are sent to the server and processed concurrently. The client SDKs will
determine which node owns which keys and send them in parallel. The multi_set
operation will almost always be faster than a single set operation:

messages = { "Alice" : "Hello!", "Bob" : "Cheers!" }
client.multi_set(messages)

The Python snippet we just saw demonstrates writing multiple keys to the server in a
single call. At the time of writing this book, not all SDKs support multi_set, though
support should be on the roadmaps of those that don’t.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and deleting records

Reading a value from the server is performed by providing a key for the Get command. If
the key exists on the server, Get will return the value. If the key doesn’t exist, then the
SDK will return either its language’s version of null (for example, None in Python or nil
in Ruby) or a wrapper around the result, which is the case with .NET and Java:

var result = bucket.Get<string>("message");

The preceding C# snippet demonstrates retrieving a record from the server and assigning it
to a local variable. In this case, the result variable will be of the T10perationResult<T>
type. It will contain properties that indicate whether the operation succeeded as well as the
value itself:

if (result.Success)

{

Console.WritelLine(result.value);

}

When using SDKs from one of the strongly-typed platforms (for example, .NET or Java),
you’ll likely want to cast the value to a specific type. The C# Get example we just saw sets
the generic type parameter to a string and tells the client to treat the stored object as a
NET string.

It’s important to know the type of data you’ve stored with a particular key. If you try to
cast the result of a Get operation to the wrong data type, your SDK will likely raise a cast
exception of some sort. In the .NET client, if you supply an incorrect generic type
parameter, then InvalidCastException will be thrown:

var result = bucket.Get<int>("message");

The .NET client will catch the exception in this case. The caught exception is available in
the Exception property of the result variable. The Success property will also be set to
false, allowing you to react to the exception:

if (!result.Success&&result.Exception != null)
{ Console.WritelLine(result.Exception.Message);
}

The value property of the result variable will be zero (the default value for integers in
.NET) after the assignment in the previous example completes. When a non-primitive type
is supplied as the generic type parameter, Value would be null (the default for non-
primitive types). As such, it is not sufficient to check if value is null to know whether the
key was found.

Because Couchbase Server does not explicitly define data types for your records, your
SDK will decide what type it should serialize and deserialize values to. Cast and use type
methods carefully to avoid errors in your application.

Tip

You should be aware that a client may raise a “not found” error instead of null. However,

www.it-ebooks.info

http://www.it-ebooks.info/

this is a typical behavior, and you must explicitly enable it. Moreover, most SDKs don’t
expose this behavior. With the Python and Ruby clients, you are able to enable or disable
“not found” exceptions by passing a quiet parameter to the get method.

There is also a variant of the Get operation that allows you to retrieve multiple values at
once by providing multiple keys. When you use Get in this way, the SDKs will return a
sort of dictionary structure where each of the keys in the dictionary will be the keys for
which you requested values. The values of the dictionary will be the values from those
keys on the server, or null if no values are found:

bucket.Insert("artist", "Arcade Fire");
bucket.Insert("album", "Funeral");
bucket.Insert("track", "Neighborhood #1 (Tunnels)");

var keys = new List<string> { "artist", "album", "track"};
var results = bucket.Get<string>(keys);

foreach (var key in keys)

{

Console.WriteLine(results[key].Vvalue);

}

The preceding C# snippet demonstrates how to read multiple keys at once and iterate over
the resulting IDictionary object. The exact data structure returned by the SDK will, of
course, vary according to the language you use, but it will be an iterable key/value
structure.

The multi-get operation is implemented in the SDKs using parallel operations. More
precisely, the client figures out which keys are on which servers, and then makes
concurrent requests to each server. The client then returns the unified map object. This
concurrency almost always means that it is more efficient to request many keys at once, as
opposed to performing many individual Get operations serially.

To remove a key from the server, you’ll simply pass that key to the delete operation on
your SDK. Deleting a key using the .NET SDK is done as follows:

bucket.remove("message");

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced CRUD operations

The basic CRUD operations we’ve just seen are fairly straightforward and mimic what
you’d expect to see in a relational system. As a key/value store, however, Couchbase
provides a handful of additional, unique CRUD operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Temporary keys

As a descendant of the in-memory-only Memcached, Couchbase supports a set of
operations you might not expect to see in a persistent store. Specifically, each of the
CRUD methods outlined allows an expiry date to be provided. When set, this “time to
live” option will be used to trigger the removal of a key by the server.

It is common in relational systems to have tables with expiration date columns. In this
case, the expiry date is likely a flag to be used by a scheduled task that cleans old records.
Couchbase Server allows you to achieve this very functionality without the need for a
scheduled task or additional properties in the stored value.

To create a key with an expiry date, you can use either the set or add operation. You’ll use
these methods just as you used them previously, but you’ll provide the additional “time to
live” argument. In the following Python snippet, the key is set to expire in 1 hour:

client.set("message", "Goodbye, Couchbase World!", ttl = 3600)

How the expiry flag is set will vary by client, but it is commonly an integer value. In the
case of .NET, it is set using .NET date and time structures.

You might wish to cause your keys to expire based on when they were last accessed.
Using touch operations, you are able to achieve this sort of sliding expiry for your keys.
The standard Get operation includes a time-to-live option. When you include a value for
this parameter, you reset (or set) the time-to-live for the key:

client.get("message", ttl = 3600)

This Python snippet will reset the expiry on the message key to 1 hour from when the Get
operation is performed. If you wish to extend the life of a key but not return its value there
is a touch operation. Again, this operation is shown as follows in Python:

client.touch("message", ttl = 3600)

www.it-ebooks.info

http://www.it-ebooks.info/

Appending and incrementing data

Couchbase Server also provides the ability to append or prepend additional data to
(typically) string values. These operations are useful to store data structures such as
delimited lists of values. Consider a key that stores tags for a blog post. One option would
be to serialize and deserialize a list structure through your SDK:

tags = ["python", "couchbase", "nosql"]

client.set("tags", tags)

saved_tags = client.get("tags")

While this option would certainly work, it does require additional work to update data.
You’d need to retrieve the record, update it in the memory, and then write it back to the
server. Moreover, you’d also likely need to use a locking operation to ensure that the list
hasn’t changed since you retrieved it.

Another possibility is to use the append operation. With the append operation, you can
push data to the end of a key’s value. The concatenation takes place on the server, which
means you don’t have to manipulate the existing value first. The following Python snippet
demonstrates the usage of append. In this example, we’re maintaining the list of tags as a
simple, comma-delimited string:

client.set("tags", "python, couchbase,")

client.append("tags", "nosqgl,")

saved_tags = client.get("tags")

#saved_tags == "python, couchbase, nosql, "

Similarly, Couchbase supports a prepend operation to save data to the beginning of a
key’s value, as seen next in the Python snippet:

client.set("tags", "python,couchbase,")

client.prepend('"tags", "nosqgl,")

saved_tags = client.get("tags")

#saved_tags == '"couchbase,nosql, python,"

Another useful operation is increment. This command provides a means of updating an
integer value on the server. Similar to prepend and append, incr allows you to modify a
key’s value without having to modifying it in your client application. Incrementing a
counter is the most common use of this feature:

client.set("counter", 1)
client.incr("counter") # counter ==
client.incr("counter", 4) # counter ==

The preceding Python sample shows that the default increment behavior is to add 1 to the
existing value of the key. If you provide a value for the offset parameter, the key’s value
will be incremented by the offset. If you want to decrement a counter, you can provide a
negative offset value:

client.incr("counter", -1)

There is also a decrement operation, and it can be used instead of a negative offset with

www.it-ebooks.info

http://www.it-ebooks.info/

increment:

client.decr("counter", 1)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Storing complex types

So far, we’ve limited our exploration primarily to simple data types such as strings and
integers. In a real application, you’re more likely to have business objects or other
complex types that you will need to store. To Couchbase Server, the values that you store
are nothing more than byte arrays. Therefore, the SDKs are able to use their respective
language’s binary serializer (often called a transcoder) to store any data structures.

Consider an application that stores information on a user profile. In .NET, you might have
a data object that looks like this:

public class UserProfile

{

public string Username { get; set; }

public string Email { get; set; }
}
When you use the .NET client to save an instance of the UserProfile class in Couchbase
Server, it will be serialized using .NET’s default binary serializer. Couchbase Server, of
course, knows nothing about a client platform’s serialization format. It will simply store
the byte array it received from the client:

var userProfile = new UserProfile {
Username = "jsmith", Email = "js@asdf.com" };
client.Upsert(userProfile.Username, userProfile);

In the preceding snippet, an instance of the UserProfile class is saved with a key value
that is set to the user’s username. To retrieve that instance, simply use the Get operation
we’ve already seen. This time, our SDK'’s transcoder will return an instance of
UserProfile set as the value property of the result variable:

var result = client.Get<UserProfile>("jsmith");

Recall that if the value for the jsmith key is not an instance of UserProfile, the operation
will fail with an invalid cast exception being thrown.

It is important to note that platform-specific serializers may not be compatible between
SDKs. Imagine you have the following Python class (full class definition omitted for
brevity):

class UserProfile:
@property
def username(self):
pass
@property
def email(self):
pass

If you tried to retrieve the .NET-serialized UserProfile object and deserialize it into an
instance of the preceding Python class, you’d encounter an exception. Python and .NET
have different binary serialization formats:

www.it-ebooks.info

http://www.it-ebooks.info/

client.get("jsmith") #will likely break

There is a solution to the problem of hybrid systems where multiple clients need to access
Couchbase Server data from multiple frameworks. We’ll explore that solution when we
start to work with Couchbase Server’s document-oriented features. For now, we’ll assume
that we’re using a single-client SDK environment.

It’s also worth noting that Couchbase SDKs support custom transcoders. If you want to
change the default serialization behavior for your SDK, implementing your own
transcoder is the way to achieve this goal. For example, if you want to force all of the data
to be stored as JSON, a custom transcoder can solve this problem. You can also use the
data_passthrough parameter in certain SDKs, which will force all values to be returned
as raw bytes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrency and locking

While the Couchbase SDKs have been written to be thread-safe, your Couchbase
applications still must consider concurrency. Whether two users or two threads are
attempting to modify the same key, locking is a necessity in order to limit stale data
writes. Couchbase Server supports both pessimistic and optimistic locking.

The CRUD operations we’ve seen so far do not make use of any locking. To see why this
is a problem, consider the following C# code:

public class Story

{
public String Title { get; set; }
public String Body { get; set; }
public List<String> Comments { get; set; }

}

var story = bucket.Get<Story>("story_slug").Value;
story.Comments.add("Nice Article!");
bucket.Replace<Story>("story_slug", story);

Now suppose that in the preceding code, in the moments between the get and set calls,
the following code ran on another thread (that is, another web request):

var story = bucket.get<Story>("story_slug");
story.Comments.add("Great writing!");
client.Replace<Story>("story_slug", story);

In this scenario, both clients received the same initial Story values. After the second client
sets its value back in the bucket with a new comment, it is quickly overwritten because the
first client completes its set. The Great writing! comment is lost. Fortunately, the
Couchbase API does provide a mechanism to prevent this situation from occurring.

In traditional relational applications, a common pattern is to include a timestamp column
on tables where stale records should not be updated without first retrieving the most recent
write of a row. When this approach is used, the UPDATE statement includes the timestamp
in the WHERE clause:

UPDATE Story
SET Title = 'New Title',
Timestamp = @NewTimeStamp
WHERE ID = 1 AND Timestamp = @CurrentTimestamp;

In the preceding SQL statement, the update will not occur unless the row’s current
timestamp value is provided for the @CurrentTimestamp parameter. With Couchbase
Server, you are able to use CAS (short for compare and swap) operations to provide the
same optimistic locking.

CAS operations take advantage of the fact that with each mutation of a key, the server will
maintain with it a unique 64-bit integer, known as a CAS. CAS operations work by
disallowing a key’s mutation if the provided CAS value doesn’t match the server’s current
version. You could think of CAS as acting like a version control system. If you try to

www.it-ebooks.info

http://www.it-ebooks.info/

commit a patch without first getting the latest revisions, your commit fails. However,
Couchbase does not maintain revisions for each CAS, it simply prevents stale writes:

var result = bucket.Get<Story>("story_slug");

var story = result.Value;

story.Comments.add("Awesome!");

var resp = bucket.Replace<Story>(result.Cas, "story_slug", story);

In the preceding C# example, the result variable is returned from the client by way of its
Get method. This object contains both the stored object and the current CAS value from
the server. That CAS value is used with a call to the Replace method. After the Get
method is called, if another thread has updated the story_slug key, then the Replace call
will not result in a mutated value. The response from the attempt will include the status of
the operation:

if (resp.Success)

{

//operation success

}
else if (resp.Status == ResponseStatus.KeyNotFound) {

//key does not exist, use add instead

}

else if (resp.Status == ResponseStatus.KeyExists)

{
//key exists, but CAS didn't match

//call Getagain, try again
}

In this example, you can see that the C# client provides the three possible outcomes for a
CAS operation. If the CAS is the same, the mutation occurs. If the key is not found, an
insert operation should be performed. If the CAS is different, the mutation is stopped. The
question that follows then is, how do you handle a CAS mismatch?

In the simplest case, you’d simply retry your Get and Replace operations, hoping that the
CAS value you’ve obtained is now current. However, a more robust solution is to employ
some sort of retry loop:

for(var i=0; i< 5; i++) {
var result = bucket.Get<Story>("story_slug");
var story = result.Value();
story.Comments.add("Awesome!");
var resp = bucket.Replace<Story>(result.Cas, "story_slug", story);

if (resp.Success) break;

}

The advantage of this sort of locking is that it is optimistic, meaning that the server
doesn’t employ any locking of its own. One 64-bit integer is compared to another. If they
match, the values for a key are swapped. This operation has virtually no impact on
performance. However, it does make room for the possibility that a thread may never
acquire a current CAS. If such a situation is unacceptable, Couchbase Server provides a
pessimistic locking option.

www.it-ebooks.info

http://www.it-ebooks.info/

The getl (or get and lock) operation allows you to obtain a read/write lock on a key for up
to 30 seconds. While you hold the lock, no other clients or threads will be able to modify
the key. You consume getl in a manner similar to the CAS operations. When you request a
lock, you’re provided a CAS with which only your client will be able to update the key:

var result= bucket.GetWithLock<Story>("story_slug",
TimeSpan.FromSeconds(10));

var story = result.Value;

story.Comments.Add("Good stuff!");
bucket.Replace<Story>("story_slug", story, result.Cas);

The preceding C# code demonstrates how a client may acquire an exclusive lock on a key.
In this case, the lock will expire in 30 seconds. Clients who attempt to read or write to this
key will receive an error. In this example, the lock will be released once the CAS
operation is performed.

Rather than waiting for an expiry or a CAS operation, it is also possible to explicitly
unlock a key. Generally speaking, a CAS operation is likely to be your primary means of
unlocking a key. However, there will be times when some condition in your code leads to
a path where the locked document shouldn’t be mutated. In those cases, it’s more efficient
to unlock the document rather than wait for the timeout:

Var result = bucket.GetWithLock<Story>("story_slug",
TimeSpan.FromSeconds(10))
if (result.value.IsCommentingClosed)

{
bucket.Unlock("story_slug", result.Cas);

}

else

{

result.value.Comments.Add("Couchbase is fast!");
bucket.Replace<Story>("story_slug", story);

}

This C# code demonstrates retrieving a key, checking whether the value should be
modified, and then deciding how to perform. In this example, we’re checking whether
commenting is closed for a story. If it is, we won’t accept a new comment. Therefore,
we’ll release the lock rather than wait for the remaining 10 seconds.

When deciding between a CAS operation and a getl operation, you will have to consider
whether you want other threads to be blocked from reading the locked key. In such a case,
a GetwithLock method is required. More often, a CAS operation is probably the safest in
terms of performance and side effects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous operations

One of the primary reasons for the growth of Couchbase is its massive scalability. Few
databases come close to the performance offered by Couchbase Server. Any system that is
capable of handling millions of operations per second across a small cluster of nodes will
have to deal with concurrency issues at some point.

Traditionally, servers dealt with concurrency by spinning up threads to handle multiple
requests simultaneously. However, as load increases on such systems, the overhead of
creating and maintaining threads becomes quite expensive in terms of CPU and memory.

Couchbase Server makes use of nonblocking I/0O libraries to provide scaling, without the
need to spin a thread or process every request. In a nutshell, nonblocking I/O makes heavy
use of asynchronous callbacks to avoid blocking the receiving thread.

In other words, the thread that receives the request will only delegate the work to be done,
and later receive a notification when that work is done. This pattern of handling
concurrency is popular in modern servers and frameworks, including Node.js and the
nginx web server.

All the operations covered used so far are blocking. In other words, when your client calls
Couchbase Server with a command, it blocks the calling thread until that operation
completes. It is common to use Couchbase in a fire-and-forget fashion, and blocking calls
slows this process down.

Some (but not all) clients support asynchronous operations. Clients such as Ruby and
Node.js are built on top of the C library, which is fully asynchronous. Therefore, such
libraries are able to piggyback on client implementation. The fully managed Java library
does support asynchronous operations using Java Futures.

We won'’t explore the asynchronous operations in detail, as they are effectively similar to
the operations we’ve already seen. The following Ruby snippet gives you a taste of how
you’d use such a method:

client.run do |c]|
c.get("message") {|ret| puts ret.value}
end

In this example, the client runs the get operation asynchronously. When the method
returns, the callback (in curly braces) is executed. The thread that called client.run was
not blocked while waiting on the get call. Similarly, in Java, you may use the
asynchronous versions of operations to allow nonblocking calls to Couchbase Server:

String message;
GetFuture<Object> future = client.asyncGet("message");
message = (String)future.get(10, TimeUnit.SECONDS);

In this Java example, the client asynchronously retrieves the message key. The value of
that key is then assigned back to the message variable with a wait timeout of 10 seconds.
A try/catch block should wrap the future.get call, but was omitted for brevity.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Durability operations

In Chapter 1, Getting Comfortable with Couchbase, you learned that Couchbase Server
handles reads and writes by writing to the memory first, and then writing asynchronously
to the disk. The standard CRUD operations we’ve seen so far make no distinction between
a key being written to the cluster memory and a key persisting in the disk.

If you’ve set up replication, you’ve likely guarded your data against potential data loss
from a single server failing before flushing the key to the disk. However, there will be
times when your business process cannot tolerate the possibility that a record did not
persist. If you have such a requirement, Couchbase Server supports inclusion of durability
requirements with your store requests.

These durability requirements are tunable to your specific needs. For example, you might
wish to know whether a key was written to the disk on its master node and replicated to at
least two nodes in the memory. To use a durability check with a .NET client, you will use
the standard store method with additional arguments, as follows:

bucket.Upsert<string>("key", '"value", PersistTo.One, ReplicateTo.Two);

The PersistTo argument specifies that the operation must return a failure if the key hasn’t
persisted in the master node after a timeout (globally configurable). The ReplicateTo
option adds the additional requirement that the key must be copied to least two nodes in
the memory.

If your durability concern is only that the key is replicated, you can use the previous
operation without the PersistTo argument. Similarly, you can check for persistence only
by omitting the replication argument. Importantly, if any persistence option is set, success
will occur only if the master node wrote the key to the disk. If the replica wrote a key to
the disk somehow but the master died before it could do so, the store operation will fail.

It might seem counterintuitive, but it is also possible to use durability requirements with
delete methods. Similar to writes, delete operations are also applied to the memory first.
Therefore, if you want to be sure that a key was also removed from the disk, you should
include a persistence requirement.

bucket.Remove("key", PersistTo.One);

The SDKs generally reuse their persistence enumerations in both store and delete
operations. In the case of delete, PersistTo is perhaps more accurately thought of as
RemoveFrom.

It is important to use durability requirements with care if your application is in need of the
peak scale. With much of Couchbase Server’s performance being dependent on its heavy
use of cache, blocking disk writes will obviously introduce latency. Generally speaking,
it’s best to use durability requirements only when absolutely necessary. It is more
important to enable replication in your cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we explored the Couchbase Server key/value API in detail. You saw that
Couchbase supports the basic CRUD operations you’d expect of a database system,
whether relational or nonrelational. We examined operations that are unique to Couchbase,
for example, append and prepend operations can be used to store data, while increment
and decrement operations can be used to modify a key’s value.

You learned how Couchbase supports both pessimistic and optimistic locking as well as
basic strategies to use both. We explored the ability to use durability checks and
asynchronous methods to tweak the performance of our application. Most importantly, we
got a taste of a few of the client SDKs and how they perform the various operations.

At this point, we’ve explored about 98 percent of the Couchbase key/value API. There are
a few other legacy methods that you might encounter, depending on your SDK; for
example, the flush operation is used to remove all records from a bucket. The key/value
version of this method has been deprecated in favor of the cluster API version, which is
performed over HTTP. However, you might find this method still accessible, given the
backward compatibility with Memcached.

Though we omitted 2 percent of the available key/value operations in this chapter, 98
percent of the methods we looked at should cover 100 percent of your key/value
requirements. Moreover, the design of your application may reveal that the basic CRUD
operations and CAS are sufficient to meet your requirements.

In the next chapter, we’re going to start exploring the document capabilities of Couchbase
Server. As we do, you’ll learn how it complements the key/value API you just learned
about.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Creating Secondary Indexes
with Views

Now that we’ve examined Couchbase Server’s key/value API, it’s time to shift gears and
look at its document-oriented features.

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase documents

Documents in Couchbase are simply key/value pairs where the value is stored as a valid
JSON document. The key/value API we learnt in Chapter 2, Using Couchbase CRUD
Operations, is the same API we’ll use to create JSON documents in the server. Generally,
you’ll use the client SDKs in combination with your platform’s preferred JSON serializer,
as shown in this C# snippet:

var user = new User { Name = "John" };
var json = JsonConvert.SerializeObject(user);
bucket.Upsert("jsmith", json);

In this example, the popular .NET JSON serializer is used to transform an instance of a
.NET class into a valid JSON string. That string is then stored on Couchbase Server using
the key/value set operation.

