
Бэрон Шварц

Петр Зайцев

Вадим Ткаченко

THIRD EDITION

High Performance MySQL

Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko

O'REILLY•
Beijing • Cambridge • Farnham • Kiiln • Sebastopol • Tokyo

ПО МАКСИМУМУ

ОПТИМИЗАЦИЯ, РЕПЛИКАЦИЯ,

РЕЗЕРВНОЕ КОПИРОВАНИЕ

Бэрон Шварц

Петр Зайцев

Вадим Ткаченко

3-е издание

Санкт-Петербург· Москва· Екатеринбург. Воронеж
Нижний Новгород • Ростов-на-Дону • Самара • Минск

2018

Бэрон Шварц, Петр Зайцев, Вадим Ткаченко

MySQL по максимуму
3-е издание

Серия «Бестселлеры O'Reilly»

Перевел с английского А. Колышкин

Заведующая редакцией

Руководитель прое!Па

Ведущий редаlПОр

Литераrурный реда!ПОр

Художественный редактор

Корректор

Верстка

Ю. Сергиенко

О. Сивченко

Н. Гринчик

Н. Рощина

С. Заматевскан

Е. Павлович

Г. Блинов

ББК 32.988-02-018 УДК 004.738.5

Шварц Б., Зайцев П., Ткаченко В.

Ш33 MySQL по максимуму. 3-е изд. - СПб.: Питер, 2018. - 864 с.: ил. - (Серия «Бест­
селлеры O'Reilly»).

ISBN 978-5-4461-0696-7
Хотите выжать из MySQL максимум возможностей?
Вам поможет уникальная книга, написанная экспертами для экспертов.

Познакомьтесь с продвинутыми приемами работы с MySQL: разработкой схем, индексов и запросов для
настройки сервера, операционной системы и аппаратной части, способами масштабирования приложениli и ре­

пликацией, балансировкой нагрузки, обеспечением доступности и восстановлением после отказов.

Прочитав эту книгу, вы узнаете. почему MySQL устроена именно так, познакомитесь с разбором практичных
кейсов, научитесь мыслить на одном языке с вашей базой данных.

Бестселлер Шварца, Зайцева и Ткаченко- книга, необходИмая любому профессионалу и способная преврmпъ

самую страшную «нештатную ситуацию» в легко преодолимый «рабочиli момент».

Читайте и совершенствуйтесь!

16+ (В соответствии с Федеральным законом от 29 декабря 201 О г. № 436-ФЗ.)

ISBN 978-1449314286 англ.

ISBN 978-5-4461-0696-7

Authoгlzed Russian tгanslation of the English edition of High Perfoгmance MySQL,
3rd Edition ISBN 9781449314286 © 2012 Вагоn Schwartz, Peter Zalrsev, Vadlm
Tkachenko. This transla~on is puЫished and sold Ьу permlsslon of O'Rellly Media, lnc"
which owns or contгols all rights to puЫlsh and sell the same
~Перевод на русский язык ООО Иэдатепьство «Питер», 2018
~Издание на русском языке, оформление ООО Иэдатепьство «Питер», 201 В
©Серия «Бестсеплеры O'Reilly•, 2018

Права на иэдание получены no соглашению с O'Reilly. Все права защищены. Никакая часть данной книги не может
быть воспроизведена в какой бы то ни было форме без письменного разрешения владепьцев авторских прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых иэдатепьством как надежные.

Тем не менее, имея в виду возможные чеповеческие или технические ошибки, иэдатепьство не может гарантировать
абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные ошибки, связанные
с использованием книги. Иэдатепьство не несет ответственности за доступность материалов, ссылки на которые вы

можете найти в этой книге. На момент подготовки книги к иэданию все ссылки на интернет-ресурсы были действующими.

Изготовлено в России. Изготовитель: ООО «Прогресс книга». Место нахождения и фактически~ адрес:

191123, Россия, г. Санкт-Петербург, ул. Радищева, д. 39, к. Д, офис 415. Тел.: +78127037373.
Дата изготомения: 04.2018. Наименование: книжная продукция. Срок годности: не ограничен.

Налоговая льгота - общероссийский классификаrор продукции ОК 034-2014, 58. 11.12 ~
Книги печатные профессиональные, технические и научные.

Импортер в Беларусь: ООО «ПИ ТЕРМ», РБ, 220020, г. Минск, ул. Тимирязева, д. 121/3, к. 214, тел./факс: 20880О1.
Подписано в пе•1аrь 29.03.18. Формат 70х\ОО/\6. Бумага офсетная. Усл. п. л. 69,660. Тираж \ООО. Заказ 2880.

Отпечаrано в АО «Первая Образцовая типография». Филиал «Чеховский Печатный Двор».

142300, Московская область, г. Чехов, ул. Полиграфистов, 1.
Сайт: www.chpd.ru, E-mai\: sales@chpd.ru, тел. 8(499)270-73-59

Краткое содержание

Предисловие ... 16

Введение ... 17

Глава 1. История и архитектура MySQL ... 28

Глава 2. Эталонное тестирование MySQL ... 66

Глава З. Профилирование производительности сервера ... 101

Глава 4. Оптимизация схемы и типов данных ... 150

Глава 5. Повышение производительности с помощью индексирования 183

Глава 6. Оптимизация производительности запросов " " 242

Глава 7. Дополнительные возможности MySQL " 311

Глава 8. Оптимизация параметров сервера ... 384

Глава 9. Оптимизация операционной системы и оборудования 445

Глава 10. Репликация .. 513

Глава 11. Масштабирование MySQL .. 595

Глава 12. Высокая доступность ... 646

Глава 13. MySQL в облаке .. : 671

Глава 14. Оптимизация на уровне приложения .. 688

Глава 15. Резервное копирование и восстановление ... 706

Глава 16. Инструменты для пользователей MySQL .. 756

Приложения

Приложение А. Ветки и версии MySQL .. 770

Приложение Б. Состояние сервера MySQL ... 776

Приложение В. Передача больших файлов .. 805

Приложение Г. Команда EXPLAIN ... 810

Приложение Д. Отладка блокировок ... 826

Приложение Е. Использование Sphinx совместно с MySQL 836

Оглавление

Предисловие .. 16

Введение .. 17

Структура книги .. 17
Версии программного обеспечения и их доступность ... 20
Условные обозначения .. 21
О примерах кода .. 22
Благодарности к третьему изданию " ... " 23
Благодарности ко второму изданию ... "23
Благодарности к первому изданию ... 26

Глава 1. История и архитектура MySQL ... " " ... "" 28

Логическая архитектура MySQL ... 28
Управление соединениями и их безопасность ... 30
Оптимизация и выполнение " .. 30

Управление конкурентным доступом ... " " ... 31
Блокировки чтения/записи." " ... 31
Детальность блокировок ... 32

Транзакции ... " ... " " .. 34
Уровни изолированности " ... 36
Взаимоблокировки .. 37
Ведение журнала транзакций .. 38
Транзакции с MySQL " " " 39

Управление конкурентным доступом с помощью многоверсионности 41
Подсистемы хранения в MySQL "" " " "" " ... 42

Подсистема хранения InnoDB .. "" " " " "" " ... 44
Подсистема хранения MyISAM"." " " " " " .. " 47
Другие встроенные подсистемы хранения данных MySQL " .. ""." "" ".""""." ... 49
Подсистемы хранения сторонних разработчиков " " ... 51
Выбор подходящей подсистемы хранения " " " 54
Преобразования таблиц " .. " " 58

Хронология MySQL " .. ""."" .. " "." .. "" " " " " " ".60
Модель развития MySQL " " ... " ... " " ... 64
Итоги главы " .. " " 65

Глава 2. Эталонное тестирование MySQL " " ... 66

Зачем нужно эталонное тестирование .. "" "" " ... "."""""." "" "." 66
Стратегии эталонного тестирования .. " ""."" .. "." " " 68
Тактики эталонного тестирования " ... "" .. 72

Проектирование и планирование эталонных тестов " .. " .. ""."""" "" .. " ... "." 73
Должно ли быть длительным эталонное тестирование? "" ... """ ... "" .. " .. " " " ... 7 4
Фиксация производительности и состояния системы " .. " " "." "." 7 5
Получение точных результатов .. " " 77
Прогон эталонного теста и анализ результатов " .. " " ... " 79
Важность построения графика .. 81

Оглавление 7

Инструменты эталонного тестирования ... " " " ... " .. " " "." " "" 83
Полностековые инструменты " " " " " ""." " 83
Инструменты покомпонентного тестирования " " " "" " ... 84

Примеры эталонного тестирования .. "" " " "." " ... - " " " " .. 86
http_load " " ... " " .. ""."" " ""." " .. " " "" " " 87
MySQL Benchmark Suite " " " "." "." " "" " ... " .. 88
sysbench " "" """."" " .. " " " ... """." "".""" " .. "."" 89
Инструмент dbt2 ТРС-С из комплекта Database Test Suite .""."""."""".""""""""""""".94
Инструмент Percona's TPCC-MySQL """".""."""".""""""".""""."""".""""" .. """"""."."""97

Итоги главы ".""" " " " .. " " " " 100

Глава 3. Профилирование производительности сервера .".""""."""""""""""""".""""".""""" 101

Введение в оптимизацию производительности"""."""""".""."""""""""."""""""""."""""". 101
Оптимизация с помощью профилирования."""""."""."".""".".""""""."""""."""."."."". 104
Интерпретация профиля" " " " ... "." " " 106

Профилирование приложения" " " "" " " " ... " .. 108
Профилирование запросов MySQL """".""""".".""."".""."".""""""."."."" .. ""."""""""""""". 113

Профилирование рабочей нагрузки сервера."."."""""""""".".""".""""""""""""""".""" 113
Профилирование отдельных запросов""."""."""""""""""""""""""."."."""".""."".""""" 118
Использование профиля для оптимизации".".""""""".""."""".""".".""""""""".".".""". 125

Диагностика редко возникающих проблем""""""""""."."""""."."""""."."."".""."."""""""" 125
Проблемы одиночного запроса или всего сервера?.".""""."""".""."."."."""""""."""."" 126
Фиксация данных диагностики ."."."""""."."."""".""".""""".""""."""""""""".""""""."." 131
Кейс по диагностике" " .. " "." " " " 137

Другие инструменты профилирования".""."""""".""".""""."""".""."."".""""""""""""."".". 146
Таблицы USER_STATISTICS"".".""""""""""""""""""."""."""""".""."""".".".""""""""146
Инструмент strace " "." ... " "" " " " " .. ".147

Итоги главы " " ... "" " " " " " .. " " ... "" " " ""."."". 147

Глава 4. Оптимизация схемы и типов данных ."."."."""."."""""".".""""""""".".".""""""".""". 150

Выбор оптимальных типов данных " " " """ " .. "" .. " " .. "" 150
Целые числа "" " " "" .. " ... "."." " " "" " " " " ... "" 152
Вещественные числа .. " " "." " .. " .. "." "."" " " .. "" .. "."." 153
Строковые типы .. " " " " " " .. " ... "." " "." " " ... " """." 154
Типы Date и Time".""""""".""." .. ".".""""."""""."""""."".""".""""""""".""""."""."."""""" 161
Битовые типы данных""." .. ""."""".""".".""."."""."""""".".""""""""."""""."."."."""""""" 163
Выбор идентификаторов " ""." " " " ... " .. " .. "." " " ... ". 165
Специальные типы данных." "." " " """ ". 168

Подводные камни проектирования схемы в MySQL."".".""."""."".""""."""""".""."""""." 168
Нормализация и денормализация " " .. " .. "." .. "." " "" " 170

Достоинства и недостатки нормализованной схемы""."."""".".""".""""."""""""""."." 171
Достоинства и недостатки денормализованной схемы .. "".""""""."""""."""""""""""". 171
Сочетание нормализации и денормализации """""""""""""""""""""."".".""."""""""". 172

Кэшированные и сводные таблицы"".".""".""."."".""""."""."""""".""".""""""""""".".""."" 173
Материализованные представления .. "".""".""."".""""""."""""""""."""""."""""."""".". 175
Таблицы счетчиков " ... " .. " " " ... 176

Ускорение работы команды AL TER Т ABLE """""."".""."""".""."""""""".""."""""""""""" 178
Модификация одного лишь .frm-файла """"."""".""."".""".""".""."."".""."" .. "."""".""" 179
Быстрое построение индексов MyISAM."."".".""".""."""." .. ""."".".".".""""""""""."""" 181

Итоги главы " " " .. 182

8 Оглавление

Глава 5. Повышение производительности с помощью индексирования " " 183

Основы индексирования "" " ... " "." " " " .. ". 184
Типы индексов " " " ... " " ... ""." " 184
Преимущества индексов" " " " " " " ... " " 195

Стратегии индексирования для достижения высокой производительности""""."."""". 196
Изоляция столбца " .. " " " ... " """ ... " ... "." " .. " ... "." .. " ... "" " 196
Префиксные индексы и селективность индекса."""""" "" .. """ ... """ ""." .. "" 197
Многостолбцовые индексы " " ... " " 200
Выбор правильного порядка столбцов " " ""." " " 202
Кластерные индексы " " " " 205
Покрывающие индексы " " " " ... "." ... " .. " " ... "." 216
Использование просмотра индекса для сортировки """"." .. "" .. """" " .. ""."" "."." .. 221
Упакованные (сжатые по префиксу) индексы " """."" .. "."." .. " "." ... " .. " ... " ". 223
Избыточные и дублирующиеся индексы " " " " "." 224
Неиспользуемые индексы .. " .. " ... " " " .. " " " 227
Индексы и блокировки "" " " " ... " " "" "" 227

Кейсы по индексированию .. " " " ... " " " 229
Поддержка нескольких видов фильтрации ""."."."" ... "" " " "" " """" 230
Устранение дополнительных условий поиска по диапазону " " ... 232
Оптимизация сортировки .. 233

Обслуживание индексов и таблиц ... 234
Поиск и исправление повреждений таблицы .. "." " " " 235
Обновление статистики индекса ... 236
Уменьшение фрагментации индекса и данных" "" " " " " 238

Итоги главы ... " ... 239

Глава 6. Оптимизация производительности запросов " " " 242

Почему запросы бывают медленными .. 242
Основная причина замедления: оптимизируйте доступ к данным " " 243

Не запрашиваете ли вы лишние данные у базы? " ... 244
Не слишком ли много данных анализирует MySQL? "." " " " " 245

Способы реструктуризации запросов " " " "" " " 249
Один сложный или несколько простых запросов? ... " "." " " " ... " 249
Разбиение запроса на части .. " .. " " .. " 250
Декомпозиция соединения "" .. " .. " .. 251

Основные принципы выполнения запросов ".""."" """""" " .. ".""" ""." " ".". 252
Клиент-серверный протокол MySQL " .. 253
Кэш запросов .. " " " .. 256
Процесс оптимизации запроса ... " .. " " "." 257
Подсистема выполнения запросов." " " " .. 271
Возврат результатов клиенту " .. " " " " "."." " 272

Ограничения оптимизатора MySQL ... "" " ... " .. " " 272
Коррелированные подзапросы " " "" "" " "."" "" .. " 273
Ограничения UNION .. "" ... "" " " " " .. " " .. " 277
Оптимизация слияния индексов """ " ... "." "." " " 278
Распространение равенства "" " .. " " " "." .. "".""" .. " ... "" "" "" ... " 278
Параллельное выполнение" " .. " """ .. " " .. "."" ... " "" 278
Хеш-соединения "" " " .. " ... " " "." " " .. " " ... 278
Непоследовательный просмотр индекса " "" .. " " 279
Функции MIN() и МАХ() ... " .. " ... "."" "" " 281
SELECT и UPDATE для одной и той же таблицы " ... " "" "." """"."" .. "".".". 282

Оглавление 9

Подсказки оптимизатору запросов .. 282
Оптимизация запросов конкретных типов ... 286

Оптимизация запросов с COUNT() ... 286
Оптимизация запросов с J О IN .. " " .. 289
Оптимизация подзапросов "." .. " .. " " 289
Оптимизация GROUP ВУ и DISТINCT " ... " " " " " ". 290
Оптимизация GROUP ВУ WIТH ROLLUP " .. 291
Оптимизация LIMIT и OFFSET " " .. 292
Оптимизация SQL_CALC_FOUND_ROWS" ... 293
Оптимизация UNION " ... 294
Статический анализ запросов " ... " 295
Переменные, определяемые пользователем .. 295

Кейс .. "." .. 302
Построение таблицы очередей в MySQL ... 302
Вычисление расстояния между двумя точками ... 305
Применение пользовательских функций ... 309

Итоги главы .. 310

Глава 7. Дополнительные возможности MySQL " " 311

Секционированные таблицы ... " 311
Как работает секционирование .. 312
Типы секционирования .. 313
Как использовать секционирование ... 315
Что может пойти не так"." .. " " " " .. " 316
Оптимизация запросов к секционированным таблицам " " 319
Объединенные таблицы ... " ... " 320

Представления " "." " .. 323
Обновляемые представления ... " ... 326
Представления и производительность .. 326
Ограничения представлений .. 328

Ограничения внешнего ключа ... 329
Хранение кода внутри MySQL " ... 330

Хранимые процедуры и функции ... 333
Триггеры " .. " ... 334
События ... " 337
Сохранение комментариев в хранимом коде .. " " ... 338

Курсоры .. " ... 339
Подготовленные операторы ... 340

Оптимизация подготовленных операторов " " .. 341
SQL-интерфейс для подготовленных операторов "." ... " "." " 342
Ограничения подготовленных операторов " .. 344

Функции, определяемые пользователем " ... 345
Плагины ... " .. 346
Кодировка и схемы упорядочения ... 347

Использование кодировок в MySQL ... " 348
Выбор кодировки и схемы упорядочения " " .. 351
Как кодировка и схема упорядочения влияют на запросы " " " .. "." 352

Полнотекстовый поиск .. 355
Полнотекстовые запросы на естественном языке .. "" ... " 357
Булев полнотекстовый поиск ... 359
Изменения в полнотекстовом поиске в версии MySQL 5.1 ... 360

10 Оглавление

Компромиссы полнотекстового поиска и обходные пути ... "."." ... " .. " " 360
Настройка и оптимизация полнотекстового поиска""."""""""""""""""""".""""".""." 363

Распределенные транзакции ... " " "." "." " 364
Внутренние ХА-транзакции " .. " " "" " " ... 365
Внешние ХА-транзакции " "." "." " " " 366

Кэш запросов MySQL " " ... " " 367
Как MySQL проверяет попадание в кэш"""." "".""""""".".""".".""""" .. "."."".".""""" 367
Как кэш использует память.".".""""""."""""""."".""".".""."."""""""""".""."""."""".""". 369
Когда полезен кэш запросов".""""."""".""."".""."."."""".""".""."""" ... """"."""."""""."". 372
Как настраивать и обслуживать кэш запросов""""""""""""."."""""""."""""""""."""." 375
lnnoDB и кэш запросов""".""."""""""".".""""".""."""."".""""."."""""""."" .. "".""".""".". 379
Общие оптимизации кэша запросов"""""""""".".""""""""""".""".""""."."."."""""."".". 380
Альтернативы кэшу запросов" " " """ " " " " " .. "." 381

Итоги главы " " " " ... " " " " " " " " 381

fлава 8. Оптимизация параметров сервера """"""""""""."""""."".""""."."."." """""""""".". 384

Основы конфигурации MySQL " " " " .. 385
Синтаксис, область видимости и динамичность""""".""""".""""".""""."""."""."""""" 386
Побочные эффекты установки переменных"""""."""""""" ... ".""""""""."""""".".""""" 388
Приступая к работе " .. " 391
Итеративная оптимизация с помощью эталонного тестирования""""" .. ".""""""""." 392

Чего делать не следует " " " ... " 394
Создание конфигурационного файла MySQL."""""".""".""."""".""".""""""""."".""""""". 396
Настройка использования памяти"""""""""""""".""".""""." .. ".""."""".""""""""""""""." .. " 401

Сколько памяти может использовать MySQL""."."."""""."""".""""""""""."""""."""". 402
Сколько памяти нужно соединению""."."""".""""."""""""""""""""""""""""""""" .. """ 402
Резервирование памяти для операционной системы."" .. "".".""""""."""".""""""""""" 403
Выделение памяти для кэшей""."".""."."."."""".""."""."" ... """ .. "."".""""" .. """"."".".".". 403
Буферный пул InnoDB ... " "." " 404
Кэш ключей My!SAM" "."" .. " ... " " ... " .. "." " "." ". 406
Кэш потоков " "" " " ... 409
Кэш таблиц " "" " .. " 409
Словарь данных InnoDB."."".".".".""""." .. "".""".""."""."" .. "."""""."."."."" .. """""""."".". 411

Настройка ввода/вывода в MySQL""""""""""""."""".""".""""".""""."" .. """" .. """.""""""". 412
InnoDB"""".""."".""""."" .. "."".""""".""."."."."" .. ".""".""".".""".".""""".".".".""."."""."".".412
MylSAM " " " ... " " " .. " ... 427

Настройка конкурентного доступа в MySQL """"""""""."."."""".".""""""""".""."""""""". 429
InnoDB " .. " " " " " " " 429
MyISAM " " " " " " 431

Настройка с учетом рабочей нагрузки.""""""""""""."".""""""."."""".""."""".""""""""""" .. 432
Оптимизация работы с полями типа BLOB и ТЕХТ "."""."".""""""""""""."."""."""." 433
Оптимизация файловой сортировки """.".""""."".".""""""".""""."."."."""""""""""""". 435

Завершение базовой конфигурации.""""""""""""".""".""""".""""."".".""""."."."".""""""". 436
Настройки безопасности и готовности к работе."""""".""."""".""""".""""""".""""""."""" 438
Дополнительные настройки JnnoDB ".""""""""""""."".""".""""." .. ".""."."."".""""".""".".". 441
Итоги главы." " .. " 444

fлава 9. Оптимизация операционной системы и оборудования ""."."""".".""""""."."""""". 445

Что ограничивает производительность MySQL.""""".""""""""."""""."""".""""""""""".". 445
Как выбирать процессоры для MySQL"""""""."""".".""""""."""""""""""""""""""""""""" 446

Что лучше: быстрые процессоры или много процессоров.""""""."""""""."""""""""." 446

Оглавление 11

Архитектура ЦП .. 449
Масштабирование на несколько процессоров и ядер .. 449

Поиск баланса между памятью и дисками .. 452
Произвольный и последовательный ввод/вывод .. 453
Кэширование, чтение и запись ... 454
Что такое рабочее множество ... 455
Определение эффективного соотношения .~память - диск~> .. 456
Выбор жестких дисков .. 458

Твердотельные хранилища данных ... 460
Обзор флеш-памяти : .. 461
Флеш-технолоrии ... 462
Эталонное тестирование флеш-памяти ... 464
Твердотельные диски .. 465
Устройства хранения PCie .. 467
Другие типы твердотельных хранилищ данных .. 468
Когда стоит использовать флеш-устройства ... 468
Использование технолоrии Flashcache ... 470
Оптимизация MySQL для твердотельных хранилищ данных .. 472

Выбор оборудования для подчиненного сервера .. 476
Оптимизация производительности с помощью RAID ... 477

Отказ, восстановление и мониторинr RAID ... 480
Выбор между аппаратной и программной реализациями RAID 481
Конфиrурация RAID и кэширование .. 483

Сети хранения данных и сетевые системы хранения данных .. 486
Эталонные тесты SАN-сетей ... 487
Использование SАN-сетей через NFS или SMB .. 488
Производительность MySQL в SAN .. 489
Надо ли использовать SAN .. 489

Использование нескольких дисковых томов ... 491
Конфиrурация сети ... 493
Выбор операционной системы .. 496
Выбор файловой системы ... 497
Выбор планировщика дисковых очередей .. 500
Мноrопоточность ... 500
Подкачка ... 501
Состояние операционной системы .. 504

Как интерпретировать выдачу vmstat .. 504
Как интерпретировать выдачу iostat .. 505
Другие полезные инструменты .. 507
Машина с наrруженным процессором ... 508
Машина с наrруженной подсистемой ввода/вывода ... 509
Машина с интенсивной подкачкой ... 510
Простаивающая машина ... 510

Итоги главы .. 510

Глава 10. Репликация .. 513

Обзор репликации ... 513
Проблемы, решаемые репликацией .. 515
Как работает репликация ... 516

Настройка репликации .. 517
Создание аккаунтов репликации ... 518

12 Оглавление

Конфигурирование главного и подчиненного серверов "" """""."" .. 519
Запуск подчиненного сервера .. " " " " " "" .. " "" " 520
Инициализация подчиненного сервера на основе существующего""" .. "" .. """".".""" 523
Рекомендуемая конфигурация репликации "." ... "" " " " " " 525

Взгляд на репликацию изнутри." .. " "."" .. "."" " " " " " " "" ". 527
Покомандная репликация" " ... " .. " " " .. " " " "." " " 527
Построчная репликация ... " ... " .. " ... " " ... " ... " .. " " " 528
Какая репликация лучше, по командная или построчная""."".""".""""".""".""."".""" 529
Файлы репликации " " " "."" .. " ... " ... "" "" ... 531
Отправка событий репликации другим подчиненным серверам""".""""""""""""""" 533
Фильтры репликации "" " " "." " " " 534

Топологии репликации .. "." ... " .. " " ... " " " "."." .. " " "." .. " 536
Один главный сервер с несколькими подчиненными"""""."""."."""""""""""""""""". 537
«Главный сервер - главный сервер• в режиме «активный - активный• .. "".""".""" 538
<1Главный сервер - главный сервер» в режиме «активный - пассивный»""""""".". 540
«Главный сервер - главный сервер с подчиненными»"."""""""""."""""""""""""""." 541
Кольцевая репликация .. " " " " 542
Главный сервер, главный сервер-распространитель и подчиненные""""""""""".""" 543
Дерево или пирамида " " "."" .. " "" .. " ... "" " .. " ... " " ... " " " 545
Пользовательские схемы репликации"""" .. """""."."""""""""".""""." ... ""."""""""."""" 546

Репликация и планирование производительности"""""""""""""."."""".""" ... """""."" .. "". 552
Почему репликация не помогает масштабированию записи"""""""""" .. """"""""""." 553
Когда подчиненные серверы начнут отставать .. " .. "".""."" """" """" """""""." 554
Запланированная недогрузка ... " " .. 555

Администрирование и обслуживание репликации.""""""""""".".""""".""."""""""."."""". 555
Мониторинг репликации" " " " 556
Измерение отставания подчиненного сервера"."""""""""""""""""""" .. """.""." .. "."" .. " 556
Как узнать, согласованы ли подчиненные серверы с главным""".""."""""""""""""". 558
Восстановление синхронизации подчиненного сервера с главным."""".""""""."""." 559
Смена главного сервера .. " " " " 560
Смена ролей в конфигурации <1главный сервер - главный сервер•"""""".""""."""" 565

Проблемы репликации и их решение .. "."."""".""".""."""""".".""""" ... """.""""."."."""".""" 566
Ошибки, вызванные повреждением или утратой данных"."""".""""""""""""".""""". 566
Использование нетранзакционных таблиц""."""""""""""""."."""""."""""""""""."""". 570
Смешивание транзакционных и нетранзакционных таблиц""""""""""""""""".""."". 570
Недетерминированные команды " " " " " ... 571
Использование различных подсистем хранения на главном

и подчиненном серверах .. """"."""""""".""""."""."""" .. """"""."""."""."""".".""" .. ".""."" 571
Изменение данных на подчиненном сервере ""."""" .. """"".""."""."""""""""""""""""" 572
Неуникальный идентификатор сервера"."""."""""".".""."""".".".""" "".""." .. "."""". 572
Неопределенный идентификатор сервера .""."""."."."."""".""""."""."".""""".".".""".". 573
Зависимости от нереплицируемых данных""""""".""."""" ... """.""""."""."""." .. "".""". 573
Отсутствующие временные таблицы"""""".".""."".""""""""""""." ... ".".""""""."."."."". 57 4
Репликация не всех обновлений " .. " 575
Конкуренция, вызванная блокировками при выполнении SELECT
в InnoDB .. " " " " " .. " " " " "" " " 576
Запись на обоих главных серверах в конфигурации «главный - главный»"".""""" 578
Слишком большое отставание репликации.""".""."""."""."".""".""""""""""".""""""". 580
Чрезмерно большие пакеты от главного сервера""""."""""""."""""""""."""""""""."". 584
Ограниченная пропускная способность сети"""."""""""""""""""""""""""."""""".""". 585

Оглавление 13

Отсутствие места на диске"".".""""""""""".""."""""""""."""""."""""""."""""."""""""". 585
Ограничения репликации " ... " " " " " " "" 585

Насколько быстро работает репликация"."""""""""".""""""".""."".""""""""".""""""."""" 586
Расширенные возможности репликации MySQL ."""""""""""""."~"""""" .. "" .. """"""""" .. 588
Прочие технологии репликации " " " ... " .. "" "." " "." " .. " " 591
Итоги главы "." " " .. " 593

Глава 11. Масштабирование MySQL .. "."""""""""" ... "."""""."""""""".""".""." ... "" ... " .. """.""" 595

Что такое масштабируемость." "." " " " " "" " 595
Масштабирование MySQL " " " " .. 602

Планирование масштабируемости " " " 602
Перед тем как приступать к масштабированию""""".""""".""".""".""."""."""."."." ... ". 603
Вертикальное масштабирование .. " " " " 604
Масштабирование по горизонтали " " "" " " " 606
Масштабирование с помощью консолидации ".".""""."""""".""."""""""""""."""""."." 625
Масштабирование кластеризацией .. " "" ".""." " " " .. 626
Обратное масштабирование " " " " "." " " 630

Балансирование нагрузки" " .. " ... " "" " " "" ". 633
Прямое подключение."." " "." ... " " .. " "."" " ... " .. " " " .. 635
Представляем посредника ... " " " "." ""." " ... " " "" 640
Балансирование нагрузки при наличии одного главного и нескольких

подчиненных серверов ... " " " " 643
Итоги главы "" " " " "." .. " " " .. "" " " 644

Глава 12. Высокая доступность ."""""."""."."""""."".""""""""".".""""""""""."." .. """""." .. """" 646

Что такое высокая доступность"" .. "."""""".""""."" .. "" .. " .. """" .. """"."""".""."""."""""." .. "" 646
Причины простоев " " " " " " ... ". 648
Достижение высокой доступности " ... " 649

Сокращение среднего времени между отказами"""."""".""""""".""""""."""."""""""." 649
Сокращение среднего времени восстановления"""""".""""."".""""""""."""""".""""". 651

Устранение отдельных критических точек"."""".""""""".""""""" .. " """." .. "."""""""."."" 652
Разделяемое хранилище данных или реплицированный диск""".""."".""."""""."""" 653
Синхронная репликация MySQL." .. " " " " 657

Избыточность на основе репликации."""""""""".""""."."."""""."."""""""".""".".""""" 661
Аварийное переключение и восстановление после сбоев".".""""""""."""""""""""."""""" 663

Повышение подчиненного сервера, или перемена ролей """"""""".".""""".""" .. ".""". 665
Виртуальные IР-адреса и передача IР-адреса""""""""""""".""".""""""".""".""""""."" 665
Решения на основе посредника .. " " ... " .. " "." " " 666
Обработка переключения на резерв при отказе на уровне приложения."."".".""""". 668

И тоги главы." " ... " "" .. " "." ... " 668

Глава 13. MySQL в облаке """ .. " .. "." """.".".""." .. "".".""""""".""."""""."""".""."" .. ""."."""""" 671

Достоинства, недостатки и мифы облака"."""."".""".""""".".".".""" ""." ... """""".""."."". 672
Экономика MySQL в облаке""" .. " .. ".""""."."" .. "."""."".""""""""".""."""""""""""""""""."". 674
Масштабирование MySQL и НА в облаке"""".".""""""""."""""""""." .. ""."""""""."".""" ... 676
Четыре основных ресурса." " " " " " "." 677

Производительность MySQL в облачном хостинге".""."""."""".".""."""."".""""""."""."". 678
База данных MySQL как услуга"""".".""""."""""""."."""."""""""""."""""".""".".""".""".". 683

Aшazon RDS "" .. """" .. """""".""""""."" .. "."" .. "" .. " .. "".""""."".""."""."""""" .. """.""."""".". 684
Другие решения DBaaS""""""" .. ".""" .. "."" .. ""."""".".""" .. """"."""."""".""."".""."."."".". 685

И тоги главы .. """".".""".".".""""""."."."."."."" .. ".""." .. """".""." .. "" .. "."."""".""""""."""".""""" 686

14 Оглавление

Глава 14. Оптимизация на уровне приложения " " .. "." " 688

Типичные проблемы ... 688
Проблемы веб-сервера .. 691
Кэширование ... 695

Кэширование на уровне ниже приложения ... 695
Кэширование на уровне приложения .. 696
Стратегии управления кэш ем ... 698
Кэширование иерархий объектов .. 700
Предварительная генерация содержимого ... 701
Кэш как инфраструктурный компонент ... 702
Использование HandleгSocket и доступа к memcached ... 703

Расширение MySQL ... 703
Альтернативы MySQL ... 704
Итоги главы .. 705

Глава 15. Резервное копирование и восстановление " ... 706

Зачем нужно резервное копирование " " " 707
Определение требований к восстановлению .. 708
Проектирование резервного копирования в MySQL .. 710

Оперативное или автономное резервное копирование ... 711
Логическое и физическое резервное копирование .. 713
Что копировать .. 716
Подсистемы хранения и согласованность .. 718
Репликация ... 721

Управление и резервное копирование двоичных журналов ... 722
Формат двоичного журнала .. " 722
Безопасное удаление старых двоичных журналов"""" " ... " .. " "." 723

Резервное копирование данных "" " " "" .. " ... " 724
Снятие логической резервной копии " "." .. " " "".""" 724
Снимки файловой системы " " " " "."" .. 727

Восстановление из резервной копии " " " "." " .. " 735
Восстановление из физических файлов " " " .. "."" " "." ". 736
Восстановление из логической копии " " ""." " 738
Восстановление на конкретный момент времени " " .. "." " " 7 41
Более сложные методы восстановления " " "."." .. " " " 7 43
Восстановление InnoDB " "."" " " 745

Инструменты резервного копирования и восстановления" " "." 7 48
MySQL Enterpгise Backup" " .. "." " ""." " " " 7 48
Регсопа XtгaBackup "." " ... " ... 748
mylvmbackup .. " ... " 7 49
Zmanda Recovery Manager .. " .. 749
mydumpeг ... """ " " " ... 750
шysqlduшp " .. " "." "."" ... " .. 750

Скрипты резервноrо копирования " .. " "." " 751
Итоги главы " " " "." " "" " 754

Глава 16. Инструменты для пользователей MySQL .. " "." " 756

Средства организации интерфейса." " ... " " .. " 756
Утилиты командной строки ... "." " " " " "" "" 757
Утилиты SQL " .. " ... " " "" "" " 758

Оглавление 15

Инструменты мониторинга ... " " " ""." " " ... " ""." "."" " ... ". 758
Инструменты мониторинга с открытым исходным кодом.".""""""""".""""" .. """."."" 759
Коммерческие системы мониторинга "" " " " 762
Мониторинг из командной строки с использованием Innotop".""" .. "." .. "" .. ".""""""" 764

Итоги главы " .. " " .. " " " " 768

Приnожения

Приложение А. Ветки и версии MySQL ... " " " " " .. "" .. " "" ... "." ... " " .. 770

Percona Server "."" .. " " .. "" " " "."." "" "" " " " ... "." .. " .. "" " 770
Maria DB " " "."." .. "" " .. " " "" ... " .. " "" " " .. " ... "" " .. " " ... " .. 771
Drizzle " " " " ... " .. " " " "."" .. " ... " " "" " " ... " .. 772
Другие варианты MySQL " " " " .. " "" .. " " 774
Итоги " "" .. " " "" "." " " "." 774

Приложение Б. Состояние сервера MySQL""""."."."""""."""."".""""".".".""""""."""""""""". 776

Системные переменные " ... " " ... "" ... "" .. "." .. " .. " " ... " ... " " " .. " " " ... 776
Команда SHOW STATUS."."""." .. """"" .. """""."."."""."""".""".""""".""".""."."".".".".""."". 776
Команда SHOW INNODB STATUS""."."."."""""."""".".""""."""""""".".""".".".""""".""." 783
Команда SHOW PROCESSLIST ""."".""".".".".""".""""""."""".""".".".""""""."""""."."""" 798
Команда SHOW ENGINE MUTEX STATUS"""."""""""""".".".""""".""."""""."""""."".". 799
Состояние репликации """ "." .. " " " " "" " " " 800
База данных INFORMAТION_SCHEMA""."."""""""""."."."""".".""""."." .. """".""".""""" 801
Performance Schema " ... " " " ... " " ... "."" " " ... " " " ". 803
Итоги" " " ... " .. " " "." " " " " " ... " " " "." 804

Приложение В. Передача больших файлов .. """ .. " ... "."" " " ... " " "."" 805

Копирование файлов " "" " ... " 805
Эталонные тесты копирования файлов "" ... "" "" " " ... " "" "". 808

Приложение Г. Команда EXPLAIN """"".""""".".""".""".".".""."."."".""."""".""""".""""."" .. "" 810

Вызов команды EXPI.AIN ".".""""".""."""."""""""""""""".""""."".""""".".""""""""""""""" 810
Столбцы результата команды EXPLAIN""""""""""""."."""."""."""".""""".""."".""""".".". 813
Вывод плана выполнения в виде дерева""."""".""."".""."""""""""."""."."""."""""".""."."" 824
Улучшения в версии MySQL 5.6"""".""".""."."""""""".".".""""""""".""""""".""""""."."."" 825

Приложение Д. Отладка блокировок."."."""""""."".""""."."""".""""."""""." .. """."."""" .. """". 826

Ожидание блокировки на уровне сервера."""""."""".""""""."""""""".""""."""""""""""."" 826
Ожидание блокировки в InnoD В""."."""".".".".""."""."".""."."""".""".""""""""."""""""."" 831

Приложение Е. Использование Sphinx совместно с MySQL ."".""""."""""""."""""""""""."" 836

Типичный поиск с помощью Sphinx ."".""""""."".""."".".""." .. """"."""."""".""""""" .. """"" 836
Зачем использовать Sphinx .. " " "." 840
Обзор архитектуры." " " " " " "." " " 848
Специальные возможности "." .. " " " " .. 851
Примеры практической реализации"" ... """ .. " .. ""."."."""."""."."""""""."""""."""""""."""". 857
Итоги." " " " " ... " " " 864

Предисловие

Я уже много лет являюсь поклонником этой отличной книги, а к третьему изданию

она стала еще лучше. Эксперты мирового уровня не только поделились своим опытом,

но и нашли время для обновления книги. В ней дается множество рекомендаций от­
носительно того, как добиться от MySQL высокой производительности, но основное
внимание уделяется процессу оптимизации, а не фактам и мелочам. Эта книга поможет

вам понять, как улучшить работу независимо от изменений в поведении MySQL.

Такой замечательной книга получилась благодаря уникальной квалификации авто­
ров. В издании соединились их богатый опыт, принципиальный подход, ориентация
на эффективность и стремление к самосовершенствованию. Говоря об опыте, я имею
в виду то, что авторы работали над улучшением производительности MySQL с тех
самых пор, когда она еще не масштабировалась, до текущего момента, когда ситуа­
ция существенно изменилась к лучшему. Под принципиальным подходом я понимаю
тот факт, что они рассматривают эту деятельность как научную, то есть сначала

определяют проблемы, которые необходимо решить, а затем решают их, проводя
соответствующие исследования.

Больше всего меня поражает стремление авторов к эффективности. Будучи консуль­

тантами, они ценят каждую минуту своего времени. Клиенты, оплачивающие каждый

час работы, хотят, чтобы их проблемы решались быстро. В итоге авторы вывели
свою технологию и создали инструменты для качественной и эффективной работы.
В данной книге описана эта технология и приведен исходный код инструментов.

Наконец, они продолжают совершенствовать свои навыки. Это выражается в сме­

щении акцентов с пропускной способности на время отклика, изучении производи­
тельности MySQL на новом оборудовании и получении новых знаний, в частности,
по теории массового обслуживания, которая может применяться для оценки произ­
водительности.

Я полагаю, что эта книга - предвестник светлого будущего для MySQL. Поскольку
MySQL развивается, чтобы быть способной поддерживать увеличивающиеся рабочие
нагрузки, авторы книги приложили усилия к тому, чтобы сообщество разработчиков
MySQL стало лучше понимать, как повысить производительность этой системы. Они
даже внесли в это свой вклад, разработав продукты XtraDB и XtraBackup. Я продол­
жаю учиться у них и надеюсь, что вы тоже не пожалеете времени на это.

Марк Каллаган (Mark Callaghaп),
инженер-программист, Facebook

Введение

Написанная нами книга ориенгирована на потребности создателей приложений MySQL.
При этом мы учитывали требования администраторов баз данных. Мы рассчитываем,
что вы уже работали с MySQL и имеете некоторый опыт системного администриро­
вания, работы с сетями и операционными системами семейства UNIX.

Второе издание содержало большое количество информации, но ни одна книга
не может полностью охватить рассматриваемую тему. В промежутке между вторым
и третьим изданиями мы сделали множество заметок по тысячам интересных задач,

которые решали и мы, и наши знакомые. Когда же начали делать наброски третье­
го издания, поняли, что для изложения всего материала потребуется от 3000 до
5000 страниц, но при этом книга все равно не будет полной. Поразмышляв над
проблемой, мы пришли к выводу, что в стремлении во втором издании к глубокому
изложению тем мы фактически ограничили себя в том смысле, что не часто объ­
ясняли, как все это применять на практике.

В результате третье издание отличается от второго. Мы по-прежнему даем много мате­

риала и все так же придаем большое значение надежности и безошибочности. Однако,
помимо этого, мы попытались внести в книгу еще более глубокую идею: хотим объяснить
не просто как работает MySQL, но и почему она так работает. Мы включили в издание
больше разнообразных историй и кейсов, которые демонстрируют принципы MySQL.
Основываясь на этих принципах, мы попытались ответить на такие вопросы: каких ре­

зультатов можно достичь при реальном использовании MySQL с заданной внутренней
архитектурой, почему эти результаты имеют значение, становится ли при этом MySQL
более (или менее) подходящей для решения конкретных задач.

В конечном счете мы надеемся, что знание внутреннего устройства MySQL поможет
вам в ситуациях, не описанных в этой книге. Кроме того, мы рассчитываем, что новое

понимание MySQL поможет в теории и на практике освоить методы проектирования
и поддержки систем, а также научиться находить и устранять проблемы в них.

Структура книги

В этой книге освещено множество сложных тем. Сейчас объясним, как мы упорядо­
чили их для упрощения работы.

Общий обзор

Глава 1, ~история и архитектура MySQL~. посвящена основам, которые необхо­
димо усвоить, прежде чем приступать к более сложным темам. Для того чтобы
эффективно использовать MySQL, вы должны понимать, как она устроена. В этой
главе рассматриваются архитектура MySQL и ключевые особенности ее подсистем
хранения. Приводятся базовые сведения о реляционных базах данных, а также

18 Введение

о транзакциях. Эта глава также может выступать в роли введения в MySQL, если
вы уже знакомы с какой-нибудь другой СУРБД, например Oracle. Кроме того,
в этой главе мы обозначили исторический контекст: изменения в MySQL с течени­
ем времени, недавнюю смену владельцев и то, что, по нашему мнению, произойдет

с ней в дальнейшем.

Закладка фундамента

В следующих главах приведен материал, к которому вы будете обращаться снова
и снова в процессе использования MySQL.

В главе 2, «Эталонное тестирование MySQL», даются базовые сведения об эталонном
тестировании. Здесь описывается методика определения того, какого рода нагрузки

способен выдерживать сервер, насколько быстро он может выполнять конкретные
задачи и т. п. Умение выполнять эталонное тестирование - это важный навык, ко­

торый помогает оценивать то, как сервер работает под нагрузкой. Но не менее важно
знать, когда оно будет бесполезным.

Глава 3, «Профилирование производительности сервера», знакомит вас с определе­
нием времени отклика - подходом, который применяется для выявления неполадок

и диагностики проблем, связанных с производительностью сервера. Важность этого
подхода доказана при решении нескольких наиболее загадочных проблем из тех,
с которыми мы сталкивались. Возможно, вы захотите модифицировать наш подход

(в конце концов, мы разработали его, в свою очередь изменив подход Кэри Миллсапа
(Сагу Millsap)).

В главах 4-6 мы рассмотрим три темы, которые вместе создают основу для хорошего
логического и физического проектирования баз данных. В главе 4, «Оптимизация
схемы и типов данных», описаны различные нюансы типов данных, проектирования

таблиц и индексов. В главе 5, «Повышение производительности с помощью индекси­
рования», речь пойдет об индексах, то есть о проектировании физической базы данных.
Четкое понимание того, что такое индексы и как их применять, очень важно для

эффективного использования MySQL, поэтому вы, вероятно, впоследствии захотите
вернуться к этой главе. В главе 6, «Оптимизация производительности запросов»,
речь пойдет о том, как MySQL выполняет запросы и как можно воспользоваться
сильными сторонами оптимизатора запросов. В этой главе приведено много кон­

кретных примеров почти всех типичных запросов, иллюстрирующих оптимальную

работу MySQL и показывающих, как преобразовать запросы в такую форму, чтобы
задействовать максимум возможностей СУБД.

Все упомянутые нами до этого момента темы - таблицы, индексы, данные и запросы -
могут относиться к любым системам управления базами данных. В главе 7, «Дополни­
тельные возможности MySQL», мы выйдем за пределы основ и покажем, как исполь­
зовать расширенные возможности MySQL. Мы рассмотрим кэш запросов, хранимые
процедуры, триггеры, кодировки и пр. Эти средства реализованы в MySQL иначе, чем
в других СУРБД, и хорошее их понимание откроет перед вами новые возможности по­

вышения производительности, о которых вы, быть может, даже не задумывались.

Стру1<1Ура книги 19

Настройка приложения

В следующих двух главах обсуждается, как заставить ваше приложение хорошо
работать на вашем оборудовании. В главе 8, «Оптимизация параметров сервера:1>,
мы обсудим, как настроить MySQL, чтобы извлечь максимум возможного из име­
ющейся аппаратной конфигурации сервера в применении к конкретному приложе­

нию. В главе 9, «Оптимизация операционной системы и оборудования:1>, объясняется,
как выжать все, что только можно, из операционной системы и используемого вами

оборудования. Мы подробно обсудим твердотельные хранилища и предложим аппа­
ратные конфигурации, которые могут обеспечить наилучшую производительность
для больших приложений.

В обеих этих главах изучаются определенные особенности внутреннего устройства
MySQL. Мы неоднократно будем возвращаться к данной теме, в том числе в при­
ложениях.

MySQL как компонент инфраструктуры
MySQL существует не в вакууме, это часть общего стека приложений. Для своего
приложения вам нужно создать надежную общую архитектуру. Следующие несколь­
ко глав посвящены тому, как это сделать.

В главе 1 О, <<Репликация:1>, мы обсудим убойную возможность MySQL - способность
настроить несколько серверов так, чтобы они были синхронизированы с главным
сервером. К сожалению, репликация - это, пожалуй, самая неприятная для не­

которых функция MySQL. Однако это не всегда сложная тема, и мы покажем, как
обеспечить хорошую работу репликации.

В главе 11, «Масштабирование MySQL:1>, рассказывается, что такое масштабируе­
мость (это не то же самое, что производительность), почему приложения и системы

не масштабируются и как с этим бороться. Если вы все сделаете правильно, то смо­
жете масштабировать MySQL так, чтобы реально было достичь практически любых
целей. В главе 12, «Высокая доступность:1>, раскрывается связанная, но все-таки дру­
гая тема, а именно: как обеспечить, чтобы MySQL оставалась активной и правильно
функционировала. Из главы 13, «MySQL в облаке:1>, вы узнаете, что изменяется при
запуске MySQL в средах облачных вычислений.

В главе 14, «Оптимизация на уровне приложения:1>, мы объясним то, что называется
оптимизацией во всем стеке, - оптимизацию различных элементов, от фронтенда до

бэкенда, от пользовательского интерфейса до базы данных.

Хорошо спроектированная масштабируемая база данных должна быть защищена от
сбоев электроснабжения, атак злоумышленников, ошибок в приложениях и прочих
напастей. В главе 15, «Резервное копирование и восстановление:1>, мы обсудим раз­
личные стратегии резервного копирования и восстановления баз данных MySQL.
Эти стратегии помогут минимизировать время простоя в случае выхода из строя

оборудования и гарантировать, что данные переживут такую катастрофу.

20 Введение

Различные полезные темы

В последней главе и приложениях мы углубимся в вопросы, которые либо не впи­

сываются ни в одну из предыдущих глав, либо так часто упоминаются в них, что
заслуживают отдельного рассмотрения.

В главе 16, «Инструменты для пользователей MySQLi.>, описаны коммерческие
инструменты, а также инструменты с открытым исходным кодом, которые можно

использовать для более эффективного управления серверами MySQL и их монито­
ринга.

В приложении А рассмотрены три основные неофициальные версии MySQL, появив­
шиеся за последние несколько лет, в том числе та, которую поддерживает наша ком­

пания. Стоит знать, что еще можно использовать при необходимости: многие задачи,

плохо поддающиеся решению или вообще неразрешимые с помощью MySQL, легко
решаются с помощью одной из этих версий. Две из трех, Percona Server и MariaDB,
незначительно отличаются от MySQL, поэтому их внедрение потребует небольших
усилий. Тем не менее стоит добавить, что официального дистрибутива MySQL от
Oracle вполне достаточно для большинства пользователей.

В приложении Б показано, как разобраться в текущем режиме работы сервера MySQL.
Очень важно знать, как получить информацию о состоянии сервера. Но еще важнее

понимать, что эта информация означает. Мы подробно рассмотрим команду SHOW

INNODB STATUS, поскольку она позволяет детально разобраться в операциях, осуще­

ствляемых транзакционной подсистемой хранения InnoDB. Внутреннее устройство
InnoDB также обсуждается в этом приложении.

В приложении В говорится о том, как эффективно копировать очень большие файлы,

что критически важно при работе со значительными объемами данных. В прило­

жении Г показано, как на практике использовать очень полезную команду EXPLAIN.

Приложение Д поможет вам выяснить, что происходит, когда запросы приводят

к конфликтующим друг с другом блокировкам. И наконец, приложение Е представ­

ляет собой введение в высокопроизводительную систему полнотекстового поиска

Sphinx, которая дополняет возможности MySQL.

Версии программного обеспечения
и их доступность

MySQL постоянно меняется. С тех пор как Джереми набросал план первого издания
этой книги, появилось множество версий MySQL. Когда первое издание готови­
лось к печати, MySQL 4.1 и 5.0 существовали только в виде альфа-версий, а сейчас
MySQL 5.1 и 5.5 уже стали основой крупных веб-приложений. На момент окончания
подготовки третьего издания MySQL 5.6 еще не была выпущена, но ожидалось, что
она станет ультрасовременной.

В этой книге мы не ограничиваемся какой-то конкретной версией, а опираемся на

свой обширный опыт работы с MySQL в реальных приложениях. В основном речь

Условные обозначения 21

идет о версиях MySQL 5.1 и 5.5, поскольку именно их мы считаем текущими. В боль­
шинстве примеров предполагается, что вы используете какую-то относительно зре­

лую версию MySQL 5.1, например MySQL 5.1.50 или более новую. Мы старались
отмечать возможности, которые отсутствуют в более старых версиях или появятся
только в следующем семействе 5.6. Однако авторитетным источником информации
о возможностях каждой конкретной версии является сама документация по MySQL.
Мы надеемся, что в процессе чтения этой книги вы будете время от времени посе­
щать сайт разработчиков СУБД, содержащий всю необходимую информацию (http://
dev.mysql.com/doc/).

Другим замечательным свойством MySQL является то, что она работает практи­
чески на всех современных платформах: Мае OS Х, Windows, GNU/Linux, Solaris,
FreeBSD и других! Однако мы предпочитаем GNU/Linux1 и иные UNIХ-подобные
операционные системы. Пользователи Windows, вероятно, обнаружат здесь некото­
рые различия. Например, пути к файлам записываются совершенно иначе. Мы также
ссылаемся на стандартные утилиты командной строки UNIX и предполагаем, что вы
знаете соответствующие команды в Windows2•

Еще одна трудность при работе с MySQL на платформе Windows - отсутствие языка
Perl в стандартной поставке операционной системы. В состав дистрибутива MySQL
входят несколько полезных утилит, написанных на Perl. В отдельных главах этой
книги представлены примеры Реr\-скриптов: они служат основой для более сложных
инструментов, которые создадите уже вы. Комплект Percona Toolkit также написан
на Perl. Чтобы использовать эти скрипты, вам потребуется загрузить версию Perl для
Windows с сайта компании ActiveState и установить дополнительные модули (DВI
и DBD::mysql) для доступа к MySQL.

Условные обозначения

В книге применяются следующие условные обозначения.

Курсив

Курсивом выделяются новые термины, слова, на которых сделан акцент.

Шрифт для названий

Применяется для отображения URL, адресов электронной почты.

Моноширинный шрифт

Применяется для обозначения конфигурационных параметров, имен таблиц, имен
и значений переменных, имен функций, модулей, имен файлов и путей к ним, названий

Во избежание путаницы мы ссылаемся на Linux, когда пишем о ядре, и на GNU/Linux,
когда пишем обо всей инфраструктуре операционной системы, поддерживающей прило­

жения.

Вы можете найти версии UNIХ-утилит для Windows на сайтахhttp://unxutils.sourceforge.net
или http://gnuwin32.sourceforge.net.

22 Введение

каталогов, команд и утилит UNIX, содержимого файлов и результатов работы команд,
имен пользователей и хостов. Кроме того, он применяется для фрагментов кода.

Моноwиринный полужирный wрифт

Применяется для команд или другого текста, который пользователь должен ввести

дословно. Им также выделены результаты работы команды.

Моноширинный курсив

Им выделен текст, вместо которого пользователь должен подставить значения по

контексту.

ill" @ В такой врезке представлены советы, предложения и примечания общего • " характера.
~1' -------------------------------

-. isl Таким способом выделяются предупреждения и предостережения.

О примерах кода

Задача этой книги - помочь вам делать вашу работу. Вы можете использовать любой

пример кода из книги в ваших программах и документации. Обращаться к нам за раз­

решением нет необходимости, если только вы не копируете значительную часть кода.
Например, написание программы с использованием нескольких фрагментов кода из

этой книги не требует отдельного разрешения. Однако для продажи или распростра­

нения компакт-диска с примерами из книг O'Reilly разрешение необходимо. Ответ
на вопрос путем цитирования этой книги и цитирования примеров кода не требует

разрешения. Но для включения значительного количества примеров кода из книги

в документацию к вашему продукту нужно разрешение.

Примеры можно найти на сайте http://www.highperfmysql.com, где они периодически
обновляются. Однако мы не в состоянии обновлять и тестировать код для каждой

версии MySQL.

Мы ценим, хотя и не требуем ссылки на первоисточник. Такая ссылка включает

название, автора, издательство и ISBN. Например: High Performance MySQL, Third
Edition, Ьу Baron Schwartz et а!. (O'Reilly). Copyright 2012 Baron Schwartz, Peter
Zaitsev, and Vadim Tkachenko, 978-1-449-31428-6.

Если вам кажется, что вы выходите за рамки правомерного использования примеров

кода, связывайтесь с нами по адресу pennissioпs@oreilly.com.

Благодарности ко второму изданию 23

Благодарности к третьему изданию

Выражаем благодарность всем тем, кто нам помогал: Брайану Акеру (Brian Aker),
Йохану Андерссону Qohan Andersson), Эспену Браккену (Espen Braekken), Марку
Каллагану (Mark Callaghan), Джеймсу Дэю Qames Day), Мацею Добржанскому
(Maciej Dobrzanski), Звену Форчуну (Ewen Fortune), Дэйву Хильдебрандту (Dave
Hildebrandt), Фернандо Ипару (Fernando lpar), Хайдуну Джи (Haidongji), Джу­
зеппе Максии (Giuseppe Maxia), Ауримасу Микалаускасу (Aurimas Mikalauskas),
Иштвану Подору (Istvan Podor), Иву Трюдо (Yves Trudeau), Мэтту Йонковиту
(Matt Yonkovit) и Алексу Юрченко (Alex Yurchenko). Спасибо всем в Percona за
то, что на протяжении многих лет они помогали нам, каждый по-своему. Хотим по­

благодарить множество замечательных блогеров 1 и докладчиков, которые постоянно
давали нам пищу для размышлений, в особенности Йошинори Мацунобу (У oshinori
Matsunobu). Спасибо также авторам предыдущих изданий: Джереми Д. Заводны
Qeremy D. Zawodny), Дереку Дж. Баллингу (Derekj. Balling) и Арьену Ленцу (Arjen
Lentz). Также благодарим Энди Орама (Andy Oram), Рейчел Хед (Rachel Head) и всех
сотрудников издательства O'Reilly, которые так классно издают книги и проводят кон­
ференции. Еще хотим сказать большое спасибо блестящей и преданной делу команде
MySQL, работающей в Oracle, а также всем тем, кто ранее трудился над MySQL, где бы
вы ни были, и особенно тем, кто был связан со SkySQL и Monty Program.

Бэрон хочет поблагодарить жену Лини, свою мать Конни, а также тещу и тестя, Джейн
и Роджера, за то, что они всеми силами поддерживали его при работе над этим проек­
том, ободряли, помогали в делах и заботились о семье. Большое спасибо также Петру

и Вадиму - вы замечательные учителя и коллеги. Бэрон посвящает это издание памяти

Алана Римм-Кауфмана, чьи великую любовь и поддержку он всегда будет помнить.

Благодарности ко второму изданию

Разработчик системы Sphinx Андрей Аксенов (Andrew Aksyonov) написал приложе­
ние Е «Использование Sphinx совместно с MySQL». Мы ставим Андрея на первое
место в перечне благодарностей за активное участие в обсуждениях.

В процессе написания этой книги мы получили бесценную помощь многих лю­
дей. Невозможно перечислить всех, кто нам помогал, - мы должны поблагодарить
все сообщество MySQL и каждого сотрудника компании MySQL АВ. Однако вот
список тех, кто внес непосредственный вклад в создание второго издания (просим

извинить, если мы кого-то пропустили): Тобиас Асплунд (ToЬias Asplund), Игорь
Бабаев (Igor Babaev), Паскаль Боргино (Pascal Borghino), Роланд Боуман (Roland
Bouman), Рональд Брэдфорд (Ronald Bradford), Марк Каллаган (Mark Callaghan),
Джереми Коул Qeremy Cole), Бритт Кроуфорд (Britt Crawford) и проект HiveDB,
Басил Димов (Vasil Dimov), Харрисон Фиск (Haпison Fisk), Флориан Хаас (Florian

На сайте http://planet.mysql.com можно найти множество замечательных технических блогов.

24 Введение

Haas), Дмитрий Жуковский (Dmitrijoukovski) и Zmanda (благодарим за схему, по­
ясняющую мгновенные снимки LVM), Алан Казиндорф (Аlап Kasindorf), Шеери
Критцер Кабрал (Sheeri Kritzer Cabral), Марко Макела (Marko Makela), Джузеппе
Максиа (Giuseppe Maxia), Пол Маккалаг (Paul McCullagh), Б. Кит Мэрфи (В. Keith
Murphy), Дирен Пэйтел (Dhiren Patel), Сергей Петруня (Sergey Petrunia), Александр
Рубин (Alexander Rubln), Пол Такфилд (Paul Tuckfield), Хейкки Туури (Heikki
Tuuri) и Майкл «Монти~ Видениус (Michael "Monty" Widenius).

Особая благодарность Энди Ораму (Andy Oram) и Изабель Канкл (Isabel Kunkle),
редактору и помощнику редактора нашей книги из издательства O'Reilly, а также
Рейчел Вилер (Rachel Wheeler), литературному редактору. Благодарим и остальных
сотрудников издательства O'Reilly.

От Бэрона

Я хочу поблагодарить свою жену Лини Рейнвилл и нашего пса по кличке Карбон.
Если вам доводилось писать книгу, то, уверен, вы можете представить, как бесконечно
я им благодарен. Я также благодарю Алана Римм-Кауфмана (Alan Rimm-Kaufmaп)
и своих коллег из компании Rimm-Kaufmaп Group за то, что они поддерживали
и ободряли меня в ходе работы над этим проектом. Спасибо Петру, Вадиму и Арьену
за то, что они дали мне возможность реализовать свою мечту. И спасибо Джереми
и Дереку, которые проложили нам путь.

От Петра

Я годами занимался созданием презентаций, обучением и консультированием по во­
просам производительности и масштабирования MySQL и всегда хотел иметь более
широкую аудиторию, поэтому был очень взволнован, когда Энди Орам предложил
мне поработать над этой книгой. Прежде мне не приходилось писать книг, поэтому
я не ожидал, что это займет столько времени и потребует таких усилий. Сначала
мы собирались лишь обновить первое издание с учетом последних версий MySQL,
но оказалось, что надо добавить так много материала, что было решено переписать

почти всю книгу.

Это издание является результатом усилий целой команды. Поскольку я был очень
загружен раскруткой нашей с Вадимом консультационной компании Percona, а ан­
глийский для меня не родной язык, то у всех нас были разные роли. Я предложил
план и подобрал технический материал, а затем по мере написания книги занимался
пересмотром и расширением этого материала. Когда к проекту присоединился Арьен

(бывший руководитель группы подготовки документации MySQL), мы приступили
к реализации плана. Дело действительно закрутилось, когда к нам присоединился

Бэрон, который способен писать высококачественный текст с бешеной скоростью.
Вадим оказал огромную помощь в тщательной проверке исходного кода MySQL,
а также подготовке эталонных тестов и проведении других исследований.

По мере работы над книгой мы обнаруживали, что хотим более детально рассмотреть
все больше и больше областей. Многие темы, например репликация, оптимизация

Благодарности ко второму изданию 25

запросов, архитектура InnoDB и проектирование, вполне заслуживают отдельных
книг, поэтому нам приходилось в какой-то момент останавливаться, оставляя часть

материала для возможного следующего издания или наших блогов, презентаций
и статей.

Мы получили неоценимую помощь от рецензентов - ведущих экспертов по MySQL,
работающих как в MySQL АВ, так и в других местах. В их числе создатель MySQL
Майкл Видениус, автор InnoDB Хейкки Туури, руководитель группы разработчиков
оптимизатора MySQL Игорь Бабаев и многие другие.

Я хочу поблагодарить свою жену Катю Зайцеву и детей Ваню и Надю за то, что
они с пониманием отнеслись к необходимости заниматься книгой, из-за чего порой
я не мог уделять им достаточно времени. Я также благодарен сотрудникам компании
Percona, которые подменяли меня, когда я работал над рукописью. Отдельное спа­
сибо хочется сказать Энди Ораму и издательству O'Reilly за то, что книга наконец
увидела свет.

От Вадима

Я хочу поблагодарить Петра, вдохновившего меня потрудиться над этой книгой,
Бэрона, сыгравшего важную роль в том, что она была написана, и Арьена, работать
с которым было очень весело. Спасибо также нашему редактору Энди Ораму, про­
явившему изрядное терпение по отношению к нам, команде MySQL, создавшей
прекрасный продукт, и нашим клиентам, благодаря которым у меня появилась
возможность хорошо разобраться в этой СУРБД. И наконец, особая благодарность
моей жене Валерии и нашим сыновьям Мирославу и Тимуру, которые всегда под­

держивали меня и помогали двигаться вперед.

От Арьена

Я хочу поблагодарить Энди за его мудрость, терпение и за то, что направлял нас.
Спасибо Бэрону за то, что он запрыгнул в поезд второго издания, когда тот уже
набирал ход, Петру и Вадиму - за базовую информацию и тестирование. Спасибо
также Джереми и Дереку за первое издание. Как ты, Дерек, написал мне: «Все, что я

прошу: не давай им расслабиться~.

Хочу сказать спасибо всем моим бывшим коллегам (и нынешним друзьям) из MySQL
АВ, где я получил большую часть знаний на эту тему. В данном контексте особо хочу
упомянуть Монти, которого продолжаю считать отцом MySQL даже несмотря на то,
что его компания теперь является частью Sun Microsystems. Также я хочу выразить
благодарность всем остальным участникам глобального сообщества MySQL.

Напоследок благодарю свою дочь Фебу, которая в своем столь юном возрасте еще
не интересуется вещью под названием MySQL. Для некоторых неведение является
настоящим благом, и они показывают нам, что действительно важно в нашем мире.
Для остальных же эта книга может стать полезным пополнением. И не забывайте
о своей жизни.

26 Введение

Благодарности к первому изданию

Появление книг, подобных этой, невозможно без участия десятков людей. Без их по­
мощи издание, которое вы держите в руках, скорее всего, осталось бы кучей записок,

прилепленных к нашим мониторам. Здесь мы хотим сказать теплые слова о тех, кто

нам помогал (хорошо, что нам не приходится беспокоиться о фоновой музыке, при­

зывающей нас замолчать и уйти, как это иногда бывает во время вручения разных
премий).

Мы не могли бы закончить этот проект без постоянных просьб, подталкивания
и поддержки со стороны нашего редактора Энди Орама. Если нужно назвать

основного человека, чьей заслугой является выход этой книги, то это Энди. Мы

действительно ценим еженедельные совещания с ним, которые не давали нам

расслабиться.

Однако Энди не единственный. В издательстве O'Reilly много людей, принимавших
участие в превращении наших заметок в книгу, которую вам так хочется прочитать.

Мы также хотим поблагодарить людей, занимавшихся ее иллюстрированием, произ­
водством и продвижением. И конечно, спасибо Тиму О'Рейли за постоянную заботу
о создании прекрасной документации для популярных программных продуктов

с открытым кодом.

Наконец, мы оба хотим сказать большое спасибо рецензентам, которые согласились
просматривать черновики этой книги и говорили нам о том, что мы делали непра­

вильно. Они потратили часть своего отпуска в 2003 году на просмотр первых версий
этого текста, полного опечаток, вводящих в заблуждение выражений и откровенных
математических ошибок. Не выделяя никого в отдельности, мы благодарим Брайана
«Krow» Алкера (Brian «Krow» Aker), Марка «JDBC» Мэтьюса (Mark «JDBC»
Matthews), Джереми «the other jeremy» Коула Ueremy «the other jeremy» Cole), Май­
ка «VBMySQL.com» Хилльера (Mike «VBMySQL.com» Hillyer), Реймонда «Rainman»
Де Ро (Raymond «Rainman» De Roo), Джеффри ~<Regex Master» Фридла Ueffrey
«Regex Master» Friedl), Джейсона Дехаана Uason DeHaan), Дева Нелсона (Dan
Nelson), Стива «UNIX Wiz» Фридла (Steve «UNIX Wiz» Friedl) и Касию «UNIX
Girl» Трапзо (Kasia «UNIX Girl» Trapszo).

От Джереми

Я снова хочу поблагодарить Энди за его согласие взяться за этот проект и неизмен­
ную поддержку. Помощь Дерека была существенной в процессе подготовки послед­
них 20-30 % книги: не будь ее, мы бы не уложились в отведенные сроки. Спасибо
ему за согласие принять участие в проекте на поздней стадии, работу над разделом,
посвященным поддержке XML, главой 10, приложением Е и другими частями книги.

Я также хочу поблагодарить своих родителей за то, что они много лет назад подарили
мне мой первый компьютер Commodore 64. Они не только терпели первые десять
лет компьютерного фанатизма, но и быстро стали помощниками в моих непрекраща­
ющихся поисках новых знаний.

Благодарности к первому изданию 27

Кроме того, я хочу поблагодарить группу людей, от работы с которыми по вербовке
приверженцев MySQL на Yahoo! я получал удовольствие в последние несколько лет.
Джеффри Фридл и Рей Голдбергер вдохновляли меня и помогали мне на первых
этапах этого предприятия. Стив Моррис, Джеймс Харви и -Сергей Колычев уча­

ствовали в моих экспериментах с серверами MySQL на Yahoo! Finance, даже когда
это отвлекало их от важных дел. Также благодарю бесчисленное множество других
пользователей Yahoo!, помогавших мне находить интересные задачи и решения,
относящиеся к MySQL. И, что важнее всего, спасибо им за веру в меня, благодаря
которой MySQL стала одной из самых важных и заметных частей бизнеса Yahoo!.

Адам Гудман, издатель и владелец Linux Magazine, помог мне начать писать для
тех, кто нуждается в технической литературе, опубликовав мои статьи по MySQL
в 2001 году. Он даже сам не понимает, сколь многому научил меня в плане редак­
тирования и издательского дела. Именно он вдохновил меня не сворачивать с этого

пути и продолжать вести ежемесячную колонку в журнале. Спасибо, Адам.

Спасибо Монти и Дэвиду за распространение MySQL по всему миру. И раз уж я за­
говорил о компании MySQL АВ, спасибо замечательным людям, вдохновлявшим
меня на написание этой книги: Керри, Лари, Джо, Мартену, Брайану, Полу, Джереми,

Марку, Харрисону, Мэтту и всей остальной команде.

Наконец, спасибо всем читателям моего блога за ежедневное неформальное общение
на тему MySQL и обсуждение других технических вопросов. И спасибо Гун Сквад.

От Дерека

Как и Джереми, я должен поблагодарить свою семью, в основном по тем же самым
причинам. Я хочу выразить благодарность своим родителям за то, что они постоянно
подталкивали меня к написанию книги. Бабушка и дедушка одолжили мне денег на

покупку первого компьютера Commodore VIC-20, и в результате я понял важность
долларов и влюбился в компьютеры.

Я не могу выразить всю свою благодарность Джереми за то, что он пригласил меня
для совместной работы над этой книгой. Это прекрасный опыт, и я был бы рад снова
поработать с ним.

Особое спасибо Реймонду Де Ро (Raymond De Roo), Брайану Вольгемуту (Brian
Wohlgemuth), Дэвиду Калафранческо (David Calafrancesco), Тере Доти (Тега Doty),
Джею Рубину Uay RuЬin), Биллу Катлану (Bill Catlan), Энтони Хоуву (Anthony
Howe), Марку О'Нилу (Mark O'Neal), Джорджу Монтгомери (George Montgomery),
Джорджу Барберу (George Barber) и множеству других, которые терпеливо выслу­
шивали меня, старались понять, что я хочу сказать, или просто заставляли улыбнуть­
ся, когда я больше всего нуждался в этом. Без вас я до сих пор писал бы эту книгу
и почти наверняка спятил бы в процессе.

История
и архитектура MySQL

Архитектура MySQL очень отличается от архитектур иных серверов баз данных, что
делает эту СУБД полезной для одних целей, но одновременно неудачным выбором
для других. MySQL неидеальна, но достаточно гибка для того, чтобы хорошо рабо­
тать в очень требовательных средах, например в веб-приложениях. В то же время
MySQL позволяет применять встраиваемые приложения, хранилища данных, инде­
ксирование содержимого, программное обеспечение для доставки, высоконадежные
системы с резервированием, обработку транзакций в реальном времени (OLTP)
и многое другое.

Для того чтобы максимально эффективно использовать MySQL, нужно разобраться
в ее устройстве. Гибкость системы проявляется во многом. Например, вы можете
настроить ее для работы на различном оборудовании и поддержки разных типов
данных. Однако самой необычной и важной особенностью MySQL является такая
архитектура подсистемы хранения, в которой обработка запросов и другие серверные
задачи отделены от хранения и извлечения данных. Подобное разделение задач по­
зволяет выбирать способ хранения данных, а также настраивать производительность,
ключевые характеристики и др.

В текущей главе сделан краткий обзор архитектуры сервера MySQL, рассматрива­
ются основные различия между подсистемами хранения и говорится о том, почему

эти различия важны. В конце главы мы рассмотрим исторический контекст и пере­

числим эталонные тесты производительности (бенчмарки). Попытаемся объяснить
MySQL на примерах и максимально упрощая детали. Этот обзор будет полезен как
для новичков в работе с сервером баз данных, так и для читателей, которые являются
экспертами в работе с подобными системами.

Логическая архитектура MySQL
Чтобы хорошо понимать работу сервера, нужно иметь представление о взаимо­
действии его компонентов. На рис. 1.1 представлен логический вид архитектуры
MySQL.

Логическая архитектура MySQL 29

Клиенты

Обработка
соединений/потоков

Кэш
запросов

Синтак­
сический
анали·

затор

Оптимизатор

Подсистемы хранения

Рис. 1.1. Логический вид архитектуры сервера MySQL

На верхнем уровне располагаются службы, не являющиеся уникальными компо­
нентами MySQL. Они необходимы большинству сетевых клиент-серверных инстру­
ментов или серверов: для обслуживания соединений, аутентификации, обеспечения
безопасности и т. п.

Второй уровень намного интереснее. Здесь находится большая часть «мозгов» MySQL:
код для обработки, анализа, оптимизации и кэширования запросов, а также все встро­
енные функции (например, функции даты/времени, математические и функции шиф­
рования). Здесь также расположены все инструменты, используемые в подсистемах

хранения, например хранимые процедуры, триггеры и представления.

Третий уровень содержит подсистемы хранения данных. Они отвечают за хранение

всех данных в MySQL и их извлечение. Подобно различным файловым системам,
доступным для GNU /Linux, каждая подсистема хранения данных имеет как силь­
ные, так и слабые стороны. Сервер взаимодействует с ними через API подсистемы
хранения данных. Этот интерфейс скрывает различия между такими подсистемами

и делает их практически прозрачными на уровне запросов. API содержит пару десят­
ков низкоуровневых функций, выполняющих операции типа «начать транзакцию»

или «извлечь строку с таким первичным ключом». Подсистемы хранения не анали­

зируют запросы SQL1 и не взаимодействуют друг с другом, они просто отвечают на

исходящие от сервера запросы.

Единственным исключением является InnoDB, rде анализируются определения внешнего
ключа, поскольку сам сервер MySQL не делает этого.

30 Глава 1 • История и архитектура MySQL

Управление соединениями и их безопасность

Для каждого клиентского соединения внутри серверного процесса выделяется от­

дельный поток. Запросы соединения выполняются только внутри этого потока,

который, в свою очередь, выполняется одним ядром или процессором. Сервер кэ­

ширует потоки, поэтому их не нужно создавать или уничтожать для каждого нового

соединения 1•

Когда клиенты (приложения) подключаются к серверу MySQL, он должен их аутен­
тифицировать. Аутентификация выполняется на основе имени пользователя, адреса

хоста, с которого происходит соединение, и пароля. При соединении по протоколу

Secure Sockets l,ayer (SSL) можно использовать сертификаты Х.509. После того как
клиент подключился, сервер проверяет наличие необходимых привилегий для
каждого запроса (например, может ли клиент использовать команду SELECT приме­

нительно к таблице Country базы данных world).

Оптимизация и выполнение

MySQL анализирует запросы для создания внутренней структуры (дерева разбора),
а затем выполняет оптимизации. Это могут быть переписывание запроса, определе­

ние порядка чтения таблиц, выбор используемых индексов и т. п. Через специальные
ключевые слова в запросе вы можете передать оптимизатору подсказки и тем самым

повлиять на процесс принятия решения. Или обратиться к серверу за объяснением
различных аспектов оптимизации. Это позволит вам понять, какие решения при­

нимает сервер, и даст ориентир для изменения запросов, схем и настроек, чтобы до­
биться максимальной эффективности работы. Оптимизатор мы детально обсудим
в главе 6.

Оптимизатору неважно, в какой подсистеме хранения данных находится конкретная

таблица, но подсистема хранения данных влияет на то, как сервер оптимизирует

запрос. Оптимизатор опрашивает подсистему хранения данных о некоторых ее

возможностях, затратах на выполнение определенных операций и статистике по

содержащимся в таблицах данным. Например, отдельные подсистемы хранения
поддерживают типы индексов, которые могут быть полезны для выполнения опреде­

ленных запросов. Больше информации об индексировании и схемах оптимизации
вы сможете найти в главах 4 и 5.

Прежде чем анализировать запрос, сервер обращается к кэшу запросов, в котором мо­
гут храниться только команды SELECT вместе с наборами результатов. Если поступает
запрос, идентичный уже имеющемуся в кэше, серверу не нужно выполнять анализ,

оптимизацию или сам запрос - он может просто отправить в ответ сохраненный на­

бор результатов. Больше об этом можно узнать, прочитав главу 7.

MySQL 5.5 и более новые версии поддерживают API, который может принимать плагины
для организации пула потоков, поэтому небольшой пул потоков может обслуживать мно­

жество соединений.

Управление конкурентным доступом 31

Управление конкурентным доступом

Задача управления конкурентным доступом возникает в тот момент, когда несколь­

ким запросам необходимо одновременно изменить данные. В рамках текущей главы
оговорим, что MySQL должна решать эту задачу на двух уровнях: сервера и под­
системы хранения данных. Управление конкурентным доступом - это обширная
тема, которой посвящено множество теоретических исследований. Мы же просто

представим обзор того, что MySQL делает с конкурентными запросами на чтение
и запись, чтобы вы смогли получить общее представление об этой теме, а это, в свою
очередь, позволит разобраться в материале главы.

В качестве примера будем использовать ящик электронной почты в системе UNIX.
Классический файл формата mbox очень прост. Все сообщения в почтовом ящике
mbox расположены одно за другим, так что читать и анализировать почтовые со­
общения очень просто. Это также существенно упрощает доставку почты: достаточно
добавить новое сообщение в конец файла.

Но что происходит, когда два процесса пытаются одновременно поместить сообще­

ния в почтовый ящик? Очевидно, что чередование строк этих сообщений приведет
к повреждению файла. Чтобы предотвратить это, правильно работающие почтовые

системы используют блокировку. Если клиент пытается отправить новое сообщение
в тот момент, когда почтовый ящик заблокирован, ему придется подождать, пока он

не сможет сам использовать блокировку, чтобы отправить сообщение.

Эта схема довольно хорошо работает, но не поддерживает конкурентный доступ. По­
скольку в любой момент времени только один процесс может изменять содержимое
почтового ящика, такой подход создает проблемы при работе с большими почтовыми
ящиками.

Блокировки чтения/записи

Чтение из почтового ящика не вызывает таких проблем. Ничего страшного, если
несколько клиентов одновременно считывают информацию из одного и того же по­

чтового ящика. Раз они не вносят изменений, ничего плохого случиться не должно.

Но что произойдет, если кто-нибудь попытается удалить сообщение No 25 в тот
момент, когда программы читают письма из почтового ящика? Возможны различ­

ные варианты развития ситуации, но программа чтения может получить почтовый

ящик в поврежденном или неструктурированном виде. Поэтому для обеспечения

безопасности даже чтение информации из почтового ящика требует определенных
предосторожностей.

Если представить, что почтовый ящик - это таблица базы данных, а каждое почтовое
сообщение - строка, легко увидеть, что и в этом контексте актуальна та же проблема.
Во многих смыслах почтовый ящик является простой таблицей базы данных. Моди­
фикация строк в такой базе очень похожа на удаление или изменение содержимого
сообщений в файле почтового ящика.

32 Глава 1 • История и архитектура MySQL

У классической задачи управления конкурентным доступом довольно простое реше­

ние. В системах, которые имеют дело с конкурентным доступом для чтения/записи,

чаще всего реализуется система блокирования, сЬдержащая два типа блокировок.

Обычно их называют разделяемыми блокировками и монопольными блокировками,

или блокировками чтения и блокировками записи.

Не вдаваясь в подробности технологии блокирования, данную концепцию можно

описать следующим образом. Блокировки чтения ресурса являются разделяемыми
или взаимно неблокирующими: множество клиентов могут производить считыва­

ние из ресурса в одно и то же время, не мешая друг другу. Блокировки записи, на­

против, являются эксклюзивными. Другими словами, они исключают возможность

установки блокировки чтения и других блокировок записи, поскольку единственной
безопасной политикой является наличие только одного клиента, выполняющего
запись в данный момент времени, и предотвращение во время этого всех операций

чтения.

В базах данных блокировки происходят постоянно: MySQL запрещает одному кли­
енту считывать данные, когда другой клиент их изменяет. Управление блокировками

осуществляется внутри СУБД в соответствии с принципами, которые достаточно

прозрачны для клиентов.

Детальность блокировок

Одним из способов улучшения конкурентного доступа к разделяемому ресурсу

является увеличение избирательности блокировок. Вместо того чтобы блокиро­

вать весь ресурс, можно заблокировать только ту его часть, которая содержит из­
меняемые данные. Еще лучше заблокировать лишь тот фрагмент данных, который

будет изменен. Минимизация объема данных, которые вы блокируете в каждый
момент времени, позволяет одновременно выполнять несколько изменений одного

и того же ресурса, если эти операции не конфликтуют друг с другом.

Определенная проблема возникает из-за того, что блокировки потребляют ресурсы.

Каждая операция блокирования - получение возможности блокировки, проверка
того, можно ли применить блокировку, снятие блокировки и т. п. - влечет за собой

издержки. Если система тратит слишком много времени на управление блокиров­

ками вместо того, чтобы расходовать его на сохранение и извлечение данных, то это
может повлиять на производительность.

Стратегия блокирования является компромиссом между неизбежностью издер­

жек на реализацию блокировок и безопасностью данных, причем подобный ком­
промисс влияет на производительность. Большинство коммерческих серверов баз

данных не предоставляют особого выбора: вы получаете возможность блокировки
таблиц на уровне строки, при этом нередко в сочетании с множеством сложных

способов обеспечить хорошую производительность при большом количестве блоки­
ровок.

Управление конкурентным доступом 33

MySQL также предоставляет выбор. Подсистемы хранения данных MySQL мо­
гут реализовывать собственные стратегии блокировки и уровни детализации
блокировок. Управление блокировками является очень важным решением при

проектировании подсистем хранения данных. Установка детализации на опреде­

ленном уровне в ряде случаев может улучшить производительность, но сделать

эту подсистему менее подходящей для других целей. Поскольку MySQL пред­
лагает несколько подсистем хранения данных, нет необходимости принимать
единственное решение на все случаи жизни. Рассмотрим две наиболее важные

стратегии блокировок.

Табличные блокировки

Табличная блокировка является базовой стратегией блокировки в MySQL. Кроме
того, у нее самые низкие издержки. Табличная блокировка аналогична рассмо­

тренным ранее блокировкам почтового ящика - блокируется вся таблица. Когда
клиент хочет сделать запись в таблицу (вставку, удаление, обновление и т. п.), он

получает блокировку на запись для всей таблицы. Это предотвращает все остальные

операции чтения и записи. Когда никто не выполняет запись, любой клиент может

получить блокировку на чтение, которая не конфликтует с другими подобными

блокировками.

У табличных блокировок есть вариации для обеспечения высокой производитель­

ности в различных ситуациях. Например, табличные блокировки READ LOCAL раз­

решают выполнять некоторые типы параллельных операций записи. Кроме того,

блокировки записи имеют более высокий приоритет, чем блокировки чтения. По­

этому запрос блокировки записи будет помещен в очередь перед уже находящими­
ся там запросами блокировки чтения (блокировки записи могут отодвигать в очере­

ди блокировки чтения, а блокировки чтения не могут отодвигать блокировки
записи).

Подсистемы хранения также могут управлять собственными блокировками.

MySQL использует множество блокировок, эффективных на уровне таблиц, для раз­
личных целей. Например, для таких операторов, как AL ТЕR TABLE, сервер применяет

табличную блокировку вне зависимости от подсистемы хранения данных.

Построчные блокировки

Построчные блокировки обеспечивают лучшее управление конкурентным доступом
(и влекут максимальные издержки). Блокировка на уровне строк доступна, в частно­

сти, в подсистемах хранения InnoDB и XtгaDB. Построчные блокировки реализуются
подсистемами хранения данных, а не сервером (если нужно, еще раз взгляните на

рис. 1.1). Сервер ничего не знает о блокировках, реализованных подсистемой хране­
ния данных, и, как вы увидите далее, в.се подсистемы хранения данных реализуют

блокировки по-своему.

34 Глава 1 • Исrория и архитектура MySQL

Транзакции

До тех пор пока не познакомитесь с транзакциями, вы не сможете изучать более

сложные функции СУБД.

Транзакция представляет собой группу запросов SQL, обрабатываемых атомарно,
то есть как единое целое. Если подсистема базы данных может выполнить всю груп­
пу запросов, она делает это, но если какой-либо запрос не может быть выполнен

в результате сбоя или по иной причине, ни один запрос группы не будет выполнен.
Все или ничего.

Немногое в этом разделе характерно именно для MySQL. Если вы уже знако­
мы с транзакциями ACID, можете спокойно перейти к подразделу ~Транзакции
в MySQL~.

Банковское приложение является классическим примером, демонстрирующим

необходимость транзакций. Представьте банковскую базу данных с двумя табли­

цами: checking (текущие счета) и savings (сберегательные счета). Чтобы перевести
200 долларов с текущего счета Джейн на ее сберегательный счет, вам нужно сделать
по меньшей мере три шага.

1. Убедиться, что остаток на ее текущем счете больше 200 долларов.

2. Вычесть 200 долларов из остатка текущего счета.

3. Добавить 200 долларов к остатку сберегательного счета.

Вся операция должна быть организована как транзакция, чтобы в случае неудачи на

любом из трех этапов все выполненные ранее шаги были отменены.

Вы начинаете транзакцию командой START TRANSACТION, а затем либо сохраняете

изменения командой СОММIТ, либо отменяете их командой ROLLBACK. Код SQL для
транзакции может выглядеть следующим образом:

1 START TRANSACTION;
2 SELECT balance FROM checking WHERE customer_id = 10233276;
3 UPDATE checking SET balance = balance - 200.00 WHERE customer_id = 10233276;
4 UPDATE savings SET balance = balance + 200.00 WHERE customer_id = 10233276;
5 СОММП;

Но сами по себе транзакции - это еще не все. Что произойдет в случае сбоя сервера

базы данных во время выполнения четвертой строки? Кто знает ... Клиент, вероят­
но, потеряет 200 долларов. А если другой процесс вклинится между выполнением
строк 3 и 4 и снимет весь остаток с текущего счета? Банк предоставит клиенту кредит
200 долларов, даже не зная об этом.

Транзакций недостаточно, пока система не прошла тест ACID. Аббревиатура ACID
расшифровывается как atomicity, consistency, isolation и durabllity (атомарность, со­
гласованность, изолированность и долговечность). Это тесно связанные критерии,

Транзакции 35

которым должна соответствовать правильно функционирующая система обработки
транзакций.

Q Атомарностъ. Транзакция должна функционировать как единая неделимая ра­

бочая единица таким образом, чтобы вся она была либо выполнена, либо отменена.

Для атомарных транзакций не существует такого понятия, как частичное выпол­

нение: все или ничего.

Q Согласованность. База данных всегда должна переходить из одного согласован­

ного состояния в другое. В нашем примере согласованность гарантирует, что сбой

между строками 3 и 4 не приведет к исчезновению с текущего счета 200 долларов.
Поскольку транзакция не будет подтверждена, ни одно из изменений не отразится

в базе данных.

Q Изолированность. Результаты транзакции обычно невидимы другим транзак­

циям, пока она не подтверждена. В нашем примере это гарантирует, что, если

программа суммирования остатков на банковских счетах будет запущена после
третьей строки перед четвертой, она по-прежнему увидит 200 долларов на те­
кущем счете. Когда будем рассматривать уровни изолированности, вы поймете,

почему здесь сказано «обычно невидимы>.>.

Q Долговечность. После подтверждения внесенные в ходе транзакции изменения

становятся постоянными. Это значит, что они должны быть записаны так, чтобы

данные не потерялись при сбое системы. Долговечность, однако, является не­

сколько расплывчатой концепцией, поскольку у нее довольно много уровней.

Некоторые стратегии обеспечения долговечности дают более высокие гарантии

безопасности, чем другие, и ни одна из них не является надежной на 100 % (если
база данных долговечна сама по себе, то каким образом резервное копирование
повышает долговечность?). В последующих главах мы еще обсудим, что же на

самом деле в MySQL означает долговечность.

Транзакции ACID гарантируют, что банк не потеряет ваши деньги. Вообще очень
сложно, а то и невозможно сделать это с помощью логики приложения. Сервер базы

данных, поддерживающий ACID, должен выполнить множество сложных операций,
о которых вы, возможно, даже не подозреваете, чтобы обеспечить гарантии ACID.

Как и в случае увеличения детализации блокировок, оборотной стороной усиленной

безопасности является увеличение объема работы сервера базы. Сервер базы данных

с транзакциями ACID также требует больших мощности процессора, объема памяти
и дискового пространства, чем сервер без них. Как мы уже отмечали, это тот самый

случай, когда архитектура подсистем хранения данных MySQL является вашим со­
юзником. Вы сами можете решить, требует ли приложение использования транзак­

ций. Если они не нужны, вы можете добиться большей производительности, выбрав

для некоторых типов запросов нетранзакционную подсистему хранения данных.

С помощью команды LOCK TABLES можно установить нужный уровень защиты без

использования транзакций. Все в ваших руках.

36 Глава 1 • История и архитектура MySQL

Уровни изолированности

Изолированность - более сложное понятие, чем кажется на первый взгляд. Стан­

дарт SQL определяет четыре уровня изолированности с конкретными правилами,
устанавливающими, какие изменения видны внутри и за пределами транзакции,

а какие - нет. Более низкие уровни изолированности обычно допускают большую

степень конкурентного доступа и влекут за собой меньшие издержки.

Все подсистемы хранения данных реализуют уровни изолированности немного

по-разному, и они не всегда будут соответствовать вашим ожиданиям, если вы

привыкли к другой СУБД (здесь не будем вдаваться в подробности). Следует
ознакомиться с руководствами по тем подсистемам хранения данных, которые

вы решите использовать.

Вкратце рассмотрим четыре уровня изолированности.

О READ UNCOMMIТТED. На этом уровне изолированности транзакции могут видеть
результаты незавершенных транзакций. Вы можете столкнуться с множеством

проблем, если не знаете абсолютно точно, что делаете. Используйте этот уровень,

только если у вас есть на то веские причины. На практике этот уровень применя­

ется редко, поскольку в этом случае производительность лишь немного выше, чем

на других уровнях, имеющих множество преимуществ. Чтение незавершенных

данных называют еще черновым, или ~грязным» чтением (dirty read).

о READ CCJtlt.1IТTED. Это уровень изолированности, который устанавливается по умолча­
нию в большинстве СУБД (но не в MySQL!). Он соответствует приведенному ранее
простому определению изолированности: транзакция увидит только те изменения,

которые к моменту ее начала подтверждены другими транзакциями, а произведен­

ные ею изменения останутся невидимыми для других транзакций, пока текущая

не будет подтверждена. На этом уровне возможно так называемое неповторяющееся
чтение (nonrepeataЫe read). Это означает, что вы можете выполнить одну и ту же
команду дважды и получить разный результат.

О REPEATABLE READ. Этот уровень изолированности позволяет решить проблемы, ко­
торые возникают на уровне READ UNСОММПТЕD. Он гарантирует, что любые строки,
которые считываются транзакцией, будут выглядеть одинаково при последова­

тельных операциях чтения в пределах одной транзакции, однако теоретически

на этом уровне возможна другая проблема, которая называется фантомным

чтением (phantom reads). Проще говоря, фантомное чтение может произойти
в случае, если вы выбираете некоторый диапазон строк, затем другая транзакция
вставляет в него новую строку, после чего вы снова выбираете тот же диапазон.
В результате вы увидите новую, фантомную строку. InnoDB и XtraDB решают
проблему фантомного чтения с помощью многоверсионного управления конку­

рентным доступом (multiversion concurrency control), о котором мы расскажем
далее в этой главе.

Транзакции 37

Уровень изолированности REPEATABLE READ устанавливается в MySQL по умол­
чанию.

О SERIALIZABLE. Самый высокий уровень изолированности, который решает про­
блему фантомного чтения, заставляя транзакции выполняться в таком порядке,

чтобы исключить возможность конфликта. Если коротко, уровень SERIALIZABLE

блокирует каждую читаемую строку. На этом уровне может возникать множество
задержек и конфликтов блокировок. Нам редко встречались люди, использующие

этот уровень, но потребности вашего приложения могут заставить применять

его, смирившись с меньшей степенью конкурентного доступа, но обеспечивая
стабильность данных.

В табл. 1.1 приведена сводка различных уровней изолированности и указаны недо­
статки, присущие каждому из них.

Таблица 1.1. Уровни изолированности ANSI SQL

Уровень изоляции Возможность Возможность Возможность Бпокировка
чернового неповторяющегося фантомного чтения

чтения чтения чтения

READ UNCOMMIТТED Да Да Да Нет

READ COMMIТTED Нет Да Да Нет

REPEAT ABLE READ Нет Нет Да Нет

SERIALIZABLE Нет Нет Нет Да

Взаимоблокировки

Взаимоблокировка возникает тогда, когда две и более транзакции взаимно удержи­

вают и запрашивают блокировку одних и тех же ресурсов, создавая циклическую за­
висимость. Такие состояния наблюдаются и в том случае, если транзакции пытаются

заблокировать ресурсы в разном порядке. Они могут возникнуть, когда несколько

транзакций блокируют одни и те же ресурсы. Для примера рассмотрим две транзак­

ции, обращающиеся к таблице StockPrice:

Транзакция № 1

START TRANSACTION;
UPDATE StockPrice SET close = 45.50 WHERE stock_id = 4 and date = '2002-05-01';
UPDATE StockPrice SET close = 19.80 WHERE stock_id = 3 and date = '2002-05-02';
соммп;

Транзакция № 2

START TRANSACTION;
UPDATE StockPrice SET high = 20.12 WHERE stock_id = 3 and date = '2002-05-02';
UPDATE StockPrice SET high = 47.20 WHERE stock_id = 4 and date = '2002-05-01';
СОММП;

38 Глава 1 • История и архитектура MySQL

Если вам не повезет, то каждая транзакция выполнит свой первый запрос и обновит

строку данных, заблокировав ее. Затем все транзакции попытаются обновить вторую
строку, но обнаружат, что та уже заблокирована. В итоге каждая транзакция будет до

бесконечности ожидать окончания другой, пока не произойдет вмешательство извне,

которое снимет взаимоблокировку.

Для борьбы с этой проблемой в СУБД реализованы различные формы обнаружения

взаимоблокировок и тайм-аугов. Более совершенные подсистемы хранения данных,

такие как InnoDB, легко обнаруживают циклические зависимости и немедленно
возвращают ошибку. Это очень хорошо, иначе взаимоблокировки проявлялись бы

в виде очень медленных запросов. Другие системы откатывают транзакцию по ис­

течении тайм-аута, что не очень хорошо. InnoDB обрабатывает взаимоблокировки
откатом той транзакции, которая захватила меньше всего монопольных блокировок

строк (приблизительный показатель легкости отката).

Поведение и порядок блокировок зависят от подсистемы хранения данных, так что

в одних подсистемах при определенной последовательности команд могут происхо­

дить взаимоблокировки, а в других - нет. Взаимоблокировки имеют двойственную

природу: некоторые неизбежны из-за конфликта данных, другие вызваны схемой

работы конкретной подсистемы хранения.

Нельзя справиться с взаимоблокировками без отката одной из транзакций, частич­

ного либо полного. Такова суровая правда жизни в транзакционных системах, и это

надо учитывать при проектировании приложений. Многие приложения могуг просто

попытаться выполнить транзакцию с самого начала.

Ведение журнала транзакций

Ведение журнала помогает сделать транзакции более эффективными. Вместо обнов­

ления таблиц на диске после каждого изменения подсистема хранения данных

может изменить находящуюся в памяти копию данных. Это происходит очень

быстро. Затем подсистема хранения запишет сведения об изменениях в журнал
транзакции, который хранится на диске и поэтому долговечен. Это тоже доволь­

но быстрая операция, поскольку добавление событий в журнал сводится к опе­

рации последовательного ввода/вывода в пределах ограниченной области диска

вместо случайного ввода/вывода в разных местах. Позже процесс обновит табли­

цу на диске. Таким образом, большинство подсистем хранения данных, которые

используют этот метод (упреждающую запись в журнал), дважды сохраняют из­

менения на диске.

Если сбой произойдет после внесения записи в журнал транзакции, но до обнов­

ления самих данных, подсистема хранения может восстановить изменения после

перезагрузки сервера. Методы восстановления у каждой подсистемы хранения

данных различны.

Транзакции 39

Транзакции с MySQL

MySQL предоставляет пользователям две транзакционные подсистемы хранения
данных: InnoDB и NDB Cluster. Существует также несколько Подсистем сторонних
разработчиков. Наиболее известны сейчас XtraDB и РВХТ. В следующем разделе
мы обсудим некоторые свойства каждой из них.

АUТОСОММIТ

По умолчанию MySQL работает в режиме АUТОСОММП. Это означает, что, пока вы
не начали транзакцию явно, каждый запрос автоматически выполняется в отдельной

транзакции. Вы можете установить или отключить режим АUТОСОММП для текущего

соединения, задав значение переменной:

mysql> SНOW VARIABLES LIKE 'AUTOCOМMIT';

+---------------+-------+
1 VariaЫe_name 1 Value 1

+---------------+-------+
1 autocommit 1 ON
+---------------+-------+
1 row in set (0.00 sec)
mysql> SET AUTOCOМMIT = 1;

Значения 1 и ON эквивалентны, так же как 0 и OFF. После отправки запроса в режиме

АUТОСОММП=0 вы оказываетесь в транзакции, пока не выполните команду СОММП или

ROLLBACK. После этого MySQL немедленно начинает новую транзакцию. Изменение
значения переменной АUТОСОММП не влияет на нетранзакционные таблицы, такие
как MyISAM или Memory, которые не имеют понятия о подтверждении или отмене

транзакций.

Некоторые команды, будучи запущенными во время начатой транзакции, застав­
ляют MySQL подтвердить транзакцию до их выполнения. Обычно это команды
языка определения данных (Data Definition Language, DDL), которые вносят
изменения в структуру таблиц, например AL ТЕR TABLE, но LOCK TABLES и другие
директивы также обладают этим свойством. В документации к своей версии
MySQL вы можете найти полный список команд, автоматически фиксирующих
транзакцию.

MySQL позволяет устанавливать уровень изолированности с помощью команды SЕТ
TRANSACТION ISOLAТION LEVEL, которая начинает действовать со следующей транзак­

ции. Можете настроить уровень изолированности для всего сервера в конфигураци­

онном файле или только для своей сессии:

mysql> SET SESSION TRANSACTION ISOLATION LEVEL READ СОММIТТЕD;

MySQL распознает все четыре стандартных уровня изоляции ANSI, а InnoDB все
их поддерживает.

40 Глава 1 • История и архитектура MySQL

Использование нескольких подсистем

хранения данных в транзакциях

MySQL не управляет транзакциями на уровне сервера. Вместо этого подсистемы хра­
нения данных реализуют транзакции самостоятельно. Это означает, что вы не можете

надежно сочетать различные подсистемы в одной транзакции.

Если вы используете транзакционные и нетранзакционные таблицы (например, та­
блицы InnoDB и MyISAM) в одной транзакции, то все будет работать хорошо, пока
не произойдет что-то неожиданное.

Однако если потребуется выполнить откат, то невозможно будет отменить измене­
ния, внесенные в нетранзакционную таблицу. Из-за этого база данных становится
несогласованной, и восстановить ее после такого события нелегко, что ставит под
сомнение идею транзакций в целом. Вот почему так важно выбирать для каждой
таблицы подходящую подсистему хранения.

MySQL обычно не предупреждает и не выдает сообщений об ошибках, если вы вы­
полняете транзакционные операции над нетранзакционной таблицей. Иногда при
откате транзакции может быть сгенерировано предупреждение Some nontransactional
changed taЫes couldn't Ье rolled Ьасk (Откат некоторых измененных нетранзакционных
таблиц невозможен), но большую часть времени вы не будете знать о том, что рабо­
таете с нетранзакционными таблицами.

Явные и неявные блокировки

В подсистеме хранения InnoDB применяется двухфазный протокол блокировки. Она
может устанавливать блокировки в любой момент транзакции, но не снимает их до
выполнения команд СОfо\ЧIТ или ROLLBACK. Все блокировки снимаются одновременно.
Ранее описанные механизмы блокировки являются неявными. InnoDB обрабатывает
блокировки автоматически в соответствии с вашим уровнем изоляции.

Однако InnoDB поддерживает и явную блокировку, которая в стандарте SQL вообще
не упоминается 1 :

О SELECТ ••• LOCK IN SHARE MODE;

О SELECT ••• FOR UPDAТE.

MySQL также поддерживает команды LOCK TABLES и UNLOCK TABLES, которые реали­

зуются на сервере, а не в подсистеме хранения. Они применяются в определенных

случаях, но не служат заменой транзакциям. Если вам нужны транзакции, исполь­

зуйте транзакционную подсистему хранения.

Нам часто попадаются приложения, которые были перенесены из MyISAM в InnoDB,
но в которых по-прежнему используется команда LOCK TABLES. В этой команде боль-

Блокирующими подсказками зачастую злоупотребляют, поэтому их стоит избегать. Под­
робнее об этом говорится в главе 6.

Управление конкурентным доступом с помощью многоверсионности 41

ше нет необходимости, так как применяются построчные блокировки, а проблемы
с производительностью она может вызывать серьезные.

Команда LOCK TABLES плохо взаимодействует с транзакциями, и в некоторых
версиях сервера и те и другие ведут себя непредсказуемо. Поэтому мы
рекомендуем применять команду LOCK TABLES только в рамках транзакции
с режимом AUTOCOMMIТ независимо от того, какой подсистемой хранения вы
пользуетесь.

Управление конкурентным доступом
с помощью многоверсионности

Большинство транзакционных подсистем хранения в MySQL не используют про­
стой механизм построчной блокировки. Они применяют построчную блокировку
в сочетании с методикой увеличения конкурентности, известной как управление

конкурентным доступом с помощью многоверсионности (multiversion concurrency
control, MVCC). Нельзя сказать, что методика MVCC присуща исключительно
MySQL - она используется также в Oracle, PostgreSQL и некоторых других
СУБД, хотя из-за отсутствия стандарта возможны существенные различия в их

работе.

Вы можете воспринимать MVCC как вариацию построчной блокировки. Во многих
случаях оно позволяет обойтись без блокировки и существенно снизить издержки.
В зависимости от способа реализации MVCC может допускать чтение без блокиров­
ки, блокируя только необходимые строки во время операций записи.

MVCC сохраняет мгновенный снимок состояния данных в определенный момент
времени. Это означает, что транзакции вне зависимости от их длительности могут

видеть согласованные данные. А также что различные транзакции могут видеть

разные данные в одних и тех же таблицах в одно и то же время! Если вы никогда
не сталкивались с этим раньше, то можете сильно удивиться, но по мере знакомства

с этой технологией все становится понятнее.

Каждая подсистема хранения реализует MVCC по-своему. В некоторых вариантах
применяется оптимистическое и пессимистическое управление конкурентным досту­

пом. Мы проиллюстрируем один из способов работы MVCC, объяснив упрощенную
версию поведения InnoDB.

InnoDB реализует MVCC, сохраняя вместе с каждой строкой два скрытых значе­
ния, которые показывают, когда строка была создана и когда истек срок ее хранения
(или она была удалена). Вместо хранения фактического момента времени, когда
произошли данные события, строка хранит номер версии системы для этого мо­
мента. В начале каждой транзакции этот номер увеличивается на единицу. Каждая

транзакция хранит собственную запись текущей версии системы на момент своего
начала. Каждый запрос должен сравнивать номера версий каждой строки с версией

42 Глава 1 • История и архитектура MySQL

транзакции. Посмотрим, как эта методика применяется к конкретным операциям,

когда транзакция имеет уровень изоляции REPEATABLE READ.

о SELECT. InnoDB должна проверить каждую строку на соответствие двум критериям.

• Найти версию строки, по крайней мере такой же старой, как версия транзакции

(то есть ее номер версии должен быть меньше номера версии транзакции или
равен ему). Это гарантирует, что либо строка существовала до начала транзак­

ции, либо транзакция создала или изменила эту строку.

• Версия удаления строки должна быть не определена, или ее значение должно
быть больше, чем версия транзакции. Это гарантирует, что строка не была

удалена до начала транзакции.

Строки, прошедшие обе проверки, могут быть возвращены в качестве результата
запроса.

о INSERT. InnoDB записывает текущий номер версии системы вместе с новой
строкой.

о DELEТE. InnoDB записывает текущий номер версии системы как ID удаления строки.

О UPDATE. InnoDB записывает новую копию строки, используя номер версии систе­
мы в качестве версии новой строки. Она также записывает номер версии системы

как версию удаления старой строки.

Благодаря хранению дополнительных записей большинство запросов на чтение нико­
гда не будут ставить блокировки. Они просто как можно быстрее считывают данные,
выбирая только те строки, которые удовлетворяют заданному критерию. Недостатком
такого подхода является то, что подсистема хранения должна записывать для каждой

строки дополнительные данные, выполнять лишнюю работу при проверке строк
и производить некоторые дополнительные служебные операции.

МУСС работает только на уровнях изолированности REPEATABLE READ и READ СОММIТТЕD.
Уровень READ UNСОММПТЕD несовместим с МУСС\ поскольку запросы не считывают
версию строки, соответствующую их версии транзакции. Несмотря ни на что они

читают самую последнюю версию. Уровень SERIALIZABLE несовместим с МУСС, по­

скольку операции чтения блокируют каждую возвращаемую строку.

Подсистемы хранения в MySQL
В этом разделе представлен обзор подсистем хранения MySQL. Мы не будем
вдаваться в подробности, поскольку планируем обсуждать подсистемы хранения
и особенности их работы на протяжении всей книги. Однако учитывайте, что это

издание не является исчерпывающим источником информации. Вам следует изучить

документацию MySQL к выбранной подсистеме хранения.

Официального стандарта, определяющего МУСС, не существует, поэтому разные подси­

стемы хранения и СУБД реализуют его по-разному, и нельзя сказать, что какой-то вариант

является ошибочным.

Подсисгемы хранения в MySQL 43

MySQL хранит каждую базу данных (также именуемую схемой) как подкаталог сво­
его каталога данных в файловой системе. Когда вы создаете таблицу, MySQL сохра­
няет ее определение в файле с расширением . frm и именем, совпадающим с именем
таблицы. Таким образом, при создании таблицы с именем МуТаЫе ее определение
сохраняется в файле МуТаЫе. frm. Поскольку MySQL использует файловую систему
для хранения имен баз данных и определений таблиц, чувствительность к регистру
символов зависит от платформы. В MySQL для Windows имена таблиц и баз данных
нечувствительны к регистру, а в операционных системах семейства UNIX - чувстви­

тельны. Каждая подсистема хранения по-разному записывает табличные данные
и индексы, но сервер сам обрабатывает определение таблицы.

Для получения информации о таблицах можете использовать команду SHOW TABLE
STATUS (или, начиная с версии MySQL 5.0, сделать запрос таблиц INFORMAТION_
SCHEMA). Например, чтобы получить информацию о таблице user, содержащейся
в базе данных mysql, выполните следующую команду:

mysql> SHOW ТАВLЕ STATUS LIKE 'user' \G
*************************** 1. row ***************************

Name: user
Engine: MyISAМ

Row_format: Dynamic
Rows: 6

Avg_row_length: 59
Data_length: 356

Max_data_length: 4294967295
Index_length: 2048

Data_free: 0
Auto_increment: NULL

Create_time: 2002-01-24 18:07:17
Update_time: 2002-01-24 21:56:29
Check_time: NULL
Collation: utf8_bin
Checksum: NULL

Create_options:
Comment: Users and global privileges

1 row in set (0.00 sec)

Как видите, это таблица типа MyISAM. Команда выдала также много дополнитель­
ной информации и статистики. Давайте вкратце рассмотрим, что означает каждая

строка:

О Name - имя таблицы;

О Engine - подсистема хранения. В старых версиях MySQL этот столбец назывался
Туре, а не Engine;

О Row_format - формат строки. Для таблицы MyISAM он может иметь значение
Dynamic, Fixed или Compressed. Длина динамических строк может меняться, по­
скольку они содержат поля переменной длины типа VARCHAR или BLOB. Фиксиро­
ванные строки имеют один и тот же размер и состоят из полей постоянной длины,

таких как CHAR и INTEGER. Сжатые строки существуют только в сжатых таблицах
(см. далее подраздел «Сжатые таблицы MyISAM»);

44 Глава 1 • История и архитектура MySQL

О Rows - количество строк в таблице. Для таблиц MyISAM и большинства других под-
систем хранения это число всегда точное, для InnoDB - обычно приблизительное;

О Avg_row_length - количество байтов (в среднем), содержащееся в каждой строке;

О Data_length - объем данных (в байтах) во всей таблице;

о Max_data_length - максимальный объем данных, который может хранить эта

таблица (зависит от подсистемы хранения);

О Index_length - объем дискового пространства, занятый индексными данными;

О Data_free - для таблицы MyISAM показывает объем выделенного пространства,
которое в данный момент не используется. Это пространство служит для хранения

ранее удаленных строк и может быть задействовано в будущем при выполнении

команд INSERT;

О Auto_increment - следующее значение атрибута AUTO_INCREMENT;

о Create_time - момент создания таблицы;

О Update_time - время последнего изменения таблицы;

о Check_time - время последней проверки таблицы командой СНЕСК TABLE или

утилитой myisamchk;

О Collation - устанавливаемая по умолчанию кодировка и схема упорядочения

для символьных столбцов в этой таблице;

О Checksum - текущая контрольная сумма содержимого всей таблицы, если ее мож­

но определить;

О Create_options - любые другие параметры, которые были указаны при создании

таблицы;

О Comment - это поле содержит различную дополнительную информацию. Для таблиц

MyISAM в нем хранятся комментарии, добавленные при их создании. Если табли­
ца использует подсистему хранения InnoDB, здесь указан объем свободного места
в табличном пространстве. Для представлений комментарий содержит текст VIEW.

Подсистема хранения InnoDB
InnoDB является транзакционной подсистемой хранения по умолчанию в MySQL,
а также наиболее значимой и широко используемой подсистемой хранения в целом.

Она была создана для обработки большого количества краткосрочных транзакций,

которые выполняются благополучно намного чаще, чем откатываются. Высокая про­

изводительность и автоматическое восстановление после сбоя делают ее популярной

и для нетранзакционных целей. Вам следует применять !ппоDВ для своих таблиц,

пока не возникнет необходимость использовать другую подсистему хранения. Если

вы хотите изучить подсистемы хранения, не стоит рассматривать их все слишком

подробно, но обязательно потратьте время на глубокое ознакомление с InnoDB,
чтобы узнать о ней как можно больше.

Подсистемы хранения в MySQL 45

История InnoDB

История релизов InnoDB довольно сильно запутана, но очень помогает разо­
браться в этой подсистеме хранения данных. В 2008 году для версии MySQL 5.1
был выпущен так называемый плагин InnoDB. Это было следующее поколение
InnoDB, созданное компанией Oracle, которой в то время принадлежала lnnoDB,
но не MySQL. По разным причинам, которые лучше обсуждать за кружкой пива,
MySQL продолжала поставлять более старую версию InnoDB, скомпилированную
на сервер. Но вы могли по собственному желанию отключить ее и установить

новый, более эффективный и лучше масштабируемый плагин InnoDB. В конце
концов компания Oracle приобрела компанию Sun Microsystems и, следовательно,
СУБД MySQL и удалила старую кодовую базу, заменив ее «плагином» по умолча­
нию в версии MySQL 5.5. (Да, это означает, что теперь «плагин» фактически
скомпилирован, а не установлен как плагин. Старая терминология изживается

с трудом.)

Современная версия InnoDB, представленная в качестве плагина InnoDB в MySQL 5.1,
обеспечивает новый функционал, например построение индексов путем сортировки,
возможность удаления и добавления индексов без перестройки всей таблицы, новый

формат хранения данных, который предполагает сжатие, новый способ хранения

больших объемов данных, таких как столбцы BLOB, и управления форматом файлов.
Многие люди, которые работают с MySQL 5.1, не применяют этот плагин, чаще всего
потому, что не подозревают о нем. Если вы используете MySQL 5.1, убедитесь, по­
жалуйста, в том, что применяете плагин InnoDB. Он намного лучше более ранней
версии InnoDB.

InnoDB настолько важна, что в ее разработку внесли свой вклад не только коман­
да Oracle, но и многие другие люди и компании, в частности Ясуфуми Киносита
(Yasufumi Кinoshita), а также компании Google, Percona и Facebook. Некоторые из
внесенных ими усовершенствований были включены в официальный исходный код

InnoDB, многие другие были немного переработаны командой InnoDB и затем вне­
дрены. В целом развитие InnoDB значительно ускорилось за последние несколько
лет, улучшения коснулись инструментария, масштабируемости, способности к из­

менению конфигурации, производительности, функций и поддержки для Windows
и прочих важных вещей. Лабораторные превью и релизы ключевых изменений, вно­

симых в версию MySQL 5.6, также представляют множество замечательных новых
функций InnoDB.

Oracle инвестирует колоссальные ресурсы и проделывает огромную работу для
улучшения производительности InnoDB (и здесь очень полезным оказывается
вклад, который вносят внешние разработчики). Во втором издании этой книги мы

отмечали, что InnoDB выглядела довольно жалко, работая на основе четырехпро­
цессорных ядер. Теперь она хорошо масштабируется до 24 ядер процессора, а воз­
можно, и до 32 или даже большего количества в зависимости от сценария.

46 Глава 1 • История и архитектура MySQL

Обзор InnoDB

InnoDB сохраняет данные в одном или нескольких файлах данных, которые называ­
ются табличным пространством (taЫespace). Табличное пространство, в сущности,
является черным ящиком, которым управляет сама InnoDB. В MySQL 4.1 и более
поздних версиях InnoDB может хранить данные и индексы каждой таблицы в от­
дельных файлах. Кроме того, она может располагать табличные пространства в «сы­
рых» (неформатированных) разделах диска. Но современные файловые системы
делают эту возможность бессмысленной.

InnoDB использует MVCC для обеспечения высокой степени конкурентности и реа­
лизует все четыре стандартных уровня изолированности SQL. Уровнем изоляции
по умолчанию является REPEATABLE READ, а стратегия блокировки следующего к.люча
предотвращает фантомные чтения на этом уровне: вместо того чтобы блокировать
только строки, затронутые в запросе, InnoDB блокирует пропуски в структуре ин­
декса, предотвращая вставку фантомных строк.

Таблицы InnoDB строятся на к.ластеризованных индексах, которые мы детально рас­
смотрим в следующих главах. Структуры индексов в InnoDB значительно отлича­
ются от используемых в других подсистемах хранения. В результате эта подсистема
обеспечивает более быстрый поиск по первичному ключу. Однако вторичные индексы
(индексы, не являющиеся первичным ключом) содержат все столбцы первичного
ключа, так что если первичный ключ большой, то все прочие индексы тоже будут
большими. Если в таблице планируется много индексов, нужно стремиться к тому,
чтобы первичный ключ был небольшим. Формат хранения данных не зависит от
платформы. Это означает, что вы можете без проблем скопировать файлы данных
и индексов с сервера Intel на PowerPC или Sun SPARCI.

InnoDB поддерживает множество внутренних оптимизаций. В их число входят
прогнозное упреждающее чтение для предварительной выборки данных с диска,
адаптивный хеш-индекс, который автоматически выстраивает хеш-индексы в памяти

для обеспечения очень быстрого поиска, и буфер вставок для ускорения операций
вставки. Мы еще рассмотрим эти вопросы.

Подсистема InnoDB очень сложна, и если вы ее используете, то мы настоятельно ре­
комендуем вам прочитать раздел «lnnoDB Transaction Model and Locking» («Транз­
акционная модель и блокировки в InnoDB») руководства по MySQL. Из-за наличия
архитектуры MVCC в работе подсистемы InnoDB есть много тонкостей, о которых
вы должны узнать прежде, чем создавать приложения. Работа с подсистемой хране­
ния, поддерживающей согласованные представления данных для всех пользователей,
даже когда некоторые пользователи меняют данные, может быть сложной.

В качестве транзакционной подсистемы хранения InnoDB поддерживает горячее
онлайновое резервное копирование (см. главу 15) с помощью различных меха­
низмов, включая запатентованную Oracle Enterprise Backup и Percona XtraBackup
с открытым исходным кодом. В других подсистемах хранения MySQL нет горячих
резервных копий - чтобы получить согласованную резервную копию, вам необхо­
димо остановить все процессы записи в таблицу, которые при смешанной рабочей
нагрузке на чтение и запись обычно заканчиваются также остановкой чтения.

Подсистемы хранения в MySQL 47

Подсистема хранения MyISAM
Будучи подсистемой хранения по умолчанию в MySQL 5.1 и более ранних верси­
ях, MylSAM предоставляет большой список функций, таких-как полнотекстовое
индексирование, сжатие и пространственные функции (для геоинформационных

систем, ГИС). MyISAM не поддерживает транзакции или построчные блокировки.
Ее самым слабым местом, несомненно, является то, что она не имеет даже удаленного
механизма защиты от сбоев. Из-за подсистемы MyISAM MySQL до сих пор имеет
репутацию СУБД без транзакций, хотя позволяет использовать транзакции уже бо­
лее десяти лет! Тем не менее MyISAM не так уж плоха для нетранзакционной, не от­
казоустойчивой подсистемы хранения. Если вам нужны данные только для чтения

или если ваши таблицы невелики и их восстановление не будет чересчур сложным,
то не должно возникнуть вопросов по использованию MyISAM. (Но, пожалуйста,
не применяйте ее по умолчанию. Вместо этого задействуйте InnoDB.)

Хранение

MyISAM обычно хранит каждую таблицу в двух файлах - в файле данных и ин­
дексном файле. Эти файлы имеют расширения . МУD и . МУI соответственно. Таблицы
типа MyISAM могут содержать как динамические, так и статические строки (строки
фиксированной длины). MySQL решает, какой формат использовать, основываясь
на определении таблицы. Количество строк в таблице типа MyISAM ограничено
в первую очередь доступным дисковым пространством на сервере базы данных и мак­
симальным размером файла, допустимым в операционной системе.

Таблицы MyISAM со строками переменной длины, создаваемые в версии MySQL 5.0,
по умолчанию настроены на поддержку 256 Тбайт данных с использованием шести­
байтных указателей на записи с данными. В более ранних версиях MySQL указатели
по умолчанию были четырехбайтными с максимальным объемом данных 4 Гбайт.
Все версии MySQL могут поддерживать размер указателя до 8 байт. Чтобы изме­
нить размер указателя в таблице MyISAM (уменьшить или увеличить), вы должны
изменить таблицу и задать новые значения параметров МAX_ROWS и AVG_ROW_LENGTH,
которые дают приблизительную оценку необходимого пространства. Это приведет
к перезаписи таблицы и всех ее индексов, что может занять много времени.

Особенности MyISAM

Как одна из самых старых подсистем хранения MySQL, MyISAM может выполнять
много функций, которые за годы использования СУБД были разработаны для ре­
шения различных задач.

1:1 Блокирование и конкурентный доступ. MyISAM может блокировать только
таблицы целиком, не построчно. Запросы на чтение получают разделяемые (на
чтение) блокировки всех таблиц, которые им нужно прочитать. Запросы на за­
пись получают монопольные (на запись) блокировки. Однако вы можете встав­

лять новые строки в таблицу в то время, когда исполняются запросы на выборку
данных из таблицы (конкурентные вставки).

48 Глава 1 • История и архитектура MySQL

О Исправление данных. MySQL поддерживает ручные и автоматические проверку
и исправление таблиц типа MyISAM, но не стоит путать эти функции с транзак­
циями или аварийным восстановлением. После исправления таблицы вы, скорее

всего, обнаружите, что некоторые данные просто исчезли. К тому же исправление
работает очень медленно. Вы можете применять команды СНЕСК TABLE mytaЫe
и REPAIR TABLE mytaЫe для проверки таблицы на предмет наличия ошибок и их
устранения. А также использовать командную утилиту myisamchk для проверки
и исправления таблиц, когда сервер находится в автономном (offline) режиме.

О Особенности индексирования. Вы можете создавать индексы по первым 500 сим­
волам столбцов типа BLOB и ТЕХТ в таблицах MyISAM. MyISAM поддерживает
полнотекстовые индексы, которые индексируют отдельные слова для сложных

операций поиска. Дополнительную информацию об индексировании можно
найти в главе 5.

О Отложенная запись ключей. Таблицы MyISAM, созданные с пометкой DELAY_KEY_
WRIТE, не записывают измененные индексы на диск в конце запроса. Вместо этого

MylSAM сохраняет изменения в буфере памяти для ключей. Сброс индексных
блоков на диск происходит при переполнении буфера или закрытии таблицы. Это
позволяет увеличить производительность, но в случае сбоя сервера или системы
индексы наверняка будут повреждены и потребуют восстановления. Вы можете на­
строить отложенную запись ключей как для всей базы, так и для отдельных таблиц.

Сжатые таблицы MyISAM

Некоторые таблицы после создания и заполнения данными никогда больше не из­
меняются. Такие таблицы хорошо подходят для сжатия средствами MyISAM.

Для сжатия (или упаковки) таблиц существует специальная утилита myisampack.
Сжатые таблицы невозможно изменить (хотя при необходимости можно распако­
вать их, внести изменения и снова сжать), но они занимают на диске гораздо меньше

места, чем неупакованные. В результате их использования увеличивается произво­

дительность, поскольку из-за небольшого размера таких таблиц требуется меньше
операций поиска на диске для нахождения требуемых записей. Сжатые таблицы
MyISAM могут иметь индексы, но они также доступны только для чтения.

Издержки на распаковку данных для чтения незначительны для большинства при­
ложений, установленных на современном оборудовании, а значительная экономия
достигается из-за сокращения операций ввода/вывода. Строки сжимаются по от­

дельности, поэтому для получения одной строки MySQL не нужно распаковывать
всю таблицу (или даже страницу).

Производительность MyISAM

Благодаря компактному хранению данных и невысоким издержкам, обусловленным

простотой архитектуры, MyISAM в некоторых случаях может обеспечить хорошую
производительность. У нее есть серьезные ограничения по масштабируемости,
включая мьютексы, установленные на ключевых кэшах. MariaDB предлагает сег-

Подсистемы хранения в MySQL 49

ментированный кэш-ключ, который позволяет избежать этой проблемы. Однако
наиболее распространенной проблемой MyISAM, мешающей добиться высокой про­
изводительности, является блокировка таблиц. Если запросы застревают в статусе

~заблокировано~. вы страдаете от блокировки на уровне таблицы.

Другие всrроенные подсисrемы хранения данных MySQL
MySQL предоставляет множество специализированных подсистем хранения. По
разным причинам большинство из них несколько устарели для новых версий. Не­
которые же по-прежнему доступны на сервере, но требуют специальной активации.

Archive

Подсистема хранения Archive позволяет выполнять только команды INSERT и SELECT,
к тому же до версии MySQL 5.1 она не поддерживала индексирование. Archive требу­
ет значительно меньше операций дискового ввода/вывода, чем MyISAM, поскольку
буферизует записываемые данные и сжимает все вставляемые строки с помощью би­
блиотеки zlib. Кроме того, каждый запрос SE LЕСТ требует полного просмотра таблицы.
Таблицы Archive идеальны для ведения журнала и сбора данных, когда анализ чаще
всего сводится к просмотру всей таблицы или когда требуется обеспечить быстроту
выполнения запросов INSERT.

Подсистема Archive поддерживает построчную блокировку и специальную буферную
систему для вставки с высокой степенью конкурентности. Она обеспечивает согла­
сованное чтение, останавливая выполнение команды SELECT после извлечения того
количества строк, которое было в таблице к началу выполнения запроса. Она также
обеспечивает невидимость результатов пакетной вставки до завершения процедуры.
Эти особенности эмулируют некоторые виды поведения транзакций и МУСС, но

Archive не является транзакционной подсистемой хранения. Она лишь оптимизиро­
вана для высокоскоростной вставки и хранения данных в сжатом виде.

Blackhole

В подсистеме Blackhole механизма хранения данных вообще нет. Она иrnорирует коман­
ды INSERT, а не хранит их. Однако сервер записывает запросы к таблицам Blackhole
в журналы как обычно, поэтому их можно реплицировать на подчиненные серверы или
просто сохранить в журнале. Это делает подсистему Blackhole полезной для настройки
предполагаемых репликаций и ведения журнала аудита, но мы видели много проблем,
вызванных такими настройками, и не рекомендуем применять этот способ.

csv
Подсистема хранения CSV может обрабатывать файлы с разделителями запятыми
(comma-separated values, CSV) как таблицы, но не поддерживает индексы по ним.
Эта подсистема позволяет импортировать и экспортировать данные во время работы

50 Глава 1 • История и архитектура MySQL

сервера. Если вы экспортируете СSV-файл из электронной таблицы и сохраните
в каталоге данных сервера MySQL, то сервер сможет сразу его прочитать. Анало­
гично, если вы записываете данные в таблицу CSV, внешняя программа сможет
сразу же ее прочесть. Таким образом, таблицы CSV полезны в качестве формата
обмена данными.

Federated

Эта подсистема хранения является своего рода прокси-сервером для других серверов.

Она открывает клиентское соединение с другим сервером и выполняет там запро­

сы к таблице, получая и отправляя строки по мере необходимости. Первоначально
она продавалась в качестве конкурента для функций, поддерживаемых многими

частными серверами баз данных корпоративного уровня, такими как Microsoft SQL
Server и Oracle, но это было, мягко говоря, притянуто за уши. Подсистема хранения
Federated выглядит способной обеспечивать высокую степень гибкости, однако она
является источником многих проблем и по умолчанию отключена. Ее преемница
FederatedX доступна в MariaDB.

Memory

Таблицы типа Memory (раньше называвшиеся таблицами типа НЕАР) удобно ис­
пользовать, когда необходимо получить быстрый доступ к данным, которые либо
никогда не изменяются, либо не должны сохраняться после перезапуска сервера.
Таблицы типа Memory обрабатываются на порядок быстрее, чем таблицы MyISAM.
Все содержащиеся в них данные хранятся в памяти, поэтому запросам не нужно

ждать выполнения операций дискового ввода/вывода. Структура таблицы Memory
сохраняется после перезагрузки сервера, но данные теряются.

Вот несколько способов применения таблиц типа Memory:

D в качестве справочных таблиц или таблиц соответствия, таких как таблица, в ко-
торой почтовым индексам соответствуют названия регионов;

D для кэширования результатов периодического агрегирования данных;

D для получения промежуточных результатов при анализе данных.

Таблицы Memory поддерживают НАSН-индексы, которые обеспечивают очень высо­
кую скорость выполнения поисковых запросов. Эти таблицы работают очень быстро,
но не всегда подходят для замены дисковых таблиц. Они используют табличную

блокировку, что уменьшает конкуренцию при записи. Они не поддерживают столбцы
типа ТЕХТ и BLOB и допускают использование только строк фиксированной длины,

поэтому значения типа VARCHAR сохраняются как значения типа CHAR, что увеличивает
расход памяти. (Некоторые из этих ограничений сняты в Percona Server.)

MySQL использует подсистему Memory для внутреннего хранения промежуточных
результатов при обработке запросов, которым требуется временная таблица. Если
промежуточный результат становится слишком большим для таблицы Memory или

Подсистемы хранения в MySQL 51

содержит столбцы типа ТЕХТ или BLOB, то MySQL преобразует его в таблицу MyISAM
на диске. В следующих главах мы обсудим это подробнее.

Merge

Многие путают таблицы типа Memory с временными таблицами, которые
создаются командой CREATE TEMPORARY TABLE. Временные таблицы могут
использовать любую подсистему хранения. Это не то же самое, что таблицы
типа Memory. Временные таблицы видны только в одном соединении и исчезают,
когда оно закрывается.

Подсистема хранения Merge является вариацией подсистемы MyISAM. Таблица
типа Merge представляет собой виртуальную таблицу, состоящую из несколь­
ких одинаковых по структуре таблиц MyISAM. Это может быть полезно, когда
вы используете MySQL для ведения журнала и организации хранилища дан­
ных. Правда, эта возможность устарела - сейчас применяется секционирование

(см. главу 7).

NDB Cluster

MySQL АВ приобрела базу данных NDB у Sony Ericsson в 2003 году и создала под­
систему хранения NDB Cluster в качестве интерфейса между SQL, используемым
в MySQL, и собственным протоколом NDB. Комбинация сервера MySQL, подси­
стемы хранения NDB Cluster и распределенной, не поддерживающей разделения
ресурсов, устойчивой к сбоям широкодоступной базы данных NDB называется
MySQL Cluster. Мы еще обсудим MySQL Cluster позже.

Подсистемы хранения сторонних разработчиков

Поскольку MySQL предоставляет API для подключаемых подсистем хранения,
с 2007 года появилось великое множество подсистем хранения, предназначенных для
разных целей. Некоторые из них устанавливались на сервер, но большинство были

продуктами сторонних разработчиков или проектами с открытым исходным кодом.

Здесь мы обсудим часть подсистем хранения, которые, по нашему мнению, являются
довольно полезными и все еще остаются актуальными.

Подсистемы хранения OLTP

Разработанная компанией Percona подсистема хранения XtraDB, интегрированная
в Percona Server и MariaDB, является модифицированной версией InnoDB. Ее усо­
вершенствования направлены на увеличение производительности, масштабируемо­
сти и операционной гибкости. Она может заменить InnoDB, так как способна читать

52 Глава 1 • История и архитектура MySQL

и записывать файлы данных, совместимые с InnoDB, и выполнять все запросы,
которые может выполнять InnoDB.

Существует несколько других подсистем хранения OLTP, похожих на lnnoDB
в ключевых вопросах, например в обеспечении соответствия ACID и МУСС. Од­
ной из них является подсистема РВХТ, разработанная Полом Маккуллахом (Paul
McCullagh) и компанией Primebase GMBH. В ней совмещаются репликация на уров­
не подсистемы, ограничения внешнего ключа и сложная архитектура, что делает ее

пригодной для хранения на твердотельных накопителях и позволяет ей эффективно

управлять большими значениями, например типа BLOB. РВХТ широко применяется
как подсистема совместного хранения и входит в состав MariaDB.

TokuDB использует новую структуру индексов, называемую fractal trees (фракталь­
ные индексные деревья), которая не привязана к кэшу. По этой причине индексы

не замедляют работу, когда их размер превышает объем памяти, не устаревают и не
фрагментируются. TokuDB позиционируется на рынке как подсистема хранения
больших данных, поскольку имеет высокие коэффициенты сжатия и может под­
держивать множество индексов на больших объемах данных. На момент написания
книги TokuDB представляет собой ранний релиз и имеет существенные ограничения
конкурентности. Эти особенности делают подсистему отличным вариантом для ра­
боты с аналитическими наборами данных с интенсивной записью новых данных, но
все может измениться в следующих версиях.

RethinkDB изначально позиционировалась как подсистема хранения, предназна­
ченная для твердотельных накопителей, хотя, похоже, с течением времени она стала

менее узкоспециализированной. Ее отличительной особенностью можно назвать при­
менение работающей только на запись, копирующей только при записи структуры
данных с использованием индексов, упорядоченных на основе В-деревьев. Эта под­

система все еще находится на ранней стадии разработки, и у нас не было возможности
внимательно посмотреть на нее и оценить ее работу.

Подсистема Falcon продвигалась на рынок как следующее поколение транзакци­
онной подсистемы хранения данных для MySQL в то время, когда компания Sun
поглощала MySQL АВ, но работа над ней давно прекращена. Джим Старки Uim
Starkey), главный архитектор Falcon, основал компанию для создания новой облач­
ной NewSQL СУБД NuoDB (прежнее название NimbusDB).

Подсистемы хранения, ориентированные на столбцы

По умолчанию MySQL ориентируется на строки. Это означает, что данные каждой
строки хранятся в одном месте и сервер при выполнении запросов ориентируется

на строку как на рабочую единицу. Но при очень больших объемах данных более
эффективным может быть ориентирование на столбцы. Это позволяет подсистеме
извлекать меньше данных в ситуациях, когда строка целиком не нужна, а столбцы
хранятся отдельно друг от друга, и их можно сжимать более качественно.

Ведущей подсистемой хранения, ориентированной на столбцы, является Infobright,
которая хорошо работает с очень большими объемами данных (десятки терабайт).

Подсистемы хранения в MySQL 53

Она спроектирована для использования в тех случаях, когда требуется аналитиче­

ский подход или работа с хранилищем данных. Подсистема хранит данные в сильно
сжатых блоках. А также хранит набор метаданных для каждого блока, что позволяет

ей пропускать блоки или даже выполнять запросы, просто просматривая метаданные.
Все дело в том, что Infobright не поддерживает индексы - при таких огромных раз­
мерах они бесполезны, а блочная структура представляет собой своего рода квазиин­
декс. Подсистема хранения требует пользовательских настроек сервера, потому что

части сервера должны быть перезаписаны для работы с данными, ориентированными
на столбцы. Некоторые запросы не могут быть выполнены подсистемой хранения
в режиме, ориентированном на столбцы, поэтому сервер возвращается в режим, ори­

ентированный на строки, что замедляет работу. Infobright существует как в версии
с открытым исходным кодом, так и в коммерческой.

InfiniDB от Calpont - еще одна подсистема хранения данных, ориентированная на
столбцы. Она доступна и в коммерческой версии, и в версии с открытым исходным
кодом. InfiniDB предоставляет возможность делать запросы через кластер. Однако
среди наших знакомых никто не использовал ее для работы.

Кстати, если вы хотите приобрести СУБД, ориентированную на столбцы, но не име­

ющую отношения к MySQL: мы оценили также LucidDB и MonetDB. Результаты
эталонного тестирования и наше мнение о них вы найдете в MySQL Performance
Blog, хотя с течением времени они, вероятно, несколько устареют.

Подсистемы хранения, создаваемые сообществом разработчиков

Полный список подсистем хранения данных от сообщества разработчиков насчи­

тывал бы десятки или даже сотни систем, если бы мы принялись скрупулезно пере­

числять их. Однако можно с уверенностью сказать, что большинство из них обслу­

живают очень узкие ниши и практически неизвестны или используются малым

количеством людей. Мы просто упомянем некоторые из них, так как большинство

из них не видели в работе. Caveat emptor/1

о Aria. Aria, ранее называемая Maria, разрабатывается командой, создавшей MySQL,
и позиционируется как преемница MyISAM. Она доступна в СУБД MariaDB. Мно­
гие из ее инструментов, которые изначально были заявлены, похоже, были отложе­
ны ради улучшения других частей сервера MariaDB. На момент написания книги,
пожалуй, стоит охарактеризовать ее как защищенную от сбоев версию MyISAM,
имеющую также несколько других усовершенствований, среди которых возмож­

ность кэшировать данные (а не только индексировать) в собственной памяти.

О Groonga. Это подсистема хранения данных с полнотекстовым поиском, которая,
как утверждается, обеспечивает точность и высокую скорость.

О OQGraph. Эта подсистема хранения от Open Query поддерживает операции
с графами (думаем, в виде <mайдите кратчайший путь между узлами»), которые

нецелесообразно или невозможно выполнять в SQL.

Покупатель, будь бдителен! (Лат.)

54 Глава 1 • История и архитектура MySQL

О Q4M. Реализует очередь внутри MySQL с поддержкой операций, которые для
самой SQL являются довольно сложными или невыполнимыми в рамках одной
инструкции.

О SphinxSE. Эта подсистема хранения предоставляет интерфейс SQL для полно­
текстового поискового сервера Sphinx, о котором мы подробнее поговорим в при­
ложении Е.

О Spider. Разделяет данные на несколько сегментов, эффективно реализуя прозрач­
ное сегментирование, и выполняет запросы параллельно в различных сегментах

данных, которые могут быть расположены на разных серверах.

О VPForMySQL. Эта подсистема хранения поддерживает вертикальное разбиение
таблиц с помощью своего рода прокси-подсистемы хранения. То есть вы можете
нарезать таблицу на несколько наборов столбцов и хранить их отдельно друг
от друга, но использовать в запросах как одну таблицу. Разработчик тот же, что
и у подсистемы Spider.

Выбор подходящей подсистемы хранения

Какую же подсистему хранения выбрать? InnoDB редко подводит, и мы очень рады,
что компания Oracle сделала ее подсистемой по умолчанию в версии MySQL 5.5.
Принятие решения о том, какую подсистему хранения применять, можно свести

к фразе: «Используйте lnnoDB, пока вам не понадобится какая-то функция, которую
она не предоставляет и для которой нет хорошего альтернативного решения~. Напри­

мер, когда нужен полнотекстовый поиск, мы обычно используем InnoDB в сочетании
со Sphinx, вместо того чтобы выбрать MyISAM с ее возможностью полнотекстового
индексирования. Мы задействуем что-то отличное от InnoDB, когда нам не нужны
функции InnoD В, а другая подсистема хранения обеспечивает существенные преиму­
щества при отсутствии недостатков. Например, мы можем использовать MyISAM,
когда нам не мешают ее ограниченная масштабируемость, слабая поддержка кон­

курентного доступа и отсутствие устойчивости к сбоям, а настоящей проблемой
становится значительное потребление пространства подсистемой InnoDB.

Мы предпочитаем не смешивать и не комбинировать разные подсистемы хранения,
если в этом нет острой необходимости. Такая практика существенно усложняет
ситуацию, грозит проявлением множества потенциальных ошибок и имеет свои

особенности. Взаимодействие между подсистемами хранения и сервером является
довольно сложным и без внедрения туда же дополнительных подсистем хранения.
Например, применение нескольких подсистем хранения мешает как следует настро­

ить сервер или получить согласованные резервные копии.

Если вы считаете, что вам нужна другая подсистема хранения данных, то при выборе
учитывайте следующие факторы;

О Транзакции. Если приложение нуждается в транзакциях, то наиболее стабильной,
хорошо интегрированной, проверенной подсистемой хранения для него станет

InnoDB (или XtraDB). MyISAM может стать хорошим вариантом, если задача

Подсистемы хранения в MySQL 55

не требует транзакций и в основном предъявляет запросы типа SELECT или INSERT.
Иногда в эту категорию попадают отдельные компоненты приложения, например

ведение журнала.

о Резервное копирование. Необходимость регулярно выполнять резервное копиро­
вание также может повлиять на ваш выбор. Если есть возможность периодически
останавливать работу сервера для выполнения этой процедуры, то подойдет лю­

бая подсистема хранения данных. Однако если требуется осуществлять резервное
копирование без остановки сервера, то нужна InnoDB.

о Восстановление после сбоя. Если объем данных велик, то вы должны серьезно

оценить количество времени, которое займет восстановление базы после сбоя.
Таблицы MyISAM легче получают повреждения и требуют значительно больше
времени для восстановления, чем таблицы InnoDB. Это одна из самых важных
причин, по которой многие используют подсистему InnoDB, даже не нуждаясь
в транзакциях.

О Специальные возможности. Наконец, может оказаться, что приложению требуют­
ся конкретные возможности или оптимизации, которые могут обеспечить лишь
отдельные подсистемы хранения MySQL. Например, многие приложения ис­
пользуют оптимизацию кластерных индексов. В то же время только MyISAM под­
держивает геопространственный поиск. Если подсистема хранения соответствует

одному или нескольким важнейшим требованиям, но не соответствует другим, то
нужно либо найти компромисс, либо выбрать разумное проектное решение. Часто

вы можете получить то, что нужно, от подсистемы хранения, которая на первый

взгляд не соответствует вашим требованиям.

Нет необходимости принимать решение прямо сейчас. Далее вы найдете в книге
множество материалов, касающихся сильных и слабых сторон каждой подсистемы

хранения, а также немало советов по архитектуре и проектированию. В общем,
возможностей, вероятно, значительно бодьше, чем вы пока способны представить,
а дальнейшее чтение поможет вам сделать оптимальный выбор. Если вы сомневае­
тесь, просто смотрите в сторону InnoDB. Она безопасна по умолчанию, и нет причин
выбирать что-то иное, если вы еще четко не знаете, что вам нужно.

Все сказанное может показаться несколько абстрактным в отрыве от практики,
так что давайте обратимся к некоторым широко распространенным приложениям
баз данных. Мы рассмотрим различные таблицы и определим, какая подсистема

хранения лучше всего удовлетворяет потребности каждой из них. Итоговую сводку
вариантов приведем в следующем разделе.

Журналирование

Предположим, вы хотите использовать MySQL для ведения в режиме реального
времени журнала всех телефонных звонков, поступивших с центрального телефон­

ного коммутатора. Или, возможно, вы установили утилиту mod_log_sql для Apache
и теперь можете хранить сведения обо всех посещениях сайта прямо в таблице. В та­
ких приложениях, вероятно, самым важным является обеспечение быстродействия.

56 Глава 1 • История и архитектура MySQL

Вы же не хотите, чтобы база данных оказалась узким местом. Подсистемы хранения

данных MyISAM и Archive будут очень хорошо работать, поскольку характеризуют­
ся небольшими издержками, и вы сможете осуществлять тысячи операций записи
в секунду.

Однако все становится гораздо интереснее, когда приходит время генерировать отче­

ты на основе записанных в журнал данных. В зависимости от того, какие запросы вы

используете, велика вероятность, что сбор данных для отчета значительно замедлит

процесс добавления новых записей. Что можно сделать в этой ситуации?

Например, можно использовать встроенную функцию репликации MySQL для
дублирования данных на второй сервер, где затем будут запущены запросы, активно
потребляющие ресурсы центрального процессора (ЦП). Таким образом, главный

сервер останется свободным для вставки записей и вы сможете делать любые за­

просы, не беспокоясь о том, как создание отчета повлияет на ведение журнала
в реальном времени.

Также вы можете запускать запросы в периоды низкой загрузки, правда, по мере

развития приложения эта стратегия может стать неработоспособной.

Другой вариант - вести журнал в таблице, имя которой составлено из года и на­

звания или номера месяца, например web_logs_2008_01 или web_logs_2008_jan. Если

вы будете адресовать запросы к таблицам, в которые уже не производится запись,

то приложение сможет непрерывно сохранять новые данные журнала в текущую

таблицу.

Таблицы только для чтения или преимущественно для чтения

Таблицы с данными, которые используются для создания каталога или списка

(вакансии, аукционы, недвижимость и т. п.), обычно характеризуются тем, что счи­

тывание из них происходит значительно чаще, чем запись в них. С такими таблицами

хорошо применять MyISAM - если не думать о том, что происходит при ее сбое. Но

не стоит недооценивать важность этого фактора. Многие пользователи не понимают,

как рискованно применять подсистему хранения, которая даже не пытается извлечь

данные, записанные на диск. (MyISAM просто записывает данные в память и пред­
полагает, что операционная система сбросит их на диск позже.)

Очень полезно запустить имитацию реальной нагрузки на тестовом сервере,

а затем в прямом смысле слова выдернуть вилку из розетки. Личный опыт

восстановления данных после сбоя бесценен. Он убережет от неприятных

сюрпризов в будущем.

Не стоит слепо доверять народной мудрости сообщества, которая гласит: ~MyISAM

быстрее, чем InnoDB». Категоричность этого утверждения спорна. Мы можем пере­
числить десятки ситуаций, когда InnoDB на голову опережает MylSAM, особенно

Подсистемы хранения в MySQL 57

в приложениях, где применяются кластерные индексы или данные целиком разме­

щаются в памяти. По мере дальнейшего чтения вы начнете понимать, какие факторы
влияют на производительность подсистемы хранения (размер данных, требуемое
количество операций ввода/вывода, первичные ключи и вторичные индексы и т. п.)
и какие из них более значимы в вашем приложении.

Проектируя подобные системы, мы используем InnoDB. Сначала MyISAM может
произвести впечатление хорошо работающей подсистемы, но при большой нагруз­
ке она просто рухнет. Все будет заблокировано, и при сбое сервера вы потеряете
данные.

Обработка заказов

При обработке заказов практически всегда требуются транзакции. Созданный на­
половину заказ вряд ли обрадует ваших клиентов. Важно также определить, под­
держивает ли подсистема ограничения внешнего ключа. Для приложений обработки
заказов оптимальным выбором является InnoDB.

Доски объявлений и дискуссионные форумы

Тематические дискуссии являются интересной задачей для пользователей MySQL.
Существуют сотни бесплатных систем на основе языков РНР и Perl, которые по­
зволяют организовывать тематические дискуссии. Многие из них не умеют эффек­
тивно использовать базу данных, в результате чего для каждого обслуживаемого
обращения в них запускается множество запросов. Некоторые из них разработаны,
чтобы обеспечить независимость от используемой базы данных, поэтому их запро­
сы не извлекают должной выгоды из возможностей конкретной СУБД. Подобные
системы также зачастую обновляют счетчики и собирают статистику по различным
дискуссиям. Большинство из них использует для хранения всего объема данных
лишь несколько монолитных таблиц. В результате несколько основных таблиц
оказываются перегруженными операциями записи и чтения, и возникает значи­

тельная конкуренция блокировок, необходимых для обеспечения целостности
данных.

Несмотря' на недостатки проектирования, большинство таких систем хорошо работа­
ют при малых и средних нагрузках. Однако если сайт становится довольно большим
и генерирует значительный трафик, скорость его работы существенно снижается.
Очевидным решением этой проблемы является переход на другую подсистему
хранения данных, которая может обслуживать больше операций чтения и записи.
Но иногда пользователи, поступающие подобным образом, обнаруживают, что си­
стема начинает работать еще медленнее!

Эти пользователи не учитывают, что приложение запускает довольно специфические
запросы, например, вот такого вида:

mysql> SELECT COUNT(*) FROМ tаЫе;

58 Глава 1 • История и архитектура MySQL

Проблема заключается в том, что не все подсистемы хранения могут быстро выпол­
нить подобные запросы: Му ISAM на это способна, а другие - не всегда.

Похожие примеры можно привести для каждой подсистемы. Следующие главы

помогут вам избежать неприятных сюрпризов и разобраться в том, как выявлять
и решать проблемы такого рода.

Приложения на CD

Если вам когда-нибудь потребуется распространять приложения, использующие
файлы данных MySQL, на СО или DVD, подумайте о применении таблиц типа
MyISAM или сжатых таблиц MyISAM, которые можно легко изолировать и скопи­
ровать на другой носитель. Сжатые таблицы MyISAM занимают значительно меньше
места, чем несжатые, но они предназначены только для чтения. В некоторых прило­

жениях это может стать проблемой, но, поскольку данные все равно предназначены

для записи на носитель, поддерживающий только чтение, нет оснований избегать
использования сжатых таблиц для этой конкретной задачи.

Большие объемы данных

Слишком много - это сколько? Мы проектировали (и управляли) - или помогали

проектировать (и управлять) - множество баз данных размером от 3 до 5 Тбайт
или даже больше, работавших с подсистемой InnoDB. И это на одном сервере, без
сегментирования. Это вполне осуществимо, но нужно с умом подойти к выбору обо­
рудования, а также запланировать для сервера возможность справляться с большим
объемом операций ввода/вывода. При таких размерах крах MyISAM становится
настоящей катастрофой.

Если вы предусматриваете значительный размер базы данных, например десятки
терабайт, то, вероятно, проектируете хранилище данных. В этом случае подсистема
хранения Infobright будет лучшим выбором. Очень большие базы данных, для кото­
рых не подходит Infobright, вероятно, могут использовать TokuDB.

Преобразования таблиц

Существует несколько способов преобразования таблицы из одной подсистемы хра­
нения в другую, и у каждого из них есть свои преимущества и недостатки.

В следующих разделах мы рассмотрим три наиболее распространенных способа.

ALTER TABLE

Простейший способ преобразования таблицы из одной подсистемы в другую - ис­
пользование команды AL ТЕR TABLE. Следующая команда преобразует таблицу mytaЫe

к типу InnoDB:

mysql> ALTER TABLE mytaЫe ENGINE = InnoDB;

Подсистемы хранения в MySQL 59

Такой синтаксис работает для всех подсистем хранения, но есть одна загвоздка - это
может занять много времени. MySQL будет построчно копировать старую таблицу
в новую. В это время, скорее всего, будет задействована вся пропускная способность
диска сервера, а исходная таблица окажется заблокированной для чтения. Поэтому
будьте осторожны, применяя этот подход для активно используемых таблиц. Вместо
него можно задействовать один из рассмотренных далее методов, которые сначала

создают копию таблицы.

При изменении подсистемы хранения утрачиваются все присущие старой подси­

стеме возможности. Например, после преобразования таблицы InnoDB в MylSAM,
а потом обратно будут потеряны все внешние ключи, определенные в исходной

таблице InnoDB.

Экспорт и импорт

Чтобы лучше контролировать процесс преобразования, можете сначала экспортиро­
вать таблицу в текстовый файл с помощью утилиты mysqldump. После этого можно
будет просто изменить команду СRЕАТЕ TABLE в этом текстовом файле. Не забудьте
изменить название таблицы и ее тип, поскольку нельзя иметь две таблицы с оди­
наковыми именами в одной и той же базе данных, даже если у них разные типы, -
а mysqldump по умолчанию пишет команду DROP TABLE перед командой СRЕАТЕ TABLE,
так что вы можете потерять свои данные, если не будете осторожны!

CREATE и SELECТ

Третий способ преобразования обеспечивает компромисс между скоростью перво­
го и безопасностью второго. Вместо того чтобы экспортировать всю таблицу или
преобразовывать ее за один прием, создайте новую таблицу и используйте для ее

заполнения команду MySQL INSERT ..• SELECT следующим образом:

mysql> CREATE TABLE innodb_taЫe LIKE myisam_taЫe;
mysql> ALTER TABLE innodb_taЫe ENGINE=InnoDВ;
mysql> INSERT INTO innodb_taЫe SELECT * FROМ myisam_taЫe;

При небольших объемах данных это хороший вариант. Но если объем данных велик,
то зачастую гораздо эффективнее заполнять таблицу частями, подтверждая тран­
закцию после каждой части, чтобы журнал отмены не становился слишком большим.
Предполагая, что id является первичным ключом, запустите этот запрос несколько
раз (каждый раз задавая все большие значениях и у), пока не скопируете все данные

в новую таблицу:

mysql> START TRANSACTION;
mysql> INSERT INTO innodb_taЫe SELECT * FROМ myisam_taЫe

-> WНERE id BETWEEN х AND у;
mysql> СОММП;

После выполнения у вас будет исходная таблица, которую можно удалить, и цели­
ком заполненная новая таблица. Не забудьте заблокировать исходную таблицу, если
не хотите получить несогласованную копию данных!

60 Глава 1 • История и архитектура MySQL

Хронология MySQL
История версий MySQL поможет разобраться в том, с какой именно версией сервера
вам лучше работать. А если вы уже давно пользуетесь ею, наверняка будет интересно
вспомнить, как развивалась эта система.

о Версия 3.23 (2001). Этот релиз MySQL считается первым по-настоящему жизне­
способным вариантом для широкого применения. В этом варианте MySQL еще
не сильно превосходила язык запросов на основе неструктурированных файлов,

но MyISAM была представлена в качестве замены ISAM - более старой и гораз­
до более ограниченной подсистемы хранения. Также стала доступна подсистема

InnoDB, но из-за своей новизны она не была включена в стандартный двоичный
дистрибутив. Чтобы использовать InnoDB, нужно было скомпилировать сервер
самостоятельно. В версии 3.23 были добавлены полнотекстовая индексация и ре­
пликация. Последняя была призвана стать той самой отличительной особенно­

стью, которая сделала бы MySQL известной в качестве базы данных, по большей
части управляемой через Интернет.

о Версия 4.0 (2003). Появилась новая синтаксическая функция поддержки работы
команд UNION и DELEТE с несколькими таблицами. Репликация была переписана
для использования двух потоков на реплике вместо одного потока, который вы­

полнял всю работу и нес убытки от переключения задачи. InnoDB была запущена
как стандартная составляющая сервера с полным набором отличительных харак­
теристик, таких как строковая блокировка, внешние ключи и т. д. Кэширование
запросов было введено в версии 4.0 (и с тех пор не изменилось). Также была
представлена поддержка SSL-соединений.

о Версия 4.1 (2005). Были добавлены дополнительные функции синтаксиса за­
просов, включая подзапросы и команду INSERT ON DUPLICAТE КЕУ UPDAТE. Начала
поддерживаться кодировка UTF-8. Появились новый двоичный протокол и под­
держка предварительно подготовленных операторов.

о Версия 5.0 (2006). В этой версии появилось несколько «корпоративных>,> функ­
ций: представления, триггеры, хранимые процедуры и хранимые функции.

Подсистема хранения данных ISAM полностью удалена, введены новые подси­
стемы хранения, например Federated.

о Версия 5.1 (2008). Этот релиз стал первым после того, как Sun Microsystems погло­
тила MySQL АВ; работа над ним продолжалась более пяти лет. В версии 5.1 были
представлены сегментирование, построчная репликация и разнообразные API для
плагинов, включая API подключаемой подсистемы хранения. Подсистема хране­
ния BerkeleyDB, первая транзакционная подсистема хранения в MySQL, удалена,
а некоторые другие, такие как Federated, устарели. Кроме того, компания Oracle,
которая к этому моменту уже владела Innobase Оу1, выпустила подключаемую
подсистему хранения InnoDB.

Сейчас Oracle владеет также BerkeleyDB.

Хронология MySQL 61

О Версия 5.5 (2010). MySQL 5.5 была первой версией, выпущенной после того как
Oracle поглотила Sun (и, следовательно, MySQL). Основное внимание было
уделено улучшению производительности, масштабируемости, репликации, сег­

ментированию и поддержке Microsoft Windows, внесено и множество других
улучшений. InnoDB стала подсистемой хранения, установленной по умолчанию,
а многие устаревшие функции, настройки и параметры были удалены. Добавлены

база данных PERFORМANCE_SCHEМA, а также первая партия расширенного инструмен­

тария. Добавлены новые API плагинов для репликации, аутентификации и аудита.
Появилась поддержка полусинхронного механизма репликации, и в 2011 году
Oracle выпустила коммерческие плагины для аутентификации и организации
пула потоков. Внесены значительные изменения в архитектуру InnoDB, напри­
мер, появился разделенный буферный пул.

О Версия 5.6 (2013). MySQL 5.6 приобрела множество новых функций, в том числе
впервые за многие годы появились значительные улучшения оптимизатора за­

просов, больше плагинов API (например, один для полнотекстового поиска),
улучшения механизма репликации и значительно расширенные инструменты

в базе данных PERFORМANCE_SCHEMA. В то время как версия MySQL 5.5 в основном
стремилась улучшить и исправить базовые функции и содержала немного ново­

введений, MySQL 5.6 нацелена на серьезное улучшение работы сервера и повы­
шение производительности.

О Версия 6.0 (отменена). Версия 6.0 вносит путаницу из-за перекрывающейся
нумерации. Она была анонсирована во время разработки версии 5.1. Ходили
слухи о большом количестве новых функций, таких как резервные онлайн­

копии и внешние ключи на уровне сервера для всех подсистем хранения,

улучшение механизма подзапросов и поддержка пула потоков. Этот релиз

был отменен, и Sun возобновила разработку версии 5.4, которая в итоге была
выпущена как версия 5.5. Многие из возможностей версии 6.0 реализованы
в версиях 5.5 и 5.6.

Давайте подведем итоги исторического обзора MySQL: на раннем этапе жизненного
цикла она стала прорывной технологией 1• Несмотря на ограниченные функциональ­

ные возможности и второсортные функции, ее отличительные особенности и низ­

кая стоимость сделали ее революционной новинкой, которая взорвала Интернет.

В ранних версиях 5.х MySQL попыталась выйти на корпоративный рынок с такими
функциями, как представления и хранимые процедуры, но они были нестабильны

и содержали ошибки, поэтому не все шло как по маслу. Если вдуматься, то поток

исправлений ошибок, допущенных в MySQL 5.0, не иссяк вплоть до релиза 5.0.50,
а MySQL 5.1 была ненамного лучше. Выпуск релизов 5.0 и 5.1 был отложен, а погло­
щения, произведенные Sun и Oracle, заставили многих наблюдателей понервничать.
Но, на наш взгляд, развитие идет полным ходом: версия MySQL 5.5 стала релизом

Термин "прорывные технологии;. появился в книге Клейтона М. Кристенсена «дилемма

инноватора;..

62 Глава 1 • История и архитектура MySQL

самого высокого качества в истории MySQL, Oracle сделала MySQL гораздо более
удобной для корпоративных клиентов, а версия 5.6 обещает значительные улучше­
ния функциональности и производительности.

Говоря о производительности, неплохо было бы продемонстрировать базовый

эталонный тест изменения производительности сервера с течением времени.

Мы решили не тестировать версии старше 4.1, потому что сейчас редко можно
встретить 4.0 и более старые. Кроме того, очень сложно сравнивать эталонные
тесты разных версий по причинам, о которых вы подробнее прочтете в следующей

главе. Мы получили массу удовольствия, создавая метод эталонного тестирования,

который будет работать одинаково со всеми тестируемыми версиями сервера, и нам
потребовалось предпринять множество попыток, прежде чем мы достигли успеха.
В табл. 1.2 показано количество транзакций в секунду для нескольких уровней
конкурентного доступа.

Таблица 1.2. Эталонный тест блокировки «только для чтения» нескольких версий MySQL

Потоки MySQL4.1 MySQL 5.0 MySQLS.1 MySQL 5.1 с InnoDB MySQLS.S MySQLS.6

1 686 640 596 594 531 526

2 1307 1221 1140 1139 1077 1019

4 2275 2168 2032 2043 1938 1831

8 3879 3746 3606 3681 3523 3320

16 4374 4527 4393 6131 5881 5573

32 4591 4864 4698 7762 7549 7139

64 4688 5078 4910 7536 7269 6994

На рис. 1.2 изображен график, который представляет результаты в более наглядном
виде.

Прежде чем интерпретировать результаты, следует немного рассказать о самом

эталонном тесте. Мы запускали его на машине Cisco UCS С250 с двумя шести­
ядерными процессорами, каждый из которых имеет два аппаратных потока. Сервер

содержит 384 Гбайт ОЗУ, но мы провели тест с объемом данных 2,5 Гбайт, поэтому
настроили для MySQL пул буферов размером 4 Гбайт. Эталонным тестом была
стандартная рабочая нагрузка «только для чтения1> SysBench, причем все данные
были в InnoDB, хранились в оперативной памяти и зависели только от быстродей­
ствия центрального процессора. Мы провели 60-минутный тест для каждой точки

замера, измеряя пропускную способность каждые 1 О секунд и используя 900 секунд
измерений после прогрева и стабилизации сервера для получения окончательных
результатов.

Теперь, глядя на результаты, мы можем заметить две основные тенденции. Во­

первых, версии MySQL, которые включают плагин InnoDB, намного лучше работа­
ют при более высокой степени конкурентности, то есть они более масштабируемы.

Хронология MySQL 63

Этого следовало ожидать, так как нам известно, что предыдущие версии серьезно

ограничены в плане поддержки конкурентности. Во-вторых, более новые версии

MySQL медленнее старых при однопоточных рабочих нагрузках , чего вы, воз­

можно, и не ожидали. Но это легко объяснить, отметив, что нагрузка «только для

чтения~ - очень простая рабочая нагрузка. Новые версии серверов имеют более

сложную грамматику SQL и множество других функций и улучшений, которые по­

зволяют производить более сложные запросы, но также требуют дополнительных

издержек для простых запросов, которые мы как раз и использовали в эталонном

тесте. Старые версии сервера проще и, следовательно, имеют преимущество при

выполнении простых запросов.

8000

>- 6000 g
ф

u
ai

>S

~ 4000

~
:i:
(tJ

!=-
2000

2 4 8 16

Потоки (конкурентность)

32 64

8 MySQL4.1

8 MySQLS.O
MySQLS.1

8 MySQLS.1
с nлагином

lnnoDB

8 MySQLS.5
MySQLS.6

Рис. 1.2. Эталонный тест блокировки «только для чтения» нескольких версий MySQL

Мы хотели показать вам более сложный эталонный тест чтения/записи (например,
ТРС-С) с более высокой степенью конкурентности, но не смогли сделать это для

большого количества столь разных версий сервера. И можем сказать, что в целом

новые версии сервера имеют более высокую и более стабильную производительность

при сложных нагрузках, особенно при высокой степени конкурентности, и с большим

набором данных.

Какую версию лучше использовать вам? Это зависит от особенностей вашего бизнеса

больше, чем от технических потребностей. В идеале вы должны ориентироваться на

самую новую из доступных версий, но, конечно, можете подождать до тех пор, пока

не появится новейшая версия с первыми исправлениями ошибок. Если вы только

разрабатываете приложение, то есть еще не выпустили его, можете задуматься о его
создании в следующей версии, чтобы максимально отсрочить обновление и увели­
чить жизненный цикл.

64 Глава 1 • История и архитектура MySQL

Модель развития MySQL
За многие годы процесс разработки и выпуска MySQL претерпел существенные
изменения, но сейчас, похоже, приобрел устойчивый ритм. Oracle периодически вы­
пускает релизы промежуточных этапов разработки с предварительным просмотром
функций, которые в конце концов будут включены в следующий GА-релиз 1 • Они
предназначены для тестирования и получения обратной связи, а не для использова­
ния на производстве, но Oracle заявляет о том, что они высокого качества, и по суще­
ству, готовы к выпуску в любое время, и мы не видим причин не соглашаться с этим.
Oracle также периодически выпускает лабораторные превью, которые представляют
собой специальные сборки, содержащие только избранные функции для оценки
заинтересованными сторонами. Нет гарантии, что эти функции будут включены
в следующую версию сервера и наконец раз в кои-то веки Oracle соединит вместе
функции, которые считает готовыми, и выпустит новый релиз сервера GA.

MySQL остается программным продуктом с открытым исходным кодом и имеет GPL
(General PuЬlic License, Универсальная общедоступная лицензия), причем полный
исходный код (конечно, за исключением коммерчески лицензированных плагинов)

доступен лишь сообществу разработчиков. Oracle, похоже, понимает, что было бы
неразумно предоставлять разные версии сервера сообществу и бизнес-клиентам.
MySQL АВ пробовала поступать подобным образом, но получилось, что ее бизнес­
клиенты стали подопытными кроликами, так как лишились тестирования и обратной
связи от пользователей. Это противоречило интересам корпоративных клиентов,
и такая практика была прекращена, когда управление перешло к Sun.

Теперь, когда Oracle выпускает некоторые серверные плагины только для бизнес­
клиентов, MySQL целиком и полностью соответствует так называемой модели
с открытым ядром. И хотя периодически слышен недовольный шепоток по поводу

выпуска коммерческих плагинов для сервера, он исходит от меньшинства и иногда

серьезность ситуации оказывается преувеличенной. Большинство пользователей

MySQL, которых мы знаем (а мы знаем многих), похоже, не возражают против этого.
Коммерчески лицензированные платные плагины приемлемы для тех пользователей,

которые действительно в них нуждаются.

В любом случае, коммерческие плагины - это просто плагины. Они не ограничивают
функциональность модели разработки, и сервер самодостаточен и без них. Честно
говоря, мы ценим то, что Oracle создает большинство функций в виде плагинов.
Если бы функции были встроены прямо на сервере без API, выбора бы не было: вы
получили бы одну реализацию и были бы ограничены в возможности скомпоновать
что-то, что вам подходит лучше. Например, если Oracle все же выпустит функцию
полнотекстового поиска InnoDB в качестве плагина, у нее будет возможность ис­
пользовать тот же API для разработки аналогичного плагина для Sphinx или Lucene,
который многие пользователи могут посчитать более полезным. Неплохи и чистые
API внутри сервера. Они способствуют повышению качества кода, а кто к этому
не стремится?

GA расшифровывается как 4общедоступный~>, что означает 4пригодный для производ­
ственного применения~>.

Итоги главы 65

Итоги главы

MySQL имеет многоуровневую архитектуру, на вершине которой находятся сервер­
ные службы и функции выполнения запросов, а под ними - подсистемы хранения.
Хотя существует множество различных API плагинов, наиболее важным являются
API подсистемы хранения данных. Если вы осознаете, что MySQL выполняет за­
просы, передавая строки вперед и назад по API подсистемы хранения, то вы поняли
одну из основ архитектуры сервера.

MySQL создавалась вокруг подсистемы ISAM (позже MyISAM), а многочисленные
подсистемы хранения и транзакций были добавлены позже. Это отражают многие

специфические особенности сервера. Например, способ, которым MySQL подтверж­
дает транзакции при выполнении команды AL TER TABLE, обусловлен архитектурой
подсистемы хранения, как и тот факт, что словарь данных хранится в файлах . frm.
(Кстати, в подсистеме InnoDB нет ничего, что заставило бы команду AL TER быть не­
транзакционной, - абсолютно все, что делает InnoDB, является транзакционным.)

API подсистемы хранения имеет некоторые недостатки. Иногда возможность выбо­
ра не приносит пользы, а появление большого числа подсистем хранения в горячие
деньки после выхода MySQL версий 5.0 и 5.1 могло бы предоставить слишком широ­
кий выбор. В конце концов, InnoDB оказалась очень хорошей подсистемой хранения
примерно для 95 % или более пользователей (это просто грубое предположение).
Другие подсистемы хранения обычно делают все более сложным и ненадежным, хотя
есть особые случаи, когда определенно требуется альтернатива.

Поглощение компанией Oracle сначала InnoDB, а затем MySQL привело оба продук­
та под одну крышу, так что теперь они могут разрабатываться совместно. Кажется, от
этого выигрывают все: InnoDB и сам сервер стремительно становятся лучше, MySQL
продолжает распространяться под GPL и остается ПО с открытым исходным кодом,
сообщество разработчиков и клиенты получают прочную и стабильную базу данных,
а сервер - все больше возможностей для расширения и применения.

2 Эталонное тестирование
MySQL

Эталонное тестирование (бенчмаркинг) является важным навыком как для новичков
MySQL, так и для опытных пользователей. Проще говоря, эталонное тестирование -
это создание рабочей нагрузки, предназначенной для того, чтобы подвергнуть систему
стрессу. Основная его цель - изучение поведения системы, однако имеются и другие

важные причины для выполнения эталонного тестирования, такие как воспроизве­

дение желаемого состояния системы или испытание на отказ нового оборудования.

В этой главе мы рассмотрим причины, стратегии, тактику и инструменты эталон­

ного тестирования MySQL и приложений на базе MySQL. Особый упор сделаем на
sysЬench, потому что это отличный инструмент для эталонного тестирования MySQL.

Зачем нужно эталонное тестирование

Почему эталонное тестирование так важно? Дело в том, что его очень удобно и эф­
фективно использовать для получения ответа на вопрос, что происходит, когда вы

заставляете систему работать. Эталонное тестирование может помочь вам понаблю­
дать за поведением системы под нагрузкой, определить ее пропускную способность,

узнать, какие изменения важны, или посмотреть, как приложение работает с разными

данными. Эталонное тестирование позволяет создавать вымышленные обстоятель­

ства в дополнение к реальным условиям, с которыми вы можете столкнуться. С его

помощью вы можете:

С1 подтвердить свои предположения о системе и посмотреть, насколько они реали­

стичны;

С1 воспроизвести нежелательное поведение системы, которое вы пытаетесь устра­

нить;

С1 измерить производительность приложения. Если вы не знаете, как быстро оно

работает в данный момент, то не можете быть уверены в целесообразности иа­
менений. Также вы можете использовать результаты предыдущих тестов для

диагностики неожиданных проблем;

Зачем нужно эталонное тестирование 67

О имитировать нагрузку, превышающую ту, которую испытывает система сейчас,

для определения узкого места масштабирования, с которым вы столкнетесь в пер­
вую очередь, когда она начнет расти;

О планировать рост системы. Эталонные тесты могут помочь вам оценить, какие

оборудование, пропускная способность сети и другие ресурсы вам понадобятся

для эмуляции будущей нагрузки. Это поможет уменьшить риски при модерни­

зации или серьезных изменениях приложения;

О проверить, способно ли приложение работать в изменяющихся условиях. Напри­
мер, вы можете узнать, как оно работает во время единичного пика одновременно

работающих пользователей или при другой конфигурации серверов. Или увидеть,

как оно обрабатывает другое распределение данных;

О проверить различные конфигурации оборудования, программного обеспечения

и операционной системы. Что лучше для вашей системы - RAID 5 или RAID 10?
Как изменяется производительность произвольной записи при переключении

с дисков АТ А на хранилище SAN? Лучше ли масштабируется ядро Linux 2.4, чем
ядро Linux 2.6? Увеличит ли производительность обновление версии MySQL?
Что будет, если использовать другой механизм хранения данных? Вы можете от­
ветить на эти вопросы с помощью специальных эталонных тестов;

о убедиться, что недавно приобретенное оборудование настроено правильно.
Мы не можем сказать, сколько раз использовали эталонные тесты для испытания

на отказ новой системы и обнаруживали неправильную конфигурацию или неис­
правные аппаратные компоненты. Не стоит запускать новый сервер, не проведя

на нем эталонного тестирования и полагаясь лишь на слова провайдера или изго­

товителя оборудования о том, что установлено и как быстро оно должно работать.
Тестирование, когда оно возможно, всегда полезно.

Кроме того, вы можете использовать эталонное тестирование для других целей, та­

ких как создание набора ориентированных на конкретное приложение модульных
тестов. Однако здесь мы сосредоточимся только на аспектах, связанных с произво­

дительностью.

Проблема с эталонным тестированием состоит в том, что оно ненастоящее. Нагрузка,
которую вы используете, чтобы подвергнуть систему стрессу, обычно не дотягивает
до реальной. Причина этого состоит в следующем: реальные рабочие нагрузки явля­
ются недетерминированными, варьирующимися и слишком сложными для понима­

ния. Если вы проводите эталонное тестирование системы с реальной нагрузкой, по

его итогам труднее будет сделать точные выводы.

В чем же нагрузка эталонного тестирования нереалистична? Существует множество

искусственных показателей для эталонного теста: размер данных, распределение

данных и запросов, но самое главное то, что эталонный тест обычно выполняется так

быстро, как только возможно, загружая систему настолько сильно, что она показывает
себя с худшей стороны. Во многих случаях хотелось бы заставить инструменты эта­
лонного тестирования работать как можно быстрее, но с определенными оговорками,
с возможностью останавливаться при необходимости, чтобы поддержать хорошую

68 Глава 2 • Эталонное тестирование MySQL

производительность. Это было бы особенно полезно для определения максимальной
производительности системы. Однако большинство инструментов эталонного тестиро­
вания не поддерживает такую возможность. Лучше не забывать, что используемые ин­
струменты налагают ограничения на значимость и полезность полученных результатов.

Непросто использовать эталонные тесты и для планирования вычислительных

мощностей. Результаты эталонных тестов зачастую невозможно экстраполировать.

Например, предположим, что вы хотите знать, какой рост бизнеса сможете под­
держивать с помощью нового сервера базы данных. Вы проводите эталонное те­
стирование существующего и затем нового сервера и обнаруживаете, что он может

выполнять в 40 раз больше транзакций в секунду. Но это не означает, что, используя
новый сервер, ваш бизнес тоже сможет увеличиться в 40 раз. К тому времени, ког­
да выручка настолько вырастет, система, вероятно, будет иметь больше трафика,
больше пользователей, больше данных и больше взаимосвязей между различными
частями данных. Не следует ожидать, что все эти факторы вырастут только в 40 раз,
особенно это касается количества взаимосвязей. Кроме того, к этому моменту ваше
приложение почти наверняка изменится: появятся новые функции, часть из которых

могут влиять на базу данных далеко не пропорционально их кажущейся сложности.
Эти изменения рабочей нагрузки, данных, взаимосвязей и функций очень трудно

имитировать, а их воздействие сложно спрогнозировать.

В результате мы обычно соглашаемся на приблизительные результаты, чтобы узнать,
есть ли у системы достаточное количество резервных мощностей. Можно выполнить

более реалистичное тестирование нагрузки, отличающееся от эталонного, но это
требует больше внимания при создании набора данных и рабочей нагрузки. И все же
это не настоящий эталонный тест. Эталонные тесты проще, лучше сопоставимы друг

с другом, дешевле и проще в управлении. И несмотря на их ограничения, эталонные

тесты полезны. Вы просто должны четко понимать, что делаете и какой смысл в по­

лученном результате.

Стратегии эталонного тестирования

Существует две основные стратегии эталонного тестирования: можно тестировать

приложение целиком или проверить лишь MySQL. Мы назовем эти стратегии со­
ответственно полностековым и покомпонентным эталонным тестированием. Есть

несколько причин для измерения производительности приложения в целом вместо

тестирования только MySQL.

Q Вы тестируете все приложение, включая веб-сервер, код приложения, сеть и базу
данных. Это полезно, поскольку вас интересует производительность не MySQL,
а всей системы.

1:1 MySQL не всегда является узким местом приложения, и полное эталонное тести­
рование позволяет это выявить.

1:1 Только в процессе полного тестирования вы можете увидеть, как ведет себя кэш
каждой части.

Стратегии эталонного тестирования 69

а Эталонные тесты хороши лишь в той степени, в какой они отражают реальное

поведение приложения, чего трудно добиться при тестировании его по частям.

В то же время эталонные тесты приложения сложно создавать и еще сложнее пра­

вильно настраивать. Если вы плохо спроектируете эталонный тест, то можете при­

нять ошибочное решение, поскольку полученные в этом случае результаты не от­
ражают реального положения.

Однако иногда нет необходимости получать информацию обо всем приложении.
Возможно, нужно просто выполнить эталонное тестирование MySQL, по крайней
мере на начальном этапе. Такое эталонное тестирование полезно, если вы хотите:

а сравнить различные схемы или запросы;

а протестировать конкретную проблему, обнаруженную в приложении;

а избежать длительного эталонного тестирования, ограничившись коротким те-
стом, который позволит быстро внести изменения и измерить их.

Кроме того, эталонное тестирование MySQL полезно, когда вы можете выполнить
запросы характерные для своего реального набора данных. Как сами данные, так

и размер набора должны быть реалистичными. По возможности используйте мгно­
венный снимок фактических рабочих данных.

К сожалению, настройка реалистичного эталонного теста может оказаться сложной

и трудоемкой задачей, поэтому, если сумеете получить копию рабочего набора дан­

ных, считайте себя счастливчиком. Но это может оказаться невозможным - напри­
мер, вы создаете новое приложение, которым пользуются немногие и в котором еще

недостаточно данных. Если вы хотите знать, как оно будет работать, когда увели­
чится, то у вас нет другого выхода, кроме как сгенерировать больший объем данных
и значительную нагрузку.

Что измерять. Перед началом эталонного тестирования нужно определить цели -
собственно, это следует сделать даже до начала проектирования тестов. Цели опреде­
лят инструменты и технику, которые вы будете использовать для получения точных
осмысленных результатов. Постарайтесь сформулировать цели в виде вопросов, на­

пример: <~Лучше ли этот процессор, чем тот?),) или <~Будут ли новые индексы работать
эффективнее, чем нынешние?>,'>.

Иногда для измерения разных показателей требуются различные подходы. Так,
нельзя определить сетевые задержки и пропускную способность с помощью одних

и тех же эталонных тестов.

Рассмотрим следующие показатели и обсудим, как они соответствуют вашим.

а Пропускная способность. Определяется как количество транзакций в единицу
времени. Это один из классических эталонных тестов приложений баз данных.
Стандартизованные эталонные тесты, такие как ТРС-С (см. http://www.tpc.org),
применяются часто, и многие производители баз данных активно работают над
улучшением характеристик своих продуктов, определяемых с их помощью.

Эти эталонные тесты измеряют производительность оперативной обработки

70 Глава 2 • Эталонное тестирование MySQL

транзакций (О L ТР) и лучше всего подходят для интерактивных многопользова­
тельских приложений. Общепринятой единицей измерения является количество
транзакций в секунду, хотя иногда указывают и транзакции в минуту.

О Время отклика или задержки. Этот показатель определяет общее время выполнения
задачи. В зависимости от приложения вам может потребоваться измерить время
в микро- или миллисекундах, секундах или минутах. Отсюда можно определить

среднее, минимальное и максимальное время отклика, а также процентили. Мак­

симальное время отклика редко бывает полезно, поскольку чем дольше эталонный
тест работает, тем выше, скорее всего, будет этот показатель. Кроме того, его не­
возможно повторить, так как значение наверняка будет сильно варьироваться
при разных прогонах теста. По этой причине обычно используют время отклика
в процентилях. Например, если время отклика составляет 5 миллисекунд с 95-м,
значит, в 95 % случаев задача будет выполнена за 5 миллисекунд или быстрее.

Обычно имеет смысл представить результаты эталонных тестов графически:
либо в виде линейного графика (например, среднее и 95-й процентиль), либо
в виде диаграммы разброса, на которой видно, как распределены результаты. Эти
графики показывают, как будут вести себя эталонные тесты при длительных ис­
пытаниях. Мы вернемся к этому моменту позднее в данной главе.

О Параллелизм (конкурентный доступ). Параллелизм является важным показате­
лем, но его часто неверно толкуют и плохо применяют. Например, число пользо­

вателей, просматривающих сайт в конкретный момент, обычно измеряется коли­
чеством сеансов 1 • Однако в протоколе НТТР нет сохранения состояния, и если
большинство пользователей просто читают содержимое страницы, открытой в
браузере, это не вызывает параллелизма на веб-сервере. Аналогично, параллелизм
на веб-сервере не обязательно означает параллелизм в базе данных. Единственное,
что непосредственно связано с параллелизмом, - это объем данных, с которым
должен справляться механизм хранения сеансов. Более точный показатель па­

раллелизма на веб-сервере - это количество одновременных запросов в любой
момент времени.

Кроме того, вы можете измерять параллелизм в различных местах приложения.

Более высокий параллелизм на веб-сервере может вызвать более высокий парал­
лелизм на уровне базы данных, однако на него могут повлиять также язык про­
граммирования и набор используемых инструментов. Убедитесь, что вы не пу­
таете открытые соединения с сервером базы данных с параллелизмом. Хорошо
спроектированное приложение может иметь сотни открытых соединений с сер­

вером MySQL, но только часть из них будут выполнять запросы одновременно.
Таким образом, сайт с <150 ООО посетителей одновременно» может требовать
только 10 или 15 одновременно выполняющихся запросов к серверу MySQL!

Иными словами, при эталонном тестировании следует озаботиться рабочим
параллелизмом, то есть количеством потоков или соединений, работающих одно­
временно. Измерьте, не падает ли производительность, не увеличивается ли

Это, в частности, привело к тому, что многие владельцы сайтов считали, что к ним заходят

десятки тысяч пользователей одновременно.

Стратегии эталонного тестирования 71

время отклика при возрастании параллелизма. Если это так, то ваше приложение

вряд ли сможет выдерживать всплески нагрузки.

Параллелизм - это показатель, кардинально отличающийся от других, таких

как пропускная способность и время отклика. Обычно это не результат, а скорее
свойство вашего эталонного теста. Вместо измерения уровня параллелизма, ко­

торого достигает ваше приложение, вы обычно просите инструмент эталонного
тестирования сгенерировать различные уровни параллелизма и определяете

производительность приложения в таких условиях. Однако вы также должны

измерить параллелизм в базе данных. Когда запустите sysbench с 32, 64 и 128 по­
токами, проверьте сервер базы данных во время каждого прогона и запишите
значение переменной состояния Threads_running. В главе 11 рассмотрим, почему
это полезно для планирования производительности.

О Масштабuруемость. Измерение масштабируемости полезно для систем, в кото­
рых необходимо поддерживать уровень производительности в условиях меня­
ющейся нагрузки.

Подробно мы обсудим масштабируемость в главе 11, но сейчас дадим короткое
определение. Идеальная система должна выполнить в два раза больше работы
(соответственно в два раза увеличится пропускная способность), если вы удвоите
число работников, пытающихся выполнить задачу. Вторая точка зрения на ту же
проблему состоит в том, что если вы удвоите доступные ресурсы (например, ис­
пользуете вдвое больше процессоров), то сможете добиться удвоенной пропуск­
ной способности. В обоих случаях также требуется, чтобы производительность
(время отклика) была приемлемой. Но большинство систем не являются линейно
масштабируемыми и демонстрируют уменьшающуюся отдачу и ухудшение про­
изводительности при изменении параметров.

Измерение масштабируемости полезно для планирования пропускной способ­
ности, поскольку оно может показать слабые места в вашем приложении, которые
не будут видны при других стратегиях эталонного тестирования. Например, если
вы спроектировали свою систему для наилучшего выполнения эталонного теста

времени отклика с одним соединением (это не лучшая стратегия эталонного

тестирования), приложение может плохо работать при другом уровне паралле­
лизма. Эталонный тест, который измеряет последовательное время отклика при

увеличивающемся числе подключений, выявит этот недостаток проектирования.

Некоторые действия, такие как работа в пакетном режиме для создания сводных
таблиц из детализированных данных, требуют короткого времени отклика. Не­
обходимо выполнить их эталонное тестирование на время отклика, но при этом
не забыть продумать, как они будут взаимодействовать с другими сеансами. Па­
кетные задания могут негативно повлиять на интерактивные запросы, и наоборот.

В конечном счете, лучше всего провести эталонное тестирование того, что важно

для пользователей. Попытайтесь определить некоторые требования (формально
или неформально): каково приемлемое время отклика, какой уровень параллелизма

ожидается и т. д. Затем попробуйте спроектировать свои тесты для удовлетворения
всех требований, избегая туннельного видения, то есть не сосредотачиваясь на одних
моментах и исключая других.

72 Глава 2 • Эталонное тесrирование MySQL

Тактики эталонного тестирования

Закончив с общими вопросами, давайте перейдем к конкретным - к тому, как проек­
тировать и выполнять эталонные тесты. Однако прежде, чем обсуждать, как правильно

выполнять эталонное тестирование, рассмотрим распространенные ошибки, которые
могут привести к неподходящим или неточным результатам.

о Использование меньшего объема данных, чем требуется, например 1 Гбайт дан­
ных, когда приложение должно будет обрабатывать сотни гигабайт. Или исполь­
зование текущего набора данных, если предполагается, что приложение будет
быстро расти.

о Применение данных с неправильным распределением, например равномерно распре­

деленных, если в реальных данных будут встречаться горячие точки. (Сгенерирован­
ные случайным образом данные почти всегда имеюг нереалистичное распределение.)

О Использование нереалистично распределенных параметров, скажем, в предположе­

нии, что профили всех пользователей будут просматриваться с одинаковой частотой1 •

о Применение однопользовательского сценария для многопользовательского при­

ложения.

о Эталонное тестирование распределенного приложения на единственном сервере.

О Несоответствие реальному поведению пользователя, например то, что не учиты­

вается время обдумывания на веб-странице. Реальные пользователи запрашивают
страницу, а потом читают ее, они не щелкают на ссылках без остановки.

о Выполнение идентичных запросов в цикле. Реальные запросы не идентичны, так

что они могут вызывать ошибки кэша. Идентичные запросы будут полностью или
частично кэшированы на каком-то уровне.

о Отсутствие контроля ошибок. Если результаты эталонного теста не имеют смыс­
ла - например, медленная операция внезапно очень быстро заканчивается, -
ищите ошибку. Возможно, вы просто протестировали, насколько быстро MySQL
может обнаружить синтаксическую ошибку в запросе SQL! Возьмите за правило
после выполнения теста проверять журнал ошибок.

о Игнорирование проверки работы системы, когда она не прогрета, например сразу
после перезагрузки. Иногда нужно знать, как быстро ваш сервер наберет полную
мощность после перезагрузки, таким образом, потребуется специально проверить
время разогрева. И наоборот, если вы предполагаете изучить производительность
в нормальном режиме, имейте в виду, что при проведении эталонного тестирова­

ния сразу после рестарта кэш будет не разогрет и результаты будут отличаться от
полученных при разогретом кэше.

О Использование у~тановок сервера по умолчанию. Оптимизация настроек сервера

описана в следующих главах.

О Тестирование выполняется слишком быстро. Учтите, что тест должен длиться
некоторое время. Мы еще поговорим об этом позже.

Джастин Бибер, мы тебя любим! Шутка.

Тактики эталонного тестирования 73

Простое предотвращение этих ошибок поможет вам значительно улучшить качество
результатов.

При прочих равных условиях необходимо стараться делать тесты настолько реалистич­
ными, насколько это возможно. Однако иногда имеет смысл применять немного нере­

алистичные эталонные тесты. Предположим, что приложение находится не на том же

компьютере, где размещен сервер базы данных. Реалистичнее запустить эталонные
тесты в той же конфигурации, но это добавит факторы, показывающие, например,

насколько быстра сеть и какова ее загрузка. Эталонное тестирование производитель­
ности на одном узле обычно проще и в некоторых случаях дает достаточно точные
результаты. Вы должны сами решать, когда такой подход допустим.

Проектирование и планирование эталонных тестов

Первым шагом при планировании эталонных тестов является определение проблемы
и цели. Затем следует решить, использовать ли стандартный эталонный тест или

разработать собственный.

Если вы используете стандартный эталонный тест, выберите тот, который соответ­
ствует вашим потребностям. Например, не применяйте эталонный тест ТРС-Н для
системы электронной коммерции. По словам создателей, 4ТРС-Н - это специальное

решение, поддерживающее эталонное тестирование~. Следовательно, такие тесты

не подходят для ОLТР-систем.

Разработка собственного эталонного теста является сложным цикличным процессом.
Для начала сделайте мгновенный снимок рабочего набора данных. Убедитесь, что
можете восстановить эти данные для последующих запусков теста.

Затем вам потребуются запросы к данным. Вы можете превратить комплект модуль­

ных тестов в простейший эталонный тест, просто прогнав его много раз, но вряд ли

это соответствует тому, как реально используется база данных. Лучше записать все
запросы в рабочей системе в течение репрезентативного отрезка времени, напри­
мер в течение часа в период пиковой нагрузки или в течение всего дня. Если будут
записаны запросы за малый промежуток времени, возможно, вам потребуется не­
сколько таких периодов. Это охватит все действия системы, такие как запросы для

еженедельного отчета или работа в пакетном режиме, которую вы запланировали на
часы минимальной загрузки 1 •

Вы можете записывать запросы на нескольких уровнях. Например, если требуется
выполнить эталонное полностековое тестирование, то можно протоколировать

НТТР-запросы на веб-сервере. Или включить журнал запросов MySQL. Но если
вы будете воспроизводить запросы из журнала, не забудьте создать отдельные по­
токи, а не просто последовательно повторяйте запросы один за другим. Также важно

создавать отдельный поток в журнале для каждого соединения вместо хаотичных
'

Конечно, все это важно, если вы хотите выполнить идеальное эталонное тестирование.

Но реальная жизнь обычно вносит коррективы.

74 Глава 2 • Эталонное тестирование MySQL

запросов в разных потоках. В журнале запросов видно, на каком соединении был
выполнен каждый запрос.

Даже если вы не создаете собственный эталонный тест, все равно следует составить
план тестирования. Вам придется выполнять эталонные тесты много раз, поэтому не­

обходимо иметь возможность точно их повторять. Составьте также план на будущее:
возможно, в следующий раз тестировать будет кто-то другой. Но даже если это будете
вы, то, возможно, не сможете точно вспомнить, как именно делали это в первый раз.

План должен включать в себя тестовые данные, шаги, предпринятые для настройки
системы, информацию об измерениях и анализе результатов и план прогрева сервера.

Разработайте методику документирования параметров и результатов и тщательно
протоколируйте каждый прогон. Ваш метод документирования может быть и очень
простым, как, например, запись в электронную таблицу или блокнот, и сложным,
как создание специально спроектированной базы данных. Вероятно, вы захотите на­
писать какие-то скрипты для упрощения анализа результатов, поскольку чем проще

будет их обрабатывать, не открывая электронную таблицу и текстовые файлы, тем
лучше.

Должно ли быть длительным эталонное тестирование?

Важно, чтобы эталонное тестирование занимало разумное время. Если вы заинтере­
сованы в стабильной работе системы, а наверняка это так, то необходимо наблюдать
ее в устойчивом состоянии. Это может потребовать неожиданно много времени, осо­
бенно на серверах с большим количеством данных и объемной памятью. В большин­
стве систем есть несколько буферов, которые создают наращиваемую мощность -
способность амортизировать пики, откладывая некоторую работу и выполняя ее
позже, после того как нагрузка схлынет. Но если вы задействуете эти механизмы

в течение длительного времени, буферы переполнятся и вы в конце концов увидите,
что система не может выдерживать краткосрочную максимальную нагрузку.

Иногда неизвестно, как долго должен выполняться эталонный тест. В этом случае

можете просто запустить его, не ограничивая время, и наблюдать, пока не удосто­
веритесь, что система начала стабилизироваться. Далее приведен пример того, как
мы это делали в незнакомой системе. На рис. 2.1 показан график временных рядов
пропускной способности чтения и записи на диск.

По мере прогрева системы (после 3-4 часов работы) линия, характеризующая про­
цесс чтения, стала устойчивой, тогда как линия, показывающая запись, демонстриро­

вала резкие колебания на протяжении по меньшей мере 8 часов. И даже после этого
на графике есть несколько резких колебаний. В дальнейшем процессы как чтения, так
и записи, судя по всему, стабилизировались 1 • Эмпирическое правило гласит: ждите,

Кстати, график, характеризующий запись, демонстрирует очень плохие результаты,

устойчивое состояние этой системы - катастрофическая производительность. Называть

это устойчивым состоянием почти смешно, тем не менее мы полагаем, что получили ха­

рактеристику поведения сервера в долгосрочной перспективе.

Тактики эталонного тестирования 75

пока система не станет выглядеть устойчивой, по крайней мере на протяжении вре­

мени, требующегося для ее разогрева. Мы проводили этот эталонный тест в течение

72 часов, чтобы гарантировать, что получили характеристику поведения системы
в долгосрочной перспективе.

1500

1250

1000

750

500

250 __ .._, ________ ~~~--~~----- о

3/17
04:00

3/17 3/17
06:00 08:00

Размерность левоil оси:

3/17
10:00

3/17
12:00

/J

3/17
14:00

3/17
16:00

3/ 17
18:00

3/17
20:00

Размерность npaooil оси : оnераций в сеqнду

• °"- • ..__ - -•CН'tt!AY •C8CY"il!Y

Рис. 2.1. Производительность ввода/вывода во время расширенного эталонного тестирования

Очень распространенная ошибка при эталонном тестировании заключается в том,
<побы запустить серию коротких тестов, например по 60 секунд, и на их основании
сделать вывод о производительности системы. Мы слышим много комментариев, та­

ких как «Я попытался провести эталонное тестирование новой версии сервера, и она

оказалась не быстрее старой». Изучая реальные эталонные тесты, мы часто обнару­
живаем, что они выполнены таким способом , на основании которого нельзя делать
подобные выводы. Иногда люди говорят, что у них просто нет времени для эталонного

тестирования в течение 8 или 12 часов на десяти различных уровнях параллелизма на
двух или трех версиях сервера. Если у вас нет времени для правильного эталонного

тестирования, то время на него вы потратили впустую: лучше доверять чужому опыту,

чем делать неполный эталонный тест и получать неправильные результаты.

Фиксация производительности и состояния системы

Важно собрать во время эталонного тестирования как можно больше информации
о тестируемой системе (SUT). Грамотный подход состоит в создании базового ката­
лога с подкаталогами для результатов каждого запуска. После этого можете поместить

результаты, файлы конфигурации, измерения, скрипты и заметки для каждого за­

пуска в соответствующий подкаталог. Если вы получили больше данных, чем вас

76 Глава 2 • Эталонное тестирование MySQL

интересует, запишите их. Гораздо лучше иметь ненужные данные, чем пропустить

что-то важное: возможно, дополнительные данные пригодятся в будущем. Попробуй­
те записать показатели состояния и производительности, такие как использование

ЦП, дисковый ввод/вывод, статистика сетевого трафика, счетчики из SHOW GLOBAL

STATUS и т. д.

Приведем пример сценария оболочки, который вы можете использовать для сбора

данных по MySQL во время эталонного тестирования:

#!/Ьin/sh

INТERVAL=S

PREFIX=$INTERVAL-sec-status
RUNFILE=/home/benchmarks/running
mysql -е 'SHOW GLOBAL VARIABLES' >> mysql-variaЬles
while test -е $RUNFILE; do

file=$(date +%F_%I)
sleep=$(date +%s.%N 1 awk "{print $INТERVAL - (\$1 % $INТERVAL)}")
sleep $sleep
ts="$(date +"TS %s.%N %F %Т")"
loadavg="$(uptime)"
echo "$ts $loadavg" >> $PREFIX-${file}-status
mysql -е 'SHOW GLOBAL STATUS' >> $PREFIX-${file}-status &
echo "$ts $loadavg" » $PREFIX-${file}-innodbstatus
mysql -е 'SHOW ENGINE INNODB STATUS\G' >> $PREFIX-${file}-innodbstatus &
echo "$ts $loadavg" » $PREFIX-${file}-processlist
mysql -е 'SHOW FULL PROCESSLIST\G' >> $PREFIX-${file}-processlist &
echo $ts

done
echo Exiting because $RUNFILE does not exist.

Этот простой сценарий оболочки является хорошим фреймворком для сбора данных
о производительности и состоянии. Есть несколько моментов, которые мы счита­

ем полезными, но которые, возможно, вы не оцените, пока не запустите большие
эталонные тесты на многих серверах и не поймете, как трудно отвечать на вопросы

о поведении системы.

1:1 Итерации синхронизированы так, что будут запускаться каждый раз, когда вре­
мя будет без остатка делиться на 5 секунд. Если вы просто напишете в цикле
sleep 5, циклу потребуется для запуска немногим более 5 секунд и вы не смо­
жете легко сопоставлять данные, полученные этим скриптом, с данными других

скриптов или графиков. И даже если ваши циклы каким-то образом будут длить­
ся ровно 5 секунд, то получение данных из одной системы с отметкой времени
15:32:18.218192, а из другой системы - 15:32:23.819437 не очень желательно.
Вы, если хотите, можете изменить 5 секунд на другой интервал, например 1, 1 О,
30 или 60 секунд (мы обычно указываем 5 или 10 секунд).

1:1 Для названия файлов используются дата и время выполнения теста. Когда эталон­
ное тестирование продолжается в течение нескольких дней и файлы становятся

большими, вам может потребоваться удалить предыдущие файлы с сервера
и освободить место на диске, а также приступить к анализу полных результатов.
Когда вы ищете данные, полученные в конкретный момент времени, намного

Тактики эталонного тестирования 77

удобнее использовать для поиска название файла, в котором указано это время,
чем искать их в одном файле, размер которого вырос до нескольких гигабайт.

t:I Каждая выборка начинается с отдельной строки, содержащей метку времени,

поэтому вы можете искать выборки в файлах, ориентируясь на конкретный вре­
менной интервал. Также можно написать маленькие скрипты awk и sed.

Q Скрипт не обрабатывает и не фильтрует все то, что он собирает. Это правильный
подход: собрать все в необработанной форме, а затем обработать и отфильтровать.
Если будет выполнена предварительная обработка, то позже, когда вы обнару­
жите аномалию, вам наверняка потребуется больше данных, причем необрабо­
танных, чтобы ее понять.

t:I Когда эталонный тест будет пройден, вы можете завершить выполнение скрипта,
удалив в нем файл /home/benchmarks/running.

Это всего лишь короткий фрагмент кода, который в текущем виде вряд ли удовлет­

ворит вашим запросам, однако он иллюстрирует правильный подход к сбору данных
о производительности и состоянии. Скрипт фиксирует лишь несколько видов данных

в MySQL, но вы легко можете добавить к нему больше элементов. Например, можете
фиксировать /proc/diskstats для записи дискового ввода/вывода с целью последу­
ющего анализа с помощью инструмента pt-diskstats1•

Получение точных результатов

Наилучший способ получить точные результаты - спроектировать эталонный тест
таким образом, чтобы он отвечал именно на те вопросы, которые вы хотите задать.
Тот ли эталонный тест вы выбрали? Собирает ли он данные, которые нужны для от­
вета на поставленный вопрос? Не проводится ли эталонное тестирование по непра­

вильным критериям? Например, не запускаете ли вы тест, нагружающий процессор,

для прогнозирования производительности приложения, которое, как вы знаете, будет
ограничено пропускной способностью систем ввода/вывода?

Затем убедитесь в повторяемости результатов эталонного тестирования. Попытай­
тесь удостовериться, что система находится в одном и том же состоянии перед

каждым прогоном теста. Если эталонный тест особо важен, каждый раз перед его
запуском перезагружайте компьютер. Если нужно провести эталонное тестиро­

вание на прогретом сервере, что является нормой, то необходимо убедиться, что
сервер прогревался достаточно долго (см. предыдущий раздел о том, как долго

следует выполнять эталонное тестирование) и что эта процедура воспроизводима.

Так, если прогрев состоит из случайных запросов, то результаты теста нельзя будет
повторить.

Если тест изменяет данные или схему, восстанавливайте их из снимка между прого­

нами теста. Вставка в таблицу с тысячей строк не даст того же результата, что вставка
в таблицу с миллионом строк! Фрагментация и определенное расположение данных

Подробнее ознакомиться с инструментом pt-diskstats можно в главе 9.

78 Глава 2 • Эталонное тесrирование MySQL

на диске также могут сделать результаты невоспроизводимыми. Один из способов
убедиться, что физическое расположение будет почти одинаковым, - быстро от­

форматировать и скопировать сегмент.

Следите за внешней нагрузкой, системами профилирования и мониторинга, подроб­
ной записью в журналы, периодическими заданиями и прочими факторами, которые

могут исказить результаты. Типичными сюрпризами являются запуск задания cron
в середине теста, или периодическое автоматическое «патрулирование», или заплани­

рованная проверка целостности RАID-массива. Убедитесь, что все необходимые для
эталонного теста ресурсы на время его исполнения выделены только ему. Если сеть

загружена еще какой-то работой или эталонный тест запущен на SАN-устройстве,
которое одновременно используется и другими серверами, результаты могут ока­

заться неточными.

Постарайтесь менять как можно меньше параметров при каждом выполнении эта­

лонного тестирования. Если вы измените сразу несколько факторов, то рискуете

что-то упустить. Кроме того, параметры могут зависеть друг от друга, поэтому ино­

гда их нельзя изменять независимо. В ряде случаев вы можете даже не подозревать

о существовании такой зависимости, что лишь усложняет дело 1 •

Лучше всего менять параметры тестирования итеративно, а не вносить значительные

изменения между прогонами. Например, если вы пытаетесь настроить сервер на

специфическое поведение, используйте технику «разделяй и властвуй» (уменьшай­

те или увеличивайте значение параметра вдвое на каждой последующей итерации

тестирования).

Мы видели множество эталонных тестов, которые пытаются предсказать произво­

дительность после миграции, например, с Oracle на MySQL. Зачастую результаты
этих тестов ненадежны, поскольку MySQL эффективно работает с совершенно
иными типами запросов, чем Oracle. Если вы захотите узнать, насколько хорошо
написанное для Oracle приложение будет работать после миграции на MySQL, то
вам, скорее всего, придется перепроектировать схему и запросы с учетом специфики

MySQL. (Возможно, иногда, например при разработке кросс-платформенного при­
ложения, вам понадобится узнать, как одни и те же запросы будут работать на обеих
платформах, но такое случается редко.)

В любом случае нельзя получить осмысленные результаты с параметрами настройки
MySQL по умолчанию, поскольку они рассчитаны на небольшие приложения, ко­
торые потребляют очень мало памяти. Самый большой стыд мы испытывали, когда
кто-то публиковал ошибочные эталонные тесты, сравнивающие MySQL с другими
системами управления реляционными базами данных (СУРБД), с настройками по
умолчанию. Кажется, что эталонные тесты новичков часто становятся главными

НОВОСТЯМИ.

Это не всегда имеет значение. Например, если вы думаете о переходе с системы Solaгis,
работающей с оборудованием SPARC, на платформу х86 под управлением GNU /Linux, то
нет никакого смысла проводить эталонное тестирование системы на платформе Solaгis/
х86 в качестве промежуточного шaral

Тактики эталонного тестирования 79

Твердотельные хранилища данных (SSD и РСiе-карты) создают особые проблемы
для эталонного тестирования, о чем мы поговорим в главе 9.

Наконец, если вы получите странный результат, не следует просто отклонять его

или говорить, что вы не понимаете его. Разберитесь и постарайтесь выяснить, что
произошло. Возможно, вы обнаружите ценную информацию, серьезную проблему
или дефект, возникший при проектировании эталонного теста. Не стоит публиковать
эталонные тесты, если вы не понимаете их результатов. Мы видели немало случаев,

когда эталонные тесты со странными результатами оказывались совершенно бес­
смысленными из-за досадной ошибки и в итоге тестировщик выглядел довольно
глупо 1 .

Прогон эталонного теста и анализ результатов

После того как вы все подготовили, пора запускать тест, чтобы начать сбор и анализ
данных.

Обычно имеет смысл автоматизировать прогоны эталонного теста. Это улучшит ре­
зультаты и их точность, поскольку не позволит забыть о каких-то шагах и исключит
различия в методике прогона теста. А заодно поможет документировать весь процесс.

Подойдет любой метод автоматизации, например Makefile или набор пользователь­
ских скриптов. Выберите любой устраивающий вас язык для написания скриптов:
shell, РНР, Perl и т. д. Попытайтесь наиболее полно автоматизировать процедуру
тестирования, включая загрузку данных, прогрев системы, запуск эталонного теста

и запись результатов.

Правильно настроенное эталонное тестирование может стать одношаговым

процессом. Есnи вы просто запускаете одноразовый эталонный тест, чтобы что-то
быстро проверить, автоматизировать его нет смысnа. Однако еспи предполагаете

вернуться к его результатам в будущем, обязательно автоматизируйте его. Не
сделав этого, вы никогда не вспомните, как запускали эталонный тест и какие
параметры указывали, так что в дальнейшем не сможете воспользоваться
результатами эталонного тестирования.

Обычно эталонный тест выполняют несколько раз. Конкретное количество итераций
зависит от методологии оценки результатов и от того, насколько эти результаты важ­

ны. Если нужно быть совершенно уверенными в итогах тестирования, следует про­
гнать тест большее количество раз. Обычно для оценки применяют такие методики:
нахождение лучшего результата, вычисление среднего значения по всем полученным

итогам или просто выполнение эталонного теста пять раз и вычисление среднего

результата по трем лучшим. Степень точности вы определяете сами. Возможно, вы

захотите применить к результатам статистические методы, найти доверительный

Если вам интересно, ни с одним из авторов этого никогда не случалось.

80 Глава 2 • Эталонное тестирование MySQL

интервал и т. д., но обычно такой уровень точности не требуется 1 • Если тест удов­
летворительно отвечает на ваши вопросы, можно просто прогнать его несколько раз

и посмотреть, насколько различаются полученные значения. Если различие велико,

следует либо увеличить количество прогонов, либо запустить тест на больший период
времени, что, как правило, приводит к уменьшению разброса результатов.

После того как результаты получены, необходимо их проанализировать, то есть
превратить числа в знания. Цель - получить ответы на вопросы, ради которых го­

товилась тестовая инфраструктура. Идеально было бы, если бы на выходе формули­
ровались утверждения наподобие «модернизация сервера до четырехпроцессорного
увеличит пропускную способность на 50 % при неизменном времени отклика~> или
«использование индексов ускорило выполнение запросов~>. Если вы хотите реализо­

вать научный подход к этому вопросу, почитайте о нулевой гипотезе до проведения

эталонного тестирования, однако имейте в виду, что вряд ли большинство людей

ожидают от вас такого высокого уровня.

Методика обработки полученных значений зависит от того, как они были собраны.
Вероятно, имеет смысл написать скрипты для анализа результатов - не только для

того, чтобы уменьшить объем своей работы, но и по той же причине, по которой
следует автоматизировать сам эталонный тест: для обеспечения воспроизводимости
и документирования. Ниже представлен очень простой набросок сценария оболочки,
который может помочь вам извлечь показатели временных рядов из продемон­

стрированного нами ранее скрипта, собирающего данные. В качестве параметров
командной строки он принимает имена файлов собранных данных:

#!/Ьin/sh

Этот скрипт переводит SHOW GLOBAL STATUS в формат таблицы,

каждая строка которой представляет собой одну выборку с измерениями,
проведенными через промежутки времени, прошедшие между выборками.
awk '

BEGIN {

}

priпtf "#ts date time load QPS";
fmt = " %.2f";

1лтs1 { # The timestamp lines begin with TS.
ts = substr($2, 1, iпdex($2, ",") - 1);
load = NF - 2;
diff = ts - prev_ts;
prev_ts = ts;
printf "\n%s %s %s %s", ts, $3, $4, substr($load, 1, length($load)-1);

}
/Queries/ {

}

printf fmt, ($2-Queries)/diff;
Queries=$2

"$@"

Если вам действительно нужны научно достоверные, скрупулезные результаты, то реко­

мендуем почитать хорошую книгу по проектированию и выполнению контролируемых

тестов, поскольку данная тема намного шире, чем можно изложить здесь.

Тактики эталонного тестирования 81

Если вы назовете скрипт analyze и запустите его д~я файла статуса, сгенерирован­
ного предыдущим скриптом, то можете получить примерно следующее:

[baron@ginger -]$./analyze 5-sec-status-2011-03-20
#ts date time load QP5
1300642150 2011-03-20 17:29:10 0.00 0.62
1300642155 2011-03-20 17:29:15 0.00 1311.60
1300642160 2011-03-20 17:29:20 0.00 1770.60
1300642165 2011-03-20 17:29:25 0.00 1756.60
1300642170 2011-03-20 17:29:30 0.00 1752.40
1300642175 2011-03-20 17:29:35 0.00 1735.00
1300642180 2011-03-20 17:29:40 0.00 1713.00
1300642185 2011-03-20 17:29:45 0.00 1788.00
1300642190 2011-03-20 17:29:50 0.00 1596.40

Первая строка содержит заголовки столбцов. На вторую строку не обращайте вни­

мания, поскольку она появляется до запуска эталонного теста. Последующие строки

содержат метку времени U nix, дату, время (обратите внимание на то, что данные по­
являются через пятисекундные интервалы, как говорилось ранее), среднюю загрузку

системы и, наконец, количество запросов в секунду (QPS), выполненных сервером
базы данных. Это минимальный набор данных, необходимый для изучения произ­

водительности системы. Далее покажем, как быстро построить график и посмотреть,

что произошло во время эталонного тестирования.

Важность построения графика

Чтобы управлять миром, надо непрерывно строить графики 1 • Но если серьезно,

самое простое и полезное, что вы можете сделать с показателями производи­

тельности системы, - это представить их в виде временного ряда и посмотреть на

них.

На графике вы можете сразу выявить проблемы, даже те, которые трудно или не­

возможно увидеть, исследуя необработанные данные. Вы должны противостоять

соблазну просто взглянуть на средние значения и другие сводные статистические

данные, которые может выдать инструмент эталонного тестирования. Средние

значения бесполезны, потому что скрывают то, что происходит на самом деле. К сча­

стью, вывод, осуществляемый написанными нами скриптами, легко настраивается

для таких инструментов, как gnuplot или R, для создания графика в мгновение ока.
Мы продемонстрируем использование gnuplot, предположив, что вы сохранили
данные в файл под названием QPS-per-5-seconds:

gnuplot> plot "QP5-per-5-seconds" using 5 w lines title "QP5"

Эта строка - указание gnuplot создать в файле пятое поле (поле QPS) с линиями, на­

звать его QPS и отобразить на графике. На рис. 2.2 представлен результат.

В оригинале - игра слов. Эту фразу можно перевести так: ~Чтобы управлять миром, надо

непрерывно плести интриги». - Примеч. пер.

82 Глава 2 • Эталонное тестирование MySQL

1800

1600

1400

1200

1000

800

600

400

200

о

/

/
/

о

• -+ • • • •
Запросов в секунду

,

1 1 1 1 1 1 1

2 з 4 5 6 7 8

Рис. 2.2. Построение графика по эталонному тесту QPS

Теперь рассмотрим пример, который еще более ярко продемонстрирует важность
построения графиков. Предположим, система страдает от так называемого яростного

сброса, когда она отстает от проверки и блокирует всю активность до тех пор, пока
не нагонит ее, что приводит к резким падениям пропускной способности. Девяносто
пятый процентиль и среднее время отклика не покажут падений, поэтому результаты

скроют проблему. Однако на графике периодические снижения активности отобра­
зятся (рис. 2.3).

12000

~
~ 10000 со
(")

о
'-
о
ID

8000 о
:i::
Q:

~
~
:i::

6000

s
~
ID 4000
s s
~
со
(")
:i::

2000
со

~

" .. ._
• • • • • ·--- .

1 2 з 4 5 6 7 8 9101112131415161718192021222324252627282930

Время, минуты

Рис. 2.3. Результаты 30-минутного прогона эталонного теста dbt2

Инструменты эталонного тестирования 83

Здесь демонстрируется пропускная способность транзакции в минуту для нового
заказа (NOTPM). Эта линия показывает значительные падения, которые график
среднего значения (пунктирный) не покажет совсем. Первое падение связано с тем,

что кэши сервера еще не прогреты. Другие отражают ситуацию, когда сервер тратит

время, интенсивно сбрасывая «грязные» страницы на диск. Без графика трудно об­
наружить эти отклонения.

Такие пики часто встречаются в сильно нагруженных системах и требуют изучения.
В данном случае такое поведение связано с использованием более старой версии
InnoDB, которая имела несовершенный алгоритм сброса. Но нельзя считать это само
собой разумеющимся. Следует вернуться к подробной статистике и просмотреть ее.
Как выглядел результат SHOW ENGINE INNODB STATUS во время этих снижений актив­
ности? А как насчет вывода SHOW FULL PROCESS LIST? Возможно, вы сразу увидите,
что InnoDB выполняла сброс или что в списке процессов было много потоков со
статусом «ожидание в очереди из-за блокировки кэша» или подобным. Вот почему
полезно очень подробно фиксировать данные во время тестов, а затем строить гра­
фики для обнаружения проблем.

Инструменты эталонного тестирования

Если нет веских оснований считать, что готовые инструменты не подходят для ваших

целей, то не стоит создавать собственную систему эталонного тестирования. В сле­
дующих разделах мы расскажем о некоторых из этих инструментов.

Полностековые инструменты

Вспомним, что существует два типа эталонного тестирования: полностековое и по­

компонентное. Нет ничего удивительного в том, что имеются инструменты для

тестирования всего приложения и тестирования под нагрузкой MySQL и других
компонентов по отдельности. Полностековое тестирование - обычно лучший спо­
соб получить полное представление о производительности всей системы. В число
инструментов полностекового тестирования входят следующие:

о аЬ. Это инструмент тестирования производительности сервера НТТР Apache.
Он показывает, сколько запросов в секунду способен обслуживать НТТР-сервер.
Если вы тестируете веб-приложение, это число демонстрирует, какое количество

запросов в секунду может обслужить приложение в целом. Это очень простой
инструмент, но полезность его ограниченна, поскольку он просто обращается
к одному адресу URL настолько быстро, насколько это возможно. Дополнитель­
ную информацию об утилите аЬ вы найдете на странице http://httpd.apache.org/
docs/2.0/programs/ab.html;

о http _load. Концепция этого инструмента похожа на концепцию аЬ: он также
предназначен для создания нагрузки на веб-сервер, но более гибок. Вы можете
создать входной файл, включающий много разных адресов URL, а http_load

84 Глава 2 • Эталонное тестирование MySQL

будет выбирать их случайным образом. Также можете настроить параметры
таким образом, что запросы станут отправляться с заданным интервалом,

а не с максимально возможной скоростью. Подробности смотрите на страни­

це http://www.acme.com/software/http_load/;

t:I]Meter. Представляет собой приложение на языкеjаvа, которое может загружать
другое приложение и измерять его производительность. Эта утилита была раз­
работана для тестирования веб-приложений, но ее можно использовать и при
тестировании FТР-серверов, и при отправке запросов к базе данных через ин­

терфейсJDВС.

Утилита]Меtеr значительно сложнее, чем аЬ и http_load. С ее помощью можно
более гибко имитировать поведение реальных пользователей, управляя таким
параметром, как время нарастания нагрузки. У нее есть графический пользова­

тельский интерфейс со встроенными средствами построения графиков, также

она позволяет сохранять результаты и воспроизводить их в автономном режиме.

Подробности смотрите на странице http://jakarta.apache.org/jmeter/.

Инструменты покомпонентного тестирования

Предусмотрены несколько полезных инструментов для тестирования производитель­

ности MySQL и операционной системы, на которой она работает. Далее приведем
примеры эталонных тестов, в которых эти инструменты используются.

t:I mysqlslap (http://dev.mysql.eom/doc/refman/S.1/en/mysqlslap.html). Имитирует нагрузку
на сервер и выдает данные хронометража. Эта утилита является частью дис­

трибутива MySQL 5.1, но ее можно использовать и с более ранними версиями,
начиная с 4.1. Вы можете настроить количество конкурентных соединений
и передать программе с помощью либо команды SQL в командной строке, либо
файла с командами SQL. Если вы не зададите режим тестирования вручную,
программа сама исследует схему базы данных и автоматически сгенерирует
команды SELECT.

t:I MySQL Benchmark Suite (sql-bench). Вместе с сервером MySQL распространяется
набор инструментов эталонного тестирования, который можно использовать для
исследования нескольких различных серверов баз данных. Он однопоточный
и измеряет скорость выполнения запросов сервером. Результаты показывают,

какие типы операций сервер хорошо выполняет.

Главным преимуществом этого набора является то, что он содержит множество
готовых тестов, так что с его помощью легко сравнивать различные подсистемы

хранения или к9нфигурации. Как высокоуровневый инструмент эталонного те­

стирования, он полезен для сравнения общей производительности двух серверов.

Кроме того, вы можете запускать подмножество тестов (например, тестировать

только производительность команды UPDATE). В основном тесты нагружают про­
цессоры, но есть короткие периоды, в течение которых выполняется большой
объем операций дискового ввода/вывода.

Инструменты эталонного тестирования 85

Среди основных недостатков этого инструмента можно выделить следующие: он

работает в однопользовательском режиме, задействует очень маленький набор

исходных значений, не допускает тестирования на данных, характерных именно

для ваших условий, а его результаты могут сильно варьироваться от запуска

к запуску. Поскольку он однопоточный и полностью последовательный, с его

помощью невозможно оценить выигрыш от наличия нескольких процессоров,

но вместе с тем он вполне пригоден для сравнения однопроцессорных серверов.

Эталонное тестирование сервера базы данных требует установки драйверов DBD
и языка Perl. Документацию можно найти по адресу http://dev.mysql.com/doc/en/
mysql-Ьenchmarks.html/.

1:1 Super Smack (http://vegan.net/tony/supersmack/). Это инструмент эталонного те­
стирования, тестирования под нагрузкой и создания нагрузки для MySQL
и PostgreSQL. Он мощный, но довольно сложный, позволяет имитировать ра­
боту нескольких пользователей, загружать тестовые данные в базу и заполнять

таблицы случайно сгенерированными значениями. Эталонные тесты содержатся
в smасk-файлах, использующих простой язык определения клиентов, таблиц, за­
просов и т. д.

1:1 Database Test Suite. Инструмент разработан компанией The Open Source Develop­
ment Labs (OSDL) и размещен на сайте Sourceforge по адресу http://sourceforge.net/
projects/osdldbt/, представляет собой набор утилит для запуска эталонного тестиро­
вания, сходного со стандартными промышленными эталонными тестами, такими

как опубликованные Советом по оценке производительности обработки транзак­
ций (Transaction Processing Performance Council, ТРС). В частности, инструмент
dbt2 представляет собой бесплатную (но несертифицированную) реализацию
теста ТРС-С OLTP. Мы неоднократно использовали ero, пока не разработали
специальный инструмент для MySQL.

1:1 Percona's TPCC-MySQL Tool. Мы создали реализацию эталонного теста, ана­
логичного тесту ТРС-С, с инструментами, специально разработанными для
эталонного тестирования MySQL. Обычно используем его для оценки пове­
дения MySQI~ при нестандартных нагрузках. (Для более простых эталонных
тестов применяем sysbench.) Исходный код доступен на https://launchpad.net/
perconatools, также в исходном репозитории хранится краткая документация по
использованию.

1:1 sysbench (https://launchpad.net/sysЬench). Это многопоточный инструмент для эта­
лонного тестирования системы. Цель его применения - получить представление

о производительности системы с точки зрения факторов, важных для работы
сервера базы данных. Например, вы можете измерить производительность фай­
лового ввода/вывода, планировщика операционной системы, распределения па­

мяти и скорости передачи данных, потоков POSIX и самого сервера базы данных.
sysbench поддерживает скрипты на языке Lua (http://www.lua.org), что делает его
очень гибким при тестировании множества сценариев. Это наш любимый универ­
сальный инструмент эталонного тестирования MySQL, операционной системы
и производительности оборудования.

86 Глава 2 • Эталонное тесrирование MySQL

Функция MySQL BENCHМARK()

В MySQL имеется удобная функция BENCHМARK(), которую можно использовать для
тестирования скорости выполнения определенных типов операций. Для этого нужно

указать количество прогонов и подлежащее выполнению выражение. Им может быть

любое скалярное выражение, например скалярный подзапрос или функция. Это удоб­

но для тестирования относительных скоростей некоторых операций, в частности для

оценки того, какая из функций, MDS () или SHAl (), работает быстрее:

mysql> SET @input := 'hello world';
mysql> SELECT ВЕNСНМАRК(1000080, МDS(@input));
+---------------------------------+
1 BENCHMARK(1000000, МDS(@input)) 1

+---------------------------------+
0 1

+---------------------------------+
1 row in set (2.78 sec)
mysql> SELECT ВЕNСНМАRК(1000000, SHAl(@input));
+----------------------------------+
1 BENCHМARK(1000000, SHAl(@input)) 1

+----------------------------------+
0 1

+----------------------------------+
1 row in set (З.50 sec)

Возвращаемым значением всегда является 0, клиентское приложение сообщает,

сколько времени потребовалось на выполнение запроса. В данном случае, похоже,

быстрее работает MDS(). Однако корректно использовать функцию BENCHMARK() не­
просто, если вы не совсем понимаете, что она делает. А она просто определяет, как

быстро сервер может выполнить выражение, но не сообщает ничего об издержках

на синтаксический анализ и оптимизацию. И если выражение не включает в себя

пользовательскую переменную, как в нашем примере, то второй и последующие

случаи выполнения сервером данного выражения могут оказаться обращением

к кэшу.

Несмотря на удобство функции BENCHМARK(), мы никогда не применяем ее для реаль­

ного эталонного тестирования: слишком трудно определить, что она в действитель­

ности измеряет. Кроме того, ее результаты относятся лишь к небольшой части всего

процесса выполнения.

Примеры эталонного тестирования

В этом разделе мы приведем примеры реальных эталонных тестов, выполненных

с помощью вышеупомянутых инструментов. Мы не можем дать исчерпывающее

описание каждого инструмента, но эти примеры помогут вам решить, какие эталон­

ные тесты могут оказаться полезными для ваших целей, и начать их использовать.

Примеры эталонного тестирования 87

http_load
Начнем с простого примера, демонстрирующего работу http _load. Мы будем исполь­
зовать следующие адреса URL, которые сохранили в файле urls. txt:

D http://www.mysqlperformanceЫog.com/;

D http://www.mysqlperformanceЫog.com/page/2/;

D http://www.mysqlperformanceЫog.com/mysql-patches/;

D http://www.mysqlperformanceЫog.com/mysql-performance-presentations/;

D http://www.mysqlperformanceЬlog.com/2006/09/06/slow-query-log-analyzes-tools/.

В простейшем варианте http _load извлекает страницы по указанным адресам в цикле.
Программа делает это с максимально возможной скоростью:

$ http_load -parallel 1 -seconds 10 urls.txt
19 fetches, 1 max parallel, 837929 bytes, in 10.0003 seconds
44101.5 mean bytes/connectior
1.89995 fetches/sec, 83790.7 bytes/sec
msecs/connect: 41.6647 mean, 56.156 max, 38.21 min
msecs/first-response: 320.207 mean, 508.958 max, 179.308 min
НТТР response codes:

code 200 - 19

Результаты вполне понятны - они всего лишь показывают статистическую инфор­

мацию о запросах.

Немного более сложный сценарий заключается в извлечении адресов URL с макси­
мально возможной скоростью в цикле, но с имитацией пяти параллельных пользо­

вателей:

$ http_load -parallel 5 -seconds 10 urls.txt
94 fetches, 5 max parallel, 4.75565е+06 bytes, in 10.0005 seconds
50592 mean bytes/connection
9.39953 fetches/sec, 475541 bytes/sec
msecs/connect: 65.1983 mean, 169.991 max, 38.189 min
msecs/first-response: 245.014 mean, 993.059 max, 99.646 min
НТТР response codes:

code 200 -- 94

Вместо максимально быстрого извлечения мы можем симулировать нагрузку для

прогнозируемой частоты запросов (например, пять раз в секунду):

$ http_load -rate 5 -seconds 10 urls.txt
48 fetches, 4 max parallel, 2.50104е+06 bytes, in 10 seconds
52105 mean bytes/connection
4.8 fetches/sec, 250104 bytes/sec
msecs/connect: 42.5931 mean, 60.462 max, 38.117 min
msecs/first-response: 246.811 mean, 546.203 max, 108.363 min
НТТР response codes:

code 200 - 48

88 Глава 2 • Эталонное тестирование MySQL

Наконец, имитируем еще большую нагрузку с частотой поступления запросов 20 раз
в секунду. Обратите внимание, как с возрастанием нагрузки увеличивается время
соединения и отклика:

$ http_load -rate 20 -seconds 10 urls.txt
111 fetches, 89 max parallel, 5.91142е+06 bytes, in 10.0001 seconds
53256.1 mean bytes/connection
11.0998 fetches/sec, 591134 bytes/sec
msecs/connect: 100.384 mean, 211.885 max, 38.214 min
msecs/first-response: 2163.51 mean, 7862.77 max, 933.708 min
НТТР response codes:

code 200 - 11

MySQL Benchmark Suite
MySQL Benchmark Suite состоит из набора эталонных тестов, написанных на языке
Perl, так что для их запуска вам потребуется Регl. Эталонные тесты находятся в под­
каталоге sql-bench/ установочного каталога MySQL. В системах DeЬian GNU/Linux,
например, они хранятся в каталоге /usr/ share/mysql/sql-bench/.

Прежде чем приступать к работе, прочитайте файл README, в котором объясняется,
как использовать этот комплект инструментов, и описываются аргументы командной

строки. Для запуска любых тестов применяются примерно такие команды:

$ cd /usr/share/mysql/sql-bench/
sql-bench$./run-all-tests --server=mysql --user=root --log --fast
Test finished. You сап find the result in:
output/RUN-mysql_fast-Linux_2.4.18_686_smp_i686

Эталонное тестирование длится довольно долго - возможно, больше часа в зави­

симости от оборудования и конфигурации. Если вы укажете параметр командной
строки - - log, то сможете отслеживать состояние теста во время его выполнения.
Каждый тест записывает свои результаты в подкаталог output. Все файлы содержат
последовательности временных меток, соответствующих операциям, реализуемым

в каждом эталонном тесте. Вот немного переформатированный для удобства печати
образец:

sql-bench$ tail -s output/select-mysql_fast-Linux_2.4.18_б8б_smp_iб8б
Time for count_distinct_group_on_key (1000:6000):

34 wallclock secs (0.20 usr 0.08 sys + 0.00 cusr 0.00 csys 0.28 CPU)
Time for count_distinct_group_on_key_parts (1000:100000):

34 wallclock secs (0.57 usr 0.27 sys + 0.00 cusr 0.00 csys 0.84 CPU)
Time for count_distinct_group (1000:100000):

34 wallclock secs (0.59 usr 0.20 sys + 0.00 cusr 0.00 csys 0.79 CPU)
Time for count_distinct_Ыg (100:1000000):

8 wallclock secs (4.22 usr 2.20 sys + 0.00 cusr 0.00 csys 6.42 CPU)
Total time:

868 wallclock secs (33.24 usr 9.55 sys + 0.00 cusr 0.00 csys = 42.79 CPU)

Например, выполнение теста count_distinct_group_on_key (1000:6000) заняло
34 секунды. Это общее время, которое потребовалось клиенту. Другие значения
(usr, sys, cursr, csys), которые добавили до 0,28 секунды, составляют издержки для

Примеры эталонного тесгирования 89

этого теста. Данное значение показывает, сколько времени клиентский код реально

работал, а не ожидал ответа от сервера MySQL. Таким образом, интересующее нас
значение - время, потраченное на неконтролируемую клиентом обработку, - со­

ставило 33,72 секунды.

Тесты можно запускать и по отдельности, а не в составе комплекта. Например, вы

можете решить сфокусироваться только на тестировании операций вставки. Полу­

ченная информация будет более подробной, чем в сводном отчете, созданном при

запуске полного набора тестов:

sql-bench$./test-insert
Testing server 'MySQL 4.0.13 log' at 2003-05-18 11:02:39

Testing the speed of inserting data into 1 tаЫе and do some selects on it.
The tests are done with а tаЫе that has 100000 rows.

Generating random keys
Creating taЫes
Inserting 100000 rows in order
Inserting 100000 rows in reverse order
Inserting 100000 rows in random order
Time for insert (300000):

42 wallclock secs (7.91 usr 5.03 sys + 0.00 cusr 0.00 csys 12.94 CPU)
Testing insert of duplicates
Time for insert_duplicates (100000):

16 wallclock secs (2.28 usr 1.89 sys + 0.00 cusr 0.00 csys = 4.17 CPU)

sysbench
С помощью инструмента sysbench можно запускать различные эталонные тесты.
Он разработан не только для тестирования производительности базы данных, но

и для определения того, насколько хорошо работает система как сервер баз данных.
Фактически Петр и Вадим изначально разработали его для запуска эталонных

тестов, особенно важных для оценки производительности MySQL, даже несмотря
на то, что они на самом деле не являются эталонными тестами MySQL. Мы начнем
с некоторых тестов, не характерных для MySQL и измеряющих производительность
подсистем, которые определяют общие ограничения системы. Затем покажем, как
измерять производительность базы данных.

Мы настоятельно рекомендуем познакомиться с sysbench. Это один из самых по­
лезных инструментов в наборе пользователя М ySQL. И хотя существует множество
других инструментов, которые выполняют часть его функций, эти инструменты

не всегда надежны и полученные результаты не всегда отражают производительность

MySQL. Например, вы можете тестировать производительность ввода/вывода с по­
мощью iozoпe, bonnie++ и ряда других инструментов, однако потребуется приложить
много усилий, чтобы заставить их тестировать ввод/вывод таким же образом, как

InnoDB нагружает диски. А вот sysbench ведет себя так же, как InnoDB, поэтому его
тест fileio вполне релевантен в поставляемом виде.

90 Глава 2 • Эталонное тестирование MySQL

Эталонное тестирование процессора
с помощью инструмента sysbench

Стандартным тестом подсистемы является эталонный тест процессора, в котором

для вычисления простых чисел до указанного максимума используются 64-разряд­

ные целые числа. Мы запустили этот тест на двух серверах, каждый под управлением

GNU /Liпux, и сравнили результаты. Вот характеристики оборудования первого
сервера:

[serverl -)$ cat /proc/cpuinfo

model name
stepping
cpu MHz
cache size

AMD Opteron(tm) Processor 246
1
1992.857
1024 кв

И вот как прошел запуск эталонного теста:

[serverl -)$ 5y5Ьench --te5t=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multithreaded system evaluation benchmark

Test execution summary: total time:

У второго сервера другой процессор:

[server2 -]$ cat /proc/cpuinfo

121.74045

model name
stepping
cpu MHz

Intel(R) Xeon(R) CPU
6

5130 @ 2. 00GHz

1995.005

Вот результат его эталонного теста:

[serverl -]$ 5y5Ьench --te5t=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multithreaded system evaluation benchmark

Test execution summary: total time: 61.85965

Результат показывает общее время, требуемое для вычисления простых чисел, кото­

рое очень легко сравнить. В данном случае второй сервер выполнил эталонный тест

приблизительно в два раза быстрее, чем первый.

Эталонное тестирование файлового ввода/вывода
с помощью инструмента sysbench

Эталонный тест fileio измеряет параметры работы системы при различных нагрузках
ввода/вывода. Он очень полезен для сравнения жестких дисков, RАID-контроллеров

и режимов RAID, а также настройки подсистемы ввода/вывода. Тест эмулирует
работу IпnoDB с дисками.

Первым делом нужно подготовить несколько файлов. Вам необходимо сгенериро­
вать намного больше данных, чем помещается в памяти. Когда данные загрузятся

Примеры эталонного тестирования 91

в память, операционная система будет кэшировать большую их часть, а результаты
не совсем точно отразят нагрузку на подсистему ввода/вывода. Начнем с создания

набора данных:

$ sysbench --test=fileio --file-total-size=150G prepare

Эта команда создает файлы в текущем рабочем каталоге, на этапе запуска в него будет
производиться запись и из него - чтение.

Вторым шагом является запуск теста. Для тестирования производительности при раз­

личных типах нагрузки на систему ввода/вывода используется несколько параметров:

[] seqwr - последовательная запись;

Q seqrewr - последовательная перезапись;

[] seqrd - последовательное чтение;

[] rndrd - произвольное чтение;

[] rndwr - произвольная запись;

[] rndrw - произвольное чтение в сочетании с произвольной записью.

Следующая команда запускает тест ввода/вывода с произвольными чтением/записью:

$ sysbench --test=fileio --file-total-size=150G --file-test-mode=rndrw/
--init-rng=on --max-time=300 --max-requests=0 run

И вот результаты:

sysbench v0.4.8: multithreaded system evaluation benchmark

Running the test with following options:
Number of threads: 1
Initializing random number generator from timer.

Extra file open flags: 0
128 files, l.1719Gb each
150Gb total file size
Block size 16КЬ
Number of random requests for random IO: 10000
Read/Write ratio for combined random IO test: 1.50
Periodic FSYNC enaЬled, calling fsync() each 100 requests.
Calling fsync() at the end of test, EnaЫed.
Using synchronous I/O mode
Doing random r/w test
Threads started!
Time limit exceeded, exiting ...
Done.

Operations performed: 40260 Read, 26840 Write, 85785 Other = 152885 Total
Read 629.06МЬ Written 419.38МЬ Total transferred l.0239Gb (3.4948МЬ/sес)

223.67 Requests/sec executed

Test execution summary:
total time:
total number of events:

300.00045
67100

92 Глава 2 • Эталонное тестирование MySQL

total time taken Ьу event execution: 254.4601
per-request statistics:

min:
avg:

max:
approx. 95 percentile:

Thread5 fairne55:

0.00005
0.00385

0.56285
0.00995

event5 (avg/5tddev):
execution time (avg/5tddev):

67100.0000/0.00
254.4601/0.00

Получен большой объем информации. Для измерения производительности подсисте­
мы ввода/вывода наиболее интересны количество запросов в секунду и общая про­
пускная способность - в данном случае 223,67 запроса в секунду и 3,4948 Мбайт/с
соответственно. Эти значения дают хорошее представление о производительности

диска.

Закончив тестирование, можете запустить очистку, чтобы удалить файлы, созданные

программой sysbench для эталонного тестирования:

$ sysbench --test=fileio --file-total-size=150G cleanup

Эталонное тестирование ОLТР-системы
с помощью инструмента sysbench

Эталонное тестирование системы OLTP эмулирует рабочую нагрузку, характерную
для обработки транзакций. Приведем пример такого тестирования для таблицы,
содержащей 1 миллион строк. В первую очередь нужно подготовить эту таблицу:

$ sysbench --test=oltp --oltp-taЬle-size=1000000 --mysql-db=test/
--mysql-user=root prepare
5y5bench v0.4.8: multithreaded 5y5tem evaluation benchmark

No DB driver5 5pecified, u5ing my5ql
Creating tаЫе '5bte5t' ...
Creating 1000000 records in tаЫе '5bte5t' ...

Это все, что нужно сделать для подготовки тестовых данных. Затем на 60 секунд за­
пустим эталонный тест в режиме чтения с восьмью конкурентными потоками:

$ sysЬench --test=oltp --oltp-taЬle-size=1000000 --mysql-db=test --mysql-user=root/
--max-time=60 --oltp-read-only=on --max-requests=0 --num-threads=8 run
5y5bench v0.4.8: multithreaded system evaluation benchmark

No DB driver5 specified, using mysql
WARNING: Preparing of "BEGIN" is unsupported, using emulation (last message repeated
7 times)
Running the test with following options:
Number of threads: 8

Doing OLTP te5t.
Running mixed OLTP test Doing read-only test
Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct
ca5es)

Примеры эталонного тестирования 93

Using "BEGIN" for starting transactions
Using auto_inc оп the id column
Threads startedl
Time limit exceeded, exiting ...

(последнее сообщение повторяется семь раз)
Done.

OLTP test statistics:
queries performed:

read:
write:
other:
total:

transactions:
deadlocks:
read/write requests:
other operations:

Test execution 5ummary:
total time:
total number of event5:
total time taken Ьу event execution:

per-reque5t 5tati5tic5:
min:
avg:
max:
approx. 95 percentile:

Threads fairne55:

179606
0
25658
205264
12829
0
179606
25658

60.21145
12829
480.2086

0.00305
0.03745
1.91065
0.11635

event5 (avg/stddev):
execution time (avg/stddev):

1603.6250/70.66
60.0261/0.06

(213.07 per sec.)
(0.00 per sec.)
(2982.92 per 5ес.)
(426.13 per 5ес.)

Как и ранее, в полученных результатах содержится очень много информации. Наи­

больший интерес представляют следующие данные:

О счетчик транзакций;

О количество транзакций в секунду;

О временная статистика (минимальное, среднее, максимальное время и 95-й про­

центиль);

О статистика равномерности загрузки потоков, которая показывает, насколько

справедливо распределялась между ними имитированная нагрузка.

Приводимый пример применим к версии 4 инструмента sysbench, которая доступ­
на в предварительно созданных двоичных файлах на SourceForge.net. Но если вы
скомпилируете sysbench из исходного кода на Launchpad (это легко и просто!),
то сможете воспользоваться большим количеством улучшений, внесенных в вер­

сию 5. Вы сможете запускать эталонные тесты не для одной таблицы, а для не­
скольких, через равные интервалы (например, каждые 10 секунд) видеть пропуск­
ную способность и время отклика. Эти показатели очень важны для понимания

поведения системы.

94 Глава 2 • Эталонное тестирование MySQL

Другие возможности инструмента sysbench

Инструмент sysbench может запускать другие эталонные тесты системы, которые
непосредственно не измеряют производительность сервера базы данных.

О memory. Выполняет последовательные операции чтения или записи в памяти.
О threads. Проводит эталонное тестирование производительности планировщика

потоков. Особенно полезно тестировать поведение планировщика при высоких
нагрузках.

О mutex. Измеряет производительность работы мьютексов, эмулируя ситуацию,
когда все потоки большую часть времени конкурируют, захватывая мьютекс
только на короткое время (мьютекс - это структура данных, которая гарантирует

взаимоисключающий доступ к некоторому ресурсу, предотвращая возникновение

проблем, связанных с конкурентным доступом).

О seq'lR1r. Измеряет производительность последовательной записи. Это очень
важно для тестирования практических пределов производительности систе­

мы. Тест может показать, насколько хорошо работает кэш RАID-контроллера,
и предупредить, если результаты оказываются необычными. Например, если
отсутствует кэш записи с резервным питанием от батареи, а диск обрабатывает
3000 запросов в секунду, то что-то идет не так и вашим данным определенно
угрожает опасность.

Кроме параметра, задающего режим тестирования (- -test), инструмент sysbench
принимает и некоторые другие общие параметры, такие как --num-threads, --max­
requests и - -maxtime. Подробное описание этих параметров вы найдете в соответ­
ствующей технической документации.

Инструмент dbt2 ТРС-С из комплекта Database Test Suite
Инструмент dbt2 из комплекта Database Test Suite представляет собой бесплатную
реализацию теста ТРС-С. ТРС-С - это спецификация (опубликована организацией
ТРС), которая эмулирует нагрузку, характерную для сложной оперативной обработ­
ки транзакций. Этот инструмент сообщает результаты, измеряемые в транзакциях
в минуту (tpmC), а также стоимость каждой транзакции (Price/tpmC). Итоги сильно
зависят от оборудования, поэтому опубликованные результаты эталонного теста
ТРС-С содержат подробные характеристики серверов, использованных при его
проведении.

0""'· .
• 4,'

Тест dbt2 не является настоящим тестом ТРС-С. Он не сертифицирован
организацией ТРС, и его результаты нельзя непосредственно сравнивать
с результатами ТРС-С. Обратите также внимание на то, что мы (авторы этой
книги) создали инструмент, который, на наш взгляд, лучше, чем dbt2, подходит
для MySQL (см. следующий раздел).

Давайте посмотрим, как настраивать и запускать эталонный тест dbt2. Мы исполь­
зовали его версию 0.37, наиболее свежую из подходящих для MySQL (более поздние

Примеры эталонного тестирования 95

версии содержат исправления, которые MySQL поддерживает не полностью). Вы­
полнены следующие шаги.

1. Подготовка данных.

Следующая команда создает данные по десяти хранилищам данных в указанном ка­

талоге. Вся информация по десяти хранилищам занимает на диске около 700 Мбайт.
Требуемое место изменяется пропорционально количеству хранилищ данных, так
что можете изменить параметр -w для создания набора данных нужного вам размера:

src/datagen -w 10 -d /mnt/data/dbt2-wl0
warehouses = 10
districts = 10
customers = 3000
items = 100000
orders = 3000
stock = 100000
new_orders = 900

Output directory of data files: /mnt/data/dbt2-w10

Generating data files for 10 warehouse(s) ...
Generating item tаЫе data ...
Finished item tаЫе data •..
Generating warehouse tаЫе data •..
Finished warehouse tаЫе data .. .
Generating stock tаЫе data .. .

2. Загрузка данных в базу MySQL.

Следующая команда создает базу данных с названием dbt2w10 и заполняет ее
данными, которые мы сгенерировали на предыдущем шаге (флаг -d задает имя
базы, а -f - каталог со сгенерированными данными):

scripts/mysql/mysql_load_db.sh -d dbt2wl0 -f /mnt/data/dbt2-wl0/
-s /var/liЬ/mysql/mysql.sock

3. Запуск эталонного теста.

Последний шаг заключается в выполнении следующей команды из каталога

scripts:

run_mysql.sh -с 10 -w 10 -t 300 -n dbt2wl0/
-u root -о /var/liЬ/mysql/mysql.sock-e
**
*
*
*

DBT2 test for MySQL started

Results сап Ье found in output/9 directory

*
*
*

**

Test consists of 4 stages:
*
*
*

*
*
*
*
*
*
*
*

1. Start of client to create pool of databases connections *
2. Start of driver to emulate terminals and transactions generation *
3.
4.

тest

Processing of results
*
*
*

**

DATABASE NАМЕ:

DATABASE USER:
dbt2w10
root

96 Глава 2 • Эталонное тестирование MySQL

DATABASE SOCKET:
DATABASE CONNECTIONS:
TERMINAL THREADS:
SCALE FACTOR{WARHOUSES):
TERMINALS PER WAREHOUSE:
DURATION OF TEST{in sec):
SLEEPY in (msec)
ZERO DELAYS МОDЕ:

Stage 1. Starting up client •..

/var/liЬ/mysql/mysql.sock
10
100
10
10
300
300
1

Delay for each thread - 300 msec. Will sleep for 4 sec to start 10 database
connections
CLIENT_PID = 12962

Stage 2. Starting up driver ...
Delay for each thread - 300 msec. Will sleep for 34 sec to start 100 terminal
threads
All threads has spawned successfuly.

Stage 3. Starting of the test. Duration of the test 300 sec

Stage 4. Processing of results •..
Shutdown clients. Send TERM signal to 12962.

Response Time (s)
Transaction % Average : 90th % Total

------------ -----------------
Delivery 3.53 2.224 3.059 1603
New Order 41.24 0.659 1.175 18742

Order Status 3.86 0.684 1.228 1756
Payment 39.23 0.644 1.161 17827

Stock Level 3.59 0.652 1.147 1630

3396.95 new-order transactions per minute {NOTPM)
5.5 minute duration
0 total unknown errors
31 second{s) ramping up

Rollbacks

0
172

0
0
0

%

0.00
0.92
0.00
0.00
0.00

Наиболее важная информация содержится в одной из последних строк:

3396.95 new-order transactions per minute {NOTPM)

Она показывает, сколько транзакций в минуту может выполнить система. Чем боль­
ше это значение, тем лучше. (Термин new-order - это не специальное определение
для типа транзакции, он просто обозначает, что тест имитирует новый заказ в вооб­
ражаемом интернет-магазине.)

Вы можете менять некоторые параметры для создания различных эталонных тестов.

1:1 -с. Количество соединений с базой данных. Изменяя этот параметр, вы эмули-
руете различные_уровни параллелизма и видите, как система масштабируется.

1:1 -е. Этот параметр активизирует режим нулевой задержки и означает, что между

запросами не будет задержки. Это позволяет выполнить нагрузочное тестирование
базы данных. Однако такая ситуация не вполне реалистична, так как живым пользо­

вателям перед генерацией очередного запроса требуется некоторое время подумать.

Примеры эталонного тестирования 97

1:1 -t. Общая продолжительность эталонного теста. Выбирайте этот параметр тща­
тельно, иначе результаты будут бессмысленными. Слишком малое время для
эталонного тестирования производительности ввода/вывода даст неправильные

результаты, поскольку у системы не будет достаточно времени для «прогрева>,>
кэша и перехода в нормальный режим работы. Но если вы хотите выполнить эта­
лонное тестирование системы в режиме загрузки процессора, то не стоит устанав­

ливать это значение слишком большим, поскольку набор данных может заметно
вырасти и нагрузка ляжет в основном на подсистему ввода/вывода.

Результаты эталонного теста могут дать информацию не только о производитель­

ности. Например, если вы увидите слишком много откатов транзакций, то поймете:

скорее всего, что-то в системе работает неправильно.

Инструмент Percona's TPCC-MySQL
Рабочая нагрузка, которую генерирует sysbench, отлично подходит для простых
тестов и сравнений, однако она не вполне релевантна для реальных приложений.

Для этого намного лучше подходит эталонный тест ТРС-С. Хотя инструмент dbt2,
показанный в предыдущем разделе, представляет собой одну приличную реали­
зацию этого теста, он имеет некоторые недостатки. Это побудило нас создать еще
один инструмент, похожий на ТСР-С, но более подходящий для запуска множества
очень больших эталонных тестов. Код этого инструмента доступен через Launchpad
по адресу https://code.launchpad.net/.,,percona-dev/perconatools/tpcc-mysql, там же находится
небольшой файл README, в котором объясняется, как создавать и использовать этот
инструмент. Это довольно просто. При большом количестве хранилищ данных вы,
возможно, задействуете утилиту параллельной загрузки данных, включенную в ин­

струмент, потому что в противном случае потребуется много времени для создания
набора данных.

Для того чтобы использовать этот инструмент, необходимо создать структуру базы
данных и таблиц, загрузить данные и выполнить эталонный тест. Структура базы
данных и таблиц создается простым скриптом SQL, входящим в исходный код,
а загрузка данных осуществляется с помощью программы tpcc_load на языке С,
которую вам придется скомпилировать. Тест поработает некоторое время и выдаст
большой объем информации. (Всегда целесообразно перенаправлять вывод про­
граммы в файлы для документирования, но здесь вам особенно нужно это сделать,
иначе вы рискуете потерять даже историю прокрутки.) Далее приведен пример

установки, создающий небольшой (пять хранилищ данных) набор данных в базе
с именем tpcc5:

$./tpcc_load localhost tpccS username p4ssword 5

*** ###easy### ТРС-С Data Loader ***

<Parameters>

[server]: localhost
[port]: 3306
[DBname): tpcc5

98 Глава 2 • Эталонное тестирование MySQL

[user]: username
[pass]: p4ssword

[warehouse]: 5
ТРСС Data Load 5tarted ...
Loading Item

[output snipped for brevity]

Loading Orders for D=10, W= 5
........•. 1000
.......•.. 2000
.......... 3000
Orders Done .

... DATA LOADING COМPLETED 5UCCESSFULLY.

5000
10000
15000

Далее нужно запустить эталонный тест, для которого требуется программа tpcc _ staгt
на языке С. Здесь опять будет много выходных данных, которые следует перена­
править в файл. Ниже приведен очень короткий пример, который запускает пять

потоков для пяти хранилищ данных, «прогревается» 30 секунд, а затем в течение
30 секунд проводит эталонное тестирование:

$./tpcc_start localhost tpccS username p4ssword 5 5 30 30

*** ###easy### ТРС-С Load Generator ***

<Parameters>

[server]: localhost
[port]: 3306
[DBname]: tpcc5

[user]: username
[pass]: p4ssword

[warehouse]: 5
[connection]: 5

[rampup]: 30 (sec.)
[measure]: 30 (sec.)

RAMP-UP TIME.(30 sec.)

MEASURING START.

10, 63(0):0.40, 63(0):0.42, 7(0):0.76, 6(0):2.60, 6(0):0.17
20, 75(0):0.40, 74(0):0.62, 7(0):0.04, 9(0):2.38, 7(0):0.75
30, 83(0):0.22, 84(0):0.37, 9(0):0.04, 7(0):1.97, 9(0):0.80

STOPPING THREADS ..•..

<RT Histogram>

1.New-Order
2.Payment
3.0rder-Status

4.Delivery
5.5tock-Level

<90th Percentile RT
New-Order 0.37

Payment 0.47
Order-Status 0.06

Delivery 2.43
Stock-Level 0.75

<Raw Results>

(MaxRT)>
(1.10)
(1.24)
(0.96)
(2.72)
(0.79)

[0] sc:221 lt:0 rt:0 fl:0
[1] sc:221 lt:0 rt:0 fl:0
[2] sc:23 lt:0 rt:0 fl:0
[З] sc:22 lt:0 rt:0 fl:0
[4] sc:22 lt:0 rt:0 fl:0

in 30 sec.

<Raw Results2(sum ver.)>
[0] sc:221 lt:0 rt:0 fl:0
[1] sc:221 lt:0 rt:0 fl:0
[2] sc:23 lt:0 rt:0 fl:0
[З] sc:22 lt:0 rt:0 fl:0
[4] sc:22 lt:0 rt:0 fl:0

<Constraint Check> (all must Ье [ОК])

[transaction percentage]
Payment: 43.42% (>=43.0%) [ОК]

Order-Status: 4.52% (>= 4.0%) [ОК]

Delivery: 4.32% (>= 4.0%) [ОК]

Stock-Level: 4.32% (>= 4.0%) [ОК]
[response time (at least 90% passed)]

New-Order: 100.00% [ОК]
Payment: 100.00% [ОК]

Order-Status: 100.00% [ОК]
Delivery: 100.00% [ОК]

Stock-Level: 100.00% [ОК]

<TpmC>
442.000 TpmC

Примеры эталонного тестирования 99

Последняя строка - это результат эталонного теста: количество транзакций в ми­

нуту, достигнутое в процессе его выполнения 1 •

Если вы видите результаты, отклоняющиеся от нормы, в строках, непосредственно

предшествующих этой (например в строках проверки ограничений), для поиска

ошибок можете проверить гистограммы времени отклика и другую выведенную
информацию. Естественно, вы должны были использовать скрипты, аналогичные

показанным в этой главе. Кроме того, вам нужны детальные диагностические

данные, а также информация о производительности сервера во время выполнения

эталонных тестов.

В демонстрационных целях мы провели этот тест на ноутбуке. Реальные серверы должны

работать намного быстрее.

100 Глава 2 • Эталонное тестирование MySQL

Итоги главы

У каждого, кто использует MySQL, есть причины разобраться в эталонном тести­
ровании. Эталонное тестирование - это не просто практическая деятельность для

решения бизнес-задач, но и образовательный процесс. Изучение того, как струк­
турировать задачу таким образом, чтобы эталонный тест мог помочь найти ответ,
аналогично широкому спектру проблем - от работы с лексическими задачами до со­
ставления уравнений в математическом курсе. Формулировка правильного вопроса,
выбор правильного эталонного теста для ответа на него, определение продолжитель­
ности и параметров эталонного теста, его запуск, сбор данных и анализ результатов
превратят вас в более грамотного пользователя MySQL.

Если вы еще не знаете sysbench, мы рекомендуем хотя бы ознакомиться с ним. Как
минимум узнайте, как использовать его эталонные тесты oltp и fileio. Эталонные
тесты oltp очень удобны для быстрого сравнения разных систем. В то же время
эталонные тесты файловой системы и диска неоценимы для устранения неполадок

и изолирования ошибочных компонентов при возникновении проблем с производи­
тельностью системы. Мы часто использовали такие эталонные тесты, чтобы доказать:
несмотря на утверждения администратора, у SAN действительно был ошибочный
диск, а политика кэширования RАID-контроллера на самом деле не была настрое­
на так, как могло показаться, если судить по информации от утилиты. И когда вы

проводите эталонное тестирование диска, который, по его информации, способен
выполнять 14 ООО произвольных чтений в секунду, вы понимаете, что либо сами
допустили ошибку, либо в системе серьезные ошибки, либо она неправильно скон­
фигурирована 1•

Если вы планируете часто проводить эталонное тестирование систем, целесообразно
упорядочить этот процесс. Выберите несколько инструментов эталонного тестиро­
вания, которые соответствуют вашим потребностям, и хорошо их изучите. Создайте
библиотеку скриптов, помогающих вам при настройке тестов, фиксации программ­
ного вывода, выводе информации о производительности системы и статусных

сообщений, а затем при ее анализе. Освойтесь с утилитой построения графиков,
например gnuplot или R, - не тратьте время на электронные таблицы, они слишком
громоздки и медленны. Стройте графики своевременно и регулярно, чтобы выявлять
проблемы и неудачи в своих эталонных тестах и системах. Ваши глаза быстрее обна­
ружат аномалию, чем любой скрипт или инструмент.

Один вращающийся накопитель может выполнить только пару сотен операций в секунду,
из-за того что на вращение и поиск нужного фрагмента требуется время.

Профилирование
производительности сервера

Три наиболее распространенных вопроса, связанных с производительностью, ко­
торые мы получаем в консалтинговой практике, - оптимально ли работает сервер,
почему конкретный запрос не выполняется достаточно быстро, а также как устранить

таинственные перебои в работе, которые пользователи обычно называют «стопор»,
«захламление» и «зависание». Данная глава даст прямые ответы на эти три типа во­

просов. Мы перечислим инструменты и методы, которые помогут повысить общую
рабочую нагрузку сервера, ускорить выполнение одного запроса, устранить непо­
ладки и решить трудновыявляемые проблемы, вызванные неизвестным фактором

и неизвестно в чем проявляющиеся.

Это может показаться непростой задачей, но оказывается, что с помощью простого

метода мы можем извлечь из всего массива информации полезную. Этот метод дол­

жен сфокусироваться на измерении того, на что сервер тратит время при своей работе,

а методика, которая позволяет это сделать, называется профилированием. В текущей

главе мы расскажем, как измерять показатели работы системы и создавать профили,
а также как профилировать весь стек, от приложения до сервера базы данных и до от­

дельных запросов.

Начинать необходимо с чистого листа, поэтому сразу развеем несколько распро­
страненных заблуждений об эффективности. Возможно, поначалу это трудно будет
понять, но вы оставайтесь с нами, и мы объясним все позже на примерах.

Введение в оптимизацию производительности

Попросите десять человек дать определение термина «производительность», и вы,

скорее всего, получите десять различных ответов, в которых будут использованы такие
термины, как «запросов в секунду», «загрузка процессора», «масштабируемость» и т. д.
Обычно это не вызывает проблем, поскольку люди по-разному понимают производи­
тельность в зависимости от контекста, однако в этой главе мы будем использовать
формальное определение. Оно гласит: производительность измеряется временем,

102 Глава 3 • Профилирование производительносrи сервера

требующимся для выполнения задачи. Другими словами, производителыюсть -
это время отЮ1uка системы. Это очень важный подход. Мы измеряем производи­

тельность задачами и временем, а не ресурсами. Цель сервера базы данных состоит

в выполнении SQL-выражений, поэтому интересующие нас задачи - это запросы

или выражения, в основном SELECT, UPDAТE, INSERT и ряд других1 • Производитель­

ность сервера базы данных определяется временем отклика на запрос, а единица
измерения - это время отклика на запрос.

Теперь зададим еще один риторический вопрос: что такое оптимизация? Мы по­

дробнее ответим на него позже, а пока договоримся, что оптимизация производитель­

ности - это работа, направленная на максимальное сокращение времени отклика для

данной рабочей нагрузки 2•

Мы обнаружили, что многих людей это сбивает с толку. Например, если вы считае­

те, что оптимизация производительности требует снижения загрузки процессора, то

думаете об уменьшении потребления ресурсов. Но это заблуждение. Ресурсы должны

потребляться. Иногда для ускорения работы требуется увеличить потребление
ресурсов. Мы многократно обновляли старую версию MySQL с использованием
древней версии InnoDB и в результате стали свидетелями резкого увеличения
загрузки процессора. Об этом чаще всего не стоит беспокоиться. Обычно это озна­

чает, что более новая версия InnoDB тратит больше времени на полезную работу
и меньше - на борьбу сама с собой. Проверить время отклика на запрос - лучший

способ узнать, полезным ли было обновление. Иногда обновление привносит

ошибку, например не использует индекс, что также может проявиться в увеличении
загрузки процессора.

А если бы вы считали, что оптимизация производительности связана с увеличением

количества запросов в секунду, то подумали бы об оптимизации пропускной способ­
ности. Увеличение пропускной способности можно рассматривать как побочный

эффект оптимизации производительности3. Оптимизация запросов позволяет сер­

веру выполнять больше запросов в секунду, поскольку, когда сервер оптимизирован,

Мы не разделяем запросы и выражения, DDL и DML и т. д. Если вы отправляете на сервер
команду, неважно какую, вам просто нужно, чтобы она была быстро выполнена. Мы обычно

используем слово .~запрос» как термин для всех отправляемых команд.

Обычно мы избегаем философских дискуссий об оптимизации производительности, но
можем дать две рекомендации по поводу дальнейшего чтения. На сайте Регсоnа (http:/ /
www.percona.com) есть статья Goal-Driven Perfomiance Optimization, которая представляет
собой краткое руководство пользователя. Кроме того, очень полезно прочитать книгу Кэри

Миллсапа (Сагу Millsap) Optimizing Oracle Perforшance (издательство O'Reilly). Метод
оптимизации производительности Кэри, метод R, является золотым стандартом в мире
Oracle.

Иногда производительность определяют с точки зрения пропускной способности. Так можно

делать, но это не то определение, которое мы здесь используем. Считаем, что время отклика

более полезно, хотя часто пропускную способность легче измерить в эталонных тестах.

Введение в оптимизацию производительности 103

для выполнения каждого из них требуется меньше времени. (Единица измерения

пропускной способности - это запросы за время, то есть величина, обратная произ­

водительности, с точки зрения нашего определения.)

Таким образом, если нашей целью является сокращение времени отклика, то нужно

понять, почему серверу требуется определенное количество времени для ответа на

запрос, а также уменьшить или устранить любую ненужную работу, которую он вы­
полняет в процессе достижения результата. Другими словами, следует определить,

где затрачивается время, и измерить его. Это приводит ко второму важному прин­

ципу оптимизации: вы не можете достоверно оптимизировать то, что не можете
измерить. Поэтому первая задача заключается в том, чтобы с помощью измерений

выяснить, где расходуется время.

Мы заметили, что многие люди, пытаясь что-то оптимизировать, тратят большую
часть своего времени на изменения и очень мало - на измерения. Мы же, на­

против, стремимся провести большую часть своего времени - возможно, свыше

90 %, - измеряя, где именно задерживается отклик. Если мы не получили ответа,

то, возможно, не выполнили измерения правильно или в полном объеме. При сборе

полных и должных образом подобранных метрик работы сервера проблемы про­
изводительности обычно выплывают на поверхность и решение сразу становится

очевидным. Однако измерение может оказаться сложной задачей само по себе, и,

кроме того, иногда непонятно, что делать с полученными результатами: выяснить

с помощью измерений, где затрачивается время, еще не означает понять, почему

это происходит.

Мы упомянули о правильно проведенных измерениях, но что это значит? Правильно

проведенное измерение - это измерение, которое затрагивает только ту деятель­

ность, которую вы хотите оптимизировать. Как правило, лишнее попадает в изме­

рения в двух случаях:

О измерения начинаются и заканчиваются не вовремя;

О деятельность измеряется в совокупности, а не по интересующим нас фрагментам.

Например, распространенной ошибкой является изучение поведения всего сервера
при медленном выполнении запроса. Если запрос выполняется медленно, лучше

всего измерить только его, а не весь сервер. И следует выполнять измерение от на­

чала до конца запроса, а не до или после.

Время на выполнение задачи можно разделить на время выполнения и время ожи­

дания. Для сокращения времени выполнения необходимо определить и измерить

подзадачи, а затем произвести одно или несколько следующих действий: полностью

исключить подзадачи, сделать их реже выполняемыми или более эффективными.

Сокращение времени ожидания - наиболее сложная задача, поскольку ожидание

может быть вызвано другими действиями системы и, таким образом, является ре­
зультатом взаимодействия между нашей задачей и другими задачами, которые могут

бороться за доступ к таким ресурсам, как диск или процессор. И вам, возможно,

104 Глава З • Профилирование производительности сервера

придется использовать разные методики и инструменты в зависимости от того, по­

трачено время на выполнение или на ожидание.

В предыдущем абзаце сказано, что вам нужно идентифицировать и оптимизировать
подзадачи. Но это упрощение. Редкие или короткие подзадачи могут вносить столь

незначительный вклад в общее время отклика, что не стоит тратить время на их

оптимизацию. Как же определить, какие задачи требуют оптимизации? Для этого
и было придумано профилирование.

Как узнать, верны ли намерения

Измерения очень важны, однако не ошибочны ли они? На самом деле измерения

всегда ошибочны. Результат измерения величины - это не то же самое, что сама ве­

личина. Ошибки в результатах могут быть не настолько большими, чтобы это было

важным, и тем не менее это ошибки. Поэтому задаваемый вопрос должен звучать так:

«Насколько ошибочными являются измерения?~ Эта проблема детально рассматри­

вается в других книгах, поэтому мы не будем здесь на ней останавливаться. Просто

будьте в курсе, что вы работаете с результатами измерений, а не с фактическими ве­

личинами. Очень часто результаты измерений могут оказаться беспорядочными или

двусмысленными, что также может привести к неправильным выводам.

Оптимизация с помощью профилирования

Когда вы изучите ориентированный на время отклика метод оптимизации эффектив­

ности и попрактикуетесь в его применении, вы снова и снова будете возвращаться

к системам профилирования.

Профилирование является основным средством, с помощью которого в ходе из­

мерений можно выяснить и проанализировать, где происходит потребление време­

ни. Профилирование влечет за собой два шага: измерение уже выполненных задач,
а также агрегирование результатов и их сортировку таким образом, чтобы важные

задачи были в приоритете.

Все инструменты профилирования работают практически одинаково. Когда на­

чинается выполнение задачи, они запускают таймер, а когда оно заканчивается,

останавливают таймер и вычитают время начала из времени окончания, чтобы полу­

чить время отклика. Большинство инструментов также записывают, какая служба

запустила выполнение задачи. Полученные данные могут быть использованы для

построения графиков вызовов, но, что более важно для наших целей, схожие задачи

могут быть сгруппированы и объединены. Может быть полезно сделать сложный

статистический анализ сгруппированных задач, но в любом случае необходимо
определить, сколько задач было сгруппировано, и суммировать время их отклика.

Это делает отчет профилирования. Он состоит из таблицы, в которой каждой задаче
соответствует одна строка. В каждой строке отображаются название задачи, количе-

Введение в оптимизацию производительности 105

ство выполняемых задач, общее и среднее время выполнения и доля времени работы,
которая пришлась на эту задачу. Отчет о профилировании должен быть отсортирован

в порядке убывания суммарного затраченного времени.

Чтобы это стало понятнее, посмотрим на реальный профиль рабочей нагрузки всего

сервера, который показывает типы запросов, на выполнение которых сервер тратит

свое время. Это самое общее представление о времени отклика, другие варианты мы

покажем позже. Далее приведен результат работы инструмента pt-query-digest из
пакета Percona Toolkit, который является преемником mak-query-digest из пакета
Maatkit. Чтобы не отвлекаться на посторонние моменты, мы немного упростили
результат, включив в него только первые несколько типов запросов:

Rank Response time Calls R/Call Item
==== ================ ===== ====== =======

1 11256.3618 68.1% 78069 0.1442 SELECT InvitesNew
2 2029.4730 12.3% 14415 0.1408 SELECT StatusUpdate
3 1345.3445 8.1% 3520 0.3822 SHOW STATUS

Здесь приведены лишь несколько первых строк профиля, отсортированные в порядке

убывания времени, требовавшегося на отклик. При этом данный профиль содержит

минимально необходимый набор столбцов. Каждая строка показывает время отклика,
долю, приходящуюся на отклик по данной задаче в общем времени работы системы,

количество выполненных запросов, среднее время отклика на запрос и абстракцию
запроса. Профиль дает понять, насколько затратен каждый из типов запросов как

относительно друг друга, так и относительно общих затрат. В данном случае задачи -
это запросы, которые, по-видимому, являются наиболее распространенным способом

профилирования MySQL.

Фактически мы обсудим два вида профилирования: профилирование времени выпол­
нения и анализ ожидания. Профилирование времени выполнения показывает, какие

задачи потребляют больше всего времени, а анализ ожидания - на каком этапе

задачи застревают или блокируются на самое продолжительное время.

Когда задачи выполняются медленно из-за потребления слишком большого объема
ресурсов и тратят большую часть времени на работу, они не будут расходовать много

времени на ожидание, поэтому анализ ожидания будет полезен. Верно и обратное:
когда задачи все время ждут и не потребляют никаких ресурсов, бесполезно изме­

рять, где они проводят время. Если вы не знаете точно, где притаилась проблема,
вам, скорее всего, придется проверить и то и другое. Позже мы приведем несколько

таких примеров.

В реальности может случиться, что профилирование времени выполнения покажет:

задача потратила слишком много времени. Но, углубившись в изучение проблемы,

вы обнаружите, что часть так называемого времени выполнения расходуется на

ожидание на более низком уровне. Например, наш упрощенный отчет показал, что

много времени потребляет команда SELECT из таблицы InvitesNew, но это время

может быть потрачено на более низком уровне в ходе ожидания завершения ввода/
вывода.

106 Глава 3 • Профилирование производительности сервера

Прежде чем вы сможете профилировать систему, вам необходимо научиться изме­
рять ее характеристики, а это часто требует оснащения инструментами. У системы,
оснащенной инструментами, есть точки измерения, где фиксируются данные, а также

способы сделать последние доступными для фиксации. Достаточно оснащенные
системы встречаются редко. У большинства из них точек измерения немного, да и те
обычно обеспечивают только подсчет действий и не позволяют измерить, сколько
времени те заняли. Примером такой системы служит MySQL, по крайней мере до
версии 5.5, когда первая версия Performance Schema представила несколько времен­
ных точек измерения1 • В версии MySQL 5.1 и предыдущих практически отсутствуют
временные точки измерения; большая часть данных о работе сервера, которую можно
было получить, имела вид счетчиков SHOW STATUS, которые просто подсчитывали
количество совершенных действий. Это основная причина, побудившая нас создать
Percona Server, который, начиная с версии 5.0, предлагает оснащение инструментами
на уровне запросов.

К счастью, несмотря на наличие нашей методики оптимизации производительно­

сти, хорошо работающей благодаря отличным инструментам, вы можете получить
результат и без ее использования. Часто можно измерять системы извне, а при не­
возможности этого - делать обоснованные предположения, опираясь на знания
о системе и доступную информацию. Однако в данном случае не забывайте, что вы
работаете с потенциально неверными данными и никто не гарантирует корректно­
сти ваших предположений. Это риск, которому вы обычно подвергаетесь, наблюдая
системы, не являющиеся абсолютно прозрачными.

Например, в Percona Server 5.0 журнал медленных запросов может выявить некото­
рые из наиболее важных причин низкой производительности, такие как ожидание
ввода/вывода на диск или блокировки на уровне строк. Если в журнале отобража­
ется 9,6 секунды ожидания ввода/вывода на диск для десятисекундного запроса,
не имеет смысла выяснять, на что пришлись оставшиеся 4 % времени отклика. Ввод/
вывод на диск, безусловно, является самой важной проблемой.

Интерпретация профиля

Профиль сначала отображает важные задачи, но то, что не показано, может быть
столь же важным. Обратимся к приведенному ранее профилю. К сожалению, в нем
отсутствует много полезной информации, поскольку он показывает только ранги,

суммы и средние значения. Вот какой информации не хватает.

D Полезность запросов. Отчет не показывает автоматически, какие запросы стоят

того, чтобы их оптимизировать. Это возвращает нас к значению оптимизации.
Если вы прочитаете книгу Кэри Миллсапа, то получите намного больше полез­
ной информациило этой теме, но мы повторим два важных нюанса. Во-первых,

некоторые задачи не стоит оптимизировать, поскольку время их выполнения

составляет незначительную долю от общего времени работы. Согласно закону

Performance Schema в MySQL 5.5 не дает детализации на уровне запросов, эта возможность
добавлена в MySQL 5.6.

Введение в оптимизацию производительности 107

Амдаля, запрос, который потребляет всего 5 % от общего времени отклика, мо­
жет ускорить общее время работы только на 5 % независимо от того, насколько
быстрее вы его выполните. Во-вторых, если оптимизация задачи стоит 1 ООО дол­
ларов, а бизнес в итоге не получит никаких дополнительных денег, это значит,
что вы просто деоптимизировали бизнес на 1 ООО долларов. Таким образом,
оптимизацию необходимо прекратить, если стоимость улучшения превышает
получаемую выгоду.

1:1 Выбросы. Задачи могут нуждаться в оптимизации, даже если они не оказываются
в верхней части профиля. Возможно, медленное выполнение некоторой задачи

может быть неприемлемо для пользователей, несмотря на то что эта задача вы­
полняется не настолько часто, чтобы занимать существенную долю в общем
времени отклика.

1:1 Неизвестные неизвестные 1 • Если это возможно, хороший инструмент профилиро­

вания покажет вам потерянное время. Потерянное время - это количество часов,

не учитываемых в задачах измерения.

Например, если в результате измерений вы получите общее время работы процес­
сора 10 секунд, а составление вашего профиля подзадач требует 9,7 секунд, тогда
потерянное время составляет 300 миллисекунд. Это может быть признаком того, что
вы не все измеряете, либо может оказаться неизбежным из-за ошибок округления
и самих затрат на измерения. Если инструмент показывает потерянное время, следует

обратить на него внимание. Возможно, вы упускаете из виду что-то важное. Если

отчет его не показывает, вы должны обратить на это внимание и запомнить (или за­
писать), какой информации вам не хватает. В нашем примере профиля потерянное

время не показано, однако это просто недостаток использованного инструмента.

1:1 Скрытые подробности. Профиль ничего не говорит о распределении времени от­
клика. Опираться на средние значения опасно, поскольку они скрывают инфор­

мацию и не являются хорошим индикатором состояния объекта целиком. Петр
любит повторять, что информация о средней температуре по больнице не несет
смысловой нагрузки2• Что бы случилось, если бы элемент No 1 в показанном ранее
отчете состоял из двух запросов с односекундным временем отклика и 12 771 за­
проса с временем отклика в десятки микросекунд? У нас нет никакого способа
выяснить, с какой ситуацией мы имеем дело в данном случае. Чтобы принять
правильное решение о месте сосредоточения усилий, вам нужна дополнительная

информация о 12 773 запросах, упакованных в эту единственную строчку профиля.
Особенно полезно иметь более полную информацию о времени отклика, такую как
гистограммы, процентили, стандартное отклонение и индекс рассеяния].

Мы приносим свои извинения Дональду Рамсфелду. Его комментарии были очень про­

ницательными, даже если звучали смешно.

Чтоб мне провалиться! (Это внутренняя шутка. Мы не смогли устоять.)

Коэффициент дисперсии (или индекс рассеяния) рассчитывается как отношение вели­

чины рассеяния к среднему значению. В отечественной литературе шире распространен

коэффициент вариации, который рассчитывается как отношение стандартного отклонения

(то есть корня из дисперсии) к среднему значению. - Примеч. пер.

108 Глава 3 • Профилирование производительности сервера

Хорошие инструменты могут помочь, автоматически показывая эту информацию.

Фактически утилита pt-query-digest включает многие из этих показателей в свой
профиль и в подробный отчет, который она вьщает. В нашем примере профиль су­

щественно упрощен для того, чтобы сосредоточиться на самом важном - сортировке
задач по убыванию затраченного времени. Далее в этой главе мы приведем примеры
более подробного и полезного отчета о профилировании.

Еще один очень важный момент, опущенный нами в примере профиля, - это воз­

можность анализа взаимодействия на более высоком уровне в стеке. Когда мы смо­

трим только на запросы на сервере, мы на самом деле не можем сопоставить раэные

запросы и определить, являются ли они частью одного и того же взаимодействия

с пользователем. Можно сказать, у нас туннельное видение и мы не можем умень­

шить масштаб и профилировать на уровне транзакций или просмотров страниц.

Существует несколько способов решения этой проблемы, например тегирование
запросов с помощью специальных сообщений, указывающих, откуда они поступили,

с дальнейшим агрегированием на этом уровне. Либо можно добавить инструменты

и появится возможность профилирования на уровне приложения, о чем мы расска­

жем в следующем разделе.

Профилирование приложения

Можно профилировать практически все, что потребляет время, в том числе при­

ложение. На самом деле профилирование приложения, как правило, проще, чем

профилирование сервера базы данных и гораздо полезнее. И хотя для иллюстрации

мы привели пример профиля о запросах сервера MySQL, лучше измерять и про­
филировать сверху вниз 1 • Тем самым мы можем отслеживать задачи по мере их про­

хождения через систему от пользователя к серверам и обратно. Часто именно сервер

базы данных виноват в потере производительности, но ничуть не реже эта проблема

вызвана ошибкой приложения. Появление узких мест может быть вызвано также

одной из следующих причин.

1:1 Выполняется обращение к внешним ресурсам, таким как веб-сервисы или поис­

ковые системы.

1:1 Выполняются операции, которые требуют обработки больших объемов данных
в приложении, например синтаксический анализ больших файлов XML.

1:1 Выполняются затратные операции в коротких циклах, например наблюдается
злоупотребление регулярными выражениями.

1:1 Используются плохо оптимизированные алгоритмы, например алгоритмы поиска

элементов в списках.

К счастью, легко выяснить, является ли источником проблемы MySQL. Для этого
необходимо использовать инструмент профилирования приложений. (Кроме того,

оно с самого начала поможет разработчикам писать эффективный код.)

Далее приведем примеры, в которых, как мы знаем, источник проблем лежит на нижнем

уровне, поэтому в них подход сверху вниз не применяется.

Профилирование приложения 109

Мы рекомендуем включать код профилирования в каждый новый проект, который

вы запускаете. Иногда сложно ввести код профилирования в существующее при­

ложение, но в новые приложения его включить легко.

Не замедлит ли профилирование работу серверов?

Да, профилирование замедляет работу приложения. Нет, профилирование ускоряет

работу приложения. Стоп, сейчас мы все объясним.

Профилирование и мониторинг увеличивают издержки. Следует ответить на два во­

проса: каковы эти издержки и превышает ли выгода затраты?

Многие из тех, кто занимается проектированием и разработкой высокопроизводитель­

ных приложений, полагают, что нужно измерять все что возможно и просто принимать

стоимость измерений как часть работы приложения. Гуру производительности Oracle
Тома Кайта (Тош Kite) спросили, сколько стоит оснащение инструментами Oracle,
и он ответил, что оно позволяет повысить производительность не менее чем на 10 %.
Мы согласны с такой точкой зрения и полагаем, что в большинстве приложений, ко­

торые в противном случае просто не будут измеряться, прирост производительности,

вероятно, будет намного больше, чем 10 %. Даже если вы с этим не согласны, стоит
предусмотреть хотя бы облегченное профилирование, которое можно выполнять по­

стоянно. Неприятно обнаруживать узкие места в производительности постфактум

просто потому, что вы не встроили в систему средства ежедневного отслеживания из­

менений производительности. А когда столкнетесь с проблемой, данные о предыду­

щем состоянии приобретут огромную ценность. Кроме того, вы можете использовать

данные профилирования, чтобы планировать приобретение оборудования, выде­

лять ресурсы и прогнозировать нагрузку в пиковые периоды или сезоны.

Что мы называем облегченным профилированием? Хронометраж всех запросов SQL
и общего времени исполнения скрипта, несомненно, обходится дешево. Кроме того,

вам не надо делать его для каждого просмотра страницы. Если у вас приличный тра­

фик, можно просто выполнить профилирование случайной выборки, включая профи­

лирование в конфигурационном файле приложения:

<?php
$profiling_enaЫed = rand(0, 100) > 99;
?>

Профилирование только 1 % просмотров вашей страницы поможет найти самые се­
рьезные проблемы. Особенно полезно делать это в коде, предназначенном для про­

мышленной эксплуатации, поскольку так вы обнаружите то, чего нигде больше

не увидите.

Несколько лет назад, когда мы писали второе издание этой книги, для популярных

языков и фреймворков веб-программирования еще не было хороших готовых ин­

струментов для профилирования приложений в условиях, далеких от тепличных,

поэтому мы показали простой, но эффективный способ создавать собственные

110 Глава 3 • Профилирование производительности сервера

инструменты. Сегодня рады сообщить, что существует большое количество отлич­
ных инструментов и все, что вам нужно сделать, - открыть их и начать улучшать

производительность.

Прежде всего мы хотим рассказать о достоинствах программного обеспечения New
Relic. Нам не платят за его рекламу, и мы обычно не поддерживаем конкретные ком­
пании или продукты, но это и правда отличный инструмент. Если вы можете исполь­

зовать его, сделайте это. Наши клиенты, применяющие New Relic, нередко решают
свои проблемы без нашего участия, а иногда с его помощью они обнаруживают про­
блемы, даже если не могут найти решение. New Relic подключается к вашему прило­
жению, профилирует его и отправляет данные в личный кабинет с веб-интерфейсом,
что позволяет сократить время отклика и тем самым повысить производительность

приложения. В итоге вы совершаете правильные действия, не задумываясь об этом.

New Relic обеспечивает инструменты для всей работы пользователя: от браузера до
кода приложения, от базы данных до внутренних операций.

Что замечательно в таких средствах, как New Relic, - это то, что они позволяют осна­

щать ваш код инструментами в процессе использования, а не только при разработке

и не только время от времени. Это важный момент, потому что многие средства для

профилирования или оснащения инструментами могут быть настолько затратными,
что люди боятся запускать их во время работы.

Следует оснащать систему инструментами в эксплуатационной среде, поскольку

тогда вы получите такую информацию о производительности своей системы, ко­

торую нельзя получить на стадии разработки или обкатки. Если выбранные вами
инструменты действительно слишком затратны для постоянного запуска, попро­

буйте запустить их хотя бы на одном сервере приложений в кластере или оснащайте
инструментами только фрагмент выполнения работы, как указано во врезке «Не за­
медлит ли профилирование работу серверов?~.>.

Оснащение инструментами приложения РНР. Если вы не можете использовать New
Relic, есть и другие хорошие варианты. Для РНР, в частности, есть несколько ин­
струментов, которые могут помочь вам профилировать приложение. Один из них -
xhprof (http://pecl.php.net/package/xhprof), разработанный Facebook для собственного
применения и открытый для публики в 2009 году. Он имеет множество продвинутых
функций, но для нас наиболее важным является то, что его легко установить и ис­

пользовать, он облегченный, создан для масштабирования, поэтому может работать
в эксплуатационной среде даже при очень большой системе. Кроме того, он генери­
рует хороший профиль вызовов функций, отсортированных по использованному

времени. Кроме xhprof, существуют инструменты профилирования низкого уровня,
такие как xdebug, Valgrind и cachegrind, которые помогут вам проверить код различ­
ными способами 1 • Некоторые из этих инструментов не подходят для использования
в боевых условиях из-за их излишней детализации и высоких издержек, но могут
быть полезны в среде разработки.

В отличие от РНР мноmе языки программирования имеют встроенную поддержку профили­

рования. Для Ruby исполь.зуйте параметр командной строки -r, для Perl - perl -d: DProf и т. д.

Профилирование приложения 111

Другое средство профилирования РНР, которое мы обсудим, - это разработанный
нами инструмент, частично основанный на коде и принципах, которые мы приводили

во втором издании. Он называется Instrument-for-php (IfP) и размещен в Google Code
по адресу http //code.google.com/p/instrumentation-for-php/. Он не снабжает инструментами
РНР так же скрупулезно, как это делает xhprof, зато он тщательнее работает с вызо­
вами базы данных. Это чрезвычайно удобный способ профилирования использования
базы данных приложения в тех случаях, если у вас нет свободного доступа к базе дан­
ных или управления ею, что встречается довольно часто. IfP - это класс-одиночка,

содержащий счетчики и таймеры, поэтому его легко ввести в готовый продукт,

не требуя доступа к конфигурации РНР, что опять же является нормой для многих
разработчиков.

IfP не профилирует автоматически все ваши функции РНР, а работает только с самыми
важными. Например, вам придется вручную запускать и останавливать пользователь­

ские счетчики для определения того, что вы хотите профилировать. Но он автома­

тически хронометрирует выполнение всей страницы, упрощает оснащение инстру­

ментами базы данных и вызовов memcached, поэтому вам не нужно самим запускать
и останавливать счетчики для этих важных элементов. Это означает, что вы можете

в одно мгновение профилировать три очень важные области: приложение на уровне
запросов (просмотров страниц), запросы к базе данных и запросы к кэшу. IfP также
экспортирует счетчики и таймеры в среду Apache, так что Apache может записать ре­
зультаты в журнал. Это легкий и очень упрощенный способ хранения результатов для
дальнейшего анализа. Jfp не хранит никаких других данных в ваших системах, поэтому
нет необходимости в дополнительном участии системного администратора.

Для его использования просто вызовите start_request () в начале выполнения стра­
ницы. В идеале это должно быть первым, что делает ваше приложение:

require_once('Instrumentation.php');
Instrumentation::get_instance()->start_request();

Инструмент вызывает функцию закрытия, поэтому в конце работы вам не нужно
ничего делать.

IfP автоматически добавляет комментарии к вашим SQL-запросам. Это позволяет
довольно гибко проанализировать приложение, просматривая журнал запросов сер­
вера базы данных, а также легко узнать, что в действительности происходит, когда вы
смотрите SHOW PROCESSLIST и видите некорректный запрос в MySQL. Большинству
людей тяжело дается поиск проблемного запроса, особенно если этот запрос был
«слеплен» с помощью конкатенации строк и тому подобных методов, так что найти
его в исходном коде простым (текстовым) поиском нельзя. Инструмент сообщит,
какой хост приложения отправил запрос, даже если вы используете прокси-сервер

или балансировщик нагрузки. Он проинформирует, какой пользователь приложения
его выполнил, так что вы сможете найти запрос страницы, функцию в исходном коде

и номер строки, а также пары «ключ - значение» для всех созданных счетчиков.

Приведем пример:

-- File: index.php Line: 118 Function: fullCachePage request_id: АВС session_id: XYZ
SELECT * FROM ...

112 Глава 3 • Профилирование производительности сервера

Как оснастить инструментами обращения к MySQL, зависит от того, какой интер­
фейс вы используете для подключения к системе. При использовании объектно­
ориентированного интерфейса mysqli необходимо изменить одну строку: замените
вызов конструктора mysqli вызовом автоматически оснащенного инструментами
конструктора mysqli_x. Этот конструктор является подклассом, предоставляемым IfP,
с переписанным инструментарием и запросами. Если вы не используете объектно­

ориентированный интерфейс или применяете какой-то другой уровень доступа

к базе данных, вам, скорее всего, потребуется немного переписать код. Надеемся,
что в вашем коде нет случайных вызовов базы данных, но если это не так, можете
использовать интегрированную среду разработки (IDE), например Eclipse, которая
поможет легко его реорганизовать. Централизацию кода доступа к базе данных стоит
выполнить по многим причинам.

Анализировать результаты очень легко. Инструмент pt-query-digest из набора Percona
Toolkit может извлекать встроенные пары ~имя - значение» из комментариев за­
проса, поэтому вы можете просто записывать запросы в файл журнала MySQL
и обрабатывать его. Вы также можете задействовать утилиту mod_log_config от
Apache для настройки пользовательского ведения журнала с переменными среды,
экспортируемыми с помощью IfP, вместе с макросом %0 для фиксации времени за­
проса в микросекундах.

Вы можете загрузить журнал Apache в базу данных MySQL командой LOAD DATA
INFILE и легко проанализировать SQL-запросы. На сайте Jfp есть слайд-шоу в фор­
мате PDF с примерами того, как реализовать все эти возможности и многое другое,
с образцами запросов и аргументами командной строки.

Допустим, вы не хотите добавлять возможность оснащения инструментами в свое
приложение или слишком заняты, чтобы этим заниматься. Но поверьте, это намного
проще, чем вы думаете. А приложенные усилия многократно окупятся, позволяя

сэкономить время и увеличить производительность. Альтернативы для оснащения

инструментами не существует. Используйте New Relic, xhprof, Jfp или любое другое
из большого набора решений для различных языков и сред приложений - не надо
изобретать велосипед.

Анализатор запросов Microsoft Enterprise Monitor

Одним из инструментов, который вы можете использовать, является MySQL Enterprise
Monitoг. Это часть коммерческой подписки на поддержку MySQL от Oracle. Он мо­
жет фиксировать запросы на ваш сервер либо из библиотек подключений MySQL,
либо из прокси (хотя мы не любители использовать прокси). У него очень красивый

графический пользрвательский интерфейс, который показывает профиль о запросах

на сервере и позволяет легко масштабировать определенный временной интервал, на­

пример, во время подозрительного всплеска на графике счетчиков состояния. Также

вы можете увидеть такую информацию, как планы запросов EXPLAIN, что делает его

очень полезным инструментом для диагностики и устранения неполадок.

Профилирование запросов MySQL 113

Профилирование запросов MySQL
Существует два подхода к профилированию запросов, соответствующие двум вопро­

сам, упомянутым в начале главы. Можно профилировать весь сервер, основываясь на

том, какие запросы в наибольшей степени его загружают. (Если вы начали с верхнего
уровня, с профилирования на уровне приложений, то, возможно, уже знаете, какие

запросы требуют внимания.) Затем, как только настроите конкретные запросы для
оптимизации, можете углубиться в их профилирование по отдельности, определяя,
какие подзадачи значительнее увеличивают их время отклика.

Профилирование рабочей
нагрузки сервера

Подход к профилированию на уровне сервера очень полезен, потому что он может

помочь вам проверить сервер на предмет неэффективных запросов. Обнаружение
и исправление этих запросов позволит улучшить производительность приложения

в целом, а также выявить конкретные проблемы. Вы можете снизить общую нагруз­
ку на сервер, тем самым уменьшится конкуренция за совместно используемые

ресурсы и увеличится скорость выполнения всех запросов (побочный эффект).
Снижение нагрузки на сервер способно помочь вам отложить обновления и другие
затратные мероприятия или избежать их, кроме того, вы можете обнаружить и устра­
нить проблемы, связанные с результатами, неприемлемыми для пользователя, таки­
ми как выбросы (аномальные результаты измерений).

С каждой следующей версией в MySQL появляется все больше инструментов, и если
такая тенденция сохранится, скоро в MySQL будут великолепные инструменты
для измерения наиболее важных аспектов ее производительности. Но что касается
профилирования запросов и поиска самых затратных из них, нам не нужна вся эта

сложность. Необходимый инструмент существует уже довольно давно. Это так на­

зываемый журнал медленных запросов.

Фиксация запросов MySQL в журнал

В MySQL журнал медленных запросов изначально предназначался для фиксации
только медленных запросов, но для целей профилирования необходима регистрация
всех запросов. При этом нам требуется более тонкая детализация времени отклика,
чем в MySQL 5.0 и ранних версиях. В этих версиях минимальный временной интер­
вал равнялся 1 секунде. К счастью, прежние ограничения уже неактуальны.

В MySQL 5.1 и более поздних версиях журнал медленных запросов расширен так,
что переменную сервера long_query_time можно установить равной нулю, зафи­
ксировав все запросы, а время отклика на запрос детализировано с дискретностью

1 микросекунда. Если вы используете Percona Server, этот функционал доступен
уже в версии 5.0, кроме того, Percona Server дает намного больший контроль над со­
держимым журнала и фиксацией запросов.

114 Глава З • Профилирование производительности сервера

В существующих версиях MySQL у журнала медленных запросов наименьшие из­
держки и наибольшая точность измерения времени выполнения запроса. Если вас

беспокоит дополнительный ввод/вывод, вызываемый этим журналом, то не тревожь­

тесь. Мы провели эталонное тестирование и выяснили, что при нагрузках, связанных

с вводом/выводом, издержки незначительны. (На самом деле это лучше видно в ходе

работ, нагружающих процессор.) Более актуальной проблемой является заполнение
диска. Убедитесь, что вы установили смену журнала для журнала медленных за­
просов, если он включен постоянно. Либо оставьте его выключенным и включайте
только на определенное время для получения образца рабочей нагрузки.

У MySQL есть и другой тип журнала запросов - общий журнал, но он не так полезен

для анализа и профилирования сервера. Запросы регистрируются по мере их посту­

пления на сервер, поэтому журнал не содержит информации о времени отклика или

о плане выполнения запроса. MySQL 5.1 и более поздние версии поддерживают так­
же ведение журнала запросов к таблицам, однако это не самая удачная идея. Данный
журнал сильно влияет на производительность: хотя М ySQL 5.1 в журнале медленных
запросов отмечает время запросов с точностью до 1 микросекунды, медленные за­
просы к таблице регистрируются с точностью до 1 секунды. Это не очень полезно.

Percona Server регистрирует в журнале медленных запросов значительно более по­
дробную информацию, чем MySQL. Здесь отмечается полезная информация о плане
выполнения запроса, блокировке, операциях ввода/вывода и многом другом. Эти до­

полнительные биты данных добавлялись медленно, поскольку мы столкнулись с раз­

личными сценариями оптимизации, которые требовали более подробных сведений
о том, как запросы выполняются и где происходят затраты времени. Мы также

упростили администрирование. Например, добавили возможность глобально кон­
тролировать порог long_query_time для каждого соединения, поэтому вы можете

заставить их запускать или останавливать журналирование своих запросов, когда

приложение использует пул соединений или постоянные соединения, но не можете

сбросить переменные уровня сеанса.

В целом это легкий и полнофункциональный способ профилирования сервера и оп­

тимизации его запросов.

Допустим, вы не хотите регистрировать запросы на сервере или по какой-то причине

не можете делать этого, например не имеете доступа к серверу. Мы сталкивались

с такими ограничениями, поэтому разработали две альтернативные методики и до­
бавили их в инструмент pt-query-digest пакета Percona Toolkit. Первая методика
подразумевает постоянное отслеживание состояния с помощью команды SHOW FULL

PROCESSLIST с параметром -processlist. При этом отмечается, когда запросы появ­

ляются и исчезают. В некоторых случаях этот метод довольно точен, но он не может

зафиксировать все запросы. Очень короткие запросы могут проскочить и завершить­

ся, прежде чем инструмент их заметит.

Второй метод состоит в фиксировании сетевого трафика ТСР и его проверки,

а затем декодирования протокола ~клиент/сервер MySQL~ (MySQL client/server
protocol). Вы можете использовать утилиту tcpdump для записи трафика на диск,

Профилирование запросов MySQL 115

а затем - pt-query-digest с параметром - -type=tpcdump для декодирования и анализа
запросов. Это гораздо более точная методика, которая зафиксирует все запросы.
Методика работает даже с расширенными протоколами, такими как бинарный про­
токол, используемый для создания и выполнения подготовленных операторов на

стороне сервера, и сжатый протокол. Можно также использовать MySQL Proxy со
скриптом журналирования, но в практике это нам редко встречалось.

Анализ журнала запросов

Мы рекомендуем по крайней мере время от времени фиксировать в журнале медлен­

ных запросов все запросы, выполняемые на сервере, и анализировать их. Запишите

запросы, сделанные в течение репрезентативного периода времени, например за час

пикового трафика. Если рабочая нагрузка однородна, достаточно будет минуты или
даже меньше для нахождения плохих запросов, которые следует оптимизировать.

Не стоит просто открывать журнал и смотреть в него - это пустая трата времени

и денег. Сначала создайте профиль и, если это необходимо, просмотрите конкрет­
ные выборки в журнале. Лучше всего начинать с верхнего уровня и двигаться вниз,
в противном случае, как упоминалось ранее, вы можете деоптимизировать процесс.

Для создания профиля из журнала медленных запросов требуется хороший инстру­
мент анализа журналов. Мы предлагаем утилиту pt-query-digest, которая, возможно,
является самым мощным инструментом анализа журнала запросов MySQL. Она под­
держивает множество различных функций, включая возможность сохранять отчеты

о запросах в базе данных и отслеживать изменения в рабочей нагрузке.

По умолчанию вы просто выполняете утилиту, передаете ей файл журнала медлен­
ных запросов в качестве арrумента, и она сама выполняет нужные действия. Утилита

выводит профиль запросов в журнале, а затем выбирает важные классы запросов
и выдает подробный отчет по каждому из них. В отчете есть десятки мелочей, облег­
чающих вашу жизнь. Мы продолжаем активно развивать этот инструмент, поэтому

лучше прочитать документацию для последней версии, чтобы узнать о ее функцио­
нальности.

Приведем краткий обзор отчета pt-query-digest, начиная с профиля. Ниже представ­
лена полная версия профиля, который мы показали ранее в этой главе:

Profile
Rank Query ID Response time Calls R/Call V/M Item
==== ==================
1 0xBFCF8E3F293F6466 11256.3618 68.1% 78069 0.1442 0.21 SELECT InvitesNew?
2 0х620В8САВ2В1С76ЕС 2029.4730 12.3% 14415 0.1408 0.21 SELECT StatusUpdate?
3 0хВ90978440СС11СС7 1345.3445 8.1% 3520 0.3822 0.00 SНOW STATUS
4 0xCB73D6B5B031B4CF 1341.6432 8.1% 3509 0.3823 0.00 SНOW STATUS
MISC 0xMISC 560.7556 3.4% 23930 0.0234 0.0 <17 ITEMS>

Здесь показано чуть больше деталей, чем раньше. Во-первых, каждый запрос
имеет идентификатор, который является хеш-подписью его цифрового отпечатка.
Цифровой отпечаток - это нормализованная каноническая версия запроса с уда-

116 Глава 3 • Профилирование производительности сервера

ленными литералами и пробелами, переведенная в нижний регистр (обратите
внимание, что запросы 3 и 4 кажутся одинаковыми, но у них разные отпечатки).
Инструмент также объединяет таблицы с похожими именами в каноническую фор­
му. Вопросительный знак в конце имени таблицы InvitesNew означает, что к имени
таблицы был добавлен идентификатор сегмента данных (шарда), а инструмент уда­
лил его, так что запросы к таблицам, сделанные с похожими целями, объединены
вместе. Этот отчет взят из сильно шардированного приложения Facebook.

Еще один появившийся здесь столбец - отношение рассеяния к среднему значе­
нию V /М. Этот показатель называется индексом рассеяния. У запросов с более высо­
ким индексом рассеяния сильнее колеблется время выполнения, и они, как правило,
являются хорошими кандидатами на оптимизацию. Если вы укажете параметр

- -explain в утилите pt-query-digest, то к таблице будет добавлен столбец с кратким
описанием плана запроса EXPLAIN - своего рода неформальный код запроса. Это в со­

четании со столбцом V /М позволяет быстро определить, какие запросы являются
плохими и потенциально легко оптимизируемыми.

Наконец, в нижней части есть дополнительная строка, показывающая наличие

17 других типов запросов, которые инструмент не счел достаточно важными для
отдельной строки, и сводная статистика по ним. При задании параметров --limit
и - -outliers инструмент не будет сворачивать несущественные запросы в одну
финальную строку. По умолчанию он выводит запросы, которые входят в первую

десятку по затраченному времени либо время выполнения которых превысило одно­
секундный порог во много раз. Оба этих параметра можно настроить.

После профиля инструмент вывел подробный отчет по каждому типу запроса. Вы
можете сравнить отчеты по запросам с профилем, сопоставляя по идентификатору

запроса или рангу. Приведем отчет для худшего запроса:

Query 1: 24.28 QPS, 3.50х concurrency, ID 0xBFCF8E3F293F6466 at byte 5590079
This item is included in the report because it matches --limit.
Scores: V/M = 0.21
Query_time sparkline: 1 _л_.л_ 1

Time range: 2008-09-13 21:51:55 to 22:45:30
Attribute pct total min max avg 95% stddev median
============ === ======= ======= ======= =======
Count 63 78069
Ехес time 68 112565
Lock time 85 1345
Rows sent 8 70.18k
Rows examine 8 70.84k
Query size 84 10.43М

String:
Databases production
Hosts
Users fbappuser
Query_time distribution
lus
10us #

37us ls 144ms 501ms
0 650ms 2ms 176us
0 1 0.92 0.99
0 3 0.93 0.99

135 141 140.13 136.99

100us ##
lms ###

175ms
20ms
0.27
0.28
0.10

68ms
57us
0.99
0.99

136.99

Профилирование запросов MySQL 117

10ms ################
100ms ##

ls #
105+
ТаЫеs
SHOW TABLE STATUS FROM 'production . LIKE'InvitesNew82'\G
SHOW CREATE TABLE 'production .. ·rnvitesNew82'\G
EXPLAIN /*150100 PARTITIONS*/ SELECT Inviteid, Inviteridentifier FROM InvitesNew82
WHERE (InviteSetid = 87041469) ANO (Inviteeidentifier = 1138714082) LIMIT l\G

Вверху отчета содержится множество метаданных, в том числе: как часто выполня­

ется запрос, его средняя конкурентность и смещение (в байтах) до того места, где
в файле журнала находится запрос с наихудшей производительностью. Существует

табличная распечатка числовых метаданных, включая статистику, такую как, напри­

мер, стандартное отклонение1 •

Затем представлена гистограмма времени отклика. Любопытно, что, как вы види­
те под строкой Query_time distribution, у гистограммы этого запроса два пика.
Обычно запрос выполняется за сотни миллисекунд, но есть также значительный

всплеск числа запросов, которые были выполнены на три порядка быстрее. Если бы
этот журнал был создан в пакете Percona Server, в журнале запросов был бы более
богатый набор параметров. Как следствие, мы могли бы проанализировать запро­
сы вдоль и поперек, чтобы понять, почему это происходит. Возможно, это были
запросы к определенным значениям, которые непропорционально распределены,

поэтому использовался другой индекс, или, возможно, это хиты запросов кэша.

В реальных системах гистограмма с двумя пиками не редкость, особенно в случае
простых запросов, которые часто имеют лишь несколько альтернативных путей

выполнения.

Наконец, раздел деталей отчета заканчивается небольшими вспомогательными
фрагментами для облегчения копирования и вставки команд в командную строку,

а также проверки схемы и статуса упомянутых таблиц и включает образец запроса
EXPLAIN. Образец содержит все литералы, а не «отпечатки пальцев1>, поэтому это ре­
альный запрос. На самом деле это экземпляр запроса, у которого было худшее время
выполнения в нашем примере.

После выбора запросов, которые вы хотите оптимизировать, можете использовать
этот отчет, чтобы быстро проверить выполнение запроса. Мы постоянно пользуемся

этим инструментом, и потратили много времени на то, чтобы сделать его максимально
эффективным и полезным. Настоятельно рекомендуем подружиться с ним. Возможно,

в скором времени MySQL будет лучше оснащена встроенными инструментами профи­
лирования, но на момент написания книги нет инструментов лучше, чем журналиро­

вание запросов с помощью журнала медленных запросов или использование tcpdump
и запуск полученного журнала с помощью утилиты pt-query-digest.

Для ясности мы упрощаем, но журнал запросов Percona Server дает намного более по­
дробный отчет, который поможет вам понять, почему запрос тратит 144 миллисекунды
для изучения одной строки - это много!

118 Глава З • Профилирование производительности сервера

Профилирование отдельных запросов

После того как вы определили запрос для оптимизации, можете углубиться в него
и определить, почему он требует столько времени и как его оптимизировать. Со­

временные методики оптимизации запросов описаны в последующих главах этой

книги вместе с необходимыми для их использования предварительными сведениями.

Сейчас наша цель - просто показать, как измерить то, что делает запрос, и сколько

времени требует каждый этап. Эти знания помогут вам определить, какие методики
оптимизации использовать.

К сожалению, большинство инструментов в MySQL не очень полезны для профили­
рования запросов. Ситуация меняется, но на момент написания книги большинство
производственных серверов не поддерживают новейших функций профилирования.

Поэтому при их использовании в практических целях мы сильно ограничены командами

SHOW STATUS, SНQtJ PROFILE и изучением отдельных записей в журнале медленных запро­

сов (если у вас есть Percona Server - в стандартной системе MySQL в журнале нет до­
полнительной информации). Мы продемонстрируем все три метода на примере одного

и того же запроса и покажем, что вы можете узнать о его выполнении в каждом случае.

Команда SHOW PROFILE

Команда SHOW PROFILE появилась благодаря Джереми Коулу Qeremy Cole). Она
включена в MySQL 5.1 и более поздние версии. Это единственный реальный ин­
струмент профилирования запросов, доступный в GА-релизе MySQL на момент на­
писания книги. Профилирование по умолчанию отключено, но его можно включить

во время сеанса, установив значение переменной сервера:

mysql> SET profiling = 1;

После этого всякий раз, когда вы посылаете выражение на сервер, он будет замерять
прошедшее время и еще некоторые данные, когда запрос будет переходить из одного

состояния выполнения в другое. Эта команда имеет довольно широкий функционал

и была спроектирована так, что может иметь еще больше, но в следующих релизах
она, по всей видимости, будет заменена или вытеснена Performance Schema. Несмо­
тря на это, наиболее полезной функцией данной команды является создание профиля
работы, выполняемой сервером во время реализации выражения.

Каждый раз, когда вы отправляете запрос на сервер, он записывает информацию

профилирования во временную таблицу и присваивает выражению целочисленный
идентификатор, начиная с 1. Приведем пример профилирования представления,
включенного в базу данных Sakila1:

mysql> SELECT * FROМ sakila.nicer_but_slower_film_list;
[query results omitted]
997 rows in set (0.17 sec)

Представление слишком большое, чтобы привести его здесь, но базу данных Sakila можно
скачать с сайта MySQL.

Профилирование запросов MySQL 119

Запрос возвратил 997 строк примерно через 1/6 секунды. Посмотрим, что выдаст
команда SHOW PROFILES (обратите внимание на множественное число):

mysql> SНOW PROFILES;
+----------+-------------+---+
1 Query_ID 1 Duration 1 Query
+----------+-------------+---+

1 1 0.16767900 1 SELECT * FROM sakila.nicer_but_slower_film_list 1

+----------+-------------+---+

Первое, что мы видим, - то, что время отклика запроса показано с большей точ­
ностью, чем принято. Двух десятичных знаков точности, как показано в клиенте

MySQL, часто недостаточно, когда вы работаете с быстрыми запросами. Теперь по­
смотрим на профиль для этого запроса:

mysql> SHOW PROFILE FOR QUERY 1;
+----------------------+----------+
1 Status 1 Duration 1

+----------------------+----------+
starting 0.000082
Opening taЫes 0.000459
System lock 0.000010
ТаЫе lock 0.000020
checking permissions 0.000005
checking permissions 0.000004
checking permissions 0.000003
checking permissions 0.000004
checking permissions 0.000560
optimizing 0.000054
statistics 0.000174
preparing 0.000059
Creating tmp tаЫе 0.000463
executing 0.000006
Copying to tmp tаЫе 0.090623
Sorting result 0.011555
Sending data 0.045931
removing tmp tаЫе 0.004782
Sending data 0.000011
init 0.000022
optimizing 0.000005
statistics 0.000013
preparing 0.000008
executing 0.000004
Sending data 0.010832
end 0.000008
query end 0.000003
freeing items 0.000017
removing tmp tаЫе 0.000010
freeing items 0.000042
removing tmp tаЫе 0.001098
closing taЫes 0.000013
logging slow query 0.000003
logging slow query 0.000789
cleaning up 0.000007

+----------------------+----------+

120 Глава 3 • Профилирование производительности сервера

Профиль позволяет следить за каждым шагом выполнения запроса и видеть, сколько

прошло времени. Обратите внимание, что не очень легко просмотреть выведенный

результат и найти, где затраты времени были максимальными: он сортируется в хро­
нологическом порядке. Однако нас интересует не порядок, в котором выполнялись

операции, - мы просто хотим знать, каковы были затраты времени на них. К сожа­

лению, отсортировать вывод с помощью ORDER ВУ нельзя. Давайте перейдем к исполь­

зованию команды SHOW PROFILE для запроса связанной таблицы INFORМAТION_SCHEМA

и формата, который выглядит как просмотренные нами ранее профили:

mysql> SET @query_id = 1;
Query ОК, 0 rows affected (0.00 sec)

mysql> SELECT STATE, SUМ(DURATION) AS Total_R,
-> ROUND(
-> 100 * SUM(DURATION) /
-> (SELECТ SUM(DURAТION)
-> FROМ INFORМAТION_SCHEМA.PROFILING

-> WНERE QUERY_ID = @query_id
->), 2) AS Pct_R,
-> COUNT(*) AS Calls,
-> SUM(DURAТION) / COUNT(*) AS "R/Call"
-> FROМ INFORМATION_SCHEМA.PROFILING
-> WНERE QUERY_ID = @query_id
-> GROUP ВУ STATE
-> ORDER ВУ Total_R DESC;
+-----------------------+----------+-------+-------+--------------+
1 STATE 1 Total_R 1 Pct_R 1 Calls 1 R/Call
+-----------------------+----------+-------+-------+--------------+

Copying to tmp tаЫе 0.090623 54.05 1 0.0906230000
Sending data 0.056774 33.86 3 0.0189246667
Sorting result 0.011555 6.89 1 0.0115550000
removing tmp tаЫе 0.005890 3.51 3 0.0019633333
logging slow query 0.000792 0.47 2 0.0003960000
checking permissions 0.000576 0.34 5 0.0001152000
Creating tmp tаЫе 0.000463 0.28 1 0.0004630000
Opening taЫes 0.000459 0.27 1 0.0004590000
statistics 0.000187 0.11 2 0.0000935000
starting 0.000082 0.05 1 0.0000820000
preparing 0.000067 0.04 2 0.0000335000
freeing items 0.000059 0.04 2 0.0000295000
optimizing 0.000059 0.04 2 0.0000295000
init 0.000022 0.01 1 0.0000220000
ТаЫе lock 0.000020 0.01 1 0.0000200000
closing taЫes 0.000013 0.01 1 0.0000130000
System lock 0.000010 0.01 1 0.0000100000
executing 0.000010 0.01 2 0.0000050000
end 0.000008 0.00 1 0.0000080000
cleaning up 0.000007 0.00 1 0.0000070000
query end 0.000003 0.00 1 0.0000030000

+-----------------------+----------+-------+-------+--------------+

Так намного лучше! Теперь мы видим, что причина, по которой этот запрос так

долго выполнялся, заключалась в копировании данных во временную таблицу, на
что затрачено более половины общего времени. Возможно, придется переписать

Профилирование запросов MySQL 121

этот запрос так, чтобы он не использовал временную таблицу или хотя бы делал это
более эффективно. Следующий крупный потребитель времени, отправка данных,
фактически является своеобразной кладовкой, которая может включать в себя

любое количество различных действий сервера, в том числе поиск совпадающих

строк в соединении и т. д. Трудно сказать, сможем ли мы здесь что-то сэкономить.

Обратите внимание на то, что резу ль тат сортировки занимает недостаточно много

времени, чтобы его можно было оптимизировать. Это довольно типично, поэтому

призываем вас не тратить время на <1настройку буферов сортировки~ и подобные
мероприятия.

Как обычно, хотя профиль помогает нам определить, какие виды деятельности

вносят наибольший вклад в затраченное на выполнение запроса время, он не говорит
нам, почему это происходит. Чтобы узнать, почему потребовалось столько времени
для копирования данных во временную таблицу, нам пришлось бы углубиться в этот
процесс и создать профиль выполняемых подзадач.

Команда SHOW SТATUS

Команда SHOW STATUS MySQL возвращает множество счетчиков. Существует гло­
бальная область действия сервера для счетчиков, а также область сеанса, которая

специфична для конкретного соединения. Например, счетчик Queries в начале
вашего сеанса равен нулю и увеличивается каждый раз, когда вы делаете запрос.

Выполнив команду SHOW G LOBAL STATUS (обратите внимание на добавление ключевого
слова GLOBAL), вы увидите общее количество запросов, полученных с момента его
запуска. Области видимости разных счетчиков различаются - счетчики, которые

не имеют области видимости на уровне сеанса, отображаются в SHOW STATUS, маски­
руясь под счетчики сеансов, и это может ввести в заблуждение. Учитывайте это при
использовании данной команды. Как говорилось ранее, подбор должным образом
откалиброванных инструментов является ключевым фактором успеха. Если вы

пытаетесь оптимизировать что-то, что можете наблюдать только в конкретном со­

единении с сервером, измерения, которые <1засоряются~ всей активностью сервера,

вам не помогут. В руководстве по MySQL есть отличное описание всех переменных,
имеющих как глобальную, так и сеансовую область видимости.

SHa.J STATUS может быть полезным инструментом, но на самом деле его применение -
это не профилирование 1 • Большинство результатов команды SHOW STATUS - всего

лишь счетчики. Они сообщают вам, как часто протекали те или иные виды деятель­
ности, например чтение из индекса, но ничего не говорят о том, сколько времени на

это было затрачено. В команде SHOW STATUS есть только один счетчик, который по­
казывает время, израсходованное на операцию (Innodb_row_lock_time), но он имеет
лишь глобальную область видимости, поэтому вы не можете использовать его для

проверки работы, выполненной в ходе сеанса.

Если у вас есть второе издание нашей книги, вы можете заметить, что наше мнение по этому

вопросу кардинально изменилось.

122 Глава 3 • Профилирование производительности сервера

Хотя команда SHOW STATUS не предоставляет информацию о затратах времени, тем
не менее иногда может быть полезно использовать ее после выполнения запроса
для просмотра значений некоторых счетчиков. Вы можете сделать предположение

о том, какие типы затратных операций выполнялись и как они могли повлиять

на время запроса. Наиболее важными счетчиками являются счетчики обработчи­
ков запросов и счетчики временных файлов и таблиц. Более подробно рассмотрим
их в приложении Б. А сейчас приведем пример сброса счетчиков состояния сеанса
до нуля, выбора из использованного нами ранее представления и просмотра счет­
чиков:

mysql> FLUSH STATUS;
mysql> SELECT * FROМ sakila.nicer_but_slower_film_list;
[query results omitted]
mysql> sнow STATUS l!tiERE VariaЫe_name LIKE 'Handler%'

OR VariaЫe_name LIKE 'Created%';

+------------------------------+-------+
1 VariaЫe_name 1 Value 1

+------------------------------
Created_tmp_disk_taЫes

Created_tmp_files
Created_tmp_taЫes

Handler_commit
Handler_delete
Handler_discover
Handler_prepare
Handler_read_first
Handler_read_key
Handler_read_next
Handler_read_prev
Handler_read_rnd
Handler_read_rnd_next
Handler_rollback
Handler_savepoint
Handler_savepoint_rollback
Handler_update
Handler_write

-------+
2
0
3
1
0
0
0
1
7483
6462
0
5462
6478
0
0
0
0
6459

+------------------------------+-------+
Похоже, что в запросе использовались три временные таблицы - две из них на дис­
ке - и было много неиндексированных чтений (Handler _read_rnd_next). Если бы мы
ничего не знали о представлении, к которому только что обращались, то могли бы
предположить, что запрос сделал объединение без индекса, возможно, из-за подза­
проса, который создал временные таблицы, а затем использовал их с правой стороны
в соединении. Временные таблицы, созданные для хранения результатов подзапро­
сов, не имеют индексов, поэтому эта версия кажется правдоподобной.

Используя эту методику, имейте в виду, что команда SHOW STATUS создает временную

таблицу и обращается к ней с помощью обработчика операций, поэтому на полу­
ченные результаты в действительности влияет и SHOW STATUS. Это зависит от версий

сервера. Используя информацию о выполнении запроса, полученную от команды

SHOW PROFILES, мы можем предположить, что количество временных таблиц завы­
шено на 2.

Профилирование запросов MySQL 123

Стоит отметить, что большую часть той же информации, по-видимому, можно полу­
чить, просмотрев план EXPLAIN для этого запроса. Но EXPLAIN - это оценка того, что

сервер планирует делать, а просмотр счетчиков статуса - это измерение того, что он

на самом деле сделал. EXPLAIN не скажет вам, например, была ли временная табли­
ца создана на диске, что медленнее, чем в памяти. Больше информации о команде

EXPLAIN содержится в приложении Г.

Использование журнала медленных запросов

Что расширенный в Регсоnа Seгver журнал медленных запросов расскажет об этом
запросе? Вот что было зафиксировано при выполнении запроса, продемонстриро­
ванного в разделе о SHOW PROFILE:

Time: 110905 17:03:18
User@Host: root[root] @ localhost [127.0.0.1]
Thread_id: 7 Schema: sakila Last_errno: 0 Killed: 0
Query_time: 0.166872 Lock_time: 0.000552 Rows_sent: 997 Rows_examined: 24861

Rows_affected: 0 Rows_read: 997
8ytes_sent: 216528 Tmp_taЫes: 3 Tmp_disk_taЫes: 2 Tmp_taЫe_sizes: 11627188
InnoD8_trx_id: 191Е

QC_Hit: No Full_scan: Yes Full_join: No Tmp_taЫe: Yes Tmp_taЫe_on_disk: Yes
Filesort: Yes Filesort_on_disk: No Merge_passes: 0
InnoD8_IO_r_ops: 0 InnoDB_IO_r_bytes: 0 InnoDB_IO_r_wait: 0.000000
InnoD8_rec_lock_wait: 0.000000 InnoD8_queue_wait: 0.000000
InnoDB_pages_distinct: 20
PROFILE_VALUES ... Copying to tmp tаЫе: 0.090623 •.. [omitted]
SET timestamp=1315256598;
SELECT * FROМ sakila.nicer_but_slower_film_list;

Похоже, что запрос действительно создал три временные таблицы, которые были
скрыты от представления в SHOW PROFILE (возможно, из-за особенностей способа вы­
полнения запроса сервером). Две временные таблицы находились на диске. Здесь
мы сократили выведенную информацию для улучшения удобочитаемости. В конце
концов, данные, полученные при выполнении команды SHOW PROFILE по этому за­
просу, записываются в журнал, поэтому вы можете журналировать в Percona Server
даже такой уровень детализации.

Согласитесь, эта весьма подробная запись в журнале медленных запросов содержит
практически все, что вы можете видеть в SHOW PROFILE и SHOW STATUS, и еще кое-что.
Это делает журнал очень полезным для поиска более подробной информации при
нахождении плохого запроса с помощью утилиты pt-query-digest. Когда вы просмо­
трите отчет от pt-query-digest, увидите такую строку заголовка:

Query 1: 0 QPS, 0х concurrency, ID 0xEE758C5E0D7EADEE at byte 3214 ~~

Вы можете использовать байтовое смещение для фокусировки на нужном разделе
журнала следующим образом:

tail -с +3214 /path/to/query.log 1 head -n100

Вуаля! Можно рассмотреть все подробности. Кстати, pt-query-digest понимает все
добавленные пары ~имя - значение» формата медленного журнала запросов Percona
Server и автоматически выводит намного более подробный отчет.

124 Глава 3 • Профилирование производительности сервера

Использование Performance Schema

На момент написания этой книги таблицы Performance Schema, представленные
в MySQL 5.5, не поддерживают профилирование на уровне запросов. Performance
Schema появилась не так давно. Однако она быстро развивается, приобретая до­
полнительную функциональность в каждом следующем релизе. Но даже первона­

чальная функциональность MySQL 5.5 позволяет получать любопытную инфор­
мацию. Например, следующий запрос покажет основные причины ожидания

в системе:

mysql> SELECT event_name, count_star, sum_timer_wait
-> FROМ events_waits_sun111ary_global_by_event_name
-> ORDER ВУ sum_timer_wait DESC LIMIT 5;

+--+------------+------------------+
1 event_name 1 count_star 1 sum_timer_wait 1

+--+------------+------------------+
innodb_log_file 205438 2552133070220355 1

Query_cache::COND_cache_status_changed 8405302 2259497326493034 1

Query_cache::structure_guard_mutex 55769435 361568224932147 1

innodb_data_file 62423 347302500600411 1

dict_taЫe_stats 15330162 53005067680923 1

+--+------------+------------------+
Сейчас существует несколько моментов, ограничивающих использование Per­
formance Schema в качестве инструмента профилирования общего назначения.
Во-первых, она не обеспечивает достаточный уровень детализации выполнения

запросов и затрат времени, который можно получить благодаря существующим ин­

струментам. Во-вторых, она довольно долго не использовалась и в данный момент

ее применение приводит к большим издержкам, чем применение привычного для

многих инструмента профилирования. (Есть основания полагать, что это будет ис­

правлено в ближайшее время.)

Наконец, иногда она слишком сложна и низкоуровнева для использования большин­

ством пользователей. Функции, реализованные к настоящему моменту, в основном

нацелены на то, что нужно измерить при изменении исходного кода MySQL для
улучшения производительности сервера. Сюда относятся такие элементы, как ожи­

дания и мьютексы. Некоторые из функций MySQL 5.5 полезны для опытных пользо­
вателей, а не для разработчиков серверов. Однако пользователи все еще нуждаются

в разработке удобных инструментов интерфейса. В настоящее время для написания

сложных запросов к разнообразным таблицам метаданных с большим количеством

столбцов требуется настоящее мастерство. Это довольно сложный для использования
и понимания набор инструментов.

Будет здорово, когда Performance Schema в более поздних версиях MySQL получит
больше функциональности. И очень приятно, что Oracle реализует ее как табли­
цы, доступные через SQL, тем самым пользователи могут получать данные любым
удобным для них способом. Однако пока она еще не способна заменить журнал

медленных запросов или другие инструменты, помогающие сразу увидеть варианты

улучшения производительности сервера и выполнения запросов.

Диагностика редко возникающих проблем 125

Использование профиля для оптимизации

Итак, у вас есть профиль сервера или запроса - что с ним делать? Хороший профиль

обычно делает проблему очевидной, но решения может и не быть (хотя чаще всего
есть). На этом этапе, особенно при оптимизации запросов, вам нужно полагаться

на знания о сервере и о том, как он выполняет запросы. Профиль или те данные,

которые вы можете собрать, указывают направление движения и дают основания для

применения ваших знаний и нахождения результатов с помощью дополнительных

инструментов, таких как EXPLAIN. Подробнее эта тема будет рассмотрена в следующих
главах, но сейчас у вас есть правильная отправная точка.

В общем, хотя нахождение источника проблемы с помощью профиля со всеми метри­

ками не должно представлять тру да, на деле невозможно выполнить измерения абсо­
лютно точно, поскольку оцениваемые системы не поддерживают этой возможности.

Ранее, рассматривая пример, мы подозревали, что на временные таблицы и неиндек­

сированные чтения затрачивается большая часть времени отклика, однако не можем
этого доказать. Иногда проблемы трудно решить, потому что, возможно, не измерено
все, что нужно, либо измерения сделаны в неверном направлении. Например, вы мо­

жете определять активность всего сервера вместо изучения того фрагмента, который

пытаетесь оптимизировать, или анализировать измерения, проведенные с момента

времени до начала выполнения запроса, а не тогда, когда он был запущен.

Существует еще одна возможность. Предположим, вы анализируете журнал мед­

ленных запросов и находите простой запрос, на несколько запусков которого за­

трачено неоправданно много времени, хотя он быстро запускался в тысячах других

случаев. Вы снова запускаете запрос, и он выполняется молниеносно, как и должно
быть. Применяете EXPLAIN и обнаруживаете, что он правильно использует индекс.
Вы пытаетесь использовать похожие запросы с разными значениями в разделе WHERE,
чтобы убедиться, что запрос не обращается к кэшу, и они тоже выполняются быстро.
Кажется, что с этим запросом все нормально. Что дальше?

Если у вас есть только стандартный журнал медленных запросов MySQL без плана
выполнения или подробной информации о времени, вы знаете только, что запрос плохо

работал, когда был журналирован, и не можете понять, почему это произошло. Возмож­
но, что-то еще потребляло ресурсы в системе, например резервное копирование или
какая-то блокировка или параллелизм тормозили ход запроса. Периодически возника­
ющие проблемы - это особый случай, который мы рассмотрим в следующем разделе.

Диагностика редко возникающих проблем

Редко возникающие проблемы, такие как случайный серверный стопор или мед­

ленное выполнение запросов, могут портить диагностику. Самые вопиющие потери

времени, которые мы встречали, были результатом фантомных проблем, возника­
ющих только тогда, когда за системой никто не следил, при этом воспроизвести

их не удавалось. Нам доводилось видеть, как люди тратят целые месяцы на борьбу

126 Глава 3 • Профилирование производительности сервера

с такими проблемами. В ходе этого некоторые специалисты устраняли неполадки ме­
тодом проб и ошибок и иногда значительно ухудшали ситуацию, пытаясь случайным
образом изменить настройки сервера и надеясь наткнуться на решение проблемы.

Старайтесь, насколько это возможно, избегать метода проб и ошибок. Такое устране­
ние неполадок рискованно, поскольку результаты могут быть отрицательными и, как
следствие, весь процесс окажется бесполезным и неэффективным. Если вы не можете
понять, в чем проблема, возможно, вы неправильно выполняете измерения, делаете
это в неправильном месте или не знаете, какие инструменты надо использовать. (Или
последние могут отсутствовать - мы разработали ряд инструментов, предназначен­
ных специально для увеличения прозрачности различных компонентов системы, от

операционной системы до MySQL в целом.)

Чтобы проиллюстрировать необходимость отказаться от метода проб и ошибок, рас­
смотрим несколько практических примеров решения некоторых редко возникающих

проблем с производительностью баз данных.

1:1 Приложение выполняло утилиту curl для получения котировок обменных курсов
от в разы более медленного внешнего сервиса.

1:1 Важные записи кэша исчезли из memcached, в результате чего приложение пере­
полняло MySQL запросами на восстановление кэшированных элементов.

1:1 DNS-запросы синхронизировались случайным образом.

1:1 Кэш запросов периодически замораживал MySQL из-за конкуренции мьютексов
или неэффективных внутренних алгоритмов удаления кэшированных запросов.

1:1 Ограничения масштабируемости InnoDB приводили к слишком длительной
оптимизации плана запроса, если объем конкурентного доступа превышал не­
которое пороговое значение.

Как видите, одни из этих проблем связаны с базой данных, а другие - нет. Только
начав отладку с места, где наблюдается неправильное поведение системы, выяснив,
какие ресурсы здесь используются, и выполнив максимально полные измерения,

можно избежать поиска проблем там, где их нет.

Здесь мы закончим читать вам лекцию и начнем рассматривать подход и инструмен­
ты, которые обычно используем для решения редко возникающих проблем.

Проблемы одиночного запроса или всего сервера?

У вас есть какие-либо доказательства существования проблемы? Если да, попробуйте
определить, связана она с изолированным запросом или со всем сервером. Это важно для
понимания того, куда двигаться в ходе ее решения. Если на сервере все работает плохо,
а затем нормализуется, тогда медленно работающий запрос вряд ли является источни­
ком проблемы. Большинство медленных запросов, скорее всего, сами стали жертвами
какой-то другой проблемы. В то же время, если сервер в целом работает хорошо, а один
запрос по какой-то причине выполняется медленно, следует внимательнее его изучить.

Проблемы с сервером возникают довольно часто. По мере появления в последние
годы более мощного оборудования, когда 16-ядерные и более крупные серверы

Диагностика редко возникающих проблем 127

становятся нормой, ограничения масштабируемости MySQL на SМР-системы
стали более заметными. Истоки большинства этих проблем кроются в более ста­
рых версиях, которые, к сожалению, все еще широко используются. У MySQL еще
есть проблемы с масштабируемостью даже в более новых версиях, но они гораздо
менее серьезны и намного реже встречаются, поскольку являются пограничными

случаями. Это и хорошая, и плохая новость: хорошая, потому что вероятность

столкнуться с ними невелика, и плохая, так как для их диагностики требуется
больше знаний о внутренних функциях MySQL. Это также означает, что множе­
ство проблем можно решить, просто обновив MySQL1•

Как определить, является ли проблема общей для сервера или ограничена един­
ственным запросом? Существуют три простых метода для выяснения этого. Мы

рассмотрим их далее.

Команда SHOW GLOBAL SТATUS

Суть методики заключается в очень частой фиксации выборки SHOW GLOBAL STATUS,
например один раз в секунду и при появлении проблемы, поиске пиков или про­
валов в показаниях счетчиков, таких как Threads_running, Threads_connected,
Questions и Queries. Это простой, не затрагивающий сервера метод, который до­
ступен любому пользователю (никаких специальных привилегий не требуется),
а поэтому - отличный способ больше узнать о природе проблемы, не затрачивая
много времени. Приведем пример команды и вывода:

$ mysqladmin ext -il 1 awk '
/Queries/{q=$4-qp;qp=$4}
/Threads_connected/{tc=$4}
/Threads_running/{printf "%5d %5d %5d\n", q, tc, $4}'

2147483647 136 7
798 136 7
767 134 9
828 134 7
683 134 7
784 135 7
614 134 7
108 134 24
187 134 31
179 134 28

1179 134 7
1151 134 7
1240 135 7
1000 135 7

Команда каждую секунду фиксирует выборку SHOW GLOBAL STATUS и передает
данные в скрипт awk, который выводит количество запросов в секунду, Threads_
connected и Threads_running (количество запросов, выполняемых в данный мо­
мент). Эта троица, как правило, очень чувствительна к остановкам сервера. Обыч­
но в зависимости от характера проблемы и способа подключения приложения
к MySQL число запросов в секунду уменьшается, а по крайней мере один из двух

Но не делайте этого, не имея весомых оснований полагать, что это решит проблему.

128 Глава 3 • Профилирование производительности сервера

других показателей демонстрирует всплеск. В данном случае приложение, по­

видимому, использует пул соединений, поэтому нет всплесков связанных потоков,

но есть явная «кочка1> в количестве выполняемых в этот момент запросов, при этом

число запросов в секунду падает до доли от нормального уровня.

Как можно объяснить такое поведение? Рискованно строить догадки, но на прак­

тике мы встречались с двумя распространенными случаями. Один из них является

своего рода внутренним узким местом на сервере: новые запросы начинают выпол­

няться, но накапливаются у какой-то блокировки, которую ждут старые запросы.
Этот тип блокировки обычно оказывает давление на серверы приложений и при­
водит к появлению там очередей. Другим распространенным случаем, который мы

видели, является всплеск количества тяжелых запросов, например таких, которые

могут появляться при неудачно настроенном устаревании memcached.

При скорости одна строка в секунду вы можете легко запустить процесс на несколько

часов или дней и построить быстрый график, на котором можно будет увидеть нали­
чие отклонений. Если проблема действительно периодическая, вы можете запустить
систему на необходимое ей для работы время, а затем, когда заметите проблему,
обратиться к выведенной информации. В большинстве случаев этот вывод ясно ее
покажет.

Команда SHOW PROCESSLISТ

С помощью этого метода вы фиксируете выборки SHOW PROCESSLIST и ищете мно­

жество потоков, которые находятся в необычных состояниях или имеют другие не­
обычные характеристики. Например, довольно редко запросы остаются в состоянии

«статистика1> в течение длительного времени, поскольку это фаза оптимизации

запросов, на которой сервер определяет лучший порядок соединения - обычно

очень быстро.

Аналогично редко случается, что множество потоков отмечают пользователя как

неаутентифицируемого. Дело в том, что это состояние характерно для установления

связи при соединении, когда клиент определяет, какой пользователь пытается войти

в систему.

Вертикальный вывод с помощью терминатора \G очень полезен для работы с SHOW

PROCESS LIST, поскольку он помещает каждый столбец каждой строки вывода
в собственную строку, что упрощает выполнение небольшого sortluniqlsort­
«зaклинaния\>, помогающего увидеть количество уникальных значений в любом
желаемом столбце:

$ mysql -е 'SНOW PRCX:ESSLIST\G' 1 grep State: 1 sort 1 uniq -с 1 sort -rn
744 State:

67 State: Sending data
36 State: freeing items

8 State: NULL
6 State: end
4 State: Updating

4 State: cleaning up
2 State: update
1 State: Sorting result
1 State: logging slow query

Диагностика редко возникающих проблем 129

Если вы хотите изучить другой столбец, просто измените паттерн grep. Столбец
State подходит для многих случаев. В данном примере мы видим огромное число
потоков в состояниях, соответствующих окончанию запроса: «освобождение элемен­

тов», «конец», «очистка» и «журналирование медленных запросов». Фактически во

многих примерах на сервере, работа которого отражена в выведенной информации,
наблюдалась такая же или подобная ситуация. Самым характерным и надежным
индикатором проблемы было большое количество запросов в состоянии освобо­
ждения элементов.

Вам не надо использовать методики командной строки для поиска подобных про­
блем. Можете сделать запрос к таблице PROCESSLIST в INFORMAТION_SCHEMA, если
сервер довольно новый, или использовать утилиту innotop с большой частотой
обновления и наблюдать на экране за необычным скоплением запросов. Только
что рассмотренный пример был получен на сервере с проблемами внутреннего па­
раллелизма и очистки InnoDB, но такая же ситуация может сложиться и в других
обстоятельствах. Классическим примером было бы множество запросов в состоянии
«заблокировано». Это неизменный отличительный признак MylSAM с ее блокиров­
кой на уровне таблиц, быстро приводящей к захламлению сервера в случае большого
количества записей в таблицах.

Использование журналирования запросов

Чтобы найти проблемы в журнале запросов, включите журнал медленных запро­
сов, установите значение long_query_time, глобально равное 0, и убедитесь, что все
соединения видят новый параметр. Возможно, вам придется перезапустить со­

единения, чтобы они могли увидеть новое глобальное значение, или использовать
функцию из пакета Percona Server, чтобы заставить изменения вступить в силу
мгновенно, без прерывания существующих соединений.

Если по какой-либо причине вы не можете включить журнал медленных запросов
для фиксации всех запросов, используйте для его эмуляции утилиты tcpdump
и pt-query-digest. Ищите в журнале интервалы, на которых пропускная способ­
ность внезапно падает. Запросы отправляются в журнал медленных запросов по

мере завершения транзакции, поэтому захламление обычно приводит к внезап­
ному падению количества завершенных транзакций, которое продолжается до

тех пор, пока виновник не завершит работу и не освободит ресурс, блокирующий
другие запросы. Затем будут завершены другие запросы. Что полезно в таком ха­
рактерном поведении, так это то, что вы можете обвинить в захламлении первый
запрос, который завершается после снижения пропускной способности. (Иногда
это не самый первый запрос - часть запросов могут продолжать работать, пока

другие заблокированы, поэтому такой подход не будет надежным в любой ситу­
ации.)

130 Глава 3 • Профилирование производительности сервера

И вновь вам могут пригодиться хорошие инструменты. Вы не можете самолично

просматривать сотни гигабайт запросов. Вот однострочный пример, который основан
на паттерне MySQL для записи текущего времени в журнал через 1 секунду:

$ awk '/д# Time:/{print $3, $4, с;с=0}/д# User/{c++}' slow-query.log
080913 21:52:17 51
080913 21:52:18 29
080913 21:52:19 34
080913 21:52:20 33
080913 21:52:21 38
080913 21:52:22 15
080913 21:52:23 47
080913 21:52:24 96
080913 21:52:25 6
080913 21:52:26 66
080913 21:52:27 37
080913 21:52:28 59

Как видите, здесь наблюдалось снижение пропускной способности, но, что интересно,

ей предшествовал всплеск числа завершенных запросов. Не заглянув в журнал, труд­

но сказать, что произошло, но, возможно, этот всплеск был связан с последующим
падением. В любом случае ясно, что на сервере произошло что-то странное, и ис­
следование журнала в области соответствующих временных меток может оказаться
очень плодотворным. (Просмотрев этот журнал, мы обнаружили, что всплеск произо­
шел из-за отключения соединений. Возможно, сервер приложений был перезапущен.
Не все, что происходит, оказывается проблемой MySQL.)

Осмысление результатов

Визуализация данных - незаменимая операция. В этой книге мы приводим лишь

небольшие примеры, но на практике многие из рассмотренных методик могут вы­
звать появление тысяч строк вывода. Познакомьтесь с gnuplot, или R, или другими
графическими инструментами по своему выбору. Вы можете использовать их для
моментального создания графика - намного быстрее, чем в электронной табли­
це, - и мгновенно приблизить на нем отклонения, что намного труднее сделать, про­
кручивая строки, даже если вы думаете, что хороши в просматривании «матрицы» 1.

Для начала рекомендуем попробовать первые два подхода: SHOW STATUS и SHOW

PROCESSLIST, потому что они малозатратны и могут быть выполнены в интерактивном
режиме всего лишь со сценарием оболочки или повторным выполнением запросов.
Анализировать журнал медленно работающих запросов гораздо труднее - при этом
часто можно наблюдать какие-то странные закономерности, при более внимательном
изучении пропадающие. Мы обнаружили, что легко представить себе закономерности

там, где их нет.

Если вы обнаружите отклонение, что это будет означать? Обычно то, что запросы
где-то в очереди или есть поток или всплеск определенного типа запросов. Дальней­

шая задача состоит в том, чтобы обнаружить его причину.

Мы еще не видели женщину в красном платье, но, как увидим, сразу вам сообщим.

Диагностика редко возникающих проблем 131

Фиксация данных диагностики

При возникновении редко появляющейся проблемы важно измерить все, что воз­
можно, и желательно во время ее проявления. Если вы сделаете это правильно, то

соберете огромное количество данных диагностики. Сведения, которые вы не соби­
раете, часто оказываются именно тем, что вам действительно нужно для правильного

определения проблемы.

Для начала вам понадобятся две вещи.

О Надежный и действующий в реальном времени триггер - способ узнать, когда
возникает проблема.

о Инструмент для сбора данных диагностики.

Диагностический триггер

Триггер очень важен для правильной работы. Это основа для фиксации данных при
возникновении проблемы. Есть две основные вещи, мешающие триггеру работать
правильно: ложноположительные и ложноотрицательные результаты. Если у вас

есть ложноположительный результат, вы станете собирать данные диагностики, хотя
ничего плохого не случилось. Тем самым будете напрасно тратить время и расстра­
иваться.Из-за ложноотрицательных результатов вы упустите возможность найти

проблему, потратите еще больше времени и серьезнее огорчитесь. Потратьте немного
времени и убедитесь, что ваш триггер однозначно указывает на появление проблемы.

Это будет не напрасным.

Что такое хороший критерий для триггера? Как показано в наших примерах, Threads_
running, как правило, очень чувствителен к проблемам, но довольно стабилен, когда
все хорошо работает. Еще одним отличным показателем является всплеск необычных
состояний потоков в SHOW PROCESSLIST. Помимо них, существует еще много способов
наблюдать за этой проблемой, в том числе специальный вывод в SHOW INNODB STATUS,

всплеск средней загрузки сервера и т. д. Ключевой момент состоит в получении

чего-то, что можно сравнить с определенным порогом. Обычно это означает подсчет.
Подойдет подсчет работающих потоков, подсчет потоков в состоянии освобождения
элементов и т. п. При просмотре состояний потоков вам поможет параметр -с для grep:

$ mysql -е 'SНOW PROCESSLIST\G' 1 grep -с "State: freeing items"
36

Выберите такое пороговое значение, которое было бы достаточно высоким, чтобы
его нельзя было достигнуть во время нормальной работы, но и не настолько высо­
ким, чтобы нельзя было зафиксировать проблему, когда она появится. Остерегайтесь
также устанавливать слишком высокое пороговое значение, поскольку в противном

случае вы не обнаружите проблему сразу после ее появления. Обостряющиеся про­
блемы, как правило, вызывают каскад других проблем, и если вы зафиксируете диа­
гностическую информацию только после того, как все полетело в тартарары, вам,

вероятно, будет труднее выявить исходную причину. Крайне желательно получить
данные, когда вода просто стекает в раковину - до того, как громкий смыв оглушит

132 Глава 3 • Профилирование производительности сервера

вас Например, всплески в Threads_connected могут быть невероятно высокими - мы
видели, как они увеличивались с 100 до 5000 и даже больше в течение пары минут.
Вы могли бы использовать 4999 в качестве порогового значения, но зачем ждать, ког­
да все станет настолько плохо? Если приложение, будучи работающим, не открывает
более 150 соединений, начните сбор с 200 или 300.

Возвращаясь к примеру с Threads_running, отметим, что, похоже, нормальный уровень
параллелизма - менее 10. Но 10 не будет хорошим пороговым значением - в этом
случае существует большая вероятность ложноположительных результатов, и 15 не­
достаточно далеко, чтобы определенно быть вне нормального диапазона поведения.
При 15 может произойти мини-захламление, но весьма вероятно, что красная линия
не будет пересечена и проблема может рассосаться сама собой, прежде чем ситуация
станет настолько критической, чтобы ее можно было четко диагностировать. В дан­

ном примере мы бы предложили установить в качестве порогового значения 20.

По-видимому, вы хотели бы зафиксировать проблему, как только она появится, но
только после небольшого ожидания, чтобы убедиться, что это не ложноположи­
тельный результат или кратковременный всплеск. Итак, наш последний триггер

такой: следите за статусом переменных с периодичностью один раз в секунду и, если

Threads_running будет превышать показатель 20 в течение более 5 секунд, начните
сбор диагностических данных. (Кстати, пример показал, что проблема исчезает через
3 секунды. Мы слегка подогнали его, чтобы сделать небольшим. Трехсекундную про­
блему, как правило, трудно диагностировать. Однако большинство проблем, которые

нам встречались, длятся немного дольше.)

Теперь следует настроить какой-то инструмент для просмотра сервера и реагиро­

вания на срабатывания триггера. Вы могли бы написать его самостоятельно, но
мы уже сделали это. В пакете Percona Toolkit есть инструмент pt-stalk, специально
предназначенный для этих целей. У него много приятных функций, необходимость
которых мы ощутили на собственной шкуре. Например, он следит за объемом свобод­
ного места на диске, поэтому не заполнит диск собранными данными и не обрушит
сервер. Вы же понимаете, что мы этого никогда не делали!

Инструмент pt-stalk очень прост в использовании. Вы можете установить параметры
для просмотра, порогового значения, частоты проверок и т. п. У него намного больше

замечательных возможностей, но для данного примера этого будет достаточно. Пре­
жде чем применять его, прочтите руководство пользователя. Он опирается на другой

инструмент для сбора данных, который мы обсудим далее.

Какие данные следует собирать

Теперь, когда вы определились с диагностическим триггером, можете использовать

его для запуска процессов сбора данных. Но какие данные вы должны собирать?
Ответ на этот вопрос уже звучал: все, что можете, но только за разумное время. Со­

бирайте статистику операционной системы, данные об использовании процессора,
диска и о свободном месте на нем, об использовании памяти, выборки вывода ps и все,
что можете получить от MySQL, например выборки SHOW STATUS, SHOW PROCESSLIST

Диагностика редко возникающих проблем 133

и SHOW INNODB STATUS. Вся эта информация, а возможно, и еще какая-нибудь, вам по­

надобится для диагностики проблемы.

Как вы помните, время выполнения делится на работу и ожидание. В общем случае
есть два типа причин возникновения неизвестной проблемы. Сервер может выпол­
нять много работы, потребляя много циклов процессора, или застрять в ожидании

освобождения ресурсов. Необходимо применять два разных подхода, чтобы собрать
диагностические данные для определения причин каждого из этих типов проблем.
Вам нужен профиль, если система выполняет слишком много работы, и анализ ожи­
даний, если она слишком долго ждет. Но как узнать, на чем следует сосредоточиться,

если проблема неизвестна? Никак, поэтому лучше собрать данные для обоих типов

проблем.

Первичным инструментом профилирования, который мы используем для внутрен­

них серверов на GNU/Linux (в отличие от запросов по всему серверу), является
oprofile. Примеры его применения будут показаны чуть позже. Можно также про­
филировать системные вызовы сервера с помощью инструмента strace, но мы обнару­
жили, что это рискованно для систем в рабочем состоянии. Об этом тоже поговорим
позже. Для фиксации запросов в профиль мы предпочитаем использовать утилиту

tcpdump. В большинстве версий MySQL журнал медленных запросов тяжело быстро
включать и выключать, однако вы можете хорошо имитировать этот процесс с по­

мощью трафика ТСР. Кроме того, трафик полезен для многих других видов анализа.

Для анализа ожиданий мы обычно используем трассировки стека GDB1• Потоки,
застрявшие в одном месте внутри MySQL на протяжении длительного времени, как
правило, имеют одну и ту же трассировку стека. Необходимо запустить gdb, прикре­
пить его к процессу mysqld и сбрасывать трассировки стека для всех потоков. Затем
вы можете использовать короткие скрипты для объединения общих трассировок стека

и с помощью волшебных sortluniqlsort показать, какие из них имеют больше всего
общих черт. Чуть позже мы объясним, как использовать для этого инструмент pt-pmp.

Вы также можете анализировать ожидания с моментальными снимками, сделанными

командами SНOW PROCESSLIST и SHOW INNODB STATUS, наблюдая за потоками и состояния­
ми транзакций. Ни один из этих подходов не является абсолютно надежным, но на
практике их применяют довольно часто, поскольку они весьма полезны.

Кажется, что сбор всех этих данных требует большой работы! Вероятно, вы уже
этого ждете, но мы создали инструмент и для этих целей. Он называется pt-collect
и также является частью пакета Percona Toolkit. Предназначен для выполнения
совместно с pt-stalk. Чтобы собрать большинство важных данных, его следует за­
пустить как root. По умолчанию он будет собирать данные в течение 30 с, а затем

Оговоримся, что использование GDB можно приравнять к хирургическому вмешательству.
Стек мгновенно замораживает сервер, особенно если у вас много потоков (соединений),

а иногда может даже обрушить его. Тем не менее преимущества иногда сводятся на нет из­

за риска. Если сервер в любом случае становится непригодным для использования из-за

стопора, нет ничего плохого в его двойном замораживании.

134 Глава З • Профилирование производительности сервера

прекратит работу. Обычно этого бывает достаточно для диагностирования большин­
ства проблем. В то же время это не так долго, чтобы получить ложнопозитивный
результат.

Инструмент легко скачать, он не нуждается в какой-либо конфигурации - вся

конфигурация переходит в pt-stalk. Убедитесь, что на вашем сервере установлены
gdb и oprofile, и включите их в конфигурацию pt-stalk. Следует также убедиться,
что mysqld содержит отладочные символы 1 • Когда возникнет условие срабаты­
вания триггера, инструмент соберет довольно полный набор данных. В опреде­
ленном каталоге он создаст файлы с временными метками. На момент написания

книги инструмент ориентирован скорее на GNU/Linux и нуждается в настройке
на другие операционные системы, тем не менее его стоит использовать.

Интерпретация данных

Если вы правильно настроили условие триггера и позволили pt-stalk работать до­
статочно долго для того, чтобы несколько раз обнаружить проблему, вы получите
много данных для проверки. С чего следует начать? Во-первых, убедитесь, что про­

блема действительно возникла, поскольку, имея множество выборок для проверки,
вы вряд ли захотите тратить время на ложнопозитивные результаты. Во-вторых,

посмотрите, не бросается ли в глаза что-то очевидное.

Очень полезно фиксировать, как выглядит сервер, когда все работает хорошо,

а не только в случае неприятностей. Это помогает определить, является
конкретный образец или даже часть образца ненормальным или нет. Например,
когда вы просматриваете состояния запросов в списке процессов, можете

ответить на вопрос: «Нормально ли, что многие запросы сортируют свои
резу ль таты?»

Полезнее всего обращать внимание на поведение запросов и транзакций, а также вну­
треннее поведение сервера. Запрос и транзакция показывают, вызвана ли проблема

тем, как используется сервер: плохо написанным SQL, плохим индексированием,
плохим проектированием логической базы данных и т. д. Вы можете видеть, что
пользователи делают с сервером, просматривая места, в которых появляются запро­

сы и транзакции: журналированный трафик ТСР, вывод команды SHOW PROCESSLIST

и т. д. Внутреннее поведение сервера свидетельствует о том, есть ли на нем ошибки
либо проблемы с производительностью или масштабируемостью. Вы можете обна­
ружить ошибки в разных местах, а также в выводах oprofile и gdb. Но для интерпре­
тации таких результатов требуется опыт.

Иногда символы отсутствуют из-за •оптимизации»-, которая на самом деле не является

оптимизацией, - это только затрудняет диагностику проблем. Вы можете использовать

инструмент nm, чтобы проверить, есть ли они у вас, и установить пакеты debuginfo для
MySQL с целью получения символов.

Диагностика редко возникающих проблем 135

Если вы не знаете, как интерпретировать полученную ошибку, то можете заархивиро­

вать каталог с собранными данными и отправить его на анализ в службу поддержки.

Любой компетентный специалист по поддержке MySQL сможет истолковать данные
и объяснить вам, •по они значат. Кроме того, он будет только рад, что вы отправили

для ознакомления такие подробные данные. Возможно, вы также захотите отпра­

вить вывод двух других инструментов пакета Percona Toolkit - pt-mysql-summary
и pt-summary. Они показывают моментальные снимки статуса и конфигурации
вашего экземпляра MySQL, операционной системы и оборудования соответственно.

Пакет Percona Toolkit включает в себя инструмент, который поможет вам быстро
просмотреть множество выборок собранных данных. Он называется pt-sift, помогает
перемещаться между выборками, показывает сводку каждой выборки и позволяет

при необходимости погрузиться в отдельные биты данных. Этот инструмент может

сэкономить много времени.

Ранее мы приводили примеры счетчиков статуса и состояний потоков. В заключение

этой главы покажем несколько примеров вывода инструментов oprofile и gdb. Вот вы­
данный oprofile отчет с сервера, на котором возникла проблема. Вы можете ее найти?

samples % image паmе арр паmе symbol паmе

893793 31.1273 /пo-vmliпux /пo-vmliпux (по symbols)
325733 11.3440 mysqld mysqld Query_cache::free_menюry_

Ыосk()

117732 4.1001 libc libc (по symbols)
102349 3.5644 mysqld mysqld my_hash_sort_Ып

76977 2.6808 mysqld mysqld MYSQLparse()
71599 2.4935 libpthread libpthread pthread_mutex_trylock
52203 1.8180 mysqld mysqld read_view_opeп_пow

46516 1.6200 mysqld mysqld Query_cache::iпvalidate_query_

Ыock_list ()
42153 1.4680 mysqld mysqld Query_cache::write_result_

data()
37359 1.3011 mysqld mysqld MYSQLlex()
35917 1.2508 libpthread libpthread ~pthread_mutex_uпlock_usercпt

34248 1.1927 mysqld mysqld ~iпtel_пew_memcpy

Если вы ответили <~кэш запросов~>, вы правы. Кэш запросов этого сервера порождал

слишком много работы и все тормозил. Замедление в 50 раз произошло мгновенно,
без каких-либо других изменений в системе. Отключение кэша запросов нормали­

зовало работу сервера. В этом примере интерпретировать внутреннюю среду сервера

оказалось довольно просто.

Другим важным инструментом анализа узких мест является рассмотрение ожиданий

с трассировкой стека с помощью gdb. Трассировка стека одного потока обычно вы­
глядит следующим образом (мы немного отформатировали ее для печати):

Thread 992 (Thread 0x7f6ee0111910 (LWP 31510)):
#0 0х0000003Ье560Ыf9 iп pthread_coпd_wait~LIBC_2.3.2 () from /libpthread.so.0
#1 0x00007f6ee14f0965 iп os_eveпt_wait_low () at os/os0syпc.c:396
#2 0x00007f6ee1531507 iп srv_coпc_eпter_iппodb () at srv/srv0srv.c:1185
#3 0x00007f6ee14c906a iп iппodb_srv_coпc_eпter_iппodb () at haпdler/ha_iппodb.cc:609
#4 ha_iппodb::iпdex_read () at haпdler/ha_iппodb.cc:5057
#5 0х00000000006538с5 iп ?? ()

136 Глава 3 • Профилирование производительности сервера

#6 0х0000000000658029 in sub_select() ()
#7 0х0000000000658е25 in ?? ()
#8 0х00000000006677с0 in JOIN::exec() ()
#9 0х000000000066944а in mysql_select() ()
#10 0х0000000000669еа4 in handle_select() ()
#11 0x00000000005ff89a in ?? ()
#12 0х0000000000601с5е in mysql_execute_command() ()
#13 0х000000000060701с in mysql_parse() ()
#14 0х000000000060829а in dispatch_command() ()
#15 0х0000000000608Ь8а in do_command(THD*) ()
#16 0x00000000005fbdld in handle_one_connection ()
#17 0х0000003Ье560686а in start_thread () from /lib64/libpthread.so.0
#18 0x0000003be4ede3bd in clone () from /lib64/libc.so.6
#19 0х0000000000000000 in ?? ()

Стек читают снизу вверх, то есть в настоящее время выполняется поток внутри

функции pthread_cond_wait, которая была вызвана из os_event_wait_low.