Similarly, to retrieve a JSON document from the server, you’ll also use the key/value Get
operation:

var json
var user

bucket.Get<string>("jsmith");
JsonConvert.DeserializeObject<User>(json);

In the case of retrieving a document, you’ll typically retrieve the JSON string and allow
your platform’s JSON serializer to deserialize the JSON document into a strongly-typed
object, which is a User instance in this example.

Of course, you are free to do whatever you wish with the JSON you retrieve. The
Couchbase SDKs intentionally provide you with the freedom to choose your own JSON-
to-object behavior. Rather than deserializing into a user-defined type as you just did, you
might want to convert your JSON document into a dictionary. You also could choose to
simply return the JSON document to your application. This last approach could be
particularly useful when serving JSON to JavaScript-heavy applications.

Of course, being able to store JSON strings alone is not enough for a database to be
considered document-oriented. For that classification, a data store must support some
other document capabilities, most importantly document indexing and querying.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase indexes

We’ve already seen how Couchbase handles primary indexes for documents. The key in
the key/value pair is the unique primary key for a document. Using the key/value API,
documents may be retrieved only by this key. While this might seem limiting, there are
key/value schema design patterns that help to provide flexibility. We’ll explore them in
Chapter 5, Introducing N1QL.

Fortunately, Couchbase as a document store provides a much more powerful approach for
finding your documents. To illustrate the problem and the solution, we’ll walk through a
brief example. Imagine having a simple JSON document such as this:

{

"Username": "jsmith",
"Email": "jsmith@somedomain.com"

}

The key/value limitation is easy to see. Imagine we want to find a user by their username.
The key/value solution might be to use the username as the key. While that would
certainly work, what happens when we also want to query a user by their e-mail address?
We can’t have both e-mail and username as a key!

Therefore, there are key/value patterns to address this problem, and we’ll discuss them
briefly later on. Couchbase, with its document capabilities, provides a much more elegant
solution—allowing arbitrary secondary indexes on stored JSON documents.

These secondary indexes will allow us to query our user document by username, e-mail,
or any function of the two (for example, an e-mail ID with a particular domain). These
indexes, which are known as views in Couchbase terms, will be created using JavaScript
and MapReduce.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MapReduce

Before we can start our exploration of the Couchbase Server views, we first need to
understand what MapReduce is and how we’ll use it to create secondary indexes for our
documents.

At its simplest, MapReduce is a programming pattern used to process large amounts of
data that is typically distributed across several nodes in parallel. In the NoSQL world,
MapReduce implementations may be found on many platforms from MongoDB to
Hadoop, and of course Couchbase.

Even if you’re new to the NoSQL landscape, it’s quite possible that you’ve already
worked with a form of MapReduce. The inspiration for MapReduce in distributed NoSQL
systems was drawn from the functional programming concepts of map and reduce. While
purely functional programming languages haven’t quite reached mainstream status,
languages such as Python, C#, and JavaScript all support map and reduce operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Map functions

Consider the following Python snippet:

numbers [1, 2, 3, 4, 5]
doubled map(lambda n: n * 2, numbers)
#doubled == [2, 4, 6, 8, 10]

These two lines of code demonstrate a very simple use of a map () function. In the first
line, the numbers variable is created as a list of integers. The second line applies a function
to the list to create a new mapped list. In this case, the map () function is supplied as a
Python lambda, which is just an inline, unnamed function. The body of 1ambda multiplies
each number by two.

This map () function can be made slightly more complex by doubling only odd numbers,
as shown in this code:

numbers = [1, 2, 3, 4, 5]
defdouble_odd(num):
if num % 2 == 0O:
return num
else:
return num * 2

doubled = map(double_odd, numbers)

#doubled == [2, 2, 6, 4, 10]

Map functions are implemented differently in each language or platform that supports
them, but all follow the same pattern. An iterable collection of objects is passed to a map
function. Each item of the collection is then iterated over, with the map function being
applied to that iteration. The final result is a new collection where each of the original
items is transformed by the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Reduce functions

Like maps, reduce functions also work by applying a provided function to an iterable data
structure. The key difference between the two is that the reduce function works to produce
a single value from the input iterable. Using Python’s built-in reduce() function, we can
see how to produce a sum of integers, as follows:

numbers = [1, 2, 3, 4, 5]

sum = reduce(lambda x, y: x + 'y, numbers)

#sum == 15

You probably noticed that unlike our map operation, the reduce 1ambda has two
parameters (x and y in this case). The argument passed to x will be the accumulated value
of all applications of the function so far, and y will receive the next value to be added to
the accumulation.

Parenthetically, the order of operations can be seen as ((((1 + 2) + 3) + 4) + 5).
Alternatively, the steps are shown in the following list:

1. x=1,y=2
2. x=3,y=3
3. x=6,y=4
4. x=10,y=5
5. x=15

As this list demonstrates, the value of x is the cumulative sum of previous x and y values.
As such, reduce functions are sometimes termed accumulate or fold functions. Regardless
of their name, reduce functions serve the common purpose of combining pieces of a
recursive data structure to produce a single value.

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase MapReduce

Creating an index (or view) in Couchbase requires creating a map function written in
JavaScript. When the view is created for the first time, the map function is applied to each
document in the bucket containing the view. When you update a view, only new or
modified documents are indexed. This behavior is known as incremental MapReduce.

You can think of a basic map function in Couchbase as being similar to a SQL CREATE
INDEX statement. Effectively, you are defining a column or a set of columns, to be indexed
by the server. Of course these are not columns, but rather properties of the documents to

be indexed.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic mapping

To illustrate the process of creating a view, first imagine that we have a set of JSON
documents as shown here:

var books=[

{
nign: 1,
"title": "The Bourne Identity",
"author": "Robert Ludlow"
3
{
"id": 2,
"title": "The Godfather",
"author": "Mario Puzzo"
iy
{
Ilidll: 3,
"title": "wiseguy",
"author": "Nicholas Pileggi"
3

17

Each document contains title and author properties. In Couchbase, to query these
documents by either title or author, we’d first need to write a map function. Without
considering how map functions are written in Couchbase, we’re able to understand the
process with vanilla JavaScript:

books.map(function(book) {
return book.author;

1);

In the preceding snippet, we’re making use of the built-in JavaScript array’s map()
function. Similar to the Python snippets we saw earlier, JavaScript’s map () function takes
a function as a parameter and returns a new array with mapped objects. In this case, we’ll
have an array with each book’s author, as follows:

["Robert Ludlow", "Mario Puzzo", "Nicholas Pileggi"]

At this point, we have a mapped collection that will be the basis for our author index.
However, we haven’t provided a means for the index to be able to refer back to the
original document. If we were using a relational database, we’d have effectively created
an index on the Title column with no way to get back to the row that contained it.

With a slight modification to our map function, we are able to provide the key (the id
property) of the document as well in our index:

books.map(function(book) {
return [book.author, book.id];

1),

In this slightly modified version, we’re including the ID with the output of each author. In
this way, the index has its document’s key stored with its title.

www.it-ebooks.info

http://www.it-ebooks.info/

[["The Bourne Identity", 1], ["The Godfather", 2], ["Wiseguy", 3]]

We’ll soon see how this structure more closely resembles the values stored in a Couchbase
index.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic reducing

Not every Couchbase index requires a reduce component. In fact, we’ll see that
Couchbase already comes with built-in reduce functions that will provide you with most
of the reduce behavior you need. However, before relying on only those functions, it’s
important to understand why you’d use a reduce function in the first place.

Returning to the preceding example of the map, let’s imagine we have a few more
documents in our set, as follows:

var books=[

{
"id": 1,
"title":

"author":

3

{
"id": 2,
"title":

"author":

}

{
"id": 3,
"title":

"author":

iy

{
"id": 4,
"title":

"author":

3

{
"id": 5,
"title":

"author":

iy
{

"id": 6,
"title":

"author":

}
1;

"The Bourne Identity",
"Robert Ludlow"

"The Bourne Ultimatum",
"Robert Ludlow"

"The Godfather",
"Mario Puzzo"

"The Bourne Supremacy",
"Robert Ludlow"

"The Family",
"Mario Puzzo"

"Wiseguy",
"Nicholas Pileggi"

We’ll still create our index using the same map function because it provides a way of
accessing a book by its author. Now imagine that we want to know how many books an
author has written, or (assuming we had more data) the average number of pages written
by an author.

These questions are not possible to answer with a map function alone. Each application of
the map function knows nothing about the previous application. In other words, there is no
way for you to compare or accumulate information about one author’s book to another
book by the same author.

www.it-ebooks.info

http://www.it-ebooks.info/

Fortunately, there is a solution to this problem. As you’ve probably guessed, it’s the use of
a reduce function. As a somewhat contrived example, consider this JavaScript:

mapped = books.map(function (book) {
return ([book.id, book.author]);

1),

counts = {}
reduced = mapped.reduce(function(prev, cur, idx, arr) {
var key = cur[1];
if (! counts[key]) counts[key] = 0;
++counts[key]
}, null);

This code doesn’t quite reflect the way you would count books with Couchbase accurately,
but it illustrates the basic idea. You look for each occurrence of a key (author) and
increment a counter when it is found. With Couchbase MapReduce, the mapped structure
is supplied to the reduce() function in a better format. You won’t need to keep track of
items in a dictionary.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase views

At this point, you should have a general sense of what MapReduce is, where it came from,
and how it will affect the creation of a Couchbase Server view. So without further ado,
let’s see how to write our first Couchbase view.

In Chapter 1, Getting Comfortable with Couchbase, we saw that when we install
Couchbase Server, we have the option of including a sample bucket. In fact, there were
two to choose from. The bucket we’ll use is beer-sample. If you didn’t install it, don’t
worry. You can add it by opening the Couchbase Console and navigating to the Settings
tab. Here, you’ll find the option to install the bucket, as shown next:

Led

Couchbase
A& Cluster Overview Server Nodes Data Buckets Views
Settings

Cluster Update Notifications Auto-Failover Alerts Auto-Compaction =21 LIER:ATETE S8 Account Management

Sample Buckets

Sample buckets are available to demonstrate the power of Couchbase Server. These samples contain data and sample MapReduce
queries.

Installed Samples

beer-sample

Available Samples

[] gamesim-sample

In the next sections, we’ll return to the console to create our view, examine documents,
and query our views. For now, however, we’ll simply examine the code. First, you need to
understand the document structures with which you’re working. The following JSON
object is a beer document (abbreviated for brevity):

{

"name": "Sundog",

Iltypell: Ilbeerll,

"brewery_id": "new_holland_brewing_company",
"description": "Sundog is an amber ale..",
"style": "American-Style Amber/Red Ale",
"category": "North American Ale"

}

As you can see, the beer documents have several properties. We’re going to create an
index to let us query these documents by name. In SQL, the query would look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT Id FROM Beers WHERE Name = ?

You might be wondering why the SQL example includes only the Id column in its
projection. We’ll explore this analogy when we discuss view queries later in this chapter.
For now, just know that to query a document using a view with Couchbase, the property
by which you’re querying must be included in an index.

To create that index, we’ll write a map function. The simplest example of a map function
to query beer documents by name is as follows:

function(doc) {
emit(doc.name);

}

This body of the map function has only one line. It calls the built-in Couchbase emit ()
function. This function is used to signal that a value should be indexed. The output of this
map function will be an array of names.

The beer-sample bucket includes brewery data as well. These documents look like the
following code (abbreviated for brevity):

{
"name": "Thomas Hooker Brewing",
"city": "Bloomfield",
"state": "Connecticut",
"website": "http://www.hookerbeer.com/",
"type": "brewery"
}

If we re-examine our map function, we’ll see an obvious problem, both the brewery and
beer documents have a name property. When this map function is applied to the documents
in the bucket, it will create an index with documents from either the brewery or beer
documents.

The problem is that Couchbase documents exist in a single container—the bucket. There
is no namespace for a set of related documents. The solution has typically involved
including a type or docType property on each document. The value of this property is
used to distinguish one document from another.

In the case of the beer-sample database, beer documents have type = "beer" and
brewery documents have type = "brewery". Therefore, we are easily able to modify our
map function to create an index only on beer documents:

function(doc) {
if (doc.type == "beer") {
emit(doc.name);
}

}

The emit () function actually takes two arguments. The first, as we’ve seen, emits a value
to be indexed. The second argument is an optional value and is used by the reduce
function. Imagine that we want to count the number of beer types in a particular category.
In SQL, we would write the following query:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT Category, COUNT(*) FROM Beers GROUP BY Category

To achieve the same functionality with Couchbase Server, we’ll need to use both map and
reduce functions. First, let’s write the map. It will create an index on the category

property:

function(doc) {
if (doc.type == "beer") {
emit(doc.category, 1);
}

}

The only real difference between our category index and our name index is that we’re
including an argument for the value parameter of the emit () function. What we’ll do with
that value is simply count them. This counting will be done in our reduce function:

function(keys, values) {
return values.length;

}

In this example, the values parameter will be given to the reduce function as a list of all
values associated with a particular key. In our case, for each beer category there will be a
list of ones (thatis, [1, 1, 1, 1, 1, 1]). Couchbase also provides a built-in _count
function. It can be used in place of the entire reduce function in the preceding example.

Now that we’ve seen the basic requirements when creating an actual Couchbase view, it’s
time to add a view to our bucket. The easiest way to do so is to use the Couchbase
Console.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Console

In Chapter 1, Getting Comfortable with Couchbase, we skipped the Views tab in the
Couchbase Web Console with the promise of returning to it in later chapters. It’s just about
time to fulfill that promise, but first we’ll take a look at another tab we skipped—the Data
Buckets tab.

Open Couchbase Console. As a reminder, it’s found at http://localhost:8091. If you’re
using Couchbase on a server other than your laptop, substitute that server’s name for
localhost. After logging in, navigate to the Data Buckets tab, as shown here:

Foad

Couchbase

& Cluster Overview Server Nodes Data Buckets

a Buckets

T
o

Data Buckets

Couchbase Buckets Create New Data Bucket
Bucket Name Modes Item Count Opsisec Disk Fetches/sec RAM/Quota Usage Data/Disk Usage
: : ; 24 6MB 12.1MB / ;
W beer-sample @ 7303 0 0 "149&’“%% ‘Ig'mg Documents || Views
Access Control. Authentication Replicas: 1 replica copy Compaction: No
Compact Edit
Cache Metadata: Value Ejectior Disk 11O priority: Low
Cache Size

Cluster guota (512 MB)

’ Dynamic RAM Quota: 100MB

ket (100 MB Free {284 MB)
Storage Size

alal Cluster S e (220 GB

Persistence Enabled: Yes Total Cluster Storage (220 GB)

Disk Usage: 16MB

: 3 Oiher Buckeals (8.05 MB) This Bucket (16 MB Freae (97 GB)
Data Usage: 13.1MB

N n n 30.6MB / 8.04MB / :
p default @ 0 0] gL Spsley Documents | Views

The Data Buckets tab provides you with a high-level overview of your buckets. You’ll
see each bucket listed with information ranging from server resource utilization to item
(document) count. Feel free to explore some of the other features of this tab. This is where
you are able to create and edit buckets. What we’re most interested in is checking out the
documents in our bucket. Click on the Documents button in the beer-sample bucket row,
as shown next:

www.it-ebooks.info

http://www.it-ebooks.info/

o]
Couchbase
& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

beer-sample - > Documents Current page: 1 5 o
Documents Filter Document ID Lookup Id Cveaﬁ Document
ID Content

21st_amendment _br... ["name": "21st Amendment Br cafe”, "oity": "San Franci Edit Document Delete
21st_amendment _br... { "name": "21a IPA", "abv": 7.2, "ibu": 0, "smm": 0, "upe": Edit Document Delete
21st_amendment_br... { "name®: "563 Stout", "abw": 5, "ibu": 0, "arm": 0, "upo": Edit Document Delete
213T~lﬂmeﬂdment'_b[,.. ["name": "Amendment Pale Ale", "abw": 5.2, "ibu": 0, "srm": Edit Document Delete
21st_amendment_br... { "pame": "Bitter American", "abv": 3.6, "ibu": 0, "smm": 0, Edit Document Delete

On this screen, you’ll be able to browse for a document by its key or simply go through all
the documents in the bucket. Select the beer-sample bucket from the drop-down menu
above the list of documents. You’ll then be able to browse through the sample beer and
brewery documents. You’re also able to edit or add documents to a bucket using additional
features on this tab.

On a side note, if you followed along with an SDK in Chapter 2, Using Couchbase CRUD
Operations, and looked up one of the documents you saved, you’d have noticed that you
don’t see JSON, but rather something that looks like what is shown in the following
screenshot:

ol
Couchbase
M Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default » > Documents Current page: 1 5 -
Documents Filter Document ID LookuE Id Create Document
—

D Content

user "RAFRRRARD/ /S S S RORARARARAAMAGRARFPDbZS5zb2x] O BwbGE] YXRpbZ4xL.CE. Edit Document Delete

www.it-ebooks.info

http://www.it-ebooks.info/

Earlier in this chapter, we learned that Couchbase Server recognizes proper JSON strings
and treats them differently. Any value you store that is not JSON is treated by Couchbase
Server as a byte array. Its meaning is up to your application to define. When you view a
non-JSON-valued key in the document view, you’ll be shown a base64 representation of
that key’s value.

While these documents are technically accessible to views, practically speaking you’re
highly unlikely to ever use a non-JSON record in your views. You could decode a base64
value in JavaScript, but we’ll work with the assumption that you don’t want to do so.

Tip
A common problem new Couchbase developers encounter is that they didn’t provide
proper JSON to the server, and they are unable to retrieve expected documents when

querying a view. Checking for a base64-encoded string in the Documents page is a good
way to eliminate bad JSON.

We’re now ready to explore the Views tab, as shown here:

Couchbase
Cluster Overview Server Nodes Data Buckets Views (DCR Log Settings
beer-sample - | > Views

LW LAY Production Views Create Development View
——

Name Language Status

There are currently no Design Documents in Development. Click "Create Development View" above to create one

www.it-ebooks.info

http://www.it-ebooks.info/

Development views

If you have a bucket with millions of documents, you probably won’t want to trigger
index creation with every tweak of your view definition during development. To allow
developers to build views iteratively and quickly, Couchbase Server includes development
views.

Unlike production views, development views are applied only to a subset of data from the
bucket. Therefore, you are safely able to test a view definition against your production
systems. Your application won’t accidentally query one of these views either, because you
must explicitly turn development views on for your chosen SDK.

After you’ve developed and tested your development view, you are able to promote it to
production. At that time, the full bucket is indexed. In the Couchbase Console, you’re able
to edit only development views. Your production views are read-only.

The Couchbase REST admin API does allow you to work around this safety check by
creating a view outside the confines of the console. You might choose to manage your
views this way because it allows you to work more easily with source control or server
automation tools.

We’ll focus only on the Couchbase Console to create our views. To get started, click on
the Create Development View button. You’re then taken to a page where, at the top, there
are dropdowns with your buckets and views in those buckets. Select the beer-sample
bucket. This sample bucket includes three predefined views, as shown next. We’ll create
our own view rather than examining these.

Couchbase

A& Cluster Overview Server Nodes Data Buckets

beer-sample - > Views

Development Views S alGG0TE RIS

Name Language Status

_design/beer javascript Compact Delete = Copy to Dev

brewery_beers Show

by_location Show

www.it-ebooks.info

http://www.it-ebooks.info/

Design documents

With the beer-sample bucket selected, click on the Create Development View button
(ensure that Development Views is selected). In addition to providing a view name, you’ll
be prompted to provide a design document name, as shown here:

Create Development View x

Design Document Name:
design/dev|

View Name:

cance! (LI

Naming a Development View

Views are defined in special documents on the server, known as a design documents.
These documents are named with a prefix of _design/ followed by any meaningful name
you choose. Additionally, development design documents will be named with a dev_
prefix.

Your design document may contain one or more view definitions. Typically, you’re likely
to have one design document for each document type (for example, one beer design
document and one brewery document). However, our sample design document contains
views for both breweries and beers.

Tip

While adhering to the convention of one design document per document type is a good
place to start, there are other factors that you must consider. Specifically, when you make
any change to a design document, it triggers a re-indexing of all views defined within that

design document. Therefore, it’s best to segment views based on the likelihood of one
document being updated.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a view

Now that we know what design documents are, we’re ready to create our first view. In the
dialog box that appeared when you clicked on Create Development View, name the
design document _design/dev_beers.

A useful convention for naming views is to prefix them with by_ and complete the name
with the indexed fields. So, for the new view we’re about to create (which indexes beer
documents by their name property), set the name of the view to by_name.

After you’ve provided the design document name and view name, you’ll see your view
listed on the page. To edit this view, you could click on either the Edit button or the name
of the view. Then you’ll be presented with a simple editor in which you’ll create your
views, as shown next:

[

Couchbase

& Cluster Overvies Server Nodes Data Buckets XDCR

beer-sample - > \Views > | _design/dev_beers/_view/by_name

W beach_brewing-magic_brew Preview a Random Document 1 Edit Document |

"name": "Magic Brew", "id": "beach brewing-mag
"abwv": 0, "rev®:

"ibu®: 0

"srm™: 0, "expiration": 0,

"upa®: 0, "flags": 0

"type™: "beer"

"brewery id": "beach brew

“updated": "2010-07-22 20:0

"degeription": ""

"style": "America tyle Br ale",

"category”: "I h American Ale"

W VIEW CODE Save As.. Save

Map Reduce (built in: _count, sum, stats)

function (doc, meta) |
emit (meta.id, null);

The default view that appears includes a map function. This map function looks slightly
different from those we previously walked through. While it’s mostly the same map
function, notice the additional meta parameter. This optional parameter provides you with
a way to access document metadata in your map function. Each document in Couchbase
has a few fields of associated metadata. You can see these fields in the panel above the
code editor (under Preview a Random Document).

www.it-ebooks.info

http://www.it-ebooks.info/

More often than not, the only metadata field your views will be concerned with is the id
field. This field is the key from the key/value API that is associated with a document. It’s
important to understand that the key is not part of the document, but rather a means of
storing and retrieving the document.

The window that you see by default when you create a new view creates an index on
document keys using the meta argument’s id property. It might seem redundant to create a
secondary index on the primary index. However, should you wish to perform range
queries (that is, find all keys from A to C), then you’ll need this index.