Считывая трассировку дальше, мы видим, что, судя по всему, этот поток пытался

войти в ядро InnoDB (srv_conc_enter _innodb), но попал во внутреннюю очередь
(os_event_wait_low), потому что в ядре уже было больше потоков, чем указано в пере­
менной innodb_thread_concurrency. Однако реальное значение трассировки стека объ­
единяет их. Это методика, которую Домас Митузас (Domas Mituzas), бывший инженер
поддержки MySQL, сделал популярной благодаря инструменту «профилировщик для
бедных». В настоящее время он работает в Facebook и вместе с коллегами разработал
множество инструментов для сбора и анализа трассировок стека. Вы можете больше
узнать о существующих инструментах на сайте http://www.poonnansprofiler.org.

В пакете Percona Toolkit есть наша реализация «профилировщика для бедных» под
названием pt-pmp. Это оболочка и программа awk, которая объединяет аналогичные
трассировки стека и выполняет обычные команды sortluniqlsort, показывая первыми
наиболее часто встречающиеся. Далее показано, как выглядит полный набор трасси­
ровок стека. Мы будем использовать параметр -1 5 для отсечения трассировки стека
после пяти уровней так, чтобы не было большого количества трассировок с общими

вершинами, но с разными основаниями, что могло бы помешать объединить их

и увидеть, где на самом деле наблюдаются ожидания:

$ pt-pmp -1 5 stacktraces.txt
507 pthread_cond_wait,one_thread_per_connection_end,

handle_one_connection,start_thread,clone
398 pthread_cond_wait,os_event_wait_low,srv_conc_enter_innodb,

innodb_srv_conc_enter_innodb,ha_innodb::index_read
83 pthread_cond_wait,os_event_wait_low,sync_array_wait_event,

mutex_spin_wait,mutex_enter_func
10 pthread_cond_wait,os_event_wait_low,os_aio_simulated_handle,

fil_aio_wait,io_handler_thread
7 pthread_cond_wait,os_event_wait_low,srv_conc_enter_innodb,

innodb_srv_conc_enter_innodb,ha_innodb: :general_fetch
5 pthread_cond_wait,os_event_wait_low,sync_array_wait_event,

rw_lock_s_lock_spin,rw_lock_s_lock_func
1 sigwait,signal_hand,start_thread,clone,??
1 select,os_thread_sleep,srv_lock_timeout_and_monitor_thread,

start_thread,clone

Диагностика редко возникающих проблем 137

1 select,os_thread_sleep,srv_error_monitor_thread,start_thread,clone
1 select,handle_connections_sockets,main
1 read,vio_read_buff,::??,my_net_read,cli_safe_read

1 pthread_cond_wait,os_event_wait_low,sync_array_wait_event,
rw_lock_x_lock_low,rw_lock_x_lock_func

1 pthread_cond_wait,MYSQL_BIN_LOG: :wait_for_update,mysql_binlog_send,
dispatch_command,do_command

1 fsync,os_file_fsync,os_file_flush,fil_flush,log_write_up_to

Первая строка является характерной сигнатурой простаивающего потока в MySQL,
поэтому можете ее проигнорировать. Наиболее интересна вторая строка: она по­
казывает, что множество потоков ожидают входа в ядро InnoDB, но блокируются.
Третья строка показывает множество потоков, ожидающих некоторого мьютекса,

но какого именно, мы увидеть не можем, поскольку отсекли более глубокие уровни

трассировки стека. Если важно узнать, какой это мьютекс, следует перезапустить

инструмент с большим значением параметра -1. В целом трассировки стека по­
казывают, что множество потоков ждут своей очереди внутри InnoDB. Но почему
так происходит? Это непонятно. Чтобы ответить на этот вопрос, нам, по-видимому,

нужно поискать в другом месте.

Как видно из отчетов по трассировке стека и отчетов oprofile, такой вид анализа
не всегда подходит для тех, кто не разбирается в исходном коде MySQL и InnoDB.
В этом случае придется кого-то звать на помощь.

Теперь рассмотрим сервер, проблемы которого не отображаются ни в профиле,
ни в анализе ожиданий. Их придется диагностировать другими методами.

Кейс по диагностике

Рассмотрим процесс диагностики редко возникающих проблем с производительностью
на примере конкретной ситуации. В этом кейсе мы заберемся в неизвестную вам об­
ласть, если вы не эксперт в MySQL, InnoDB и GNU /Linux. Однако основная идея
этого кейса в другом. Попытайтесь найти метод в безумии: прочитайте этот раздел,
ориентируясь на сделанные нами предположения и догадки. Рассмотрите подходы,

основанные на рассуждениях и измерениях. Мы детально вникаем в конкретный

случай лишь для иллюстрации общих положений.

Прежде чем приступить к решению проблемы, откликаясь на чью-то просьбу, стоит
попробовать прояснить две вещи, желательно делая заметки, чтобы не забыть о чем­
то важном.

1. В чем заключается проблема? Постарайтесь выяснить это. Удивительно легко
начать охоту не за той проблемой. В данном случае клиент жаловался, что один
раз в день или раз в два дня сервер отклоняет соединения, выдавая ошибку
max_connections. Проблема появляется периодически и длится от нескольких
секунд до нескольких минут.

2. Что было сделано в попытке это исправить? В данном случае клиент вообще
не пытался решить проблему. Слушая о проблеме в изложении другого, очень

138 Глава 3 • Профилирование производительности сервера

трудно понять, какова точная последовательность событий, в чем заключаются
изменения, которые эти события повлекли за собой, и каков результат их воз­
действия. Это особенно верно, когда человек в отчаянии после пары бессонных
ночей и до краев налитых кофеином дней. На сервере, с которым происходили

неизвестные изменения с неизвестным эффектом, очень сложно устранять непо­

ладки, особенно в цейтноте.

Обсудив эти моменты, приступим. Стоит не только попытаться понять, как ведет себя
сервер, но и оценить его состояние, конфигурацию, программное обеспечение и обо­

рудование. Мы сделали это с помощью инструментов pt-summary и pt-mysql-summary.
На этом сервере были 16-ядерный процессор, 12 Гбайт ОЗУ и всего 900 Мбайт
данных, все в InnoDB, на твердотельном диске. На сервере запущена GNU/Linux
с MySQL 5.1.37 и плагином InnoDB версии 1.0.4. Ранее мы работали с этим клиен­
том, решая другие неожиданные проблемы с производительностью, и знали систему.
В прошлом с базой данных никогда не было проблем - проблемы всегда возникали
в приложении. Мы посмотрели на сервер и с первого взгляда не обнаружили ничего
очевидного. Запросы не были идеальными, но в большинстве случаев все еще вы­
полнялись быстрее 1 О миллисекунд. Таким образом мы убедились, что в нормальных
условиях сервер работал хорошо. (Это необходимо сделать - многие появляющиеся
время от времени проблемы оказываются симптомами хронических проблем, таких
как сбой жестких дисков в RАID-массивах.)

Этот кейс может оказаться немного утомительным. Мы будем валять дурака,
чтобы показать все диагностические данные, подробно объяснить все,

что обнаружили, и проследить разные направления мысли. На самом деле

не используем столь удручающе медленный подход к решению проблемы и не

пытаемся сказать, что вам это нужно.

Мы установили диагностический пакет и в качестве триггера выбрали Threads_
connected, значение которого обычно составляет менее 15, но во время этих проблем
увеличивалось до нескольких сотен. Покажем, пока без комментариев, выборку

данных, которые мы получили. Посмотрите, сможете ли вы выбрать важное для
дальнейшего анализа.

1:1 Активность работы варьировалась от 1 ООО до 1 О ООО запросов в секунду, причем
многие из них были мусорными командами, например пингование сервера для

проверки того, работает ли он. Среди остальных преобладали команды SELECT -

от 300 до 2000 в секунду. Также было немного команд UPDATE (около пяти в секунду).

1:1 В команде SHOW PJIOCESSLIST было два основных типа запросов, различающихся
только параметрами в разделе WHERE. Приведем обобщенные состояния запросов:

$ grep State: processlist.txt 1 sort 1 uniq -с 1 sort -rn
161 State: Copying to tmp tаЫе
156 State: Sorting result
136 State: statistics

Диагностика редко возникающих проблем 139

50 State: Sending data
24 State: NULL
13 State:
7 State: freeing items
7 State: cleaning up
1 State: storing result in query cache
1 State: end

1:1 Большинство запросов сканировали индексы или диапазоны - полнотабличных
и сканирований по кросс-соединениям не было.

1:1 Во время работы происходило от 20 до 100 сортировок в секунду, при этом сор­
тировалось от 1000 до 12 ООО рядов в секунду.

1:1 Во время работы создавалось от 12 до 90 временных таблиц в секунду, в том числе
от 3 до 5 - на диске.

1:1 Не было проблем с блокировкой таблиц или кэшем запросов.

1:1 Выполнив команду SНOW INNODB STATUS, мы заметили, что состоянием главного по­

тока является сброс страниц буферного пула, но имелось всего несколько десятков
«грязных» страниц для сброса (Innodb_buffer _pool_pages_dirty), практически
не было изменений в Innodb_buffer _pool_pages_flushed, а разница между по­
рядковым номером последней записи в журнале и последней контрольной точкой

оказалась небольшой. Буферный пул InnoDB даже не приблизился к заполне­
нию - он был намного больше размера данных. Большинство потоков ожидали

в очереди InnoDB: «12 запросов внутри InnoDB, 495 запросов в очереди».

1:1 Мы зафиксировали вывод утилиты iostat в течение 30 секунд, одну выборку в се­
кунду. Он показал, что на дисках практически не было чтения, а записей - выше
крыши. При этом среднее время ожидания ввода/вывода и длина очереди были
чрезвычайно высокими. Приведем фрагмент вывода, немного упростив его, чтобы

он поместился на странице без переносов:

r/s w/s rsec/s wsec/s avgqu-sz await svctm %util
1.00 500.00 8.00 86216.00 5.05 11.95 0.59 29.40
0.00 451.00 0.00 206248.00 123.25 238.00 1.90 85.90
0.00 565.00 0.00 269792.00 143.80 245.43 1.77 100.00
0.00 649.00 0.00 309248.00 143.01 231.30 1.54 100.10
0.00 589.00 0.00 281784.00 142.58 232.15 1.70 100.00
0.00 384.00 0.00 162008.00 71.80 238.39 1.73 66.60
0.00 14.00 0.00 400.00 0.01 0.93 0.36 0.50
0.00 13.00 0.00 248.00 0.01 0.92 0.23 0.30
0.00 13.00 0.00 408.00 0.01 0.92 0.23 0.30

1:1 Вывод утилиты vmstat подтвердил то, что мы видели в iostat, и показал, что про­
цессоры в основном бездействуют, за исключением некоторого ожидания ввода/
вывода во время всплеска записи (до 9 % ожидания).

Мозги еще не закипели? Это быстро происходит, когда вы глубоко погружаетесь
в систему и у вас нет никаких предубеждений (или вы пытаетесь игнорировать их),
поэтому в итоге смотрите на все. Большинство того, что вы увидите, либо совершенно
нормально, либо показывает последствия проблемы, но ничего не говорит о ее ис­

точнике. Хотя в данном случае у нас есть некоторые догадки о при<шне проблемы,

140 Глава 3 • Профилирование производительности сервера

продолжим исследование, обратившись к отчету oprofile. Но сейчас мы не только
вывалим на вас новые данные, но и добавим к ним комментарии и интерпретацию:

samples % image name арр name symbol name
473653 63.5323 no-vmlinux no-vmlinux /no-vmlinux

95164 12.7646 mysqld mysqld /usr/libexec/mysqld
53107 7.1234 libc-2.10.1.so libc-2.10.1.so memcpy
13698 1.8373 ha_innodb.so ha_innodb.so build_template()
13059 1.7516 ha_innodb.so ha_innodb.so btr_search_guess_on_hash
11724 1.5726 ha_innodb.so ha_innodb.so row_sel_store_mysql_rec
8872 1.1900 ha_innodb.so ha_innodb.so rec_init_offsets_comp_ordinary
7577 1.0163 ha_innodb.so ha_innodb.so row_search_for_mysql
6030 0.8088 ha_innodb.so ha_innodb.so rec_get_offsets_func
5268 0.7066 ha_innodb.so ha_innodb.so cmp_dtuple_rec_with_match

Далеко не очевидно, что скрывается за большинством этих наборов символов, и боль­
шую часть времени они болтаются вместе в ядре 1 и в наборе символов mysqld, кото­
рый ни о чем нам не говорит2• Не отвлекайтесь на все эти обозначения ha_innodb. so.
Посмотрите на процент времени, которое они тратят: независимо от того, что они

делают, это занимает так мало времени, что можно быть уверенными: не это источник
проблемы. Перед нами пример проблемы, которую мы не решим с помощью анализа
профиля. Мы смотрим на неверные данные. Когда вы видите что-то похожее на пре­

дыдущую выборку, продолжайте исследование, возьмите другие данные - возможно,
там будет более очевидное указание на причину проблемы.

А сейчас, если вам интересен анализ ожиданий с помощью трассировки стека ути­

литой gdb, обратитесь к концу предыдущего раздела. Приведенная там выборка
взята из системы, которую мы сейчас диагностируем. Если помните, основная часть

трассировок стека просто ждала входа в ядро InnoDB, что соответствует 12 запро­
сам внутри InnoDB, 495 запросам в очереди, полученным в результатах, выведенных
командой SHOW INNODB STATUS.

Видите ли вы что-нибудь, явно указывающее на конкретную проблему? Мы не уви­
дели - обнаружили лишь возможные симптомы множества проблем и по меньшей
мере две их потенциальные причины. При этом мы опирались на интуицию и свой

опыт. А еще заметили нечто не имеющее смысла. Если вы снова посмотрите на вывод

утилиты iostat, то в столбце wsec/ s увидите, что в течение примерно 6 секунд сервер
записывает на диски сотни мегабайт данных в секунду. Каждый сектор состоит из
512 байт, поэтому выборка свидетельствует о том, что за секунду порой записывается
до 150 Мбайт. Но вся база данных содержит всего 900 Мбайт, а рабочая нагрузка -
это в основном запросы SELECT. Как такое могло произойти?

Исследуя систему, постарайтесь задать себе вопрос, есть ли что-то, что просто
не сходится, и разберите это подробнее. Старайтесь доводить ход мысли до конца

Теоретически нам нужны эти наборы символов ядра, чтобы понять, что происходит внутри

него. На практике это трудно определить, а мы знаем, глядя на vшstat, что системный про­

цессор использовался незначительно, поэтому вряд ли обнаружим какую-то деятельность,

от личную от сна.

Кажется, что это MySQL, написанная с ошибкой.

Диагностика редко возникающих проблем 141

и не слишком часто отвлекаться на смежные темы, иначе просто можете забыть
о многообещающих идеях. Делайте небольшие заметки и просматривайте их, чтобы
убедиться, что вы расставили все точки над «i» 1•

На этом этапе мы могли бы перескочить прямо к выводу, но это было бы неверно.
Из состояния основного потока видно, что InnoDB пытается сбросить «грязные»
страницы, которые обычно не отображаются в выводе состояния, если только сброс
не откладывается. Мы знаем, что эта версия InnoDB подвержена проблеме ярост­
ного сброса, известной также как стопор контрольной точки. Это то, что происхо­
дит, когда InnoDB не выполняет сбросы равномерно в течение некоторого.времени,
а неожиданно решает вынудить контрольную точку сделать это (очистить много

данных). Это может вызвать серьезную блокировку внутри InnoDB, заставив все
процессы встать в очередь и ждать входа в ядро, и, таким образом, образовать
пробку на уровнях выше InnoDB на сервере. В главе 2 мы продемонстрировали
пример периодических падений производительности, которые могут произойти

в случае яростного сброса. Большинство симптомов, наблюдаемых на этом сервере,
похожи на то, что происходит при принудительной установке контрольной точки,

но в данном случае проблема в другом. Это можно доказать разными способами,
самый, вероятно, простой из которых - посмотреть на счетчики команды SHOW

STATUS и отследить изменения в счетчике Innodb_buffer _pool_pages_flushed,
который, как мы сказали ранее, не увеличился. Кроме того, мы отметили, что

в пуле буферов не так много черновых данных, чтобы сбрасывать их в любом слу­
чае, - далеко не сотни мегабайт. Это неудивительно, поскольку рабочая нагрузка
на этом сервере почти полностью состоит из запросов SELECT. Следовательно, мы
можем сделать вывод: вместо того чтобы обвинять проблему в сбросе InnoDB, мы
должны обвинить в проблеме задержку сброса InnoDB. Это симптом, результат,
а не причина. Лежащая в основе проблема приводит к тому, что диски заполня­
ются настолько, что InnoDB не успевает выполнить свои задачи ввода/вывода.
Поэтому мы можем отбросить это как возможную причину и зачеркнуть одну из
наших интуитивных идей.

Иногда довольно сложно отличить причину от результата, и когда проблема выгля­
дит знакомой, может возникнуть соблазн пропустить анализ и перейти к диагнозу.
Срезать углы не стоит, но в то же время важно прислушиваться к своей интуиции.

Если что-то кажется знакомым, разумно потратить немного времени на измерение

необходимых и достаточных условий, чтобы понять, является ли это проблемой. Это
может сэкономить много времени, которое вы потратили бы на получение других
данных о системе и ее производительности. Просто постарайтесь не делать выводов,

основанных на интуиции, наподобие: «Я видел это раньше и уверен, что это то же
самое». Если можете, соберите доказательства.

Следующим шагом стала попытка выяснить, что вызывало такое странное исполь­

зование ввода/вывода сервера. Мы обращаем ваше внимание на приведенные ранее
рассуждения: «Сервер пишет сотни мегабайт на диск в течение многих секунд, но
база данных содержит только 900 Мбайт. Как это могло произойти?» Обратили ли

Или как там эта фраза звучит? Положить все яйца в один стог сена?

142 Глава 3 • Профилирование производительности сервера

вы внимание на неявное предположение, что база данных выполняет запись? Какими
мы располагаем доказательствами, что это именно база данных? Попытайтесь оста­
новиться, если принимаете что-то на веру бездоказательно, и если что-то не имеет
смысла, подумайте, нет ли тут предположений. Если возможно, выполните измере­

ния и устраните все сомнения.

Мы видели два варианта. Либо база данных вызывала работу ввода/вывода, и в этом
случае, если бы мы могли понять, почему так происходит, мы считали бы, что это
приведет нас к причине проблемы. Либо база данных не выполняла весь этот ввод/
вывод, но инициатором этих операций было что-то еще, и нехватка ресурсов ввода/
вывода могла повлиять на базу данных. Мы говорим об этом очень осторожно, чтобы
избежать другого неявного предположения: занятость дисков не означает, что MySQL
пострадает. Помните, что основная рабочая нагрузка этого сервера - чтение из опе­
ративной памяти, поэтому вполне можно представить, что диски могли бы перестать
отвечать на запросы в течение длительного времени, не вызывая серьезных проблем.

Если вы следите за нашими рассуждениями, то, возможно, видите, что нам нуж­

но вернуться назад и проверить другое предположение. Мы видим, что дисковое

устройство ведет себя неправильно, о чем свидетельствует большое время ожида­
ния. Твердотельный накопитель не должен тратить в среднем четверть секунды на

каждую операцию ввода/вывода. И действительно, мы видим, что, по данным iostat,
сам диск реагирует быстро, но много времени затрачивается на проход через очередь
блочного устройства к диску. Помните, что это только предположение iostat, - и это
может быть ошибкой.

В чем причина плохой производительности

Когда ресурс неправильно работает, полезно попытаться понять, почему так проис­

ходит. Существует несколько причин.

1. Ресурс перегружен работой, и ему не хватает мощностей для правильной работы.

2 Ресурс не настроен должным образом.

3 Ресурс сломан или неисправен.

В анализируемом кейсе вывод утилиты iostat может указывать либо на слишком боль­
шой объем работы, либо на неправильную конфигурацию (почему требования ввода/

вывода так долго стоят в очереди, прежде чем попасть на диск, если на самом деле он ре­

агирует быстро?). Однако важным элементом поиска ошибки является сравнение спро­

са на систему с ее мощностью. Из результатов экстенсивного эталонного тестирования

мы знаем, что конкретный накопитель SSD, используемый этим клиентом, не может
выдерживать сотни мегабайт записей в секунду. Таким образом, хотя iostat утвержда­
ет, что диск отвечает очень хорошо, вполне вероятно, что это не совсем так. В данном

случае мы никак не могли доказать, что диск был медленнее, чем утверждала iostat, но
это выглядело весьма вероятным. Тем не менее это не меняет нашего мнения: причиной

могут быть неверное использование диска, неверная настройка или и то и другое.

Диагносгика редко возникающих проблем 143

После работы с данными диагностики, позволившими сделать такой вывод, следую­
щая задача была очевидна: измерить то, что вызывает ввод/вывод. К сожалению, это
было неосуществимо в используемой клиентом версии GNU /Linux. Постаравшись, мы
могли бы получить обоснованное предположение, но сначала хотели рассмотреть дру­
гие варианты. В качестве альтернативного варианта мы могли бы определить, сколько

операций ввода/вывода поступает из MySQL, но опять же в этой версии MySQL
данная операция была неосуществима из-за отсутствия необходимых инструментов.

Вместо этого мы решили попробовать понаблюдать за вводом/выводом MySQL,
основываясь на знании о том, как система использует диск. В основном MySQL за­
писывает на диск только данные, журналы, файлы сортировки и временные таблицы.

Мы исключили данные и журналы из рассмотрения на основе счетчиков состояния

и другой информации, о которой говорили ранее. Теперь предположим, что MySQL
внезапно запишет на диск кучу данных из временных таблиц или файлов сортировки.

Как можно за этим понаблюдать? Существует два простых способа: оценить объем
свободного места на диске или посмотреть открытые дескрипторы сервера с по­
мощью команды lsof. Мы сделали и то и другое, и результаты нас вполне удовлет­
ворили. Приведем то, что df -h показывало каждую секунду во время инцидента,
который мы изучали:

Filesystem Size Used Avail Use% Mounted оп

/dev/sda3 58G 20G 36G 36% 1
/dev/sda3 58G 20G 36G 36% 1
/dev/sda3 58G 19G 36G 35% 1
/dev/sda3 58G 19G 36G 35% 1
/dev/sda3 58G 19G 36G 35% 1
/dev/sda3 58G 19G 36G 35% 1
/dev/sda3 58G 18G 37G 33% 1
/dev/sda3 58G 18G 37G 33% 1
/dev/sda3 58G 18G 37G 33% 1

Далее представлены данные, полученные с помощью команды lsof, которые мы
почему-то собирали только каждые 5 секунд. Мы просто суммируем размеры всех
файлов, которые mysqld открывает в /tmp, и распечатываем сумму для каждой вре­
менной выборки в файле:

$ awk '
/mysqld.*tmp/ {

total += $7;
}
/лsun Mar 28/ && total {

printf "%s %7.2f MB\n", $4, total/1024/1024;
total = 0;

}' lsof.txt
18:34:38 1655.21 мв
18:34:43 1.88 мв
18:34:48 1.88 мв
18:34:53 1.88 мв
18:34:58 1.88 мв

На основе полученной информации можно сделать вывод, что MySQL записывает
около 1,5 Гбайт данных во временные таблицы на начальных этапах инцидента, а это

144 Глава З • Профилирование производительности сервера

соответствует тому, что мы обнаружили в состояниях SHOW PROCESSLIST («Копирова­
ние в таблицу tmpi.>). Свидетельства указывают на массу плохих запросов, которые
мгновенно заполняют диск. Самая распространенная причина этого, которую мы

видели (сработала наша интуиция), - паника в кэше, когда все кэшированные объ­
екты разом утекают из memcached, а несколько приложений дружно пытаются по­
вторно восстановить кэш. Мы показали выборку запросов разработчикам и обсудили
их цель. В самом деле оказалось, что причиной было одновременное прекращение
существования кэша (интуитивное предположение подтвердилось). Разработчики
попытались решить эту проблему на уровне приложения, а мы помогли им изменить
запросы так, чтобы они не использовали временные таблицы на диске. Даже одно
из этих исправлений могло бы предотвратить возникновение проблемы, но лучше
внести их оба.

Теперь мы хотели бы вернуться немного назад и ответить на вопросы, которые могли
у вас возникнуть (описывая в этой главе свой подход, мы критиковали его).

о Почему для начала мы просто не оптимизировали медленные запросы?

Потому что проблема была не в медленных запросах, это была ошибка типа
«слишком много соединений~.>. Конечно, логично ожидать, что длительные за­

просы приводят к накоплению запросов и увеличению количества подключе­

ний. Но к такому результату могут привести и десятки других событий. Если
не найдена точная причина, объясняющая, почему все идет не так, возникает
соблазн вернуться к поиску медленных запросов или других общих моментов,
которые выглядят так, как будто могут быть улучшены 1 • К сожалению, чаще
такой подход приводит к негативным результатам. Если вы отвезли свой автомо­

биль к механику и пожаловались на непонятный шум, а затем были огорошены
счетом за балансировку шин и смену трансмиссионной жидкости, потому что
механик не смог найти настоящую проблему и начал искать другие, разве вы

не будете в ярости?

о Но разве не сигнал тревоги то, что запросы выполняются медленно с плохим
EXPLAIN?

Они действительно выполнялись медленно, но во время инцидентов. Были ли это

причина или результат? Это не было понятно, пока мы не углубились в исследо­
вание. Не забывайте, что в обычных условиях запросы выполнялись довольно
хорошо. Просто то, что запрос делает файловую сортировку2 с помощью времен-

Этот подход также известен в формулировке «Когда у вас есть только молоток, все вокруг

похоже на гвоздь~.>.

В статье «Что означает использование файловой сортировки в MySQLi.> один из авторов
этой книги, Бэрон Шварц (Baron Schwartz), пишет: <1Файловая сортировка - это плохое
название. Каждый раз, когда сортировку нельзя выполнить с помощью индекса, она стано­

вится файловой. При этом никакого отношения к файлам она не имеет. Ее следовало назвать

просто сортировкой!>. - Примеч. пер.

Диагностика редко возникающих проблем 145

ной таблицы, не означает, что это проблема. Избавление от файловой сортировки

и временных таблиц - это обычная тактика хорошего разработчика.

Но не всегда обычные тактики помогают в решении специфических проблем.

Например, проблемой могла быть неправильная конфигурация. Мы видели

немало случаев, когда некто пытался исправить неверно сконфигурированный

сервер оптимизацией запросов, что оказывалось пустой тратой времени и просто

увеличивало ущерб от реальной проблемы.

1:1 Если кэшированные элементы неоднократно восстанавливались, не возникало ли

множества одинаковых запросов?

Да, и это то, что мы тогда не проверили. Множественные потоки, восстанавлива­

ющие один и тот же элемент в кэше, действительно вызывали бы возникновение

множества полностью идентичных запросов. (Это не то же самое, что несколько

запросов одного и того же общего типа, которые, например, могут различаться

параметром в разделе WHERE.) Если бы мы обратили на это внимание, то могли бы,

прислушавшись к интуиции, быстрее прийти к решению.

1:1 Выполнялись сотни запросов SELECT в секунду, но только пять UPDATE. Можно ли
сказать, что эти пять не были действительно тяжелыми запросами?

Они действительно могли сильно нагружать сервер. Мы не показывали факти­

ческие запросы, поскольку эта информация лишь помешала бы, но мнение, что

абсолютное число запросов каждого типа не обязательно важно, имеет право на

жизнь.

1:1 Разве «доказательство», говорящее об источнике урагана ввода/вывода, все еще

недостаточно весомое?

Да. Может быть много объяснений, почему небольшая база данных записывает

огромное количество данных на диск или почему свободное место на диске

быстро сокращается. Это то, что довольно сложно измерить (хотя и не не­

возможно) в версиях MySQL и GNU /Linux. Хотя можно сыграть в адвоката
дьявола и придумать множество сценариев. Мы решили уравновесить затраты

и потенциальную выгоду, сначала выбрав наиболее перспективный путь. Чем

сложнее проведение измерений и меньше уверенность в результатах, тем выше

соотношение затрат и выгод и тем сильнее мы готовы принять неопределен­

ность.

1:1 Мы говорили: «Раньше база данных никогда не бьUlа проблемой». Разве это не пред­
убеждение?

Да, это было необъективно. Если вы уловили это - здорово, если нет, то, надеемся,

это станет хорошим примером того, что у всех нас есть предубеждения.

Мы хотели бы завершить кейс по устранению неполадок, указав, что рассмотрен­

ную проблему, скорее всего, можно было бы решить (или предотвратить) без

нашего участия, используя инструмент профилирования приложений, например

New Relic.

146 Глава 3 • Профилирование производительносrи сервера

Другие инструменты профилирования

Мы показали множество способов профилирования MySQL, операционной системы
и запросов. Продемонстрировали те, которые, на наш взгляд, являются наиболее по­
лезными, и, конечно же, покажем еще больше инструментов и методик для проверки
и измерения систем в этой книге. Но подождите, это еще не все!

Таблицы USER_STATISTICS

Пакеты Percona Server и MariaDB включают дополнительные таблицы INFORМAТION_
SСНЕМА для получения статистики использования на уровне объекта. Они были созда­
ны в Google. Такие информационные таблицы чрезвычайно полезны для определения
того, в какой степени используются различные части сервера. На крупном предпри­
ятии, где администраторы баз данных отвечают за управление базами данных и слабо
контролируют разработчиков, подобные таблицы могут быть жизненно важными
для измерения и аудита активности базы данных и обеспечения соблюдения поли­
тики использования. Они также полезны для многоклиентских приложений, таких

как среда совместного хостинга. В то же время, когда вы ищете источник проблем
с производительностью, они могут помочь выяснить, кто максимально задействует

базу данных или какие таблицы и индексы наиболее часто или редко используются.
Рассмотрим эти таблицы:

mysql> sнow TABLES FROМ INFORМATION_SCHEMA LIKE '%_STATISTICS';
+---+
1 TaЫes_in_information_schema (%_STATISTICS) 1

+---+
CLIENT_STATISTICS
INDEX_STAТISТICS

TABLE_STAТISТICS

THREAD_STATISTICS
USER_STAТISТICS

+---+

В книге не хватит места для примеров всех запросов, которые вы можете выполнить

к этим таблицам, но несколько пунктов привести не помешает.

О Вы можете найти наиболее и наименее используемые таблицы и индексы для
чтения, обновления или того и другого.

О Вы можете найти неиспользуемые индексы, которые станут кандидатами на

удаление.

О Вы можете сравнить CONNECTED_ТIME и BUSY_ТIME подчиненного сервера, чтобы
понять, ожидается ли в ближайшем будущем активная работа по репликации
данных.

В MySQL 5.6 Performance Schema добавляет таблицы, которые служат для достиже­
ния аналогичных целей.

Итоги главы 147

Инструмент strace
Инструмент strace перехватывает системные вызовы. Существует несколько спо­
собов его использования. Один из них - фиксация продолжительности времени

вызова системы и распечатка профиля:

$ strace -cfp $(pidof mysqld)
Process 12648 attached with 17 threads - interrupt to quit
лcProcess 12648 detached
% time seconds usecs/call calls errors syscall

----------- ----------- --------- --------- ------------
73.51 0.608908 13839 44 select
24.38 0.201969 20197 10 futex
0.76 0.006313 1 11233 3 read
0.60 0.004999 625 8 unlink
0.48 0.003969 22 180 write
0.23 0.001870 11 178 pread64
0.04 0.000304 0 5538 llseek -

[несколько строк опущены для краткости]

----------- ----------- --------- --------- -------------
100.00 0.828375 17834 46 total

Таким образом, этот инструмент немного похож на oprofile. Однако последний будет
профилировать внутренние символы программы, а не только системные вызовы. Кроме

того, strace использует другую методику перехвата вызовов, которая немного непред­
сказуема и значительно увеличивает издержки. К тому же strace измеряет время,
тогда как oprofile определяет, где расходуются циклы процессора. В качестве примера:
strace позволяет обнаружить случаи, когда ожидания ввода/вывода доставляют про­
блемы, поскольку strace выполняет измерения от начала и до конца системных вызо­
вов, таких как read или pread64, а oprofile - нет, поскольку системные вызовы ввода/
вывода фактически не загружают процессор, а просто ожидают завершения этого

ввода/вывода.

Мы используем oprofile только по необходимости, поскольку при большом много­
поточном процессе, таком как mysqld, у него могут появиться странные побочные
эффекты, и в случае применения инструмента strace mysqld будет работать так мед­
ленно, что окажется практически непригодным для рабочей нагрузки. Тем не менее

в некоторых ситуациях он может быть чрезвычайно полезен, а в пакете Percona
Toolkit есть инструмент pt-ioprofile, который использует strace для генерации истин­
ного профиля активности ввода/вывода. Это может пригодиться для доказательства

или опровержения разных трудноизмеримых событий, которые в противном случае

мы не смогли бы завершить. (Если сервер работает с MySQL 5.6, вместо этого мы
могли бы использовать Performance Schema.)

Итоги главы

Эта глава закладывает основы хода и методики мышления, необходимых для успеш­

ной оптимизации производительности. Правильный подход - ключ к полному рас-

148 Глава З • Профилирование производительности сервера

крытию потенциала разрабатываемых вами систем и применению знаний, которые
вы приобретете, прочитав следующие главы книги. Перечислим основополагающие
принципы, которые мы попытались проиллюстрировать.

D Мы считаем, что самым правильным способом определения производительности
является время отклика системы.

D Вы не можете гарантированно улучшить то, что нельзя измерить, поэтому уве­
личение производительности лучше всего работает с высококачественными,
правильно выполненными, полными измерениями времени отклика.

D Лучшим местом для начала измерений является приложение, а не база данных.
Если на нижних уровнях есть проблема, например, с базой данных, она проявится
в результате правильно выполненных измерений.

D Большинство систем невозможно измерить полностью, и измерения всегда оши­

бочны. Но даже в этом случае, признав несовершенство и неточность используемых
средств, обычно можно обойти ограничения и получить хороший результат.

D В результате тщательных измерений появляется слишком много данных для ана­
лиза, поэтому вам нужен профиль. Это лучший инструмент для подъема важнейших

данных на самый верх. Тем самым мы можем решить, с чего следует начинать.

D Профиль - это сводка, которая скрывает и отбрасывает детали. Но он и не по­
казывает вам, чего не хватает. Не стоит рассматривать профиль как истину в по­

следней инстанции.

D Существует два вида потребления времени: работа и ожидание. Многие инстру­
менты профилирования могут только измерять работу, поэтому анализ ожиданий
иногда является важным дополнением, особенно когда уровень задействования
процессора низок, а работа все еще не завершена.

D Оптимизация - это не то же самое, что улучшение. Прекратите работать, если
дальнейшее улучшение не стоит затрат на него.

D Прислушайтесь к своей интуиции, но используйте ее для анализа, а не для приня­

тия решений об изменениях в системе. Максимально основывайте свои решения
на данных, а не на ощущениях.

Общий подход, который мы продемонстрировали, решая проблемы с производи­
тельностью, состоит в том, что сначала следует прояснить вопрос, а затем выбрать
подходящую методику для ответа на него. Если вы пытаетесь понять, можно ли

улучшить производительность сервера в целом, то начните с журналирования всех

запросов и создания общесистемного профиля с помощью утилиты pt-query-digest.
Если вы ищете неправильные запросы, о которых, возможно, и не знаете, журна­

лирование и профилирование также могут помочь. Посмотрите на процессы, по­

требляющие больше всего времени, запросы, доставляющие пользователям больше
всего неприятных моментов при работе с системой, и запросы, которые сильно из­
меняются или имеют странные гистограммы времени отклика. Обнаружив плохие
запросы, углубитесь в них, просмотрев подробный отчет с помощью pt-query-digest,
используя команду SHOW PROFILE и аналогичные инструменты, например EXPLAIN.

Итоги главы 149

Если запросы выполняются плохо по какой-либо явной причине, возможно, вы стол­
кнулись со спорадическими проблемами сервера. Чтобы выяснить это, вы можете
измерить и отобразить на графике счетчики состояния сервера на хорошем уровне
детализации. Если это позволит выявить проблему, используйте те же самые данные
для формулировки надежного условия триггера, чтобы иметь возможность фикси­
ровать пакет подробных диагностических данных. Затратьте столько времени и сил,
сколько необходимо для нахождения хорошего условия триггера, которое позволит
избежать ложноположительных и ложноотрицательных результатов. Если вы за­

фиксировали проблему в момент появления, но не можете определить ее причину,
собирайте дополнительные данные или попросите о помощи.

Вы работаете с системами, которые не можете измерить полностью, но это просто
конечные автоматы, поэтому если вы будете внимательны, логичны и настойчивы,
то, скорее всего, получите результаты. Старайтесь не путать результаты с причинами

и не вносить изменения, не определив проблему.

Теоретически оптимальный подход с вертикальным профилированием и всеобъем­
лющими измерениями - идеал, к которому стоит стремиться, но чаще нам прихо­

дится иметь дело с реальными системами. Реальные системы сложны и недостаточно

хорошо оснащены инструментами, поэтому мы делаем все возможное с помощью

того, что имеем. Такие инструменты, как pt-query-digest и анализатор запросов
MySQL Enterprise Monitor, неидеальны и часто не показывают достоверно источник
проблемы. Но в основном они вполне справляются со своими задачами.

Оптимизация схемы
и типов данных

Высокой производительности можно достичь только при хорошем логическом

и физическом проектировании схемы. Следует проектировать свою схему для кон­

кретных запросов, которые вы будете запускать. При этом часто приходится идти
на компромиссы. Например, денормализованная схема может ускорить одни типы

запросов, но замедлить другие. Добавление таблиц счетчиков и сводных таблиц -
хороший способ оптимизации запросов, но их поддержка может дорого стоить.
Особенности использования MySQL незначительно влияют на это.

Текущая глава и глава 5, посвященная индексированию, охватывают характерные
для MySQL области проектирования схемы. При этом мы предполагаем, что вы
знаете, как проектировать базы данных. Поскольку это глава по проектированию
базы данных MySQL, речь в ней пойдет о различиях при проектировании баз данных
в MySQL и других СУРБД. Если вы хотите изучить основы проектирования баз
данных, предлагаем прочесть книгу Клер Чурчер (Clare Churcher) Beginning Database
Design (издательство Apress).

Данная глава подготовит вас к прочтению двух следующих. В главах 4-6 мы рас­
смотрим взаимодействие логического и физического проектирования и выполнения

запросов. Для этого потребуется как взгляд на картину в целом, так и внимание
к мелочам. Вам нужно разобраться в системе, чтобы понять, как одна часть повлияет
на другие. Возможно, полезно будет перечитать эту главу после изучения разделов,
посвященных индексированию и оптимизации запросов. Большинство обсуждаемых
тем нельзя рассматривать изолированно.

Выбор оптимальных типов данных

MySQL поддерживает множество типов данных. Выбор правильного типа для хране­
ния вашей информации критичен с точки зрения увеличения производительности.

Следующие простые рекомендации помогут сделать правильный выбор независимо
от типа сохраняемых данных.

Выбор оптимальных типов данных 151

1:] Меньше - обычно лучше. Старайтесь использовать типы данных минимального
размера, достаточного для их правильного хранения и представления. Меньшие

по размеру типы данных обычно быстрее, поскольку занимают меньше места на
диске, в памяти и кэше процессора. Кроме того, для их обработки обычно требу­
ется меньше процессорного времени.

Однако убедитесь, что правильно представляете диапазон возможных значений
данных, поскольку увеличение размерности типа данных на многих участках схе­

мы может оказаться болезненным и длительным процессом. Если вы сомневаетесь
в том, какой тип данных использовать, выберите самый короткий при условии, что
его размера будет достаточно. (Если система не сильно загружена, хранит не очень
много данных или вы находитесь на раннем этапе процесса проектирования, то

легко сможете позже изменить решение.)

1:] Просто - 31tачит хорошо. Для выполнения операций с более простыми типами

данных обычно требуется меньше процессорного времени. Например, сравнение
целых чисел менее затратно, чем сравнение символов, поскольку различные

кодировки и схемы упорядочения (правила сортировки) усложняют сравнение

символов. Приведем два примера: значения даты и времени следует хранить во

встроенных типах данных MySQL, а не в строках. Для IР-адресов используйте
целочисленные типы данных. Мы обсудим этот вопрос позднее.

1:] Насколько это возможно, избегайте значений NULL. Очень часто в таблицах
встречаются поля, допускающие хранение NULL (отсутствие значения), хотя при­
ложению это совершенно не нужно просто потому, что такой режим установлен

по умолчанию. Как правило, стоит объявить столбец как NOT NULL, если только вы
не планируете хранить в нем значения NULL.

МуSQL тяжело оптимизировать запросы, содержащие допускающие NULL столбцы,
поскольку из-за них усложняются индексы, статистика индексов и сравнение

значений. Столбец, допускающий NULL, занимает больше места на диске и требует
специальной обработки. Когда такой столбец проиндексирован, ему требуется
дополнительный байт для каждой записи, а в MyISAM даже может возникнуть си­
туация, когда придется преобразовать индекс фиксированного размера (например,
индекс по одному целочисленному столбцу) в индекс переменного размера.

Повышение производительности в результате замены столбцов NULL на NOT NULL
обычно невелико, так что не делайте их поиск и изменение в существующих
схемах приоритетными, если не уверены, что именно они вызывают проблемы.

Но если вы планируете индексировать столбцы, по возможности не делайте их
допускающими NULL.

Конечно, бывают и исключения. Например, стоит упомянуть, что подсистема
InnoDB использует для хранения значения NULL один бит, поэтому она может
быть довольно экономичной для неплотно заполненных данных. Однако это
не относится к MyISAM.

Первым шагом при выборе типа данных для столбца является определение общего
класса типов: числовые, строковые, временные и т. п. Обычно никаких сложностей

при этом не возникает, однако бывают ситуации, когда выбор неочевиден.

152 Глава 4 • Оптимизация схемы и типов данных

Следующим шагом является выбор конкретного типа. Многие типы данных MySQL
позволяют хранить данные одного и того же вида, но с разными диапазоном значе­

ний и точностью или требующие разного физического пространства (на диске или

в памяти). Кроме того, некоторые типы данных обладают специальным поведением

или свойствами.

Например, в столбцах DАТЕТIМЕ и ТIМЕSТАМР можно хранить один и тот же тип данных:
дату и время с точностью до секунды. Однако тип ПМЕSТАМР требует вдвое меньше

места, позволяет работать с часовыми поясами и обладает специальными средствами

автоматического обновления. При этом диапазон допустимых значений для него на­

много уже, а специальные средства могут стать недостатком.

Здесь мы обсудим основные типы данных. В целях совместимости MySQL поддер­
живает различные псевдонимы, например INТEGER, BOOL и NUMERIC. Все это именно

псевдонимы. Данный факт может сбить с толку, но не влияет на производительность.

Если вы создадите таблицу с псевдонимом типа данных, а затем запустите команду

SHOW СRЕАТЕ TABLE, то увидите, что MySQL выдает базовый тип, а не использованный
псевдоним.

Целые числа

Существуют два типа чисел: целые и вещественные (числа с дробной частью).

Для хранения целых чисел используйте один из целочисленных типов: TINYINT,

SМALLINT, MEDIUMINT, INT или BIGINT. Для хранения они требуют 8, 16, 24, 32 и 64 бита
соответственно. Они позволяют хранить значения в диапазоне от -2(N - 1) до
2(N - 1) - 1, где N - количество битов, использованных для их хранения.

Целые типы данных могут иметь необязательный атрибут UNSIGNED, запрещающий

отрицательные значения и приблизительно вдвое увеличивающий верхний предел

хранимых положительных значений. Например, тип ТINYINT UNSIGNED позволяет

хранить значения от О до 255, а не от -128 до 127.

Знаковые и беззнаковые типы требуют одинакового пространства и обладают одина­
ковой производительностью, так что используйте тот тип, который больше подходит

для диапазона ваших данных.

Ваш выбор определяет то, как СУБД MySQL хранит данные в памяти и на диске.
Однако для целочисленных вычислений обычно используются 64-разрядные целые

типа BIGINT, даже на машинах с 32-разрядной архитектурой (исключение состав­

ляют некоторые агрегатные функции, использующие для вычислений тип DECIМAL

или DOUBLE).

MySQL позволяет указать для целых чисел размер, например INT{ll}. Для большин­

ства приложений это неважно - это не ограничивает диапазон возможных значений,

лишь определяет, сколько позиций интерактивным инструментам MySQL (напри-

Выбор оптимальных типов данных 153

мер, клиенту командной строки) необходимо зарезервировать для вывода числа.

С точки зрения хранения и вычисления INT(l) и INT(20) идентичны.

0"'"· •
•
""

Подсистемы хранения сторонних производителей, например Infobright, иногда
используют собственный формат хранения данных и схемы сжатия. При этом
они моrут отличаться от встроенных в MySQL подсистем хранения .

Вещественные числа

Вещественные числа - это числа, имеющие дробную часть. Однако они использу­

ются не только для дробных чисел - в типе данных DECIМAL также можно хранить

большие числа, не помещающиеся в типе BIGINT. MySQL поддерживает как ~точные>),
так и ~неточные>) типы.

Типы PLOAT и DOUBLE допускают приближенные математические вычисления с пла­

вающей точкой. Если вам нужно точно знать, как вычисляются результаты с плава­

ющей точкой, изучите, как это реализовано на имеющейся у вас платформе.

Тип DECIМAL используется для хранения точных дробных чисел. В MySQL версии 5.0
и более поздних DECIМAL поддерживает еще и точные вычисления. MySQL 4.1 и более
ранние версии для работы с DECIМAL применяли вычисления с плавающей точкой,

которые иногда давали странные результаты из-за ухудшения точности. В этих вер­

сиях MySQL тип DECIМAL предназначался только для хранения.

Начиная с версии MySQL 5.0 математические операции с типом DECIМAL реализуются
самим сервером баз данных, поскольку непосредственно процессоры не поддержи­

вают такие вычисления. Операции с плавающей точкой протекают существенно

быстрее, так как их выполнение для процессора естественно.

Как типы с плавающей запятой, так и тип DECIМAL позволяют задавать нужную точ­

ность. Для столбца типа DECIМAL вы можете определить максимальное количество

цифр до и после запятой. Это влияет на объем пространства, требующегося для
хранения данных столбца. MySQL 5.0 и более новые версии упаковывают цифры
в двоичную строку (девять цифр занимают четыре байта). Например, DECIМAL(18, 9)
будет хранить девять цифр с каждой стороны от запятой, используя в общей слож­
ности 9 байт: 4 байта для цифр перед запятой, 1 байт для самой запятой и 4 байта
для цифр после нее.

Число типа DECIМAL в MySQL 5.0 и более новых версиях может содержать до 65 цифр.
Более ранние версии MySQL имели предел 254 цифры и хранили значения в виде
неупакованных строк (1 байт на цифру). Однако эти версии MySQL наделе не могли
использовать такие большие числа в вычислениях, поскольку тип DECIМAL был просто

форматом хранения. При выполнении вычислений значения DECIМAL преобразовы­

вались в тип DOUBLE.

154 Глава 4 • Оптимизация схемы и типов данных

Вы можете указать желаемую точность для столбца чисел с плавающей точкой

несколькими способами так, что MySQL незаметно для пользователя выберет
другой тип данных или при сохранении будет округлять значения. Эти специфи­

каторы точности нестандартны, поэтому мы рекомендуем задавать желаемый тип,

но не точность.

Типы с плавающей точкой обычно задействуют для хранения одного и того же диапа­

зона значений меньше пространства, чем тип DECIМAL. Столбец типа FLOAT использует

4 байта. Тип DOUBLE требует 8 байт и имеет большую точность и больший диапазон
значений, чем FLOAT. Как и в случае работы с целыми числами, вы выбираете тип

только для хранения. MySQL использует тип DOUBLE для вычислений с плавающей

точкой.

Из-за дополнительных требований к пространству и затрат на вычисления тип

DECIМAL стоит использовать только тогда, когда нужны точные результаты при вы­

числениях с дробными числами, например при хранении финансовых данных.

Но при некоторых операциях с большими числами целесообразнее применять тип

BIGINT вместо DECIMAL и хранить данные как кратные наименьшей доле валюты,

которую вам нужно обрабатывать. Предположим, необходимо хранить финансовые

данные с точностью до 1/10 ООО цента. Вы можете умножить все суммы в долла­
рах на 1 миллион и сохранить результат в BIGINT. Тем самым избежите как неточ­

ности хранения типов с плавающей запятой, так и высоких затрат на точные расчеты

типа DECIМAL.

Строковые типы

MySQL поддерживает большой диапазон строковых типов данных с различными
вариациями. Эти типы претерпели значительные изменения в версиях 4.1 и 5.0, что
сделало их еще более сложными. Начиная с версии MySQL 4.1, каждый строковый
столбец может иметь собственную кодировку и соответствующую схему упорядо­

чения (более подробно эта тема рассматривается в главе 7). Данное обстоятельство
может значительно повлиять на производительность.

Типы VARCHAR и CHAR

Два основных строковых типа - это VARCHAR и CHAR, предназначенные для хранения

символьных значений. К сожалению, нелегко объяснить, как именно эти значения

хранятся в памяти и на диске, поскольку конкретная реализация зависит от выбран­

ной подсистемы хранения. Мы предполагаем, что вы используете InnoDB и/или
MyISAM. В противном случае вам лучше прочитать документацию по используемой
подсистеме хранения.

Давайте посмотрим, как обычно значения VARCHAR и CHAR сохраняются на диске.

Имейте в виду, что подсистема хранения может хранить CHAR или VARCHAR в памяти

не так, как на диске, и что сервер может преобразовывать данные в другой формат,

Выбор оптимальных типов данных 155

когда извлекает их из подсистемы хранения. Приведем общее сравнение этих двух

типов.

D VARCHAR. Тип VARCHAR хранит символьные строки переменной длины и является

наиболее используемым строковым типом данных. Строки этого типа могут за­

нимать меньше места, чем строки фиксированной длины, поскольку для VARCHAR

используется столько места, сколько действительно необходимо (то есть для

хранения более коротких строк требуется меньше пространства). Исключением
являются таблицы типа MyISAM, созданные с параметром ROW_FORMAT=FIXED.

В этом случае для каждой строки на диске отводится область фиксированного
размера, поэтому место может расходоваться впустую.

В типе VARCHAR для хранения длины строки используются 1 или 2 дополнительных
байта: 1 байт, если максимальная длина строки в столбце не превышает 255 байт,
и 2 байта - при более длинных строках. Если используется кодировка latinl, тип
VARCHAR(10) может занимать до 11 байт. Тип VARCHAR(1000) может использовать

до 1002 байт, поскольку 2 байта требуется для хранения информации о длине
строки.

Тип VARCHAR увеличивает производительность за счет экономии места. Но по­

скольку это строки переменной длины, они способны увеличиваться при обновле­
нии, что требует дополнительной работы. Если строка становится длиннее и боль­
ше не помещается в отведенное для нее место, то дальнейшее поведение системы

зависит от подсистемы хранения. Например, MyISAM может фрагментировать
строку, а InnoDB, возможно, придется выполнить разбиение страницы. Другие
подсистемы хранения могут вообще не обновлять данные в месте их хранения.

Обычно целесообразно использовать тип VARCHAR, если максимальная длина стро­
ки в столбце значительно больше средней, обновление поля выполняется редко,
так что фрагментация не представляет проблемы, и если применяется сложная

кодировка, например UTF-8, в которой для хранения одного символа использу­
ется переменное количество байтов.

В MySQL 5.0 и более новых версиях при сохранении и извлечении текстовых
строк MySQL сохраняет пробелы в конце строки. В версии же 4.1 и более ранних
они удаляются.

Интереснее ситуация с InnoDB, которая может хранить длинные значения типа
VARCHAR в виде BLOB. Подробнее мы рассмотрим эту способность позже.

D CHAR. Тип CHAR имеет фиксированную длину: MySQL всегда выделяет место для
указанного количества символов. Сохраняя значения CHAR, MySQL удаляет все
пробелы в конце строки (это справедливо также для типа VARCHAR в MySQL 4.1
и более ранних версий - СНАR и VARCHAR были логически идентичны и различались
только форматом хранения). К значениям для сравнения добавляются пробелы.

Тип CHAR полезен, когда требуется сохранять очень короткие строки или все
значения имеют приблизительно одинаковую длину. Например, CHAR хорошо
подходит для хранения МD5-сверток паролей пользователей, которые всегда

имеют одинаковую длину. Также тип CHAR имеет преимущество над VARCHAR при

156 Глава 4 • Оптимизация схемы и типов данных

часто меняющихся данных, поскольку строка фиксированной длины не под­

вержена фрагментации. Если в столбцах очень короткие строки, тип CHAR также
эффективнее, чем VARCHAR: если тип CHAR(l) применяется для хранения значений
только У и N, то в однобайтовой кодировке1 он займет лишь 1 байт, тогда как для
типа VARCHAR(l) из-за наличия дополнительного байта длины строки потребуется
2 байта.

Это поведение может несколько сбивать с толку, поэтому проиллюстрируем его на
примере. Сначала мы создали таблицу с одним столбцом типа CHAR(10) и сохранили
в нем какие-то значения:

mysql> CREATE TABLE char_test(char_col CHAR(l0));
mysql> INSERT INTO char_test(char_col) VALUES

-> ('stringl'), (' string2'), ('stringЗ ');

При извлечении значений пробелы в конце строки удаляются:

mysql> SELECТ CONCAT("'", char_col, ""') FROМ char_test;
+----------------------------+
1 CONCAT(" "', char_col, "' ") 1

+----------------------------+
1 'stringl' 1

1 ' string2' 1

1 'stringЗ' 1

+----------------------------+
Если мы сохраним те же значения в столбце типа VARCHAR(10), то после извлечения
получим следующий результат:

mysql> SELECT CONCAT('" ", varchar _col, '" ") FROМ varchar _test;
+----------------------------+
1 CONCAT("'", char_col, ""') 1

+----------------------------+
1 'stringl' 1

1 ' string2' 1

1 'stringЗ ' 1

+----------------------------+
Как именно записываются данные, зависит от подсистемы хранения, и не все под­

системы одинаково обрабатывают значения фиксированной и переменной длины.
В подсистеме Меmогу используются строки фиксированной длины, поэтому ей

приходится выделять максимально возможное место для каждого значения, даже

если это поле переменной длины2 • Однако поведение при дополнении и удалении

пробелов одинаково для всех подсистем хранения, поскольку эту работу выполняет
сам сервер MySQL.

Родственными типами для CHAR и VARCHAR являются BINARY и VARBINARY, предназна­
ченные для хранения двоичных строк. Двоичные строки очень похожи на обычные,
но вместо символов в них хранятся байты. Метод дополнения пробелами также от-

Помните, что длина указана в символах, а не в байтах. При многобайтовой кодировке для
хранения каждого символа может потребоваться более 1 байта.

Подсистема Memory в пакете Percona Server поддерживает строки переменной длины.

Выбор оптимальных типов данных 157

личается: MySQL добавляет в строки типа BINARY значение \0 (нулевой байт) вместо

пробелов и не удаляет дополненные байты при извлечении 1 •

Эти типы полезны, когда нужно хранить двоичные данные и вы хотите, чтобы
MySQL сравнивала значение как байты, а не как символы. Преимуществом по­
байтового сравнения является не только нечувствительность к регистру. MySQL
сравнивает строки BINARY побайтно в соответствии с числовым значением каждого

байта. Так что двоичное сравнение может оказаться значительно проще символьного

и, как следствие, быстрее.

Щедрость не всегда ра3умна

Значение 'hello' занимает одно и то же место и в столбце типа VARCHAR(s), и в столб­
це типа VARCHAR(200). Обеспечивает ли преимущество применение более короткого

столбца?

Оказывается, преимущество есть, и значительное. Для большего столбца может потре­

боваться намного больше памяти, поскольку MySQL часто выделяет для внутреннего
хранения значений участки памяти фиксированного размера. Это особенно плохо для

сортировки или операций, использующих временные таблицы в памяти. То же самое

происходит при файловой сортировке, использующей временные таблицы на диске.

Наилучшей стратегией будет выделение такого объема памяти, который действитель­

но нужен.

Типы BLOB и ТЕХТ

Строковые типы BLOB и ТЕХТ предназначены для хранения больших объемов двоич­

ных или символьных данных соответственно.

Фактически это семейства типов данных: к символьным типам относятся ПNУТЕХТ,

SМALL ТЕХТ, ТЕХТ, MEDIUMТEXT и LONGТEXT, а к двоичным - ТINYBLOB, SМALLBLOB, BLOB,

MEDIUMBLOB и LONGBLOB. BLOB является синонимом для SМALLBLOB, а ТЕХТ - для SМALL ТЕХТ.

В отличие от остальных типов данных каждое значение BLOB и ТЕХТ MySQL обра­
батывает как отдельный объект. Подсистемы хранения часто хранят их особым об­
разом: если они большого размера, InnoDB может использовать для них отдельную
внешнюю область хранения. Каждому значению такого типа требуется от 1 до 4 байт
в самой строке и достаточно места во внешнем хранилище для хранения фактиче­
ского значения.

Единственное различие между семействами BLOB и ТЕХТ заключается в том, что типы

BLOB хранят двоичные данные без учета схемы упорядочения и кодировки, а типы

ТЕХТ используют схемы упорядочения и кодировку.

Будьте осторожны с типом BINARY, если значение после извлечения должно оставаться
неизменным: MySQL дополняет его нулевыми байтами до нужной длины.

158 Глава 4 • Оптимизация схемы и типов данных

MySQL сортирует столбцы BLOB и ТЕХТ иначе, чем столбцы других типов: вместо сор­
тировки строки по всей ее длине она сортирует только по первым max_sort_length
байтам каждого столбца. Если нужна сортировка только по нескольким первым сим­
волам, вы можете либо уменьшить значение серверной переменной max_sort_length,
либо использовать конструкцию ORDER ВУ SUBSTRING(cmoлбeц, длина).

MySQL не может индексировать данные этих типов по полной длине и не может
применять для сортировки индексы (в следующей главе мы рассмотрим этот вопрос

подробнее).

Временные таблицы на диске и сортировка файлов

Поскольку подсистема хранения Memory не поддерживает типы BLOB и ТЕХТ, для

запросов, в которых используются столбцы такого типа и которым нужна неявная

временная таблица, придется задействовать временные таблицы MylSAM на диске,
даже если речь идет всего лишь о нескольких строках. Подсистема хранения Мепюгу

в пакете Регсопа Serveг поддерживает типы BLOB и ТЕХТ, но во время написания книги

она все еще не предотвращала использования таблиц на диске.

Это может потребовать серьезных затрат. Даже если вы настроите в MySQL хра­
нение временных таблиц на диске в памяти, все равно потребуется много затратных

вызовов операционной системы.

Лучше всего не использовать типы BLOB и ТЕХТ, если можно без них обойтись. Если же

избежать этого не удается, можно задействовать конструкцию SUBSTRING(cmoлбeц,

длина) везде, где применяется тип BLOB (в том числе в разделе ORDER ВУ), для преобра­

зования значений в символьные строки, которые уже могут храниться во временных

таблицах в памяти. Только убедитесь, что выбираете достаточно короткие подстроки,

чтобы временная таблица не вырастала до объемов, превышающих значения перемен­

ных max_heap_taЫe_size или tmp_taЫe_size, иначе MySQL преобразует ее в таблицу
MyISAM на диске.

Самая неприятная ситуация с размером относится также к сортировке значений, по­

этому этот трюк может помочь при обеих проблемах: создании больших временных

таблиц и сортировке файлов и их создании на диске.

Приведем пример. Предположим, у вас есть таблица с 10 миллионами строк, которая
занимает пару гигабайт на диске. В таблице есть столбец VARCHAR(1000} с кодировкой

UTF8. Эта кодировка может использовать до 3 байт на один символ, что в худшем
случае составит 3000 байт. Если вы укажете этот столбец в разделе ORDER ВУ, запрос ко

всей таблице может-потребовать более 30 Гбайт временного пространства только для
сортировки файлов!

Если столбец Extra в результате применения команды EXPLAIN содержит слова Using

temporary, значит, для запроса использована неявная временная таблица.

Выбор оптимальных типов данных 159

Использование типа ENUM вместо строкового типа

Иногда взамен обычных строковых типов можно задействовать тип ENUM. Столбец ENUМ
может хранить предопределенный набор различных строковых значений. MySQL со­
храняет их очень компактно, упаковывая в 1 или 2 байта в зависимости от количества
значений в списке. Она хранит каждое значение внутри себя как целое число, отража­
ющее позицию его значения в списке значений поля, и сохраняет справочную таблицу,
которая определяет соответствие между числом и строкой в файле . frm.

Приведем пример:

mysql> CREATE TABLE enum_test(
-> е ENUM('fish', 'apple', 'dog') NOT NULL
->);

mysql> INSERT INTO enum_test(e) VALUES('fish'), ('dog'), ('apple');

Во всех трех строках таблицы в действительности хранятся целые числа, а не строки.
Вы можете увидеть двойственную природу значений, если извлечете их в числовом

виде:

mysql> SELECT е + 0 FROМ enum_test;
+-------+
1 е + 0 1
+-------+

1 1

з 1

2 1

+-------+

Эта двойственность может вызвать путаницу, если вы определите числа в качестве

констант ENUM, например ENUM('1', '2', '3'). Мы не рекомендуем так делать.

Другим сюрпризом является то, что поля типа ENUM сортируются по внутренним
целочисленным значениям, а не по самим строкам:

mysql> SELECT е FROМ enum_test ORDER ВУ е;
+-------+
1 е
+-------+
1 fish 1

1 apple 1

1 dog 1

+-------+

Проблему можно решить, определив значения для столбца ENUM в желаемом порядке
сортировки. Можно также использовать функцию FIELD(), чтобы явно задать порядок
сортировки в запросе, но это не позволит MySQL применить для сортировки индекс:

mysql> SELECT е FROМ enum_test ORDER ВУ FIELD(e, 'apple', 'dog', 'fish');
+-------+
1 е
+-------+
1 apple
1 dog
1 fish
+-------+

160 Глава 4 • Оптимизация схемы и типов данных

Если бы мы определили значения в алфавитном порядке, нам не пришлось бы это
делать.

Главным недостатком столбцов типа ENUM является то, что список строк фиксирован,
а для их добавления или удаления необходимо использовать команду AL TER TABLE.
Таким образом, возможно, не слишком хорошая идея - применить тип ENUM для
представления строк, если предполагается изменить список возможных значений

в будущем, за исключением случая, когда допустимо добавлять элементы в конец
списка, что можно сделать без полного перестроения таблицы в MySQL 5.1.

Поскольку MySQL сохраняет каждое значение как целое число и вынуждена просма­
тривать таблицы соответствий для преобразования их в строковое представление, то
со столбцами типа ENUМ связаны некоторые издержки. Обычно это компенсируется их
малым размером, но так происходит не всегда. В частности, соединение столбца типа
CHAR или VARCHAR со столбцом типа ENUM может оказаться медленнее, чем соединение
с другим столбцом типа CHAR или VARCHAR.

Чтобы проиллюстрировать данное утверждение, мы провели эталонное тестирование
того, как быстро MySQL выполняет такое соединение с таблицей, в одном из наших
приложений. В таблице определили довольно большой первичный ключ:

CREATE TABLE webservicecalls (
day date NOT NULL,
accouпt smalliпt NOT NULL,
service varchar(10) NOT NULL,
method varchar(50) NOT NULL,
calls iпt NOT NULL,
items iпt NOT NULL,
time float NOT NULL,
cost decimal(9,5) NOT NULL,
updated datetime,
PRIМARY КЕУ (day, accouпt, service, method)

ENGINE=IппoDB;

Таблица содержит около 11 О ООО строк, ее объем порядка 1 О Мбайт, поэтому она це­
ликом помещается в памяти. Столбец service содержит пять различных значений со
средней длиной четыре символа, а столбец method - 71 значение со средней длиной
20 символов.

Мы сделали копию этой таблицы и преобразовали столбцы service и method к типу
ENUM следующим образом:

CREATE TABLE webservicecalls_eпum (
••. опущено ..•
service ENUM(.•. значения опущены ...) NOT NULL,
method ЕNUМ(.•. значения опущены ...) NOT NULL,

•.. опущено ...
ENGINE=IппoDB;

Затем измерили производительность соединения таблиц по столбцам первичного
ключа. Для этого использовали такой запрос:

mysql> SELECT SQL_NO_CACHE COUNT(*)
-> FROМ webservicecalls
-> JOIN webservicecalls USING(day, accouпt, service, method);

Выбор оптимальных типов данных 161

Мы варьировали этот запрос, соединяя столбцы типа VARCHAR и ENUM в различных

комбинациях. Результаты показаны в табл. 4.1.

Табnица 4.1. Скорость соединения столбцов типа VARCHAR и ENUM

Tecr запросов в секунду

Соединение V ARCHAR с V ARCHAR 2,6

Соединение V ARCHAR с ENUM 1,7

Соединение ENUM с V ARCHAR 1,8

Соединение ENUM с ENUM 3,5

Соединение становится быстрее после преобразования всех столбцов к типу ENUM, но

соединение столбцов типа ENUM со столбцами типа VARCHAR происходит медленнее.

В данном случае кажется, что преобразование имеет смысл, если не планируется

соединение этих столбцов со столбцами типа VARCHAR. Распространенная практика

проектирования состоит в использовании справочных таблиц с целочисленными

первичными ключами, чтобы избежать соединения по символьным значениям.

Однако можно получить пользу и от преобразования столбцов: команда SHOW TABLE

STATUS в столбце Data_length показывает, что после преобразования двух столбцов

к типу ENUM таблица стала приблизительно на треть меньше. В некоторых ситуа­

циях это может принести выгоду даже в случае соединения столбцов типа ENUM со

столбцами типа VARCHAR. Кроме того, сам первичный ключ после преобразования
уменьшается приблизительно вдвое. Поскольку это таблица InnoDB, то если в ней
есть и другие индексы, поэтому уменьшение размера первичного ключа приведет

к уменьшению и их размера. Мы поясним это в следующей главе.

Типы Date и Time
MySQL содержит много различных типов для даты и времени, например YEAR и DАТЕ.

Минимальной единицей времени, которую может хранить MySQL, является 1 секун­
да. (У MaгiaDB минимальная единица временного типа - 1 микросекунда.) Однако
вычисления с временными данными могут выполняться с точностью до 1 микросе­
кунды, и мы покажем, как обойти ограничение хранения.

Большинство временных типов не имеют альтернатив, поэтому вопроса о том, ка­

кой из них лучше, не возникает. Нужно лишь решить, что делать, когда требуется

сохранять и дату, и время. Для этих целей MySQL предлагает два очень похожих
типа данных: DATEТIME и ТIMESTAMP. Для большинства приложений подходят оба,

но в некоторых случаях один работает лучше, чем другой. Давайте рассмотрим их

более подробно.

1:1 DАТЕПМЕ. Этот тип дает возможность хранить большой диапазон значений -
с 1001 по 9999 год - с точностью до 1 секунды. Дата и время упаковываются
в целое число в формате YYYYMMDDHHMMSS независимо от часового пояса.
Для хранения требуется 8 байт.

162 Глава 4 • Оптимизация схемы и типов данных

По умолчанию MySQL показывает данные типа DATEТIME в точно определенном
допускающем сортировку формате: 2008-01-16 22:37:08. Это стандарт представ­
ления даты и времени ANSI.

Q ПМЕSТАМР. Как следует из названия, в типе ПМЕSТАМР хранится количество секунд,

прошедших после полуночи 1 января 1970 года по Гринвичу (GMT), - и как во

временной метке UNIX. Для хранения данных типа ПМЕSТАМР используются толь­
ко 4 байта, поэтому он позволяет представить значительно меньший диапазон дат,
чем тип DАТЕПМЕ: с 1970 года до некоторой даты в 2038 году. В MySQL имеются
функции FROM_UNIXТIME() и UNIX_ТIMESTAMP(), служащие для преобразования
временной метки UNIX в дату и наоборот.

В MySQL 4.1 и более новых версиях значения типа ТIMESTAMP форматируются
точно так же, как значения DАТЕТIМЕ, но в MySQL 4.0 и более старых версиях
они отображаются без разделителей между частями. Это различие проявляется
только при выводе - формат хранения значений ТIMESTAMP одинаков во всех

версиях MySQL.

Отображаемое значение типа ТIMESTAMP зависит также от часового пояса. Часо­
вой пояс определен для сервера MySQL, операционной системы и клиентского
соединения.

Таким образом, если в поле типа ТIMESTAMP хранится значение 0, то для часового
пояса Eastern Standard Time (EST), отличающегося от гринвичского времени
на 5 часов, будет выведена строка 1969-12-31 19:00:00. Стоит подчеркнуть эту
разницу: если вы храните данные, относящиеся к нескольким часовым поясам,

или получаете к ним доступ, поведение ТIMESTAMP и DАТЕТIМЕ будет различаться.

Первый сохраняет значения относительно используемого часового пояса, а по­

следний - текстовое представление даты и времени.

Кроме того, у типа TIMESTAMP есть специальные свойства, которых нет у типа

DATEТIME. По умолчанию, если вы не указали значение для столбца, MySQL встав­
ляет в первый столбец типа ПМЕSТАМР текущее время1 . Кроме того, по умолчанию

MySQL изменяет значение первого столбца типа ТIMESTAMP при обновлении
строки, если ему явно не присвоено значение в команде UPDAТE. Вы можете на­

строить поведение при вставке и обновлении для каждого столбца типа ПМЕSТАМР.
Наконец, столбцы типа ТIMESTAMP по умолчанию создаются в режиме NOT NULL,

в отличие от остальных типов данных.

В общем случае мы советуем пользоваться типом ТIMESTAMP, если это возможно, по­

скольку с точки зрения занимаемого на диске места он намного эффективнее, чем

DАТЕПМЕ. Иногда временные метки UNIX сохраняют в виде целых чисел, но обычно
это не дает никаких преимуществ. Целочисленное представление часто неудобно,

поэтому мы не рекомендуем его применять.

Правила поведения типа TIMEST АМР сложны и неодинаковы в различных версиях
MySQL, поэтому нужно убедиться, что он ведет себя так, как хочется вам. Обычно имеет
смысл проверить вывод команды SHOW CREATE Т ABLE после внесения изменений
в столбцы ТIMEST АМР.

Выбор оптимальных типов данных 163

Но что, если вам нужно сохранить значение даты и времени с точностью выше се­

кунды? Сейчас в MySQL для этих целей нет соответствующего типа данных, но вы
можете создать собственный формат хранения: применить тип BIGINT и сохранить
значение как временную метку в микросекундах либо воспользоваться типом OOUBLE

и указать дробную часть секунды после запятой. Оба подхода вполне работоспособ­
ны. Или вы можете воспользоваться MariaDB вместо MySQL.

Битовые типы данных

В MySQL есть несколько типов данных, использующих для компактного хранения
значений отдельные биты. Все эти типы с технической точки зрения являются стро­

ковыми вне зависимости от формата хранения и обработки.

О ВП. До версии MySQL 5.0 ключевое слово ВП было просто синонимом ТINYINT.
Но начиная с версии MySQL 5.0 это совершенно иной тип данных с особыми
характеристиками. Обсудим его поведение.

Вы можете использовать столбец типа ВП для хранения одного или нескольких
значений true/false в одном столбце. BIТ(l) определяет поле, содержащее 1 бит,
ВП(2) хранит 2 бита и т. д. Максимальная длина столбца типа вп равна 64 битам.

Поведение типа ВIТ зависит от подсистемы хранения. MyISAM для хранения
упаковывает битовые столбцы, поэтому для хранения 17 отдельных столбцов
типа ВП требуется только 1 7 бит (предполагается, что ни в одном из столбцов
не разрешено значение NULL). При вычислении размера места для хранения

MyISAM округлит это число до 3 байт. Другие подсистемы, например Memory
и InnoDB, хранят каждый столбец как наименьший целочисленный тип, доста­
точно большой для размещения всех битов, поэтому сэкономить пространство

не получится.

MySQL рассматривает ВП как строковый, а не числовой тип. Когда вы извлекаете
значение типа BIТ(l), результатом является строка, но ее содержимое представ­

ляет собой двоичное значение О или 1, а не значение О или 1 в кодировке ASCII.
Однако, если вы извлечете значение в числовом виде, результатом будет число,
в которое преобразуется битовая строка. Учитывайте это, когда понадобится

сравнить результат с другим значением. Например, если вы сохраните значение

Ь'00111001', являющееся двоичным эквивалентом числа 57, в столбце типа ВП(8),
а затем извлечете его, то получите строку, содержащую код символов 57. Этот
код в кодировке ASCII соответствует цифре 9. Но в числовом виде вы получите
значение 57:

mysql> CREATE ТАВLЕ bittest(a bit(S}};
mysql> INSERT INTO Ыttest VALUES(b'00111001'};
mysql> SELECT а, а + 0 FROМ Ыttest;
+------+-------+
1 а 1 а + 0 1

+------+-------+
1 9 57 1

+------+-------+

164 Глава 4 • Оптимизация схемы и типов данных

Такое поведение может сбивать с толку, так что рекомендуем с осторожностью

использовать тип ВП. В большинстве приложений лучше вообще его избегать.

Если возникла необходимость сохранять значение true/false в одном бите,

можно также создать столбец типа CHAR(0) с возможностью хранения NULL. Такой

столбец может хранить как отсутствие значения (NULL), так и значение нулевой
длины (пустая строка).

1:1 SЕТ. Если нужно хранить множество значений true/false, попробуйте объеди­

нить несколько столбцов в один естественный для MySQL столбец типа SЕТ.
В MySQL его внутренним представлением является упакованный битовый век­
тор. Он эффективно использует пространство, а в MySQI. есть такие функции,
как FIND_IN_SET() и FIELD(), которые облегчают запросы. Основным недостатком

являются затраты на изменение определения столбца - эта процедура требует

команды AL TER TABLE, которая для больших таблиц обходится очень дорого (но

далее в этой главе мы рассмотрим обходной путь). Кроме того, в общем случае

при поиске в столбцах типа SЕТ нельзя применять индексы.

1:1 Побитовые операции над целочисленными столбцами. Альтернативой типу SЕТ
является использование целого числа как упакованного набора битов. Например,

вы можете поместить 8 бит в тип ТINYINT и выполнять с ним побитовые операции.
Для упрощения работы можно определить именованные константы для каждого

бита в коде приложения.

Главным преимуществом такого подхода по сравнению с использованием типа SET

является то, что вы можете изменить перечисление, которое представляет поле

без команды AL ТЕR TABLE. Недостаток же заключается в том, что запросы стано­

вятся труднее для написания и понимания (что означает, если бит 5 установлен?).
Одни люди хорошо ориентируются в побитовых операциях, а другие - нет, по­

этому использование описанного метода - дело вкуса.

Примером применения упакованных битов является список управления доступом

(access control list, ACL), в котором хранятся разрешения. Каждый бит или элемент
SET представляет значение, например CAN_READ, CAN_WRIТE или CAN_DELETE. Если вы

используете столбец типа SET, то позволяете MySQL сохранять в определении столб­
ца соответствие между битами и значениями; если же применяется целочисленный

столбец, то такое соответствие устанавливается в коде приложения. Приведем при­
меры запросов со столбцом типа SET:

mysql> CREATE TABLE acl (
-> perms SET('CAN_READ', 'CAN_WRITE', 'CAN_DELETE') NOT NULL
- >) ;

mysql> INSERT INTO acl(perms) VALUES ('CAN_READ,CAN_DELETE');
mysql> SELECT perms FROМ acl WНERE FIND_IN_SET('CAN_READ', perms);
+---------------------+
1 perms
+---------------------+
1 CAN_READ,CAN_DELETE 1

+---------------------+

Выбор оптимальных типов данных 165

При использовании целочисленного столбца вы могли бы написать этот пример

следующим образом:

mysql> SET @CAN_READ .- 1 << 0,
-> @CAN_WRITE .- 1 << 1,
-> @CAN_DELETE .- 1 << 2;

mysql> CREATE ТАВLЕ acl (
-> perms TINVINТ UNSIGNED NOT NULL DEFAULT 0
->);

mysql> INSERT INТO acl(perms) VALUES(@CAN_READ + @CAN_DELETE);
mysql> SELECT perms FROМ acl WHERE perms & @CAN_READ;
+-------+
1 perms 1

+-------+
5 1

+-------+

Для определения столбцов мы использовали переменные, но вы можете применять

в своем коде и константы.

Выбор идентификаторов

Выбор типа данных для столбца идентификатора очень важен. Велика вероятность

того, что этот столбец будет сравниваться с другими значениями (например, в со­
единениях) и использоваться для поиска чаще, чем другие столбцы. Кроме того, вы,

возможно, станете применять идентификаторы в качестве внешних ключей в других

таблицах, поэтому выбор типа столбца идентификатора, скорее всего, определит

и типы столбцов в связанных таблицах. (Как мы уже показали, целесообразно ис­

пользовать в связанных таблицах одинаковые типы данных, поскольку они, скорее

всего, будут задействованы для соединения.)

При выборе типа данных для столбца идентификатора следует учитывать не только

тип хранения, но и то, как MySQL выполняет вычисления и сравнения с этим ти­
пом. Например, MySQL хранит типы ENUM и SЕТ как целые числа, но преобразует их

в строки при сравнении в строковом контексте.

Сделав выбор, убедитесь, что вы используете один и тот же тип во всех связанных

таблицах. Типы должны совпадать в точности, включая такие свойства, как UNSIGNED1•

Смешение различных типов данных может вызвать проблемы с производительно­

стью, и даже если этого не произойдет, неявные преобразования типов в процессе

сравнения могут привести к возникновению труднообнаруживаемых ошибок.

При использовании подсистемы хранения lnnoDB в принципе невозможно создать
внешний ключ, если типы данных в точности не совпадают. Появляющееся сообщение

об ошибке ERROR 1005 (НУООО): Can't create tаЫе может сбить с толку (в определенном
контексте), а вопросы на эту тему часто появляются в списках рассылок MySQL (как
ни странно, разрешается создавать внешние ключи между столбцами У ARCHAR разной
длины).

166 Глава 4 • Оптимизация схемы и типов данных

Они могут проявиться значительно позже, когда вы уже забудете, что сравниваете

данные разных типов.

Выбирайте самый маленький размер поля, способный вместить требуемый диапазон

значений, а при необходимости оставляйте место для увеличения в дальнейшем.

Например, если вы храните названия штатов США в столбце state_id, в нем небу­
дет тысяч или миллионов значений, поэтому не используйте тип INT. Вполне доста­

точно типа ТINYINT, который на 3 байта короче. Если вы используете это значение
как внешний ключ в других таблицах, 3 байта могут стать существенными. Дарим
несколько советов.

Q Целочисленные типы. Обычно хорошо подходят для идентификаторов, поскольку

работают быстро и допускают AUTO_INCREMENT.

Q ENUМ и SET. Типы ENUM и SЕТ обычно не подходят для идентификаторов, хотя могут

быть хороши для статических таблиц определений, содержащих значения состоя­

ния или типа. Столбцы ENUМ и SET подходят для хранения такой информации, как

состояние заказа, вид продукта или пол человека.

Например, если поле ENUM используется для определения вида продукта, вам

может потребоваться справочная таблица с первичным ключом по идентичному

полю ENUМ (можете включить в справочную таблицу столбцы с текстом описания,

создать глоссарий или добавить комментарии в элементах раскрывающегося

меню на сайте). В таком случае можно использовать тип ENUM для идентифика­

тора, но в целом лучше этого избегать.

Q Строковые типы. По возможности избегайте строковых типов для идентифика­

торов, поскольку они занимают много места и обычно обрабатываются медленнее

целочисленных. Особенно осторожными следует быть при использовании стро­

ковых идентификаторов в таблицах MyISAM. Подсистема хранения MyISAM
по умолчанию использует упакованные индексы для строк, что замедляет поиск.

Во время тестов мы обнаружили, что в процессе работы с упакованными индек­

сами MyISAM производительность падает чуть ли не в шесть раз.

Следует также быть очень внимательными при работе со случайными строками,

например сгенерированными функциями MDS(), SHAl() или UUID(). Случайные

значения, созданные с их помощью, распределяются случайным образом в боль­

шом пространстве, что может замедлить работу команды INSERT и некоторых

типов запросов SELECT1•

• Они замедляют запросы INSERT, поскольку вставленное значение должно быть
помещено в случайное место в индексах. Это приводит к разделению страниц,

появлению возможности произвольного доступа к диску и фрагментации кла­

стерного индекса в подсистемах хранения, которые его поддерживают. Более

подробно мы рассмотрим это в следующей главе.

В то же время в больших таблицах, в которые одновременно записывают данные множество
клиентов, такие псевдослучайные значения могут помочь избежать ~rорячих» мест.

Выбор оптимальных типов данных 167

• Они замедляют запросы SELECT, так как логически соседние строки оказыва­

ются разбросанными по всему диску и памяти.

• Случайные значения ухудшают работу кзша при всех типах запросов, посколь­

ку нарушают принцип локальности ссылок, лежащий в основе его работы. Если
весь набор данных одинаково «горячий~. то нет смысла в хранении какой-то

части информации кэшированной в памяти, а если рабочие данные не поме­

щаются в памяти, то часто будут возникать сбросы из кэша.

Если вы решили сохранять значения UUID, то нужно удалить тире или, что еще лучше,

преобразовать значения UUID в 16-байтные числа с помощью функции UNHEX() и со­

хранить их в столбце типа BINARY(lб}. Вы можете извлекать значения в шестнадца­

теричном формате с применением функции НЕХ().

Характеристики значений, сгенерированных с помощью функции UUID(}, отличают­

ся от сгенерированных криптографическими хеш-функциями, такими как SHAl():

данные UUID распределены неравномерно и являются в некоторой степени после­

довательными. Однако они не настолько хороши, как монотонно увеличивающиеся

целые числа.

Остерегайтесь автоматически сгенерированных схем

Мы описали наиболее важные особенности типов данных (одни больше влияют на

производительность, другие - меньше), но еще не говорили о недостатках автомати­

чески сгенерированных схем.

Плохо написанные программы миграции схем и программы, автоматически генериру­

ющие схемы, могут вызывать серьезные проблемы с производительностью. Некоторые

программы создают большие поля VARCHAR для всех типов данных или используют

различные типы данных для столбцов, которые будут сравниваться при соединениях.

Тщательно изучите схему, если она была сгенерирована автоматически.

Системы объектно-реляционного отображения (object-relational mapping, ORM)
(и фреймворки, которые они используют) - еще один кошмар для желающих до­

стичь высокой производительности. Некоторые из этих систем позволяют хранить

любой тип данных в произвольном хранилище, а это обычно означает, что они не мо­

гут использовать сильные стороны конкретного хранилища. Иногда они записывают

каждое свойство объекта в отдельную строку с использованием хронологического кон­

троля версий, в результате чего возникает сразу несколько версий каждого свойства!

Возможно, такой подход привлекателен для разработчиков, поскольку позволяет им

применять объектно-ориентированный стиль, не задумываясь о том, как данные хра­

нятся. Однако приложения, скрывающие сложность от разработчиков, обычно плохо

масштабируются. Мы советуем хорошо подумать, прежде чем променять производи­

тельность на удобство разработки. Всегда тестируйте на реалистичных наборах данных,

чтобы проблемы с производительностью не были выявлены слишком поздно.

168 Глава 4 • Оптимизация схемы и типов данных

Специальные типы данных

Некоторые типы данных не соответствуют встроенным типам. Одним из них явля­

ется временная метка с точностью более 1 секунды. Несколько способов сохранения
подобных данных мы уже показали в этой главе.

Другой пример - 1Рv4-адреса. Для их хранения часто используют столбцы типа
VARCHAR(15). Однако на деле IР-адрес является 32-битным беззнаковым целым чис­
лом, а не строкой. Запись с точками, разделяющими байты, предназначена только
для того, чтобы человеку было удобнее его воспринимать. Лучше хранить IР-адреса
как беззнаковые целые числа. У MySQL есть функции INEТ_ATON() и INEТ_NTOA()
для преобразования между двумя представлениями.

Подводные камни проектирования схемы в MySQL
Несмотря на то что существуют как хорошие, так и плохие принципы проектиро­

вания, есть и проблемы, возникающие из-за особенностей реализации MySQL, что
означает возможность возникновения характерных только для MySQL ошибок.
В данном разделе обсуждаются проблемы, которые мы наблюдали в схемах проек­
тирования в MySQL. Этот материал может помочь вам избежать ошибок и выбрать
альтернативы, которые лучше работают в MySQL.

О Слишком много столбцов. Во время работы MySQL строки копируются между
сервером и подсистемой хранения данных в формате строкового буфера, затем
сервер преобразует буфер в столбцы. Однако преобразование из строкового бу­
фера в структуру строковых данных может оказаться весьма затратным. Формат

фиксированной строки MyISЛM точно соответствует формату строки сервера, по­

этому преобразование не требуется. Однако переменный формат строк MylSЛM
и формат строк InnoDB всегда требуют преобразования. Затраты на него зависят
от количества столбцов. Мы обнаружили, что эта процедура может быть очень
затратной при высоком уровне использования процессора и огромных табли­
цах (сотни столбцов), даже если фактически использовалось лишь несколько
столбцов. Если вы планируете задействовать сотни столбцов, имейте в виду, что
характеристики производительности сервера будут разными.

О Слишком много соединений. Паттерн проектирования ~сущность - атрибут -
значение~ (entity - attribute - value, ЕЛ V) является классическим примером не­
удачного паттерна проектирования, который особенно плохо работает в MySQL.
В MySQL существует ограничение на 61 таблицу для каждого соединения, а для
баз данных с паттерном ЕЛ V требуется множество самосоединений. Мы неодно­
кратно видели, как базы данных, использующие паттерн ЕЛ V, в конечном счете
превышают этот предел. Однако даже при гораздо меньшем чем 61 количестве
соединений затраты на планирование и оптимизацию запроса могут вызывать

проблемы MySQL. Эмпирическое правило гласит: если запросы должны выпол­
няться быстро в условиях высокого параллелизма, сделайте десятки таблиц для
каждого запроса.

Подводные камни проектирования схемы в MySQL 169

Q Всемогущий тип ENUM. Остерегайтесь чрезмерного использования типа ENUM.

Приведем пример из реальной жизни:

CREATE TABLE ... (
country enum(' ', '0', '1', '2', ••• ,'31')

Схема была обильно сдобрена этим паттерном. Скорее всего, такое проектное
решение было бы сомнительным в любой базе данных с перечисляемым типом
значений. В действительности здесь должно использоваться целочисленное

значение, являющееся внешним ключом таблицы словаря или справочника.
Но в MySQL возникают дополнительные проблемы. Новую страну в этот список
можно добавить только с помощью команды AL TER TABLE, которая является бло­
кирующей операцией в MySQL 5.0 и более ранних версиях и остается таковой
в версии 5.1 и более поздних, за исключением случая, когда добавление проис­
ходит в конец списка. (Далее покажем пару трюков для решения этой проблемы,
но это всего лишь трюки.)

Q Замаскированный тип ENUM. Тип ENUМ позволяет столбцу иметь одно значение из
набора определенных значений. SЕТ позволяет столбцу иметь одно или несколько
значений из набора определенных значений. Иногда их легко перепутать. При­

ведем пример:

CREATE TABLE ... (
is_default set('Y', 'N') NOT NULL default 'N'

Здесь почти наверняка вместо SЕТ должен быть ENUM, конечно, при условии, что
значение не может быть одновременно истинным и ложным.

Q NULL изобрели не здесь. Ранее мы рекомендовали не использовать NULL и, дей­
ствительно, советуем по возможности применять альтернативные варианты.

Даже если нужно хранить факт «нет значения~ в таблице, вы можете обойтись
без NULL. Как вариант можете использовать нуль, специальное значение или пу­

стую строку.

Однако в крайнем случае можно использовать и NULL. Не бойтесь этого, если
нужно представить неизвестное значение. Иногда лучше указать NULL, чем маги­
ческую константу. Выбор одного значения из ограниченного набора типов, на­
пример -1 для представления неизвестного целого числа, может очень усложнить

ваш код, внести в него ошибки и просто добавить беспорядка. NULL не всегда легко
обрабатывается, но часто он лучше альтернативных вариантов.

Приведем неоднократно виденный нами пример:

CREATE TABLE ... (
dt DATETIME NOT NULL DEFAULT '0000-00-00 00:00:00'

Это фиктивное значение (все нули) способно вызвать множество проблем.
(Вы можете настроить конфигурационную переменную SQL_MODE, чтобы запре­
тить бессмысленные даты, что является особенно удачным приемом для нового
приложения, которое еще не успело наполнить базу плохими данными.)

Одним глазком заглянем в другой раздел и отметим, что MySQL все-таки
индексирует NULL, в отличие от Oracle, который включает в индексы только
значения.

170 Глава 4 • Оптимизация схемы и типов данных

Нормализация и денормализация

Как правило, существует множество способов представить имеющиеся данные: от
полной нормализации до полной денормализации со всеми промежуточными вари­

антами. В нормализованной базе данных каждый факт представлен один и только
один раз. В денормализованной базе данных, наоборот, информация дублируется
или хранится в нескольких местах.

Если вы не знакомы с нормализацией, вам стоит изучить ее. На эту тему существует

много хороших книг и веб-ресурсов, здесь же мы дадим только краткое введение в те
темы, которые вы должны знать, чтобы понять эту главу. Начнем с классического
примера с сотрудниками (employee), подразделениями (department) и руководите­
лями подразделений (department head):

EMPLOYEE DEPARTMENT HEAD

Jones Accouпting Jones

Smith Engineering Smith

Brown Accounting Jones

Greeп Engineering Smith

Проблема с этой схемой состоит в том, что при модификации данных могут возник­

нуть противоречия. Предположим, Браун стал начальником бухгалтерии. Чтобы
отразить это изменение, нужно обновить множество строк, а это трудоемко и чревато
возникновением ошибок. Если в строке Jones указан начальник отдела, отличный
от того, кто указан в строке Brown, невозможно выяснить, где правда. Это как в по­

говорке~ Человек, у которого двое часов, никогда не знает точного времени1>. Кроме

того, мы не можем сохранить информацию о подразделении без сотрудников - если
удалим всех сотрудников бухгалтерии, то потеряем информацию о самом подраз­
делении. Чтобы избежать этого, нужно нормализовать таблицу, разделив списки
сотрудников и подразделений. Результатом этого процесса будет появление двух
следующих таблиц - для сотрудников:

EMPLOYEE_NAME DEPARTMENТ

Jones Accountiпg

Smith Engineering

Brown Accounting

Green Engineering

и подразделений:

DEPARTMENТ HEAD

Accounting Jones

Engineering Smith

Нормализация и денормалиэация 171

Теперь эти таблицы приведены ко второй нормальной форме, вполне подходящей
для многих задач. Однако вторая нормальная форма - это только одна из множества

возможных нормальных форм.

Здесь мы использовали фамилию как первичный ключ, только чтобы про­
иллюстрировать пример, поскольку это естественный идентификатор данных.
Однако на практике мы бы не стали так делать. Нет гарантии, что фамилии
не повторяются, а кроме того, нецелесообразно использовать в качестве

первичных ключей длинные строки.

Достоинства и недостатки нормализованной схемы

Людям, которые просят помочь им справиться с проблемами производительности,
часто советуют провести нормализацию, особенно если рабочая нагрузка характе­
ризуется большим количеством операций записи. Нередко этот совет оказывается
верным, особенно в следующих ситуациях.

1:1 Нормализованные таблицы обычно обновляются быстрее, чем ненормализо­
ванные.

1:1 Когда данные хорошо нормализованы, они либо редко дублируются, либо не ду­
блируются совсем. Так что изменять приходится меньше данных.

1:1 Нормализованные таблицы обычно меньше по размеру, чем ненормализованные,
поэтому лучше помещаются в памяти и их производительность выше.

1:1 Отсутствие избыточных данных означает, что для извлечения списков значений
реже требуется использовать в запросах ключевое слово DISТINCТ или раздел
GROUP ВУ. Рассмотрим предыдущий пример: из денормализованной схемы невоз­
можно получить отдельный список подразделений без DISТINCТ или GROUP ВУ, но
если DEPARTMENT является отдельной таблицей, запрос будет элементарным.

Недостатки нормализованной схемы обычно проявляются при извлечении данных.
Любой нестандартный запрос к хорошо нормализованной схеме, скорее всего, потре­
бует по крайней мере одного, а то и нескольких соединений. Это не только затратно,
но и делает невозможными некоторые стратегии индексирования. Например, при

нормализации в разных таблицах могут оказаться столбцы, которые целесообразнее
было бы иметь в одном индексе.

Достоинства и недостатки денормализованной схемы

Денормализованная схема работает хорошо, поскольку все данные находятся в одной
и той же таблице, что позволяет избежать соединений.

Если вам не нужно соединять таблицы, то худшим вариантом для большинства за­
просов, даже тех, которые не используют индексы, является сканирование таблицы.

172 Глава 4 • Оптимизация схемы и типов данных

Оно может выполняться быстрее соединения, если данные не помещаются в память,
поскольку в этом случае удастся избежать операций ввода/вывода с произвольным
доступом.

Кроме того, единая таблица допускает применение более эффективных стратегий
индексирования. Предположим, у вас есть сайт, где посетители оставляют свои

сообщения, при этом некоторые пользователи являются привилегированными. До­
пустим, нужно просмотреть десять последних сообщений от привилегированных
пользователей. Если вы нормализовали схему и индексировали даты публикации

сообщений, запрос может выглядеть примерно так:

mysql> SELECT message_text, user_name
-> FROМ message
-> INNER JOIN user ON message.user_id=user.id
-> WНERE user.account_type='premium
-> ORDER ВУ message.puЫished DESC LIMIT 10;

Для эффективного выполнения этого запроса MySQL потребуется просканировать
индекс puЫished в таблице message. Для каждой найденной строки в таблице user
придется проверять, является ли пользователь привилегированным. Такая обработка

будет неэффективной, если доля привилегированных пользователей невелика.

Другой возможный план запроса заключается в том, чтобы начать с таблицы user,
выбрать всех привилегированных пользователей, получить для них все сообщения
и выполнить файловую сортировку. Это, по-видимому, будет еще хуже.

Проблематичным является соединение, которое не позволяет сортировать и филь­
тровать одновременно с помощью единственного индекса. Если вы денормализуете

данные, объединив таблицы, и добавите индекс (account_type, puЫished), то смо­
жете написать запрос без соединения. Это будет очень эффективно:

mysql> SELECT message_text,user_name
-> FROМ user_messages
-> \tliERE account_type='premium'
-> ORDER ВУ puЫished DESC
-> LIMIТ 10;

Сочетание нормализации и денормализации

Как, зная о преимуществах и недостатках нормализованных и денормализованных

схем, выбрать лучший вариант?

Истина заключается в том, что полностью нормализованные и денормализованные

схемы редко имеют что-то общее с реальным миром. На практике часто приходится
сочетать оба подхода, применяя частично нормализованные схемы, кэшированные
таблицы и другие приемы.

Самым общим способом денормализации данных является дублирование или кэши­
рование отдельных столбцов из одной таблицы в другую. В MySQL 5.0 и более новых
версиях вы можете использовать триггеры для обновления кэшированных значений,
что облегчает реализацию задачи.

Кэшированные и сводные таблицы 173

Например, в нашем примере сайта вместо выполнения полной денормализации вы

можете хранить значение account_type как в таблице user, так и в таблице message.

Это поможет избежать проблем при вставке и удалении данных, которые возник­
ли бы при полной денормализации, поскольку вы никогда не потеряете информацию
о пользователе, даже если сообщений нет. Это ненамного увеличит размеры таблицы
user _message, но позволит эффективно выбирать данные.

Однако теперь обновление типа учетной записи пользователя становится более за­
тратным, поскольку вам придется изменять ее в обеих таблицах. Чтобы понять, дей­
ствительно ли это станет проблемой, нужно оценить, как часто будут выполняться
такие изменения и сколько времени они будут занимать, а затем сравнить с частотой
выполнения запросов SE LECT.

Еще одной причиной переноса некоторых данных из родительской таблицы в до­
чернюю может стать сортировка. Например, в нормализованной схеме сортировка

сообщений по имени автора будет чрезвычайно затратной операцией. Однако, если
вы кэшируете столбец author _name в таблице message и проиндексируете ее, сорти­
ровка может пройти очень эффективно.

Может также оказаться полезным кэшировать производные значения. Если вам нуж­

но показывать, сколько сообщений оставил каждый пользователь (как это делается

на многих форумах), то можно либо запустить затратный подзапрос, который будет
считать сообщения при каждом отображении, либо добавить в таблицу user столбец
num_messages, который станет обновляться каждый раз, когда пользователь оставит
новое сообщение.

Кэшированные и сводные таблицы

В некоторых случаях наилучший способ увеличения производительности состоит
в сохранении избыточных данных в той же таблице, где находятся исходные дан­

ные. Однако иногда требуется построить отдельную сводную или кэшированную
таблицу, специально настроенную под ваши потребности по извлечению данных.
Этот метод хорошо работает, если вы готовы смириться с некоторым устареванием
информации, но иногда у вас просто нет другого выхода (например, когда нужно

избежать сложных и затратных обновлений в режиме реального времени).

Термины 4кэшированная таблица» и 4Сводная таблица» не являются общеприня­
тыми. Мы используем понятие 4Кэшированная таблица» для обозначения таблиц,
содержащих данные, которые можно легко, хотя и более медленно, извлечь из схемы
(то есть логически избыточные данные). Под сводными таблицами мы подразумева­
ем таблицы, в которых хранятся агрегированные данные из запросов с фразой GROUP

ВУ (то есть данные, не являющиеся логически избыточными). Сводные таблицы
иногда называют свернутыми, поскольку данные в них свернуты.

Продолжая рассматривать пример с сайтом, предположим, что требуется подсчитать

количество сообщений, оставленных за последние 24 часа. На загруженном сайте
поддерживать точный счетчик в режиме реального времени было бы невозможно.

174 Глава 4 • Оптимизация схемы и типов данных

Вместо этого вы можете каждый час генерировать сводную таблицу. Часто для этого
хватает единственного запроса, и это эффективнее, чем поддерживать работающий
в реальном времени счетчик. Недостаток же заключается в том, что полученные

результаты не будут стопроцентно точными.

Если необходим точный подсчет сообщений, размещенных за предыдущие 24 часа
(без устаревания данных), есть и другой вариант. Начнем с почасовой сводной
таблицы. Затем вычислим точное количество сообщений, оставленных за данный
24-часовой период, суммируя число сообщений за 23 целых часа этого периода, не­
полный час в начале периода и неполный час в его конце. Предположим, что сводная

таблица называется msg_per _hr и определена следующим образом:

CREATE TABLE msg_per_hr (
hr DATETIME NOT NULL,

);

cnt INT UNSIGNED NOT NULL,
PRIМARY KEY(hr)

Можно получить количество сообщений, оставленных за предыдущие 24 часа,
сложив результаты следующих трех запросов. Мы используем LEFТ(NOW(), 14) для
округления текущей даты и времени до ближайшего часа:

mysql> SELECT SUM(cnt) FROМ msg_per_hr
-> WНERE hr BETWEEN
-> CONCAT(LEFT(NOW(}, 14), '00:00'} - INTERVAL 23 HOUR
-> AND CONCAT(LEFT(NOW(), 14}, '00:00') - INTERVAL 1 НOUR;

mysql> SELECT COUNT(*) FROМ message
-> WНERE posted >= NOW() - INTERVAL 24 НOUR
-> AND posted < CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 НOUR;

mysql> SELECT COUNT(*) FROМ message
-> WНERE posted >= CONCAT(LEFT(NOW(), 14), '00:00');

Оба подхода - неточный подсчет или точное вычисление с запросами по небольшим
диапазонам - эффективнее, чем подсчет всех строк в таблице message. Это основная
причина создания сводных таблиц. Вычисление этой статистики в режиме реального
времени чрезвычайно затратно, поскольку требуется либо просматривать большой
объем данных, либо использовать запросы, эффективные только при наличии специ­
альных индексов, которые вы не хотите добавлять из-за их влияния на обновления
строк. Типичный пример таких операций - вычисление наиболее активных пользо­
вателей или наиболее часто используемых тегов.

В свою очередь, кэшированные таблицы полезны для оптимизации поиска и извлече­
ния данных. Такие запросы часто требуют специальной структуры таблиц и индексов,
отличной от той, которую обычно используют для обработки транзакций в реальном
времени (online transaction processing, О L ТР).

Например, возможно, вам требуется много комбинаций индексов для ускорения
различных типов запросов. Эти конфликтующие требования иногда приводят
к необходимости создать кэшированную таблицу, содержащую лишь некоторые
столбцы главной таблицы. Как вариант, для кэшированной таблицы можно ис­
пользовать другую подсистему хранения. Например, если главная таблица исполь­
зует InnoDB, то, применив для кэшированной таблицы MyISAM, вы добьетесь

Кэшированные и сводные таблицы 175

уменьшения размера индекса и возможности выполнять запросы с полнотексто­

вым поиском. Вероятно, в отдельных случаях имеет смысл полностью вынести

таблицу из MySQL и поместить ее в специализированную систему, которая может
более эффективно выполнять поиск, например в поисковые системы Lucene или
Sphinx.

При использовании кэшированных и сводных таблиц вам придется решать, под­
держивать их в режиме реального времени или периодически перестраивать. Выбор
зависит от приложения, но периодическое перестроение не только экономит ресурсы,

но и может дать более эффективную таблицу без фрагментации и с полностью отсор­
тированными индексами.

При перестроении сводных и кэшированных таблиц часто требуется, чтобы во время
этой операции хранящиеся в них данные оставались доступными. Этого можно до­

биться, используя теневую копию таблицы, то есть таблицу, созданную 4'За кулисами~>
основной. Закончив ее построение, вы можете поменять таблицы местами, просто
переименовав их. Например, если вам нужно перестроить таблицу my_summary, мо­
жете создать таблицу my_summary_new, заполнить ее данными и поменять местами
с реальной таблицей:

mysql> DROP TABLE IF EXISTS my_summary_new, my_summary_old;
mysql> CREATE TABLE my_summary_new LIKE my_summary;
-- заполняем таблицу my_summary_new необходимь~и данными
mysql> RENAМE TABLE my_summary ТО my_summary_old, my_summary_new ТО my_summary;

Если вы переименуете исходную таблицу my_summary в my_summary_old перед при­
своением имени my_summary вновь созданной таблице, как сделали мы, то сможете
хранить старую версию до тех пор, пока не придет время следующего перестроения.

Целесообразно хранить ее, чтобы иметь возможность быстро выполнить откат в слу­
чае возникновения проблем с новой таблицей.

Материализованные представления

Многие системы управления базами данных, такие как Oracle или Microsoft SQL
Server, предлагают возможность, называемую материализованными представления­
ми. Это представления, которые на самом деле вычисляются предварительно и хра­

нятся в виде таблиц на диске и могут быть восстановлены и обновлены с помощью
различных стратегий. MySQL по умолчанию не поддерживает эту возможность (мы
подробно рассмотрим присущую ей поддержку представлений в главе 7). Однако
вы можете реализовать материализованные представления самостоятельно, ис­

пользуя инструменты пакета Flexviews, созданные Джастином Сванхартом О ustin
Swanhart) (http://code.google.com/p/flexviews/). Пакет Flexviews многофункциональнее
самодельных решений и предлагает множество хороших функций, упрощающих

создание и поддержку материализованных представлений. Он состоит из несколь­

ких частей:

а средства для отслеживания измененных данных (Change Data Capture, CDC) -
утилиты, считывающей двоичные журналы сервера и извлекающей релевантные

изменения;

176 Глава 4 • Оптимизация схемы и типов данных

i:J набора хранимых процедур, которые помогают выявлять определения представ-
лений и управлять ими;

i:J инструментов для изменения материализованных данных в базе данных.

В отличие от обычных методов хранения сводных и кэшированных таблиц пакет
Flexviews может поэтапно пересчитывать содержимое материализованного пред­
ставления, извлекая небольшие изменения в исходные таблицы. Это означает, что
он может обновлять представление, не запрашивая исходные данные. Например, если
вы создаете сводную таблицу, которая подсчитывает группы строк, а затем добав­
ляете строку в исходную таблицу, Flexviews просто увеличивает соответствующую
группу на единицу. Тот же прием работает для других агрегатных функций, таких
как SUM(} и AVG(}. Здесь используется тот факт, что двоичный журнал на основе

строк включает в себя образ строк до и после их обновления, поэтому Flexviews
видит не только новое значение каждой строки, но и изменение по сравнению с пре­

дыдущей версией. При этом ему не требуется просматривать исходную таблицу.
Вычисление на основе изменений намного эффективнее, чем чтение данных из

исходной таблицы.

Из-за нехватки места мы не можем подробно рассказать, как пользоваться Flexviews.
Тем не менее хотели бы дать небольшой обзор. Начните с ввода команды SELECT,
описывающей данные, которые вы хотите получить из существующей базы дан­
ных. Эта команда может включать соединения и агрегации (GROUP ВУ). В Flexviews
есть вспомогательный инструмент, преобразующий ваш SQL-зaпpoc в вызовы API
Flexviews. Затем Flexviews выполнит всю грязную работу по просмотру изменений
в базе данных и преобразованию их в обновления для таблиц, которые хранят ма­
териализованное представление исходных таблиц. Теперь ваше приложение может
просто запросить материализованное представление вместо таблиц, на основе кото­
рых оно было получено.

Инструментарий Flexviews обеспечивает хороший охват SQL и позволяет обра­
батывать в том числе непростые выражения, причем даже сложно поверить, что

такая обработка возможна за пределами сервера. Это делает его полезным для по­
строения представлений на основе сложных SQL-выражений, поэтому вы можете

заменить сложные запросы простым и быстрым запросом к материализованному
представлению.

Таблицы счетчиков

Приложения, хранящие счетчики в таблицах, могут столкнуться с проблемами
параллелизма при обновлении счетчиков. В веб-приложениях такие таблицы при­
меняются очень часто. Вы можете использовать их для кэширования количества

друзей пользователя, количества загрузок файла и т. п. Зачастую целесообразно
создать отдельную таблицу для счетчиков - она невелика и работы будет немного.
Применение отдельной таблицы поможет избежать удаления кэша запросов и по­
зволит использовать кое-какие приемы, которые мы продемонстрируем в этом

разделе.

Кэшированные и сводные таблицы 177

Для простоты предположим, что у нас есть таблица счетчиков с одной строкой, в ко­
торой просто подсчитывается количество обращений к сайту:

mysql> CREATE ТАВLЕ hit_counter (
-> cnt int unsigned not null
->) ENGINE=InnoDB;

При каждом обращении к сайту счетчик обновляется:

mysql> UPDATE hit_counter SET cnt = cnt + 1;

Проблема состоит в том, что эта единственная строка фактически становится гло­
бальным мьютексом для любой транзакции, которая обновляет счетчик. Транзакции
оказываются сериализованными. Можно увеличить уровень параллелизма, создав

несколько строк и обновляя случайно выбранную строку. Для этого необходимо
выполнить следующие изменения:

mysql> CREATE ТАВLЕ hit_counter (
-> slot tinyint unsigned not null primary key,
-> cnt int unsigned not null
-> ENGINE=InnoDB;

Предварительно заполните таблицу, добавив к ней 100 строк. Теперь запрос может
просто выбрать случайную строку и обновить ее:

mysql> UPDATE hit_counter SET cnt = cnt + 1 WНERE slot = RAND() * 100;

Для извлечения статистики используйте агрегатный запрос:

mysql> SELECT SUМ(cnt) FROМ hit_counter;

Как правило, время от времени (например, один раз в день) требуется заново запу­
скать счетчик. Для этого нужно слегка изменить схему:

mysql> CREATE ТАВLЕ daily_hit_counter (
-> day date not null,
-> slot tinyint unsigned not null,
-> cnt int unsigned not null,
-> primary key(day, slot)
-> ENGINE=InnoDВ;

В этом случае не требуется создавать строки заранее. Вместо этого можете исполь­
зовать фразу ON DUPLICATE КЕУ UPDAТE:

mysql> INSERT INTO daily_hit_counter(day, slot, cnt)
-> VALUES(CURRENT_DATE, RAND() * 100, 1)
-> ON DUPLICATE KEV UPDATE cnt = cnt + 1;

Если вы хотите для уменьшения размера таблицы уменьшить количество строк, напи­
шите скрипт, который объединяет все результаты в строку 0 и удаляет остальные строки:

mysql> UPDATE daily_hit_counter as с
-> INNER JOIN (
-> SELECT day, SUM(cnt) AS cnt, MIN(slot) AS mslot
-> FROМ daily_hit_counter
-> GROUP BV day
->) AS х USING(day)
-> SET c.cnt = IF(c.slot = x.mslot, x.cnt, 0),
-> c.slot = IF(c.slot = x.mslot, 0, c.slot);

mysql> DELETE FROМ daily_hit_counter WНERE slot <> 0 AND cnt = 0;

178 Глава 4 • Оптимизация схемы и типов данных

Ускоренное чтение, замедленная запись

Чтобы ускорить работу запросов на чтение, часто приходится вводить дополнитель­

ные индексы, избыточные поля и даже кэшированные и сводные таблицы. Это до­

бавляет работы по написанию запросов и обслуживающих заданий, зато повышает

производительность: замедление записи компенсируется значительным ускорением

операций чтения.

Однако это не единственная цена, которую вы платите за ускорение запросов на чте­

ние. Увеличивается также сложность разработки как для операций чтения, так и для

операций записи.

Ускорение работы команды ALTER TABLE
Производительность команды AL ТЕR TABLE в MySQL может стать проблемой при
работе с очень большими таблицами. Как правило, в этом случае MySQL создает
пустую таблицу с заданной новой структурой, вставляет в нее все данные из старой
таблицы и удаляет последнюю. Часто эта операция занимает много времени, особен­
но если памяти не очень много, а таблица велика и содержит немало индексов. Мно­
гие сталкивались с ситуацией, когда операция AL TER TABLE выполнялась несколько
часов или даже дней.

В MySQL 5.1 и более поздних версиях добавлена поддержка некоторых типов он­
лайн-операций, которые не будут блокировать таблицу на весь период выполнения.

Последние версии InnoDB7 1 также поддерживают построение индексов путем сор­

тировки, которая значительно ускоряет это действие и позволяет компактно раз­

местить индексы.

Как правило, операция AL TER TABLE вызовет прерывание обслуживания в MySQL. Мы
покажем некоторые приемы, позволяющие избежать этого, однако они предназначены
для особых случаев. Нужно использовать либо операционные хитрости, например за­
мену серверов и выполнение команды AL ТЕR на серверах, не являющихся рабочими,
либо метод теневой копии. Этот метод заключается в создании новой таблицы с за­
данной структурой. Затем вы переименовываете старую и новую таблицы и тем самым
меняете их местами. В этом вам могут помочь специальные инструменты, например

инструменты онлайнового изменения схемы, созданные командой, поддерживающей

базы данных Facebook (https://lauпchpad.net/mysqlatfacebook), пакет openark, созданный
Шломи Ноачем (Shlomi Noach) (http://code.openark.org/), и пакет Percona Toolkit (http://
www.percoпa.com/software/). Если вы используете Flexviews (он рассматривался в раз­
деле <~Материализованные представления~), то можете выполнять неблокирующие
изменения схемы и с помощью утилиты СОС.

Это относится к так называемому плагину InnoDB, который является единственной вер­
сией InnoDB, существующей в MySQL 5.5 и более новых версиях. Подробнее об истории
выпуска InnoDB говорится в главе 1.

Ускорение работы команды ALТER TABLE 179

Не все операции AL ТЕR TABLE приводят к перестроению таблицы. Например, вы
можете двумя способами (быстрым и медленным) изменить или удалить значение
по умолчанию для столбца. Предположим, вы хотите изменить продолжительность
проката фильма с трех до пяти дней. Далее представлен трудоемкий способ:

mysql> ALTER TABLE sakila.film
-> МODIFY COLUMN rental_duration TINYINТ(З) NOT NULL DEFAULT 5;

Команда SHOW STATUS показывает, что эта операция осуществляет 1000 считываний
и 1 ООО вставок. Другими словами, она копирует старую таблицу в новую, несмотря
на то что тип, размер и допустимость значения NULL не меняются.

Теоретически MySQL могла бы пропустить построение новой таблицы. В дей­
ствительности значение по умолчанию для столбца хранится в . frm-файле табли­
цы, так что его можно изменить, не трогая ее саму. Однако пока эта оптимизация

в MySQL не используется - любой оператор MODIFY COLUMN приводит к пере­
стройке таблицы.

Но вы можете изменить значение по умолчанию для столбца с помощью команды
AL ТЕR COLUMN 1:

mysql> ALTER ТАВLЕ sakila.film
-> ALTER COLUМN rental_duration SET DEFAULT 5;

Эта команда модифицирует . frm-файл, но не затрагивает таблицу. Как следствие,
она выполняется очень быстро.

Модификация одного лишь .fгm-файла

Мы видели, что модификация . frm-файла таблицы происходит быстро и что MySQL
иногда перестраивает таблицу, даже когда в этом нет необходимости. Если вы готовы
рискнуть, можете убедить MySQL выполнить некоторые другие модификации без
перестроения.

Прием, который мы собираемся продемонстрировать, официально не поддержи­
вается, не документирован и может не работать. Используйте его на свой страх
и риск. Советуем сначала сделать резервную копию данных!

Теоретически вы можете выполнять без перестроения таблицы следующие типы
операций:

О удаление (но не добавление) атрибута столбца AUTO_INCREMENT;

D добавление, удаление или изменение констант ENUM и SET. Если вы удалите кон­
станту, а некоторые строки содержат это значение, запросы будут возвращать для
него пустую строку.

Команда AL TER TABLE позволяет модифицировать столбцы с помощью ALTER COLUMN,
MODIFY COLUMN и CHANGE COLUMN. Все три варианта выполняют разные задания.

180 Глава 4 • Оптимизация схемы и типов данных

Суть приема заключается в создании . frm-файла для таблицы нужной структуры
и копирования его на место существующего следующим образом.

1. Создайте пустую таблицу с точно такой же структурой, за исключением желаемой

модификации (например, без добавленной константы ENUM) 1•

2. Выполните команду FLUSH TABLES WIТH READ LOCK. Она закроет все используемые

таблицы и предотвратит открытие любых таблиц.

3. Поменяйте местами . frm-файлы.

4. Выполните команду UNLOCK TABLES, чтобы снять блокировку чтения.

В качестве примера добавим константу к столбцу rating в таблице sakila. film.
Сейчас столбец выглядит следующим образом:

mysql> SНOW COLUMNS FROМ sakila.film LIKE 'rating';
+--------+------------------------------------+------+-----+---------+-------+
1 Field 1 Туре 1 Null 1 Кеу 1 Default 1 Extra 1

+--------+------------------------------------+------+-----+---------+-------+
1 rating 1 enum('G', 'PG', 'PG-13', 'R', 'NC-17') 1 YES 1 G
+--------+------------------------------------+------+-----+---------+-------+
Мы добавим категорию PG-14 для родителей, которые беспокоятся о том, что смотрят
дети:

mysql> CREATE TABLE sakila.film_new LIKE sakila.film;
mysql> ALTER ТАВLЕ sakila.film_new

-> МODIFY COLUMN rating ENUM('G','PG','PG-13', 'R','NC-17', 'PG-14')
-> DEFAULT 'G';

mysql> FLUSH TABLES WITH READ LOCK;

Обратите внимание, что мы добавляем новое значение в конец списка констант.
Если бы мы поместили его в середину, после PG-13, то изменились бы значения су­
ществующих данных: R превратились бы в PG-14, NC-17 стали бы R и т. д.

Теперь из командной строки операционной системы поменяем местами . frm-файлы:

/var/liЬ/mysql/sakila# mv film.frm film_tmp.frm
/var/liЬ/mysql/sakila# mv film_new.frm film.frm
/var/liЬ/mysql/sakila# mv film_tmp.frm film_new.frm

Вернувшись в MySQL, мы можем разблокировать таблицу и увидеть, что изменения
вступили в силу:

mysql> UNLOCK TABLES;
mysql> SНOW COLUMNS FROМ sakila.film LIKE 'rating'\G
*************************** 1. row ***************************
Field: rating
Туре: enum('G', 'PG', 'PG-13', 'R', 'NC-17', 'PG-14')

Теперь удалим таблицу, которую создали для выполнения этой операции:

mysql> DROP TABLE sakila.film_new;

Как видно из дальнейшего, после создания пустой таблицы ее модифицируют, исходя из

желаемой структуры (например, добавляют константу ENUM). - Примеч. пер.

Ускорение работы команды ALTER TABLE 181

Быстрое построение индексов MyISAM
Обычно для эффективной загрузки таблиц MyISAM применяют следующий прием:
сначала блокируют ключи, затем загружают данные и повторно активизируют ключи:

mysql> ALTER TABLE test.load_data DISABLE KEYS;
-- загрузка данных

mysql> ALTER TABLE test.load_data ENAВLE KEYS;

Это работает, поскольку MyISAM позволяет отложить построение ключей до тех пор,
пока все данные не загрузятся, после чего она может построить индексы путем сор­

тировки. Такая операция происходит намного быстрее и дает дефрагментированное
компактное индексное дерево 1 •

К сожалению, данный прием не работает для уникальных индексов, поскольку мо­
дификатор DISABLE KEYS можно применить только к неуникальным. MyISAM строит
уникальные индексы в памяти и проверяет их уникальность при загрузке каждой

строки. Как только размер индекса превышает объем доступной памяти, загрузка
становится чрезвь1'1айно медленной.

В современных версиях InnoDB можно использовать аналогичные приемы, осно­
ванные на возможности быстрого создания онлайновых индексов InnoDB. Для Этого
требуется удалить все неуникальные индексы, добавить новый столбец и возвратить
удаленные индексы. Percona Server автоматически поддерживает этот способ.

Как и в случае с трюком, проделанным с AL ТЕR TABLE в предыдущем раэделе, вы можете
ускорить этот процесс, если готовы немного больше поработать и чуть-чуть рискнуть.
Этот прием можно применять для загрузки данных из резервных копий, например, когда

вы знаете, что все значения корректны и нет необходимости проверять уникальность.

Данный прием также не поддерживается официально и не документирован.
Используйте его на свой страх и риск, не забывая сначала сделать резервную
копию данных.

Выполните следующие действия.

1. Создайте таблицу с желаемой структурой, но без всяких индексов.

2. Загрузите данные в таблицу, чтобы построить . МУD-файл.

3. Создайте пустую таблицу с желаемой структурой, но в этот раэ с индексами. Будут
сгенерированы необходимые . frm- и . МУD-файлы.

4. Сбросьте таблицы с блокировкой чтения.

5. Переименуйте . frm- и .МУI-файлы второй таблицы, 'Пабы MySQI, использовала
их для первой таблицы.

6. Снимите блокировку чтения.

MyISAM также будет строить индексы путем сортировки, если вы примените команду
LOAD DAT А INI-'ILE, а таблица будет пуста.

182 Глава 4 • Оптимизация схемы и типов данных

7. Используйте команду REPAIR TABLE для создания индексов таблицы. Эта команда
построит все индексы, в том числе уникальные, путем сортировки.

Для очень больших таблиц эта процедура может оказаться гораздо более быстрой.

Итоги главы

Хорошо спроектированная схема довольно универсальна, однако у MySQL есть
особенности реализации, которые стоит учитывать. В двух словах: стоит хранить
данные в настолько маленьких и простых таблицах, насколько это возможно. MySQL
любит простоту. Кроме того, учитывайте, что с вашей базой данных придется рабо­
тать другим людям.

Q При проектировании старайтесь избегать экстремальных ситуаций, таких как
использование схемы, из-за особенностей которой придется писать чрезвычайно
сложные запросы или таблицы с уймой столбцов. (Уйма - это где-то между мно­
жеством и несметным количеством.)

Q Используйте небольшие, простые и подходящие по контексту типы данных, при­
меняйте NULL, только если это действительно правильный способ моделирования
ваших данных.

Q Старайтесь использовать одни и те же типы данных для хранения похожих или

связанных значений, особенно если они будут работать в качестве условий при
соединениях.

Q Следите за строками переменной длины, поскольку они могут привести к неудач­

ному выделению памяти на целую строку для временных таблиц и сортировок.

Q По возможности задавайте для идентификаторов целочисленные значения.

Q Избегайте устаревших методик MySQL, таких как определение точности для
чисел с плавающей запятой или ширины отображения для целых чисел.

Q Будьте осторожны с типами ENLt1 и SET. Они удобны, но ими не стоит злоупотреблять,
тем более что иногда они мудрены. Типа ВП лучше избегать.

Нормализация - это хорошо, но иногда денормализация (дублирование данных
в большинстве случаев) бывает действительно необходимой и полезной. В следу­
ющей главе мы приведем больше примеров, свидетельствующих об этом. Полезными
могут оказаться также предварительные вычисления, кэширование и создание

сводных таблиц. Пакет Flexviews, разработанный Джастином Сванхартом, помогает
работать со сводными таблицами.

Команда AL ТЕR TABLE может доставить неприятности, поскольку в большинстве слу­
чаев она блокирует и перестраивает всю таблицу. Мы показали ряд обходных реше­
ний для конкретных случаев. В общем же случае вам придется использовать другие
приемы, такие как выполнение команды AL TER на копии, а затем ее расширение для

главной таблицы. Об этом мы подробно расскажем чуть позже.

Повышение
производительности

с помощью

индексирования

Индексы, в MySQL также называемые ключами, представляют собой структуры
данных, которые подсистемы хранения используют для быстрого нахождения

строк. Кроме того, у них есть еще несколько достоинств, которые мы опишем в этой

главе.

Индексы критически значимы для достижения хорошей производительности

и становятся все более важными по мере роста объема данных. Небольшие слабо

загруженные базы данных зачастую могут хорошо работать даже без правильно по­

строенных индексов, но по мере роста объема хранимой в базе информации произ­

водительность может очень быстро упасть 1• К сожалению, на практике об индексах

часто забывают или плохо понимают их смысл, поэтому плохое индексирование

является главной причиной проблем с производительностью. Так что мы решили

рассмотреть этот материал в первой части книги - даже раньше, чем обсуждать

оптимизацию запросов.

Оптимизация индекса - это, пожалуй, самый мощный способ повысить производи­

тельность запросов. Индексы могут увеличить производительность на много поряд­

ков, а оптимальные индексы иногда способны повысить ее примерно на два порядка

больше, чем просто хорошие индексы. Для создания действительно оптимальных

индексов часто требуется переписать запросы, поэтому текущая и следующая главы

тесно связаны между собой.

В этой главе, если не указано иное, предполагается, что используются обычные жесткие

диски. Твердотельные накопители имеют другие характеристики производительности,

и в этой книге мы рассмотрим это различие. Принципы индексирования не меняются, но

потери, которых мы стремимся избежать, у твердотельных дисков не такие большие, как

у обычных.

184 Глава 5 • Повышение производительности с помощью индексирования

Основы индексирования

Самый простой способ понять, как работает индекс в MySQL, - представить себе
алфавитный указатель в книге. Чтобы определить, где в книге обсуждается конкрет­
ная тема, вы в алфавитном указателе находите термин и номер страницы, на которой

он упоминается.

Система MySQL использует индексы схожим образом. Она ищет значение в струк­
турах данных индекса и, обнаружив соответствие, может перейти к самой строке.
Предположим, выполняется следующий запрос:

mysql> SELECT first_name FROМ sakila.actor WНERE actor_id = 5;

По столбцу actor _id построен индекс, поэтому MySQL будет использовать его для
поиска строк, в которых значение поля actor _id равняется 5. Другими словами, си­
стема ищет в индексе значение и возвращает все содержащие его строки.

В индекс включены данные из одного или нескольких столбцов таблицы. Если индекс
построен по нескольким столбцам, то их порядок очень важен, поскольку MySQL
может эффективно выполнять поиск только по крайней левой части индекса. Как вы

увидите в дальнейшем, создание индекса по двум столбцам - это совсем не то же самое,
что создание двух отдельных индексов, каждый по одному столбцу.

Должен ли я это читать, если у меня ORM?

Краткий ответ: да, вам все равно нужно узнать об индексации, даже если вы полагае­

тесь на объектно-реляционное отображение (object-relational шapping, ORM).

Инструменты ORM выполняют логически и синтаксически корректные запросы (как
правило), но они редко создают запросы, благоприятные для индексирования, за ис­

ключением случаев, когда вы используете их только для основных типов запросов,

таких как поиск по первичным ключам. Не стоит ожидать, что ваш инструмент ORM,
каким бы сложным он ни был, справится с тонкостями и трудностями индексирования.

Если вы не согласны, прочитайте эту главу до конца! Иногда даже опытному человеку

непросто разобраться со всеми вариантами, что уж говорить об ORM.

Типы индексов

Существует множество типов индексов, каждый из которых лучше подходит для до­

стижения той или иной цели. Индексы реализуются на уровне подсистем хранения,

а не на уровне сервера. Таким образом, они не стандартизованы: индексирование
работает по-разному в зависимости от подсистемы и далеко не все подсистемы под­
держивают все типы индексов. Даже если несколько подсистем хранения поддер­

живают определенный тип индекса, его внутренняя реализация может существенно

различаться.

Помня об этом, рассмотрим типы индексов, с которыми в настоящее время умеет

взаимодействовать MySQL, а также поговорим об их достоинствах и недостатках.

Основы индексирования 185

Индексы, упорядоченные на основе В-дерева

Когда говорят об индексе без упоминания типа, обычно имеют в виду индексы, упоря­

доченные на основе В-дерева, в которых для хранения данных используется структура,
называемая В-деревом'. Большинство подсистем хранения в MySQL поддерживают
этот тип индекса. Исключение составляет подсистема Archive, в которой до версии
MySQL 5.1 индексирование отсутствовало. Начиная с этой версии, появилась воз­
можность строить индекс по одному столбцу типа AUTO_INCREMENT.

Мы используем для этих индексов термин ~в-дерево» потому, что именно так

MySQL называет их в CREATE TABLE и других командах. Однако на внутреннем уровне

в подсистемах хранения могут использоваться совершенно иные структуры данных.

Например, в подсистеме NDB Cluster для таких индексов применяется структура
данных ~Т-дерево», хотя они по-прежнему называются BTREE, а InnoDB использу­
ет тип ~в + дерево». Однако в данной книге мы не будем рассматривать различия
в структуре и алгоритмах.

Подсистемы хранения по-разному используют индексы, упорядоченные на основе

В-дерева, и это может влиять на производительность. Например, в MyISAM приме­
няется техника сжатия префикса, позволяющая уменьшить размер индекса, а InnoD В
индексы не сжимает. Кроме того, индексы MyISAM ссылаются на индексированные
строки по их физическому адресу на диске, а индексы InnoDB - по значениям пер­

вичного ключа. Каждый вариант имеет свои достоинства и недостатки.

Общая идея В-дерева заключается в том, что значения хранятся по порядку и все
листья-страницы находятся на одинаковом расстоянии от корня. На рис. 5.1 показано
абстрактное изображение индекса, упорядоченного на основе В-дерева, прибли­
зительно соответствующее работе индексов InnoDB. MyISAM использует другую
структуру, но принципы похожи.

Индекс, упорядоченный на основе В-дерева, ускоряет доступ к данным, посколь­

ку подсистеме хранения не нужно сканировать всю таблицу для поиска искомых

данных. Вместо этого она начинает с корневого узла (не показанного на рис. 5.1).
В корневом узле имеется массив указателей на дочерние узлы, и подсистема хра­

нения переходит по этим указателям. Для нахождения подходящего указателя

она просматривает значения в узловых страницах, которые определяют верхнюю

и нижнюю границы значений в дочерних узлах. В итоге подсистема хранения либо
определяет, что искомого значения не существует, либо благополучно достигает
нужного листа.

Листья-страницы представляют собой особый случай, поскольку в них находятся
указатели на индексированные данные, а не на другие страницы. (В различных под­

системах хранения применяются разные типы указателей на данные.) На рис. 5.1

Во многих подсистемах хранения на самом деле используются индексы типа «В+ дерево»,

в которых каждый лист содержит указатель на следующий лист для ускорения обхода де­

рева по диапазону значений. Более подробное описание индексов со структурой В-дерева

можно найти в литературе по информатике.

186 Глава 5 • Повышение производительности с помощью индексирования

показаны только одна узловая страница и соответствующие ей листья, но между

корнем и листьями может быть много уровней узловых страниц. Глубина дерева
зависит от размера таблицы.

О Значения на странице
О Указатель на дочернюю страницу
8 Указатель на следующий лист

Лист:
значение< ключ1

Val1.1 Val1.2

key 1

Указатель
на следующий

лист

Указатель с узловой
страницы

nредыдущего уровня

keyN

ключ 1 <=значения <= ключ2
Указатели
на данные

(различаются
в зависимости

от nодсистемы

хранения)

Val2.1 Val2.2

значения >= ключN

j.-- Логическая
страница.

Размер зависит
от nодсистемы

хранения.

Для lnnoDB 16К

Рис. 5.1. Индекс, упорядоченный на основе структуры В-дерева
(технически «В + дерево»)

Поскольку в индексах, упорядоченных на основе структуры В-дерева, индексирован­

ные столбцы хранятся в упорядоченном виде, они полезны для поиска по диапазону
данных. При спуске вниз по дереву индекса, построенного по текстовому полю,

значения будут перебираться в алфавитном порядке, поэтому поиск, например, всех

людей, чьи фамилии начинаются с букв от «И» до «К» , окажется эффективным.

Предположим, у нас есть следующая таблица:

CREATE TABLE People (
last_name varchar(50) not null,
first_name varchar(50) not null,
dob date not null,
gender enum('m', 'f') not null,
key(last_name, first_name, dob)

) ;

Основы индексирования 187

Индекс будет содержать значения из столбцов last_name, first_name и dob для
каждой строки в таблице. На рис. 5.2 показано, как организовано хранение данных
в индексе.

Akroyd Akroyd
Christian Debble

1958-12-07 1990-03-18

Allen
Cuba

1960-01-01

Astaire
Aлgelina

1980-03-04

Akroyd
Kirsten

1978-11-02

AJlen Allen
Cuba Kim

1960-01-01 1930-07-12

Allen
Meryl

~980-12-12

Barrymore
Julia

2000-05-16

Barrymore
Julia

2000-05-16

Baslnger Baslnger
Viven Vivien

1976-12-08 1979-01-24

Рис. 5.2. Пример расположения записей в индексе, упорядоченном на основе В-дерева
(технически «В + дерево»)

Обратите внимание на то, что в индексе значения упорядочены в том же порядке,

в котором столбцы указаны в команде СRЕАТЕ TABLE. Посмотрите на две последние
записи: два человека с одинаковыми фамилией и именем, но разными датами ро­

ждения, отсортированы именно 110 этому r1араметру.

Типы запросов, в которых может исnоЛЬ30ваться 1П1Декс, упорядочеlПlый на основе

В-дерева. Индексы В-дерева хорошо работают при поиске по полному значению
ключа, диапазону ключей или префиксу ключа. Они полезны только тогда, когда

188 Глава 5 • Повышение производительности с помощью индексирования

используется крайний левый префикс ключа1 • Индекс, показанный в предыдущем
разделе, будет полезен для следующих типов запросов.

о Поиск по полному ЗJtачению. При поиске по полному значению ключа задаются
критерии для всех столбцов, по которым построен индекс. Например, индекс
позволит найти человека по имени Куба Аллен, родившегося 1 января 1960 года.

о Поиск по крайнему левому префиксу. Индекс позволит найти всех людей с фами-
лией Аллен. В этом случае используется только первый столбец индекса.

О Поиск по префиксу столбца. Можно искать соответствие по началу значения
столбца. Рассматриваемый индекс позволит найти всех людей, чьи фамилии
начинаются с буквы «А». В этом случае используется только первый столбец
индекса.

о Поиск по диапазону ЗJtачений. Индекс позволит найти всех людей, чьи фамилии
находятся между Алленом и Бэрримором. В данном случае также используется
только первый столбец индекса.

о Поиск по полному совпадению одной части и диапазону в другой части. Индекс по­
зволит найти всех людей по фамилии Аллен, чьи имена начинаются с буквы «К»
(Ким, Карл и т. д.). В данном случае выполняется поиск по полному значению
в столбце last_name и поиск по диапазону значений в столбце first_name.

О Запросы только по индексу. Индексы, упорядоченные на основе В-дерева, обыч­
но могут поддерживать запросы только по индексу, то есть обращение именно
к индексу, а не к самой строке. Мы обсудим эту оптимизацию в разделе «Покры­
вающие индексы».

Поскольку узлы дерева отсортированы, их можно применять как для поиска зна­
чений, так и для запросов с фразой ORDER ВУ (поиска значений в отсортированных
строках). В общем случае, если В-дерево позволяет найти строку по определенному
критерию, его можно использовать и для сортировки строк по тому же критерию.

Именно поэтому индекс будет полезен для запросов с фразой ORDER ВУ, в которой
сортировка соответствует перечисленным видам поиска.

Для применения индексов, упорядоченных на основе В-дерева, есть ряд ограничений.

О Они бесполезны, если в критерии поиска не указан крайний левый из индексиро-
ванных столбцов. Например, рассматриваемый индекс не поможет найти людей
с именем Билл или всех людей, родившихся в определенный день, поскольку эти
столбцы не являются крайними слева в индексе. Такой индекс непригоден и для
поиска людей, чьи фамилии заканчиваются на конкретную букву.

о Нельзя пропускать столбцы индекса. То есть невозможно найти всех Смитов,
родившихся в конкретный день. Если не указать значение столбца first_name,
MySQL сможет использовать только первый столбец индекса.

о Подсистема хранения не может оптимизировать поиск по столбцам, находя­
щимся правее первого столбца, по которому осуществляется поиск в заданном

Это особенность MySQL, точнее, ее версий. В других базах данных можно искать не только
по начальной части ключа, хотя обычно использование префикса эффективнее. Вероятно,
в будущем такая возможность появится и в MySQL. Как обойти это ограничение, покажем
позже в этой главе.

Основы индексирования 189

диапазоне. Например, для запроса с условием WHERE last_name="Smith" AND
first_name LIKE J%' AND dob=' 1976-12-23' будут задействованы только первые
два столбца индекса, поскольку LIKE задает диапазон условия (однако сервер
может использовать оставшиеся столбцы для других целей). Для столбца, име­
ющего ограниченный набор значений, эту проблему можно обойти, указав условие
равенства вместо условия, задающего диапазон. Далее в текущей главе, в кейсе по

индексированию, мы приведем подробные примеры на эту тему.

Теперь вы поняли, почему так важен порядок столбцов: все эти ограничения так или
иначе связаны именно с ним. Для достижения оптимальной производительности
может потребоваться создать индексы с одними и теми же столбцами, стоящими
в различном порядке.

Некоторые из названных ограничений не связаны с индексами, упорядоченными

на основе В-дерева, а являются следствием того, как оптимизатор запросов MySQL
и подсистемы хранения используют индексы. Возможно, некоторые ограничения

в дальнейшем будут устранены.

Хеш-индексы

Хеш-индекс строится на основе хеш-таблицы и полезен только для точного поиска,
использующего все столбцы индекса 1• Для каждой строки подсистема хранения вычис­
ляет хеш-код индексированных столбцов - сравнительно короткое значение, которое,
скорее всего, будет различным для строк с разными значениями ключей. В индексе
хранятся хеш-коды и указатели на соответствующие строки в хеш-таблице.

В MySQL только подсистема хранения Memory поддерживает явные хеш-индексы.
Этот тип индекса по умолчанию применяется для таблиц типа Memory, хотя они мо­
гут использовать и индексы, упорядоченные на основе В-дерева. Подсистема Memory
поддерживает неуникальные хеш-индексы, что необычно для сферы баз данных.
Если у нескольких значений один и тот же хеш-код, то в индексе связанный список
указателей на их строки будет храниться в одной и той же записи хеш-таблицы.

Приведем пример. Предположим, имеется таблица:

CREATE TABLE testhash (
fname VARCHAR{50} NOT NULL,
lname VARCHAR{50} NOT NULL,
КЕУ USING HASH{fname)

ENGINE=MEMORY;

содержащая следующие данные:

mysql> SELECT • FROМ testhash;
+--------+-----------+
1 fname 1 lname 1

+--------+-----------+
1 Arjen 1 Lentz 1

1 Baron 1 Schwartz 1

1 Peter 1 Zaitsev 1

1 Vadim 1 Tkachenko 1

+--------+-----------+

Более подробную информацию о хеш-таблицах можно найти в литературе по информатике.

190 Глава 5 • Повышение производительносги с помощью индексирования

Теперь допустим, что для индексирования используется воображаемая хеш­
функция f(), которая возвращает следующие значения (это просто примеры, а не
реальные значения):

f(' Arjen')= 2323
f('Baron')= 7437
f('Peter')= 8784
f('Vadim')= 2458

Структура данных индекса будет выглядеть следующим образом:

Ячейка Значение

2323 Указатель на строку 1

2458 Указатель на строку 4

7437 Указатель на строку 2

8784 Указатель на строку 3

Обратите внимание, что ячейки упорядочены, а строки - нет. Теперь, когда мы вы­
полним следующий запрос:

mysql> SELECT lname FROМ testhash \oliERE fname='Peter';

MySQL вычислит хеш-код значения 'Peter' и использует его для поиска указателя
в индексе. Поскольку f('Peter') = 8784, MySQL будет искать в индексе значе­
ние 8784 и найдет указатель на строку 3. Заключительным шагом будет сравнение
значения в строке 3 со значением 'Peter' с целью убедиться в том, что это действи­
тельно искомая строка.

Поскольку в индексе хранятся только короткие хеш-коды, то хеш-индексы очень ком­

пактны. Поэтому поиск обычно выполняется молниеносно. Однако у хеш-индексов
есть ряд ограничений.

О Поскольку индекс содержит только хеш-коды и указатели на строки, а не сами

значения, MySQL не может использовать данные в индексе, чтобы избежать чте­
ния строк. К счастью, доступ к строкам, находящимся в памяти, можно получить
очень быстро, так что обычно это не снижает производительности.

о MySQL не может использовать хеш-индексы для сортировки, поскольку строки
в этой системе не отсортированы.

о Хеш-индексы не поддерживают поиск по частичному ключу, поскольку хеш-коды

вычисляются для всего индексируемого значения. Иначе говоря, если имеется
индекс по столбцам (А, В), а в разделе WHERE упоминается только столбец А, индекс
не поможет.

О Хеш-индексы поддерживают лишь сравнения на равенство, то есть использование

операторов=, IN{) и<=> (обратите внимание, что<> и<=> - разные операторы).
Они не могут ускорить поиск по диапазону, например, WHERE price > 100.

О Доступ к данным в хеш-индексе можно получить очень быстро, если нет большого
количества коллизий (нескольких значений с одним и тем же хеш-кодом). При
их наличии подсистема хранения вынуждена проходить по каждому указателю

Основы индексирования 191

на строку, хранящемуся в связанном списке, и сравнивать значение в этой строке

с искомым.

1:1 Некоторые операции обслуживания индекса могут оказаться медленными, если
количество коллизий велико. Например, если вы создаете хеш-Индекс по столбцу
с очень маленькой селективностью (много коллизий), а затем удаляете строку

из таблицы, то на поиск указателя на эту строку в индексе может быть затрачено
много времени. Подсистеме хранения придется проверять каждую строку в свя­

занном списке для этого ключа, чтобы найти и убрать ссылку на ту единственную
строку, которую вы удалили.

Из-за этих ограничений хеш-индексы оказываются полезными только в особых случа­
ях. Однако если они соответствуют потребностям приложения, то могут значительно
повысить производительность. В качестве примера можно привести хранилища

данных, где классическая схема «звезда~ подразумевает много соединений со спра­

вочными таблицами. Хеш-индексы - именно то, что требуется для подобного случая.

Кроме явных хеш-индексов в подсистеме хранения Memory, подсистема хранения
NDB Cluster поддерживает уникальные хеш-индексы. Их функциональность спе­
цифична только для этой подсистемы, которую мы не описываем в книге.

Подсистема хранения InnoDB поддерживает так называемые адаптuв1tые хеш­
u1tдексы. Когда InnoDB замечает, что доступ к некоторым значениям индекса тре­
буется очень часто, она строит для них хеш-индекс в памяти вдобавок к индексам
на основе В-дерева. Это придает индексам, упорядоченным на основе В-дерева, не­

которые свойства хеш-индексов, например появляется возможность очень быстрого
поиска. Это автоматический процесс, вы не можете ни управлять им, ни настраивать

его. Хотя можете отключить.

Построение собственных хеш-индексов. Если подсистема хранения не поддержи­
вает хеш-индексы, то вы можете эмулировать их самостоятельно, подобно тому как
это делает InnoDB. Тем самым сможете использовать некоторые достоинства хеш­
индексов, например небольшие размеры индекса при очень длинных ключах.

Все просто: вдобавок к стандартным индексам, упорядоченным на основе В-дерева,
создайте псевдохеш-индекс. Он не совсем идентичен настоящему хеш-индексу, по­

скольку для поиска по-прежнему станет использоваться индекс на основе В-дерева.

Однако будет выполняться поиск хеш-кодов ключей вместо самих ключей. Все, что
вам нужно сделать, - вручную указать хеш-функцию в запросе в разделе WHERE.

Примером подобного подхода, причем хорошо работающего, является поиск адресов
URL. Индексы, упорядоченные на основе В-дерева по адресам URL, обычно оказыва­
ются огромными, поскольку сами URL длинные. Рядовой запрос к таблице адресов
URL выглядит примерно так:

mysql> SELECТ id FROМ url WHERE url="http://www.mysql.com";

Но если удалить индекс по столбцу url и добавить в таблицу индексированный
столбец url_crc, то запрос можно переписать следующим образом:

mysql> SELECT id FROМ url WНERE url="http://www.mysql.com"
-> AND url_crc=CRCЗ2("http://www.mysql.com");

192 Глава 5 • Повышение производительности с помощью индексирования

Этот подход хорошо работает, поскольку оптимизатор запросов MySQL замечает,
что существует небольшой высокоизбирательный индекс по столбцу url_crc, и ищет
в индексе элементы с этим значением (в данном случае 1560514994). Даже если не­
сколько строк имеют одно и то же значение url_crc, очень легко найти их с помощью
быстрого целочисленного сравнения, а затем отыскать среди них ту, которая точно
соответствует полному адресу URL. Альтернативой этому подходу является инде­
ксирование URL как строки, что существенно медленнее.

Один из недостатков этого подхода состоит в необходимости поддерживать хеш­
значения. Вы можете делать это вручную или с помощью триггеров - в MySQL 5.0
и более поздних версиях. В следующем примере показано, как триггеры могут помочь
поддерживать столбец url_crc при вставке и обновлении значений. Прежде всего
создаем таблицу:

CREATE TABLE pseudohash (

);

id int unsigned NOT NULL auto_increment,
url varchar(2SS) NOT NULL,
url_crc int unsigned NOT NULL DEFAULT 0,
PRIМARY KEY(id)

Теперь создаем триггеры. Мы временно изменяем разделитель команд, чтобы можно
было использовать точку с запятой в качестве разделителя внутри триггера:

DELIMIТER //

CREATE TRIGGER pseudohash_crc_ins BEFORE INSERT ON pseudohash FOR ЕАСН ROW BEGIN
SET NEW.url_crc=crc32(NEW.url);
END;
11

CREATE TRIGGER pseudohash_crc_upd BEFORE UPDATE ON pseudohash FOR ЕАСН ROW BEGIN
SET NEW.url_crc=crc32(NEW.url);
END;
11

DELIMIТER

Осталось проверить, что триттер действительно изменяет хеш-код:

mysql> INSERT INTO pseudohash (url) VALUES ('http://www.mysql.com');
mysql> SELECT * FROМ pseudohash;
+----+----------------------+------------+
1 id 1 url 1 url_crc
+----+----------------------+------------+
1 1 1 http://www.mysql.com 1 1560514994 1

+----+----------------------+------------+
mysql> UPDATE pseudohash SET url='http://www.mysql.com/' WНERE id=l;
mysql> SELECT * FROМ pseudohash;
+----+---------------------- +------------+
1 id 1 url 1 url_crc
+----+---------------------- +------------+

1 1 http://www.mysql.com/ 1 1558250469 1

+----+---------------------- +------------+
При таком подходе не следует использовать хеш-функции SHAl() или MD5(). Они
возвращают очень длинные строки, которые занимают много места и замедляют

Основы индексирования 193

сравнение. Это мощные криптографические функции, спроектированные для почти

гарантированного устранения противоречивых запросов, а не для достижения теку­

щих целей. Простые хеш-функции могут обеспечить приемлемый уровень противо­

речивых запросов с более высокой производительностью.

Если в таблице много строк и функция CRC32 () дает слишком много коллизий, реали­

зуйте собственную 64-разрядную хеш-функцию. Она должна возвращать целое число,

а не строку. Один из способов реализации 64-разрядной хеш-функции состоит в ис­
пользовании только части значения, возвращаемого функцией МD5 (). По-видимому,

это менее эффективно, чем написание собственной, то есть пользовательской функ­

ции (см. главу 7), зато требует минимума усилий:

mysql> SELECT CONV(RIGНT(МDS('http://www.mysql.com/'), 16), 16, 10) AS НАSНб4;
+---------------------+
1 НАSНб4 \
+---------------------+
1 9761173720318281581 1

+---------------------+
Обработка ко;шнзий хеширования. При поиске значения по его хеш-коду следует
включать в раздел WHERE и само искомое значение:

mysql> SELECT id FROМ url WНERE url_crc=CRC32{"http://www.mysql.com")
-> AND url="http://www.mysql.com";

Следующий запрос будет работать неправильно, поскольку, если для другого URL
функция СRСЗ2() возвращает значение 1560514994, то запрос вернет обе строки:

mysql> SELECТ id FROМ url WНERE url_crc=CRC32{"http://www.mysql.com");

Вероятность хеш-коллизий растет значительно быстрее, чем можно предположить,
из-за так называемого парадокса дней рождения. Функция СRСЗ2() возвращает

32-разрядное целое число, поэтому вероятность коллизии достигает 1 % уже при
93 ООО значений. Чтобы проиллюстрировать это, мы загрузили в таблицу все сло­
ва из файла /usr/share/dict/words вместе с их значениями CRC32(). В результате

получилось 98 569 строк. В этом наборе данных уже есть одна коллизия! Из-за нее
следующий запрос возвращает несколько строк:

mysql> SELECT word, crc FROМ words WНERE crc = CRC32{'gnu');
+---------+------------+
1 word 1 crc
+---------+------------+
1 codding 1 1774765869 1

1 gnu 1 1774765869 1

+---------+------------+

Правильный запрос будет выглядеть так:

mysql> SELECT word, crc FROМ words WНERE crc = CRC32{'gnu')AND word = 'gnu';
+------+------------+
1 word 1 crc 1

+------+------------+
1 gnu 1 1774765869 1

+------+------------+

Чтобы избежать проблем с противоречивыми запросами, следует указать в разделе
WHERE оба условия. Если такие запросы не являются проблемой - например, потому,

194 Глава 5 • Повышение производительности с помощью индексирования

что вы делаете статистические запросы и вам не нужны точные результаты, - то

запрос можно упростить и вместе с тем повысить его эффективность, оставив

в разделе WHERE только сравнение со значением функции СRСЗ2(). Вы также можете
использовать функцию FNV64() из пакета Регсоnа Serveг, которую можно установить
как плагин в любую версию MySQL. Эта функция очень быстрая, возвращает 64-раз­
рядное число и гораздо меньше подвержена ошибкам, чем СRСЗ2 ().

Пространственные индексы (R-дерево)

MylSAM поддерживает пространственные индексы, которые можно использовать
с частичными типами, такими как GEOMETRY. В отличие от индексов, упорядочен­
ных на основе В-дерева, при работе с пространственными индексами не требуется,
чтобы в разделе WHERE указывался крайний левый из индексированных столбцов.
Они одновременно индексируют данные по всем столбцам. В результате при по­
иске может эффективно использоваться любая комбинация столбцов. Однако для
этого необходимо задействовать функции GIS, такие как MBRCONTAINS(). MySQL
поддерживает их не лучшим образом, поэтому их редко применяют. Рабочее ре­
шение для GIS в реляционной СУБД с открытым исходным кодом - это PostGIS
в PostgreSQL.

Полнотекстовые индексы

Полнотекстовый (FULL ТЕХТ) индекс представляет собой специальный тип индекса,
который ищет ключевые слова в тексте вместо того, чтобы прямо сравнивать ис­
комое значение со значениями в индексе. Полнотекстовый поиск кардинально

отличается от других типов поиска. Он позволяет использовать стоп-слова, мор­

фологический поиск, учет множественного числа, а также булев поиск. Он гораздо
больше напоминает работу поисковых систем, чем простое сравнение с критерием
в разделе WHERE.

Наличие полнотекстового индекса по столбцу не делает индекс, упорядоченный на
основе В-дерева по этому столбцу, менее полезным. Полнотекстовые индексы пред­
назначены для операций МАТСН AGAINST, а не для обычных операций с фразой WHERE.

Более подробно полнотекстовое индексирование мы обсудим в главе 7.

Прочие типы индексов

В некоторых подсистемах хранения сторонних производителей для индексов при­

меняются разные типы структур данных. Например, TokuDB использует индексы,
упорядоченные на основе фрактального дерева. Это новая структура данных, у ко­

торой есть ряд преимуществ перед индексами, упорядоченными на основе В-дерева,

и нет многих их недостатков. В этой главе мы будем рассматривать темы, связанные
с InnoDB, включая кластерные и покрывающие индексы. В большинстве случаев то,
что мы скажем об InnoDB, может относиться и к TokuDB. ScaleDB использует базис­
ное дерево, а другие системы, такие как InfiniDB или Infobright, имеют собственные
специальные структуры данных для оптимизации запросов.

Основы индексирования 195

Преимущества индексов

Индексы позволяют серверу быстро перемещаться в искомую позицию в таблице, но
этим их достоинства не исчерпываются. Как вы, вероятно, уже поняли, индексы имеют

несколько дополнительных преимуществ, которые основаны на свойствах структур

данных, используемых для их создания. Индексы, упорядоченные на основе В-дерева,

то есть самый распространенный их тип, работают, храня данные в отсортированном
порядке, а MySQL может использовать их для запросов с фразами ORDER ВУ и GROUP ВУ.
Поскольку данные предварительно отсортированы, индекс, упорядоченный на основе

В-дерева, хранит связанные значения близко друг к другу. Наконец, индекс фактиче­
ски хранит копию значений, как следствие, некоторые запросы могут быть выполнены
только за счет индекса. Из этих свойств вытекают три основных преимущества.

1. Индексы уменьшают объем данных, которые сервер должен просмотреть для на-
хождения искомого значения.

2. Индексы помогают серверу избежать сортировки и временных таблиц.

3. Индексы превращают произвольный ввод/вывод в последовательный.

Рассмотрению индексов на самом деле можно посвятить целую книгу. Тем, кто хо­

тел бы изучить этот вопрос подробнее, можем порекомендовать книгу Тапио Лахден­
маки (Tapio Lahdenmaki) и Майка Лича (Mike Leach) Relational Database Index Design
and the Optimizers (издательство Wiley). Из нее вы, помимо прочего, узнаете, как
определить выгоду от создания и применения индексов и оценить скорость запросов.

Кроме того, в книге Лахденмаки и Лича предложена трехзвездочная система оценки

того, насколько индекс подходит для запроса. Индекс получает одну звезду, если раз­

мещает связанные строки рядом друг с другом, две - если его строки сортируются

в требуемом запросом порядке, и три - если содержит все столбцы, необходимые
для запроса.

Мы вернемся к этим принципам далее в текущей главе.

Является ли индекс наилучшим решением?

Индекс не всегда является подходящим инструментом. Не будем здесь вдаваться

в подробности, скажем только, что индексы наиболее эффективны, когда помогают

подсистеме хранения находить строки, сокращая объем выполненной работы. Если

таблица очень маленькая, часто проще бывает прочитать в ней все строки. Для сред­

них и больших таблиц применение индексов может быть очень эффективным. Когда

таблица огромная, затраты на индексирование, а также работы, необходимые для ис­

пользования индексов, могут начать суммироваться. В таких случаях, скорее всего,

нужно выбрать методику, когда определяются не отдельные строки, а группы строк,

на которые ориентирован запрос. Для этой цели можно использовать секционирова­

ние (см. главу 7).

Если у вас много таблиц, стоит создать таблицу метаданных для хранения некото­

рых характеристик, представляющих интерес для запросов. Предположим, что у вас

196 Глава 5 • Повышение производительности с помощью индексирования

есть многопользовательское приложение, которое обращается к данным, хранящимся

в разных таблицах. Бы выполняете запросы, которые агрегируют данные по строкам.

В этом случае можете записать, данные о каких пользователях хранятся в той или

иной таблице, и просто игнорировать таблицы, в которых нет информации о кон­

кретном пользователе. Этот прием будет полезен только при чрезвычайно больших

объемах работ. Фактически что-то подобное делает Infobright. При терабайтовых объ­
емах поиск отдельных строк не имеет смысла - индексы заменяются метаданными

о конкретной группе блоков.

Стратегии индексирования для достижения
u

высокои производительности

Создание правильных индексов и их корректное использование важны для дости­

жения высокой производительности запросов. Мы рассказали о различных типах

индексов, об их достоинствах и недостатках. Теперь посмотрим, как на практике

максимально продуктивно использовать индексы.

Существует много способов эффективного выбора и использования индексов, по­

скольку предусмотрено множество специализированных оптимизаций и вариантов

специализированного поведения. Умение определять, что и когда применять, а также

оценивать влияние вашего выбора на производительность системы - это навык,

приходящий с опытом. Следующие разделы помогут вам понять, как эффективно

использовать индексы.

Изоляция столбца

Мы неоднократно видели запросы, которые разрушали индексы или не давали

MySQL их использовать. MySQL обычно не может применять индекс по столбцу,
если этот столбец не изолирован в запросе. Изоляция столбца означает, что он небу­

дет частью выражения или аргументом функции.

В качестве примера приведем запрос, который не может использовать индекс по

столбцу actor _id:

mysql> SELECT actor_id FROМ sakila.actor WНERE actor_id + 1 = 5;

Человеку очевидно, что выражение WHERE эквивалентно выражению actor _ id = 4.
Но MySQL не умеет решать уравнения, так что это придется делать вам. Следует вы­
работать привычку упрощать критерии во фразе WHERE так, чтобы индексированный
столбец оказывался в одиночестве по одну сторону от оператора сравнения.

Приведем пример другой распространенной ошибки:

mysql> SELECT ••• WHERE TO_OAYS(CURRENT_OATE) - TO_DAYS(date_col) <= 10;

Стратегии индексирования для досrижения высокой производительности 197

Префиксные индексы и селективность индекса

Иногда бывает нужно проиндексировать очень длинные символьные столбцы, из-за

чего индексы становятся большими и медленными. Одной из стратегий улучшения
ситуации является имитация хеш-индекса, как мы показали ранее в этой главе. Но

порой этого недостаточно. Что еще можно сделать?

Часто можно сэкономить пространство и добиться хорошей производительности,
проиндексировав первые несколько символов, а не все зна'1ение. Индекс будет за­
нимать меньше места, однако станет менее селективным (избирательным). Селек­
тивность индекса - это отношение количества различных проиндексированных

значений (кардиналыюсти) к общему количеству строк в таблице (#Т). Диапазон
возможных значений селективности варьируется от 1/#Т до 1. Индекс с высокой
селективностью хорош тем, что позволяет MySQL при поиске соответствий от­
фильтровывать больше строк. Уникальный индекс имеет селективность, равную 1, -
лучше не бывает.

Префикс столбца часто оказывается достаточно избирательным, чтобы обеспечить
хорошую производительность. Индексируя столбцы типа BLOB или ТЕХТ либо очень
длинные столбцы типа VARCHAR, вы обязаны определять префиксные индексы, по­
скольку MySQL не позволяет индексировать такие столбцы по их полной длине.

Основная проблема заключается в выборе длины префикса, которая должна быть
достаточно велика, чтобы обеспечить хорошую селективность, но не слишком велика,

чтобы сэкономить место. Префикс должен быть настолько длинным, чтобы польза
от его применения была почти такой же, как от использования индекса по полному
столбцу. Другими словами, кардинальность префикса должна быть почти такой же,

как кардинальность всего столбца.

Для определения подходящей длины префикса найдите наиболее часто встреча­
ющиеся значения и сравните их перечень со списком чаще всего используемых пре­

фиксов. В тестовой базе данных Sakila нет подходящего примера для демонстрации,
поэтому создадим таблицу на основе таблицы city, чтобы у нас было достаточно
данных для работы:

CREATE TABLE sakila.city_demo(city VARCHAR(50) NOT NULL);
INSERT INTO sakila.city_demo(city) SELECT city FROМ sakila.city;
-- Повторить следукхцую командУ пять раз:

INSERT INTO sakila.city_demo(city) SELECT city FROМ sakila.city_demo;
-- Распределим данные в случайном порядке (неэффективно, но удобно):

UPDATE sakila.city_demo
SET city = (SELECT city FROM sakila.city ORDER ВУ RAND() LIMIT 1);

Теперь у нас есть тестовый набор значений. Данные распределены не очень реали­

стично. Кроме того, поскольку мы использовали функцию RAND(), ваши результаты
будут отличаться от полученных нами, но для примера это непринципиально. Пре­
жде всего найдем наиболее часто встречающиеся города:

mysql> SELECT COUNT(*) AS cnt, city
-> FROМ sakila.city_demo GROUP ВУ city ORDER ВУ cnt DESC LIMIT 10;

198 Глава 5 • Повышение производительности с помощью индексирования

+-----+----------------+
1 cnt 1 city 1

+-----+----------------+
1 65 London 1

1 49 Hiroshima 1

1 48 Teboksary 1
1 48 Pak Kret 1

1 48 Yaound 1
1 47 Tel Aviv-Jaffa 1

1 47 Shimoga 1
1 45 Cabuyao 1
1 45 Callao 1
1 45 Bislig 1
+-----+----------------+

Обратите внимание на то, что каждое значение встречается от 45 до 65 раз. Теперь
найдем наиболее часто встречающиеся префиксы названий городов. Начнем с трех­
буквенных:

mysql> SELECT COUNT(*) дS cnt, LEFT(city, 3} AS pref
-> FROМ sakila.city_demo GROUP ВУ pref ORDER ВУ cnt DESC LIMIT 10;

+-----+------+
1 cnt 1 pref 1

+-----+------+
483 San
195 Cha
177 тап

167 Sou
163 al-
163 Sal
146 Shi
136 Hal
130 Val
129 Bat

+-----+------+

Каждый префикс встречается значительно чаще, чем город, поэтому уникальных
префиксов намного меньше, чем уникальных полных названий городов. Идея состоит
в увеличении длины префикса до тех пор, пока он не станет почти таким же селек­
тивным, как полная длина столбца. По результатам экспериментов мы определили,
что семи символов вполне достаточно:

mysql> SELECT COUNТ(*} дS cnt, LEFT(city, 7} дS pref
-> FROМ sakila.city_demo GROUP ВУ pref ORDER ВУ cnt DESC LIMIT 10;

+-----+---------+
1 cnt 1 pref 1

+-----+---------+
70 Santiag 1
68 San Fel 1

London 1
Valle d 1

65
61
49
48
48
48
47
47

Hiroshi
Teboksa
Pak Kre
Yaound
Tel Avi
Shimoga

1
1
1
1

1

1
+-----+---------+

Стратегии индексирования для достижения высокой производительности 199

Другой способ определить подходящую длину префикса состоит в вычислении
селективности полного столбца и попытках подобрать длину префикса, обеспе­
чивающую близкую селективность. Селективность полного столбца можно найти
следующим образом:

mysql> SELECT COUNT(DISTINCT city)/COUNT(*) FROМ sakila.city_demo;
+-------------------------------+
1 COUNT(DISTINCT city)/COUNT(*) 1

+-------------------------------+
1 0.0312 1

+-------------------------------+
В среднем (с небольшой оговоркой) префикс будет примерно так же хорош, если
его селективность около 0,031. В одном запросе можно посчитать селективность не­
скольких разных длин префиксов, что особенно полезно для очень больших таблиц.
Это можно сделать следующим образом:

mysql> SELECT COUNT(DISTINCT LEFT(city, 3})/COUNT(*) AS sel3,
-> COUNT(DISTINCT LEFT(city, 4))/COUNT(*) AS sel4,
-> COUNT(DISTINCT LEFT(city, 5))/COUNT(*) AS sel5,
-> COUNT(DISTINCT LEFT(city, 6))/COUNT(*) AS selб,
-> COUNT(DISTINCT LEFT(city, 7})/COUNT(*) AS sel7
-> FROМ sakila.city_demo;

+--------+--------+--------+--------+--------+
1 sel3 1 sel4 1 selS 1 selб 1 sel7
+--------+--------+--------+--------+--------+
1 0.0239 1 0.0293 1 0.0305 1 0.0309 1 0.0310 1

+--------+--------+--------+--------+--------+
Этот запрос показал, что увеличение длины префикса дает небольшое улучшение
селективности по мере приближения к семи символам.

Недостаточно обращать внимание только на среднюю селективность. Следует поду­
мать (в этом и состояла оговорка) также о селективности в худшем случае. На основе

средней селективности вы можете прийти к выводу, что префикса длиной четыре или

пять символов достаточно, но если данные распределены очень неравномерно, это

может завести вас в ловушку. Если вы посмотрите на количество вхождений наи­

более распространенных префиксов названия города при использовании длины 4,
то увидите явную неравномерность:

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 4) AS pref
-> FROМ sakila.city_demo GROUP ВУ pref ORDER ВУ cnt DESC LIMIT 5;

+-----+------+
1 cnt 1 pref 1

+-----+------+
205 1 San 1

200 1 Sant 1
135 1 Sout 1
104 1 Chan 1

91 1 Toul 1

+-----+------+
При длине четыре символа наиболее распространенные префиксы встречаются
значительно чаще, чем самые распространенные полные значения. То есть се­

лективность по этим значениям ниже, чем средняя. Если у вас есть более реали­
стичный набор данных, чем эта сгенерированная случайным образом выборка, то,

200 Глава 5 • Повышение производительности с помощью индексирования

вероятно, эффект может оказаться значительно более выраженным. Например,
построение четырехзначного префиксного индекса по реальным названиям горо­

дов мира даст высокую селективность по городам, начинающимся на San и New,
которых много.

Теперь, определив подходящую длину префикса для тестовых данных, создадим

индекс по префиксу столбца:

mysql> ALTER ТАВLЕ sakila.city_demo ADD КЕУ (city(7));

Префиксные индексы могут стать хорошим способом уменьшения размера и по­
вышения быстродействия индекса, но у них есть и недостатки: MySQL не может
использовать префиксные индексы ни для запросов с фразами ORDER ВУ и GROUP ВУ,
ни как покрывающие индексы.

Мы знаем еще один распространенный способ получения выигрыша от префиксных
индексов - применение длинных шестнадцатеричных идентификаторов. В предыду­

щей главе мы обсудили эффективные приемы хранения таких идентификаторов, но
что, если вы используете пакетное решение, которое невозможно изменить? Мы не­

однократно встречали использование длинных шестнадцатеричных строк у v Bulletin
и других приложений, использующих MySQL для хранения сеансов сайта. До­
бавление индекса по первым восьми символам или около того часто значительно
повышает производительность.

Иногда целеrообразно сmдавать суффиксные индексы (например, для поиа<а всех
адресов электронной почты из определенного домена). MySQL не поддерживает
индексы с реверсированным ключом (https://habrahabr.ru/post/102785/), но вы
можете самостоятельно хранить реверсированные строки и создавать по ним

префиксный индекс. Поддерживать этот индекс можно с помощью триггеров
(об этом мы говорили ранее в данной главе).

Многостолбцовые индексы

Люди часто плохо разбираются в многостолбцовых индексах. Часто ошибки состоят
в индексировании многих или всех столбцов по отдельности или их индексировании
в неправильном порядке.

Порядок столбцов мы обсудим в следующем разделе. У первой ошибки - индекси­
рования множества столбцов по отдельности - есть характерная подпись в команде
SHOW СRЕАТЕ TABLE:

СRЕАТЕ TABLE t (
cl INT,

) ;

с2 INT,
сЗ INT,
KEY(cl),
КЕУ(с2},
КЕУ(сЗ}

Стратегии индексирования для достижения высокой производительности 201

Такая стратегия индексации часто оказывается результатом того, что люди дают

неопределенные, но авторитетно звучащие рекомендации, например: «Создавайте

индексы в столбцах, которые появляются в условии WHERE». Этот совет ошибочен.
В лучшем случае вы получите индекс с одной звездой. Такие индексы могут быть на
много порядков медленнее, чем действительно оптимальные индексы. Иногда, когда

вы не можете создать трехзвездочный индекс, гораздо лучше игнорировать фразу

WHERE и обратить внимание на оптимальный порядок строк или создавать вместо
этого покрывающий индекс.

Отдельные индексы по множеству столбцов в большинстве случаев не помогут
MySQL повысить производительность запросов. MySQL 5.0 и более поздние версии
могут отчасти решить проблему таких плохо проиндексированных таблиц, используя
стратегию, известную как слштие индексов, которая позволяет запросу ограничить
применение нескольких индексов в одной таблице для поиска нужных строк. Более
ранние версии MySQL могли применять только один индекс, поэтому, когда ни один
индекс не был достаточно хорош, MySQL часто выбирала сканирование таблицы.
Например, в таблице film_actor есть индекс на film_id и индекс на actor _id, но
ни один из них, будучи выбранным, не даст хорошего результата для обоих условий
WHERE в этом запросе:

mysql> SELECT film_id, actor_id FROМ sakila.film_actor
-> llНERE actor_id = 1 OR film_id = 1;

Однако в MySQL 5.0 и более поздних версиях запрос может использовать оба инде­
кса, проводя поиск по ним одновременно и объединяя результаты. Могут приме­
няться три варианта алгоритма: объединение (условие OR), пересечение (условие
AND) и объединение пересечений (комбинация обоих условий). В следующем за­
просе работа двух индексов объединяется, в чем вы можете убедиться, просмотрев
столбец Extra:

mysql> EXPLAIN SELECT film_id, actor_id FROМ sakila.film_actor
-> llНERE actor_id = 1 OR film_id = 1\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film_actor
type: index_merge

possiЫe_keys: PRIМARY,idx_fk_film_id

key: PRIМARY,idx_fk_film_id

key_len: 2,2
ref: NULL

rows: 29
Extra: Using union(PRIМARY,idx_fk_film_id); Using where

MySQL может использовать эту методику для сложных запросов, поэтому для не­
которых запросов вы увидите вложенные операции в столбце Extra. Стратегия сли­
яния индексов иногда работает очень хорошо, но чаще означает, что таблица плохо
проиндексирована.

Q Если сервер использует пересечение индексов (обычно для условия AND), это
чаще всего говорит о том, что вам нужен один индекс со всеми столбцами, а не

несколько объединенных индексов.

202 Глава 5 • Повышение производительности с помощью индексирования

О Если сервер использует объединение индексов (обычно для условия OR), то опе­
рации буферизации, сортировки и слияния могуг задействовать большое количество
ресурсов процессора и памяти. Это особенно верно, если не все индексы селектив­
ны и сканирование для операции слияния возвращает много строк.

О Напомним, что оптимизатор не учитывает эти затраты - он оптимизирует толь­

ко количество произвольных чтений страницы. В итоге запрос может оказаться

недооцененным, фактически его выполнение будет медленнее, чем обычное ска­
нирование таблицы. Кроме того, интенсивное использование памяти и процессора
могут влиять на конкурентные запросы, однако вы не увидите этого эффекта при

изолированном выполнении запроса. Иногда переписывание таких запросов с по­

мощью UNION, как вы привыкли делать в MySQL 4.1 и более ранних версиях,
более оптимально.

Когда вы видите слияние индексов в результатах команды EXPLAIN, следует изучить
структуру запроса и таблицы, чтобы убедиться, что их нельзя улучшить. Слияние
индексов можно запретить с помощью параметра optimizer _switch. Кроме того,
существует команда IGNORE INDEX.

Выбор правильного порядка столбцов

Одной из наиболее распространенных причин проблем является, как мы видели, по­
рядок столбцов в индексе. Правильный порядок зависит от запросов, которые будут
использовать индекс, поэтому стоит заранее подумать о том, как выбрать индекс­
ный порядок так, чтобы строки были отсортированы и сгруппированы наилучшим
с точки зрения запроса образом. (Кстати, этот раздел относится только к индексам,

упорядоченным на основе В-дерева, - хеш и другие типы индексов не сортируют

свои данные.)

Порядок столбцов в индексе, упорядоченном на основе В-дерева, означает, что индекс

сортируется сначала по столбцу, расположенному слева, затем по следующему и т. д.
Поэтому индекс можно просматривать как в прямом, так и в обратном порядке, чтобы
удовлетворить запросы с фразами ORDER ВУ, GROUP ВУ и DISТINCT, в которых порядок
столбцов точно соответствует индексу.

Таким образом, порядок столбцов жизненно важен в многостолбцовых индексах.
Он позволяет индексу зарабатывать звезды по трехзвездочной системе Лахденмаки

и Лича (о ней говорилось в разделе <1Преимущества индексов» ранее в этой главе).

Далее мы приведем много примеров того, как это работает.

Порядок столбцов можно определить с помощью старого эмпирического правила,
согласно которому первым делом нужно поместить в индекс столбцы с наибольшей
селективностью. Полезна ли эта рекомендация? В некоторых случаях она может быть
весьма полезна, но обычно гораздо важнее избегать произвольных операций ввода/
вывода и сортировок. (Конкретные ситуации отличаются друг от друга, поэтому

не может быть правила на все случаи жизни. Так что это эмпирическое правило,
скорее всего, не так полезно, как вы думаете.)

Стратегии индексирования для достижения высокой производительности 203

Помещать в индекс сначала наиболее селективные столбцы может быть целесообраз­
но тогда, когда целью его создания является оптимизация поиска WHERE, а сортировка
и группировка не принимаются во внимание. В таких случаях было бы неплохо
разработать индекс, который максимально быстро отфильтровывал бы строки и по­
этому лучше всего подходил бы для запросов, в которых указывается только префикс
индекса в разделе WHERE. Однако это зависит не только от селективности (общей
кардинальности) столбцов, но и от фактических значений, используемых для поиска
строк, - распределения значений. Тем же принципом мы пользовались, когда вы­

бирали оптимальную длину префикса. По-видимому, действительно нужно выбрать
такой порядок столбцов, который будет максимально селективным для наиболее
часто встречающихся запросов.

Рассмотрим в качестве примера следующий запрос:

SELECT * FROM payment WHERE staff_id = 2 AND customer_id = 584

Следует ли создать индекс (staff _id, customer _id) или стоит поменять порядок
столбцов на обратный? Мы можем запустить несколько быстрых запросов, чтобы
понять, как распределяются значения в таблице, и определить, какой столбец имеет
более высокую селективность. Преобразуем запрос для подсчета кардинальности
каждого предиката1 в запросе с фразой WHERE:

mysql> SELECT SUM(staff_id = 2), SUМ(customer_id = 584) FROМ payment\G
*************************** 1. row ***************************
SUM(staff_id = 2): 7992
SUM(customer_id = 584): 30

Согласно эмпирическому правилу следует сначала поместить в индекс customer _id,
потому что предикат соответствует меньшему количеству строк в таблице. Затем
мы снова запустим запрос, чтобы узнать, насколько селективен staff _id в пределах
диапазона строк, выбранных для клиента с данным идентификатором:

mysql> SELECT SUM(staff_id = 2) FROМ payment WНERE customer_id = 584\G
*************************** 1. row ***************************
SUМ(staff_id = 2): 17

Применяйте эту методику с осторожностью, поскольку результаты зависят от кон­

кретных констант, заданных для выбранного запроса. Если вы оптимизируете свои
индексы для этого запроса, но не для других, производительность сервера в целом

может ухудшиться, а некоторые запросы могут выполняться непредсказуемо.

Если вы используете худшую выборку запроса из отчета какого-либо инструмента,
например pt-query-digest, эта методика может помочь определить наиболее полезные
индексы для ваших запросов и данных. Но если у вас нет конкретных образцов для
запуска, стоит опираться на старое эмпирическое правило: проверять кардиналь­

ность не по одному запросу:

mysql> SELECT COUNT(DISTINCT staff _id)/COUNT(*) AS staff _id_selectivity,
> COUNT(DISTINCT customer_id)/COUNT(*) AS customer_id_selectivity,

Гики оптимизации называют его sarg, от searchaЬ\e argument - .-,доступный для поиска

параметр~>. Теперь вы тоже гик!