To create our view, we’ll reuse the map function we wrote earlier in this chapter:

function(doc, meta) {
if (doc.type == "beer") {
emit(doc.name, null);
}

}

After you’ve modified the map function to use this code, click on Save to start the process
of indexing the documents. Once the map function is saved, we are able to test our view
by clicking on the Show Results button under the code editor, as shown here:

; Show Results
Filter Results Cm—

T e R = Full Cluster Data Set

Key Valus
".38 Special letter."
"t.512] ALT"

"{.512‘1 Bruin™

"{.512.l IPA™ .

"(512) Pale™ o
"[-512] Pecan Poner".

"(.512] Whiskey Barrr_ﬁi Aged Dc-)uble Pecan Porter”
"{.512‘ wit"

"#1T .Cre.am Ale."

"#40 Golden Lager"

The result you’ll see is simply a list of every document that was included in the index. The

www.it-ebooks.info

http://www.it-ebooks.info/

key parameter in the index is the document’s name property, ordered using Unicode
collation. The value is null in this case because we did not include a second argument to
our call to emit (). Notice that the document’s id property is included under each of the
index keys.

In many programming languages, sorting tends to follow byte order. If you sort a set of
strings, most default implementations would follow ASCII ordering, which orders
uppercase letters before lowercase variants. By contrast, Unicode collation orders variants
of the same letter next to each other, as we have already discussed in a previous section.

Tip

If you’re unfamiliar with Unicode collation, you can think of it as being “not quite
alphabetical.” Though A will always be ordered before B, so will A. In other words,
variations of letters will be ordered together before the next letter and its variations.

Additionally, lowercase letters and their variants will precede uppercase variants. Numeric
values will precede all letter variants.

Before we move on to running queries against our views, let’s walk through our earlier
MapReduce example where we tried to count beer types by category. Start by clicking on
the Views tab, where you’ll now see you have the ability to add a view to your existing
design document, as shown here:

[}

Couchbase

& Cluster Overview Server Nodes Data Buckets liews XDCR Log Settings

beer-sample - > Views

[T AV Production Views Create Development View

Name Language Status

_design/dev_beers javascript Compact Delete =~ Add Spatial View = Add View = Publish

by _name Edit = Delete

Click on Add View in the line where the dev_beers design document is shown. Name this
view by_category. Click on Edit next to the new view to return to the view editor page.
Modify the map function so that it looks like this snippet:

function(doc, meta) {

if (doc.type == "beer" &&doc.category) {
emit(doc.category, 1);
}

}
Tip

www.it-ebooks.info

http://www.it-ebooks.info/

This map function is the similar to the function we wrote earlier in this chapter, but it now
includes a safety check so that beers without a category are not indexed. Without the null
check, the index would contain numerous documents that do not have a category.
Checking for a property’s existence is a common practice when creating views.

Once you’ve modified the view code, click on Save. Then click on Show Results. The
grid should look similar to that of our by_name index, but with the addition of 1 to the
value for each indexed document, as shown next:

Filter Results ?stale=false&inclusive_end=false&connection_timeout=600008imit=10&skip=0 _J’Shw Bosults
I TGRS TLE: 8 Full Cluster Data Set
Key Value

"Belgian and French Ale"

"Belgian and French Ale"

".B_el_giar.s and.Fre.ncn_ J.MB."
"Belgian and French Ale"
"Belgian and Frencrl1 Ale"
"Belgian and French Ale"
"elqian_and Fren.ch Ne"

"Belgian and French Ale"

Take note of the fact that at this point, each category appears in our results, once for each
beer with which it’s associated. To find the count of beers grouped by category, we’ll need
to add a reduce function to our view. For this example, simply use the built-in _count
function in the reduce editor. After you’ve made that change, click on Save and then on
Show Results. You can see the following result:

www.it-ebooks.info

http://www.it-ebooks.info/

W VIEW CODE Save As._. Save

Map Reduce (built in: _count, _sum, _stats)

function (doc, meta) { _count
if Fi?q.type == "beer" && doc.category) {
emit (doc.category, 1);

Filter Results ?stale=false&inclusive_end=false&connection_timeout=60000&limit=10&skip=0 m
(FAVETLTeTy =1 B N R T Full Cluster Data Set
e ——
Key Value
null

4423

The results you see might not be what you expected. We’ve said all along that our goal
was to provide a count of beers grouped by category. Instead, what we’re seeing is the
equivalent of a SQL COUNT query without a GROUP BY clause:

SELECT COUNT(*) FROM Beers

To understand how we group our results, we’ll have to explore the view query API, which
we’ll do in the next section.

Tip
Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Querying views

An important distinction to make at this point is that views are not queries, but means of
querying for documents. You’ll run queries against the view index in order to find the
original documents. It is a common misconception that the views you write are actual
queries.

Couchbase views have an API that supports a variety of search options, from an exact key
search to a key range search. Continuing to use the Couchbase Console, we’ll explore the
various parameters we are able to use as we query our views. Begin by clicking on the
down arrow next to the Filter Results text above the results panel.

Filter Results ?stale=false&inclusive_end=false&connection_timeout=60000&limit=10&skip=0 m
Development Time :
descending O
Key
startkey
null
endkey

startkey_docid

endkey_docid

group O

group_level

inclusive_end O

key

keys

reduce true | false none
stale false | update_after | ok

connection_timeout 60000

- Reset Close _

Filtering views

www.it-ebooks.info

http://www.it-ebooks.info/

Grouping

To continue with the reduce example, check the box next to group and click on Close.
Click on Show Results again, and you’ll now see that the results are grouped by the name
of the category, as shown here:

Fi|ter Resu”:s 7stale=false&group=truedinclusive_end=false&connection_timeout=60000&limit=10&skip=0 m
Key Value

"Belgian and French Ale"

“British Ale"

320

"German Ale"

"German Lager"”
441

"Irish Ale"

B
m
w

"North American Ale" Ta5e

"North American Lager”

564

"Other Lager"

"Other Style"

(5]
o
@

There’s an additional parameter called group_level under the group option. This
parameter takes an integer argument and is meant to be used with composite (array) keys.
Our map function produces only a single-value key, so we’ll avoid exploring this option
until Chapter 4, Advanced Views.

www.it-ebooks.info

http://www.it-ebooks.info/

Key queries

To continue our examination of the different view query options, let’s return to our
by_name view. Scroll up to the top of the page and select this view from the drop-down
list. You can see this in the following screenshot:

Couchbase
* ~luster Overview Server Nodes Data Buckets VIEWS XDCR LOg —etllings
beer-sample - > \iews > design/dev_beers/ view/by category
Development Views
W green_bay_brewing-hinterland_mild_cask _design/dev_beers Preview a Random Document Edit Document
by category
"mame": "Hinterland Mild Cask Ale", mldrt: X
i by name
"abv": 0O, e hin land_
"ibu": 0, Production Views "rev":
AEmE _design/beer : =
"upa": O, v "expiration": 0
nypets "heerts brewery_beers "Elags®: 0
"brewery id": "
"updated": '
"description”: ""
"style": "English

Once the page has refreshed with the by_name view, return to the Filter Results section
and expand the dialog. For our first query, we’ll search for beer types with names starting
with the letters B and C. To do so, enter "B" in the startkey field and "D" in the endkey
field. Note that the quotes around your start and end keys must be included.

Close the dialog and click on Show Results again. You’ll see that the first beer types
shown have names starting with the letter B. You can click all over the list to see the
results that were returned as part of our view query.

Tip
Note that if you page through the list, you might not find a beer starting with C. The
reason is that the results view panel limits your results to only 100 records.

Range queries such as these are useful when we don’t know exactly what we’re looking
for. However, we’ll often want to search for a document by an exact match on an indexed
property. To achieve this result, simply supply a string value to the key parameter, such as
"Three Philosophers" or "(512) ALT". Similarly, if you want to search on multiple keys
in one query, you can supply an array to the keys parameter, such as ["Three
Philosophers", "(512) ALT"].

www.it-ebooks.info

http://www.it-ebooks.info/

Eventual consistency

We’ll explore the parameters that we saw in the previous section, along with other
parameters, in more detail in the next chapter. One last parameter we’ll examine now is
the stale option. You’ve already learned that views are incrementally updated, which
means your query might be against a stale view. In other words, if a document was
modified, the current state of the index might not have considered that change yet.

This delay between the time a document is modified and the time it is indexed is known as
eventual consistency. In other words, the right or current value for a document will
eventually be made consistent in the view index. In many cases this might be acceptable,
but for others it’s not. Fortunately, with Couchbase you can tune your consistency
requirements for views.

By default, querying a view will trigger an update to the index after the results of the
query are returned. This is done by the update_after argument, which may be supplied to
the stale parameter. If you need a fully consistent answer, then set the stale value to
false. If stale data is permissible, set the stale value to ok. This last option will not force
an update of the view index.

Tip

Prior to Couchbase Server 3.0, a document had to be made to persist in the disk before it
could be considered for an index. This meant that true consistency between in-memory
documents and view indexes required a combination of key/value operation with a stale
value of false. Couchbase Server 3.0 introduces new stream-based views. Built on the

new Data Change Protocol (DCP), streamed views may be made consistent by setting
stale to false. This setting considers in-memory changes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase SDKs and views

For another perspective on your view, click on the link right above the grid of results. This
link will lead to a JSON view of our index:

{
"total_rows": 5891,
"rows": [
{
"id": "sullivan_s_black_forest_brew_haus_grill",
"key": ".38 Special Bitter",
"value": null
3
{
"id": "512_brewing_company-512_alt",
"key": "(512) ALT",
"value": null
3
{
"id": "512_brewing_company-512_bruin",
"key": "(512) Bruin",
"value": null
}
]
}

The client libraries will use this JSON when querying a view. This view also introduces an
important element of the Couchbase Server view API—the fact that it’s HTTP-based.
Unlike the key/value API, which is a binary protocol, views are queried over a RESTful
API, with parameter values supplied as query string arguments. Being able to see the
JSON that your client library sees is useful not only for debugging but also for
understanding how you’ll work with views through your SDK.

Unlike documents, which reside in memory (when available), view indexes are stored in
the disk. Therefore, it’s more expensive to query a view than to retrieve a document by its
key. As such, it is best practice to think of an index as a means to retrieve the document’s
key. Once the key is found, you’ll then use the key/value API to retrieve the original
document.

Tip
It is a common mistake to output the original document as a part of the map function by
supplying doc as the value argument to emit (). Doing so means storing a copy of your

document with the index, which will not be kept in sync with the doc argument in the
memory.

As you can see in the previous JSON, each record in the index provides your SDK with
three values. The first parameter, "id", is the key for a document to use with the key/value
API. The second parameter, "key", is the key that was indexed. Your queries are made
against this key. The third parameter, "value", is the value you output, typically to be used
with reduce.

www.it-ebooks.info

http://www.it-ebooks.info/

To see how you can use an SDK to query a view, consider the following C# snippet:

var query = bucket.CreateQuery("dev_beers", "by_name");
var result = bucket.Query<dynamic>(query);
foreach (var item in result.Rows)

{

Console.WriteLine(item.Key);

}

In this example, the client SDK will query the view (without arguments) and get back an
enumerable View object. As the view is iterated over, the GetItem() method uses the
index row’s id property to query for the original document via the key/value API. The
Java SDK has a similar approach:

View view = client.getView("beer", "brewery_beers");
Query query = new Query();

guery.setKeys("[\"Three Philosophers\", \"(512) ALT\"]");
ViewResponse response = client.query(view, query);

for (ViewRow row : response) {
System.out.println(row.getDocument());

}

Each SDK adheres to roughly the same pattern. First, you get access to a view object of
some type and set any parameters you need to set. Then you iterate over the results,
getting the original document by the ID value found in the index.

For better performance, you should consider using the multi-get operations. To do so, you
should first aggregate the set of id values into some enumerable structure, and then pass
that set of IDs to the multi-get operation of the SDK. The following C# snippet
demonstrates how to create a list of IDs from the view results and then supply those IDs to
a multi-get operation:

var query = bucket.CreateQuery("dev_beers", "by _name");
var result = bucket.Query<dynamic>(query);

var ids = result.Rows.Select(r =>r.Id).ToList();

var beers = bucket.Get<dynamic>(1ids);

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

We covered a lot of ground in this chapter. In the beginning, you saw Couchbase only as a
key/value store. Since then, you learned that Couchbase is a very capable document store
as well, treating JSON documents as first-class citizens.

You learned the purpose of secondary indexes in a key/value store. We dug deep into
MapReduce, both in terms of its history in functional languages and as a tool for NoSQL
and big data systems.

As far as Couchbase MapReduce is concerned, we only scratched the surface. While you
learned how to develop, test, and query views, the queries covered so far were simple.
Couchbase view queries are capable of a lot more, which you will see as we move
forward.

In the next chapter, we’ll cover MapReduce in detail. We will have to start exploring more
complex views, with a special focus on queries you’re probably used to in SQL. From
complex keys to simulating joins, you’ll soon see that Couchbase views can be used for a
lot more than simple queries.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Advanced Views

In the previous chapter, we explored the basics of the view API in Couchbase Server.
Having spent a fair bit of time discussing MapReduce, we’re now ready to move on to
more advanced views. In this chapter, we’ll dig deep into most of the common application
queries you’ll likely need to build an application with Couchbase.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying by type

One of the most basic tasks when building applications is to find all records of a particular
type. In the relational world, this effort is analogous to SELECT * FROM TableName. For
example, you might need to display a list of all users in your system. For this query, we

aren’t concerned with any particular attribute of a document other than that it is a user
document:

function (doc, meta) {
if (doc.type == "user") {
emit(null, null);
}

}

In this example, we’ll simply check for the "user" type, and then emit a null key for each
user document that is found. Since we didn’t check for any property values other than the
type, the index will contain all user documents. Again, the previous map function is
similar to a SELECT * SQL query without a WHERE clause:

var view = client.GetView("users", "all users");
foreach(var row in view)
{

var user = row.GetItem() as User;
//do something with the user

}

In the preceding C# snippet, the all_users view from the users design document is
queried with no arguments. As the view object is enumerated, each document is retrieved
by its key or value (performed by the GetItem() method).

You’re likely wondering why we emitted a null value for the key in our map function.
Recall that every row in a Couchbase view contains the ID or key from the key/value API
as a part of its data structure. Therefore, it would be redundant to include a value for the
key. The id property is exposed to the SDKs when they query the view over the RESTful
view API:

{"id":"user_12345","key":null, "value":null}

Another point to remember is that Couchbase documents are not namespaced beyond the
bucket level. There is no table analogy. As such, for a “find all” query such as the one we
saw before (to find all users), some sort of convention is required to identify the type of
the document. In this case, we’re using the convention of having a type property with each
document, as we saw in Chapter 3, Creating Secondary Indexes with Views.

Finally, it’s worth mentioning again that the purpose of a view is to provide a way of
accessing the original document over the key/value API. If you know a document’s key
from its key/value API, you wouldn’t use a view to find it. You’ll use views to find keys
for documents when those keys are not immediately or easily known.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Nested collections

So far, we’ve focused on pretty simple documents. In practice, however, you’re more
likely to work with complex JSON structures that mirror your application’s object graph.
For example, consider the common Customer class. In this case, you have a Customer
object, which has a collection of Address objects, as demonstrated in the following C#
snippet:

public class Customer
{
public string FirstName { get; set; }
public string LastName { get; set; }
public IEnumerable<Address> Addresses { get; set; }

}

public class Address

{
public string Street { get; set; }

public string City { get; set; }
public string Province { get; set; }
public string State { get; set; }
public string Country { get; set; }
public string PostalCode { get; set; }

}

In a relational model, this object structure would translate into a one-to-many relationship
between a Customers table and an Addresses table. By contrast, with document databases,
you tend to store related object graphs in the same document. As such, your JSON
structure would look something like this sample:

{
firstName = "Paulie",
lastName = "Walnuts",
type = "customer"
addresses = [
{
street: "20 Mulberry Street",
city: "Newark",
state: "NJ",
postalCode: "07102",
country: "us"
Iy
{
street: "10 Ridge Street",
city: "Orange",
state: "NJ",
postalCode: "07050",
country: "us"
3
]
}

Our JSON resembles our in-memory object graph much more closely than it does the

www.it-ebooks.info

http://www.it-ebooks.info/

relational equivalent. However, in the relational world, finding all customers who live in a
given state or have a given postal code is possible with a straightforward query:

SELECT *

FROM Addresses a

INNER JOIN Customers ¢ ON c.Id = a.CustomerId
WHERE State = 'NJ'

Fortunately, the map function that allows a similar query to be run is not as complex as
those we’ve seen already. The only real difference is that we’ll loop over the nested
collection and emit the index values from within that loop, as follows:

function(doc, meta) {
if (doc.type == "customer" && doc.addresses) {
for(vari = 0; i<doc.addresses.length; i++) {
if (doc.addresses[i].state) {
emit(doc.addresses[i].state, null);

}
by
}
}

This map function also demonstrates that within a map multiple properties or objects from
the same document may be indexed. For each address in a customer document, there will
be a corresponding record in the index.

Now we can see that, since our map function is simply a JavaScript function, we can do in
our map function virtually anything that we can do in JavaScript. You are able to create
quite complex map functions, including having the ability to create anonymous functions.

Note

It is a common question as to whether you’re able to include JavaScript libraries to be
used in your map and reduce functions. Practically speaking, you aren’t. You could
probably manage to wedge jQuery into a map function, but that would be quite
impractical.

It’s not always right to nest related entities as we just did with customer addresses. There
are times when it will make more sense to store a related record in its own document. For
example, you probably wouldn’t want to nest products purchased by a customer within the
customer record. Instead, you would likely store a reference to a product document’s key.
In Chapter 6, Designing a Schema-less Data Mode, we’ll explore these patterns in more
detail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Range queries

We’ve seen the basics of key range queries but haven’t fully explored how they work.
Understanding range queries is critical in order to understand how to perform a number of
common query tasks. We’ll start by revisiting a basic range query. We’ll use a simple
document structure, as shown here:

{
"firstName": "Hank",
"lastName": "Moody",
lltypell: Iluserll

iy

{
"firstName": "Karen",
"lastName": "Van Der Beek",
utypen . "yser"

iy

{
"firstName": "Becca'",
"lastName": "Moody-Smith",
lltypell: Iluserll

3

In this example, we have three documents. We’ll start by writing the map function, which
will allow us to perform queries by last name. This is our standard view definition with a
check on type and for the existence of a lastName property:

function (doc, meta) {
if (doc.type == "user" && doc.lastName) {
emit(doc.lastName, null);
¥

}

As a refresher, to find a user by the last name, we’ll simply provide the value "Moody" as a
view parameter (including the quotes). That is a basic key search. But what if we wanted
to find all Moody records, even those with a hyphenated last name? In this case, we can
use a range query.

To query a view by a range, there are two parameters to be set, startkey and endkey.
Even with that knowledge in mind, it might still not be obvious what values to provide for
these parameters. The startkey parameter represents the lower bounds of the range, and
the endkey parameter represents the upper bounds. It might be obvious how you’d
perform a range query on integers, but how do you perform a range query on words?

Deliberately taking a naive approach, we’ll start by using "M" and "N" as our arguments
for startkey and endkey, respectively. While with our limited dataset we’d certainly get
both the Moody records, we’d also get any document with a last name starting with the
letter M.

As a second step, we could change startkey to "Moody". While this would eliminate
documents such as one with a last name of Matthews, it would leave records such as

www.it-ebooks.info

http://www.it-ebooks.info/

Morissette. The question then becomes, what are the values greater than Moody? More
specifically, we want to find values greater than Moody followed by a hyphen, and any
other name. Before we look at the answer, let’s first revisit the notion of Unicode
collation.

When we compare strings in most programming languages, we tend to rely on ASCII or
byte order. In byte order, A is less than (or ordered before) a, but greater than B. By
contrast, with Unicode Collation, a is less than A and less than B, which is greater than b.
Additionally, accented variants are also grouped together with letters. For example, a is
less than a, and A is less than A. The following example illustrates the basics of Unicode
sorting:

l1<5<a<a<A<A<c<g¢gc<cC

Now that we have understood how view results are sorted, we can solve the problem of
ending our range query. What we want is a value that will always be higher than any last
name starting with Moody followed by a hyphen. This value should also be less than any
value that could be greater than Moody followed by a hyphen.

With Couchbase server, the practice is to create an upper bound that starts with the values
you hope to match, but suffixes that value with some high-order value. For example, one
approach would be to set startkey to "Moody" and endkey to "Moody-zzzz". While this
approach is likely to catch most documents, what about last names starting with Z, or any
other accented Z character?

A better approach is to select a boundary outside the likely realm of possible values for a
name. Usually, this approach involves using the value at the end of the Unicode Collation
table, which is \ue2ad. Therefore, if we want to capture all “Moody-?” names, we’d use
an endkey parameter of "Moody-\u®2ad".

Tip
Note that in this example, the last name moody would not be part of the query results

because m is less than M. To address this issue, we can either change the query to have a
start range of moody or modify the map function to emit all lowercase keys.

It’s also worth mentioning that this type of query is effectively a “starts with” or LIKE
"A%" query. In other words, it provides a means of searching for all documents that start
with a particular string. There is no comparable “ends with” query.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple keys per document

The preceding map function we just wrote has a limitation—it will identify only those last
names where the desired name appears before the hyphen. Therefore, the last name Van
Der Beek-Moody would not be found. To address this issue, we could query a second
time, with the startkey and endkey parameters reversed from our previous query.
However, there is a better way.

There is no rule that a document must have only one key per row in an index. Therefore,
we can rewrite our index to emit an index row for every possible last name. In this
example, a possible last name is anything appearing before or after a hyphen:

function(doc, meta) {
if (doc.type == "user" && doc.lastName) {
var parts = doc.lastName.split("-");
for(vari = 0; i<parts.length; i++) {
emit(parts[i], null);
}
}
3

In this new map function, we use JavaScript’s string split () function to return each of the
names contained in a last name. For each match name we find, we send it to the index.
Now the document with a last name of Moody-Smith will have two rows in the index, one
for Moody and one for Smith. The Van Der Beek-Moody document will also have two
TOWS.