204 Глава 5 • Повышение производительности с помощью индексирования

> COUNT{*)
> FROМ payment\G

*************************** 1. row ***************************
staff_id_selectivity: 0.0001

customer_id_selectivity: 0.0373
COUNT{*): 16049

У столбца customer _id самая высокая селективность, поэтому можно рекомендовать
поставить этот столбец первым в индексе:

mysql> ALTER TABLE payment ADD KEV{customer_id, staff_id);

Как и в случае с префиксными индексами, проблемы часто возникают из-за особых
значений, кардинальность которых превышает нормальную. Например, нам дово­

дилось встречать приложения, которые квалифицировали незалогированных поль­

зователей как гостей. Такие пользователи получали специальный идентификатор

пользователя в таблице сеанса и других местах, где фиксировалась пользовательская
активность. Запросы, связанные с этим идентификатором пользователя, скорее всего,

будут отличаться от других запросов, поскольку, как правило, существует множе­

ство сеансов, пользователи которых не залогинились. Мы также не раз видели, как

системные аккаунты вызывают аналогичные проблемы. У одного приложения был
волшебный аккаунт администратора: она был не настоящим пользователем, а «дру­
гом~ всех пользователей сайта. С этого аккаунта могли отправляться уведомления

о статусе и другие сообщения. Огромный список «друзей~ этого пользователя вы­
зывал серьезные проблемы с производительностью на сайте.

В реальности такое встречается довольно часто. Любое отклонение от стандартной
ситуации, даже если это не результат применения плохих решений по проектирова­

нию и управлению приложением, может вызвать проблемы. Пользователи, у кото­
рых действительно есть много друзей, фотографий, сообщений о статусе и т. п., могут
создавать такие же проблемы, как и боты.

Приведем пример, с которым мы однажды столкнулись на форуме, где пользователи

обменивались историями и впечатлениями о продукте. Запросы этой конкретной
формы выполнялись очень медленно:

mysql> SELECT COUNT{DISTINCT threadid) AS COUNT_VALUE
-> FROМ Message
-> WНERE {groupid = 10137) AND {userid = 1288826) AND {anonymous = 0)
-> ORDER ВУ priority DESC, modifiedDate DESC

Кажется, что у этого запроса не слишком удачный индекс, поэтому клиент попро­

сил нас посмотреть, можно ли его улучшить. Команда EXPLAIN выдала следующую
информацию:

id: 1
select_type: SIMPLE

tаЫе: Message
type: ref

key: ix_groupid_userid
key_len: 18

ref: const,const
rows: 1251162

Extra: Using where

Стратегии индексирования для достижения высокой производительности 205

Индекс, который MySQL применила для этого запроса по столбцам (groupid,
userid), кажется хорошим выбором при отсутствии информации о кардинальности
столбцов. Однако получится совсем другая картина, если мы посмотрим, сколько

строк соответствует идентификатору пользователя и идентификатору группы:

mysql> SELECT COUNT(*), SUМ(groupid = 10137),
-> SUM(userid = 1288826), SUМ(anonymous = 0)
-> FROМ Message\G

*************************** 1. row ***************************
count(*): 4142217

sum(groupid = 10137): 4092654
sum(userid ~ 1288826): 1288496

sum(anonymous = 0): 4141934

Оказалось, что этой группе соответствовала почти каждая строка в таблице, а поль­
зователю соответствовали 1,3 миллиона строк - в этом случае подходящего индекса

просто не существует! Это вызвано тем, что данные были перенесены из другого
приложения и все сообщения приписаны пользователю с правами администратора
и группе как части процесса импорта. Решение данной проблемы состояло в из­
менении кода приложения таким образом, чтобы распознавать этого специального
пользователя и его группу и не выполнять для него запросов.

Мораль этой маленькой истории состоит в том, что эмпирические и эвристические

правила могут оказаться полезными, но вы должны быть внимательными и не рас­
считывать на то, что усредненная производительность соответствует производитель­

ности любого случая, включая особые. Такие случаи могут ухудшить производитель­
ность всего приложения.

Напоследок добавим, что хотя интересно проверять эмпирическое правило о селек­
тивности и кардинальности, другие факторы, такие как сортировка, группировка

и наличие условий диапазона в разделе WHERE, могут намного сильнее изменить про­
изводительность запросов.

Кластерные индексы

Кластерные индексы 1 - это не отдельный тип индекса, а скорее, подход к хранению

данных. Детали могут различаться в зависимости от реализации, но в InnoDB кла­
стерный индекс фактически содержит в одной и той же структуре и индекс, упоря­

доченный на основе В-дерева, и сами строки.

Когда над таблицей построен кластерный индекс, ее строки хранятся в листьях
индекса. Термин «кластерный~ означает, что строки с близкими значениями ключа
хранятся рядом друг с другом2 • Над таблицей можно построить только один кла­
стерный индекс, поскольку невозможно хранить одну и ту же строку одновременно

Пользователи Oracle наверняка знакомы с термином «индексно-организованная таблица~.
который означает то же самое.

Это не всегда так, и вы скоро узнаете по•1ему.

206 Глава 5 • Повышение производительности с помощью индексирования

в двух местах (покрывающие индексы позволяют эмулировать несколько кластерных
индексов, но об этом поговорим позднее).

За реализацию индексов отвечают подсистемы хранения, однако не все они поддер­

живают кластерные индексы. В данном разделе будем говорить исклю<JИтельно об
InnoDB, но обсуждаемые принципы, по крайней мере частично, применимы к любой
подсистеме хранения, которая поддерживает кластерные индексы сейчас или ста11ет

поддерживать их в будущем.

На рис. 5.3 показано, как располагаются записи в кластер1юм индексе. Обратите
внимание на то, что листья содержат сами строки, а узлы - только индексированные

столбцы. В рассматриваемом примере индексированный столбец содержит цело­

численные зна•1ения.

2

Akroyd Akroyd
ChristJan Debble

1958-12-07 1990-03-1

11

11 12

Allen Allen
Cuba Kim

1960-01-011930-07-12

12

Allen
Meryt

1980-12-12

Рис. 5.3. Расположение записей в кластерном индексе

91

Некоторые серверы базы данных позволяют выбрать, какой индекс сделать кластер­
ным, но на момент написания книги ни одна из встроенных подсистем хранения

MySQL не предоставляла такой возможности. InnoDB кластеризует данные по
первичному ключу. Это означает, что индексированный столбец на рис. 5.3 является
столбцом, содержащим первичный ключ.

Стратегии индексирования для достижения высокой производительности 207

Если вы не определили первичный ключ, то InnoDB попытается использовать вме­
сто него уникальный индекс, не допускающий значений NULL. Если такого индекса

не существует, InnoDB определит скрытый первичный ключ за вас и затем по нему
выполнит кластеризацию таблицы. InnoDB размещает записи вместе только внутри
страницы. Разные страницы с близкими значениями ключей могут оказаться далеко
друг от друга.

Как правило, первичный кластерный ключ увеличивает производительность, но ино­

гда он может вызвать серьезные проблемы с ней. Таким образом, решение о класте­
ризации нужно тщательно обдумывать, особенно при замене подсистемы хранения
с InnoDB на какую-то другую и наоборот.

Кластеризованные данные имеют несколько очень важных достоинств.

О Возможность хранить связанные данные рядом. Например, при реализации по­

чтового ящика можете выполнить кластеризацию таблицы по столбцу user _id,
тем самым для выборки всех сообщений одного пользователя нужно будет про­
читать с диска лишь небольшое количество страниц. Если не использовать кла­
стеризацию, то для каждого сообщения может потребоваться отдельная операция
дискового ввода/вывода.

О Быстрый доступ к данным. Кластерный индекс хранит и индекс, и данные вместе

в одном В-дереве, поэтому извлечение строк из кластерного индекса обычно про­
исходит быстрее, чем сопоставимый поиск в некластерном индексе.

О Запросы, которые применяют покрывающие индексы, могут использовать значе-

ние первичного ключа из листа.

Эти преимущества могут значительно увеличить производительность, если вы спро­

ектируете свои таблицы и запросы с их учетом. Однако у кластерных индексов есть
и недостатки.

О Кластеризацию выгодно использовать, когда рабочая нагрузка характеризуется
большим количеством операций ввода/вывода. Если данные помещаются в па­
мяти и порядок доступа к ним не имеет значения, то кластерные индексы не при­

несут большой пользы.

О Скорость операций вставки сильно зависит от ее порядка. Вставка строк в по­

рядке, соответствующем первичному ключу, является самым быстрым способом
загрузить данные в таблицу InnoDB. Если вы загружаете большое количество
данных в другом порядке, то по окончании загрузки целесообразно реорганизо­

вать таблицу командой OPТIMIZE TABLE.

О Обновление столбцов кластерного индекса весьма затратно, поскольку InnoDB
вынуждена перемещать каждую обновленную строку на новое место.

О Для таблиц с кластерным индексом вставка новых строк или обновление пер­
вичного ключа, требующее перемещения строки, могут привести к разделению
страницы. Это происходит тогда, когда значение ключа строки таково, что строка

должна быть помещена в страницу, заполненную данными. Чтобы строка поме­
стилась, подсистема хранения вынуждена разделить страницу на две. Из-за этого

таблица может занять больше места на диске.

208 Глава 5 • Повышение производительности с помощью индексирования

1:1 Полное сканирование кластерных таблиц может оказаться медленным, особенно
если строки упакованы менее плотно или из-за разделения страниц хранятся не­

упорядоченно.

1:1 Вторичные (некластерные) индексы могут оказаться больше, чем вы ожидаете,
поскольку в их листьях хранятся значения столбцов, составляющих первичный
ключ.

1:1 Для получения доступа к данным по вторичному индексу требуется просматри-
вать два индекса вместо одного.

Последний момент может быть не совсем ясен. Почему доступ с использованием
вторичного индекса требует двух операций просмотра? Ответ заключается в природе
указателей на строки, которые хранятся во вторичном индексе. Не забывайте, что
лист содержит не указатель на физический адрес строки, а значение ее первичного

ключа. Это означает, что для нахождения строки по вторичному индексу подсистема

хранения сначала ищет в нем лист, а затем использует содержащееся в нем значение

первичного ключа для поиска самой строки. Это двойная работа - два прохода по
В-дереву вместо одного 1 • В InnoDB адаптивный хеш-индекс помогает уменьшить
эти потери.

Сравнение размещения данных в InnoDB и MyISAM

Различия в организации кластеризованного и некластеризованного размещения

данных и связанная с этим разница между первичными и вторичными индексами

могут привести к путанице и возникновению неожиданностей. Давайте рассмотрим,

как InnoDB и MyISAM разместят данные следующей таблицы:

CREATE TABLE layout_test
coll int NOT NULL,
со12 int NOT NULL,
PRIМARY KEY(coll),
КЕУ(со12)

);

Предположим, в таблицу в случайном порядке были добавлены 1 О ООО строк с пер­
вичными ключами в диапазоне от 1 до 1 О ООО. Затем выполнена оптимизация с по­
мощью команды OPТIMIZE TABLE. Другими словами, данные размещены на диске
оптимальным образом, но строки могут располагаться в случайном порядке. Элемен­
там столбца col2 присвоены случайные значения между 1и100, поэтому в таблице
множество дубликатов.

Размещение даниых в MyISAM. Размещение данных в подсистеме MyISAM проще,
поэтому покажем его первым. MyISAM сохраняет строки на диске в том порядке,
в котором они были вставлены, что показано на рис. 5.4.

Кстати, некластеризованные индексы не всегда могут обеспечить поиск строк в один заход.

Когда строка изменяется, она больше не помещается на исходное место, поэтому может

столкнуться в таблице с фрагментированными строками или переадресацией, что приведет
к увеличению работы по поиску строки.

Стратегии индексиtювания для достижения высокой ntюизводительности 209

Номер ряда со11 со12

о 99 8

12 56

2 3000 62

9997 18 8

9998 4700 13

9999 3 93

Рис. 5.4. Размещение данных для таблицы layout_test в MylSAM

Рядом со строками мы привели их номера, начиная с нуля. Поскольку строки имеют

фиксированный размер, MyISAM может найти любую из них, смещаясь на нужное
количество байтов от начала таблицы (MyISAM не всегда использует номера строк,
которые мы показали, эта подсистема хранения применяет различные стратегии в за­

висимости от того, имеют строки фиксированный или переменный размер) .

При таком размещении построение индекса не вызывает сложностей. Мы проиллю­

стрируем это с помощью последовательности диаграмм, отбросив такие физические
детали, как страницы, и показывая только узлы индекса. Каждый лист в индексе

просто содержит номер строки. На рис. 5.5 показан первичный ключ таблицы.

D Значение столбца

D Номер ряда

@00]
~

Листы
в порядке

возрастания

со11

Рис. 5.5. Размещение первичного ключа для таблицы layout_test в МyISAM

Мы опустили некоторые детали, например то, сколько внутренних узлов-потомков

может быть у узла В-дерева, поскольку это неважно для общего понимания того, как
размещаются данные в некластерной подсистеме хранения.

Что можно сказать об индексе по столбцу со12? Есть ли в нем что-то особенное?
Оказывается, ничего - это такой же индекс, как любой другой. На рис. 5.6 показан
индекс по столбцу со12.

210 Глава 5 • Повышение производительности с помощью индексирования

О Значение столбца

О Номер ряда

Листы
в порядке

возрастания

со12

Рис. 5.6. Размещение индекса по столбцу со12 для таблицы layout_test в MyISAM

Фактически в MyISAM нет никаких структурных различий между первичным
ключом и любым другим индексом. Первичный ключ является просто уникальным ,
не допускающим значений NULL индексом под названием PRIМARY.

Размещение данных в InnoDB. InnoDB хранит те же самые данные совсем по­
другому из-за своей кластерной организации. InnoDB хранит таблицу так, как по­
казано на рис. 5.7.

О Столбцы первичного ключа (со11)

[jQ Идентификатор транзакции

!Вf] Указатель отката

О Столбцы, не относящиесяо%-о
к первичному ключу (со12)

Внутренние узлы

4700

TID

RP

13

Листы
кластерного

индекса

вlпnoDB

Рис. 5.7. Размещение первичного ключа для таблицы layout_test в InnoDB

На первый взгляд, здесь особых отличий от рис. 5.5 нет. Но если посмотреть внима­
тельнее, можно заметить, что показана вся таблица, а не только индекс. Поскольку

Стратегии индексирования для достижения высокой производительности 211

кластерный индекс в InnoDB является таблицей, то отдельного хранилища для
строк, как в MyISAM, нет.

Каждый лист в кластерном индексе содержит значение первичного ключа, иденти­

фикатор транзакции и указатель отката, который InnoDB использует для поддержки
тра11закций и механизма MVCC, а также прочие столбцы (в данном случае со12).
Если первичный ключ создан по префиксу столбца, то полное :шачение этого столбца
хранится вместе с прочими столбцами.

Кроме того, в отличие от MyISAM, в IнnoDB вторичные индексы совсем не такие,
как кластерные. Вместо хранения указателей на строки листья вторичных индексов

содержат значения первичного ключа, которые служат такими указателями на

строку. Подобная стратегия уменьшает объем работы, необходимой для поддержки
вторичных индексов при перемещении строки или для разделения страницы данных.

Использование значений первичного ключа строки в качестве указателя увеличивает

размер индекса и означает, что InnoDB может переместить строку без обновления
указателей на нее.

Рисунок 5.8 иллюстрирует индекс по столбцу со12 для таблицы из примера. Каждый
лист содержит индексированные столбцы (в данном случае только со12), за которы­

ми следуют зна<1ения первичного ключа (coll).

О Столбцы, определяющие ключ (со11)

О Столбцы первичного ключа (со11)

с:сс:о
~

Листы
вторичного

индекса

в lпnoDB

Рис. 5.8. Размещение вторичного индекса для таблицы layout_test в InnoDB

Здесь показаны листья В-дерева, однако мы умышленно опустили детали, касающи­

еся нелистовых узлов. Каждый нелистовой узел В-дерева в InnoDB содержит индек­
сированный столбец (-цы) и указатель на узел следующего уровня (которым может

быть либо другой нелистовой узел, либо лист). Это относится ко всем индексам, как
кластерным, так и вторичным.

212 Глава 5 • Повышение производительности с помощью индексирования

На рис. 5.9 показано абстрактное представление организации таблицы в InnoDB
и MyISAM. Легко увидеть различия в том, как хранятся данные и индексы в этих

двух системах.

Первичный ключ

Вторичный ключ

Табличное размещение
(кластеризованное)

в подсистеме хранения lnnoDB

Табличное размещение
(некластеризованное)

в подсистеме хранения MylSAM

Рис. 5.9. Кластерные и некластерные таблицы

Если вы не понимаете, чем различаются кластерное и некластерное хранение и по­

чему это так важно, не беспокойтесь. Все станет яснее, когда вы изучите больше ма­
териала, особенно в этой и следующей главах. Данные концепции довольно сложны,
и для того, чтобы в них хорошо разобраться, требуется время.

Вставка строк в порядке первичного ключа в InnoDB

Если вы используете InnoDB и вам не требуется особая кластеризация, то целесо­
образно определить суррогатный ключ, то есть первичный ключ, значение которого
не вытекает из данных вашего приложения. Проще всего воспользоваться для этого

Стратегии индексирования для достижения высокой производительности 213

столбцом с атрибутом AUTO_INCREMENT. Это гарантирует, что значение поля, по кото­
рому построен первичный ключ, монотонно возрастает, тем самым обеспечивается
лучшая производительность соединений, использующих первичные ключи.

Стоит избегать случайных (непоследовательных и распределенных среди большого
набора значений) кластерных ключей, особенно при большой нагрузке на систему
ввода/вывода. Например, использование значений UUID - это плохой выбор

с точки зрения производительности: вставка в кластерный индекс будет случай­
ной, что является худшим сценарием и не обеспечивает полезной кластеризации
данных.

Для того чтобы продемонстрировать это, мы выполнили эталонное тестирование
производительности для двух ситуаций. В первом случае выполнялась вставка

в таблицу userinfo с целочисленным идентификатором. Таблица была определена
следующим образом:

CREATE TABLE userinfo (
id int unsigned NOT NULL AUTO_INCREMENT,
name varchar(64) NOT NULL DEFAULT
email varchar(64) NOT NULL DEFAULT
password varchar(б4) NOT NULL DEFAULT
dob date DEFAULT NULL,
address varchar(255) NOT NULL DEFAULT '·,
city varchar(64) NOT NULL DEFAULT '·,
state_id tinyint unsigned NOT NULL DEFAULT '0',
zip varchar(B) NOT NULL DEFAULT '·,
country_id smallint unsigned NOT NULL DEFAULT '0',
gender ('м'' 'F')NOT NULL DEFAUL т 'м''

account_type varchar(З2) NOT NULL DEFAULT '·,
verified tinyint NOT NULL DEFAULT '0',
allow_mail tinyint unsigned NOT NULL DEFAULT '0',
parrent_account int unsigned NOT NULL DEFAULT '0',
closest_airport varchar(З) NOT NULL DEFAULT
PRIMARY КЕУ (id),
UNIQUE КЕУ email (email),
КЕУ country_id (country_id),
КЕУ state_id (state_id),
КЕУ state_id_2 (state_id,city,address)

ENGINE=InnoDB

Обратите внимание на целочисленный автоинкрементный первичный ключ 1 •

Во втором случае рассмотрим таблицу userinfo_uuid. Она практически идентична
таблице userinfo, за исключением того, что первичным ключом является UUID,
а не целое число:

CREATE TABLE userinfo_uuid (
uuid varchar(Зб) NOT NULL,

Стоит отметить, что это настоящая таблица с вторичными индексами и множеством

столбцов. Если мы их удалим и проведем эталонное тестирование производительности
первичного ключа, разница будет еще больше.

214 Глава 5 • Повышение производительности с помощью индексирования

Мы выполнили эталонное тестирование обеих таблиц. Сначала вставили в каждую
по 1 миллиону записей на сервере, имеющем достаточно памяти для размещения
в ней индексов. Затем вставили в те же таблицы по 3 миллиона строк - индексы уве­

личились настолько, что перестали помещаться в памяти. В табл. 5.1 сравниваются
результаты эталонного тестирования.

Таблица 5.1. Эталонное тестирование вставки строк в таблицы InnoDB

Та6пица Количество строк Время, с Размер индекса, Мбайт

useriнfo 1 000000 137 342

userint'o uuid 1 ООО ООО 180 544 -

userinfo 3000 ООО 1233 1036

userinfo uuid 3000 ООО 4525 1707

Обратите внимание на то, что при использовании первичного ключа UUID не только
вставка строк заняла больше времени, но и размер индекса слегка увеличился. Одна

из причин - больший размер первичного ключа. Но, несомненно, влияние оказали

также разделение страниц и неизбежная фрагментация.

Чтобы понять, почему возникает такая ситуация, давайте посмотрим, что происхо­

дило в индексе, когда мы вставляли данные в первую таблицу. На рис. 5.1 О показано,
как вставляемые строки сначала заполняют одну страницу, а затем переходят на

следующую.

Последовательная вставка в страницу;
каждая новая запись вставляется

после предыдущей

2 з

Когда страница заполняется , вставка
продолжается на следующей странице

:·····························:

300

Рис. 5.10. Вставка последовательных значений индекса в кластерный индекс

Как показано на рис. 5.10, InnoDB сохраняет новую запись непосредственно после
предыдущей, поскольку значения первичного ключа являются последовательными.

Когда коэффициент заполнения страницы достигает максимально допустимого

значения (в InnoDB коэффициент первоначального заполнения составляет 15/ 16,
чтобы оставалось место для будущих модификаций), следующая запись размещается

на новой странице. После окончания последовательной загрузки данных страницы

первичных ключей оказались почти заполненными упорядоченными записями, что

крайне желательно.

Стратегии индексирования для достижения высокой производительности 215

Сопоставьте этот процесс с тем, что происходило, когда мы вставляли данные во

вторую таблицу с кластерным индексом по столбцу, содержащему UUHJ. Это про­
иллюстрировано на рис. 5.11.

Вставка UUID: новые залиси моrут быть
вставлены между уже существующими ,

что приводит к перемещению последних

000944
16-6175

~

1
1
1
1
1
1

0016с9
1а-6175

~
1
1
1
1
1
1

002f21
8е-6177

" _________ _ _
002775
64-6178

•----------------------------------
000e2f

20-6180

Уже заполненные и сброшенные на диск страницы,
возможно, придется читать заново

000944 000e2f 0016с9

16-6175 20-6180 1а-6175

• Показаны только первые
13 символов UUID

002775
64-6178

002121
8е-6177

001475

· ------------ 64-6181

Рис. 5.11. Вставка непоследовательных значений в класrерный индекс

Поскольку значение первичного ключа в каждой последующей строке не обязательно

больше, чем в предыдущей, InnoDB не всегда может разместить новую строку в кон­
це индекса. Ей приходится искать для нее подходящее положение - обычно где-то

посередине уже существующих данных - и освобождать место. Это обусловливает

зна•штельную дополнительную работу и неоптимальное размещение данных. При­

ведем недостатки такой ситуации.

Q Страница, на которую должна попасть строка, может оказаться сброшенной на
диск и удаленной из К3ша или еще 1-ie размещенной в кэше. InnoDB придется

216 Глава 5 • Повышение производительности с помощью индексирования

искать ее и считывать с диска, прежде чем вставить новую строку. Из-за этого

приходится выполнять много произвольных операций ввода/вывода.

О Когда операции вставки осуществляются не по порядку, InnoDB часто прихо­
дится разделять страницы, чтобы освободить место для новых строк. Это требует

перемещения большого объема данных и изменения по меньшей мере трех стра­
ниц вместо одной.

О Из-за разделения страницы оказываются заполненными беспорядочно и неплот-

но, что нередко приводит к фрагментации.

После загрузки таких случайных значений в кластерный индекс следовало бы за­

пустить команду OPТIMIZE TABLE, которая перестроит таблицу и заполнит страницы

оптимальным образом.

Моралью всей этой истории является то, что при использовании InnoDB нужно
стремиться вставлять данные в порядке, соответствующем первичному ключу,

и стараться использовать такой кластерный ключ, который монотонно возрастает

для новых строк.

Когда вставка в порядке первичного ключа - это мохо

В InnoDB при рабочих нагрузках с высокой степенью параллелизма вставка в по­
рядке первичного ключа может создавать точки конкуренции. Горячей точкой является

последняя страница первичного индекса. Поскольку все вставки происходят именно

здесь, возникает состязание за блокировку следующего ключа. Другой горячей точкой

является блокировка. Если вы сталкиваетесь с такими проблемами, то можете перепроек­

тировать таблицу или приложение либо настроить InnoDB (innodb_autoinc_lock_mode).

Если ваша версия сервера не поддерживает innodb_autoinc_lock_mode, целесообразно

перейти на более новую версию InnoDB, которая при этой рабочей нагрузке будет
работать лучше.

Покрывающие индексы

Обычно индексы рекомендуется создавать для раздела WHERE запроса. Но они по­

лезны для всего запроса, а не только для этого раздела. Индексы обеспечивают

эффективный поиск строк, но MySQL может использовать их также для того, что­
бы извлечь данные столбца, не считывая строку таблицы. В конце концов, листья

индекса содержат те значения, которые они индексируют, зачем же просматривать

саму строку, если чтение индекса уже может дать нужные данные? Индекс, который

содержит (или покрывает) все данные, необходимые для формирования результатов

запроса, называется покрывающим индексом.

Покрывающие индексы могут стать очень мощным инструментом и значительно

увеличить производительность. Рассмотрим преимущества считывания индекса

вместо самих данных.

Стратегии индексирования для достижения высокой производительности 217

Q Записи индекса обычно компактнее полной строки, поэтому, читая только ин­
дексы, MySQL может обращаться к существенно меньшему объему данных. Это
очень важно при кэшированной рабочей нагрузке, когда время отклика определя­

ется в основном копированием данных. Это полезно и при большом количестве
операций ввода/вывода, поскольку индексы меньше, чем данные, и лучше по­

мещаются в памяти (что особенно справедливо в отношении MyISAM, которая
может упаковывать индексы, тем самым делая их еще меньше).

Q Индексы отсортированы по индексируемым значениям (по крайней мере внутри

страницы), поэтому для поиска по диапазону, характеризующегося большим

объемом ввода/вывода, потребуется меньше операций обращения к диску по
сравнению с извлечением каждой строки из произвольного места хранения. Для

некоторых подсистем хранения, например MyISAM и Percona XtraDB, вы можете
даже оптимизировать таблицу командой OPТIMIZE и получить полностью отсорти­
рованные индексы, в результате чего для простых запросов по диапазону доступ

к индексу будет вообще последовательным.

Q Некоторые подсистемы хранения, такие как MyISAM, кэшируют в памяти MySQL
только индексы. Поскольку кэширование данных для MyISAM выполняет опе­
рационная система, доступ к ним обычно требует системного вызова. Это может
сильно повлиять на производительность, особенно при кэшированной рабочей

нагрузке, когда системный вызов оказывается самой затратной частью доступа

к данным.

Q Покрывающие индексы особенно полезны для таблиц InnoDB. Вторичные индек­
сы InnoDB хранят значения первичного ключа строки в листьях. Таким образом,
вторичный индекс, покрывающий запрос, позволяет избежать еще одного поиска
по первичному индексу.

Во всех этих сценариях выполнение запроса с использованием индекса обычно
становятся значительно менее затратным, чем извлечение всей записи из таблицы.

Не каждый тип индекса может выступать в роли покрывающего. Индекс должен

хранить значения индексируемых столбцов. Хеш-индексы, пространственные ин­

дексы и полнотекстовые индексы такие значения не хранят, поэтому MySQL может
использовать в качестве покрывающих только индексы, упорядоченные на основе

В-дерева. Кроме того, различные подсистемы хранения по-разному реализуют по­

крывающие индексы, а некоторые не поддерживают их вовсе (на момент написания

книги такой была подсистема Memory).

Запустив команду EXPLAIN для запроса, который покрывается индексом (он так и на­
зывается - покрываемый индексом запрос), вы увидите в столбце Extra сообщение
Using index1• Например, таблица sakila. inventory имеет многостолбцовый индекс

Легко спутать сообщение Using index в столбце Extra с сообщением iпdex в столбце type.
Однако это разные сообщения. Столбец type не имеет никакого отношения к покрывающим
индексам - он показывает тип доступа запроса или поясняет, как запрос будет находить

строки. Руководство пользователя по MySQL называет его типом соединения.

218 Глава 5 • Повышение производительности с помощью индексирования

по (store_id, film_id). MySQL может использовать его для выполнения запросов
только по этим двум столбцам, например:

mysql> EXPLAIN SELECT store_id, film_id FROМ sakila.inventory\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: inventory
type: index

possiЫe_keys: NULL
key: idx_store_id_film_id

key_len: 3
ref: NULL

rows: 4673
Extra: Using index

Покрываемые индексом запросы имеют возможность отключить эту оптимизацию.

Оптимизатор MySQL перед выполнением запроса принимает решение, покрывает ли
его какой-либо индекс. Предположим, индекс покрывает условие WHERE, но не весь
запрос. Даже если условие WHERE не выполняется, MySQL 5.5 и более ранние версии
в любом случае извлекут строку, несмотря на то что она не нужна и впоследствии
будет отфильтрована.

Посмотрим, почему это может произойти и как переписать запрос, чтобы обойти
проблему. Начнем со следующего запроса:

mysql> EXPLAIN SELECT * FROМ products WНERE actor='SEAN CARREY'
-> AND title like '%APOLLO%'\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: products
type: ref

possiЫe_keys: ACTOR,IX_PROD_ACTOR
key: АСТОR

key_len: 52
ref: const

rows: 10
Extra: Using where

Индекс не может покрыть этот запрос по двум причинам.

О Мы выбрали все столбцы из таблицы, а ни один индекс не покрывает все столб­
цы. Однако есть обходной маневр, который MySQL теоретически может исполь­
зовать: в условии WHERE упоминаются только столбцы, которые покрываются
индексом, поэтому MySQL может с помощью индекса найти актор, проверить,
соответствует ли название заданному критерию, и только потом считать всю

строку.

О MySQL не может выполнять операцию LIKE в индексе. Это ограничение API
подсистемы хранения, которая в MySQL 5.5 и более ранних версиях допускает
в операциях с индексами только простые сравнения (равенство, неравенство

и «больше~.>). MySQL может выполнять сравнения LIKE по префиксу, поскольку
допускает преобразование их в простые сравнения, однако наличие символа под-

Стратегии индексирования для достижения высокой производительности 219

становки в начале шаблона не позволяет подсистеме хранения провести сопостав­
ление. Таким образом, самому серверу MySQL придется выполнять извлечение
и сравнение значений из строки, а не из индекса.

Существует способ обойти обе проблемы, скомбинировав разумное индексирование
и переписывание запроса. Мы можем расширить индекс так, чтобы он покрывал
столбцы (artist, title, prod_id), и переписать запрос следующим образом:

mysql> EXPLAIN SELECT *
-> FROМ products
-> JOIN (
-> SELECT prod_id
-> FROМ products
-> WНERE actor='SEAN CARREV' AND title LIKE '%APOLLO%'
-> AS tl ON (tl.prod_id=products.prod_id)\G

*************************** 1. row ***************************
id: 1

select_type: PRIМARV
tаЫе: <derived2>

... опущено ...
*************************** 2. row ***************************

id: 1
select_type: PRIМARV

tаЫе: products
... опущено ...

*************************** 3. row ***************************
id: 2

select_type: DERIVED
tаЫе: products
type: ref

possiЬle_keys: ACTOR,ACTOR_2,IX_PROD_ACTOR
key: ACTOR_2

key_leп: 52
ref:

rows: 11
Extra: Usiпg where; Usiпg iпdex

Назовем этот способ отложенным соединением, поскольку доступ к столбцам от­
кладывается. Теперь MySQL использует покрывающий индекс на первом этапе
запроса, когда ищет строки в подзапросе в разделе FROM. Он не использует индекс
для покрытия всего запроса, но это лучше чем ничего.

Эффективность такой оптимизации зависит от того, сколько строк отвечает условию

WHERE. Предположим, таблица products содержит 1 миллион строк. Посмотрим, как
эти два запроса выполняются с тремя различными наборами данных, каждый из
которых содержит 1 миллион строк.

1. В первом наборе данных есть 30 ООО фильмов, в которых играл актер Шон Керри,
в названиях 20 ООО из них содержится слово Apollo.

2. Во втором наборе данных есть 30 ООО фильмов, в которых играл актер Шон Керри,
в названиях 40 из них содержится слово Apollo.

3. В третьем наборе данных есть 50 фильмов, в которых играл актер Шон Керри,
в названиях десяти из них содержится слово Apollo.

220 Глава 5 • Повышение производительности с помощью индексирования

На этих трех наборах данных мы провели эталонное тестирование двух вариантов

запроса и получили результаты, показанные в табл. 5.2.

Таблица 5.2. Результаты эталонного тесrирования для запросов, покрываемых и не покрываемых
индексами

Набор данных Оригинальный запрос Оптимизированный запрос

Пример 1 5 запросов в секунду 5 запросов в секунду

Пример 2 7 запросов в секунду 35 запросов в секунду

Примерз 2400 запросов в секунду 2000 запросов в секунду

Интерпретировать эти результаты нужно следующим образом.

О В примере 1 запрос возвращает большой результирующий набор, поэтому мы
не видим эффекта от оптимизации. Большая часть времени потрачена на чтение

и отправку данных.

О В примере 2, где второе условие фильтрации оставляет небольшой набор резуль­
татов после фильтрации по индексу, видно, насколько эффективна предложен­

ная оптимизация: производительность возрастает в пять раз. Достигается этот

результат за счет того, что считывается всего 40 полных строк вместо 30 ООО, как
в первом примере.

О Пример 3 демонстрирует ситуацию, когда подзапрос оказывается неэффектив­
ным. Оставшийся после фильтрации по индексу набор результатов так мал, что

подзапрос становится более затратным, чем считывание всех данных из таблицы.

В большинстве подсистем хранения индекс может покрывать только те запросы,
которые обращаются к столбцам, являющимся частью индекса. Однако InnoDB
позволяет немного развить эту оптимизацию. Вспомните, что вторичные индексы

InnoDB хранят в листьях значения первичного ключа. Это означает, что вторичные
индексы имеют дополнительные столбцы, которые InnoDB может использовать для
покрытия запросов.

Например, в таблице sakila. actor, использующей InnoDB, построен индекс по
столбцу last_name, который может покрывать запросы, извлекающие столбец пер­
вичного ключа actor _id, хотя этот столбец технически не относится к индексу:

mysql> EXPLAIN SELECT actor_id, last_name
-> FROМ sakila.actor \lliERE last_name = 'НOPPER'\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: actor
type: ref

possiЫe_keys: idx_actor_last_name
key: idx_actor_last_name

key_len: 137
ref: const

rows: 2
Extra: Using where; Using index

Стратегии индексирования для достижения высокой производительности 221

Улучшения в будущих версиях MySQL

Многие из упомянутых нами особенностей являются результатом ограничений API
подсистемы хранения, которые не позволяют MySQL накладывать фильтры через эти
API на подсистему хранения. Если бы MySQL была способна это делать, она могла бы
отправить запрос к данным, вместо того чтобы вытаскивать их на сервер, где проис­

ходит анализ запроса. На момент написания книги в еще не выпущенной MySQL 5.6
сделано существенное улучшение в API подсистемы хранения, называемое index
condition pushdoшn (условный индекс с магазинной памятью). Оно значительно изменит
выполнение запросов и позволит отказаться от многих приемов, которые мы обсудили.

Использование просмотра индекса для сортировки

В MySQL есть два способа получения упорядоченных результатов: сортировка или
просмотр индекса по порядку1. О том, что MySQL собирается просматривать индекс,
можно узнать, обнаружив слово index в столбце type таблицы, выводимом командой
EXPLAIN (не путайте с сообщением Using index в столбце Extra).

Просмотр самого индекса выполняется быстро, поскольку это просто требует пере­
мещения от одной записи к другой. Однако если MySQL не использует индекс для
покрытия запроса, ей приходится считывать каждую строку, которую она находит

в индексе. В основном это операции ввода/вывода с произвольным доступом, поэтому

чтение данных в порядке, соответствующем индексу, обычно намного медленнее, чем

последовательный просмотр таблицы, особенно если рабочая нагрузка характеризу­
ется большим объемом ввода/вывода.

MySQL может использовать один и тот же индекс как для сортировки, так и для
поиска строк. По возможности стоит проектировать индексы так, чтобы они были
полезны для решения обеих задач.

Сортировка результатов по индексу работает только в тех случаях, когда порядок
элементов в точности соответствует порядку, указанному в разделе ORDER ВУ, а все

столбцы отсортированы в одном направлении (по возрастанию или по убыванию)2•
Если в запросе соединяются несколько таблиц, то необходимо, чтобы в разделе ORDER
ВУ упоминались только столбцы из первой таблицы. Раздел ORDER ВУ имеет то же

ограничение, что и поисковые запросы: должен быть указан самый левый префикс
индекса. Во всех остальных случаях MySQL использует сортировку.

Есть один случай, когда в разделе ORDER ВУ не обязательно должен быть указан левый
префикс индекса: если для начальных столбцов индекса в параметрах WHERE или JOIN
заданы константы, они могут заполнить пропуски в индексе.

В MySQL есть два алгоритма сортировки, они будут детально рассмотрены в главе 7.

Если вы нуждаетесь в сортировке в разных направлениях, воспользуйтесь приемом,

предусматривающим хранение обратных или отрицательных значений.

222 Глава 5 • Повышение производительносrи с помощью индексирования

Например, в таблице rental в стандартной тестовой базе данных Sakila есть индекс
по столбцам (rental_date, inventory_id, customer _id):

CREATE TABLE rental (

);

PRIМARY КЕУ (rental_id),
UNIQUE КЕУ rental_date (rental_date,inventory_id,customer_id),
КЕУ idx_fk_inventory_id (inventory_id),
КЕУ idx_fk_customer_id (customer_id),
КЕУ idx_fk_staff_id (staff_id),

MySQL использует индекс rental_date для сортировки результатов в следующем
запросе, что доказывает отсутствие упоминания о файловой сортировке1 в резуль­

татах команды EXPLAIN:

mysql> EXPLAIN SELECT rental_id, staff_id FROМ sakila.rental
-> WНERE rental_date = '2005-05-25'
-> ORDER ВУ inventory_id, customer_id\G

*************************** 1. row ***************************
type: ref

possiЫe_keys: rental_date
key: rental_date

rows: 1
Extra: Using where

Это работает даже несмотря на то, что в условии ORDER ВУ указан не левый пре­
фикс индекса, поскольку мы определили условие равенства для первого столбца
в индексе.

Приведем еще несколько запросов, в которых для сортировки можно использовать

индекс. В следующем примере это возможно, потому что для первого столбца ин­

декса в запросе задана константа, а в условии ORDER ВУ предусмотрена сортировка по
второму столбцу. В совокупности получаем левый префикс индекса:

... WHERE rental_date = '2005-05-25' ORDER ВУ inventory_id DESC;

Следующий запрос также работает, поскольку в разделе ORDER ВУ указаны два столб­
ца, образующие левый префикс индекса:

... WHERE rental_date > '2005-05-25' ORDER ВУ rental_date, inventory_id;

Приведем несколько примеров, в которых индекс не может применяться для сор­

тировки.

1:1 В запросе использованы два разных направления сортировки, но все столбцы
индекса отсортированы по возрастанию:

... WHERE rental_date = '2005-05-25' ORDER ВУ inventory_id DESC, customer_id ASC;

1:1 Здесь в условии ORDER ВУ указан столбец, не входящий в индекс:

... WHERE rental_date = '2005-05-25' ORDER ВУ inventory_id, staff_id;

MySQL называет это файловой сортировкой, но она не обязательно использует файлы.

Стратегии индексирования для достижения высокой производительности 223

1:1 Здесь столбцы, заданные во фразах WHERE и ORDER ВУ, не образуют левый префикс

индекса:

... WHERE rental_date = '2005-05-25' ORDER ВУ customer_id;

1:1 Этот запрос в первом столбце содержит условие поиска по диапазону, поэтому

MySQL не использует оставшуюся часть индекса:

... WHERE rental_date > '2СС5-С5-25' ORDER ВУ inventory_id, customer_id;

1:1 Здесь для столбца inventory_id есть несколько сравнений на равенство. С точки
зрения сортировки это, в сущности, то же самое, что и условие поиска по диапазону:

... WHERE rental_date = '2СС5-С5-25' AND inventory_id IN(l,2) ORDER ВУ customer_id;

1:1 В этом примере МуSQL теоретически могла бы использовать индекс для сорти­

ровки соединения, но не делает этого, поскольку оптимизатор помещает таблицу

film_actor в соединение второй по счету (способы изменения порядка соединения
показаны в следующей главе):

mysql> EXPLAIN SELECT actor_id, title FROМ sakila.film_actor
-> INNER JOIN sakila.film USING(film_id) ORDER ВУ actor_id\G

+------------+--+
1 tаЫе 1 Extra
+------------+--+
1 film 1 Using index; Using temporary; Using filesort 1

1 film_actor 1 Using index 1

+------------+--+

Одним из наиболее важных способов применения сортировки по индексу является
запрос, в котором есть как раздел ORDER ВУ, так и раздел LIMIТ. Далее мы подробнее

остановимся на этом вопросе.

Упакованные (сжатые по префиксу) индексы

MyISAM использует префиксное сжатие для уменьшения размера индекса, обеспе­
чивая таким образом размещение большей части индекса в памяти и в некоторых

случаях значительное увеличение производительности. По умолчанию эта подси­

стема хранения упаковывает только строковые значения, но можно задать и сжатие

целочисленных значений.

Для сжатия блока индекса MyISAM сохраняет первое значение полностью, а при
сохранении каждого последующего значения в том же блоке записывает только

количество байтов, совпадающих с частью префикса, плюс отличающиеся данные

суффикса. Например, если первым значением является слово perform, а вторым -
performance, то второе значение будет храниться как 7, ance. MyISAM также может
выполнять префиксное сжатие смежных указателей на строки.

Сжатые блоки занимают меньше места, но замедляют некоторые операции. Посколь­

ку каждое значение сжатого префикса зависит от предшествующего ему значения,

MylSAM не может выполнить двоичный поиск для нахождения нужного элемента
и вынужден просматривать блок с самого начала. Последовательный просмотр

224 Глава 5 • Повышение производительности с помощью индексирования

в прямом направлении выполняется быстро, но просмотр в обратном направлении -
например, в случае ORDER ВУ DESC - работает хуже. Любая операция, требующая на­
хождения строки в середине блока, в среднем приводит к просмотру половины данных.

Эталонное тестирование показало, что при большой загрузке процессора упакован­
ные ключи в несколько раз замедляют поиск по индексу в таблицах MyISAM из-за
сканирования, необходимого для произвольного поиска. Поиск упакованного ключа
в обратном направлении происходит еще медленнее. Приходится искать компромисс
между потреблением процессора и памяти, с одной стороны, и дисковых ресурсов -
с другой. Упакованные индексы занимают около 1/10 размера диска, поэтому при
рабочей нагрузке с большим объемом ввода/вывода для некоторых запросов это
часто приводит к ощутимому сокращению затрат.

Упаковкой индексов в таблице вы можете управлять с помощью параметра PACK_KEYS
команды СRЕАТЕ TABLE.

Избыточные и дублирующиеся индексы

MySQL позволяет создавать несколько индексов по одному и тому же столбцу; она
не замечает такие ошибки и не защищает вас от них. MySQL должна обслуживать
каждый дублирующийся индекс отдельно, а оптимизатор запросов в своей работе
будет учитывать их все. Это может серьезно ухудшить производительность.

Дублирующимися являются индексы одного типа, созданные на основе одного
и того же набора столбцов в одинаковом порядке. Старайтесь избегать их создания,
а обнаружив - удаляйте.

Иногда можно создать дублирующиеся индексы, даже не подозревая об этом. На­
пример, посмотрите на следующий код:

CREATE TABLE test (
ID INT NOT NULL PRIМARY КЕУ,
А INT NOT NULL,
В INT NOT NULL,
UNIQUE{ID),
INDEX(ID)

ENGINE=InnoDB;

Неопытный пользователь может подумать, что здесь столбец является первичным
ключом, ему добавлено ограничение UNIQUE и, кроме того, создан индекс для приме­
нения в запросах. На самом же деле MySQL реализует ограничения UNIQUE и PRIМARY
КЕУ с помощью индексов, так что здесь созданы три индекса по одному и тому же

столбцу! Обычно в таких действиях нет смысла, за исключением ситуаций, когда
вы хотите иметь различные типы индексов по одному столбцу для выполнения раз­
личных типов запросов 1•

Избыточные индексы несколько отличаются от дублирующихся. Если существует
индекс по паре столбцов (А, В), то отдельный индекс по столбцу А будет избыточ-

Индекс не обязательно является дублирующимся, если это индекс другого типа. Часто есть
веские причины для одновременного наличия индексов KEY(col) и FULLTEXT KEY(col).

Стратегии индексирования для достижения высокой производительности 225

ным, поскольку он является префиксом первого. То есть индекс по (А, В) может

быть использован и как индекс по одному столбцу А. (Такой тип избыточности от­
носится только к индексам, упорядоченным на основе В-дерева.) Однако ни индекс

по столбцам (В, А}, ни индекс по столбцу В не будут избыточными, поскольку В
не является левым префиксом для (А, В). Более того, индексы различных типов

(например, хеш-индексы или полнотекстовые индексы) не являются избыточными
по отношению к индексам, упорядоченным на основе В-дерева, независимо от того,

какие столбцы они покрывают.

Избыточность обычно появляется при добавлении индексов к таблице. Например,
возможно, кто-то добавит индекс по (А, В) вместо расширения существующего
индекса по столбцу А для покрытия (А, В). Это может случиться и при изменении
индекса таким образом, чтобы он покрывал (А, ID}. Столбец ID является первичным
ключом, поэтому, если вы используете InnoDB, он уже включен в индекс.

В большинстве случаев избыточные индексы не нужны, и для того, чтобы избежать их
появления, стоит расширять существующие индексы, а не добавлять новые. Но все же
бывают случаи, когда избыточные индексы необходимы в связи с производительно­
стью. Расширение существующего индекса может значительно увеличить его размер

и ухудшить производительность некоторых запросов.

Например, если у вас есть индекс по целочисленному столбцу и вы расширяете его
длинным столбцом типа VARCHAR, он может существенно замедлиться. В частности,
это относится к случаям, когда ваши запросы используют покрывающий индекс либо
это таблица MyISAM и вы выполняете много просмотров по диапазону (поскольку
MyISAM использует сжатие префиксов).

Вспомните таблицу userinfo, описанную в разделе «Вставка строк в порядке пер­
вичного ключа в InnoDB~. Она содержит 1 миллион строк, и для каждого значения
столбца state_id существует около 20 ООО записей. В этой таблице есть индекс по
столбцу state_id, который полезен при следующем запросе (назовем его Ql):

mysql> SELECT count(*) FROМ userinfo WНERE state_id=S;

Простой эталонный тест показывает, что скорость его выполнения - почти 115 за­
просов в секунду (QPS). Теперь рассмотрим запрос Q2, который извлекает несколько
столбцов, а не просто подсчитывает строки:

mysql> SELECT state_id, city, address FROМ userinfo WНERE state_id=S;

Для этого запроса результат меньше 10 QPS1• Простое решение по увеличению про­
изводительности состоит в расширении индекса до трех столбцов (state_id, ci ty,
address) так, чтобы индекс покрывал запрос:

mysql> ALTER TABLE userinfo DROP КЕУ state_id,
-> ADD КЕУ state_id_2 (state_id, city, address);

В этом случае все данные помещаются в память. Если размер таблицы велик и рабочая

нагрузка характеризуется большим объемом операций ввода/вывода, то различие станет

гораздо заметнее. В том, что запрос СО UNT() в 100 или более раз быстрее покрывающего
индекса, нет ничего необычного.

226 Глава 5 • Повышение производительности с помощью индексирования

После расширения индекса запрос Q2 выполняется быстрее, но Ql становится мед­
леннее. Если мы действительно хотим ускорить оба запроса, нам нужно оставить оба
индекса, даже несмотря на то, что индекс по одному столбцу является избыточным.

В табл. 5.3 показаны подробные результаты для обоих запросов и стратегий индек­
сирования с подсистемами хранения MyISAM и InnoDB. Обратите внимание, что
в InnoDB производительность запроса Ql не так сильно падает только с индексом

state_id_2, поскольку в ней не используется сжатие ключа.

Таблица 5.3. Результаты эталонных тестов для запросов SELECТ с разными стратегиями
индексирования, QPS

Подсистема хранения, Только state_id Только state_id_2 И state_id, и state_id_2
запрос

MyISAM, Q1 114,96 25,40 112,19

MyISAM,Q2 9,97 16,34 16,37

InnoDB, Q1 108,55 100,33 107,97

InnoDB, Q2 12,12 28,04 28,06

Недостаток наличия двух индексов - затраты на их поддержку. В табл. 5.4 показано,
сколько времени занимает вставка 1 миллиона строк в таблицу.

Таблица 5.4. Скорость вставки 1 миллиона строк при различных стратегиях индексирования,
в секундах

Подсистема хранения Только state_id И state_id, и state_id_2

InnoDB, достаточно памяти 80 136
для обоих индексов

MyISAM, достаточно памяти только 72 470
для одного индекса

Как видите, вставка новых строк в таблицу с большим количеством индексов про­
исходит медленнее. Это общее правило: добавление новых индексов может серьезно
повлиять на производительность операций INSERT, UPDAТE и DELEТE, особенно если
новый индекс не помещается в памяти.

Избыточные и дублирующиеся индексы нужно просто удалять, однако сначала следует
их идентифицировать. Вы можете писать сложные запросы к таблице INFORМAТION_
SСНЕМА, но есть два более простых способа. Можно использовать представления в пакете
Шломи Ноача (Shlomi Noach) common_schema, предлагающем набор утилит и пред­
ставлений, которые вы можете установить на свой сервер (http://code.google.com/p/
common-schema/). Это быстрее и проще, чем писать запросы самостоятельно. Или мо­
жете использовать инструмент проверки pt-duplicate-key-checker, включенный в пакет
Percona Toolkit, который анализирует структуры таблиц и выявляет дублирующиеся
или избыточные индексы. Внешний инструмент - вероятно, лучший выбор для очень
больших серверов: запросы к таблицам INFORМAТION_SCHEМA могут вызывать проблемы
с производительностью при большом количестве данных или таблиц.

Стратегии индексирования для достижения высокой производительности 227

Будьте осторожны, отыскивая среди индексов кандидатов на удаление или расши­

рение. Помните, что в InnoDB индекс по столбцу А в нашем примере эквивалентен
индексу по столбцам (А, ID), потому что первичный ключ добавляется к листу
вторичного индекса. Если вы выполняете запрос типа WHERE А = S ORDER ВУ ID, индекс
будет очень полезен. Но если расширите индекс до двух столбцов (А, В), тогда он на
самом деле станет (А, В, ID) и запрос начнет использовать файловую сортировку
для раздела ORDER ВУ. Целесообразно проверять планируемые изменения с помощью
такого инструмента, как pt-upgrade из пакета Percona Toolkit.

Неиспользуемые индексы

Помимо дублирующихся и избыточных индексов, у вас могут быть индексы, кото­
рые сервер просто не задействует. Они лежат мертвым грузом, и вам стоит подумать

о том, как избавиться от них1 • Существует два инструмента, которые могут помочь
идентифицировать неиспользуемые индексы. Возможно, самым простым и точным

является таблица INFORМAТION_SCHEМA. INDEX_STAТISТICS в Percona Server и MaгiaDB.
Просто включите переменную сервера userstats (по умолчанию она отключена)
и на некоторое время запустите сервер. Так вы сможете узнать, насколько активно

используется каждый индекс.

Кроме того, можно воспользоваться инструментом pt-index-usage, включенным в па­
кет Percona Toolkit. Он считывает журнал запросов, выполняет EXPLAIN с каждым
из них и по завершении работы выводит отчет об индексах и запросах. Вы можете
применять этот инструмент не только для поиска неиспользуемых индексов, но и для

ознакомления с планами выполнения запросов, например, поиска похожих запросов,

которые сервер иногда выполняет по-разному. Это поможет вам идентифицировать

запросы, которые временами не обеспечивают должного качества сервиса, в резуль­

тате чего вы сможете оптимизировать их. Кроме того, поскольку этот инструмент

может хранить полученные результаты в таблицах в MySQL, вы можете обращаться
к ним с помощью SQl~-запросов.

Индексы и блокировки

Индексы позволяют блокировать меньше строк при выполнении запроса. Если
запросы не обращаются к не нужным им строкам, то блокируется меньше строк, тем
самым по двум причинам увеличивается производительность. Во-первых, даже не­

смотря на то, что блокировки строк в InnoDB реализованы весьма эффективно и по­
требляют совсем немного памяти, с ними все же сопряжены некоторые издержки.
Во-вторых, блокировка большего количества строк, чем необходимо, увеличивает
борьбу за блокировки и уменьшает уровень параллелизма.

Некоторые индексы функционируют как ограничивающие уникальность, поэтому, даже

если индекс не используется для запросов, он может применяться для предотвращения

дублирования значений.

228 Глава 5 • Повышение производительносrи с помощью индексирования

InnoD В блокирует строки только в момент доступа к ним, а индекс позволяет уменьшить
количество строк, к которым обращается InnoDB, и, как следствие, тоже блокирует их.
Однако это работает лишь в том случае, если InnoDB может отфильтровывать не­
нужные строки на уровне подсистемы хранения. Если индекс не позволяет InnoDB
сделать это, то сервер MySQL вынужден применять условие WHERE после того, как
InnoDB извлечет строки и вернет их серверу. К этому моменту избежать блокировки
строк невозможно: InnoDB уже заблокировала их, и они останутся в таком состоянии
в течение некоторого времени. В MySQL 5.1 и более новых версиях InnoDB может
разблокировать строки после того, как сервер отфильтрует их, в более старых версиях
MySQL InnoDB не разблокирует строки до момента завершения транзакции.

Это проще объяснить на примере. Мы снова используем демонстрационную базу
данных Sakila:

mysql> SET АUТОСОММIТ=0;
mysql> BEGIN;
mysql> SELECT actor_id FROМ sakila.actor WНERE actor_id < S

-> AND actor_id <> 1 FDR UPDATE;
+----------+
1 actor_id 1

+----------+
2 1

3 1

4 1

+----------+
Этот запрос возвращает только строки со второй по четвертую, но на самом деле

захватывает монопольные блокировки на строки с первой по четвертую. InnoDB
блокирует первую строку потому, что план, который оптимизатор выбрал для этого
запроса, предусматривает поиск по диапазону индекса:

mysql> EXPLAIN SELECT actor_id FROM sakila.actor
-> WНERE actor_id < s AND actor_id <> 1 FOR UPDATE;

+----+-------------+-------+-------+---------+--------------------------+
1 id 1 select_type 1 tаЫе 1 type 1 key 1 Extra
+----+-------------+-------+-------+---------+--------------------------+

1 1 SIMPLE 1 actor 1 range 1 PRIМARY 1 Using where; Using index 1

+----+-------------+-------+-------+---------+--------------------------+

Другими словами, низкоуровневая операция подсистемы хранения была такой: «на­
чать с первой строки индекса и извлекать все строки до тех пор, пока выражение

actor _id < 5 не станет ложным>.>. Сервер не сообщил подсистеме InnoDB об условии
WHERE, которое отбрасывает первую строку. Обратите внимание на наличие сообщения
Using where в столбце Extra вывода команды EXPLAIN. Это указывает на то, что сервер
MySQL применяет фильтр WНERE после того, как подсистема хранения вернула строки.

Приведем еще один-запрос, который доказывает, что строка 1 заблокирована, хотя
она и не отображалась в результатах первого запроса. Оставьте первое подключение
открытым, запустите второе соединение и выполните следующее:

mysql> SET АUТОСОММIТ=0;
mysql> BEGIN;
mysql> SELECT actor_id FROМ sakila.actor WНERE actor_id 1 FOR UPDATE;

Кейсы по индексированию 229

Запрос зависнет, ожидая, пока первая транзакция не освободит блокировку в стро­
ке 1. Это поведение необходимо для корректной работы покомандной репликации
(обсуждается в главе 1О) 1 •

Как показывает данный пример, InnoDB может блокировать строки, которые ей на
деле не нужны, даже при использовании индекса. Все становится еще хуже, когда

InnoDB не может использовать индекс для поиска и блокировки строк: если для
запроса нет индекса, MySQL приходится выполнять полное сканирование таблицы
и блокировать каждую строку независимо от того, нужна она или нет.

Есть малоизвестная подробность об InnoDB, индексах и блокировке: InnoDB может
захватывать разделяемые блокировки на вторичные индексы (на чтение), но для
доступа к первичному ключу необходимы монопольные блокировки (на запись).
Это исключает возможность использования покрывающего индекса и может сделать

команду SELECT FOR UPDATE значительно более медленной, чем LOCK IN SHARE МОDЕ или
неблокирующий запрос.

Кейсы по индексированию
Проще всего разобраться в концепциях индексирования на практических примерах,
поэтому мы приготовили несколько кейсов.

Предположим, нужно спроектировать интерактивный сайт знакомств с профилями

пользователей, которые состоят из различных столбцов, таких как «Страна•, «Ре­
гион•, «Город•, «Пол•, «Возраст•, «Цвет глаз• и т. п. Сайт должен поддерживать

поиск профиля по различным комбинациям этих свойств. Также он должен позво­
лять пользователю выдавать нужное количество результатов о времени последнего

посещения сайта владельцем профиля, его оценке другими пользователями и т. д.

и сортировать их. Каким образом спроектировать индексы для таких сложных
требований?

Как ни странно, в первую очередь нужно решить, будем ли мы использовать сор­
тировку с помощью индексов или подойдет обычная сортировка. Сортировка
с помощью индексов налагает ограничения на построение индексов и запросов.

Например, мы не можем использовать индекс для условия WHERE age BEТWEEN 18 AND 25,
если в том же самом запросе индекс применяется для сортировки пользователей по

оценкам, полученным от других пользователей. Если MySQL задействует в запросе
индекс для поиска по диапазону, то она не может использовать другой индекс (или

суффикс того же самого индекса) с целью упорядочения. Учитывая, что это будет
одним из наиболее распространенных условий раздела WHERE, мы считаем само собой
разумеющимся, что для многих запросов потребуется обычная (то есть файловая)
сортировка.

Хотя сервер не может блокировать строки на некоторых уровнях изоляции транзакций

при использовании двоичного журналирования на основе строк, на практике сложно до­

биться желаемого поведения. Даже в MySQL 5.6.3 с изоляцией коммита операций чтения
и журналированием на основе строк приведенный пример вызовет блокировку.

230 Глава 5 • Повышение производительности с помощью индексирования

Поддержка нескольких видов фильтрации

Теперь нужно посмотреть, какие столбцы содержат много различных значений и ка­
кие столбцы появляются в разделе WHERE чаще всего. Индексы по столбцам с большим
количеством различных значений будут высокоселективны. Обычно это хорошо,
поскольку высокая селективность позволяет MySQL эффективнее отфильтровывать
ненужные строки.

Столбец country, видимо, не будет селективным, но, скорее всего, будет появлять­
ся в большинстве запросов. Селективность столбца sex, несомненно, низка, но он,
вероятно, будет присутствовать в каждом запросе. Имея это в виду, создадим набор
индексов для нескольких сочетаний столбцов с префиксом по двум столбцам (sex,
country).

Считается, что бесполезно индексировать столбцы с очень низкой селективностью.
Так почему же мы поместили неселективный столбец в начале каждого индекса?

В своем ли мы уме?

Для этого у нас есть две причины. Первая заключается в том, что, как уже указыва­

лось, почти в каждом запросе будет использоваться столбец sex. При проектировании
сайта мы можем даже сделать так, что пользователи будут выполнять поиск, только
включив пол в состав критериев. Но что важнее, добавление этого столбца не при­
несет особых потерь, поскольку у нас есть туз в рукаве.

Вот в чем заключается трюк: даже если запрос не выполняет фильтрацию по столбцу
sex, мы можем обеспечить использование этого индекса, добавив в раздел WHERE вы­
ражение AND sex IN{ 'm', 'f). На деле это выражение не будет фильтровать строки, по­
этому функциональность запроса будет точно такой же, как и при отсутствии столбца

sex во фразе WHERE. Однако нам нужно включить этот столбец, поскольку это позволит
MySQL использовать больший префикс индекса. Данный прием полезен в ситуациях,
подобных описанной ранее, но он будет плохо работать, если столбец содержит много
различных значений, поскольку список IN() станет слишком большим.

Этот случай иллюстрирует общий принцип: учитывайте все варианты. Разрабатывая
индексы, думайте не только об их оптимизации под существующие запросы, но и об
оптимизации запросов под эти индексы. Если вы видите необходимость в индексе,
но считаете, что он может негативно повлиять на некоторые запросы, подумайте,

нельзя ли изменить запросы. Оптимизируйте запросы и индексы одновременно,

стараясь найти компромисс, - нельзя спроектировать хорошую схему индексиро­

вания в вакууме.

Далее нужно подумать о том, какие еще могут встретиться комбинации условий
WHERE, и решить, какие из них без правильного индексирования окажутся медленны­
ми. Индекс по столбЦам (sex, country, age) является очевидным выбором, также,
скорее всего, потребуются индексы по столбцам (sex, country, region, age) и (sex,
country, region, city, age).

Таким образом, у нас появляется очень много индексов. Если мы хотим использовать
одни и те же индексы в запросах разного типа и не создавать слишком много ком-

Кейсы по индексированию 231

бинаций разных условий, то можем задействовать вышеупомянутый прием с IN()
и избавиться от индексов по столбцам (sex, country, age) и (sex, country, region,
age). Если они не указаны в форме поиска, можно сделать так, чтобы на префиксные
столбцы индекса налагались ограничения равенства, и определить список всех стран
или всех регионов страны (объединенные списки всех стран, всех регионов и всех
полов, вероятно, окажутся слишком большими).

Эти индексы будут полезны для наиболее часто задаваемых критериев поиска, но как
разработать индексы для реже встречающихся вариантов, таких как has_pictures,
eye_color, hair _color и education? Если эти столбцы не являются высокоселектив­
ными и используются нечасто, мы можем просто пропустить их и позволить MySQL
сканировать некоторое количество дополнительных строк. В качестве альтернативы

можно добавить их перед столбцом age и использовать прием с IN(), чтобы обраба­
тывать случаи, когда они не указаны.

Возможно, вы заметили, что мы помещаем столбец age в конец индекса. Что осо­
бенного в этом столбце и почему он должен располагаться именно там? Мы хотим,
чтобы MySQL использовала как можно больше столбцов индекса, поскольку она за­
действует только левый префикс до первого условия, задающего диапазон значений,

включительно. Для всех остальных столбцов из раздела WHERE задается сравнение на
равенство, но для age почти наверняка понадобится поиск по диапазону (например,
age BETWEEN 18 AND 25).

Мы могли бы преобразовать это условие в список IN(), например age IN(18, 19, 20,
21, 22, 23, 24, 25), но это не всегда возможно для запросов такого типа. Общий
принцип, который мы пытаемся проиллюстрировать, состоит в том, что столбец, для
которого может быть задано условие поиска по диапазону, следует помещать в конец
индекса, тогда оптимизатор будет максимально использовать индекс.

Мы уже говорили, что можно добавлять в индекс все больше и больше столбцов
и использовать списки IN() в тех случаях, когда эти столбцы не являются частью
запроса WHERE, но есть вероятность перестараться и столкнуться с проблемами.
Применение слишком большого количества списков вызывает лавинообразный
рост числа комбинаций, которые оптимизатор должен оценить, и может значитель­
но снизить скорость выполнения запроса. Взгляните на следующий пример запро­

са WHERE:

WHERE eye_color IN('brown', 'Ыuе', 'hazel')
AND hair_color IN('Ьlack', 'red', 'Ыonde', 'brown')
AND sex IN('M', 'F')

Оптимизатор преобразует это в 4 · 3 · 2 = 24 комбинации, и запросу WHERE придется
проверить каждую из них. Двадцать четыре комбинации - это не слишком много, но

будьте осторожны, если их количество приблизится к 1000. В старых версиях MySQL
возникали серьезные сложности с большим числом комбинаций IN (): оптимизация
запроса занимала больше времени, чем его выполнение, и требовала значительного
объема памяти. Последние версии MySQL прекращают вычисление комбинаций,
если их количество становится слишком велико, и это обстоятельство ограничивает
возможность использования индекса в MySQL.

232 Глава 5 • Повышение производительности с помощью индексирования

Устранение дополнительных условий
поиска по диапазону

Предположим, имеется столбец last_online и мы хотим показывать тех пользовате­
лей, которые заходили на сайт в течение предыдущей недели:

WHERE eye_color
AND hair_color
AND sex
AND last_online
AND age

IN{'brown', 'Ыuе', 'hazel')
IN{'Ыack', 'red', 'Ыопdе', 'brown')
IN{'M', 'F')
> DATE_SUB{NOW{), INTERVAL 7 DAY)
BEТWEEN 18 AND 25

Что такое условие поиска по диапааону?

Из вывода команды EXPLAIN иногда трудно понять, просматривает ли MySQL диапа­
зон значений или список значений - EXPLAIN использует один и тот же термин range
в обоих случаях. Например, MySQL указывает для следующего запроса тип range, как
видно из строки type:

mysql> EXPLAIN SELECT actor_id FROМ sakila.actor
-> WНERE actor_id > 45\G

************************* 1. row *************************
id:

select_type:
tаЫе:

type:

1
SIMPLE
actor
range

А что скажете об этом?

mysql> EXPLAIN SELECT actor_id FROМ sakila.actor
-> WHERE actor_id IN{l, 4, 99)\G

************************* 1. row *************************
id:

select_type:
tаЫе:
type:

1
SIMPLE
actor
range

Глядя на вывод команды EXPLAIN, невозможно увидеть разницу, но мы различаем
поиск по диапазону и множественные условия на равенство. В нашей терминологии

второй запрос представляет собой условие множественного равенства.

Это не придирка: упомянутые два типа доступа к индексам выполняются по-разному.

Условие диапазона заставляет MySQL игнорировать все дальнейшие столбцы инде­
кса, а условие множественного равенства не налагает таких ограничений.

С этим запросом у нас будет проблема: в нем есть два условия на вхождение в диа­
пазон. MySQL может использовать либо критерий по столбцу last_online, либо
критерий по столбцу age, но не оба сразу.

Если ограничение по столбцу last_online появится без ограничения по столбцу age
или столбец last_online более селективен, чем столбец age, то мы можем добавить

Кейсы по индексированию 233

в конец другой набор индексов со столбцом last_online. Но что, если мы не можем
преобразовать столбец age в список IN(), а нам и в самом деле необходимо увеличить
скорость при одновременной фильтрации по столбцам last_online и age? На теку­
щий момент не существует прямого способа сделать это, однако можно преобразовать
один из диапазонов в сравнение на равенство. Для этого добавим столбец active,
значения которого будут вычисляться периодически запускаемым заданием. Когда
пользователь заходит на сайт, мы записываем в столбец значение 1, а если он отсут­
ствует уже в течение семи дней, то периодическое задание будет заносить в столбец
значение 0.

Подобный подход позволяет MySQL использовать такие индексы, как (active, sex,
country, age). Столбец может оказаться не совсем точным, но запросу такого типа
высокая точность и не нужна. Если все-таки требуется точность, мы можем оставить
условие last_online во фразе WНERE, но не индексировать этот столбец. Данный при­
ем подобен тому, который мы использовали для имитации хеш-индексов в процессе
поиска адресов URL ранее в этой главе. Для фильтрации по этому условию индекс
не используется, но, поскольку маловероятно, что будет отброшено много найденных
по данному индексу строк, его наличие все равно не дало бы ощутимого эффекта.
Иными словами, от отсутствия этого индекса производительность запроса заметно

не пострадает.

Теперь вы, вероятно, поняли суть: если нужно увидеть и активных, и неактивных

пользователей, можно добавить список IN().

Мы добавляли много таких списков, но в качестве альтернативы можно создавать
отдельные индексы, удовлетворяющие любым комбинациям столбцов, по которым
хотим осуществлять фильтрацию. Мы бы использовали по крайней мере такие ин­
дексы: (active, sex, country, age), (active, country, age), (sex, country, age)
и (country, age).

Хотя перечисленные индексы порой оказываются более эффективными для каж­
дого конкретного запроса, затраты на обслуживание их всех в сочетании с требу­
ющимся им дополнительным пространством делают подобную стратегию сомни­
тельной.

Это тот случай, когда модификация оптимизатора может реально повлиять на выбор
эффективной стратегии индексирования. Если в следующей версии MySQL научится
выполнять непоследовательный просмотр индекса, можно будет использовать не­
сколько условий поиска по диапазону в одном индексе. Тогда нам не потребуются
списки IN() для рассмотренных здесь типов запросов.

Оптимизация сортировки

Последний вопрос, которого мы хотим коснуться в этом кейсе, - сортировка.

Файловая сортировка небольшого результирующего набора происходит быстро, но
что, если запрос находит миллионы строк? Например, что будет, если в разделе WHERE
будет присутствовать только столбец sex?

234 Глава 5 • Повышение производительности с помощью индексирования

Мы можем добавить специальные индексы для сортировки таких случаев с низкой

селективностью. Например, индекс по столбцам (sex, rating) можно использовать
для следующего запроса:

mysql> SELECT <с111Ол6цы> FROМ profiles WHERE sex='M' ORDER BV rating LIMIT 10;

Этот запрос содержит и раздел ORDER ВУ, и раздел LIMIТ, но без индекса он будет очень

медленно работать.

Даже с индексом запрос может оказаться медленным, если интерфейс пользова­

теля предусматривает разбиение на страницы и кто-то запрашивает страницу,

находящуюся далеко от начала. Вот пример неудачного сочетания разделов ORDER

ВУ и LIMIТ со смещением:

mysql> SELECT <С111ОЛ6ЦЫ> FROМ profiles WHERE sex='M' ORDER BV rating LIMIT 100000, 10;

Такие запросы могут оказаться серьезной проблемой независимо от того, как они

проиндексированы, поскольку из-за большого смещения они должны тратить ос­

новное время на просмотр значительного количества строк, которые потом будут
отброшены. Денормализация, предварительное вычисление и кэширование являют­

ся, по всей видимости, единственными стратегиями, подходящими для обработки

подобных запросов. Еще лучшей стратегией можно назвать ограничение количества

страниц, которые вы позволяете просматривать пользователю. Маловероятно, что

это повлияет на его возможности, поскольку никто не станет просматривать десяти­

тысячную страницу результатов поиска.

Еще одной хорошей стратегией оптимизации таких запросов является использо­

вание отложенного соединения. Под этим термином мы понимаем использование

покрывающего индекса для извлечения только столбцов первичного ключа тех
строк, которые нужны в итоге. Затем вы можете снова соединить их с таблицей

для извлечения всех нужных столбцов. Это помогает минимизировать объем ра­

боты, выполняемой MySQL в процессе сбора данных, которые она затем отбросит.
Приведем пример, требующий для большей эффективности наличия индекса по

столбцам (sex, rating):

mysql> SELECT <столбцы> FROM profiles INNER JOIN (
-> SELECT <первичный КЛЮЧ> FROМ profiles
-> WНERE x.sex='M' ORDER BV rating LIMIT 100000, 10
-> AS х USING(<nepбuчный ключ>);

Обслуживание индексов и таблиц

Вы создали таблицы с нужными типами данных и добавили индексы, однако рабо­
та еще не закончена: таблицы и индексы требуется обслуживать для обеспечения

нормальной работы. Главными задачами обслуживания таблицы являются поиск

и устранение повреждений, поддержка точной статистики по индексам и умень­

шение фрагментации.

Обслуживание индексов и таблиц 235

Поиск и исправление повреждений таблицы

Самое плохое, что может произойти с таблицей, - она может быть повреждена. С та­

блицами MyISAM такое часто происходит при аварийном останове. Однако во всех
подсистемах хранения могут возникать повреждения индексов из-за проблем с обо­

рудованием, внутренних программных ошибок MySQL или операционной системы.

Повреждение индексов может привести к тому, что запросы будут возвращать не­

правильные результаты, вызывать ошибки дублирования ключа, хотя дубликатов

нет, и даже приводить к блокировкам и аварийным остановкам. Если вы столкнулись

со странным поведением, например ошибками, которых, по вашему мнению, просто

не может быть, - запустите команду СНЕСК TABLE, чтобы выяснить, не повреждена ли

таблица (обратите внимание на то, что одни подсистемы хранения не поддерживают

эту команду, а другие поддерживают многочисленные параметры, позволяющие ука­

зать, насколько тщательно нужно проверить таблицу). Команда СНЕСК TABLE обычно

выявляет большинство ошибок в таблицах и индексах.

Исправить поврежденную таблицу позволяет команда REPAIR TABLE, но и ее под­

держивают не все подсистемы хранения. В таком случае можно выполнить пустую

команду AL TER, например, просто указав подсистему, которая и так уже используется

для таблицы. Приведем пример для таблицы типа InnoDB:

mysql> ALTER TABLE innodb_tы ENGINE=INNODB;

В качестве альтернативы можно либо использовать офлайновую утилиту восста­

новления для этой подсистемы хранения, например myisamchk, либо выгрузить
все данные в файл, а затем загрузить обратно. Но если повреждение зафиксировано

в системной области или в области строк таблицы, а не в индексе, вы, скорее всего,

не сможете использовать ни один из этих вариантов. В этом случае, возможно, оста­

нется лишь восстановить таблицу из резервной копии или попытаться восстановить

данные из поврежденных файлов.

Если вы столкнулись с повреждением в подсистеме хранения lnnoDB, значит, про­
изошло что-то серьезное и нужно немедленно с этим разобраться. InnoDB просто
не должна повреждаться. Она спроектирована очень устойчивой к повреждениям.

Повреждение свидетельствует о проблеме с оборудованием, например об ошибках
памяти или дисков (вероятно), об ошибках администрирования, например при управ­

лении файлами базы данных извне (вероятно), или программной ошибке InnoDB
(маловероятно). Чаще всего это такие ошибки, как, например, попытка создания

резервных копий с помощью rsync. Запроса, которого стоило бы избегать, потому
что он может повредить данные InnoDB, просто не существует. Вы никак не сможете
выстрелить себе в ногу. Если вы нарушаете данные InnoDB, делая к ним запросы, это
программная ошибка InnoDB, а не ваша вина.

Если вы столкнулись с повреждением данных, следует попытаться определить, по­

чему это произошло, - не стоит просто восстанавливать данные, поскольку

236 Глава 5 • Повышение производительности с помощью индексирования

повреждение может повториться. Вы можете восстановить данные, запустив InnoDB
в режиме принудительного восстановления с параметром innodb_force_recovery
(см. руководство пользователя по MySQL). Или использовать пакет с открытым
исходным кодом Percona InnoDB Data Recovery Toolkit (http://www.percona.com/soft
ware/mysql-innodb-data-recovery-tools/) для извлечения данных непосредственно из по­
врежденных файлов.

Обновление сrатисrики индекса

Для принятия решения о том, как применять индексы, оптимизатор запросов MySQL
использует два вызова API, <побы узнать у подсистемы хранения, каким образом
распределены значения в индексе. Первым является вызов records_in_range(), ко­
торый получает границы диапазона и возвращает количество записей в нем. Для

некоторых подсистем хранения, например MySQL, результат будет точным, а для
InnoDB - приблизительным.

Второй вызов, info(), может возвращать данные различных типов, включая кар­
динальность индекса (приблизительное количество записей имеется для каждого

значения ключа).

Если подсистема хранения не сообщает оптимизатору точную информацию о ко­
личестве строк, которые должен будет просмотреть запрос, или если план запроса
слишком сложен и количество строк будет варьироваться на разных этапах его вы­
полнения, оптимизатор использует для оценки этой величины статистику по инде­

ксам. Оптимизатор MySQL ориентирован на затраты, а основным показателем затрат
является количество данных, к которым будет обращаться запрос. Если статистика
не была сгенерирована или данные устарели, оптимизатор может принимать непра­
вильные решения. Выход состоит в запуске команды ANAL YZE TABLE.

Каждая подсистема хранения по-своему реализует статистику по индексам, поэтому

частота, с которой придется запускать команду ANALYZE TABLE, а также затраты на ее

команды, различаются.

Q Подсистема Memory не хранит статистику по индексам.

Q MyISAM сохраняет статистику на диске, а команда ANAL YZE TABLE выполняет
полное сканирование индекса для вычисления кардинальности. На это время вся

таблица блокируется.

Q lnnoDB не сохраняет статистику на диске, как MySQL 5.5, а вместо этого оцени-
вает ее с помощью случайной выборки из индекса и хранит в памяти.

Кардинальность ваших индексов можно определить с помощью команды SHOW INDEX

FROМ, например:

mysql> SHOW INDEX FROМ sakila.actor\G
*************************** 1. row ***************************

ТаЫе: actor
Non_unique: 0

Key_name: PRIMARY
Seq_in_index: 1

Column_name: actor_id
Collation: А

Cardinality: 200
Sub_part: NULL

Packed: NULL
Null:

Index_type: BTREE
Comment:

Обслуживание индексов и таблиц 237

*************************** 2. row ***************************
ТаЫе: actor

Non_unique: 1
Key_name: idx_actor_last_name

Seq_in_index: 1
Column_name: last_name

Collation: А
Cardinality: 200

Sub_part: NULL
Packed: NULL

Null:
Index_type: BTREE

Comment:

Эта команда выдает довольно много информации об индексах, подробно описанной

в руководстве по MySQL. Однако мы все-таки хотим обратить ваше внимание на
строку Cardinali ty. Она показывает, сколько различных значений подсистемой
хранения обнаружено в индексе. Эти данные вы также можете получить из таблицы

INFORMAТION_ SCHEMA.STAТISТICS в MySQL 5.0 и более НОВЫХ версиях, ЧТО может
быть очень удобно. Например, для нахождения индексов с низкой селективностью
можно написать запросы к таблицам INFORМAТION_SCHEМA. Однако имейте в виду, что

эти таблицы метаданных могут сильно нагружать сервер, если количество данных
на нем велико.

Статистику InnoDB стоит изучить подробнее. Она создается путем выборки несколь­
ких случайных страниц в индексе в предположении, что остальная часть индекса

выглядит аналогично. В старых версиях InnoDB выбирались восемь страниц, но
в более поздних версиях количество можно устанавливать с помощью переменной
innodb_stats_sample_pages. Если значение превысит 8, то теоретически это помо­
жет генерировать более репрезентативную статистику индекса, особенно для очень

больших таблиц. Однако может случиться и по-другому.

InnoDB вычисляет статистику индексов при первом открытии таблиц, запуске
команды ANALYZE TABLE, а также при значительном изменении размера таблицы (из­

менении размера на 1 /16 или вставке 2 миллиардов строк в зависимости от того, что
произойдет раньше).

InnoDB также вычисляет статистику при выполнении запросов к некоторым табли­
цам INFORМAТION_SCHEMA, команд SHOW TABLE STATUS и SHOW INDEX, а еще когда клиент

командной строки MySQL активизирует автозаполнение. Это может стать довольно
серьезной проблемой на больших серверах со значительным количеством данных

или при медленном вводе/выводе. Клиентские программы или средства мониторинга,

которые делают выборку, могут провоцировать много блокировок и большую на­

грузку на сервер, а также раздражать пользователей медленным временем запуска.

238 Глава 5 • Повышение производительности с помощью индексирования

Вы не сможете увидеть статистику индекса, не изменив их, поскольку команда SHOW

INDEX будет обновлять информацию. Чтобы избежать этих проблем, можно отклю­
чить параметр innodb_stats_on_metadata.

Если вы используете Percona Server, который включает Percona XtraDB вместо стан­
дартного InnoDB, можете настроить его дальнейшие действия. Параметр innodb_
stats_auto_update позволяет отключить автоматическую повторную выборку. Тем
самым сбор статистики будет приостановлен, если вы не запустите команду ANAL YZE

TABLE вручную. Это может помочь, если вы боретесь с нестабильными планами за­
просов. Мы создали эту функцию по просьбе некоторых клиентов с очень крупными
развертываниями.

Добиться значительного повышения стабильности плана запросов и более быстрого
прогрева системы вы можете, используя системную таблицу для хранения стати­
стики индекса таким образом, чтобы она не менялась при перезагрузке сервера и не
нуждалась в перерасчете, уже при первом открытии InnoDB таблицы после загрузки
Эта функция доступна в Percona Server 5.1 и MySQL 5.6. Функцию в Percona Server
включает параметр innodb_ use_sys_stats_taЬle, а в MySQL 5.6 статистику индекса
контролирует параметр innodb_analyze_is_persistent.

Если вы отключите автоматическое обновление статистики на сервере, придется
делать это вручную, периодически выполняя команду ANALYZE TABLE (конечно, если

вы не уверены, что статистика не изменится настолько, что это ухудшит планы вы­

полнения запросов).

Уменьшение фрагментации индекса и данных

Индексы, упорядоченные на основе В-дерева, могут становиться фрагментированны­

ми, что ухудшает производительность. Фрагментированные индексы бывают плохо

заполнены и/или располагаются на диске непоследовательно.

Индексы, упорядоченные на основе В-дерева, требуют произвольного доступа
к диску для ~<погружения~ к листьям, поэтому произвольный доступ здесь является

правилом, а не исключением. Однако производительность работы с листьями можно
улучшить, когда они являются физически последовательными и плотноупакованны­

ми. Если это не так, то мы говорим, что они фрагментированы, и в подобном случае
поиск по диапазону и полное сканирование индекса могут оказаться во много раз

медленнее. Это особенно справедливо для покрывающих индексы запросов.

Фрагментации подвержены и данные, хранящиеся в таблицах. Однако механизм
фрагментации данных сложнее, чем механизм фрагментации индексов. Существуют

три типа фрагментации данных.

1:] Фраzментация строки. Наблюдается, когда строка хранится в виде нескольких
фрагментов в разных местах. Уменьшает производительность, даже если запросу

требуется только одна строка из индекса.

1:] Межстрочная фраzментация. Наблюдается, когда логически последовательные
страницы или строки хранятся на диске непоследовательно. Влияет на такие опе-

Итоги главы 239

рации, как полное сканирование таблицы и сканирование диапазона кластерного
индекса, которые обычно выигрывают от последовательного размещения данных
на диске.

О Фрагментация свободного пространства. Возникает, когда на страницах данных
много пустого пространства. Заставляет сервер читать много данных, которые ему

не нужны, впустую затрачивая время.

Таблицы MyISAM могут страдать от фрагментации всех типов, но InnoDB никогда
не фрагментирует короткие строки.

Чтобы дефрагментировать данные, можно либо запустить команду OPТIMIZE TABLE,
либо выгрузить данные в файл и заново загрузить их в базу. Эти методы работают
в большинстве подсистем хранения. В некоторых из них, например в MyISAM, они
также дефрагментируют индексы с помощью алгоритма сортировки, в результате

чего индексы оказываются отсортированными. В старых версиях InnoDB способа
дефрагментации индексов не существует, но в более новых, которые обладают способ­
ностью удалять и создавать индексы онлайн без перестраивания всей таблицы, вы
можете удалить и заново создать индексы, тем самым дефрагментировав их.

В подсистемах хранения, которые не поддерживают команду OPТIMIZE TABLE, вы мо­
жете перестроить таблицу с помощью пустой команды AL ТЕR TABLE. Достаточно ука­
зать ту же подсистему хранения, которая используется для таблицы в данный момент:

mysql> ALTER TABLE <таблица> ENGINE=<noдcucmeмa>;

В Percona Server с включенной функцией expand_fast_index_creation перестройка
таблицы таким образом дефрагментирует таблицы и индексы InnoDB. В стандарт­
ной MySQL будет дефрагментирована только таблица (кластерный индекс). Вы мо­
жете эмулировать функциональность Percona Server, удалив все индексы, перестроив
таблицу и затем вернув в нее индексы.

Не считайте, что вам обязательно нужно дефрагментировать индексы и таблицы, -
сначала проверьте это. В Percona XtraBackup есть параметр - -stats, который за­
пускается в режиме без резервного копирования. В этом режиме распечатывается
статистика индексов и таблиц, включая объем данных и свободное пространство
на страницах. Это один из способов узнать, насколько фрагментированы данные.
Также подумайте о том, не размещены ли данные настолько хорошо, что, упаковав

их еще плотнее, вы нарушите их устойчивое состояние, в результате чего последу­

ющие обновления повлекут за собой множество случаев разделения страниц, что
может плохо влиять на производительность до тех пор, пока данные вновь не придут

в устойчивое состояние.

Итоги главы

Индексирование - сложная тема! Организация доступа к данным в MySQL и под­
системах хранения данных вместе со свойствами индексов делает последние очень

мощным и гибким инструментом, управляющим доступом к данным как на диске,
так и в памяти.

240 Глава 5 • Повышение производительности с помощью индексирования

В большинстве случаев вы будете использовать в MySQL индексы, упорядоченные на
основе В-дерева. Другие типы индексов лучше подходят для конкретных задач. Мы

больше не будем останавливаться на них в этой главе, но стоит напомнить свойства
и способы использования индексов, упорядоченных на основе В-дерева.

Приведем три принципа, которые следует учитывать при выборе индексов и напи­

сании применяющих их запросов.

1. Однострочный доступ - операция медленная, особенно в дисковом хранилище.
(Твердотельные диски работают быстрее при произвольном вводе/выводе, но
принцип остается справедливым.) Если сервер считывает блок данных из храни­

лища, а затем обращается только к одной строке, он тратит много времени впустую.

Гораздо лучше считывать из блока, содержащего много нужных вам строк. Исполь­
зуйте индексы, чтобы локализовать ссылки, что повысит эффективность.

2. Доступ к упорядоченным строкам происходит быстро по двум причинам. Во­
первых, последовательный ввод/вывод не требует поиска на диске, поэтому он бы­

стрее, чем произвольный ввод/вывод, особенно в дисковом хранилище. Во-вторых,
если сервер может считывать данные в требующемся вам порядке, ему не нужно
в дальнейшем сортировать их, а у запросов GROUP ВУ не возникает необходимости

сортировать и группировать строки для вычисления агрегатных значений.

3. Доступ только по индексу выполняется быстро. Если индекс содержит все столб­

цы, необходимые для запроса, подсистеме хранения не нужно искать другие
столбцы, просматривая строки в таблице. Это позволяет избежать множества
операций однострочного доступа, который, как мы знаем из пункта 1, работает
медленно.

В общем, попытайтесь выбрать индексы и написать запросы так, чтобы избежать

однострочного поиска, использовать встроенный порядок данных, позволяющий

избавиться от операций сортировки, и применять доступ только для индексирова­

ния. Это соответствует трехзвездочной системе ранжирования, изложенной в книге

Лахденмаки и Лича, упомянутой в начале главы.

Было бы здорово создавать идеальные индексы для каждого запроса к таблицам.
К сожалению, иногда для этого требуется так много индексов, что это оказывается
непрактичным. А в ряде случаев просто невозможно создать трехзвездочный индекс

для заданного запроса (например, если запрос делается по двум столбцам, данные

в одном из которых упорядочены по возрастанию, а в другом - по убыванию). В этих
ситуациях вы должны соглашаться на лучший из возможных вариантов либо вопло­
щать альтернативные стратегии, такие как денормализация или сводные таблицы.

Очень важно понимать, как именно работают индексы, и выбирать их на основе этого

понимания, а не опираясь на эмпирические или эвристические правила, такие как

«размещайте наиболее селективные столбцы в начале многостолбцовых индексов~,
или «вы должны индексировать все столбцы, которые появляются в разделе WHERE».

Как узнать, хорошо ли индексирована схема? Как всегда, предлагаем ответить на этот

вопрос, основываясь на времени отклика. Найдите запросы, которые выполняются

Итоги главы 241

слишком долго или порождают слишком большую нагрузку на сервер (подробнее об
этом - в главе 3). Исследуйте схему, SQL и структуру индексов для запросов, тре­
бующих внимания. Определите, должен ли запрос проверять слишком много строк,

выполнять сортировку после извлечения данных, использовать временные таблицы,
получать доступ к данным с помощью произвольного ввода/вывода или искать пол­

ные строки из таблицы для извлечения столбцов, не включенных в индекс. Если вы
найдете запрос, который не выигрывает от перечисленных преимуществ индексов,

посмотрите, можно ли создать лучший индекс, чтобы повысить производительность.

Если нет, возможно, стоит изменить запрос так, чтобы он мог использовать индекс,
который либо уже существует, либо может быть создан. Об этом поговорим в сле­

дующей главе.

А если запрос не отображается в анализе времени отклика, описанном в главе З?
Не может ли случиться, что плохой запрос ускользнет от вашего внимания, даже

если для его работы действительно нужен лучший индекс? Как правило, нет. Если

профилирование не находит такого запроса, ничего страшного. Однако проблема

может всплыть в будущем, после изменения приложения, данных и рабочей нагрузки,
поэтому все же стоит найти запросы, которые не задействуют индексы, и исправить

их до того, как возникнут серьезные проблемы. Используйте функции просмотра за­
просов в утилите pt-query-digest, это поможет вам заметить новые запросы и изучить
их планы EXPLAIN.

Оптимизация
производительности запросов

В предыдущей главе мы рассказали об оптимизации и индексировании схемы. Такая

оптимизация является одним из необходимых условий достижения высокой произ­

водительности. Но только этого недостаточно - следует еще правильно создавать за­

просы. Если запрос составлен плохо, то даже самые лучшие схема и индексы не помогут.

Оптимизация запросов, индексов и схемы идут рука об руку. Постепенно набираясь

опыта в написании запросов в MySQL, вы начнете понимать, как проектировать
таблицы и индексы для поддержки эффективных запросов. И наоборот, знания

о создании оптимальных схем будут положительно влиять на ваши запросы. Все это,

конечно, придет не сразу, поэтому рекомендуем возвращаться к трем предыдущим

главам по мере освоения нового материала.

Данная глава начинается с общих замечаний о конструировании запросов - на что

в первую очередь обращать внимание, если запрос выполняется неэффективно.

Затем мы углубимся в механизмы оптимизации запросов и детали внутреннего

устройства сервера. Поможем узнать, как именно MySQL выполняет конкретный
запрос и как можно изменить план его выполнения. Наконец, рассмотрим несколь­

ко случаев, когда MySQC не слишком хорошо оптимизирует запросы, и разберем
типичные паттерны, помогающие MySQL более эффективно выполнять запросы.

Наша цель состоит в том, чтобы вы тщательнее разобрались в механизмах выпол­

нения запросов, понимали, что считать эффективным, а что - нет, использовали

сильные стороны MySQC и избегали слабых.

Почему запросы бывают медленными

Пытаясь писать быстрые запросы, помните, что речь идет о времени отклика. Запро­

сы - это задачи, но они состоят из подзадач, а их выполнение требует времени. Чтобы

оптимизировать запрос, вы должны оптимизировать его подзадачи. Для достижения

Основная причина замедления: оптимизируйте доступ к данным 243

этой цели подзадачи можно вообще устранить, сделав так, чтобы они выполнялись
реже или оказались более быстрыми 1 •

Что это за подзадачи, которые нужны MySQL для выполнения запроса, и какие из
них медленные? Мы не можем привести здесь полный список, но если вы выполните

профилирование запроса, как было показано в главе 3, то узнаете, какие задачи он
решает. В общем, можете думать о времени жизни запроса, мысленно следуя за ним

от клиента к серверу, где он анализируется, планируется и выполняется, а затем

вновь к клиенту. Выполнение является одним из наиболее важных этапов жизни

запроса. Оно включает в себя множество обращений к подсистеме хранения для

извлечения строк, а также операций, протекающих после извлечения, таких как

группировка и сортировка.

Выполняя все эти задачи, запрос затрагивает сеть, процессор, выполняет такие опе­

рации, как сбор статистики, планирование и блокировка (ожидание мьютекса), и,

что наиболее важно, вызывает подсистему хранения для извлечения строк. На эти

вызовы затрачивается время в ходе работы с памятью, работы процессора и особенно

операций ввода/вывода, если данных нет в памяти. Кроме того, в зависимости от под­

системы хранения может быть задействовано множество переключений контекста

и/или системных вызовов.

Дополнительное время может быть потрачено и из-за того, что операции выполняют­

ся без необходимости, слишком много раз или чересчур медленно. Цель оптимизации

состоит в том, чтобы избежать этого, устраняя операции, уменьшая их количество

или делая их быстрее.

Опять же это неполная или неточная картина жизни запроса. Наша цель - показать,

как важно понимать, в чем заключается жизненный цикл запроса, чтобы вы могли

учитывать в работе все процессы, требующие затрат времени. Помня об этом, перей­

дем к методам оптимизации запросов.

Основная причина замедления:
u

оптимизируите доступ к данным

Главная причина, из-за которой запрос может выполняться медленно, - слиш­

ком большой объем обрабатываемых данных. Безусловно, встречаются запросы,

которые по своей природе должны перерабатывать очень много всевозможных

значений, и тут ничего не поделаешь. Но это довольно редкая ситуация - боль­
шинство плохих запросов можно изменить так, чтобы они обращались к меньшему

Иногда вам может потребоваться изменить запрос, чтобы уменьшить его негативное влия­

ние на другие запросы, запущенные в системе. В этом случае нужно уменьшить объем

потребляемых запросом ресурсов (эта тема обсуждалась в главе 3).

244 Глава 6 • Оптимизация производительности запросов

объему данных. Мы полагаем, что анализировать медленно выполняющийся запрос
следует в два этапа.

1. Выяснить, не извлекает ли пршюжение больше данных, чем нужно. Обычно это
означает, что слишком велико количество отбираемых строк, но не исключено,

что отбираются также лишние столбцы.

2. Выяснить, не анализирует ли сервер MySQL больше строк, чем необходимо.

Не запрашиваете ли вы
лишние данные у базы?

Иногда запрос отбирает больше данных, чем необходимо, а потом отбрасывает не­
которые из них. Это требует от сервера MySQL дополнительной работы, приводит
к росту расходов на передачу по сети 1 , а также увеличивает потребление памяти

и процессорного времени на стороне сервера приложений.

Приведем несколько типичных ошибок.

Q Выбор лишних строк. Широко распространено заблуждение, будто MySQI~
передает результаты по мере необходимости, а не формирует и возвращает весь

результирующий набор целиком. Подобную ошибку мы часто встречали в при­

ложениях, написанных людьми, привыкшими работать с другими СУБД. Этим
разработчикам была свойственна такая методика: выполнить команду SELECT,

которая возвращает много строк, затем выбрать N первых строк и закрыть ре­
зультирующий набор (например, отобрать 100 последних по времени статей на
новостном сайте, хотя на начальной странице нужно показать только десять). Они

полагают, что MySQL вернет первые десять строк, после чего прекратит выпол­
нение запроса. На самом деле MySQL генерирует весь результирующий набор.
Затем клиентская библиотека, получив полный набор данных, большую часть

отбросит. Вместо этого следовало бы включить в запрос слово LIMIТ.

Q Выбор всех столбцов из соединения нескольких таблиц. Если нужно отобрать
всех актеров, снимавшихся в фильме Асаdету Dinosaur, не стоит писать такой
запрос:

mysql> SELECT • FROМ sakila.actor
-> INNER]OIN sakila.film_actor USING(actor_id)
-> INNER]OIN sakila.film USING(film_id)
-> WHERE sakila.film.title = 'Academy Dinosaur';

Он возвращает все столбцы из всех трех таблиц. Лучше напишите этот запрос
следующим образом:

mysql> SELECT sakila.actor.• FROМ sakila.actor ... ;

Особенно велики сетевые издержки, когда приложение и сервер работают на разных
компьютерах, но даже передача данных между MySQL и приложением на одной и той же
машине не обходится без этого.

Основная причина замедления: оптимизируйте доступ к данным 245

1:J Выбор всех столбцов. Вы всегда должны настораживаться, встречая коман­
ду SELECT *.Неужели действительно нужны все столбцы без исключения? Ско­

рее всего, нет. Выбор всех столбцов может воспрепятствовать применению таких
методов оптимизации, как использование покрывающих индексов, и к тому же

увеличит потребление сервером ресурсов: ввода/вывода, памяти и процессора.

По этой причине, а также чтобы уменьшить риск возникновения ошибок при

изменении перечня столбцов таблицы, некоторые администраторы базы данных

вообще запрещают применять команду SELECT *.

Разумеется, запрашивать больше данных, чем необходимо, не всегда плохо.

Во многих рассмотренных случаях нам говорили, что такой расточительный под­

ход упрощает разработку, так как дает возможность использовать один и тот же

код в разных местах. Это разумное соображение, если только вы точно знаете,
во что оно обходится с точки зрения производительности. Извлечение лишних

данных может быть полезно и для организации некоторых видов кэширования на

уровне приложения или получения еще какого-то видимого вам преимущества.

Выборка и кэширование полных объектов могут быть предпочтительнее выпол­

нения ряда отдельных запросов, извлекающих части объекта.

1:J Повторный выбор одних и тех же данных. Если не быть осторожными, довольно
легко написать код, который повторно получает одни и те же данные с сервера

базы данных, выполняя для этого один и тот же запрос. Например, если вы хотите

найти URL-aдpec аватара пользователя, чтобы отобразить его рядом со списком
комментариев, можете запрашивать его для каждого комментария. Или можете

кэшировать его, получив первый раз, и затем использовать повторно. Последний

подход намного эффективнее.

Не слишком ли много данных

анализирует MySQL?
Если вы уверены, что все запросы отбирают лишь необходимые данные, можно по­
искать те из них, которые для получения результата анализируют слишком много

данных. В MySQL простейшими параметрами, с помощью которых можно опреде­
лить затраты на запрос, являются:

l:J время отклика;

1:J количество проанализированных строк;

1:J количество возвращенных строк.

Ни один из них не является идеальным способом оценки затрат на запрос, но все

они дают грубое представление о том, сколько данных MySQL должна прочитать
для его выполнения, и приблизительно показывают, насколько быстро работает этот
запрос. Все три параметра фиксируются в журнале медленных запросов, так что его

просмотр - один из лучших способов выявить запросы, анализирующие слишком

много данных.

246 Глава 6 • Оптимизация производительности запросов

Время отклика

Не придавайте большого значения времени отклика на запрос. Эй, разве это не про­
тиворечит тому, что мы вам говорили? На самом деле нет. Конечно, время отклика

имеет значение, но все немного сложнее.

Время отклика состоит из времени обслуживания и времени нахождения в очереди.
Время обслуживания - это время, необходимое серверу для фактической обработки
запроса. Время нахождения в очереди - это часть времени отклика, в течение кото­
рого сервер не выполняет запрос - он ждет чего-то, например завершения операции

ввода/вывода, блокировки строки и т. п. Проблема в том, что вы не можете разбить
время отклика на эти составляющие, если не можете их измерять индивидуально, что

обычно довольно трудно сделать. Чаще всего вы будете сталкиваться с ожиданием
ввода/вывода и блокировки, но стоит учитывать, что подобные ситуации все равно
бывают очень разными.

Итак, время отклика соответствует условиям нагрузки. Другие факторы - блокиров­
ки подсистемы хранения (табличные и строковые), высокая степень конкурентности
и особенности оборудования - тоже могут существенно влиять на время выполнения
запроса. Большое время отклика может быть как симптомом, так и причиной про­
блемы, и не всегда понятно, с чем именно мы столкнулись. Для того чтобы понять,
причина это или симптом, можно использовать методику, показанную в разделе

«Проблемы одиночного запроса или всего сервера?~> главы 3.

Глядя на время отклика, вы должны задать себе вопрос, подходит ли оно для дан­
ного запроса. В этой книге нет места для подробного объяснения, но вы можете

быстро оценить верхнюю границу (quick upper-bound estimate, QUBE) времени
отклика на запрос, используя методы, описанные в книге Тапио Лахденмаки

и Майка Лича Relational Database Index Design and the Optimizers (издательство
Wiley). В двух словах это выглядит так: просмотрите план выполнения запроса
и задействованные в нем индексы, определите, сколько может потребоваться по­

следовательных и произвольных операций ввода/вывода, и умножьте их количе­

ство на время, необходимое вашему оборудованию для их выполнения. Сложив
вычисленное время, вы получите эталон, сравнивая с которым поймете, медленно

выполняется запрос или нет.

Количество проанализированных и возвращенных строк

При анализе запросов полезно принимать во внимание, какое количество строк было
просмотрено сервером, поскольку это показывает, насколько эффективно запрос

находит нужные вам данные. Однако этот параметр неидеален для выявления пло­

хих запросов. Не все обращения к строкам одинаковы. Доступ к коротким строкам
занимает меньше времени, а выборка строк из памяти происходит гораздо быстрее,
чем их чтение с диска.

В идеале количество проанализированных строк должно совпадать с количеством

возвращенных, но на практике так бывает редко. Например, когда в запросе соеди-

Основная причина замедления: оптимизируйте доступ к данным 247

няются несколько таблиц, серверу приходится обращаться к нескольким строкам
для генерации каждой строки в результирующем наборе. Отношение проанализи­

рованных строк к возвращенным обычно мало - скажем, между 1: 1 и 1О:1, но иногда
бывает на несколько порядков больше.

Проанализированные строки и типы доступа

Прикидывая затраты на запрос, учитывайте затраты на поиск одиночной строки

в таблице. В MySQL применяется несколько методов поиска и возврата строки. Ино­
гда требуется просмотреть много строк, а иногда удается создать результирующий
набор, не анализируя ни одной.

Методы доступа отображаются в столбце type результата, возвращаемого командой
EXPLAIN. Типами доступа могут быть полное сканирование таблицы, сканирование
индекса, сканирование диапазона, поиск по уникальному индексу и возврат кон­

станты. Каждый следующий быстрее предыдущего, поскольку требует меньшего
количества операций чтения. Помнить все типы доступа не обязательно, но очень
важно понимать, что означает сканирование таблицы, сканирование индекса, доступ

по диапазону и доступ к единственному значению.

Если тип доступа неоптимален, то для решения проблемы лучше всего добавить
подходящий индекс. Мы подробно рассматривали вопросы, связанные с индекси­
рованием, в предыдущей главе - теперь вы видите, почему индексы так важны для

оптимизации запросов. Наличие индекса позволяет MySQL применять гораздо
более эффективный метод доступа, при котором приходится анализировать меньше

данных.

Рассмотрим для примера простой запрос к демонстрационной базе данных Sakila:

mysql> SELECT * FROМ sakila.film_actor WНERE film_id = 1;

Этот запрос возвращает десять строк, и команда EXPLAIN показывает, что MySQL
применяет для выполнения запроса тип доступа ref по индексу idx_fk_film_id:

mysql> EXPLAIN SELECT * FROМ sakila.film_actor WНERE film_id = 1\G
*****************************1. row****************************

id: 1
select_type: SIMPLE

tаЫе: film_actor
type: ref

possiЫe_keys: idx_fk_film_id
key: idx_fk_film_id

key_len: 2
ref: const

rows: 10
Extra:

Как показывает команда EXPLAIN, MySQL оценила, что придется прочитать всего
десять строк. Другими словами, оптимизатор запросов знает, что выбранный тип

доступа позволит эффективно выполнить запрос. Что бы случилось, если бы подхо­
дящего индекса не было? Тогда MySQL была бы вынуждена воспользоваться менее

248 Глава 6 • Оптимизация производительности запросов

эффективным типом доступа. Чтобы убедиться в этом, достаточно удалить индекс
и повторить запрос:

mysql> ALTER ТАВLЕ sakila.film_actor DROP FOREIGN КЕУ fk_film_actor_film;
mysql> ALTER ТАВLЕ sakila.film_actor DROP КЕУ idx_fk_film_id;
mysql> EXPLAIN SELECT * FROМ sakila.film_actor l!НERE film_id = 1\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: film_actor
type: ALL

possiЫe_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: 5073
Extra: Using where

Как и следовало ожидать, тип доступа поменялся на полное сканирование таблицы
(ALL), и MySQL определила, что для выполнения запроса придется проанализировать
5073 строки. Слова Using where в столбце Extra говорят о том, что MySQL использует
запрос WНERE, чтобы отбросить строки после того, как их считает подсистема хранения.

В целом MySQL может применять запрос WHERE тремя способами, которые перечис­
лены далее в порядке от наилучшего к наихудшему.

1:1 Применить указанные условия к операции поиска по индексу, чтобы исключить
неподходящие строки. Это происходит на уровне подсистемы хранения.

1:1 Использовать покрывающий индекс (слова Using index в столбце Extra), чтобы
избежать доступа к самим строкам и отфильтровать неподходящие строки после

выбора результатов из индекса. Это происходит на уровне сервера, но не требует
чтения строк из таблицы.

1:1 Выбрать строки из таблицы, а затем отфильтровать неподходящие (слова Using

where в столбце Extra). Это происходит на уровне сервера, причем сервер перед
фильтрацией вынужден считывать строки из таблицы.

Этот пример показывает, насколько важно иметь хорошие индексы. Они позволяют

применять при обработке запроса наиболее эффективный тип доступа и анализи­
ровать лишь те строки, которые необходимы. Однако добавление индекса не всегда
означает, что количество проанализированных и возвращенных строк совпадает. Вот,

например, запрос с агрегатной функцией COUNT() 1:

mysql> SELECT actor_id, COUNT(*) FROМ sakila.film_actor GROUP ВУ actor_id;

Он возвращает всего 200 строк, но для построения результирующего набора сервер
должен прочитать тысячи. Индекс не может сократить объем анализируемых данных
для подобных запросов.

К сожалению, MySQL ничего не говорит о том, какое количество проанализиро­
ванных строк использовано для построения результирующего набора, сообщается

Дополнительную информацию см. далее, в разделе 40птимизация запросов с COUNT()~.

Способы реструктуризации запросов 249

лишь, сколько всего строк было проанализировано. Возможно, многие из них ока­
зались отброшены условием WHERE и ничего не изменили в результирующем наборе.
Если в предыдущем примере удалить индекс по столбцу sakila. film_actor, то
сервер будет обращаться к каждой строке таблицы, но из-за условия WHERE будут
отброшены все, кроме десяти. Только оставшиеся десять строк будут использованы
для построения результирующего набора. Чтобы понять, к какому числу строк об­
ращается сервер и сколько из них действительно нужны, следует внимательно про­

анализировать запрос.

Если вы обнаружили, что для получения сравнительно небольшого результиру­
ющего набора пришлось проанализировать огромное количество строк, можно по­
пробовать применить некоторые хитрости.

О Воспользуйтесь покрывающими индексами, в которых данные хранятся таким

образом, что подсистема хранения вообще не должна извлекать полные строки
(мы обсуждали эту тему в предыдущей главе).

О Измените схему. Например, можно использовать сводные таблицы (обсуждали
в главе 4).

О Перепишите сложный запрос так, чтобы оптимизатор MySQL мог выполнить его
наиболее оптимальным способом (мы обсудим это позже в данной главе).

Способы реструктуризации запросов

При оптимизации проблемных запросов важно найти альтернативные способы полу­
чить нужный результат, хотя далеко не всегда это означает, что вы получите точно

такой же результирующий набор от MySQL. Иногда удается преобразовать запрос
в эквивалентную форму, которая возвращает тот же результат, но с более высокой
производительностью. Однако следует подумать и о приведении запроса к виду, даю­

щему иной результат, если это позволяет повысить скорость выполнения. Можно даже

изменить не только запрос, но и код приложения. В этом разделе мы рассмотрим

различные приемы реструктуризации широкого круга запросов и покажем, когда

применять каждый из них.

Один сложный или несколько простых запросов?

При создании запросов часто приходится отвечать на важный вопрос: не лучше ли

будет разбить сложный запрос на несколько более простых? Традиционный подход
при проектировании базы данных состоит в попытках сделать как можно больше
работы с помощью наименьшего количества запросов. Исторически такой подход
был оправдан из-за высоких затрат на сетевые коммуникации и расходов на разбор
и оптимизацию запросов.

Но к MySQL данная рекомендация относится в меньшей степени, поскольку она
изначально проектировалась так, чтобы установление и разрыв соединения про­
исходили максимально эффективно, а обработка небольших простых запросов

250 Глава 6 • Оптимизация производительности запросов

выполнялась очень быстро. Современные сети также гораздо быстрее, чем прежние,

поэтому и сетевые задержки заметно сократились. В зависимости от версии сервера

MySQL способна выполнять свыше 100 ООО простых запросов в секунду на типичном
серверном оборудовании и свыше 2000 запросов в секунду от одиночного клиента
в гигабитной сети, поэтому выполнение нескольких запросов может оказаться не та­

кой уж плохой альтернативой.

Хотя передача информации с использованием соединения все же происходит значи­

тельно медленнее по сравнению с тем, какой объем находящихся в памяти данных
сама MySQL может перебрать в секунду, это количество измеряется миллионами
строк. Так что с учетом всех факторов по-прежнему лучше бы ограничиться мини­
мальным количеством запросов, но иногда можно повысить скорость выполнения

сложного запроса, разложив его на несколько более простых. Не пугайтесь этого -
взвесьте все затраты и выберите ту стратегию, которая уменьшает общий объем

работы. Чуть позже мы приведем примеры применения такой методики.

Несмотря на все сказанное, чрезмерно большое количество запросов - одна из

наиболее часто допускаемых при проектировании приложений ошибок. Например,

в некоторых приложениях выполняется десять запросов, возвращающих по одной

строке, вместо одного запроса, отбирающего десять строк. Нам даже встречались

приложения, в которых каждый столбец выбирался по отдельности, для чего одна
и та же строка запрашивалась многократно!

Разбиение запроса на части

Другой способ уменьшить сложность запроса состоит в применении тактики ~раз­
деляй и властвуй~, когда выполняется, по существу, один и тот же запрос, но каждый

раз из него возвращается меньшее число строк.

Отличный пример - удаление старых данных. В процессе периодической чистки

иногда приходится удалять значительные объемы информации, и если делать это

одним большим запросом, то возможны блокировка большого числа строк на дли­

тельное время, переполнение журналов транзакций, истощение ресурсов, блокировка

небольших, не допускающих прерывания запросов. Разбив команду DELEТE на части
и используя запросы среднего размера, мы существенно повысим производитель­

ность и уменьшим отставание реплики в случае репликации запроса. Например,

вместо следующего монолитного запроса:

mysql> DELETE FROМ messages WНERE created < DATE_SUB(NOW(},INTERVAL з МОNТН};

вы мог ли бы выполнить следующие описанные псевдокодом действия:

rows_affected = 0
do {

rows_affected = do_query(
"ОЕLЕТЕ FROM messages WHERE created < DAТE_SUB(NOW(},INTERVAL 3 MONTH)
LIMIТ 10000")

} while rows_affected > 0

Способы реструктуризации запросов 251

Обычно удаление 1 О ООО строк за раз - слишком объемная операция, чтобы быть

эффективной, и вместе с тем достаточно короткая, чтобы минимизировать негатив­

ное воздействие на сервер 1 (транзакционные подсистемы хранения могут работать

эффективнее при меньшем размере транзакции). Кроме того, имеет смысл вставить

небольшую паузу между последовательными командами DELEТE, чтобы распределить

нагрузку по времени и не удерживать блокировки слишком долго.

Декомпозиция соединения

Многие высокопроизводительные приложения используют декомпозицию соедине­

ний. Смысл ее заключается в том, чтобы выполнить несколько однотабличных за­

просов вместо одного запроса к нескольким объединенным таблицам, а соединение

выполнить уже в приложении. Например, следующий запрос:

mysql> SELECT * FROМ tag
-> JOIN tag_post ON tag_post.tag_id=tag.id
-> JOIN post ON tag_post.post_id=post.id
-> WНERE tag.tag='mysql';

можно было бы заменить такими:

mysql> SELECT. FROМ tag WНERE tag='mysql';
mysql> SELECT * FROМ tag_post WНERE tag_id=1234;
mysql> SELECT • FROМ post WНERE post.id in (123,456,567,9098,8904);

Зачем же, ради всего святого, вы это сделали? На первый взгляд это расточительство,

поскольку вы просто увеличили количество запросов, не получив ничего взамен.

Однако такая реструктуризация и в самом деле может дать ощутимый выигрыш

в производительности.

i:J Можно более эффективно реализовать кэширование. Во многих приложениях
кэшируются объекты, которые полностью соответствуют таблицам. В данном

примере, если объект, для которого поле tag равно mysql, уже кэширован, при­

ложение может пропустить первый запрос. Если выясняется, что в кэше уже есть

записи из таблицы post с идентификаторами post_id, равными 123, 567 или 9098,
то соответствующие значения можно исключить из списка IN(). Кэш запросов от

такой стратегии также выигрывает. Если часто изменяется только одна таблица,

то декомпозиция соединения может уменьшить количество удалений записей из

кэша.

i:J Запросы, обращающиеся только к одной таблице, могут иногда уменьшить парал­

лельное выполнение блокировок.

l:J Соединение результатов на уровне приложения упрощает масштабирование базы

данных путем размещения разных таблиц на различных серверах.

i:J Сами запросы также могут стать более эффективными. В данном примере ис­
пользование списка IN() вместо соединения позволяет MySQL более эффективно

Инструмент pt-archiver пакета Percona Toolkit упрощает реализацию такого рода заданий.

252 Глава 6 • Оптимизация производительности запросов

сортировать идентификаторы и более оптимально извлекать строки, чем это
было бы возможно в процессе соединения. Подробнее на этом вопросе мы оста­
новимся в дальнейшем.

D Можно избавиться от лишних обращений к строкам. Если соединение произво­
дится на уровне приложения, то каждая строка извлекается ровно один раз, тогда

как на уровне сервера эта операция, по существу, сводится к денормализации,

в ходе которой обращение к одним и тем же данным может выполняться много­
кратно. По той же причине описанная реструктуризация может сократить общий
сетевой трафик и потребление памяти.

Q В какой-то мере эту методику можно считать ручной реализацией хеш-соединений

вместо стандартного алгоритма вложенных циклов, применяемого в MySQL для
выполнения соединений. Хеш-соединение может оказаться более эффективным
(стратегию соединений MySQL обсудим позже в этой главе).

В результате выполнение объединений на уровне приложения может быть более
эффективным в следующих случаях:

Q при кэшировании и повторном использовании большого количества данных из
более ранних запросов;

Q когда данные распределены на нескольких серверах;

Q если вместо соединения больших таблиц используются списки IN{);

Q когда в соединении несколько раз встречается одна и та же таблица.

Основные принципы
выполнения запросов

Если вы хотите получать от своего сервера MySQL максимальную производитель­
ность, стоит потратить время на изучение того, как MySQL оптимизирует и вы­
полняет запросы. Разобравшись в этом, вы обнаружите, что оптимизация запросов
основана на следовании четким принципам и реализована весьма логично.

Другими словами, пришло время повторить то, о чем мы говорили ранее: процесс

MySQL следует за выполнением запросов. На рис. 6.1 показано, что происходит,
когда вы отправляете запрос к MySQL.

1. Клиент отправляет SQL-команду серверу.

2. Сервер проверяет, есть ли эта команда в кэше запросов. Если да, то возвращается

сохраненный результат из кэша, в противном случае выполняется следующий

шаг.

3. Сервер осуществляет разбор, предварительную обработку и оптимизацию SQL­
команды, преобразуя ее в план выполнения запроса.

4. Подсистема выполнения запросов реализует этот план, обращаясь к подсистеме
хранения.

5. Сервер отправляет результат клиенту.

Клиент

Клиент­

серверный
протокол

Основные принципы выполнения запросов 253

Зап ос Кэш
,._.., ___ __. заnро·
Результат сов

Результат

Анали­
затор

Препро-
____. цессор .._____,....___

Дерево разбора

Оптимизатор
запросов

План выполнения запроса ~о

l
ВызоsыАРI

Подсистема
выполнения запроса

Подсистемы

хранения §
J му1sдм l
~ Данные

j 1nnoDB 1

~J_ит_. д. ~1 ______ _J
Рис. 6.1. Порядок выполнения запроса

На каждом из этих шагов есть свои тонкости, которые мы обсудим в последующих
разделах. Мы также разберем, в каком состоянии запрос находится на каждом из

шаюв. Особенно сложен и важен для понимания процесс оптимизации. Кроме того,
существуют исключения или отдельные случаи (обсудим это в следующей главе).

Клиент-серверный протокол MySQL
Вам не обязательно разбираться во внутренних деталях клиент-серверного протоко­
ла MySQL, однако иметь общее предст<шление о том, как он работает, необходимо.

Это полудуплексный протокол, то есть в любой момент времени сервер либо отправ­
ляет, либо принимает сообщения, но не делает то и другое одновременно. Кроме того,
это озна•1ает, что не1юзможно оборвать сообщение на полуслове.

254 Глава 6 • Оптимизация производительности запросов

Данный протокол обеспечивает простое и очень быстрое взаимодействие с MySQL,
но имеет кое-какие ограничения. Так, в нем отсутствует механизм управления по­

током данных: после того как одна сторона отправила сообщение, другая должна

получить его целиком и только потом сможет ответить. Это как перекидывание мя­

чика: в каждый момент времени он находится только на одной стороне, невозможно

перебросить его сопернику (отправить сообщение), если у вас его нет.

Клиент отправляет запрос в виде одного пакета данных. Поэтому так важна конфи­

гурационная переменная max_allowed_packet в случаях, когда встречаются длинные
запросы 1 • После отправки запроса мяч уже на другой стороне, клиенту остается

только дожидаться результатов.

Напротив, ответ сервера обычно состоит из нескольких пакетов данных. Клиент

обязан получить весь результирующий набор, отправленный сервером. Нельзя

просто выбрать несколько строк и попросить сервер не посылать остальное. Если

клиенту все-таки нужны именно первые строки, он может либо дождаться прихода

всех отправленных сервером пакетов и отбросить ненужные, либо бесцеремонно

разорвать соединение. Оба метода не слишком хороши, поэтому раздел LIMIТ так

важен.

Можно было бы подумать, что клиент, извлекающий строки с сервера, вытягивает

их. На самом деле это не так: сервер MySQL выталкивает строки по мере их соз­
дания. Клиент лишь получает вытолкнутые данные, но не может заставить сервер

прекратить передачу. Можно сказать, что клиент пьет из пожарного шланга (кстати,

это технический термин).

Большинство библиотек для MySQL позволяют либо получить весь результиру­
ющий набор и разместить его в памяти, либо выбирать по одной строке. Как прави­

ло, по умолчанию весь результирующий набор буферизуется в памяти. Это важно,

поскольку до тех пор, пока все строки не будут получены, сервер MySQL не осво­
бождает блокировки и другие ресурсы, потребовавшиеся для выполнения запро­

са. Запрос будет находиться в состоянии «отправка данных». Если клиентская
библиотека извлекает все результаты сразу, то на долю сервера остается меньше

работы: он может закончить выполнение запроса и освободить ресурсы максималь­
но быстро.

Большинство клиентских библиотек создают впечатление, что вы получаете дан­

ные с сервера, тогда как на самом деле строки выбираются из буфера в памяти

самой библиотеки. Как правило, это отлично работает, однако нецелесообразно,

если речь идет о гигантских наборах данных, на получение которых уходит много

времени, а для хранения требуется много памяти. Можно уменьшить занимаемую
память и быстрее приступить к обработке результата, если задать режим работы
без буферизации. Недостаток такого подхода заключается в том, что сервер удержи-

Если запрос слишком длинный, сервер отказывается принимать его целиком и возвращает

ошибку.

Основные принципы выполнения запросов 255

вает блокировки и другие ресурсы на все время, пока приложение взаимодействует
с библиотекой1 •

Рассмотрим пример с использованием РНР. Сначала покажем, как обычно отправ­

ляется запрос к MySQL из РНР:

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_query('SELECT * FROМ HUGE_TABLE', $link);
.while ($row = mysql_fetch_array($result)) {

// Что-то сделать с результатом

}
?>

Код выглядит так, будто строки выбираются по мере необходимости в цикле while.
Однако на самом деле весь результирующий набор копируется в буфер при вызове

функции mysql_query(). В цикле while мы просто обходим этот буфер. Напротив, в сле­
дующем коде результаты не буферизуются, потому что вместо функции mysql_query()
вызывается mysql_unbuffered_query():

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_unbuffered_query('SELECT * FROM HUGE_TABLE', $link);
while ($row = mysql_fetch_array($result)) {

// Что-то сделать с результатом

}
?>

В разных языках программирования приняты разные способы подавления буфе­

ризации. Например, в драйвере DBD::imysql на Perl необходимо задавать атрибут
mysql_use_result из клиентской библиотеки С (по умолчанию предполагается на­
личие атрибута mysql_store_result):

#!/usr/bin/perl
use DBI;
my $dbh = DBI->connect('DBI:mysql:;host=localhost', 'user', 'p4ssword');
my $sth = $dbh->prepare('SELECT * FROM HUGE_TABLE', { mysql_use_result => 1 });
$sth->execute():
while (my $row = $sth->fetchrow_array()) {

Что-то сделать с результатом

}

Обратите внимание на то, что в вызове метода prepare() атрибут mysql_use_resul t
говорит о том, что результат следует использовать, а не буферизовать. Можно

было бы задать этот атрибут и на этапе установления соединения, тогда режим бу­
феризации отключался бы для каждой команды:

my $dbh = DBI->connect('DBI:mysql:;mysql_use_result=1', 'user', 'p4ssword');

Состояния запроса. У каждого соединения, или потока MySQL имеется состояние,
показывающее, что происходит в данный момент. Существует несколько способов

Это ограничение можно обойти с помощью указания оптимизатору SQL BUFFER_
RES U L Т, которое описывается далее.

256 Глава 6 • Оптимизация производительности запросов

узнать состояние, самый простой - воспользоваться командой SHOW FULL PROCESSLIST
(состояния выводятся в столбце Commaпd). На протяжении жизненного цикла запроса
состояние меняется много раз, а всего насчитывается несколько десятков состояний.

Авторитетным источником информации о состояниях является руководство пользо­

вателя по MySQL, мы приведем и поясним лишь некоторые из них.

1:1 Sleep. Поток ожидает поступления нового запроса от клиента.

1:1 Query. Поток либо выполняет запрос, либо отправляет клиенту результаты.

1:1 Locked. Поток ожидает предоставления табличной блокировки на уровне сервера.
Блокировки, реализованные подсистемой хранения, например блокировки строк
в InnoDB, не вызывают перехода в состояние Locked. Это классический симптом
блокировки MyISAM, но может встретиться и в других подсистемах хранения,
не имеющих блокировки строк.

1:1 Aпalyziпg и statistics. Поток проверяет статистику, собранную подсистемой
хранения, и оптимизирует запрос.

1:1 Copyiпg to tmp tаЫе [оп disk]. Поток обрабатывает запрос и копирует результаты
во временную таблицу, скорее всего, для раздела GROUP ВУ, файловой сортировки
или удовлетворения запроса, содержащего раздел UNION. Если название состояния
оканчивается словами оп disk, значит, MySQL преобразует таблицу в памяти
в таблицу на диске.

1:1 Sortiпg result. Поток занят сортировкой результирующего набора.

1:1 Seпdiпg data. Может означать несколько действий: пересылку данных между раз­
личными стадиями обработки запроса, генерацию результирующего набора или
возвращение результатов клиенту.

Очень полезно знать хотя бы основные состояния, поскольку это позволяет понять,
на чьей стороне мячик. На очень сильно загруженных серверах можно заметить, как

редкое или обычно появляющееся на короткое время состояние, например statistics,
вдруг начинает занимать много времени. Чаще всего это свидетельствует о возник­

новении какой-то аномалии. В этом случае вы можете использовать методы, рассмо­

тренные в главе 3, для сбора подробных диагностических данных.

Кэш запросов

Перед тем как приступить к разбору запроса, MySQL проверяет, нет ли его в кэше за­
просов (если режим кэширования включен). При этом выполняется чувствительный

к регистру поиск в хеш-таблице. Если поступивший запрос отличается от храняще­
гося в кэше хотя бы одним байтом, запросы считаются разными1 и сервер переходит
к следующей стадии обработки запроса.

Если MySQL находит запрос в кэше, то перед тем, как возвратить сохраненный
результат, она должна проверить привилегии. Это можно сделать, даже не разбирая

В Percona Server реализована функция, которая до выполнения хеш-поиска удаляет из за­
просов комментарии. Так кэш запросов используется более эффективно в том случае, когда

запросы различаются только текстом комментариев.

Основные принципы выполнения запросов 257

запрос, так как вместе с кэшированным запросом MySQL хранит информацию
о таблицах. Если с привилегиями все в порядке, MySQL выбирает из кэша ассо­
циированный с запросом результат и отправляет его клиенту, минуя все остальные

стадии. В этом случае запрос не разбирается, не оптимизируется и не выпол­
няется.

Подробнее о кэше запросов рассказывается в главе 7.

Процесс оптимизации запроса

Следующий шаг в жизненном цикле запроса - преобразование SQL-команды в план
выполнения, необходимый подсистеме выполнения запросов. Он состоит из не­
скольких этапов: разбора, предварительной обработки и оптимизации. Ошибки (на­

пример, синтаксические) возможны в любой точке этого процесса. Поскольку в нашу
задачу не входит строгое документирование внутреннего устройства MySQL, мы
можем позволить себе некоторые вольности, например описание шагов по отдель­
ности, хотя ради увеличения эффективности они часто полностью или частично

совмещены. Цель - помочь вам разобраться в том, как MySQL выполняет запросы,
чтобы вы могли составлять их более оптимально.

Анализатор и препроцессор

Прежде всего анализатор MySQL разбивает запрос на лексемы и строит дерево
разбора. Для интерпретации и проверки запроса он использует грамматику языка
SQL. Проверяет, в частности, все ли лексемы допустимы, располагаются в нужном
порядке и нет ли других ошибок, например непарных кавычек.

Затем получившееся дерево разбора передается препроцессору, который контролиру­
ет дополнительную семантику, не входящую в компетенцию анализатора. К примеру,

он проверяет, что указанные таблицы и столбцы существуют, а ссылки на столбцы
не допускают неоднозначного толкования.

Далее препроцессор проверяет привилегии. Обычно этот шаг выполняется очень
быстро, если только на сервере определено не слишком много привилегий.

Оптимизатор запросов

Теперь, когда дерево разбора тщательно проверено, наступает очередь оптимиза­
тора превратить его в план выполнения запроса. Существует множество способов
выполнения запроса, все они дают один и тот же результат. Задача оптимизатора -
выбрать лучший из них.

В MySQL используется затратный оптимизатор, то есть пытающийся предсказать
затраты на реализацию различных планов выполнения и выбрать из них наиболее
дешевый. В качестве единицы стоимости ранее принимались затраты на считы­

вание случайной страницы данных размером 4 Кбайт, однако сейчас она стала
более сложной и включает такие факторы, как оценочная стоимость выполнения

258 Глава 6 • Оптимизация производительности запросов

сравнения WHERE. Чтобы узнать, как оптимизатор оценил запрос, выполните его, а за­
тем посмотрите на сеансовую переменную Last_query_cost:

mysql> SELECT SQL_NO_CACHE COUNT(*) FROМ sakila.film_actor;
+----------+
1 count(*) 1
+----------+

5462 1
+----------+
mysql> SНOW STATUS LIKE 'Last_query_cost';

+-----------------+-------------+
1 VariaЫe_name 1 Value
+-----------------+-------------+
1 Last_query_cost 1 1040.599000 1

+-----------------+-------------+

Этот результат означает, что, согласно оценке оптимизатора, для выполнения запроса

потребуется произвести примерно 1040 случайных чтений страниц данных. Оценка
вычисляется на основе различной статистической информации: количества страниц

в таблице или в индексе, кардиналыюсти (количества различных значений) индекса,
длины строк и ключей, распределения ключей. Оптимизатор не учитывает влияния

кэширования - предполагается, что любое чтение сводится к операции дискового
ввода/вывода.

Оптимизатор не всегда выбирает наилучший план, и тому есть много причин.

О Некорректная статистика. Сервер полагается на статистическую информацию,

получаемую от подсистемы хранения, которая может быть как абсолютно верной,
так и не имеющей ничего общего с действительностью. Например, подсистема

хранения InnoDB из-за своей архитектуры МУСС не ведет точную статистику
количества строк в таблице.

О Принятый показатель стоимости не всегда эквивалентен истинной стоимости

выполнения запроса. Поэтому, даже когда статистика точна, запрос может ока­

заться более или менее затратным, чем можно предположить, исходя из оценки
MySQL. В некоторых случаях план, предполагающий чтение большего количества
страниц, может оказаться менее затратным, потому что, например, чтение с диска

производится последовательно или страницы уже кэшированы в памяти. MySQL
не понимает, какие страницы находятся в памяти, а какие - на диске, поэтому

действительно не знает, сколько запросов ввода/вывода потребуется.

о Представление MySQL о том, что такое оптимально, может расходиться с вашим
представлением. Вы, вероятно, хотите получить результат как можно быстрее,
однако MySQL на самом деле не пытается ускорить запрос - она стремится

минимизировать затраты на его выполнение, а, как мы видели, определение за­

трат - неточная наука.

о MySQL не принимает в расчет конкурирующие запросы, а они могут повлиять на
время обработки оптимизируемого.

о MySQL не всегда выполняет затратную оптимизацию. Иногда она просто сле­
дует правилам, например таким: «Если в запросе есть МАТСН(), то используется

Основные принципы выполнения запросов 259

FULL ТЕХТ-индекс, если таковой существует». Подобное решение будет принято,
даже если быстрее было бы воспользоваться другим индексом и неполнотексто­
вым запросом со словом WHERE.

1:1 Оптимизатор не учитывает затраты на операции, которые ему неподконтрольны,

например на выполнение хранимых или определенных пользователем функций.

1:1 Позже мы увидим, что не всегда оптимизатор способен оценить все возможные
планы выполнения, поэтому оптимальный план он может просто пропустить.

Оптимизатор запросов MySQL - это очень сложный код, использующий для преоб­
раэования запроса в план выполнения множество различных операций. Существует

два основных вида оптимизации, которые мы назовем статической и динамической.
Статическая оптимизация может быть выполнена на основании только исследо­
вания дерева разбора. Например, оптимизатор может преобразовать условие WHERE
в эквивалентную форму, применяя алгебраические правила. Статическая оптими­
зация не зависит от конкретных значений, таких как константы в условии WHERE.
Будучи один раз произведенной, статическая оптимизация всегда остается в силе,

даже если запрос будет повторно выполнен с другими значениями. Можно считать,
что это оптимизация на этапе компиляции.

Динамическая же оптимизация зависит от контекста и может определяться многими

факторами, такими как конкретные значения в условии WHERE или количество строк
в индексе. Их приходится заново вычислять при каждом выполнении запроса. Мож­

но считать, что это оптимизация на этапе выполнения.

Данное различие важно при выполнении подготовленных операторов и хранимых про­

цедур. MySQL может произвести статическую оптимизацию однократно, но динамиче­
ская оптимизация должна заново вычислять при каждом выполнении запроса. Иногда

MySQL даже повторно производит оптимизацию во время выполнения запроса 1•

Далее перечислены несколько типов оптимизации, поддерживаемых в MySQL.

1:1 Изменение порядка соединения. Таблицы не обязательно надо соединять именно
в том порядке, который указан в запросе. Определение наилучшего порядка соеди­

нения - важная оптимизация, мы детальнее объясним ее позже в данной главе.

1:1 Преобразование OUTERJOIN в INNER]OIN. Оператор OUTER JOIN не обязательно
выполнять как внешнее соединение. При определенных условиях, зависящих,

например, от раздела WHERE и схемы таблицы, запрос с OUТER JOIN эквивалентен
запросу с INNER JOIN. MySQL умеет распознавать и переписывать такие запросы,
после чего они могут быть подвергнуты оптимизации типа «изменение порядка
соединения».

1:1 Применение алгебраических npaвwt эквивалентности. MySQL применяет алгебраиче­
ские преобразования для упрощения выражений и приведения их к каноническому

Например, план выполнения с проверкой диапазона повторно оценивает индексы для

каждой строки в соединении JOIN. Опознать такой план можно по наличию слов range
checked tor each record в столбце Extra, формируемом командой EXPLAIN. При выборе
подобного плана также увеличивается серверная переменная Select_full_range_join server.

260 Глава 6 • Оптимизация производительности запросов

виду. Кроме того, она умеет вычислять константные выражения, исключая заве­

домо невыполнимые и всегда выполняющиеся условия. Например, терм (S=S AND

a>S) приводится к более простому - a>S. Аналогично условие (а<Ь AND Ь=с) AND

a=S принимает вид b>S AND Ь=с AND a=S. Эти правила очень полезны при написании

условных запросов, о чем речь пойдет далее в настоящей главе.

О Оптимизации СОИNТ(), MIN() и МАХ(). Наличие индексов и сведений о возмож­
ности хранения значений NULL в столбцах 'Iасто позволяет вообще не вычислять
эти выражения. Например, чтобы найти минимальное значение в столбце, кото­
рый является крайней слева частью индекса, упорядоченного на основе В-дерева,

MySQL может просто запросить первую строку из этого индекса. Это можно
сделать даже на стадии оптимизации и далее рассматривать полученное значение

как константу. Аналогично для поиска максимального значения в индексе, упо­

рядоченном на основе В-дерева, сервер просто считает последнюю строку. При

применении такой оптимизации в плане, выведенном командой EXPLAIN, будет
присутствовать фраза Select taЫes optimized away (~некоторые таблицы исклю­
чены при оптимизации•). Это означает, что оптимизатор полностью исключил

таблицу из плана выполнения, подставив вместо нее константу.

Подобным образом некоторые подсистемы хранения могут оптимизировать за­
просы, содержащие COUNT(*) без раздела WHERE (к примеру, MyISAM так хранит
данные о количестве строк в таблице).

О Вычисление и свертка константных выражений. Если MySQL обнаруживает, что
выражение можно свернуть в константу, то делает это на стадии оптимизации.

Например, определенную пользователем переменную можно преобразовать
в константу, если она не изменяется в запросе. Другим примером могут служить

арифметические выражения.

Как ни странно, даже такие вещи, которые вы, скорее всего, назвали бы запросом,
можно свернуть в константу во время оптимизации. Например, вычисление функ­

ции MIN () по индексу. Этот пример можно даже расширить до поиска констант по

первичному ключу или по уникальному индексу. Если в ра.зделе WHERE встречается

константное условие для такого индекса, то оптимизатор знает, что MySQL может
найти значение в самом начале выполнения запроса. Впоследствии найденное

значение можно трактовать как константу. Приведем пример:

mysql> EXPLAIN SELECT film.film_id, film_actor.actor_id
-> FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id)
-> WНERE film.film_id = 1;

+----+-------------+------------+-------+----------------+-------+------+
1 id 1 select_type 1 tаЫе 1 type 1 key 1 ref 1 rows 1

+----+-------------+------------+-------+----------------+-------+------+
1 1 SIMPLE 1 film 1 const 1 PRIМARY 1 const 1 1 1

1 1 SIMPLE 1 film_actor 1 ref 1 idx_fk_film_id 1 const 1 10 1

+----+-------------+------------+-------+----------------+-------+------+
MySQL выполняет этот запрос в два этапа, о чем свидетельствуют две строки
в выведенной таблице. На первом этапе она находит нужную строку в таблине
film. Оптимизатор MySQL знает, что такая строка единственная, поскольку стол­
бец film_id - это первичный ключ, а оптимизатор уже на стадии оптимизации

Основные принципы выполнения запросов 261

запроса уточнил количество найденных строк. Так как оптимизатору известна

точная величина (значение в разделе WHERE), которая будет возвращена в резуль­
тате поиска, то в столбце ref для этой таблицы стоит const.

На втором этапе MySQL считает столбец film_id из строки, найденной на первом
шаге, известной величиной. Она может так поступить, потому что в момент пере­

хода к второму шагу оптимизатор уже знает все значения, определенные ранее.

Обратите внимание на то, что тип ref для таблицы film_actor равен const точно
так же, как и для таблицы film.

Константные условия могут применяться также вследствие распространения

константности значения от одного места к другому при наличии разделов WHERE,
USING или ON с ограничением типа «равно~. В приведенном ранее примере фраза
USING гарантирует, что значение film_id будет одинаково на протяжении всего
запроса - оно должно быть равно константе, заданной в разделе WHERE.

о Покрывающие индексы. Если индекс содержит все необходимые запросу столбцы,
то MySQI, может воспользоваться им, вообще не читая данные таблицы. Мы по­
дробно рассматривали покрывающие индексы в предыдущей главе.

о Оптимизация подзапросов. MySQL умеет преобразовывать некоторые виды под­
запросов в более эффективные альтернативные формы, сводя их к поиску по
индексу.

о Раннее завершение. MySQL может прекратить обработку запроса (или какой-то
шаг обработки), как только поймет, что этот запрос или шаг полностью выполнен.
Очевидный пример - раздел LIMIТ, но есть и еще несколько случаев раннего за­

вершения. Например, встретив заведомо невыполнимое условие, MySQL может
прекратить обработку всего запроса. Рассмотрим следующий пример:

mysql> EXPLAIN SELECT film.film_id FROМ sakila.film lfliERE film_id = -1;
+----+ ... +---+
1 id 1 ". 1 Extra 1

+----+ ... +---+
1 1 1 ••• 1 ImpossiЫe WHERE noticed after reading const taЫes 1

+----+ ... +---+
Этот запрос остановлен на шаге оптимизации, но в некоторых других случаях

MySQL также прерывает выполнение рано. Сервер может применить такую
оптимизацию, когда подсистема выполнения приходит к выводу, что нужно

извлекать только различающиеся значения либо остановиться, если значения
не существует. Например, следующий запрос находит все фильмы, в которых нет

ни одного актера 1 :

mysql> SELECT film.film_id
-> FROМ sakila.film
-> LEFT OUTER JOIN sakila.film_actor USING(film_id)
-> WНERE film_actor.film_id IS NULL;

Мы согласны, что фильм без актеров выглядит странно, но в демонстрационной базе

данных Sakila такой фильм есть. Он называется Slacker Liaisons и аннотирован как «стре­
мительно развивающаяся история о мошеннике и студенте, которые должны встретиться

с крокодилом в Древнем Китае~.

262 Глава 6 • Оптимизация производительности запросов

Запрос исключает все фильмы, в которых есть хотя бы один актер. В фильме мо­

жет быть задействовано много актеров, но, обнаружив первого, сервер прекращает
обработку текущего фильма и переходит к следующему, поскольку знает, что
условию WHERE такой фильм заведомо не удовлетворяет. Похожую оптимизацию
«различается/не существуен можно применить к некоторым типам запросов,

включающих операторы DISТINCТ, NOT EXISTS() и LEFT JOIN.

Q Распространение равенства. MySQL распознает ситуации, когда в некотором за­
просе два столбца должны быть равны, например в условии JOIN, и распростра­
няет условие WHERE на эквивалентные столбцы. В частности, из запроса:

mysql> SELECT film.film_id
-> FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id)
-> WНERE film.film_id > 500;

MySQL понимает, что условие WHERE применяется не только к таблице film, но
и к таблице film_actor, поскольку в силу наличия раздела USING оба столбца
должны совпадать.

Если вы привыкли к другой СУБД, в которой такая оптимизация не реализована,

то вам, вероятно, рекомендовали «помочь оптимизатору~, самостоятельно задав

в разделе WHERE условия для обеих таблиц, например:

.•. WHERE film.film_id > 500 AND film_actor.film_id > 500

В MySQL это не обязательно и лишь усложняет поддержку запросов.

О Сравнение по списку IN(). Во многих базах данных оператор IN() является
не более чем синонимом нескольких условий OR, поскольку логически они
эквивалентны. Но не в MySQL, которая сортирует значения в списке IN() и при­
меняет для работы с ним быстрый двоичный поиск. Вычислительная сложность
при этом составляет O(log n), где n - размер списка, тогда как сложность эквива­

лентной последовательности условий О R равна О (n) (то есть гораздо медленнее
для больших списков).

Приведенный перечень, естественно, неполон, так как MySQL умеет применять го­
раздо больше оптимизаций, чем поместилось бы во всей этой главе, но представление
о сложности и развитых логических возможностях оптимизатора вы все же полу­

чили. Главная мысль, которую следует вынести из этого обсуждения: не пытайтесь

перехитрить оптимизатор. В итоге вы просто потерпите неудачу или сделаете свои

запросы чрезмерно запутанными и сложными для сопровождения, не получив ни ма­

лейшей выгоды. Позвольте оптимизатору заниматься своим делом.

Разумеется, каким бы умным ни был оптимизатор, случается, что он не находит

наилучшего результата. Иногда вы знаете о своих данных что-то такое, о чем опти­

мизатору неизвестно, например некое условие, которое гарантированно истинно

вследствие логики приложения. Кроме того, иногда оптимизатор не наделен не­

обходимой функциональностью, например хеш-индексами, а временами алгоритм
оценки стоимости выбирает план, оказывающийся более затратным, чем возможная
альтернатива.

Основные принципы выполнения запросов 263

Если вы знаете, что оптимизатор дает плохой результат, и вам известно, почему так

произошло, можете ему помочь. В данном случае можно включить в запрос под­

сказку, переписать запрос, перепроектировать схему или добавить индексы.

Статистика по таблицам и индексам

Вспомните архитектурные уровни сервера MySQL, показанные на рис. 1.1. На уровне
сервера, где расположен оптимизатор запросов, отсутствует статистика по данным и ин­

дексам. Задание обеспечить ее возлагается на подсистемы хранения, поскольку каждая
из них может собирать различную статистическую информацию (и хранить ее разными
способами). Некоторые подсистемы, например Archive, вообще не собирают статистику!

Поскольку сервер не содержит статистики, оптимизатор запросов MySQL должен
обращаться к подсистемам хранения за статистическими данными по участвующим
в запросе таблицам. Подсистема может предоставить такую информацию, как ко­
личество страниц в таблице или индексе, кардинальность таблиц и индексов, длина

строк и ключей, данные о распределении ключей. На основе этих сведений оптими­

затор выбирает наилучший план выполнения. В последующих разделах мы увидим,
как статистика влияет на решения оптимизатора.

Стратегия выполнения соединений в MySQL

В MySQL термин «соединение~ используется шире, чем вы, возможно, привыкли.
Под соединениями понимаются все запросы, а не только те, что сопоставляют строки

из двух таблиц. Еще раз подчеркнем: имеются в виду все без исключения запросы,
в том числе подзапросы и даже выборка SELECT из одной таблицы. Следовательно,
очень важно понимать, как в MySQL выполняется операция соединения.

Рассмотрим, к примеру, запрос UNION. MySQL реализует операцию UNION в виде
последовательности отдельных запросов, результаты которых сохраняются во вре­

менной таблице, а затем снова читаются из нее. Каждый запрос представляет собой
соединение в терминологии MySQL, и им же является операция чтения из резуль­
тирующей временной таблицы.

В текущей версии стратегия соединения в MySQL проста: все соединения реализу­
ются алгоритмом вложенных циклов. Это означает, что MySQL в цикле перебирает
строки из одной таблицы, а затем во вложенном цикле ищет соответствующие строки
в следующей. Это продолжается до тех пор, пока не будут найдены соответствующие
строки во всех таблицах. После этого строится и возвращается строка, составленная из
перечисленных в списке SELECT столбцов. Далее MySQL пытается найти следующую
строку в последней таблице. Если такой не оказывается, то происходит возврат на одну
таблицу назад и делается попытка найти дополнительные строки в ней. MySQL про­
должает выполнять возвраты, пока в какой-то таблице не обнаружится подходящая
строка, после чего ищет соответствующую ей строку в следующей таблице и т. д. 1

Далее мы покажем, что на самом деле выполнение запроса не такое простое дело: суще­

ствует немало оптимизаций, усложняющих алгоритм.

264 Глава 6 • Оптимизация производительности запросов

Этот процесс, состоящий из поиска строк, проверки следующей таблицы и возврата,

в плане выполнения можно представить в виде последовательности вложенных ци­

клов. Отсюда и название - соединение методом вложенных ци1(.Jlов.

В качестве примера рассмотрим простой запрос:

mysql> SELECT tЫ1.со11, tЫ2.со12
-> FROМ tЫ1 INNER JOIN tЫ2 USING(col3)
-> WНERE tЫ1.со11 IN(S,6);

Предположим, что MySQL решает соединить таблицы в порядке, указанном в за­
просе. Приведенный далее псевдокод показывает возможный алгоритм выполнения

запроса:

outer_iter = iterator over tЬll where coll IN(S,6)
outer_row = outer_iter.next
while outer _row

inner_iter = iterator over tЫ2 where со13 outer_row.col3
inner_row = inner_iter.next
while inner _row

end

output [outer_row.coll, inner_row.col2
inner_row = inner_iter.next

outer_row = outer_iter.next
end

Этот план выполнения с тем же успехом можно применить к запросу, в котором

участвует всего одна таблица. Именно поэтому запросы к одной таблице считают­

ся соединениями: такое однотабличное соединение представляет собой базовую

операцию, на основе которой конструируются более сложные соединения. Данный

алгоритм распространяется и на соединения OUТER JOIN. Например, слегка изменим

предыдущий запрос:

mysql> SELECT tЫ1.coll, tЫ2.со12
-> FROМ tЫ1 LEFT OUТER JOIN tЫ2 USING(col3)
-> WНERE tЫ1.со11 IN(S,6);

Вот как выглядит соответствующий ему псевдокод (изменения выделены полужир­

ным шрифтом):

outer_iter = iterator over tЫl where coll IN(S,6)
outer_row = outer_iter.next
while outer_row

end

inner_iter = iterator over tЫ2 where со13 outer_row.col3
inner_row = inner_iter.next
if inner_row

while inner_row

end
else

output [outer_row.coll, inner_row.col2
inner_row = inner_iter.next

output outer_row.col1, NULL
end
outer_row = outer_iter.next

Основные принципы выполнения запросов 265

Еще одним способом визуализации плана выполнения запроса является так назы­
ваемая диаграмма дорожек для плавания. На рис. 6.2 показана такая диаграмма для
исходного запроса с INNER JOIN. Читать ее следует слева направо и сверху вниз.

Таблицы

Результирующие

tЬ/1 tЫ2 строки

со/1=5, со/3=1 со13=1, со12=1 со11=5, со12=1

со13=1, со12=2 со11=5, со12=2

со13=1, со12=3 со11=5, со12=2

со11=6, со13=1 со13=1, со12=4 со/1=6, со/2=1

со13=1, со/2=5 со/1=6, со12=2

со/3=1, со12=6 со/1 =6, со/2=3

Рис. 6.2. диаграмма дорожек для плавания, иллюстрирующая выбор строк
при обработке соединения

MySQL выполняет запросы любого вида практически одинаково. Например, подза­
прос в разделе FROM выполняется первым, его результаты сохраняются во временной
таблице 1, которая затем трактуется как самая обычная таблица (отсюда и название -
производная таблица). При обработке запросов с UNION тоже используются времен­
ные таблицы, а запросы с RIGHT OUТER JOIN преобразуются в эквивалентную форму
с LEFT OUТER JOIN. Короче говоря, MySQL приводит запросы любого вида к этому
плану выполнения~.

Но таким способом можно выполнить не все допустимые SQL-запросы. Например,
запрос FULL OUTER JOIN не удастся выполнить методом вложенных циклов с воз­
вратами, если обнаружится таблица, не содержащая подходящих строк, поскольку

Во временных таблицах не строятся индексы, и об этом следует помнить при написании

сложных соединений с результатами подзапросов в разделе FROM. То же самое относится
и к запросам с UNION.

В MySQL 5.6 и MariaDB произошли существенные изменения, что позволило задейство­
вать более сложные пути выполнения.

266 Глава 6 • Оптимизация производительности запросов

алгоритм может на•1ать работу именно с нее. Вот поэтому MySQL не поддерживает
оператор FULL OUTER JOIN. Есть и другие запросы, которые хотя и можно выполнить

методом вложенных циклов, но это окажется крайне неэффективным. Мы рассмо­

трим такие примеры в дальнейшем.

План выполнения

В отличие от многих других СУРБД

MySQL не генерирует байт-код для вы­
полнения запроса. План представляет

собой дерево инструкций, которые вы­

полняются подсистемой выполнения за­

просов для получения результата. Окон­

чательный план содержит достаточно

информации, позволяющей реконструи­

ровать исходный запрос. Выполнив ко­

манду EXPLAIN EXTENDED для запроса, а за­

тем команду SHOW WARNINGS, мы увидим

реконструированный запрос 1•

Любой запрос с несколькими таблица­
ми концептуально можно представить

в виде дерева. Например, соединить че­

тыре таблицы можно так, как показано
на рис. 6.3.

Специалист по информатике назовет это

сбалансирова1тым деревом. Но MySQI~
обрабатывает запрос иначе. В предыду­
щем разделе мы рассказали, что MySQL
всегда начинает с какой-то одной та­

блицы и ищет соответствующие строки
в следующей. Поэтому планы выпол­

нения запросов, формируемые MySQL,
всегда имеют вид левоlltубинного дерева

Рис. 6.3. Один из способов соединения
нескольких таблиц

Соединение

(left-deep tree) (рис. 6.4). Рис. 6.4. Соединение нескольких таблиц MySQL

Оптимизатор соединений

Важнейшая часть оптимизатора запросов в MySQL - это оптимизатор соединений,
который определяет наилучший порядок выполнения многотабличных запросов.
Часто для получения одинаковых результатов таблицы можно соединять в разном

Сервер генерирует выходную информацию, исходя из плана выполнения. Поэтому вы­

веденный запрос будет иметь ту же семантику, что и исходный, но не обязательно тот же

самый текст.

Основные принципы выполнения запросов 267

порядке. Оптимизатор соединений вычисляет затраты на реализацию различных

планов и пытается выбрать наименее затратный.

Приведем пример запроса, в котором таблицы можно соединить в разном порядке
с одним и тем же результатом:

mysql> SELECT film.film_id, film.title, film.release_year, actor.actor_id,
-> actor.first_name, actor.last_name
-> FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id)
-> INNER JOIN sakila.actor USING(actor_id);

Скорее всего, вы сможете придумать несколько планов выполнения. Например,

MySQL могла бы, начав с таблицы film, воспользоваться индексом таблицы film_actor
по полю film_id для поиска значений actor _id, а затем искать строки по первично­
му ключу таблицы actor. Пользователи Oracle, возможно, перефразируют это так:
«Таблица film - это ведущая таблица для таблицы film_actor, которая является
ведущей для таблицы actor». Это должно быть эффективно, не правда ли? Однако
посмотрим на вывод команды EXPLAIN, объясняющей, как MySQL в действительности
собирается выполнять этот запрос:

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: actor
type: ALL

possiЫe_keys: PRIMARY
key: NULL

key_len: NULL
ref: NULL

rows: 200
Extra:

*************************** 2. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film_actor
type: ref

possiЫe_keys: PRIМARY,idx_fk_film_id

key: PRIМARY

key_len: 2
ref: sakila.actor.actor_id

rows: 1
Extra: Using index

*************************** 3. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film
type: eq_ref possiЫe_keys: PRIМARY

key: PRIМARY

key_len: 2
ref: sakila.film_actor.film_id

rows: 1
Extra:

Этот план существенно отличается от предложенного ранее. MySQL хочет начать
с таблицы actor (мы знаем это, потому что она идет первой в списке, выданном

268 Глава 6 • Оптимизация производительности запросов

командой EXPLAIN) и двигаться в обратном порядке. Действительно ли это более
эффективно? Попробуем разобраться. Ключевое слово STRAIGHT_JOIN заставляет
сервер выполнять соединение в той последовательности, которая указана в запросе.

Вот что говорит EXPLAIN о таком модифицированном запросе:

mysql> EXPLAIN SELECT STRAIGНТ_JOIN film.film_id ••• \G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: film
type: ALL

possiЫe_keys: PRIMARY
key: NULL

key_len: NULL
ref: NULL

rows: 951
Extra:

*************************** 2. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film_actor
type: ref

possiЫe_keys: PRIMARY,idx_fk_film_id
key: idx_fk_film_id

key_len: 2
ref: sakila.film.film_id

rows: 1
Extra: Using index

*************************** З. row ***************************
id: 1

select_type: SIMPLE
tаЫе: actor
type: eq_ref possiЫe_keys: PRIМARY

key: PRIМARY

key_len: 2
ref: sakila.film_actor.actor_id

rows: 1
Extra:

Теперь мы видим, почему MySQI~ предпочла обратный порядок соединения: это
позволяет исследовать меньше строк в первой таблице 1 • В обоих случаях во второй
и третьей таблицах можно вести быстрый поиск по индексу. Разница лишь в том,
сколько таких операций поиска придется выполнить.

Q Если начать с таблицы film, то потребуется 951 обращение к таблицам film_actor
и actor, по одному для каждой строки в первой таблице.

Q Если же сначала искать в таблице actor, то для последующих таблиц придется
выполнить всего 200 операций поиска по индексу.

Если строго, то MySQL не стремится минимизировать количество прочитанных строк.
Она пьrrается оптимизировать количество считываемых страниц. Однако счетчик строк часто

дает грубое представление о стоимости запроса.

Основные принципы выполнения запросов 269

Другими словами, измененный порядок соединений сокращает количество возвратов

и повторных операций чтения. Чтобы еще раз убедиться в правильности выбранно­

го оптимизатором решения, мы выполнили оба варианта запроса и посмотрели на

значение переменной Last_query_cost. Затраты на запрос с измененным порядком
соединения составили 241, а на запрос с навязанным нами порядком - 1154.

Это простой пример того, как оптимизатор соединений в MySQL может добиваться
более низких затрат, изменяя порядок выполнения запросов. Изменение порядка

соединений обычно оказывается весьма эффективной оптимизацией. Но иногда

она не дает оптимального плана, и в этих случаях вы можете употребить ключевое

слово STRAIGHT_JOIN и написать запрос в том порядке, который вам представляется

наилучшим. Однако такие случаи редки - чаще всего оптимизатор оказывается

эффективнее человека.

Оптимизатор соединений пытается построить дерево плана выполнения запроса

с минимальными затратами. Если возможно, он исследует все потенциальные пере­

становки поддеревьев.

К сожалению, для полного исследования соединения п таблиц нужно перебрать

п-факториал возможных перестановок. Это называется пространством поиска всех

возможных планов выполнения. Его размер растет очень быстро - соединение де­

сяти таблиц можно осуществить 3 628 800 способами! Если пространство поиска
оказывается слишком большим, то для оптимизации запроса потребуется чересчур

много времени, поэтому сервер отказывается от полного анализа. Если количество со­

единяемых таблиц превышает значение параметра optimizer _search_depth (которое
вы при желании можете изменить), то сервер применяет сокращенные алгоритмы,

например жадный поиск.

Для ускорения стадии оптимизации в MySQL реализовано множество эвристических
приемов, выработанных за годы исследований и экспериментов. Это может быть по­

лезно, но также означает, что иногда (в редких случаях) MySQL может пропустить
оптимальный план и выбрать менее удачный, поскольку она не пыталась исследовать

все возможности.

Иногда запросы нельзя выполнить в другом порядке, тогда, воспользовавшись этим

фактом, оптимизатор соединений может сократить пространство поиска, исключив

из него некоторые перестановки. Хорошим примером могут служить запросы с LEFТ

JOIN и коррелированные подзапросы (к подзапросам мы еще вернемся). Объясня­

ется это тем, что результаты для одной таблицы зависят от данных, извлеченных из

другой. Наличие таких зависимостей позволяет оптимизатору соединений сократить

пространство поиска с помощью исключения выбора.

Оптимизации сортировки

Сортировка результатов может оказаться весьма затратной операцией, поэтому

часто производительность можно повысить, исключив ее или уменьшив количество

сортируемых строк.

270 Глава 6 • Оптимизация производительности запросов

В главе 3 мы показали, как индексы могут быть использованы для сортировки. Если
MySQL не может найти подходящего индекса, то ей приходится сортировать строки
самостоятельно. Это можно сделать в памяти или на диске, но сама процедура всегда

называется файловой сортировкой, даже если файл в действительности не исполь­

зуется.

Если обрабатываемые данные умещаются в буфер, то MySQL может выполнить сор­
тировку целиком в памяти, применяя алгоритм быстрой сортировки. В противном

случае сортировка реализуется на диске поблочно. Каждый блок обрабатывается

методом быстрой сортировки, а затем отсортированные блоки сливаются.

Есть два алгоритма файловой сортировки.

О Двухпроходный (старый). Читает указатели на строки и столбцы, упомянутые

в разделе ORDER ВУ, сортирует их, затем проходит по отсортированному списку

и снова читает исходные строки, чтобы вывести результат.

Двухпроходный алгоритм может быть довольно затратным, поскольку строки

из таблицы прочитываются дважды и повторное чтение вызывает много произ­

вольных операций ввода/вывода. Особенно накладно это в случае таблиц типа

MylSAM, так как для выборки каждой строки необходимо вызывать операци­
онную систему, поскольку MylSAM полагается на нее в вопросах кэширования
данных. В то же время при такой сортировке хранится небольшой объем данных,

поэтому если все сортируемые строки уже находятся в памяти, то, возможно,

менее затратно хранить меньше данных и перечитывать строки для генерации

окончательного результата.

О Однопроходный (новый). Читает все необходимые запросу столбцы, сортирует
строки по столбцам, упомянутым в разделе ORDER ВУ, проходит по отсортирован­

ному списку и выводит заданные столбцы.

Этот алгоритм реализуется, начиная с версии MySQL 4.1. Он может быть на­
много эффективнее старого, особенно на наборах данных с большой нагрузкой

на ввод/вывод. Однопроходный алгоритм не читает строки из таблицы дважды,

а произвольный ввод/вывод в нем заменяется последовательным чтением. Но при

этом необходимо больше памяти, так как для каждой строки приходится хранить

все запрошенные столбцы, а не только те, по которым производится сортировка.

Следовательно, в буфер сортировки поместится меньше строк и надо будет вы­

полнить больше циклов слияния.

Трудно сказать, какой алгоритм более эффективен, поскольку есть подходящие

и неподходящие случаи для применения каждого из них. MySQL использует новый
алгоритм, если общий размер всех столбцов, необходимых для запроса, плюс столбцы

ORDER ВУ не больше чем max_length_for _sort_data байтов. Таким образом, вы можете

использовать этот параметр для выбора используемого алгоритма. Подробнее об этом

см. в подразделе «Оптимизация файловой сортировки~ в главе 8.

При файловой сортировке серверу MySQL может потребоваться гораздо больше
места на диске для хранения временных файлов, чем вы ожидаете, так как каждому

сортируемому кортежу выделяется запись фиксированной длины. Ее размера долж-

Основные принципы выполнения запросов 271

но хватать для того, чтобы сохранить максимально длинный кортеж, в котором для
столбцов типа VARCHAR зарезервировано место в соответствии с указанным в схеме
размером. Кроме того, для кодировки UTF-8 MySQL выделяет на каждый символ
3 байта. Так что нам доводилось встречать плохо оптимизированные схемы, в кото­
рых размер временного файла сортировки во много раз превышал размер исходной

таблицы на диске.

При выполнении соединения MySQL может производить файловую сортировку на
двух стадиях реализации запроса. Если в разделе ORDER ВУ упомянуты только столбцы
из первой (в порядке соединения) таблицы, то MySQL может провести ее файловую
сортировку, а затем приступить к соединению. В таком случае команда EXPLAIN по­
местит в столбец Extra фразу Using filesort. Во всех других обстоятельствах - на­
пример, сортируемая таблица не первая по порядку или раздел ORDER ВУ содержит
столбцы более чем из одной таблицы - MySQL должна хранить результаты запроса
во временной таблице, а выполнять файловую сортировку временной таблицы после
завершения соединения. В таком случае команда EXPLAIN поместит в столбец Extra
фразу Using temporary; Using filesort. Если задано ключевое слово LIMIТ, то оно
применяется после сортировки, поэтому временная таблица и файловая сортировка
могут быть очень велики.

В версии MySQL 5.6 произошли значительные изменения в алгоритме сортировки,
когда необходимо выбрать лишь подмножество строк, например при использовании
ключевого слова LIMIТ. Иногда вместо того, чтобы сортировать весь набор резуль­
татов и затем возвращать его часть, MySQL 5.6 позволяет отбрасывать ненужные
строки перед сортировкой.

Подсистема выполнения запросов

На стадиях разбора и оптимизации вырабатывается план выполнения запроса, кото­
рый применяет подсистема выполнения. План представляет собой структуру данных,
а не исполняемый байт-код, как во многих других базах данных.

Как правило, стадия выполнения гораздо проще, чем стадия оптимизации: MySQL
просто следует инструкциям, содержащимся в плане выполнения запроса. Для мно­

гих указанных в плане операций нужно вызывать методы, реализованные в под­

системе хранения, интерфейс с этой подсистемой еще называют АР! обработчика.
Каждая таблица в запросе представлена экземпляром обработчика. Если таблица
встречается в запросе трижды, то сервер сформирует три экземпляра обработчика.
Хотя раньше мы об этом не упоминали, фактически MySQL создает экземпляры
обработчика на ранних шагах стадии оптимизации. Оптимизатор использует их для

получения информации о таблицах, например о названиях столбцов и статистике
по индексам.

В интерфейсе подсистемы хранения определено множество функций, но для вы­

полнения большинства запросов хватает примерно десятка основных операций­
кирпичиков. Например, имеются операции для чтения первой и следующей строки

в индексе. Этого вполне достаточно для запроса, в котором просматривается индекс.

272 Глава 6 • Оптимизация производительности запросов

Благодаря такому упрощенному подходу к выполнению запроса и стало возможным

использование архитектуры подсистемы хранения в MySQL, но это, в свою очередь,
накладывает определенные ограничения на оптимизатор, которые мы рассмотрели

ранее.

Не все, что включено в план выполнения запроса, - это операции обработчика.
Например, сервер управляет табличными блокировками. Обработчик может

реализовать собственную схему блокировки на нижнем уровне строк, как
делает, например, IпnoDB со строковыми блокировками (однако она не заменяет
реализацию блокировок внутри сервера). В главе 1 отмечалось, что на сервере
реализованы функции, общие для всех подсистем хранения, например функции
работы с датой и временем, представления и триггеры.

Для выполнения запроса сервер просто повторяет инструкции до тех пор, пока небу­

дут проанализированы все строки.

Возврат результатов клиенту

Последняя стадия выполнения запроса - отправка ответа клиенту. Даже запросы,

которые не возвращают результирующий набор, все равно посылают клиенту ин­

формацию о результате обработки, например о том, сколько строк было изменено.

Если запрос можно кэшировать, то на этой стадии MySQL поместит результаты
в кэш запросов.

Сервер генерирует и отправляет данные с определенным шагом. Давайте вернемся

к рассмотренному ранее алгоритму соединения нескольких таблиц. Как только
MySQL обработает последнюю таблицу и успешно сгенерирует очередную строку,
она может и должна отправить ее клиенту. У такого решения есть два достоинства:

серверу не обязательно хранить строку в памяти, а клиент начинает получать резуль­
таты настолько быстро, насколько это вообще возможно 1 •

Каждая строка в результирующем наборе отправляется в отдельном пакете по прото­

колу клиента - сервера MySQL, хотя пакеты протоколов могут быть буферизованы
и отправлены вместе на уровне протокола ТСР.

Ограничения оптимизатора MySQL
Подход MySQL к выполнению запросов по принципу «всякий запрос - это соедине­

ние методом вложенных циклов~ неидеален для оптимизации всех запросов. К сча­

стью, есть не так уж много случаев, с которыми оптимизатор MySQL справляется

При желании это поведение можно изменить, например указав SQL_BUFFER_RESUL Т.
См. раздел «Подсказки оптимизатору запросов~ далее в этой главе.

Ограничения оптимизатора MySQL 273

заведомо плохо, и обычно удается переписать такие запросы более эффективно. Бо­

лее того, после выпуска MySQL 5.6 устранит многие ограничения MySQL и сделает
множество запросов намного более быстрыми.

Коррелированные подзапросы

Иногда MySQL очень плохо оптимизирует подзапросы. Самый неприятный слу­
чай - подзапросы в операторе IN() в разделе WHERE. Например, найдем в демонстра­

ционной базе Sakila все фильмы, в которых играла Пенелопа Гинесс (actor _id=l).

Вполне естественным кажется написание такого подзапроса:

mysql> SELECT • FROfll sakila.film
-> WНERE film_id IN(
-> SELECT film_id FROfll sakila.film_actor WHERE actor_id = 1);

Хочется думать, что MySQL будет выполнять этот запрос изнутри наружу, то есть
сначала найдет список значений film_id с заданным actor _ id, а затем подставит их

в список IN(). Ранее мы отмечали, что в общем случае списки IN() обрабатываются

очень быстро, поэтому можно ожидать, что запрос будет оптимизирован следующим

образом:

- SELECT GROUP_CONCAT(film_id) FROМ sakila.film_actor WHERE actor_id = 1;
-- Result: 1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939, 970,980
SELECT * FROM sakila.film
WHERE film_id
IN(l,23,25,106,140,166,277,361,438,499,506,509,605,635,749,83 2,939,970,980);

К сожалению, на деле произойдет прямо противоположное. MySQL попытается по­
мочь подзапросу, перенеся в него корреляцию из внешней таблицы, так как полагает,

что так подзапрос будет искать строки эффективнее. В результате запрос переписы­

вается следующим образом:

SELECT * FROM sakila.film
WHERE EXISTS (

SELECT * FROМ sakila.film_actor WHERE actor_id = 1
AND film_actor.film_id = film.film_id);

Теперь подзапросу требуется значение поля film_id из внешней таблицы film, поэто­

му первым его выполнить не получится. EXPLAIN показывает в качестве типа запроса

DEPENDENT SUВQUERY (вы можете точно узнать, как был переписан запрос, при помощи

команды EXPLAIN EXТENDED):

mysql> EXPLAIN SELECT. FROfll sakila.film ••• ;
+----+--------------------+------------+--------+------------------------+
1 id 1 select_type 1 tаЫе 1 type 1 possiЫe_keys

+----+--------------------+------------+--------+------------------------+
1 1 PRIМARY 1 film 1 ALL 1 NULL 1

2 1 DEPENDENT SUBQUERY 1 film_actor 1 eq_ref 1 PRIМARY,idx_fk_film_id 1

+----+--------------------+------------+--------+------------------------+

Согласно результатам EXPLAIN, MySQL производит полное сканирование таблицы
film и выполняет подзапрос для каждой найденной строки. Если таблица небольшая,

это не приведет к заметному падению производительности, но когда внешняя таблица

274 Глава 6 • Оптимизация производительности запросов

велика, замедление окажется весьма существенным. К счастью, такой запрос легко

переписать с использованием оператора JOIN:

mysql> SELECT film.* FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id)
-> WНERE actor_id = 1;

Еще один неплохой вариант оптимизации - вручную сгенерировать список IN(),
выполнив вместо подзапроса от дельный запрос с функцией GROUP _ CONCAT (). Иногда
это оказывается быстрее, чем JOIN. И наконец, даже если подзапросы IN() работают
плохо во многих случаях, EXISTS () или подзапросы равенства иногда работают на­
много лучше. Приведем еще один способ переписывания подзапроса IN ():

mysql> SELECT * FROМ sakila.film
-> WНERE EXISTS{
-> SELECT * FROМ sakila.film_actor WНERE actor id 1
-> AND film_actor.film_id = film.film_id);

0 ... ".
" •

""

Ограничения оптимизатора, которые мы обсудим в этом разделе, относятся
к официальному серверу MySQL от Oracle Corporation, начиная с версии 5.5.
У MariaDB MySQL есть несколько связанных оптимизаторов запросов и улучшений
подсистемы выполнения, таких как выполнение коррелированных подзапросов

изнутри наружу.

Когда стоит использовать коррелированный подзапрос. Не всегда MySQL так уж
плохо оптимизирует коррелированные подзапросы. Не слушайте тех, кто советует вам

любой ценой избегать их! Вместо этого измеряйте производительность и принимайте
решение самостоятельно. Иногда коррелированный подзапрос - вполне приемлемый

и даже оптимальный способ получения результата. Рассмотрим пример:

mysql> EXPLAIN SELECT film_id, language_id FROМ sakila.film
-> WНERE NOT EXISTS(
-> SELECT * FROМ sakila.film_actor
-> WНERE film_actor.film_id = film.film_id
->)\G

*************************** 1. row ***************************
id: 1

select_type: PRIMARY
tаЫе: film
type: ALL

possiЫe_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: 951
Extra: Using where

*************************** 2. row ***************************
id: 2

select_type: DEPENDENT SUBQUERY
tаЫе: film_actor
type: ref possiЫe_keys: idx_ fk_ film_id

key: idx_fk_film_id

key_len: 2
ref: film.film_id

rows: 2
Extra: Using where; Using index

Ограничения оптимизатора MySQL 275

Обычно советуют переписать такой запрос с помощью LEFТ OUTER JOIN вместо под­
запроса. Теоретически в обоих случаях план выполнения должен быть одинаков.
Посмотрим, так ли это:

mysql> EXPLAIN SELECT film.film_id, film.language_id
-> FROМ sakila.film
-> LEFT OUTER JOIN sakila.film_actor USING(film_id)
-> WHERE film_actor.film_id IS NULL\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film
type: ALL

possiЫe_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: 951
Extra:

*************************** 2. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film_actor
type: ref possiЫe_keys: idx_fk_film_id

key: idx_fk_film_id
key_len: 2

ref: sakila.film.film_id
rows: 2

Extra: Using where; Using index; Not exists

Планы почти идентичны, но все же есть несколько различий.

Q Тип SELECT для таблицы film_actor равен DEPENDENT SUBQUERY в ОДНОМ запросе
и SIMPLE - в другом. Это различие просто отражает синтаксис, так как в первом

запросе используется подзапрос, а во втором - нет. С точки зрения операций об­
работчика это не слишком существенно.

Q В столбце Extra для второго запроса нет фразы Using where для таблицы film.
Но и это неважно, поскольку ключевое слово USING во втором запросе реализует
ту же семантику, что и раздел WHERE.

Q В столбце Extra для второго запроса стоит Not exists («Не существует») для
таблицы film_actor. Это пример работы алгоритма раннего завершения, который
мы упоминали ранее в этой главе. Он означает, что MySQL применила оптими­
зацию типа «Не существует» для того, чтобы избежать чтения более чем одной
строки из индекса idx_fk_film_id для таблицы film_actor. Это эквивалентно
коррелированному подзапросу NOT EXISTS(), поскольку обработка текущей строки
прекращается, как только найдено соответствие.

Таким образом, в теории MySQL выполняет запросы почти одинаково. Но на прак­
тике только измерение может показать, какой способ быстрее. Мы провели эталонное

276 Глава 6 • Оптимизация производительносrи запросов

тестирование обоих запросов в стандартной конфигурации системы. Результаты
приведены в табл. 6.1.

Таблица 6.1. Сравнение NOT EXISTS и LEFТ OUТER JOIN

Запрос Результат, запросов в секунду (QPS)
Подзапрос NOT EXISTS 360
LEFТ OUTERJOIN 425

Эталонное тестирование показало, что подзапрос немного медленнее!

Однако так бывает далеко не всегда. Иногда подзапрос может оказаться быстрее.
Например, он может оказаться вполне приемлемым, если вам нужно только увидеть
строки из одной таблицы, которые соответствуют строкам в другой таблице. Хотя
это описание на первый взгляд в точности совпадает с определением соединения,
на самом деле это не всегда одно и то же. Следующий запрос с соединением предна­

значен для поиска фильмов, в которых играет хотя бы один актер, но он возвращает
дубликаты, поскольку в некоторых фильмах актеров несколько:

mysql> SELECT film.film_id FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id);

Чтобы избавиться от дубликатов, надо использовать ключевое слово DISТINCT или
раздел GROUP ВУ:

mysql> SELECT DISTINCT film.film_id FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id);

Но что же мы на самом деле хотим выразить этим запросом и так ли очевидно наше

намерение из SQL-кoдa? Оператор EXISTS выражает логическую идею ~имеет соот­
ветствиеi>, не создавая строк-дубликатов и не требуя операций DISТINCT или GROUP
ВУ, для выполнения которых может понадобиться временная таблица. Вот как этот
запрос можно переписать с использованием подзапроса вместо соединения:

mysql> SELECT film_id FROМ sakila.film
-> WHERE EXISTS(SELECT * FROM sakila.film_actor
-> WHERE film.film_id = film_actor.film_id);

Мы провели эталонное тестирование, чтобы определить, какая стратегия быстрее.
Результаты представлены в табл. 6.2.

Табпица 6.2. Сравнение EXISТS и INNER JOIN

Запрос Результат, QPS
INNERJOIN 185
Подзапрос EXISTS 325

..

Здесь подзапрос выполняется намного быстрее, чем соединение.

Мы привели этот длинный пример, чтобы проиллюстрировать две вещи: во-первых,
не стоит слепо доверять категорическим заявлениям о неприемлемости подзапро-

Ограничения оптимизатора MySQL 277

сов, а во-вторых, нужно выполнять измерения, чтобы убедиться в верности своих
предположений относительно планов запросов и времени отклика. Последнее заме­

чание о подзапросах: это один из редких случаев, когда нужно упомянуть об ошибке

в MySQI" В MySQL 5.1.48 и более ранних версиях следующий синтаксис может
блокировать строку в tаЫе2:

SELECT ... FROМ taЫel WHERE col = (SELECT ... FROM tаЫе2 WHERE ...);

Эта ошибка, если вы с ней столкнетесь, может привести к тому, что производитель­
ность подзапросов будет разной при высоком параллелизме и в случае единственного
потока. Это ошибка 46947, и, хотя она уже исправлена, она еще раз подтверждает наш
тезис: не предполагайте.

Ограничения UNION
Иногда MySQL не может «опустить» условия с внешнего уровня UNION на внутрен­
ний, где их можно было бы использовать с целью ограничения результата или соз­
дания возможностей для дополнительной оптимизации.

Если вы полагаете, что какой-то из запросов, составляющих UNION, будет выпол­
няться быстрее при наличии LIMIТ, или знаете, что после объединения с другими
запросами результаты будут подвергнуты сортировке, то имеет смысл поместить
соответствующие ключевые слова в каждую часть UNION. Например, в ситуации,
когда вы объединяете две очень большие таблицы и ограничиваете результат пер­
выми 20 строками, MySQL сначала запишет обе таблицы во временную, а из нее
выберет всего 20 строк:

(SELECT first_name, last_name
FROM sakila.actor
ORDER ВУ last_name)

UNION ALL
(SELECT first_name, last_name

FROM sakila.customer
ORDER ВУ last_name)
LIMП 20;

Этот запрос сохранит 200 строк из таблицы актеров и 599 из таблицы клиентов во
временной таблице, а затем извлечет из нее первые 20 строк. Этого можно избежать,
добавив LIMIТ 20 к каждому запросу внутри UNION:

(SELECT first_name, last_name
FROM sakila.actor
ORDER ВУ last_name
LIMIТ 20)

UNION ALL
(SELECT first_name, last_name

FROM sakila.customer
ORDER ВУ last_name
LIMП 20)
LIMП 20;

278 Глава 6 • Оптимизация производительносrи запросов

Теперь во временной таблице будут храниться только 40 строк. Помимо улучшения
производительности, вам, вероятно, придется исправить запрос: порядок, в котором

строки извлекаются из временной таблицы, не определен, поэтому перед последним
ключевым словом LIMIТ должен быть общий ORDER ВУ.

Оптимизация слияния индексов

Как сказано в предыдущей главе, MySQL 5.0 и более поздние версии позволяют
использовать при выполнении запроса несколько индексов по одной таблице и по­

лучать объединение или пересечение результатов для выделения строк, соответству­
ющих всем условиям в разделе WHERE.

Распространение равенства

Иногда распространение равенства может вызвать неожиданные затраты. Рас­

смотрим, к примеру, гигантский список IN{) для какого-то столбца. Оптимизатору
известно, что он равен другим столбцам в других таблицах, благодаря наличию клю­
чевых слов WHERE, ON или USING, устанавливающих равенство столбцов.

Оптимизатор прибегнет к разделению списка, скопировав его во все связанные

столбцы в соединенных таблицах. Обычно это полезно, поскольку у оптимизатора
запросов и подсистемы выполнения появится больше возможностей определить,
где именно проверять сравнение со списком IN{). Но если список очень велик, то
и оптимизация, и выполнение могут оказаться медленными. В момент написания

книги нет никакого обходного пути решения этой проблемы, и если вы с ней стол­
кнетесь, вам придется изменить исходный код (это не проблема для большинства

разработчиков).

Параллельное выполнение

MySQL не умеет распараллеливать выполнение одного запроса на нескольких
процессорах. Эту возможность предлагают многие серверы баз данных, но только

не MySQL. Мы упоминаем о ней лишь для того, чтобы вы не тратили время в по­
пытках понять, как же заставить MySQL выполнять запрос параллельно!

Хеш-соединения

В момент написания книги MySQL не умеет выполнять настоящие хеш-соединения,
любое соединение производится методом вложенных циклов. Но можно эмулиро­
вать хеш-соединения с помощью хеш-индексов. Правда, если вы работаете не с под­

системой хранения Memory, то и сами хеш-индексы придется эмулировать. Как это
делается, мы продемонстрировали в подразделе ~хеш-индексы~.> в главе 5. MariaDB
может выполнить настоящее хеш-соединение.

Ограничения оптимизатора MySQL 279

Непоследовательный просмотр индекса

Исторически MySQL никогда не умела выполнять непоследовательный просмотр
индекса, то есть просмотр несмежных диапазонов индекса. При просмотре индекса

всегда необходимо задать начальную и конечную точки, даже если для запроса нужны

всего несколько несмежных строк в середине диапазона. MySQL просматривает весь
диапазон строк между двумя заданными точками.

Поясним это на примере. Предположим, имеется таблица с индексом, построенным

по столбцам (а, Ь), и мы хотим выполнить такой запрос:

mysql> SELECT ••• FROМ tЫ WНERE Ь BETWEEN 2 AND 3;

Поскольку индекс начинается со столбца а, а в условии WHERE он не фигурирует, то

MySQL вынуждена прибегнуть к полному сканированию таблицы и исключить не­
подходящие строки с помощью условия WHERE (рис. 6.5).

а Ь

2

з

4

2

2 2

2 з

2 4

з

з 2

з з

з 4

<прочие столбцы>

."данные .. .

".данные ...

."данные ...

. "данные ...

".данные ...

".данные ...

".данные ...

... данные ...

."данные ...

... данные ...

... данные ...

.. . данные ...

Раздел
WНERE

Рис. 6.5. MySQL сканирует всю таблицу в поисках нужных строк

Легко видеть, что существует более быстрый способ выполнения этого запроса.

Структура индекса (но не API подсистемы хранения MySQL) позволяет найти
на•~ало каждого диапазона значений, просмотреть этот диапазон до конца, затем

280 Глава 6 • Оптимизация производительности запросов

вернуться и перейти в начало следующего диапазона. На рис. 6.6 показано, как вы­
глядела бы такая стратегия, если бы MySQL могла претворить ее в жизнь.

(1--а--1,__ь-1-__ <_п_р_оч_и_е_ст_ол_б_цы_>_--1

2 ... данные ...

З ... данные ...

... данные ...

".данные".

3 2 ".данные".

3 3 ... данные .. .

Рис. 6.6. Непосnедовательный просмотр индекс.а, который в MySQL пока не реализован,
позволил бы выполнить запрос более эффективно

Обратите внимание на отсутствие раздела WHERE, который здесь ни к чему, потому
что сам индекс позволяет пропустить ненужные строки.

Конечно, это упрощенный пример; данный запрос легко было бы оптимизировать,
добавив еще один индекс. Однако существует немало случаев, когда добавление
индекса не решает проблемы. Например, запрос, в котором для первого индексного

столбца задано условие в виде диапазона, а для второго - сравнения на равенство.

Начиная с версии MySQL 5.0 непоследовательный просмотр индекса стал возможен
в некоторых ситуациях, например при нахождении минимального и максимального

значений в запросе с группировкой:

mysql> EXPLAIN SELECT actor_id, ll'IAX(film_id)
-> FROМ sakila.fil•_actor
-> GROUP ВУ actor_id\G

*************************** 1. row ***************************
id : 1

select_type: SIMPLE

tаЫе: film_actor
type: range possiЫe_keys: NULL

key: PRIМARY

key_len: 2
ref: NULL

rows: 396
Extra: Using index for group-by

Ограничения оптимизатора MySQL 281

Наличие слов Using index for group-by в плане, представленном командой EXPLAIN,
свидетельствует о непоследовательном просмотре индекса. Для данного частного

случая эта оптимизация хороша, но назвать ее универсальным алгоритмом непо­

следовательного просмотра индекса невозможно. Лучше подошел бы термин ~не­
последовательное взятие проб из индекса~.

До тех пор пока в MySQL не будет реализован универсальный алгоритм, можно
применять обходное решение: задавать константу или список констант для столбца,
указанного первым в ключе индекса. В предыдущей главе мы привели несколько

примеров, показывающих, как этот подход позволяет добиться неплохой произво­
дительности.

В MySQL 5.6 некоторые ограничения на сканирование непоследовательного инде­
кса будут исправлены с помощью технологии оптимизатора, называемой условным
индексом с магазинной памятью.

Функции MIN() и МАХ()
MySQL не очень хорошо оптимизирует некоторые запросы, содержащие функции
MIN() и МАХ(). Приведем пример:

mysql> SELECT MIN(actor_id) FROМ sakila.actor WНERE first_name = 'PENELOPE';

Поскольку по столбцу first_name нет индекса, этот запрос приводит к полному
просмотру таблицы. Когда MySQL сканирует первичный ключ, она теоретически
может прекратить поиск после нахождения первой подходящей строки, так как зна­

чения первичного ключа строго возрастают и, значит, во всех последующих строках

значение actor _id будет больше уже встретившегося. Однако в этом случае MySQL
продолжит сканирование до конца, в чем легко убедиться с помощью счетчиков SHOW

STATUS. Обходное решение - исключить MIN() и переписать запрос с применением
LIMIТ:

mysql> SELECT actor_id FROМ sakila.actor USE INDEX(PRIМARY)
-> WНERE first_name = 'PENELOPE' LIMIT 1;

Эта общая стратегия зачастую неплохо работает в тех случаях, когда без нее MySQL
стала бы просматривать больше строк, чем необходимо. Пуристы могут возразить,
что такой запрос входит в противоречие с самой идеей SQL. Предполагается, что мы
говорим серверу, что мы хотим получить, а уж он решает, как найти нужные сведения.

В данном же случае мы говорим MySQL, как выполнять запрос, при этом из самого
запроса неясно, что мы ищем минимальное значение. Это все правда, но иногда для

достижения высокой производительности приходится поступаться принципами.

282 Глава 6 • Оптимизация производительности запросов

SELECТ и UPDATE для одной и той же таблицы
MySQL не позволяет выполнить команду SELECT одновременно с командой UPDAТE.
На самом деле это не ограничение оптимизатора, но, зная, как MySQL выполняет
запросы, вы сможете обойти проблему. Далее приведен пример запроса, написанного

в полном соответствии со стандартом SQL, но в MySQL недопустимого. Этот запрос
обновляет каждую строку, записывая в нее количество похожих строк, имеющихся

в той же таблице:

mysql> UPDATE tЫ AS outer_tЫ
-> SET cnt = (
-> SELECТ count(*) FROМ tЫ AS inner_tЫ
-> WНERE inner_tЫ.type = outer_tЫ.type
->);

ERROR 1093 (НУ000): You can't specify target tаЫе 'outer_tЫ' for update in FROМ clause

Чтобы обойти это ограничение, можно воспользоваться производной таблицей,
поскольку MySQL материализует ее в виде временной таблицы. В результате
выполняются два запроса: SELECT в подзапросе и многотабличный UPDAТE с соеди­
ненными результатами таблицы и подзапроса. Подзапрос открывает и закрывает
таблицу перед тем, как внешний UPDATE открывает таблицу, поэтому запрос про­
ходит успешно:

mysql> UPDATE tЫ
-> INNER JOIN(
-> SELECT type, count(*) AS cnt
-> FROМ tЫ

-> GROUP ВУ type
->) AS der USING(type)
-> SET tЫ.cnt = der.cnt;

Подсказки оптимизатору запросов

В MySQL имеется множество подсказок оптимизатору запросов, которыми можно
воспользоваться, чтобы управлять планом выполнения, если предложенный опти­
мизатором вас не устраивает. Ниже приведены их перечень и рекомендации, когда

имеет смысл применять каждую. Подсказка включается в запрос, чей план выпол­

нения вы хотите изменить, и действует только для этого запроса. Точный синтаксис

подсказок можно найти в руководстве пользователя по MySQL. Некоторые из них
зависят от номера версии.

О HIGH_PRIORIТY и LOW_PRIORIТY. Эти подсказки говорят MySQL, какой приоритет
назначить данной команде относительно других команд, пытающихся обратиться
к тем же таблицам.

HIGH_PRIORIТY означает, что MySQL должна поместить команду SELECT в очередь
раньше всех прочих, ожидающих получения блокировок для модификации дан­
ных. Фактически команда SELECT должна быть выполнена как можно быстрее, а не
ожидать в очереди. Эта подсказка применима и к команде INSERT, в этом случае

Подсказки оптимизатору запросов 283

она просто отменяет действие глобального параметра LOW_ PRIORIТY, установлен­
ного на уровне сервера.

Подсказка LOW_PRIORIТY оказывает обратное действие: в этом случае команда
будет ждать завершения всех остальных команд, желающих обратиться к тем же

таблицам, даже если они были отправлены позже. Можно провести аналогию
с излишне вежливым человеком: он придерживает дверь в ресторан, пока есть

желающие войти, а сам голоден! Вы можете применить данную подсказку к ко­

мандам SELECT, INSERT, UPDATE, REPLACE и DELEТE.

Обе подсказки эффективны в подсистемах хранения, в которых реализована
блокировка на уровне таблиц, но в InnoDB и других подсистемах с более деталь­
ным контролем блокировки и конкурентного доступа они вам не понадобятся.
Будьте осторожны, применяя их к таблицам типа MyISAM, поскольку таким
образом можно запретить конкурентные вставки и существенно понизить про­
изводительность.

Подсказки HIGH_PRIORIТY и LOW_PRIORIТY часто понимают неправильно. Их смысл

не в том, чтобы выделить запросу больше или меньше ресурсов, чтобы «Сервер
уделил ему больше внимания», или поменьше, чтобы «сервер не перетруждался».
Они просто влияют на дисциплину обслуживания очереди команд, ожидающих
доступа к таблице.

D DELAYED. Эта подсказка применяется к командам INSERT и REPLACE. Команда
с данной подсказкой возвращает управление немедленно, а подлежащие вставке

строки помещаются в буфер и будут реально вставлены все сразу, когда таблица
освободится. Это наиболее полезно для журналирования и аналогичных прило­
жений, в которых нужно записывать много строк, не заставляя клиента ждать и не

выполняя операцию ввода/вывода для каждой команды в отдельности. Однако

у данного режима есть много ограничений. Например, отложенная вставка реа­

лизована не во всех подсистемах хранения, а функция LAST_INSERT_ID() в этом
случае неприменима.

D STRAIGHT _JOIN. Эта подсказка может встретиться либо сразу после ключевого
слова SELECT в команде SELECT, либо в любой другой команде между двумя со­
единяемыми таблицами. В первом случае она говорит серверу, что указанные
в запросе таблицы нужно соединять в порядке перечисления. Во втором - задает
порядок соединения таблиц, между которыми находится.

Подсказка STRAIGHT_JOIN полезна, если выбранный MySQL порядок соедине­
ния неоптимален или оптимизатор тратит чересчур много времени на его вы­

бор. В последнем случае поток слишком много времени проводит в состоянии
statistics, а включив эту подсказку, можно сократить пространство поиска
оптимизатора.

Использование команды EXPLAIN помогает увидеть, какой порядок выбрал опти­
мизатор, а затем переписать запрос, расположив таблицы именно в этом порядке,
и добавить подсказку STRAIGHT_JOIN. Это хорошая идея, если вы уверены, что фик­
сированный порядок не ухудшит производительность некоторых условий WHERE.
Однако не забывайте пересматривать такие запросы после перехода на новую

284 Глава 6 • Оптимизация производительности запросов

версию MySQL, поскольку могут появиться другие оптимизации, подавляемые
наличием STRAIGHT_JOIN.

о SQL_SМALL_RESUL т и SQL_BIG_RESUL Т. Эти подсказки применимы только к команде

SELECT. Они говорят оптимизатору, когда и как использовать временные таблицы

или сортировку при выполнении запросов с GROUP ВУ или DISТINCT. SQL_SМALL_RESUL Т

означает, что результирующий набор будет невелик, так что его можно поместить

в индексированную временную таблицу, чтобы не сортировать для группировки.
SQL_BIG_RESUL т, напротив, свидетельствует, что результат велик и лучше исполь­

зовать временные таблицы на диске с последующей сортировкой.

о SQL_BUFFER_RESULT. Эта подсказка говорит оптимизатору, что результаты нужно

поместить во временную таблицу и как можно скорее освободить табличные
блокировки. Это совсем не то, что буферизация на стороне клиента, описанная
нами ранее. Буферизация на стороне сервера может быть полезна, когда вы
не используете буферизацию на стороне клиента, поскольку позволяет избежать

потребления большого объема памяти клиентом и вместе с тем быстро освобо­
дить блокировки. Компромисс состоит в том, что теперь вместо памяти клиента

используется память сервера.

о SQL_CACHE и SQL_NO_CACHE. Эти подсказки говорят серверу о том, является или

не является данный запрос кандидатом на помещение в кэш запросов. О том, как

ими пользоваться, рассказано в следующей главе.

о SQL_CALC_FOUND_ROWS. Эта подсказка, строго говоря, не является подсказкой опти­

мизатору. Она не говорит MySQL, что нужно иначе планировать запрос. Вместо
этого она обеспечивает дополнительную функциональность, изменяя то, что на

самом деле делает запрос. Эта подсказка заставляет MySQL вычислить весь ре­
зультирующий набор, даже если имеется ключевое слово LIMIТ, ограничивающее
количество возвращаемых строк. Получить общее количество строк позволяет
функция FOUND_ROWS() (однако в подразделе «Оптимизация SQL_CALC_FOUND_
ROWS» далее в этой главе говорится о том, почему не следует пользоваться этой
подсказкой).

о FOR UPDATE и LOCK IN SHARE MODE. Эти подсказки также не являются подсказками

оптимизатору. Они управляют блокировками для команд SELECT, но только в тех
подсистемах хранения, где реализованы блокировки на уровне строк. Они позво­
ляют поставить блокировки на найденные строки. Данные подсказки не нужны

в запросах вида INSERT ••• SELECT, поскольку в этом случае MySQL 5.0 и более
поздних версий по умолчанию ставит блокировки чтения на строки исходной
таблицы. (Это поведение можно отменить, однако так делать не стоит. Мы рас­
скажем о причинах этого в главах, посвященных репликации и резервному ко­

пированию.)

Единственной встроенной подсистемой хранения, поддерживающей эти подсказ­

ки, является InnoDB. Применяя их, имейте в виду, что они подавляют некоторые
оптимизации, например покрывающие индексы. InnoDB не может монопольно
заблокировать строки, не обращаясь к первичному ключу, в котором хранится
информация о версиях строк.

Подсказки оптимизатору запросов 285

К сожалению, этими подсказками часто злоупотребляют, что приводит к серьез­
ным проблемам с блокировкой, что мы обсудим далее в этой главе. Следует из­
бегать их практически любыми средствами - как правило, можно найти лучший
способ сделать то, что вы пытаетесь сделать.

D USE INDEX, IGNORE INDEX и FORCE INDEX. Эти подсказки говорят оптимизатору о том,
какие индексы использовать или игнорировать при поиске строк в таблице (на­

пример, для принятия решения о порядке соединения). В версиях MySQL 5.0
и более ранних версиях они не влияют на выбор сервером индексов для сор­
тировки и группировки. В MySQL 5.1 можно дополнить подсказку ключевыми
словами FOR ORDER ВУ или FOR GROUP ВУ.

FORCE INDEX - то же самое, что USE INDEX, но эта подсказка сообщает оптимизатору
о том, что сканирование таблицы гораздо более затратно, чем поиск по индексу,
даже если индекс не очень полезен. Вы можете включить данные подсказки,

если полагаете, что оптимизатор выбрал неподходящий индекс, или если хотите
по какой-то причине воспользоваться конкретным индексом, например для не­

явного упорядочения без использования ORDER ВУ. Ранее мы приводили пример,
в котором показали, как эффективно получать минимальное значение с помощью

ключевого слова LIMIT.

В версии MySQL 5.0 и более поздних существуют также несколько конфигурацион­
ных переменных, влияющих на поведение оптимизатора.

D optimizer _search_depth. Эта переменная указывает оптимизатору, насколько
исчерпывающе исследовать частичные планы. Если запрос слишком долго пре­

бывает в состоянии statistics, можете попробовать уменьшить это значение.

D optimizer _prune_level. Эта переменная, которая по умолчанию включена, по­
зволяет оптимизатору пропускать некоторые планы, основываясь на количестве

исследованных строк.

D optimizer _swi tch. Эта переменная содержит набор флагов, которые включают
или отключают определенные функции оптимизатора. Например, в MySQL 5.1
вы можете использовать его для отключения плана запросов слияния индекса.

Первые две переменные контролируют режим сокращенного перебора планов

выполнения. Такое ~срезание углов» бывает полезно для повышения производи­
тельности при обработке сложных запросов, но чревато тем, что ради достижения
эффективности сервер может пропустить оптимальный план. Поэтому иногда имеет
смысл менять их знаqения.

Проверkа обновлений MySQL

ПопытJ<а перехитрить оптимизатор MySQL - как правило, неудачная идея. Обычно

это приводит к увеличению работы и повышению затрат на обслуживание при очень

небольшой выгоде. Это особенно актуально при обновлении MySQL, поскольку

286 Глава 6 • Оптимизация производительности запросов

подсказки оптимизатора, применяемые в ваших запросах, могут помешать использо­

ванию новых стратегий оптимизации.

В MySQL 5.0 к оптимизатору добавлен ряд возможностей, а еще не выпущенный
MySQL 5.6 будет иметь самые большие за продолжительное время изменения в опти­
мизаторе. Если вы переходите на одну из этих версий, то вряд ли захотите лишиться

преимуществ, которые они предлагают.

Новые версии MySQL обычно скачкообразно улучшают работу сервера, и это особен­
но справедливо для версий 5.5 и 5.6. Обновление MySQL обычно идет хорошо, но вам
все равно нужно тщательно протестировать изменения. Всегда есть вероятность того,

что вы столкнетесь с экстремальным случаем. Однако мы рады сообщить вам, что

такие проблемы можно очень просто предотвратить, приложив небольшие усилия.

Используйте инструмент pt-upgrade из пакета Percona Toolkit для проверки того,
хорошо ли ваши запросы работают в новой версии MySQL и не возвращают ли они
другие результаты.

Оптимизация запросов конкретных типов

В этом разделе мы дадим советы по оптимизации некоторых частных случаев запро­

сов. Большей частью эти темы подробно рассмотрены в других местах книги, но мы

хотели представить общий перечень типичных проблем оптимизации, чтобы потом

на него можно было ссылаться.

Большинство советов в этом разделе зависят от версии MySQL и к последующим
версиям, возможно, будут неприменимы. Нет никаких причин, чтобы в будущем

сервер сам не смог производить некоторые или даже все описанные оптимизации.

Оптимизация запросов с COUNT()
Агрегатная функция COUNT{) и способы оптимизации содержащих ее запросов - это,

пожалуй, один из десяти хуже всего понимаемых аспектов MySQL. Поиск в Сети даст
столько неправильной информации, что мы даже думать об этом не хотим.

Но прежде, чем переходить к оптимизации, важно понять, что в действительности

делает функция COUNT().

Что делает COUNТ()

COUNT() - это особая функция, которая решает две очень разные задачи: подсчиты­

вает значения и строки. Значение - это выражение, отличное от NULL (NULL означает

отсутствие какого бы то ни было значения). Если вы укажете имя столбца или

какое-нибудь другое выражение в скобках, то COUNT{) посчитает, сколько раз это

Оптимизация запросов конкретных типов 287

выражение имеет значение. Многие в этом путаются, отчасти потому, что вопрос

о значениях и NULL сам по себе не прост. Если вы ощущаете потребность понять,

как все это работает, рекомендуем прочитать хорошую книгу об основных SQL.
(Интернет вовсе не всегда можно считать надежным источником информации по

этой теме.)

Вторая форма COUNT() просто подсчитывает количество строк в результирующем

наборе. Так MySQL поступает, когда точно знает, что выражение внутри скобок
не может быть равно NULL. Наиболее очевидный пример - выражение COUNT(*),

специальная форма COUNT () , которая вовсе не сводится к подстановке вместо

специального символа * полного списка столбцов таблицы, как вы, возможно,
подумали. На самом деле столбцы вообще игнорируются, а подсчитываются сами

строки.

Одна из наиболее часто встречающихся ошибок - задание имени столбца в скобках,
когда требуется подсчитать строки. Если вы хотите знать, сколько строк в резуль­

тирующем наборе, всегда используйте COUNT(*). Тем самым вы недвусмысленно со­

общите о своем намерении и избежите низкой производительности.

Мифы о MyISAM

Распространено неверное представление о том, что для таблиц типа MylSAM запро­
сы, содержащие функцию COUNT(), выполняются очень быстро. Они быстры, но лишь
в очень редком случае при запросе COUNT(*) без условия WHERE, то есть при подсчете

общего количества строк в таблице. MySQL может оптимизировать такой запрос, по­
скольку подсистеме хранения всегда известно, сколько в таблице строк. Если MySQL
знает, что столбец col не может содержать NULL, то она может оптимизировать и вы­

ражение COUNT(col), самостоятельно преобразовав его в COUNT(*).

MyISAM не обладает никакими магическими возможностями для подсчета строк,
когда в запросе есть фраза WHERE, равно как и для более общего случая - подсчета

значений, а не строк. Возможно, конкретный запрос она выполнит быстрее, чем

другая подсистема хранения, а может, и нет. Это зависит от множества факторов.

Простые оптимизации

Иногда оптимизацию COUNT(*) в MylSAM можно удачно применить, если требуется
подсчитать все строки, кроме очень небольшого числа хорошо проиндексированных

строк. В следующем примере мы воспользовались стандартной базой данных world,

чтобы показать, как можно эффективно подсчитать количество городов с идентифи­

каторами больше 5. Можно было бы записать запрос так:

mysql> SELECT COUNT(*) FROМ world.City WHERE ID > S;

Если вы проверите его с помощью команды SHOW STATUS, то обнаружите, что он про­

сматривает 4079 строк. Если изменить условие на противоположное и из общего

288 Глава 6 • Оптимизация производительности запросов

количества вычесть количество городов с идентификаторами, меньшими либо рав­
ными 5, то число просмотренных строк сократится до пяти:

mysql> SELECT (SELECT COUNT(*) FROМ world.City) - COUNT(*)
-> FROМ world.City WНERE ID <= S;

В этом варианте читается меньше строк, поскольку на стадии оптимизации подза­

прос преобразуется в константу, что и показывает EXPLAIN:

+----+-------------+-------+ ... +------+------------------------------+
1 id 1 select_type 1 tаЫе 1 ... 1 rows 1 Extra 1

+----+-------------+-------+ ... +------+------------------------------+
1 1 PRIМARY 1 City 1 ... 1 6 1 Using where; Using index 1

2 1 SUBQUERY 1 NULL 1 ... 1 NULL 1 Select taЫes optimized away 1

+----+-------------+-------+ ... +------+------------------------------+

В списках рассылки и IRС-каналах часто спрашивают, как с помощью одного запроса

подсчитать, сколько раз встречаются несколько разных значений в одном столбце.
Например, вы хотите написать запрос, подсчитывающий предметы разных цветов.

Использовать OR (например, SELECТ COUNT(color= 'Ыuе' OR color= 'red') FROМ items;)

нельзя, потому что невозможно будет разделить счетчики разных цветов. Указать
цвета в разделе WHERE (например, SELECT COUNT(*) FROM i tems WHERE color= 'Ьlue' AND

color= ' red' ;) тоже нельзя, поскольку цвета являются взаимно исключающими.

Задачу тем не менее можно решить с помощью такого запроса 1 :

mysql> SELECT SUM(IF(color = 'Ыuе', 1, 0)) AS Ьlue,SUM(IF(color = 'red', 1, 0))
-> AS red FROМ items;

А вот еще один эквивалентный запрос, в котором вместо функции SUM() исполь­

зуется COUNT(). Он основан на том, что выражение не будет иметь значения, когда
условие ложно:

mysql> SELECT COUNT(color = 'Ыuе' OR NULL) AS Ыuе, COUNT(color = 'red' OR NULL)
-> AS red FROМ items;

Использование приближенных значений

Иногда вам не нужен точный подсчет, так что можете использовать приближенные
значения. Оценка количества строк, выполненная оптимизатором в команде EXPLAIN,

как правило, хорошо подходит для этих целей. Просто добавьте к запросу команду

EXPLAIN.

В других случаях точное количество даже менее эффективно, чем приближенное
значение. Один клиент попросил помочь подсчитать количество активных пользова­

телей на своем сайте. Счетчик пользователей кэшировался и отображался в течение
30 минут, после чего обновлялся и снова кэшировался. Тем самым результат, по
сути, был неточным. Поэтому приближенное значение было вполне приемлемо.
Для того чтобы гарантированно не учитывать неактивных пользователей и пользо­
вателя ~по умолчанию», у которого в приложении был специальный идентификатор,

Вы также можете написюь выражения SUM() в виде SUM(color = 'Ьlue') и SUM(color = 'red').

Оптимизация запросов конкретных типов 289

запрос включал несколько условий WHERE. Удаление этих условий слегка изменило
полученную величину, но сделало запрос намного более эффективным. Дальнейшая
оптимизация заключалась в устранении ненужного ключевого слова DISТINCT, что

позволило избежать файловой сортировки. Переписанный запрос был намного бы­
стрее и возвращал почти те же результаты.

Более сложные оптимизации

В общем случае запросы, содержащие COUNT(}, с трудом поддаются оптимизации,
поскольку обычно они должны подсчитать много строк (то есть получить доступ
к большому объему данных). Единственная возможность оптимизации внутри самой
MySQL - использование покрывающих индексов. Если этого недостаточно, стоит

внести изменения в архитектуру приложения. Можно рассмотреть вариант создания

сводных таблиц (рассмотрены в главе 4) или применить внешнюю систему кэши­
рования, такую как memcached. Возможно, вам придется столкнуться с известной
дилеммой: ~Быстро, точно, просто - выберите любые два~.

Оптимизация запросов с JOIN
Эта тема появляется фактически на протяжении всей книги, но сейчас упомянем

несколько важных моментов.

1:1 Убедитесь, что по столбцам, используемым в разделах ON или USING, построены
индексы. При добавлении индексов учитывайте порядок соединения. Если табли­
цы А и В соединяются по столбцу С, а оптимизатор решит, что их надо соединять

в порядке В, А, то индексировать таблицу В не обязательно. Неиспользуемые
индексы лишь влекут за собой дополнительные расходы. В общем случае следу­

ет индексировать только вторую таблицу в порядке соединения, если, конечно,
индекс не нужен для каких-то других целей.

1:1 Старайтесь, чтобы в выражениях GROUP ВУ и ORDER ВУ встречались столбцы только
из одной таблицы, тогда у MySQL появится возможность воспользоваться для
этой операции индексом.

1:1 Будьте внимательны при переходе на новую версию MySQL, поскольку в разные
моменты изменялись синтаксис соединения, приоритеты операторов и другие

аспекты поведения. Конструкция, которая раньше была обычным соединением,
вдруг становится декартовым произведением, то есть совершенно другим типом

соединения, возвращающим другие результаты, а то и вовсе оказывается синтак­

сически некорректной.

Оптимизация подзапросов

Самый важный совет, который мы можем дать относительно подзапросов: старайтесь

использовать вместо них соединение, по крайней мере в текущих версиях MySQL.
Эту тему мы подробно рассматривали в настоящей главе.

290 Глава 6 • Оптимизация производительности запросов

Однако совет «предпочитайте соединения» может уrратить актуальность, когда вый­

дут новые версии. Если вы используете MySQL 5.6 или более новых версий либо
MariaDB, подзапросы - это совсем другое дело.

Оптимизация GROUP ВУ и DISТINCf
Во многих случаях MySQL оптимизирует эти два вида запросов схожими спо­
собами: фактически она часто конвертирует один в другой на стадии оптимизации.

Как всегда, выполнение обоих можно ускорить при наличии подходящих индексов,

и это наилучший путь их оптимизации.

Если подходящего индекса не существует, MySQL может применить одну из двух
стратегий реализации GROUP ВУ: воспользоваться временной таблицей или прибегнуrь
к файловой сортировке. Для конкретного запроса более эффективным может

оказаться как тот, так и другой подход. Чтобы заставить оптимизатор выбрать нуж­

ный вам метод, включите в запрос подсказки SQL_BIG_RESUL Т или SQL_SМALL_RESUL Т,

которые были рассмотрены чуrь раньше.

Если нужна группировка по значению столбца, который извлекается при соединении

из справочной таблицы, то обычно более продуктивно группировать по идентифика­

тору из этой таблицы, а не по его значению. Например, следующий запрос написан

не очень удачно:

mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
-> FROМ sakila.film_actor
-> INNER JOIN sakila.actor USING(actor_id)
-> GROUP ВУ actor.first_name, actor.last_name;

Лучше написать его так:

mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
-> FROM sakila.film_actor
-> INNER JOIN sakila.actor USING(actor_id)
-> GROUP ВУ film_actor.actor_id;

Группировка по столбцу actor. actor _id может оказаться эффективнее, чем по столб­
цу film_actor. actor _id. Чтобы выбрать правильное решение, тестируйте запрос на

реальных данных.

В этом примере используется тот факт, что имя и фамилия актера зависят от значе­

ния поля actor _id, поэтому результаты получатся одинаковыми. Однако не всегда
можно так беззаботно включать в список SELECT столбцы, по которым не производит­

ся группировка, в надежде получить тот же самый эффект. Более того, в конфигураци­

онном файле сервера может быть задан параметр SQL_МODE, который вообще запрещает

такой режим. Чтобы обойти эту сложность, можно воспользоваться функциями MIN()
или МАХ(), если точно известно, что значения в группе различны, так как зависят от

группируемого столбца, или если неважно, какое значение будет получено:

mysql> SELECT MIN(actor.first_name), МAX(actor.last_name), ••• ;

Оптимизация запросов конкретных типов 291

Пуристы могли бы возразить, что группировка производится не по тому столбцу, что
нужно, и были бы правы. Фиктивные MIN() или МАХ() - признак того, что запрос струк­

турирован неправильно. Однако иногда вас волнует только быстрота его выполнения.

Пуристы были бы удовлетворены такой формой записи этого запроса:

mysql> SELECT actor.first_name, actor.last_name, c.cnt
-> FROМ sakila.actor
-> INNER]OIN (
-> SELECT actor_id, COUNТ(*) AS cnt
-> FROМ sakila.film_actor
-> GROUP ВУ actor_id
-> AS с USING(actor_id) ;

Однако затраты на создание и заполнение временной таблицы, необходимой для

обработки подзапроса, могут оказаться слишком высокими по сравнению с мелким
отступлением от принципов реляционной теории. Помните, что у временной табли­

цы, создаваемой в процессе выполнения подзапроса, нет индексов 1 •

В общем случае не стоит включать в список SELECT столбцы, по которым не произво­

дится группировка, так как результаты получаются недетерминированными и легко

могут измениться, если вы создадите другой индекс или оптимизатор выберет иную

стратегию. Большинство встречавшихся нам запросов такого рода появились или

случайно (поскольку сервер не возражает), или в результате лености программиста,

а не потому, что были специально задуманы ради оптимизации. Лучше явно выражать

свои намерения. На самом деле мы даже рекомендуем устанавливать конфигура­

ционной переменной SQL_MODE режим ONL Y _FULL_GROUP _ВУ, чтобы сервер выдавал

сообщение об ошибке, а не разрешал писать плохие запросы.

MySQL автоматически упорядочивает результат запроса с группировкой по столб­
цам, перечисленным в условии GROUP ВУ, если в условии ORDER ВУ явно не указано

иное. Если для вас порядок не имеет значения, но вы видите, что в плане выполнения

присутствует файловая сортировка, то можете включить в запрос указание ORDER ВУ

NULL, которое подавляет автоматическую сортировку. Можно также поместить сразу

после GROUP ВУ необязательное ключевое слово DESC или ASC, задающее направление

сортировки.

Оптимизация GROUP ВУ WIТH ROLLUP

Вариацией на тему группирующих запросов является суперагрегирование резуль­

татов. Для этого предназначено указание WITH ROLLUP, но ее оптимизация может

оставлять желать лучшего. С помощью команды EXPLAIN проверьте, как выполняется

запрос, обращая особое внимание на то, производится ли группировка посредством

файловой сортировки или созданием временной таблицы: попробуйте убрать WIТH
ROLLUP и посмотрите, будет ли применен тот же способ группировки. Возможно,

Кстати, это еще одно ограничение, исправленное в MariaDB.

292 Глава 6 • Оптимизация производительности запросов

придется принудительно указать метод группировки, включив в запрос вышеупо­

мянутые подсказки.

Иногда оказывается эффективнее выполнить суперагрегирование в самом приложе­

нии, даже если для этого придется запросить у сервера больше строк. Можно также

воспользоваться вложенным подзапросом в условии FROM или создать временную

таблицу для хранения промежуточных результатов, а затем выполнить запрос к вре­

менной таблице с ключевым словом UNION.

Наилучшим подходом станет тот, в котором функциональность WIТH ROLLUP будет
отдана на откуп приложению.

Оптимизация LIMIТ и OFFSEТ

Запросы, содержащие ключевые слова LIMIТ и OFFSET, часто встречаются в системах,
выполняющих разбиение на страницы, и почти всегда в сочетании с ORDER ВУ. Полез­

но иметь индекс, поддерживающий нужное упорядочение, иначе серверу придется

слишком часто прибегать к файловой сортировке.

Типичная проблема - слишком большое смещение. Если в запросе встречается
фраза LIMIТ 10000, 20, то сервер сгенерирует 1 О 020 строк и отбросит первые 1 О ООО,
а это очень затратно. В предположении, что доступ ко всем страницам выполняется

с одинаковой частотой, такой запрос просматривает в среднем половину таблицы.
Для оптимизации можно либо наложить ограничения на то, сколько страниц раз­

решено просматривать, либо попытаться реализовать обработку больших смещений

более эффективно.

Один из простых приемов повышения производительности - выполнять смещение,

пользуясь покрывающим индексом, а не исходной таблицей. Затем полученные

результаты можно соединить с полными строками, чтобы дополнительно выбрать
интересующие столбцы. Такой подход может оказаться намного эффективнее. Рас­

смотрим следующий запрос:

mysql> SELECT film_id, description FROМ sakila.film ORDER ВУ title LIMIT se, 5;

Если таблица очень велика, то его стоит переписать в следующем виде:

mysql> SELECT film.film_id, film.description
-> FROМ sakila.film
-> INNER JOIN (
-> SELECT film_id FROМ sakila.film
-> ORDER ВУ title LIMIT se, 5
->) AS lim USING(film_id);

Это производное соединение работает, поскольку серверу приходится просматривать
так мало данных, как это только возможно в индексе, не обращаясь к самим строкам.

А после того, как нужные строки найдены, их соединяют с исходной таблицей для
того, чтобы сделать выборку недостающих столбцов. Аналогичная методика при­

менима к соединениям с ключевым словом LIMIТ.

Оптимизация запросов конкретных типов 293

Иногда можно также преобразовать запрос с LIMIТ в позиционный запрос, который

сервер сможет выполнить путем просмотра диапазона индекса. Например, если пред­

варительно вычислить столбец posi tion и построить по нему индекс, то предыдущий
запрос можно будет переписать так:

mysql> SELECT film_id, description FROМ sakila.film
-> WHERE position BEТWEEN 50 AND 54 ORDER ВУ position;

Похожая проблема возникает при ранжировании данных, причем обычно к этой
задаче примешивается раздел GROUP ВУ. Почти наверняка вам придется заранее вы­

числять и сохранять ранги.

Проблемой при работе с ключевыми словами LIMIТ и OFFSET на самом деле является

OFFSET, из-за которого сервер генерирует и отбрасывает строки. Если вы исполь­

зуете какую-то закладку для запоминания позиции последней выбранной строки,

то можете сгенерировать следующий набор строк, начиная с этой позиции, вместо

использования OFFSEТ. Например, если вы хотите разбивать на страницы записи об

аренде, начиная с последнего заключенного арендного договора и двигаясь назад,

то можете быть уверены, что их первичные ключи всегда увеличиваются 1 • Первый

набор результатов можно получить следующим образом:

mysql> SELECT • FROМ sakila.rental
-> ORDER ВУ rental_id DESC LIMIT 20;

Этот запрос возвращает арендные договоры с идентификаторами с 16049 по 16030.
Следующий запрос может продолжить возвращать договоры с этой точки:

mysql> SELECT • FROМ sakila.rental
-> WНERE rental_id < 16830
-> ORDER ВУ rental_id DESC LIMIT 20;

Самое приятное в этой методике то, что она одинаково эффективна независимо от

того, в каком месте таблицы вы находитесь.

Альтернативой может стать предварительное вычисление итогов или соединение со

вспомогательными таблицами, которые содержат только первичный ключ и столбцы,

необходимые для выполнения ORDER ВУ. Можно также воспользоваться поисковой

системой Sphinx (дополнительную информацию см. в приложении Е).

Оптимизация SQL_CALC_FOUND_ROWS

Еще одной широко распространенный методикой оптимизации разбиения на стра­

ницы является включение в запрос с ключевым словом LIMIТ подсказки SQL_CALC_

FOUND_ROWS. Применив этот прием, вы узнаете, сколько строк вернул бы сервер,

если бы слова LIMIТ не было.

Кажется, что щюисходящее не очень удачно описано. Первичные ключи увеличиваются от

начала к концу. Но если двигаться в обратную сторону, то они уменьшаются. - Примеч. пер.

294 Глава б • Оптимизация производительности запросов

Может показаться, будто здесь скрыто какое-то волшебство, позволяющее серверу
предсказать, сколько строк он смог бы найти. Увы, на деле все обстоит не так: сервер

не умеет подсчитывать строки, которые не отбирал. Это ключевое слово означает

лишь, <по сервер должен сгенерировать и отбросить оставшуюся часть результиру­
ющего набора, а не останавливаться, выбрав затребованное количество строк. Это

очень затратно.

Лучше включить в состав элемента разбиения на страницы ссылку на следующую
страницу. Предположив, что на странице выводится 20 результатов, мы отбираем
с помощью ключевого слова LIMIТ 21 строку, а выводим только 20. Если 21-я строка
существует, значит, имеется следующая страница, и мы формируем ссылку «следу­

ющая».

Еще одной возможностью является выбор и кэширование намного большего ко­

личества строк, чем необходимо, - скажем, 1000 - и извлечение последующих

страниц из кэша. Такая стратегия позволяет приложению узнать размер полного

результирующего набора. Если в нем меньше 1 ООО строк, то точно известно, сколько
формировать ссылок на страницы, если больше, то можно просто вывести сообще­

ние: «Найдено более 1000 результатов». Обе стратегии гораздо эффективнее, чем
генерация полного набора с последующим отбрасыванием большей его части.

Иногда вы можете просто оценить полный размер результирующего набора, вы­

полнив команду EXPLAIN и посмотрев на столбец rows в результате (эй, даже Google
не показывает точное количество результатов!).

Даже если вы не можете применить ни один из описанных ранее приемов, выполне­

ние отдельного запроса COUNT (*) для нахождения количества строк может оказаться
намного быстрее режима SQL_CALC_FOUND_ROWS, если удастся воспользоваться по­

крывающим индексом.

Оптимизация UNION
MySQL всегда выполняет запросы с UNION путем создания и заполнения временной
таблицы. К подобным запросам MySQL может применить не так уж много оптими­
заций. Но вы в состоянии вручную помочь оптимизатору, «опустив вниз» фразы

WHERE, LIMIТ, ORDER ВУ и другие условия (то есть скопировав их из внешнего запроса
в каждый SELECT, входящий в UNION).

Очень важно всегда употреблять UNION ALL, если только вы не хотите, чтобы сервер
устранял строки-дубликаты. Когда ключевое слово ALL отсутствует, MySQL будет
создавать временную таблицу в режиме distinct, а это значит, что для соблюдения
уникальности строки сравниваются целиком. Такая операция весьма затратна. Од­

нако имейте в виду, что наличие слова ALL не отменяет необходимости во временной
таблице. MySQL обязательно помещает в нее результаты, а затем читает их оттуда,
даже если без этого можно обойтись (например, когда результаты можно вернуть
напрямую клиенту).

Оптимизация запросов конкретных типов 295

Статический анализ запросов

Пакет Percona Toolkit содержит pt-query-advisor - инструмент, который разбирает

журнал запросов, анализирует паттерны запросов и дает раздражающе подробный

совет о потенциально опасных приемах в нем. Это своего рода инструмент проверки

качества кода для запросов MySQL. Она отловит многие общие проблемы, похожие
на те, о которых мы упоминали в предыдущих разделах.

Переменные, определяемые пользователем

О переменных, определяемых пользователем в MySQL, часто забывают, хотя они мо­
гут оказаться мощным инструментом при написании эффективных запросов. Особенно

хорошо они работают для запросов, в которых можно получить выигрыш от сочетания

процедурной и реляционной логики. В чистой реляционной теории все таблицы рас­
сматриваются как неупорядоченные множества, которыми сервер как-то манипулиру­

ет целиком. Подход MySQL более прагматичен. Его можно было бы назвать слабой
стороной, но если вы знаете, как ею воспользоваться, то сумеете обратить слабость
в силу. И тут могут помочь переменные, определяемые пользователем.

Переменные, определяемые пользователем, - это временные контейнеры для значе­

ний, чье существование ограничено временем жизни соединения с сервером. Опре­

деляются они простым присвоением с помощью команд SЕТ или SELECT1:

mysql> SET @one := 1;
mysql> SET @min_actor := (SELECT MIN(actor_id) FROМ sakila.actor);
mysql> SET @last_week := CURRENT_DATE-INTERVAL 1 WEEK;

Затем эти переменные можно использовать в различных частях выражений:

mysql> SELECT ••• WНERE col <= @last_week;

Прежде чем начать рассказ о сильных сторонах переменных, определяемых пользо­

вателем, рассмотрим некоторые их особенности и недостатки и покажем, для каких

целей их нельзя использовать.

1:1 Они подавляют кэширование запроса.

1:1 Их нельзя использовать в тех местах, где требуется литерал или идентификатор,
например вместо имени таблицы или столбца либо в разделе LIMIТ.

1:1 Они связаны с конкретным соединением, поэтому не годятся для передачи ин­
формации между соединениями.

1:1 При использовании пула соединений или устойчивых соединений они могут
привести к интерференции между, казалось бы, изолированными участками кода.

(Это означает, что в коде или в пуле соединений есть ошибка. Тем не менее такое

происходит.)

В некоторых контекстах можно использовать просто знак равенства=, но мы считаем, что

во избежание неоднозначности лучше всегда употреблять знак :=.

296 Глава 6 • Оптимизация производительности запросов

1:1 В версиях, предшествующих MySQL 5.0, они были чувствительны к регистру,
поэтому нужно обращать внимание на совместимость.

1:1 Нельзя явно объявить тип переменной, а точки, в которых MySQL принимает ре­
шение о типе неопределенной переменной, в разных версиях различаются. Самое

правильное - присвоить начальное значение 0 переменным, предназначенным для
хранения целых чисел, 0. 0 - переменным, предназначенным для хранения чисел

с плавающей точкой, и ' ' (пустая строка) - переменным, предназначенным для

хранения строк. Тип переменной изменяется в момент присваивания ей значения:

в MySQL - динамическая типизация переменных, определяемых пользователем.

1:1 В некоторых ситуациях оптимизатор может вообще исключить такие перемен­
ные, поэтому цель их использования не будет достигнута.

1:1 Порядок и даже момент присваивания переменной значения не всегда детермини­

рован и может зависеть от выбранного оптимизатором плана выполнения. Далее
вы увидите, что результат может оказаться совершенно обескураживающим.

1:1 Приоритет оператора присваивания : = ниже, чем всех остальных операторов,
поэтому следует явно расставлять скобки.

1:1 Наличие неопределенной переменной не приводит к синтаксической ошибке,
поэтому легко допустить ошибку, не сознавая этого.

Оптимизация запросов ранжирования

Одной из наиболее важных особенностей переменных является то, что можно одно­
временно присвоить переменной значение и воспользоваться им. Иными словами,

результат операции присваивания - это L-value. В следующем примере мы одно­
временно вычисляем и выводим номер строки:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS rownum

-> FROМ sakila.actor LIMIT 3;
+----------+--------+
1 actor_id 1 rownum 1

+----------+--------+
1 1 1 1
2 1 2 1

3 1 3 1

+----------+--------+

Сам по себе этот пример не слишком интересен, поскольку просто показывает, как
можно продублировать первичный ключ таблицы. Тем не менее и у него есть воз­
можности применения, одна из них - ранжирование строк. Давайте напишем запрос,

который возвращает идентификаторы десяти актеров, сыгравших в наибольшем ко­
личестве фильмов, причем значение в столбце rank должно быть одинаково у актеров,
сыгравших в одном и том же количестве фильмов. Начнем с запроса, выбирающего
актеров и количество фильмов, в которых они сыграли:

mysql> SELECT actor_id, COUNT(*) as cnt
-> FROМ sakila.film_actor
-> GROUP ВУ actor_id

Оптимизация запросов конкретных типов 297

-> ORDER ВУ cnt DESC
-> LIMIТ 10;

+----------+-----+
1 actor_id 1 cnt 1

+----------+-----+
107 42
102 41
198 40
181 39

23 37
81 36

106 35
60 35
13 35

158 35
+----------+-----+

Теперь добавим ранг, который должен быть одинаков у всех актеров, сыгравших
в 35 фильмах. Для этого нам понадобятся три переменные: текущий ранг, счетчик
фильмов для предыдущего актера и счетчик фильмов для текущего актера. Мы бу­
дем изменять ранг при изменении показаний счетчика фильмов. Вот как выглядит

первая попытка:

mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
mysql> SELECT actor_id,

-> @curr_cnt := COUNT(*) AS cnt,
-> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
-> @prev_cnt := @curr_cnt AS dummy
-> FROМ sakila.film_actor
-> GROUP ВУ actor_id
-> ORDER ВУ cnt DESC
-> LIMIТ 10;

+----------+-----+------+-------+
1 actor_id 1 cnt 1 rank 1 dummy 1

+----------+-----+------+-------+
107 1 42 1

102 1 41 1

0 1
0 1

0 1
0 1

Упс! Ранг и счетчик все время остаются равными нулю. Почему?

Невозможно дать универсальный ответ на этот вопрос. Проблема может быть вызва­
на просто ошибкой при написании имени переменной (в данном случае это не так)
или чем-то более сложным. В нашем примере EXPLAIN показывает, что применяются
временная таблица и файловая сортировка, поэтому переменные вычисляются
не в тот момент, когда мы этого ожидаем.

Такое загадочное поведение довольно часто встречается во время работы с поль­
зовательскими переменными в MySQL. Отлаживать подобные ошибки трудно, но
затраченные на это усилия окупаются с лихвой. Ранжирование средствами SQL
обычно требует квадратичных алгоритмов, таких как подсчет различного количества
актеров, сыгравших в большем количестве фильмов, тогда как решение с исполь­
зованием переменных, определенных пользователем, оказывается линейным, а это

существенное улучшение.

298 Глава 6 • Оптимизация производительности запросов

Простое решение для данного случая состоит в добавлении в запрос еще одного

уровня временных таблиц за счет подзапроса в разделе FROM:

mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
-> SELECT actor_id,
-> @curr_cnt := cnt AS cnt,
-> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
-> @prev_cnt := @curr_cnt AS dummy
-> FROМ (
-> SELECT actor_id, COUNT(*) AS cnt
-> FROМ sakila.film_actor
-> GROUP ВУ actor_id
-> ORDER ВУ cnt DESC
-> LIMIТ 10
-> as der;

+----------+-----+------+-------+
1 actor_id 1 cnt 1 rank 1 dummy 1

+----------+-----+------+-------+
107 42 1 42
102 41 2 41
198 40 3 40
181 39 4 39

23 37 5 37
81 36 6 36

106 35 7 35
60 35 7 35
13 35 7 35

158 35 7 35
+----------+-----+------+-------+

Старайтесь не извлекать
только что измененную строку

Что делать, если вы хотите обновить строку, а затем получить некоторую информа­

цию об этом без повторного обращения к ней? К сожалению, MySQL не поддержи­
вает ничего похожего на функционал UPDAТE RETURNING, имеющийся в PostgreSQL,
который был бы полезен для этой цели. Вместо этого вы можете использовать пере­

менные. Например, один из наших клиентов хотел узнать, как наиболее эффективно
присвоить временной метке текущее время, а затем узнать, что это за время. Код

выглядел следующим образом:

UPDATE tl SET lastUpdated = NOW() WHERE id = 1;
SELECT lastUpdated FROM tl WHERE id = 1;

Мы использовали переменную и переписали этот запрос следующим образом:

UPDATE tl SET lastUpdated = NOW() WHERE id = 1 AND @now := NOW();
SELECТ @now;

В обоих случаях применяются два сетевых обращения, но второй запрос не использу­

ет таблиц, поэтому он быстрее. (В вашей ситуации скорость может отличаться. Воз­
можно, вам это улучшение не подойдет, но оно делалось для конкретного клиента.)

Оптимизация запросов конкретных типов 299

Подсчет операций UPDATE и INSERT

Что делать, если вы используете INSERT ON DUPLICAТE КЕУ UPDAТE и хотите узнать,

сколько строк было вставлено и не вызвало конфликта с существующими строками,

а сколько было обновлений строк? Кристиан Кёнтопп (Kristian Kohntopp) опубли­
ковал решение этой задачи в своем блоге 1 • Суть методики в следующем:

INSERT INTO tl(cl, с2) VALUES(4, 4), (2, 1), (3, 1)
ON DUPLICATE КЕУ UPDATE

cl = VALUES(cl) + (0 * (@х := @х +1));

Запрос увеличивает значение переменной @х при возникновении конфликта, ко­

торый вызывает выполнение части запроса, содержащей UPDATE. Он скрывает зна­

чение переменной в выражении, которое умножается на ноль, поэтому переменная

не влияет на конечное значение, присвоенное столбцу. Клиентский протокол MySQL
возвращает общее количество затронутых строк, поэтому нет необходимости под­

считывать его с помощью пользовательской переменной.

Оценка детерминированного порядка

Большинство проблем в ходе работы с пользовательскими переменными возникает

из-за того, что присваивание и чтение значений выполняются на разных стадиях

обработки запроса. Например, невозможно предсказать, что произойдет, если при­

своить значение в условии SELECT, а прочитать - в условии WHERE. Возможно, вам

покажется, что следующий запрос вернет одну строку, однако в реальности дело

обстоит иначе:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt

-> FROМ sakila.actor
-> "11iERE @rownum <= 1;

+----------+------+
1 actor_id 1 cnt
+----------+------+

1 1 1 1

2 1 2 1

+----------+------+

Так происходит потому, что разделы WHERE и SELECT обрабатываются на разных ста­

диях процесса выполнения запроса. Это будет даже более наглядно, если добавить

еще одну стадию, включив раздел ORDER ВУ:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt

-> FROМ sakila.actor
-> "11iERE @rownum <= 1
-> ORDER ВУ first_name;

См. http:/ / 111 ysq lduш p.azu ndris.coш/arc hives /86-Down-the-dirty-road.htшl.

300 Глава 6 • Оптимизация производительности запросов

Этот запрос возвращает все строки из таблицы, поскольку ORDER ВУ добавил файло­

вую сортировку, а WHERE вычисляется до нее. Решение состоит в том, чтобы присваи­

вать значения и читать их на одной и той же стадии выполнения запроса:

mysql> SET @rownum := 0; mysql> SELECT actor_id, @rownum AS rownum
-> FROМ sakila.actor
-> WНERE (@rownum := @rownum + 1) <= 1;

+----------+--------+
1 actor_id 1 rownum 1

+----------+--------+
1 1 1

+----------+--------+

Вопрос на засыпку: что произойдет, если включить в этот запрос фразу ORDER вv?

Попробуйте сделать это. Если полученный результат отличается от ожидаемого, то

объясните, в чем причина этого. А как насчет следующего запроса, где значение пере­

менной изменяется в разделе ORDER ВУ, а считывается - в разделе WHERE?

mysql> SET @rownum := 0;
mysql> SELECT actor_id, first_name, @rownum AS rownum

-> FROМ sakila.actor
-> WНERE @rownum <= 1
-> ORDER ВУ first_name, LEAST(0, @rownum := @rownum + 1);

Ответы на большинство вопросов, вызванных неожиданным поведением переменных,

определенных пользователем, можно получить, выполнив команду EXPLAIN и поискав

фразы Using where, Using temporary или Using filesort в столбце Extra.

В последнем примере мы применили еще один полезный трюк: поместили присва­

ивание в функцию LEAST (), так что теперь ее значение отбрасывается и не искажает

результатов ORDER ВУ (мы написали функцию LEAST() таким образом, что она

всегда возвращает 0). Этот прием очень полезен, когда присваивание переменной
выполняется исключительно ради побочного эффекта, - он позволяет скрыть

возвращаемое значение и избежать появления лишних столбцов (таких как dummy
в приведенном ранее примере). Для этой цели подходят также функции GREAТEST(),

LENGTH(), ISNULL(), NULLIF(), COALESCE() и С, используемые поодиночке и в со­

четании друг с другом в силу особенностей их поведения. Например, COALESCE ()

прекращает вычислять свои аргументы, встретив первый имеющий значение, от­

личное от NULL.

Написание ленивого оператора UNION

Предположим, вы хотите написать запрос UNION, который выполняет первую ветвь

UNION и, если находит какие-либо строки, пропускает вторую ветвь. Так можно посту­

пить, если мы ищем строку в таблице, содержащей «горячие>.> строки (те, к которым

обращаются особенно часто), и в таблице с точно такими же строками, к которым,

однако, обращаются реже. (Разделение горячих и холодных данных может быть по­

лезным способом повышения эффективности кэширования.)

Оптимизация запросов конкретных типов 301

Приведем пример запроса, который будет искать пользователя в двух местах - в ос­

новной таблице пользователя и в таблице пользователей, которые давно не посещали
сайт и поэтому для сохранения эффективности были заархивированы 1 :

SELECT id FROM users WHERE id = 123
UNION ALL
SELECT id FROM users_archived WHERE id = 123;

Это вполне рабочий запрос, однако он будет искать строку в таблице users_archived,
даже если она найдена в таблице users. Мы можем предотвратить это с помощью
ленивого оператора UNION, который не ленится обратиться ко второй таблице только
в том случае, если в первой искомое не обнаружено. При нахождении строки мы за­

действуем пользовательскую переменную с именем @found. Чтобы это произошло,
нужно поместить присваивание в список столбцов, поэтому мы используем функцию
GREAТEST в качестве контейнера для присваивания, так что не получим дополни­

тельный столбец в результатах. Чтобы было легче увидеть, из какой таблицы были

получены результаты, мы добавим столбец, содержащий имя таблицы. Наконец, нам
нужно в конце запроса задать пользовательской переменной значение NULL, чтобы

у нее не было побочных эффектов и ее можно было использовать повторно. У нас
получился такой запрос:

SELECT GREATEST(@found := -1, id) AS id, 'users' AS which_tы
FROM users WHERE id = 1
UNION ALL

SELECT id, 'users_archived'
FROM users_archived WHERE id = 1 AND @found IS NULL

UNION ALL
SELECT 1, 'reset' FROM DUAL WHERE (@found .- NULL) IS NOT NULL;

Прочее использование переменных

Присваивание переменной может встретиться в любой команде, а не только в SELECТ.

Более того, это один из наиболее удачных способов применения переменных, опре­
деленных пользователем. Например, вы можете некоторые запросы, такие как вы­

числение ранга с помощью подзапроса, сделать менее затратными, переписав их

в виде команды UPDATE.

Впрочем, добиться требуемого поведения не всегда легко. Иногда оптимизатор счи­

тает переменные константами этапа компиляции и отказывается выполнять присва­

ивания. Обычно помогает помещение присваиваний внутрь функции типа LEAST().

Дадим еще один совет: проверяйте, присвоено ли переменной значение, прежде чем

выполнять содержащую ее команду. Иногда у переменной должно быть значение,

Бэрон считает, что некоторые социальные сети архивируют свои данные между его очень

редкими посещениями. Когда он входит в систему, его аккаунта, похоже, не существует, но

через пару минут приходит электронное письмо с приветствием, и - вуаляl - его аккаунт

восстановлен. Это умная оптимизация для асоциальных пользователей, о чем мы погово­

рим в главе 11.

302 Глава 6 • Оптимизация производительности запросов

иногда - нет. Немного поэкспериментировав, вы научитесь делать с помощью пере­
менных, определенных пользователем, очень интересные вещи. Вот несколько идей:

1:] вычисление промежуточных итогов и средних;

1:] эмуляция функций FIRST() и LAST() с помощью запросов с группировкой;

1:] выполнение математических операций над очень большими числами;

1:] вычисление МDS-свертки для всей таблицы;

1:] восстановление выборочного значения, которое оборачивается, если превышает
некоторую границу;

1:] эмуляция курсоров чтения/записи;

1:] размещение переменных в инструкции SHOW путем вставки их в раздел WHERE.

Дилемма Си Джей Дейта

Си Джей Дейт (C.J. Date) выступает за подход к созданию базы данных, в рамках ко­
торого база данных SQL рассматривается, насколько это возможно, как реляционная
база данных. Понятно, как SQL отклоняется от реляционной модели, и, откровенно
говоря, MySQL идет дальше, чем некоторые системы управления базами данных.
Тем не менее вы не сможете добиться от MySQL хорошей производительности, если
попытаетесь заставить ее вести себя как реляционная база данных с помощью некото­
рых приемов, которые г-н Дейт защищает в своих книгах. К таким приемам относят­

ся, например, глубоко вложенные подзапросы. Это печально, но ограничения MySQL
не позволяют более формальному подходу работать хорошо. Мы рекомендуем про­

читать его книгу SQL and Relational Theory: Нот to Write Accurate SQL Code (издатель­
ство O'Reilly). Это изменит ваше представление о SQL.

Кейс
Иногда речь идет не об оптимизации запросов, схемы, индекса или приложения по
отдельности, а о проведении всех этих мероприятий.

Этот кейс посвящен нахождению ответа на вопрос, как решить задачи проектиро­
вания, которые часто вызывают вопросы у пользователей. Возможно, вас заинтере­
сует книга Билла Карвина (Bill Karwin) SQL Antipatterns (издательство Pragmatic
Bookshelf). В ней содержатся рецепты решения конкретных проблем с SQL, которые
часто создают трудности для неосторожного программиста.

Построение таблицы очередей в MySQL
Построить таблицу очередей в MySQL непросто, и большинство проектов, которые
мы видели, испытывают проблемы с производительностью в условиях большого
трафика и при сильном параллелизме. Типичный паттерн для решения этой задачи
предполагает создание таблицы, в которой содержится несколько типов строк: необ­
работанные, находящиеся в процессе обработки и обработанные. Один или несколько
рабочих процессов ищут необработанные строки, помечают их как «требующие об-

Кейс 303

работки1>, затем выполняют нужные действия и отмечают как обработанные. К ти­
пичным объектам с таким поведением можно отнести электронные письма, готовые
к отправке, заказы на обработку, комментарии на модерации и т. п.

Можно выделить несколько причин того, почему это плохо работает. Первая:

таблица может стать очень большой, и по мере ее роста индексы становятся много­

уровневыми, а поиск необработанных строк - медленным. Эту проблему можно

решить, разделив очередь на две таблицы, перемещая обработанные строки в архив

или таблицу истории и тем самым сохраняя таблицу очередей небольшой.

Вторая причина заключается в том, что поиск строк для обработки, как правило, идет

совместно с опросом и блокировкой. Опрос создает нагрузку на сервер, а блокировка

вызывает параллелизм и сериализацию между рабочими процессами. В главе 11 мы
увидим, почему это усложняет масштабируемость.

Возможно, результат опроса показывает, что все нормально. Но если нет, вы можете

оповестить рабочие процессы, что для них есть работа. Например, можно использо­

вать функцию SLEEP() с очень длинной задержкой и поясняющим комментарием:

SELECT /* ожидание неотправленного письма */ SLEEP(10000);

Это вызовет блокировку потока до тех пор, пока не произойдет одно из двух: истекут

10 ООО секунд или другой поток подаст команду KILL QUERY и завершит ее. Так, после

выполнения пакета запросов на вставку в таблицу можно будет посмотреть результа­

ты команды SHOW PROCESSLIST, найти потоки, в которых выполняются запросы с вы­

шеуказанным комментарием и принудительно завершить их. Кроме того, вы можете

реализовать форму уведомления с функциями GEТ_LOCK() и RELEASE_LOCK() или же

сделать это за пределами базы данных с помощью службы обмена сообщениями.

Последняя проблема состоит в том, как именно рабочие процессы должны проверять

строки, чтобы они не обрабатывались по нескольку раз. Мы неоднократно видели,

как это было реализовано с помощью команды SELECT FOR UPDAТE. Обычно это оказы­

вается очень узким местом масштабируемости и часто вызывает заторы, поскольку
транзакции блокируются друг другом и ждут.

В целом стоит избегать команды SELECТ FOR UPDATE, и не только для таблицы очередей.

Эту команду в принципе не стоит использовать. Почти наверняка существует луч­

ший способ достичь желаемой цели. В случае очереди можно использовать простое

условие UPDAТE, чтобы затребовать строки, а затем проверить, затребована ли хотя бы

одна из них. Рассмотрим это на примере. Начнем со схемы:

CREATE TABLE uпseпt_emails (

);

id INT NOT NULL PRIMARY КЕУ AUTO_INCREMENT,
-- столбцы для сообщений, от кого, кому, тема и т. п.

status ENUM('uпseпt', 'claimed', 'seпt'),

owner INT UNSIGNED NOT NULL DEFAULT 0,
ts ПМЕSТАМР,

КЕУ (owпer, status, ts)

Столбец owner используется для хранения идентификатора соединения рабочего
процесса, который владеет строкой. Это же значение в MySQL возвращает функция
CONNECТION_ID(). Если это 0, то строка не востребована.

304 Глава 6 • Оптимизация производительности запросов

Мы часто видели такой прием, применяемый, чтобы потребовать десять строк:

BEGIN;
SELECT id FROM unsent_emails

WHERE owner = 0 AND status 'unsent'
LIMIT 10 FOR UPDATE;

результат: 123, 456, 789
UPDATE unsent_emails

SET status = 'claimed', owner = CONNECTION_ID()
WHERE id IN(123, 456, 789);

СОММП;

В данной процедуре используются первые два столбца индекса, поэтому теоретиче­
ски она выглядит довольно эффективной. Проблема заключается в том, что между
двумя запросами приложение имеет некоторое время на обдумывание, из-за чего
блокировки строк останавливают работу других клиентов, которые выполняют те же
запросы. Все запросы будут использовать один и тот же индекс, поэтому начнут его
сканирование с самого начала и, по-видимому, будут мпювенно заблокированы.

Намного эффективнее выполнить запрос следующим образом:

SЕТ АUТОСОММП = 1;
СОММП;

UPDATE unsent_emails
SET status = 'claimed', owner = CONNECTION_ID()
WHERE owner = 0 AND status = 'unsent'
LIMIТ 10;

SET АUТОСОММIТ = 0;
SELECT id FROМ unsent_emails

WHERE owner = CONNECTION_ID() AND status = 'claimed';
-- результат: 123, 456, 789

Вам даже не нужно запускать запрос SELECT, чтобы проверить, какие строки вы по­
требовали. Клиентский протокол расскажет, сколько строк было обновлено, так что
вы поймете, были ли затребованы неотправленные строки.

Подобным образом можно переписать большинство запросов SELECТ FOR UPDATE.

Заключительная часть задачи состоит в очистке строк, которые были затребованы, но
не обрабатывались, потому что рабочий процесс по какой-то причине остановился,
но ее выполнить легко. Для периодической перезагрузки этих строк можно просто за­

пустить UPDAТE. Выполните команду SHOW PROCESSLISТ, составьте список всех иденти­

фикаторов потоков, которые в настоящий момент подсоединены к серверу, и укажите

их в условии WHERE, чтобы избежать потери строки, обрабатываемой прямо сейчас.
Предположим, что идентификаторы потоков равны {10, 20, 30). Приведем пример
запроса, который ~простаивал1> и перешел к исправлению строк спустя 1 О минут:

UPDATE unsent_emails
SET owner = 0, status = 'unsent'
WHERE owner NOT IN(0, 10, 20, 30) AND status = 'claimed'
AND ts < CURRENT_TIMESTAМP - INTERVAL 10 MINUTE;

Кстати, обратите внимание на то, как тщательно спроектирован индекс для запуска­
емых нами запросов. Это пример взаимодействия между материалом данной и пре­

дыдущей глав. Показанный запрос может использовать весь индекс, поскольку уело-

Кейс 305

вие проверки диапазона помещено в его последний столбец. Данный индекс будет
полезен и для других запросов - тем самым мы избежим необходимости применять
другой избыточный индекс для двух столбцов, используемых в других запросах.

Этим кейсом проиллюстрированы несколько основополагающих принципов.

О Прекратите это делать или делайте реже. Используйте опрос только в том случае,

когда он действительно необходим, поскольку он увеличивает нагрузку и непро­
дуктивную работу.

О Делайте все быстрее. Используйте UPDATE вместо SELECT FOR UPDAТE, за которым
следует UPDATE, поскольку, чем быстрее выполняется транзакция, тем короче
блокировка, меньше параллелизм и сериализация. Кроме того, храните необра­
ботанные данные отдельно от обработанных строк.

О Вывод, который можно сделать после рассмотрения этого примера, заключается

в том, что отдельные запросы нельзя оптимизировать - их нужно заменить дру­

гим запросом или даже другой стратегией. Запросы SELECT FOR UPDAТE обычно
относятся к таким заменяемым запросам.

Иногда лучшим решением является перемещение очереди за пределы сервера базы
данных. С очередями хорошо работает Redis, иногда для этой цели можно использо­
вать memcached. В качестве альтернативы можете попробовать подсистему хранения
Q4M для MySQL, однако у нас нет опыта ее использования в производственных
средах, поэтому мы не можем дать никаких рекомендаций. Кроме того, для некоторых

целей могут быть очень полезны RabЬitMQ и Gearman 1•

Вычисление расстояния между двумя точками

При работе то и дело приходится сталкиваться с геопространственными вычислени­
ями. Для тяжеловесных вычислений такого рода не принято использовать MySQL -
PostgreSQL подойдет лучше. Но все-таки здесь прослеживаются некоторые регулярные
закономерности. Например, повсеместно используется запрос, позволяющий найти

элементы, расположенные в пределах заданного радиуса от некоторой точки.

Типичные примеры использования такого запроса - поиск квартир в аренду в преде­

лах некоторого расстояния от центра города, фильтрация «совпадений» на сайте

знакомств и т. д. Предположим, есть следующая таблица:

CREATE TABLE locations (
id INT NOT NUll PRIМARY КЕУ AUTO_INCREMENT,
name VARCНAR(30),
lat FLOAT NOT NULL,
lon FLOAT NOT NUll);

INSERT INTO locations(name, lat, lon)
VALUES('Charlottesville, Virginia',

('Chicago, Illinois',
('Washington, DC',

38.03, -78.48),
41.85, -87.65),
38 .89, -77 .04);

См. http://www.rabbltmq.com и http://gearman.org/.

306 Глава 6 • Оптимизация производительносrи запросов

Широта и долгота 1 задаются в градусах, и в запросах для нахождения расстояния по

поверхности Земли, если считать ее сферой, обычно используется формула большо­
го круга (гаверсинус). Формула для нахождения расстояния между точками А и В

с координатами latA и lonA, latB и lonB в радианах может быть выражена следующим
образом:

ACOS(
COS(latA) * COS(latB) * COS(lonA - lonB)

+ SIN(latA) * SIN(latB)

Результат получается в радианах, поэтому, чтобы найти расстояние в милях или
километрах, его нужно умножить на радиус Земли, который составляет около

3959 миль, или 6371 км. Предположим, мы хотим найти все точки в радиусе 100 миль
от Шарлоттсвилля, где живет Бэрон. Нам нужно преобразовать широту и долготу
всех координат в радианы, а затем подставить их в формулу:

SELECT * FROМ locations WHERE 3979 * ACOS(
COS(RADIANS(lat)) * COS(RADIANS(38.03)) * COS(RADIANS(lon) - RADIANS(-78.48))

+ SIN(RADIANS(lat)) * SIN(RADIANS(38.03))
<= 100;

+----+---------------------------+-------+--------+
1 id 1 name 1 lat 1 lon 1

+----+---------------------------+-------+--------+
1 1 Charlottesville, Virginia 1 38.03 1 -78.48 1

3 1 Washington, DC 1 38.89 1 -77.04 1

+----+---------------------------+-------+--------+

Этот тип запроса не только не может использовать индекс, но и будет сжигать тонны
циклов процессора и очень сильно загружать сервер. Мы неоднократно сталкивались

с этим. Можно ли как-нибудь решить проблему?

В этом проекте есть несколько аспектов, которые можно оптимизировать. Сначала

нужно решить, действительно ли необходима такая точность. Существует множество
факторов, снижающих точность.

О Объекты могут находиться в зоне радиусом 100 миль, но эта величина может
не иметь ни малейшего отношения к фактическому расстоянию до них. Очевид­

но, независимо от того, где находятся объекты, вы никогда не сможете добраться
от одного до другого по абсолютно прямой линии, ведь на пути есть немало пре­
пятствий, например большие реки, и чтобы пересечь их, может потребоваться
сделать большой крюк в поисках моста. Таким образом, расстояние по карте
не слишком точно характеризует фактическое расстояние между двумя объ­
ектами.

О Если мы определяем чье-то местоположение на основании его почтового индекса

или города, то измеряем расстояние от центра региона до центра другого региона,

что также добавляет погрешности вычислениям. Бэрон живет в Шарлоттсвилле,
но не в центре города, и ему, вероятно, неинтересно путешествовать точно в центр

Вашингтона.

По-английски latitude и longitude соответственно. - При.меч. пер.

Кейс 307

Возможно, вам действительно нужна точность, но для большинства приложений это

лишнее. Это аналогично значимости цифр: вы не можете добиться большей точности
результата, чем точность измерительного прибора. (Иначе говоря, <~:мусор на входе,
мусор на выходе».)

Если вам не нужна большая точность, то стоит притвориться, что Земля плоская,
а не круглая! Это превращает тригонометрию в гораздо более простое вычисление
с применением теоремы Пифагора, которая просто использует пару сумм, произве­

дений и квадратный корень для определения того, находятся ли точки на плоскости

на заданном расстоянии друг от друга 1•

Но постойте, разве нам нужен круг? Почему бы просто не использовать квадрат?
Углы квадрата с длиной стороны 200 миль находятся всего в 141 миле от его центра,
что не сильно отличается от желаемого радиуса 100 миль. Поправим запрос так, что­
бы получился квадрат, в котором расстояние от центра до угла будет равно 100 миль
(0,0253 радиана):

SELECT * FROM locations
WHERE lat BEТWEEN 38.03 - DEGREES(0.0253) AND 38.03 + DEGREES(0.0253)

AND lon BEТWEEN -78.48 - DEGREES(0.0253) AND -78.48 + DEGREES(0.0253);

Теперь возникает вопрос, как оптимизировать это выражение с помощью индексов.

Мы могли бы, конечно, индексировать столбцы (lat, lon) или (lon, lat). Но это
не очень поможет. Как вы знаете, MySQL 5.5 и более ранних версий не может оптими­
зировать поиск по столбцам, находящимся правее первого столбца, по которому осу­
ществляется поиск в заданном диапазоне. Другими словами, только один из столбцов
будет использоваться эффективно, потому что запрос имеет два условия диапазона
(BEТWEEN эквивалентен значению <~:больше» и <~:меньше или равно»).

На помощь снова приходит надежный обходной путь IN(). Мы можем добавить два
столбца для хранения результата функции FLOOR() для каждой координаты, а впо­
следствии запрос может использовать два списка IN() целых чисел для фиксации
всех точек, попадающих в нужный квадрат. Вот как можно добавить новые столбцы
и индекс, цель которого будет показана в ближайшее время:

mysql> ALTER TABLE locations
-> ADD lat_floor INТ NOT NULL DEFAULT 0,
-> ADD lon_floor INТ NOT NULL DEFAULT 0,
-> ADD KEY(lat_floor, lon_floor);

mysql> UPDATE locations
-> SET lat_floor = FLOOR(lat), lon_floor = FLOOR(lon);

Теперь нужно найти диапазон координат от верхней границы до нижней как на севе­

ре, так и на юге. Приведем запрос, который возвращает диапазон градусов, который

Можно еще больше облегчить работу сервера базы данных, если выполнять тригономе­

трические вычисления в приложении. Тригонометрические функции довольно сильно

напрягают процессор. Здорово помочь может, например, перевод всех данных в радианах

в приложение и хранение данных в радианах в таблице. Мы старались не слишком услож­

нять пример и не нагружать его магическими числами неясного происхождения, поэтому

не станем показывать эту дополнительную оптимизацию.

308 Глава 6 • Оптимизация производительности запросов

мы ищем. Обратите внимание на то, что мы используем запрос только в демонстра­
ционных целях - эти математические вычисления должны выполняться в коде

приложения, а не в MySQL:

mysql> SELECT FLOOR(38.03 - DEGREES(0.0253)) AS lat_lb,
-> CEILING(38.03 + DEGREES(0.0253)) AS lat_ub,
-> FLOOR(-78.48 - DEGREES(0.0253)) AS lon_lb,
-> CEILING(-78.48 + DEGREES(0.0253)) AS lon_ub;

+--------+--------+--------+--------+
1 lat_lb 1 lat_ub 1 lon_lb 1 lon_ub 1

+--------+--------+--------+--------+
36 1 40 1 -80 1 -77 1

+--------+--------+--------+--------+
Теперь сгенерируем списки IN() со всеми целыми числами между нижней и верх­

ней границами каждого диапазона. Вот этот запрос с дополнительными условия­

ми WHERE:

SELECT * FROM locations
WHERE lat BETWEEN 38.03 - DEGREES(0.0253) AND 38.03 + DEGREES(0.0253)

AND lon BETWEEN -78.48 - DEGREES(0.0253) AND -78.48 + DEGREES(0.0253)
AND lat_floor IN(36,37,38,39,40) AND lon_floor IN(-80,-79,-78,-77);

Использование нижней и верхней границ приводит к некоторому усложнению

вычислений, поэтому запрос может фактически найти точки, которые лежат вне

квадрата. Вот почему нам все еще нужны фильтры на lat и lon, чтобы отбросить
неподходящие результаты. Это похоже на методику моделирования хеш-индекса

с помощью столбца СRСЗ2, описанную в предыдущей главе: создайте индекс по более
или менее достоверному значению, а затем пост-фильтр для удаления нескольких

попавших в него неверных значений.

На данном этапе стоит упомянуть, что вместо поиска приближенного квадрата и по­
следующей доработки результатов так, чтобы они соответствовали точному квадра­
ту, мы могли бы находить квадрат, а затем отфильтровывать результаты с помощью
формулы большого круга или теоремы Пифагора:

SELECT * FROM locations
WHERE lat_floor IN(36,37,38,39,40) AND lon_floor IN(-80,-79,-78,-77)

AND 3979 * ACOS(
COS(RADIANS(lat)) * COS(RADIANS(38.03)) * COS(RADIANS(lon) - RADIANS(-78.48))

+ SIN(RADIANS(lat)) * SIN(RADIANS(38.03))
<= 100;

Итак, мы вернулись к тому, с чего начали, - получили точный круг, но теперь доби­
лись этого эффективнее 1 • Так как вы предварительно фильтруете результирующий
набор с помощью эффективных методов, таких как вспомогательные целочисленные
столбцы и индексы, вполне допустимо проводить постфильтрацию с применением
более затратной математики. Просто не делайте формулу большого круга первым
обручем, через который должен перепрыгнуть запрос, иначе все будет работать
медленно!

Опять же для вычисления выражений, таких как COS (RADIANS (.З8.ОЗ)), следует ис­
пользовать приложение.

Кейс 309

Использовать систему Sphinx, у которой есть несколько хороших встроенных
функций геопространственного поиска, по-видимому, намного лучше, чем
MySQL. И если вы собираетесь задействовать функции геоинформационных
систем (ГИС) MyISAM для методов, показанных в этом разделе, поверьте на
слово: они работают ненамного лучше и MyISAM сам по себе неважно работает
с большими приложениями со значительным трафиком. Причины этого самые

обычные: повреждение данных, блокировка на уровне таблицы и т. д.

В данном кейсе мы рассмотрели обычные стратегии оптимизации.

1:1 Перестаньте выполнять привычные действия или выполняйте реже. Не обсчи­

тьшайте весь набор данных с помощью формулы большого круга - сначала со­
кратите его с применением менее затратной методики, а затем уже используйте

сложную формулу на меньшем наборе строк.

1:1 Делайте все быстрее. Убедитесь, что спроектированная система позволяет эф­
фективно применять индексы, как описано в предыдущей главе, и для того что­

бы избежать ненужной точности, разумно пользуйтесь приближениями (Земля
плоская, а квадрат - аппроксимация окружности).

1:1 Перекладывайте максимум работы на плечи приложения. Перенесите все затрат­
ные тригонометрические функции из SQL в код приложения!

Применение пользовательских функций

Последняя расширенная оптимизация запросов показывает, когда SQL просто
не подходит для выполнения задания. Когда вам нужна просто скорость, ничто

не сравнится с кодом на С или С++. Конечно, вы должны уметь программировать на

С или С ++ достаточно хорошо, чтобы не разрушать сервер. Большая сила означает
большую ответственность.

Мы покажем, как написать собственные функции, определяемые пользователем

(user-defined functions, UDF), в следующей главе, однако думаем, что было бы не­
плохо рассказать о реальном случае использования UDF уже сейчас. Клиент предъ­
явил к проекту следующее требование: «Нам за несколько секунд нужно выполнить

запрос менее чем к 35 миллионам записей, который, по существу, представляет собой
операцию XOR между двумя случайными 64-байтовыми длинными строками~. Про­
стой расчет показал, что эту задачу просто невозможно решить в MySQL, задействуя
имеющееся в настоящий момент оборудование. Как же быть?

Ответом может стать программа, написанная Ивом Трюдо (Yves Trudeau), которая
использует набор инструкций SSE4.2. Она работает как служебный процесс на мно­
гих промышленных серверах, а сервер MySQL общается с ней по простому сетевому
протоколу через UDF, написанному на С. Эталонное тестирование, проведенное
Ивом, показало, что сравнение с 4 миллионами строк осуществляется за 130 милли­
секунд. Сняв проблему с MySQL и передав ее программе Ива, клиент смог сохранить
простоту своего приложения, которое продолжало действовать так, как будто MySQL
выполняет всю работу. Как говорится в Twitter, #победа! Это пример оптимизации
для бизнеса, а не только решение технических аспектов проблемы.

310 Глава б • Оптимизация производительности запросов

Итоги главы

Оптимизация запросов - это заключительная деталь направленного на разработку
высокопроизводительных приложений пазла, состоящего из схемы, индекса и соз­

дания запросов. Чтобы писать хорошие запросы, вам нужно разбираться в схемах
и индексировании, и наоборот.

В конечном счете речь все равно идет о времени отклика и необходимости понимать,
как выполняются запросы, чтобы иметь возможность рассуждать о том, на что за­
трачивается время. Добавление пары процессов, таких как синтаксический анализ
и оптимизация, - это всего лишь следующий шаг к пониманию того, как MySQL
обращается к таблицам и индексам, о которых мы говорили в предыдущей главе.
Дополнительный фактор, возникающий, когда вы начинаете изучать взаимодействие

между запросами и индексами, - это то, как MySQL обращается к одной таблице или
индексу на основе данных, которые она находит в другой таблице.

Оптимизация всегда требует трехстороннего подхода: прекратите это делать, делайте
это реже и делайте быстрее. Мы надеемся, что представленные нами кейсы помогут
связать все это вместе и продемонстрировать описанный подход в действии.

Помимо фундаментальных строительных блоков, таких как запросы, таблицы и ин­
дексы, в MySQL есть дополнительные функциональные возможности, например
сегментирование: его цель аналогична цели индексов, но работает оно по-другому.
MySQL также поддерживает кэш запросов, что даже позволяет избежать необхо­
димости выполнять запросы (помните, «прекратите это делать»). Мы рассмотрим

некоторые из этих функциональных возможностей в следующей главе.

Дополнительные
возможности MySQL

В версиях MySQL 5.0 и 5.1 появилось немало возможностей, знакомых пользовате­
лям других СУБД. Например, секционирование и триггеры. Добавление в MySQL
этих возможностей привлекло множество новых пользователей. Однако до начала

широкого применения подобных нововведений их влияние на производительность
оставалось неясным. В этой главе мы поделимся опытом, полученным в результате

использования этих функциональных возможностей на практике, расскажем то, что

узнали не из руководств и инструкций.

Секционированные таблицы
Секционированная таблица представляет собой единую логическую таблицу, со­
стоящую из множества физических подтаблиц. Код секционирования - это всего
лишь обертка вокруг набора манипуляторов объектов, которая представляет базовые
секции и пересылает запросы подсистеме хранения через эти манипуляторы. Секцио­

нирование - это своеобразный черный ящик, который скрывает базовые секции на
уровне SQL, хотя они легко просматриваются в файловой системе, где вы увидите
таблицы компонентов, разделенных в соответствии с соглашением о наименованиях
знаком#.

Способ, которым MySQL реализует секционирование как обертку над скрытыми
таблицами, означает, что индексы определены для каждой секции, а не для всей та­
блицы. Этим MySQL отличается, например, от Огасlе, в которой индексы и таблицы
секционируются более гибкими и сложными способами.

MySQL решает, в какой секции содержатся строки данных, на основе запроса
PARТIТION ВУ, который вы определяете для таблицы. Оптимизатор запросов может
отсечь секции при выполнении запросов, поэтому запросы проверяют не все секции,

а лишь те, в которых хранятся искомые данные.

Основная цель секционирования - действовать как грубая форма индексирования
и кластеризации данных в таблице. Тем самым можно исключать из рассмотрения
большие фрагменты таблицы, а также хранить связанные строки близко друг к другу.

312 Глава 7 • Дополнительные возможности MySQL

Секционирование обладает множеством достоинств, особенно в следующих ситуа­
циях.

о Когда таблица слишком велика и не помещается полностью в памяти или со­

держит большое количество хронологической информации, при этом наиболее
востребованы строки, находящиеся в ее конце.

о Секционированные данные проще обслуживать, в частности, нетрудно убрать
устаревшие значения удалением целой секции. Кроме того, можно оптимизиро­

вать проверку и восстановление отдельных секций.

о Секционированные данные можно распределить по физически разным устрой­

ствам, так что сервер сможет более эффективно использовать жесткие диски.

о Вы можете использовать секционирование, чтобы избежать некоторых узких мест
при определенных рабочих нагрузках, таких как поиндексные мьютексы в InnoDB
или блокировки индексных дескрипторов с файловой системой ехtЗ.

о Если это действительно нужно, можете создавать резервные копии и восстанав­

ливать отдельные секции, что может оказаться весьма полезным при чрезвычайно

больших наборах данных.

Реализация секционирования в MySQL слишком сложна для того, чтобы описывать
ее здесь во всех деталях. Мы хотим обратить внимание лишь на аспекты, относящие­
ся к производительности, а за базовой информацией отсылаем к руководству по
MySQL, в котором очень много материалов по секционированию. Рекомендуем про­
читать целиком главу, посвященную этой теме, и заглянуть в разделы, в которых опи­

сываются команды СRЕАТЕ TABLE, SHOW CREATE TABLE, AL ТЕR TABLE, INFORМAТION_SCHEМA.
PARTIТIONS tаЫе и EXPLAIN. Из-за секционирования синтаксис команд СRЕАТЕ TABLE

и AL ТЕR TABLE заметно усложнился.

При использовании секционированных таблиц следует учитывать ряд ограничений.
Приведем наиболее важные.

о В таблице не может быть более 1024 секций.

о В MySQL 5.1 выражение секционирования должно быть целым числом или воз­
вращать целое число. В MySQL 5.5 вы можете в определенных случаях выполнить
секционирование по столбцам.

о Любой первичный ключ или уникальный индекс должен содержать все столбцы
из выражения секционирования.

о Вы не можете использовать ограничения внешнего ключа.

Как работает секционирование

Как уже сказано, в основе секционированных таблиц лежат несколько базовых та­
блиц, которые представлены манипуляторами объектов. Вы не можете напрямую
обращаться к секциям. Каждая секция управляется подсистемой хранения в обычном
режиме (все секции должны использовать одну и ту же подсистему хранения), и лю­

бые индексы, определенные для этой таблицы, фактически реализуются как иден­
тичные индексы для каждой базовой секции. С точки зрения подсистемы хранения

Секционированные таблицы 313

секции - это просто таблицы, подсистема хранения данных не знает, является ли
конкретная таблица, которой она управляет, автономной таблицей или частью более
крупной секционированной таблицы.

Действия над секционированной таблицей реализуются с помощью следующих
операторов.

о Запросы SELECТ. Когда вы запрашиваете секционированную таблицу, слой секцио­
нирования открывается и блокирует все базовые секции, а оптимизатор запросов
определяет, можно ли игнорировать (отсечь) какую-либо из них. Затем с уровня
секционирования обработчик вызовов API направляется к подсистеме хранения,
которая управляет секционированием.

о Запросы INSERТ. Когда вы вставляете строку, слой секционирования открывает­

ся, блокирует все разделы, определяет, в какую секцию должна быть вставлена
строка, и переводит строку туда.

о Запросы DELETE. Когда вы удаляете строку, слой секционирования открывается,
блокирует все секции, определяет, в какой из них содержится эта строка, и пере­
сылает туда запрос удаления.

О Запросы UPDATE. Когда вы изменяете строку, слой секционирования (вы догада­
лись) открывается, блокирует все секции, определяет, в какой из них содержится
эта строка, выбирает строку, модифицирует ее, определяет, в какой секции должна
содержаться новая строка, пересылает ее с запросом на вставку в целевую секцию

и пересылает запрос на удаление в исходную секцию.

Некоторые из этих операций поддерживают обрезку. Например, когда вы удаляете
строку, сервер сначала должен ее найти. Если в разделе WHERE вы укажете условие,
соответствующее выражению секционирования, сервер сможет отсечь секции, в кото­

рых не может содержаться искомая строка. То же самое относится к запросам UPDAТE.

Запросы INSERT естественным образом отсекаются, сервер просматривает значения,
которые нужно вставить, и находит одну и только одну целевую секцию.

Хотя слой секционирования открывается и блокирует все секции, это не означает, что
они остаются заблокированными. Подсистема хранения, такая как InnoDB, которая
использует собственную блокировку на уровне строк, заставит слой секционирова­
ния разблокировать секцию. Этот цикл блокировки и разблокирования аналогичен
выполнению запросов к обычным таблицам InnoDB.

Чуть позже мы приведем несколько примеров, которые иллюстрируют затраты и по­

следствия открытия и блокировки каждого раздела в ситуации, когда есть доступ
к таблице.

Типы секционирования

MySQL поддерживает несколько типов секционирования. На наш взгляд, наиболее
распространенным из них является секционирование диапазонов, в котором каждая

секция определена для принятия определенного диапазона значений для некоторого

столбца или столбцов или функции, выполненной над значениями этих столбцов.

314 Глава 7 • Дополнительные возможности MySQL

Приведем пример простого помещения данных по продажам разных лет в отдельные

секции:

CREATE TABLE sales (
order_date DATETIME NOT NULL,
-- Остальные столбцы опущены

ENGINE=InnoDB PARTITION ВУ RANGE(YEAR(order_date))
PARTITION р_2010 VALUES LESS THAN (2010),
PARTITION р_2011 VALUES LESS THAN (2011),
PARTITION р_2012 VALUES LESS THAN (2012),
PARTITION p_catchall VALUES LESS THAN МAXVALUE);

В разделе секционирования вы можете использовать множество функций. Основное

требование заключается в том, что они должны возвращать неконстантное детерми­
нированное целочисленное значение. Здесь использована функция YEAR(), но вы

можете применять и другие, например TO_DAYS(). Секционирование по промежуткам

временИ - распространенный способ работы с данными на основе даты, поэтому мы
вернемся к этому примеру позже и посмотрим, как можно его оптимизировать, чтобы

избежать ряда связанных с ним проблем.

Кроме того, MySQL поддерживает методы секционирования по ключам, хеш­
секционирование и секционирование списков, часть которых поддерживают под­

секции (редко встречаются в реальных условиях). В MySQL вы можете использо­
вать тип секционирования RANGE COLUMNS, поэтому вы можете секционировать по

столбцам на основе даты, не преобразуя ее в целочисленное значение. Об этом мы
поговорим позже.

Однажды мы встречали подсекцию, выделенную для обхода поиндексного мьютекса
в InnoDB для таблицы, спроектированной как в нашем последнем примере. Секция
для данных последнего года была сильно изменена, что вызвало сильную конку­
ренцию за этот мьютекс. Выделение подсекций на основе хеша помогло разделить

данные на более мелкие части и упростить задачу.

Другие приемы секционирования, которые нам встречались.

О Можно проводить секционирование по ключу для уменьшения конкуренции

в мьютексах InnoDB.

О Можно выполнять секционирование по диапазону с помощью функции остатка

от деления (по модулю). Так будет создана циклическая таблица, которая сохра­
няет только желаемый объем данных. Например, при необходимости хранения
только данных за последние дни, можно секционировать данные по остатку от

деления даты на 7 или просто по дню недели даты.

О Предположим, у вас есть таблица с автоинкрементным столбцом id, явля­
ющимся ключом, но вы хотите секционировать данные по времени, чтобы
горячие последние данные были размещены в одном кластере. Вы не можете
секционировать столбец, содержащий временные метки, если не включили
его в первичный ключ, но это на корню губит цель первичного ключа. Можете

секционировать по выражению, такому как HASH (id DIV 1000000), которое соз­

дает новую секцию для каждого миллиона вставленных строк. Тем самым вы

Секционированные таблицы 315

достигаете цели, не меняя первичного ключа. Кроме того, такой подход дает

дополнительное преимущество, состоящее в том, что не нужно постоянно соз­

давать секции для хранения новых диапазонов дат, а это пришлось бы делать

при секционировании по диапазонам.

Как использовать секционирование

Представьте, что вы хотите запрашивать диапазоны данных из действительно

огромной таблицы, которая содержит показатели за многие годы, отсортированные

в хронологическом порядке. Вы хотите получить отчеты за последний месяц, что со­

ставляет порядка 100 миллионов строк. Через несколько лет эта книга устареет, но
давайте притворимся, что вы используете оборудование 2012 года, таблица занимает
10 Тбайт, поэтому она намного больше, чем объем памяти, а у вас есть лишь тради­
ционные жесткие диски, а не флешки (большинство SSD не являются достаточно
большими для этой таблицы). Как же вам выполнить запрос к этой таблице вообще,

не говоря уж о том, чтобы он был эффективным?

Одно можно сказать наверняка: вы не можете сканировать всю таблицу каждый раз,

когда хотите выполнить к ней запрос, поскольку она слишком большая. И вы не хо­

тите использовать индекс из-за того, что его обслуживание влечет за собой затраты

и он занимает определенное пространство. В зависимости от индекса, это может

привести к сильной фрагментации и плохо кластеризованным данным, а затем и от­

казу системы вследствие растраты ресурсов на операции хаотичного ввода/вывода.

Иногда можно найти обходной путь для одного-двух индексов, но не больше. Тогда

остаются только два работоспособных варианта: ваш запрос должен последователь­
но просканировать часть таблицы либо искомая часть таблицы и индекс должны

полностью помещаться в память.

Стоит напомнить, что очень большие индексы, упорядоченные на основе В-дерева,

не работают. Если индекс не полностью покрывает запрос, серверу приходится ис­

кать полные строки в таблице. Это приводит к произвольному вводу /выводу строки

на очень большом пространстве, что просто убьет время отклика на запрос. Затраты

на поддержание индекса (дискового пространства, операций ввода/вывода) также

очень высоки. Из-за этого такие системы, как Infobright, отбрасывают индексы, упо­
рядоченные на основе В-дерева, и выбирают что-то более крупномодульное, менее

затратное для подобных объемов, например блочные метаданные.

Секционирование также может это сделать. Его можно рассматривать как грубую

форму индексирования, которая незначительно потребляет ресурсы и позволяет

максимально приблизиться к искомым данным. После этого вы можете либо по­

следовательно сканировать соседние строки, либо поместить их в память и про­

индексировать. Затраты на секционирование невелики, поскольку отсутствует

структура данных, которая указывает на строки и должна периодически обновляться.

Секционирование не идентифицирует данные с точностью до строки, и у него нет

соответствующей структуры данных. Вместо этого есть условие, в котором указано,

какие категории строк в каких секциях могут содержаться.

316 Глава 7 • Дополнительные возможности MySQL

Рассмотрим две стратегии, которые работают при больших объемах данных.

О Просматривайте данные, не индексируйте их. Можете создавать таблицы без
индексов и использовать секционирование как единственный механизм для пере­

хода к искомым строкам. Если вы используете раздел WHERE, который разделяет

запрос на небольшое количество секций, это работает довольно хорошо. Конеч­

но же, вам придется выполнить вычисления и решить, будет ли время отклика

на запрос приемлемым. Мы предполагаем, что вы даже не пытаетесь поместить

данные в память, кроме того, все, что вы запрашиваете, должно быть прочитано
с диска, и эти данные вскоре будут заменены каким-то другим запросом, поэтому

кэширование бесполезно. Цель этой стратегии состоит в регулярном получении
доступа к большому количеству таблиц. Нужно лишь сделать оговорку: по при­

чинам, которые мы объясним чуть позже, обычно вам придется ограничиваться
несколькими сотнями секций.

о Индексируйте данные и отделяйте часто запрашиваемые. Если в основном ваши
данные используются мало, за исключением некоторой горячей части, то следует

секционировать их так, чтобы часто запрашиваемые данные сохранялись в одной

секции. И эта секция должна быть довольно мала, чтобы помещаться в памяти
вместе со своими индексами, а вы могли бы добавлять индексы и писать запросы,
использующие их, как происходит с небольшими таблицами.

Это далеко не все, что вам нужно знать, поскольку у реализации секционирования

в MySQL есть несколько ловушек, в которые можно угодить. Давайте посмотрим,
что это за ловушки и как их избежать.

Что может пойти не так

Две стратегии секционирования, которые мы только что предложили, основаны на

двух ключевых предположениях:

О можно сузить поиск путем отсечения секций при запросе;

О секционирование само по себе не очень затратно.

Как оказалось, эти предположения не всегда справедливы. Вот несколько проблем,

с которыми вы можете столкнуться.

о Значения NULL могут отменить отсечение. Секционирование работает очень
оригинально, когда результатом функции секционирования может быть NULL.

В этом случае первая секция рассматривается как специальная. Предположим,

что вы используете РАRППОN ВУ RANGE YEAR(order _date), как в приведенном ра­

нее примере. Любая строка, у которой в столбце order _date окажется значение

NULL или недействительная дата, будет сохранена в первой определенной вами
секции 1 • Теперь предположим, что вы пишете запрос, который заканчивается

Это случится, даже если в столбце order _ date не могут храниться значения NULL, поскольку
вы можете сохранить значение, не являющееся допустимой датой.

Секционированные таблицы 317

следующим образом: WHERE order _date BEТWEEN '2012-01-01' AND '2012-01-31'.

MySQL фактически проверит не одну секцию а две: секцию, в которой хранятся
заказы 2012 года, а также первую секцию в таблице. Она заглянет в первую сек­
цию, поскольку функция YEAR() при недопустимых аргументах возвращает NULL,

следовательно, значения, которые могут соответствовать заданному диапазону,

будут храниться как NULL в первой секции. То же самое может произойти и с дру­
гими функциями, например TO_DAYS() 1•

Это может оказаться довольно затратным, если первая секция велика, особенно
при использовании стратегии «сканировать, не индексировать». Естественно,

проверка двух секций вместо одной нежелательна. Чтобы этого избежать, можно

определить фиктивную первую секцию. То есть мы можем исправить преды­

дущий пример, создав секцию следующим образом: РАRППОN p_nulls VALUES

LESS THAN(0). Если в таблицу не попадут неверные данные, в этой секции ничего

храниться не будет, и хотя ее все-таки станут проверять, это произойдет быстро,

потому что она пустая.

Это обходное решение не пригодится в MySQL 5.5, где вы можете секционировать
по самому столбцу, а не по связанной с ним функции. В MySQL 5.5 предыдущий
пример должен выглядеть так: РАRППОN ВУ RANGE COLUMNS (order _date).

1:1 Несоответствие РАRТ/Т/ОN ВУ и индекса. Если вы определяете индекс, который
не соответствует разделу секционирования, запросы могут быть неотсекаемыми.

Предположим, что вы определяете индекс по столбцу а и секцию - по Ь. Каждая
секция будет иметь собственный индекс, и поиск по этому индексу откроет
и проверит каждое дерево индексов в каждой секции. Этот процесс может быть
быстрым, если нелистовые узлы всех индексов находятся в памяти, тем не менее
он более затратен чем полное отсутствие индексирования. Чтобы избежать этой
проблемы, надо стараться не выполнять индексирование несекционированных
столбцов, если ваши запросы также не содержат выражений, которые могут по­
мочь отсечь секции.

Кажется, что этого очень просто избежать, но действительность может удивить

вас. Предположим, что секционированная таблица становится второй таблицей
в соединении, а индекс, который применяется для соединения, не используется

в разделе запроса, отвечающего за секционирование. В этом случае каждая строка

в соединении будет просматривать все секции второй таблицы.

1:1 Выбор секций может быть затратным. Различные типы секционирования
реализуются по-разному, естественно, их производительность неодинакова.

В частности, такие вопросы, как «Где находится эта строка?» или «Где я могу

найти строки, соответствующие этому запросу?», могут быть весьма затратными

при секционировании по диапазонам, поскольку сервер для нахождения верной

секции просматривает список их определений. Как выясняется, этот линейный

поиск не так уж эффективен, поскольку затраты растут по мере увеличения ко­

личества секций.

Это баг с точки зрения пользователя, но фича с точки зрения разработчика серверной части.

318 Глава 7 • Дополнительные возможносrи MySQL

Запросы, которые, по нашему опыту, сильнее всего страдают от этого типа на­

кладных расходов, - это последовательные вставки строк. Для каждой строки,

которую вы вставляете в таблицу, секционированную по диапазону, сервер дол­
жен проверять список секций, чтобы выбрать место вставки. Эту проблему можно

устранить, уменьшив количество секций. Как показывает практика, 100 с не­
большим секций довольно хорошо работают в большинстве систем. Другие типы
секционирования, такие как секционирование по ключу и хеш-секционирование,

не имеют таких ограничений.

1:1 Открытие и блокировка секций могут быть затратными. Открытие и блокиров­
ка секций во время обращения запроса к секционированной таблице являются
другим типом затрат для каждой секции. Открытие и блокировка происходят

перед отсечением, поэтому эти затраты не являются отсекаемыми. Этот тип на­

кладных затрат не зависит от типа секционирования и влияет на все типы опе­

раторов. Особенно заметен объем накладных расходов для коротких операций,
таких как однострочный поиск по первичному ключу. Вы можете избежать высо­
ких затрат на один оператор, выполняя операции блоками, например используя

многострочные вставки или LOAD DATA INFILE, удаляя диапазоны строк вместо
одной за раз и т. д. Кроме того, обязательно, ограничьте количество задаваемых
вами секций.

1:1 Обслуживающие операции могут быть весьма затратными. Некоторые опера­
ции обслуживания секций, например их создание или удаление, очень быстрые.
(Отбрасывание базовой таблицы может быть медленным, но это другое дело.)

Другие операции, такие как REORGANIZE PARTIТION, работают аналогично тому,
как действует AL TER: копируя строки. Например, REORGANIZE PARТIТION работает,
создавая новую временную секцию, перемещая в нее строки и после этого удаляя

старую секцию.

Как видите, секционированные таблицы - не панацея. Приведем перечень некоторых
ограничений в текущей реализации.

1:1 Всеми секциями должна управлять одна и та же подсистема хранения.

1:1 Существует ряд ограничений на функции и выражения, которые можно исполь-

зовать в механизме секционирования.

1:1 Некоторые подсистемы хранения вообще не поддерживают секционирование.

1:1 Нельзя пользоваться командой LOAD INDEX INTO САСНЕ в таблицах MyISAM.

1:1 Для таблиц MyISAM для секционированной таблицы требуется больше откры­
тых файловых дескрипторов, чем для обычной таблицы, содержащей такие же
данные. Несмотря на то что она выглядит как одна таблица, в действительности

это множество таблиц. В результате кэшированная запись одной таблицы может
создавать множество дескрипторов файлов. Поэтому, даже если вы настроили кэш

таблицы так, что сервер не может превысить максимальное количество файловых
дескрипторов операционной системы для каждого процесса, использование сек­

ционированных таблиц может привести к тому, что этот предел все равно будет
превышен.

Секционированные таблицы 319

Наконец, стоит отметить, что более старые версии серверов хуже новых. Ошибки

встречаются во всех программных продуктах. Секционирование появилось в версии

MySQL 5.1, и многие ошибки секционирования были зафиксированы уже в верси­
ях 5.1.40 и 5.1.50. В MySQL 5.5 значительно улучшено секционирование для некото­
рых распространенных на практике случаев. В релизе версии MySQL 5.6 еще больше
усовершенствований, например AL TER TABLE EXCHANGE PARTIТION.

Оптимизация запросов
к секционированным таблицам

Секционирование привносит новые способы оптимизации запросов и связанные

с ними ловушки. Оптимизатор может использовать функцию секционирования, что­

бы отсечь некоторые секции. Как и следовало ожидать от грубого индекса, отсечение
позволяет просматривать гораздо меньше данных (в лучшем случае).

Очень важно задавать ключ, по которому производится секционирование, в разделе

WНERE, даже если он больше ни для чего не нужен, - только при этом условии оптими­

затор сможет отсечь ненужные секции. В противном случае подсистема выполнения

запроса будет обращаться ко всем секциям в таблице, что при больших таблицах

может очень затормозить процесс.

Чтобы понять, отсекает ли оптимизатор секции, можно воспользоваться командой

EXPLAIN PARТIТIONS. Вернемся к уже знакомым тестовым данным:

mysql> EXPLAIN PARTITIONS SELECT * FROМ sales \G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: sales_by_day
partitions: р_2010,р_2011,р_2012

type: ALL
possiЫe_keys: NULL

key: NULL
key_len: NULL

ref: NULL
rows: З

Extra:

Как видите, этот запрос обращается ко всем секциям. А теперь добавим в раздел WHERE

условие и посмотрим, что получится:

mysql> EXPLAIN PARTITIONS SELECT * FROМ sales_by_day WНERE day > '2011-01-01'\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: sales_by_day
partitions: р_2011,р_2012

Оптимизатор достаточно умен для того, чтобы понять, как производить отсечение,

например, он даже может преобразовать диапазон в список дискретных значений

и отсечь секции, соответствующие элементам этого списка. Однако он не всеведущ.

320 Глава 7 • Дополнительные возможности MySQL

Например, следующий раздел WHERE теоретически допускает отсечение, но MySQL
этого не сделает:

mysql> EXPLAIN PARTITIONS SELECT * FROМ sales_by_day WНERE YEAR(day) = 2010\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: sales_by_day
partitions: р_2010,р_2011,р_2012

MySQL умеет выполнять отсечение только на основе сравнения со столбцами, ука­
занными в функции секционирования. Она не может принять решение об отсечении
по результату вычисления выражения, даже если выражение совпадает с функцией

секционирования. Это подобно тому, как индексированные столбцы должны быть
изолированы в запросе, чтобы индекс можно было использовать (см. главу 5). Однако
предыдущий запрос можно переписать в эквивалентном виде:

mysql> EXPLAIN PARTITIONS SELECT * FROМ sales_by_day
-> lftERE day BEТWEEN '2010-01-01' AND '2010-12-31'\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: sales_by_day

partitions: р_2010

Поскольку теперь в условии WHERE явно указан столбец, по которому производилось
секционирование, а не выражение, то оптимизатор может спокойно отсечь все

секции, кроме одной.

Оптимизатор умеет также отсекать секции во время обработки запроса. Например,
если секционированная таблица - вторая в операции соединения, а само соединение
производится по ключу секционирования, то MySQL будет искать соединяемые
строки только в подходящих секциях. (EXPLAIN не покажет отсечение секции, по­
скольку это происходит во время выполнения, а не оптимизации запроса.)

Объединенные таблицы

Объединенные таблицы - это своего рода более ранний, более простой вид секцио­
нирования с различными ограничениями и меньшим количеством оптимизаций.

В то время как секционирование строго фиксирует абстракцию, запрещая разделам
доступ к исходным секциям и позволяя ссылаться только на секционированную та­

блицу, объединенные таблицы позволяют обращаться к базовым таблицам отдельно
от них самих. В то время как секционирование больше интегрировано с оптимизато­
ром запросов и является методом будущего, объединенные таблицы почти устарели
и однажды даже могут быть удалены.

Подобно секционированным таблицам, объединенные таблицы являются обертками
вокруг таблиц MyISAM с такой же структурой. Хотя вы можете считать объединен­
ные таблицы устаревшим и более ограниченным вариантом секционирования, они
обладают рядом возможностей, которые у секций отсутствуют 1 •

Некоторые люди сравнивают эти возможности с пистолетом, приставленным к виску.

Секционированные таблицы 321

Объединенная таблица - это просто контейнер для реальных таблиц. Имена объеди­

няемых таблиц задаются с помощью ключевого слова UNION в команде СRЕАТЕ TABLE.

Приведем пример, демонстрирующий многие аспекты объединенных таблиц:

mysql> CREATE ТАВLЕ tl(a INT NOT NULL PRIМARY KEY)ENGINE=МyISAМ;
mysql> CREATE ТАВLЕ t2(a INT NOT NULL PRIМARY KEY)ENGINE=МyISAМ;
mysql> INSERT INТO tl(a) VALUES(l),(2);
mysql> INSERT INTO t2(a) VALUES(l),(2);
mysql> CREATE ТАВLЕ mrg(a INT NOT NULL PRIМARY КЕУ)

-> ENGINE=MERGE UNION=(tl, t2) INSERT_METНOD=LAST;
mysql> SELECT а FROМ mrg;
+------+
1 а
+------+

1
1
2
2

+------+

Обратите внимание на то, что все объединяемые таблицы должны иметь одина­

ковое количество и типы столбцов и что все индексы, построенные над объединен­

ной таблицей, существуют и над базовыми таблицами. Это обязательное требование

к созданию объединенной таблицы. Отметим также, что в каждой из объединяемых

таблиц имеется первичный ключ, состоящий из одного столбца, тем не менее

в объединенной таблице есть строки-дубликаты. Это одно из ограничений объеди­

ненных таблиц: каждая таблица внутри объединения ведет себя нормально, од­

нако объединенная таблица не проверяет ограничений по всему набору базовых

таблиц.

Инструкция INSERT _MEТHOD=LAST в определении таблицы говорит MySQL о том, что
все вставки командой INSERT следует производить в последнюю таблицу. Управлять

тем, в какое место объединенной таблицы вставляются новые строки, можно только

с помощью этого параметра, который принимает значения LAST или FIRST (хотя вы

по-прежнему можете делать вставку непосредственно в объединяемые таблицы).

Секционированные таблицы обеспечивают лучшее управление тем местом, где хра­

нятся данные.

Результат выполнения команды INSERT виден и в объединенной таблице, и в одной

из базовых:

mysql> INSERT INТO mrg(a) VALUES(З);
mysql> SELECT а FROМ t2;
+---+
1 а 1

+---+
1 1 1

1 2 1

1 з 1
+---+

У объединенных таблиц есть ряд других интересных возможностей и ограничений.

Например, что происходит, когда сама объединенная таблица или одна из ее базовых

удаляется? При удалении объединенной таблицы все ее базовые таблицы остаются

322 Глава 7 • Дополнительные возможности MySQL

на месте, однако уничтожение любой из базовых таблиц вызывает последствия, за­
висящие от операционной системы. Например, на платформе GNU /Linux дескриптор
файла удаленной таблицы остается открытым и таблица все еще доступна, но только
через объединенную таблицу:

mysql> DROP TABLE tl, t2;
mysql> SELECT а FROМ mrg;
+------+
1 а
+------+

1
1
2
2
3

+------+

Существует множество других ограничений и особенностей поведения. Вот некото­

рые аспекты объединенных таблиц, которые вы должны учитывать.

1:1 Оператор СRЕАТЕ, который создает объединенную таблицу, не проверяет совме­
стимость базовых таблиц. Если базовые таблицы определены несколько иначе,
MySQL может создать объединенную таблицу, которую не сможет использовать
позже. Кроме того, если вы измените одну из базовых таблиц после создания кор­
ректной объединенной таблицы, она перестанет работать, выдав ошибку: ERROR
1168 (НУООО): UnaЫe to open underlying tаЫе which is differently defined or of non-MyISAМ type
or doesn't exist («Не могу открыть составляющую таблицу, поскольку она определе­
на по-другому, имеет тип, отличный от MyISAM, или не существует~).

1:1 Оператор REPLACE для объединенных таблиц не работает вовсе, а AUTO_INCREMENT

работает не так, как вы ожидаете. Мы предлагаем ознакомиться с деталями, про­

читав руководство.

1:1 Запросы, обращенные к объединенной таблице, переадресуются к каждой из
базовых таблиц. В результате поиск единственной строки может оказаться более

медленным по сравнению с поиском в одной таблице. Поэтому рекомендуется
ограничивать количество объединяемых таблиц, особенно если объединенная
таблица стоит на втором или последующих местах в операции соединения. Чем
меньше количество данных, к которым вы обращаетесь в рамках одной операции,
тем выше стоимость доступа к каждой таблице в расчете на операцию в целом.
Вот несколько соображений, которые стоит иметь в виду при планировании ис­

пользования объединенных таблиц:

• для запросов по диапазону накладные расходы на доступ к базовым таблицам
не так существенны, как для запросов на поиск одной строки;

• сканирование объединенной таблицы выполняется так же быстро, как и обычной;

• поиск по уникальному и первичному ключу прекращается, как только искомая

строка найдена. В данном случае сервер обращается к составляющим таблицам
поочередно, пока не найдет нужное значение, после чего оставшиеся таблицы
не просматриваются;

Представления 323

• базовые таблицы читаются в порядке, указанном в команде CREATE TABLE.

Если вам часто нужно извлекать данные в определенном порядке, этой осо­

бенностью можно воспользоваться, чтобы ускорить операцию сортировки

слиянием.

Поскольку объединенные таблицы не скрывают базовых МуISАМ-таблиц, то суще­

ствуют некоторые возможности, которых не дает использование секций в MySQL 5.5.

D Одна МуISАМ-таблица может входить в несколько объединенных таблиц.

D Базовые таблицы можно переносить с одного сервера на другой, для этого доста­
точно скопировать файлы с расширениями . frm, • MYI и . MYD.

D В объединенную таблицу легко добавлять базовые таблицы - достаточно создать
новую таблицу и изменить определение объединения.

О Можно создать временную объединенную таблицу, которая включает только
необходимые данные, например за конкретный период. Секции этого не по­

зволяют.

О Можно исключить таблицу из объединения, если требуется поместить ее в ре­
зервную копию, восстановить из копии, изменить определение, исправить или

выполнить еще какую-то операцию. Впоследствии таблицу можно вернуть в объ­
единение.

D Команда myisampack позволяет сжимать некоторые или все базовые таблицы.

Напротив, части секционированных таблиц скрыты сервером MySQL, доступ к ним
можно получить только через саму секционированную таблицу.

Представления

Представления были добавлены в MySQL, начиная с версии 5.0. Представление -
это виртуальная таблица, в которой не хранятся данные. Вместо этого информация,
«находящаясяi> в таблице, берется из результатов обработки SQL-зaпpoca, который
запускает MySQL, когда вы обращаетесь к представлению. Во многих отношениях
MySQL трактует представления точно так же, как таблицы, - они даже разделяют
общее пространство имен. Тем не менее в MySQL таблицы и представления -
не одно и то же. Например, для представления нельзя создать триггер, и невозможно

удалить представление командой DROP TABLE.

В этой книге мы не собираемся объяснять, как создавать и использовать представле­
ния, об этом можно прочитать в соответствующем разделе руководства по MySQL.
Сосредоточимся на том, как представления реализованы и как взаимодействуют

с оптимизатором запросов, чтобы вы поняли, как увеличить их производительность.

Для иллюстрации работы представлений воспользуемся демонстрационной базой
данных world:

mysql> CREATE VIEW Oceania AS
-> SELECT * FROМ Country WНERE Continent 'Oceania'
-> WITH СНЕСК OPTION;

324 Глава 7 • Дополнительные возможности MySQL

Чтобы реализовать этот запрос, серверу проще всего выполнить команду SELECT
и поместить результаты во временную таблицу. В дальнейшем этой таблицей можно
подменять все ссылки на представление. Разберемся, как это могло бы сработать, на
примере следующего запроса:

mysql> SELECT Code, Name FROМ Oceania WНERE Name = 'Australia';

Вот как сервер мог бы подойти к его выполнению (имя временной таблицы выбрано
исключительно для примера):

mysql> CREATE TEMPORARV TABLE TMP_Oceania_123 AS
-> SELECT 8 FROМ Country WНERE Continent = 'Oceania';

mysql> SELECT Code, Name FROM TMP_Oceania_123 WHERE Name = 'Australia';

Очевидно, при таком подходе не избежать проблем с производительностью и оп­
тимизацией. Более правильный способ реализации представлений - переписать
запрос, в котором встречается представление, объединив SQL-кoд самого запроса
с SQL-кодом представления. В следующем примере показано, как мог бы выглядеть
исходный запрос после подобного объединения:

mysql> SELECT Code, Name FROМ Country
-> WHERE Continent = 'Oceania' ANO Name = 'Australia';

MySQL может применять оба метода. Для этой цели вызываются два алгоритма:
MERGE и TEMPTABLE, причем по возможности MySQL старается использовать алгоритм
MERGE. MySQL умеет даже объединять вложенные определения представлений, когда
в определении одного представления имеется ссылка на другое. Посмотреть, что по­
лучилось в результате переписывания запроса, позволяет команда EXPLAIN EXТENDED,
за которой следует команда SHOW WARNINGS.

Если при реализации представления был использован алгоритм TEMPTABLE, то EXPLAIN
обычно показывает его как производную (DERIVED) таблицу. На рис. 7.1 показаны
обе реализации.

MySQL применяет метод TEMPTABLE, когда в определении представления встречаются
ключевые слова GROUP BV, DISТINCT, UNION, агрегатные функции, подзапросы и вообще
любые другие конструкции, которые не сохраняют взаимно однозначное соответствие
между строками в базовых таблицах и строками в представлении. Приведенный ранее
перечень неполон и может измениться в будущем. Чтобы узнать, какой из двух алго­
ритмов будет применен для конкретного представления, можно выполнить команду
EXPLAIN для тривиального запроса SE LECT к этому представлению:

mysql> EXPLAIN SELECT * FROМ <Wfll_предстабления>;
+----+-------------+
1 id 1 select_type 1

+----+-------------+
1 1 PRIМARV
2 1 DERIVED

+----+-------------+
Значение DERIVED в колонке select_type говорит, что для данного представления
будет использован метод ТЕМРТАВLЕ. Однако обратите внимание: если создание ба­
зовой производной таблицы весьма затратно, команда EXPLAIN в MySQL 5.5 и более
старых версиях также может быть довольно затратной и медленной, поскольку она
фактически выполнит и материализует производную таблицу.

Алгоритм объединения

Клиент

Запрос
пользователя SQL

к представлению 1 • 1

Сервер
перехватывает

запрос

Представление 1 1 SQL

Сервер
объединяет

SQL-кoд залроса 1 SQL
сSQL-кодом

представления

Сервер

Сервер
возвращает

результат

клиенту

выполняет mrn mrn
SQL-зaпpoc - - - - ·
к базовым
таблицам

Сервер

Алгоритм временной таблицы

Клиент

Запрос
пользователя

к представлению

Сервер

перехватывает ----­
запрос

Представление SQL

Сервер
возвращает

результат

клиенту

к временной
таблице

,..., Сервер

о~ выполняет

запрос

~ пользователя
Сервер

выполняет

SQL-зaпpoc
к базовым
таблицам

mrn----- mrn г--

Серверхран~презультаты ~l+H 1 '
во временной таблице

с той же структурой
данных, что и представление

Сервер

Рис. 7.1. ЩJе реализации представлений

:::::J

~
~ ro
::r
:s:
:о

w ...,
UI

326 Глава 7 • Дополнительные возможности MySQL

Алгоритм является свойством представления и не зависит от типа запроса, который

выполняется к представлению. Предположим, вы создаете тривиальное представле­

ние и явно указываете алгоритм ТЕМРТАВLЕ:

CREATE ALGORITHM = TEMPTABLE VIEW vl AS SELECT * FROМ sakila.actor;

SQL не требует временной таблицы внутри представления, но представление
всегда будет использовать ее независимо от того, какой тип запроса к ней вы­

полняется.

Обновляемые представления

Обновляемое представление позволяет изменять данные в базовой таблице через ее
представление. При соблюдении определенных условий к представлению можно

применять команды UPDATE, DELEТE и даже INSERT, как к обычной таблице. Например,

следующая операция допустима:

mysql> UPDATE Oceania SET Population = Population * 1.1 htlERE Name = 'Australia';

Представление не является обновляемым, если содержит разделы GROUP ВУ, UNION,

агрегатную функцию, а также еще в нескольких случаях. Запрос, изменяющий дан­

ные, может содержать операцию соединения, но все изменяемые столбцы должны

находиться в одной таблице. Представление, для реализации которого применен

метод ТЕМРТАВLЕ, не является обновляемым.

Ключевые слова СНЕСК OPТION, которые мы включили в определение представления

из предыдущего раздела, гарантирует, что все строки, измененные через представ­

ление, будут соответствовать условию WHERE в определении представления и после

изменения. Поэтому мы не можем изменять столбец Continent или вставлять строку
с другим значением Continent. В обоих случаях сервер выдал бы ошибку:

mysql> UPDATE Oceania SET Continent = 'Atlantis';
ERROR 1369 {НУ000): СНЕСК OPTION failed 'world.Oceania'

В некоторых базах данных для представлений разрешено использовать триггеры

типа INSTEAD OF, что позволяет уточнить, что должно происходить при попытке мо­
дифицировать данные представления, но в MySQL триггеры над представлениями
не поддерживаются.

Представления и производительность

Многие считают, что представления не могут повысить производительность, однако

в MySQL в некоторых случаях ЭТО не так. Кроме того, представления могут стать
подспорьем для других методов повышения производительности. Например, если ре­

факторинг схемы происходит поэтапно, то иногда с помощью представлений можно

сохранить работоспособность кода, который обращается к таблице с изменившейся

структурой.

Представления 327

Вы можете использовать представления для реализации привилегий по столбцу без

накладных расходов, связанных с фактическим созданием этих привилегий:

CREATE VIEW puЫic.employeeinfo AS
SELECT firstname, lastname -- но не номер социального страхования

FROM private.employeeinfo;
GRANT SELECT ON puЫic.* ТО puЫic_user;

Иногда хороший эффект дают псевдовременные представления. Невозможно создать

по-настоящему временное представление, которое существует только в текущем со­

единении, но можно выбирать для таких представлений специальные имена, быть

может, создавать их в особой базе данных, чтобы знать, что впоследствии их можно

спокойно удалять. Затем такое представление используется в разделе FROM точно так

же, как подзапрос. Теоретически оба подхода эквивалентны, но в MySQL для рабо­
ты с представлениями имеется специальный код, так что временное представление

может оказаться более эффективным. Рассмотрим пример:

-- Пусть 1234 - результат, возвращенный CONNECПON_ID()

CREATE VIEW temp.cost_per_day_1234 AS
SELECT DATE(ts) AS day, sum(cost) AS cost
FROM logs.cost
GROUP ВУ day;

SELECT c.day, c.cost, s.sales
FROM temp.cost_per_day_1234 AS с

INNER JOIN sales.sales_per_day AS s USING(day);
DROP VIEW temp.cost_per_day_1234;

Обратите внимание на то, что мы воспользовались идентификатором соединения

(1234) как уникальным суффиксом, который позволяет избежать конфликта имен.
При таком соглашении проще выполнять очистку в случае, когда приложение

завершается аварийно и не удаляет временное представление. Дополнительную

информацию об этом приеме вы найдете в подразделе «Отсутствующие временные
таблицы~> на стр. 57 4.

Производительность представлений, которые реализуются методом ТЕМРТАВLЕ,

может оказаться очень низкой, хотя все равно лучше, чем у эквивалентного запроса

без использования представлений. MySQL выполняет их с помощью рекурсивного
шага на стадии оптимизации внешнего запроса, еще до того, как он полностью

оптимизирован, поэтому ряд оптимизаций, к которым вы могли привыкнуть,

работая с другими СУБД, не применяется. Так, в версии до 5.6 при обработке
формирующего временную таблицу запроса условия WHERE не «опускается вниз~>

с уровня внешнего запроса на уровень представления, а индексы над временными

таблицами не строятся. Рассмотрим пример, в котором вновь используется пред­
ставление temp. cost_per _day _1234:

mysql> SELECT c.day, c.cost, s.sales
-> FROМ temp.cost_per_day_1234 AS с

-> INNER JOIN sales.sales_per_day AS s USING(day)
-> WНERE day BETWEEN '2007-01-01' AND '2007-01-31';

328 Глава 7 • Дополнительные возможности MySQL

В данном случае сервер выполняет запрос, по которому построено представление,

и помещает результат во временную таблицу, а затем соединяет с ней таблицу
sales_per _day. Встречающееся в условии WHERE ограничение BEТWEEN не включается

в представление, поэтому в результирующем наборе представления окажутся все
имеющиеся в таблице даты, а не только относящиеся к указанному месяцу. Вдобавок,
во временной таблице нет индексов. В данном случае это не составляет проблемы:
сервер ставит временную таблицу в соединении первой, поэтому для выполнения
соединения можно воспользоваться индексом таблицы sales_per _day. Но если бы
мы группировали два таких представления, то никаких индексов, позволяющих

оптимизировать соединение, не существовало бы.

У представлений есть некоторые проблемы, не относящиеся к MySQL. Они могут
обмануть разработчиков, заставляя тех думать, что представления простые, хотя на
самом деле их внутреннее устройство очень сложно. Разработчик, который не видит
базовой сложности, скорее всего, не подумает о том, что, неоднократно выполняя
запрос к тому, что выглядит как таблица, можно нести огромные потери. Нам дово­
дилось видеть, как простой на первый взгляд запрос вызывал появление сотен строк

вывода EXPLAIN, потому что одна или несколько ~таблиц~, на которые он ссылался,
фактически были представлениями, которые ссылались на множество других таблиц
и представлений.

Всякий раз, пытаясь использовать представления для повышения производительно­

сти, выполняйте измерения. Даже метод MERGE потребляет ресурсы, поэтому заранее
трудно сказать, как представление отразится на производительности. Фактически

представления используют другой путь выполнения в МуSQL-оптимизаторе, ко­

торый широко не тестируется и может по-прежнему иметь ошибки или проблемы.
По этой причине представления не столь идеальны, как хотелось бы. Например, мы
видели, как сложные представления при высоком параллелизме заставляли опти­

мизатор запросов тратить много времени на этапах планирования запроса и сбора
статистики, приводя даже к стопору серверов, отладку которых мы выполняли,

заменяя представление эквивалентным SQL. Это означает, что представления, даже
те, которые используют алгоритм MERGE, не всегда реализованы оптимально.

Ограничения представлений

MySQL не поддерживает материализованные представления, с которыми вы, воз­
можно, знакомы по работе с другими СУБД. (В общем случае матерuШ1изова111юе

представление хранит результаты выполнения в невидимой таблице, которую
периодически обновляет по исходным данным.) MySQL не поддерживает также
индексированные представления. Однако материализованные и индексированные

представления можно эмулировать, создав кэшированные или сводные таблицы.
Для этих целей вы можете использовать инструмент Flexviews, созданный Джасти­
ном Сванхартом (подробнее об этом говорится в главе 4).

Кроме того, в реализации представлений MySQL есть ряд неприятных особенностей.
Самая серьезная из них состоит в том, что данная СУБД не сохраняет исходный

Ограничения внешнего ключа 329

SQL-кoд представления, поэтому, если вы попытаетесь изменить представление,

надеясь выполнить команду SHOW СRЕАТЕ VIEW, а затем отредактировать результат,
то столкнетесь с неприятным сюрпризом. Запрос будет представлен во внутреннем

каноническом виде со всеми кавычками, но без каких бы то ни было форматирова­
ния, отступов и комментариев.

Если потребуется отредактировать представление, а исходный красиво отформати­
рованный код утрачен, то его можно найти в последней строке . frm-файла, соответ­
ствующего данному представлению. Если у вас есть привилегия FILE, а .frm-файл
доступен для чтения всем пользователям, то можно даже загрузить его содержимое

с помощью SQL-функции LOAD_FILE ().Произведя несложные манипуляции со
строками (спасибо Роланду Боумену за изобретательность), можно полностью вос­
становить исходный код:

mysql> SELECT
-> REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(
-> REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(
-> SUBSTRING_INDEX(LOAD_FILE('/var/lib/mysql/world/Oceania.frm'),
-> '\nsource=', -1),
-> '_','_'), '\\%','\%'), '\\\\','\\'), '\\Z','\Z'), '\\t','\t'),
-> '\\r', '\r'), '\\n', '\n') , '\\Ь', '\Ь') , '\\ \"' , '\ '") , '\\ \' ', '\' '),
-> '\\0', '\0')
-> AS source;

+---+
1 source
+---+

SELECT * FROМ Country WHERE continent = 'Oceania'
WITH СНЕСК OPTION

+---+

Ограничения внешнего ключа

В настоящее время InnoDB - основная подсистема хранения для MySQL, поддер­
живающая внешние ключи, так что у тех, кому они необходимы, выбор ограничен
(они есть еще в РВХТ).

Внешние ключи не бесплатное удовольствие. Как правило, их наличие означает, что

сервер должен заглядывать в другую таблицу при каждом изменении определенных
данных. Хотя для ускорения операции InnoDB принудительно строит индекс, это
вовсе не устраняет все негативные последствия подобных проверок. При этом может
даже получиться очень большой индекс, имеющий фактически нулевую селектив­
ность. Например, предположим, что в огромной таблице имеется столбец status
и нужно, чтобы он мог содержать только корректные значения, а таковых всего три.
Необходимый для этого дополнительный индекс заметно увеличит общий размер
таблицы, даже если размер самого столбца мал и в особенности если велика длина

первичного ключа. При этом сам индекс нужен лишь для проверки внешнего ключа

и больше ни для чего.

330 Глава 7 • Дополнительные возможности MySQL

И все же в некоторых случаях внешние ключи могут повысить производительность.

Если необходимо гарантировать, что данные в двух взаимосвязанных таблицах не­
противоречивы, то эффективнее поручить проверку серверу, а не заниматься этим

на уровне приложения. Внешние ключи полезны также для каскадного удаления

и обновления, хотя эти операции выполняются построчно, то есть медленнее, чем
удаление в нескольких таблицах или пакетная операция.

Из-за внешних ключей запрос может распространяться на другие таблицы, а это
означает захват блокировок. Например, при попытке вставить строку в дочернюю

таблицу ограничение внешнего ключа заставит InnoDB проверить наличие соот­
ветствующего значения в родительской таблице. При этом необходимо установить
блокировку на строку родительской таблицы, чтобы ее никто не удалил до заверше­
ния транзакции. Это может привести к неожиданному ожиданию блокировки и даже
к взаимоблокировкам на таблицах, к которым вы напрямую не обращаетесь. Такого

рода ошибки далеко не интуитивно понятны, и отлаживать их очень трудно.

Иногда вместо внешних ключей можно использовать триггеры. В таких операциях,

как каскадное обновление, внешние ключи работают быстрее триггеров, но если

единственное назначение ключа - проверить ограничение, как в примере со столбцом

status, то, возможно, эффективнее написать триггер, включив в него явный список
допустимых значений (можно просто воспользоваться типом данных ENUM).

Часто целесообразно проверять ограничения в приложении, а не использовать для
этой цели внешние ключи, так как это чревато значительными накладными расхода­

ми. У нас нет данных эталонного тестирования, но нам встречалось немало случаев,

когда профилирование серверов показало, что проверка ограничений внешнего

ключа негативно влияла на производительность, а удаление внешних ключей зна­

чительно ее улучшило.

Хранение кода внутри MySQL
MySQL позволяет сохранять код на стороне сервера в форме триггеров, хранимых
процедур и хранимых функций. В версии MySQL 5.1 можно делать это также в пе­
риодически выполняемых заданиях, которые называются событиями. Хранимые
процедуры и функции вместе называются хранимыми подпрограммами.

Для всех четырех видов хранимого кода применяется специальный расширенный

язык SQL, содержащий такие процедурные конструкции, как циклы и условные
предложения 1 • Самое существенное различие между разными видами хранимого

кода - контекст, в котором этот код выполняется, то есть то, откуда поступают

входные данные и куда направляются выходные. Хранимые процедуры и функции

могут получать параметры и возвращать результаты, а триггеры и события - нет.

Этот язык является подмножеством языка SQL/PSM (persistent stored modules - ~посто­
янно хранимые модули~), являющегося частью стандарта SQL. Он определен в документе
ISO/IEC 9075-4:2003 (Е).

Хранение кода внутри MySQL 331

В принципе, хранимый код - это неплохой способ совместного и повторного исполь­

зования кода. Джузеппе Максиа (Giuseppe Maxia) с коллегами написали библиотеку
полезных хранимых подпрограмм общего назначения, которая находится по адресу:

http://mysql-sr-lib.sourceforge.net. Однако использовать хранимые подпрограммы из
других СУБД затруднительно, так как обычно в них применяется собственный язык
(исключение составляет DB2, в которой используется очень похожий синтаксис,
основанный на том же стандарте)1•

Мы сфокусируемся на том, как хранимый код отражается на производительности,

а не на способах его написания. Если вы планируете писать хранимые процедуры
для MySQL, то имеет смысл познакомиться с книгой Гая Харрисона (Guy Harrison)
и Стивена Фейерстена (Steven Feuerstein) MySQL Stored Procedure Programming (из­
дательство O'Reilly).

Легко найти как сторонников, так и противников применения хранимого кода.

Не принимая ничью сторону, мы просто перечислим плюсы и минусы этого подхода

в MySQL. Начнем с плюсов.

О Код исполняется там, где находятся данные, поэтому можно сэкономить на сете­

вом трафике и уменьшить время задержки.

о Это одна из форм повторного использования кода. Она помогает хранить бизнес­
правила в одном месте, что обеспечивает согласованное поведение и позволяет
избежать лишних треволнений.

о Это упрощает политику выпуска версий и сопровождение.

О Это положительно сказывается на безопасности и позволяет более точно управ­
лять привилегиями. Типичный пример - хранимая процедура для перевода

средств с одного банковского счета на другой: она выполняет транзакцию и жур­

налирует ее для последующего аудита. Можно дать приложению право вы­

зывать хранимую процедуру, не открывая доступа к используемым в ней таб­
лицам.

о Сервер кэширует планы выполнения хранимых процедур, что снижает накладные

расходы на повторные вызовы.

о Поскольку код содержится на сервере, его можно развертывать, включать в ре­

зервную копию и сопровождать средствами сервера. Поэтому хранимый код

хорошо приспособлен для задач обслуживания базы данных. У него нет ника­

ких внешних зависимостей, например от библиотек на языке Perl или другого
программного обеспечения, которое по тем или иным причинам нежелательно

устанавливать на сервере.

о Это способствует разделению труда между программистами приложений и баз
данных. Лучше, когда хранимые процедуры пишет специалист по базам данных,
поскольку не всякий программист-прикладник умеет создавать эффективные

SQL-запросы.

Существуют также утилиты, предназначенные для переноса, например проект tsql2mysql
(http://sourceforge.net/projects/tsql2mysql) для переноса из Microsoft SQL Server.

332 Глава 7 • Дополнительные возможности MySQL

Теперь назовем минусы.

О Вместе с MySQL не поставляются хорошие инструменты разработки и отладки,
поэтому писать хранимый код для MySQI~ труднее, чем для других СУБД.

о Сам язык медленный и примитивный по сравнению с прикладными языками.

Количество доступных функций ограниченно, затруднительно программировать

сложные манипуляции со строками и нетривиальную логику.

о Наличие хранимого кода может даже усложнить развертывание приложения.

Приходится не только вносить изменения в саму программу и схему базы данных,
но и развертывать код, хранящийся внутри сервера.

о Поскольку хранимые подпрограммы содержатся в базе данных, могут возникнуть
дополнительные уязвимости. Например, реализация нестандартных криптогра­

фических функций в хранимой подпрограмме не защитит ваши данные в случае

взлома базы. Если бы криптографическая функция была реализована в коде
приложения, то хакеру пришлось бы взломать как этот код, так и базу данных.

о Хранимые подпрограммы увеличивают нагрузку на сервер баз данных, а масшта­
бировать его обычно труднее и более затратно, чем приложения или веб-серверы.

О MySQL не предоставляет больших возможностей для управления ресурсами,
выделяемыми для исполнения хранимого кода, поэтому ошибка может привести
к отказу всего сервера.

О Реализация хранимого кода в MySQL довольно ограниченна - планы выпол­

нения кэшируются на уровне соединения, курсоры материализуются в виде

временных таблиц, тяжело было выискивать ошибки в версиях до MySQL 5.5
и т. д. (Мы еще расскажем об ограничениях, присущих отдельным средствам,

когда будем их описывать.) В целом язык хранимых подпрограмм хуже, чем
T-SQL или PL/SQL.

О Код хранимых процедур в MySQL трудно профилировать. Сложно проанали­
зировать журнал медленных запросов, когда вы видите в нем лишь запись CALL
XYZ('А'), поскольку придется найти соответствующую процедуру и изучить все
команды в ней (это можно настроить в Percona Server).

о Он не очень хорошо работает с двоичным журналированием на основе инструк­
ций или репликацией. В нем так много подводных камней, что, скорее всего,

не следует использовать хранимый код с журналированием на основе инструк­

ций, если вы не очень хорошо в нем разбираетесь и не проверяете его на наличие
потенциальных проблем.

Мы привели длинный список недостатков, однако что все это значит на практике?

Однажды нам встретился случай, когда использование хранимого кода привело

к обратным результатам: в одной программе хранимый код использовался с целью
создания API для прИ:ложения для доступа к базе данных. В результате доступ к базе
данных - даже тривиальный поиск строк первичного ключа - осуществлялся через

запросы CALL, что снизило производительность примерно в пять раз.

В конечном счете хранимый код скрывает сложность. Это упрощает разработку, но
зачастую пагубно отражается на производительности и добавляет множество по-

Хранение кода внутри MySQL 333

тенциальных проблем с репликацией и другими функциями сервера. Размышляя

о том, стоит ли использовать хранимый код, спросите себя: где должна находиться

бизнес-логика, в коде приложения или в базе данных? Распространены оба подхода.
Нужно лишь понимать, что, прибегая к хранимому коду, вы помещаете логику на

сервер базы данных

Хранимые процедуры и функции

Архитектура MySQL и оптимизатора запросов налагает некоторые ограничения на
способы использования хранимых подпрограмм и степень их эффективности. В мо­
мент работы над этой книгой действовали следующие ограничения.

Q Оптимизатор не использует модификатор DEТERMINISТIC в хранимых функциях

для 011тимизации нескольких вызовов в одном запросе.

Q Оптимизатор не умеет оценивать затраты выполнения хранимой функции.

Q Для каждого соединения ведется отдельный кэш планов выполнения хранимых

процедур. Если одна и та же процедура вызывается в нескольких соединениях,

то ресурсы расходуются впустую на кэширование одного и того же плана. (При

использовании пула соединений или постоянных соединений полезная жизнь

плана выполнения может быть более длинной.)

Q Хранимые процедуры плохо сочетаются с репликацией. Возможно, вы хотите

реплицировать не вызов процедуры, а лишь сами изменения в наборе данных.

Построчная репликация, появившаяся в версии MySQL 5.1, несколько смягчает
эту проблему. Если в MySQL 5.0 включен режим ведения двоичного журнала,
то сервер настаивает на том, чтобы вы либо задали для всех хранимых процедур

модификатор DETERMINISТIC, либо включили параметр с затейливым названием

log_Ыn_trust_function_creators.

Мы обычно предпочитаем писать небольшие простые хранимые процедуры. На наш
взгляд, сложную логику лучше оставить вне базы данных и реализовывать ее с по­

мощью более выразительного и гибкого процедурного языка. К тому же он может
открыть доступ к большему объему вычислительных ресурсов и потенциально по­

зволяет реализовать различные формы кэширования.

Однако для некоторых операций хранимая процедура может оказаться гораздо более

быстрой, особенно если речь идет о процедуре, внутри которой есть цикл. В этом

случае она может заменить много мелких запросов. Если запрос достаточно мал,

то накладные затраты на его разбор и передачу по сети составляют заметную долю

всего времени обработки. Чтобы доказать это, мы написали простенькую хранимую
процедуру, которая вставляет в таблицу заданное количество строк. Вот ее код:

1 DROP PROCEDURE IF EXISTS insert_many_rows;
2
З delimiter //
4
5 CREATE PROCEDURE insert_many_rows (IN loops INT)
6 BEGIN

334 Глава 7 • Дополнительные возможности MySQL

7 DECLARE vl INT;
8 SET Vl=loops;
9 WHILE vl > 0 DO
10 INSERT INTO test_taЬle values(NULL,0,
11 'qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt',
12 'qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt');
13 SET vl = vl - 1;
14 END WHILE;
15 END;
16 //
17
18 delimiter

Затем мы провели эталонное тестирование и сравнили время вставки 1 миллиона
строк с помощью этой процедуры и последовательной вставки из клиентского прило­

жения. Структура таблицы и используемое оборудование значения не имеют, важно
лишь относительное быстродействие при разных подходах. Просто ради интереса мы
определили, сколько времени уходит на те же запросы при соединении с помощью

MySQL Proxy. Чтобы не усложнять ситуацию, эталонные тесты прогоняли на одном
сервере, где находились также клиентское приложение и экземпляр MySQL Proxy.
Результаты представлены в табл. 7.1.

Табпица 7.1. Общее время вставки 1 миллиона строк по одной

Метод Общее время, с

Хранимая процедура 101

Клиентское приложение 279

Клиентское приложение с соединением через MySQL Proxy 307

Хранимая процедура работает гораздо быстрее главным образом из-за отсутствия
накладных затрат на передачу данных по сети, разбор, оптимизацию и т. д.

Пример типичной хранимой процедуры для задач обслуживания базы данных мы
приведем позже в этой главе.

Триггеры

Триггеры дают возможность выполнить код, когда встречаются команды INSERT,
UPDAТE или DELEТE. Вы можете заставить MySQL обрабатывать триггеры до и/или
после выполнения самой команды. Триггер не возвращает значения, но в состоянии

читать и/или изменять данные, которые были модифицированы командой, вызва­
вшей его срабатывание. Следовательно, с помощью триггеров можно реализовывать
ограничения целостности или бизнес-логику, которую иначе пришлось бы програм­
мировать на стороне клиента.

Триггеры позволяют упростить логику приложения и повысить производительность,

поскольку избавляют от необходимости обмениваться данными по сети между кли­
ентом и сервером. Они бывают полезными также для автоматического обновления

Хранение кода внутри MySQL 335

денормализованных и сводных таблиц. Так, в демонстрационной базе Sakila триггеры
применяются для поддержания таблицы film_ text в актуальном состоянии.

В настоящее время реализация триггеров в MySQL весьма ограниченна. Даже если
у вас есть обширный опыт работы с триггерами в других базах данных, не стоит
предполагать, что в MySQL они будут работать точно так же. В частности, отметим
следующие моменты.

О В каждой таблице для каждого события можно определить только один триггер
(иными словами, не может быть двух триггеров, срабатывающих по событию
AFТER INSERT).

О MySQL поддерживает только триггеры на уровне строки, то есть триггер всегда
работает в режиме FOR ЕАСН ROW, а не для команды в целом. При обработке больших
наборов данных это гораздо менее эффективно.

Следующие недостатки триггеров относятся и к MySQL.

О Триггеры могут затруднить понимание того, что в действительности делает сер­

вер, поскольку простая на первый взгляд команда может инициировать большой
объем невидимой работы. Например, если триггер обновляет связанную таблицу,
то количество затрагиваемых командой строк может удвоиться.

О Триггеры трудно отлаживать. При их использовании зачастую очень сложно

найти узкие места, ухудшающие производительность.

О Триггеры могут стать причиной неочевидных взаимных блокировок и ожиданий

блокировок. Если в триггере возникает ошибка, то с ошибкой завершается и ис­
ходный запрос, а если вы не знаете о существовании триггера, то разобраться,
о чем говорит код ошибки, будет затруднительно.

С точки зрения производительности самое серьезное ограничение - это реализация

в М ySQL только триггеров FOR ЕАСН ROW. Иногда из-за этого триггер работает настолько
медленно, что оказывается непригоден для поддержания сводных и кэшированных

таблиц. Основной причиной использования триггеров вместо периодического массо­
вого обновления состоит в том, что данные в любой момент времени согласованы.

Кроме того, триггеры не всегда гарантируют атомарность. Например, действия, вы­

полненные триггером при обновлении таблицы типа MyISAM, невозможно откатить,
если в команде, ставшей причиной его срабатывания, обнаружится ошибка. Да и сам
триггер может вызывать ошибки. Предположим, что вы присоединили триггер типа

AFТER UPDATE к таблице в MyISAM и используете его для обновления другой таблицы
MyISAM. Если из-за ошибки в триггере вторую таблицу обновить не удастся, то от­
кат обновления первой не будет выполнен.

Триггеры над таблицами типа InnoDB выполняются в рамках текущей транзакции,
поэтому их действия будут атомарными - они фиксируются или откатываются
вместе с вызвавшей их командой. Однако если триггер таблицы InnoDB проверяет
данные в другой таблице, чтобы проконтролировать ограничение целостности, то
следует помнить о механизме МУСС, так как иначе можно получить неправильные

результаты. Пусть, например, требуется эмулировать внешние ключи, но вы не хотите

336 Глава 7 • Дополнительные возможности MySQL

использовать механизм внешних ключей, встроенный в InnoDB. Можно написать
триггер типа BEFORE INSERT, который проверит наличие соответствующей записи
в другой таблице, но если читать в триггере данные из нее не с помощью команды
SELECT FOR UPDATE, то в случае конкурентного обновления этой таблицы можно полу­
чить неверные результаты.

Мы вовсе не хотим отговаривать вас от использования триггеров. Напротив, они

бывают очень полезны, особенно для проверки ограничений, задач обслуживания
системы и поддержания денормализованных данных в актуальном состоянии.

Триггеры можно применять и с целью журналирования обновлений строк. Это по­
лезно для написанных пользователем схем репликации, когда требуется разорвать
соединение между двумя системами, изменить данные, а затем восстановить синхро­

низацию. Простой пример - группа пользователей, которые берут с собой ноутбуки
в другой офис. Сделанные ими изменения нужно затем синхронизировать с главной

базой данных, после чего скопировать главную базу обратно на отдельные ноутбуки.
Эта задача требует двусторонней синхронизации. Триггеры неплохо подходят для
построения подобных систем. На каждом ноутбуке с помощью триггеров все опера­
ции модификации данных журналируются в специальные таблицы с указанием того,
какие строки изменились. Затем специально написанная программа синхронизации
переносит изменения в главную базу данных. А уже потом с помощью стандартной
репликации MySQL можно синхронизировать ноутбуки с главной базой, в резуль­
тате чего на каждом переносном компьютере окажутся изменения, выполненные на

всех остальных ноутбуках. Однако вам нужно быть очень осторожными с триггера­
ми, вставляющими строки в другие таблицы, которые автоматически увеличивают
первичные ключи. Это не очень хорошо работает с репликацией на основе команд,
так как значения автоинкремента, вероятно, будут отличаться друг от друга в разных
подчиненных серверах.

Иногда удается даже обойти ограничение FOR ЕАСН ROW. Роланд Боумен (Roland
Bouman) обнаружил, что функция ROW_COUNT() внутри триггера возвращает 1 везде,
кроме первой строки в триггере типа BEFORE. Этим фактом можно воспользоваться
для того, чтобы подавить выполнение триггера для каждой измененной строки,
активизировав его лишь один раз на всю команду. Это, конечно, не триггер уровня

команды, но все-таки полезный прием, позволяющий в некоторых случаях эму­

лировать триггер BEFORE уровня команды. Возможно, описанная особенность на
самом деле является ошибкой, которая рано или поздно будет исправлена, поэтому
относитесь к этому приему с осторожностью и проверяйте, работает ли он после
перехода на новую версию. Приведем пример того, как можно использовать эту не­

документированную возможность:

CREATE TRIGGER fake_statement_trigger
BEFORE INSERT ON sometaЫe
FOR ЕАСН ROW
BEGIN

END;

DECLARE v_row_count INT DEFAULT ROW_COUNT();
IF v_row_count <> 1 THEN

-- Здесь должен быть ваш код
END IF;

Хранение кода внутри MySQL 337

События

События - это новый вид хранимого кода, появившийся в MySQL, начиная с вер­
сии 5.1. Они похожи на задания cron, но выполняются целиком внутри сервера М ySQL.
Можно создать событие, которое будет выполнять SQL-кoд в нужный момент времени
или с заданным интервалом. Обычно поступают так: оформляют сложный SQL-кoд
в виде хранимой процедуры, а событие просто вызывает ее с помощью команды CALL.

События инициируются специальным потоком планировщика событий, поскольку
никак не связаны с соединениями. Они не принимают параметров и не возвращают

значений просто потому, что их неоткуда получить и некому вернуть. Выполненные

событием команды фиксируются в журнале сервера, если он активизирован, но
понять, что они были вызваны именно из события, затруднительно. Можно также
заглянуть в таблицу INFORМAТION_SCHEМA. EVENTS и посмотреть на состояние события,
например узнать, когда оно в последний раз вызывалось.

К событиям применимы те же соображения, что и к хранимым процедурам, - это
дополнительная нагрузка на сервер. Накладные расходы на сам запуск события
минимальны, но SQL-кoд, который запускается событием, может заметно повлиять
на производительность. Кроме того, события могут вызывать те же самые проблемы
с репликацией на основе команд, что и другой хранимый код. Разумно использовать

события для периодического запуска задач обслуживания, в том числе перестроения
кэшированных и сводных таблиц, эмулирующих материализованные представления,
а также для сохранения переменных состояния с целью мониторинга и диагностики.

В следующем примере создается событие, которое один раз в неделю запускает хра­
нимую процедуру в указанной базе данных (как создать эту хранимую процедуру,
покажем чуть позже):

CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK
00
CALL optimize_taЫes('somedb');

Можно указать, следует ли реплицировать события на подчиненный сервер. Иногда
это необходимо, иногда - нет. Возьмем только что рассмотренный пример: возможно,
вы хотите выполнять операцию OPТIMIZE TABLE на всех подчиненных серверах, но

имейте в виду, что производительность сервера в целом может пострадать (в частно­

сти, из-за установки табличных блокировок), если все подчиненные серверы начнут
выполнять эту операцию в одно и то же время.

Наконец, если для завершения выполнения периодического собьпия требуется длитель­
ное время, то может случиться, что оно в очередной раз активизируется в момент, когда

предыдущее еще не завершилось. MySQL не защищает вас от этого, так что придется
написать собственную логику взаимного исключения. Чтобы гарантировать, что рабо­
тает только один экземпляр события, можно воспользоваться функцией GEТ_LOCK{):

CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK
00
BEGIN

DECLARE CONTINUE НANLDER FOR SQLEXCEPTION
BEGIN END;

338 Глава 7 • Дополнительные возможности MySQL

IF GET_LOCK('somedb', 0) THEN
DO CALL optimize_taЫes('somedb');

END IF;
DO RELEASE_LOCK('somedb');

END

Пустой обработчик продолжения гарантирует, что событие освободит блокировку,
даже если хранимая процедура выбросит исключение.

Хотя события никак не связаны с соединениями, ассоциация между ними и пото­
ками все же имеется. Существует главный поток планировщика событий, который
необходимо активизировать в конфигурационном файле сервера или командой SЕТ:

mysql> SET GLOBAL event_scheduler := 1;

Будучи активизирован, этот поток выполнит события согласно расписанию, опре­

деленному в этом событии. Вы можете просмотреть журнал ошибок сервера для
получения информации о выполнении события.

Хотя планировщик событий выполняется в одном потоке, события могут запускать­
ся конкурентно. Сервер создает новый процесс для каждого события. Внутри кода
события функция CONNECТION_ID(), как обычно, возвращает уникальное значение,
хотя соединения как такового не существует (функция CONNECТION_ID() на самом

деле возвращает просто идентификатор потока). Процесс и поток будут жить толь­
ко во время выполнения события. Вы можете увидеть его в выводе команды SHOW

PROCESSLIST, посмотрев на столбец Command, который появится как Connect.

Хотя процесс обязательно создает поток для фактического выполнения, последний
уничтожается в конце выполнения события и не помещается в кэш потока, а счетчик
состояния Threads_created не увеличивается.

Сохранение комментариев в хранимом коде

Код хранимых процедур и функций, триггеров и событий может быть довольно
длинным, поэтому неплохо снабдить его комментариями. Но комментарии не могут
храниться на сервере, поскольку стандартный клиент командной строки может вы­

резать их (эта особенность командного клиента, возможно, вызывает у вас раздра­
жение, но се ля ви).

Есть полезный прием, который поможет оставить комментарии в хранимом коде:

нужно воспользоваться зависящими от версии комментариями, которые сервер вос­

принимает как потенциально исполняемый код (то есть код, который сервер будет
выполнять, если номер его версии не меньше указанного). И сервер, и клиентские

программы знают, что это не обычные комментарии, поэтому не удаляют их. Чтобы

такой код гарантированно не выполнялся, можно просто задать очень большой номер
версии, скажем 99999. Добавим в триггер некоторые комментарии из предыдущего
примера, чтобы сделать его более понятным:

CREATE TRIGGER fake_statement_trigger
BEFORE INSERT ON sometaЫe
FOR ЕАСН ROW

BEGIN

END;

DECLARE v_row_count INT DEFAULT ROW_COUNT();
/*!99999 ROW_COUNT() равно 1 дпя всех строк, кроме первой,

поэтому этот триггер выполняется один раз на всю команду. */
IF v_row_count <> 1 THEN

-- Здесь ваш код

END IF;

Курсоры

Курсоры 339

В настоящее время MySQL предлагает однонаправленные (с прокруткой вперед)
серверные курсоры только для чтения, и использовать их можно лишь в хранимых

процедурах на нижнем уровне клиента API. Курсоры допускают только чтение, по­
тому что обходят временные таблицы, а не таблицы, в которых хранятся реальные
данные. Курсор позволяет построчно обойти результат запроса, извлекая строки
в переменные для последующей обработки. Хранимая процедура позволяет откры­
вать сразу несколько курсоров, причем они могут быть вложены друг в друга.

Для непосвященного устройство курсоров в MySQL таит немало сюрпризов. По­
скольку курсоры реализованы с помощью временных таблиц, у разработчика мо­
жет возникнуть обманчивое ощущение эффективности. Самое важное, что нужно
помнить, - то, что курсор выполняет весь запрос в момент открытия. Рассмотрим

следующую процедуру:

1 CREATE PROCEDURE bad_cursor()
2 BEGIN
З DECLARE film_id INT;
4 DECLARE f CURSOR FOR SELECT film_id FROM sakila.film;
5 OPEN f;
6 FETCH f INTO film_id;
7 CLOSE f;
8 END

Из этого примера видно, что курсор можно закрыть до завершения обхода результатов.
Разработчик, привыкший к Oracle или Microsoft SQL Server, возможно, и не заметит
в этой процедуре ничего плохого, но в MySQL она потребует массы лишней работы.
Профилирование процедуры с помощью команды SHOW STATUS показывает, что она

выполняет 1 ООО операций чтения индекса и 1 ООО операций вставки. Это происходит
потому, что в таблице sakila. film ровно 1 ООО строк. Все 1 ООО операций чтения и за­
писи производятся при обработке строки 5, еще до начала выполнения строки 6.

Мораль заключается в том, что раннее закрытие курсора, выбирающего данные из

большой таблицы, не дает никакой экономии. Если нужно всего несколько строк,

воспользуйтесь ключевым словом LIMIТ.

Из-за курсоров MySQL может выполнять и дополнительные операции ввода/вывода,
которые могут быть весьма медленными. Поскольку временные таблицы в памяти
не поддерживают типы BLOB и ТЕХТ, MySQL вынуждена создавать временные таблицы
на диске для курсоров, извлекающих данные таких типов. Но даже если это не так,

340 Глава 7 • Дополнительные возможности MySQL

временные таблицы, размер которых превышает значение параметра tmp_taЫe_size,
все равно создаются на диске.

MySQL не поддерживает курсоры на стороне клиента, но в клиентском API есть
функции, которые эмулируют курсор путем загрузки всего результирующего на­

бора в память. На самом деле это ничем не отличается от копирования результата
в созданный приложением массив с последующей манипуляцией этим массивом.

Дополнительная информация о последствиях для производительности загрузки всех

результатов в память клиента содержится в главе 6.

Подготовленные операторы

Начиная с версии MySQL 4.1, сервер поддерживает подготовленные операторы, кото­
рые используют расширенный двоичный клиент-серверный протокол, обеспечива­
ющий эффективную передачу данных между клиентом и сервером. Получить

доступ к функциональности подготовленных операторов позволяют библиотеки,
поддерживающие новый протокол, например MySQL С API. Библиотеки MySQL
Connector/J и MySQL ConnectorjNET предлагают те же возможности для java
и .NET соответственно. Существует также SQL-интерфейс для подготовленных
операторов, который мы рассмотрим в дальнейшем (он запутанный).

В момент создания подготовленного оператора клиентская библиотека посылает
серверу прототип будущего запроса. Сервер разбирает и обрабатывает эту заготовку,
сохраняет структуру, представляющую частично оптимизированный запрос, и воз­

вращает клиенту дескриптор команды.

В подготовленных операторах могут быть параметры, обозначенные вопроситель­
ными знаками, вместо которых в момент выполнения подставляются фактические

значения. Например, можно подготовить такой запрос:

INSERT INTO tЫ(coll, со12, соlЗ) VALUES (?, ?, ?);

Чтобы впоследствии выполнить этот запрос, серверу необходимо отправить де­
скриптор оператора и значения всех параметров, представленных вопросительными

знаками. Это действие можно повторять сколько угодно раз. Способ отправки де­

скриптора оператора серверу зависит от языка программирования. Один из вариан­

тов - воспользоваться МуSQL-коннекторами дляjаvа и .NET. Многие клиентские
библиотеки, компонуемые с библиотеками MySQL на языке С, тоже предоставляют
интерфейс к двоичному протоколу (вам следует ознакомиться с документацией по

конкретному MySQL API).

Использование подготовленных операторов может оказаться эффективнее повтор­

ного выполнения запросов по нескольким причинам.

Q Серверу нужно разобрать запрос только один раз.

Q Сервер должен проделать некоторые шаги оптимизации однократно, так как он

кэширует частичный план выполнения запроса.

Подготовленные операторы 341

Q Отправка параметров в двоичном виде эффективнее передачи в виде АSСII­

текста. Например, для отправки значения типа DATE нужно всего 3 байта вместо 10
при передаче в АSСII-виде. Но наибольшая экономия достигается для значений

типа BLOB и ТЕХТ, которые можно отправлять серверу блоками, а не одним гигант­
ским куском. Таким образом, двоичный протокол позволяет экономить память

клиента, а заодно уменьшает сетевой трафик и устраняет накладные расходы

на преобразование данных из естественного формата хранения в недвоичную

кодировку.

Q Для каждого выполнения запроса нужно посылать только параметры, а не весь
текст запроса, что также снижает сетевой трафик.

Q MySQL сохраняет параметры прямо в буферах сервера, поэтому серверу не нужно
копировать значения из одного места в памяти в другое.

Вдобавок подготовленные операторы повышают безопасность. Нет необходимости
экранировать специальные символы на уровне приложения, что удобнее и делает
программу менее уязвимой к внедрению SQL-кoдa или другим видам атак. (Никогда

не стоит доверять данным, полученным от пользователей, даже при использовании

подготовленных операторов.)

Двоичный протокол применим только к подготовленным операторам. При отправ­

ке запросов с помощью обычной функции API mysql_query() двоичный протокол
не применяется. Многие клиентские библиотеки позволяют подготовить оператор,
включив в его текст вопросительные знаки, а затем задавать фактические значения

параметров при каждом выполнении. Но зачастую это всего лишь эмуляция цикла

«подготовка - отправка!> в клиентском коде, а реально каждый запрос отправляется

серверу с помощью mysql_query().

Оптимизация подготовленных операторов

MySQL кэширует частичные планы выполнения для подготовленных операторов,
но некоторые оптимизации зависят от фактических значений параметров и по­

этому не могут быть заранее вычислены и закэшированы. Все оптимизации можно

разделить на три типа в зависимости от того, когда они выполняются. На момент

написания книги действовала следующая классификация.

Q На этапе подготовки сервер разбирает текст запроса, устраняет отрицания и пере­

писывает подзапросы.

Q При первом выполнении сервер упрощает вложенные соединения и преобразует
OUТER JOIN в INNER JOIN там, где это возможно.

Q При каждом вьтолнении сервер:

• отсекает секции;

• везде, где это возможно, исключает COUNT(), MIN() и МАХ();

• устраняет константные подвыражения;

• обнаруживает константные таблицы;

342 Глава 7 • Дополнительные возможности MySQL

• распространяет равенство;

• анализирует и оптимизирует методы доступа ref, range и index_ merge;

• оптимизирует порядок соединения таблиц.

Более подробно обо всех этих оптимизациях мы поговорим в главе 6. Хотя некоторые
из них теоретически можно выполнить только один раз, они все еще работают.

SQL-интерфейс для подготовленных операторов

SQL-интерфейс для подготовленных операторов существует начиная с версии 4.1.
Он позволяет давать серверу инструкции о создании и выполнении подготовленных

операторов, но использует не двоичный протокол. Вот пример использования под­

готовленного оператора из SQL:

mysql> SET @sql := 'SELECT actor_id, first_name, last_name
-> FROМ sakila.actor WНERE first_name = ?';

mysql> PREPARE stmt_fetch_actor FROМ @sql;
mysql> SET @actor_name := 'Penelope';
mysql> ЕХЕСUТЕ stmt_fetch_actor USING @actor_name;
+----------+------------+-----------+
1 actor_id 1 first_name 1 last_name 1

+----------+------------+-----------+
1 1 PENELOPE 1 GUINESS 1

54 1 PENELOPE 1 PINKETT 1

104 1 PENELOPE 1 CRONYN 1

120 1 PENELOPE 1 МONROE 1

+----------+------------+-----------+
mysql> DEALLOCATE PREPARE stmt_fetch_actor;

Получив такие операторы, сервер транслирует их в те же самые операции, которые

получились бы при использовании клиентской библиотеки. Поэтому никакого осо­
бого двоичного протокола для создания и выполнения подготовленных операторов
вам применять не придется.

Как легко заметить, подобный синтаксис несколько тяжеловеснее, чем при вводе
обычных команд SELECT. Тогда в чем же преимущество такого использования под­
готовленных операторов?

Основное применение они находят в хранимых процедурах. В MySQL 5.0 под­
готовленные операторы разрешено использовать внутри хранимых процедур, а их

синтаксис аналогичен SQL-интерфейсу. Это означает, что в хранимых процедурах

можно строить и выполнять динамические SQL-команды путем конкатенации строк,

что еще больше повышает гибкость подобных конструкций. Далее приведен пример
хранимой процедуры, в которой для каждой таблицы в указанной базе данных вы­
полняется команда OPТIMIZE TABLE:

DROP PROCEDURE IF EXISTS optimize_taЫes;
DELIMIТER //
CREATE PROCEDURE optimize_taЫes(db_name VARCHAR(64))
BEGIN

DECLARE t VARCHAR(64);
DECLARE done INT DEFAULT 0;

Подготовленные операторы 343

DECLARE с CURSOR FOR
SELECT taЫe_name FROM INFORMATION_SCHEМA.TABLES
WHERE TABLE_SCHEMA = db_name AND TABLE_TYPE = 'BASE TABLE';

DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
OPEN с;

taЫes_loop: LOOP
FETCH с INTO t;
IF done THEN

LEAVE taЫes_loop;
END IF;
SET @stmt_text := CONCAT("OPТIMIZE TABLE " db_name, t);
PREPARE stmt FROМ @stmt_text;
ЕХЕСUТЕ stmt;

DEALLOCATE PREPARE stmt;
END LOOP;
CLOSE с;

END//
DELIMIТER ;

Эту хранимую процедуру можно использовать следующим образом:

mysql> CALL optimize_taЫes('sakila');

Есть и другой способ написать цикл в процедуре:

REPEAT
FETCH с INTO t;
IF NOT done THEN

SET @stmt_text := CONCAT("OPТIMIZE TABLE " db_name, . , t);
PREPARE stmt FROМ @stmt_text;
ЕХЕСUТЕ stmt;
DEALLOCATE PREPARE stmt;

END IF;
UNTIL done END REPEAT;

Между этими двумя конструкциями цикла имеется важное различие: в случае REPEAT
условие цикла проверяется дважды на каждой итерации. В данной ситуации это,

пожалуй, не вызовет больших проблем с производительностью, так как мы просто
сравниваем целочисленные значения, но более сложная проверка может стать и более
затратной.

Имена таблиц и баз данных, созданные с помощью конкатенации строк, - это от­

личный пример применения SQL-интерфейса для подготовленных операторов,

поскольку так можно строить директивы, не принимающие параметров. Невозможно

подставить параметры вместо имен таблиц и баз данных, так как они являются иден­
тификаторами. Еще одно возможное применение - конструирование раздела LIMIТ,

который тоже не допускает параметризации.

SQL-интерфейс хорош для ручного тестирования подготовленных операторов, но

вне хранимых процедур он не особо полезен. Поскольку интерфейс основан на SQL,
двоичный протокол не используется, а сетевой трафик не сокращается, так как при

наличии параметров приходится отправлять дополнительные запросы, чтобы задать
их значения. Выгоду удается получить в некоторых частных случаях, например при

подготовке очень длинной строки SQL-зaпpoca, который будет выполняться много­
кратно без параметров.

344 Глава 7 • Дополнительные возможности MySQL

Ограничения подготовленных операторов

Есть несколько ограничений и оговорок относительно применения подготовленных

операторов.

1:1 Подготовленные операторы локальны по отношению к соединению, поэтому

в другом соединении тот же самый дескриптор использовать нельзя. По той же

причине клиент, который разрывает и вновь устанавливает соединение, теряет все

подготовленные операторы (смягчить эту проблему позволяют пул соединений

и устойчивые соединения).

1:1 До версии MySQL 5.1 подготовленные операторы не использовали кэш за­
просов.

1:1 Применение подготовленных операторов не всегда эффективно. Если подготов­

ленный оператор выполняется всего один раз, вы можете потратить на подготовку

больше времени, чем ушло бы на выполнение обычной SQL-команды. Кроме того,

для подготовки оператора необходимо дополнительное обращение к серверу (пра­
вильное использование подготовленного оператора предполагает освобождение

их дескрипторов после применения).

1:1 В настоящее время подготовленные операторы нельзя использовать в хранимых
функциях, но можно - в хранимых процедурах.

1:1 Если вы забудете освободить дескриптор подготовленного оператора, то возник­

нет утечка. Это может привести к потере большого количества ресурсов сервера.

Кроме того, поскольку существует глобальное ограничение на количество под­

готовленных операторов, такая ошибка может отразиться на других соединени­

ях - они не смогут подготовить оператор.

1:1 Некоторые команды, такие как BEGIN, не могут выполняться в подготовленных

операторах.

Однако, скорее всего, самым большим ограничением подготовленных операторов

является тот факт, что легко запутаться в том, что они собой представляют и как

работают. Иногда очень сложно объяснить разницу между тремя способами при­
менения подготовленных операторов.

1:1 Эмуляция на стороне клиента. Клиентский драйвер принимает строку с заполни­

телями, затем заменяет параметры в SQL и отправляет результирующий запрос
на сервер.

1:1 Серверная сторона. Драйвер отправляет строку с заполнителями на сервер спе­

циальным двоичным протоколом, получает обратно идентификатор оператора,
затем выполняет оператор по двоичному протоколу, указывая идентификатор

и параметры.

1:1 Интерфейс SQL. Клиент отправляет строку с заполнителями на сервер в качестве
оператора PREPARE SQL, устанавливает переменные SQL в значения параметров
и, наконец, выполняет оператор с помощью команды ЕХЕСUТЕ SQL. Все это проис­

ходит через обычный текстовый протокол.

Функции, определяемые пользователем 345

Функции, определяемые пользователем

М ySQL уже давно поддерживает функции, определяемые пользователем (user-defined
functions, UDF). В отличие от хранимых функций, которые создаются на языке SQL,
функции, определяемые пользователем, можно писать на любом языке программиро­
вания, который поддерживает соглашения о вызове, принятые в языке С.

U D F необходимо сначала скомпилировать, а затем динамически скомпоновать с сер­
вером. Поэтому они платформенно-зависимы, зато наделяют разработчика огромной
мощью. Такие функции могут работать очень быстро и пользоваться необозримой
функциональностью, которую предлагают операционная система и доступные би­
блиотеки. Хранимые функции, написанные на SQL, хороши для простых операций,
например для вычисления расстояния по дуге большого круга между двумя точка­
ми на глобусе, но если требуется отправить какие-то пакеты по сети, то без UDF
не обойтись. Кроме того, в настоящий момент нельзя написать агрегатные функции
как хранимые функции, а с помощью UDF это легко сделать.

Но большая власть накладывает большую ответственность. Ошибка в UDF может
привести к аварийному останову сервера, повредить память или данные пользователя

и вообще внести хаос, как любой плохо написанный код на С.

В отличие от хранимых функций, написанных на SQL, UDF пока не умеют
читать из таблиц и писать в них, по крайней мере не в том же транзакционном
контексrе, в котором выполняется вызвавшая их команда. Это означает, что они
полезны скорее для чистых вычислений или взаимодействия с внешним миром.
MySQL постоянно расширяет возможности обращения к ресурсам, внешним по
отношению к серверу. Отличным примером того, что можно с.делать с помощью
UDF, являются написанные Брайаном Эйкером (Briaп Aker) и Патриком Гэлбрайтом
(Patrick Galbraith) функции для взаимодействия с сервером memcached (http://
taпgeпt.org/586/Memcached_Fuпctioпs_for_MySQL.html).

Если вы используете UDF, внимательно следите за изменениями в новых версиях
MySQL, поскольку не исключено, что код придется перекомпилировать или даже
модифицировать, чтобы он мог работать с новым сервером. Кроме того, UDF должны
быть потокобезопасны, так как исполняются внутри сервера MySQL, то есть в много­
поточном окружении.

Для MySQL есть много хороших библиотек с готовыми UDF и приведено немало
примеров, показывающих, как их реализовать самостоятельно. Самый большой ре­
позиторий UDF находится по адресу http://www.mysqludf.org.

Приведем код UDF NOW_USEC(), который будем использовать для измерения скорости
репликации в главе 1 О:

#include <my_global.h>
#include <my_sys.h>

346 Глава 7 • Дополнительные возможности MySQL

#include <mysql.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
extern "С" {

}

my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
char *now_usec(

UDF_INIT *initid,
UDF _ARGS *args,
char *result,
unsigned long *length,
char *is_null,
char *error);

my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message) {
return 0;

}
char *now_usec(UDF_INIT *initid, UDF_ARGS *args, char *result,

unsigned long *length, char *is_null, char *error) {
struct timeval tv;
struct tm* ptm;
char time_string[20]; /* e.g. "2006-04-27 17:10:52" */
char *usec_time_string = result;
time_t t;
/* Получаем время суток и преобразуем его в структуру tm. */
gettimeofday (&tv, NULL);
t = (time_t)tv.tv_sec;

ptm = localtime (&t);

}

/* Форматируем дату и время с точностью до секунд. */
strftime (time_string, sizeof (time_string), "%Y-%m-%d %Н:%М:%S", ptm);
/* Выводим отформатированное время в виде секунд, за которыми идет

* десятичная точка, а затем выводим микросекунды. */
sprintf(usec_time_string, "%s.%06ld\n", time_string, tv.tv_usec);
*length = 26;
return(usec_time_string);

Одним из примеров использования функции, определенной пользователем, для

решения сложной проблемы является кейс, рассмотренный в предыдущей главе.
Мы также написали несколько UDF, одна из которых поставляется с пакетом Percona
Toolkit и применяется для эффективного сбора контрольных сумм данных, поэтому
вы можете протестировать целостность репликации с меньшими затратами, а дру­

гая - для предварительной обработки текста перед индексированием его для поиска
с помощью Sphinx. UDF могут быть весьма мощными.