This approach is far more powerful because it allows us to perform a key query rather than
a key range query. To find all Moody documents, we simply set the key parameter’s value
to "Moody" (with the quotes). Regardless of where Moody appears in the last name, it will
be found by our query.

As another example, consider a blog post document where the post includes a set of tags.
You want to be able to locate all the posts with the same tag:

{
"title" : "About Couchbase Views",
"body" : "Views are secondary indexes..",
Iltypell : IIpOStII’
"tags" : ["couchbase", "nosqgl", "views"]
}

In this example, the tags property is an array of strings. The map function used to index
these tags will be similar to the function we just wrote to index last names in our user
documents:

function(doc, meta) {
if (doc.type == "post" && doc.tags && doc.tags,length) {
for(vari = 0; i<doc.tags.length; i++) {
emit(doc.tags[i], null);
¥
}

www.it-ebooks.info

http://www.it-ebooks.info/

}

Since our tags were already stored in an array, all we need to do is iterate over those
values and emit them to the index. Note that we’ll also verify that our document has a
tags property and that the tags property has a 1ength property. This test will ensure that
even if the document has a tags property, it is also an enumerable property, such as an
array.

As another example of this approach to indexing documents, consider the goal of indexing
the words in a document’s title property. Our goal is to create a simple text index:

function(doc, meta) {
if (doc.type == "post" && doc.title) {
var words = doc.title.split(" ");
for(vari = 0; i<words.length; i++) {
emit(doc.words[i], null);

}

}
}
Simply splitting the words in the title and emitting them to an index allows us to query for
documents by words in the post’s title. Of course, if a true full-text index is what you
need, you’d likely want to use a full-text search tool such as Elasticsearch. Fortunately,
the Couchbase team supplies an Elasticsearch plugin. It can be used to push data from a
Couchbase cluster to an Elasticsearch cluster. The plugin is available for download at

http://www.couchbase.com/nosql-databases/downloads.

The final example of emitting multiple keys per document demonstrates how to emulate
an OR query. Using our user documents, we’ll emit an index that includes both first and
last names. In SQL, this query would be similar to the following:

SELECT *
FROM Users
WHERE LastName = 'Moody' OR FirstName = 'Hank'

For the map function, we’ll simply add an extra call to emit so that both first and last
names are sent:

function(doc, meta) {
if (doc.type == "user" && doc.firstName && doc.lastName) {
emit(doc.firstName, null);
emit(doc.lastName, null);

¥
b
The index will consist of two rows for each user document, one for the first name and one
for the last name. To run an oOR query, you would use the keys parameter, supplying an
array of the values that you want to search, for example ["Hank", "Moody"].

Querying a view by keys yields all the documents that match the supplied keys. Keys that
don’t match are ignored (much like oR). One thing to keep in mind is that in this approach,
you aren’t specifying whether a key is a first name or last name, as would be the case with
SQL. We’ll learn how to enhance this view in the next section.

www.it-ebooks.info

http://www.couchbase.com/nosql-databases/downloads
http://www.it-ebooks.info/

Tip
It’s good practice to check for null any and all properties being emitted to an index. Such
checks make it safer to perform actions on your emitted properties, or to have reduce

functions that won’t encounter unexpected null values. The following snippet could break
your indexing if lastName were null:

emit(doc.lastName.toLowerCase(),null);

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Compound indexes

Writing an AND query requires a different approach than what we used for our orR query. If
you wanted to perform the analogue of a SQL query with multiple values in a WHERE
clause, you’d need to structure your view keys in such a way as to allow your application
to supply multiple values as one key parameter value:

SELECT *
FROM Users
WHERE LastName = 'Soprano' AND FirstName = 'Tony'

In the preceding SQL statement, we are able to have values for both LastName and
FirstName. One approach would be to create a delimited key in our index like this:

function(doc, meta) {
if (doc.type == "user" && doc.firstName && doc.lastName) {
emit(doc.lastName + "," + doc.firstName, null);
}

}

This map function emits a key in the form of "Soprano, Tony" to the index. When
querying the index, the client application would concatenate the last name, a comma, and
the first name. The resulting string would be provided as the argument for the key
parameter.

Obviously, it’s not optimal to concatenate a set of values in order to run a query.
Fortunately, as we saw briefly in Chapter 3, Creating Secondary Indexes with Views,
Couchbase views support compound indexes. Recall that compound indexes are simply
array keys. With this change in mind, we could rewrite the last name and first name
indexes in this way:

function(doc, meta) {
if (doc.type == "user" && doc.firstName && doc.lastName) {
emit([doc.lastName, doc.firstName], null);
3

}

In this version of the map function, we have an array key where the last name is the first
element and the first name is the second element. With this change, when a client queries
for a combination of first and last names, the key parameter is used. The key to search on
will be a valid JSON array, for example, ["Moody", "Hank"]. On the client side, no
concatenation is required.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Grouping keys

The real power of composite keys isn’t the ability to search in multiple fields, but the
ability to perform grouping with aggregation. To illustrate this point, we’ll revisit the blog
post document with a new property for published date:

{
"title": "Composite Keys with Couchbase Views ",
"body": "Composite keys are arrays..",
"publishedDate": "2014-09-17",
utypeu : "pOSt"

}

Let’s imagine that we want to display both a list of posts by year and month and the count
of posts by year and month. By writing a view that uses compound keys and grouping
methods, we are able to achieve both. Starting with the map function, we’ll emit the year
and month as values in our composite (array) key:

function(doc, meta) {
if (doc.type == "post" &&doc.publishedDate) {
emit(dateToArray(doc.publishedDate), null);

3
}

As always, we first check the type of the document and verify that it contains a
publishedDate property. We then use the built-in dateToArray function provided by
Couchbase. This is quite useful because JSON doesn’t define a date type.

This function will take a document date string and provide the constituent pieces as items
in an array, for example 2014-09-17 becomes [2014, 9, 17, 0, 0, 0]. Then we can see
that each of our keys will be an array of integers, starting with the year, followed by the
month, then the day, and then the time components.

We’ll start by getting a count of posts by year. To do so, we’ll need to add a reduce
function to our view. We’ll simply use the built-in _count function. Additionally, we’ll
need to make use of the group_level parameter. If we provide 1 as an argument to
group_level, the view results will be grouped by the first item of the array index. In SQL,
you could think of this behavior as a SELECT COUNT(*) statement:

SELECT Year, Count(*)
FROM posts
GROUP BY Year

As you can probably guess, to get a count of posts by month, we’d simply change the
group_level to 2. It’s important to understand that group levels are always inclusive of
the elements in earlier positions in the array. In other words, when you group results at
level 2 (that is, month), level 1 (year) is always considered. In SQL, grouping at level 2
would be analogous to the following statement:

SELECT Year, Month, Count(*)
FROM posts
GROUP BY Year, Month

www.it-ebooks.info

http://www.it-ebooks.info/

If you wanted to group results by months across all years, you will need to write a separate
view that emits the month as the first element in the array. In this case, you will not be
able to use the built-in dateToArray helper function directly in the emit call. You can use
the result of the dateToArray function, but you should omit the year when emitting the
key.

When you supply a group level, the keys against which you would perform range queries
are no longer the fully emitted arrays, but rather the arrays at the specified level, for
example at level 2, [2014, 3,23,0,0,0] becomes [2014, 3]. At group level 1, the index
includes only the year.

You query compound keys with range arguments. You provide startkey and endkey, as
we saw earlier in this chapter. However, with compound keys, you will provide arrays as
the values passed to these parameters. If you wanted to find the count of posts by month
for the first half of a year, you could provide a startkey value of [2014] and an endkey
value of [2014, 6,99].

Assuming you’re familiar with the Gregorian calendar, you probably noticed that the
upper bound of date was not valid —June has only 30 days. This value illustrates an
important aspect of how composite keys are treated when queried. Specifically, queries are
not performed against arrays but rather concatenated strings (from the array values) are
used.

Recall the discussion earlier in this chapter about Unicode collation. Compound key
queries are compared in the same way. While it seems that we’ve created a set of keys as
integer arrays, Couchbase actually maintains those keys as strings. More specifically,
Couchbase Server will treat all the array characters as elements in the strings, including
brackets and commas. Additionally, single digits will be padded with a leading zero.

Therefore, when you set the startkey and endkey parameters to [2014] and [2014, 6, 99]
respectively, the actual comparison is made by comparing the strings passed to these
parameters to the ["2014"] and ["2014","06", "31"] key parameter strings. In this case,
[2014] will always be less than any date with a month, including January 1, and also 99
will always be greater than any possible day of June ("06") will always be less than July
("o7").

If we omit the group_level parameter entirely but leave the key ranges in place, we’ll be
provided with an ungrouped list of all posts over that time period. Instead, if we want to
get a list of posts for a given month, we should again leave the group_level parameter,
but supply a shorter range for our startkey and endkey parameters. In both of our
ungrouped cases, it is also necessary to add set the reduce parameter to false.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Emitting values

Up until this point, we’ve written most of our map functions to emit null for the value side
of our key/value views. We’ve also learnt that it’s best to use views as a means to retrieve
a document via the key/value API. However, there are exceptions to this rule.

Imagine that we’ve augmented our user documents to include an e-mail address, like this:

{

"firstName": "Sam",
"lastName": "Malone",
"email": "sam@example.com",
lltypell: Iluserll

}

Now consider the task of creating some sort of scheduled job that needs to send a weekly
e-mail to all users. We’ve already seen how to write the “select all users” query. Therefore,
we know how to iterate over the set of users and retrieve the original user document to get
this new e-mail property. However, this isn’t necessarily the most efficient way to do so.

If we have millions of user documents, we’d be querying both the view and key/value API
millions of times. By emitting the e-mail address as the value in our index, we can turn our
index into what is called a Covering Index in the SQL world. Such an index is able to
answer a query with the index data alone:

//the map function for a view named by_lastname
function(doc, meta) {
if (doc.type == "user" && doc.email&&doc.lastName) {
emit(doc.lastName, doc.email);
}

}

In this code snippet, our by_lastname view has been re-purposed to include e-mail as a
value. In doing so, some space on disk is saved by not having an entirely separate index
for e-mail. Also, some resources are saved by not having an extra indexing job on the
Server.

In deciding whether to include a value with your view, space and data freshness will be the
important factors. If you are including large chunks of your document in your index,
you’d instead want to use the key/value lookup pattern. Similarly, if the data you are
emitting to your view needs to be fully up to date, you should again use the key/value
lookup, even if the data stored is small.

It’s also worth noting that values (as well as keys) do not need to be primitive types or
strings. It is possible (and sometimes desirable) to emit a JSON structure. For example,
imagine our user document is much larger than the small snippet we’ve seen. We’re
frequently going to query user documents through views, but we’ll need to access the full
document less frequently:

function(doc, meta) {
if (doc.type == "user"&&doc.email&&doc.firstName&&doc.lastName)

www.it-ebooks.info

http://www.it-ebooks.info/

{

1),

}
}
In the preceding map function, we assume a use case where we’ll frequently look up a
user by e-mail and then retrieve their first and last names. Again, storing values with your
index when you’re not reducing the amount of data retrieved generally comes at a cost.
It’s far more common to emit a value with a reduce function.

emit(doc.email, { "firstName": doc.firstName, "lastName": doc.lastName

Imagine we have a set of order documents where each order includes a price:

{

"customerId" : "123456",
"products": [
{
"product": "fender_telecaster",
"price": 1249.99
3
{
"product": "line6_spider",
"price": 299.99
3

1,

"type": "order"

}

If we wanted to calculate a total of all purchases by a customer, we would emit the price as
a value and use the built-in _sum function as our reduce function:

function(doc, meta) {
if (doc.type == "order" && doc.products&&doc.products.length) {
for(vari = 0; i<doc.products.length; i++) {
emit(doc.customerId, doc.products[i].price);

3
}
}
This map function emits a separate index row for each product purchased in a specific
order. Alternatively, we could have computed the order total in our loop and emitted a
single row with just that order’s total.

When we query this view, we need to include the group parameter as well as the reduce
parameter (both true). The result will be similar to the following SQL statement. In the
relational world, we’d have a separate table for line items unlike our document, which
nests each ordered product within the order document:

SELECT CustomerId, SUM(Price)
FROM OrderItems
GROUP BY CustomerId

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Querying with beer-sample

So far, we’ve explored a wide variety of view queries. For some more concrete examples,
we’ll turn now to the beer-sample bucket. If you followed along in Chapter 3, Creating
Secondary Indexes with Views, you should already have a design document created in this
bucket. If so, then feel free to reuse that document. If not, then you’ll need to create a new
document.

Start by returning to the Views tab on the Couchbase Web Console. Select the beer-
sample bucket to retrieve the current set (if any) of views within the dev_beers design
document. If you did not follow along in the previous chapter, refer to the Creating a view
section in Chapter 3, Creating Secondary Indexes with Views to get started. The following
screenshot shows the Couchbase Console’s Views tab:

L
Couchbase
L]
Lot I :
0

Pranon e e Gevesgmens e

Compact Deidle Add Speiul View | Acd View Pubisn
Edi | Deicte

Egf Deleste

The Couchbase Console Views tab

www.it-ebooks.info

http://www.it-ebooks.info/

Querying all documents by type

We’ll start by revisiting the first view we looked at in this chapter — querying for all
documents of a given type. Our first approach was to create an index with null keys and
values for all user documents. This approach works well for organizing your design
documents in a manner similar to your application’s business objects.

Another option would be to create a single view which will allow you to search for all
documents of any type. To achieve this goal, we’ll simply emit each document’s type
property to the keys of the index:

function (doc, meta) {
if (doc.type) {
emit(doc.type, null);
}

}

With this version of our SELECT * view, every document with a type property will have a
corresponding row in the index. When we want to query for all beers, we simply provide
the key property as "beer", or the "brewery" parameter for breweries. This is shown in
the following screenshot:

Filter Resulls " i N e HinuaR

daacending

i startkay

“hrewery™ andkey

“brawery™ startkey_docid
endkey_docid

“hrewary” group
group_level

“hrawery™ nciusivg_and o

R Eey TRy
L]

“hemwery™ reduce

stale

Finding all brewery documents

www.it-ebooks.info

http://www.it-ebooks.info/

Counting breweries by location

Brewery documents in the beer-sample bucket contain address information. With these
properties, we’re able to write a view to count the number of breweries in a country, state,
or province, down to the postal code level. Because the sample data often lack postal
codes, we’ll stop at the city level.

Our map function will be fairly straightforward. We’ll emit an array as the key where the
values of the array are the document’s country, city, state, and code properties. The
following map function produces keys such as ["Belgium", "Hainaut", "Binche"] and
["Canada", "Quebec", "Chambly"]:

function(dsoc, meta) {

if (doc.type == "brewery" &&doc.country&&doc.state&&doc.city)
{

emit([doc.country, doc.state, doc.city], null);

}
}

To get a count of breweries by country, we first need to add a reduce function. Just as we
have done before, we’ll use the built-in _count function. After saving the view with the
reduce function in place, we’ll need to set the group_level parameter to 1, as shown here:

= m:ﬂﬂﬂ"’lg
stantkey

[CArgentina™)

endkey

[FAustralia”] slartkiy_deck
endkey_docid
["Balgium™ group
group_level
ERitaE] inclusive_gnd
kay
MCanacda™)
kays
["China™] reduce

ata'e
[Xetriy-] connection_tmeout 60000

Mindia™]

[iretand™]

Breweries counted by country

Similarly, we could set the group_level parameter to 2 or 3 to get a count of breweries by
province or city, respectively, as shown in the following screenshot. Recall that
group_level is always inclusive of the previous levels. We can’t count breweries in
Connecticut without including the United States. Similarly, we can’t count breweries in
Hartford without including both Connecticut and the United States.

www.it-ebooks.info

http://www.it-ebooks.info/

Deeiopmant Tos gascending
try startkey
[“Australia™"Wet endkey
startkey_docid
RGN T endkey_gackd
e -
group_level
[Beigium="Arty inciusive_end
key
["Bealgium™."Anty Keys
reduce
[FBaigium™ “Anty
stalg
[Beighim™"Arty cOnnection_timeout X000

Ridal Close
[MBeigium™,"Aniy

["Balgium™."Artwerpan™, Westmalle™]

Tip

If you’re a beer aficionado, you might find the sample data to be lacking in some of your
favorite brews. This is because the source of the brewery data was the Open Beer
Database, which is no longer maintained. Moreover, many of the documents have

incomplete address components. Keep these limitations in mind as you pull back results
that suggest Ireland has only one brewery.

If we want to find out how many breweries exist for a specific city, we will need to
provide startkey and endkey. The approach we’ll take will be the same as the approach
we used to find blog posts by a specific month. For the startkey parameter, we’ll provide
an exact country and state, for example, ["United States", "Massachusetts"].

For an endkey value, we’ll need to supply a value that is greater than all possible city
values in Massachusetts. In this case, it would probably be safe to use a startkey value
such as ["United States", "Massachusetts", "zzzz"] since no city in Massachusetts
(or anywhere else) is ever likely to be given a value greater than "zzzz". However, it’s
safer to use an endkey value in the form of ["United States", "Massachusetts",
"\u@2ad"], as \u62ad will always be greater than any city name. The following screenshot
demonstrates this example:

www.it-ebooks.info

http://www.it-ebooks.info/

Filter Resulls

ceacending S s

m startkey [FLsa Stries”, ik

- endkey Mlassachusets”. “ulls x

[Uinited States ! Starthey_dockd

endiey_docid
[MUnited States”, Group

group_lavel
MUnited States™, inchushve_and
[(United Stabes™, ko

keys
[MUnited States”! reduce

staly

["United States”,! connection_timeaut &0

[FUnited States” ! Rl =

[MUnifed States”,Maasachusstis™, "Oak BhafTs™)

Counting breweries by state

While we are unable to reuse this view to query for breweries by country or state, it may
be used to find breweries in a particular city. To accomplish this task, simply remove the
reduce parameter (or set it to false) and perform a key query, such as ["United
States", "Massachusetts", "Cambridge"], as shown here:

Filter Results

descanding S Hosits
E—
endisy
[Uriied Staiea” HorHRey_decd

a“dkﬂ'ﬁ_nm'ﬂ
[United States”. group

group_evel

inchusive_and o

ey R AT e
hlrys

rRedung

atale

connection fimeout 60000

Finding breweries by city

This type of view is useful to work with any set of hierarchical properties. With this
example, we could have a page that shows a list of countries with brewery counts.
Clicking on a country could then display a list of states, provinces and their brewery
counts. Then, clicking on a state would show a list of cities and brewery counts. Finally,
clicking on a city would show all the breweries in that city.

www.it-ebooks.info

http://www.it-ebooks.info/

Finding beer documents by brewery

To understand how to look up a beer name by its brewery, we first need to examine the
relationship between the two types of documents. Recall that Couchbase Server does not
support foreign keys and there is no referential integrity between documents. However, it
is common to create a relationship by adding a property to a foreign document.

Each beer document contains a brewery_id property, and it is the meta. id property of a
brewery document. Again, the meta.id value is the key from the key/value API. By
including this property on beer documents, it’s possible to write a simple map function to
search for beer names by their brewery, as follows:

function(doc, meta) {
if (doc.type == "beer" && doc.brewery_id) {
emit(doc.brewery_id, null);

}
}

Keep in mind that there are no joins in Couchbase Server. When you query this view with
a key value such as "pivzavod_baltika", you cannot get both the brewery and its beer
document in a single lookup. Typically with Couchbase Server, you’ll perform multiple
Get operations to retrieve related documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Collated views

Though Couchbase Server does not support joins, there is a technique commonly used to
find documents with a parent-child relationship. This technique is known as a collated
view because it relies on Couchbase Server’s Unicode collation. Before we dig into how
we can build a collated view, it’s useful to understand the goal.

We’ve already seen that Unicode collation guarantees that the index will be ordered by its
key in a predictable and consumable way. In the previous section, we saw how to create an
index of beer names where the key was the brewery’s ID. That map function provides part
of the solution—it orders all of a brewery’s beer documents together.

The other part of the solution is to add the brewery document to the index alongside the
beer documents. Specifically, we want a row with the brewery followed by each of its beer
names. This technique is not obvious at first, so we’ll take it piece by piece:

function(doc, meta) {
if (doc.type == "brewery") {
emit(meta.id);
}

}

The preceding map function is fairly straightforward. We simply check for brewery
documents and emit their meta.id value to the index. To add beer documents, we’ll first
modify the map function slightly, as follows:

function(doc, meta) {

if (doc.type == "brewery") {
emit(meta.id);
} else if (doc.type == "beer" && doc.brewery_id) {

emit(doc.brewery_id);

b
}

We’ve added a second condition to our map function. Now if we encounter a beer
document, we’ll emit its brewery_id value as the key. At this point, we have an index
entirely consisting of brewery IDs.

www.it-ebooks.info

http://www.it-ebooks.info/

 VIEW CO0E B f l_;'_'.\'

Fimar Results 1\ Atrtanc M
| Deroopment time sotsnt. T Ir oAt Bt
e

“2isl_smencimend_brewary_cals™

“Zisl_serenciment_trwwery_cafe”

St smensdmend, browery_cafe™

“Zis1_aerendeneni_brewery_cafe”

st amencmerd brewery cafe”

"t sesevsdensnd_brewery cafe”

The beginning of a collated view

As we can see in the previous figure, our index consists of a brewery, followed by its beer
names. In fact, all our beer names and breweries will appear in the index as brewery first
and beer second. A client application can now query the view by brewery ID and build a
set of parent-child objects.

Though it seems like we’re done with our map function, we still have one final change to
make. Even though our breweries correctly appear before the beer documents, it’s only
because of the way the beer keys were created in the beer-sample bucket.

Each beer’s key (or meta.id) is prefixed with its brewery’s key. Therefore, the brewery
key will always be less than the beer key, for example the
"21st_amendment_brewery_cafe" brewery key will always be less than its beer’s keys
(such as " 21st_amendment_brewery_cafe-21a_ipa"). Couchbase Server sorts results by
the document’s ID as a sort of tie-breaker for the same key in an index.

To fix our map function, we need to provide a means of forcing our parent rows to be
emitted before any of its children rows, regardless of the meta. id value for its children. If
we convert our keys to composite keys, we are easily able to enforce this ordering:

function(doc, meta) {
if (doc.type == "brewery") {
emit([meta.id, 0]);
} else if (doc.type == "beer" && doc.brewery_id) {
emit([doc.brewery_id, 1]);
}

}

With this new map function in place, we emit 0 after the brewery’s meta.id value, and 1
after the beer’s brewery_id value. We’ve now guaranteed that all beer names will appear
together immediately following their brewery. Moreover, the query to find a brewery with
its beers simply requires startkey and endkey with the brewery_id value, followed by @
and 1 respectively. The following screenshot demonstrates this example:

www.it-ebooks.info

http://www.it-ebooks.info/

* \IEW SODE WAL, ey

ez Fevipcn (i v, _swe, _ wisin)

Filter Results

it Bt By - % 54 1 _awwedeard by wwniry oo 2SN EN

idechsindg ol Wraslbioy
i : R

m atartkey el _bfewery_cate” 0|

= endkey el _Deewery_caie”]

Fatat starthey_deckd
ot msrsiest B4 gndikiay_docid

["218l_amendme group

qroup_level

[Hislamendne onsive end @

il |

2181_amandme
[C21sl_amendme Meduce i Labis
["218_amandme sei [

il apsrcmmn S =t

2181 amendme: i P

[“218i_amandment_bréwery_cale™ 1]

Finding a brewery and its beer names

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Following the background information in Chapter 3, Creating Secondary Indexes with
Views, you now saw a more complete picture of Couchbase views. You learned how a
document can be indexed in virtually any way imaginable with JavaScript. Moreover, you
now know that you can index a document in multiple ways within the same view.

Reviewing range queries led you to explore Unicode collation and some tricks to find your
data. You also saw how you are able to parse collections within documents to create
several indexed values from a single document field.

Then we explored compound indexes in some detail. You learned that these indexes
provide so much more than grouping. We can use them to query multiple properties and to
create an index that yields parent-child relationships.

Along the way, we alluded to some important topics. While discussing collated views, we
touched on the importance of key (meta. id) selection for our documents. We also
broached the subject of document relationships. These topics will resurface in more detail
in Chapter 6, Designing a Schema-less Data Model, when we discuss schema design.

Before we move on to schema design, we’re going to take a look at N1QL, an exciting
new query language that is currently being developed by the Couchbase engineering team.
Though it uses views behind the scenes, it offers a simpler approach to querying by
providing a rich language to find data in a Couchbase bucket.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Introducing N1QL

After two chapters of exploring views and MapReduce, you might be wondering just how
you would go about finding data in your bucket more easily. If you’ve worked with
relational systems, you’re likely used to being able to query your database ad hoc without
having to create a stored procedure first. Having to write a view for one-off queries of
your data probably seems less than optimal.

Fortunately, there is another option with Couchbase and it is known as N1QL
(pronounced nickel). N1QL is a query language, reminiscent of SQL. Not only does it
support ad hoc querying of your data, it also provides a means to perform joins and
aggregation.

At the time of writing this book, N1QL is still in developer preview, though some
Couchbase SDKs are starting to see support for it. We’ll explore N1QL in some detail
throughout this chapter, but keep in mind that with any prerelease product some changes
are likely. However, the core concepts and interface are unlikely to see any drastic
changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing N1QL

Couchbase Server does not ship with N1QL. It needs separate downloading and
installation. As of Developer Preview 3, there are binaries for Windows, Red Hat Linux,
and Mac OS X. You can find these packages at http://www.couchbase.com/nosql-
databases/downloads#PreRelease. The package for your operating system will be in the
form of a zipped archive.

Tip

It’s important to remember that N1QL is still in developer preview and is not necessarily
being kept in sync with all current Couchbase releases. While N1QL Developer Preview 3
does appear to work fine on Windows with Couchbase Server Community Edition 3.0.1, it
will not work with Couchbase Server Enterprise Edition 3.0.2. If you are unable to
complete the following tasks using the Enterprise Edition, you should try the Community
Edition instead.

Once you’ve obtained the binaries for your system, you’ll need to extract the contents.
Expand (unzip) the archive to any location where you’ll easily be able to get to via the
command line. After extracting the files, navigate to that path and run the following
command:

./cbg-engine -couchbase http://localhost:8091

This line attaches N1QL to your Couchbase Server instance. It will start a process that will
listen on port 8093. After it starts, you should see output similar to this:

22:19:08.343741 Info line disabled false
22:19:08.348746 tuqtng started..
22:19:08.348746 version: v0.7.2
22:19:08.348746 site: http://localhost:8091

Once the cbg-engine is up and running, you’re ready to start running N1QL queries
against your buckets. The easiest way to do so is to run the command-line query interface,
which can be found in the same directory as cbq-engine. You can run this tool using the
following command:

./cbq http://localhost:8093

This command will open the cbq prompt where you are able to enter N1QL commands. In
this chapter, we’ll work with the beer-sample bucket. To prepare that bucket for queries,
run this command from the cbhq prompt:

cbg> CREATE PRIMARY INDEX ON beer-sample

With this step, you’ve actually created a view on the beer-sample bucket. If you open the
Couchbase Console and navigate to the Views tab, you’ll find a view named #primary
contained within a dd1_#primary design document. Note that this design document will
only appear under Production Views:

function (doc, meta) {

www.it-ebooks.info

http://www.couchbase.com/nosql-databases/downloads#PreRelease
http://www.it-ebooks.info/

var stringToUtf8Bytes = function (str) {
var utf8 = unescape(encodeURIComponent(str));
var bytes = [];

for (var i = 0; i<str.length; ++i) {
bytes.push(str.charCodeAt(i));

¥

return bytes;

B

emit([160, stringToUtf8Bytes(meta.id)], null);
}

This relatively compact map function creates an index on document keys. You might be
wondering why N1QL won’t use a simpler map function, such as the following. After all,
this map function also creates an index on document keys. The important distinction
between N1QL queries and view queries is that view queries use the standard HTTP REST
API and N1QL has its own query processor:

function (doc, meta) {
emit(meta.id, null);

}

At this time, N1QL is simply taking advantage of the fact that indexes may be created
using views. This coupling may very well change at some point. So, though the underlying
facility to create indexes is the same between N1QL and MapReduce views, the actual
querying is quite different and requires a different index key structure.

Having a primary index on a database simply means that primary keys have been indexed
for use with N1QL. Just as in a relational database, if you were to query regularly by
certain fields, it would be important to create indexes to avoid unnecessary scanning
through documents.

For this chapter, we’ll worry only about the primary index. If you want to experiment with
creating other field indexes, the syntax is as follows. In this example, we create an index
named by_abv on the abv field of documents in the beer-sample bucket:

CREATE INDEX by_abv ON beer-sample(abv)

With the primary index created, you’re now ready to write your first N1QL query.

Tip

If you’re using Windows and its standard command line, you’ll want to remove./ from

the beginning of command-line examples. If you are using PowerShell on Windows or a
Linux variant, you do not need to make any changes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Simple queries

N1QL queries are likely to feel somewhat familiar to you as the language is very much
like SQL and other such query languages. To illustrate just how similar N1QL and SQL
are, consider the following query:

SELECT *
FROM beer-sample

This basic N1QL query looks and feels like the equivalent SQL query, and it does what
you would expect it to do—it retrieves all documents from the beer-sample bucket. Recall
that documents in a Couchbase bucket are not contained in a second-level namespace. As
such, there is no equivalent of a SELECT * FROM Table statement.

Instead, if you want to find all brewery documents, you can write a N1QL query similar to
the map function you would write in the case of a view. In both the cases, you have to
check the convention-based type property to identify a document’s taxonomy:

SELECT *
FROM beer-sample
WHERE type == "brewery"

Similarly, we can apply an additional WHERE clause to filter the results by another property
before they are returned, as follows:

SELECT *

FROM beer-sample

WHERE type = "brewery"

AND country = "United States"

Again, there is virtually no difference between SQL and this N1QL query, save for the
double quotes around strings. Even though you’ve seen only a couple of snippets of
N1QL, it should be obvious that the Couchbase team designed N1QL to be immediately
accessible to developers experienced with more traditional and relational systems.

As is the case with SQL, it’s generally a good idea to project data from your queries rather
than returning all properties in a document (or columns in the case of an RDBMS). Doing
so with N1QL requires only that you specify the property names with your SELECT
statement:

SELECT name

FROM beer-sample

WHERE type = "brewery"

AND country = "United States"

Ordering is also possible using familiar, SQL-like operations:

SELECT name

FROM beer-sample
WHERE type = "brewery"
ORDER BY name

Another common SQL task is limiting the number of results or skipping certain numbers

www.it-ebooks.info

http://www.it-ebooks.info/

of results before returning rows. Often, you’ll do so to page results displayed on a client
application. It is also possible to skip and limit with N1QL, as demonstrated in the
following code. In this snippet, only 10 documents are returned, starting with the sixth. In
other words, documents numbered six to 15 are returned:

SELECT *
FROM beer-sample
LIMIT 10 OFFSET 5

The default ordering of documents is based on the document’s meta.id value. Recall that
this is also the default ordering for a view where no explicit key is set (that is, emit(null,
null);). To verify this ordering behavior, you can run the following query. This query
uses the meta() function, which provides access to a document’s metadata:

SELECT city, name, meta().id
FROM beer-sample
WHERE type = "brewery"

Should you wish to sort by a document’s property, you may add the ORDER BY clause to
your SELECT statement. Again, the syntax for this clause should be familiar to SQL
developers, as shown in the following code. In this example, documents are sorted first in
descending order by name, and then in ascending order by style:

SELECT *

FROM beer-sample

WHERE type = "beer"

ORDER BY name DESC, style

N1QL also provides a means to search for documents by document keys. This search is
performed by adding a KEY (KEYS for multiple keys) clause to a SELECT statement. To
search for a single item by key, you provide a single key:

SELECT *
FROM beer-sample
KEY "thomas_hooker_brewing"

Alternatively, you can search for multiple documents with multiple keys:

SELECT *

FROM beer-sample

KEYS [

"thomas_hooker_brewing-hooker_oktoberfest",
"thomas_hooker_brewing-thomas-hooker_irish_red_ale",
"thomas_hooker_brewing"

]

To remove duplicate results from a query result set, simply apply the DISTINCT keyword to
the projected properties. For example, to retrieve the distinct set of countries with
breweries, you can execute this query:

SELECT DISTINCT country
FROM beer-sample
WHERE type = "brewery"

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Null or missing properties

Throughout our exercises in writing map functions, it was common to test properties
before attempting to emit them to a view index. N1QL also provides the capability to
check for null or missing properties.

In JavaScript map functions, to check whether a property contains a null value, you simply
compare the value to null:

if (doc.property == null) // do something

Missing properties are not null; rather, they don’t exist. In order to check for a missing
property with JavaScript, you can compare it to the undefined literal string or simply
apply the bang (!) operator to your check. Using the latter test will allow for both a null
check and a missing check:

if (! doc.property) // do something

There are two separate operators in N1QL used to test null and missing property values.
The first query in the following snippet tests whether the value for style is Null:

SELECT *

FROM beer-sample
WHERE type = "beer"
AND style IS NULL

The second tests whether the style property was omitted entirely from the beer document:

SELECT *

FROM beer-sample
WHERE type = "beer"
AND style IS MISSING

These sorts of tests are important, given the schema-less nature of Couchbase and other
document databases. Most developers are used to the safety of a relational schema, but in
the world of NoSQL, it’s important to expect the unexpected!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

String utilities

One of the more obvious limitations of querying views is the lack of a proper LIKE
operator. Though we saw in Chapter 4, Advanced Views, that it is possible to emulate a
query like “starts with”, it is not as robust as SQL’s LIKE operator.

Fortunately, N1QL addresses this limitation with its own LIKE operator. Similar to SQL,
you define a search pattern with a wildcard that is specified by a % character. In the
following snippet, all breweries with Boston in their name will be returned in the results:

SELECT *

FROM brewery-sample
WHERE type = "brewery"
AND name LIKE "%Boston%"

Other string operators exist to perform standard string transformations such as SUBSTR,
LOWER, UPPER, and LENGTH. You can use these functions as you do in a JavaScript map
function or with string operations in most frameworks:

SELECT *

FROM beer-sample

WHERE type = "brewery"

AND LOWER(name) ="thomas hooker brewing"

It’s also possible to perform string concatenation using the double pipe (| |) operator. You
can use this operator to combine properties into a single projected property. If you want to
combine the city, state, and postal code into a single value, you can write this query:

SELECT city || ", " || state || " " || code AS Address
FROM beer-sample

WHERE type = "brewery"

AND city IS NOT NULL

AND state IS NOT NULL

AND code IS NOT NULL

More accurately, in the beer-sample bucket, breweries without city, state, or code values
are stored as empty strings, so the preceding query won’t actually filter the data as you
might expect. Instead, you will have check whether those properties have a nonempty
string. Which test you perform will of course depend on how your documents are
structured:

SELECT city || ", " || state || " " || code AS Address
FROM beer-sample

WHERE type = "brewery"

AND city !=""

AND state != ""

AND code != ""

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregation and math

Performing aggregation is also a familiar operation. To write a query to count the number
of breweries by state, you use the built-in count aggregate function:

SELECT state, COUNT(*) AS Count
FROM beer-sample

WHERE type = "brewery"

GROUP BY state

As you might expect, N1QL supports mathematical and aggregate operations such as AVG,
ROUND, MIN, MAX, and SUM. You can use these operations to perform calculations on either
aggregated data or on projected columns. As another example of aggregation with N1QL,
this query computes the average abv (alcohol by volume) of a brewery’s beer brands:

SELECT brewery_id, AVG(abv) AS Average
FROM beer-sample

WHERE type = "beer"

AND abv !'= 0

GROUP BY brewery_id

Similarly, if you want to find the beer with the highest or lowest alcohol content, you can
use the MAX or MIN function respectively. In the following snippet, the HAVING clause is
added to the GROUP BY clause to filter the results:

SELECT name, MAX(abv) AS Strength
FROM beer-sample

WHERE type = "beer"

AND abv != 0

GROUP BY name

HAVING MAX(abv) > 5

The BETWEEN operator may also be used to query for documents with a property value
within a range; for example, if we want to find beers with abv between 5 and 10, we can
use this query:

SELECT *
FROM beer-sample
WHERE abv BETWEEN 5 AND 10

At the time of writing this book, the BETWEEN operator doesn’t work with the AND operator.
In order to test for abv and type, you will need to use the “greater than” (>) and “less
than” (<) operators:

SELECT *

FROM beer-sample

WHERE abv> 5 AND abv< 10
AND type = "beer"

Of course, N1QL also supports standard arithmetic operators for multiplication, division,
addition, and subtraction. You are able to use these operators in your projections as you

could with SQL. The following snippet calculates the proof (twice the abv value) of each
beer. Also note the use of the standard “greater than” operator. Of course, the “less than”

www.it-ebooks.info

http://www.it-ebooks.info/

operator is also supported:

SELECT abv * 2 AS proof
FROM beer-sample

WHERE type = "beer"

AND abv> 0

Tip
Note that N1QL is smart enough to know when a hyphenated property or bucket name is

used in a query, and it won’t confuse the query engine into attempting subtraction. There
is no need to avoid such properties.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Complex structures

N1QL queries are not limited to simple data types such as strings and numbers. With
N1QL, you are able to operate on JSON objects and arrays as you could with map
functions written in JavaScript.

As a simple example of a nested object, consider the brewery documents in the beer-
sample bucket. These documents have geo data contained in a nested object with the geo

property:

{
"type": "brewery",
llgeoll: {
"lng": -72.1234,
"lat": 34.1234
}
3

The geo object contains properties for longitude and latitude. If you want to write a query
to find a brewery’s geo information, you can use the standard dot (.) notation, which is
common with most modern object-oriented programming languages:

SELECT geo.lon, geo.lat
FROM beer-sample
WHERE type = "brewery"

Arrays are another common data structure in JSON documents. N1QL supports working
with arrays in a few ways. The beer -sample database doesn’t have much when it comes to
interesting array data, but the brewery documents do contain an address property, which
is an array. Unfortunately for this example, there is no more than a single address in any
brewery document:

SELECT address[0]
FROM beer-sample
WHERE type = "brewery"

In this case, the result of the query will be the first address (in our case the only address)
in each brewery document. N1QL also includes a few functions to work with arrays. If a
beer document didn’t contain a valid address array, the preceding query would break. A
safer query should include a check for the length of the array:

SELECT address[0]

FROM beer-sample

WHERE type = "brewery"

AND address[0] IS NOT NULL

AND ARRAY_LENGTH(address[0]) > ©

It’s also possible to use array slicing to achieve a similar result. The following snippet
demonstrates how to select the first two addresses from a brewery document and ensure
that those addresses are not missing. Note that the beer -sample database doesn’t contain
address data to satisfy this query:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT address[0:2]

FROM beer-sample

WHERE type = "brewery"

AND address[0:2] IS NOT MISSING

There are also methods for combining and adding items to arrays, such as array_prepend,
array_append, and array_concat. As their names suggest, these methods add elements to
the beginning or end of an array, or combine two arrays into one.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with collections

N1QL provides a means to succinctly query collections within a document. Recall that to
examine nested collections in a map function, you used to run a for loop over the items in
that collection. To achieve similar results in N1QL queries, you can filter a collection
using the ANY operator.

For example, if we continue to use the address property of brewery documents, we can
search for only those addresses that are not empty. In the following example, we’re
checking the length of each address string as our condition. Note that if a document
contained two addresses, where one was valid and another was an empty string, the
condition would still be satisfied:

SELECT address

FROM beer-sample

WHERE type = "brewery"

AND ANY addr IN address
SATISFIES LENGTH(addr) > @ END

With a very slight change to the query, we can modify the behavior so that instead of
returning breweries with a mix of empty and valid addresses in the address array, we
return only those documents where all addresses are valid. In this case, we change the ANY
operator to EVERY:

SELECT address

FROM beer-sample

WHERE type = "brewery"

AND EVERY addr IN address
SATISFIES LENGTH(addr) > ©@ END

With EVERY, only documents with address arrays with nonempty entries will be included.
This means that if an array contained a valid address (nonempty) and an invalid address
(empty), it would be excluded from the results. Note that in the beer -sample database,
there aren’t any records that do not satisfy the preceding previous query. Again, all address
records contain either a single address or an empty array.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Joins

N1QL does contain support to perform joins on documents with a caveat—the joins must
be made across different buckets. While this is a limitation for several use cases, it does
provide a means of putting data together from disparate document sources.

Since this chapter focuses on the beer -sample database, the following join next imagines
a setup where beer and brewery documents are stored in two separate buckets named
beers and breweries, respectively:

SELECT *

FROM beers AS b

JOIN breweries AS b2
KEYS b.brewery_id

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SDK support

At the time of writing this book, SDK support for N1QL is somewhat limited. .NET, Java,
PHP, and Node.js have experimental support for N1QL. Ruby and Python should see
N1QL support in the future. Until both the N1QL framework and the SDKs are more
locked down, it’s worth keeping an eye out for changes. At this stage, we’ll look briefly at
a Java snippet that demonstrates how to use N1QL with the 2.0 SDK:

Observable<QueryResult> result = bucket.query("select * from beer-sample");

Notice that the N1QL language is reminiscent of working with SQL-oriented frameworks
such as JDBC or ADO.NET.

If you’re familiar with prepared statements in SQL, where you provide parameters as
positional arguments to a query statement with placeholders, there are work items for the
Couchbase N1QL team to provide support for these types of queries. The advantage of
prepared statements is that the query optimizer doesn’t have to reparse and replan the
execution with each run of query that differs only by arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter introduced N1QL, a powerful and experimental Couchbase query language.
It’s important to understand that this was not an exhaustive introduction to N1QL; some
stones were left unturned. In particular, there are several additional functions for working
with dates, strings, and numeric values. However, we have seen the most important bits.

As we’ve seen, N1QL is a somewhat radical departure from the MapReduce view model.
This new feature is not meant to replace MapReduce, but rather to create greater flexibility
in accessing your data.

Couchbase Server is truly unique because it provides developers with so many options to
access data. With three distinct models for accessing documents, developers are able to
build applications the way they wish to build them. Some developers will stick to the
tried-and-true key/value model, while other developers who enjoy the power of
MapReduce are likely to stick to views. Nevertheless, newer Couchbase users who prefer
cutting-edge technology will likely find the familiarity of N1QL appealing.

As we’ll see in the next chapter, designing a schema for Couchbase means considering
both key/value and document design. Adding N1QL to the mix does mean that some of
the design considerations made for MapReduce may have to be rethought. However, with
N1QL still in developer preview status, we’ll consider MapReduce when discussing
document schemas.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Designing a Schema-less Data
Model

In this chapter, we’re going to take a step back from how to program for a Couchbase

database, and instead focus on design considerations for a Couchbase application. We

touched on a few of the important design ideas in the previous chapters, but we’ll now
explore keys and documents in greater detail.

There is no right way to design a document-based application. This notion differs
significantly from relational application design. If you’re an experienced developer of
RDBMS-based systems, you’ve likely undergone the process of converting a logical
model to a highly normalized database design. NoSQL design is very different.

Proper document design is tightly coupled with both your logical model and your
application use cases. Moreover, use-case-based document design will vary among
document databases. Designing your Couchbase documents is not necessarily the same as
designing your MongoDB documents.

Since Couchbase is a hybrid data store, we’ll need to consider both key/value and
document designs. Here, our key/value design might differ from a key/value design for a
key/value database such as Redis. As you explore both key/value and document design,
you’ll learn about the specifics of Couchbase that impact on design decisions.

www.it-ebooks.info

http://www.it-ebooks.info/

Key design

With Couchbase, you can’t have a document without a key. Therefore, it’s clearly
important to have a strategy for key design. How you choose to generate your keys will,
generally, be partly preference driven and partly use case driven. We’ll start by examining
what basic requirements exist for keys in Couchbase.

www.it-ebooks.info

http://www.it-ebooks.info/

Keys, metadata, and RAM

We saw previously that Couchbase keys are parts of the metadata of a document. This fact
was revealed as we explored views that used the meta argument in map functions to
retrieve document IDs for indexes. Prior to Couchbase Server 3.0, all keys were kept in
the memory even if their documents weren’t. Therefore, longer keys required more
memory. Since Couchbase performs best when documents are kept in the memory, smaller
keys mean more RAM available for documents.