Плагины

В дополнение к UDF MySQL поддерживает множество плагинов. Они могут добав­
лять собственные параметры командной строки и переменные состояния, предостав­
лять таблицы INFORМAТION_SCHEМA, запускаться как служебные процессы и многое дру­
гое. В MySQL версии 5.1 и последующих сервер имеет гораздо больше АРI-плагинов,

Кодировка и схемы упорядочения 347

чем прежде, и теперь он может быть расширен множеством способов без изменения
исходного кода. Приведем краткий список плагинов.

Q Плагины процедур. Могут обрабатывать результирующий набор. Это довольно
старый тип плагина, похожий на UDF, большинство людей даже не подозревают
о его существовании и никогда не используют. Примером может служить встро­

енный плагин PROCEDURE ANALYZE.

Q Плагины служебных процессов. Запускаются как процесс в MySQL и могут, на­
пример, прослушивать сетевые порты или выполнять периодические задания.

Примером может служить плагин Handler-Socket, входящий в состав Percona
Server. Он открывает сетевые порты и принимает простой протокол, который
позволяет получать доступ к таблицам InnoDB через интерфейс Handler без ис­
пользования SQL, что делает его высокопроизводительным NоSQL-интерфейсом
на сервере.

Q Плагины INFORMAТION_SCHEMA. Могут предоставлять произвольные таблицы
INFORМATION_SCHEМA.

Q Плагины полнотекстовых анализаторов. Обеспечивают перехват процессов чте­
ния и разбиения документа на слова для индексирования, поэтому с их помощью
вы можете индексировать документы PDF с учетом имен файлов. Кроме того,
они могут стать частью процесса сопоставления во время выполнения запроса.

Q Плагины аудита. Собирают события в определенных точках выполнения запроса,
поэтому их можно использовать, например, как способ журналирования событий,
происходящих на сервере.

Q Плагины аутентификации. Могут работать на стороне как клиента, так и сервера
для расширения диапазона доступных механизмов проверки подлинности на

сервере, включая аутентификацию РАМ и LDAP.

Для получения дополнительной информации изучите руководство по MySQL или
прочитайте книгу Сергея Голубчика (Sergei Golubchik) и Эндрю Хатчингса (Andrew
Hutchings) MySQL 5.1 Plиgiп Developтeпt (издательство Packt). Если вам нужен пла­
гин, но вы не знаете, как его написать, вам могут помочь многие поставщики услуг,

включая Monty Program, Open Queгy, Percona и SkySQL, которые предоставят в ваше
распоряжение компетентных специалистов.

Кодировка и схемы упорядочения

Кодировка - это соответствие двоичного кода определенному набору символов.
Схема упорядочения - это набор правил сортировки для конкретной кодировки.
Начиная с версии MySQL 4.1, с каждым символьным значением могут быть связа­
ны кодировка и схема упорядочения 1 • Поддержка кодировок и схем упорядочения

в MySQL реализована на уровне лучших мировых стандартов, но за нее приходится

В MySQL 4.0 и более ранних версиях использовалась глобальная настройка для всего
сервера и можно было выбрать одну из нескольких 8-разрядных кодировок.

348 Глава 7 • Дополнительные возможности MySQL

расплачиваться дополнительной сложностью, а иногда и падением производитель­

ности. (Кстати, Drizzle отказался от любых кодировок, кроме UTF-8.)

В этом разделе объясняются настройки и функции, которых в большинстве случаев
достаточно. Если вам интересны малоизвестные детали, почитайте руководство по

MySQL.

Использование кодировок в MySQL
С каждой кодировкой может быть связано несколько схем упорядочения, и одна из
них является схемой по умолчанию. Схема упорядочения принадлежит конкретной

кодировке, и ни с какой другой ее использовать нельзя. Кодировка и схема упорядо­

чения применяются совместно, поэтому отныне мы будем называть эту пару просто
кодировкой.

В MySQL есть множество параметров для управления кодировками. Их легко спу­
тать с самими кодировками, поэтому всегда помните: только символьные значения

могут иметь кодировку. Во всех остальных случаях речь идет всего лишь о параметре,

который говорит, какую кодировку использовать для сравнения и других операций.

Символьным значением может быть значение, хранящееся в столбце, литерал в за­
просе, результат выражения, пользовательская переменная и т. д.

Параметры MySQL можно разделить на две категории: параметры, используемые
по умолчанию при создании объектов, и параметры, управляющие взаимодействием
между клиентом и сервером.

Параметры, используемые по умолчанию при создании объектов

В MySQL у сервера, каждой базы данных и каждой таблицы есть свои кодиров­
ка и схема упорядочения, применяемые по умолчанию. Они образуют иерархию

умолчаний, на основе которой выбирается кодировка вновь создаваемого столбца.
Это, в свою очередь, указывает серверу, в какой кодировке хранить значения в этом

столбце.

На каждом уровне иерархии можно либо определить кодировку явно, либо позволить
серверу использовать подходящие из применяемых по умолчанию.

а При создании базы данных кодировка наследуется от определенного на уровне
сервера параметра character _set_server.

а При создании таблицы кодировка наследуется от базы данных.

а При создании столбца кодировка наследуется от таблицы.

Помните, что значения хранятся только в таблицах, поэтому на более высоких
уровнях иерархии определены всего лишь применяемые по умолчанию. Кодировка,

используемая по умолчанию для таблицы, никак не влияет на то, как хранятся значе­
ния в этой таблице, - это лишь способ сообщить MySQL, какую кодировку следует
использовать при создании нового столбца, если она не указана явно.

Кодировка и схемы упорядочения 349

Параметры взаимодействия между клиентом и сервером

Когда клиент и сервер взаимодействуют друг с другом, они могут посылать друг

другу данные в разных кодировках. Сервер выполняет преобразование по мере не­
обходимости.

Q Сервер предполагает, что клиент посылает команды в кодировке, заданной пара­
метром character _set_client.

Q Получив команду от клиента, сервер преобразует ее в кодировку, заданную пара­

метром character _set_connection. Этот же параметр управляет преобразованием
чисел в строки.

Q Результаты и сообщения об ошибках сервер преобразует в кодировку, заданную
параметром character _set_resul t.

Этот процесс показан на рис. 7.2.

Команда

Клиент
Результат

Сервер

Преобразовать character_set_client
в character_set_connection

00
-----~

Обработать
запрос

Преобразовать character _ set_ connection
в character_set_client

Рис. 7 .2. Кодировки клиента и сервера

Изменить эти три параметра можно с помощью команд SET NAMES и/или SЕТ CHARACТER
SET. Отметим, однако, что и та и другая влияют толъко на параметры сервера.
Клиентское приложение и API клиента должны быть правильно настроены , чтобы
не возникало проблем при взаимодействии с сервером.

Предположим, что вы открываете клиентское соединение с кодировкой latinl
(применяется по умолчанию, если не была изменена с помощью функции mysql_
options ()), а затем выполняете команду SЕТ NAMES utf8, сообщая серверу о том, что
клиент будет посылать данные в кодировке UTF-8. В результате получается несоот­
ветствие кодировок, которое может привести к ошибкам и даже поставить под угрозу
безопасность. Необходимо установить кодировку клиента и использовать функцию

350 Глава 7 • Дополнительные возможности MySQL

mysql_real_escape_string() для экранирования значений. В РНР для изменения
кодировки клиента можно воспользоваться функцией mysql_set_charset().

Как MySQL сравнивает значения

При сравнении двух значений в разных кодировках MySQL должна сначала при­
вести их к общей кодировке. Если кодировки несовместимы, то возникнет ошибка
ERROR 1267 (НУООО): Illegal mix of collations. В этом случае следует воспользоваться функ­
цией CONVERT() и явно преобразовать одно из значений в кодировку, совместимую
с кодировкой другого значения. Начиная с версии MySQL 5.0, такое преобразование
часто выполняется неявно, поэтому вышеупомянутая ошибка более характерна
для MySQL4.1.

MySQL также назначает значениям характеристику, которая называется приво­
димостью. Она определяет приоритет кодировки значения и влияет на то, какое
значение MySQL будет неявно преобразовывать. Для отладки ошибок, связанных
с кодировками и схемами упорядочения, можно использовать функции CHARSEТ(),
COLLAТION(} и COERCIBILIТY().

Чтобы задать кодировку и/или схему упорядочения литералов в SQL-командах,
можно использовать вступительный элемент и ключевое слово collate. Например,
следующая команда использует вступительный элемент, которому предшествует знак

подчеркивания, чтобы указать кодировку UTF-8, и ключевое слово collate, чтобы
задать двоичную схему упорядочения:

mysql> SELECT _utf8 'hello world' COLLATE utf8_Ыn;
+--------------------------------------+
1 _utf8 'hello world' COLLATE utf8_Ыn 1

+--------------------------------------+
1 hello world
+--------------------------------------+

Поведение в особых случаях

Поведение кодировок таит в себе несколько сюрпризов. Далее описаны ситуации,
о которых стоит помнить.

1:1 Магический параметр character _set_database. По умолчанию параметр character _
set_database совпадает с кодировкой базы данных, принимаемой по умолча­
нию. Когда изменяется база данных по умолчанию, изменяется и этот параметр.

При подключении к серверу, для которого не определена база данных по умолча­
нию, он принимает значение character _set_server.

1:1 LOAD DATA INFILE. Команда LOAD DATA INFILE интерпретирует входные данные в со­
ответствии с текущим значением параметра character _set_database. MySQL 5.0
и более поздние версии принимают в данной команде необязательный параметр
CHARACTER SET, но полагаться на это не стоит. Мы выяснили, что надежнее всего
выбрать нужную базу данных с помощью команды USE, затем задать кодировку
с помощью команды SЕТ NAМES, а уже потом загружать данные. MySQL считает, что

Кодировка и схемы упорядочения 351

все загружаемые данные записаны в одной и той же кодировке вне зависимости

от того, какая кодировка задана для столбцов, в которые данные загружаются.

О SELECT INTO OUTFILE. Команда SELECT INTO OUTFILE выводит данные без перекоди­
ровки. В настоящее время нет другого способа задать данным кодировку, кроме
как обернуть каждый столбец функцией CONVERT().

О Внутренние экранированные последовательности. MySQL интерпретирует
экранированные последовательности в командах в соответствии с параметром

character _set_client, даже если имеется вступительный элемент или ключевое
слово COLLATE. Это объясняется тем, что экранированные последовательности
в литералах интерпретирует синтаксический анализатор, а он ничего не знает

о схемах упорядочения. С точки зрения анализатора вступительный элемент

не команда, а просто лексема.

Выбор кодировки и схемы упорядочения

Начиная с версии 4.1, MySQL поддерживает большой диапазон кодировок и схем
упорядочения, в том числе Unicode с многобайтовыми символами UTF-8 (MySQL
поддерживает трехбайтовое подмножество UTF-8, достаточное для представления
практически всех символов в большинстве языков). Узнать, какие кодировки под­
держиваются, МОЖНО с помощью команд SHOW CHARACТER SЕТ и SHOW COLLAТION.

Будьте проще

Смесь разных кодировок в одной базе данных может вызвать хаос. Несовместимые

кодировки служат источником разнообразных ошибок. Все может работать хорошо,

пока в данных не встретится какой-то конкретный символ, а потом начнутся слож­

ности при выполнении тех или иных операций, например при соединении таблиц.

Для разрешения проблемы приходится либо выполнять команду AL ТЕR TABLE, что­

бы преобразовать столбцы в совместимые кодировки, либо выполнять приведение

к нужной кодировке с помощью вступительного элемента и ключевого слова collate
в SQL-команде.

Чтобы избежать всех этих трудностей, стоит задать разумные умолчания на уровне

сервера и, возможно, на уровне базы данных. А в исключительных случаях задавать

кодировку на уровне столбца.

При выборе схемы упорядочения обычно исходят из того, как сортировать буквы:
с учетом регистра, без учета регистра или в соответствии с двоичным кодом. Соот­
ветственно, названия схем упорядочения, как правило, заканчиваются нa_cs, _ci или
Ьin, чтобы проще было определить, к какой их трех групп они относятся. Разница
между схемами упорядочения с учетом регистра и двоичной заключается в том, что

при схеме упорядочения с двоичным кодом сортировка выполняется в соответ­

ствии с байтовыми значениями символов, тогда как зависящие от регистра схемы

352 Глава 7 • Дополнительные возможности MySQL

упорядочения моrут иметь сложные правила сортировки, учитывающие несколько

символов в языках, таких как, например, немецкий.

Когда кодировка задается явно, не обязательно указывать и имя кодировки, и имя
схемы упорядочения. Если одно или оба имени опущены, MySQL подставит не­
достающее по умолчанию. В табл. 7.2 показано, как MySQL выбирает кодировки
и схемы упорядочения.

Табпица 7 .2. Как MySQL определяет кодировку и схему упорядочения по умолчанию

Еспиэаданы Выбранная кодировка Выбранная схема упорядочения

Кодировка и схема Заданная Заданная
упорядочения

Только кодировка Заданная По умолчанию для заданной

кодировки

Только схема Та, к которой относится схема Заданная

упорядочения упорядочения

Ни то ни другое Применимое умолчание Применимое умолчание

Следующие команды показывают, как создать базу данных, таблицу и столбец с явно
заданными кодировкой и схемой упорядочения:

CREATE DATABASE d CHARSET latinl;
CREATE TABLE d.t(

coll CHAR(l),
со12 CHAR(l) CHARSET utf8,
соlЗ CHAR(l) COLLATE latinl_bin

DEFAULT CHARSET=cp1251;

В получившейся таблице для столбцов будут действовать следующие схемы упоря­
дочения:

mysql> SНOW FULL COLUMNS FROМ d.t;
+------+---------+-------------------+
IField 1 Туре 1 Collation 1

+------+---------+-------------------+
lcoll 1 char(l) 1 cp12Sl_general_ci 1

lcol2 1 char(l) 1 utfB_general_ci 1

lcolЗ 1 char(l) 1 latinl_bin 1

+------+---------+-------------------+

Как кодировка и схема упорядочения влияют на запросы

При использовании некоторых кодировок может возрасти потребление ресурсов
процессора, памяти и места на диске. Возможно, даже не удастся воспользоваться

индексами. Поэтому выбирать кодировку и схему упорядочения следует очень
тщательно.

Преобразование из одной кодировки или схемы упорядочения в друrую может по­
влечь за собой накладные расходы при выполнении некоторых операций. Так, по

Кодировка и схемы упорядочения 353

столбцу ti tle таблицы sakila. film построен индекс, способный ускорить выпол­
нение запросов с фразой ORDER ВУ:

mysql> EXPLAIN SELECT title, release_year FROМ sakila.film ORDER ВУ title\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: film
type: index

possiЫe_keys: NULL
key: idx_title

key_len: 767
ref: NULL

rows: 953
Extra:

Однако сервер может использовать этот индекс для сортировки, только если он об­
работан в соответствии с той же схемой упорядочения, которая указана в запросе.
При построении индекса используется схема упорядочения столбца, в данном случае
utf8_general_ci. Если требуется отсортировать результаты на основе другой схемы
упорядочения, то сервер прибегнет к файловой сортировке:

mysql> EXPLAIN SELECT title, release_year
-> FROМ sakila.film ORDER ВУ title COLLATE utf8_bin\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film
type: All

possiЫe_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: 953
Extra: Using filesort

MySQL должна не только адаптироваться к кодировке, заданной по умолчанию для
соединения, а также ко всем параметрам, явно указанным в запросах, но и выполнять

перекодирование, чтобы можно было сравнивать значения, записанные в разных
кодировках. Например, при соединении двух таблиц по столбцам, имеющим разные

кодировки, MySQL вынуждена перекодировать один из них. В результате может
получиться так, что не удастся воспользоваться индексом, поскольку перекодировку

можно уподобить функции, обертывающей столбец. Если вы не уверены, происхо­
дит ли что-то подобное, можете использовать EXPLAIN EXTENDED, а затем SHOW WARNINGS,

чтобы просмотреть запрос с точки зрения сервера. Взглянув на кодировку в запросе,
можно определить, проводилась ли перекодировка.

В случае применения многобайтовой кодировки UTF-8 для хранения символов отво­
дится различное число байтов (от одного до трех). Для выполнения многих операций
со строками MySQL применяет буферы фиксированного размера, поэтому приходится
выделять память, исходя из максимально возможной длины строки. Например, для

хранения значения типа CHAR(10) в кодировке UTF-8 потребуется 30 байт, даже если
фактическая строка не содержит так называемых широких символов. При хранении

354 Глава 7 • Дополнительные возможносrи MySQL

полей переменной длины (VARCHAR, ТЕХТ) на диске эта проблема не возникает, но во
временных таблицах в памяти, которые используются для обработки запросов и сор­
тировки результатов, место всегда выделяется по максимальной длине.

В многобайтовых кодировках символ и байт не одно и то же. Поэтому в MySQL
имеется две функции, LENGТH() и CHAR_LENGTH(), которые при использовании мпого­
байтовой кодировки возвращают разные результаты. При работе с такой кодировкой
для подсчета символов пользуйтесь функцией CHAR_LENGTH() (например, при вычис­
лении параметров функции SUBSTRING()). То же предостережение действует и для
многобайтовых кодировок в языках программирования приложений.

Еще один возможный сюрприз - ограничения на индексы. Если индексируется

столбец в кодировке UTF-8, то MySQL вынуждена предполагать, что каждый сим­
вол может занимать до 3 байт, поэтому обычные ограничения на длину неожиданно
уменьшаются в три раза:

mysql> CREATE TABLE big_string(str VARCHAR(S00), KEV(str)) DEFAULT CНARSET=utf8;
Query ОК, 0 rows affected, 1 warning {0.06 sec)
mysql> SНOW WARNINGS;
+---------+------+---+
1 Level 1 Code 1 Message 1

+---------+------+---+
1 Warning 1 1071 1 Specified key was too long; max key length is 999 bytes 1

+---------+------+---+
Обратите внимание на то, что MySQL автоматически укорачивает индекс до 333-сим­
вольного префикса:

mysql> sнow CREATE TASLE big_string\G
*************************** 1. row ***************************

ТаЫе: big_string
Create ТаЫе: CREATE TABLE 'big_string'

'str' varchar{500) default NULL,
КЕУ · str' С str' {333))
ENGINE=MyISAМ DEFAULT CHARSET=utf8

Если вы не обратите внимания на предупреждение и посмотрите на определение
таблицы, то увидите, что индекс создан лишь по части столбца. При этом могут
возникнуть нежелательные побочные эффекты, в частности, будет невозможно ис­
пользовать покрывающие индексы.

Иногда рекомендуют всегда и везде использовать кодировку UTF-8, чтобы упро­
стить себе жизнь. Однако с точки зрения производительности это далеко не всегда
хорошо. Многим приложениям кодировка UTF-8 совсем ни к чему, а в зависимости
от характера данных при ее использовании может потребоваться гораздо больше
места на диске.

Принимая решение о выборе кодировки, нужно подумать о том, какие данные вы
собираетесь хранить, Например, если речь идет преимущественно об англоязычном
тексте, то кодировка UTF-8 практически не повлияет на используемое дисковое
пространство, так как большинство символов английского языка кодируются одним
байтом. Но для языков, алфавит которых отличается от латиницы, например русского
или арабского, разница может оказаться очень заметной. Если приложение должно
хранить только арабские символы, то можно воспользоваться кодировкой ср1256,

Полнотекстовый поиск 355

в которой все знаки арабского алфавита кодируются одним байтом. Но если нужно
представлять тексты на разных языках и вы выбрали кодировку UTF-8, то для тех же
самых арабских символов потребуется больше места. Аналогично преобразование
столбца из национальной кодировки в UTF-8 может существенно увеличить объ­
ем занимаемого на диске места. При использовании InnoDB размер данных может
увеличиться настолько, что значение перестанет помещаться на одной странице

и придется задействовать внешнюю память, а это приводит к непроизводительному

расходованию места на диске и фрагментации.

Иногда вообще не нужно использовать кодировку. Кодировки полезны прежде всего
для сравнения с учетом регистра, сортировки и тех операций со строками, в которых

нужно распознавать границы между символами, например SUBSTRING (). Если не тре­
буется, чтобы сервер баз данных мог обрабатывать символьные значения, то можно
хранить все, включая данные в кодировке UTF-8, в столбцах типа BINARY. При этом
можно добавить специальный столбец, в котором будет содержаться информация
о том, в какой кодировке представлена информация. Этот подход используется уже

давно, однако он требует большой внимательности. Если забыть о том, что байт
и символ не одно и то же, могут возникнуть трудные для отладки ошибки, например,
при использовании функций SUBSTRING() и LENGTH(). Мы рекомендуем по возмож­

ности избегать такой практики.

Полнотекстовый поиск
В большинстве типичных запросов присутствует раздел WHERE, в котором значения
сравниваются на равенство, выделяются диапазоны строк и т. д. Но иногда нужно

искать по ключевому слову, и в этом случае поиск должен быть основан на релевант­
ности, а не на простом сравнении строк. Для этой цели и предназначены системы

полнотекстового поиска.

Для полнотекстового поиска требуется специальный синтаксис запроса. Индекс
необязателен, но при его наличии поиск выполняется быстрее. Полнотекстовые ин­
дексы имеют специальную структуру, ускоряющую поиск документов, содержащих

заданные ключевые слова.

По крайней мере с одним типом систем полнотекстового поиска вы точно знакомы,

даже если не осознавали этого. Речь идет о поисковых системах в Интернете. Хотя

работают они с гигантскими объемами данных и обычно не используют реляционные
базы данных для их хранения, тем не менее основные принципы схожи.

Полнотекстовый поиск позволяет искать в символьных столбцах (типа СНАR, VARCHAR
и ТЕХТ) и обеспечивает как булев поиск, так и поиск на естественном языке. При реа­
лизации полнотекстового поиска действует целый ряд ограничений 1, кроме того, она

В MySQL 5.1 можно использовать плагины полнотекстовых анализаторов для расширения
полнотекстового поиска. Возможно, вы придете к выводу, что ограничения на полнотек­

стовый поиск в MySQL делают его использование в вашей программе бессмысленным.
В приложении Е мы обсудим поисковую систему Sphinx.

356 Глава 7 • Дополнительные возможности MySQL

довольно сложна, но все же находит широкое применение, так как является частью

сервера и пригодна для многих приложений. В этом разделе мы познакомимся с тем,

как эту систему использовать и как проектировать полнотекстовый поиск с учетом

производительности.

На момент написания книги в стандартной MySQL только подсистема хранения
MyISAM поддерживает полнотекстовый поиск. Планируется реализация полно­
текстового поиска в InnoDB в релизе MySQL 5.6. Кроме того, существуют сторонние
подсистемы хранения, использующие полнотекстовый поиск, например Groonga.

То, что только MyISAM поддерживает полнотекстовый поиск, является серьезным
ограничением, которое делает его неудачным решением для большинства приложе­

ний, поскольку слишком болезненно иметь дело с блокировкой на уровне таблиц,
повреждением данных и восстановлением после сбоев. Как правило, вы можете про­
сто использовать другое решение, такое как Sphinx, Lucene, Solr, Groonga, Xapian или
Senna, или дождаться выхода MySQL 5.6 и использовать InnoDB. Тем не менее, если
использование MyISAM подходит для вашего приложения, читайте дальше.

Полнотекстовый индекс MyISAM оперирует полнотекстовым набором, который
составлен из одного или нескольких столбцов какой-либо таблицы. По сути дела,
MySQL конкатенирует все столбцы, входящие в набор, и индексирует результат как
одну длинную текстовую строку.

Полнотекстовый индекс MyISAM представляет собой специальный вид индекса,
упорядоченного на основе В-дерева, с двумя уровнями. На первом уровне находятся

ключевые слова. На втором уровне расположены списки ассоциированных со всеми

ключевыми словами указателей на документы, ведущих на полнотекстовые наборы,

в которых встречается данное ключевое слово. В индекс не добавляются все слова,
из которых состоит набор, часть отбрасывается, а именно:

О слова, входящие в список стоп-слов, то есть шум. По умолчанию перечень стоп­

слов построен на базе традиционного словоупотребления в английском языке, но

параметр ft_stopword_file позволяет заменить его списком, взятым из внешнего
файла;

О слова, содержащие меньше '!ем ft_min_word_len символов или больше чем ft_max_
word_len символов.

В полнотекстовом индексе не хранится информация о том, в каком столбце набора
находится ключевое слово, поэтому, если необходимо искать по различным комби­
нациям столбцов, придется создать несколько индексов.

Это также означает, что в разделе МАТСН AGAINST нельзя сказать, будто слова, встре­

чающиеся в одном столбце, важнее слов, встречающихся во всех остальных. А это
типи'lное требование при построении систем поиска по сайтам. Например, иногда
желательно, чтобы документы, в которых ключевое слово встречается в заголовке,

стояли в списке результатов раньше остальных. Если для вас это существенно, то

придется писать более сложные запросы (пример приведем далее).

Полнотекстовый поиск 357

Полнотекстовые запросы на естественном языке

Поисковый запрос на естественном языке определяет релевантность каждого доку­

мента исходному запросу. Релевантность вычисляется на основе количества совпа­

вших слов и частоты их вхождения в документ. Чем реже слово встречается в индек­

се, тем более релевантным становится совпадение. И наоборот, слова, употребляемые

очень часто, вообще не стоит искать. При полнотекстовом поиске на естественном

языке исключаются слова, которые встречаются более чем в 50 % строк таблицы,
даже если их нет в списке стоп-слов 1 •

Синтаксис полнотекстового поиска несколько отличается от запросов других типов.

Чтобы MySQL выполнила полнотекстовый поиск, в разделе WHERE должен присут­

ствовать предикат МАТСН AGAINST. Давайте рассмотрим пример. В демонстрационной

базе Sakila по столбцам title и description таблицы film_text построен полнотек­
стовый индекс:

mysql> SHOW INDEX FROM sakila.film_text;
+-----------+-----------------------+-------------+------------+
1 ТаЫе 1 Key_name 1 Column_name 1 Index_type 1

+-----------+-----------------------+-------------+------------+
1
1 film_text 1 idx_title_description 1 title 1 FULLTEXT
1 film_text 1 idx_title_description 1 description 1 FULLTEXT
+-----------+-----------------------+-------------+------------+
Приведем пример полнотекстового запроса на естественном языке:

mysql> SELECT film_id, title, RIGHT(description, 25),
-> МATCH(title, description) AGAINST('factory casualties') AS relevance
-> FROМ sakila.film_text
-> WHERE МATCH(title, description) AGAINST('factory casualties');

+---------+-----------------------+---------------------------+-----------------+
1 film_id 1 title 1 RIGHT{description, 25) 1 relevance
+---------+-----------------------+---------------------------+-----------------+

831 SPIRITED CASUALTIES а Car in А Baloon Factory 8.4692449569702
126 CASUALTIES ENCINO Face а Воу in А Monastery 5.2615661621094
193 CROSSROADS CASUALTIES а Composer in The Outback 5.2072987556458
369 GOODFELLAS SALUTE d Cow in А Baloon Factory 3.1522686481476
451 IGBY МАКЕR а Dog in А Baloon Factory 3.1522686481476

MySQL выполнила полнотекстовый поиск, разбив поисковую строку на слова и со­
поставив каждое из них с содержимым полей ti tle и description, которые были
объединены в один полнотекстовый набор на этапе построения индекса. Обратите

внимание на то, что только одна строка содержит оба этих слова и что три результата,

содержащие слово casualties (таких всего три во всей таблице), перечислены в на­
чале. Это объясняется тем, что в индексе результаты отсортированы по убыванию

релевантности.

При тестировании часто допускают ошибку: помещают несколько строк с тестовыми дан­

ными в полнотекстовый индекс, а потом обнаруживают, что ничего не найдено. Проблема

в том, что каждое слово встречается более чем в половине строк таблицы.

358 Глава 7 • Дополнительные возможности MySQL

В отличие от результатов обычных запросов результаты полнотекстового
поиска автоматически сортируются по релевантности. При полнотекстовом

запросе MySQL не может использовать для сортировки индекс. Поэтому,
если хотите избежать файловой сортировки, не включайте в запрос раздел
ORDER ВУ.

Как видно из примера, функция МАТСН() возвращает показатель релевантности

в виде числа с плавающей точкой. Это можно использовать для фильтрации ре­

зультатов по релевантности или для показа релевантности в пользовательском

интерфейсе. Функцию МАТСН() можно употреблять более одного раза, не опасаясь
дополнительных накладных расходов: MySQL понимает, что речь идет об одном
и том же, и выполняет операцию только один раз. Однако если поместить вызов

МАТСН() в условие ORDER ВУ, то MySQL для упорядочения результатов прибегнет
к файловой сортировке.

Столбцы в разделе МАТСН() следует перечислять точно в том же порядке, в котором
они были заданы при построении полнотекстового индекса. В противном случае
MySQL не сможет воспользоваться индексом. Это происходит из-за того, что индекс
не содержит сведений о том, в каком столбце встретилось ключевое слово.

Как мы уже отмечали, это также означает, что при полнотекстовом поиске нельзя

сказать, что ключевое слово должно встречаться в конкретном столбце. Однако су­
ществует обходной путь: можно выполнить нестандартную сортировку с помощью
нескольких полнотекстовых индексов по различным комбинациям столбцов, чтобы
добиться необходимого ранжирования. Предположим, мы считаем столбец ti tle
более важным. Тогда можно добавить еще один индекс по этому столбцу:

mysql> ALTER ТАВLЕ film_text ADD FULLTEXT KEY(title) ;

Теперь столбец ti tle можно сделать в два раза более важным для ранжирования:

mysql> SELECT film_id, RIGHT(description, 25),
-> ROUND(МATCH(title, description) AGAINST('factory casualties'), 3)
-> AS full_rel,
-> ROUND(МATCH(title) AGAINST('factory casualties'), 3) AS title_rel
-> FROМ sakila.film_text
-> WНERE МATCH(title, description) AGAINST('factory casualties')
-> ORDER ВУ (2. МATCH(title) AGAINST('factory casualties'))
-> + МATCH(title, description) AGAINST('factory casualties') DESC;

+---------+---------------------------+----------+-----------+
1 film_id 1 RIGHT(description, 25) 1 full_rel 1 title_rel 1

+---------+-------------- ------------+----------+-----------+
831 а Car in А Baloon Factory 8.469 5.676
126 Face а Воу in А Monastery 5.262 5.676
299 jack in The Sahara Desert 3.056 6.751
193 а Composer in The Outback 5.207 5.676
369 d Cow in А Baloon Factory 3.152 0.000
451 а Dog in А Baloon Factory 3.152 0.000
595 а Cat in А Baloon Factory 3.152 0.000
649 nizer in А Baloon Factory 3.152 0.000

Однако из-за файловой сортировки такой подход, как правило, неэффективен.

Полнотекстовый поиск 359

Булев полнотекстовый поиск

При булевом поиске в самом запросе задается относительная релевантность каждого

слова. Как и раньше, для фильтрации шума используется список стоп-слов, однако

требование о том, чтобы слова были длиннее чем ft_min_word_len символов и короче
чем ft_max_word_len символов, не предъявляется 1 • Результаты никак не сортируются.

При конструировании булева запроса можно использовать префиксы для относи­

тельного ранжирования каждого слова в поисковой строке. Наиболее часто упо­

требляющиеся модификаторы приведены в табл. 7 .3.

Таблица 7.3. Наиболее употребительные модификаторы для булева полнотекстового поиска

Пример Значение

dinosaur Строки, содержащие слово dinosaur, имеют больший ранг

-dinosaur Строки, содержащие слово dinosaur, имеют меньший ранг

+dinosaur Строка должна содержать слово dinosaur

-dinosaur В строке не должно быть слова dinosaur

dino* Строки, содержащие слова, которые начинаются с dino, имеют больший ранг

Можно использовать и другие операторы, например скобки для группировки. Таким

образом можно конструировать сложные запросы.

В качестве примера еще раз рассмотрим таблицу sakila. film_text и найдем в ней
фильмы, в описании которых содержатся слова factory и casualties. Как мы уже
видели, поиск на естественном языке возвращает результаты, где есть одно или оба

слова. Но если воспользоваться булевым поиском, то можно потребовать, чтобы

обязательно встречались оба слова:

mysql> SELECT film_id, title, RIGHT(description, 25)
-> FROМ sakila.film_text
-> WНERE MATCH(title, description)
-> AGAINST('+factory +casualties' IN BOOLEAN МОDЕ);

+---------+---------------------+---------------------------+
1 film_id 1 title 1 RIGHT(description, 25)
+---------+---------------------+---------------------------+

831 1 SPIRITED CASUALTIES 1 а Car in А Baloon Factory 1

+---------+---------------------+---------------------------+

Можно также произвести поиск фразы, заключив несколько слов в кавычки. Эго озна­

чает, что должна встречаться в точности указанная фраза:

mysql> SELECT film_id, title, RIGHT(description, 25)
-> FROМ sakila.film_text

Полнотекстовые индексы даже не будут содержать слишком коротких или слишком длин­

ных слов, но это другое дело. Здесь мы говорим о том, что сервер не будет удалять слова

из поисковой фразы, если они слишком короткие или слишком длинные, что он обычно

делает в процессе оптимизации запросов.

360 Глава 7 • Дополнительные возможности MySQL

-> WHERE MATCH(title, description)
-> AGAINST('"spirited casualties"' IN ВOOLEAN МОDЕ);

+---------+---------------------+---------------------------+
1 film_id 1 title 1 RIGHT(description, 25)
+---------+---------------------+---------------------------+

831 1 SPIRITED CASUALTIES 1 а Car in А Baloon Factory 1

+---------+---------------------+---------------------------+

Поиск фразы может выполняться довольно медленно. Один лишь поиск по полно­

текстовому индексу не в состоянии дать ответ на такой запрос, поскольку индекс

не содержит информации о том, как слова расположены друг относительно друга в ис­

ходном полнотекстовом наборе. Поэтому сервер должен анализировать сами строки.

Чтобы выполнить такой запрос, сервер сначала находит все документы, содержащие
оба слова, spirited и casualties. Затем выбирает строки из найденных документов и про­
веряет вхождение фразы целиком. Поскольку на первом этапе используется полнотек­

стовый индекс, может сложиться впечатление, что поиск производится очень быстро,
гораздо быстрее, чем с помощью эквивалентной операции LIKE. Это действительно так,
если входящие во фразу слова не являются общеупотребительными, так что поиск
по полнотекстовому индексу возвращает не слишком много документов. Если же

эти слова встречаются очень часто, то LIKE может оказаться намного быстрее, так
как в этом случае строки читаются последовательно, а не в квазислучайном порядке

индекса, и обращаться к полнотекстовому индексу вовсе не требуется.

Для булева поиска полнотекстовый индекс фактически не нужен, хотя для него тре­

буется подсистема хранения MyISAM. Если такой индекс есть, он просматривается,
в противном случае сканируется вся таблица. Можно даже применить булев полно­
текстовый поиск к столбцам из нескольких таблиц, например к результату соединения.

Впрочем, во всех таких случаях процедура поиска будет выполняться медленно.

Изменения в полнотекстовом поиске в версии MySQL 5.1
В версии MySQL 5.1 полнотекстовый поиск претерпел некоторые изменения. Это
и улучшенная производительность, и возможность подключать внешние анализато­

ры, расширяющие встроенные возможности. Например, подключаемый анализатор

может изменить способ индексирования. С его помощью можно разбивать текст
на слова более гибко, чем по умолчанию (скажем, стало возможно определить, что
"С++" - это одно слово), выполнять первичную обработку, индексировать документы
различных форматов (например, PDF) или реализовать пользовательский алгоритм
морфологического поиска. Плагины могут также изменить способ выполнения по­
иска, например подвергнуть поисковые слова морфологическому поиску.

Компромиссы полнотекстового поиска и обходные пути

Реализация полнотекстового поиска в MySQL имеет несколько архитектурных
ограничений, которые могут препятствовать решению конкретных задач. Однако

существует ряд способов эти ограничения обойти.

Полнотекстовый поиск 361

Например, полнотекстовое индексирование в MySQL поддерживает единственную
форму ранжирования по релевантности: частоту. В индексе не хранится располо­

жение слова в строке, поэтому учитывать близость при вычислении релевантности
нельзя. Во многих случаях (особенно если объем данных невелик) это не страшно,
но вас такой подход может не устроить, а MySQL не позволяет выбрать другой
алгоритм ранжирования (она даже не хранит данные, необходимые для ранжирова­
ния по близости).

Вторая проблема - размер. Полнотекстовое индексирование в MySQL работает хо­
рошо, если весь индекс помещается в памяти, но если это не так, поиск может быть
очень медленным, особенно когда поля велики. Для поиска по фразе приемлемая
производительность достигается, когда и данные, и индексы находятся в памяти.

Вставка строк в полнотекстовый индекс, его обновление и удаление строк из него
намного более затратны, чем индексы других типов.

1:1 Модификация фрагмента текста, содержащего 100 слов, требует не одной, а 100 опе­
раций с индексом.

1:1 Скорость работы с другими типами индексов мало зависит от длины поля, а в случае
полнотекстового индекса время индексирования текста из трех слов и из 1 О ООО слов
различается на несколько порядков.

1:1 Полнотекстовые индексы в гораздо большей степени подвержены фрагментации,
поэтому выполнять команду OPТIMIZE TABLE приходится чаще.

Полнотекстовые индексы также влияют на оптимизацию запросов сервером. Выбор
индекса, условия WHERE и ORDER ВУ работают не так, как можно было бы ожидать.

1:1 Если имеется полнотекстовый индекс и в запросе присутствует фраза МАТСН
AGAINST, который может его использовать, то MySQL задействует его при обработ­
ке запроса. Она не станет сравнивать полнотекстовый индекс с другими индекса­

ми, которые можно было бы применить при выполнении запроса. Некоторые из
таких индексов могли бы ускорить выполнение, но MySQL даже рассматривать
их не будет.

1:1 Полнотекстовый индекс пригоден только для выполнения полнотекстового по­

иска. Все остальные указанные в запросе (в частности, в разделе WHERE) условия

нужно будет применять после считывания строки из таблицы. Это отличается от
поведения индексов других типов, которые позволяют проверять сразу несколько

условий в WHERE.

1:1 В полнотекстовом индексе не хранится сам индексируемый текст, поэтому вос­
пользоваться им как покрывающим не удастся.

1:1 Полнотекстовые индексы можно использовать только для одного вида сортиров­

ки: по релевантности при поиске на естественном языке. Если нужно сортировать

как-то иначе, MySQL прибегает к файловой сортировке.

Теперь посмотрим, как эти ограничения сказываются на запросах. Предположим,

что имеется миллион документов, по которым сформированы обычный индекс по
автору документа и полнотекстовый индекс по содержимому. Вы хотите выполнить

362 Глава 7 • Дополнительные возможности MySQL

полнотекстовый поиск по содержимому, но только для документов, составленных

автором 123. Возможно, вы напишете запрос следующим образом:

... WHERE МATCH(content) AGAINST ('High Performance MySQL')
AND author = 123;

Однако он будет крайне неэффективен. Сначала MySQL осуществит полнотекстовый
поиск по всему миллиону документов, так как отдает предпочтение полнотекстовому

индексу. Затем применит раздел WHERE, чтобы оставить только документы указанного
автора, но при этом не сможет воспользоваться индексом по автору.

Одно из решений описанной проблемы - включить идентификатор автора в полно­
текстовый индекс. Можно выбрать какой-нибудь префикс, появление которого
в тексте маловероятно, дописать после него идентификатор автора и включить это

~слово~ в столбец filters, который обновляется независимо (возможно, с помощью
триггера).

Затем можно расширить полнотекстовый индекс, включив в него столбец filters,
и переписать запрос так:

... WHERE МATCH(content, filters)
AGAINST ('High Performance MySQL +author_id_123' IN BOOLEAN MODE);

Он может оказаться эффективнее, если идентификатор автора очень селективен,

поскольку MySQL очень быстро сузит список документов, выполнив в полнотек­
стовом индексе поиск по слову author _id_123. Если же селективность невелика, то
производительность может еще и ухудшиться. Поэтому не применяйте такой подход

безоглядно.

Иногда полнотекстовые индексы можно использовать для поиска по ограничива­

ющему прямоугольнику. Например, если вы хотите локализовать поиск некоторой

прямоугольной областью на координатной плоскости (в случае географических прило­
жений), то можно закодировать координаты в виде полнотекстового набора. Предпо­
ложим, что в данной строке хранятся координаты Х = 123 и У= 456. Можно построить
из них чередующуюся строку цифр ХУ142536 и поместить ее в столбец, включенный
в полнотекстовый индекс. Теперь, если потребуется ограничить поиск, например,
прямоугольником, для которого Х изменяется от 10 до 199, а У - от 400 до 499,
то в запрос можно будет включить условие +ХУ14*. Это может оказаться гораздо
быстрее, чем фильтрация с помощью раздела WHERE.

Еще один прием, в котором иногда удается с пользой применить полнотекстовые

индексы, особенно для разбиения списка результатов на страницы, состоит в том,
чтобы выбрать перечень первичных ключей полнотекстовым запросом и кэширо­
вать результаты. Когда приложение будет готово к выводу итогов поиска, оно может
отправить еще один запрос, отбирающий нужные строки по их идентификаторам.
В этот запрос можно включить более сложные критерии или соединения, при об­
работке которых допустимо использовать другие индексы.

Полнотекстовые индексы поддерживаются только подсистемой хранения MyISAM,
но если вы работаете с InnoDB или какой-то другой подсистемой, то можно реплици­
ровать таблицы на подчиненный сервер, где они будут храниться в формате MyISAM

Полнотекстовый поиск 363

и обслуживать полнотекстовые запросы там. Если вы не хотите обрабатывать часть
запросов на другом сервере, то можете секционировать таблицу по вертикали, от­
делив текстовые столбцы от прочих данных.

Можно также продублировать некоторые столбцы в таблицу, над которой построен
полнотекстовый индекс. Эта стратегия применена к таблице sakila. film_ text, которая
поддерживается в актуальном состоянии с помощью триггеров. Еще одной альтерна­

тивой является использование внешней системой полнотекстового поиска, например

Lucene или Sphinx. Подробнее о системе Sphinx можно прочитать в приложении Е.

Полнотекстовые запросы с фразой GROUP ВУ могут безнадежно «убить~ производитель­
ность, поскольку полнотекстовый поиск обычно дает многочисленные результаты.
Это приводит к произвольному вводу /выводу, а потом к построению временной

таблицы или сортировке файлов для последующей группировки. Поскольку такие

запросы часто применяются с целью поиска максимальных элементов в любой груп­
пе, то хорошим способом оптимизации может стать поиск по выборке из таблицы
вместо стремления к абсолютной точности. Например, поместите первые 1 ООО строк
во временную таблицу, а затем ищите максимальные элементы в каждой группе по
этой выборке.

Настройка и оптимизация полнотекстового поиска

Одно из самых важных условий повышения производительности - регулярное об­
служивание полнотекстовых индексов. Из-за большого количества слов в типичных
документах и структуры двухуровневого В-дерева полнотекстовые индексы страдают

от фрагментации больше, чем обычные. Для устранения фрагментации часто при­
ходится выполнять команду OPТIMIZE TABLE. Если сервер выполняет много операций
ввода/вывода, то гораздо быстрее будет периодически удалять и заново создавать
полнотекстовые индексы.

Чтобы сервер эффективно производил полнотекстовый поиск, нужно выделить

достаточно памяти под буферы ключей, чтобы полнотекстовые индексы целиком
помещались в памяти, поскольку в этом случае они функционируют значительно

лучше. Можно использовать отдельные буферы ключей, чтобы другие индексы
не вытесняли полнотекстовый из памяти. Дополнительную информацию о буферах
ключей MyISAM см. в главе 8.

Важно также создать качественный список стоп-слов. Список, предлагаемый по

умолчанию, хорошо работает с англоязычной прозой, но для других языков или
узкоспециализированных, в частности технических, текстов не годится. Например,

при индексировании документа, относящегося к MySQL, имеет смысл сделать mysql
стоп-словом, поскольку оно встречается слишком часто и потому бесполезно.

Часто удается повысить производительность за счет игнорирования коротких слов.

Минимальная длина задается с помощью параметра ft_min_word_len. Если увеличить
значение по умолчанию, то будет пропущено больше слов, поэтому индекс станет

более коротким и быстрым, правда, менее точным. Не забывайте, впрочем, что для
каких-то специальных целей могут быть значимы и очень короткие слова. Например,

364 Глава 7 • Дополнительные возможности MySQL

если искать по запросу cd player в документах о бытовой электронике, то при запрете
на короткие слова может быть выдано много нерелевантных результатов. Пользова­

тель вряд ли хочет видеть документы о МРЗ- и DVD-плeepax, но если минимальная

длина слова составляет четыре символа, то будет выполнен поиск только по слову
player и, как следствие, возвращены документы, касающиеся вообще всех плееров.

Задание списка стоп-слов и минимальной длины запроса может за счет исключения

некоторых слов из индекса ускорить поиск, но его качество при этом пострадает.

Подходящий баланс зависит от приложения. Если требуется хорошая производи­
тельность и высокое качество поиска, то придется настроить оба параметра. Было бы
полезно интегрировать в приложение какой-нибудь механизм журналирования и ис­
следовать типичный поиск, нетипичный поиск, поиск, не возвращающий никаких

результатов, и поиск, возвращающий очень много результатов. Таким образом можно

получить полезную информацию о пользователях приложения и характере содер­

жимого своих документов, а затем воспользоваться ею для повышения скорости

и качества поиска.

Имейте в виду, что после изменения минимальной длины слова вам придется
перестроить индекс командой OP11MIZE TABLE, чтобы новое значение вступило
в силу. Существует также параметр ft_max_word_leп, предохраняющий от

индексирования слишком длинных слов.

Если вы импортируете много данных в таблицы, содержащие проиндексированные
текстовые столбцы, то перед началом импорта отключите полнотекстовые индексы

командой DISABLE KEYS, а по завершении включите командой ENABLE KEYS. Обычно
это дает существенный выигрыш во времени загрузки из-за высоких затрат на об­

новление индекса для каждой строки. А в качестве бонуса вы получите еще и де­
фрагментированный индекс.

Если набор данных очень велик, то имеет смысл провести секционирование вручную,
распределив информацию по нескольким узлам и выполняя поиск на них парал­

лельно. Это сложная задача, поэтому, возможно, стоит воспользоваться внешней

системой полнотекстового поиска, например Lucene или Sphinx. Наш опыт показы­
вает, что они могут обеспечить производительность на несколько порядков выше.

Распределенные транзакции

Если транзакции подсистем хранения (см. раздел «Транзакцию> главы 1) обеспечи­
вают свойства ACID внутри самой подсистемы, то распределенная (ХА) транзакция,
транзакция высокого уровня, позволяет распространить некоторые из этих свойств

вовне подсистемы хранения и даже вовне базы данных - посредством механизма

двухфазной фиксации. Начиная с версии 5.0 в MySQL реализована частичная под­
держка ХА-транзакций.

Распределенные транзакции 365

Для ХА-транзакции требуется координатор транзакции, который просит всех участ­

ников подготовиться к коммиту (фаза 1). Получив от всех участников ответ «готов»,
координатор предлагает им выполнить коммит (фаза 2). MySQL может выступать
в роли участника ХА-транзакции, но не в роли координатора.

На самом деле в MySQL существует два вида ХА-транзакций. Сервер MySQL мо­
жет участвовать в любой управляемой извне распределенной транзакции, но он

использует тот же механизм и внутри себя для координации подсистем хранения

и двоичного журналирования.

Внутренние ХА-транзакции

Причиной внутреннего использования ХА-транзакций в MySQL является желание
архитектурно отделить сервер от подсистем хранения. Подсистемы хранения аб­
солютно независимы друг от друга и ничего друг о друге не знают, поэтому любая
транзакция, пересекающая границы подсистем, по своей природе является распре­

деленной и нуждается в третьей стороне для координации. Этой третьей стороной

является сервер MySQL. Не будь ХА-транзакций, для коммита транзакции, пере­
секающей границы подсистем, пришлось бы последовательно просить каждую под­

систему выполнить свою часть коммита. Но тогда аварийный останов в момент после

того, как одна подсистема выполнила коммит, а другая еще не успела, привел бы
к нарушению правил транзакционности (напомним, что транзакция по определению

выполняет все или ничего).

Если взглянуть на двоичный журнал как на подсистему хранения журналированных

событий, то становится понятно, почему ХА-транзакции нужны даже тогда, когда

в обработке запроса участвует лишь одна подсистема. Синхронизация коммита
в смысле подсистемы хранения с коммитом события в двоичном журнале - это рас­
пределенная транзакция, поскольку за двоичный журнал отвечает сервер.

В настоящее время протокол ХА создает некую дилемму в плане производитель­

ности. В версии 5.0 он сломал поддержку группового коммита (метод, позволяющий
выполнить коммит для нескольких транзакций одной операцией ввода/вывода)

в InnoDB, поэтому требуется выполнять больше системных вызовов fsync(), чем
необходимо1 • Кроме того, если двоичный журнал включен, то каждая транзакция

должна синхронизироваться с двоичным журналом и вместо одного сброса в жур­

нал на операцию коммита необходимо выполнить два. Другими словами, если

требуется, чтобы двоичный журнал безопасно синхронизировался с транзакциями,
то на каждую транзакцию будет приходиться по меньшей мере три вызова fsync().

На момент написания этой книги проводилась большая работа по исправлению проблемы

с групповым коммитом. В результате получились по крайней мере три конкурирующие

реализации. Остается узнать, какая из них попадает в официальный код MySQL, который
будет использоваться большинством людей, или какая версия будет исправлена. Версия,

доступная в MariaDB и Percona Server, кажется хорошим решением.

366 Глава 7 • Дополнительные возможносrи MySQL

Единственным способом предотвращения этого является отключение двоичного
журнала и установка параметра innodb_support_xa в 01•

Такие установки параметров небезопасны и несовместимы с репликацией. Для ре­
пликации необходимы и двоичный журнал, и поддержка ХА, а кроме того - чтобы
уже все было безопасно - параметр need sync_Ьinlog должен быть равен 1, тогда под­
система хранения и двоичный журнал будут синхронизированы (в противном случае
поддержка ХА бессмысленна, так как двоичный журнал не может «закоммититься»
на диске). Это одна из причин, по которым мы настоятельно рекомендуем использо­

вать RАID-контроллер, оборудованный кэшем записи с аварийным электропитанием:
кэш может ускорить выполнение дополнительных вызовов fsync() и нормализовать
производительность.

В следующей главе мы подробно рассмотрим, как конфигурировать журнал транз­
акций и двоичный журнал.

Внешние ХА-транзакции

MySQL может быть участником распределенной транзакции, но не может ею управ­
лять. Она не поддерживает спецификацию ХА в полном объеме. Например, спе­
цификация ХА позволяет соединять в одной транзакции таблицы из разных баз
данных, но в настоящее время в MySQL это невозможно.

Внешние ХА-транзакции еще более затратны, чем внутренние, из-за дополни­
тельных задержек и большей вероятности того, что один из участников допустит
ошибку. Использовать ХА в сети W AN, а тем более в Интернете не рекомендуется
из-за непредсказуемого поведения сети. Целесообразно избегать ХА-транзакций,
когда имеется хотя бы один непредсказуемый компонент, например медленная сеть
или пользователь, который долго не нажимает кнопку Сохранить. Все, что способно
задержать коммит, очень затратно, поскольку может вызвать задержку не в одной,

а во многих системах.

Однако есть другие способы организации высокопроизводительных распределенных
транзакций. Например, можно вставить данные локально и поставить обновление

в очередь, а затем атомарно распространить его в составе гораздо более маленькой,
быстрой транзакции. Можно также использовать репликацию MySQL для доставки
данных из одного места в другое. Мы обнаружили, что некоторые приложения, ис­
пользующие распределенные транзакции, вообще не нуждаются в них.

Несмотря на все сказанное, ХА-транзакции могут оказаться полезным способом
синхронизации данных между серверами. Этот метод хорошо работает, когда по
какой-то причине применять репликацию невозможно или скорость выполнения

обновлений некритична.

Существует распространенное заблуждение, что innodb _ support _ха необходим, только если
вы используете транзакции ХА. Это неверно: он контролирует внутренние транзакции ХА

между подсистемой хранения и двоичным журналом, и если вы цените свои данные, этот

параметр должен быть включен.

Кэш запросов MySQL 367

Кэш запросов MySQL
Многие СУБД умеют кэшировать планы выполнения запросов, что позволяет сер­

веру пропустить стадии разбора и оптимизации для встречавшихся ранее запросов.
MySQL при некоторых условиях тоже может это делать, но, кроме того, у нее име­
ется кэш особого вида - так называемый кэш запросов, в котором хранятся полные
результирующие наборы, сгенерированные командами SELECТ. Этот раздел посвящен
именно такому кэшу.

В кэше запросов MySQL хранятся именно те биты, которые запрос вернул клиенту.
При попадании в кэш запросов сервер сразу же возвращает сохраненные итоги, про­

пуская стадии разбора, оптимизации и выполнения.

Кэш запросов отслеживает, какие таблицы были использованы в запросе, и если
хотя бы одна из них изменилась, данные в кэше становятся недействительными.
Такая грубая политика определения недействительности может показаться неэффек­
тивной, поскольку внесенные изменения, возможно, не отражаются на сохраненных

результатах. Однако это простой подход с небольшими накладными расходами, что
очень важно для сильно нагруженной системы.

Кэш запросов спроектирован так, что остается абсолютно прозрачным для прило­
жений. Программе не нужно знать, получила она данные из кэша или в результате

реального выполнения запроса. В любом случае результат будет одним и тем же.
Другими словами, кэш запросов не изменяет семантику: с точки зрения приложения

поведение сервера не зависит от того, активизирован кэш или нет 1 •

Когда серверы стали более крупными и мощными, выяснилось, что кэш запросов,
к сожалению, не был масштабируемой частью MySQL. Это фактически единственная
точка конкуренции для всего сервера, поэтому она может вызвать серьезные стопоры

на многоядерных серверах. Мы подробно рассмотрим, как его правильно настроить,
однако считаем, что лучший подход - это сделать его по умолчанию отключенным

и настроить небольшой кэш запросов (не более нескольких десятков мегабайт), но
только если это будет полезно. В дальнейшем мы объясним, как определить, будет ли
кэш запросов полезным для рабочей нагрузки.

Как MySQL проверяет попадание в кэш
Для проверки попадания в кэш MySQL применяет простую и очень быструю мето­
дику: по сути, кэш - это справочная таблица. Ключом этой таблицы является хеш,
рассчитанный по тексту запроса, текущей базе данных, номеру версии клиентского
протокола и еще нескольким параметрам, от которых могут зависеть результаты

обработки запроса.

На самом деле кэш запросов все-таки изменяет семантику в одном весьма тонком отно­

шении: по умолчанию запрос может быть обслужен из кэша, если одна из участвующих

в нем таблиц заблокирована предложением LOCK Т ABLES. Этот режим можно отменить,
установив переменную query _ cache _ wlock _invalidate.

368 Глава 7 • Дополнительные возможности MySQL

При проверке попадания в кэш MySQL не разбирает, не нормализует и не параметри­
зует команду - текст команды и прочие данные используются в том же виде, в каком

получены от клиента. Любое различие, будь то регистр символов, лишние пробелы

или комментарии, приведет к тому, что новый запрос не совпадет с кэшированной

версией1 • Об этом стоит помнить при написании запросов. Следовать единому стилю
или способу форматирования - вообще хорошая привычка, но в данном случае она
может еще и ускорить работу системы.

Следует также иметь в виду, что результат не попадет в кэш запросов, если сгенери­

рован недетерминированным запросом. Иначе говоря, любой запрос, содержащий
недетерминированную функцию, например NOW(} или CURRENT_DATE(), не кэширу­

ется. Аналогично такие функции, как CURRENT _USER() и CONNECТION_ID(), дают разные

результаты в зависимости от того, каким пользователем вызваны, поэтому также пре­

пятствуют записи запроса в кэш. Фактически кэш не работает для запросов, в которых
есть ссылки на функции, определенные пользователем, хранимые процедуры, пользо­

вательские переменные, временные таблицы, таблицы в базе данных mysql и таблицы,
для которых заданы привилегии на уровне столбцов (полный перечень всех причин,
по которым запрос не кэшируется, вы найдете в руководстве по MySQL).

Нам часто доводилось слышать, будто MySQL не проверяет кэш, если запрос содер­
жит недетерминированную функцию. Это неверно. MySQL не может знать, детер­
минирована функция или нет, пока не разберет запрос, а поиск в кэше выполняется

до разбора. Сервер лишь проверяет, что запрос начинается с букв SEL (без учета
регистра), этим и ограничивается.

Однако сказать, что сервер не найдет в кэше результатов, если запрос содержит

функцию типа NOW(), будет правильно, поскольку, даже если бы сервер и выполнял
такой запрос раньше, он не поместил бы его в кэш. MySQL помечает запрос как некэ­
шируемый, как только обнаруживает конструкцию, препятствующую кэшированию,

и результаты такого запроса не сохраняются.

Есть полезный прием, позволяющий все же закэшировать запросы, ссылающиеся на

текущую дату. Для этого нужно включить дату в виде литерала вместо использования

функции, например:

... DATE_SUB(CURRENT_DATE, INTERVAL 1 DAY) - Не кэшируется!

.•• DATE_SUB('2007-07-14', INTERVAL 1 DAY) - Кэшируется

Поскольку кэш запросов работает с полным текстом команды SELECT, идентичные
запросы, сделанные внутри подзапроса или представления, равно как и запросы вну­

три хранимых процедур, не могут воспользоваться кэшем. В версиях до MySQL 5.1
подготовленные запросы также не могли быть закэшированы.

Percona Server является исключением из этого правила: он может отделять комментарии от
запросов перед их сопоставлением с кэшем запросов. Эта функция необходима, поскольку

вставка комментариев в запросы с дополнительной информацией о процессе, который их

вызывал, - это обычная и хорошая практика. Ее, например, использует проrраммное обе­

спечение для оснащения инструментами РНР, о котором мы говорили в rлаве 3.

Кэш запросов MySQL 369

Кэш запросов MySQL может повысить производительность, но, работая с ним, нужно
помнить о некоторых тонкостях. Во-первых, включение кэша добавляет накладные
расходы как при чтении, так и при записи:

1:J перед началом обработки запроса на чтение нужно проверить, есть ли он в кэше;

1:J если запрос допускает кэширование, но еще не помещен в кэш, то нужно потра-

тить некоторое время на запись в кэш сгенерированных результатов;

1:J при обработке любого запроса на запись необходимо сделать недействительны­
ми все записи в кэше, в которых встречается измененная таблица. Этот процесс

может быть очень ресурсозатратным, если кэш фрагментированный и/или очень

большой (в нем хранится много кэшированных запросов или он настроен на ис­

пользование большого объема памяти).

Кэш запросов все же может принести пользу. Однако, как мы увидим позже, до­

полнительные накладные расходы могут суммироваться, особенно в комбинации

с параллелизмом, вызванным запросами, пытающимися заблокировать кэш для вы­

полнения каких-либо действий с ним.

Во-вторых, пользователей InnoDB подстерегает еще одна проблема: полезность кэша
ограничена транзакциями. Если какая-то команда внутри транзакции изменяет та­

блицу, то сервер делает недействительными все кэшированные запросы, ссылающие­

ся на нее, даже если реализованная в InnoD В система многоверсионного контроля
способна скрыть в транзакции изменения, вызванные применением других команд.

Таблица также считается глобально некэшируемой до коммита транзакции, поэтому

все последующие запросы к ней - неважно, внутри или вне транзакции - также

не могут кэшироваться, пока транзакция не завершится. Следовательно, длинные

транзакции могут увеличить количество случаев непопадания в кэш.

Инвалидация может стать серьезной проблемой, когда кэш запросов велик. Если
в нем много запросов, то поиск тех результатов, которые нужно объявить недей­

ствительными, может занять длительное время, в течение которого вся система

будет простаивать. Так происходит потому, что существует единственная глобальная
блокировка, разрешающая доступ к кэшу только одному запросу в каждый момент

времени. А доступ выполняется как при проверке попадания, так и при выяснении

того, какие запросы нужно сделать недействительными. В главе 3 приведен кейс,
демонстрирующий накладные расходы на инвалидацию кэша.

Как кэш использует память

MySQL хранит весь кэш запросов в памяти, поэтому нужно понимать, как эта память
используется, чтобы правильно настроить механизм кэширования. В кэше содер­

жатся не только результаты запроса. В некоторых отношениях он очень похож на

файловую систему: хранит структуры, позволяющие узнать, сколько памяти в пуле

свободно, можно ли сопоставить таблицы и тексты команд с результатами запросов,

текст запроса и его результат.

370 Глава 7 • Дополнительные возможности MySQL

Если не принимать во внимание некоторые служебные структуры, под которые
отведено примерно 40 Кбайт, то весь пул памяти, выделенной под кэш, состоит из
блоков переменной длины. Каждый блок знает о своем типе, размере и о том, сколько
данных он содержит, а также включает в себя указатели на следующий и предыдущий
логический и физический блоки. Блоки могут быть нескольких типов: для хранения
кэшированных результатов, списков таблиц, используемых в запросе, текста запроса
и т. д. Однако блоки разных типов трактуются в основном одинаково, поэтому раз­
личать их для настройки кэша запросов нет необходимости.

На этапе запуска сервер инициализирует память, выделенную для кэша запросов.

Первоначально пул памяти состоит из одного свободного блока. Его размер совпа­
дает с размером сконфигурированной для нужд кэша памяти за вычетом служебных
структур.

Когда сервер кэширует результаты запроса, он выделяет блок из пула памяти для
хранения этих результатов. Минимальный размер блока составляет query_ cache_
min_res_unit байт, хотя может быть и большим, если сервер знает, что для резуль­
тирующего набора требуется больше памяти. К сожалению, сервер не в состоянии
создать блок в точности подходящего размера, так как выделяет его еще до того, как

результирующий набор полностью сгенерирован. Сервер не выстраивает весь набор
в памяти, чтобы позже отправить его целиком, - гораздо эффективнее пересылать
клиенту строки по мере их создания. Следовательно, начиная построение результи­

рующего набора, сервер еще не знает, насколько большим он получится.

Выделение блока - довольно медленный процесс, так как сервер должен просмо­
треть список свободных блоков и найти среди них достаточно большой. Поэтому
сервер пытается минимизировать количество операций выделения. Когда возникает

необходимость кэшировать результирующий набор, сервер выделяет блок, размер
которого не меньше минимально допустимого (он может быть больше - причины
этого слишком сложны для объяснения), и начинает помещать в него результаты.
Если блок заполняется раньше, чем данные закончились, то сервер выделяет новый

блок - снова минимального или большего размера - и продолжает помещать в него
данные. Когда результат полностью сгенерирован, сервер смотрит, осталось ли в по­

следнем блоке место, и, если да, усекает блок и объединяет оставшуюся область с со­
седним свободным блоком. Весь этот процесс показан на рис. 7.31•

Говоря, что сервер выделяет блок, мы не имеем в виду, что он запрашивает память
у операционной системы, вызывая функцию malloc () или ей подобную. Это делается
только один раз, при создании кэша запросов. Затем сервер лишь просматривает спи­

сок блоков и либо находит место, где собирается разместить новый блок, либо при
необходимости удаляет самый старый из кэшированных запросов, чтобы освободить
место. Другими словами, сервер MySQL самостоятельно управляет своей памятью,
не полагаясь на операционную систему.

Мы упростили рисунки в этом разделе, чтобы проиллюстрировать сказанное. На самом

деле алгоритм выделения блоков кэша сложнее, чем здесь показано. Если вас интересуют

детали, прочитайте комментарии в начале исходного файла sql/sql_cache.cc, там все очень
понятно описано.

Служебные
СТРУКТУРЫ

Свободный

Исходное

состояние

О Блокикэша

Служебные
структуры

Свободный

Сохранение
результатов

• Сохраненные данные

Служебные
стрvктvры

Свободный

Результаты
сохранены

Кэш запросов MySQL 371

Служебные
СТРУКlУРЫ

Свободный

После
усечения

Рис. 7 .3. Кэш запроса выделяет блоки для хранения результатов

До сих пор все выглядело довольно просто. Однако картина может оказаться слож­
нее, чем представлено на рис. 7.3. Предположим, что средний результирующий на­
бор очень мал и сервер одновременно отправляет результаты по двум клиентским
соединениям. После усечения может остаться блок, который меньше query_cache_
min_res_uпit и, следовательно, не может в будущем использоваться для хранения
результирующих наборов. Выделение блоков может закончиться ситуацией, по­
казанной на рис. 7.4.

Служебные
структуры

Свободный

Исходное

состояние

Заnрос2

Свободный

Сохранение двух
результатов

Свободный

Результаты

сохранены

Свободный

После
усечения

Рис. 7.4. Фрагментация, вызванная сохранением результатов в кэше запроса

372 Глава 7 • Дополнительные возможности MySQL

После усечения первого результата по размеру между двумя результатами остается

зазор - блок, слишком маленький для того, чтобы сохранить в нем результат другого
запроса. Образование таких зазоров называется фрагментацией, это классическая
проблема в задачах выделения памяти и в файловых системах. У фрагментации много
причин, в том числе инвалидация кэша, она может привести к появлению настолько

мелких блоков, что их нельзя больше использовать.

Когда полезен кэш запросов

Нельзя сказать, что кэширование запросов автоматически окаэывается более эффек­
тивным, чем его отсутствие. Кэширование нужно выполнить, поэтому выигрыш от

кэша можно получить, только если экономия превышает затраты. А это зависит от

загруженности сервера.

Теоретически определить, полезен кэш или нет, можно, сравнив объем работы,
которую сервер должен проделать с включенным и отключенным кэшем. Если кэш

отключен, то любой запрос на чтение и запись должен быть выполнен, при этом чте­
ние должно вернуть результирующий набор. Если кэш включен, то при обработке
любого запроса на чтение необходимо сначала проверить кэш, а затем либо вернуть
сохраненный результат, либо, если его нет в кэше, выполнить запрос, сгенерировать
результирующий набор и отослать его клиенту. При обработке любого запроса на
запись его следует сначала выполнить, а потом проверить, нужно ли провести инва­

лидацию каких-либо записей в кэше.

Выглядит все это довольно просто, однако подсчитать или предсказать выигрыш

от использования кэша затруднительно. Необходимо принимать во внимание еще
и внешние факторы. Например, кэш запросов может сократить время, необходимое
для формирования результата, но не время, требующееся для отправки его клиенту,
а именно оно может оказаться доминирующим фактором.

Кроме того, MySQL не позволяет определить, насколько полезен кэш запросов для
отдельных запросов1, поскольку счетчики в sнow STATUS агрегируются по всей рабочей
нагрузке. Но среднее поведение обычно не очень интересно. Например, у вас может
быть один медленный запрос, который становится намного быстрее с помощью кэша
запросов, но при этом он замедляет все остальное процессы, а возможно, и сам сер­

вер. Это то, чего вы хотели добиться? На самом деле такие действия могут оказаться
верными, если ускоряется очень важный для пользователя запрос, в то время как

другие не так важны. Такой запрос был бы хорошим кандидатом для выборочного
использования кэша с директивой SQL_CACHE.

Выигрывают от наличия кэша те запросы, которые долго выполняются, но занимают

в кэше немного места, так что их хранение, возврат клиенту и инвалидация не очень

затратны. В эту категорию попадают, в частности, агрегирующие запросы, напри­

мер с функцией COUNT() для больших таблиц. Есть много и других типов запросов,

Усовершенствованный •журнал медленных запросов• в Percona Server и MariaDB пока­
зывает, использовался ли для конкретных запросов кэш.

Кэш запросов MySQL 373

которые имеет смысл кэшировать. Эмпирическое правило гласит, что кэш запросов

следует использовать, если в рабочей нагрузке преобладают сложные запросы SE LECT
с многотабличными соединениями, с фразами ORDER ВУ и LIMIТ, которые создают не­
большие результирующие наборы. У вас должно быть очень мало запросов UPDATE,
DELEТE и INSERT по сравнению с этими сложными запросами SELECT.

Один из самых простых способов понять, дает ли кэш выигрыш, - посмотреть на
коэффициент попаданий в кэш. Он показывает, сколько запросов было обслужено
из кэша, а не выполнено сервером. Когда сервер получает команду SELECT, он увели­
чивает одну из двух переменных состояния, Qcache_hi ts или Com_select, в зависимо­
сти от того, был запрос кэширован или нет. Поэтому коэффициент попаданий в кэш
вычисляется по формуле Qcache_hits / (Qcache_hits+Com_select).

К сожалению, коэффициент попаданий в кэш сложно интерпретировать. Какой коэф­

фициент считать хорошим? Это зависит от разных факторов. Даже 30 % попаданий
может быть очень неплохим результатом, поскольку экономия от невыполненных
запросов, как правило (в расчете на один запрос), значительно превышает наклад­

ные расходы на объявление записей недействительными и сохранение результатов
в кэше. Важно также знать, какие именно запросы кэшируются. Если попадания

в кэш относятся к наиболее затратным запросам, то даже низкий коэффициент может
означать существенную экономию на работе сервера. Таким образом, простого ответа
на этот вопрос не существует.

Любой запрос SELECT, не обслуженный из кэша, называется непопаданием в кэш.
Не попасть в кэш можно по следующим причинам.

1:1 Запрос не допускает кэширования, поскольку либо он содержит недетермини­
рованную конструкцию (например, функцию CURRENT_DAТE), либо результиру­
ющий набор слишком велик для сохранения в кэше. В обоих случаях переменная
Qcache_not_cached увеличивается на единицу.

1:1 Сервер еще не видел такой запрос, поэтому не мог закэшировать его результат.

1:1 Результат запроса был ранее закэширован, но сервер удалил его. Такое может
произойти из-за нехватки памяти, из-за того, что кто-то велел серверу удалить

запрос из кэш а, или потому, что запись была инвалидирована (скоро расскажем
чуть больше о инвалидации).

Если количество непопаданий в кэш велико, а количество некэшируемых запросов

очень мало, то верно одно из следующих утверждений.

1:1 Кэш еще не «прогрелся», то есть сервер не успел заполнить его результатами за­
просов.

1:1 Сервер постоянно видит запросы, которые раньше не встречались. Если количе­

ство повторяющихся запросов невелико, то такое может случиться, даже когда

кэш «прогрелся».

1:1 Записи в кэше слишком часто инвалидируются (объявляются недействитель­
ными).

Инвалидация кэша может произойти из-за фрагментации, нехватки ресурсов или из­

менения данных. Если вы отвели под кэш достаточно памяти и правильно настроили

374 Глава 7 • Дополнительные возможности MySQL

параметр query_cache_min_res_unit, то инвалидация по большей части обусловлена
изменением хранимых значений. Узнать, сколько запросов модифицировали данные,

позволяют переменные состояния Com_* (Com_update, Com_delete и т. п.), а сколько
запросов было инвалидировано из-за нехватки памяти - переменная Qcache_lowmem_
prunes.

Имеет смысл рассматривать затраты на инвалидацию отдельно от коэффициента

попаданий. Рассмотрим предельный случай. Предположим, что из одной табли­
цы производится только чтение, при этом коэффициент попадания равен 100 %,
а в другой - только обновление. Если вычислить коэффициент попадания по пере­
менным состояния, то он составит 100 %. Но даже в этом случае использование кэша
может оказаться неэффективным, поскольку замедляет выполнение запросов на

обновление. При обработке любого запроса на обновление приходится проверять,
не нужно ли объявить недействительными какие-то кэшированные данные, но, по­
скольку ответ неизменно будет «нет», вся эта работа проделана впустую. Такого рода
проблему можно и не заметить, если не проанализировать совместно количество
некэшируемых запросов и коэффициент попадания.

Сервер, для которого смесь операций записи и кэшируемого чтения из одних и тех же

таблиц сбалансирована, также может не выиграть от наличия кэша запросов. Любая
операция записи инвалидирует кэш, тогда как любая операция чтения вставляет
в кэш новый запрос. А выигрыш можно получить, только если эти запросы потом

обслуживаются из кэша.

Если закэшированный результат становится недействительным до того, как сервер

снова получает ту же самую команду SELECT, вся работа по сохранению оказывается
пустой тратой времени и памяти. Чтобы понять, имеет ли место такая ситуация, про­
верьте значения переменных Com_select и Qcache_inserts. Если почти все команды
SELECT не попадают в кэш (то есть увеличивается значение Com_select), после чего
их результирующие наборы кэшируются, то значение Qcache_inserts будет мало
отличаться от Com_select. А хотелось бы, чтобы значение Qcache_inserts было
существенно меньше Com_select, по крайней мере после «прогрева» кэша. Однако
коэффициент по-прежнему сложно интерпретировать из-за тонкостей того, что про­

исходит внутри кэша и сервера.

Как видите, коэффициент попадания в кэш и соотношение insert и select не сильно
помогают. На самом деле целесообразнее всего измерить и рассчитать, насколько
кэш может улучшить вашу рабочую нагрузку. Но если хотите, можно посмотреть
на другое соотношение - коэффициент попадания во вставку. Этот показатель от­

ражает отношение Qcache_hi ts к Qcache_inserts. В качестве грубого эмпирического
правила соотношение «попадание во вставку» 3: 1 или выше можно рассматривать
как приемлемое для запросов средней скорости, однако соотношение 10:1 или выше
гораздо лучше. Если вы не достигли такого уровня выгоды от кэша запросов, скорее

всего, стоит отключить его. Исключением может быть ситуация, когда вы провели
расчеты и определили, что для вашего сервера верны следующие моменты: попада­

ния в кэш намного менее затратны, чем промахи, а параллелизм для кэша запросов

не является проблемой.

Кэш запросов MySQL 375

Для каждого приложения существует конечный потенциальный размер кэша даже

при отсутствии операций записи. Потенциальный размер - это объем памяти, не­

обходимый для сохранения всех кэшируемых запросов, которые может выполнить

приложение. В теории для большинства случаев этот размер очень велик. Но на

практике у многих приложений он гораздо меньше, чем можно было бы ожидать,

из-за того что большинство записей в кэше инвалидируются. Даже если выделить

для кэша запросов очень много памяти, он никогда не заполнится больше чем на

потенциальный размер кэша.

Необходимо следить за тем, какая доля выделенной для кэша памяти реально ис­

пользуется. Если используется не вся память, уменьшите размер кэша, если из-за

нехватки памяти часто происходит вытеснение - увеличьте его. Впрочем, как уже

было сказано, может быть опасно превысить несколько десятков мегабайт (это за­

висит от вашего оборудования и рабочей нагрузки).

Необходимо также соразмерять размер кэша запросов с другими серверными кэша­

ми, например буферным пулом InnoDB или кэшем ключей MyISAM. Невозможно
предложить коэффициент или простую формулу на все случаи жизни, поскольку

подходящий баланс зависит от конкретного приложения.

Лучший способ узнать, насколько полезен кэш запросов, - измерить, если возможно,

сколько времени запросы выполняются с кэшем и без него. Расширенный журнал

медленных запросов Percona Serveг может сообщить, обслуживался запрос из кэша
или нет. Если кэш запросов не сэкономит вам значительное количество времени,

стоит, по-видимому, попробовать отключить его.

Как настраивать и обслуживать кэш запросов

Если вы понимаете, как работает кэш запросов, то настроить его довольно легко.

В нем всего несколько «движущихся деталей~.

1:] query_cache_type. Включен ли режим кэширования запросов. Допустимые значе­
ния: OFF, ON, DEМAND. Последнее означает, что кэшируются только запросы с моди­

фикатором SQL_CACHE. Эта переменная может быть установлена глобально или на

уровне сеанса. (Подробнее о глобальных и сеансовых переменных см. в главе 6.)

1:] query_cache_size. Общий объем памяти, отведенной под кэш запросов, в байтах.
Значение должно быть кратно 1024, поэтому MySQL, возможно, слегка изменит
заданное вами число.

1:] query_cache_min_res_unit. Минимальный размер выделяемого блока. Ранее мы
рассказали об этом параметре, дополнительная информация будет представлена

в следующем разделе.

1:] query_cache_limit. Размер максимального результирующего набора, который
разрешено кэшировать. Если при выполнении запроса результирующий набор

оказывается больше, он не кэшируется. Помните, что сервер кэширует результаты

по мере их генерации, поэтому заранее неизвестно, поместится ли результат

в кэш. Если размер результата превышает заданный порог, то MySQL увеличивает

376 Глава 7 • Дополнительные возможности MySQL

переменную состояния Qcache_not_cached и отбрасывает закэшированные к это­
му моменту строки. Если это происходит часто, можно включить подсказку

SQL_NO_CACHE в запросы, которые, по вашему мнению, не должны вызывать воз­
никновение этих накладных расходов.

о query_cache_wlock_invalidate. Следует ли обслуживать из кэша результаты, ко­
торые относятся к таблицам, заблокированным другими соединениями. По умол­
чанию значение этого параметра OFF, что изменяет семантику запроса, поскольку
позволяет серверу читать кэшированные данные из заблокированной таблицы,
хотя обычно сделать это невозможно. Если установить параметр равным ON, то
чтение данных будет запрещено, но может увеличиться время ожидания бло­
кировки. Для большинства приложений это несущественно, поэтому значение,
принимаемое по умолчанию, как правило, приемлемо.

В принципе, настройка кэша довольно проста, сложнее разобраться в эффекте вне­
сенных изменений. В следующих разделах мы попытаемся помочь вам научиться

принимать правильные решения.

Уменьшение фрагментации

Полностью избежать фрагментации невозможно, но тщательный выбор параметра
query_cache_min_res_unit может помочь не расходовать понапрасну память, отве­
денную под кэш запросов. Хитрость в том, чтобы найти оптимальное соотношение
размера каждого нового блока с количеством операций выделения памяти, которые
сервер должен выполнить во время сохранения результатов. Если задать слишком

маленькое значение, то сервер будет терять меньше памяти, но блоки ему придется
выделять чаще, а значит, объем работы увеличится. Если же размер слишком велик,
то возрастет фрагментация. Придется искать компромисс между напрасным расхо­

дованием памяти и затратами процессорного времени на выделение блоков.

Оптимальное значение зависит от размера результирующего набора типичного за­
проса. Среднюю величину кэшированных запросов можно найти, разделив объем ис­
пользуемой памяти (приблизительно равен query_cache_size - Qcache_free_memory)
на значение переменной состояния Qcache_queries_in_cache. Если имеется смесь
больших и маленьких результирующих наборов, то, возможно, не удастся подо­
брать размер так, чтобы одновременно избежать фрагментации и минимизировать
выделение блоков. Однако у вас могут быть основания полагать, что кэширование
больших результатов не дает заметного выигрыша (часто так оно и есть). Подавить
кэширование больших результирующих наборов можно, уменьшив значение пере­

менной query_cache_limit. Иногда это позволяет достичь лучшего баланса между
фрагментацией и накладными расходами на сохранение результатов в кэше.

Обнаружить, что кэш фрагментирован, можно, проанализировав переменную состоя­
ния Qcache_free_Ыocks, которая показывает количество блоков типа FREE. В конеч­
ной конфигурации, изображенной на рис. 7.4, есть два свободных блока. Наихудший
случай фрагментации - это когда между каждой парой блоков, в которых хранятся

данные, находится блок, размер которого чуть меньше минимального, то есть каждый
второй блок свободен. Поэтому, если переменная Qcache_free_Ыocks приблизитель-

Кэш запросов MySQL 377

но равна Qcache_total_Ыocks / 2, то кэш сильно фрагментирован. Если переменная
состояния Qcache_lowmem_prunes увеличивается и имеется много свободных блоков,
значит, из-за фрагментации запросы преждевременно вытесняются из кэша.

Дефрагментировать кэш запросов можно с помощью команды FLUSH QUERY САСНЕ.
Она уплотняет кэш, перемещая все блоки наверх и избавляясь от свободного про­
странства между ними, так что в итоге остается единственный свободный блок вни­
зу. Несмотря на название, команда FLUSH QUERY САСНЕ не удаляет запросы из кэша.
Для этой цели предназначена команда RESET QUERY САСНЕ. На время выполнения ко­

манды доступ к кэшу запросов блокирован, то есть, по существу, работа всего сервера
приостановлена, так что будьте внимательны. Эмпирическое правило, относящееся
к размеру кэша запросов, гласит: делайте его довольно маленьким, чтобы остановки,
вызванные командой FLUSH QUERY САСНЕ, были короткими.

Улучшение использования кэша запросов

Если кэш не фрагментирован, но коэффициент попадания все равно низкий, то,

возможно, вы отвели под него слишком мало памяти. Если сервер не может найти

свободный блок, достаточно большой для сохранения нового результата, он должен
вытеснить из кэша какие-то запросы.

При вытеснении запроса сервер увеличивает переменную состояния Qcache_lowmem_
prunes. Если ее значение быстро увеличивается, это может быть вызвано двумя
причинами.

1:1 Если свободных блоков много, то виновата, скорее всего, фрагментация (см. пре­
дыдущий раздел).

1:1 Если свободных блоков мало, возможно, рабочая нагрузка рассчитана на кэш
большего размера, чем выделенный. Узнать, сколько в кэше неиспользуемой

памяти, можно с помощью переменной Qcache_free_memory.

Если свободных блоков много, фрагментация низкая, вытеснений из-за нехватки
памяти мало, а коэффициент попадания все еще невысок, то, вероятно, кэш запросов

вообще мало помогает при данной загрузке сервера. Что-то мешает его использовать.
Возможно, причина в большом количестве обновлений или в том, что запросы не до­
пускают кэширования.

Если вы определили коэффициент попадания в кэш, но все же не уверены, выигрыва­

ет ли сервер от наличия кэша, можете отключить его, последить за производительно­

стью, затем снова включить и посмотреть, как производительность изменится. Чтобы
отключить кэш запросов, установите параметр query_cache_size в 0 (изменение пара­
метра query_cache_size глобально не отражается на уже открытых соединениях и не
приводит к возврату памяти серверу). Можно также заняться эталонным тестирова­

нием, но иногда бывает сложно получить реалистичную комбинацию кэшированных
запросов, некэшированных запросов и обновлений.

На рис. 7.5 изображена блок-схема простой процедуры анализа и насiройки кэша
запросов.

378 Глава 7 • Дополнительные возможности MySQL

Начало

Нет

Происходит

Нет

Датькзшу
спрогреться•

Готово. Запросы
ранее

не выполнялись

Да

Да

Готово

Кэш
фрагментирован?

Нет

Что-то еще
неправильно

сконфиrурировано

Да

Готово.Запросы
невозможно

кэшировать

Увеличить
query_cache_limit

Уменьшить
query_cache_min_res_unit
или дефрагментировать

с помощью

FLUSH QUERY САСНЕ

Увеличить
quety_cache_size

Готово. При данном
типе нагрузки кэш

бесполезен

Рис. 7 .5. Анализ и настройка кзша запросов

Кэш запросов MySQL 379

InnoDB и кэш запросов
InnoDB взаимодействует с кэшем более сложным образом, чем другие подсистемы
хранения, поскольку она реализует МУСС. В MySQL 4.0 кэш запросов внутри транз­
акций вообще отключен, но в версии 4.1 и более поздних InnoDB сообщает серверу
(для каждой таблицы в отдельности), может ли транзакция обращаться к кэшу запро­
сов. Она управляет доступом к кэшу как для операций чтения (выборки результатов
из кэша), так и для операций записи (сохранения результатов в кэше).

Возможность доступа определяется идентификатором транзакции и наличием

блокировок на таблицу. В словаре данных InnoDB, который хранится в памяти,
с каждой таблицей ассоциирован счетчик идентификаторов транзакций. Тем транз­
акциям, идентификатор которых меньше этого счетчика, запрещено выполнять

операции чтения из кэша и записи в кэш для запросов, в которых участвует данная

таблица.

Наличие любых блокировок на таблицу также препятствует кэшированию обращаю­
щихся к ней запросов. Например, если в транзакции выполняется запрос SELECT FOR
UPDAТE для некоторой таблицы, то никакая другая транзакция не сможет ни читать

из кэша, ни писать в кэш запросы к этой же таблице до тех пор, пока все блокировки
не будут сняты.

После выполнения коммита транзакции InnoDB обновляет счетчики для таблиц,
на которые во время транзакции были поставлены блокировки. Наличие блоки­
ровки можно рассматривать как грубый эвристический подход для определения

того, была ли таблица модифицирована внутри транзакции. Вполне возможно, что
транзакция поставила блокировки на строки таблицы, но не обновила их. Однако
не может быть так, чтобы данные в таблице были изменены без установки блоки­
ровок. InnoDB записывает в счетчик каждой таблицы максимальный системный
идентификатор транзакции из существующих на текущий момент.

Отсюда вытекает следующее.

Q Счетчик таблицы - это абсолютная нижняя граница транзакций, которым раз­

решено использовать кэш запросов. Если системный идентификатор транзакции

равен 5 и транзакция установила блокировки на строки в таблице, а затем была
закоммичена, то транзакции с первой по четвертую никогда не смогут обратиться
к кэшу запросов для чтения или записи, если в запросе участвует эта таблица.

Q В счетчик таблицы записывается не идентификатор транзакции, которая забло­
кировала строки в ней, а системный идентификатор транзакции. В результате

транзакции, которые блокируют строки в некоторой таблице, могут оказаться

не в состоянии читать из кэша или писать в него для будущих запросов, в которых
участвует эта таблица.

Запись в кэш, выборка из него и инвалидация - все это выполняется на уровне

сервера, поэтому InnoDB не в состоянии ни обойти эти механизмы, ни отложить
операции. Однако подсистема хранения может явно попросить сервер инвалидиро­

вать запросы, в которых участвуют определенные таблицы. Это необходимо, когда

380 Глава 7 • Дополнительные возможности MySQL

ограничение внешнего ключа, например ON DELETE CASCADE, изменяет содержимое

таблицы, не упомянутой в запросе.

В принципе, архитектура MVCC в InnoDB допускает обслуживание запросов из кэша
в случае, когда изменения в таблице не затрагивают согласованное представление,

видимое другим транзакциям. Однако реализовать это было бы сложно. Для простоты

алгоритмы InnoDB срезают некоторые углы ценой запрета доступа к кэшу запросов из
транзакций даже в тех случаях, когда без этого можно было бы обойтись.

Общие оптимизации кэша запросов

Многие решения, касающиеся проектирования схемы, запросов и приложения, так

или иначе затрагивают кэш запросов. В дополнение к тому, о чем было рассказано

в предыдущих разделах, мы хотели бы отметить еще несколько моментов.

о Наличие нескольких маленьких таблиц вместо одной большой часто повышает

эффективность использования кэша запросов. Таким образом, стратегия инвали­

дации работает на более мелком уровне. Но не придавайте этому соображению

решающего значения при проектировании схемы, поскольку другие факторы

могут легко перевесить все получаемые таким образом выгоды.

о Более эффективно собирать операции записи в пакет, чем выполнять их пооди­

ночке, поскольку при таком подходе инвалидация запросов в кэше выполняется

всего один раз.

о Мы обратили внимание на то, что сервер может на длительное время зависать,

когда занимается инвалидацией записей или вытеснением запросов из большого

кэша. Возможное решение - не задавать слишком большое значение параметра

query_cache_size, но в некоторых случаях вы можете его просто отключить, по­
скольку нет предела совершенству.

О Невозможно контролировать кэш запросов на уровне отдельной базы данных или

таблицы, но можно включать или выключать кэширование отдельных запросов

с помощью модификаторов SQL_CACHE или SQL_NO_CACHE в команде SELECT. Можно

также включать или выключать кэширование для отдельного соединения, уста­

новив подходящее значение сеансовой переменной query_cache_type.

О Для приложений, выполняющих много операций записи, полное отключение

кэширования может повысить производительность. При этом исключаются наклад­

ные расходы на кэширование запросов, которые в скором времени все равно будут

инвалидированы. Напомним, что кэширование отключается установкой параметра

query_cache_size равным 0, так что кэш при этом не потребляет памяти.

О Отключение кэша запросов может оказаться полезным также для приложений,

выполняющих много операций чтения, из-за конкуренции за мьютекс кэша

запроса. Если вам нужна хорошая производительность при высоком уровне

параллелизма, обязательно проверяйте ее с помощью тестов в соответствующих
условиях, поскольку включение кэша запросов и тестирование при низком па­

раллелизме могут быть очень обманчивыми.

Итоги главы 381

Если вы хотите избежать кэширования большинства запросов, но знаете, что
некоторые из них смогли бы сильно выиграть от кэширования, то присвойте гло­

бальному параметру query_cache_type значение DEМAND, а затем включите в нуж­
ные запросы подсказку SQL_CACHE. Это более трудоемко, зато дает более точный
контроль над кэшем. Наоборот, если требуется кэшировать большинство запросов,
а исключить лишь некоторые, то можно включить в них указание SQL_NO_CACHE.

Альтернативы кэшу запросов

В основу работы кэша запросов MySQL положен простой принцип: быстрее всего
обрабатывается запрос, который вообще не нужно выполнять. Однако все равно при­
ходится отправлять запрос, а серверу - что-то с ним делать, пусть и не очень много.

Но что если вам вообще не придется обращаться к серверу с конкретным запросом?

Кэширование на стороне клиента может еще больше снизить нагрузку на сервер.
Мы вернемся к этому вопросу в главе 14.

Итоги главы

Эта глава, в отличие от предыдущих, была своеобразным попурри из разных тем.
Подведем итоги, кратко перечислив важные моменты каждой темы.

1:1 Секционирование таблиц. Секционирование - это своего рода дешевое, грубое
индексирование, которое работает для больших объемов. Для достижения наи­
лучших результатов либо забудьте об индексировании и планируйте полное
секционирование, либо убедитесь, что только к одной секции выполняется
большинство запросов и она помещается в памяти вместе со своими индек­
сами.

Делайте до 150 секций на таблицу, отслеживайте затраты для каждой строки и для
каждого запроса при секционировании.

1:1 Представления. Представления могут быть полезны для абстрагирования базо­
вых таблиц и сложных запросов. Однако остерегайтесь представлений, которые
используют временные таблицы, поскольку они не опускают WHERE к базовым
запросам. Также у них отсутствуют индексы, поэтому вы не сможете эффективно

обращаться к ним при соединении. Самый лучший вариант - использовать пред­
ставления просто ради удобства.

1:1 Внешние ключи. Ограничения внешнего ключа приводят к тому, что ограниче­

ния применяются более эффективно - на сервере. Однако они могут увеличить

сложность, вызвать появление дополнительных издержек на индексацию и вза­

имодействие между таблицами, что приведет к увеличению числа блокировок
и повышению параллелизма. Мы считаем, что внешние ключи - это отличная

возможность обеспечить целостность системы, но они являются предметом ро­
скоши для приложений, требующих чрезвычайно высокой производительности.
Большинство разработчиков, заботящихся о высокой производительности, не ис­
пользуют их, предпочитая доверять коду приложения.

382 Глава 7 • Дополнительные возможности MySQL

О Хранимые подпрограммы. То, как в MySQL реализованы хранимые процедуры,
триrтеры, хранимые функции и события, откровенно говоря, не впечатляет. Суще­

ствует также множество проблем с репликацией на основе команд. Используйте

эти возможности тогда, когда они могут сэкономить много сетевых обращений, -
в таких случаях вы сможете добиться лучшей производительности, сократив весь­

ма серьезную задержку. Вы также можете использовать их по обычным причинам

(централизация бизнес-логики, принудительное наделение привилегиями и т. д.).
Однако эти подпрограммы работают в MySQL совсем не так, как на больших
и более сложных серверах баз данных.

О Подготовленные операторы. Подготовленные операторы полезны, когда значи­

тельная часть затрат на выполнение команд заключается в передаче операторов

по сети, разборе SQL-кoдa и его оптимизации. Если вы будете повторять один

и тот же оператор много раз, то сможете сэкономить на этих затратах, используя

подготовленные операторы, поскольку разбор кода выполняется только однажды,

проводится кэширование плана выполнения, а бинарный протокол более эффек­

тивен, чем обычный текстовый протокол.

О Плагuны. Плагины, написанные на языках С или С ++, позволяют расширить
функциональность сервера разными способами. Они очень мощные. Мы напи­

сали много UDF и плагинов для различных целей, когда проблема лучше всего
решается внутри сервера с помощью его естественного кода.

О Кодировки. Кодировка - это соответствие двоичного кода определенному набору

символов. Схема упорядочения - это набор правил сортировки для конкретной

кодировки. Большинство людей используют либо кодировку latin1 (кодировка
по умолчанию, подходящая для английского и некоторых европейских языков),

либо UTF-8. Если используете UTF-8, остерегайтесь временных таблиц и буфе­
ров: сервер выделяет 3 байта на символ, поэтому, если вы не будете осторожны,
система будет потреблять много дискового пространства и памяти. Следите за

тем, чтобы кодировки совпадали с параметрами настройки кодировок для всех

клиентских соединений, в противном случае произойдет конвертация символов,

что нарушит индексирование.

О Полнотекстовый поиск. На момент написания книги только MyISAM поддер­
живала полнотекстовые индексы. Му ISAM в основном нельзя применять для
широкомасштабного полнотекстового поиска из-за блокировки и отсутствия

устойчивости к сбоям. Поэтому мы обычно рекомендуем использовать вместо
этого Sphinx.

О ХА-тра1t3акции. Большинство не использует ХА-транзакции с MySQL. Однако
не отключайте innodb_support_xa, если не З1I0ете точно, что делаете. Многие счи­
тают, что этот пар_аметр необходим, только если ХА-транзакции используются явно.

Это не так. Он применяется для координации InnoDB и двоичного журнала, по­
могая восстановлению после сбоев.

О Кэш запросов. Кэш запросов позволяет не обрабатывать запросы повторно, если

сохраненный результат идентичного запроса уже находится в кэше. Работая с кэ­

шем запросов в системах с высокой нагрузкой, мы наблюдали множество случаев

Итоги главы 383

блокировки серверов. Если вы применяете кэш запросов, не делайте его очень
большим и используйте, только если уверены, что это принесет пользу. Как вы

можете это узнать? Лучший способ - использовать расширенные службы журна­

лирования Percona Server и выполнить несложные расчеты. Если вы не согласны
с этим, можете посмотреть коэффициент попадания в кэш (не всегда полезно),

соотношение select и insert (также трудно интерпретировать) или коэффициент
попадания в вставку (немного более значимый). В общем, кэш запросов удобен,
потому что прозрачен и не требует от вас дополнительного кодирования, но если

нужен высокоэффективный кэш для получения высокой производительности,

стоит подумать о memcached или другом внешнем решении. Подробнее об этом -
в главе 14.

8 Оптимизация параметров
сервера

Из этой главы вы узнаете, как создать хороший файл конфигурации для своего сер­

вера MySQL. Ее можно сравнить с круизом, предусматривающим осмотр большого
количества достопримечательностей и периодически отклоняющимся от маршрута

для того, чтобы посмотреть живописные виды. Эти отклонения от прямого пути
необходимы, поскольку поиск кратчайшего пути к хорошей конфигурации начина­
ется не с изучения параметров конфигурации и определения того, какие из них вы

должны установить или как изменить, и не с анализа поведения сервера и поиска

ответа на вопрос, могут ли какие-то параметры конфигурации улучшить его. Лучше

всего сначала разобраться во внутреннем устройстве и поведении MySQL. Затем эти
знания стоит использовать в качестве руководства по настройке MySQL. Наконец, вы
можете сравнить желаемую конфигурацию с текущей и внести изменения, которые

будут важны и целесообразны именно для вас.

Нам часто задают вопросы примерно такого плана: ~как оптимально задать кон­

фигурационные параметры для моего сервера с 32 Гбайт памяти и 12-ядерным про­
цессором?~ К сожалению, на этот вопрос нет однозначного ответа. Конфигурация
сервера зависит от рабочей нагрузки, данных и используемых приложений, а не
только от оборудования.

Конечно, вы можете изменить настройки MySQL, но не стоит этого делать. Как
правило, лучше верно настроить базовые параметры (в большинстве случаев лишь
несколько из них) и потратить больше времени на оптимизацию схемы, индексы
и проектирование запросов. При правильной настройке базовых параметров кон­
фигурации MySQL потенциальные выгоды от дальнейших изменений обычно малы.

В то же время возня с настройками может привести к огромным проблемам. Мы

не раз видели ~хорошо настроенные~ серверы, которые постоянно ломались, за­

висали или медленно работали. Так что потратим немного времени на объяснение,
почему что-то может произойти и чего делать не следует.

Итак, что нужно делать? Удостоверьтесь в том, что значения основных параметров,

таких как размер буферного пула InnoDB и файла журнала, подходят для вашей
системы. Далее, если хотите обеспечить хорошую работу, задайте несколько параме­
тров, отвечающих за безопасность и исправность (но обратите внимание на то, что

Основы конфигурации MySQL 385

они обычно не улучшают производительность - лишь помогают избежать проблем),
а остальные настройки оставьте в покое. Если вы столкнетесь с проблемой, тщательно
диагностируйте ее с помощью методов, описанных в главе 3. Если проблема вызвана
компонентом сервера, поведение которого может быть исправлено с помощью параме­
тра настройки, то измените его.

Кроме того, в некоторых случаях вам может потребоваться установить определенные
параметры настройки, которые способны значительно повлиять на производитель­
ность. Однако учтите, что они не должны быть частью базового файла конфигурации
сервера. Устанавливать их следует только в том случае, если вы столкнетесь с кон­

кретными проблемами с производительностью, которые эти настройки могут решить.
Именно поэтому мы советуем не искать специально параметры, которые можно

улучшить, и не изменять их. Если какая-то проблема требует решения, она должна
сначала проявиться во времени отклика на запрос. Лучше всего заниматься улучше­

ниями, начав с запросов и времени отклика на них, а не с параметров настройки. Это

поможет вам сэкономить время и предотвратить множество проблем.

Еще один хороший способ сэкономить время и усилия - использовать значения по
умолчанию (если только вы точно не уверены в том, что их стоит изменить). Работа
с настройками по умолчанию повышает безопасность системы, поскольку многие
пользователи также сохраняют настройки по умолчанию. В итоге эти настройки мож­

но считать наиболее тщательно проверенными. А при их изменении могут всплыть

неожиданные ошибки.

Основы конфигурации MySQL
Сначала мы объясним работу механизма конфигурирования, а затем расскажем, что
нужно настраивать в MySQL. Вообще говоря, MySQL снисходительно относится
к ошибкам конфигурации, но наши замечания помогут сэкономить немало времени

и сил.

Прежде всего запомните, откуда MySQL получает конфигурационную информацию:
из аргументов командной строки и параметров в конфигурационном файле. В си­

стемах на базе UNIX таковым обычно является файл /etc/my. cnf или /etc/mysql/
my. cnf. Если вы пользуетесь скриптами запуска, входящими в состав операционной
системы, то обычно только в этом файле и надо определять конфигурацию. Если же
запускаете MySQL вручную, например при тестовой установке, то можете задавать
параметры и в командной строке. Фактически сервер считывает содержимое конфигу­
рационного файла, удаляет из него строки комментариев и символы разрыва строки,

а затем обрабатывает этот файл вместе с параметрами командной строки.

Замечания по терминологии: поскольку многие параметры командной строки
MySQL соответствуют переменным сервера, мы иногда используем термины
«параметр» и «переменная» как взаимозаменяемые. Большинство конфигу­

рационных переменных называются так же, как соответствующие параметры

командной СТJХЖИ, но есть несколько исключений. Например, параметр --memlock
устанавливает переменную locked_in_memory.

386 Глава 8 • Оптимизация параметров сервера

Любые постоянные параметры следует помещать в глобальный конфигурационный
файл, а не задавать в командной строке. В противном случае вы рискуете случайно

запустить сервер без них. Кроме того, разумно хранить все конфигурационные

файлы в одном месте, чтобы их проще было инспектировать.

Не забывайте, где находится конфигурационный файл вашего сервера! Нам дово­
дилось встречать людей, которые безуспешно пытались настроить сервер, изменяя

файл, который он и не собирался читать, например /etc/my. cnf в системе DeЬian
GNU /Linux, где сервер ищет файл /etc/mysql/my. cnf. Иногда такие файлы могут
находиться в разных местах, быть может, потому, что предыдущий системный адми­
нистратор тоже запутался. Если вы не знаете, какие файлы читает сервер, то лучше

у него же и спросить:

$ which mysqld
/usr/sbin/mysqld
$ /usr/sbin/mysqld --verbose --help 1 grep -А 1 'Default options'
Default options are read from the following files in the given order:
/etc/mysql/my.cnf -/.my.cnf /usr/etc/my.cnf

Все это относится к типичным установкам для тех случаев, когда на машине только

один сервер. Можно спроектировать и более сложные конфигурации, но все подоб­
ные способы нестандартны. Ранее в дистрибутив MySQL входила ныне устаревшая
программа mysqlmanager, которая могла запускать несколько экземпляров сервера,
используя один конфигурационный файл с несколькими разделами (она заменила

еще более старый скрипт mysqld_multi). Однако во многих дистрибутивах операци­
онных систем эта программа отсутствует или не используется в сценариях запуска.

На самом деле операционные системы зачастую вообще игнорируют сценарии за­

пуска, поставляемые с MySQL.

Конфигурационный файл разбит на разделы (секции), каждый из которых начина­
ется со строки с именем секции в квадратных скобках. Любая программа, входящая
в состав дистрибутива MySQL, обычно читает секцию, имя которой совпадает с име­
нем самой программы. Кроме того, многие клиентские приложения читают секцию

client, в которую можно поместить общие для всех клиентов параметры. Сервер
обычно читает секцию mysqld. Следите за тем, чтобы параметры располагались
в нужной секции, иначе эффект от них будет нулевой.

Синтаксис, область видимости и динамичность

Конфигурационные параметры записываются строчными буквами, слова разде­
ляются символами подчеркиваниями или дефисами. Следующие формы записи

эквивалентны, любую из них можно встретить в командной строке или конфигура­

ционном файле:

/usr/sbin/mysqld --auto-increment-offset=S
/usr/sbin/mysqld --auto_increment_offset=S

Мы рекомендуем выбрать один из этих стилей и придерживаться его. Так будет про­
ще искать в файле конкретный параметр.

Основы конфигурации MySQL 387

У конфигурационной переменной может быть несколько областей видимости.

Одни параметры действуют на уровне всего сервера (глобальная область види­

мости), другие могут задаваться по-своему для каждого соединения (сеансовая

область видимости), третьи относятся к конкретным объектам. У многих сеансо­

вых параметров есть глобальные эквиваленты, которые можно рассматривать как

значения по умолчанию. Изменение сеансовой переменной отразится только на

том соединении, где она была изменена, и после его закрытия изменения будут

потеряны. Приведем несколько примеров разнообразного поведения, к которому

следует быть готовыми.

1:1 Переменная query_cache_size имеет глобальную область видимости.

1:1 Переменная sort_buffer _size имеет глобальное значение по умолчанию, но мо­
жет быть изменена на уровне сеанса.

1:1 Переменная join_buffer _size имеет глобальное значение по умолчанию, может
быть изменена на уровне сеанса, но, кроме того, для каждого запроса, в котором

задействуется несколько таблиц, можно выделить по одному буферу на операцию

соединения, то есть для одного запроса могут существовать несколько буферов

соединения.

Переменные в конфигурационном файле не только можно устанавливать, но и из­

менять (хотя не все) во время работы сервера. Такие конфигурационные переменные

в MySQL называются динамическими. Далее показаны разные способы динамическо­
го изменения значений переменной sort_buffer _size на уровне сеанса и глобально:

SET sort_buffer_size <значение>;

SET GLOBAL sort_buffer_size <значение>;

SET @@sort_buffer_size .- <значение>;

SET @@session.sort_buffer_size .- <значение>;

SET @@global.sort_buffer_size .- <значение>;

Изменяя переменные динамически, не забывайте, что после останова MySQL новое
значение исчезнет. Если хотите сохранить измененные параметры, то запишите их

в конфигурационный файл.

Изменение глобальной переменной во время работы сервера не отражается на ее

значении в текущем и во всех остальных открытых сеансах. Это связано с тем, что

сеансовые переменные инициализируются в момент создания соединения. После

любого изменения переменной выполняйте команду SHOW GLOBAL VARIABLES, чтобы

удостовериться в том, что желаемый эффект достигнут.

Для разных переменных используются различные единицы измерения, и их следу­

ет знать. Например, переменная taЫe_cache определяет количество кэшируемых

таблиц, а не размер кэша таблиц в байтах. Переменная key_buffer _size задается
в байтах, тогда как другие параметры могут измеряться и в других единицах, напри­
мер процентах.

Для многих переменных можно указывать суффикс. Например, lM означает 1 Мбайт.
Однако это работает только при задании переменной в конфигурационном файле

или в аргументе командной строки. При использовании SQL-команды SET следует

388 Глава 8 • Оптимизация параметров сервера

указывать литеральное значение 1048576 или выражение, например 1024 * 1024.
В конфигурационных файлах выражения не допускаются.

В команде SЕТ можно задавать также специальное значение DEFAULT. Если присвоить
его сеансовой переменной, то она станет равна соответствующей глобальной пере­
менной. Присваивание же значения DEFAUL т глобальной переменной делает ее рав­
ной значению, заданному на этапе компиляции сервера (а не тому, которое указано

в конфигурационном файле). Это бывает полезно, когда нужно вернуть переменной
то состояние, которое она имела в момент открытия соединения. Мы не рекомендуем

делать это по отношению к глобальным переменным, поскольку результат может
отличаться от ожидаемого - вы не получите значение, действовавшее на момент

запуска сервера.

Побочные эффекты установки переменных

Динамическое задание переменных может иметь неожиданные побочные эффек­
ты, например сброс на диск изменившихся блоков из буферов. Будьте осторожны
при онлайновом изменении переменных, так как это может сильно нагрузить

сервер.

Иногда назначение переменной можно понять из ее имени. Например, переменная

max_heap_taЫe_size делает именно то, что подразумевает ее наименование: задает

максимальный размер, до которого могут расти в памяти временные таблицы. Однако
соглашение о наименованиях не всегда последовательно, поэтому догадаться о на­

значении переменной по названию можно далеко не всегда.

Рассмотрим некоторые важные переменные и последствия их динамического из­
менения.

1:1 key_buffer _size. При задании этой переменной сразу же резервируется указанный
объем памяти для буфера ключей (он также называется 1<Эшем ключей). Однако
операционная система не выделяет физическую память до момента ее фактиче­

ского использования. Так, требование выделить 1 Гбайт под буфер ключей вовсе
не означает, что сервер немедленно получит весь гигабайт (о том, как можно
следить за использованием памяти сервером, расскажем в главе 9).

Как объясняется далее в этой главе, MySQL позволяет создавать несколько
кэшей ключей. Если присвоить этой переменной значение 0 для кэша ключей,
отличного от подразумеваемого по умолчанию, то MySQL переместит все ин­
дексы из указанного кэша в кэш по умолчанию, а указанный кэш удалит, когда

больше никто не будет его использовать. В результате задания этой переменной
для несуществующего кэша указанный кэш будет создан. Присваивание данной
переменной ненулевого значения для существующего кэша приводит к тому, что

память, отведенная под него, сбрасывается на диск. Это действие блокирует все
операции, пытающиеся получить доступ к кэшу, пока сброс не будет закончен.

1:1 taЫe_cache. Установка этой переменной не дает немедленного эффекта - действие

откладывается до следующей попытки потока открыть таблицу. Когда это проис­
ходит, MySQL проверяет значение данного параметра. Если оно больше текущего
количества таблиц в кэше, то поток может поместить вновь открытую таблицу
в кэш. В противном случае MySQL удалит из кэша неиспользуемые таблицы.

Основы конфигурации MySQL 389

1:J thread_cache_size. Установка этой переменной не дает немедленного эффекта -
действие откладывается до момента следующего закрытия соединения. В этот

момент MySQL проверит, есть ли в кэше место для хранения потока. Если да, то
поток кэшируется для повторного использования в будущем другим соединением.
Если нет - уничтожается. В этом случае количество потоков в кэше, а следова­

тельно, и объем памяти, отведенной под кэш потоков, не сокращается сразу -
уменьшение происходит только тогда, когда новое соединение позаимствует

для себя поток из кэша (MySQL добавляет потоки в кэш только при закрытии
соединения, а удаляет их из кэша лишь при создании новых соединений).

1:J query_cache_size. MySQL выделяет и инициализирует указанное количество
памяти для кэша запросов в момент запуска сервера. При изменении этой пере­

менной (даже если новое значение совпадает с предыдущим) MySQL немедленно
удаляет все кэшированные запросы, устанавливает новый размер кэша и повтор­

но инициализирует отведенную под него память. Этот процесс стопорит сервер

и может занять довольно много времени, поскольку MySQL удаляет все кэширо­
ванные запросы один за другим, а не одновременно.

1:] read_buffer _size. MySQL не выделяет память для этого буфера, пока она не по­
требуется запросу. Когда же необходимость возникает, MySQL немедленно вы­
деляет весь блок запрошенного размера.

1:J read_rnd_buffer _size. MySQL не выделяет память для этого буфера, пока она
не потребуется запросу. Когда же необходимость возникает, MySQL выделяет
лишь необходимый объем памяти (имя max_read_rnd_buffer _size точнее описы­
вало бы назначение этой переменной).

1:] sort_buffer _size. MySQL не выделяет память для этого буфера, пока она не по­
требуется запросу, чтобы выполнить сортировку. Когда же необходимость воз­
никнет, запрошенный блок немедленно выделяется целиком независимо от того,
нужно столько памяти или нет.

В дальнейшем назначение этих переменных будет объяснено подробнее. И этот спи­
сок не исчерпывающий. Пока мы лишь хотим показать, какого поведения ожидать

при изменении этих важных параметров.

Не следует глобально увеличивать параметр, относящийся к соединению, если вы
не уверены в правильности такого решения. Некоторые буферы выделяются одним
куском, даже если они не нужны, поэтому глобальное изменение параметра может
привести к растрачиванию памяти впустую. Лучше увеличивать значение, только

когда это необходимо для конкретного запроса.

Типичный пример переменной, которую лучше оставить небольшой, а увеличивать
только для некоторых запросов, - это sort_buffer _size, которая управляет раз­
мером буфера для файловой сортировки. MySQL выполняет некоторую работу по
инициализации буфера сортировки после его выделения.

Кроме того, буфер сортировки выделяется целиком даже для очень маленьких сор­

тировок, поэтому если вы сделаете его намного больше, чем требуется для средней
сортировки, то впустую потратите память и увеличите затраты на ее распределение.

Этот тезис может удивить тех читателей, которые считают распределение памяти

не очень затратной операцией. Не углубляясь в технические детали, скажем, что

390 Глава 8 • Оптимизация параметров сервера

распределение памяти включает в себя настройку адресного пространства, которая

может быть довольно утомительной. В частности, в Linux распределение памяти
использует несколько стратегий с различными затратами в зависимости от размера.

Таким образом, большой буфер сортировки может быть очень затратным, поэтому
не увеличивайте его размер, если не уверены, что это необходимо.

Обнаружив запрос, который мог бы выполняться быстрее при наличии большого бу­

фера сортировки, вы можете увеличить значение sort_buffer _size непосредственно
перед его выполнением для конкретной сессии, а затем вернуться к значению DE FAUL Т.

Вот как это делается:

SET @@session.sort_buffer_size := <значение>;
-- Выполнить запрос ...
SET @@session.sort_buffer_size := DEFAULT;

Для подобного кода могут пригодиться функции-обертки. К числу других пере­

менных, которые разумно устанавливать на уровне соединения, относятся read_
buffer _size, read_rnd_buffer _size, tmp_taЫe_size и myisam_sort_buffer _size (для
исправления таблиц).

Чтобы сохранить и восстановить значения переменной, заданные пользователем,

можно написать примерно такой код:

SET @sаvеС_<имя_уникальной_переменной> := @@session.sort_buffer_size;
SET @@session.sort_buffer_size := <значение>;
-- Выполнить запрос ...
SET @@session.sort_buffer_size := @sаvеd_<имя_уникальной_переменной>;

0""· " .
""

Размер буфера сортировки - это один из параметров, который требует слиш­
ком тщательной настройки. Кажется, некоторые люди считают, что чем боль­
ше, тем лучше, и мы даже видели серверы, у которых значение этой пере­
менной составляло 1 Гбайт. Скорее всего (что неудивительно), это приведет
к тому, что сервер попытается выделить слишком много памяти и рухнет либо

просто сожжет много процессорного времени при инициализации буфера сор­

тировки для запроса (см. ошибку MySQL 37359 для получения дополнитель­
ной информации об этом).

Не придавайте слишком большого значения размеру буфера сортировки. Вам
действительно нужно, чтобы запросы получили 128 Мбайт памяти для сорти­
ровки десяти строк и возврата их клиенту? Подумайте о том, какие виды со­
ртировки выполняют запросы и как часто, и лучше постарайтесь их избежать,
выполнив правильную индексацию и проектирование запросов (см. главы 5
и 6), а не пытайтесь быстрее провести операцию сортировки. Кроме того, сле­
дует обязательно выполнить профилирование своих запросов, чтобы посмо­
треть, будет ли сортировка тем процессом, на котором вам в любом случае

придется сконцентрировать внимание (см. главу 3, где приведен пример за­
проса, который выполняет сортировку, но не тратит на нее много времени).

Основы конфиrурации MySQL 391

Приступая к работе

Будьте осторожны, устанавливая переменные. Больше - не всегда лучше: установив

слишком большое значение, легко вызвать проблемы - памяти может не хватить,
и тогда сервер начнет выгружать ее в файл подкачки или вообще выйдет за пределы

адресного пространства 1•

Обязательно нужно иметь систему мониторинга, которая определяет, улучшилась

или ухудшилась общая производительность сервера после изменения. Эталонного

тестирования недостаточно, поскольку оно не является реальным использованием

сервера. Если не измерять фактическую производительность, то можно навредить,

даже не осознавая того. Мы не раз видели, как кто-то менял конфигурацию сервера,

полагая, что повысил быстродействие, тогда как на деле общая производительность

снижалась, поскольку в разное время дня или в разные дни недели нагрузка варьи­

ровалась.

Делая заметки, возможно, с комментариями в файле конфигурации, вы можете

сэкономить себе и коллегам много времени и сил. Еще лучше поместить конфигу­

рационный файл в систему управления версиями. Это хороший прием, потому что

он позволяет вам откатывать изменения. Чтобы упростить обслуживание боль­

шого количества конфигурационных файлов, создайте символическую ссылку

с конфигурационного файла на центральный репозиторий системы управления

версиями.

Прежде чем приступать к изменению конфигурационных параметров, следует на­

строить запросы и схему, обращая внимание по крайней мере на такие очевидные

оптимизации, как добавление индексов. Если вы слишком далеко продвинетесь по

пути изменения конфигурации, а потом займетесь модификацией запросов или схе­

мы, то настройку, возможно, придется начинать заново. Не забывайте, что настрой­

ка - это непрерывный итерационный процесс. Если только оборудование, рабочая

нагрузка и данные не являются абсолютно неизменными, то вероятность того, что

к конфигурированию придется вернуться, очень велика. На самом деле большинство

серверов не имеют постоянной рабочей нагрузки даже в течение дня, а это означает,

что идеальная конфигурация на утро не годится для полудня! Очевидно, что стрем­

ление создать мифическую идеальную конфигурацию совершенно нецелесообразно.

Это означает, что не нужно пытаться выжать из сервера все до последней капли, ведь

отдача от затраченного на это времени, скорее всего, будет крайне мала. Мы рекомен­

дуем продолжать настройку до тех пор, пока не получится приемлемый результат,

а потом ничего не трогать, пока не появится причина полагать, что можно добиться

существенного повышения производительности.

Мы часто сталкивались с такой ошибкой. При настройке сервера с вдвое большим объемом

памяти, чем существующий сервер, в качестве ориентира используется файл конфигу­

рации старого сервера. При этом все параметры конфигурации нового сервера получают

умножением на два соответствующих параметров старого. Этот прием не работает.

392 Глава 8 • Оптимизация параметров сервера

Итеративная оптимизация
с помощью эталонного тестирования

Возможно, вы полагаете, что можно сформировать эталонный тестовый набор
и тщательно настроить ваш сервер, итеративно изменяя его конфигурацию в поис­

ках оптимальных настроек. Обычно мы советуем этого не делать. Ведь потребуется
много работы и исследований, а потенциальный выигрыш в большинстве случаев
настолько мал, что, скорее всего, вы напрасно потратите время. Вероятно, лучше по­

тратить его на другие задачи, например на проверку резервных копий, мониторинг

изменений в планах запросов и т. п.

Кроме того, очень сложно понять, какие побочные эффекты могут быть вызваны
внесенными изменениями в долгосрочной перспективе. Может случиться так, что вы

измените параметр и результаты эталонного тестирования улучшатся. Однако эта­

лонные тесты измеряют не все важные характеристики, либо вы можете запустить их
на недостаточно длительный срок и они не обнаружат изменений в долговременном
устойчивом поведении системы. Из-за этого могут возникнуть такие проблемы, как
периодические стопоры сервера или спорадические медленные запросы. Их довольно

трудно обнаружить.

Мы иногда запускаем множество эталонных тестов, чтобы исследовать или нагрузить
определенные части сервера и таким образом лучше разобраться в их поведении. Хо­
рошим примером является множество тестов, которые мы запускали на протяжении

многих лет, чтобы понять поведение сброса данных InnoDB. Нашей целью была раз­
работка алгоритмов очистки для различных рабочих нагрузок и типов оборудования.
Часто бывает так, что мы тщательно тестируем различные настройки, чтобы понять,
какой эффект они производят, и найти способы их оптимизации. Но это не так­
то просто сделать - процесс может занять много дней или недель, и кроме того,

это не подходит для большинства ситуаций, поскольку такое туннельное видение
конкретной части сервера часто затмевает другие проблемы. Например, иногда мы
обнаруживаем, что определенные комбинации параметров обеспечивают лучшую
производительность в предельных случаях, однако эти параметры не подходят для

промышленного использования из-за таких факторов, как потеря огромного объ­
ема памяти или оптимизация пропускной способности при полном игнорировании
влияния на восстановление после сбоев.

Мы советуем подготовить комплект эталонных тестов перед тем, как приступать к на­

стройке сервера. Вам нужно что-то, что отражает общую рабочую нагрузку и вклю­

чает в себя крайние случаи, такие как очень большие и сложные запросы. Обычно
хорошие результаты дает воспроизведение реальной рабочей нагрузки при обработке
реальных данных. Обнаружив конкретную проблему, скажем медленно выполня­
ющийся одиночный запрос, вы можете попробовать оптимизировать данный случай,
но при этом рискуете непреднамеренно негативно воздействовать на другие запросы.

Самый лучший подход к делу - изменять не более одной-двух переменных за раз

и после каждой такой модификации в течение длительного времени прогонять тесты.

Иногда результаты бывают удивительными: вот вы немного изменили переменную,

Основы конфигурации MySQL 393

и результаты улучшились, потом еще чуть-чуть изменили - и производительность

резко упала. Если после такого изменения быстродействие падает, то, возможно,
вы запросили слишком большой объем ресурса. Например, речь может идти о чрез­

мерном размере памяти для буфера, который часто выделяется и освобождается.
Не исключено также, что возникло несоответствие между MySQL и операционной
системой или оборудованием. Так, мы обнаружили, что оптимальное значение
переменной sort_buffer _size может зависеть от способа работы кэша процессора,
а при настройке переменной read_buffer _size нужно учитывать конфигурацию
упреждающего чтения сервера и общие настройки подсистемы ввода/вывода. Боль­
ше - не всегда лучше, а может оказаться и намного хуже. Кроме того, некоторые

переменные зависят от других, и в полной мере освоить все это можно только на

опыте и при условии понимания архитектуры системы.

Когда эталонное тестирование полезно

Мы не рекомендовали применять эталонное тестирование. Однако из этого совета

есть несколько исключений. Иногда все-таки стоит запускать несколько итеративных

эталонных тестов, хотя обычно не в контексте тонкой настройки сервера. Приведем

несколько примеров.

• Если вы планируете осуществить крупные инвестиции, такие как покупка несколь­
ких новых серверов, можете запустить эталонные тесты, чтобы понять, каковы

ваши потребности в оборудовании. Контекст здесь - планирование емкости, а не

тонкая настройка сервера. В частности, нам нравится проводить эталонное тести­

рование с разным объемом памяти, выделенной буферному пулу InnoDB, что по­
могает нарисовать кривую памяти, показывающую, сколько памяти действительно

необходимо и как это влияет на требования к системам хранения.

• Если вы хотите понять, сколько времени потребуется InnoDB, чтобы восстановить­
ся после сбоя, можете неоднократно настраивать реплику, намеренно ее обруши­

вать и выполнять эталонное тестирование того, сколько времени требуется InnoDB
на восстановление после перезапуска. Контекст здесь - планирование высокой

работоспособности.

• Для приложений с большим объемом чтения может быть целесообразно зафик­
сировать все запросы с помощью журнала медленных запросов (или из трафика

ТСР с помощью утилиты pt-query-digest), далее применить утилиту pt-log-player
для их повторения с включенным полным журналированием медленных запросов,

а затем проанализировать полученный журнал с помощью pt-query-digest. Это по­
зволяет увидеть, как различные типы запросов выполняются при различных на­

стройках оборудования, программного обеспечения и сервера. Например, мы

когда-то помогли клиенту оценить изменения производительности при переходе

на сервер с гораздо бdльшим объемом памяти, но с медленными жесткими дисками.

Большинство запросов стали выполняться быстрее, но некоторые аналитические

запросы замедлялись, поскольку оставались связанными с вводом/выводом. В дан­

ном случае контекстом является сравнение рабочей нагрузки.

394 Глава 8 • Оптимизация параметров сервера

Чего делать не следует

Прежде чем начать настраивать сервер, мы хотели бы призвать вас избегать неко­

торых распространенных приемов, которые считаем рискованными или вредными.

Внимание: впереди непечатные выражения!

Во-первых, вы не должны производить тонкую настройку по коэффициенту. Клас­

сический пример коэффициента тонкой настройки - это эмпирическое правило,

гласящее, что коэффициент попаданий в кэш ключей должен быть выше, чем некое

процентное соотношение, а вам следует увеличивать размер кэша, если коэффициент

попадания слишком низкий. Это совершенно неправильный совет. Независимо от

того, что кто-то вам сказал, коэффициент попаданий в кэш не имеет никакого отно­

шения к тому, слишком большой кэш или нет. Начнем с того, что коэффициент попа­

дания зависит от рабочей нагрузки: некоторые рабочие объемы просто некэшируемы

независимо от того, насколько велик кэш, к тому же попадания в кэш бессмысленны

по причинам, которые мы объясним позже. Иногда бывает, что, когда кэш слишком

мал, коэффициент попадания низок, а увеличение размера кэша его увеличивает.

Однако это случайная взаимосвязь, ничего не говорящая о производительности или

правильном определении размера кэша.

Проблема с взаимосвязями, которые иногда кажутся истинными, заключается

в том, что люди начинают верить, что они всегда будут таковыми. Администраторы

баз данных Oracle отказались от настройки на основе коэффициентов много лет
назад, и жаль, что администраторы баз данных MySQL не последовали их при­
меру1. Еще больше мы жалеем, что люди пишут, как они считают, скрипты тонкой

настройки, кодифицирующие эти опасные приемы, и учат пользоваться ими тысячи

людей. Таким образом, мы приходим ко второй рекомендации относительно того,

чего делать не следует: не используйте скрипты тонкой настройки! Некоторые

из них настолько популярны, что их можно найти в Интернете. Лучше всего их

игнорировать2 •

Мы также предлагаем вам избегать словосочетания «тонкая настройка~. которое

часто использовали в нескольких последних разделах. Вместо этого мы предпочи­

таем использовать термины «конфигурация~ или «оптимизация~ (до тех пор пока

вы на самом деле это делаете, см. главу 3). Когда мы видим словосочетание «тонкая
настройка~. воображение рисует новичка, который настраивает сервер и смотрит, что

происходит. В предыдущем разделе мы рекомендовали оставить эту методику для

Если вы не уверены, что тонкая настройка по коэффициенту плоха, прочитайте, пожалуй­

ста, книгу Optimizing Oracle Peгformance Кэри Миллсапа (Сагу Millsap) (издательство
O'Reilly). В ней есть приложение, посвященное инструменту, который может искусственно
генерировать любой коэффициент попадания в кэш по вашему желанию независимо от

тоrо, как плохо работает система. Естественно, это все сделано, чтобы показать, насколько

бесполезным является коэффициент.

Исключение: мы обслуживаем бесплатный (хороший) онлайновый инструмент конфигу­

рации на http://tools.percona.coш. Да, мы предвзяты.

Чего делать не следует 395

тех, кто изучил внутреннее устройство сервера. Тонкая настройка вашего сервера

может оказаться всего лишь тратой времени.

Поиск в Интернете рекомендаций по разработке конфигурации тоже не всегда отлич­

ная мысль. Вы можете найти множество плохих советов в блогах, на форумах и т. д. 1

Многие эксперты делятся в Интернете своими знаниями, но не всегда можно точно

определить их квалификацию. Разумеется, мы не можем дать объективные реко­
мендации о том, где найти настоящих экспертов. Но можем сказать, что надежные,

авторитетные поставщики услуг MySQL- это в целом более безопасная ставка, чем
результаты простого поиска в Интернете, поскольку люди, у которых есть счастливые

клиенты, вероятно, делают что-то правильно. Однако даже их советы может быть
опасно применять, не разобравшись и не проводя тестирование, поскольку они могут

относиться к ситуации, отличающейся от вашей, и неясным для вас деталям.

Наконец, не верьте в правильность популярной формулы потребления памяти -
да, той самой, которую сама MySQL выдает при сбое. (Мы не будем ее здесь при­
водить.) Эта формула сохранилась с древнейших времен. Она не является надеж­

ным или хотя бы полезным способом понять, сколько памяти MySQL может
использовать в худшем случае. Кроме того, вы можете найти вариации этой фор­

мулы в Интернете. Они также ошибочны, даже если в них добавлены факторы,
отсутствующие в исходной формуле. По правде говоря, вы не можете установить

верхнюю границу потребления памяти MySQL. Она не регулируется жестко сер­
вером базы данных, который управляет распределением памяти. Это можно очень
просто доказать, войдя на сервер и запустив несколько запросов, которые по­

требляют много памяти:

mysql> SET @crash_me_l := REPEAT('a', @@max_allowed_packet);
mysql> SET @crash_me_2 := REPEAT('a', @@max_allowed_packet);
... run а lot of these .•.
mysql> SET @crash_me_1eeeввe := REPEAT('a', @@max_allowed_packet);

Запустите все это в цикле, каждый раз создавая новые переменные, и в итоге у сер­

вера закончится память и он рухнет! К тому же эти действия не требуют никаких

привилегий.

Утверждения, которые мы попытались проиллюстрировать в этом разделе, не раз

делали нас непопулярными среди людей, которые обвиняли нас в высокомерии,
в том, что мы пытаемся дискредитировать других и выставляем себя единственными
авторитетами. Некоторые утверждали, что так мы стремимся продвигать свои

услуги. Мы не намерены быть эгоистами. Просто слышали так много плохих советов,

которые кажутся дельными, если вы недостаточно опытны, и столько раз помогали

разгребать завалы, что считаем своей задачей развенчать несколько мифов и поре­
комендовать нашим читателям не доверять всем экспертам подряд. В дальнейшем

постараемся избегать непарламентских выражений.

Вопрос: •Как формируется запрос?~ Ответ: •Необхадима пазвать админа, который убьет

их запросы, патаму што эти запросы не могут окрысится в атвет~ (сохранена авторская

орфография).

396 Глава 8 • Оптимизация параметров сервера

Создание конфигурационного
файла MySQL
Как мы предупреждали в самом начале главы, у нас нет одного самого лучшего

конфигурационного файла, скажем, для сервера с четырьмя процессорами, 16 Гбайт
оперативной памяти и 12 жесткими дисками, который годился бы на все случаи жиз­
ни. Вам все-таки придется разработать собственные конфигурации, поскольку даже
при наличии неплохой отправной точки все сильно зависит от того, как используется

конкретное оборудование.

Не все скомпилированные по умолчанию настройки MySQL хороши, но большин­
ство из них вполне пригодны. Они рассчитаны на умеренное потребление ресурсов,

поскольку предполагается, что MySQL не единственная программа, работающая на
сервере. В конфигурации по умолчанию используется ровно столько ресурсов, сколь­

ко необходимо для запуска MySQL и выполнения простых запросов к небольшому
объему данных. Если объем хранимой в базах информации превышает несколько
мегабайтов, то, безусловно, параметры необходимо настраивать.

Можно начать с одного из образцов файлов конфигурации, включенных в дистри­
бутив сервера MySQL, однако учитывая имеющиеся у них проблемы. Например,
в них часто встречаются закомментированные параметры, так что вам может при­

йти в голову мысль о необходимости выбора подходящих значений и их раском­
ментировании (это немного напоминает конфигурационный файл Apache). Кроме
того, там встречается множество скучных комментариев, объясняющих варианты

выбора, но эти объяснения не всегда корректны. Некоторые из этих вариантов
вообще нельзя применить к популярным операционным системам! Наконец, при­
веденные образцы полностью устарели с точки зрения современного оборудования
и рабочих нагрузок.

На протяжении многих лет эксперты по MySQL дискутировали о том, как устранить
эти проблемы, но воз и ныне там. Наша рекомендация звучит следующим образом:
не используйте в качестве отправной точки ни эти файлы, ни образцы, которые

поставляются вместе с пакетами вашей операционной системы. Лучше начинать

с чистого листа.

Именно этим мы и займемся в этой главе. На самом деле то, что MySQL так хорошо
настраивается, - это ее недостаток: вам кажется, что следует потратить уйму времени

на настройку, в то время как большинство параметров в порядке, просто заданы по

умолчанию. И самое лучшее, что вы можете сделать, - оставить их в покое и забыть.

Поэтому мы создали для этой книги работоспособный минимальный примерный
конфигурационный файл, который можно использовать в качестве отправной точки

для собственных серверов 1 • Вам придется выбрать значения только для нескольких

Обратите внимание на то, что в новых версиях MySQL некоторые параметры удалены,
помечены как нежелательные и изменены. Для получения более подробной информации

посмотрите соответствующие руководства.

Создание конфигурационного файла MySQL 397

параметров - мы объясним это чуть позже в текущей главе. Наш базовый файл вы­
глядит следующим образом:

[mysqld]
GENERAL datadir
socket
pid_file
user
port
storage_engine
INNODB
innodb_buffer_pool_size
innodb_log_file_size
innodb_file_per_taЫe

innodb_flush_method
MyISAМ

key_buffer_size
LOGGING
log_error
log_slow_queries
OTHER
tmp_taЫe_size

max_heap_taЫe_size

query_cache_type
query_cache_size
max_connections
thread_cache_size
taЫe_cache_size

open_files_limi t
[client] socket
port

/var/liЫmysql

/var/liЫmysql/mysql.sock

/var/liЬ/mysql/mysql.pid

mysql
3306
InnoDB

<value>
<value>
1

= O_DIRECT

<value>

/var/liЫmysql/mysql-error.log

/var/liЫmysql/mysql-slow.log

32М

32М

0
0
<value>
<value>
<value>
65535
/var/liЫmysql/mysql.sock

3306

Этот файл может показаться слишком минималистичным по сравнению с тем, что

вы привыкли видеть 1 , но на самом деле он включает в себя даже больше, чем нужно
многим. Есть несколько других типов параметров конфигурации, которые вы, веро­

ятно, будете использовать, например двоичное журналирование. Мы рассмотрим их
позже в этой и других главах.

Первым делом мы сконфигурировали местоположение данных. Для этого выбрали
/var/lib/mysql, поскольку это популярное место для большинства вариантов Unix.
Но нет ничего плохого и в выборе другого места - решать вам. Ту да же мы поместили
файл PID, однако многие операционные системы захотят поместить его в /var/run.
Все в порядке, нам просто требовалось установить что-то для этих настроек. Кстати,

не позволяйте сокету и РID-файлу располагаться в соответствии с установленными

по умолчанию настройками сервера: в некоторых версиях MySQL есть ряд ошибок,
которые из-за этого могут вызвать проблемы. Лучше установить их местоположе­

ние явно. (Мы не советуем выбирать разное местоположение, рекомендуем лишь

Вопрос: «Где настройки размера буфера сортировки и размера буфера чтения?» Ответ:
«Они занимаются своим делом. Оставьте для них значения по умолчанию, если не можете

доказать, что эти значения недостаточно хороши».

398 Глава 8 • Оптимизация параметров сервера

убедиться, что в файле my. cnf их местоположение упомянуто явно, поэтому оно
не будет меняться и создавать проблемы при обновлении сервера.)

Кроме того, мы определили, что mysqld должен работать как аккаунт пользователя
mysql в операционной системе. Вам потребуется убедиться, что этот аккаунт суще­
ствует и что ему принадлежит каталог с данными. Для порта установлено значение

по умолчанию 3306, но иногда его стоит поменять.

В качестве подсистемы хранения по умолчанию мы выбрали InnoDB, и это стоит
пояснить. Мы полагаем, что InnoDB - наиболее удачный выбор в большинстве
ситуаций, но не всегда. Например, какое-то стороннее программное обеспечение

может считать, что по умолчанию используется MyISAM, и создаст таблицы без
указания подсистемы. Это может привести к сбою программного обеспечения,

если, например, предполагается, что в базе данных разрешено создавать полнотек­
стовые индексы. Кроме того, подсистема хранения по умолчанию используется для

принудительно созданных временных таблиц, что может потребовать от сервера
довольно много дополнительной работы. Если вы хотите, чтобы постоянные табли­
цы использовали InnoDB, а любые временные таблицы - MyISAM, то должны явно
указать подсистему в команде СRЕАТЕ TABLE.

В общем случае, если вы решили использовать подсистему хранения в качестве

выбираемой по умолчанию, лучше всего настроить ее как значение по умолчанию.
Многие пользователи считают, что они используют только определенную подсистему

хранения, но затем обнаруживают другую подсистему, которая использовалась из-за
того, что была задана по умолчанию.

Проиллюстрируем основы создания конфигурации с помощью InnoDB. В боль­
шинстве случаев все, что необходимо InnoDB для хорошей работы, - правильный

размер буферного пула и размер файла журнала. Эти значения по умолчанию слиш­
ком малы. Остальные настройки для InnoDB являются необязательными, хотя мы
включили innodb_file_per _tаЫе для обеспечения удобства управления и большей
гибкости. Установку размера файла журнала InnoDB мы обсудим позже в этой главе,
как и параметр innodb _flush_method, присущий Unix.

Существует широко известное эмпирическое правило, которое гласит: размер бу­
ферного пула должен составлять 75-80 % от объема памяти сервера. Это еще одно
случайное соотношение, которое, похоже, иногда работает нормально, но далеко

не всегда. Лучше всего установить буферный пул примерно следующим образом.

1. Возьмите объем памяти сервера.

2. Вычтите немного памяти для операционной системы и, возможно, для других

программ, если MySQL - это не единственное, что работает на сервере.

3. Вычтите еще немного памяти для потребностей памяти MySQL, так как она, на­
пример, использует различные буферы для операций запроса.

4. Вычтите достаточно памяти для файлов журнала InnoDB так, чтобы операцион­
ная система имела достаточно памяти для их кэширования или по крайней мере

последних записей в них. (Этот совет относится к стандартной MySQL, в Percona

Создание конфигурационного файла MySQL 399

Server вы можете настроить файлы журналов так, чтобы они открывались с по­
мощью команды O_DIRECТ, в обход кэшей операционной системы.) Также стоит
оставить некоторую свободную память для кэширования по крайней мере хвоста

двоичных журналов, особенно если у вас есть подчиненные серверы, которые за­

паздывают из-за того, что иногда могут читать старые двоичные файлы журнала

на главном сервере, вызывая определенное давление на его память.

5. Вычтите достаточно памяти для любых других буферов и кэшей, которые вы на­

страиваете в MySQL, таких как кэш ключей MyISAM или кэш запросов.

6. Разделите полученный результат на 105 %. Тем самым вы учтете приблизитель­
ные накладные затраты InnoDB на управление буферным пулом.

7. Округлите результат до разумного значения. Округление в меньшую сторону

не сильно изменит ситуацию, но излишнее выделение памяти, скорее всего, будет
неверным решением.

Мы довольно легкомысленно рассуждали об объемах выделяемой памяти - все­
таки «немного для операционной системы» - это сколько? Тут могут быть разные
варианты, и мы частично обсудим это чуть позже в этой главе и в остальной части

книги. Вам нужно разобраться в своей системе и оценить, сколько памяти ей нужно

для работы. Вот почему конфигурационные файлы на все случаи жизни невозможны.
Опыт, а иногда и несложные вычисления будут вашими помощниками.

Приведем пример. Предположим, у вас есть сервер с 192 Гбайт памяти и вы хотите
выделить его для MySQL и использовать только InnoDB, без кэша запросов. При
этом ожидаете, что количество подключений к серверу будет невелико. Если в ваших
файлах журнала всего 4 Гбайт, вы можете рассуждать так: «Я думаю, что для ОС
и других потребностей в памяти MySQL должно быть достаточно 2 Гбайт или 5 % от
общей памяти в зависимости от того, что больше. Вычитаем 4 Гбайт для файлов жур­
нала, а все остальное используем для InnoDB». У нас получилось около 177 Гбайт, но,
по всей видимости, стоит немного уменьшить это значение. Возможно, вы выделите

около 168 Гбайт на буферный пул. Если на практике сервер работает с достаточным
количеством нераспределенной памяти, вероятно, вы установите буферный пул
больше, если существует возможность перезапуска его для какой-то другой цели.

Результат был бы совсем другим, если бы у вас было несколько таблиц MyISAM
и, естественно, нужно было бы кэшировать их индексы. В Windows результат также
сильно отличался бы от приведенного ранее, поскольку в этой операционной систе­

ме в большинстве версий MySQL возникают проблемы с использованием больших
объемов памяти (хотя эта ситуация и улучшена в MySQL 5.5) или если по какой-то
причине вы решили не использовать O_DIRECT.

Как видите, не так уж важно устанавливать точные настройки с самого начала.

Лучше задать безопасное значение, которое больше значения по умолчанию, но
ненамного, запустить сервер на некоторое время и посмотреть, сколько памяти он

фактически использует. Эти параметры трудно предвидеть, поскольку использова­

ние памяти MySQL не всегда предсказуемо: оно может зависеть от таких факторов,
как сложность запросов и параллелизм. При простой рабочей нагрузке потребности

400 Глава 8 • Оптимизация параметров сервера

в памяти MySQL невелики - около 256 Кбайт на соединение. Но сложные запросы,
использующие временные таблицы, сортировку, хранимые процедуры и т. п., могут
использовать намного больше ОЗУ.

Вот почему мы выбрали довольно безопасную стартовую точку. Вы можете видеть,
что даже консервативная настройка для буферного пула InnoDB на самом деле со­
ставляет 87,5 % от общего объема ОЗУ сервера, то есть более 75 %. Именно поэтому
мы и говорили, что использование простых коэффициентов - это неправильный

ПОДХОД.

Наша позиция такова: при настройке буферов памяти лучше допустить ошибку, ока­
завшись чересчур осторожными, чем сделать их слишком большими. Если вы зада­
дите буферный пул на 20 % меньше, чем могли, то, скорее всего, не сильно ухудшите
производительность - возможно, на несколько процентов. Если же установите его

на 20 % больше, чем требуется, то, скорее всего, столкнетесь с гораздо более серьез­
ными проблемами: подкачкой, переполнением диска или даже полным исчерпанием
памяти и аварийным остановом.

Рассмотренный пример конфигурации InnoDB демонстрирует предпочитаемый
нами подход к настройке сервера: понять, что в нем происходит, как это связано

с настройками, а затем решить, что делать.

Изменения с течением времени

Необходимость в точной настройке буферов памяти MySQL с течением времени ста­
новится все менее важной. Когда у мощного сервера было 4 Гбайт памяти, мы много
работали, чтобы сбалансировать ресурсы так, чтобы он мог обслуживать 1000 под­
ключений. Это, как правило, требовало резервирования 1 Гбайт или около того на
потребности MySQL, что составляло четверть общей памяти сервера и сильно влияло
на размер буферного пула.

В настоящее время у сопоставимого сервера 144 Гбайт памяти, при этом число обыч­
ных подключений в большинстве приложений не очень изменилось, равно как и раз­

мер буферов для каждого соединения. Так что мы могли бы щедро зарезервировать

4 Гбайт памяти для MySQL, а это капля в море и незначительно влияет на размер
буферного пула.

Большинство других параметров в примере вполне понятны, и какими они будут -
зависит только от нашего решения. Некоторые из них мы рассмотрим в дальнейшем

в данной главе. Как видите, мы включили журналирование, отключили кэш запросов

и т. д. В этой главе мы также обсудим некоторые настройки безопасности и готов­
ности к работе, которые могут быть очень полезными для повышения надежности
сервера, предотвращения появления плохих данных и других проблем. Здесь мы

не показали эти настройки.

Один из параметров, который мы сейчас объясним, - open_files_limit. Мы устано­
вили его максимально большим для типичной системы Linux. Открытие дескрипто-

Настройка использования памяти 401

ров файлов в современных операционных системах не требует высоких затрат. Если
этот параметр недостаточно велик, вы увидите ошибку 24 Тоо тапу open files (Слишком
много открытых файлов).

Последний раздел в файле конфигурации предназначен для клиентских программ,

таких как mysql и mysqladmin, и просто объясняет им, как подключиться к серверу.
Вы должны установить для клиентских программ значения, совпадающие с выбран­
ными для сервера.

Проверка переменных состояния сервера MySQL. Иногда для того, чтобы лучше
настроить параметры сервера, учитывающие фактическую рабочую нагрузку, в ка­
честве исходных данных можно использовать вывод команды SHOW GLOBAL STATUS.

Для достижения наилучших результатов обращайте внимание как на абсолютные
значения, так и на то, как значения меняются со временем, особенно в пиковые и не­
пиковые моменты. При этом стоит использовать снимки состояния. Кроме того, для

просмотра изменений в переменных состояния каждые 60 секунд можно применять
следующую команду:

$ mysqladmin extended-status -ri60

По мере объяснения различных настроек конфигурации мы будем часто ссылаться
на изменения переменных состояния во времени. Обычно мы ожидаем, что вы будете
изучать вывод команды, такой как приведена ранее. Другими полезными инстру­

ментами, которые могут обеспечить компактное отображение изменений счетчика
статусов, являются pt-mext и pt-mysql-summary пакета Percona Toolkit.

Теперь, закончив приготовления, проведем для вас экскурсию по некоторым частям

внутреннего устройства сервера, перемежая ее советами по настройке. Таким образом,

вы получите базу, которая понадобится для выбора подходящих значений параметров
конфигурации, когда мы позднее вернемся к образцу конфигурационного файла.

Настройка использования памяти
Правильное конфигурирование работы MySQL с памятью жизненно важно для
достижения хорошей производительности. Распределение памяти вам придется на­

страивать почти наверняка. Потребляемая память в MySQL делится на две группы:
подконтрольную и неподконтрольную вам. Вы не можете управлять тем, сколько

памяти MySQL использует для запуска сервера, разбора запросов и внутренних це­
лей, но тем, сколько ее расходуется на различные конкретные цели, управлять вполне

можно. Правильно распорядиться подконтрольной вам памятью не так уж сложно,

если понимать, что именно конфигурируется.

Как было показано ранее, настраивать использование памяти можно поэтапно.

1. Определить абсолютный верхний предел объема памяти, которую М ySQL может
использовать.

2. Определить, сколько памяти MySQL будет использовать на каждое соединение,
например для буферов сортировки и временных таблиц.

402 Глава 8 • Оптимизация параметров сервера

3. Определить, сколько памяти нужно операционной системе для нормальной ра­

боты. Включить сюда память, необходимую для других программ, работающих
на той же машине, например периодически выполняемых заданий.

4. Если это имеет смысл, отдать всю оставшуюся память под кэши MySQL, напри­
мер под буферный пул InnoDB.

Мы рассмотрим эти шаги в последующих разделах, а затем более подробно обсудим
требования к различным кэшам MySQL.

Сколько памяти может использовать MySQL
В любой конкретной системе существует верхний предел объема памяти, в принципе
доступной MySQL. За точку отсчета следует принять объем физически установ­
ленной памяти. Если у сервера нет памяти, то и MySQL ее не сможет использовать.

Примите во внимание также ограничения, характерные для операционной системы

и аппаратной архитектуры, например лимиты размера адресного пространства одного

процесса в 32-разрядной ОС. Поскольку MySQL работает как один процесс с не­
сколькими потоками, объем доступной ей памяти может быть серьезно ограничен.
Скажем, в 32-разрядных ядрах Linux любой процесс может адресовать 2,5-2, 7 Гбайт
памяти. Выход за пределы адресного пространства очень опасен и может привести

к аварийному останову MySQL. Сейчас это случается крайне редко, но было обы­
денностью в прежние годы.

Существует много зависящих от операционной системы параметров и странностей,

которые следует учитывать. К ним относятся не только лимиты на ресурсы, вы­

деляемые одному процессу, но и размер стека и другие настройки. Ограничения на

размер одного выделяемого блока памяти может налагать и системная библиотека
glibc. Например, невозможно присвоить параметру innodb_buffer _pool значение,
превышающее 2 Гбайт, если это максимальный размер блока, который может быть
выделен glibc за один подход.

Некоторые ограничения существуют даже для 64-разрядных серверов. Например,

на 64-разрядном сервере размеры многих буферов, в частности буфера ключей,
ограничены 4 Гбайт. Часть ограничений снята в MySQL 5.1. Максимальные зна­
чения каждой конфигурационной переменной документированы в руководстве по

MySQL.

Сколько памяти нужно соединению

MySQL нуждается в небольшом объеме памяти просто для того, чтобы поддержи­
вать соединение (поток) открытым. Кроме того, определенное количество памяти

необходимо, чтобы выполнить запрос. Вы должны выделить достаточно ресурсов
для выполнения запросов даже в периоды пиковой нагрузки. В противном случае

запросы будут сидеть на голодном пайке, вследствие чего станут выполняться о<rень
медленно или вообще будут завершаться с ошибкой.

Настройка использования памяти 403

Вообще полезно знать, сколько памяти MySQL потребляет в пиковые периоды, но
в некоторых ситуациях потребление памяти неожиданно и резко возрастает, что дела­
ет любые прогнозы ненадежными. Один из примеров - подготовленные операторы,

поскольку их может быть открыто сразу много. Другой пример - словарь данных
InnoDB (подробнее об этом рассказывается в дальнейшем).

Пытаясь спрогнозировать пиковое потребление памяти, не обязательно предполагать
наихудший сценарий. Например, если MySQL сконфигурирована из расчета не более
100 одновременных соединений, то теоретически возможно, что на всех 100 соедине­
ниях одновременно будут выполняться очень тяжелые запросы, но практически это­
го, скорее всего, не случится. Если вы установите параметр myisam_sort_buffer _size
равным 256М, то при худшем варианте развития событий потребуется по меньшей
мере 25 Гбайт памяти, но такой уровень потребления крайне маловероятен. Запросы,
которые используют множество больших временных таблиц или сложные хранимые
процедуры, являются наиболее вероятными причинами высокого потребления па­
мяти для каждого подключения.

Чем вести подсчеты для худшего случая, лучше понаблюдать за сервером в усло­
виях реальной нагрузки и посмотреть, сколько же памяти он потребляет. Для этого
взгляните на размер виртуальной памяти процесса. Во многих UNIХ-системах этот

показатель отображается в столбце VIRT таблицы, выдаваемой командой top, или
в столбце VSZ, если вы пользуетесь командой ps. В следующей главе мы подробнее
расскажем о том, как вести мониторинг потребления памяти.

Резервирование памяти

для операционной системы

Для работы операционной системы, как и для выполнения запросов, необходимо
отвести достаточно памяти. Лучшим свидетельством того, что в распоряжении ОС

достаточно памяти, является отсутствие выгрузки страниц в файл подкачки на диске

(см. следующую главу, где эта тема обсуждается более подробно).

Зарезервируйте для нужд операционной системы по меньшей мере 1-2 Гбайт или
даже больше для машин с большим объемом памяти. Добавьте небольшой запас для
страховки, а если периодически запускаются задачи, потребляющие необычно много
памяти (к примеру, резервное копирование), можете сделать этот запас побольше.
Не добавляйте память для кэшей операционной системы, поскольку они могут быть
очень велики. Обычно ОС использует в этих целях всю свободную память (далее мы

рассмотрим кэши отдельно от нужд операционной системы).

Выделение памяти для кэшей

Если сервер выделен исключительно для MySQL, то вся память, не отведенная для
нужд операционной системы или обработки запросов, может быть использована
в целях кэширования.

404 Глава 8 • Оптимизация параметров сервера

Для кэшей MySQL нужно больше памяти, чем для чего-либо другого. Кэши исполь­
зуются, чтобы избежать доступа к диску, который на несколько порядков медленнее,
чем обращение к памяти. Операционная система может кэшировать некоторые дан­
ные в интересах MySQL (особенно в случае MyISAM), но и самой МуSQL требуется
много памяти.

Далее перечислены наиболее важные кэши, которые следует у•штывать в большин­
стве случаев:

1:1 буферный пул InnoDB;

1:1 кэши операционной системы для файлов журналов lnnoDB и данных MyISAM;

1:1 кэши ключей MylSAM;

1:1 кэш запросов;

1:1 кэши, которые вы не можете настроить, например кэши операционной системы

двоичных журналов и файлы определения таблиц.

Существуют и другие кэши, но они, как правило, потребляют не так много памяти.
Кэш запросов мы подробно рассматривали в предыдущей главе, поэтому далее зай­
мемся кэшами, которые необходимы подсистемам хранения MyISAM и InnoDB для
нормальной работы.

Сервер гораздо проще настроить, если используется только одна подсистема хране­

ния. Если вы работаете исключительно с таблицами MyISAM, то InnoDB можно
вообще отключить, а если только с таблицами InnoDB, то отвести под MyISAM
минимум ресурсов (MySQL применяет таблицы типа MyISAM для внутренних
нужд). Однако в ситуации, когда используется сразу несколько подсистем хранения,

бывает очень трудно подобрать их правильное соотношение. Лучший подход, кото­
рый мы можем предложить, - высказать некую обоснованную гипотезу, а затем
посмотреть на работу сервера.

Буферный пул InnoDB
Если вы работаете преимущественно с таблицами InnoDB, то для буферного пула
InnoDB, вероятно, потребуется больше памяти, чем для чего-либо другого. В буфер­
ном пуле InnoDB кэшируются не только индексы, там хранятся также сами данные,
адаптивный хеш-индекс, буфер вставок, блокировки и другие внутренние структуры.

В InnoDB буферный пул используется также для реализации отложенных операций
записи и позволяет объединить несколько таких процедур, чтобы затем выполнить

их последовательно. Короче говоря, работа InnoDB очень сильно зависит от буфер­
ного пула, поэтому памяти в нем должно быть достаточно. Обеспечить это можно,
следуя приведенным ранее рекомендациям. Для мониторинга производительности

и использования памяти в буферном пуле можно проанализировать переменные,

выводимые командами SHOW и инструментами типа innotop.

Если у вас не так уж много данных и вы знаете, что их объем не будет быстро расти,
то не нужно выделять слишком много памяти в буферный пул. Не стоит делать его

Настройка использования памяти 405

намного больше, чем размер таблиц и индексов, которые будут в нем храниться.
Конечно, нет ничего плохого в перспективном планировании для быстро растущей
базы данных, но иногда мы видим огромные буферные пулы с крошечным объемом
данных. Это совсем не обязательно.

Большие буферные пулы вызывают некоторые проблемы, такие как длительное

время выключение и «прогрева». Если в буферном пуле есть много «грязных>.>
(модифицированных) страниц, InnoDB может потребоваться много времени для
останова, поскольку она записывает «грязные» страницы в файлы данных при вы­

ключении. Можно принудительно выполнить процедуру быстрого останова, но

тогда InnoDB потребуется больше времени на восстановление при повторном за­
пуске, так что уменьшить суммарное время останова и запуска не получится. Если

вы заранее знаете, что придется останавливать сервер, уменьшите значение пере­

менной innodb_max_dirty_pages_pct во время выполнения, дождитесь, когда поток
сброса очистит буферный пул, и начинайте останов. Следить за количеством «гряз­
ных» страниц можно с помощью серверной переменной состояния Innodb_buffer _
pool_pages_dirty или утилиты innotop, которая периодически выполняет коман­
ду SHOW INNODB STATUS.

Уменьшение значения переменной innodb_max_dirty_pages_pct еще не гарантирует,
что InnoDB будет хранить в буферном пуле меньше «грязных» страниц. Она лишь
управляет порогом, при котором InnoDB перестает лениться. По умолчанию InnoDB
сбрасывает «грязные» страницы на диск в отдельном фоновом потоке, который

ради эффективности группирует операции записи и выполняет их последователь­

но. Такое поведение называется ленивым, поскольку InnoDB откладывает сброс
«грязных» страниц из пула до того момента, когда понадобится место для других
данных. Но если процент «грязных>.> страниц превысит заданный порог, то InnoDB
начинает сбрасывать страницы на диск с максимально возможной скоростью, стре­

мясь уменьшить их количество. InnoDB также перейдет в режим яростного сброса,
когда в журналах транзакций останется недостаточно места, что является одной из

причин возможного повышения производительности больших журналов.

Когда у вас есть большой буферный пул, особенно в сочетании с медленными ди­

сками, серверу может потребоваться много времени (много часов или даже дней),
чтобы «прогреться>.> после перезагрузки. В таких случаях вы можете восполь­

зоваться предоставляемой Percona Server возможностью перезагрузки страниц
после перезапуска. Это может сократить время «прогрева>.> до нескольких минут.

В MySQL 5.6 эта возможность также будет реализована. Это особенно выгодно для
реплик, которые несут дополнительные затраты на «прогрев>.> из-за однопоточного

характера репликации.

Если у вас нет воэможности использовать способ быстрого «прогрева>.> от Percona
Server, можно сразу же после перезагрузки выполнить полнотабличное сканирова­
ние или сканирование индексов, чтобы загрузить индексы в буферный пул. Это гру­
бое решение, но, как правило, все же лучше, чем ничего. Для выполнения данной

задачи можно использовать параметр init_file. Вы можете поместить SQL-кoд

406 Глава 8 • Оптимизация параметров сервера

в файл, который запускается при запуске MySQL. Имя файла должно быть указано
в параметре ini t_ file, а файл может содержать несколько команд SQL, каждая из
которых находится в отдельной строке (комментарии не допускаются).

Кэш ключей MyISAM
Кэш ключей MySQL часто называют также буфером ключей. По умолчанию суще­
ствует только один такой буфер, но можно создать дополнительные. В отличие от
InnoDB и некоторых других подсистем хранения MyISAM самостоятельно кэши­
рует только индексы, но не данные (она позволяет операционной системе кэшировать

данные). Если вы используете преимущественно MyISAM, то следует выделить
много памяти под кэши ключей.

Наиболее важен параметр key_buffer _size. Память, не выделенная в нем, будет
отведена под кэши операционной системы, в которых обычно хранятся данные,

считанные из МУD-файлов MyISAM. В версии MySQL 5.0 для этого параметра
установлено ограничение 4 Гбайт вне зависимости от архитектуры. В MySQL 5.1
допустимы большие значения. Уточните этот показатель в документации к версии

вашего сервера.

Когда вы решаете, сколько памяти выделить кэшу ключей, может быть полезно знать,
сколько места на диске в настоящий момент используют индексы MyISAM. Не стоит
делать буферы ключей больше, чем данные, которые они будут кэшировать. Вы можете
запросить таблицы INFORMAТION_SCHEМA и просуммировать столбец INDEX_LENGTH,

чтобы узнать размер файлов, хранящих индексы:

SELECT SUM(INDEX_LENGTH) FROМ INFORМATION_SCHEМA.TABLES WHERE ENGINE='MYISAМ';

В системах на базе UNIX можно использовать следующую команду:

$ du -sch 'find /path/to/mysql/data/directory/ -name "*,MYI"'

Насколько значительными должны быть заданы кэши ключей? Не больше, чем об­
щий размер индекса, или от 25 до 50 % объема памяти, зарезервированного для кэш ей
операционной системы, в зависимости от того, какое значение меньше.

По умолчанию MylSAM кэширует все индексы в буфере ключей, подразумеваемом
по умолчанию, но в ней разрешается создавать дополнительные именованные буфе­
ры. Это дает возможность хранить в памяти более 4 Гбайт индексных ключей. Чтобы
создать буферы ключей key_buffer _1 и key_buffer _2 по 1 Гбайт каждый, добавьте
в конфигурационный файл такие стро'1ки:

key_buffer_l.key_buffer_size = lG
key_buffer_2.key_buffer_size = lG

Теперь имеется три буфера ключей: два созданы явно, а один - по умолчанию.

Команда САСНЕ INDEX позволяет установить соответствие между таблицами и кэша­
ми. Вот как можно указать, что MySQL должна использовать кэш key_buffer _1 для

индексов таблиц tl и t2:

mysql> САСНЕ INDEX tl, t2 IN key_buffer_lj

Настройка использования памяти 407

Теперь все блоки, прочитанные из индексов этих таблиц, MySQL будет помещать
в указанный буфер. Можно также заранее загрузить индексы в кэш командой LOAD
INDEX:

mysql> LOAD INDEX INTO САСНЕ tl, t2;

Все индексы, с которыми явно не сопоставлен буфер ключей, ассоциируются с буфе­

ром, заданным по умолчанию, при первом доступе к соответствующему . МУI-файлу.

Следить за производительностью и использованием буферов ключей можно с помо­

щью информации, которую выводят команды SHOW STATUS и SHOW VARIABLES. Процент
заполнения буфера вычисляется по следующей формуле:

100 - ((Key_Ыocks_unused * key_cache_Ыock_size) * 100/key_buffer_size)

Если сервер не использует весь свой буфер ключей, проработав в течение длитель­

ного времени, можно подумать об уменьшении буфера.

Что можно сказать о коэффициенте попадания в кэш? Как мы объяснили ранее, его

значение бесполезно. Например, разница между 99 и 99,9 % кажется совсем неболь­
шой, но в действительности это десятикратное увеличение. Коэффициент попаданий

зависит также от приложения: некоторые из них прекрасно работают при 95 %, тогда
как другие могут постоянно обращаться к диску даже при 99,9 %. Если размер кэша
выбран верно, то можно даже достичь уровня 99,99 %.

Эмпирически обычно полезнее другой показатель - количество непопаданий в кэш

в секунду. Предположим, что имеется один жесткий диск, способный выполнять

100 операций произвольного чтения в секунду. Пять непопаданий за этот промежу­
ток времени еще не сделают систему ввода/вывода узким местом, но при 80 возник­
нут проблемы. Данное значение вычисляется по формуле:

Key_reads/Uptime

Чтобы составить представление о текущей производительности, вычисляйте количе­

ство непопаданий несколько раз с интервалом 10-100 секунд. Следующая команда
снимает показания каждые 1 О секунд:

$ mysqladmin extended-status -r -i 10 1 grep Key_reads

Помните, что для файлов данных, которые зачастую больше индексов, MyISAM
пользуется кэшем операционной системы. Поэтому разумно оставлять для этого

кэша больше памяти, чем для кэшей ключей. Даже если у вас достаточно памяти для

кэширования всех индексов, а коэффициент непопадания в кэш очень низок, непо­

падания в кэш, когда MyISAM пытается читать из файлов данных (а не из файлов
индекса!), происходят на уровне операционной системы, невидимом для MySQL.
Таким образом, у вас может быть много непопаданий в кэш файлов данных неза­

висимо от коэффициента непопадания в кэш индексов.

И наконец, даже если у вас вообще нет таблиц типа Му ISAM, все равно следует
выделить с помощью параметра key_buffer _size хотя бы небольшой объем памяти,
скажем, 32 Мбайт. Иногда MySQL использует МуISАМ-таблицы для внутренних

408 Глава 8 • Оптимизация параметров сервера

целей. Например, так устроены временные таблицы, создаваемые при обработке за­

просов с фразой GROUP BV.

Размер блока ключей MyISAM. Размер блока ключей важен (особенно когда в ра­
бочей нагрузке превалируют операции записи) из-за способа взаимодействия между

MyISAM, кэшем ОС и файловой системой. Если размер блока ключей слишком мал,
то можно столкнуться с феноменом записи после чтения, то есть с такими операция­

ми записи, которые операционная система не может выполнить, не прочитав пред­

варительно какие-то данные с диска. Покажем, как может возникать этот феномен,

предполагая, что размер страницы операционной системы равен 4 Кбайт (типично
для архитектуры х86), а размер блока ключей равен 1 Кбайт.

1. MyISAM запрашивает блок ключей размером 1 Кбайт с диска.

2. Операционная система считывает страницу данных размером 4 Кбайт с диска,
кэширует ее, а затем передает MyISAM затребованный 1 Кбайт.

3. Операционная система отбрасывает закэшированные данные, замещая их какими-то

другими.

4. MyISAM модифицирует блок ключей размером 1 Кбайт и просит операционную
систему записать его обратно на диск.

5. Операционная система считывает ту же самую страницу размером 4 Кбайт
с диска в свой кэш, модифицирует в ней тот самый 1 Кбайт, который изменил
MylSAM, и записывает все 4 Кбайт обратно на диск.

Феномен записи после чтения возникает на шаге 5, когда MyISAM просит операци­
онную систему записать только часть страницы размером 4 Кбайт. Если бы размер
блока MyISAM был равен размеру страницы ОС, то чтения на шаге 5 можно было бы
избежать1 •

К сожалению, в MySQL 5.0 и более ранних версиях невозможно конфигурировать
размер блока ключей. Однако, начиная с MySQL 5.1, можно избежать записи после
чтения, сделав размер блока ключей MyISAM равным размеру страницы операци­
онной системы. Величиной блока ключей управляет переменная myisam_Ыock_size.

Можно также задать размер блока для каждого ключа в отдельности с помощью

параметра KEV_BLOCK_SIZE в командах CREATE TABLE и СRЕАТЕ INDEX. Поскольку все

ключи хранятся в одном и том же файле, то на самом деле нужно, чтобы для всех

ключей размер блока был не меньше размера страницы операционной системы.

Это позволяет избежать проблем с выравниванием, которые все равно могут приве­
сти к феномену записи после чтения (например, если для одного ключа используются

блоки размером 1 Кбайт, а для другого - 4 Кбайт, то границы четырехкилобайтного
блока могут не совпадать с границами страницы операционной системы).

Теоретически, если бы можно было гарантировать, что исходные 4 Кбайт данных все еще
находятся в кэще операционной системы, чтение было бы не нужно. Но вы не можете контро­

лировать, какие блоки ОС оставляет в кэше. Получить сведения о содержимом кэша позво­

ляет инструмент fincore, который можно скачать со страницы http://net.doit.wisc.edu/
-plonka/fincore/

Насrройка использования памяти 409

Кэш потоков

Кэш потоков содержит потоки, которые в данный момент не ассоциированы ни с од­

ним соединением, но готовы обслуживать новые соединения. Если в кэше есть поток
и поступает запрос на создание нового соединения, то MySQL забирает поток из кэша
и передает его создаваемому соединению. Когда соединение закрывается, MySQL
возвращает поток в кэш, если там есть место. Если места нет, поток уничтожается.

Пока в кэше есть свободные потоки, MySQL отвечает на запросы об открытии со­
единения очень быстро, поскольку ей не нужно создавать новый поток для обслу­
живания соединения.

Переменная thread_cache_size определяет максимальное количество потоков в этом
кэше. Настраивать ее нужно лишь в случае, когда сервер получает очень много

запросов на открытие соединений. Чтобы проверить, достаточен ли размер кэша,
понаблюдайте за переменной состояния Threads_created status. Мы обычно стара­
емся делать кэш потоков настолько большим, чтобы в каждую секунду создавалось
не более десяти новых потоков, но часто без труда удается снизить этот показатель,
так что в секунду будет создаваться менее одного потока.

Правильный подход состоит в том, чтобы, понаблюдав за переменной Threads_
connected, попытаться установить значение thread_cache_size достаточно большим
для поглощения типичных флуктуаций рабочей нагрузки. Например, если Threads_
connected обычно изменяется от 100 до 120, то можно сделать размер кэша равным 20.
Если она изменяется от 500 до 700, то кэша размером 200 будет достаточно. Мы рас­
суждаем следующим образом: при 700 соединениях в кэше, вероятно, нет потоков,
при 500 соединениях в кэше имеется 200 потоков, готовых к использованию, как
только нагрузка вновь возрастет до 700.

В большинстве случаев нет необходимости делать кэш потоков очень большим,
однако и уменьшение его сверх меры не дает заметной экономии памяти. Поток, на­

ходясь в кэше или будучи в состоянии сна, обычно занимает около 256 Кбайт. Это
совсем немного по сравнению с памятью, потребляемой потоком во время обработки
запроса. В общем случае старайтесь поддерживать размер кэша на уровне, при ко­
тором переменная Threads_created не увеличивается слишком часто. Но если при
таком условии объем кэш а становится слишком велик (порядка нескольких тысяч),
то лучше сделать его поменьше, так как некоторые операционные системы плохо

справляются с чрезмерно большим количеством потоков, даже если большинство
из них спит.

Кэш таблиц

Концептуально кэш таблиц похож на кэш потоков, но хранятся в нем объекты,

представляющие таблицы. Каждый такой объект содержит разобранный . frm-файл,
описывающий таблицу, и некоторые другие данные. Что именно содержится в объ­
екте, зависит от подсистемы хранения. Например, в MyISAM там находятся данные
таблиц и/или дескрипторы файла индекса. Для объединенной таблицы в кэше, как

410 Глава 8 • Оптимизация параметров сервера

правило, хранятся несколько файловых дескрипторов, поскольку она может быть

составлена из многих таблиц.

Кэш таблиц облегчает повторное использование ресурсов. Например, когда запрос

обращается к таблице типа MyISAM, MySQL может вернуть файловый дескриптор
из объекта в кэше. Это действительно позволяет избежать затрат на открытие фай­

лового дескриптора, однако эти затраты не столь велики, как вы думаете. Открытие

и закрытие дескрипторов файлов происходит очень быстро в локальном хранили­

ще - сервер легко может проделать это миллион раз в секунду (хотя для сетевого

хранилища это не так). Кроме того, кэш таблиц позволяет избежать ряда операций

ввода/вывода, необходимых для того, чтобы пометить МуISАМ-таблицу признаком

in use (используется) в заголовках индекса1 •

Архитектура кэша таблиц - это одна из тех областей, в которых разделение между

сервером и подсистемами хранения неочевидно, так уж сложилось исторически.

Кэш таблиц не так уж важен для InnoDB, которая полагается на него в меньшей
степени (скажем, файловых дескрипторов там нет, для этой цели у InnoDB есть
собственный кэш таблиц). Однако даже InnoDB выигрывает от кэширования разо­
бранных . frm-файлов.

В версии MySQL 5.1 кэш таблиц разделен на две части: кэш открытых таблиц и кэш
определений таблиц (для их конфигурирования служат переменные taЫe_open_

cache и taЫe_definition_cache). Таким образом, определения таблиц (разобранные
. frm-файлы) отделены от других ресурсов, таких как файловые дескрипторы.
Открытые таблицы по-прежнему локальны для соединения, но определения таблиц

глобальны и могут совместно использоваться всеми соединениями. В общем случае

переменной taЫe_definition_cache можно присвоить значение, достаточно большое

для кэширования определений всех таблиц. Если количество таблиц не исчисляется

десятками тысяч, то это, наверное, проще всего.

Если переменная состояния Opened_taЫes велика или постоянно растет, то пере­

менную taЫe_cache (или taЫe_open_cache в версии MySQL 5.1) следует увеличить.
Однако обратите внимание на то, что этот счетчик увеличивается, когда вы создаете

и удаляете временные таблицы, поэтому, если вы часто это делаете, счетчик никогда

не перестанет увеличиваться.

Единственный недостаток избыточно большого кэша таблиц заключается в том, что

при наличии очень большого количества МуISАМ-таблиц может замедлиться оста­
нов сервера, поскольку необходимо сбросить на диск блоки ключей и пометить все

Концепция открытой таблицы может сбить с толку. MySQL считает, что таблица от­
крывается каждый раз, когда к ней производятся обращения из одновременно вы­

полняемых запросов и даже из одного запроса, если таблица встречается в нем более

одного раза, например в случае подзапроса или рефлексивного соединения. В индексных

файлах MyISAM имеется счетчик, который MyISAM увеличивает при каждом открытии
и уменьшает при закрытии. Это позволяет подсистеме хранения определить, что таблица

не была закрыта корректно: это так, если при первом открытии таблицы счетчик отличен

ОТ нуля.

Настройка использования памяти 411

таблицы как неоткрытые. По той же самой причине команда FLUSH TABLES WПН READ

LOCK может выполняться довольно долго.

Строго говоря, алгоритмы, проверяющие кэш таблиц, не очень эффективны (по­
дробнее об этом позже).

Если вы получаете сообщение об ошибке, в котором говорится, что MySQL не может
открыть новые файлы (понять, что означает код ошибки, поможет утилита perror),
то, возможно, следует увеличить количество файлов, которые MySQL может дер­
жать открытыми. Для этого предназначена серверная переменная open_files_limit
в файле my. cnf.

Кэши потоков и таблиц потребляют не так уж много памяти, а польза от них велика,
поскольку они экономят ресурсы. Хотя создание потока и открытие новой табли­
цы - не очень затратные операции по сравнению с тем, что еще приходится делать

MySQL, накладные затраты могут суммироваться. Таким образом, кэширование
потоков и таблиц способно повысить эффективность.

Словарь данных InnoDB
В подсистеме хранения InnoDB имеется отдельный кэш, который называется кэшем
определений таблиц или словарем данных, в текущих версиях MySQL он не допускает
конфигурирования. Открывая таблицу, InnoDB помещает соответствующий ей объ­
ект в словарь данных. На одну таблицу может отводиться 4 Кбайт или больше (хотя
в версии MySQI~ 5.1 требуется гораздо меньше памяти). Таблицы не удаляются из
словаря данных при закрытии.

В результате со временем сервер может столкнуться с утечкой памяти из-за посто­

янно увеличивающегося количества записей в кэше словаря. Это не совсем утечка

памяти - в данном случае не реализовано никакого истечения кэша. Обычно это
становится проблемой, только когда у вас множество (тысячи или десятки тысяч)
больших таблиц. Если это стало проблемой, можете использовать Percona Server,
который имеет возможность ограничить размер словаря данных, удалив неисполь­

зуемые таблицы. Аналогичная функция есть в еще не выпущенной MySQL 5.6.

Еще одной проблемой, связанной с производительностью, является вычисление ста­
тистики для таблиц во время их первого открытия, поскольку требует выполнения

довольно большого числа операций ввода/вывода. В отличие от MyISAM InnoDB
не хранит статистику в таблицах постоянно, а высчитывает заново при каждом
запуске и после этого, по истечении различных интервалов или когда происходят

особые события (изменения в содержимом таблицы, запросы к INFORМAТION_SCHEМA

и т. д.). Если в вашей базе много таблиц, то на полную загрузку и «прогрев\> сервера
может уйти несколько часов, в течение которых он только и будет делать, что ждать
завершения последовательных операций ввода/вывода. Можете включить параметр

innodb_use_sys_stats_taЫe в Регсоnа Server (аналогичный, под названием innodb_
analyze_is_persistent, есть в MySQL 5.6), чтобы постоянно сохранять статистику
на диске и решить эту проблему.

412 Глава 8 • Оптимизация параметров сервера

Даже после запуска операции статистики InnoDB могут влиять на сервер и отдель­
ные запросы. Чтобы избежать трудоемких обновлений статистики таблиц, можно

отключить параметр innodb_stats_on_metadata. Это особенно важно, когда такие
инструменты, как IDE, запрашивают таблицы INFORМAТION_SCHEМA.