In Couchbase Server 3.0, keeping metadata in the memory is still the default behavior, but
it is now tunable. While you’re now able to delete metadata from the memory for
documents that have been evicted (based on a most recently used strategy), metadata not
being in RAM does slow down performance. Hence, the choice of key is still of
importance for very large datasets.

www.it-ebooks.info

http://www.it-ebooks.info/

Predictable keys

In the relational world, primary keys are almost always autoincremented integers. You
generally don’t care about that primary key, as you’re more likely to access a row in a
table by some secondary index. Of course, there are times when you’ll display a record by
its ID, but it’s likely that you found that record’s ID via some other lookup, such as a
SELECT * statement or through a foreign-key-related document.

Couchbase documents are not very different. We’re able to get to documents by secondary
indexes or even nonconstrained relations. However, these lookups require use of the view
API. While Couchbase provides more than satisfactory performance for view lookups,
these queries will never be as fast as in-memory document fetches via the key/value API.

If you’re designing an application that requires extremely fast performance, avoiding the
view API might be desirable. If you need to boost performance via the key/value API, you
might want to have predictable keys that your application can use. Creating predictable
keys does require some thought, however.

For an example of how we can use predictable keys, let’s consider the simple case of a
system that pushes messages to a user in a manner similar to that of Twitter or Facebook.
Our version will be simplified because we won’t concern ourselves with the comparison
of read with unread messages. We’ll assume that the system regularly updates a view with
new messages and refreshes that view during each update.

In such a system, we could start with a user document that has an array of messages:

{

username: "jpage",
passwordHash: "0123456",
messages: [
"Hello!",
"Great gig!",
]
}
If we wanted to use a predictable key to find a user’s messages, we’d have to use a key
that would be accessible via some attributes of the user data; for example, we could use
the username as the key. Assuming a user has to log in with their username, the

application would be able to provide the key to a key/value Get operation at some interval.

While in this case we would be able to bypass the need for a view to get our user
messages, it’s not an ideal design. One problem is that if a user changes their username, a
new document would have to be created, and keys cannot be renamed! In practice, you
could retrieve the original user document, create a copy, and remove the old document.
However, this approach does risk leaving an orphaned document behind if the delete
operation were to fail.

Another potential problem is that each time the messages are retrieved, the entire
document will have to be retrieved. The key/value Get operations do not support
projections (selecting subsets of records). As such, it’s important to consider document

www.it-ebooks.info

http://www.it-ebooks.info/

size for the performance of Get. It’s always faster to retrieve only the data needed by your
application.

While views can be used to provide a part of the document at its messages, remember that
this is not good practice. Views should rarely emit document details to be used as it is.
Instead, we can use predictable keys to create a simple access pattern to break our
documents across multiple keys.

If we break our document into smaller documents with related keys, we could use one of
two approaches for using keys. The first approach would be to store the key of the other

documents within the parent document; for example, a user document might hold a key

reference to a userMessages document.

A second approach would be to use a variant of the predictable parent key for each of the
child keys. So, if the parent key were user: : jpage, then the child keys could be of the
user::profile::jpage or user::messages: :jpage form. In this approach, the keys hold
some form of taxonomy for the documents, and this can be used to discover the document
type within a map function:

function(doc, meta) {

var keyParts = meta.id.split("::");

if (keyParts[0] == "user") {

emit(...);

}
}
The preceding approach does have the added benefit of letting you avoid the need to use a
type property in your documents. This benefit is less about document size (since the key
might be larger) and more about not being required to maintain an extra property in your

documents.

In practice, including taxonomy in the key is largely a matter of preference. The
performance difference during indexing will be nominal, that is, the difference between a
string split operation and a string comparison operation. However, smaller keys require
less RAM for metadata. If predictability is not important, the type property approach does
potentially allow for less RAM use.

www.it-ebooks.info

http://www.it-ebooks.info/

Unpredictable keys

As you might have surmised, Couchbase Server does not provide a mechanism to generate
keys. Therefore, it is up to your application to generate unique keys. There are a couple of
different strategies you might employ in creating unique keys, but generally speaking, all
you should be concerned with is maintaining uniqueness.

The most common means of generating keys is to use a globally (or universally) unique
identifier, typically referred to as a GUID or UUID. Most modern programming platforms
support GUID generation. When creating a document, you simply have to create a new
GUID and use that value when calling add or set.

www.it-ebooks.info

http://www.it-ebooks.info/

Storing keys

It might seem strange to title a section as Storing keys, since you don’t actually have a
choice as to where keys are stored. However, it’s important to note that storing the key
inside the document is redundant and potentially invalid if not kept in sync.

The problem of including a key in the document tends to arise when using JSON
serializers to create documents from business objects. Consider the following C# class:

public class User

¢ public string Id { get; set; }

public string Username { get; set; }

public string Email { get; set; }
}
What happens when this class is serialized into JSON? Most likely, the 1d property will be
included in the document. Assuming that you expect this property to map to the key of the
document, you’ll want to make sure that you ignore this property during serialization.
Many JSON serializers provide a means to prevent a property from being serialized. In
other cases, you may have to transform the object into an object without an Id property.

On the way out, you will likely want to map the Id property of your domain object to the
key of the document. Newer SDKSs such as Java and .NET provide this support out of the
box. In other cases, you’ll simply assign the key used during a Get key/value operation or
the key discovered during a view query.

These approaches are illustrated in the following C# snippets. Note that these samples
intentionally bypass the built-in JSON support to demonstrate the explicit mapping of 1d
properties to business objects:

public class User
{
//Don't include this field when serializing
[JsonIgnore]
public string Id { get; set; }
public string Username { get; set; }
public string Email { get; set; }
}

var key = "12345";
var user = new User

{

Id = key,

Username = "jsmith",

Email = "jsmith@example.com"
i

//Serialize the User instance to JSON
//The Id property will be ignored
var json = JsonConvert.SerializeObject(user);

//Insert the User JSON

www.it-ebooks.info

http://www.it-ebooks.info/

bucket.Insert<string>(user.Id, json);

//Get the JSON string from the bucket
var savedJson = bucket.Get<string>(key);

//Deserialize the JSON back into a User instance
var savedUser = JsonConvert.DeserializeObject<User>(savedJson);

//The savedUser will have a null Id at this point
//Manually set the Id property to the key
savedUser.Id = key

From this example, you might be wondering why you need to set the Id property of the
savedUser instance to a key when you already know the key. The assumption here is that
your application will somehow make use of this data object and attempt to access the Id
value. Suppose you were making use of this object in an HTML templating engine. You
could display an Edit User link using this code:

Edit User

www.it-ebooks.info

http://www.it-ebooks.info/

Key restrictions

Regardless of which key strategy you choose, there are a couple of minor restrictions on
keys; for example, they are strings no more than 250 bytes long. Also, you cannot use
spaces in your keys, but as we saw in the previous case, you may use characters such as
punctuation to delimit a key.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Document design

Document design is a more involved activity than key design. There are far more variables
to consider when creating a document’s schema. Some of these factors are specific to
Couchbase. Others are generally applicable to document databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Denormalization

When designing a relational system, you typically start with a highly denormalized logical
view of your entities. That view is then normalized into a physical model where the data is
spread across several tables in an effort to minimize any possible data redundancy.

Similarly, you’ll likely start your document design by creating a denormalized, logical
model. With this approach, your design first considers the most complete document that
your domain demands. For example, if you were building a blog, you might start with a
blog document with nested posts. Within each post, there would be nested comments and
tags:

{
Iltypell : IlblogH,
"title": "John Zablocki'sdllHell.net",
"author": {
"name": "john.zablocki",
"email": "jz@example.com"
3
"posts": [
{
"title": "Couchbase Schema Design",
"body": [
"Couchbase schema design.."
1
"date": "2015-01-05",
"tags": [
"couchbase",
nnosqln’
"schema"
1
"comments": [
{
"comment": "Thanks for the post.",
"user": "jsmith"
¥
]
I
{
"title": "Azure DocumentDB",
"body": [
"Using Azure DocumentDB.."
1
"tags": [
"azure",
llnosqlll
1,
"comments": [
{
"comment": "Thanks for the post.",
"user": "jsmith"
I
{
"comment": "Interesting.",

www.it-ebooks.info

http://www.it-ebooks.info/

"user": "jdoe"

Next, you’ll create a physical model with a goal of minimizing normalization. In other
words, you’ll design a schema where related entities are broken apart only when
necessary.

In the previous blog example, the normalized relational model would likely include
separate tables for blogs, posts, comments, and tags. The process of creating a minimally
normalized document model should follow from considering use cases for your
application.

A good way to start in the case of a blog is to separate posts from the parent blog. This
step of normalization is important because without it, every time a blog post is read, the
blog, the post, and all sibling posts will be retrieved as well. Clearly, it’s best to be able to
retrieve a single blog post:

//key blog_johnzablockis_dllhellnet
{
lltypell : Ilblogll,
"title": "John Zablocki'sdllHell.net",
"author": "author": {
"name": "john.zablocki",
"email": "jz@example.com"

}
}

//key post_couchbase_schema_design
{
"blogId": "johnzablockis_dllhellnet",
"title": "Couchbase Schema Design",
Ilbodyll : [
"Couchbase schema design.."
1,
"date": "2015-01-05",
"tags": [
"couchbase",
"nosql",
"schema"

1,

"comments": [

{

"comment": "Thanks for the post.",
"user": "jsmith"

b
]
}

The separate blog and post documents here demonstrate how to link two documents
together by placing the key of one document on the related document. In this case, we

www.it-ebooks.info

http://www.it-ebooks.info/

have the blog document’s key on the post document in its blogId property.

If we assume that each blog has only one author, we have another decision to make—
where to put the author details. One option is to separate the authors into their own
documents. If we were to take this approach, then in order to show an author’s name on a
post, we’d either have to get to the author document through the blog document, or
include a second ID reference on posts, which would be the author document’s key.

Alternatively, there is a valid approach that involves keeping the author details within the
blog, and (redundantly) including the name of the author in the post document. With this
approach, we avoid the need to retrieve additional documents to simply add a name for
display:

{
"blogId": "johnzablockis_dllhellnet",

"title": "Couchbase Schema Design",
"author": "john.zablocki",
"body": [
"Couchbase schema design.."
]

}

Tip

If you’re a relational developer, this last step probably feels a bit “dirty.” That’s common
at first when moving to NoSQL. Remember that NoSQL databases exist to make
programming against databases easier and to provide optimal performance. Denormalizing
data by being redundant is a tool to achieve both of these goals. Moreover, you are likely
to optimize your relational model by denormalizing a column or two to avoid an extra join

or query. However, this approach does of course require some maintenance effort to
ensure data integrity.

The decision as to whether to leave comments within posts will be discussed later in this
chapter, as it is a more nuanced choice to make, compared to blogs and posts. As for tags,
it would be very inefficient to normalize tags into their own documents as you might do
with a relational system; each tag would require a Get operation.

One reason the normalized model works so well in relational systems is that SQL joins
allow related data to be gathered from several different tables and presented as a single
logical result. However, joins also create overhead for queries by increasing disk access
operations.

Most NoSQL systems have forgone join support and rely heavily on the cache to support
rapid retrieval of several documents when a somewhat normalized document is required.
Couchbase is capable of tens of thousands of operations per second on a single node. As
such, multi-get overhead is generally not a concern.

www.it-ebooks.info

http://www.it-ebooks.info/

Object-to-document mappings

When you design an application, you tend to model your business or domain objects much
more closely with your logical model than your physical model. This conflict leads to
what is often termed as the object-relational impedance mismatch, which is another way
of saying that it’s hard to map your domain objects to your relational model.

With document stores, you have a much easier path from the object to the document. For
starters, JSON (and its binary variant) is itself a notation for describing objects. Within a
document, there is built-in support for nested collections, related properties, and basic
property types. More importantly, pretty much all modern programming languages have
JSON serializers.

It won’t always make sense to store the entirety of a domain object graph in a single
document, but as a general rule, it’s useful to start with this design and to allow your use
cases to dictate document separation.

www.it-ebooks.info

http://www.it-ebooks.info/

Data types

With relational databases, there are numerous types that may be used to create a schema.
From fixed-length to variable-length strings and floating-point numbers with various
precisions, SQL systems support a great number of options. The situation is quite different
with Couchbase Server.

As a document store relying heavily on JSON, Couchbase needs only a few primitive
types supported by JSON. These types are strings, numbers, arrays, and Booleans. From
these types, virtually any object graph can be stored as a document. Note that dates are not
addressed by the JSON standard.

www.it-ebooks.info

http://www.it-ebooks.info/

Document separation

There is no golden rule as to when you should separate your document into smaller
documents. We saw earlier in this chapter that performance considerations might lead us
to do so, but there are also a few other reasons that don’t necessarily involve speed of
document retrieval.

One common reason for breaking a document into smaller documents is write contention.
Consider a blog post and its comments. In the following abbreviated document, we can
see that each comment on a post is stored as a nested object within a comments collection.
While this is certainly a valid document design, there are situations where it might not be
optimal:

{
"title": "Couchbase Schema Design",
"body": "Designing documents..",
utypen : "pOSt" ,
"comments": [
{ "message": "Great post", "user": "rplant" },
{ "message": "I learned a lot", "user": "jpjones" },
1
}

Consider a situation where a blog post is quite popular and is likely to generate hundreds
(or even thousands) of comments in a short period of time. In this case, it is important to
understand one aspect of Couchbase document retrieval, that it’s all or nothing.

When you perform a Get operation on a document, the entire document is returned. While
Couchbase is quite fast and that document is likely coming from the RAM (not the disk),
it still means every page view would pull back all comments. If you’re not displaying
those comments, then you’re retrieving a potentially significant amount of data for no
reason.

While you may not be concerned with the transfer of unused data when the document is
retrieved, there is another consideration for such a document design. If hundreds or
thousands of users are trying to update a document at the same time, there will be
contention for that document. Using CAS for optimistic locking is certainly a requirement
here, but CAS will only prevent stale updates, it won’t minimize contention.

As an alternative, you could separate each comment into its own small document. In doing
so, you eliminate the need to perform CAS operations and keep the post document lean:

{

"message": "Great post",

"user": "rplant" ,

"type": "comment",

"postId": "couchbase_schema_design"

}

To find all comments associated with a given post, you can create a view where the index
is on the postId property of the comment document:

www.it-ebooks.info

http://www.it-ebooks.info/

function(doc, meta) {
if (doc.type == "comment" && doc.postId) {
emit(doc.postId);
}

}

Again, whether this approach makes sense for your situation depends primarily on the
needs of your particular application. If a post document were to get only a dozen or so
comments, there is little need to worry about CAS impacting performance. There would
also be little concern over document size and retrieving superfluous data.

Tip
Keep in mind that with the approach of breaking nested entities into separate documents,

you’re increasing the RAM requirements for metadata. Having a single document means
having only one key and associated metadata values.

Another reason you might consider breaking a document into separate documents is about
document access patterns. Recall that Couchbase Server keeps recently used documents in
the memory whenever possible. Storing related data together in a single document means
potentially storing unnecessary data in the RAM.

As an example of how to design for this scenario, consider an activity where you track
customers and customer orders. The denormalized approach would be to have a customer
document with a nested collection of orders:

{
"username": "tyorke",
"type": "customer",
"orders": [
{ "description": "microphone": "date": "2014-11-02" 1},
{ "description": "drum machine": "date": "2014-11-02" }
]
}

The problem with this document design is that a customer is likely to spend more time
visiting an online store than actually creating orders. If the RAM is a constraint for your
cluster, you should consider separating the order documents into a separate document.
That way, the less frequently used order details are less likely to occupy the RAM when
resources are constrained:

{
"type": "customerOrders",
"customerId": "tyorke",
"orders": [
{ "description": "microphone": "date": "2014-11-02" 1},
{ "description": "drum machine": "date": "2014-11-02" }
]
b

It should be clear from our brief discussion of document separation that the saying “no
single size fits all” holds true here. Your application, more than well-defined academic
rules, will dictate how to segment your documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, it’s worth noting that documents in Couchbase are limited to 20 megabytes in size.
While in practice, this limitation is rarely an issue, it should be kept in mind if you decide
to store binary data or other large structures. If you reach this limit, you might be forced to
separate your documents regardless of the considerations discussed previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Object schemas

Although schema-less databases such as Couchbase don’t impose any structure on your
documents, it’s likely that your application will. We’ve already discussed the advantages
of document databases in terms of natural object mapping. Another benefit of this
mapping is that your application effective defines the schema for documents in your
Couchbase buckets.

Allowing your datastore to be given a schema from the application layer is not unique to
document databases. Over the past decade or so, it has become common to use ORM
libraries with code-first database design. With this approach, you create a domain object
and allow a certain tool to create your database schema from these objects.

In the .NET world, the entity framework will allow you to define classes in C# and then
generate a database from those entities. The tables will match the class names, and the
columns will match the types and names of the properties. In Ruby, an active record
allows database schemas to be created from Ruby classes. Other frameworks have similar
libraries.

Code-first tends to be implicit with document databases. Since each document you create
was likely the result of serializing an object into JSON, that object defined the schema for
the resultant document.

There are some caveats to allowing your objects to become your document schemas.
Earlier in this chapter, we saw the problem of serializing an 1d property into a document.
You may also want to exclude other properties from being serialized.

If we consider the brewery and beer documents from the beer-sample bucket, we’d have a
Beer class in our application that has a property referencing its brewery. This property
would exist primarily for the purpose of navigation between related objects:

public class Beer

{
public string Id { get; set; }
public string Name { get; set; }
public string Type { get; set; }
public string BreweryId { get; set; }
public Brewery Brewery { get; set; }

}

If we serialized the preceding C# class, we’d end up with a nested brewery. As we know,
however, these documents are separated in the brewery-sample database. To avoid this
problem, you’ll need to instruct your JSON serializer to ignore certain properties. In .NET,
the JSON.NET library supports attributes for this purpose:

public class Beer

{
[JsonIgnore]
public string Id { get; set; }
public string Name { get; set; }
public string Type { get; set; }

www.it-ebooks.info

http://www.it-ebooks.info/

public string BreweryId { get; set; }
[JsonIgnore]
public Brewery Brewery { get; set; }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Schema-less structure changes

An important consideration when allowing your objects to create your document schemas
is versioning. A big advantage of schema-less databases is that your data model is free to
change without having to deal with relational-style schema changes. For example,
dropping or adding a column might lock a table or require downtime for your SQL-
database-backed application.

Because there is the flexibility of having no database-imposed schema, it does not mean
you are free from schema change concerns. If you are using object-to-document
mappings, you’ve effectively created a strongly typed document database. If your object
changes, it may no longer match its document, and vice versa.

It’s likely that your platform’s JSON serializer that will determine the impact of schema
changes. If your document has a property that’s no longer applicable to your object,
deserialization could cause a runtime error. Similarly, serializing a changed object could
create variations in documents of the same type, creating unintended view results.

One approach to addressing this problem is to add a version number property to your
documents. With this approach, your application and your views may react differently to
changes based on the version of the document being read or written.

Another approach is to validate and/or modify document schemas before making any
application layer changes. It is possible to write a view to find all the unique document
schemas in your bucket:

function (doc, meta) {
if (doc.type) {
var props = [];
for (var prop in doc) {
props.push(prop);
3
emit({ "type" : doc.type, "schema" : props.sort() });

b
}

In the preceding map function, we first check whether the document has a type property.
This step is not required, but we assume that any document in the bucket related to an
object has a type property associated with it. After this step, each of the properties of the
document is pushed into an array.

The keys of this index are JSON objects that include the document type and the sorted set
of properties from the document:

{
Ilidll: "becca.",
Ilkeyll: {

Iltypell: lluserH’
"schema": [
"email",
"firstName",
"lastName",

www.it-ebooks.info

http://www.it-ebooks.info/

Iltypell
]
iy

"value": null
o
Ilidll: IlhankH,
Ilkeyll: {
Iltypell: IluserH,
"schema": [
"firstName",
"lastName",
Iltypell
]
+
"value": null
i q
"id": "karen",
Ilkeyll: {
Iltypell: "USEF",
"schema": [
"firstName",
"lastName",
Iltypell
]
}

"value": null

}

In its current state, this view is not completely useful. However, if you add a reduce
function with the built-in _count function, and group the results by setting the group
option to true, then you will get a list of all unique schemas and a count of documents

with those schemas:

{
Ilkeyll: {
lltypell: lluserH’
"schema": [
"email",
"firstName",
"lastName",

lltypell
]
iy

"value": 1
$r
{
Ilkeyll: {
lltypell: lluser—H’
"schema": [
"firstName",
"lastName",
|ltypell
]
}

"value": 2

www.it-ebooks.info

http://www.it-ebooks.info/

}

You can also easily write a view to locate documents with or without a particular property.
If you want to find all user documents without an email property, you can use the
following map function:

function(doc, meta) {
if (doc.type == "user" && ! doc.email) {
emit(null, null);

3
}

These views demonstrate how to find information about document schemas. With this
information, you can iterate over the results and update documents to have an updated
schema.

Tip
If you’re willing to lose the benefits of user-defined types, you should consider using

dictionary structures in your application. Dictionaries map naturally to JSON and have
less risk of breaking on schema mismatches.

www.it-ebooks.info

http://www.it-ebooks.info/

Object and document properties

Another advantage of having document schemas derived from classes is that your
documents will inherit name and data types from your objects. Generally speaking, this
behavior should be acceptable. However, there are a couple of issues we need to be aware
of.

Perhaps, the most important consideration here is about document property names. JSON
became popular for data transfer in part due to its relative terseness when compared to
XML. However, with no database-defined schema, Couchbase documents repeatedly
include the same schema information across potentially billions of documents.

Long names take up more RAM and more disk space. While this is not an issue for
smaller apps, large datasets may need to be optimized to have smaller property names.
Fortunately, most JSON serializers support property name mapping. For example, in .NET
a user class could be mapped as follows:

public class User

{
[JsonProperty("fn")]
public string FirstName { get; set; }
[JsonProperty("1n")]
public string LastName { get; set; }
[JsonProperty("t")]
public string Type { get; set; }

}

When this class is serialized, it will be a smaller document that has the properties mapped
and unchanged:

{
"fn": "wolfgang",
"In": "Mozart",
Iltll: Iluserll

}

It’s also important to understand how your JSON serializer maps property types. While
strings and numbers will be consistent, dates may not be consistent. Make sure you check
your platform’s JSON serialization behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Document relationships

Another important design consideration is about dealing with document relationships.
Throughout this chapter, we saw how to separate related documents but we haven’t fully
discussed how to work with related documents.

With document databases, the basic approach to handling relationships involves including
the ID of a related document with the relating document. We’ve seen this design in the
previous blog sample and in the beer-sample database, where beer documents include a
brewery_id property. Again, this is a convention and there is no database constraint.

Without database-enforced referential integrity, your application layer will be responsible
for enforcing data validity. Once again, views may be used to identify where deficiencies
in data exist. For example, if we want to find all beer names whose brewery ID is invalid,
we can simply iterate over the results of the collated view example in Chapter 4, Advanced
Views, looking for beer names without a matching brewery.

One of the advantages of relational constraints and joins is that your object-relational
mapper is able to assemble your object graph for your application. Without formal
relationships in Couchbase (or other document databases), your application will have to
perform multiple queries to get related documents, and manually assemble your object
graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing the schema

When designing relational systems, you often end up with some data being denormalized
for performance or other reasons. As joins prove costly, a typical optimization step is to
create flattened tables, where redundant columns are close to the data to which they’re
related.

With document databases, you’ll likely end where you started, with a mostly denormalized
document structure. Not only does a denormalized document store related data together, it
also is likely to include properties from other documents that are not primary keys.

As an example of a denormalized relationship, consider the blog post and comment
example. If comments are to be displayed with their respective authors, then either
numerous lookups must be made to user documents, or some subset of author details must
be stored redundantly with each comment.

As with relationships based on IDs, other properties might change in their primary
location, forcing your application to know how to update the redundant records. If a user
changes their username, not only user documents but also all comments by that user will
need to be updated.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

As we saw in this chapter, designing Couchbase documents is partly art and partly science.
More than relational systems and most other NoSQL systems, Couchbase’s schema-less
design requires great care, not just because Couchbase is a hybrid key/value and document
store system.

Many developers choose Couchbase for its performance. Designing a document-based
system for scaling involves a unique set of constraints and concerns. Other developers
choose Couchbase for its flexibility. Designing a document-based system for flexibility
raises several unique considerations for applications.

Those developers who choose Couchbase for both its flexibility and its scalability have the
added challenge of trying to tweak performance without sacrificing the flexibility of a
document database.

It’s always tempting to approach system design by sticking to what we know. It’s
important to remember that Couchbase is a truly unique system, and your document
design will not necessarily seem obvious at first. However, you shouldn’t be afraid to
allow some parts of your design to feel relational and others to feel nonrelational.

In the next chapter, we’re going to continue to explore application designs in a schema-
less world. While creating a simple, Couchbase-based web application, we’ll be able to
work through several issues we explored in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Creating a To-do App with
Couchbase

In this chapter, we’ll put together everything you learned so far. In recent years, the to-do
app has replaced the blog as the canonical first app when learning a new platform. While a
to-do app seems simple on the surface, it is complex enough to demonstrate most of the
core features of a framework.

A to-do app built on Couchbase is well suited to demonstrate both the key/value and
document features of Couchbase. With some minor feature additions to a typical to-do
app, we’ll be able to make use of some of the advanced view features available for
Couchbase developers.

Throughout this chapter, we’ll focus more on general design considerations rather than
specific SDK or language constructs. As was the case in the previous chapters, we’ll
explore multiple SDKs as we build our to-do app. While the basic language constructs
may vary from SDK to SDK, the broad strokes approach will not vary.

www.it-ebooks.info

http://www.it-ebooks.info/

A simple to-do schema

You’ve learned in previous chapters that schema design in the world of schema-less
NoSQL databases tends to derive from the logical or object design of the application layer.
As such, we’ll start our application development efforts by considering the design of the
classes we’ll use in our application.

In the simplest case, a to-do app is nothing more than a checklist. To start modeling our
schema, we’ll limit the design to two properties of a checklist, namely a description and a
checkbox. This design is shown in the following C# class:

public class Task

{
public string Description { get; set; }
public bool IsComplete { get; set; }

}

In this class, the bescription property describes the task to be done. The Boolean
property IsComplete simply checks whether the task has been completed. The
corresponding JSON document stored in Couchbase mirrors this class:

{

"description": "Pick up the almond milk",
"isComplete": false

}

As we build our application, we’ll add more features and develop our schema further. For
now however, we’ll start building the application to support our simple task list.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with SDKs

Again, it’s not feasible within the scope of a single chapter to implement an application
with a single framework that would satisfy all readers. Even a cross-platform language
such as Python would require a rather lengthy exploration into setting up a development
environment and exploring a web framework and its components.

Java and .NET are quite popular platforms, but require a fair bit of tooling support to get
these platforms up and running. Focusing exclusively on one of these platforms would
almost certainly alienate a significant number of readers. And, of course, there are
differences across Windows, Linux, and Mac OS X.

Instead, we’ll focus on the general principles and patterns of Couchbase SDK
development. We’ll explore constructs that will be broadly applicable to developing a
Couchbase application, regardless of your development environment.

Also, we won’t dig into any particular web framework but will discuss general web
development patterns. Chances are that if you’re a web developer and you’re working
with a NoSQL database, you’re likely using a framework that supports capabilities like
MVC (short for model-view-controller).

www.it-ebooks.info

http://www.it-ebooks.info/

A brief overview of MVC

For the purpose of this chapter, all you’ll need to know of MVC or a similarly-patterned
web framework is that when you navigate to a URI such as
http://localhost/tasks/list, you will have a corresponding server-side method that
handles the request to the 1ist action. Similarly, a request to
http://localhost/tasks/create would have a corresponding create action. Actions
are simply methods invoked on the server that handle an HTTP request and return an
HTTP response.

For example, using the popular ASP.NET MVC framework, if you wanted to show a form
to create a task when a user navigated to http://localhost/tasks/create, you would
create a controller named tasks and a method (or action) named create:

public class TasksController : Controller

{
[HttpGet]
public ActionResult Create()

{

¥
}

As is common with MVC, you create a Controller class where the name of the controller
reflects some portion of the requested URI path (tasks in this case). Within that controller,
you define a method, and that method is also reflected in the path (create in this case).
The previous ASP.NET MVC snippet shows a create action that will handle only
HttpGet requests.

return View();

Similarly, to handle the postback data from the HTML form to the server, you create an
action to handle the form submission. In ASP.NET MVC, this is done by placing an
HttpPost attribute on a method matching the name of the action:

[HttpPost]
public ActionResult Create(FormCollection form)

{
//do something with the form

return RedirectToAction("List");

}

Most MVC frameworks follow a similar convention. MVC frameworks such as Ruby’s
Rails vary slightly in how they handle the different HTTP verbs presented to an action:

class TasksController<ApplicationController
def new
end
def create

#do something
redirect_to :action => "Index"

www.it-ebooks.info

http://www.it-ebooks.info/

end
end

In this Rails snippet, we see a similar convention as used by MVC, the primary difference
being that the ASP.NET MVC uses attributes to distinguish between GET and POST actions.
Other frameworks have a single method that checks the verb to decide how to perform
operations.

A variation of popular MVC frameworks is a so-called micro framework. Generally
speaking, you could think of a web micro framework as an MVC framework without the
“C” (that is, the controller). With such frameworks, you’ll typically define the path
handled by an action, without a controller involved.

A popular micro framework in the Python world is Flask. With Flask, you set up a series
of routes and instruct Flask on how to dispatch requests to the appropriate handlers. For
example, to handle the simple rendering of a create view, the following flask snippet
would be used:

@app.route("/tasks/create")
def create():
return render_view('"create.html")

That same method can be expanded to handle the post back of data, as follows:

@app.route("/tasks/create")
def create():
if request.method == "POST":
#do something
return redirect(url_for("index"))
return render_view("create.html")

If you are already familiar with a web framework, the preceding samples should seem
familiar. If you have not used a web framework, then you will see snippets like these
throughout the remainder of this chapter. For our purpose, it’s most important that you
have a basic understanding of what these action methods are doing, rather than detailed
knowledge of a particular framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Using SDK clients

In Chapter 2, Using Couchbase CRUD Operations, we explored the basics of obtaining
SDK client libraries. Generally, this was achieved via your platform’s package manager
(for example, NuGet, Gems, or PIP). Assuming that you’ve obtained your platform’s
SDK, the first thing you’ll need to understand is how to configure and instantiate that
client.

Regardless of which SDK you are using, each SDK requires the same basic setup
configuration—the location of a node in your cluster and the bucket with which you want
to connect. The Python SDK demonstrates this process succinctly:

from couchbase import Couchbase
client = Couchbase.connect(host = "localhost", bucket = "beer-sample")

When a Couchbase SDK connects to a node in your cluster, it begins listening to a
streaming (over HTTP) message from the server. The content sent through this stream
provides the SDK with information on the topology of the cluster, such as how many
nodes are active in the cluster and where keys should be sent to or requested from.

This handshake is relatively expensive, and therefore it is generally best practice not to
create a client instance except when necessary. Within the scope of a web application,
you’d want to have a single client handle all requests, typically by creating a static or
shared instance of your client.

In the preceding Python snippet, the connect method is provided with limited details
about the cluster. Also, in the Python snippet there are a few default values (such as ports)
being used by the client. Similarly, the .NET 2.0 SDK may be configured with all defaults
that connect to your localhost and default bucket:

private static Cluster _cluster = new Cluster();
var bucket = _cluster.OpenBucket();

The story is similar for other SDKs. You’ll create a client by connecting to the cluster and
then a bucket. If you’re wondering which node in a cluster should be provided in the
initial connection, the short answer is any. However, it is better to provide multiple nodes
in case the node you specified undergoes failover.

The SDKs offer a means of providing multiple URIs via either a configuration file or
parameters to connection methods. For example, in Java you could provide multiple URIs
to the create factory method of the CouchbasecCluster class:

Cluster cluster = new CouchbaseCluster.create("192.168.0.1",
"192.168.0.2");

In this example, if the first URI is not accessible, the SDK would then try to obtain
information about cluster configuration from the second URI. How many nodes you
should specify depends on your cluster, but generally, at least two and up to three or four
nodes should be reasonable.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a task

At this point, we’ve designed a very simple to-do schema where our tasks are simply
checklist items. Regardless of which web framework you are using, you’ll need some sort
of HTML form to collect the description and isComplete properties of the new tasks:

<html>
<head>
<title>Create a Task</title>
</head>
<body>
<form action="tasks/create" method="POST">
<div>Description:
<input type="text" name="description" />
</div>
<div>Complete:
<input type="checkbox" name="isComplete" />
</div>
</div><button type="submit" value="Save" />
</form>
</body>
</html>

The preceding HTML form collects these two properties and submits them to a server-side
action named create. As an example of how you can respond to this form post, consider
the following Python Flask snippet:

@app.route('"/tasks/create", methods=["GET", "POST"])
def create():
if request.method == "POST":

task = { "description": request.form["description"],
"isComplete": request.form["isComplete"] }
key = uuid.uuid1().hex
doc = json.dumps(task)
client.set(key, doc)
return redirect(url_for("index"))
return render_view("create.html")

We can see the basic pattern of creating new documents with Couchbase in the preceding

lines. These steps are similar to those you’d perform when working with a relational
database, but there are a couple of differences.

In this example, the task is constructed as a Python dictionary instance. Alternatively, we
could have used a class with properties matching the task fields. Because there is no
obvious property of the task to use as a key, a UUID is generated and used as the key for
the document. Finally, before saving the task to Couchbase, it is serialized to a JSON
document using Python’s JSON module.

These last two steps are the primary difference between Couchbase and other databases.
Couchbase Server doesn’t provide a means to generate keys, so we need to generate our
own. Couchbase clients don’t enforce JSON as a serialization format, so we need to take

www.it-ebooks.info

http://www.it-ebooks.info/

care of this ourselves.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Listing tasks

In the preceding snippet, after the task is created, a redirect to an index page is performed.
This page is a list page used to view tasks. Building a list page requires finding all our
tasks that will require a slight change to our model:

public class Task

{
public string Description { get; set; }
public bool IsComplete { get; set; }
public bool Type { get { return "task"; }

}

Recall our discussion from the previous chapters on the use of a type property on
documents to provide a classification for related documents, much in the way a table does
for relational databases. In our to-do application, to identify tasks, we’ll add a type
property (which is read-only). The property is set to the task string, which will ensure that
all task documents are serialized with this type. With this addition, we’re ready to write
our list page, starting with a map function:

//view named "all" in a design doc "tasks"
function(doc, meta) {
if (doc.type == "task") {
emit(null, null);

3
}

Notice that this map function doesn’t explicitly index any properties of task documents.
Since we are indexing only documents marked as tasks, a query on this view will return
only the documents we wish to list on our index page. The following C# example is
intentionally verbose to illustrate a couple of points. Note that the .NET 1.3 SDK provides
some helper methods to achieve similar behavior:

public ActionResult Index()
{

var view = client.GetView<Task>("all"", "tasks");
var model = GetTasksFromView(view);
return View(model);

}

private IEnumerable<Task>GetTasksFromView(IView view) {
foreach(var row in view)

{

var doc = client.Get<string>(row.ItemId);
yield return JsonConvert.DeserializeObject<Task>(doc);

¥
}
The Index action starts by querying the all view in the tasks design document. Once the
index of the results has been returned, the view is converted to an enumerable list of Task
instances. In C#, yield return allows a function to be treated as an enumerable object,
which means that the casting of a view row to a Task instance occurs only when the caller

www.it-ebooks.info

http://www.it-ebooks.info/

enumerates the results. In this case, the client is an ASP.NET MVC Razor view:

<table>
<thead>
<tr>
<th>Description</th>
<th>Complete</th>
</tr>
</thead>
@foreach(var item in Model)

{

<tr>
<td>@item.Description</td>
<td>@item.IsComplete</td>
</tr>

}
</table>

Regardless of which web framework you work with, the basic idea will be the same.
You’ll query a view, get the results, and pass those results to a view to be displayed. Once
this list is complete, the next logical step is to allow the editing of tasks. This action will
be similar to the create task we’ve worked on before.

To allow editing, we’ll need to allow users to get to the edit page for a specific task. This
requirement will necessitate adding a property to our class to map to the document’s key.
This change is important because we must be careful how to map our key, ensuring that
JSON serializers don’t include a store inside the document:

public class Task

{

[JsonIgnore]
public string Id { get; set; }

//other properties omitted

}

How you exclude the 1d property from being serialized into the stored Couchbase
document will of course vary by your language and its preferred serializer. In this snippet,
an attribute is included on the 1d property to instruct the JSON.NET serializer to ignore
this property.

Although you’re ignoring the Id property as the document is sent to Couchbase, it’s
important to remember that you’ll want to set it to come out of the bucket. We’ll see how
to do this by modifying the preceding method that retrieves all task documents for listing:

private IEnumerable<Task>GetTasksFromView(IView view) {
foreach(var row in view)

{

var doc = client.Get<string>(row.ItemId);
//this line will populate all task properties,

//except for Id
var task = JsonConvert.DeserializeObject<Task>(doc);

www.it-ebooks.info

http://www.it-ebooks.info/

//explicitly map the document's key to the
//1d property of the Task instance
task.Id = row.ItemlId;

}
}
We’ll also want to modify our list’s view code so that we can create a link to the edit
action we’re about to build. In this case, we’re simply wrapping the task’s description
column with a link to the edit page, with the item’s id property passed as a parameter to
the request. If you’re using Flask with its default Jinja2 templating engine, the list would
look like this:

{% for item in model %}
<tr>
<td>{{ item.description }}
<td>{{ item.is_complete }}</td>
</tr>
{% endfor %}

The edit method on the server will look a bit like the create method, except that it will

modify the saved document on submission and return the unchanged saved document
when the form is displayed:

@app.route('"/tasks/edit/<key>", methods=["GET", "POST"])
def edit(key):

saved_doc = client.get(key) #retrieve from the bucket

#deserializesaved_doc to a Task class instance
saved_task = json.loads(saved_doc)
saved_task.id = key #manually map the key to the id

if request.method == "POST":

#update the editable fields
saved_task.description = request.form["description"]
saved_task.is_complete = request.form["is_complete"]

json_doc = json.dumps(task)
client.set(key, json_doc)
return redirect(url_for("index"))
return render_view("edit.html", model=saved_task)

Regardless of which language or client you are using, the basic pattern will be the same
for all editing scenarios. You start by getting the id parameter from the request, and use
that parameter to look up the saved document via the key/value get operation. Then you
convert the JSON document to an instance of a Task class.

If you are showing the form to edit the task (an HTTP GET request), then you’ll pass that
task to the form so that it can be rendered with prefilled data. The following Flask Jinja2
template demonstrates how this process works:

<form action="/tasks/edit" method="POST">
<div>Description:

www.it-ebooks.info

http://www.it-ebooks.info/

<input type="text" name="description" value="{{ model.description }}"
/>
</div>
<div>Complete:
<input type="checkbox" name="isComplete" {{ 'checked="checked"' if
model.is_complete }}/>
</div>
<div>
<input type="hidden" name="id" value="{{ model.id }}" />
<button type="submit" value="Save" />
</div>
</form>

To round out our CRUD task list, we need to include an option to delete tasks. We’ll keep
this feature simple and leave the “Are you sure you want to delete this item?” alert that

typically precedes such an action. We’ll start by rearranging the table that displays our
task list so that an Edit and a Delete link appear to the right of each task:

{% for item in model %}
<tr>
<td>{{ item.description }}</td>
<td>{{ item.is_complete }}</td>
<td>
Edit
Delete
</tr>
{% endfor %}

When a user clicks on Delete, the delete action will be called on the server, which will
get the id property from the query string and then remove the item using the key/value
API:

@app.route("/tasks/delete/<key>", methods=["GET"])
def delete(key):

client.delete(key)

return redirect(url_for("index"))

Again, you’d typically not delete an item so freely over an HTTP GET request. The
important point here is to understand that when you remove an item, it is always deleted
by its key. There is no Couchbase equivalent of SQL’s DELETE FROM Table WHERE Column
= 'VALUE' statement. If you need to remove an item based on another value, you’ll have
to create a view to find that value’s key and then remove it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Showing only incomplete tasks

If we want to include a list view that displays only tasks that are not yet marked as
complete, we’ll need to modify our view to incorporate this change. The following snippet
shows this modification. The action and view for the corresponding list page differ only in
the name of the Couchbase view queried by the client (for example, all_incomplete and
all):

//view named "all_incomplete" in the "tasks" design document
function(doc, meta) {
if (doc.type == "task" && doc.isComplete === false) {
emit(null, null);
}

}

Notice that the check for incomplete status explicitly uses JavaScript’s === operator. If you
haven’t used this operator, you should now know that it performs an explicit type check
along with a value check. The reason to use it here is that ! doc.isComplete would return
false if the property is undefined (which might be acceptable in this particular case, but
not in most other cases).

Alternatively, we can create a view where the isComplete property is indexed, allowing us
to list complete, incomplete, or all tasks. To do so, we’ll simply emit the isComplete
property instead of null for the view’s key:

function(doc, meta) {

if (doc.type == "task") {
emit(doc.isComplete, null);
b

}

When the query is made to the task list, the desired complete status is either included or
omitted entirely:

#find all complete
client.query('"tasks", "by_status", key=true)

#find all incomplete
client.query("tasks", "by_status", key=false)

#find all
client.query("tasks", "by_status")

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Nested tasks

To make our simple task list app a little more interesting, we’ll add the ability to nest
tasks. In other words, we’ll allow some tasks to be subtasks of other tasks. Doing so
requires only a slight change to our model, for example adding a ParentId property:

public class Task

{
public string Description { get; set; }
public bool IsComplete { get; set; }
public string ParentId { get; set; }
public bool Type { get { return "task"; } }

}

There are numerous ways to set up a user interface to allow parent tasks to be set. In the
interest of brevity, we’ll assume that our create and edit actions and views have two
simple additions:

#get all tasks returned by the
#all_incomplete view in the tasks design document
tasks = client.query("tasks", "all_incomplete")

#when saving tasks, assign the parentId
task.parent_id = request.form["parentId"]

#pass the tasks to the view
#model passed only for edit
return render_template("index.html", model=task, tasks=tasks)

<!-- parent task field in HTML form -->

<select name="parentId">
{% for task in tasks %}
<option value="task.id">task.Description</option>
{% endfor %}

</select>

The preceding snippet demonstrates that we’ll need to query for all incomplete tasks, pass
those tasks to the view for use as the data in an HTML select element, and assign the
selected value back to the task we save on posting the data back.

To view tasks and their children, we’ll need to write a view that groups related documents.
The approach we’ll use will be similar to the example in Chapter 5, Introducing N1QL,
where we created a collated view to show breweries and their beer types. The only real
difference here is that we have a single type of document with a reference to itself:

function(doc, meta) {
if (doc.type == "task") {
if (! doc.parentId || (doc.parentId == "")) {
emit([meta.Id, 0], null);
} else {
emit([doc.parentId, 1], null);

b
b

www.it-ebooks.info

http://www.it-ebooks.info/

}

In the preceding map function, we first perform the standard type check. Next, we check
whether a document has a parentId property. If it does, we check whether it’s an empty
string. If there’s no valid parent ID, we assume this is a parent document (either zero or
more children). The parent’s key is emitted to the view index. If a document is a child
(that is, it has a parentId property), then its key (meta. id) is never indexed, only
parentId will be indexed.