При использовании параметра innodb_file_per _tаЫе (будет описан в дальнейшем)
действует отдельное ограничение на количество одновременно открытых . iЬd­
файлов. Оно контролируется подсистемой хранения InnoDB, а не сервером и задает­
ся параметром innodb_open_files. InnoDB открывает файл не так, как MylSAM. Если
MyISAM хранит файловые дескрипторы открытых таблиц в кэше, то в InnoDB нет
прямой связи между открытыми таблицами и открытыми файлами. Эта подсистема

использует один глобальный файловый дескриптор для каждого . iЬd-файла. Если
вы можете себе это позволить, то лучше присвоить параметру innodb_open_files
настолько большое значение, чтобы сервер мог держать все . iЬd-файлы открытыми
одновременно.

Настройка ввода/вывода в MySQL
Ряд конфигурационных параметров управляет тем, как MySQL синхронизирует
данные в памяти и на диске и выполняет восстановление. Эти параметры могут

существенно повлиять на производительность, так как относятся к весьма затрат­

ным операциям ввода/вывода. Кроме того, они определяют компромисс между

производительностью и защитой данных. В общем случае стремление записывать

данные на диск немедленно и постоянно очень затратно. Если вы готовы пойти на

риск, обусловленный тем, что запись на диск еще не обеспечивает постоянного

хранения, то можно будет повысить степень конкурентности и/или сократить

время ожидания ввода/вывода. Но определять допустимый уровень риска вам

придется самостоятельно.

InnoDB
Подсистема хранения InnoDB позволяет управлять не только способом восстанов­
ления, но и тем, как открываются файлы и сбрасываются на диск данные кэшей,

что сильно влияет на восстановление и общую производительность. Процесс вос­

становления в InnoDB полностью автоматический и обязательно выполняется
в момент запуска lnnoDB, хотя у вас остается возможность повлиять на то, какие
действия при этом предпринимаются. Даже если оставить в стороне вопрос о вос­

становлении и считать, что никаких аварий не было и вообще все нормально, у вас

в любом случае остается множество возможностей для конфигурирования InnoDB.
В этой подсистеме имеется сложная цепочка буферов и файлов, спроектированная

так, чтобы добиться высокой производительности и гарантировать свойства ACID.
При этом каждое звено этой цепочки конфигурируемо. На рис. 8.1 показаны все
файлы и буферы.

Настройка ввода/вывода в MySQL 413

Буферный пул

Поток
записи

ФайЛ1>1
данны

Поток
чтения

Заnись в журнал транзакций

Потоки ввода-вывода lnnoDB

Кэш операционной системы

Файловая система

Поток записи
в журнал

СТВО

Циклическая
последовательная запись

Данные, индексы,
журналы отмены

ит.д.

Журнал транзакций

Рис. 8.1. Буферы и файлы подсистемы хранения InnoDB

Из наиболее важных настроек, которые имеет смысл изменять, отметим размер

журнала InnoDB, способ сброса журнального буфера на диск и то, как выполняется
ввод/вывод.

Журнал транзакций InnoDB

В lnnoDB журнал служит для того, чтобы уменьшить затраты на коммит транз­
акций. Вместо сброса пула буферов на диск после коммита каждой транзакции

InnoDB записывает транзакции в журнал. Изменения данных и индексов, произ­
веденные внутри транзакции, часто относятся к различным местам в табличном
пространстве, поэтому для их сброса на диск требуются произвольные операции

ввода/вывода. InnoDB предполагает использование обычных дисков, где произ­
вольный ввод/вывод намного затратнее, чем последовательный , из-за времени,

которое требуется для поиска нужного местоположения на диске и ожидания его

поворота до нужного участка.

В InnoDB журнал используется для превращения произвольного ввода/вывода в по­
следовательный. После того как запись в журнал произведена, транзакцию можно

414 Глава 8 • Оптимизация параметров сервера

считать долговечной, даже если изменения еще не записаны в файлы данных. Если

случится какая-то авария (например, пропадет питание), то InnoDB сможет воспро­
извести журнал и восстановить закоммиченные транзакции.

Разумеется, InnoDB в конечном итоге должна записать изменения в файлы данных,
поскольку размер журнала фиксирован. Запись в журнал выполняется циклически:

по достижении конца журнала происходит переход в начало. InnoDB не может за­
тереть запись журнала, если соответствующие ей изменения еще не были внесены
в файлы данных, поскольку при этом была бы уничтожена единственная долговечная
запись о транзакции, для которой выполнен коммит.

InnoDB использует фоновый поток для упорядоченного сброса изменений в файлы
данных. Этот поток умеет группировать операции записи так, чтобы они выполня­
лись последовательно, с целью повышения своей эффективности. Таким образом,
журнал транзакций преобразует произвольный ввод/вывод в преимущественно по­
следовательный с записью в файлы журнала и файлы данных. Выполнение сброса

в фоновом режиме ускоряет обработку запроса и помогает сгладить влияние вспле­
сков нагрузки на подсистему ввода/вывода.

Полный размер файлов журнала, задаваемый параметрами innodb_log_file_size
и innodb_log_files_in_group, очень важен с точки зрения производительности за­
писи. Полный размер равен сумме размеров всех файлов. По умолчанию создаются

два файла по 5 Мбайт, то есть полный объем равен 1 О Мбайт. Для высокой нагрузки
этого явно недостаточно. Для файлов журналов требуются сотни мегабайт или даже
гигабайт.

В InnoDB несколько файлов образуют единый циклический журнал. Обычно не тре­
буется изменять принимаемое по умолчанию количество журналов, настраивается
лишь размер каждого файла. Чтобы изменить размер файла журнала, штатно остано­

вите MySQL, переместите старые журналы в другое место, измените конфигурацию
и перезапустите сервер. Очень важно остановить MySQL корректно, иначе в старых
журналах останутся записи, которые нужно будет применить к файлам данных!
Перед повторным запуском сервера загляните в журнал ошибок MySQL. После
успешного перезапуска старые журналы можно будет удалить.

Размер файла журнала и буфер журнала. Чтобы определить идеальный размер
журналов, следует сопоставить накладные затраты на типичное изменение данных

и время, необходимое для восстановления после аварийного останова. Если журнал

слишком мал, то InnoDB придется чаще записывать контрольные точки, то есть
количество записей в журнал увеличится. В предельном случае запрос на запись

может быть приостановлен до завершения процесса выгрузки в файлы данных из-за
того, что в журнале не осталось места. В то же время если журнал слишком велик, то

InnoDB придется выполнять много работы во время восстановления после некор­
ректного завершения работы, поэтому время данной процедуры увеличится. Однако
в новых версиях MySQl этот процесс реализован намного эффективнее.

Время восстановления зависит также от объема данных и типа нагрузки. Предполо­
жим, что имеется 1 Тбайт данных и пул буферов размером 16 Гбайт, а полный размер

Настройка ввода/вывода в MySQL 415

журнала составляет 128 Мбайт. Если количество «грязных~ страниц (данные в кото­
рых модифицированы, но еще не сброшены на диск) в буферном пуле велико и они
равномерно распределены по всему терабайту, то восстановление после сбоя может
занять много времени. InnoDB должна будет просканировать весь журнал, проана­
лизировать файлы данных и применить к ним необходимые изменения. Придется

выполнить много операций чтения и записи! Но если изменения локализованы -
скажем, часто обновляются лишь несколько сотен мегабайт, - то восстановление
может пройти быстро, даже если файлы данных и журнала очень велики. Время,
затраченное на этот процесс, зависит также от объема типичной модификации, ко­
торый определяется средней длиной строки данных. Чем короче строки, тем больше
модификаций умещается в журнал, поэтому при восстановлении InnoDB придется
воспроизводить больше модификаций 1 •

При модификации любых данных InnoDB помещает запись об изменении в буфер
журнала, который хранится в памяти. InnoDB сбрасывает его в файлы журналов
на диске в следующих случаях: когда буфер заполняется, когда происходит коммит
транзакции или один раз в секунду - в зависимости от того, что произойдет рань­

ше. По умолчанию размер буфера равен 1 Мбайт, а его увеличение может сократить
количество операций ввода/вывода в случае больших транзакций. Размером буфера
журнала управляет переменная innodb_log_buffer _size.

Обычно нет необходимости делать буфер очень большим. Рекомендуемый размер
варьируется от 1 до 8 Мбайт, и этого более чем достаточно, если только вы не встав­
ляете много записей с гигантскими BLOB. Записи в журнале очень компактны по
сравнению с обычными данными InnoDB. Поскольку они не используют страницы
как единицу хранения, то не нужно расходовать место на запись целых страниц.

Кроме того, InnoDB старается сделать записи в журнале как можно более короткими.
Иногда в них хранятся только номер функции на языке С и ее параметры.

Есть одно условие, при котором большой размер буфера может быть полезен: когда
он помогает уменьшить конкуренцию при распределении пространства в буфере.
Когда мы настраиваем серверы с большим объемом памяти, то иногда выделяем
от 32 до 128 Мбайт буфера журнала просто потому, что использование такого от­
носительно небольшого объема дополнительной памяти не наносит вреда и может
помочь избежать давления на узкое место. В данном случае узким местом является
конкуренция за мьютекс буфера журнала.

Следить за производительностью ввода/вывода в журнал и за его буфером по­
зволяют раздел LOG в выводе, формируемом командой SHOW INNODB STATUS, а также
переменная состояния Innodb_os_log_wri tten. Хорошее эмпирическое правило
таково: наблюдайте за этой переменной с интервалом 10-100 секунд и обращайте
внимание на пиковые значения. На основании этой информации можно сделать

вывод о том, насколько удачно выбран размер буфера журнала. Например, если

Для любопытных заметим, что параметр innodb_recovery _stats Percona Server может
помочь вам понять, какова рабочая наrрузка вашего сервера с точки зрения аварийного

восстановления.

416 Глава В • Оптимизация параметров сервера

в пиковые периоды в журнал записывается 100 Кбайт в секунду, то буфера раз­
мером 1 Мбайт вполне достаточно.

Этот же показатель можно использовать для выбора подходящего размера файлов
журнала. Если в пиковый период пишется 100 Кбайт в секунду, то журнала размером
256 Мбайт хватит для хранения записей по крайней мере за 2560 секунд, а этого,
скорее всего, достаточно. Согласно эмпирическому правилу стоит делать общий раз­

мер файла журнала таким, чтобы можно было там сохранять информацию о часовой
активности сервера.

Как InnoDB сбрасьmает буфер журнала. Когда InnoDB сбрасывает буфер в файлы
журнала на диске, она блокирует доступ к буферу с помощью мьютекса, переписыва­
ет данные на диск вплоть до нужной точки, а затем перемещает оставшиеся записи

в начало буфера. Может случиться так, что к моменту освобождения мьютекса ско­
пится несколько транзакций, готовых к записи в журнал. В InnoDB имеется меха­
низм группового коммита, позволяющий записать их все в журнал одной операцией

ввода/вывода, но он не работает в версии MySQL 5.0 при включенном двоичном
журнале. В предыдущей главе мы рассказывали о групповом коммите.

Буфер журнала должен быть сброшен на устройство постоянного хранения для обе­
спечения долговечности зафиксированных транзакций. Если производительность

для вас важнее долговечности, то можно изменить параметр innodb_flush_log_at_
trx_commit, который контролирует, куда и как часто сбрасывается буфер журнала.
Допустимы следующие значения:

О 0 - писать буфер в файл журнала и сбрасывать журнал на устройство постоян­

ного хранения раз в секунду, но ничего не делать в момент коммита транзакции;

О 1 - писать буфер в файл журнала и сбрасывать его на устройство постоянного
хранения при каждом коммите транзакции. Этот режим (самый безопасный)

принимается по умолчанию, он гарантирует, что ни одна зафиксированная транз­

акция не будет потеряна, если только диск или операционная система не делают
операцию сброса фиктивной;

О 2 - писать буфер в файл журнала при каждом коммите, но не сбрасывать его на

устройство постоянного хранения. InnoDB выполняет сброс один раз в секунду.
Самое важное отличие от режима 0 (из-за которого режим 2 предпочтительнее)
состоит в том, что в режиме 2 транзакции не теряются в случае аварийного за­

вершения процесса MySQL. Но если падает весь сервер или пропадает питание,
потерять транзакции все-таки возможно.

Важно понимать различие между записью буфера в файл журнала и сбросом журнала
на устройство постоянного хранения. В большинстве операционных систем запись
буфера в журнал сводится к простому копированию данных из буфера в памяти
InnoDB в кэш операционной системы, который также находится в памяти. Ника­
кой записи на реальное устройство при этом не происходит. Поэтому режимы 0 и 2

обычно приводят к утрате не более чем одной секунды данных в случае сбоя или от­
ключения питания, поскольку на протяжении этого времени информация, возможно,

Настройка ввода/вывода в MySQL 417

существует только в кэше операционной системы. Мы говорим <1обычно1>, потому

что InnoDB старается сбрасывать файл журнала на диск примерно раз в секунду при
любых обстоятельствах, но в некоторых ситуациях можно потерять транзакции

более чем за одну секунду, например, когда поток сброса стопорится.

Сброс же журнала на устройство постоянного хранения означает, что InnoDB
просит операционную систему действительно сбросить данные из своего кэша

и убедиться в том, что они переписаны на диск. Это вызов, блокирующий операции

ввода/вывода и не возвращающий управление, пока данные не окажутся полностью

выгруженными. Поскольку запись на диск - медленная операция, то в случае, когда

параметр innodb_flush_log_at_trx_commit равен 1, количество транзакций, которые
InnoDB способна закоммитить в секунду, может резко уменьшиться. Современные
высокоскоростные накопители 1 могут записать лишь пару сотен реальных дисковых

транзакций в секунду из-за ограниченных скорости вращения диска и времени по­

зиционирования головки.

Иногда контроллер жесткого диска или операционная система подтверждают сброс,

но на деле лишь копируют данные в еще один кэш, например в собственный кэш

жесткого диска. Этот прием более быстрый, но очень опасный, поскольку данные

могут быть потеряны, если внезапно пропадет питание. Такая ситуация даже хуже,

чем установка параметра innodb_flush_log_at_trx_commit в любое значение, кроме 1,
поскольку может привести к порче данных, а не просто к потере транзакций.

Присваивание параметру innodb_flush_log_at_trx_commit значения, отличного
от 1, может привести к потере транзакций. Однако если долговечность (буква D
(durabllity) в аббревиатуре ACID) для вас не очень важна, то, возможно, вы сочтете
полезными и другие значения. Быть может, вас привлекают такие возможности

InnoDB, как кластерные индексы, устойчивость к порче данных и блокировка на
уровне строк. Не так уж редки случаи, когда InnoDB используют вместо MyISAM
исключительно из соображений производительности.

Наилучшая конфигурация для высокопроизводительных транзакционных приложе­

ний получается тогда, когда innodb_flush_log_at_trx_commit оставляют равным 1,
а файлы журналов помещают в том RАID-массива с резервным электропитанием

кэша на запись. В действительности любой сервер промышленной базы данных, ко­

торый, как ожидается, будет обрабатывать большие объемы данных, должен иметь

такое оборудование.

В Percona Server возможности функции innodb_flush_log_at_trx_commit расширены.
Она сделана сеансовой переменной, а не глобальной для всего сервера. Это позволяет

приложениям с различными производительностью и долговечностью использовать

одну и ту же базу данных и помогает избежать одного решения для всех задач, пред­

лагаемого стандартной MySQL.

Мы говорим о шпиндельных накопителях с вращающимися пластинами, а не о твердо­

тельных дисках, у которых характеристики производительности совершенно иные.

418 Глава 8 • Оптимизация параметров сервера

Как InnoDB открывает и сбрасывает
файлы журнала и данных

Параметр innodb_flush_method позволяет указать, как InnoDB взаимодействует
с файловой системой. Несмотря на свое название, он влияет на чтение, а не на за­

пись данных. Значения, которые он может принимать в системах Windows и прочих,
взаимно исключают друг друга: async_unbuffered, unbuffered и normal применимы
только к Windows, другие значения в Windows не допускаются. По умолчанию на
платформе Windows принимается значение unbuffered, а на всех остальных платфор­
мах - fdatasync (если команда SHOW GLOBAL VARIABLES показывает пустое значение
этой переменной, значит, для нее действует значение по умолчанию).

При изменении режима ввода/вывода в IппоDВ может существенно измениться

производительность в целом, поэтому, прежде чем вносить изменения,

убедитесь, что вы понимаете, что делаете!

Этот параметр может слегка сбить с толку, поскольку он влияет как на файлы
журнала, так и на файлы данных, а иногда выполняет разные операции для разных

типов файлов. Было бы неплохо иметь один параметр конфигурации для журна­
лов, а другой - для файлов данных, но они объединены. Приведем возможные

значения.

о fdatasync. Значение по умолчанию во всех системах, кроме Windows. lnnoDB
вызывает fsync () для сброса как файлов данных, так и журнала.

Обычно InnoDB вызывает fsync(), а не fdatasync(), несмотря на то что название
вроде бы свидетельствует о противоположном. Функция fdatasync() аналогична
fsync(), но сбрасывает лишь данные файла, а не его метаданные (время последней
модификации и т. д.). Поэтому fsync () выполняет больше операций ввода/вывода.
Однако разработчики InnoDB, будучи очень осторожными, обратили внимание на
то, что в некоторых случаях fdatasync () приводит к повреждению данных. Код
InnoDB определяет, какие методы можно использовать безопасно, одни пара­
метры устанавливаются на этапе компиляции, другие - на этапе выполнения.

InnoDB применяет самый быстрый из безопасных методов.

Недостаток fsync () заключается в том, что операционная система буферизует по
крайней мере некоторые данные в собственном кэше. Теоретически это можно
считать расточительной двойной буферизацией, поскольку InnoDB управляет
своими буферами более разумно, чем операционная система. Но конечный эф­
фект очень сильно эависит от операционной и файловой систем. Двойная буфе­

ризация - это не обязательно плохо, если позволяет файловой системе лучше
планировать и группировать операции ввода/вывода. Некоторые файловые и опе­

рационные системы умеют накапливать процедуры записи и выполнять их одним

пакетом, переупорядочивать для повышения эффективности и осуществлять

вывод на несколько устройств параллельно. Кроме того, они иногда реализуют

Настройка ввода/вывода в MySQL 419

упреждающее чтение, например просят диск заранее прочитать следующий по по­

рядку блок, если уже поступали запросы на чтение нескольких последовательных

блоков.

Иногда такие оптимизации помогают, иногда - нет. Если вам интересно, как ра­

ботает ваша версия fsync(), можете прочитать страницу руководства fsync(2).

Параметр innodb_file_per _tаЫе приводит к вызову fsync() для каждого файла

в отдельности. Поэтому записи в несколько таблиц невозможно объединить в одну
операцию ввода/вывода. Таким образом, InnoDB может вынужденно увеличивать
общее количество операций fsync().

о O_DIRECT. InnoDB в зависимости от системы устанавливает флаг O_DIRECT или

вызывает функцию directio() для файлов данных. Этот режим не распростра­

няется на файлы журналов и доступен не во всех UNIХ-системах. Но по крайней

мере GNU /Linux, FreeBSD и Solaris (начиная с поздних выпусков версии 5.0) его
поддерживают. В отличие от флага O_DSYNC он относится к операциям и чтения,

и записи.

В этом режиме для сброса файлов на диск также используется функция fsync(),

но операционной системе дается указание не кэшировать данные и не прибегать

к опережающему чтению. Тем самым кэш операционной системы полностью от­

ключается и все операции чтения и записи направляются напрямую устройству

хранения во избежание двойной буферизации.

В большинстве систем это реализуется путем обращения к системному вызову

fcntl() для установки флага O_DIRECT в дескрипторе файла, так что с деталями

вы можете ознакомиться на странице руководства fcnt\(2). В ОС Solaris данный
режим подразумевает вызов функции directio().

Если упреждающее чтение осуществляется на уровне RАID-контроллера, то

отменить его с помощью этого значения параметра не удастся. Он отключает

упреждающее чтение только на уровне операционной или файловой системы.

Как правило, в режиме O_DIRECT не следует отключать кэш записи RАID­

контроллера, поскольку в типичной ситуации только это и позволяет поддержи­

вать приемлемую производительность. Задание флага O_DIRECT в случае, когда

между InnoDB и физическим устройством нет никакого буфера, например при
отключенном кэше записи в RАID-контроллере, может привести к серьезному

падению производительности. В настоящее время эта проблема менее остра из-за

нескольких потоков записи (и встроенного асинхронного ввода/вывода, добав­

ленного в MySQL 5.5).

В этом режиме может заметно возрасти время -«прогрева~ сервера, особенно если

кэш операционной системы очень велик. Кроме того, при небольшом буферном
пуле (например, если размер по умолчанию не изменялся) сервер может работать

гораздо медленнее, чем при буферизованном вводе/выводе. Это связано с тем, что

операционная система не придет на выручку, сохраняя часть данных в собствен­
ном кэше. Если нужные данные отсутствуют в буферном пуле, то IвnoDB будет

вынуждена читать их прямо с диска.

420 Глава 8 • Оптимизация параметров сервера

Этот режим не влечет дополнительных накладных затрат при использовании

совместно с параметром innodb_file_per _tаЫе. Однако может быть верным
обратное: если вы не используете innodb_file_ per _tаЫе, то можете пострадать
от некоторой сериализации ввода/вывода при использовании O_DIRECT. Это про­
исходит из-за того, что в некоторых файловых системах, включая все файловые

Linuх-системы ext, есть по одному мьютексу на каждый индексированный де­
скриптор. Когда в таких файловых системах используется O_DIRECТ, необходимо
вклю•шть innodb_file_per _tаЫе. R следующей главе мы подробно рассмотрим
файловые системы.

Q ALL_O_DIRECT. Этот параметр доступен в Percona Server и MariaDB. Он позволяет
серверу открывать файлы журнала, а не только файлы данных. Это происходит

так же, как открытие файлов данных стандартной MySQL.

Q O_DSYNC. В данном режиме при обращении к системному вызову open () для фай­
лов журнала устанавливается флаг O_SYNC. При этом все операции записи стано­
вятся синхронными. Иными словами, функция записи не возвращает управление,

пока данные не будут перенесены на диск. Указанный режим не распространяется
на файлы данных.

Разница между флагами O_SYNC и O_DIRECT заключается в том, что O_SYNC не отклю­
чает кэширование на уровне операционной системы. Поэтому он не устраняет двой­

ную буферизацию и не приводит к записи прямо на диск. Если задан флаг O_SYNC,
то операция записи сначала модифицирует данные в кэше, а потом их сохраняет.

Хотя синхронная запись с помощью O_SYNC выглядит очень похоже на то, •по
делает функция fsync(), реализация может существенно отличаться как на
уровне операционной системы, так и на аппаратном уровне. При использовании

флага O_SYNC операционная система может передать флаг «применять синхрон­
ный ввод/вывод~. на нижележащий аппаратный уровень, потребовав тем самым,
чтобы устройство не применяло кэширование. В то же время fsync() говорит
операционной системе, что нужно сбросить модифицированные буферы на

устройство, а затем устройству посылаются команды сбросить собственные кэши
(в тех случаях, когда это имеет смысл), чтобы данные гарантированно оказались

записанными на физический носитель. Еще одно различие состоит в том, что

при наличии флага O_SYNC каждый вызов wri te () или pwri te () синхронизирует
данные и до окончания синхронизации не возвращает управление, блокируя тем
самым вызывающий процесс. Напротив, запись без флага O_SYNC с последующим
вызовом fsync() позволяет накапливать операции записи в кэше (при этом каж­
дая операция завершается быстро), а потом сбрасывать их на диск пакетом.

Опять-таки, вопреки названию, этот параметр приводит к установке флага O_SYNC,
а не O_DSYNC, поскольку разработчики InnoDB обнаружили ошибки в реализа­
ции последнего. Различия во флагах O_SYNC и O_DSYNC аналогичны различиям
в функциях fsync() и fdatasync(): O_SYNC синхронизирует данные и метаданные,
а O_DSYNC - только данные.

Q async_unbuffered. Этот режим подразумевается по умолчанию в Windows. В нем
InnoDB для большинства операций записи использует небуферизованный ввод/

Настройка ввода/вывода в MySQL 421

вывод с одним исключением: если параметр innodb_flush_log_at_trx_commit
равен 2, то при записи в файлы журнала ввод/вывод буферизован.

В этом режиме InnoDB использует естественный механизм асинхронного ввода/
вывода (с перекрытием) для чтения и записи при работе в ОС Windows 2000, ХР
и более поздних. В предыдущих редакциях Windows InnoDB применяет соб­
ственный механизм асинхронного ввода/вывода, который реализован с помощью

потоков.

С1 unbuffered. Применяется только в Windows. Аналогичен режиму async_unbuffered,
но естественный механизм асинхронного ввода/вывода не используется.

С1 normal. Применяется только в Windows. InnoDB не использует ни платформен­
ный механизм асинхронного ввода/вывода, ни небуферизованный ввод/вывод.

С1 nosync и li ttlesync. Только для разработчиков. Эти режимы не документированы
и небезопасны для применения. Их не надо использовать.

Табличное пространство InnoDB

lnnoDB хранит данные в табличном пространстве, которое представляет собой не­
кую виртуальную файловую систему, охватывающую один или несколько файлов

на диске. Табличное пространство в InnoDB используется для разных целей, а не
только для хранения таблиц и индексов. В нем же находятся журнал отмены (старые
версии строк), буфер вставок, буфер двойной записи (описывается далее) и другие

внутренние структуры.

Конфигурирование табличноrо пространства. Файлы, помещаемые в табличное
пространство, перечисляются в конфигурационном параметре innodb_data_file_
path. Все они будут находиться в каталоге, который задается 11араметром innodb_
data_home_dir, например:

innodb_data_home_dir = /var/liЫmysql/
innodb_data_file_path = ibdatal:1G;ibdata2:1G;ibdata3:1G

В результате создается табличное пространство размером 3 Гбайт, содержащее три
файла. Иногда задают вопрос, можно ли использовать несколько файлов для рас­

пределения нагрузки на несколько накопителей, например так:

innodb_data_file_path = /diskl/ibdata1:1G;/disk2/ibdata2:1G; •.•

При этом файлы действительно помещаются в разные каталоги, которые в данном

случае находятся на разных дисках, но InnoDB конкатенирует файлы друг за другом.
Поэтому никакого реального выигрыша вы не получите. InnoDB сначала будет пи­
сать в первый файл, потом, когда он заполнится, - во второй и т. д., то есть нагрузка

не распределяется так, как хотелось бы для обеспечения высокой производитель­
ности. Для этой цели лучше использовать RАID-контроллер.

Чтобы табличное пространство могло расти, когда место заканчивается, можно сде­
лать последний файл автоматически расширяемым:

... ibdataЗ:lG:autoextend

422 Глава 8 • Оптимизация параметров сервера

По умолчанию создается один автоматически расширяемый файл размером 1 О Мбайт.
Если вы решите сделать файл автоматически расширяемым, стоит ограничить размер

табличного пространства сверху, чтобы файл не разрастался, поскольку, достигнув
определенного размера, он уже не уплотняется. Например, в следующем примере

размер автоматически расширяемого файла ограничен 2 Гбайт:

..• ibdata3:1G:autoextend:max:2G

Управление одним табличным пространством может вызвать сложности, особенно
если оно автоматически расширяется, а вам нужно освободить место (по этой причи­
не мы рекомендуем отключать режим автоматического расширения или по меньшей

мере установить разумную верхнюю планку). В данном случае единственная возмож­

ность высвободить место - сформировать дамп данных, остановить MySQL, уда­
лить все файлы, изменить конфигурацию, перезапустить сервер, позволить InnoDB
создать новые пустые файлы и, наконец, восстановить в них данные. InnoDB очень
строго относится к своему табличному пространству - вы не можете просто взять
и удалить файлы или изменить их размеры. InnoDB не запустится, если обнаружит,
что табличное пространство повреждено. Так же трепетно InnoDB относится к фай­
лам журнала. Если вы привыкли без особых раздумий перемещать файлы MyISAM,
будьте осторожны!

Начиная с версии MySQL 4.1, параметр innodb_file_per _tаЫе позволяет сконфи­
гурировать InnoDB с одним файлом на таблицу. Данные хранятся в каталоге базы
данных в файлах с именами вида taЫename. ibd. Так проще освобождать место при
удалении таблицы, к тому же этот режим полезен для распределения таблиц по
разным дискам. Но если данные хранятся в нескольких файлах, больше места рас­
трачивается впустую, поскольку вы обмениваете внутреннюю фрагментацию в од­
ном табличном пространстве на неиспользуемое место в . iЬd-файлах. Эта проблема
больше касается маленьких таблиц, так как размер страницы в InnoDB составляет
16 Кбайт. Даже если в таблице хранится всего 1 Кбайт данных, на диске она все равно
будет занимать 16 Кбайт.

Даже если режим innodb_file_per _tаЫе включен, главное табличное пространство
все равно необходимо для файлов отмены и других системных данных. Если в нем
не хранится информация, оно будет меньше размером, но тем не менее мы рекомен­
дуем отключать автоматическое расширение, так как невозможно уплотнить файл

без перезагрузки всех данных.

Некоторым режим innodb_file_per _tаЫе нравится просто потому, что он предостав­
ляет дополнительные средства управления и делает структуру базы более наглядной.
Например, гораздо быстрее определить размер таблицы, взглянув на соответству­
ющий файл, нежели выполнять команду SHOW TABLE STATUS, которая должна выпол­
нить некоторую работу, чтобы понять, сколько страниц выделено таблице.

Однако у innodb_file_per _tаЫе есть и недостаток, а именно медленное выполнение
команды DROP TABLE. Она может выполняться настолько медленно, что способна даже
вызвать заметный стопор всего сервера. Это может произойти по двум причинам.

О Удаление таблицы разрывает (удаляет) связи файла на уровне файловой системы,
что в некоторых файловых системах может выполняться очень медленно (ехtЗ,

Настройка ввода/вывода в MySQL 423

мы смотрим на тебя). Вы можете сократить продолжительность этой операции
с помощью трюков в файловой системе: связать файл . ibd с файлом нулевого
размера, а затем удалить файл вручную, а не ждать, пока это сделает MySQL.

О Когда вы включаете этот параметр, каждая таблица получает собственное та­
бличное пространство внутри InnoDB. Оказывается, что удаление табличного
пространства фактически требует от lnnoDB блокировки и сканирования буфер­
ного пула, в то время как он ищет страницы, принадлежащие этому табличному
пространству, что очень медленно выполняется на сервере с большим буферным
пулом. Если вы собираетесь удалять множество таблиц InnoDB, включая времен­
ные таблицы, и вы используете innodb_file_per _tаЫе, то можете воспользоваться
исправлением, включенным в Percona Server. Оно позволяет серверу лениво ин­
валидировать страницы, принадлежащие удаленным таблицам. Для этого нужно
просто установить параметр innodb_lazy_drop_taЫe.

Какова же итоговая рекомендация? Мы советуем использовать innodb_file_per _
tаЫе и, чтобы упростить себе жизнь, ограничить размер разделенного табличного
пространства. Если даже в этом случае вы столкнетесь с проблемами, рассмотрите
одно из исправлений, которые мы предложили.

Следует также отметить, что файлы InnoDB не обязательно хранить в традици­
онной файловой системе. Как и многие другие серверы базы данных, InnoDB по­
зволяет размещать их в неформатированном разделе диска. Однако современные

файловые системы умеют эффективно работать с довольно большими объектами,
поэтому в таком режиме нет особого смысла. Использование неформатированных
устройств может дать прирост производительности на несколько процентов, но

мы считаем, что такой мизерный выигрыш не оправдывает неудобства, связанные
с невозможностью манипулировать данными как файлами. Если они находятся

на неформатированном устройстве, то о командах mv, ер и прочих можно забыть.
В общем, из-за того крохотного выигрыша, который дают неформатированные
устройства, не стоит суетиться.

Старые версии строк и табличное пространство. В условиях интенсивной записи
табличное пространство InnoDB может стать очень большим. Если транзакция
долго остается открытой (даже не делая ничего полезного) и при этом установлен

уровень изоляции REPEATABLE READ, то InnoDB не может удалить старые версии
строк, поскольку они должны быть видны незакоммиченным транзакциям. InnoDB
хранит старые версии в табличном пространстве, поэтому по мере обновления
данных оно продолжает расти. Иногда проблема связана не с открытыми транзак­
циями, а просто с характером рабочей нагрузки: чисткой занимается только один
поток (так было в старых версиях MySQL), он может просто не успевать удалять
старые версии строк.

В любом случае команда SHOW INNODB STATUS поможет идентифицировать причину
проблемы. Взгляните на длину списка историй - она покажет размер журнала от­

мены в страницах.

Этому можно найти подтверждение, если взглянуть на первую и вторую строки

в разделе TRANSACТIONS, там показаны текущий номер транзакции и точка, до которой

424 Глава 8 • Оптимизация параметров сервера

дошла чистка. Если разница велика, значит, скопилось много невычищеных транзак­

ций. Приведем пример:

TRANSACТIONS

Trx id counter 0 80157601
Purge done for trx's n:o <0 80154573 undo n:o <0 0

Идентификатор транзакции - это 64-разрядное число, составленное из двух

32-разрядных (в новых версиях InnoDB это шестнадцатеричное число), поэтому
для вычисления разности придется немного посчитать. В данном случае все просто:

так как старшие разряды равны О, то мы имеем 80 157 601 - 80 154 573 = 3028 по­
тенциально невычищеных транзакций (утилита innotop проделает за вас все вы­
числения). Мы говорим <!Потенциально~. поскольку большая разность еще не оз­
начает, что невычищеных строк много. Старые версии строк создаются только для

транзакций, которые изменяют данные, а может существовать множество транзак­

ций, в которых данные не изменялись (и наоборот, одна транзакция может изме­
нить много строк).

Если невычищеных транзакций много и по этой причине табличное пространство

продолжает расти, то можно принудительно замедлить работу MySQL, чтобы поток
очистки InnoDB справлялся с нагрузкой. Звучит не слишком привлекательно, но
альтернативы нет. В противном случае InnoDB будет продолжать писать данные
и заполнять диск, пока на нем не кончится место или не будет достигнута заданная
верхняя граница табличного пространства.

Чтобы притормозить запись, присвойте переменной innodb_max_purge_ lag значение,
от личное от О. Оно равно максимальному количеству транзакций, ожидающих
очистки; по достижении этого порога InnoDB начинает задерживать выполнение
запросов на обновление данных. Чтобы выбрать подходящее значение, нужно знать
конкретную рабочую нагрузку. Например, если типичная транзакция изменяет
в среднем 1 Кбайт данных и вы готовы смириться с 100 Мбайт невычищеных строк
в табличном пространстве, то можете задать значение 100000.

Имейте в виду, что наличие невычищеных версий строк отражается на всех запросах,

поскольку из-за них увеличивается размер таблиц и индексов. Если поток очистки
не справляется с нагрузкой, то производительность может заметно упасть. Задание

параметра innodb_max_purge_lag тоже снижает скорость выполнения запросов, но
это меньшее из зол 1 •

В новых версиях MySQL и даже более старых версиях Регсоnа Server и MariaDB про­
цесс очистки значительно улучшен и отделен от других внутренних вспомогательных

задач. Можно даже создать несколько выделенных потоков очистки для того, чтобы
выполнить эту работу быстрее. Этот вариант, если он вам доступен, намного лучше,

чем притормаживание сервера.

Отметим, что способ, которым этот прием должен быть реализован, остается предметом

споров (см. руководство по MySQL, ошибка 60776 для деталей).

Настройка ввода/вывода в MySQL 425

Буфер двойной записи

В InnoD В буфер двойной записи применяется для того, чтобы избежать повреждения
данных в случае частичной записи страницы. Частичная запись страницы возникает,

когда операция записи на диск выполняется не полностью, так что записанной ока­

зывается только часть страницы размером 16 Кбайт. Причин для этого много - сбои,

ошибки и т. д. В данном случае буфер двойной записи предотвращает повреждение
данных.

Буфер двойной записи представляет собой зарезервированную область в табличном
пространстве, достаточно большую для хранения 100 страниц в одном непрерывном
блоке. По существу, это резервная копия недавно записанных страниц. Когда lnnoDB
сбрасывает страницы из буферного пула на диск, она записывает (и сбрасывает) их

сначала в буфер двойной записи и лишь потом - в ту основную область данных,
где им и место. Тем самым гарантируется, что каждая операция записи страницы

неделима и долговечна.

Означает ли это, что каждая страница записывается дважды? Да, означает, но по­

скольку InnoDB пишет в буфер двойной записи сразу несколько страниц и лишь
потом вызывает fsync () для синхронизации с диском, то на производительности это
почти не отражается - обычно потери составляют не более нескольких процентов,

а не увеличиваются в два раза, хотя накладные расходы более заметны на твердотель­
ных дисках, что мы обсудим в следующей главе. Важнее тот факт, что эта стратегия
позволяет гораздо эффективнее использовать файлы журнала. Поскольку буфер
двойной записи дает InnoDB надежную гарантию того, что данные не повреждены,
то в журнал помещаются не страницы целиком, а скорее двоичные разности.

Если при сохранении страницы произойдет частичная запись в сам буфер двойной
записи, то оригинальная страница все равно окажется на диске в том месте, где ей

и положено быть. На этапе восстановления InnoDB возьмет оригинальную страницу
вместо ее поврежденной копии в буфере двойной записи. Если же запись в буфер
завершилась успешно, а в саму таблицу - с ошибкой, то во время восстановления
InnoDB воспользуется копией из буфера двойной записи. InnoDB понимает, что
данные повреждены, так как в конце каждой страницы имеется контрольная сумма

(она записывается последней), - если эта сумма не соответствует содержимому стра­

ницы, значит, страница повреждена. Поэтому в ходе восстановления InnoDB читает
каждую страницу, находящуюся в буфере двойной записи, и проверяет контрольную
сумму. Если она неверна, то считывается оригинальная страница.

В некоторых случаях без буфера двойной записи можно обойтись - например,
его можно отключить на подчиненных серверах. Кроме того, некоторые файловые

системы (в частности, ZFS) делают то же самое самостоятельно, поэтому излишне
повторять процедуру на уровне InnoDB. Чтобы отключить буфер двойной записи,
присвойте параметру innodb_douЫewri te значение 0. В Percona Server можно на­
строить буфер двойной записи так, чтобы он хранился в собственном файле. Тем
самым можно отделить эту рабочую нагрузку от остальной части работы сервера,
разместив их на отдельных дисках.

426 Глава 8 • Оптимизация параметров сервера

Прочие параметры настройки ввода/вывода

Параметр sync_Ьinlog управляет тем, как MySQL сбрасывает двоичный журнал на
диск. По умолчанию он равен 0, то есть MySQL вообще не выполняет сброс, оставляя
его на усмотрение операционной системы. Значение, превышающее 0, интерпрети­

руется как количество операций записи в двоичный журнал между двумя последо­

вательными сбросами (операцией считается одна команда, если режим autocommit
включен, и одна транзакция - в противном случае). Обычно этот параметр устанав­

ливают в 0 или 1.

Если sync_Ыnlog отличен от 1, то в случае сбоя двоичный журнал может оказаться
не синхронизированным с транзакционными данными. Это вполне способно привести

к сбою в репликации и сделать невозможным восстановление на определенный момент

в прошлом. Однако уровень безопасности, получаемый установкой этого параметра в 1,

требует весьма высоких затрат. Для синхронизации двоичного журнала с журналом

транзакций MySQL должна сбрасывать два файла в двух разных местах. Для этого
может потребоваться относительно медленная операция подвода головки к дорожке.

Как и в случае с файлом журнала InnoDB, помещение двоичного журнала в том
RАID-массива, оборудованного кэшем записи с резервным питанием, нередко дает

огромный прирост производительности. Запись и сброс двоичных журналов - более

затратные операции, чем запись и сброс журналов транзакций InnoDB, потому что,
в отличие от журналов транзакций InnoDB, каждая запись в двоичные журналы уве­
личивает их размер. Для каждой записи требуется обновление метаданных на уровне

файловой системы. Таким образом, установка sync_Ьinlog = 1 может намного сильнее

ухудшить производительность, чем установка innodb_flush_log_at_trx_commit = 1,

особенно в сетевых файловых системах, таких как NFS.

Замечание о двоичном журнале, не относящееся к производительности: если вы

собираетесь воспользоваться параметром expire_logs_days для автоматического
удаления старых двоичных журналов, то не уничтожайте их вручную командой rm.
В этом случае сервер запутается и откажется выполнять автоматическое удаление,

а команда PURGE МАSТЕR LOGS перестанет работать. Если вы окажетесь в такой ситуа­

ции, то нужно будет вручную синхронизировать файл hostname-Ьin. index со списком
файлов на диске.

Более подробно обсуждать RАID-массивы будем в главе 9, а сейчас стоит отметить,
что высококачественные RАID-контроллеры, оборудованные кэшем с резервным

батарейным питанием и работающие в режиме отложенной записи, могут справ­

ляться с тысячами операций в секунду и при этом обеспечивать надежное хранение.

Поскольку кэш запитан от батареи, то его содержимое не утрачивается даже при

отключении питания. После его восстановления RАID-контроллер переписывает

данные из кэша на диск еще до того, как сделать диск доступным для работы. Таким

образом, хороший RАID-контроллер, оборудованный кэшем записи, с резервным

питанием может резко повысить производительность и потому является отличным

капиталовложением. Конечно же, твердотельный накопитель - еще один вариант,

мы также расскажем об этом в следующей главе.

Настройка ввода/вывода в MySQL 427

MyISAM
Начнем с рассмотрения того, как MyISAM выполняет ввод/вывод для индексов.
Обычно изменение индекса сбрасывается на диск после каждой ~аписи. Но если вы
производите много модификаций в таблице, то будет быстрее сгруппировать опера­
ции записи вместе.

Один из способов добиться этого - воспользоваться командой LOCK TABLES, которая

откладывает запись до момента разблокировки таблиц. Этот прием способствует

повышению производительности, так как позволяет точно управлять тем, какие

операции записи откладываются и когда происходит сброс на диск. Можно отложить

запись именно для интересующих вас команд.

Запись в индекс можно отложить также с помощью переменной delay_key_write.
В этом случае блоки из буфера ключей не сбрасываются на диск до момента закрытия
таблицы 1 • Допустимы следующие значения:

D OFF - MyISAM сбрасывает измененные блоки из буфера ключей после каждой
записи, если только таблица не блокирована командой LOCK TABLES;

D ON - включен режим отложенной записи ключей, но только для таблиц, создан-
ных с параметром DELAY_KEY_WRIТE;

D ALL - для всех таблиц типа MyISAM используется отложенная запись ключей

В некоторых случаях отложенная запись оказывается кстати, но обычно этот при­

ем не приводит к резкому увеличению производительности. Наиболее полезна она

в ситуации, когда размер данных мал, коэффициент попадания в кэш при чтении

высокий, а при записи - низкий. К тому же у этого режима есть ряд недостатков.

D Если сервер завершает работу аварийно, а блоки не сброшены на диск, то индекс
будет испорчен.

D Если было отложено много операций записи, то MySQL потратит больше времени
на закрытие таблицы, поскольку вынуждена ждать завершения записи буферов
на диск. В версии MySQL 5.0 это приводит к длительным блокировкам доступа
к кэшу таблиц.

D По тем же причинам выполнение команды FLUSH TABLES может занимать много

времени. А это, в свою очередь, может увеличить время выполнения команды

FLUSH TABLES WIТH READ LOCK при создании мгновенного снимка для менеджера

логических томов (LVM), а также других операций резервного копирования.

D Несброшенные ~грязные» блоки в буфере ключей могут не оставить места для
новых блоков, считываемых с диска. В таком случае выполнение запроса будет

приостановлено до тех пор, пока MyISAM не освободит достаточно места в бу­
фере ключей.

Таблица может быть закрыта по нескольким причинам. Например, сервер может закрыть
таблицу, поскольку в кэше таблиц не осталось места или кто-то другой выполнил команду

FLUSH TABLES.

428 Глава 8 • Оптимизация параметров сервера

Помимо настройки ввода/выводаДllЯ индексов MylSAM, можно сконфиrурировать ме­
тод восстановления после того, как данные были испорчены. Параметр myi sam _recover
управляет алгоритмом поиска и исправления ошибок. Его можно задавать как в кон­
фигурационном файле, так и в командной строке. Чтобы просмотреть (но не изменить)
его, воспользуйтесь следующей SQL-командой (здесь нет опечатки - системная пере­

менная действительно называется не так, как параметр в командной строке):

mysql> SНOW VARIAВLES LIKE 'myisam_recover_options';

Если этот режим включен, то MySQL проверяет, не испорчены ли таблицы в момент
открытия, и при обнаружении ошибок тут же исправляет их. Параметр может при­
нимать следующие значения:

1:1 DEFAUL т (или не задан) - MySQL попытается исправить таблицу, помеченную
как сбойная, или не помеченную как корректно закрытая. Это режим, заданный
по умолчанию, в котором никаких других действий при восстановлении не пред­

принимается. Значение DEFAUL т, в отличие от большинства других переменных,
не означает, что нужно восстановить режим, указанный на этапе компиляции,

а интерпретируется просто как «Не задано»;

1:1 BACKUP - заставляет MySQL записать резервную копию файла данных в файл
с расширением ВАК, который позже можно будет исследовать;

1:1 FORCE - требует продолжить восстановление, даже если в .МУD-файле потеряно
более одной строки;

1:1 QUICK - пропускает фазу восстановления, если отсутствуют блоки удаления. Так
называются блоки, занятые удаленными строками. Они все еще занимают место
в файле, но могут быть повторно использованы во время выполнения команды
INSERT. Этот режим может оказаться полезным, так как восстановление большой
МуlSАМ-таблицы иногда занимает весьма длительное время.

Можно использовать несколько значений, указываемых через запятую. Например,

комбинация BACKUP, FORCE принудительно продолжит восстановление и создаст
резервную копию.

Мы рекомендуем включать этот параметр, особенно если имеется всего несколько
небольших таблиц MyISAM. Запускать сервер с испорченными таблицами MyISAM
опасно, поскольку иногда это приводит к дальнейшему повреждению данных и даже

аварийному останову сервера. Однако при наличии больших таблиц автоматическое
восстановление может оказаться непрактичным: сервер должен проверить и испра­

вить любую таблицу MyISAM в момент ее открытия, что, конечно, неэффективно.
MySQL обычно приостанавливает на это время работу всех соединений. Если ко­
личество таблиц MyISAM велико, то, пожалуй, стоит воспользоваться менее навяз­
чивой процедурой: выполнить команды СНЕСК TABLES и REPAIR TABLES после запуска
сервера 1• В любом случае проверка и исправление таблиц очень важны.

Некоторые системы DeЬian делают это автоматически, таким образом, маятник уходит
слишком далеко в другую сторону. Не рекомендуется настраивать такие действия в ка­

честве поведения по умолчанию, как сделано в DeЬian, - это решение должен принять
администратор базы данных.

Настройка конкурентного доступа в MySQL 429

Еще одна полезная настройка MyISAM - доступ к файлам данных в режиме прое­

цирования в память. При этом MyISAM обращается к .МУD-файлам непосредственно
через кэш страниц операционной системы, обходясь без затратных системных вы­
зовов. Начиная с версии MySQL 5.1, включить режим проецирования в память мож­
но с помощью параметра myisam_use_mmap. В более старых версиях проецирование
в память разрешено только для сжатых МуISАМ-таблиц.

Настройка конкурентного доступа
в MySQL
Если MySQL работает в режиме высокого конкурентного доступа, то могут возник­
нуть узкие места, не встречающиеся при других условиях. В этом разделе мы расска­

жем, как распознать подобные проблемы и добиться наилучшей производительности
при такой рабочей нагрузке в подсистемах хранения MyISAM и InnoDB.

InnoDB
Подсистема InnoDB изначально проектировалась для работы в условиях высокого
конкурентного доступа, но она неидеальна. До сих пор видно, что своими корнями

архитектура InnoDB уходит во времена систем с ограниченной памятью, одним
процессором и одним диском. Некоторые характеристики InnoDB, относящиеся
к производительности, резко ухудшаются в условиях высокой конкуренции, и тогда

остается единственный выход - ограничить конкурентный доступ. Для диагностики

проблем с ним можно использовать методику, описанную в главе 3.

Когда вы сталкиваетесь с проблемами, вызванными конкурентным доступом
в InnoDB, очевидное решение - обновить сервер. По сравнению с текущими более
старые версии, такие как MySQL 5.0 и ранняя MySQL 5.1, при высоком уровне кон­
курентного доступа были непревзойденными источниками проблем. Все процессы
выстраивались в очереди к глобальным мьютексам, например к мьютексу буферного
пула, и сервер практически останавливался. Если вы перешли на одну из новых версий

MySQL, в большинстве случаев вам не придется ограничивать конкурентный доступ.

В InnoDB имеется собственный планировщик потоков, который управляет тем,
как потоки входят в ядро для доступа к данным, и тем, что они могут делать,

находясь в ядре. Самый простой способ ограничить степень параллелизма -
воспользоваться переменной innodb_thread_concurrency, которая определяет,
сколько потоков могут находиться в ядре одновременно. Значение 0 символизи­
рует отсутствие ограничения на количество потоков. При возникновении про­

блем с конкурентным доступом в InnoDB на эту переменную следует обратить
внимание в первую очередь 1•

Фактически при некоторых нагрузках система, реализующая ограничения конкуренции,

сама может стать узким местом, поэтому в одних случаях ее нужно включить, а в других -
отключить. Что именно делать, покажет профилирование.

430 Глава 8 • Оптимизация параметров сервера

Невозможно заранее сказать, какое значение лучше всего подходит для заданной

архитектуры и существующей рабочей нагрузки. Теоретически можно воспользо­
ваться следующей формулой:

concurrency = Количество ЦП * Количество дисков * 2

Однако на практике может оказаться, что лучше устанавливать гораздо меньшее

значение. Чтобы подобрать походящее значение этого параметра для своей системы,
придется поэкспериментировать.

Если в ядре уже находится больше потоков, чем разрешено, то никакой другой по­
ток не сможет в него войти. В InnoDB применяется двухшаговая процедура, смысл
которой заключается в том, чтобы сделать вход в ядро максимально эффектив­
ным. Эта политика сокращает накладные затраты на контекстные переключения,

свойственные планировщику операционной системы. Поток сначала засыпает на

innodb_thread_sleep_delay микросекунд, а потом вновь пытается войти. Если это
по-прежнему не получается, то поток становится в очередь ожидания и уступает

управление операционной системе.

По умолчанию на первом шаге поток спит в течение 10 ООО микросекунд. При вы­
сокой конкуренции, когда процессор не используется полностью, потому что мно­

жество потоков находится в состоянии «спит перед постановкой в очередь», можно

попробовать изменить этот параметр. Принимаемое по умолчанию значение может
оказаться слишком велико, если имеется множество мелких запросов, поскольку

к времени обработки каждого запроса добавляется 1 О микросекунд.

Если поток уже вошел в ядро, то он получает определенное количество «билетов»,
позволяющих ему вернуться в ядро «бесплатно», то есть без проверки условий конку­
ренции. Тем самым налагаются ограничения на объем работы, который поток может
выполнить перед тем, как встать в очередь наравне с остальными ожидающими по­

токами. Переменная innodb_concurrency_tickets определяет количество «билетов».
Изменять ее приходится редко - разве что в случае, когда имеется большое количество
долго выполняющихся запросов. «Билеты» выдаются на запрос, а не на транзакцию.

После того как запрос выполнен, все оставшиеся «билеты» аннулируются.

Кроме узких мест, возникающих из-за буферного пула и других структур, существует
узкое место и на этапе коммита транзакции. Оно связано главным образом с вводом/
выводом и вызвано операциями сброса. Переменная innodb_commit_concurrency
определяет, сколько потоков могут одновременно выполнять коммит. Ее имеет смысл

настраивать, если из-за слишком низкого значения переменной innodb_thread_
concurrency потоки начинают пробуксовывать.

Наконец, есть новое, возможно, достойное решение - использование пула потоков

для ограничения конкурентного доступа. Исходная реализация пула потоков нахо­

дилась в заброшенном дереве исходников MySQL 6.0 и имела серьезные недостатки.
Но этот прием был заново реализован в MariaDB, а Oracle недавно выпустила ком­
мерческий плагин, обеспечивающий пул потоков для MySQL 5.5. У нас нет богатого
опыта использования этих решений, поэтому мы запутаем вас еще больше и скажем,
что ни одна из этих реализаций, похоже, не удовлетворяет Facebook, который решает

Настройка конкурентного доступа в MySQL 431

свои уникальные задачи с помощью так называемых возможностей контроля доступа

в собственной закрытой ветви MySQL. Надеемся, к четвертому изданию этой книги
мы накопим больше знаний и сможем вам рассказать, что такое пулы потоков и при
каких условиях они работают.

MyISAM
При определенных условиях MyISAM допускает конкурентные вставку и чтение
и позволяет планировать некоторые операции, чтобы по возможности уменьшить
количество блокировок.

Но прежде, чем мы приступим к описанию параметров настройки конкурентного до­

ступа, важно понять, как MyISAM удаляет и вставляет данные. Операция удаления
не реорганизует всю таблицу, а лишь помечает строки соответствующим признаком,
оставляя дыры в таблице. MyISAM старается по возможности заполнить эти дыры,
используя освободившееся место для вставки новых строк. Если дыр нет, то следу­
ющие данные дописываются в конец таблицы.

Несмотря на то что в подсистеме MyISAM есть табличные блокировки, она может
дописывать новые строки одновременно с чтением. Для этого сервер следит, что­

бы операции чтения останавливались на последней строке, которая существовала
к моменту их начала. Таким образом удается избежать несогласованных операций.

Однако обеспечить согласованность чтения, когда что-то изменяется в середине
таблицы, гораздо труднее. Популярный способ решения этой проблемы дает тех­
нология МУСС: она позволяет считывать старые версии данных, пока писатели

создают новые версии. Однако MyISAM, в отличие от InnoDB, не поддерживает
МУСС, поэтому не поддерживает и конкурентную вставку - только вставку в ко­

нец таблицы.

Поведение, характерное для конкурентной вставки, в MylSAM можно сконфигури­
ровать с помощью переменной concurrent_insert, которая принимает следующие
значения:

1:1 0 - MyISAM вообще не допускает конкурентных вставок; любая вставка моно­
польно блокирует таблицу;

1:1 1 - это значение по умолчанию. MyISAM допускает конкурентную вставку, если
в таблице нет дыр;

1:1 2 - это значение доступно для MySQL 5.0 и более новых версий. В данном случае
конкурентная вставка принудительно производится в конец таблицы, даже если
в ней есть дыры. Если же ни один поток не читает из таблицы, то MySQL помеща­
ет новые строки в дыры. В таком режиме может возрасти фрагментация данных.

Можно также сконфигурировать MySQL так, чтобы некоторые операции отклады­
вались на более позднее время, когда для большей эффективности их можно будет
сгруппировать. Например, переменная delay_key_wri te позволяет задать режим от­
ложенной записи в индекс, о чем мы уже упоминали в текущей главе. Тут возникает

432 Глава 8 • Оптимизация параметров сервера

знакомый компромисс: записывать в индекс немедленно (безопасно, но затратно)
или подождать в надежде, что до момента записи не произойдет сбоя электропита­
ния (быстрее, но любая неисправность может привести к серьезному повреждению
индекса из-за его неактуальности).

Параметр low_priority_updates позволяет назначать командам INSERT, REPLACE,
DELEТE и UPDAТE более низкий приоритет, чем команде SELECT. Этот режим экви­
валентен применению подсказки LOW_PRIORIТY ко всем запросам обновления. Это
действительно очень важный параметр при использовании MyISAM - он позволяет

добиться хорошего уровня конкуренции для запросов SELECТ, которые в противном
случае могли бы зависать из-за очень небольшого числа запросов на запись, полу­

чающих высокий приоритет.

Наконец, хотя проблемы масштабируем ости чаще обсуждаются в контексте InnoD В,
у подсистемы MyISAM тоже в течение длительного времени возникали сложности
с мьютексами. В версии MySQL 4.0 и более ранних любой доступ к буферу ключей
был защищен глобальным мьютексом, что ухудшало масштабируемость в системах
с несколькими процессорами и дисками. В версии MySQL 4.1 код работы с буфером
ключей был усовершенствован, и теперь этой проблемы нет, тем не менее каждый
буфер ключей по-прежнему защищен мьютексом. Это вызывает сложности, когда
поток копирует блоки ключей из буфера в собственную локальную память, а не
читает их с диска. Диск перестает быть узким местом, но теперь таковым является
доступ к данным в буфере ключей. Иногда эту проблему удается решить за счет
организации нескольких буферов ключей, но подобный подход не всегда помогает.
Например, ничего нельзя сделать, если все упирается в единственный индекс. В ре­

зультате конкурентные запросы SELECT могут выполняться на машинах с несколь­
кими процессорами гораздо медленнее, чем на машине с одним процессором, даже

в тех случаях, когда кроме них вообще ничего не выполняется. MariaDB предлагает
сегментированные (секционированные) буферы ключей, которые могут значительно
помочь при возникновении этой проблемы.

Настройка с учетом рабочей нагрузки
Конечная цель настройки сервера - адаптировать его к конкретной рабочей нагруз­
ке. Для этого нужно хорошо знать все виды выполняющихся задач: их количество,

типы и частоту. Причем речь идет не только о запросах, но и о таких операциях, как

подключение к серверу и сброс таблиц.

Первое, что нужно сделать, если вы этого еще не сделали, - познакомиться со своим

сервером. Узнать, какие запросы он выполняет. Последить за ним с помощью утили­

ты, такой как innotop, а также использовать pt-query-digest для создания отчета по
запросу. Полезно знать не только что он делает в общем, но и на что тратит основное
время каждый запрос. В главе 3 рассказывается, как это выяснить.

Попробуйте журналировать все запросы в периоды времени, когда сервер работает
на полную мощность, поскольку это лучший способ понять, какие виды запросов

Настройка с учетом рабочей нагрузки 433

страдают больше всего. В то же время фиксируйте снимки списка процессов и агре­
гируйте их по состоянию или команде (сделать это может innotop, или вы можете
использовать скрипты, показанные в главе 3). Например, многие щt из них копируют
результаты во временную таблицу или занимаются сортировкой результатов? Если
да, значит, нужно обратить внимание на конфигурационные параметры, относящиеся
к временным таблицам и буферам сортировки (возможно, понадобится оптимизи­
ровать и сами запросы).

Оптимизация работы с полями типа BLOB и ТЕХТ
Столбцы типа BLOB и ТЕХТ представляют для MySQL особый вид рабочей нагрузки.
(Для простоты будем называть те и другие просто BLOB, потому что они принадлежат
к одному и тому же классу типов данных.) BLOB имеют ряд ограничений, из-за кото­
рых сервер работает с ними несколько иначе, чем с другими типами. В частности, сер­

вер не может использовать для BLOB временные таблицы в памяти 1 • Следовательно,
если запросу, включающему BLOB, требуется временная таблица, то она, независимо
от величины, создается на диске. Это крайне неэффективно, особенно если в осталь­
ном запрос маленький и мог бы быть выполнен очень быстро. На работу с временной
таблицей может затрачиваться львиная доля времени обработки запроса.

Уменьшить эти затраты можно двумя способами: преобразовать значение к типу
VARCHAR с ПОМОЩЬЮ функции SUBSTRING() (см. главу 4) или ускорить работу с вре­
менными таблицами.

Последнее проще всего сделать, поместив временные таблицы в файловую систему,
находящуюся целиком в памяти (tmpfs в случае GNU /Linux). Это устраняет часть
накладных затрат, хотя все равно работает гораздо медленнее, чем временные табли­
цы. Использование файловой системы в памяти помогает, поскольку операционная

система стремится избежать записи на диск2 • Обычные файловые системы тоже
поддерживают кэш в памяти, но операционная система может сбрасывать кэш на
диск каждые несколько секунд. В файловой системе tmpfs сбросы не производятся.
К тому же при проектировании файловой системы tmpfs специально были поставле­
ны две цели: обеспечение низких накладных затрат и простота. В частности, для этой

файловой системы не выполняются действия, способствующие ее восстановлению.
Это ускоряет работу.

Где именно создаются временные таблицы, определяет параметр tmpdir. Следите за
тем, чтобы при заполнении файловой системы в ней всегда было достаточно места
для временных таблиц. При необходимости можно задать даже несколько мест для
их размещения, MySQL будет использовать временные таблицы по кругу.

Если BLOB очень велики, а вы работаете с InnoDB, то, возможно, придется увеличить
размер буфера журнала. Мы уже подробно обсуждали этот вопрос в настоящей главе.

Последние версии Percona Server в некоторых случаях снимают эти ограничения.

Данные все равно могут записываться на диск, если ОС вынуждена прибегать к подкачке.

434 Глава 8 • Оптимизация параметров сервера

Для длинных столбцов переменной длины (например, типа BLOB, ТЕХТ и больших
столбцов с символьными данными) InnoDB хранит префикс длиной 768 байт в са­
мой странице вместе со строкой 1• Если значение в столбце длиннее префикса, то для
хранения остатка InnoDB может выделить внешнюю память вне строки. Эта память
сегментируется страницами длиной 16 Кбайт - такими же, как и все остальные стра­
ницы в InnoDB, причем каждому столбцу отводится отдельная страница (столбцы
не используют совместно внешнюю память). InnoDB выделяет столбцу внешнюю
память по одной странице за раз до тех пор, пока не будут выделены 32 страницы.
После этого за один раз выделяются сразу 64 страницы.

Отметим: мы сказали, что InnoDB может выделить внешнюю память. Если полная
длина строки, включая все значение длинного столбца, меньше максимально до­
пустимой в InnoDB длины строки (чуть меньше 8 Кбайт), то InnoDB не станет вы­
делять внешнюю память, даже если длина значения в длинном столбце превышает

длину префикса.

Наконец, отметим, что когда InnoDB обновляет длинный столбец, для которого
выделена внешняя память, то значение в данном местоположении не изменяется.

Вместо этого очередное значение записывается на новое место во внешней памяти,

а старое значение удаляется.

Все это приводит к таким последствиям.

Q На хранение длинных столбцов в InnoDB может впустую расходоваться много
места. Например, если для размещения значения в строке не хватает всего лишь

1 байта, то для этого единственного не поместившегося байта будет выделена
целая страница и большая ее часть окажется потраченной впустую. Аналогично

если значение лишь чуть-чуть длиннее 32 страниц, то для его хранения могут
фактически использоваться 96 страниц на диске.

Q Наличие внешней памяти отключает адаптивный хеш-индекс, поскольку его

использование подразумевает сравнение полных длин столбцов, чтобы гаран­

тировать, что найдены нужные данные. (Хеш позволяет InnoDB очень быстро
находить <*Примерно то, что нужно~>, но затем надо проверить, что догадка верна.)

Так как адаптивный хеш-индекс целиком находится в памяти и строится поверх

страниц в буферном пуле, к которым часто производятся обращения, то с внеш­

ней памятью он работать не может.

Q Из-за длинных значений могут медленно выполняться запросы, содержащие

условие WHERE, для которого нет подходящего индекса. Перед проверкой WHERE

MySQL читает все запрошенные столбцы, поэтому может потребоваться, чтобы
InnoDB прочитала все внешние страницы. Затем проверяется выполнение ус­
ловия WHERE и все прочитанные данные отбрасываются. Никогда не следует вы-

Этого вполне достаточно для создания по столбцу индекса с ключом длиной 255 символов
даже в кодировке UTF-8, где один символ может кодироваться 3 байтами. Этот префикс
относится к файловому формату Antelope InnoD В. он не применяется к формату Barracuda,
который доступен в MySQL 5.1 и новее (хотя по умолчанию не включен).

Настройка с учетом рабочей нагрузки 435

бирать ненужные столбцы, но в данном случае особенно важно не делать этого.
Если обнаруживается, что это ограничение относится к вашим запросам, можно

попробовать использовать покрывающие индексы.

О Если в одной таблице много длинных столбцов, то, возможно, будет лучше объ­
единить их в один столбец, может быть, в виде ХМL-документа. Тогда для объеди­

ненного значения будет выделена только одна область во внешней памяти, а не

по отдельному набору страниц на каждый столбец.

О Иногда можно значительно увеличить свободное пространство и улучшить про­
изводительность, если поместить длинные столбцы в BLOB и сжать функцией
COMPRESS() либо сжимать данные на уровне приложения перед отправкой MySQL.

Оптимизация файловой сортировки

Вспомним: в главе 6 говорилось, что MySQL использует два алгоритма файловой со­
ртировки. Двухпроходный алгоритм применяется, если суммарная длина всех столб­
цов, отбираемых запросом, плюс длина столбцов, упоминаемых в разделе ORDER ВУ,

превышает max_length_for _sort_data байт. МуSQL также использует этот алгоритм
тогда, когда хотя бы один из запрошенных столбцов - пусть даже он не встречается

в ORDER ВУ - имеет тип BLOB или ТЕХТ. (Вы можете использовать функцию SUBSTRING()

для преобразования таких столбцов в тип, к которому применим однопроходный

алгоритм.)

MySQL использует две переменные, которые помогают управлять файловой сор­
тировкой. На выбор алгоритма можно повлиять, задав параметр max_length_for _
sort_data1• Поскольку в однопроходном алгоритме для каждой строки создается

буфер фиксированного размера, то при подборе значения max_length_for _sort_data
учитывают максимальную, а не фактическую длину столбцов типа VARCHAR. Это одна
из причин, почему мы рекомендуем не задавать для таких столбцов большую длину,

чем необходимо.

При сортировке по столбцам типа BLOB или ТЕХТ MySQL принимает во внимание
только префикс, а остаток значения игнорирует. Связано это с тем, что для значений

нужно выделить структуру фиксированной длины, а затем скопировать в нее префикс

из внешней памяти. Длина такого префикса задается переменной max_sort_length.

К сожалению, MySQL не дает никакой информации о выбранном алгоритме сорти­
ровки. Если после увеличения переменной max_length_for _sort_data интенсивность
использования диска возрастает, потребление центрального процессора падает,

а переменная состояния Sort_merge_passes начинает расти быстрее, чем раньше,
значит, скорее всего, увеличилось число сортировок однопроходным алгоритмом.

MySQL 5.6 внесет изменения в способ использования буфера сортировки в запросах
с ключевым словом LIMIТ и устранит проблему, из-за которой большой буфер сортировки

использовался для выполнения затратной процедуры настройки. Поэтому при обновлении

до MySQL 5.6 вы должны тщательно проверить все сделанные вами настройки.

436 Глава 8 • Оптимизация параметров сервера

Завершение базовой конфигурации
Мы закончили экскурсию по внутреннему устройству сервера - надеемся, она вам

понравилась! Теперь вернемся к примерному файлу конфигурации и посмотрим, как

выбрать значения для оставшихся настроек.

Мы уже рассказали, как выбрать значения для общих параметров, таких как каталог
данных, кэши InвoDB и MylSAM, журналы и несколько других настроек. Давайте
рассмотрим, что осталось.

О tmp_taЫe_size и max_heap_taЫe_size. Эти параметры определяют, как может

увеличиться временная таблица в памяти, с помощью подсистемы хранения
Memory. Если размер неявной временной таблицы превышает один из этих пара­
метров, она будет преобразована в таблицу MyISAM на диске и сможет продолжать
расти. (Неявная временная таблица - это та, которую создаете не вы - ее создает
сервер для хранения промежуточных результатов при выполнении запроса.)

Вы должны просто присвоить обеим переменным одно и то же значение. Для об­
разца файла конфигурации мы выбрали значение 32М. Этого может быть недо­
статочно, но остерегайтесь задавать этой переменной слишком большое значение.
Временным таблицам целесообразно находиться в памяти, но лишь до тех пор,
пока они не стали просто огромными. В этом случае следует использовать табли­
цы на диске, иначе у сервера может закончиться память.

Если предположить, что ваши запросы не создают огромных временных таблиц
(чего, как правило, можно избежать с помощью правильного индексирования
и проектирования запросов), то стоит присвоить этим переменным достаточно

большие значения, чтобы серверу не пришлось преобразовывать таблицы в памя­
ти в таблицы на диске. Эта процедура будет видна в списке процессов.

Для того чтобы узнать, как часто создаются временные таблицы и попадают ли
они на диск, посмотрите, как изменяются с течением времени счетчики SHOW
STATUS на сервере. Вы не сможете определить, была ли таблица создана в памяти,
а затем скопирована на диск или изначально создана на диске (возможно, из-за

столбца BLOB), но можете хотя бы увидеть, как часто таблицы копируются на диск.
Изучите переменные Created_tmp_disk_taЫes и Created_tmp_taЫes.

О max_connections. Эта настройка действует как аварийный тормоз, предохраняя
сервер от перегрузки из-за переполнения соединений из приложений. Если прило­

жение работает с ошибкой или сервер сталкивается с проблемой, такой как стопор,
может открыться много новых подключений. Но открытое соединение, если оно

не может выполнять запросы, абсолютно не нужно, поэтому отказ из-за ошибки
.~Слишком много соединений» - это способ быстро и просто выйти из строя.

Установите max_connections достаточно высоким для того, чтобы обеспечить
обычную рабочую нагрузку, при этом добавьте запас прочности, связанный с до­
полнительной нагрузкой при входе в систему и администрировании сервера.

Например, если вы считаете, что в обычных условиях у вас будет 300 соединений
или около того, можете установить значение около 500. Даже если вы не знаете,
сколько у вас обычно будет соединений, число 500 ни в коем случае не является

завершение базовой конфиrурации 437

необоснованной отправной точкой. Значение по умолчанию - 100, но для боль­
шинства приложений этого недостаточно.

Остерегайтесь сюрпризов, которые могут заставить вас перейти верхнюю гра­

ницу числа соединений. Например, если вы перезагрузите сервер приложений,

он может не закрыть свои подключения штатно, а MySQL может не понять, что
они были закрыты. Когда сервер приложений перезагрузился и пытается заново
открыть соединения с базой данных, ему может быть отказано из-за мертвых со­
единений, время которых еще не истекло.

Постоянно следите за переменной состояния Max_used_connections. Это верхняя
отметка, которая показывает вам, не испытывает ли сервер в какой-то момент

пиковой нагрузки в соединениях. Если значение этой переменной достигает

значения переменной max_connections, высока вероятность того, что клиенту
хотя бы раз было отказано в доступе. Следовательно, стоит применить методики,
показанные в главе 3, для фиксации активности сервера.

1:J thread_cache_size. Вы можете вычислить разумное значение для этой перемен­
ной, наблюдая за поведением сервера в течение некоторого времени. Следите за
переменной состояния Threads_connected и определите ее типичные максимум
и минимум. Возможно, следует установить кэш потока достаточно большим,
чтобы сохранить разницу между пиковыми и непиковыми нагрузками, а может,

и чуть больше. Если вы установите его слишком большим, это не станет слишком
большой проблемой. Можете задать его размер в два-три раза больше, чем нужно,
чтобы справляться с возможными колебаниями. Например, если кажется, что
переменная состояния Threads_connected варьируется от 150 до 175, вы можете
установить кэш потока в размере 75. Но, скорее всего, не надо устанавливать его
очень большим, поскольку не очень полезно хранить огромное количество запасных
потоков, ожидающих подключения; предельное значение 250 - хорошее круглое

число (или 256, если вы предпочитаете степень двойки).

Вы также можете следить за изменением со временем значения переменной со­

стояния Threads_created. Если оно велико или увеличивается - это еще одна

подсказка, намекающая на увеличение значения переменной thread_cache_size.
Проверьте Threads_cached и узнайте, сколько потоков уже находится в кэше.

Связанная переменная состояния - Slow_launch_threads. Большое значение этой
переменной означает, что что-то задерживает новые потоки при подключении.

Это признак того, что с вашим сервером что-то не так, но что именно, непонятно.

Обычно это означает: система перегружена, из-за чего операционная система
не планирует время процессора для вновь созданных потоков. Это не обязательно
означает, что нужно увеличить размер кэша потоков. Проблему следует диагно­
стировать и исправить, а не маскировать ее кэшем, поскольку это может повлиять

и на другие процессы.

1:] taЫe_cache_size. Этот кэш (или два кэша, на которые он был разделен в MySQL 5.1)
должен быть установлен достаточно большим, чтобы не приходилось открывать
и повторно разбирать определения таблиц. Вы можете удостовериться в этом,
проверив значение Open_taЫes и изменения в течение времени значения Opened_
taЫes. Если вы видите много Opened_taЫes в секунду, возможно, значение

438 Глава 8 • Оптимизация параметров сервера

taЫe_cache недостаточно велико. Однако созданные явно временные таблицы

также могут вызывать рост числа открытых таблиц, даже если кэш таблиц не ис­
пользуется в полной мере, поэтому, возможно, беспокоиться не о чем. Если

Opened_taЫes постоянно растет, хотя значение Open_taЫes не так велико, как

taЫe_cache_size, то это может быть признаком проблемы.

Даже если кэш таблиц полезен, не стоит присваивать этой переменной слишком
большое значение. Оказывается, кэш таблиц в двух случаях может приводить
к отрицательным результатам.

Во-первых, MySQL использует не слишком эффективный алгоритм для про­
верки кэша, поэтому, если он действительно велик, это может происходить очень

медленно. Вероятно, в большинстве случаев не стоит делать его превышающим
10 ООО или 10 240, если вам нравятся степени двойки 1 •

Вторая причина избегать установки большого значения состоит в том, что неко­

торые рабочие нагрузки просто не кэшируемы. Если рабочая нагрузка не кэши­
руема, то результатом станут непопадания в кэш независимо от того, насколько

большим вы его сделаете, забудете про него или установите его в 0! Это поможет
вам избежать ухудшения ситуации: непопадание в кэше лучше, чем затратная
проверка кэша, за которой последует непопадание в него. Какие виды рабочих
нагрузок не кэшируемы? Если у вас есть десятки или сотни тысяч таблиц и вы
используете их в целом равномерно, то, скорее всего, не сможете кэшировать их

все и вам лучше установить небольшое значение этой переменной. Иногда это
подходит для систем с очень большим количеством размещенных приложений,
ни одно из которых не слишком занято.

Разумное начальное значение для этой переменной должно быть в десять раз
больше, чем max_connections, в большинстве случаев - около 10 ООО.

Существует несколько прочих параметров, которые часто включаются в конфигураци­

онный файл, в том числе двоичный журнал и настройки репликации. Двоичный журнал

полезен для обеспечения восстановления на конкретный момент времени и для репли­
кации, а репликация имеет несколько собственных настроек. Мы расскажем о важных
настройках в главах, посвященных репликации и резервному копированию.

Настройки безопасности и готовности к работе
После того как вы установили базовые настройки конфигурации, можете включить
несколько параметров, которые делают сервер более безопасным и надежным. Не­
которые из них влияют на производительность, поскольку гарантировать безопас­
ность и надежность, как правило, довольно затратно. Однако некоторые из них про­

сто разумны: они защищают от совершения ошибок, таких как, например, вставка

Вы знаете анекдот о степенях двойки? Есть десять типов людей в мире: те, кто понимает

двоичную систему счисления, и те, кто - нет. Есть еще десять типов людей: те, кто думает,

что двоичные/десятичные шутки смешны, и те, кто занимается сексом. Мы не скажем,

считаем ли эти шутки смешными.

Насrройки беэопасносrи и готовносrи к работе 439

бессмысленных данных на сервер. При этом некоторые не влияют на повседневную
работу, но защищают от серьезных проблем в экстремальных случаях.

Давайте сначала рассмотрим полезные параметры, характерные для повседневного

поведения сервера.

1:1 expire_logs_days. Если вы включили двоичный журнал, то должны включить
и этот параметр, который задает количество дней, по истечении которых старые

двоичные журналы должны очищаться. Если вы не сделаете этого, то в конечном

итоге у сервера закончится дисковое пространство и он зависнет или аварийно

остановится. Мы рекомендуем установить этот параметр достаточно большим,
чтобы можно было восстановить данные, сохраненные как минимум две резерв­
ные копии назад (в случае сбоя последней резервной копии). Даже если вы дела­
ете резервные копии каждый день, по-прежнему сохраняйте двоичные журналы как

минимум 7-14-дневной давности. Наш опыт показывает, что в случае возникнове­

ния необычной проблемы, например при восстановлении подчиненного сервера,
а затем при попытке синхронизироваться с главным, вы скажете спасибо за недель­
ный или двухнедельный двоичный журнал. Следует хранить достаточное коли­

чество двоичных журналов, чтобы иметь свободу маневра для таких операций.

1:1 max_allowed_packet. Этот параметр не позволяет серверу отправлять слишком
большой пакет, а также определяет размер принимаемого пакета. Значение по

умолчанию, вероятно, слишком мало, но точно так же оно может быть установле­
но опасно большим. Если оно слишком мало, то могут возникать проблемы при
репликации, обычно когда подчиненный сервер не может получить от главного
сервера данные, необходимы для репликации. Вы можете увеличить этот параметр
до 16 Мбайт или около того.

Это не задокументировано, но данный параметр также контролирует максималь­

ный размер переменной, определяемой пользователем. Поэтому, если вам нужны

очень большие переменные, будьте осторожны: они могут быть усечены или
установлены в NULL, если превысят размер этой переменной.

1:1 max_connect_errors. Если в какой-то момент во время работы с сетью что-то
пошло не так, причины проблемы могут быть различными. Это может быть
просто ошибка приложения или конфигурации. Другой проблемой может стать
недостаток привилегий, препятствующий быстрому успешному завершению
соединения. В этом случае клиенты могут попасть в черный список и не смогут

подключиться снова, пока вы не очистите кэш хоста. Значение по умолчанию

для этого параметра настолько мало, что данная ситуация может очень легко

произойти. Вы можете увеличить его, а если уверены, что сервер нельзя взломать

простым перебором, то сделать его даже очень большим, тем самым эффективно

решив проблему черного списка хостов.

1:1 skip_name_resolve. Этот параметр нейтрализует другую ловушку, связанную
с сетью и аутентификацией: поиск DNS. DNS является одним из слабейших
звеньев в процессе подключения MySQL. Когда вы подключаетесь к серверу, он
по умолчанию пытается определить имя хоста, с которого вы подключаетесь, и ис­

пользует его как часть аутентификации учетных данных. (То есть ваши учетные

данные - это имя пользователя, имя хоста и пароль, а не только имя пользователя

440 Глава 8 • Оптимизация параметров сервера

и пароль.) Но для проверки имени хоста сервер должен выполнить обратный
и прямой DNS-поиск. Все в порядке, пока DNS не столкнется с проблемами, что
вполне может произойти. Когда это случается, все накапливается и в конце кон­

цов время соединения заканчивается. Чтобы этого избежать, мы настоятельно
рекомендуем установить данный параметр, который отключает поиск DNS во
время аутентификации. Но если вы этим занимаетесь, необходимо преобра­
зовать разрешения, основанные на имени хоста, на использование IР-адресов

джокерных символов или localhost, поскольку аккаунты, основанные на имени
хоста, будут отключены.

О sql_mode. Этот параметр может принимать различные значения, изменяющие по­
ведение сервера. Мы не рекомендуем менять их только ради любопытства, лучше
всего позволить MySQL в большинстве случаев быть самой собой и не пытаться
заставить ее вести себя как другие серверы баз данных. (Например, многие кли­
ентские инструменты и инструменты с графическим интерфейсом ожидают, что
MySQL будет иметь собственный диалект SQL, поэтому, если вы измените его,
сделав более АNSI-совместимым, что-то может пойти не так.) Однако некоторые
из этих настроек весьма полезны, а часть из них подходит для специфических
случаев. Возможно, стоит посмотреть документацию по следующим параме­

трам: STRICT_TRANS_TABLES, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER,
NO_AUTO_VALUE_ON_ZERO,NO_ENGINE_SUBSTITUTION,NO_ZERO_DATE,NO_ZERO_IN_DATE
и ONLY_FULL_GROUP _BY - и подумать о возможностях их использования.

Однако имейте в виду, что не стоит менять эти параметры для существующих

приложений, поскольку это может привести к несовместимости сервера с ожида­

ниями приложения. Очень часто люди невольно пишут запросы, в том числе с ис­

пользованием агрегированных функций, к столбцам, отсутствующим в разделе
GROUP ВУ. Поэтому, если вы хотите включить параметр ONL Y _FULL_GROUP _ВУ, стоит
сделать это сначала на сервере, используемом для разработки, или вспомогатель­
ном сервере, убедиться, что все хорошо работает, и только потом разворачивать
в <~боевых условиях~.

О sysdate_is_now. Это еще один параметр, который может быть несовместимым
с ожиданиями приложений. Но если у вас нет явного желания, чтобы функция
SYSDAТE () имела недетерминированное поведение, которое может нарушить ре­
пликацию и сделать ненадежным восстановление из резервных копий, можете

включить этот параметр и сделать поведение функции детерминированным.

Несколько параметров контролируют поведение репликации и помогают предотвра­

тить проблему с репликами.

о read_only. Этот параметр запрещает непривилегированным пользователям вно­
сить изменения в подчиненные серверы, поскольку они должны получать из­

менения только от главного сервера, а не от приложения. Мы настоятельно

рекоменду~м установить для подчиненных серверов режим «только для чтения~.

О skip_slave_start. Этот параметр не дает MySQL закусить удила и автоматиче­
ски запустить репликацию. Целесообразно отключать автоматический запуск
репликации, поскольку он небезопасен после сбоя или какой-то другой пробле-

Дополнительные настройки InnoDB 441

мы: человек должен вручную проверить сервер и удостовериться, что начинать

репликацию безопасно.

о slave_net_timeout. Этот параметр определяет, сколько пройдет времени до того
момента, когда подчиненный сервер заметит, что соединение с основным сервером

прервано и его требуется установить заново. Значение 1 час, установленное по
умолчанию, слишком велико. У становите его равным 1 минуте или даже меньше.

о sync_master _info, sync_relay_log и sync_relay_log_info. Эти параметры, до­
ступные с версии MySQL 5.5, исправляют давние проблемы с подчиненными
серверами: они не синхронизируют свои файлы состояния с диском, поэтому,
если у главного сервера случится аварийный останов, то останется только догады­

ваться, каково текущее состояние реплики относительно главного сервера. Кроме

того, будут повреждены журналы ретрансляции. Эти параметры увеличивают ве­
роятность восстановления реплики после сбоя. По умолчанию они не включены,
поскольку вызывают дополнительные операции fsync () для реплик, что может
их замедлить. Мы предлагаем включить эти параметры, если вы используете

добротное оборудование, и отключить их, если есть проблема с репликацией,
которую вы можете отследить с задержкой, вызванной функцией fsync ().

В Percona Server есть лучший способ сделать это, включив параметр innodb_
overwri te_relay _log_info. Тем самым InnoDB сохранит позицию репликации
в своем журнале транзакций, который полностью транзакционный и не требует
дополнительных операций fsync(). Во время восстановления после сбоя InnoDB
проверит файлы метаданных репликации и обновит их, если они устарели.

Дополнительные настройки InnoDB
Вспомните рассказ об истории изменений InnoDB в главе 1: сначала она была
встроенной подсистемой хранения, затем стала доступной в двух версиях, а теперь

новая версия подсистемы снова встроена в сервер. У нового кода InnoDB больше
возможностей, и он гораздо сильнее масштабируем. Если вы используете М ySQL 5.1,
то должны явно настроить ее так, чтобы старая версия InnoDB игнорировалась, а ис­
пользовалась только более новая. Это значительно улучшит производительность сер­
вера. Следует включить параметр ignore_builtin_innodb, а затем включить InnoDB
в качестве плагина, настроив соответствующим образом параметр plugin_load.
Уточните синтаксис вашей платформы в руководстве по InnoDB1•

Несколько параметров станут доступными в новой версии InnoDB, как только вы ее
активизируете. Часть из них очень важна для производительности сервера, другие

обеспечивают безопасность и готовность к работе.

О innodb. Этот параметр выглядит довольно безобидным, но на самом деле очень
важен. Если вы установите значение FORCE, сервер не сможет запуститься, если

В Percona Server есть только одна версия InnoDB, и она встроена, поэтому вам не нужно
отключать одну версию и загружать взамен нее другую.

442 Глава 8 • Оптимизация параметров сервера

не запустится lnnoDB. Если вы используете InnoDB как подсистему хранения
по умолчанию, это именно то, что вам надо. Действительно, сервер не должен

запускаться, если из-за какой-то ошибки, например, в настройках не запускается
InnoDB. Дело в том, что приложение, работающее с ошибками, может затем под­
ключиться к серверу, устроить неразбериху и сильно навредить. Будет намного

лучше, если сервер просто не запустится, что заставит вас заглянуть в журнал

ошибок, а не верить, что с сервером все в порядке.

О innodb_autoinc_lock_mode. Этот параметр управляет тем, как InnoDB генерирует
автоматическое увеличение значений первичного ключа, что в некоторых случаях

может стать узким местом, например в случае вставок с высокой конкурентно­

стью. Если у вас много транзакций, ожидающих блокировки автоинкремента
(можете увидеть это в выводе команды SHOW ENGINE INNODB STATUS), следует из­

учить этот параметр. Мы не будем дублировать объяснение этого параметра и его
функций, приведенное в руководстве пользователя.

О innodb_buffer _pool_instances. В MySQL 5.5 и более новых версиях этот параметр
делит буферный пул на несколько сегментов и, вероятно, является одним из наи­

более важных способов повышения масштабируемости MySQL на многоядерных
машинах с высококонкурентной рабочей нагрузкой. Несколько буферных пулов
разделяют рабочую нагрузку, так что некоторые глобальные мьютексы не стано­
вятся горячими точками конкуренции.

Пока неясно, какими принципами следует руководствоваться при выборе количе­
ства экземпляров буферного пула. Мы запускали большинство эталонных тестов

на серверах с восемью пулами, однако так и не сумели разобраться в некоторых
нюансах применения нескольких экземпляров буферного пула. Скорее всего, мы
их не поймем, пока MySQL 5.5 не станет повсеместно использоваться в течение
более длительного времени.

Мы не хотим сказать, что MySQL 5.5 редко развертывается в боевых условиях.
Дело в том, что самые экстремальные случаи конкуренции мьютексов из тех, что

мы помогали решать, встречались у очень больших, очень консервативных поль­

зователей, у которых обновлению предшествовали многие месяцы планирования

и проверки. Эти пользователи иногда используют специально настроенную под

них версию MySQL, что заставляет их подходить к вопросам обновления в два
раза тщательнее. Когда многие из них перейдут на MySQL 5.5 и сбросят на нее
уникальную нагрузку, мы, вероятно, узнаем что-то интересное о работе с несколь­
кими буферными пулами. А до тех пор можем лишь сказать, что работа с восемью

экземплярами буферного пула кажется очень эффективной.

Стоит отметить, что Percona Server использует другой подход к решению проблем,
связанных с конкуренцией мьютексов InnoDB. Вместо того чтобы разбивать буфер­
ный пул - старый проверенный способ, работающий во многих системах, таких

как InnoDB, - мы решили разделить ряд глобальных мьютексов на более мелкие
специализированные мьютексы. Наши эталонные тесты показывают, что лучший

результат достигается при комбинации двух подходов, которая реализована в Percona
Server версии 5.5: несколько буферных пулов и более мелкие мьютексы.

Дополнительные настройки InnoDB 443

О innodb_io_capacity. Ранее InnoDB разрабатывалась в предположении, что она
работает на одном жестком диске, способном выполнять 100 операций ввода/вы­
вода в секунду. Это была неудачная настройка по умолчанию. Теперь вы можете

задать для InnoDB производительность доступной системы ввода/вывода. Ино­
гда необходимо установить довольно большое значение этого параметра (десятки

тысяч для чрезвычайно быстрых элементов хранения, таких как flаsh-устройства

PCI-E), для устойчивого сброса «грязных• страниц. Причины этого действия
довольно сложно объяснить.

О innodb_read_io_threads и innodb_write_io_threads. Эти параметры определяют,
сколько фоновых потоков доступно для операций ввода/вывода. По умолчанию

в последних версиях MySQL есть четыре потока чтения и четыре потока записи,
которых вполне достаточно для большинства серверов, особенно при реализации

естественного асинхронного ввода/вывода, доступного в MySQL 5.5. Если у вас
много жестких дисков, рабочая нагрузка обладает высокой конкурентностью и вы
видите, что потоки с трудом справляются с нагрузкой, то можете увеличить ко­

личество потоков или даже установить их количество равным числу физических

шпинделей, которые используются для ввода/вывода (даже если они расположе­

ны за RАID-контроллером).

О innodb_strict_mode. Этот параметр заставляет InnoDB в некоторых условиях
выдавать ошибки вместо предупреждений, особенно при недопустимых или даже
опасных параметрах команды СRЕАТЕ TABLE. Если включите эту параметр, обяза­

тельно проверьте команды CREATE TABLE: в этом случае может не получиться создать

некоторые таблицы, которые ранее отлично создавались. Иногда это огорчает и ста­

новится слишком большим ограничением. Вы вряд ли захотите выяснить это лишь
тогда, когда будете пытаться восстановить данные из резервной копии.

О innodb_old_Ыocks_time. У InnoDB есть список недавно использованного (least
recently used, LRU) двухчастного буферного пула, который предназначен для пре­
дотвращения нежелательных запросов от вытесняемых страниц, которые много

раз использовались в течение длительного времени. Разовый запрос, например

выполненный утилитой mysqldump, как правило, включает страницу в список
LRU буферного пула, считывает из нее строки и переходит к следующей стра­
нице. Теоретически двухчастный список LRU помешает этой странице вытеснить
страницы, которые будут нужны в течение длительного времени. Эти страницы

будут помещены в новый подсписок, и только после того, как к ним обратятся
несколько раз, они будут перемещены в старый подсписок. Но в InnoDB такое
поведение не задано по умолчанию, поскольку страница состоит из нескольких

строк и, следовательно, множественный доступ к чтению этих строк со страницы

приведет к тому, что она немедленно переместится в старый подсписок, вытесняя

страницы, которые требуются в течение длительного времени. Эта перемен­

ная определяет количество миллисекунд, которое должно пройти до перехода

страницы из новой части списка I"RU в старую. Ее значение по умолчанию - 0,

а присвоение ее небольшого значения, такого как 1000 (1 секунда), признано вы­
сокоэффективным при эталонном тестировании.

444 Глава 8 • Оптимизация параметров сервера

Итоги главы

Изучив эту главу, вы сможете сконфигурировать свой сервер намного лучше, чем

предусмотрено настройками по умолчанию. Сервер должен быть быстрым и стабиль­
ным, и у вас не должно возникать необходимости подправлять его конфигурацию,
кроме как в чрезвычайных обстоятельствах.

Напомним: мы предложили начать с применения нашего образца файла конфи­

гурации, установить основные параметры для ваших сервера и рабочей нагрузки,
добавить желаемые параметры безопасности и готовности к работе и при необхо­
димости настроить новые параметры, доступные в плагине InnoDB и MySQL 5.5.
Это действительно все, что вам нужно сделать.

Если вы используете InnoDB, как делает большинство, то наиболее важными пара­
метрами являются два:

1:1 innodb_buffer _pool_size;

1:1 innodb_log_file_size.

Поздравляем - вы только что решили подавляющее большинство проблем конфи­
гурации, с которыми мы встречались на практике! Если вы воспользуетесь нашим

инструментом настройки с сайта http://tools.percona.com, то получите хорошую отправ­
ную точку для этих и других параметров конфигурации.

Мы также внесли много предложений о том, чего делать не следует. Наиболее важ­

ными из них являются следующие:

1:1 не делайте тонкую настройку своего сервера;

1:1 не используйте коэффициенты, формулы или настроечные скрипты в качестве

основы для установки переменных конфигурации;

1:1 не доверяйте советам неизвестных людей в Интернете;

1:1 не охотьтесь с командой SHOW STATUS наперевес на элементы, которые «плохо вы­

глядят». Если что-то действительно не так, это проявится при профилировании

вашего сервера.

Есть несколько важных настроек, которые мы не рассмотрели в этой главе, но кото­

рые важны для конкретных типов аппаратных средств и рабочих нагрузок. Мы от­

ложили их обсуждение, потому что считаем, что любые рекомендации по поводу
настроек должны быть сопряжены с объяснением того, как протекают внутренние
процессы. Это приводит нас к следующей главе, в которой мы покажем, как оптими­

зировать оборудование и операционную систему для MySQL и наоборот.

Оптимизация операционной
системы и оборудования

Сервер MySQL в целом работает не лучше, чем самое слабое звено всего аппарат­
но-программного комплекса, и зачастую лимитирующими факторами являются

операционная система и оборудование. Емкость диска, объем доступной памяти,

ресурсы процессора, сеть и компоненты, которые связывают все воедино, - все это

может ограничивать общую производительность системы. Таким образом, вам не­

обходимо тщательно выбрать оборудование и соответствующим образом настроить

его и операционную систему. Например, если при текущей рабочей нагрузке узким

местом является ввод/вывод, то можно, конечно, попробовать перепроектировать

приложение так, чтобы уменьшить объем подобных операций на уровне MySQL.
Но чаще разумнее обновить подсистему ввода/вывода, установить дополнительную

память или переконфигурировать существующие диски.

Оборудование меняется очень быстро, поэтому все, что мы напишем о конкретных

продуктах или компонентах в этой главе, быстро устареет. Как обычно, наша цель -
помочь вам лучше разобраться в протекающих процессах, чтобы вы могли применять

свои знания в ситуациях, которые мы напрямую не рассмотрели. Однако будем рас­

сматривать имеющееся в настоящее время оборудование, чтобы проиллюстрировать

свои тезисы.

Что ограничивает производительность MySQL
На производительность MySQL могут влиять многие аппаратные компоненты, но
чаще всего узким местом оказываются перегрузка процессора и подсистемы ввода/

вывода. Перегрузка процессора возникает, когда MySQL работает с данными, кото­
рые целиком помещаются в оперативной памяти или могут считываться с диска с не­

обходимой скоростью. При доступных в настоящее время объемах ОЗУ множество

наборов данных полностью помещаются в память.

В то же время перегрузка подсистемы ввода/вывода обычно наблюдается, когда нуж­

но прочитать больше данных, чем помещается в память. Если приложение является

446 Глава 9 • Оптимизация операционной системы и оборудования

распределенным или выполняет очень много запросов и/или требуется небольшая

задержка, это узкое место может переместиться в сеть.

Методики, показанные в главе 3, помогут вам найти лимитирующий фактор своей
системы, однако не позволяйте себе останавливаться на очевидном, когда покажет­
ся, что вы нашли узкое место. Слабое звено в одном сегменте часто воздействует на

какую-то другую подсистему, которая и кажется источником проблем. Например,
в случае нехватки памяти MySQL может быть вынуждена сбрасывать кэши, чтобы
освободить место, а спустя мгновение снова читать только что записанные на диск

данные (это относится как к операциям чтения, так и к операциям записи). В таком

случае недостаток памяти проявится как насыщение подсистемы ввода/вывода. Когда

вы находите компонент, который ограничивает систему, спросите себя: ~является ли
этот компонент проблемой, или система предъявляет необоснованные требования
к этому компоненту?~ Мы рассмотрели этот вопрос в кейсе в главе 3.

Можно привести и другой пример: перегрузка шины памяти может выглядеть как

недостаток мощности ЦП. На самом деле, когда мы говорим, что ЦП - узкое место

или что приложение ограничено возможностями процессора, мы имеем в виду, что

оно занято главным образом вычислениями. В дальнейшем мы подробнее займемся

этим вопросом.

Как выбирать процессоры для MySQL
При модернизации или покупке нового оборудования необходимо решить, ограни­
чена ли рабочая нагрузка возможностями процессора.

Определить, какова нагрузка, можно, посмотрев на уровень использования про­

цессора, но лучше не следить за общей загруженностью ЦП, а попытаться изучить
соотношение загруженности ЦП и подсистемы ввода/вывода для наиболее важных
запросов, обращая особое внимание на то, все ли процессоры загружены равномерно.

Чтобы понять, что именно ограничивает производительность сервера, можно вос­

пользоваться инструментами, которые мы рассмотрим чуть позже.

Что лучше: быстрые процессоры
или много процессоров

Если рабочая нагрузка приводит к перегрузке ЦП, то, как правило, для MySQL луч­
ше, когда процессоры более быстрые (в противоположность большему количеству

процессоров).

Не всегда это так, поскольку все зависит от характера рабочей нагрузки и количества
ЦП. Старые версии MySQL плохо масштабировались на большое число процессо­
ров, и даже новые версии MySQL не умеют распараллеливать выполнение одного
запроса на несколько ЦП. В результате время обработки запроса с большим объемом
вычислений ограничено именно быстродействием процессора.

Как выбирать процессоры для MySQL 447

Когда мы говорим о процессорах, то для упрощения текста несколько вольно об­
ращаемся с терминологией. Современные промышленные серверы обычно имеют
несколько со кетов, в каждом из которых есть несколько ядер процессора (которые

имеют независимые функциональные блоки), а каждое ядро может иметь несколько
аппаратных потоков. Требуется некоторое время, чтобы разобраться в этой сложной
архитектуре, и мы не всегда будем придерживаться четкой терминологии. Как пра­
вило, говоря о скорости процессора, мы имеем в виду скорость функционального

блока, а когда упоминаем количество процессоров, имеем в виду число, которое ви­
дит операционная система, хотя оно может быть кратным количеству независимых

функциональных блоков.

Современные процессоры значительно улучшены по сравнению с теми, что исполь­

зовались несколько лет назад. Например, сегодняшние процессоры Intel намного
быстрее, чем предыдущие поколения, из-за таких модификаций, как непосред­
ственно подключенная память и улучшенное соединение с такими устройствами, как

РСiе-карты. Это особенно актуально для очень быстрых устройств хранения, таких
как флеш-накопители Fusion-io и Virident PCie.

Гиперпоточность также работает намного лучше, чем раньше, а операционные систе­

мы сейчас отлично знают, как ее использовать. Раньше считали, что операционные

системы не понимают, что два виртуальных процессора действительно находятся на

одном и том же кристалле, и планировали задачи для двух виртуальных процессоров,

располагающихся на одном и том же физическом функциональном блоке, полагая,
что они независимы. Разумеется, один функциональный блок не может одновремен­
но запускать два процесса, поэтому они будут конфликтовать и бороться за ресурсы.
Тем не менее операционная система оставила бы остальные CPU бездействующими,
понапрасну растрачивая мощность. Операционная система должна использовать

гиперпоточность, поскольку должна знать, когда функциональный блок фактически
неактивен, и соответствующим образом переключать задачи. Общей причиной воз­
никновения таких проблем было ожидание шины памяти, которая может занимать
до 100 циклов процессора и аналогична ожиданию ввода/вывода в очень малом
масштабе. В новых операционных системах все это значительно улучшено. Теперь
гиперпоточность работает нормально; раньше мы часто советовали людям время от
времени отключать ее, но с некоторых пор перестали это делать.

Все это говорит о том, что сейчас у вас может быть много быстрых процессоров -
гораздо больше, чем могло быть, когда мы опубликовали второе издание этой книги.
Итак, что лучше, много или быстро? Обычно лучше и то и другое. В общем, перед
вами могут стоять две цели.

О Обеспечить для сервера низкую задержку (быстрое время отклика). Для дости­
жения этой цели требуются быстрые ЦП, так как каждый запрос выполняется
ТОЛЬКО на ОДНОМ процессоре.

о Обеспечить для сервера высокую пропускную способность. Если одновременно
выполняется много запросов, то их обслуживание можно ускорить за счет уве­

личения количества процессоров. Однако на практике это зависит от многих

факторов. Так как MySQL с ростом числа процессоров плохо масштабируется, то

448 Глава 9 • Оптимизация операционной системы и оборудования

существует некий предел числа используемых процессоров. В более старых версиях
сервера (приблизительно до поздних выпусков MySQL 5.1) это было серьезным
ограничением. В более новых версиях вы можете с уверенностью масштабировать
до 16 или 24 процессоров, а может, и дальше в зависимости от того, какую версию
используете (здесь у Percona Server есть небольшое преимущество).

Если имеется несколько ЦП, а запросы выполняются не одновременно, то MySQL
все же может задействовать дополнительные процессоры для таких фоновых задач,

как вытеснение буферов InnoDB, сетевые операции и т. д. Но обычно эти задания -
ничто по сравнению с выполнением запросов.

Репликация в MySQL (обсуждается в следующей главе) также выигрывает от на­
личия быстрых процессоров, а не от того, что их много. Если рабочая нагрузка огра­
ничена мощностью процессора, то распараллеливание ее на главном сервере после

сериализации легко может привести к такой нагрузке на подчиненный сервер, с кото­

рой тот не справится, даже если он мощнее главного. Впрочем, обычно узким местом

на подчиненном сервере оказывается подсистема ввода/вывода, а не процессор.

Если рабочая нагрузка ограничена возможностями процессора, есть и другой подход
к вопросу о том, что лучше - более быстрый процессор или большее количество ЦП?
Необходимо проанализировать, что именно делают запросы. На аппаратном уровне
запрос может либо выполняться, либо находиться в состоянии ожидания. Наиболее
распространенными причинами ожидания являются пребывание в очереди на вы­
полнение (когда процесс готов выполняться, но все процессоры заняты), ожидание

защелки или блокировки и ожидание завершения дисковой операции или сети.
Как вы полагаете, чего ждут запросы? Если они ожидают освобождения защелки или
блокировки, то, как правило, помогает увеличение быстродействия процессора; если
они стоят в очереди на выполнение, тогда может помочь увеличение как количества

процессоров, так и их быстродействия. (Бывают и исключения, например ожидание
мьютекса, защищающего буфер журнала InnoDB, который не освобождается до пол­
ного завершения операции ввода/вывода, - это может указывать на недостаточную

пропускную способность подсистемы ввода/вывода.)

При этом MySQL может эффективно задействовать несколько процессоров для
некоторых разновидностей рабочей нагрузки. Пусть, например, имеется множество
соединений, выполняющих запросы к разным таблицам (следовательно, не возникает
конкуренции за табличные блокировки - проблемы, характерной для таблиц типа
MyISAM и Memory), и общая пропускная способность сервера важнее времени от­
клика для отдельных запросов. При таком сценарии пропускная способность может

быть очень высока, поскольку все потоки работают одновременно, не конкурируя
между собой.

Но опять-таки заметим, что на практике все может обстоять хуже, чем в теории:
в InnoDB имеются глобальные разделенные структуры данных независимо от того,
читают ли запросы из отдельных таблиц или нет, а MyISAM имеет глобальные бло­
кировки в каждом буфере ключей. Это не только подсистемы хранения - во всем
винили InnoDB, но после некоторых улучшений проявились другие узкие места на
более высоких уровнях на сервере. Печально известный мьютекс LOCK _ open может

Как выбирать процессоры для MySQL 449

быть реальной проблемой для MySQL 5.1 и более старых версий, то же самое можно
сказать о некоторых других мьютексах на уровне сервера (например, о кэше запросов).

Обычно эти типы конкуренции можно диагностировать с пом_ощью трассировки
стека (см., например, утилиту pt-pmp в пакете Percona Toolkit). Если вы столкнулись
с такими проблемами, возможно, стоит изменить конфигурацию сервера, отключив

или изменив компонент-нарушитель, секционировать (шардировать) свои данные

или что-то изменить в своей работе. В реальности может возникнуть так много про­

блем, которые будут требовать от нас соответствующих решений, что перечислить
их все не представляется возможным. Однако, к счастью, ответ обычно становится
очевиден после того, как установлен верный диагноз. К счастью, большинство про­
блем - это крайние случаи, с которыми вы вряд ли столкнетесь, а наиболее распро­
страненные случаи исправляются с течением времени в самом сервере.

Архитектура ЦП

Вероятно, более 99 % экземпляров сервера MySQL (исключая встроенное исполь­
зование) запускаются на архитектуре х86 на чипах Intel или AMD. В этой книге мы
по большей части будем рассматривать именно такую архитектуру.

Сейчас повсеместно используются 64-разрядные архитектуры, и купить 32-разряд­

ный процессор очень трудно. MySQL неплохо работает на 64-разрядных процессорах,
хотя некоторые его внутренние компоненты еще не переписаны для полной под­

держки такой архитектуры, поэтому, если вы используете старую версию сервера,

возможно, вам надо быть осторожными. Например, в ранних версиях MySQL 5.0 объем
буфера ключей MyISAM ограничен 4 Гбайт - это размер, который можно адресовать
32-разрядным числом (впрочем, для преодоления этого ограничения можно создать

несколько буферов ключей).

Убедитесь, что вы используете 64-разрядную операционную систему на 64-разрядном
оборудовании. В наши дни это встречается реже, чем прежде, но ранее большинство
хостинг-провайдеров установили 32-разрядные операционные системы на серверы,

даже если на серверах были 64-разрядные процессоры. Это означает, что они не мо­
гли использовать большой объем памяти: хотя некоторые 32-разрядные системы
и поддерживают очень большой объем памяти, они все же неспособны работать
с ней столь же эффективно, как 64-разрядная система, и не один процесс не сможет

адресоваться более чем к 4 Гбайт памяти.

Масштабирование на несколько процессоров и ядер

Где несколько ЦП можно задействовать с пользой, так это в системах оперативной

обработки транзакций (OLTP). В них обычно приходится иметь дело с большим
количеством мелких операций, которые можно выполнять на разных процессорах,

поскольку они поступают по разным соединениям. В таких условиях конкурентный

доступ становится узким местом. К этой категории систем относится большинство

веб-приложений.

450 Глава 9 • Оптимизация операционной системы и оборудования

На серверах для оперативной обработки транзакций обычно применяется подсистема
хранения InnoDB, в которой есть ряд нерешенных проблем с конкурентным доступом
при наличии нескольких ЦП. Однако узким местом может стать не только InnoDB.
Любой разделяемый ресурс - потенциальный источник конкуренции. InnoDB при­
влекает столь пристальное внимание просто потому, что чаще всего используется

в условиях высокого конкурентного доступа, но MyISAM выглядит ничуть не луч­
ше, если ее как следует нагрузить, даже без какого-либо изменения данных. Многие
узкие места, относящиеся к конкурентному доступу, например блокировки строк
в InnoDB и табличные блокировки в MyISAM, невозможно устранить в принципе,
единственное решение - выполнить операцию как можно быстрее, чтобы освобо­
дить блокировку и позволить работать тем потокам, которые ее ожидают. Неважно,
сколько имеется процессоров, если все они вынуждены ждать освобождения одной­
единственной блокировки. Таким образом, даже при наличии рабочей нагрузки
с высокой степенью конкурентности иногда удается получить выигрыш от наличия

более быстрых процессоров.

На самом деле в базах данных есть два вида проблем, относящихся к конкурентному
доступу, и для их решения нужно применять разные подходы.

О Логическая конкуренция. Конкуренция за ресурсы, видимые приложению, на­

пример за блокировки на уровне строки или таблицы. Для решения подобных
проблем требуются такие мероприятия, как, например, изменение логики при­
ложения, использование другой подсистемы хранения, изменение конфигурации

сервера или применение других блокировочных подсказок оптимизатору или
уровней изоляции транзакций.

О Внутренняя конкуренция. Конкуренция за такие ресурсы, как семафоры, доступ

к страницам буферного пула InnoDB и т. д. Можно попробовать найти обходное
решение путем изменения конфигурации сервера, параметров операционной

системы или установки другого оборудования, но, как правило, вам придется
смириться с имеющимися ограничениями. Иногда проблему удается смягчить,
воспользовавшись другой подсистемой хранения или наложив заплату на уже

используемую.

Количество процессоров, которые MySQL может эффективно задействовать, и мас­
штабируемость MySQL при возрастании нагрузки - паттерн масштабируемо­

сти - зависят как от характера рабочей нагрузки, так и от системной архитектуры.
Под системной архитектурой мы понимаем операционную систему и оборудование,

а не приложение, в котором используется MySQC На паттерн масштабируемости
MySQL оказывают влияние такие факторы, как архитектура процессора (RISC,
CISC, глубина конвейера и т. д.), модель процессора и операционная система. Имен­
но поэтому так важно эталонное тестирование: некоторые системы продолжают

прекрасно работать при увеличении степени конкурентности, тогда как показатели
других резко ухудшаются.

Иногда увеличение количества процессоров приводит даже к ухудшению общей про­
изводительности. Причем это весьма распространенная проблема: мы знаем многих,
кто пытался апгрейщrrь четырехъядерную систему до восьмиядерной, но был вынуж-

Как выбирать процессоры для MySQL 451

ден вернуться к старой системе (или предоставить в распоряжение процесса MySQL
только четыре ядра из восьми) из-за снижения производительности. В MySQL 5.0
до появления патчей Google, а затем и Percona Server магическим числом были че­
тыре ядра, но сейчас мы видим людей, работающих на серверах с 80 «процессорами~
(по данным операционной системы). Планируя большое обновление, проверьте свое
оборудование, версию сервера и рабочую нагрузку.

Некоторые узкие места, препятствующие масштабируемости, находятся в самом
сервере, тогда как другие - на уровне подсистем хранения. Очень важно, для чего

проектировалась конкретная подсистема хранения: иногда переход на другую под­

систему позволяет более эффективно задействовать большее количество ЦП.

Войны за увеличение быстродействия ЦП, полыхавшие на рубеже столетий, сейчас

несколько поутихли, производители процессоров теперь больше озабочены увели­
чением количества ядер и такими вариациями на эту тему, как гиперпоточность.

Вполне может оказаться, что процессор будущего станет обладать несколькими
сотнями ядер, уже сегодня четырех- и шестиядерный ЦП не вызывают удивления.

Внутренняя архитектура процессоров разных производителей настолько сильно раз­

личается, что невозможно высказать общие соображения о взаимодействии между
потоками, процессорами и ядрами. Очень важно и то, как спроектированы память

и шина доступа к ней. Ну и наконец, от архитектуры зависит и ответ на вопрос, что

лучше - несколько ядер или несколько физических процессоров.

Стоит упомянуть еще две особенности современных процессоров. Первая - частот­

ное масштабирование. Это мощная методика управления, которая динамически
изменяет тактовую частоту процессора в зависимости от спроса на ЦП. Проблема
в том, что он иногда не очень хорошо справляется с трафиком, состоящим из па­

кетов коротких запросов, поскольку операционной системе может потребоваться
некоторое время, чтобы решить, что процессоры должны тикать с запаздыванием.
В результате запросы могут временно работать на более низкой скорости с увели­

ченным временем отклика. Частотное масштабирование может замедлить работу
при неравномерных нагрузках, а также, что более важно, дестабилизировать произ­
водительность.

Вторая особенность - технология турбоускорения, которая меняет наше представле­
ние о процессорах. Мы привыкли думать, что у нашего четырехъядерного процессора

с тактовой частотой 2 ГГц есть четыре одинаково мощных ядра независимо от того,
простаивают они или нет. И поэтому вполне масштабируемая система может добить­
ся в четыре раза большей производительности при использовании всех четырех ядер.
Но на самом деле это не так: когда система использует только одно ядро, процессор

может работать с более высокой тактовой частотой, например 3 ГГц. Это может поме­
шать реализации планов по увеличению мощности и масштабируемости, поскольку

система ведет себя нелинейно. Это также означает, что простаивающий процессор
не является потраченным впустую ресурсом. Если у вас есть сервер, который в одном

потоке запускает репликацию, а также имеются три простаивающих процессора,

которые, как вы считаете, можно использовать для решения других задач и это не по­

влияет на репликацию, то вы, скорее всего, ошибаетесь.

452 Глава 9 • Оптимизация операционной системы и оборудования

Поиск баланса между памятью и дисками
Иметь много памяти важно прежде всего ве для того, чтобы уместить в ней как можно

больше данных, а для того, чтобы избежать дисковых операций ввода/вывода, кото­
рые на несколько порядков медлевнее, чем доступ к оперативной памяти. Хитрость

в том, чтобы найти правильный баланс между объемом оперативной и дисковой
памяти, быстродействием, затратами и другими характеристиками , которые обе­
спечили бы высокую производительность при данной рабочей нагрузке. Но прежде,
'!ем заняться решением этой задачи, ненадолго вернемся к основам.

Любой компьютер содержит пирамиду кэшей, причем на каждом уровне объем
уменьшается, а быстродействие и затраты растут (рис. 9.1).

m Регистры ЦП

i: • са m f?- Кэш (-и) ЦП

~~
(,.) -
~ ~ Оперативная память

.tl
:r
~ Жесткий диск

Рис. 9.1. Иерархия кэшей

Чем выше в иерархии находится кэш, тем он лучше приспособлен для хранения
часто используемых данных и увеличевия скорости доступа к ним. Обычно приме­
няются такие эвристические правила, как «да1111ые, к которым обращались недавно,

скорее всего, потребуются снова~ и «данные, расположенные бли:3ко к недавно ис­
пользованным, вероятно, тоже скоро понадобятся~. Подобные правила работают
благодаря пространственной и временной локальности ссьи1ок.

Для программиста регистры ЦП и кэши прозрачны и архитектурно зависимы.

Ими управляют компилятор и сам процессор. Однако разница между оперативной

памятью и жестким диском для программиста весьма ощутима, и программы рабо­
тают с этими видами памяти совершенно по-разному1 •

В особенности это относится к серверам баз данных, поведевие которых зачастую
идет вразрез с предсказаниями, выполненными по вышеупомянутым эвристиче­

ским правилам. Удачно спроектированный кэш базы данных (такой как буферный

пул в InnoDB) обычно оказывается эффективнее кэша операционной системы, ори·
ентированного на задачи общего характера. Кэш базы данных знает о самих данных
гораздо больше, и его логика ориентирована на обслуживание специфических потреб-

Впрочем, программы могут полагаться на то, что операционная система кэширует в намяти

большой объем данных, которые концептуально находятся на д11ске. Именно так, кстати ,

и поступает MySQL. Она рассматривает файлы данных как постоянно находящиеся на
дисках и позволяет операционной системе заботиться об их кэшировании для ускорения
доступа.

Поиск баланса между памятью и дисками 453

ностей базы данных (например, порядка записи). Кроме того, для доступа к данным,
хранящимся в кэше базы данных, не нужен системный вызов.

Из-за названных особенностей специализированного кэша вы должны настраивать

иерархию кэшей в соответствии с типичными паттернами доступа к данным в базе.
Поскольку регистры и кэши на материнской плате не могут быть сконфигурирова­
ны пользователем, то в вашем распоряжении остаются только оперативная память

и жесткий диск.

Произвольный и последовательный ввод/вывод

В серверах баз данных применяется как последовательный, так и произвольный
ввод/вывод, причем наибольший выигрыш от кэширования получается в послед­
нем случае. В этом легко убедиться, мысленно представив себе смешанную рабочую
нагрузку, в которой сочетаются операции поиска одиночных строк и поиска по диа­

пазону, возвращающему множество строк. Как правило, часто используемые данные

распределены случайным образом, поэтому их кэширование позволяет избежать за­

тратных операций поиска на диске. Напротив, при последовательном доступе данные

обычно считываются только один раз, поэтому кэшировать их бессмысленно, кроме
случая, когда они целиком помещаются в память.

Операции последовательного чтения мало выигрывают от кэширования еще и по­

тому, что они выполняются быстрее операций произвольного чтения. Тому есть две
причины.

1:1 Последовательный ввод/вывод быстрее произвольного. Последовательные опе­
рации выполняются быстрее произвольных и в оперативной памяти, и на диске.

Предположим, что диск способен выполнить 100 произвольных операций ввода/
вывода в секунду и последовательно прочитать 50 Мбайт в секунду (примерно
такие показатели характерны для большинства современных дисков потреби­
тельского класса). Если длина строки составляет 100 байт, то при произвольном
доступе можно будет прочитать 100 строк в секунду, а при последовательном -
500 ООО. Разница в 5000 раэ, то есть на несколько порядков. Поэтому при таком
сценарии кэширование результатов операций произвольного доступа оказыва­

ется гораздо полезнее.

Последовательный доступ к строкам в оперативной памяти также быстрее про­

извольного. Современные микросхемы памяти обычно способны прочитать
в секунду примерно 250 ООО строк длиной 100 байт при доступе с произвольной
выборкой или 5 миллионов таких же строк последовательно. Обратите внимание
на то, что произвольный доступ к памяти в 2500 раз быстрее такого же доступа
к диску, тогда как последовательный быстрее всего лишь в десять раз.

1:1 Подсистемы хранения могут выполнять последовательное чтение быстрее про­
извольного. Для произвольного доступа подсистема хранения обычно должна

воспользоваться индексом. (Из этого 11равила есть исключения, но для InnoПb

и MyISAM оно справедливо.) Чаще всего это требует навигации по В-дереву

454 Глава 9 • Оптимизация операционной системы и оборудования

и сравнения значений. В то же время последовательное чтение обычно сводится
к обходу гораздо более простой структуры данных, например связанного списка.
Работы в этом случае гораздо меньше, а значит, последовательное чтение проис­
ходит быстрее.

Наконец, произвольное чтение обычно выполняется для поиска отдельных строк.
Но чтение - это не только одна строка, это целая страница данных, большинство

из которых не нужны. Что означает большой объем работы, проделанной впустую.

В то же время последовательное чтение, как правило, используется для извлечения

всех строк страницы, поэтому с точки зрения затрат оно было более эффективно.

Кэширование результатов последовательного чтения позволяет кое-что сэкономить,

но эффективность кэширования результатов произвольного чтения многократно

выше. Иными словами, для решения проблем, возникающих из-за ввода/вывода

с произвольным доступом, лучше всего добавить память, если такая возможность
существует.

Кэширование, чтение и запись

Если памяти достаточно, то при чтении можно вообще обойтись без доступа к диску.

Коль скоро все данные помещаются в памяти, то после «прогреваi> сервера любая опе­
рация чтения будет удовлетворяться из кэша. Логические операции чтения, конечно

же, останутся, но физических не будет. Однако с записью все обстоит по-другому.
Операцию записи, как и операцию чтения, можно выполнить в памяти, но рано или

поздно данные должны быть зафиксированы на диске. Другими словами, кэш по­

зволяет отложить запись на диск, но не устранить ее полностью, как в случае чтения.

Помимо откладывания записи, кэш позволяет группировать несколько операций

двумя способами.

l:J Много операций записи, одна операция сброса. Один и тот же элемент данных мо­
жет быть многократно изменен в памяти без записи на диск всех новых значений.
Когда в итоге данные все же сбрасываются на диск, то фиксируется результат всех

модификаций, произошедших с момента последней физической записи. Напри­

мер, хранящийся в памяти счетчик может обновляться несколькими командами.

Если он был увеличен в 100 раз, а затем записан на диск, то получится, что 100 из­
менений сгруппированы в одну операцию физической записи.

l:J Обьединение операций ввода/вывода. Можно модифицировать в памяти несколько
разных элементов данных, а затем собрать все изменения вместе и выполнить их
одной операцией физической записи на диск.

Именно поэтому во многих транзакционных системах применяется упреждающая

запись в журнал. Эта технология позволяет выполнять изменения на страницах,

хранящихся в оперативной памяти, не сбрасывая их на диск, так как последнее по­
требовало бы операций ввода/вывода с произвольным доступом, что протекает очень
медленно. Вместо этого протокол изменений записывается в последовательный файл

Поиск баланса между памятью и дисками 455

журнала - данная операция выполняется гораздо быстрее. Впоследствии фоновый

поток записывает модифицированные страницы в нужное место, причем попутно

может оптимизировать запись.

Существенно ускорить операции записи позволяет буферизация, поскольку она

преобразует произвольный ввод/вывод в последовательный. Асинхронная (буфе­

ризованная) запись обычно возлагается на операционную систему, которая может
производить пакетный сброс на диск наиболее оптимальным образом. Синхронные
(небуферизованные) записи должны быть занесены на диск до их завершения.
Именно поэтому такой выигрыш дает буферизация на уровне RАID-контроллера,

оборудованного кэшем записи с резервным электропитанием (мы обсудим техноло­

гию RAID в дальнейшем).

Что такое рабочее множество

У каждого приложения есть рабочее множество данных, то есть те данные, которые
ему реально нужны для работы. В большинстве баз данных имеется также информа­

ция - и много, - не входящая в рабочее множество. Базу можно представлять себе

как стол с выдвижными ящиками. Рабочее множество состоит из тех документов,

которые должны лежать на столе для работы. В этом случае поверхность стола явля­
ется аналогом оперативной памяти, а ящики - аналогами жестких дисков. Чтобы

выполнить свою работу, вам вовсе не обязательно выкладывать на стол все бумажки.

Точно так же для достижения оптимальной производительности не нужно загружать

в память всю базу данных - достаточно рабочего множества.

Размер рабочего множества серьезно зависит от приложения. Для одних программ

рабочее множество составляет всего 1 % от общего объема данных, а для других
приближается к 100 %. Если рабочее множество не умещается целиком в памяти, то
сервер вынужден перемещать информацию между диском и памятью. Поэтому не­

хватка памяти может выглядеть как проблема с вводом/выводом. Иногда поместить
все рабочее множество в память в принципе невозможно, а иногда это и не нужно
(например, если приложение занято преимущественно последовательным вводом/

выводом). В целом архитектура приложения может существенно зависеть от того,

умещается ли рабочее множество целиком в оперативную память.

Рабочее множество можно определить как основанный на времени процентиль.
Например, 95-й процентиль одночасового рабочего множества - это набор страниц,

которые база данных использует в течение 1 часа, за исключением 5 % страниц,
которые задействуются реже прочих. Процентиль - это наиболее полезный способ
оценки рабочего множества, поскольку возможно, что в течение каждого часа вы­
полняется доступ только к 1 % всех данных, но за 24 часа это может вылиться в 20 %.
Быть может, полезнее рассуждать о рабочем множестве как об объеме данных, ко­
торые необходимо кэшировать для того, чтобы рабочая нагрузка была ограничена
лишь процессорными мощностями. Если вы не можете поместить в кэш достаточно

информации, значит, рабочее множество не умещается в памяти.

456 Глава 9 • Оптимизация операционной системы и оборудования

О рабочем множестве следует говорить в терминах наиболее часто используемого
набора страниц, а не наиболее часто читаемого или записываемого. Это означает, что
определение рабочего множества требует нужных инструментов внутри приложения:
вы не можете просто смотреть на внешнее использование, такое как доступ к вводу/

выводу, поскольку ввод/вывод на страницы - зто не то же самое, что логический

доступ к страницам. MySQL может прочитать страницу в память, а затем получить
доступ к ней миллионы раз, но вы увидите только одну операцию ввода/вывода,

если, например, будете использовать утилиту strace. Отсутствие инструментов, не­
обходимых для определения рабочего множества, вероятно, является самой значимой
причиной того, что на эту тему выполнено не так уж много исследований.

Рабочее множество состоит из данных и индексов, а исчислять его следует в едини­
цах кэширования. Единицей кэширования называется наименьший объем данных,
которым может оперировать подсистема хранения.

У разных подсистем хранения единицы кэширования различны, поэтому различен

и размер рабочего множества. Например, InnoDB по умолчанию оперирует страни­
цами размером 16 Кбайт. Если при поиске одиночной строки InnoDB должна обра­
титься к диску, то в буферный пул будет считана и закэширована вся содержащая ее
страница. Иногда зто расточительно.

Предположим, что произвольным образом считываются 100-байтные строки.
InnoDB придется использовать много дополнительной памяти в буферном пуле для
этих строк, поскольку ей придется читать и кэшировать полную страницу размером

16 Кбайт для каждой строки. А так как в рабочее множество входят и индексы, то
InnoDB вынуждена будет прочитать и закэшировать также те части дерева индекса,
которые нужны для поиска строки. Длина индексных страниц в InnoDB также со­
ставляет 16 Кбайт, следовательно, для доступа всего к одной 100-байтной строке
может потребоваться сохранить в кэше 32 Кбайт, а то и больше - в зависимости от
глубины дерева индекса. Поэтому единица кэширования - это еще одна причина, по
которой в InnoDB так важно правильно выбирать кластерные индексы. Кластерный
индекс позволяет не только оптимизировать доступ к диску, но и хранить взаимо­

связанные данные в пределах одной страницы, из-за чего в кэше помещается более
весомая доля рабочего множества.

Определение эффективного
соотношения «память - диск»

Приемлемое соотношение объема оперативной и дисковой памяти лучше всего опре­
делять путем экспериментирования и/или эталонного тестирования. Если можно

загрузить в оперативную память вообще все, то думать больше не о чем. Но, как
правило, это не так, поэтому необходимо выполнить эталонные тесты для некоторого
подмножества данных и посмотреть, что получится. Ваша цель - найти приемлемый

коэффициент непопадания в кэш. Непопадание наблюдается, когда для выполнения
запроса нужны данные, отсутствующие в кэше, так что серверу приходится читать

их с диска.

Поиск баланса между памятью и дисками 457

Коэффициент непопадания в кэш определяет то, насколько эффективно задей­
ствован процессор, поэтому для его оценки проще всего взглянуть на показатели

использования ЦП. Например, если 99 % всего времени ЦП работает, а оставший­
ся 1 % ожидает завершения ввода/вывода, то коэффициент непопадания можно
считать хорошим.

Рассмотрим, как рабочее множество влияет на коэффициент непопадания. Важно
понимать, что рабочее множество не просто число, в действительности оно представ­
ляет собой статистическое распределение, по отношению к которому коэффициент
непопадания нелинеен. Например, если имеется 1 О Гбайт памяти, а коэффициент
непопадания составляет 1 О %, то может показаться, что стоит добавить еще 11 %
памяти 1 - и коэффициент непопадания обратится в О. Но на самом деле из-за таких
деталей, как размер единицы кэширования, для достижения коэффициента непо­

падания 1 % может потребоваться целых 50 Гбайт памяти. И даже при точном совпа­
дении с единицей кэширования теоретическая оценка может оказаться неверной:

ситуация нередко осложняется, например, из-за порядка доступа к данным. Чтобы

получить коэффициент непопадания 1 %, в зависимости от рабочей нагрузки может
потребоваться и 500 Гбайт памяти!

Очень легко увлечься оптимизацией того, что не дает большого выигрыша. Напри­

мер, значение коэффициента непопадания 1 О % может означать, что ЦП занят 80 %
времени, а это совсем неплохо. Предположим, что путем добавления памяти вы смо­
гли сократить коэффициент непопадания до 5 %. Сильно упрощая картину, можно
сказать, что вы подбросили процессору еще 6 % данных. Пойдя еще на одно упро­
щение, скажем, что вы довели коэффициент использования процессора до 84,8 %.
Но это не такая уж большая победа, если принять во внимание деньги, потраченные
на приобретение необходимой для этого памяти. К тому же на самом деле разли­
чия в скорости доступа к памяти и диску, характер обработки данных процессором

и целый ряд других факторов могут привести к тому, что снижение коэффициента

непопадания до 5 % не изменит коэффициента использования ЦП.

Поэтому мы в самом начале сказали, что стремиться нужно к приемлемому коэф­

фициенту непопадания в кэш, а не к нулевому. Невозможно точно указать желаемое

значение, поскольку, что считать приемлемым, зависит от конкретного приложения

и рабочей нагрузки. Некоторые задачи прекрасно ведут себя при коэффициенте не­
попадания 1 %, тогда как для нормальной работы других необходим коэффициент
0,01 %. («Хороший коэффициент непопадания в кэш~ - расплывчатое понятие, а тот

факт, что подсчитать его можно разными способами, только усложняет дело.)

Оптимальное соотношение «память - диск~ зависит и от других компонентов систе­

мы. Предположим, что в вашем компьютере 16 Гбайт оперативной памяти, 20 Гбайт
данных и очень много свободного места на диске. Система прекрасно работает, и про­
цессор загружен на 80 %. Если вы захотите увеличить объем данных вдвое, сохранив
уровень производительности, возможно, для этого вы решите удвоить количество

Именно 11, а не 10 %. Если коэффициент непопадания равен 10 %, то коэффициент по­
падания - 90 %, поэтому необходимо разделить 10 Гбайт на 90 %, что дает 11,111 Гбайт.

458 Глава 9 • Оптимизация операционной системы и оборудования

процессоров и объем памяти. Однако даже если все компоненты системы идеаль­
но масштабируются с учетом возросшей нагрузки (совершенно нереалистичное

допущение), то такое решение, скорее всего, ничего не даст. Система, в которой

хранится 20 Гбайт данных, вероятно, задействует более 50 % пропускной способ­
ности какого-то компонента, например, не исключено, что количество операций

ввода/вывода уже составляет 80 % от максимума. О<1ередь внутри системы также
нелинейная. Справиться с удвоенной нагрузкой сервер уже не сможет. Таким

образом, наилучшее соотношение «память - диск» определяется самым слабым
компонентом системы.

Выбор жестких дисков

Если нужное количество данных поместить в память не удается, например, анализ

показал, что при имеющейся подсистеме ввода/вывода для полной загрузки процес­

сора необходимо 500 Гбайт памяти, то стоит подумать о приобретении более мощной
подсистемы ввода/вывода, пусть даже за счет памяти. При этом приложение нужно

проектировать с учетом задержек ввода/вывода.

Этот подход может показаться противоречащим интуиции. Ведь совсем недавно

мы говорили, что дополнительная память может снизить нагрузку на подсистему

ввода/вывода и сократить время ожидания. Так зачем же увеличивать мощность

этой подсистемы, если проблему можно решить добавлением памяти? Ответ заклю­

чается в том, что необходимо соблюдать баланс между различными факторами:

соотношением операций чтения и записи, длиной каждой операции ввода/вывода,

количеством таких операций в секунду. Например, если нужно, чтобы запись в жур­

нал выполнялась быстро, то невозможно исключить из уравнения диск простым

увеличением объема оперативной памяти. В таком случае лучше потратить деньги на
приобретение высокопроизводительной подсистемы ввода/вывода, оборудованной

кэшем записи с резервным питанием.

Напомним, что операция считывания с обычного жесткого диска состоит из трех

шагов.

1. Подвести головку считывания к нужной дорожке.

2. Ждать, пока в результате вращения диска нужные данные не окажутся под голов-

кой.

3. Ждать, пока все нужные данные не пройдут под головкой.

Скорость выполнения этих операций диском оценивается двумя показателями: вре­

менем доступа (совместно шаги 1 и 2) и скоростью передачи. Эти же два числа опре­
деляют задержку и пропускную способность. Что важнее, время доступа, скорость
передачи или сочетание того и другого, зависит от характера выполняемых запросов.

Если говорить о полном времени, необходимом для завершения чтения с диска, то

время поиска произвольной одиночной строки определяется в первую очередь ша­

гами 1 и 2, а последовательное считывание большого объема данных - шагом.

Поиск баланса между памятью и дисками 459

Есть еще ряд факторов, которые могут повлиять на выбор дисков, а какие из них
существенны, зависит от конкретного приложения. Давайте представим, что вы вы­

бираете диски для какого-нибудь онлайнового приложения, например популярного
новостного сайта, для которого характерно большое количество операций произ­
вольного чтения, возвращающих сравнительно мало данных. Тогда стоит принять

во внимание следующие факторы.

D Емкость диска. Для онлайновых приложений это редко бывает камнем преткнове­
ния, так как емкости современных дисков более чем достаточно. Если это не так,
то общепринятой практикой является объединение дисков в RАID-массив 1•

D Скорость передачи. Мы уже видели, что современные диски способны передавать
данные очень быстро. Точное значение зависит главным образом от скорости
вращения шпинделя и плотности записи данных на поверхности диска, а также

от ограничений интерфейса с хает-компьютером (многие современные диски

могут читать данные быстрее, чем интерфейс способен их передавать). Так или
иначе, не скорость передачи лимитирует производительность онлайновых при­

ложений, поскольку последние обычно выполняют много коротких операций
с произвольным доступом.

о Время доступа. Обычно именно этот параметр определяет производительность
произвольной выборки, поэтому нужно искать диски с минимальным временем
доступа.

D Скорость вращения шпинделя. Сейчас наиболее часто встречаются диски с ча­
стотой вращения 7200, 10 ООО и 15 ООО оборотов в минуту. Скорость как последо­
вательной, так и произвольной выборки в немалой степени зависит от скорости

вращения.

D Габариты. При прочих равных условиях габариты диска тоже играют роль: чем
он меньше, тем меньше времени занимает перемещение головки для считывания.

Диски диаметром 2,5 дюйма, предназначенные для серверов, часто оказываются
быстрее своих более крупных собратьев. К тому же они потребляют меньше
электроэнергии, и в один системный блок помещается больше дисков.

Как и в случае с ЦП, возможность масштабирования MySQL на несколько дисков
зависит от подсистемы хранения и от рабочей нагрузки. InnoDB обычно хорошо
масштабируется на множество жестких дисков. Однако степень масштабирования
подсистемы MyISAM при записи ограничивается табличными блокировками, по­
этому если дЛЯ рабочей нагрузки, включающей много операций записи, использует­
ся MyISAM, то существенного выигрыша от наличия большого количества дисков
не добиться. В какой-то мере могут помочь буферизация на уровне операционной
системы и фоновое распараллеливание записи, но все же масштабируемость записи
в MyISAM принципиально хуже, чем в InnoDB.

Интересно отметить, что некоторые сознательно покупают большие диски, но используют
лишь 20-30 % их емкости. Тем самым повышается локальность данных и сокращается
время подвода головки, что иногда оправдывает более высокую цену.

460 Глава 9 • Оптимизация операционной системы и оборудования

Как и в случае с процессорами, больше дисков - не всегда лучше. Некоторые при­
ложения, для которых важна низкая задержка, нуждаются в более быстрых дисках,

а не в большем их количестве. Например, производительность репликации обычно

выше при использовании скоростных дисков, поскольку обновления на подчиненном

сервере производятся одним потоком.

Твердотельные хранилища данных

На самом деле технологии твердотельных (флеш-память) хранилищ данных уже

30 лет, но она стала хитом сезона, поскольку за последние несколько лет появилось
новое поколение устройств. Твердотельные хранилища теперь стали довольно де­

шевыми и гораздо более усовершенствованными, так что они широко применяются

уже сейчас, а в ближайшем будущем, скорее всего, заменят традиционные жесткие

диски.

Твердотельные хранилища данных используют энергонезависимые чипы флеш­

памяти, состоящие из ячеек, вместо магнитных блинов жесткого диска. Они также

называются NVRAM, или энергонезависимой оперативной памятью. У них нет движу­
щихся частей, что заставляет их вести себя не так, как жесткие диски. Мы рассмотрим

различия в деталях.

Современные технологии, представляющие интерес для пользователей MySQL,
можно разделить на две основные категории: SSD (solid-state drives - твердотель­

ные диски) и РСiе-карты. SSDs эмулируют стандартные жесткие диски, реализуя
SAT А-интерфейс (Serial Advanced Technology Attachment - последовательный

интерфейс обмена данными с накопителями информации), поэтому они являются

упрощенной заменой жесткого диска, который сейчас находится на вашем сервере,

и могут вставляться в существующие слоты в корпусе. В картах PCie используются
специальные драйверы операционной системы, которые представляют хранилище

в виде блок-устройства. PCle- и SSD-устройства иногда называют просто SSD.

Приведем краткое резюме производительности флеш-устройств. У высококачествен­

ного флеш-устройства:

О гораздо выше производительность произвольного чтения и записи по сравнению

с жесткими дисками. Флеш-устройства обычно немного лучше читают, чем за­

писывают;

О лучшая производительность последовательного чтения и записи, чем у жестких

дисков. Тем не менее это не столь впечатляющее улучшение, как в случае произ­

вольного ввода/вывода, поскольку жесткие диски выполняют произвольный ввод/

вывод намного медленнее, чем последовательный. На самом деле SSD с минималь­
ной конфигурацией могут быть даже медленнее, чем обычные диски;

О гораздо лучшая поддержка конкурентного доступа, чем у жестких дисков. Флеш­

устройства могут поддерживать намного больше параллельных операций, и они
не достигнут максимальной пропускной способности, пока у вас не будет боль­

шого количества таких операций.

Твердотельные хранилища данных 461

Наиболее важным является улучшение произвольного ввода/вывода и конкурентно­

го доступа. Флеш-память обеспечивает очень хорошую производительность произ­

вольного ввода/вывода при высоком уровне конкурентности, что точно соответствует

потребностям нормализованных баз данных. Одной из наиболее распространенных
причин денормализации схемы является предотвращение произвольного ввода/

вывода и возможность использования последовательного ввода/вывода для обслу­
живания запросов.

В результате мы полагаем, что твердотельные хранилища данных в будущем фун­

даментально изменят технологию реляционных СУБД. Современное поколение

технологии реляционных СУБД претерпело множество оптимизаций на протяже­

нии десятилетий, чтобы повысилась эффективность хранения в системах на основе

шпинделя. Для твердотельных хранилищ пока не существует таких же глубоких

исследований и инженерных разработок 1 •

Обзор флеш-памяти

У жестких дисков с вращающимися блинами и пишущими головками есть свои

ограничения и характеристики, являющиеся следствием законов физики. То же

самое можно сказать и о твердотельном хранилище данных, которое построено по­

верх флеш-памяти. Не думайте, что твердотельное хранилище данных - простое

устройство. На самом деле оно сложнее, чем жесткий диск. Ограничения флеш­

памяти довольно серьезны, и их трудно преодолеть, поэтому типичное твердотельное

устройство имеет сложную архитектуру с множеством абстракций, кэшированием

и собственной магией.

Самой важной характеристикой флеш-памяти является то, что ее можно читать

много раз на большой скорости и мелкими порциями, но записывать на нее намного

сложнее. Вы не можете переписать ячейку2 без специальной операции стирания,

при этом стирать можно только большие блоки, например 512 Кбайт. Цикл стира­
ния медленный и в конечном итоге изнашивает блок. Количество циклов стирания,

которое может выдержать блок, зависит от используемой технологии (поговорим

об этом позже).

Ограничение на запись является причиной сложности твердотельного хранилища.

Вот поэтому одни устройства обеспечивают стабильную производительность, а дру­

гие - нет. Все зависит от соответствующей прошивки, драйверов и других элементов,

которые запускают твердотельное устройство. Для обеспечения хорошей записи и за­

щиты от преждевременного износа блоков флеш-памяти устройство должно иметь

возможность перемещать страницы и выполнять сбор мусора и так называемый

Некоторые компании утверждают, что они с чистого листа начинают разработки, свобод­

ные от оков шпиндельного прошлого. Это вызывает определенный скепсис: решать задачи

реляционных СУБД непросто.

Это упрощение, но детали здесь и не важны. Если хотите, можете подробнее прочитать об

этом в •Википедии~.

462 Глава 9 • Оптимизация операционной системы и оборудования

контроль равномерности износа. Термин ~усиление записи» используется для опи­

сания дополнительных записей, вызванных перемещением данных с места на место,

многократной записи данных и образования метаданных из-за частичной записи

блоков. Если интересно, посмотрите статью ~википедии~ об усилении записи - из

нее вы можете узнать больше.

Очень важно понять, в чем заключается процесс сбора мусора. Для того чтобы под­

держивать блоки чистыми и готовыми к записи, устройство высвобождает блоки.

Для этого необходимо наличие на устройстве некоторого объема свободного места.

В зависимости от типа устройства либо вам самостоятельно придется зарезер­

вировать некоторый объем свободного места, либо устройство зарезервирует его

самостоятельно, причем вы этого не увидите. В любом случае, когда устройство за­

полняется, сборщик мусора начинает усердно трудиться, очищая некоторые блоки,
чтобы увеличивался коэффициент усиления записи.

В результате скорость работы многих устройств по мере их заполнения замедля­

ется. Насколько именно замедляется, зависит от производителя, модели, а также

архитектуры устройства. Некоторые устройства рассчитаны на высокую произво­

дительность, даже если они почти заполнены, но в целом файл объемом 100 Гбайт
будет обрабатываться по-разному на SSD емкостью 160 и 320 Гбайт. Замедление вы­
звано необходимостью при отсутствии свободных блоков ждать завершения процесса

стирания. Запись в свободный блок занимает пару сотен микросекунд, но стирание
происходит намного медленнее - обычно несколько миллисекунд.

Флеш-технологии

Существуют два основных типа флеш-устройств. При покупке флеш-памяти важно

понимать, в чем их различие. Эти два типа являются одноуровневой ячейкой (single­
level cell, SLC) и многоуровневой ячейкой (multi-level cell, MLC).

SLC хранит в ячейке один бит данных - либо О, либо 1. SLC является относительно
затратной, но она очень быстрая и долговечная - с временем жизни до 100 ООО ци­
клов записи в зависимости от производителя и модели. Это может показаться не­

ожиданным, но на самом деле хорошее устройство SLC должно функционировать
около 20 лет, и, говорят, она более долговечна и надежна, чем контроллер, в котором
установлена карта. В то же время плотность хранения у нее относительно низкая,

поэтому трудно обеспечить много пространства для хранения на одном устройстве.

Современные MLC хранят два бита в ячейке, однако на рынок выходЯт трехбитовые
устройства. Тем самым достигается намного большая плотность хранения (большая

емкость). Затраты у нее ниже, но то же самое относится и к скорости доступа и долго­

вечности. Хорошее устройство MLC может быть рассчитано приблизительно на
1 О ООО циклов записи.

Оба типа флеш-устройств активно развиваются и конкурируют друг с другом. В на­
стоящее время SLC по-прежнему имеет репутацию корпоративного серверного ре­
шения для хранения данных, а MLC обычно рассматривается как потребительский
класс для использования в ноутбуках, камерах и т. д. Однако ситуация меняется -

Твердотельные хранилища данных 463

недавно появился новый тип хранилища данных, так называемая корпоративная

MLC (enterprise MLC, eMLC).

Развитие технологии MLS - очень интересный процесс. Ее стоит рассмотреть вни­

мательнее, если вы задумываетесь о приобретении флеш-накопителя. MLC очень
сложна, на качество и производительность устройства, использующего MLC, влияет
множество факторов. Любой чип сам по себе недолговечен, у него относительно не­
большой срок службы и высокая вероятность ошибок, которые необходимо испра­
вить. По мере того как на рынке появляются еще более мелкие чипы с более высокой
плотностью, ячейки которых могут хранить три бита, отдельные чипы становятся все
менее надежными и более подверженными ошибкам.

Однако это не является непреодолимой инженерной проблемой. Производители
конструируют устройства со все большим и большим объемом скрытых резервных
мощностей. Таким образом, появляется некоторая внутренняя избыточность. Ходят
слухи, что, возможно, некоторые устройства могут хранить в два раза больше данных,
чем заявлено. Однако производители флеш-памяти очень тщательно охраняют свои

коммерческие секреты. Еще один способ сделать МLС-чипы более прочными - из­
менить логику прошивки. Большое значение имеют алгоритмы контроля равномер­

ности износа и перераспределения памяти. Следовательно, долговечность зависит

от истинной емкости, логики прошивки и пр., то есть в конечном счете от произво­

дителя. Мы слышали об устройствах, уничтоженных за пару недель интенсивного
использования!

В результате наиболее важными аспектами устройства MLC являются встроенные
в него алгоритмы и вычислительные средства. Гораздо сложнее создать хорошее

устройство MLC, чем устройство SLC, но все возможно. Самые лучшие произво­
дители, использующие отличные инженерные решения и увеличивающие емкость

и плотность, предлагают устройства, достойные метки eMLC. Это определенно та
область, в которой стоит внимательно отслеживать прогресс - то, что мы здесь
советуем относительно MLC по сравнению с SLC, скорее всего, устареет довольно
быстро.

Сколько прослужит ваше устройство

Virident гарантирует, что его устройство FlashMax 1.4 ТВ MLC будет работать на
15 Пбайт записей, но на уровне флеш-памяти, а видимые пользователю операции за­
писи усилены. Мы провели небольшой эксперимент по определению коэффициента

усиления записи для конкретной рабочей нагрузки.

Мы создали набор данных объемом 500 Гбайт и запустили эталонный тест tpcc-mysql
на час. В течение этого времени утилита /proc/diskstats сообщила о записях объемом
984 Гбайт, а утилита конфигурирования Virident показала 1,125 Гбайт записей на
уровне флеш-памяти с коэффициентом усиления записи 1,14. Помните, что он будет
выше, если на устройстве используется больше места, при этом он зависит от того,

являются операции записи последовательными или произвольными.

464 Глава 9 • Оптимизация операционной системы и оборудования

При таком коэффициенте, если проводить эталонное тестирование непрерывно

в течение полутора лет, устройство окажется полностью изношенным. Конечно,

большинство реальных рабочих нагрузок никогда не приближаются к такой ин­

тенсивности операций записи, поэтому карта должна использоваться много лет.

Основная цель этой врезки - сказать не о том, что устройство будет быстро изна­

шиваться, а о том, что коэффициент усиления записи трудно предсказать: стоит

проверить устройство при своей рабочей нагрузке и посмотреть, как оно себя

ведет.

Как мы уже упоминали, размер также имеет большое значение для долголетия устрой­

ства. Большие устройства будут работать значительно дольше. Поскольку в насто­

ящее время все чаще применяются довольно большие мощности, MLC становится все
более популярной, и причина этого заключается в ее долговечности.

Эталонное тестирование флеш-памяти

Эталонное тестирование флеш-памяти - процесс довольно сложный. Есть множе­

ство способов сделать это неправильно, а чтобы сделать правильно, нужно обладать
специфическими знаниями о конкретном устройстве, а также проявить вниматель­

ность и терпение.

У флеш-устройств есть три стадии, которые мы назовем характеристиками произво­

дительности: А, В и С. Они быстро приступают к работе (этап А), а затем начинает
работать сборщик мусора. После этого наступают период перехода в устойчивое
состояние (этап В) и, наконец, само устойчивое состояние (этап С). У всех проте­

стированных нами устройств наблюдался такой порядок действий.

Конечно, вас интересует производительность на этапе С, поэтому эталонные тесты

должны измерять только эту часть прогона. Это означает, что эталонный тест должен

быть чем-то большим, чем просто эталонный тест: он должен состоять из рабочей на­
грузки для «прогрева>.> и собственно эталонного теста. Тем не менее определить, где
заканчивается «прогревочная>.> нагрузка и начинается собственно эталонный тест,
может быть довольно сложно.

Устройства, файловые системы и операционные системы по-разному поддержи­

вают команду TRIM, которая обозначает пространство как готовое к повторному
использованию. Иногда устройство запускает команду TRIM при удалении всех фай­
лов. Если это произойдет между прогонами эталонного теста, устройство перейдет

на этап А и вам придется циклически проходить через этапы А и В между прогона­

ми. Другим фактором является изменение производительности, когда устройство

более или менее заполнено. Повторяемый эталонный тест должен учитывать все
эти факторы.

Все эти сложности делают эталонные тесты и спецификации от поставщиков мин­

ным полем для невнимательного пользователя, даже если он все выполняет добро-

Твердотельные хранилища данных 465

совестно. Обычно вы получаете от поставщиков четыре числа. Приведем пример
характеристик устройства.

1. Устройство может считывать со скоростью до 520 Мбайт/с.

2. Устройство может записывать со скоростью до 480 Мбайт/с.

3. Устройство может выполнять длительную запись со скоростью до 420 Мбайт/с.

4. Устройство за 1 секунду может выполнять 70 ООО произвольных операций записи
размером 4 Кбайт.

Если вы сравните эти числа, то заметите, что максимальные операции ввода/вывода

в секунду (input/output operations per second, IOPS) 70 ООО произвольных записей
размером 4 Кбайт в секунду составляют всего около 27 4 Мбайт /с, что намного мень­
ше, чем максимальная пропускная способность записи, упомянутая в пунктах 2 и 3.
Это связано с тем, что максимальная пропускная способность записи достигается при
больших размерах блоков - 64 или 128 Кбайт, а максимальный IOPS достигается
при небольших размерах блоков.

Большинство приложений не могут записывать такими большими блоками. InnoDB
обычно записывает комбинацию блоков размером 16 Кбайт и 512-байтовых бло­
ков. В результате от этого устройства можно ожидать скорости записи только

27 4 Мбайт/с, и это на этапе А, прежде чем сборщик мусора начнет работать и устрой­
ство выйдет на стабильный долгосрочный уровень производительности!

Современные эталонные тесты MySQL и файлы нагрузки операций ввода/вывода
на твердотельные устройства можно найти в наших блогах по адресам: http://
www.ssdperformanceЫog.com, http://www.mysqlperfor.manceЫog.com.

Твердотельные диски

SSD эмулируют жесткие диски SATA. Эти возможности совместимы: замена нако­
пителя SAT А не требует каких-либо специальных драйверов или соединений.

Диски lntel Х-25Е, вероятно, являются наиболее распространенными SSD, которые
используются сегодня на серверах, но существуют и другие варианты. Х-25Е про­

дается на <1корпоративном~ рынке, но есть также Х-25М, который имеет хранилище

MLC и предназначен для массового рынка пользователей ноутбуков и пр. Intel также
продает серию 320, которую используют множество людей. И это всего лишь один
производитель, а их много, и к тому моменту, когда эта книга выйдет в печать, что-то

из того, что мы написали о SSD, скорее всего, уже устареет.

Хорошая новость о SSD заключается в том, что они легкодоступны, относительно
дешевы и работают намного быстрее, чем жесткие диски. К тому же существует мно­
жество брендов и моделей. Самый большой недостаток заключается в том, что они
не всегда так надежны, как жесткие диски, причем надежность различается в зави­

симости от марки и модели. До недавнего времени у большинства устройств не было
встроенной батареи, но был кэш записи для буферизации. Этот кэш ненадежен без
поддерживающей его батареи, но он не может быть отключен без значительного уве­
личения нагрузки на запись на базовом флеш-накопителе. Таким образом, если вы

466 Глава 9 • Оптимизация операционной системы и оборудования

отключите кэш своего накопителя, чтобы получить действительно надежное храни­
лище, устройство будет изнашиваться быстрее, а в некоторых случаях это к тому же
аннулирует гарантию.

Некоторые производители не спешат сообщать людям об этой особенности их
SSD, кроме того, они ревниво охраняют такие детали, как внутренняя архитектура
устройств. Вопрос о том, есть ли у них батарея или конденсатор, которые могут обе­
спечить безопасность данных кэша записи в случае сбоя питания, обычно остается
без ответа. В некоторых случаях диск будет принимать команду отключения кэша,
но игнорировать ее. Таким образом, вы действительно не будете знать, долговечен ли
ваш накопитель, пока не проведете краш-тест. Мы провели краш-тест некоторых

дисков и получили разные результаты. Сейчас некоторые диски поставляются с кон­
денсатором для защиты кэша, что увеличивает их долговечность, но в целом, если

производители вашего диска не хвастаются, что у него есть батарея или конденсатор,
то их и нет. Это означает, что в случае сбоев питания он прослужит недолго, поэтому
ваши данные будут повреждены, а вы, возможно, даже не узнаете об этом. Конденса­
тор или батарея - что-то обязательно должно быть в вашем SSD.

Обычно, приобретая SSD, вы получаете то, за что платите. Проблемы базовой тех­
нологии решить нелегко. Многие производители делают диски, которые быстро
приходят в негодность под нагрузкой или не обеспечивают стабильной работы. У не­
которых производителей низкокачественного оборудования есть манера постоянно
выпускать новые поколения дисков, утверждая при этом, что они решили все пробле­
мы предыдущего поколения. Конечно, это не так. Если вы заботитесь о надежности
и стабильно высокой производительности, приобретайте устройства корпоративного
класса - обычно они стоят денег, которые за них придется заплатить.

Использование RAID с SSD. Мы рекомендуем использовать RAID (redundant array
of inexpensive disks - избыточный массив независимых дисков) с SSD-накопителями
SAT А. Один диск просто недостаточно надежен, чтобы доверять ему ваши данные.

Многие старые RАID-контроллеры не были готовы к работе с SSD. Предполагалось,
что они управляют жесткими дисками на шпинделе и выполняют буферизацию
и записи с перестановкой, полагая, что так будет эффективнее. Это была просто
лишняя работа и дополнительная задержка, поскольку логическое местоположение,
которое предоставляет SSD, сопоставляется с произвольным местоположением в базо­
вой флеш-памяти. Сейчас ситуация немного улучшилась. На конце номеров моделей

некоторых RАID-контроллеров указывается буква, обозначающая, что они работают
с SSD. Например, у контроллеров Adaptec для этой цели используется буква Z.

Тем не менее даже готовые к работе с флеш-устройствами контроллеры на самом деле та­
ковыми не являются. Вадим провел эталонное тестирование контроллера Adaptec 5805Z
с различными дисками в RAID 1 О, используя файл объемом 500 Гбайт и конкурент­
ность 16. Результаты были ужасными: 95-я процентильная задержка для произволь­
ных записей находилась в двузначных миллисекундах, а в худшем случае составила

более секунды 1 (приемлемый результат должен быть меньше 1 миллисекунда).

Но это еще не все. Мы проверили диски после эталонного тестирования и обнаружили два

<1убитых• SSD и один с повреждениями.

Твердотельные хранилища данных 467

Мы выполняли специальное исследование для клиента, который хотел посмотреть,
будут ли SSD Micron лучше 64-гигабайтовых Intel SSD, которые они уже исполь­
зовали в той же конфигурации. Проведя эталонное тестирование дисков Intel, мы
получили те же характеристики производительности. Поэтому попробовали неко­
торые другие конфигурации накопителей, с SАS-экспандером и без него. Результаты
приведены в табл. 9.1.

Табпица 9.1. Эталонные тесты SSD в RАID-контроллере Adaptec

Диск Марка Размер, SАS-экспандер Произвольное Произвольная

Гбайт чтение, Мбайт/с запись, Мбайт/с

34 Intel 64 Да 310 130

14 Intel 64 Да 305 145

24 Micron 50 Нет 350 120

34 Intel 50 Нет 350 180

Ни один из этих результатов даже близко не стоял к нашим ожиданиям от исполь­
зования стольких дисков. В целом RАID-контроллер давал производительность,

которой мы ожидали от шести или восьми дисков, а не от десяти. RАID-контроллер

был просто насыщен. Суть этой истории в том, что следует проводить тщательные
эталонные тесты, прежде чем вкладывать значительные ресурсы в аппаратные сред­

ства - результаты могут сильно отличаться от ваших ожиданий.

Устройства хранения PCie
В отличие от SAT А SSD устройства PCie не пытаются эмулировать жесткие диски.
Это хорошо: интерфейс между сервером и жесткими дисками не справляется с флеш­

памятью, когда она работает на полную мощность. Соединение SAS/SAT А имеет
более низкую пропускную способность, чем PCie, поэтому с точки зрения произво­
дительности лучше выбрать PCie. Кроме того, у устройств PCie гораздо более низкая
задержка, поскольку они физически ближе к процессорам.

Никакие другие устройства не могут дать такой же производительности, как устрой­

ства PCie. Недостатком же является их относительная дороговизна.

Всем известным нам моделям требуются специальные драйверы для создания блоч­
ного устройства, которое операционная система видит как жесткий диск. Они ис­

пользуют сочетание стратегий контроля равномерности износа и других, некоторые

из них используют центральный процессор и память хает-системы, а некоторые обла­
дают встроенными логическими контроллерами и оперативной памятью. Во многих

случаях хост-система имеет множество ресурсов ЦП и ОЗУ, поэтому использование

их на самом деле является более рентабельным, чем покупка карты с собственной
оперативной памятью.

Мы не советуем использовать RAID с устройствами PCie. Они слишком дороги
для использования с RAID, к тому же у большинства устройств есть собственный
RАID-массив. Мы не знаем, насколько вероятно то, что контроллер будет выходить

468 Глава 9 • Оптимизация операционной сисrемы и оборудования

из строя, но поставщики утверждают, что их контроллеры в целом так же хороши, как

и сетевые карты или RАID-контроллеры, и это, наверное, окажется правдой. Другими

словами, среднее время между отказами (MTBF) для этих устройств, скорее всего,
будет аналогично данной характеристике материнской платы, поэтому использование
вместе с ними RAID просто увеличит затраты, но не принесет большой выгоды.

Флеш-карты PCie выпускают несколько производителей. Наиболее популярными
брендами у пользователей MySQL являются Fusion-io и Virident, есть неплохие
предложения также у Texas Memory Systems, STEC и OCZ. Доступны как SLC-, так
и МLС-карты.

Другие типы твердотельных хранилищ данных

Помимо устройств SSD и PCle, существуют другие варианты от таких компаний,
как Violin Memory, SandForce и Texas Memory Systems. Эти компании выпускают
большие устройства с флеш-памятью, которые по существу являются флеш-SАN
с десятками терабайт памяти. Используют их в основном для крупномасштабной

консолидации хранилищ данных. Они очень дорогие и очень высокопроизводитель­

ные. Нам известны несколько человек, которые используют их, и несколько раз мы

анализировали работу этих устройств. Они обеспечивают очень приличную задержку
независимо от времени запроса по сети, например, менее 4 миллисекунд задержки
при использовании NFS.

Тем не менее эти хранилища данных не очень хорошо подходят для обычного рынка

MySQL. Они предназначены скорее для других ба.з данных, таких как Oracle, которые
могут использовать их для кластеризации с общим хранилищем. В целом MySQL
не может воспользоваться таким мощным хранилищем в таких больших масштабах,

поскольку оно плохо работает с базами данных объемом в десятки терабайт. Ответом

MySQL на такую большую базу данных является шардирование или горизонтальное
масштабирование в архитектурах без шардирования.

Однако эти большие запоминающие устройства могут использоваться в специали­

зированных решениях, например Infobright. ScaleDB может быть развернута в архи­
тектуре с общим хранилищем, но мы еще не видели ее в реальных условиях, поэтому

не знаем, как хорошо она будет работать.

Когда стоит использовать флеш-устройства

Наиболее очевидным вариантом использования твердотельного хранилища данных
является любая рабочая нагрузка с большим количеством произвольных операций
ввода/вывода. Произвольный ввод/вывод обычно связан с тем, что данные больше,

чем память сервера. При использовании стандартных жестких дисков вы ограниче­

ны скоростью вращения и задержкой поиска. Флеш-устройства могут значительно

улучшить ситуацию.

Твердотельные хранилища данных 469

Конечно, в некоторых случаях можно купить больше оперативной памяти, чтобы

ее хватало для произвольной рабочей нагрузки, а операции ввода/вывода просто

исчезли. Но когда такой возможности нет, флеш-устройства могут сильно помочь.

Еще одна проблема, которую далеко не всегда можно решить с помощью ОЗУ, - это

рабочая нагрузка на запись с высокой пропускной способностью. Добавление памяти

поможет уменьшить нагрузку на запись, которая обращается к дискам, поскольку

увеличение памяти создает больше возможностей для буферизации и комбиниро­

вания записей. Это позволяет преобразовать рабочую нагрузку с произвольной

записью в более последовательную.

Однако этот прием нельзя использовать до бесконечности, и некоторые транзакци­

онные или рабочие нагрузки с большим количеством операций вставки не всегда

выигрывают от его применения. В данном случае также может пригодиться флеш­

хранилище.

Однопоточные рабочие нагрузки - еще один характерный сценарий, при котором

флеш-устройства потенциально могут улучшить ситуацию. Когда рабочая нагрузка

является однопоточной, она очень чувствительна к задержке, и более низкая задерж­

ка твердотельного хранилища будет иметь большое значение. Напротив, многопоточ­

ные рабочие нагрузки часто легко распараллеливаются, что приводит к увеличению

пропускной способности. Репликация MySQL является характерным примером
однопоточной рабочей нагрузки, которая получает множество преимуществ из-за

снижения задержки. Использование флеш-устройства на подчиненных серверах

часто может значительно повысить их производительность, когда они начинают от­

ставать от главного сервера.

Флеш-устройства также отлично подходят для консолидации серверов, особенно

в формфакторе PCie. Нам доводилось видеть консолидацию нескольких серве­
ров на одном физическом - иногда количество виртуальных серверов доходило до

10 и даже 15 (см. главу 11 для получения дополнительной информации по этой
теме).

Однако флеш-устройства хороши не всегда. Хороший пример - их использование

для рабочей нагрузки с последовательными записями, такими как файлы журнала
InnoDB. В этих условиях флеш-устройства не дают значительного выигрыша в со­
отношении затрат и производительности, поскольку при последовательной записи

работают не намного быстрее, чем стандартные жесткие диски. Такая рабочая
нагрузка также характеризуется высокой пропускной способностью, от которой

устройство быстрее изнашивается. Зачастую лучше хранить ваши файлы журналов

на стандартных жестких дисках с помощью RАID-контроллера с кэшем записи с ав­

тономным питанием.

Иногда выбор устройства зависит от соотношения «память - диск~, а не только

от диска. Если вы можете купить достаточное количество ОЗУ для кэширования

своей рабочей нагрузки, это может оказаться дешевле и эффективнее, чем покупка
устройства флеш-памяти.

470 Глава 9 • Оптимизация операционной сисrемы и оборудования

Использование технологии Flashcache
Хотя существует множество возможностей нахождения компромисса между флеш­

памятью, жесткими дисками и оперативной памятью, совсем не обязательно рас­

сматривать их как однокомпонентные уровни иерархии хранения. Иногда имеет

смысл использовать комбинацию дисковых технологий и памяти, и этим занимается

модуль Flashcache.

Технология Flashcache - это одна из возможных реализаций методики, которую
можно найти во множестве систем, например в базе данных Oracle, файловой системе
ZFS и даже во многих современных жестких дисках и RАID-контроллерах. Многое
из того, что будет сказано в дальнейшем, подходит к большому количеству систем,
но мы сосредоточимся только на технологии Flashcache, поскольку она не зависит
от производителя и файловой системы

Модуль Flashcache - это модуль ядра Linux, в котором используется устройство
отображения Linux. Он создает в иерархии памяти промежуточный уровень между
ОЗУ и диском. Это одна из технологий с открытым исходным кодом, со:щанная

Facebook, которая используется для оптимизации аппаратного обеспе<1ения Facebook
при рабочей нагрузке, связанной с базой данных.

Модуль Flashcache создает блочное устройство, которое можно разделить на секции
и использовать для создания файловой системы, как и любое другое. Хитрость за­

ключается в том, что это блочное устройство поддерживается как флеш-памятью,
так и дисковой памятью. Флеш-устройство используется как интеллектуальный

кэш для чтения и записи.

Виртуальное блочное устройство намного больше, чем флеш-устройство, но это
нормально, потому что диск считается окончательным репозиторием для данных.

Флеш-устройство необходимо для буферизации записи и эффективного расширения
памяти сервера для кэширования операций чтения.

Насколько же высока будет производительность? Похоже, что у модуля Flashcache
относительно высокие накладные затраты ядра. (Модуль отображения устройств,

похоже, не так эффективен, как должен быть, но мы не исследовали причины этого.)
Но хотя кажется, что модуль Flashcache теоретически может быть более эффектив­
ным, а его максимальная производительность меньше, чем производительность базо­
вого флеш-накопителя, он все же намного быстрее, чем диски. Поэтому возможность
его использования, по-видимому, стоит рассмотреть.

Мы оценивали производительность модуля Flashcache с помощью нескольких со­
тен эталонных тестов и обнаружили, что довольно сложно осмысленно тестировать
искусственную рабочую нагрузку. Мы не сумели понять, насколько полезен модуль
Flashcache для рабочих нагрузок, связанных с операциями записи в целом, но для
рабочей нагрузки, связанной с чтением, он может быть весьма хорош. Это соответ­
ствует варианту использования, для которого он был разработан: для серверов, на­
грузка которых состоит в основном из операций чтения, а рабочее множество гораздо
больше, чем размер памяти.

Твердотельные хранилища данных 471

Помимо лабораторных испытаний, у нас есть некоторый опыт работы с Flashcache
при рабочих нагрузках. Вспоминается случай с четырехтерабайтной базой данных.
Она сильно пострадала от задержки репликации. Мы модифицировали систему, до­

бавив карту Virident PCie с объемом памяти 0,5 Тбайт. Затем установили Flashcache
и использовали карту PCie как флеш-часть устройства. Это удвоило скорость ре­
пликации.

Использование технологии Flashcache наиболее экономично, когда флеш-карта почти
заполнена, поэтому стоит иметь карту, производительность которой не сильно ухуд­

шается при ее заполнении. Именно поэтому мы выбрали карту Virident.

Модуль Flashcache - это кэш, поэтому он должен прогреться так же, как и любой
другой. Хотя период прогрева может быть очень длинным. Например, в случае, о ко­
тором мы только что упоминали, модулю Flashcache потребовалась неделя, чтобы
разогреться и действительно ускорить производительность.

Стоит ли использовать Flashcache? Всякое может быть. Поэтому мы считаем, что
если вы не уверены в правильности такого решения, стоит проконсультироваться

с экспертами. Сложно понять механику технологии Flashcache и то, как она влияет
на размер рабочего множества базы данных и на три уровня (по меньшей мере) хра­

нилища под базой данных.

Q Прежде всего, есть буферный пул InnoDB, отношение размера которого к раз­
меру рабочего множества определяет один из показателей непопадания в кэш.

Извлечение данных из этого кэша происходит очень быстро, а время отклика
очень равномерное.

Q Непопадания из буферного пула распространяются до модуля Flashcache, кото­
рый имеет сложное распределение времени отклика. Уровень непопадания в кэш

для модуля Flashcache определяется размером рабочего множества и размером
флеш-устройства, которое его поддерживает. Извлечение данных из этого кэша

происходит намного быстрее, чем с диска.

Q Непопадания в кэш модуля Flashcache распространяются вплоть до дисков, кото-
рые имеют довольно равномерное распределение времени отклика.

Под этими уровнями могут быть и другие: ваши SАN-сети или кэш RАID-контроллера,

например.

Проведем мысленный эксперимент, который иллюстрирует взаимодействие этих

слоев. Очевидно, что время отклика от модуля Flashcache не будет таким же стабиль­
ным или небольшим, как было бы от одного флеш-устройства. Но представьте, что
у вас есть 1 Тбайт данных и 99 % операций ввода/вывода на протяжении длительного
периода связаны со 100 Гбайт из этих данных. То есть в течение долгого времени
99-й процентиль рабочего множества составляет 100 Гбайт.

Предположим теперь, что у нас есть следующие устройства хранения данных:

большой том RAID, который может выполнять 1000 IOPS, и гораздо меньшее
флеш-устройство, которое может выполнять 100 ООО IOPS. Флеш-устройство - до­

пустим, емкостью 128 Гбайт - недостаточно велико, чтобы хранить все данные

472 Глава 9 • Оптимизация операционной системы и оборудования

поэтому использование его одного нас не спасет. Если мы будем использовать
флеш-устройство для модуля Flashcache, можно будет ожидать, что извлечение из
кэша будут выполняться намного быстрее, чем извлечение с диска, но медленнее,
чем отклики самого устройства флеш-памяти. Давайте немного округлим и скажем,

что 90 % запросов на модуль Flashcache можно обслуживать со скоростью, эквива­
лентной 50 ООО IOPS.

Каковы же результаты этого мысленного эксперимента? Есть два основных момента.

1. Наша система обеспечивает намного лучшую производительность с помощью
технологии Flashcache, чем без нее, поскольку большинство непопаданий в кэш
буферного пула передаются на флеш-карту и обслуживаются с намного большей
скоростью чем извлечение с диска (99-й процентиль рабочего множества полно­
стью помещается на флеш-карту).

2. Девяносто процентов попаданий в кэш на модуле Flashcache означает, что уро­
вень непопаданий - 10 %. Поскольку базовые диски могут обслуживать толь­
ко 1000 IOPS, самое большее, чего можно ожидать от модуля Flashcache, -
10 ООО IOPS. Чтобы понять, почему это так, представьте, что произойдет, если мы
потребуем больше операций: при 1 О % непопаданий в кэш операций ввода/вывода
и переходе этих запросов на том RAID мы будем запрашивать более 1000 IOPS от
тома RAID, а мы знаем, что с этой нагрузкой он справиться. не может. В результа­
те, хотя модуль Flashcache работает медленнее, чем флеш-карта, система в целом
по-прежнему ограничена скоростью работы тома RAID, а не флеш-карты или
модуля Flashcache.

Таким образом, вопрос о том, подходит ли вам технология Flashcache, сложен, а ответ
на него зависит от множества факторов. В общем случае кажется, что он лучше всего

подходит для рабочих нагрузок с множеством операций ввода/вывода, большая часть
которых - это операции чтения, при этом экономично использовать память не пред­

ставлялось бы возможным из-за слишком большого размера рабочего множества.

Оптимизация MySQL для твердотельных
хранилищ данных

Если вы используете MySQL на флеш-устройстве, то можете применить некоторые
параметры конфигурации для обеспечения лучшей производительности. В част­

ности, конфигурация InnoDB по умолчанию связана с жесткими дисками, а не с твер­
дотельными хранилищами. Не все версии InnoDB обеспечивают одинаковый уровень
конфигурируемости. Многие улучшения, разработанные для флеш-устройств, по­

явились на Percona Server, хотя часть из них уже были реализованы в версии InnoDB
от Oracle или, возможно, планируются для будущих версий. Улучшения включают
в себя следующие возможности.

О Увеличение мощности ввода/вывода InnoDB. Флеш-устройства поддерживают
гораздо более высокий уровень конкурентности, чем обычные жесткие диски,
поэтому можно увеличить количество потоков ввода/вывода для чтения и за-

Твердотельные хранилища данных 473

писи до 10 или 15, что не ухудшит результаты. Кроме того, можно увеличить
значение параметра innodb_io_capacity до 2000-20 ООО в зависимости от IOPS,
которые может выполнить ваше устройство. Это особенно актуально для офици­
ального InnoDB от Огасlе, у которой много внутренних алгоритмов, зависящих
от этого параметра.

О Увелuче1tuе размера файлов журNала InnoDB. Даже при улучшенных алгоритмах
восстановления, используемых в последних версиях InnoDB, вы не захотите,
чтобы файлы журналов на жестких дисках были слишком большими, поскольку
произвольный ввод/вывод, необходимый для восстановления после сбоя, вы­
полняется медленно и может привести к значительному увеличению времени

восстановления. Флеш-память позволяет сделать это намного быстрее, поэтому
вы сможете иметь большие файлы журнала InnoDB, что приведет к улучшению
и стабилизации производительности. Это особенно необходимо для официаль­
ного InnoDB от Oracle, у которой есть проблемы с поддержанием постоянного
уровня сброса «грязных» страниц, если файлы журналов недостаточно велики -
на момент написания книги 4 Гбайт или больше кажутся нормой для типичных
серверов. Percona Server и MySQL 5.6 поддерживают файлы журналов размером
более 4 Гбайт.

о Перемеще1tие мкоторых файлов с флеш-памятu 1ta RAID. Помимо того, что фай­
лы журнала InnoDB больше, может быть целесообразно хранить файлы журнала
отдельно от файлов данных, размещая их в RАID-контроллере с кэшем записи

с автономным питанием, а не на твердотельном устройстве. На это есть несколько

причин. Одна из них заключается в том, что тип ввода/вывода, с которым сталки­

ваются файлы журнала, ненамного быстрее на флеш-устройствах, чем на настро­
енном таким образом RAID. InnoDB записывает файлы журнала последовательно
в 512-байтовые блоки и не читает их никогда, кроме как во время восстановления
после сбоя, когда она делает это последовательно. Для таких операций бесполезно
использовать флеш-память. Также неплохо переместить эти небольшие записи
в том RAID, потому что очень маленькие записи увеличивают коэффициент
усиления записи на флеш-устройствах, что может вызвать проблемы с долго­
вечностью некоторых из них. Кроме того, смесь записей большого и маленького
объема может вызвать повышенную задержку на некоторых устройствах.

По схожим причинам иногда полезно перемещать в том RAID файлы двоичного
журнала, возможно, стоит переместить и файл ibdatal. Файл ibdatal содержит
буфер двойной записи и буфер вставки. Буфер двойной записи, в частности,
получает много повторных записей. В Percona Server вы можете удалить буфер
двойной записи из файла ibdatal и сохранить его в отдельном файле, который
можно разместить в томе RAID.

Есть еще один вариант: вы можете использовать Percona Server для записи жур­
налов транзакций в четырехкилобайтовых блоках вместо 512-байтовых блоков.
Это может оказаться более эффективным с точки зрения как флеш-памяти, так
и самого сервера.

Все приведенные рекомендации по большей части специфичны для конкретного
оборудования, и вам они могут подходить не в полной мере, поэтому убедитесь,

474 Глава 9 • Оптимизация операционной системы и оборудования

что понимаете связанные с ними факторы, и проверяйте их соответствующим

образом, прежде чем принимать важные решения по изменению формы храни­
лища данных.

О Отключение упреждающего чтения. Упреждающее чтение оптимизирует доступ
к устройствам, делая прогноз по поводу шаблонов чтения и запрашивая данные

с устройства, если есть основания считать, что они понадобятся в будущем.

На самом деле в InnoDB есть два типа упреждающего чтения, и при различных
обстоятельствах мы обнаружили, что проблемы с производительностью могут

быть вызваны как собственно упреждающим чтением, так и тем, как оно работает.

Накладные затраты во многих случаях больше, чем выигрыш, особенно на флеш­
накопителе, однако у нас нет убедительных доказательств или рекомендаций от­
носительно того, насколько вы можете повысить производительность, отключив

упреждающее чтение.