The consequence of this view is that all parent documents will appear first, followed
immediately by their child tasks (if any). Recall that this ordering is the result of
Couchbase sorting the views based on emitted keys. By emitting o for the parent and 1 for
all children, we guarantee that the parent will always appear first.

To build a page that displays a task with its children listed, we can simply query the view
using an array key, where the first element is the parent’s ID (or key) and the second
element is the number 1 we used to identify children in our map function, as shown next.
The following Python snippet omits some details, including the JSON conversions
previously shown:

@app.route("/tasks/view/<key>", methods=["GET"])

def edit(key):
parent = client.get(key) #retrieve from the bucket
children = client.query("tasks", "with_children", key=[key, 1])
return render_view("view.html", parent=parent, children=children)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we walked through the basics of creating a simple Couchbase-backed
application. In more complex applications, we need to concern ourselves with advanced
tasks, such as locking records with CAS or general design patterns for a particular
platform.

What you did learn, however, were the basic building blocks of a Couchbase application.
All database-driven applications start with some simple form of CRUD, and grow more
complex when the requirements are fleshed out. With the topics covered in this chapter,
you’ll be able to start building an application with Couchbase.

An important thing to remember about building a Couchbase application is that by virtue
of being key/value stores, Couchbase applications tend to be simpler in terms of data
management. Effectively, all changes to data occur one-at-a time and by key.

Moreover, documents are retrieved in full and updated in full. There are no partial
updates. While this might seem like a limiting feature, it does reduce a fair deal of friction
found when working with other data stores, where object mappings are made more
complex by joins, projections, and aggregations.

Because Couchbase supports so many programming platforms with its SDKs, it would
have been impossible to visit all of them in this chapter’s examples. For those who wish to
see more complete examples of the code in this chapter, the source for working
applications will be available at https://bitbucket.org/johnzablocki/.

www.it-ebooks.info

https://bitbucket.org/johnzablocki/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A. Couchbase SDKs

Throughout this book, we explored Couchbase SDKs. This appendix provides more
details on obtaining and configuring the most popular Couchbase client libraries. The goal
of this section is not to provide comprehensive documentation for each SDK, but rather to
aid in your efforts to follow along with the examples in this book.

There are two types of Couchbase client libraries. The first type is the native libraries.
These SDKs are written entirely in the language within which they will be used. In this
category are the C#, Java, and C libraries. The second type of SDKs are wrappers around
the Couchbase C client. These SDKs include Python, Ruby, PHP, and Node.js.

The Couchbase Developer Solutions team maintains the SDKs we just listed. There are
other community-maintained clients. However, for the remainder of this appendix, we’ll
focus only on the official SDKs.

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Java SDK

The Couchbase Java SDK is a purely Java-based library. It is a highly performant package
with support for both synchronous and asynchronous operations. The most recent version

contains support for Java 8 and earlier releases.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

This SDK should be used for development against Couchbase Server versions ranging
from 2.5 to 3.x. Version 1.2 of the SDK was developed to support the earlier versions of

Couchbase Server.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it

Java developers will most likely want to use Maven to add the Java SDK to their projects.
The package is accessible from Maven Central:

<dependencies>
<dependency>
<groupId>com.couchbase.client</groupId>
<artifactId>java-client</artifactId>
<version>2.0.0</version>
</dependency>
</dependencies>

Additionally, the SDK team publishes the Java binaries, which may be found at

http://docs.couchbase.com/developer/java-2.0/download-links.html. The source code for
the library is available on GitHub at https://github.com/couchbase/couchbase-java-client.

www.it-ebooks.info

http://docs.couchbase.com/developer/java-2.0/download-links.html
https://github.com/couchbase/couchbase-java-client
http://www.it-ebooks.info/

The basics

The following snippet demonstrates the basics of using the Couchbase Java SDK:

//Configure the cluster
CouchbaseCluster cluster = CouchbaseCluster.create("127.0.0.1");

//0pen a bucket connection
Bucket bucket = cluster.openBucket("default");

//Create, and store a JSON document

JsonObject message = JsonObject.create().put("message", "The Hello,
World!");

JsonDocument document = bucket.insert(JsonDocument.create('"somekey",
message));

//Read the document
JsonDocument savedMessage = bucket.get("somekey");

// Close the bucket connection
cluster.disconnect();

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase .NET SDK

The Couchbase .NET SDK is a purely C#-based library. Currently, the latest version is
2.0. This version contains support for .NET 4.5+.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

This SDK should be used for all development purposes against all Couchbase Server
versions from 2.5 to 3.x. Version 1.3 of the SDK was developed to support earlier versions

of Couchbase Server.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it

The .NET developers will most likely want to use NuGet to add the Couchbase .NET SDK
to their Visual Studio projects. To install Couchbase SDK 2.0, run the following command
in Package Manager Console:

PM> Install-Package CouchbaseNetClient

Additionally, the SDK team publishes the .NET binaries, which can be found at

http://docs.couchbase.com/developer/dotnet-2.0/download-links.html. The source code for
the library is available on GitHub at https://github.com/couchbase/couchbase-net-client.

www.it-ebooks.info

http://docs.couchbase.com/developer/dotnet-2.0/download-links.html
https://github.com/couchbase/couchbase-net-client
http://www.it-ebooks.info/

The basics

The following snippet demonstrates the basics of using the Couchbase

//Configure the cluster defaulting to "127.0.0.1"
var cluster = new Cluster();

//0pen a bucket connection defaulting to "default"
var bucket = cluster.OpenBucket();

//Create, and store a JSON document
var document = new Document<dynamic> {
Id = "somekey", {
Content = new { Message = "Hello, World!" };
bucket.Upsert(document);

//Read the document
var savedMessage = bucket.GetDocument<dynamic>("somekey");

// Close the bucket connection
bucket.Dispose();

www.it-ebooks.info

.NET SDK:

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase PHP SDK

The Couchbase PHP SDK is a PHP library that wraps the Couchbase C SDK. Before
installing this library, the C library must be installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

Currently, the latest version is 2.0.2. This SDK should be used for all development against
Couchbase Server versions from 2.5 to 3.x.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it
Linux users will be able to install the PHP SDK with pec1 as follows:

$ pecl install couchbase

Additionally, the SDK team publishes Windows binaries, which may be found at

http://docs.couchbase.com/developer/php-2.0/download-links.html. The source code for
the library is available on GitHub at https://github.com/couchbase/php-ext-couchbase.

www.it-ebooks.info

http://docs.couchbase.com/developer/php-2.0/download-links.html
https://github.com/couchbase/php-ext-couchbase
http://www.it-ebooks.info/

The basics

Here are a few snippets that demonstrate the basics of using the Couchbase PHP SDK:

//Configure the cluster
$cluster = new CouchbaseCluster('http://127.0.0.1:8091");

//0pen a bucket connection
$bucket = $cluster->openBucket('default');

// Close the bucket connection
cluster.disconnect();

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Couchbase Node.js SDK

The Couchbase Node.js SDK is a Node.js library that wraps the Couchbase C SDK.
Before installing this library, the C library must be installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

Currently, the latest version is 2.0.2. This SDK should be used for all development against
Couchbase Server versions from 2.5 to 3.x.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it

The Node.js users will likely wish to use the npm package manager to install the
Couchbase Node.js SDK. Windows users must also have node-gyp along with Visual C++
10. Information on installing node-gyp is available at

https://github.com/TooTallNate/node-gyp.

$ npm install couchbase

Additionally, the SDK team publishes binaries, which may be found at

http://docs.couchbase.com/developer/node-2.0/download-links.html. The source code for
the library is available on GitHub at https://github.com/couchbase/couchnode.

www.it-ebooks.info

https://github.com/TooTallNate/node-gyp
http://docs.couchbase.com/developer/node-2.0/download-links.html
https://github.com/couchbase/couchnode
http://www.it-ebooks.info/

The basics

The following snippet demonstrates the basics of using the Couchbase PHP SDK:
var couchbase = require('couchbase');

var cluster = new couchbase.Cluster();
var bucket = cluster.openBucket('default');

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Python SDK

The Couchbase Python SDK is a Python library wrapping the Couchbase C SDK. Before
installing this library, the C library must be installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

Currently, the latest version is 1.2. This SDK should be used for all development against
Couchbase Server versions from 2.5 to 3.x.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it

Python users can obtain the Couchbase Python SDK through the pip package manager as
follows:

$ pip install couchbase

The SDK team publishes binaries, which may be found at

https://pypi.python.org/pypi/couchbase#downloads. The source code for the library is
available on GitHub at https://github.com/couchbase/couchbase-python-client.

www.it-ebooks.info

https://pypi.python.org/pypi/couchbase#downloads
https://github.com/couchbase/couchbase-python-client
http://www.it-ebooks.info/

The basics

The following snippet demonstrates the basics of using the Couchbase PHP SDK:

client = Couchbase.connect(bucket="'default', host='localhost')

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase Ruby SDK

The Couchbase Ruby SDK is a Python library wrapping the Couchbase C SDK. Before
installing this library, the C library must be installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

Currently, the latest version is 1.3. This SDK should be used for all development against
Couchbase Server versions from 2.5 to 3.x.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it

Ruby users can find the Couchbase Ruby SDK through the gem package manager as
follows:

$ gem install couchbase

www.it-ebooks.info

http://www.it-ebooks.info/

The basics

The following snippet demonstrates the basics of using the Couchbase PHP SDK:

client = Couchbase.connect(:bucket=>'default', :host=>'localhost')

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase C SDK

The Couchbase C client library is the core library for several other libraries. It is an
asynchronous, single-threaded SDK using callbacks for all operations. It is available on

Windows, Linux, and Mac OS X.

www.it-ebooks.info

http://www.it-ebooks.info/

Current version

Currently, the latest version is 2.4.5. This SDK should be used for all development against
Couchbase Server versions from 2.5 to 3.x.

www.it-ebooks.info

http://www.it-ebooks.info/

How to obtain it

C developers can find instructions on building or obtaining the library at
http://docs.couchbase.com/developer/c-2.4/download-install.html. Numerous binaries are
available at this location.

www.it-ebooks.info

http://docs.couchbase.com/developer/c-2.4/download-install.html
http://www.it-ebooks.info/

Index
A

e accumulate function

o about / Reduce functions
e ACID transactions

o about / The NoSQL landscape
e active record

o about / Object schemas
e aggregation

o performing / Aggregation and math
¢ asynchronous operations

o about / Asynchronous operations
e Atomicity

o about / The NoSQL landscape

www.it-ebooks.info

http://www.it-ebooks.info/

B

¢ basic mapping / Basic mapping
¢ basic reducing / Basic reducing

www.it-ebooks.info

http://www.it-ebooks.info/

e cluster

o about / Couchbase clusters

o connecting to / Connecting to your cluster
e collated views / Collated views
e collections

o working with / Working with collections
e compare and swap (CAS)

o about / Concurrency and locking

e complex structures

o about / Complex structures
e complex types

o storing / Storing complex types

e compound indexes

o about / Compound indexes
e concurrency, Couchbase

o about / Concurrency and locking
e consistency

o about / The NoSQL landscape
e Couchbase

installing / Installing Couchbase

URL / Installing Couchbase, Multiple keys per document
installing, on Linux / Installing Couchbase on Linux
installing, on Windows / Installing Couchbase on Windows

installing, on Mac OS X / Installing Couchbase on Mac OS X
running / Running Couchbase for the first time

SDKSs / Couchbase SDKs, The Couchbase SDKs, Couchbase SDKs and views
documents / Couchbase documents

indexes / Couchbase indexes

views / Couchbase views, Couchbase SDKs and views
about / Multiple keys per document

e Couchbase .NET SDK

about / Couchbase .NET SDK

current version / Current version

obtaining / How to obtain it

URL / How to obtain it

basics / The basics

e Couchbase architecture

about / Couchbase architecture

Couchbase clusters / Couchbase clusters

replication / Replication

balancing / Balancing and rebalancing

rebalancing / Balancing and rebalancing

O 0O 0O O 0O 0O o o o o o

O O O O O

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

Couchbase clusters / Couchbase clusters
Couchbase Console
exploring / Exploring the Couchbase Console
about / Couchbase Console
Development views / Development views
Design documents / Design documents
view, creating / Creating a view
Couchbase C SDK

o current version / Current version

o obtaining / How to obtain it

o URL / How to obtain it
Couchbase Java SDK
about / Couchbase Java SDK
current version / Current version
obtaining / How to obtain it
URL / How to obtain it
basics / The basics
Couchbase MapReduce / Couchbase MapReduce
Couchbase node.js SDK
current version / Current version
obtaining / How to obtain it
URL / How to obtain it
basics / The basics
Couchbase PHP SDK
about / Couchbase PHP SDK
current version / Current version
obtaining / How to obtain it
URL / How to obtain it
basics / The basics
Couchbase Python SDK
current version / Current version
obtaining / How to obtain it
URL / How to obtain it
basics / The basics
Couchbase Ruby SDK

o current version / Current version

o obtaining / How to obtain it

o basics / The basics
Covering Index / Emitting values
CRUD operations

o about / Basic operations

cluster, connecting to / Connecting to your cluster

O
o record, creating / Creating and updating a record
o record, updating / Creating and updating a record

O O O O O

O O O O O

O O O o

O O O O O

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

O O O O O

record, reading / Reading and deleting records

record, deleting / Reading and deleting records
temporary keys / Temporary keys

data, appending / Appending and incrementing data
data, incrementing / Appending and incrementing data

www.it-ebooks.info

http://www.it-ebooks.info/

data

e}

e}

appending / Appending and incrementing data
incrementing / Appending and incrementing data

Data Change Protocol (DCP)

e}

about / Eventual consistency

data types / Data types
denormalization / Denormalization

Description property / A simple to-do schema
Design documents / Design documents
Developer Preview 3

e}

about / Installing N1QL

Development views / Development views
document design

e}

O 0O 0O o o o o o o

e}

about / Document design
denormalization / Denormalization
object-to-document mappings / Object-to-document mappings

data types / Data types
document separation / Document separation

object schemas / Object schemas
schema-less, structure changes / Schema-less structure changes

object property / Object and document properties

document property / Object and document properties
document relationships / Document relationships

schema, finalizing / Finalizing the schema

document property / Object and document properties
document relationships / Document relationships
document separation / Document separation
durability

e}

about / The NoSQL landscape

durability operations

e}

about / Durability operations

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch
o about / Multiple keys per document
End User License Agreement (EULA) / Installing Couchbase
entity framework
o about / Object schemas
eventual consistency / Eventual consistency

www.it-ebooks.info

http://www.it-ebooks.info/

F

e Flask / A brief overview of MVC
e fold function
o about / Reduce functions

www.it-ebooks.info

http://www.it-ebooks.info/

G

e grouping / Grouping

www.it-ebooks.info

http://www.it-ebooks.info/

incomplete tasks

o displaying / Showing only incomplete tasks
incremental MapReduce

o about / Couchbase MapReduce
installation, N1QL / Installing N1QL

isolation
o about / The NoSQL landscape

www.it-ebooks.info

http://www.it-ebooks.info/

J

e Jinja2 templating engine / Listing tasks
e joins
o about / Joins

www.it-ebooks.info

http://www.it-ebooks.info/

K

¢ key design, Couchbase

o about / Key design
keys / Keys, metadata, and RAM
metadata / Keys, metadata, and RAM
RAM / Keys, metadata, and RAM
predictable keys / Predictable keys
unpredictable keys / Unpredictable keys

keys, storing / Storing keys
o key restrictions / Key restrictions

e key queries / Key queries
e key restrictions / Key restrictions
e keys/Keys, metadata, and RAM
o grouping / Grouping keys
o storing / Storing keys

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

L

e Linux
o Couchbase, installing on / Installing Couchbase on Linux
¢ locking, Couchbase

o about / Concurrency and locking

www.it-ebooks.info

http://www.it-ebooks.info/

Mac OS X
o Couchbase, installing on / Installing Couchbase on Mac OS X
map functions / Map functions
MapReduce
o about / MapReduce
map functions / Map functions
reduce functions / Reduce functions
Couchbase MapReduce / Couchbase MapReduce
basic mapping / Basic mapping
o basic reducing / Basic reducing
mathematical operations

o performing / Aggregation and math

metadata / Keys, metadata, and RAM
micro framework / A brief overview of MVC

missing properties

o about / Null or missing properties
most recently used (MRU) / RAM matters
multiple keys per document

o about / Multiple keys per document
MVC

o about / A brief overview of MVC

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

.NET binaries
o URL / How to obtain it
N1QL
o installing / Installing N1QL
o SDK support / SDK support
nested collections
o about / Nested collections
nested tasks
o about / Nested tasks
nginx web server
o about / Asynchronous operations
node-gyp
o URL / How to obtain it
NoSQL
o landscape / The NoSQL landscape
o taxonomies / NoSQL taxonomies

null properties
o about / Null or missing properties

www.it-ebooks.info

http://www.it-ebooks.info/

object-relational impedance mismatch

o about / Object-to-document mappings
object-to-document mappings / Object-to-document mappings
object property / Object and document properties
object schemas / Object schemas

Open Beer Database / Counting breweries by location

www.it-ebooks.info

http://www.it-ebooks.info/

packages, Couchbase

o URL / Installing N1QL

PersistTo argument

o about / Durability operations
ports

o about / Ports
predictable keys / Predictable keys

www.it-ebooks.info

http://www.it-ebooks.info/

Q

e querying, by type
o about / Querying by type
e querying, with beer-sample
about / Querying with beer-sample
documents, querying by type / Querying all documents by type

breweries, counting by location / Counting breweries by location

beer documents, finding by brewery / Finding beer documents by brewery
collated views / Collated views

(¢]

O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

RAM

o using / RAM matters
range queries

o about / Range queries
record
creating / Creating and updating a record
updating / Creating and updating a record
reading / Reading and deleting records

deleting / Reading and deleting records
reduce functions / Reduce functions

replication / Replication

(¢]

(¢]

(¢]

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

schema

o finalizing / Finalizing the schema
schema-less, structure changes / Schema-less structure changes

SDK
o clients, using / Using SDK clients

SDK clients
o using / Using SDK clients
SDKs

o working with / Working with SDKs
SDK support, for N1QL

o about / SDK support
sharding

o about / Balancing and rebalancing
simple queries

o about / Simple queries
simple to-do schema

o about / A simple to-do schema
string utilities

o about / String utilities

www.it-ebooks.info

http://www.it-ebooks.info/

task

o creating / Creating a task

o listing / Listing tasks
temporary keys / Temporary keys
to-do app

o simple to-do schema / A simple to-do schema
transcoder

o about / Storing complex types

www.it-ebooks.info

http://www.it-ebooks.info/

U

e unpredictable keys / Unpredictable keys

www.it-ebooks.info

http://www.it-ebooks.info/

values

o emitting / Emitting values
vBuckets

o about / Couchbase SDKs
view

o creating / Creating a view
views

o about / Couchbase indexes

o querying / Querying views
views, querying

o grouping / Grouping

o key queries / Key queries

o eventual consistency / Eventual consistency

www.it-ebooks.info

http://www.it-ebooks.info/

W

e Windows

o Couchbase, installing on / Installing Couchbase on Windows
e Windows binaries

o URL / How to obtain it

www.it-ebooks.info

http://www.it-ebooks.info/

	Couchbase Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Comfortable with Couchbase
	The NoSQL landscape
	NoSQL taxonomies
	Installing Couchbase
	Installing Couchbase on Linux
	Installing Couchbase on Windows
	Installing Couchbase on Mac OS X
	Ports
	Running Couchbase for the first time
	Exploring the Couchbase Console
	Couchbase architecture
	Couchbase clusters
	Replication
	Balancing and rebalancing
	Couchbase SDKs
	RAM matters
	Summary
	2. Using Couchbase CRUD Operations
	The Couchbase SDKs
	Basic operations
	Connecting to your cluster
	Creating and updating a record
	Reading and deleting records
	Advanced CRUD operations
	Temporary keys
	Appending and incrementing data
	Storing complex types
	Concurrency and locking
	Asynchronous operations
	Durability operations
	Summary
	3. Creating Secondary Indexes with Views
	Couchbase documents
	Couchbase indexes
	MapReduce
	Map functions
	Reduce functions
	Couchbase MapReduce
	Basic mapping
	Basic reducing
	Couchbase views
	Couchbase Console
	Development views
	Design documents
	Creating a view
	Querying views
	Grouping
	Key queries
	Eventual consistency
	Couchbase SDKs and views
	Summary
	4. Advanced Views
	Querying by type
	Nested collections
	Range queries
	Multiple keys per document
	Compound indexes
	Grouping keys
	Emitting values
	Querying with beer-sample
	Querying all documents by type
	Counting breweries by location
	Finding beer documents by brewery
	Collated views
	Summary
	5. Introducing N1QL
	Installing N1QL
	Simple queries
	Null or missing properties
	String utilities
	Aggregation and math
	Complex structures
	Working with collections
	Joins
	SDK support
	Summary
	6. Designing a Schema-less Data Model
	Key design
	Keys, metadata, and RAM
	Predictable keys
	Unpredictable keys
	Storing keys
	Key restrictions
	Document design
	Denormalization
	Object-to-document mappings
	Data types
	Document separation
	Object schemas
	Schema-less structure changes
	Object and document properties
	Document relationships
	Finalizing the schema
	Summary
	7. Creating a To-do App with Couchbase
	A simple to-do schema
	Working with SDKs
	A brief overview of MVC
	Using SDK clients
	Creating a task
	Listing tasks
	Showing only incomplete tasks
	Nested tasks
	Summary
	A. Couchbase SDKs
	Couchbase Java SDK
	Current version
	How to obtain it
	The basics
	Couchbase .NET SDK
	Current version
	How to obtain it
	The basics
	Couchbase PHP SDK
	Current version
	How to obtain it
	The basics
	The Couchbase Node.js SDK
	Current version
	How to obtain it
	The basics
	Couchbase Python SDK
	Current version
	How to obtain it
	The basics
	Couchbase Ruby SDK
	Current version
	How to obtain it
	The basics
	Couchbase C SDK
	Current version
	How to obtain it
	Index