Огасlе отключил так называемое произвольное упреждающее чтение в плагине
InnoDB в MySQL 5.1, а затем повторно включил в MySQL 5.5, снабдив параме­
тром для его настройки. Percona Server позволяет настраивать как произвольное,
так и последовательное упреждающее чтение и в старых версиях сервера.

1:J Конфигурирование алгоритма сброса IппоDВ. Способ, которым InnoDB решает,
когда, сколько и какие страницы сбросить, - тема очень сложная для изучения,
и у нас здесь нет возможности ее подробно обсудить. Кроме того, эта проблема
является предметом активных исследований, и на самом деле в различных вер­

сиях InnoDB и MySQL используются разные алгоритмы.

Стандартные алгоритмы InnoDB не предполагают наличия широких конфигура­
ционных возможностей, которые позволяют лучше использовать флеш-память,

но если вы применяете Percona XtraDB (входит в Percona Server и MariaDB),
рекомендуем установить для параметра innodb_adaptive_checkpoint значение
keep_average вместо значения по умолчанию estimate. Это поможет обеспечить
более стабильную работу и избежать серверных стопоров, поскольку алгоритм
estimate может застопориться на флеш-памяти. Мы разработали режим keep_
average специально для флеш-памяти, поскольку понимали, что можно переда­
вать на устройство столько операций ввода/вывода, сколько хочется, не создавая

узкого места и последующего стопора.

Кроме того, мы рекомендуем устанавливать для параметра innodb_flush_neighbor _
pages значение 0 на флеш-памяти. Это не позволит InnoDB найти соседние «гряз­
ные~ страницы, чтобы сбросить их вместе. Алгоритм, который выполняет такую

операцию, может вызвать сильный всплеск записи, высокую задержку и внутреннюю

конкуренцию. Это не обязательно и не полезно для флеш-памяти, потому что со­
седние страницы можно сбрасывать отдельно, не влияя на производительность.

о Потенциальное отключение буфера двойной записи. Вместо перемещения буфера
двойной записи с флеш-устройства вы можете полностью отключить его. Неко­

торые производители утверждают, что их устройства поддерживают неделимую

запись объемом 16 Кбайт, что делает буфер двойной записи избыточным. Необ­
ходимо убедиться, что вся система хранения настроена на поддержку неделимых

Твердотельные хранилища данных 475

операций объемом 16 Кбайт. Обычно для этого требуются O_DIRECT и файловая
система XFS.

У нас нет убедительных доказательств того, что утверждение о неделимости вер­

но, но знание принципов работы флеш-памяти позволяет считать, что вероят­
ность частичной записи страниц в файлы данных значительно снижается. При

этом выигрыш на флеш-устройствах намного больше, чем на обычных жестких
дисках. Отключение буфера двойной записи может улучшить общую произво­

дительность MySQL на флеш-памяти примерно на 50 %, поэтому, хотя мы и не
уверены, что это на 100 % безопасно, об этом стоит подумать.

1:1 Ограничение размера буфера вставки. Буфер вставки (или буфер изменений
в новых версиях InnoDB) предназначен для уменьшения количества операций
произвольного ввода/вывода страниц неуникальных вторичных индексов, кото­

рые при обновлении строк не находятся в памяти. На жестких дисках он может

существенно снизить количество операций произвольного ввода/вывода. Для не­

которых рабочих нагрузок в случае, когда рабочее множество намного больше, чем
объем памяти, разница может достигать почти двух порядков. В таких случаях

очень полезно увеличить размер буфера вставки.

Однако для флеш-памяти это не так важно. Произвольный ввод/вывод на флеш­

устройствах выполняется намного быстрее, поэтому даже полное отключение

буфера вставки не принесет больших проблем. Однако вы вряд ли будете его

отключать. Лучше оставить его включенным, поскольку операции ввода/выво­

да - это только часть всех затрат на обновление страниц индекса, которые не на­
ходятся в памяти. Основной параметр, который необходимо настроить на флеш­

устройствах, - это максимально допустимый размер буфера вставки. Можно

установить сравнительно небольшую верхнюю границу, тем самым не разрешать

ему разрастаться. Это позволит избежать использования большого количества

места на вашем устройстве и предотвратит увеличение размера файла ibdatal.

Помимо вышеупомянутых рекомендаций по конфигурации, разные эксперты пред­

лагали и некоторые другие способы оптимизации для флеш-памяти. Однако с ними

все далеко не очевидно, поэтому мы их только назовем и предоставим вам само­

стоятельно оценить их преимущества в каждом конкретном случае. Прежде всего

это размер страницы InnoDB. Мы получали противоречивые результаты, поэтому
не можем дать каких-либо конкретных рекомендаций. Хорошо, что в Percona Server
размер страницы настраивается без перекомпиляции сервера, и это будет возмож­

но также в MySQL 5.6. Предыдущие версии MySQL требовали перекомпиляции
сервера при изменении размера страницы, основная масса пользователей работала

со стандартными страницами размером 16 Кбайт. Если изменять размер страницы
станет проще, можно будет ожидать гораздо большего числа экспериментов с не­
стандартными размерами. Вполне вероятно, что эти многочисленные эксперименты

дадут нам массу полезной информации.

Другим способом оптимизации является применение альтернативных алгоритмов

для контрольных сумм страницы InnoDB. Если система хранения реагирует очень

476 Глава 9 • Оптимизация операционной системы и оборудования

быстро, время вычисления контрольной суммы фактически может оказаться зна­
чительным по сравнению с временем, затрачиваемым на операцию ввода/вывода.

В некоторых случаях это, а не операции ввода/вывода может стать узким местом.

Наши эталонные тесты не показали результатов, которые можно было бы приме­
нить к широкому спектру вариантов использования, поэтому ничего определенного

посоветовать не можем. Percona XtraDB позволяет вам изменить алгоритм расчета
контрольной суммы. Такая же возможность будет реализована и в MySQL 5.6.

Возможно, вы обратили внимание на то, что мы много говорили о возможностях оп­
тимизации, которые пока недоступны в стандартной InnoDB. Надеемся и верим, что
многие улучшения, которые мы реализовали в Percona Server и XtraDB, в конечном
итоге станут доступны для более широкой аудитории. Тем не менее, даже если вы

используете официальный дистрибутив MySQL от Oracle, существуют мероприятия,
которые вы можете предпринять для оптимизации работы своего сервера с флеш­
памятью. Вам нужно использовать innodb_file_per _tаЫе и поместить каталог
данных на флеш-устройство. А затем переместить файлы журнала и ibdatal, а также
все остальные файлы журналов (двоичные журналы, журналы ретрансляции и т. д.)

в том RAID, как мы писали ранее. Это сконцентрирует нагрузку произвольного
ввода/вывода на флеш-устройстве и по максимуму перенесет с этого него операции

последовательной файловой записи. Тем самым на флеш-устройстве будет сэконом­

лено место, а его износ уменьшится.

Помимо этого при любых версиях сервера необходимо убедиться, что включена ги­

перпоточность. Она хорошо помогает при использовании флеш-памяти, поскольку

диск, как правило, больше не является узким местом, а рабочая нагрузка становится
сильнее зависимой от процессора, а не от операций ввода/вывода.

Выбор оборудования для подчиненного сервера

При выборе оборудования для подчиненного сервера руководствуются в основном
теми же принципами, что и при выборе оборудования для главного сервера, хотя
есть и некоторые отличия. Если вы планируете использовать подчиненный сервер,

чтобы переключаться на него в случае сбоя основного, то, как правило, он должен
быть не менее мощным, чем главный сервер. И вне зависимости от того, будет ли

подчиненный сервер выступать в роли резервной замены главного, он должен быть

достаточно мощным для выполнения всех операций записи, произведенных на

главном сервере, с учетом того, что они должны еще и выполняться последовательно

(дополнительная информация об этом приведена в главе 10).

Основное соображение при выборе оборудования для подчиненного сервера - за­
траты: нужно ли тратить на него столько же средств, сколько и на главный? Мож­

но ли сконфигурировать подчиненный сервер по-другому, чтобы выжать из него
дополнительную производительность? Будет ли рабочая нагрузка подчиненного
сервера отличаться от нагрузки главного? Каков возможный выигрыш от другого

оборудования?

Оптимизация производительности с помощью RAID 477

Все зависит от обстоятельств. Если подчиненный сервер используется в качестве

резервного, то оборудование и конфигурацию главного и подчиненного серверов
имеет смысл делать одинаковыми. Но если единственное назначение репликации -
увеличить пропускную способность системы в части операций чтения, то возможны
самые разные компромиссы. Например, можно использовать на подчиненном сервере

другую подсистему хранения, оборудовать его более дешевыми компонентами или

сконфигурировать RАID-массив уровня О, а не 5 или 10. Кроме того, можно по­
жертвовать некоторыми гарантиями непротиворечивости и долговечности, чтобы
подчиненному серверу приходилось меньше работать.

Эти меры могут быть экономически эффективными в больших масштабах, но при
малых лишь усложняют работу. Кажется, что на практике большинство людей ис­
пользуют для реплик одну из двух стратегий: устанавливают везде одинаковое обо­
рудование или покупают новое оборудование для главного сервера, а старое передают
подчиненному.

Использование твердотельных дисков на подчиненном сервере может иметь смысл,

когда ему нелегко идти в ногу с главным сервером. Быстрые операции произвольного

ввода/вывода помогают компенсировать недостатки однопоточной репликации.

Оптимизация производительности
с помощью RAID
Подсистемы хранения часто размещают все данные и индексы в одном большом
файле, а это означает, что для хранения данных наиболее подходящим вариантом

является технология RAID 1 (redundant array of inexpensive disks - избыточный
массив независимых дисков). Она может решить проблемы резервирования, емкости,
кэширования и быстродействия. Но как и для остальных рассматриваемых способов
оптимизации, RАID-массив можно конфигурировать по-разному и важно выбрать
уровень, отвечающий именно вашим потребностям.

Мы не станем здесь ни разбирать все уровни RAID, ни вдаваться в детали того, как
организовано хранение данных на каждом из них. Эта тема прекрасно изложена

в различных книгах и в Сети2• Мы же займемся тем, как различные конфигурации

Неплохой альтернативой является также секционирование (см. главу 7), поскольку оно
позволяет разбить один большой файл на много более мелких, которые можно разместить

на разных устройствах. Однако при сверхбольших объемах данных RAID оказывается
более простым решением по сравнению с секционированием. Пользователю не нужно
балансировать нагрузку вручную или вмешиваться, когда распределение нагрузки изме­
няется. Кроме того, эта технология обеспечивает избыточность, которую не получить за

счет разнесения секций по разным дискам.

Упомянем лишь два хороших источника информации о RAID: статью в ~википедии~.
(http://en.wikipedia.org/wiki/RAID) и учебное руководство AC&NC, расположенное по
адресу http://www.acnc.com/04_00.html.

478 Глава 9 • Оптимизация операционной системы и оборудования

RAID удовлетворяют требованиям, предъявляемым серверами базы данных. Далее
перечислены наиболее важные уровни RAID.

О RAID О. Уровень RAID О - самая малозатратная и наиболее производительная

конфигурация RAID, по крайней мере при упрощенном подходе к оценке затрат
и производительности (если рассматривать также восстановление данных, то

затраты начинают расти). Поскольку этот уровень не обеспечивает никакой из­

быточности, мы рекомендуем его лишь для серверов, которые вам более или менее
безразличны, например для подчиненных серверов или серверов, которые по той
или иной причине считаются одноразовыми. Типичный пример - подчиненный

сервер, который легко клонировать из другого подчиненного сервера.

Еще раз подчеркнем, что уровень RAID О не обеспечивает никакой избыточности,
несмотря на то что в акрониме RAID первая буква означает гedundant («избыточ­
ный»). На самом деле вероятность выхода из строя RАID-массива уровня О даже

выше, а не ниже вероятности отказа одиночного диска!

О RAID 1. Уровень RAID 1 обеспечивает неплохую производительность чтения во
многих ситуациях, а так как данные дублируются, то имеется и избыточность.
При операциях чтения RAID 1 чуть быстрее, чем RAID О. Он хорошо подходит
для серверов, занятых журналированием и другими аналогичными операциями,

поскольку в случае последовательной записи редко бывает необходимо, чтобы

все составляющие массив диски показывали высокое быстродействие (в отличие
от произвольной записи, для которой распараллеливание может дать заметный

эффект). Этот уровень также часто выбирают для маломощных серверов, которым
нужна избыточность, но жестких дисков всего два.

Уровни RAID О и RAID 1 очень просты и часто реализуются программно. Многие
операционные системы предоставляют простые средства для создания томов типа

RAID О или RAID 1.

О RAID 5. Уровень RAID 5 выглядит более сложным, но для некоторых приложе­
ний это единственный выход из-за ценовых параметров и/или ограничений на ко­

личество дисков, которые физически можно разместить на сервере. В этом случае

данные распределяются по нескольким дискам и дополнительно поддерживаются

распределенные блоки с контрольной суммой, так что при отказе одного диска
хранившаяся на нем информация может быть восстановлена по данным на других
дисках и контрольным блокам. Однако при выходе из строя двух дисков весь том

становится невосстанавливаемым. С точки зрения цены за единицу хранения это

самая экономичная из всех конфигураций с избыточностью, поскольку из всего

массива на обеспечение избыточности расходуется пространство, эквивалентное
одному диску.

Произвольная запись на уровне RAID 5 - затратная операция, так как реально

требуется произвести две процедуры чтения записи и две операции записи для
базовых дисков, чтобы рассчитать и сохранить контрольную сумму. Процедуры
записи выполняются чуть быстрее, если они последовательные или количество
физических дисков велико. В то же время чтение - как последовательное, так

и произвольное - выполняется весьма быстро. Уровень RAID - приемлемый

Оптимизация производительности с помощью RAID 479

выбор для томов, содержащих только данные или данные и журналы, чья рабочая
нагрузка преимущественно связана с чтением, где затраты на дополнительную

операцию ввода/вывода не имеют значения.

В случае отказа диска затраты производительности на уровне RAID 5 макси­
мальны, так как информацию приходится реконструировать путем чтения всех

остальных дисков. Это весьма ощутимо сказывается на производительности. Если

попытаетесь сохранить доступ к серверу во время процедуры реконструкции, то

не ждите ни хорошего быстродействия, ни быстрого завершения восстановле­

ния. Если вы используете RAID 5, стоит позаботиться о механизме, который при
наличии проблем выполнит переключение на резервные мощности и выведет

машину из эксплуатации. В любом случае целесообразно провести эталонное
тестирование системы на предмет отказа диска и во время восстановления, чтобы

знать, чего в этом случае ожидать. Производительность диска может ухудшить­

ся в два раза или более при выходе из строя диска и в пять или более раз - при
восстановлении, а сервер с хранилищем, который работает в 2-5 раз медленнее
нормы, может повлиять на все окружающее.

К другим недостаткам можно отнести ограничения масштабируемости из-за

блоков с контрольной суммой (RAID 5 начинает хуже масштабироваться уже
при десяти дисках) и проблемы кэширования. Производительность RAID 5
в значительной степени зависит от кэша в RАID-контроллере, который может

вступать в конфликт с потребностями сервера базы данных. Мы вернемся к этой
теме чуть позже.

Один из факторов, помогающих примириться с уровнем RAID 5, - его широкая

распространенность. Поэтому RАID-контроллеры часто оптимизируют именно

для этого уровня, и, несмотря на теоретические ограничения, интеллектуальные

контроллеры с кэшем при некоторых рабочих нагрузках работают почти так же
хорошо, как контроллеры RAID 10. Правда, это может всего лишь свидетельство­
вать о недостаточной оптимизированности последних, но, как бы то ни было, мы

с таким сталкивались.

С1 RAID 10. Уровень RAID 10 - прекрасный выбор для хранения информации.

Он состоит из зеркалированных пар с данными, записанными с чередованием, так

что отлично масштабируется и для чтения, и для записи. По сравнению с RAID 5
он работает и реконструируется очень быстро. К тому же этот уровень довольно
легко реализуется программно.

Падение производительности при отказе одного диска все еще остается за­

метным, поскольку узким местом становятся находящиеся на нем данные.

В зависимости от рабочей нагрузки снижение производительности может
достигать 50 %. При выборе RАID-контроллера нужно обращать внимание,
не используется ли в реализации RAID 1 О зеркалирование с конкатенацией.
Это неоптимальное решение, так как в этом случае отсутствует чередование:

может оказаться, что данные, к которым сервер обращается чаще всего, нахо­

дятся только на одной паре дисков, а не распределены по многим парам, а это

снижает производительность.

480 Глава 9 • Оптимизация операционной системы и оборудования

Q RAID 50. Уровень RAID 50 состоит из чередующихся массивов RAID 5. Такое
решение может стать неплохим компромиссом между экономичностью RAID 5
и высокой производительностью RAID 10, если имеется достаточное количество
дисков. Этот метод наиболее полезен для очень больших наборов данных, напри­
мер при организации хранилищ, или необычайно крупных ОLТР-систем.

Различные конфигурации RAID сведены в табл. 9.2.

Та611ица 9.2. Сравнение уровней RAID

Уровень Характерисrики Избьпочность Требуется Быстрое Быстрая
дисков чтение запись

RAIDO Дешевый, быстрый, опасный Нет N Да Да

RAID 1 Быстрое чтение, простой, Да 2 (обычно) Да Нет
безопасный

RAIDS Безопасный, быстрый, Да N+ 1 Да По-разному

ПОЗВОЛЯЮЩИЙ ДОСТИЧЬ

компромисса по затратам

RAID 10 Дорогой, быстрый, Да 2N Да Да

безопасный

RAIDSO Для очень больших Да 2(N + 1) Да Да

хранилищ данных

Отказ, восстановление и мониторинг RAID
Все уровни RAID, кроме RAID О, обеспечивают избыточность. Это, конечно, важно,
но не стоит недооценивать вероятность отказа сразу нескольких дисков. Не нужно

думать, что RAID дает полную гарантию сохранности данных.

RAID не отменяет и даже не уменьшает необходимость резервного копирования.
В случае возникновения проблемы время восстановления зависит от контроллера,
уровня RAID, размера массива, скорости дисков и от того, требуется ли сохранять
доступ к данным во время реконструкции массива.

Может случиться, что несколько дисков откажут одновременно. Например, скачок

напряжения или перегрев вполне способны вывести из строя два и более диска.
Но чаще бывает, что два отказа разделены небольшим промежутком времени. Нередко
это остается незамеченным. Типичная ситуация - повреждение поверхности носи­

теля в том месте, где хранятся редко используемые данные. Дефект может не про­

являться много месяцев, пока кто-то не попытается прочитать данные или RАID­

контроллер не воспользуется ими для реконструкции массива. Чем диск больше, тем
вероятнее такое развитие событий.

Именно поэтому так важно вести мониторинг состояния RАID-массивов. Обычно
вместе с контроллером поставляется программное обеспечение для формирования
отчетов о состоянии массива, и им надо пользоваться, поскольку в противном случае

вы так и будете пребывать в неведении об отказе диска. Возможность вовремя вое-

Оптимизация производительности с помощью RAID 481

становить данные будет упущена, а о проблеме вы узнаете только в момент отказа
второго диска, когда будет уже слишком поздно принимать меры.

Уменьшить риск можно, если регулярно активно проверять сохранность массива.

Кроме того, в некоторых контроллерах реализована функция Background Patrol
Read (фоновое контрольное чтение), которая ищет дефекты дисков и устраняет их,
не прерывая доступа к данным. Но как и в случае восстановления, проверка очень

больших массивов может занимать длительное время, поэтому планируйте ее за­

благовременно.

Можно также добавить горячий резервный диск, который не используется, а скон­

фигурирован как резервный, чтобы контроллер мог автоматически задействовать

его для восстановления. Это разумная мысль, если все серверы очень важны. Для

серверов всего с 2-3 дисками такое решение дороговато, но если дисков много, то
просто глупо не раскошелиться еще на один для горячей замены. Не забывайте, что

вероятность отказа быстро возрастает с увеличением количества дисков.

Помимо мониторинга дисков на предмет наличия сбоев, следует также контро­

лировать блок резервного питания аккумулятора контроллера RAID и политику
кэширования записей. Если батарея выходит из строя, большинство контроллеров

по умолчанию отключат кэширование записи, изменив политику кэширования на

Write-Through (запись в обход кэша) вместо Write-Back (отложенная запись в кэш).
Это может привести к серьезному снижению производительности. Многие контрол­

леры также будут периодически заряжать батареи во время процесса обучения, в те­
чение которого кэш также отключается. Утилита управления RАID-контроллером

должна позволять вам просматривать и планировать цикл зарядки батарей, чтобы

он не заставал вас врасплох.

Кроме того, вы можете выполнить эталонное тестирование своей системы на пред­

мет политики кэширования, установленной как WriteThrough. Таким образом вы
узнаете, с чем столкнетесь. Возможно, придется запланировать цикл зарядки батарей

на ночное время или выходные дни, перенастроить серверы, изменив переменные

innodb_flush_log_at_trx_convnit и sync_Ьinlog, или просто перейти на другой сервер,
позволив серверам заряжать батареи по очереди.

Выбор между аппаратной
и программной реализациями RAID
Между операционной системой, файловой системой и количеством дисков, которые

видит операционная система, существуют сложные зависимости. Ошибки, ограниче­

ния, да и просто неверная конфигурация могут привести к тому, что производитель­

ность будет сильно недотягивать до теоретически возможной.

Если имеется десять жестких дисков, то в идеале они могли бы параллельно об­

служивать десять запросов, но иногда файловая система, операционная система или

RАID-контроллер сериализуют запросы. Одно из возможных решений этой про­

блемы - попробовать различные конфигурации RAID. Например, если вы хотите

482 Глава 9 • Оптимизация операционной системы и оборудования

воспользоваться зеркалированием для обеспечения избыточности и высокой произ­
водительности, то можно сконфигурировать десять дисков следующими способами.

1:1 Сконфигурировать один том уровня RAID 10, состоящий из пяти зеркалиро-
ванных пар. Операционная система будет видеть единый большой том, а RАID­

контроллер скроет десять составляющих его дисков.

1:1 Сконфигурировать пять зеркалированных пар уровня RAID 1, так что операци­
онная система будет адресовать пять томов вместо одного.

1:1 Сконфигурировать пять зеркалированных пар уровня RAID 1 в RАID-контроллере,
а затем использовать программную реализацию RAID О, чтобы представить
все пять томов в виде одного логического тома. В результате получится массив

RAID 1 О, реализованный отчасти программно, а отчасти аппаратно.

Какой вариант лучше? Зависит от взаимодействия между всеми компонентами

системы. Возможно, эти конфигурации будут работать с одинаковой производитель­
ностью, а может, и нет.

Мы наблюдали сериализацию в различных конфигурациях. Например, в файловой
системе ехtЗ имеется по одному мьютексу для каждого индексного дескриптора,

поэтому конфигурирование InnoDB с параметром innodb_flush_method=O_DIRECT
(обычная конфигурация) приведет к блокировкам на уровне индексных узлов в фай­
ловой системе. Тем самым конкурентный ввод/вывод в файлы станет невозможным,

а система будет работать хуже, чем способна теоретически.

Аналогичная ситуация наблюдалась, когда мы работали с томом RAID 1 О из десяти
дисков, файловой системой ReiserFS и подсистемой хранения InnoDB с включенным
параметром innodb_file_per _tаЫе, но теперь сериализации подвергались запро­
сы к каждому устройству. После перехода на уровень RAID О поверх аппаратного
RAID 1 пропускная способность возросла в пять раз, поскольку подсистема хранения
стала вести себя так, будто вместо одного диска появилось пять. Это явление было
вызвано ошибкой, впоследствии исправленной, но сам факт хорошо иллюстрирует,

что вообще может произойти.

Сериализация может наблюдаться на любом уровне программного или аппаратного
стека. Столкнувшись с такой проблемой, можно попытаться изменить файловую
систему, обновить ядро, предъявить операционной системе больше устройств или
организовать другое сочетание программной и аппаратной реализации RAID. Следу­
ет также посмотреть, что утилита iostat говорит о конкурентном доступе к устройству,
и убедиться в том, что ввод/вывод действительно производится конкурентно (по­
дробнее этот вопрос будет рассмотрен в дальнейшем).

И не забывайте при настройке нового сервера об эталонном тестировании! Оно по­

зволит доказать, что фактическая производительность совпадает с ожидаемой.

Например, если один диск может выполнять 200 операций с произвольным до­
ступом в секунду, то том RAID 1 О из восьми дисков должен выполнять примерно
1600 таких операций. Если наблюдается существенно меньшая величина, например
всего 500 операций чтения, то проблему необходимо исследовать. Следите за тем,
чтобы эталонные тесты нагружали подсистему ввода/вывода так же, как это делает

Оптимизация производительности с помощью RAID 483

MySQL, - например, установите флаг O_DIRECТ и тестируйте производительность

ввода/вывода на одном файле, если используется InnoDB с отключенным режимом
innodb_file_per _tаЫе. Обычно для проверки правильности настройки нового обо­
рудования мы используем инструмент sysbench.

Конфигурация RAID и кэширование
Обычно для конфигурирования контроллера RAID нужно войти в его программу
настройки на стадии начальной загрузки компьютера. Большинство контроллеров

предлагают множество разнообразных параметров, но мы остановимся только на раз­
мере фрагмента для массивов с чередованием и кэше кoumpoJUtepa (его еще называют

RАID-кэшем, будем считать эти термины синонимами).

Размер фрагмента для слоя RAID

Оптимальный размер фрагмента для чередования зависит от рабочей нагрузки
и оборудования. Теоретически для ввода/вывода с произвольной выборкой лучше
подходит большой размер фрагмента, поскольку это означает, что один диск способен
удовлетворить более длинные запросы на чтение.

Чтобы понять, почему это так, рассмотрим типичную операцию произвольного
ввода/вывода для имеющейся рабочей нагрузки. Если размер фрагмента не меньше
длины этой операции и данные не пересекают границу между фрагментами, то в чте­

нии может участвовать только один диск. Но если размер фрагмента меньше длины

считываемых данных, то придется задействовать несколько дисков.

Но оставим теорию. На практике многие RАID-контроллеры плохо работают с боль­
шими фрагментами. Например, контроллер может использовать фрагмент как

единицу кэширования в своем кэше, а это бывает расточительно. Он может также
сопоставить размер фрагмента, размер кэша и размер единицы считывания (объем
данных, считываемых за одну операцию). Если единица считывания оказывается

слишком велика, то кэш используется неэффективно, так как в него попадает гораздо

больше данных, чем необходимо, даже для крохотных запросов.

Кроме того, на практике сложно узнать, расположен ли некоторый элемент данных

на одном или нескольких дисках. Даже при размере фрагмента 16 Кбайт, что со­
ответствует размеру страницы InnoDB, мы не можем быть уверены в том, что все
операции считывания выровнены по границе 16 Кбайт. Файловая система может
фрагментировать файл и обычно выравнивает его фрагменты по границам блока
файловой системы, который чаще всего составляет 4 Кбайт. Некоторые файловые
системы ведут себя разумнее, но рассчитывать на это не стоит.

Вы можете настроить систему так, чтобы блоки были полностью выровнены, начиная
с приложения и заканчивая основным хранилищем данных: блоки InnoDB, блоки
файловой системы, LVM, смещение раздела, секция RAID и секторы диска. Эталонные
тесты показали, что если все блоки выровнены, это может улучшить производитель­
ность приблизительно на 15 и 23 % для произвольного чтения и записей соответственно.

484 Глава 9 • Оптимизация операционной системы и оборудования

Точные методики для выравнивания всех блоков слишком специфичны, поэтому
не станем описывать их здесь, однако об этом можно найти много полезной инфор­

мации, например, в нашем благе по адресу http://www.mysqlperformanceЬlog.com.

RАID-кэш

RАID-кэш представляет собой небольшую (относительно) область памяти, которая
физически находится на плате RАID-контроллера. Его можно использовать для

буферизации данных на пути между диском и хает-системой. Далее перечислены
несколько причин, по которым RАID-контроллер может воспользоваться кэшем.

О Кэширование результатов чтения. Прочитав какие-то данные с дисков и отправив
их хост-системе, контроллер может эти данные сохранить, тогда последующие

запросы тех же самых данных можно будет удовлетворить, не обращаясь снова
к диску.

Как правило, это неудачное использование RАID-кэша. Почему? Потому что

у операционной системы и сервера базы данных есть свои, куда более обширные

кэши. Если произойдет попадание в один из них, то до RАID-кэша дело даже

не дойдет. И наоборот, если не было попадания ни в один из вышележащих кэшей,
вероятность того, что данные обнаружатся в RАID-кэше, окажется исчезающе

мала. Поскольку RАID-кэш намного меньше, то почти наверняка нужные данные

уже вытеснены из него и заменены новыми. В общем, как ни крути, сохранять
результаты чтения в RАID-кэше - пустая трата памяти.

О Упреждающее кэширование данных при чтении. Если RАID-контроллер обнару­
живает запросы на чтение последовательных данных, то он может прибегнуть
к упреждающему чтению, то есть заранее выбрать данные, которые, вероятнее

всего, скоро понадобятся. Однако до тех пор, пока запрос не поступил, эти данные
нужно где-то хранить. Для этой цели вполне подходит RАID-кэш. Влияние такой

тактики на производительность может варьироваться в широких пределах, поэто­

му следует проверять, дала ли она что-нибудь в вашей ситуации. Упреждающее

чтение на уровне RАID-контроллера может не иметь никакого эффекта, если сервер

базы данных реализует собственный алгоритм интеллектуального упреждающего
чтения (как, например, InnoDB). К тому же оно может воспрепятствовать гораздо
более важному механизму буферизации синхронных операций записи.

О Кэширование операций записи. RАID-контроллер может буферизовать в своем
кэше операции записи, откладывая их выполнение на более позднее время.

У такой методики есть два достоинства: во-первых, контроллер может вернуть

хает-системе признак успешного завершения быстрее, чем если бы физически

производил запись на диски, а во-вторых, операции записи можно объединить
и выполнить более эффективно.

О Внутренние операции. Некоторые операции RАID-контроллера очень сложны,

особенно запись в случае RAID 5, когда нужно вычислять контрольную сумму,
которая позволит реконструировать данные в случае отказа диска. Для выполне­

ния таких операций контроллеру необходима память.

Оптимизация производительности с помощью RAID 485

В частности, по этой причине в некоторых контроллерах уровень RAID 5 работает
медленно: для обеспечения высокой производительности контроллер должен про­
читать в кэш много данных, но не все контроллеры умеют разумно распределять

память кэша между операциями записи и операциями вычисления контрольной

суммы для RAID 5.

Вообще говоря, память на плате RАID-контроллера - это дефицитный ресурс,
которым нужно распорядиться с толком. Использовать его для кэширования ре­

зультатов чтения - обычно откровенное расточительство, а вот использование его
для кэширования операций записи может ощутимо повысить производительность

ввода/вывода. Многие контроллеры позволяют указать, как распределить эту память.

Например, можно выбрать, какую часть отвести под кэширование операций записи,
а какую - для результатов чтения. В случае RAID О, RAID 1 и RAID 1 О лучше всего
выделить все 100 % памяти контроллера под кэширование операций записи. В слу­
чае же RAID 5 следует зарезервировать часть памяти контроллера для внутренних
операций. В общем случае это хорошая рекомендация, но применима она не всегда:

разные RАID-контроллеры конфигурируются по-разному.

Если RАID-кэш применяется для кэширования операций записи, то многие кон­

троллеры позволяют указать, на какое время можно задерживать запись (1 секунда,
5 секунд и т. д.). Чем больше задержка, тем больше операций записи удастся сгруп­
пировать и сбросить на диск оптимальным образом. Недостаток же заключается
в том, что запись оказывается более «пульсирующей•. В этом нет ничего страшного,
если только приложение не отправит пачку запросов на запись как раз в тот момент,

когда кэш контроллера заполнен и должен быть сброшен на диск. Если для запро­
сов приложения не осталось места, ему придется ждать. Если уменьшить задержку, то

физических операций записи будет больше и их группировка окажется менее эффек­
тивной, зато пики удастся сгладить и кэш сумеет справиться с внезапным всплеском

количества запросов от приложения. (Мы несколько упростили изложение - в кон­

троллерах часто реализуются сложные патентованные алгоритмы балансировки, но
мы пытаемся объяснить основополагающие принципы.)

Кэш записи очень полезен для синхронных операций, например для системных вы­

зовов fsync () при записи в журнал транзакций и создании двоичного журнала в ре­
жиме sync_Ьinlog, но его не следует активизировать, если контроллер не оборудован
блоком аварийного электропитания (battery backup unit, BBU) или другим энергоне­
зависимым запоминающим устройством 1• В противном случае внезапное отключение

напряжения может легко привести к повреждению базы данных и даже транзакцион­
ной файловой системы. Однако при наличии BBU включение кэша записи может
повысить производительность в 20 и более раз, если рабочая нагрузка подразумевает
большое количество сбросов в журнал, например, в момент фиксации транзакций.

И в завершение следует отметить, что многие накопители на жестких дисках обору­
дованы собственным кэшем записи, который может «обжуливать• операцию fsync(),

Существует несколько технологий, в том числе конденсаторы и флеш-накопители, но здесь

мы сосредоточимся на BBU.

486 Глава 9 • Оптимизация операционной системы и оборудования

обманывая контроллер сообщением, будто данные записаны на физический носитель.
Жесткие диски, подключенные напрямую, а не через RАID-контроллер, позволяют

операционной системе управлять своими кэшами, но это работает не всегда. Такие
кэш и обычно сбрасываются при вызове fsync () и обходятся при синхронном вводе/
выводе, но все-таки накопитель может лгать. Следует либо убедиться в том, что кэш
действительно сбрасывается в момент вызова fsync (), либо отключить его вовсе,
поскольку аварийное питание от батареи для него не предусмотрено. Накопители,
которыми операционная система или микропрограмма RАID-контроллера не может

корректно управлять, не раз становились причиной потери данных.

По этой и другим причинам всегда целесообразно, устанавливая новое оборудование,
провести настоящий краш-тест (в буквальном смысле - выдернув шнур из розетки).
Зачастую это единственный способ найти трудноуловимые ошибки в конфигурации
или воспроизвести коварное поведение накопителя. Удобный скрипт для этих целей
можно найти по адресу http://brad.livejournal.com/2116715.html.

Если вы хотите быть абсолютно уверенными в надежности BBU, которым оснащен
RАID-контроллер, оставьте шнур выдернутым на длительное время. Некоторые

батарейные источники поддерживают питание не так долго, как заявлено в спе­
цификации. В этом случае, как и во многих других, одно слабое звено может привести
к бесполезности всей цепочки компонентов хранения данных.

Сети хранения данных и сетевые системы
хранения данных

Сети хранения данных (storage area networks, SAN) и сетевые системы хране­
ния данных (network-attached storage, NAS) - это два взаимосвязанных способа
подключения внешних устройств хранения файлов к серверу. Различие состоит

в способе доступа к хранилищу. SAN предоставляет такой интерфейс на уровне
блоков, что серверу кажется, будто устройство подключено напрямую. Что же ка­
сается NАS-устройств, то они работают по протоколу файлового уровня, например,
NFS или SMB. SAN обычно подключается к серверу по протоколу Fibre Channel
Protocol (FCP) или iSCSI, тогда как NАS-устройства - по стандартному сетевому
соединению. Некоторые системы хранения, такие как, например, NetApp Filer, могут
использовать оба способа.

В дальнейшем аббревиатурой SAN мы будем обозначать оба этих типа хранилищ,
не забывайте об этом во время чтения. Основное различие между ними заключается
в доступе к хранилищу в виде файлов или блоков.

SАN-сети разрешают серверу получать доступ к очень большому количеству жестких
дисков - как правило, 50 и более - и обычно имеют большие интеллектуальные кэши
для буферизации записей. Интерфейс уровня блока отображается на сервере как но­
мера логических единиц (L UN) или виртуальные тома (если вы не используете N FS).
Многие SАN-сети также позволяют группировать несколько узлов в кластеры для

повышения производительности или увеличения емкости хранилища.

Сети хранения данных и сетевые системы хранения данных 487

Нынешнее поколение SАN-сетей отличается от тех, которые были доступны не­
сколько лет назад. У многих новых SАN-сетей имеется гибридное хранилище данных,
состоящее из флеш-памяти и жесткого диска, а не только жесткие диски. Часто у них

есть флеш-кэши размером 1 Тбайт или больше, в отличие от более старых SАN­
сетей, у которых были относительно небольшие кэши. Кроме того, старые SАN-сети

не могли не увеличить буферный пул с помощью большого кэша, тогда как новые
могут не увеличивать. Таким образом, в некоторых ситуациях новые SАN-сети могут
обеспечить лучшую производительность, чем старые.

Эталонные тесты SАN-сетей

Мы провели эталонное тестирование разнообразных продуктов, предлагаемых раз­
личными производителями. В табл. 9.3 показана выборка типичных результатов
в условиях низкой конкуренции.

Таблица 9.3. Количество синхронных однопоточных операций в секунду с данными
размером 16 Кбайт для файла размером 4 Гбайт

Устройство Посnедоватепьная Посnедоватепьное Произвольная Произвольное

запись чтение запись чтение

SAN1сRAID5 2428 5794 629 258

SAN1сRAID10 1765 3427 1725 213

SAN2 поверх NFS 1768 3154 2056 166

10k RPM жесткие 7027 4773 2302 310
диски, RAID 1

Iвtel SSD 3045 6266 2427 4397

Конкретные производители и конфигурации SАN-сетей останутся в секрете, хотя

можем сказать, что это не низкобюджетные SАN-сети. Мы провели эти эталонные
тесты с синхронными операциями с данными размером 16 Кбайт, тем самым эмули­
руя то, как InnoDB работает при настройке в режиме O_DIRECT.

Какие выводы можно сделать на основе анализа табл. 9.3? Не все протестирован­
ные системы можно напрямую сопоставить, поэтому не стоит внимательно изучать

конкретные значения. Однако результаты хорошо иллюстрируют общую произ­

водительность, которой можно было ожидать от этих типов устройств. SАN-сети

могут поглощать множество последовательных записей, поскольку способны буфе­
ризовать и объединять их. Они могут без проблем обслуживать последовательные
чтения, поскольку умеют их предсказывать, осуществлять предварительную выборку
и обслуживать конкретные чтения уже из кэша. При произвольной записи на­
блюдается некоторое замедление, поскольку записи нельзя объединить таким же
образом. При произвольном чтении SАN-сети продемонстрировали крайне низкие
результаты: такое чтение обычно сопровождается непопаданием в кэш, поэтому

приходится ждать ответа от жестких дисков. Кроме того, наблюдается задержка

транспортировки между сервером и SAN. Именно поэтому SАN-сеть, подключенная

488 Глава 9 • Оптимизация операционной системы и оборудования

через NFS, выполняет меньше произвольных чтений в секунду, чем один локально
подключенный жесткий диск.

Мы провели эталонное тестирование с файлами больших размеров, однако у нас

нет результатов по этим файлам для всех вышеперечисленных систем. Результат,

однако, всегда предсказуем: независимо от того, насколько большие и мощные

SАN-сети используются, получить небольшое время отклика или хорошую про­

пускную способность для небольших произвольных операций не у дается. Дело в том,

что происходит слишком много задержек из-за существования расстояния между

сервером и SАN-сетями.

Наши эталонные тесты показали пропускную способность в операциях в секунду,

однако в них не учитываются все факторы. Есть как минимум три других важных по­

казателя: пропускная способность в байтах в секунду, конкурентный доступ и время

отклика. В целом по сравнению с напрямую подключенным хранилищем SАN-сети

обеспечат хорошую последовательную пропускную способность в байтах в секунду

как для чтения, так и для записи. Большинство SАN-сетей могут поддерживать высо­

кую конкуренцию, однако мы провели эталонное тестирование только одного потока,

чтобы показать самый плохой вариант. Но когда рабочее множество не помещается
в кэши SАN-сетей, произвольное чтение будет очень плохим с точки зрения про­

пускной способности и задержек. Но даже если рабочее множество поместить в кэш,

задержки будут выше, чем при прямом подключении.

Использование SАN-сетей через NFS или SMB
Некоторые SAN, такие как программа работы с файлами NetApp, обычно получают
доступ к NFS вместо Fibre Channel или iSCSI. Раньше этого старались избежать, но
сейчас NFS работает намного лучше. Вы можете добиться приличной производитель­
ности при NFS, хотя для этого нужно специ<UJьно настроить сеть. Производители
SАN-сетей рекомендуют приемы, которые должны помочь вам в настройке.

Основное соображение заключается в том, как сам протокол NFS влияет на произ­
водительность. Многие операции с файлами метаданных, которые обычно выполня­

ются в памяти в локальной файловой системе или в SAN без NFS, могут требовать
запроса и ответа по сети с NFS. Например, мы отметили серьезное снижение про­
изводительности при хранении двоичных журналов в NFS, даже с отключенным
протоколом sync_Ьin log. Это связано с тем, что добавление к двоичному журн<Uiу
увеличивает его размер, что требует операции метаданных, которая вызывает до­

полнительные запросы и ответы.

Доступ к SAN или NAS можно также получить по протоколу SMB. В этом случае
справедливы аналогичные соображения: может потребоваться множество чувстви­

тельных к задержкам запросов и ответов. Это не имеет большого значения для обыч­

ного пользователя настольного компьютера, который хранит электронные таблицы

или другие документы на подключенном к нему накопителе, или даже для таких

операций, как перенесение резервных копий на другой сервер, но это может быть

серьезной проблемой для способа, которым MySQL читает и записывает файлы.

Сети хранения данных и сетевые системы хранения данных 489

Производительность MySQL в SAN
Эталонные тесты ввода/вывода - это один из способов взглянуть на ситуацию, но
как насчет производительности MySQL в SAN? Во многих случаях MySQL работает
очень хорошо и вы не столкнетесь с ситуациями, когда использование SАN-сетей

приведет к некоторому ухудшению производительности. Тщательное логическое

и физическое проектирование, включая индексирование и соответствующее сервер­

ное оборудование (много памяти!), позволит избежать большого числа произвольных
операций ввода/вывода или преобразовать их в последовательные. Тем не менее
вы должны знать, что такая система может поддерживать неустойчивое равновесие

в течение некоторого периода времени, которое легко может быть нарушено новым
запросом, сменой схемы или редко выполняемой операцией.

Например, один наш знакомый, пользователь SАN-сетей был вполне доволен обыч­
ной производительностью, пока не захотел удалить много строк из старой таблицы,
которая очень сильно выросла. Команда DELETE, удалявшая лишь пару сотен строк
в секунду, работала очень долго, поскольку каждая строка требовала произвольного
ввода/вывода, который SАN-сети не могли выполнить быстро. Не было никакого спо­
соба ускорить операцию, пришлось долго ждать ее завершения. Другим сюрпризом

для того же пользователя стала ситуация, когда команда AL TER также очень сильно
замедлилась для большой таблицы.

Это типичные примеры того, что не работает на SАN-сетях как полагается: однопо­
точные задачи, выполняющие множество произвольных операций ввода/вывода.

Репликация - еще одна однопоточная задача для текущих версий MySQL, и велика
вероятность того, что в результате ее выполнения подчиненные серверы, данные

которых хранятся в SAN, могут отстать от главного. Пакетные задания также могут
начать работать медленнее. Возможно, вы сможете выполнять одиночные операции,

чувствительные к задержке, в часы с низкой нагрузкой или в выходные дни, но по­

стоянные элементы сервера, такие как репликация, двоичные журналы и журналы

транзакций InnoDB, постоянно требуют хорошей производительности при неболь­
ших и/или произвольных операциях ввода/вывода.

Надо ли использовать SAN
Ах, это вечный вопрос, а в некоторых случаях - вопрос на миллион долларов. Есть

много факторов, которые следует учитывать, и некоторые из них мы перечислим.

1:1 Резервные копии. Централизованное хранилище может упростить управление

резервными копиями. Когда все хранится в одном месте, вы можете просто вы­

полнить резервное копирование SAN, будучи при этом уверенными, что все дан­
ные скопированы. Тем самым такие вопросы, как ~вы уверены, что мы создали

резервную копию всех наших данных?», становятся тривиальными. Кроме того,

в некоторых устройствах реализованы возможность непрерывной защиты данных

(continuous data protection, СОР) и инструменты выполнения моментальных
снимков, которые делают создание резервных копий намного проще и гибче.

490 Глава 9 • Оптимизация операционной системы и оборудования

О Упрощеююе планирование мощности. Не знаете, сколько мощностей вам требу­
ется? SАN-сети дают возможность купить хранилище оптом, разделить его, из­

менять его размер и распространять по требованию.

О Что лучше, консолидация хранилищ или консолидация серверов. Некоторые IТ­
директора анализируют работу своих центров обработки данных и делают вывод
о том, что большая часть ресурсов ввода/вывода простаивает, причем с точки
зрения как объема памяти, так и операций ввода/вывода. Не будем приводить
здесь аргументов, но если вы для улучшения использования хранилища его цен­

трализуете, то как это повлияет на системы, использующие хранилище? Произво­

дительность типичных операций с базой данных может различаться буквально на
порядок, и в результате вы можете обнаружить, что необходимо запустить в десять
раз больше серверов (а то и больше) для обработки рабочей нагрузки. И хотя про­
пускная способность ввода/вывода центра обработки данных может использо­
ваться в SAN намного лучше, это может быть достигнуто в ущерб использованию
многих других систем (сервер базы данных тратит много времени на ожидание
ввода/вывода, сервер приложений тратит много времени на ожидание базы данных
и т. д.). На практике мы обнаруживали множество возможностей для консолидации
серверов и сокращения затрат путем децентрализации хранилища.

О Высокая надежность. Иногда люди рассматривают SАN-сети как высоконадежное
решение. В главе 12 мы выскажем предположение, что это связано с непонимани­
ем того, что означает высокая надежность.

Наш опыт свидетельствует о том, что в SАN-сетях довольно часто наблюдаются
сбои и простои. Это происходит не потому, что они ненадежны (они вполне на­
дежны), а потому, что люди не хотят верить, что такое чудо техники может сбоить.
Кроме того, SАN-сети иногда представляют собой загадочный сложный черный
ящик, и если что-то идет не так и в них возникнет проблема, никто не знает, как ее
устранить. Получение опыта, позволяющего управлять сетями SAN, может быть
непростым и недешевым удовольствием. Большинство SАN-сетей непрозрачны,

поэтому вы не должны слепо доверять их администратору, персоналу службы
поддержки или консоли управления. Мы видели случаи, когда все трое ошибались
и у SAN возникала проблема - неисправный жесткий диск, что вело к ухудшению
производительности 1• Это еще одна причина для знакомства с утилитой sysbench:
вы можете набросать эталонный тест ввода/вывода, чтобы доказать или опроверг­
нуть вину сетей SAN.

о Взаимодействие между серверами. Разделение хранилища может привести к тому,
что независимые на первый взгляд системы будут влиять друг на друга, иногда
очень сильно. Например, один знакомый пользователь сетей SAN был потрясен,
когда интенсивная операция ввода/вывода на сервере разработки привела практи­
чески к остановке сервера базы данных. Пакетные задания, AL ТЕR TABLE, резервные
копии - все, что требует множества операций ввода/вывода в одной системе, мо­
жет вызвать зависание в других системах. Иногда негативное воздействие намного

Веб-консоль управления SAN настаивала на том, что все жесткие диски нормальные, пока
мы не попросили администратора нажать Shift+ FS для отключения кэша браузера при­
нудительной перезагрузки консоли!

Использование нескольких дисковых томов 491

хуже, чем вы могли предположить: кажущаяся незначительной рабочая нагрузка
неожиданно может вызвать серьезное падение производительности.

О Стоимость. Стоимость чего? Затраты на управление и администрирование?
Затраты на операцию ввода/вывода в секунду (IOPS)? Цена наклейки?

Есть веские причины использовать SAN, но независимо от того, что говорят
продавцы, высокая производительность - по крайней мере производитель­

ность того типа, который требуется MySQL, - не является веской причиной.
(Выберите поставщика сетей SAN, позвоните ему - и вам, скорее всего, скажут,
что в целом они согласны с этим тезисом, но затем добавят, что их продукт является
исключением из правила.) Если вы будете рассматривать производительность
и цену вместе, картина станет еще наглядней (если вы хотите получить хорошее

соотношение цены и производительности, знайте: флеш-память или старомод­

ные жесткие диски с хорошим RАID-контроллером и кэш-памятью с резервной

батареей обеспечивают гораздо лучшую производительность по гораздо более
низкой цене).

И не забудьте попросить продавца назвать цену двух SAN. Вам нужны как мини­
мум две, поскольку в противном случае вы приобретете лишь дорогой источник
сбоев.

Мы могли бы рассказать много страшных историй, однако не ставим перед собой
цель отпугнуть вас от использования SАN-сетей. Большинство пользователей сетей

SAN, которых мы знаем, без ума от них! Когда вы пытаетесь ответить на вопрос, сто­
ит ли вам использовать SАN-сети, самое главное - четко понять, какие проблемы вы
хотите решить. SАN-сети могут делать многое, но, как правило, решение проблемы
с производительностью в этот список не входит. Напротив, SАN-сети могут быть

отличным решением, если вам не требуется большое количество высокопроизводи­
тельных произвольных операций ввода/вывода, но интересуют такие функции, как

моментальные снимки, консолидация хранилищ, устранение избыточности данных
и виртуализация.

В результате большинство веб-приложений не используют сети SAN для баз данных,
но они очень популярны для так называемых корпоративных приложений. Обычно

корпорации располагают большим бюджетом, поэтому могут позволить себе предметы
роскоши, такие как SAN. (Иногда SАN-сети воспринимаются как символ статуса!)

Использование нескольких дисковых томов

Рано или поздно возникает вопрос о том, где размещать данные. MySQL создает
различные файлы:

О файлы данных и индексов;

О журналы транзакций;

О двоичные журналы;

О журналы общего назначения (журналы ошибок, запросов, медленных запросов);

о временные файлы и таблицы.

492 Глава 9 • Оптимизация операционной системы и оборудования

В MySQL встроено не так уж много возможностей для управления табличным про­
странством. По умолчанию все файлы, принадлежащие одной базе данных (схеме),

помещаются в один каталог. Есть несколько возможностей более точно указать

местоположение данных. Так, можно задать, куда поместить индекс над таблицей

типа MyISAM, а в версии MySQL 5.1 к вашим услугам секционированные таблицы.

В подразумеваемой по умолчанию конфигурации InnoDB все данные и индексы
размещаются в одном наборе файлов, а в каталоге базы данных хранятся лишь
файлы с определениями таблиц. Поэтому обычно все данные и индексы помещают

В ОДИН ТОМ.

Однако в некоторых случаях, для того чтобы справиться с высокой нагрузкой ввода/

вывода, имеет смысл задействовать несколько томов. Например, если имеется пакет­

ное задание, которое записывает данные в объемную таблицу, то лучше разместить

последнюю в отдельном томе, чтобы не отнимать у других запросов драгоценную

пропускную способность подсистемы ввода/вывода. В идеале следует проанали­

зировать доступ операций ввода/вывода к разным частям данных и разместить их

соответствующим образом, но сделать это проблематично, если только данные уже
не находятся в разных томах.

Возможно, вы слышали стандартный совет: помещать журналы транзакций и файлы

данных в разные тома, чтобы последовательная запись в журналы не мешала про­

извольному вводу /выводу. Однако, если у вас не слишком много жестких дисков

(около 20) или флеш-память, стоит хорошенько подумать, прежде чем следовать
этому совету.

Реальная выгода от разделения журналов и файлов данных состоит в том, что

уменьшается вероятность потерять одновременно и то и другое в случае отказа.

Помещение их на разные диски - это хороший прием, если RАID-контроллер не ос­

нащен кэшем записи с аварийным питанием. Но если такой кэш есть, то выделение

отдельного тома бывает оправданно не так часто, как может показаться. Высокая

производительность редко является определяющим фактором. Объясняется это

тем, что, хотя запись в журналы транзакций производится часто, большинство

операций очень короткие. В результате кэш RAID обычно объединяет запросы,
и получается лишь несколько последовательных запросов на физические операции

записи в секунду. Этому вряд ли может помешать ввод/вывод в файлы данных

с произвольным доступом, если вы не насыщаете полностью контроллер RAID.
Для журналов общего назначения характерны асинхронная последовательная за­

пись и низкая интенсивность, так что они тоже вполне могут разделять один том

с данными.

На эту проблему можно взглянуть и под другим углом зрения, которым часто пре­

небрегают. Улучшается ли производительность в результате размещения журналов

в отдельных томах? Как правило, да, но стоит ли оно того? Ответ часто отрицатель­

ный, и вот почему: выделять специальные диски для журналов транзакций затратно.

Предположим, что всего дисков шесть. Напрашивающиеся решения: объединить все

шесть в один RAID-тoм или отдать четыре под данные, а два - под журналы транз­

акций. Но если выбрать второй вариант, то количество дисков для хранения данных
уменьшится на треть, а это немало, притом что два диска выделены под тривиальную

Конфигурация сети 493

рабочую нагрузку (в предположении, что RАID-контроллер оборудован кэшем за­
писи с резервным питанием).

Но если жестких дисков много, то относительная стоимость выделения части из них

под журналы транзакций уменьшается, и такое решение может стать оправданным.

Например, если имеется 30 дисков, то, отведя под журналы два из них, сконфигури­
рованных как том уровня RAID 1, можно будет обеспечить максимально быструю
запись. Можно даже еще повысить производительность, зарезервировав часть RАID­

кэша под запись только для этого тома.

Экономичность не единственное соображение, которое стоит учитывать. Еще одна
причина хранить данные и журналы транзакций InnoDB в одном томе состоит в том,
что при такой стратегии вы сможете использовать функцию мгновенного снимка

подсистемы управления логическими томами (LVM) для резервного копирования
без блокировки. Некоторые файловые системы допускают снятие согласованных
мгновенных снимков с нескольких томов, и для таких систем данное преимуще­

ство не очень существенно, но в случае системы ехtЗ его следует иметь в виду.

(Для резервного копирования без блокировки можно также использовать Регсоnа
XtraBackup - подробности см. в главе 15.)

В режиме sync_Ьinlog двоичные журналы с точки зрения производительности ана­
логичны журналам транзакций. Однако хранить двоичные журналы отдельно от

данных - действительно хорошая идея: это безопаснее, поскольку в таком случае
они могут уцелеть даже после потери данных. Следовательно, ничто не помешает

использовать их для восстановления состояния на определенный момент в прошлом.

Это соображение неприменимо к журналам транзакций InnoDB, так как последние
без файлов данных бесполезны - невозможно применить журналы транзакций к ре­
зервной копии, снятой прошлой ночью. (Это различие между журналами транзакций

и двоичными журналами может показаться искусственным администратору, привык­

шему к другим базам данных, где они представляют собой одно и то же.)

Есть еще один распространенный случай, когда имеет смысл выделять для некото­

рых файлов отдельное место. Речь идет о специальном каталоге, который MySQL
использует для файловых сортировок и создания временных таблиц на диске. Если
генерируемые при этом файлы не слишком велики, то, возможно, стоит размещать

их во временной файловой системе в памяти, например такой, как tmpfs. Это самый
быстрый вариант. Если он вам не подходит, то создавайте временный каталог на
том же устройстве, на котором находится операционная система.

Типичное распределение дискового пространства таково: операционная система,

раздел свопинга и двоичные журналы - в томе уровня RAID 1, а для всего осталь­
ного - том уровня RAID 5 или RAID 10.

Конфигурация сети
Так же как производительность жесткого диска ограничена временем задержки

и пропускной способностью, для сетевого соединения лимитирующими факторами
являются задержка и полоса пропускания (что по сути то же самое, что и пропускная

способность). Для большинства приложений основную проблему составляет время

494 Глава 9 • Оптимизация операционной системы и оборудования

задержки: типичное приложение выполняет много коротких операций передачи по

сети, поэтому незначительные задержки для каждой транзакции суммируются.

Серьезным узким местом может стать плохо работающая сеть. Потеря пакетов - это

обычная проблема. Даже 1 % потерянных пакетов существенно снижает произво­
дительность, так как различные уровни стека протоколов будут пытаться исправить

ошибку, для чего ненадолго перейдут в режим ожидания, а затем начнут отправлять

пакет повторно, затрачивая на все это лишнее время. Еще одна типичная проблема -
неправильно сконфигурированный или медленно работающий DNS-cepвep.

DNS - это ахиллесова пята, поэтому на промышленных серверах целесообразно

включать режим skip_name_resolve. Неработающий или медленно работающий
DNS-cepвep - беда для многих приложений, но для MySQL особенно. Получая за­
прос на соединение, MySQL выполняет прямой и обратный поиск в DNS. Он может
завершиться неудачно по самым разным причинам, и в таком случае в установлении

соединения будет вообще отказано или данная процедура займет недопустимо мно­

го времени, что в общем случае может привести к полному хаосу, в том числе стать

способом DоS-атаки. Если включить параметр skip_name_resolve, то MySQL небу­
дет посылать никаких запросов DNS-cepвepy. Но это означает, что во всех учетных

записях пользователей столбец host может содержать только IР-адрес (возможно,
с метасимволами) или строку localhost. Пользователь, в учетной записи которого
указано доменное имя, не сможет соединиться с сервером.

Другим распространенным источником проблем в типичных веб-приложениях

является запаздывание ТСР, которое можно настроить с помощью параметра

back_log MySQL. Этот параметр управляет размером очереди MySQL для входящих
ТСР-соединений. В средах, где каждую секунду создается и уничтожается множество

соединений, установленного значения по умолчанию, равного 50, недостаточно. Сим­
птомом является то, что клиент время от времени видит ошибку <!Соединение откло­

нено~ в сочетании с трехсекундными тайм-аутами. Для систем с большим объемом

работы этот параметр следует увеличить. Кажется, что не будет вреда в увеличении
его до сотен или даже тысяч, однако в таком случае вам, скорее всего, придется из­

менить также настройки сети ТСР вашей операционной системы. В системах GNU /
Linux необходимо увеличить лимит параметра somaxconn (по умолчанию установлено
значение 128) и проверить параметры log tcp_max_syn_back в sysctl (чуть позже при­
ведем соответствующий пример).

Чтобы добиться хорошей производительности, необходимо специально настраивать

сеть, а не соглашаться с параметрами по умолчанию. Для начала проанализируйте

количество переходов между узлами и начертите карту физического расположения

сети. Пусть, например, имеется десять веб-серверов, подключенных к коммутатору

Web посредством гигабитной сети Ethernet (1 GigE), и этот коммутатор соединен
с коммутатором Database такой же гигабитной сетью. Не потратив время на трасси­
ровку соединений, вы так никогда и не узнаете, что полная пропускная способность

сети, соединяющей веб-серверы с серверами баз данных, ограничена 1 Гбит! Кроме
того, каждый переход увеличивает задержку.

Конфигурация сети 495

Целесообразно вести мониторинг производительности и ошибок сети на всех портах.

Это относится ко всем портам на серверах, маршрутизаторах и коммутаторах. Про­

грамма Multi Router Traffic Grapher (MRTG, http://oss.oetiker.ch/mrtg/) - проверенное

на практике решение с открытым кодом для мониторинга устройств. Упомянем так­

же две утилиты для мониторинга производительности сети (а не самих устройств):

Smokeping (http://oss.oetiker.ch/smokeping/) и Cacti (http://www.cacti.net).

При организации сетей большое значение имеет физическая удаленность. В междуго­

родных сетях задержка намного больше, чем в локальной сети центра обработки дан­
ных, даже если технически пропускная способность одинакова. Если узлы находятся
очень далеко друг от друга, то приходится учитывать и скорость распространения

света. Например, если центры обработки данных находятся на Западном и Восточном

побережье США, они отстоят друг от друга примерно на 4800 км. Поскольку ско­
рость света составляет 300 ООО километров в секунду, то прохождение пакета в одну
сторону займет никак не меньше 16 миллисекунд, а в обе стороны - по крайней

мере 32 миллисекунды. Но на производительность влияет не только физическое рас­
стояние - между крайними точками находятся и другие устройства. Повторители,

маршрутизаторы, коммутаторы - все они в какой-то мере снижают производитель­

ность. К тому же чем больше расстояние между узлами сети, тем менее предсказуемо

и надежно поведение соединяющих их каналов связи.

Стоит всеми силами избегать операций, требующих передачи данных между центра­
ми обработки в реальном времени 1• Если это невозможно, проектируйте приложение

так, чтобы оно адекватно реагировало на сетевые ошибки. Например, следует огра­

ничить количество процессов, порождаемых веб-сервером Apache, поскольку они
могут долго ждать соединения с удаленным центром обработки данных по каналу
связи с большим процентом потери пакетов.

В локальных сетях применяйте хотя бы технологию 1 GigE. Для прокладки маги­
стрального канала между коммутаторами может потребоваться и сеть типа 1 О GigE.
Если нужна еще большая пропускная способность, то можно воспользоваться

сетевым транкингом - соединить несколько сетевых карт (NIS) для повышения
величины канала. Транкинг - это, по сути дела, распараллеливание потоков данных

в сети, он также может оказаться очень полезным как часть стратегии обеспечения

высокой доступности.

Если необходима чрезвычайно высокая пропускная способность, то, возможно,

удастся улучшить производительность путем настройки сетевых параметров опера­

ционной системы. Если соединений немного, но запросы или результирующие на­

боры велики, то можно увеличить размер буфера ТСР. В разных системах это делается

по-разному, но в большинстве систем GNU /linux следует изменить значения параметров
в файле /etc/sysctl. conf и выполнить команду sysctl-p либо воспользоваться

Репликация не считается передачей данных между центрами обработки в реальном времени.
Поэтому вполне здравой выглядит мысль реплицировать данные в удаленный центр обра­

ботки ради повышения безопасности. Подробнее эта тема будет рассмотрена в rлаве 1 О.

496 Глава 9 • Оптимизация операционной системы и оборудования

файловой системой /proc, записав новые значения в файлы, находящиеся в катало­
ге /proc/sys/net/ с помощью команды echo. Хорошие пособия по этой теме можно
найти в Сети по запросу ТСР tuning guide (4Тонкая настройка ТСР»).

Но чаще возникает необходимость отрегулировать настройки для эффективной
работы с большим количеством соединений и маленькими запросами. Очень распро­
странена настройка диапазона локальных портов. Вот как система конфигурируется

по умолчанию:

[root@server -)# cat /proc/sys/net/ipv4/ip_local_port_range
32768 61000

Иногда диапазон портов нужно расширить, например:

[root@caw2 -]# echo 1024 65535 > /proc/sys/net/ipv4/ip_local_port_range

Можно также увеличить размер очереди соединений:

[root@caw2 -]# echo 4096 > /proc/sys/net/ipv4/tcp_max_syn_backlog

Если сервер базы данных используется только локально, то можно уменьшить вели­
чину тайм-аута после закрытия сокета, в течение которого система не закрывает свою

сторону соединения, страхуясь от аварийного завершения клиента. По умолчанию

в большинстве систем эта величина составляет 1 минуту, что довольно долго:

[root@caw2 -]# echo <3начение> > /proc/sys/net/ipv4/tcp_fin_timeout

Как правило, для этих параметров можно оставить значения по умолчанию. Из­

менять их имеет смысл только тогда, когда происходит что-то экстраординарное,

например, производительность сети необычайно низка или количество соединений
очень велико. Поиск в Интернете по запросу ТСР variaЫes (4Параметры ТСР») даст
обширнейший материал по этим и многим другим переменным.

Выбор операционной системы
В настоящее время для высокопроизводительных приложений MySQL чаще всего
устанавливается на ОС GNU /Linux, хотя она может работать и во многих других
операционных системах.

На компьютерах SPARC обычно работает система Solaris. Она же работает и на
х86-оборудовании. Нередко она служит основой для приложений, требующих высо­
кой надежности. Сложилось мнение, что с Solaris работать в некоторых отношениях
сложнее, чем с GNU /Linux, но тем не менее это надежная высокопроизводительная
ОС с целым рядом передовых возможностей. В частности, набирает популярность
система Solaris 1 О. К числу ее особенностей можно отнести наличие собственной
файловой системы (ZFS), разнообразие продвинутых инструментов для поиска непо­
ладок (например, DTrace), высокопроизводительную многопоточность и технологию
виртуализации Solaris Zones, упрощающую управление ресурсами.

Еще одна возможность - FreeBSD. В прошлом MySQL испытывала с ней много
проблем, в основном из-за поддержки потоков, но современные версии существенно

Выбор файловой системы 497

улучшены. Сегодня не редкость встретить крупномасштабный проект с использо­

ванием MySQL, развернутый на платформе FreeBSD. ZFC доступна и на FreeBSD.

Windows обычно применяется для разработки или когда MySQL используется с при­
ложением на настольном компьютере. Существуют корпоративные базы данных

MySQL на платформе Windows, но чаще для этих целей все же используется UNIX.
Не желая ввязываться в споры по поводу операционных систем, отметим, что MySQL
прекрасно работает и в гетерогенной среде. Абсолютно нормально запустить сервер

MySQL в системе UNIX, а веб-серверы - на платформе Windows, используя для под­
ключения к базе высококачественный коннектор .NET, предлагаемый бесплатно вме­
сте с MySQL. Установить соединение между клиентом в UNIX и MySQL-cepвepoм
в Windows столь же просто, как с сервером на другой UNIХ-машине.

Если вы работаете на 64-разрядной аппаратной архитектуре, то выбирайте 64-разряд­

ную операционную систему (см. подраздел «Архитектура ЦП» ранее в данной главе).

Выбор конкретного дистрибуrива GNU /Linux зависит от личных предпочтений. Мы
полагаем, что лучше всего остановиться на дистрибуrиве, специально разработанном

для серверных приложений, а не для настольных компьютеров. Принимайте во вни­

мание время существования дистрибуrива, политику выпуска версий и обновлений,

проверьте, оказывает ли производитель техническую поддержку. Репутацию каче­

ственного и стабильного продукта заслужил дистрибуrив Red Hat Enterprise Linux,
популярен совместимый с ним на двоичном уровне (и бесплатный) дистрибутив

CentOS, однако у него не самая лучшая репутация. Oracle распространяет Oracle
Enterprise Linux, хорошо известны Ubuntu и DeЬian.

Выбор файловой системы

Выбор файловой системы зависит от выбора оперативной системы. Во многих си­
стемах, например в Windows, есть всего один или два варианта, из которых только
один (NTFS) действительно заслуживает внимания. А вот GNU /Linux поддерживает
множество файловых систем.

Многие хотят знать, какая файловая система обеспечивает наилучшую производи­

тельность для комбинации MySQL с GNU /Linux или даже более конкретно - какая

лучше подходит для InnoDB, а какая для MyISAM. Эталонные тесты показывают, что
во многих отношениях большинство файловых систем очень близки, но полагаться

на файловую систему в деле повышения производительности не стоит. Производи­

тельность файловой системы сильно зависит от рабочей нагрузки, и ни одна из них

не является панацеей. Как правило, каждая конкретная файловая система работает

не хуже и не лучше любой другой. Исключение составляет лишь случай, когда вы

приближаетесь к какому-то лимиту файловой системы, например, возникает высокая

конкурентность, образуется много файлов, нарастает фрагментация и т. д.

Более важными факторами являются время восстановления после сбоя и возмож­

ность столкнуrься с конкретными ограничениями, например низкая производитель­

ность при работе с каталогами, в которых содержится много файлов (этим печально

498 Глава 9 • Оптимизация операционной системы и оборудования

знамениты система ext2 и старые версии ехtЗ, хотя в современных версиях ехtЗ
и ext4 проблема решена с помощью параметра dir _index). Выбор файловой системы
имеет первостепенное значение, когда нужна гарантия надежного хранения данных,

поэтому мы настоятельно реком.ендуем не экспериментировать на промышленных

серверах.

По возможности предпочитайте файловые системы с журналированием, например

ехtЗ, ext4, XFS, ZFS или JFS. В противном случае проверка файловой системы по­
сле сбоя может занять много времени. Если этот аспект не очень важен, то файловые

системы без журналирования могут работать несколько быстрее транзакционных.

Например, ext2 в этом смысле лучше, чем ехtЗ, хотя при желании можно отключить
журналирование в ехtЗ командой tunefs. Для некоторых файловых систем имеет
также значение время монтирования. Так, в многотерабайтных разделах система

Reiser FS монтируется и восстанавливается довольно долго.

Для файловой системы ехtЗ и ее наследницы ext4 существует три варианта журна­
лирования данных, соответствующие параметры монтирования задаются в фай­

ле /etc/fstab.

О data=wri teback. Этот параметр означает, что журналируются только записи мета­
данных. Записи метаданных не синхронизированы с записью информации. Это са­

мая быстрая конфигурация, и обычно она безопасна при работе с InnoDB, так как
последняя ведет собственный журнал транзакций. Есть, правда, одно исключение:

сбой в неподходящий момент может привести к повреждению . frm-файла.

Приведем пример обстоятельств, при которых такая конфигурация может вызвать

проблемы. Предположим, что программа решила расширить файл, увеличив его

размер. Метаданные (размер файла) журналируются до записи самих данных

в файл, который теперь стал больше. В результате в конце файла - в добавленной

области - окажется мусор.

О data=ordered. В этом режиме тоже журналируются только метаданные, но обе­
спечивается хоть какая-то согласованность за счет того, что данные записываются

раньше метаданных. Производительность лишь немного уступает производитель­

ности режима wri teback, зато система ведет себя гораздо надежнее при сбоях.

Если в этом режиме программа захочет расширить файл, то новый размер не бу­

дет отражаться в его метаданных до тех пор, пока во вновь выделенную область
не будут записаны данные.

о data=journal. При этом значении параметра перед записью данных в окончатель­
ное место назначения производится их атомарная запись в журнал. Обычно это

излишняя процедура, а накладные затраты здесь гораздо выше, чем в двух других

режимах. Впрочем, в ряде случаев производительность даже увеличивается, так

как наличие журнала позволяет файловой системе отложить запись данных в сам

файл.

Вне зависимости от файловой системы существует ряд параметров, которые лучше

отключить, поскольку они не дают никаких преимуществ, но сопряжены с накладны-

Выбор файловой сисrемы 499

ми затратами. В связи с этим чаще всего упоминают регистрацию времени последнего

доступа, потому что она подразумевает операцию записи даже в том случае, когда вы

просто читаете файл. Чтобы отключить этот режим, добавьте в файл /etc/fstab пара­
метры монтирования noatime и nodiratime. Иногда таким образом удается получить
выигрыш в 5-10 % в зависимости от рабочей нагрузки и файловой системы (хотя
в других случаях никаких ощутимых изменений не наблюдается). Приведем пример

строки файла /etc/fstab с упомянутыми параметрами для файловой системы ехtЗ:

/dev/sda2 /usr/liЬ/mysql ехtЗ noatime,nodiratime,data=writeback 0 1

Можно также настроить в файловой системе упреждающее чтение, поскольку ино­

гда оно оказывается избыточным. Например, InnoDB самостоятельно прогнозирует,
к каким страницам могут получать доступ в ближайшем будущем. Отключение или

ограничение упреждающего чтения особенно благотворно сказывается на файловой
системе UFS в Solaris. Использование флага O_DIRECT автоматически отключает

упреждающее чтение.

Некоторые файловые системы могут не поддерживать необходимые возможности.

Например, при использовании метода сброса O_DIRECТ для InnoDB важна поддержка
прямого ввода/вывода. Кроме того, одни файловые системы лучше работают с боль­
шим количеством накопителей, чем другие: так, XFS в этом отношении зачастую
гораздо лучше ехtЗ. Наконец, если вы планируете применять мгновенные снимки

менеджера логических томов (LVM) для инициализации подчиненных серверов
или снятия резервных копий, убедитесь, что выбранная файловая система хорошо
ладите LVM.

В табл. 9.4 обобщены характеристики некоторых наиболее часто используемых
файловых систем.

Табпица 9.4. Характеристики наиболее часто используемых файловых систем

Файловая система Операционная система Журнапирование Боnьшие каталоги

ext2 GNU/Linux Нет Нет

ехtЗ GNU/Linux Пожеланию По желанию/частично

ext4 GNU/Linux Есть Есть

HFS Plus MacOS Пожеланию Есть

JFS GNU/Linux Есть Нет

NТFS Windows Есть Есть

ReiserFS GNU/Jjnux Есть Есть

UFS (Solaris) Solaris Есть Настраивается

UFS (FreeBSD) FreeBSD Нет По желанию/частично

UFS2 FreeBSD Нет По желанию/частично

XFS GNU/Linux Есть Есть

ZFS Solaris, FreeBSD Есть Есть

500 Глава 9 • Оптимизация операционной системы и оборудования

Обычно мы рекомендуем нашим клиентам использовать файловую систему XFS.
Файловая система ехtЗ имеет слишком много серьезных ограничений, таких как

единый мьютекс на каждый индексный дескриптор, а также применение функции

fsync () для очистки от всех «грязных~ блоков данных всей файловой системы, а не
только одного файла. Файловая система ext4 появилась сравнительно недавно, по­
этому к ней еще не привыкли, хотя она постепенно набирает популярность.

Выбор планировщика дисковых очередей

В GNU /Linux планировщик очередей определяет порядок, в котором запросы на
устройство блочного ввода/вывода фактически отправляются на базовое устрой­
ство. По умолчанию используется «полноценная очередм, или cfq (completely fair
queueing). Это нормально для повседневного использования на ноутбуках и на­
стольных компьютерах, где помогает предотвратить нехватку ресурсов ввода/вывода,

но для серверов ужасно. Это приводит к увеличению времени отклика при различных

генерируемых MySQL типах рабочей нагрузки, поскольку она без необходимости
стопорит некоторые запросы в очереди.

Вы можете посмотреть, какие планировщики доступны и какой активен, с помощью

следующей команды:

$ cat /sys/Ьlock/sda/queue/scheduler
noop deadline [cfq]

Замените sda названием интересующего вас диска. В примере квадратные скобки
указывают, какой планировщик используется для этого устройства. Остальные два

варианта подходят для аппаратного обеспечения серверного класса и в большинстве
случаев работают одинаково хорошо. Планировщик noop подходит для устройств,

выполняющих собственное планирование за кулисами, таких как аппаратные RАID­
контроллеры и SAN, а deadline подходит как для RАID-контроллеров, так и для
подключаемых дисков. Эталонные тесты показали очень небольшую разницу между

этими двумя планировщиками. Основная рекомендация такова: используйте какой­

нибудь планировщик, но только не cfq, который может вызвать серьезные проблемы
с производительностью.

Прислушиваясь к этому совету, не забывайте о толике скептицизма хотя бы потому,

что планировщики дисков в разных ядрах могут быть разными, а по их названиям
вы этого не поймете.

Многопоточность

MySQL использует один поток для каждого соединения. Дополнительно существуют
служебные потоки, потоки специального назначения и потоки, создаваемые подси­
стемами хранения. В MySQL 5.5 используется плагин пула потоков произведенный
Oracle, но пока неясно, насколько удобно его практическое применение.

Подкачка 501

Поэтому необходимо, чтобы операционная система эффективно поддерживала

много потоков. Более того, для результативной работы с несколькими процессорами

MySQL нуждается в потоках на уровне ядра, а не в адресном пространстве пользо­
вателя. Вдобавок требуется наличие эффективных примитивов синхронизации, на­
пример мьютексов. Все это должны предоставлять библиотеки, входящие в состав

операционной системы.

В ОС GNU/Linux есть две библиотеки для работы с потоками: LinuxThreads и более
новая Native POSIX Threads Library (NPTL). Библиотека UnuxThreads еще кое-где
используется, но большинство современных дистрибутивов перешли на NPTL, а во
многие дистрибутивы LinuxThreads уже не входит. Библиотека NPTL обычно по­
требляет меньше памяти, работает более эффективно и не страдает от множества

проблем, присущих LinuxThreads.

FreeBSD также поставляется с несколькими потоковыми библиотеками. Истори­
чески поддержка потоков в этой системе была слабой, но сейчас заметно улучши­

лась и на некоторых тестах даже превосходит по производительности GNU /Linux
в SМР-системах. Для версии I;reeBSD 6 и более поздних мы рекомендуем библиотеку
libthr, а для более ранних - библиотеку linuxthreads, которая является переносом
LinuxThreads на платформу FreeBSD.

В общем, теперь, когда GNU /Linux и FreeBSD получили хорошие библиотеки, про­
блемы с потоками ушли в прошлое.

Solaris и Windows всегда имели очень хорошую поддержку потоков. С одной ого­
воркой: в MyISAM до версии 5.5 потоки плохо использовались в Windows. Начиная
с версии 5.5, поддержка потоков была значительно улучшена.

Подкачка

Подкачка работает тогда, когда операционная система выгружает какую-то область
виртуальной памяти на диск, поскольку та не помещается в физической памяти 1 •

Подкачка незаметна работающим процессам. Только операционная система знает,

находится некий адрес виртуальной памяти в физической памяти или на диске.

Подкачка очень плохо отражается на производительности MySQL. Она сводит на
нет весь смысл кэширования, и эффективность оказывается ниже, чем в случае,

когда для кэшей отведено слишком мало памяти. В MySQL и подсистемах хранения
есть немало алгоритмов, которые по-разному работают с данными, находящимися
в памяти и на диске, поскольку предполагается, что доступ к хранящимся в памяти

данным требует меньших затрат. Поскольку подкачка не видна пользовательским

процессам, MySQL (или подсистема хранения) не знает, что данные, которые они
считают находящимися в памяти, на самом деле выгружены на диск.

Иногда свопинг называют подкачкой страниц (paging). Строго говоря, это разные про­
цессы, но многие употребляют их названия как синонимы.

502 Глава 9 • Оптимизация операционной системы и оборудования

Это может очень сильно снизить производительность. Например, полагая, что дан­

ные все еще в памяти, подсистема хранения может захватить глобальный мьютекс
(допустим, мьютекс, защищающий буферный пул в InnoDB) на время короткой
операции с памятью. Но если эта операция выливается в дисковый ввод/вывод, то

все остальные процессы замирают в ожидании его завершения. Следовательно, под­

качка приводит к гораздо более тяжким последствиям, чем обычный ввод/вывод,
выполняемый по мере необходимости.

В ОС GNU /Linux за подкачкой можно следить с помощью утилиты vmstat (в сле­
дующем разделе приведем несколько примеров). Интерес представляют столбцы si
и so, отражающие динамику подкачки, а не столбец swpd, в котором показан объем
использованного пространства в файле подкачки. Значение в столбце swpd может
проинформировать о процессах, которые были загружены в память, но сейчас не ра­
ботают, а стало быть, проблем не создают. Желательно, чтобы в столбцах si и so сто­
яли нули, и уж точно эти показатели не должны превышать десять блоков в секунду.

В редких случаях слишком активная подкачка может привести к исчерпанию места

в файле подкачки. Когда такое происходит, нехватка виртуальной памяти обычно
вызывает аварийное завершение MySQL. Но даже если в файле подкачки есть место,
чрезмерно интенсивная подкачка может замедлить работу операционной системы до
такой степени, что невозможно будет даже войти в нее и принудительно завершить
процесс MySQL. Иногда, когда заканчивается место в файле подкачки, ядро Linux
может даже полностью зависнуть.

Следите за тем, чтобы виртуальная память никогда не заканчивалась! Настройте
мониторинг и оповещение о том, сколько места использовано файлом подкачки.
Если вы не знаете, сколько необходимо для файла подкачки, выделите для него на
диске много места: он не влияет на производительность, а лишь потребляет диско­
вое пространство. В некоторых крупных организациях точно знают, каково будет
потребление памяти, и подкачка находится под очень жестким контролем, однако
в среде с несколькими многоцелевыми экземплярами MySQL, которые обслуживают
переменные рабочие нагрузки, это чаще всего нецелесообразно. Если это как раз ваш
случай, обязательно дайте серверу передышку, зарезервировав достаточно места для
файла подкачки.

Еще одна проблема, которая часто возникает при экстремальном использовании
виртуальной памяти, заключается в том, что включается убийца процессов «отсут­
ствие памяти» (out-of-memory, ООМ) и прерывает другие процессы. Часто таким
процессом является MySQL, но это может быть и другой процесс, например SSH.
В этом случае вы останетесь без сетевого доступа. Проблему можно предотвратить,
установив значение oom_adj или oom_score_adj для SSH.

Многие проблемы, связанные с подкачкой, можно решить, правильно сконфигури­
ровав буферы MySQL, но иногда операционная система все-таки решает выгрузить
соответствующий процесс. Обычно это происходит, когда она видит, что MySQL
выдает слишком много запросов на ввод/вывод, и пытается увеличить файловый
кэш, чтобы он вмещал больше данных. Если памяти недостаточно, что-то приходится
выгружать на диск, и этим чем-то вполне может оказаться сама MySQL. В некоторых
старых версиях ядра Linux к тому же установлены контрпродуктивные приоритеты,

Подкачка 503

из-за которых выгружалось то, что выгружать было не нужно, однако впоследствии
эта ошибка была исправлена.

Некоторые считают, что файл подкачки вообще следует отключить. В некоторых
крайних случаях, когда иначе ядро просто отказывается вести себя прилично, это
помогает, но может привести и к снижению производительности операционной

системы (теоретически не должно, но на практике такое встречается). Кроме того,
это попросту опасно, так как отключение подкачки означает установку жесткого

ограничения на объем виртуальной памяти. Если MySQL испытывает кратковре­
менную потребность в большом количестве памяти или на той же машине время от
времени запускаются процессы, потребляющие много ресурсов (например, ночные
пакетные задания), то память у MySQL может кончиться, что приведет к аварийному
завершению или снятию процесса операционной системой.

Обычно операционные системы предоставляют какие-то средства контроля над
виртуальной памятью и подсистемой ввода/вывода. Упомянем лишь некоторые

инструменты, имеющиеся в GNU /Linux. Самый простой способ - уменьшить зна­
чение параметра /proc/sys/vm/swappiness до 0 или 1. Тем самым вы говорите ядру,
что оно не должно прибегать к подкачке до тех пор, пока потребность в виртуальной
памяти не станет критической. Далее показано, как узнать текущее значение пара­

метра и изменить его:

$ cat /proc/sys/vm/swappiness
60

Значение 60 является параметром подкачки по умолчанию (значение может изме­
няться в пределах от 0 до 100). Это очень плохая установка по умолчанию для сер­
веров. Она подходит только для ноутбуков. Для серверов должно быть установлено
значение 0:

$ echo 0 > /proc/sys/vm/swappiness

Другой способ заключается в том, чтобы изменить порядок чтения и записи данных
подсистемой хранения. Например, установка режима innodb_flush_method=O_DIRECТ

снижает давление на подсистему ввода/вывода. Прямой ввод/вывод не кэширует­

ся, поэтому операционная система не считает его причиной для увеличения кэша.

Этот параметр применим только к InnoDB. Можно также использовать страницы
большого размера, которые не выгружаются. Это работает для подсистем MyISAM
и InnoDB.

Еще один способ - воспользоваться конфигурационным параметром MySQL
memlock, который фиксирует MySQL в оперативной памяти. Такой процесс выгру­
жаться не будет, но появится другая опасность: если невыгружаемая память кончит­
ся, то MySQL может завершиться аварийно при попытке получить дополнительную
память. Проблема может возникнуть и тогда, когда невыгружаемой памяти выделя­

ется слишком много, так что ничего не остается для самой операционной системы.

Есть немало трюков, зависящих от конкретной версии ядра, поэтому будьте осто­
рожны, особенно при переходе на новую версию. При некоторых рабочих нагрузках
бывает сложно заставить операционную систему вести себя разумно, и тогда един­
ственный выход - уменьшить размеры буферов до условно оптимальных значений.

504 Глава 9 • Оптимизация операционной системы и оборудования

Состояние операционной системы
В вашей операционной системе, скорее всего, имеются инструменты, позволяющие

выяснить, чем заняты сама система и оборудование. В этом разделе мы приведем
примеры использования двух широко распространенных утилит - iostat и vmstat.
Если в вашей системе нет какой-нибудь из них, то почти наверняка существует что­

то аналогичное. Мы ставим себе целью не превратить вас в эксперта по iostat или
vmstat, а просто показать, на что нужно обращать внимание, пытаясь найти проблемы
с использованием подобных инструментов.

Помимо этих инструментов, в вашей операционной системе могут быть и другие,
к примеру mpstat или sar. Если вас интересуют иные части системы, скажем сеть, то
имеет смысл воспользоваться такими утилитами, как ifconfig (показывает, в част­
ности, количество сетевых ошибок) или netstat.

По умолчанию vmstat и iostat выдают лишь отчет о средних значениях различных
счетчиков с момента запуска сервера - это не слишком полезная информация.

Но обе программы принимают в качестве аргумента интервал времени. В этом случае
генерируются инкрементные отчеты, показывающие, что сервер делает в настоящий

момент, а это уже куда полезнее для настройки. (В первой строке показана статистика

с момент запуска системы, на нее можно не обращать внимания.)

Как интерпретировать выдачу vmstat
Давайте сначала рассмотрим пример работы vmstat. Следующая команда будет вы­
водить отчет каждые пять секунд:

$ vmstat 5
procs
r Ь

0 0
0 0

----------memory----------
swpd free buff cache
2632 25728 23176 740244
2632 27808 23180 738248

---swap-­
si so
0 0
0 0

-----io----
Ьi Ьо

527 521
2 430

-system-- ----cpu---­
in cs us sy id wa
11 3 10 1 86 3

222 66 2 0 97 0

Чтобы остановить vmstat, нажмите Qrl +С. Вид отчета зависит от операционной систе­
мы, поэтому для получения точной информации обратитесь к странице руководства.

Как упоминалось ранее, несмотря на то что мы запрашивали инкрементный отчет, в пер­

вой строке показаны средние значения за время, прошедшее с момента запуска сер­

вера. Значения во второй строке отражают текущие показатели, а последующие строки

печатаются с пятисекундным интервалом. Столбцы объединены в следующие группы.

о procs. В столбце r показано, сколько процессов ожидают выделения процессора,
а в столбце Ь - сколько процессов находятся в состоянии непрерываемого сна -
обычно это означает, что процесс ожидает завершения ввода/вывода (дискового,
сетевого, ввода информации пользователем и т. д.).

о memory. В столбце swpd показано, сколько блоков выгружены на диск в результате
страничного обмена. Оставшиеся три столбца - это количество свободных (не­
используемых), отведенных под буферы и выделенных для кэша операционной

системы блоков.

Состояние операционной сисrемы 505

D swap. В столбцах из этой группы показана активность подкачки: сколько блоков
в секунду подгружается с диска и выгружается на диск. Эта информация важнее,

чем значение в столбце swpd.

Желательно, чтобы значения в столбцах si и so оставались равными 0, и уж точно
они не должны превышать десять блоков в секунду. Кратковременные всплески
активности тоже не сулят ничего хорошего.

1:] io. Значения в этих столбцах показывают, сколько блоков в секунду считывается
с блочных устройств (Ьi) и записывается на них (Ьо). Обычно речь идет о ди­

сковом вводе/выводе.

1:] system. Здесь показаны количество прерываний в секунду (in) и количество кон­
текстных переключений в секунду (cs).

1:] cpu. Значения в этих столбцах показывают, какую часть времени (в процентах)
процессор выполняет пользовательский код (вне ядра), системный код (в ядре),

простаивает и ожидает завершения ввода/вывода. Если используется виртуали­

зация, то может присутствовать и пятый столбец (st), показывающий, сколько
времени украдено у виртуальной машины. Речь идет о том времени, в течение

которого на виртуальной машине существовал процесс, готовый к исполнению, но

гипервизор использовал процессор для других целей. Время, когда у виртуальной

машины не было ничего готового к исполнению, из-за чего гипервизор отобрал

у нее процессор, не считается украденным.

Формат отчета vmstat системно-зависимый, поэтому, если вы наблюдаете картину,
отличную от описанной ранее, прочитайте страницу руководства vmstat(8). Важ­
ное замечание: величины в разделах, относящихся к памяти, подкачке и вводу/

выводу, измеряются в блоках, а не в байтах. В GNU /Linux блок обычно составляет
1024 байта.

Как интерпретировать выдачу iostat
Теперь перейдем к утилите iostat 1• По умолчанию она демонстрирует некоторые по­

казатели работы ЦП - те же, что и vmstat. Но обычно нас интересует лишь статистика
ввода/вывода, поэтому для просмотра только расширенной статистики устройств

мы используем следующую команду:

$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 1.6 2.8 2.5 1.8 138.8 36.9 40.7 0.1 23.2 6.0 2.6

Как и в случае с vmstat, в первой строке показаны средние значения за период с мо­
мента запуска сервера (ее обычно опускаем для экономии места), а в последующих -
инкрементные средние. В каждой строке выводятся данные об одном устройстве.

Примеры, относящиеся к iostat, немного переформатированы для удобства печати. Чтобы
избежать переноса строк, мы уменьшили количество знаков после запятой. Кроме того,

мы показываем примеры для GNU /Linux, вывод в других операционных системах будет
совершенно другим.

506 Глава 9 • Оптимизация операционной системы и оборудования

Существуют различные параметры, позволяющие показать или скрыть отдельные

столбцы. Официальная документация немного запутанна, и нам приходилось

копаться в исходном коде, чтобы выяснить, что действительно отображается. Мы

вывели следующие столбцы:

1:1 rrqm/ s и wrqm/ s - количество сгруппированных запросов на чтение и запись

в секунду. Определение «сгруппированный~ означает, что операционная си­

стема объединила несколько логических запросов в один физический запрос

к устройству;

1:1 r/s и w/s - количество запросов на чтение и запись, отправленных устройству

в секунду;

1:1 rsec/s и wsec/s - количество прочитанных и записанных секторов в секунду.

В некоторых системах выводятся также столбцы rkB/ s и wkB/ s - количество про­

читанных и записанных килобайтов в секунду. Мы их для краткости опустили;

1:1 avgrq-sz - размер запроса в секторах;

1:1 avgqu-sz. количество запросов, стоящих в очереди к устройству;

1:1 awai t - количество миллисекунд, потраченных на время ожидания в очереди.

К сожалению, iostat не показывает статистику отдельно для запросов на чтение
и на запись, хотя они настолько различаются, что не должны усредняться вместе.

Это бывает очень важно, когда вы пытаетесь обнаружить источник проблем с про­

изводительностью;

1:1 svctm - количество миллисекунд, затраченных на обслуживание запросов, за ис­

ключением времени ожидания в очереди;

1:1 %util - процент времени, в течение которого по крайней мере один запрос был

активным. Показатель назван очень неудачно - это не использование устройства,

если вы знакомы со стандартным определением использования в теории массо­

вого обслуживания. Устройство с более чем одним жестким диском (например,

RАID-контроллер) должно поддерживать более высокую конкуренцию, чем 1, но
значение показателя %util никогда не превысит 100 % (если только при его рас­
чете не будет допущена ошибка округления). Так что этот показатель не является
хорошей характеристикой насыщенности устройства, что бы ни говорилось в до­

кументации к snfv, за исключением особого случая, когда вы используете только
один физический жесткий диск.

Сгенерированный отчет позволяет сделать некоторые заключения о работе подси­

стемы ввода/вывода. К числу наиболее важных показателей относится количество

одновременно обслуживаемых запросов. Поскольку количество операций чтения и за­

писи приведено в расчете на секунду, а время обслуживания измеряется в тысячных

долях секунды, то количество запросов, одновременно обслуживаемых устройством,

вычисляется по формуле1 :

concurrency = (r/s + w/s) * (svctm/1000)

По-другому охарактеризовать уровень конкурентности можно с помощью средней длины

очереди, времени обслуживания и среднего времени ожидания: (avuqu_sz * svctm)/await.

Состояние операционной сисrемы 507

Приведем пример выдачи утилиты iostat:

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 105 311 298 820 3236 9052 10 127 113 9 96

Подставив эти значения в формулу конкурентности, получим коэффициент конку­
рентности, равный примерно 9,61• Это означает, что в среднем за время между двумя

опросами устройства одновременно обрабатывались 9,6 запроса. Данные получены
для массива RAID 1 О из десяти дисков, так что операционная система вполне эф­
фективно распараллеливает запросы к этому устройству. А вот пример устройства,

которое, похоже, выполняет запросы строго последовательно:

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdc 81 0 280 0 3164 0 11 2 7 3 99

Расчет по приведенной ранее формуле показывает, что устройство обслуживает
всего один запрос в секунду. Оба устройства близки к насыщению, но производи­
тельность их различна. Если вы видите, что устройство почти все время занято, как

в этих примерах, то вычислите коэффициент конкурентности. Он должен быть бли­
зок к количеству физических накопителей. Если значение заметно меньше, значит,

есть какие-то проблемы, например сериализация файловой системы, которую мы

рассматривали ранее.

Другие полезные инструменты

Мы показали утилиты vmstat и iostat, поскольку они широкодоступны, а vmstat уста­
навливается по умолчанию во многих Uniх-подобных операционных системах. Однако
у каждого из этих инструментов есть свои ограничения, такие как непонятные едини­

цы измерения, опросы с интервалами, которые не соответствуют интервалам обновления
статистики операционной системой, и неспособность сразу увидеть все показатели. Если

эти инструменты не соответствуют вашим потребностям, вас могут заинтересовать ути­
литы dstat (http://dag.wieers.com/home-made/dstat/) или collectl (http://collectt.sourceforge.net).

Мы также предпочитаем использовать утилиту mpstat для просмотра статистики
ЦП - она позволяет получить представление о том, как ведут себя процессоры по
отдельности, а не группирует их. Иногда при диагностике проблемы это очень важно.
Возможно, вы обнаружите, что утилита Ыktrace будет полезна при анализе исполь­

зования дискового ввода/вывода.

Мы написали собственную замену утилите iostat - инструмент под названием
pt-diskstats. Он входит в пакет Percona и является нашим ответом на некоторые недо­
статки iostat, такие как, например, представление данных по чтению и записи в сово­
купности и отсутствие наглядности по конкурентности. Он интерактивен и управляется

с помощью клавиш, поэтому вы можете увеличивать и уменьшать масштаб, изменять
агрегированность, отфильтровывать устройства, показывать и скрывать столбцы.

Это отличный способ проанализировать вдоль и поперек выборку статистики диска,

Если вы сами выполните расчеты, вы получите результат около 10, поскольку мы окру­
глили вывод утилиты iostat для удобства печати. Поверьте, результат действительно 9,6.

508 Глава 9 • Оптимизация операционной системы и оборудования

которую вы можете собрать с помощью простого сценария оболочки, даже если у вас
не установлен наш инструмент. Вы можете зафиксировать образцы активности диска
и отправить их по электронной почте или сохранить для последующего анализа.

Фактически инструменты pt-stalk, pt-collect и pt-sift, о которых мы рассказали
в главе 3, созданы для хорошей совместной работы с pt-diskstats.

Машина с нагруженным процессором

Если процессор сильно нагружен, то vmstat обычно показывает в столбце us боль­
шое значение - долю времени, в течение которого процессор занят выполнением

пользовательского кода.

Кроме того, большое значение может быть в столбце sy, который характеризует
использование ЦП системой, - увидев значение выше 20 %, может начинать волно­
ваться. В большинстве случаев вы увидите также, что в очереди к ЦП стоят несколько

процессов (столбец r). Приведем пример:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

r ь swpd free buff cache si so Ьi Ьо in cs us sy id wa
10 2 740880 19256 46068 13719952 0 0 2788 11047 1423 14508 89 4 4 3
11 0 740880 19692 46144 13702944 0 0 2907 14073 1504 23045 90 5 2 3

7 1 740880 20460 46264 13683852 0 0 3554 15567 1513 24182 88 5 3 3
10 2 740880 22292 46324 13670396 0 0 2640 16351 1520 17436 88 4 4 3

Обратите внимание также на большое количество контекстных переключений (стол­
бец с s), хотя не стоит об этом беспокоиться, пока значение менее 100 ООО в секунду.
Контекст пере1СЛючается, когда операционная система приостанавливает один про­

цесс и замещает его другим.

Например, запрос, выполняющий сканирование не покрывающего индекса в табли­
це MyISAM, будет считывать запись из индекса, а затем читать строку со страницы
на диске. Если страница не находится в кэше операционной системы, с диска будет

производиться физическое чтение, из-за чего переключатель контекста приостано­

вит процесс до завершения ввода/вывода. Такой запрос может вызвать множество

переключателей контекста.

Запустив на той же машине iostat (верхняя строка, где размещаются средние значения
за все время с момента запуска, опущена), мы увидим, что коэффициент загружен­

ности диска - менее 50 %:

$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 3859 54 458 2063 34546 71 3 6 1 47
dm-0 0 0 54 4316 2063 34532 8 18 4 0 47
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm util
sda 0 2898 52 363 1767 26090 67 3 7 1 45
dm-0 0 0 52 3261 1767 26090 8 15 5 0 45

Основное время эта машина тратит на процессорные операции, однако объем ввода/
вывода также велик, что вполне нормально для серверов баз данных. В то же время

Состояние операционной системы 509

типичный веб-сервер потребляет очень много ресурсов ЦП, но очень слабо загру­

жает подсистему ввода/вывода, поэтому для веб-сервера картина будет отличаться

от показанной.

Машина с нагруженной подсистемой ввода/вывода

Если рабочая нагрузка сопряжена преимущественно с вводом/выводом, то ЦП про­

водит много времени в ожидании завершения запросов ввода/вывода. Это означает,

что vmstat покажет много процессов в состоянии непрерываемого сна (столбец Ь),
значение в столбце wa также будет велико, например:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r ь swpd free buff cache si so bi Ьо in cs us sy id wa
5 7 740632 22684 43212 13466436 0 0 6738 17222 1738 16648 19 3 15 63
5 7 740632 22748 43396 13465436 0 0 6150 17025 1731 16713 18 4 21 58
1 8 740632 22380 43416 13464192 0 0 4582 21820 1693 15211 16 4 24 56
5 6 740632 22116 43512 13463484 0 0 5955 21158 1732 16187 17 4 23 56

Вывод iostat демонстрирует, что на этой машине диски полностью загружены 1 :

$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 5396 202 626 7319 48187 66 12 14 1 101
dm-0 0 0 202 6016 7319 48130 8 57 9 0 101
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 5810 184 665 6441 51825 68 11 13 1 102
dm-0 0 0 183 6477 6441 51817 8 54 7 0 102

Величина %util может быть больше 100 % из-за ошибок округления.

Когда можно считать, что подсистема ввода/вывода сильно нагружена? Если емкости

буферов хватает для обслуживания запросов на запись, то обычно (но не всегда) это
означает, что диски не справляются с запросами на чтение, даже если выполняется

очень много операций записи. Кажется, что это противоречит ожиданиям, но давайте

задумаемся о природе чтения и записи.

Запросы на запись могут быть либо буферизованными, либо синхронными. Как мы

уже отмечали, буферизация возможна на различных уровнях, таких, как операционная

система, RАID-контроллер и т. д.

Запросы на чтение по природе своей синхронны. Программа, конечно, может пред­

положить, что в ближайшем будущем потребуются некоторые данные, и отправить

асинхронный запрос на упреждение (упреждающее чтение). Однако чаще она обна­

руживает, что некоторые данные необходимы, и без них не может продолжать работу.

Поэтому чтение обязано быть синхронным: процесс блокируется до завершения

запроса.

Во втором издании этой книги мы объединили понятия «всегда занятые~. и «полностью

насыщенные'>. Диски, всегда что-то делающие, не обязательно используются без остатка,

поскольку они могут также поддерживать некоторую конкурентность.

510 Глава 9 • Оптимизация операционной системы и оборудования

Взгляните на ситуацию следующим образом: вы можете отправить запрос на запись,
который сохраняется в каком-то буфере и выполняется позже. Можно даже отпра­
вить много таких запросов в течение одной секунды. Если буфер работает корректно

и в нем достаточно места, то каждый запрос завершается очень быстро, а реальные
операции записи на физический диск впоследствии можно будет сгруппировать
и выполнить в другом порядке для повышения эффективности.

Но с чтением так поступить нельзя - неважно, короткий запрос или длинный, диск

не может ответить: ~вот твои данные, а прочту я их попозже». Поэтому ожидание

ввода/вывода вызвано, как правило, операциями чтения.

Машина с интенсивной подкачкой

Если машина активно выгружает и подгружает данные, значение в столбце swpd
может быть как большим, так и маленьким. Однако не следует допускать, чтобы
значения в столбцах si и so были велики. Вот как может выглядеть выдача vmstat
на машине с интенсивной подкачкой:

$ vmstat 5
proc5 -----------memory------------- ---5wap---- -----io---- --5y5tem-- ----cpu---­
r Ь 5Wpd free buff cache 5i 50 Ы Ьо in с5 u5 5У id wa
0 10 3794292 24436 27076 14412764 19853 9781 57874 9833 4084 8339 6 14 58 22
4 11 3797936 21268 27068 14519324 15913 30870 40513 30924 3600 7191 6 11 36 47
0 37 3847364 20764 27112 14547112 171 38815 22358 39146 2417 4640 6 8 9 77

Простаивающая машина

Для полноты картины приведем выдачу vmstat, полученную на простаивающей
машине. Обратите внимание на то, что здесь нет ни готовых к выполнению, ни бло­
кированных процессов, а столбец idle показывает, что процесс простаивает 100 %
времени. Эти данные были получены на компьютере под управлением Red Hat
Enterprise Linux 5, в них присутствует столбец st, в котором отображается время,
украденное у виртуальной машины:

$ vmstat 5
proc5 -----------memory---------- ---5wap-- -----io---- --5y5tem-- -----cpu-----
r ь 5wpd free buff cache 5i 50 ы Ьо in с5 u5 5у id wa 5t
0 0 108 492556 6768 360092 0 0 345 209 2 65 2 0 97 1 0
0 0 108 492556 6772 360088 0 0 0 14 357 19 0 0 100 0 0
0 0 108 492556 6776 360084 0 0 0 6 355 16 0 0 100 0 0

Итоги главы

Выбор и конфигурация оборудования для MySQL и конфигурация MySQL для
аппаратного обеспечения - это не тайное искусство. В целом вам требуются те же

знания и умения, что и для достижения большинства других целей. Однако суще­
ствуют кое-какие специфические особенности конфигурации MySQL, которые
стоит знать.

Итоги главы 511

Обычно большинству людей мы советуем найти хороший баланс между произво­
дительностью и стоимостью. Прежде всего, нам нравится использовать стандартные

серверы по многим причинам. Например, если у вас возникли проблемы с серве­
ром и нужно выключить его на время диагностики или вы в рамках диагностики

просто хотите попробовать заменить его на другой сервер, то сделать это намного
проще с сервером за 5000 долларов, чем с тем, который стоит 50 ООО долларов или
больше. Также MySQL, как правило, лучше подходит - как с точки зрения самого
программного обеспечения, так и с точки зрения типичных рабочих нагрузок - для
стандартного оборудования.

Четыре основных ресурса, которые нужны MySQL, - это ЦП, память, диск и сетевые

ресурсы. Сеть в отличие от процессора, памяти и дисков, как правило, не оказывается

серьезным узким местом. Обычно вам требуется много быстрых процессоров для
MySQL, хотя, если нужно выбирать между количеством и быстродействием, при
прочих равных условиях выбирайте быстродействие.

Взаимоотношения между процессорами, памятью и дисками запутанны, и часто

проблемы, возникшие в одной области, проявляются совсем в другом месте. Прежде
чем бросать ресурсы на решение проблемы, спросите себя, не следует ли бросить их
совсем в другое место. Если диски сильно нагружены, решите, нужно ли вам больше
мощностей для ввода/вывода или просто больше памяти? Ответ зависит от размера
рабочего множества, представляющего собой набор данных, который требуется наи­
более часто в течение заданного времени.

На момент написания книги мы считаем целесообразным действовать следующим
образом. Не стоит использовать более двух сокетов. Даже двухсокетная система мо­
жет предложить множество ядер процессора и аппаратных потоков, а процессоры,

доступные для четырех сокетов, значительно дороже. Кроме того, они не так широко

используются (и, следовательно, хуже протестированы и менее надежны). Кроме

того, у них более низкие тактовые частоты. Наконец, в четырехсокетных системах,
по-видимому, большие затраты на кросс-сокетную синхронизацию. Что касается
памяти, то нам нравится заполнять наши серверы недорогой памятью серверного

класса. В настоящий момент на многих стандартных серверах имеется 18 DIMM
слотов и 8 Гбайт DIMM. Это хороший размер - их цена за гигабайт такая же, как
и у меньших DIMM, но гораздо меньше, чем у 16 Гбайт DIMM. Именно поэтому
в настоящее время часто встречаются серверы с 144 Гбайт памяти. Эта тенденция со
временем изменится - сам~rми выгодными в итоге станут 16 Гбайт DIMM, возможно,
будет другое количество слотов в формфакторах стандартных серверов, но общий
принцип, вероятно, сохранится.

Выбор устройства долговременного хранения, по существу, сводится к трем вари­

антам. Перечислим их в порядке возрастания производительности: SAN, обычные
диски и твердотельные устройства. Опишем разницу в двух словах.

О SАN-сети стоит применять, когда вам нужны их возможности и мощность. Они

хорошо работают при больших рабочих нагрузках, но дороги. Кроме того, у них
большая задержка при небольших операциях произвольного ввода/вывода,
особенно когда используется более медленное соединение, такое как NFS, или

512 Глава 9 • Оптимизация операционной системы и оборудования

рабочее множество не помещается во внутренний кэш сетей SAN. Остерегайтесь
неожиданностей с производительностью сетей SAN и тщательно планируйте свои
действия на случай реализации негативных сценариев.

О Обычные диски большие, дешевые и медленные при произвольном чтении.
Для большинства сценариев лучшим выбором являются тома RAID 1 О для сервер­
ных дисков. Обычно целесообразно использовать аппаратный RАID-контроллер
с блоком резервного питания аккумулятора и кэшем записи, для которого уста­
новлена политика WriteBack. Такая конфигурация должна работать очень хорошо
при большинстве задаваемых вами нагрузок.

О Твердотельные хранилища данных относительно малы и дороги, но они очень

быстро работают при произвольном вводе/выводе. Существует два класса: SSD
и PCie. Грубо говоря, SSD дешевле, медленнее и менее надежны. Для повышения
их долговечности необходим RAID, однако большинство аппаратных RАID­
контроллеров не справляются с этой задачей. Устройства PCie стоят дорого
и имеют ограниченную емкость, но они чрезвычайно быстры и надежны и им
не нужен RAID.

Твердотельные устройства отлично подходят для повышения производительности

сервера в целом, а иногда недорогой SSD - это способ обработки определенной рабо­
чей нагрузки, которая плохо реализуется на обычных дисках, например репликации.
Если действительно нужна мощность, то потребуется устройство PCie. Добавление
серверу быстрого ввода/вывода приводит к перемещению узкого места на процессор,
а иногда и в сеть.

MySQL и InnoDB не могут в полной мере воспользоваться преимуществами, пред­
лагаемыми высококачественными твердотельными хранилищами, а в некоторых

случаях это неспособны сделать и операционные системы. Однако эта ситуация
улучшается довольно быстро. В Percona Server реализовано много усовершенство­
ваний, касающихся твердотельных накопителей. Кроме того, много их ожидается

в готовящемся релизе MySQL 5.6.

Что касается операционной системы, есть всего несколько важных вещей, которые

вам нужно делать правильно, в основном они связаны с хранением, сетью и управ­

лением виртуальной памятью. Если вы, как и большинство пользователей MySQL,
работаете с GNU /Linux, советуем применять файловую систему XFS и задать для
подкачки и планировщика очередей значения, подходящие для сервера. Возможно,

вам потребуется изменить некоторые параметры сети, а изменение других установок
(например, отключение SELinux) зависит от ваших предпочтений.

Репликация

Встроенные в MySQL средства репликации являются основой для построения
крупных высокопроизводительных приложений и используют так называемую го­

ризонтально масштабируемую архитектуру. Они позволяют сконфигурировать один
или несколько серверов в качестве подчиненных другому серверу (такие серверы

называют репликами'). При этом данные реплики синхронизированы с данными

главного сервера. Это полезно не только при создании высокопроизводительных

приложений - репликация является краеугольным камнем многих стратегий вы­

сокой доступности, масштабируемости, аварийного восстановления, резервного

копирования, анализа, хранения данных и многих других задач. Фактически масшта­
бируемость и высокая доступность - это связанные темы, которые мы рассмотрим

в этой и следующих двух главах.

В текущей главе поговорим обо всех аспектах репликации. Начнем с обзора принципов
работы, затем перейдем к простейшей настройке сервера, далее продемонстрируем
более сложные конфигурации и расскажем о том, как управлять реплицированными
серверами и оптимизировать их. Хотя эта книга посвящена прежде всего вопросам

производительности, для репликации не менее важны корректность и надежность,

поэтому мы остановимся на том, с какими проблемами можно столкнуться в ходе
репликации и как правильно ее организовать.

Обзор репликации

Основная задача, которую призвана решить репликация, - это синхронизация дан­

ных одного сервера с данными другого. К одному главному серверу можно подклю­

чить несколько подчиненных, которые будут синхронизированы с ним, причем под­
чиненный сервер может, в свою очередь, выступать в роли главного. Сеть, состоящая

из главных и подчиненных серверов, может быть организована разными способами.

MySQL поддерживает две разновидности репликации: покомандную и построчную.
Покомандная (или логическая) репликация существует со времен версии 3.23,

Возможно, вам встречался термин «раб~ (slave). Мы постараемся его избегать.

514 Глава 10 • Репликация

в настоящее время именно она обычно используется в устройствах, находящих­

ся в промышленной эксплуатации. Построчная репликация появилась в версии

MySQL 5.1. В обоих случаях изменения записываются в двоичный журнал 1 на глав­

ном сервере и воспроизводятся на подчиненном, причем оба варианта асинхронны,
то есть не гарантируется, что копия данных на подчиненном сервере актуальна

в любой момент. Относительно величины отставания также не дается никаких га­

рантий. Если запросы сложны, то подчиненный сервер может отставать от главного

на секунды, минуты и даже часы.

Репликация в MySQL в основном обратно совместима. Это означает, что сервер с бо­
лее поздней версией MySQL может быть подчинен серверу, на котором установлена
ранняя версия. Однако старые версии обычно не могут выступать в роли подчинен­

ных для более свежих - они не распознают новые возможности, синтаксические

конструкции SQL, да и форматы файлов репликации моrут различаться. Например,
невозможно реплицировать главный сервер версии MySQL 5.1 на подчиненный
версии 4.0. Мы рекомендуем протестировать схему репликации до перехода на но­
вую версию, в которую были внесены серьезные изменения, например при переходе

с 4.1 на 5.0 или с 5.1 на 5.5. Обновления в рамках вспомогательных версий, напри­
мер с 5.1.51 до 5.1.58, обычно совместимы - почитайте журнал изменений, чтобы
узнать, что конкретно изменилось при переходе на друrую версию. Вообще говоря,

репликация не сильно увеличивает накладные затраты на главном сервере. Правда,

на нем требуется включить двоичный журнал, что само по себе весьма ощутимо, но

это нужно сделать, если вы хотите снимать нормальные резервные копии. Помимо за­

писи в двоичный журнал, небольшую нагрузку (в основном на сеть) дает добавление
каждого подчиненного сервера. Если реплики считывают старые двоичные журналы

главного сервера, а не просто реагируют на последние событиями, накладные затраты
моrут быть намного выше из-за операций ввода/вывода, необходимых для чтения
старых журналов. Этот процесс может вызывать также конкуренцию за мьютекс,

которая помешает транзакции. Наконец, если вы копируете очень высокую пропуск­

ную нагрузку (скажем, 5000 или более транзакций в секунду) на много подчиненных
серверов, накладные затраты, связанные с пробуждением потоков всех реплик для

отправки им событий, будут суммироваться.

Репликация применима для масштабирования операций чтения, которые можно

адресовать подчиненному серверу, но для масштабирования записи она не очень

подходит, если только не учесть это требование при проектировании системы. Под­

ключение большого количества подчиненных серверов просто приводит к тому, что

запись выполняется многократно, по одному разу на каждом из них. Система в целом

ограничена количеством операций записи, которые может выполнить самое слабое

ее звено.

При наличии нескольких подчиненных серверов репликация становится дорогим

удовольствием, так как данные без нужды дублируются несколько раз. Например,

Информацию о двоичном журнале можете найти в главе 8, далее в этой главе и в главе 15.

Обзор репликации 515

если к одному главному серверу подключены десять подчиненных, то на главном

сервере оказывается 11 одинаковых копий данных, которые дублируются в 11 разных
кэшах. Это можно считать аналогом RAID 1 с 11 дисками. Подобное использование
оборудования неэкономно, тем не менее такая конфигурация встречается на удив­

ление часто. В дальнейшем мы обсудим различные способы сгладить эту проблему.

Проблемы, решаемые репликацией

Перечислим несколько типичных случаев применения репликации.

О Распространение данных. Обычно на репликацию в MySQL расходуется не очень
большая часть пропускной способности сети, хотя, как мы увидим позже, построч­

ная репликация, представленная в MySQL 5.1, может потребовать гораздо боль­
шей пропускной способности, чем более традиционная покомандная. К тому же

ее можно в любой момент остановить и затем возобновить. Это полезно, если

копия данных хранится в территориально удаленном пункте, например в другом

центре обработки данных. Удаленный подчиненный сервер может работать даже

с непостоянным (намеренно или по другим причинам) соединением. Но если вы

хотите обеспечить минимальное отставание реплики, то следует использовать

надежный канал с малым временем задержки.

О Балансировка нагрузки. С помощью репликации можно распределить запросы

на чтение между несколькими серверами MySQL, что особенно продуктивно
в приложениях с интенсивным чтением. Реализовать несложную балансировку

нагрузки можно, внеся совсем немного изменений в код. Для небольших при­

ложений достаточно просто зашить в программу несколько доменных имен или

воспользоваться циклическим разрешением DNS-имен (когда с одним доменным

именем связаны несколько IР-адресов). Возможны и более изощренные решения.

Стандартные технологии балансировки нагрузки, в частности сетевые баланси­

ровщики, прекрасно послужат для распределения нагрузки между несколькими

серверами MySQL. Неплохо зарекомендовал себя и проект Linux Virtual Server
(LVS). Подробнее о балансировке нагрузки поговорим в главе 11.

О Резервное копирование. Репликация - это большое подспорье для резервного

копирования. Однако подчиненный сервер все же не может использоваться

в качестве резервной копии и не способен заменить настоящее резервное копи­

рование.

О Высокая доступность и аварийное переключение на резервный сервер. Репликация

позволяет исправить ситуацию, при которой сервер MySQL является единствен­
ной точкой отказа приложения. Хорошая система аварийного переключения, име­

ющая в составе реплицированные подчиненные серверы, способна существенно

сократить время простоя при отказе. Мы рассмотрим эту тему в главе 12.

О Тестирование новых версий MySQL. Очень часто на подчиненный сервер устанав­
ливают новую версию MySQL и перед тем, как обновлять все серверы, проверяют,
все ли запросы работают нормально.

516 Глава 10 • Репликация

Как работает репликация

Перед тем как вплотную заняться настройкой репликации, посмотрим, как же на

самом деле MySQL реплицирует данные. В самом общем виде репликацию можно
описать как процедуру, состоящую из трех шагов.

1. Главный сервер записывает изменения данных в двои<1ный журнал . Эти записи

на;3ываются событиями двоичного журнала.

2. Подчине1шый сервер копирует события двоичного журнала в свой журнал ре­
трансляции.

3. Подчиненный сервер воспроизводит события иэ журнала ретрансля1щи, нрименяя
изменения к собственным данным.

Это лишь общая картина, в действительности каждый шаг весьма сложен. На рис . 10.1
приведена более нодробная схема процедуры репликации.

Главный сервер
----..

Подчиненный сервер

Поток
ввода­

вывода О

о

Заnись

о0потокsоL

Рис. 10.1. Как работает репликация в MySQL

Первый этап данного процесса - запись в двоичный журнал на главном сервере (как
ее настроить, мы объясним чуть позже). Непосредственно перед тем, как завершить
транзакцию, обновляющую данные, главный сервер заносит изменения в свой двоичный
журнал. MySQL занисывает транзаю1ии последовательно, даже если во время вы­
полнения перемежаются команды из разных транзакций. Записав события в двоичный
журнал, главный сервер просит подсистему хранения выполнить коммит транзакции.

На следующем этапе подчиненный сервер копирует двоичный журнал главного

сервера на свой жесткий диск, в так называемый журнал ретрансляции. Первым де­

лом он запускает подчиненный поток ввода/вывода. Этот поток открывает обы•11юе
клиентское соединение с главным сервером, а затем запускает специальный процесс

дампа двоичного журнпла (соответствующей команды в языке SQL не существует).
Этот процесс читает события из двоичного журнала главного сервера. Он не 011ра­
шивает события активно. Обнаружив конец журнала, процесс выгрузки дампа засы­
пает и ждет, пока главный сервер нс проси1·нализирует о появлении новых событий.

Настройка репликации 517

Прочитанные события поток ввода/вывода записывает в журнал ретрансляции на
подчиненном сервере.

До выхода версии MySQL 4.0 репликация во многих отношениях работала по­
другому. Например, первоначально никакого журнала ретрансляции не было,
поэтому для репликации использовались два, а не три потока. Но сейчас, как
правило, эксплуатируются более поздние версии сервера, поэтому рассказывать
об уже неактуальных деталях мы не будем.

На последнем этапе в дело вступает подчиненный поток SQL. Он читает и воспроиз­
водит события из журнала ретрансляции, приводя данные на подчиненном сервере
в соответствие с главным сервером. Если поток SQL успевает за потоком ввода/вы­
вода, журнал ретрансляции обычно остается в кэше операционной системы, так что
накладные затраты на работу с этим журналом очень низкие. События, исполняемые
потоком SQL, могут записываться также в собственный двоичный журнал подчинен­
ного сервера, что бывает полезно при реализации отдельных сценариев, которые мы
рассмотрим далее в этой главе.

На рис. 10.1 показаны только два потока репликации на подчиненном сервере, но есть
и еще один поток на главном сервере: как и при других соединениях с сервером MySQL,
соединение, открытое подчиненным сервером, запускает поток на главном.

Такая архитектура репликации позволяет отсоединить друг от друга процессы

выборки и воспроизведения событий на подчиненном сервере и сделать их асинхрон­
ными. Иными словами, поток ввода/вывода может работать независимо от потока
SQL. Кроме того, она накладывает на процедуру репликации определенные ограни­
чения, среди которых важнее всего то, что репликация сериалuзуется на подчиненном
сервере. Это означает, что обновления, реализованные на главном сервере, возможно,
параллельно (в разных потоках), на подчиненном сервере распараллелены быть
не могут, поскольку выполняются в одном потоке. Как мы увидим в дальнейшем,

при некоторых характеристиках рабочей нагрузки это может стать узким местом.
Хотя существует ряд решений, позволяющих обойти это ограничение, большинство
пользователей по-прежнему используют один поток.

Настройка репликации
В MySQL настройка репликации не вызывает особых сложностей, но у основных шагов
есть много вариаций, зависящих от конкретного сценария. Самый простой случай -
когда главный и подчиненный серверы только что установлены и еще не введены

в эксплуатацию. На верхнем уровне процедура выглядит следующим образом.

1. Завести учетные записи репликации на каждом 1 сервере.

2. Сконфигурировать главный и подчиненный серверы.

Это не обязательно, но мы рекомендуем так сделать; причины объясним чуть позже.

518 Глава 10 • Репликация

3. Скомандовать подчиненному серверу, чтобы он соединился с главным и начал

реплицировать данные с него.

Здесь подразумевается, что многие принимаемые по умолчанию параметры удов­

летворительны, и это действительно так, если главный и подчиненный серверы

только что установлены и обладают одними и теми же данными (стандартной

базой данных mysql). Мы последовательно опишем действия на каждом шаге,
предполагая, что серверы называются serverl (IР-адрес 192.168.0.1) и server2
(IР-адрес 192.168.0.2). Затем объясним, как инициализировать подчиненный сер­
вер с помощью уже эксплуатируемого, и подробно рассмотрим рекомендуемую

конфигурацию репликации.

Создание аккаунтов репликации

В MySQL предусмотрено несколько специальных привилегий, необходимых
для запуска репликации. Подчиненный поток ввода/вывода, работающий на под­
чиненном сервере, устанавливает ТСР /IР-соединение с главным сервером. Это

означает, что на главном сервере должен быть создан аккаунт, наделенный такими

привилегиями, чтобы поток ввода/вывода мог соединиться от его имени и читать
двоичный журнал главного сервера. Далее показано, как создать такой аккаунт -
мы назвали его repl:

mysql> GRANT REPLICATION SLAVE, REPLICATION CLIENT ON •.•
->то repl@'192.168.0.%' IDENТIFIED ВУ 'p4ssword';

Такой аккаунт создается как на главном, так и на подчиненном сервере. Отметим,

что мы разрешили пользователю устанавливать соединение только из локальной

сети, потому что аккаунт репликации имеет возможность читать все изменения на

сервере, что делает его привилегированной учетной записью. (Несмотря на то что

у него нет возможности выполнять SE LECT или изменять данные, он все равно может

видеть некоторые данные в двоичных журналах.)

Учетной записи репликации на самом деле нужна только привилегия REPll­
CATTON SLAVE на главном сервере, а REPllCATTON CLIENТ не нужна ни на глав­
ном, ни на подчиненном сервере. Так зачем же мы их дали на обоих серверах?
Тому есть две причины.

• Аккаунту, который применяется для мониторинга репликации и управле­
ния ею, нужна привилегия REPLICATTON CLIENT, и лучше не усложнять
себе жизнь, а использовать одну и ту же запись для обеих целей, а не
создавать отдельный аккаунт пользователя для этой цели.

• Если вы заведете учетную запись на главном сервере, а затем клонируете

его для настройки подчиненного сервера, то подчиненный сервер уже бу­
дет подготовлен для роли главного на случай, если вы захотите поменять
серверы ролями.

Конфигурирование главного
и подчиненного серверов

Насrройка репликации 519

Следующий шаг - включение нескольких параметров на главном сервере, в роли

которого будет выступать serverl. Необходимо включить двоичный журнал и задать
идентификатор сервера. Введите (или убедитесь в наличии) такие строки в файл

my. cnf на главном сервере:

log_bir = mysql-bin
server_id = 10

Конкретные значения выберите по своему усмотрению. Мы пошли по простейшему

пути, но вам, возможно, захочется чего-то более хитрого.

Необходимо явно назначить серверу уникальный идентификатор. Мы задали 10,
а не 1, так как значение 1 сервер обычно выбирает по умолчанию, если не задано

другое (это зависит от версии - некоторые версии MySQL в этом случае вообще
не работают). Поэтому выбор 1 легко может вызвать конфликты между серверами,
которым идентификатор явно не назначен. Часто в качестве идентификатора выби­
рают последний октет IР-адреса сервера, предполагая, что он уникален и в будущем

не изменится (то есть все серверы находятся в одной подсети). Стоит выбрать какое­
то соглашение, которое кажется вам разумным, и придерживаться его.

Если двоичный журнал ранее не был включен на главном сервере, то MySQL придет­
ся перезапустить. Чтобы проверить, создан ли на главном сервере двоичный журнал,

выполните команду SHOW МАSТЕR STATUS и сравните ее результат с приведенным да­

лее. MySQL добавляет к имени файла несколько цифр, поэтому истинное имя будет
отличаться от заданного вами:

mysql> sнow МASTER STATUS;
+------------------+----------+--------------+------------------+
1 File 1 Position 1 Binlog_Do_DB 1 Binlog_Ignore_DB 1

+------------------+----------+--------------+------------------+
1 mysql-bin.000001 1 98 1

+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

Файл my. cnf на подчиненном сервере выглядит примерно так же, как на главном,
но с некоторыми дополнениями. Подчиненный сервер также необходимо переза­

пустить:

log_bin = mysql-bin
server_id = 2
log_bin = mysql-bin
server_id 2
relay_log /var/liЬ/mysql/mysql-relay-bin

log_slave_updates 1
read_only 1

Некоторые из этих параметров, строго говоря, необязательны, а для других мы

явно задали значения, совпадающие со значениями по умолчанию. На самом деле

520 Глава 10 • Репликация

на подчиненном сервере обязательным является только параметр server _id, но мы
включили также log_Ьin и присвоили файлу журнала явное имя. По умолчанию имя

этого файла совпадает с именем хоста, но при такой конфигурации могут возникнуть

проблемы, если в будущем имя хоста изменится. Для простоты мы назвали главный

и подчиненный серверы одинаково, но вы можете сделать иначе.

Мы добавили также два необязательных параметра: relay _log (определяет имя и ме­
стоположение журнала ретрансляции) и log_slave_updates (обязывает подчиненный
сервер записывать реплицированные события в собственный двоичный журнал).

Последнее добавляет подчиненному серверу работы, но, как мы вскоре убедимся,

имеются обоснованные причины для того, чтобы задавать эти необязательные пара­

метры на всех подчиненных серверах.

Некоторые включают только двоичный журнал, не задавая параметр log_slave_
updates, чтобы сразу же увидеть, изменяются ли какие-нибудь данные на подчи­
ненном сервере, например, из-за неправильно сконфигурированного приложения.

Если возможно, то лучше использовать параметр read_only, который не дает мо­
дифицировать данные никому, кроме потоков со специальными привилегиями (не

давайте пользователям больше привилегий, чем реально необходимо для работы!).

Однако часто параметр read_only оказывается непрактичным, особенно если не­
кое приложение должно иметь возможность создавать таблицы на подчиненных

серверах.

,1~ Не помещайте такие конфиrурационные параметры, как master_ host и ma­
ster_port, в файл my.cпf на подчиненном сервере. Это устаревший способ
конфиrурирования подчиненного сервера. Он может создать проблемы и не

дает никаких преимуществ.

Запуск подчиненного сервера

Следующий шаг - сообщить подчиненному серверу о том, как соединиться с глав­

ным и начать воспроизведение двоичных журналов. Для этой цели используется

не файл my. cnf, а команда CHANGE МASTER то. Она полностью заменяет соответству­

ющие настройки в файле my. cnf. Кроме того, она позволяет впоследствии указать
подчиненному серверу другой главный без перезапуска. Далее приведена про­

стейшая форма команды, необходимой для запуска репликации на подчиненном

сервере:

mysql> CНANGE МASTER ТО МASTER_НOST='serverl',
-> МASTER_USER='repl',
-> MASTER_PASSWORD='p4ssword',
-> МASTER_LOG_FILE='mysql-Ыn.eeeee1·,
-> МASTER_LOG_POS=0;

Настройка репликации 521

Параметр МASТER_LOG_POS устанавливается в 0, потому что это начало журнала. После

того как эта команда отработает, выполните команду SHOW SLAVE STATUS и проверьте,

правильно ли установлены параметры подчиненного сервера:

mysql> SНOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State:
Master_Host: serverl
Master_User: repl
Master_Port: 3306

Coппect_Retry: 60
Master_Log_File: mysql-biп.000001

Read_Master_Log_Pos: 4
Relay_Log_File: mysql-relay-biп.000001
Relay_Log_Pos: 4

Relay_Master_Log_File: mysql-biп.000001
Slave_IO_Ruппiпg: No

Slave_SQL_Ruппiпg: No
••• опущено •••

Secoпds_Behiпd_Master: NULL

Столбцы Slave_IO_State, Slave_IO_Rurrirg и Slave_SQL_Ruппing показывают, что

процессы репликации на подчиненном сервере не запущены. Внимательный читатель

заметит также, что позиция указателя журнала равна 4, а не 0. Это объясняется тем,

что 0 - это не столько истинное значение указателя, сколько признак «в начале фай­

ла журнала». MySQL знает, что данные первого события начинаются в позиции 41•

Чтобы запустить репликацию, выполните следующую команду:

mysql> START SLAVE;

Она не должна выводить никаких сообщений, включая сообщения об ошибках.

Снова проверьте состояние подчиненного сервера командой SHOW SLAVE STATUS:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waitiпg for master to seпd eveпt
Master_Host: serverl
Master_User: repl
Master_Port: 3306

Coппect_Retry: 60
Master_Log_File: mysql-biп.000001

Read_Master_Log_Pos: 164
Relay_Log_File: mysql-relay-biп.000001
Relay_Log_Pos: 164

Relay_мaster_Log_File: mysql-biп.000001
Slave_IO_Ruппiпg: Yes

Slave_SQL_Ruппiпg: Yes
••• опущено •••

Secoпds_Behiпd_Master: 0

В действительности из результата приведенной ранее команды SHOW MASTER STATUS
следует, что указатель находится в позиции 98. Подчиненный сервер (s/slave/replica/)
разберется в этом, когда установит соединение с главным, чего пока не произошло.

522 Глава 10 • Репликация

Обратите внимание на то, что теперь на подчиненном сервере работают потоки вво­

да/вывода и SQL, а переменная состояния Seconds_Behind_Master отлична от NULL

(что она означает, мы расскажем позже). Поток ввода/вывода ожидает события от

главного сервера, то есть к настоящему моменту он прочитал из двоичного журнала

все записи, которые там были. Позиции указателей в обоих журналах сместились,

иными словами, какие-то события были прочитаны и обработаны (на вашем сер­

вере картина может быть иной). Если сейчас выполнить какое-нибудь изменение

на главном сервере, то указатели позиций на подчиненном увеличатся. Кроме того,

изменения будут применены к подчиненному серверу!

Потоки репликации должны быть видны в списках процессов на главном и подчинен­

ном серверах. На главном вы увидите соединение, созданное потоком ввода/вывода,

который работает на подчиненном сервере:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 55
User: repl
Host: replical.webcluster_1:54813

db: NULL
Command: Binlog Dump

Тime: 610237
State: Has sent all binlog to slave; waiting for binlog to Ье updated
Info: NULL

На подчиненном сервере должно быть два потока - ввода/вывода и SQL:

mysql> sнow PROCESSLIST\G
*************************** 1. row ***************************

Id: 1
User: system user
Host:

db: NULL
Command: Connect

Time: 611116
State: Waiting for master to send event
Info: NULL

*************************** 2. row ***************************
Id: 2

User: system user
Host:

db: NULL
Command: Connect

Тime: 33
State: Has read all relay log; waiting for the slave I/O thread to update it
Info: NULL

Приведенные примеры распечаток получены на серверах, которые проработали доволь­

но долго, поэтому в столбце Time для потока ввода/вывода на главном и подчиненном

серверах выводится большое значение. SQL-поток на подчиненном сервере простаивает

33 секунды, то есть в течение этого времени не было воспроизведено ни одного события.

Эти процессы всегда работают от имени учетной записи system user, но значения

в остальных столбцах могут отличаться от показанных. Например, когда поток SQI~

Настройка репликации 523

воспроизводит событие на подчиненном сервере, в столбце Info отображается ис­
полняемый запрос.

0"". " •
""

Если вы хотите просто поэкспериментировать с репликацией, попробуйте реа­
лизовать сценарий MySQL SandЬox, написанный Джузеппе Максиа (Giuseppe
Maxia) (http://mysqlsandbox.net). Он может быстро выполнить новую установку
из недавно загруженного архива MySQL. Чтобы получить работающие глав­
ный и два подчиненных сервера, достаточно нескольких нажатий клавиш
и 15 секунд:

$./set_replication.pl /path/to/mysql-tarball.tar.gz

Инициализация подчиненного сервера
на основе существующего

Ранее мы предполагали, что главный и подчиненный серверы только что установ­

лены, поэтому данные на них практически одинаковы и позиция указателя в файле

двоичного журнала известна. Но на практике такого обычно не бывает. Как правило,
уже существует главный сервер, который проработал какое-то время, и требуется
синхронизировать с ним новый подчиненный сервер, на котором еще нет копии

данных с главного.

Существует несколько способов инициализировать, или клонировать, подчиненный
сервер из имеющегося: копирование данных с главного, клонирование другого под­

чиненного сервера и загрузка на подчиненный сервер данных из свежей резервной

копии. Чтобы синхронизировать подчиненный сервер с главным, необходимы три
вещи:

о мгновенный снимок данных главного сервера в некоторый момент времени;

о текущий файл журнала главного сервера и смещение от начала этого файла в точ­

ности на то время, когда был сделан мгновенный снимок. Вместе они называются
координатами файла журнала, так как однозначно идентифицируют позицию
в двоичном журнале. Узнать координаты файла журнала главного сервера вам

поможет команда SHOW МASTER STATUS;

о файлы двоичных журналов главного сервера с момента создания мгновенного

снимка до настоящего времени.

Существует несколько способов клонировать подчиненный сервер с помощью дру­
гого сервера.

О Холодная копия. Самый простой способ запустить подчиненный сервер состоит
в том, чтобы остановить сервер, который впоследствии станет главным, и скопи­
ровать файлы с него на подчиненный сервер (об эффективных способах копи­
рования файлов см. приложение В). После перезапуска главный сервер откроет

новый двоичный журнал, и можно будет воспользоваться командой CНANGE МASTER
то, указав на подчиненном сервере начало файла в качестве позиции в двоичном

524 Глава 10 • Репликация

журнале. Недостаток такого решения очевиден: на все время копирования глав­

ный сервер должен быть остановлен.

1:1 Горячая копия. Если вы используете только таблицы MyISAM, то можно приме­
нить команды mysqlhotcopy или rsync для копирования файлов с работающего
сервера. Подробную информацию см. в главе 15.

1:1 Использование mysqldиmp. Если вы используете только таблицы InnoDB, то, чтобы
выгрузить данные с главного сервера в дамп, загрузить их на подчиненный и изме­

нить координаты репликации на подчиненном сервере в соответствии с позицией

в двоичном журнале главного сервера, можно задействовать такую команду:

$ mysqldump --single-transaction --all-databases --master-data=l--host=serverl \ 1
mysql --host=server2

Флаг - -single-transaction говорит, что при выгрузке нужно читать те данные,
которые существовали на момент начала транзакции. Если имеются нетранзак­

ционные таблицы, то для получения согласованного дампа всех таблиц следует
задать флаг --lock-all-taЫes.

1:1 Мгновенный снимок или резервная копия. Если известны координаты в нужном
двоичном журнале, то для инициализации подчиненного сервера можно вос­

пользоваться мгновенным снимком или резервной копией (в последнем случае

необходимо иметь все двоичные журналы главного сервера с момента снятия
этой копии). Восстановите данные из мгновенного снимка или копии на под­

чиненном сервере, а затем задайте координаты репликации с помощью команды

CHANGE МАSТЕR ТО. Дополнительную информацию об этом способе см. в главе 15.
Можно использовать мгновенные снимки LVM, SAN, EBS, то есть любые, которые
сможете сделать.

1:1 Применение Реrсопа XtraBackиp. Percona XtraBackup - это инструмент для бы­
строго резервного копирования с открытым исходным кодом, созданный нами

несколько лет назад. Он может создавать резервные копии, не блокируя работу
сервера, что делает его замечательным инструментом для настройки подчинен­

ных серверов. Вы можете создавать подчиненные серверы путем клонирования

главного или существующей реплики.

Мы подробно рассмотрим способы использования Percona XtraBackup в главе 15,
а сейчас немного расскажем о его функциональности. Просто создайте резервную

копию (копируя либо главный сервер, либо уже существующую реплику) и вос­
становите ее на целевой машине. Затем зайдите в резервную копию и определите

правильную позицию для начала репликации:

• если вы создали резервную копию на основе главного сервера, то начинать репли­

кацию можно с позиции, указанной в файле xtrabackup_Ьinlog_pos_innodb;

• если резервная копия выполнена на основе другого подчиненного сервера,

можно начать репликацию с позиции, указанной в файле xtrabackup_slave_
info.

Технологии InnoDB Hot Backup и MySQL Enterprise Backup, которые рассматри­
ваются в главе 15, - еще один удобный способ инициализировать подчиненный
сервер.

Настройка репликации 525

1:1 На основе другого подчиненного сервера. Любой из вышеупомянутых методов го­
дится для клонирования одного подчиненного сервера из другого. Однако в этом

случае флаг --master-data в команде mysqldump работать не будет.

Еще отметим: вместо того чтобы получать координаты репликации в двоичном
журнале главного сервера с помощью команды SHOW MASТER STATUS, следует вос­

пользоваться командой SHOW SLAVE STATUS для отыскания позиции в двоичном

журнале главного сервера, на которой подчиненный сервер остановился в момент

снятия мгновенного снимка.

Серьезный недостаток клонирования другого подчиненного сервера состоит

в том, что если подчиненный сервер рассинхронизирован с главным, то вы будете
клонировать неактуальные данные.

Не пользуйтесь командами LOAD DATA FROM MASТER и LOAD TABLE FROM MAS­
TER! Они устарели, работают медленно и крайне опасны. К тому же применимы
только к таблицам типа MyISAM.

На каком бы методе вы ни остановились, потратьте время на то, чтобы освоиться
с ним, и документируйте свои действия или напишите сценарий. Не исключено, что

эту процедуру придется проделать не раз, и вы не должны растеряться, если что-то

пойдет не так.

Рекомендуемая конфигурация репликации

Параметров репликации много, и большинство из них так или иначе влияет на
безопасность данных и производительность. Позже мы расскажем о том, какие пра­
вила можно нарушать и когда. А в этом разделе приведем рекомендуемую безопасную
конфигурацию, которая сводит к минимуму шансы нарваться на неприятность.

На главном сервере самым важным параметром для двоичного журналирования

является sync_Ьinlog:

sync_Ьinlog=l

При таком значении MySQL сбрасывает двоичный журнал на диск в момент коммита
транзакции, поэтому в случае сбоя события журнала не потеряются. Если отключить
этот режим, то работы у сервера станет немногим меньше, но при возникновении
сбоя записи в журнале могут оказаться поврежденными или их вообще не будет.
На подчиненном сервере, который не выступает в роли главного, этот режим приво­

дит к излишним накладным затратам. Он применяется только к двоичному журналу,

а не к журналу ретрансляции.

Если повреждение таблиц после сбоя неприемлемо, то мы рекомендуем работать
с InnoDB. Подсистема хранения MyISAM хороша, если с поврежденной таблицей
можно примириться, но имейте в виду, что после сбоя подчиненного сервера табли­
цы типа MyISAM, скорее всего, окажутся несогласованными. Есть вероятность, что

526 Глава 10 • Репликация

некая команда будет применена к одной или нескольким таблицам не полностью,
поэтому данные останутся несогласованными даже после исправления таблиц.

Мы настоятельно рекомендуем при использовании InnoDB задавать на главном
сервере следующие параметры:

innodb_flush_log_at_trx_commit
innodb_support_xa=l
innodb_safe_binlog

Сброс после каждой записи в журнал
Только в версии MySQL 5.С и более поздних

только в версии MySQL 4.1, примерный
эквивалент innodb_support_xa

Это значения по умолчанию для версии MySQL 5.0 и более поздних. Также реко­
мендуем явно указывать базовое имя двоичного журнала, чтобы создать одинако­
вые имена двоичных журналов на всех серверах и предотвратить изменения имен

двоичных журналов, если имя хоста сервера изменяется. Возможно, вы думаете, что

нет проблемы в том, что двоичные журналы автоматически называются так же, как

и сервер, но наш опыт показывает, что это вызывает большие проблемы при пере­
мещении данных между серверами, клонировании новых реплик, восстановлении

резервных копий, а также в других неожиданных случаях. Чтобы избежать этого,

укажите аргумент параметра log_Ьin по желанию с абсолютным путем, но с базовым

именем (как показано ранее в этой главе):

log_bin=/var/liЬ/mysql/mysql-bin

#log_Ьin

Правильно; определили путь и базовое имя

Неправильно; базовое имя совпадет
с именем сервера

Мы рекомендуем включить на подчиненном сервере следующие параметры:

relay_log=/path/to/logs/relay-Ьin

skip_slave_start
read_only

Кроме того, советуем использовать абсолютный путь для указания местонахождения
журнала ретрансляции.

Параметр relay_log запрещает называть файлы журналов ретрансляции так же, как
хост, что позволяет избежать упомянутых ранее проблем, которые могут произой­
ти на главном сервере, а предоставление абсолютного пути к журналам позволяет
избежать ошибок в различных версиях MySQL, которые могут привести к тому,
что журналы ретрансляции будут создаваться в неожиданных местах. Параметр
skip_slave_start предотвращает автоматический перезапуск подчиненного сервера
после сбоя, что оставляет возможность восстановить сервер при наличии проблем.
Если же подчиненный сервер перезапускается автоматически после некорректного

завершения, а база данных находится в несогласованном состоянии, то повреждение

может разрастись до такой степени, что все данные придется выбросить и начать все

сначала.

Параметр read_only не дает большинству пользователей изменять какие-либо та­
блицы, кроме временных. Исключение составляют поток SQL и потоки, работающие
с привилеm:ей SUPER. Это единственная причина, по которой обычной учетной записи
имеет смысл давать привилегию SUPER.

Взгляд на репликацию изнутри 527

Даже если вы установили все рекомендованные нами параметры, подчиненный

сервер все равно может легко выйти из строя после сбоя, поскольку журналы ретран­
сляции и файл master. info не защищены от сбоев. По умолчанию они даже не сбра­
сываются на диск, и, более того, до версии MySQL 5.5 не существовало конфигура­
ционного параметра, который бы это контролировал. Если используете MySQL 5.5
и вас не беспокоят дополнительные накладные затраты на дополнительные вызовы
fsync (), стоит включить следующие параметры:

sync_master_info = 1
sync_relay_log = 1
sync_relay_log_info = 1

Если подчиненный сервер очень сильно отстает от главного, то поток ввода/выво­
да может создать множество журналов ретрансляции. Поток SQL удаляет их сразу
после воспроизведения (это поведение можно изменить с помощью параметра

relay_log_purge), но если отставание велико, то поток ввода/вывода вполне может
заполнить весь диск. Справиться с этой проблемой поможет конфигурационный
параметр relay_log_space_limit. Если совокупный размер всех журналов ретрансля­
ции больше значения этого параметра, то поток ввода/вывода приостанавливается
и ждет, пока поток SQL освободит место на диске.

На первый взгляд все хорошо, но здесь таится одна проблема. Если подчиненный
сервер не скопировал в журнал ретрансляции все события с главного сервера, то
в случае сбоя последнего они могут быть навсегда потеряны. Этот параметр в про­
шлом был реализован с ошибками, а кроме того, необычно используется, поэтому,
если он применяется, риск ошибок возрастает. Если места на диске достаточно, то
лучше дать подчиненному серверу возможность создавать журналы ретрансляции

без ограничений. Именно поэтому мы не включили параметр relay _log_space_limi t
в рекомендуемую конфигурацию.

Взгляд на репликацию изнутри

Теперь, когда мы познакомились с основами репликации, можно копнуть поглубже.
Рассмотрим, как на самом деле работает механизм репликации, познакомимся с его
сильными и слабыми сторонами и изучим некоторые дополнительные конфигура­
ционные параметры.

Покомандная репликация

Версии MySQL 5.0 и более ранние поддерживали только покомандную репликацию
(она также называется логической). В мире баз данных это необычно. Принцип ее
работы заключается в том, что протоколируются все выполненные главным сервером
команды изменения данных. Когда подчиненный сервер читает из своего журнала

ретрансляции событие и воспроизводит его, на самом деле он отрабатывает в точ­
ности ту же команду, которая ранее была выполнена на главном сервере. У такого
решения есть свои плюсы и минусы.

528 Глава 10 • Репликация

Очевидный плюс - относительная легкость реализации. Простое журналирование

и воспроизведение всех предложений, изменяющих данные, теоретически поддер­

живает синхронизацию подчиненного сервера с главным. Еще одно достоинство

покомандной репликации состоит в том, что события в двоичном журнале представ­
лены компактно. Иначе говоря, покомандная репликация задействует не слишком

большую часть пропускной способности сети - запрос, обновляющий гигабайты
данных, занимает всего несколько десятков байт в двоичном журнале.

На практике, однако, покомандная репликация не так проста, как кажется, поскольку

многие изменения на главном сервере могут зависеть от факторов, не выраженных

в тексте запроса. Например, моменты выполнения команд на главном и подчиненном

серверах могут слегка - или даже сильно - различаться. Поэтому в двоичном жур­

нале MySQL присутствует не только текст запроса, но и кое-какие метаданные, такие
как временная метка. Но все равно невозможно корректно реплицировать некоторые

команды, в частности запросы, в которых встречается функция CURRENT_USER(). Про­

блемы возникают также с хранимыми процедурами и триггерами.

С покомандной репликацией связана еще одна неприятность - модификации долж­

ны быть сериализуемыми. Для этого требуется больше блокировок, иногда намного
больше. Не все подсистемы хранения корректно поддерживают покомандную репли­
кацию, хотя подсистемы, включенные в официальный дистрибутив MySQL вплоть
до версии 5.5, с этим справляются.

Полный перечень недостатков покомандной репликации можно найти в соответству­

ющей главе руководства по MySQL.

Построчная репликация

В версию MySQL 5.1 была добавлена поддержка построчной репликации, при кото­
рой в двоичный журнал записываются фактические изменения данных, как делается

в большинстве других баз данных. У такой схемы есть свои плюсы и минусы. Самое
существенное достоинство заключается в том, что теперь MySQL может корректно
реплицировать любую команду, причем в некоторых случаях это происходит гораздо
более эффективно.

Построчное журналирование не является обратно совместимым. Утилита
mysqlblпlog, входящая в дистрибутив MySQL 5.1, может читать двоичные
журналы, содержащие события, журналированные в построчном формате (он
не предназначен для чтения человеком, но MySQL его интерпретирует). Однако
версии mysqlblnlog из предыдущих версий MySQL такой журнал не распознают
и при попытке прочитать его завершаются с ошибкой.

Некоторь~е изменения, хранящиеся в формате построчной репликации, MySQL вос­
производит более эффективно, так как ей не приходится повторять запросы, выпол­
ненные на главном сервере. А ведь воспроизведение определенных запросов весьма

Взгляд на репликацию изнутри 529

затратно. Например, следующий запрос агрегирует данные из большой таблицы,

помещая результаты в таблицу меньшего размера:

mysql> INSERT INТO summary_taЫe(coll, со12, sum_colЗ)

-> SELECT coll, со12, sum(colЗ)
-> FROМ enormous_taЫe

-> GROUP ВУ coll, со12;

Предположим, что в таблице enormous_taЫe всего три уникальные комбинации

столбцов coll и со12. В этом случае запрос просматривает очень много строк в ис­
ходной таблице, но результатом является вставка лишь трех строк в конечную та­

блицу. Если это событие реплицировать как команду, то подчиненный сервер, чтобы

вычислить эти три строки, должен будет повторить всю работу, тогда как построчная

репликация обходится до смешного дешево. В данном случае построчная репликация

намного эффективнее.

А следующее событие с гораздо меньшими затратами обрабатывается методом по­

командной репликации:

mysql> UPDATE enormous_taЫe SET coll = 0;

Применение построчной репликации для данного запроса очень затратно, так

как изменяются все строки, следовательно, каждую строку нужно будет записать

в двоичный журнал, который вырастет до неимоверных размеров. В результате

нагрузка на главный сервер резко возрастет как на этапе журналирования, так

и на этапе репликации, а из-за медленной записи в журнал может пострадать кон­

курентность.

Поскольку ни тот, ни другой формат не идеален, MySQL 5.1 динамически переклю­
чается с одного на другой по мере необходимости. По умолчанию применяется

покомандная репликация, но если обнаруживается событие, которое невозможно

корректно реплицировать командой, то сервер переходит на построчную репли­

кацию. Разрешается также явно управлять форматом с помощью сеансовой пере­

менной Ьinlog_format.

Если двоичный журнал представлен в формате построчной репликации, то восста­

новить данные на конкретный момент времени в прошлом становится более сложно,

но все-таки возможно. В этом может помочь сервер журнала, но подробнее об этом

мы поговорим в дальнейшем.

Какая репликация лучше, покомандная или построчная

Мы упомянули о преимуществах и недостатках обоих форматов репликации. Ка­

кой же из них лучше с точки зрения практического применения?

Теоретически построчная репликация, вероятно, в целом лучше, и на практике

в большинстве случаев она работает отлично. Однако она реализована сравнительно

недавно и, можно сказать, еще не прошла проверку временем, ее поведение в особых

случаях еще не изучено должным образом, и непонятно, удовлетворяет ли она всем

требованиям администраторов MySQL. Поэтому построчную репликацию пока

530 Глава 10 • Репликация

не выбирают в первую очередь все и каждый. Приведем более полное описание

преимуществ и недостатков обоих форматов, чтобы вы могли решить, какой из них

лучше подходит для ваших нужд.

О Преимущества покомандной репликации. Логическая репликация работает в боль­

шинстве случаев реализации на главном и подчиненном серверах разных схем.

Например, как правило, ее можно заставить работать, если в таблицах содержатся

разные, но совместимые типы данных, разный порядок столбцов и т. д. Это упро­

щает изменение схемы на подчиненном сервере, а затем копирование ее на глав­

ный, сокращая время простоев. Покомандная репликация обычно обеспечивает

большую гибкость работы.

По большому счету, процесс применения покомандной репликации является

обычным выполнением SQL-команд. Это означает, что все изменения на сервере

реализуются посредством хорошо понятного механизма и если что-то не рабо­

тает должным образом, проверить и определить, что происходит, как правило,

несложно.

о Недостатки покомандной репликации. Список вещей, которые не могут быть

правильно реплицированы с помощью покомандного журналирования, настоль­

ко велик, что любой сервер, скорее всего, столкнется по крайней мере с одной

из них. В частности, в сериях сервера 5.0 и 5.1 было много ошибок, влияющих
на репликацию хранимых процедур, триггеров и т. п., - так много, что способ

их репликации фактически несколько раз меняли, пытаясь заставить ее лучше

работать. Подытожим: если вы используете триггеры или хранимые процедуры,

не применяйте покомандную репликацию, если только не следите, как ястреб, за

тем, чтобы не столкнуться с проблемами.

Кроме того, существует множество проблем с временными таблицами, смесями

подсистем хранения, конкретными конструкциями SQL, недетерминированными
командами и пр. Эти проблемы варьируются от неприятных до критических.

О Преимущества построчной репликации. Ситуации, при которых не действует по­

строчная репликация, встречаются значительно реже. Она правильно работает

со всеми конструкциями SQL, с триггерами, хранимыми процедурами и т. д. Как
правило, проблемы возникают только тогда, когда вы пытаетесь сделать что-то

нетривиальное, например изменить схемы на подчиненном сервере.

Кроме того, построчная репликация создает возможности для уменьшения бло­

кировок, поскольку для того, чтобы ее можно было повторить, не требуется такой

сильной сериализации.

Построчная репликация работает путем регистрации измененных данных, поэто­

му в двоичный журнал записывается то, что фактически изменилось на главном

сервере. Вам не нужно смотреть на команды и угадывать, изменили ли они какие­

либо данные. Таким образом, в некотором смысле вы, как правило, знаете больше

о том, что изменилось на вашем сервере, и у вас есть лучший отчет об изменениях.

Кроме того, в некоторых случаях построчные двоичные журналы записывают,

какими были данные, и поэтому потенциально могут оказаться полезнее при

восстановлении данных.

Взгляд на репликацию изнутри 531

Зачастую построчная репликация слабее нагружает процессор, так как ей не нуж­

но планировать и выполнять запросы тем же способом (что делает по командная

репликация).

Наконец, построчная репликация иногда может помочь быстрее найти и устра­

нить несогласованность данных. Например, покомандная репликация не выдаст

ошибку, если вы обновите строку на главном сервере, но ее не будет на подчинен­

ном. Построчная репликация в этом случае выдаст ошибку и остановится.

1:] Недостатки построчной репликации. Команды не включаются в журнал событий,

поэтому будет сложно определить, какая SQL-команда выполнялась. Во многих

случаях знать это так же важно, как и знать об изменении строк. (Вероятно, это

будет исправлено в будущей версии MySQL.)

Репликация изменений в подчиненных серверах выполняется совершенно по­

другому - не так, как это делает SQL-команда. Фактически процесс применения

изменений при построчной репликации в значительной степени является черным

ящиком - не видно, что делает сервер. Кроме того, он плохо документирован

и объяснен, поэтому, когда что-то работает неправильно, устранить неполадки

довольно сложно. Например, если подчиненный сервер выберет неэффективный

способ поиска строк для изменения, вы этого не заметите.

Если у вас есть несколько уровней серверов репликации и все они настроены на

построчное журналирование, команда, которую вы выполняете, когда перемен­

ная @@binlog_format на уровне сеанса установлена в STATEMENT, будет журнали­

роваться как команда на сервере, на котором она возникает, но подчиненные

серверы первого уровня могут передать событие в построчном формате для

дальнейших реплик в цепочке. То есть желаемое покомандное журналирование

после прохождения через топологию репликации вновь будет переключено на

построчное.

Построчное журналирование, в отличие от покомандного, не может обрабатывать

некоторые процессы, например изменения схемы в подчиненных серверах.

Построчная репликация иногда останавливается в тех случаях, когда покоманд­

ная репликация будет продолжаться, например, когда на подчиненном сервере

отсутствует строка, которую требуется изменить. Это можно было бы считать

достоинством. В любом случае такое поведение настраивается с помощью пара­

метра slave_exec_mode.

Многие из этих недостатков с течением времени будут исправлены, но на момент

написания книги они все еще присутствуют в большинстве промышленных си­

стем.

Файлы репликации

Теперь рассмотрим некоторые файлы, участвующие в процессе репликации. О двоич­

ном журнале и журнале ретрансляции вы уже знаете, но есть и другие файловые

объекты. Конкретное место их хранения зависит в основном от конфигураци­
онных параметров MySQL. В разных версиях MySQL каталоги по умолчанию

532 Глава 10 • Репликация

различны. Вы, скорее всего, найдете их либо в каталоге данных, либо в каталоге,
где находится .рid-файл сервера (в UNIХ-системах это обычно каталог /var/run/
mysqld/). Перечислим их.

О mysql-bin. index. Если запись в двоичный журнал включена, то сервер создает
файл с таким же именем, как у двоичных журналов, но с расширением . index.
В нем регистрируются все файлы двоичных журналов, имеющиеся на диске.

Это не индекс в том смысле, в каком мы говорим об индексах таблиц, - он про­

сто состоит из текстовых строк, в каждой из которых указано имя одного файла

двоичного журнала.

Вероятно, у вас возникла мысль, что этот файл лишний и может быть удален
(в конце концов, MySQL может просто найти все файлы на диске). Не делай­
те этого! MySQL игнорирует двоичные журналы, не указанные в индексном
файле.

О mysql-relay-Ыn. index. Этот файл играет ту же роль для журналов ретрансляции,
что и рассмотренный ранее файл - для двоичных журналов.

О master. info. В этом файле хранится информация, необходимая подчиненному
серверу для соединения с главным. Формат текстовый (по одному значению

в строке), и он различен в разных версиях MySQL. Не удаляйте его, иначе после
перезапуска подчиненный сервер не будет знать, как подключиться к главному.
Поскольку в этом файле может храниться пароль пользователя в открытом виде,

разумно будет максимально ограничить права доступа к нему.

О relay-log. info. В этом файле на подчиненном сервере хранятся имя его текущего
двоичного журнала и координаты репликации (то есть место в двоичном журнале

главного сервера, до которого дошел подчиненный). Не удаляйте этот файл, иначе

после перезапуска подчиненный сервер не будет знать, с какого места продолжить
репликацию, и попытается воспроизвести уже выполненные команды.

Совокупность этих файлов представляет собой довольно прямолинейный способ
сохранить состояние репликации и журналов. К сожалению, запись в них произво­

дится несинхронно, поэтому, если произойдет сбой питания в момент, когда файлы
не были сброшены на диск, то после перезапуска данные в них окажутся некоррект­
ными. Как мы уже говорили, это улучшено в MySQL 5.5.

На . indех-файлы влияет также параметр expire_logs_days, определяющий, сколько
времени MySQL должен сохранять уже закрытые двоичные журналы. Если в файле
mysql-Ыn. index упоминаются файлы, отсутствующие на диске, то автоматическое
удаление в некоторых версиях MySQL работать не будет, даже команда PURGE МASTER
LOGS ничего не даст. В общем случае для решения этой проблемы нужно поручить
управление двоичными журналами самому серверу MySQL, уж 011-то не запутается.
(То есть нельзя использовать утилиту rm для удаления файлов.)

Необходимо выработать стратегию удаления старых журналов - с помощью пара­
метра expire_logs_days или иными средствами, - иначе рано или поздно MySQL
заполнит двоичными журналами весь диск. При этом следует учитывать и принятую

в организации политику резервного копирования.

Взгляд на репликацию изнутри 533

Отправка событий репликации
другим подчиненным серверам

Параметр log_slave_updates позволяет использовать подчиненный сервер в роли
главного для других подчиненных. Он заставляет сервер MySQL записывать со­
бытия, выполняемые потоком SQL, в собственный двоичный журнал, доступный
подчиненным ему серверам. Эта схема изображена на рис. 10.2.

Главный сервер

Двоичный
журнал

Поток

Подчиненный сервер

С параметром
log_ slave _ updates

ввода­

вывода ~ ov -

Поток
ввода-

о0потокsаL

Двоичный
журнал

Подчиненный сервер

вывооо -

o0noтoкsaL

Воспроизведение

Чтение

Журнал
ретран­

слsщии

Рис. 10.2. Передача события репликации по цепочке подчиненных серверов

В данном случае любое изменение на главном сервере приводит к записи события

в его двоичный журнал. Первый подчиненный сервер извлекает и исполняет это

событие. На этом жизнь события и завершилась бы, но, поскольку включен режим
log_slave_updates, подчиненный сервер записывает его в свой д~юичный журнал.

534 Глава 10 • Репликация

Теперь второй подчиненный сервер может извлечь это событие и поместить в свой

журнал ретрансляции. Такая конфиrурация означает, что изменения, выполненные

на главном сервере, распространяются по цепочке подчиненных серверов, не под­

ключенных напрямую к главному. Мы предпочитаем по умолчанию оставлять режим

log_slave_updates включенным, так как это позволяет подключать подчиненный
сервер без перезапуска сервера.

Когда первый подчиненный сервер переписывает событие из двоичного журнала

главного сервера в свой двоичный журнал, его позиция в журнале почти наверняка

изменится, то есть она может либо оказаться в другом файле, либо еще как-то иначе
сместиться. Поэтому нельзя предполагать, что все серверы, логически находящиеся

в одной и той же точке репликации, имеют одинаковые координаты репликации.

Позже мы увидим, что это существенно осложняет решение некоторых задач, на­

пример подключение подчиненного сервера к другому главному или преобразование
подчиненного сервера в главный.

Если не позаботиться о том, чтобы у каждого сервера был уникальный идентифи­

катор, то подобное конфигурирование подчиненного сервера может стать причиной
трудноуловимых ошибок и даже привести к полной остановке репликации. Часто

спрашивают: зачем нужно присваивать серверу идентификатор? Разве MySQL
не может реплицировать команды, не зная их происхождения? Почему MySQL
хочет, чтобы идентификатор сервера был глобально уникальным? Дело в том, что
нужно предотвратить бесконечные циклы в процедуре репликации. Когда поток

SQL на подчиненном сервере читает журнал ретрансляции, он отбрасывает все
события, в которых идентификатор сервера совпадает с его собственным. Тем самым
бесконечный цикл разрывается. Предотвращение бесконечных циклов важно в таких
топологиях репликации, как «главный сервер - главный сервер~ 1 •

0""'· .
" •:

При возникновении затруднений с насrройкой репликации обратите внимание на
идентификатор сервера. Не.досrаточно просто проверить переменную @@server_id .
У нее всегда есть какое-то значение по умолчанию, но репликация не будет

работать, если значение не задано явно в файле my.cnf или командой SЕТ. Если
вы используете команду SEr, не забудьте также обновить конфигурационный
файл, иначе измененные настройки пропадут после перезапуска сервера.

Фильтры репликации

Параметры фильтрации позволяют реплицировать только часть данных, хранящихся

на сервере, что, возможно, не оправдывает ваших ожиданий. Есть два вида фильтров

репликации: одни применяются при записи событий в двоичный журнал на главном

Команды, выполняемые в бесконечных циклах, также являются одной из мноrих радостей

топологий мноrосерверной кольцевой репликации, которые мы покажем в дальнейшем.

Бегите от кольцевой репликации как от чумы.

Взгляд на репликацию изнутри 535

сервере, другие - при чтении событий из журнала ретрансляции на подчиненном
сервере. И те и другие изображены на рис. 10.3

Поток
ввода­

вывода о

о

сляции

Рис. 10.3. Параметры фильтров репликации

Фильтрацией двоичного журнала управляют параметры Ьirlog_do_db и Ьinlog_

ignore_db. Но, как мы скоро поясним, их не надо включать, если конечно вы
не хотите постоянно объяснять шефу, почему данные пропадают и их нельзя вос­
становить.

На подчиненном сервере параметры replicate_ *управляют фильтрацией событий,
считываемых потоком SQI, из журнала ретрансляции. Можно реплицировать или
игнорировать одну или несколько баз данных, переписывать одну базу данных
в другую и реплицировать или игнорировать определенные таблицы, задаваемые
с помощью паттерна LIKE.

Очень важно понимать, что параметры * _do_db и * _ignore_db как на главном, так
и на подчиненном сервере работают не так, как можно было бы ожидать. Естественно
полагать, что фильтрация проиэводится по имени базы данных объекта, но на самом
деле анализируется имя текущей базы данных по умолчанию'. Иными словами, если
выполнить на главном сервере такие команды:

mysql> USE test;
mysql> DELETE FROМ sakila.film;

то параметры * _do_db и * _ignore_db будут отфильтровывать команду DELEТE в базе
test, а не в базе sakila. Обычно это совсем не то, что требуется, а в результате будут
рсплицироваться или игнорироваться нс те команды. Хотя у параметров * _do_db
и * _ignore_db есть полезное применение, требуются они редко, так что будьте осто­
рожны. Если вы ими воспользуетесь, то реплики очень легко могут оказаться рас­

согласованными или на•1ать сбоить.

Если вы используете покомандную репликацию. Если же применяете построчную реплика­

цию, учтите, что они ведут себя по-разному (еще одна причина держаться от них подальше).

536 Глава 10 • Репликация

Парамеlры blпlog_do_db и blnlog_ignore_db не только моrут нарушить репликацию,
но и делают невозможным восстановление данных на конкретный момент времени
в прошлом. В большинстве си-rуаций не применяйте их. Они моrут вызвать

беа<онечные проблемы. Далее в этой главе мы покажем несхолько альтернативных
способов фильтрации rобытий репликации с помощью таблиц Bladdюle.

В целом, фильтры репликации - это бомба замедленного действия. Предполо­

жим, вы хотите, чтобы изменения привилегий не распространялись на реплики.

Это вполне нормальная цель (такое желание может натолкнуть вас на мысль, что

вы делаете что-то не так - возможно, есть и другие способы достичь вашей насто­

ящей цели). Конечно, команды GRANT вы подобным образом отфильтруете, но заодно

не будут реплицироваться события и подпрограммы. Вот из-за таких непредвиден­

ных последствий мы и призываем быть очень аккуратными, работая с фильтрами.

Возможно, стоит вместо этого воспрепятствовать репликации конкретных команд,

обычно с помощью команды SЕТ SQL_LOG_BIN=0, но с такой практикой сопряжены

другие опасности. В общем случае к фильтрам репликации следует подходить

с особой осторожностью и применять их только в случае острой необходимости,

потому что при этом легко нарушить репликацию и вызвать проблемы, которые

проявятся в самый неподходящий момент, например во время аварийного восста­

новления.

Параметры фильтрации хорошо документированы в руководстве по MySQL, поэтому
не станем здесь повторяться.

Топологии репликации

MySQL позволяет настроить репликацию чуть ли не для любой конфигурации
главных и подчиненных серверов с одним ограничением: у каждого подчинен­

ного сервера может быть только один главный. Возможны различные сложные

топологии, но даже совсем простые обладают немалой гибкостью. Одну и ту же

топологию можно применять множеством способов. Их разнообразия хватило бы

на целую книгу.

Вы уже видели, как настроить главный сервер с одним подчиненным. В этом

разделе рассмотрим другие распространенные топологии и обсудим их сильные

стороны и ограничения. По ходу изложения не забывайте о нескольких базовых

правилах.

О У каждого подчиненного сервера MySQL может быть только один главный.

О У каждого подчиненного сервера должен быть уникальный идентификатор.

о Один главный сервер может иметь много под•шненных (иными словами, у под­

чиненного сервера может быть много родственников).

о Подчиненный сервер может распространять полученные от главного изменения

далее, то есть выступать в роли главного сервера для своих подчиненных. Для

этого следует включить режим log_slave_updates.

Топологии репликации 537

Один главный сервер с несколькими подчиненными

Если исключить рассмотренную ранее конфигурацию с двумя серверами «главный -
подчиненный», то эта топология самая простая. На самом деле она ничуть не сложнее

базовой: подчиненные серверы никак не взаимодействуют между собой 1 , все под­

чиненные серверы подключены к главному. Такая схема изображена на рис . 10.4.

Подчиненный Подчиненный Подчиненный

Рис. 10.4. Один главный сервер с несколькими подчиненными

Эта конфигурация наиболее полезна, когда операций записи мало, а операций чтения
много. Вы можете распределить операции чтения среди любого количества подчи­
неш1ых серверов вплоть до того момента, когда реплики слишком сильно нагрузят

главный сервер или возникнут проблемы с пропускной способности сети от главного
сервера до реплик. Подчиненные серверы можно включить все сразу или добавлять
постепенно, как описано ранее в этой главе.

Хотя указанная топология очень проста, ее гибкости достаточно для решения раз­
личных задач. Приведем несколько идей.

о Задействуйте подчиненные серверы для разных ролей (например, можно постро­

ить другие индексы или использовать другие подсистемы хранения).

О Настройте один из подчиненных серверов в качестве резервного на случай выхода

главного из строя. Никаких других действий, кроме репликации, на нем произ­

водиться не будет.

О Поставьте один подчиненный сервер в удаленный центр обработки данных на
случай аварийного восстановления.

О Настройте задержку применения изменений на подчиненном сервере для аварий­

ного восстановления данных.

о Используйте один из подчиненных серверов для резервного копирования, обуче-
ния, разработки или предварительной подготовки данных

Одна из причин популярности данной топологии - то, что она позволяет избежать
сложностей, присущих другим конфигурациям. Например, легко сравнить один

подчиненный сервер с другим, исходя из позиций в двоичном журнале на главном

Строго творя, это не так. Если у них одинаковые идентификаторы, они будут драться между

собой 11 периодически выпихивать друг дру1·а с главного сервера.

538 Глава 10 • Репликация

сервере, поскольку все они должны быть одинаковыми. Иными словами, если оста­
новить вес подчиненные серверы в одной и той же логической точке репликации,

то окажется, что все они читают из одного физического места в журнале главного

сервера. Это весьма полезное свойство упрощает ряд административных задач, в част­

ности преобразование подчиненного сервера в главный.

Упомянутым свойством характеризуютс>~ только 1юдчине1111ые ро1tственники.

Сравнивать позиции в журнале для серверов, не связанных прямым отношением

«главный - под'1иненный» и не являющихся родственниками, гораздо сложнее.

Во многих рассматриваемых далее топологиях, например в древовидной репликации

или конфигурации с главным сервером-распределителем, трудно понять, в какой

точке логи•1еской последовательности событий находится подчиненный сервер.

«Главный сервер - главный сервер»
" " в режиме «активныи - активныи»

Репликация типа «главный - главный» (или репликация

с двумя главными, или двунаправленная репликация) под­

разумевает наличие двух серверов, каждый из которых

сконфигурирован одновременно и как главный, и как под­

чиненный по опюшению к другому. Другими словами, это

пара соруководитслей. На рис. 10.5 показана настройка.

Мноrоресурсная репликация

Главный
сервер

Главный
сервер

Рис. 10.5. Репликация
«главный сервер -
главный сервер»

Мы иrнользуем термин «репликация с неrколькими главными серверами~ для ош1-

сания rитуации, когда один подчиненный rсрвер связан с неrколькими главным11.

Что бы вам ни говорили по этому поводу, MySQL, в отличие от некоторых других rер­
веров баз данных, пока не поддерживает конфигурацию, изображенную на риr. 10.6.
Однако далее мы все же покажем, как можно эмулировать такую конфигура1111ю.

Главный
сервер

Главный
сервер

Подчиненный
сервер

Рис. 10.6. MySQL не поддерживает ремикацию с несколькими главными серверами

Топологии репликации 539

Репликация типа «главный - главный» в режиме «активный - активный» находит

применение, но обычно узкоспециализированное. Например, ее можно использовать
в географически разнесенных отделениях, в каждом из которых необходимо из­

менять данные.

Основная проблема, которая возникает в этом случае, - как обрабатывать конфлик­
тующие изменения. Но перечень проблем, связанных с наличием двух равноправных
главных серверов, этим далеко не исчерпывается. Обычно сложности появляются,
когда одна и та же строка одновременно изменяется на обоих серверах или в один
и тот же момент времени выполняется вставка в таблицу с автоинкрементным
столбцом 1 •

В версии MySQL 5.0 были добавлены средства, сделавшие этот вид репликации не­
много безопаснее: параметры auto_increment_increment и auto_increment_offset.
Они позволяют серверам автоматически генерировать неконфликтующие значения

в запросах INSERT. Но все равно разрешать запись на обоих главных серверах опасно.
Если на двух машинах обновления производятся в разном порядке, то данные могут
незаметно рассинхронизироваться. Пусть, например, имеется таблица с одной стро­
кой и одним столбцом, содержащая значение 1. Предположим, что одновременно
выполняются две команды:

1:1 на первом главном:

mysql> UPDATE tЫ SET col=col + 1;

1:1 на втором главном:

mysql> UPDATE tЫ SET col=col * 2;

Что мы получим? На одном сервере значение 4, на другом - 3. А главное, ни о каких
ошибках подсистема репликации не сообщит.

Рассинхронизация данных - это еще цветочки. Что, если репликация по какой-то

причине остановится, а приложения на обоих серверах продолжат обновлять данные?
В этом случае ни один из них нельзя взять в качестве основы для клонирования при

синхронизации, так как на каждом есть изменения, которых нет на другом. Выпу­

таться из такой ситуации крайне сложно. Будьте осторожны!

Отчасти эти проблемы можно обойти, если тщательно продумать схему секциони­
рования данных и распределения привилегий и применять ее только в том случае,

когда вы действительно знаете, что делаете2• Но это трудно, и обычно существуют
другие способы достичь желаемого результата.

В общем случае разрешение записи на обоих серверах создает больше проблем, чем
решает. Однако в режиме «активный - пассивный» эта конфигурация может быть
весьма полезной, что мы и продемонстрируем в следующем разделе.

На самом деле эти проблемы обычно возникают в 3 часа ночи в выходные, а их решение
занимает месяцы.

Но только отчасти - мы можем взять на себя роль адвоката дьявола и указать на изъяны

почти в любой мыслимой конфигурации.

540 Глава 10 • Репликация

«Главный сервер - главный сервер» в режиме
«активный - пассивный»

Активный Пассивный

У репликации типа «главный - главный» есть вариант,

который позволяет обойти вес подводные камни, рас­
смотренные ранее. Более того, это очень мощный способ
разработки отказоустойчивых и высоконадежных систем.
Он заключается в том, что один из серверов является пас­

сивным - сервером только для чтения (рис. 10.7).
Рис. 10.7. Реnликация

Такая схема позволяет без труда менять активный и пас- «главный сервер -
сивный серверы ролями, поскольку их конфигурации главный сервер» в режиме
симметричны. В свою очередь, это дает возможность без «активный - пассивный»
проблем аварийно переключиться на резервный и вернуться на основной сервер.
Кроме того, вы можете обслуживать базу, оптимизировать таблицы, переходить на

новую версию операционной системы (приложения, оборудования) и решать другие
задачи, не останавливая работу.

Например, команда AL ТЕR TABLE блокирует таблицу полностью, запрещая для нее
чтение и запись. Это может занять много времени, в течение которого обслуживание
будет прервано. Однако, имея конфигуранию с несколькими главными серверами,
вы можете остановить потоки репликации на активном сервере, так что он не будет

обрабатывать обновления от пассивного сервера, изменить на пассивном сервере
таблицу, поменять серверы ролями и запустить потоки репликации на сервере, кото­
рый раньше был активным 1 • Теперь этот сервер прочтет свой журнал ретрансляции
и выполнит ту же самую команду AL TER TABLE. Это, конечно, займет столь же мно1·0
времени, но это неважно, поскольку серверу не нужно обслуживать запросы .

Конфиr-урация «главный - главный» в режиме «активный - 11ассивный» позволяет

обойти и многие другие проблемы и ограничения MySQL. Для решения такой задачи
также существует несколько наборов инструментов.

Разберемся, как конфигурируется пара «главный - главный». Описанные далее
действия нужно выполнить на обоих серверах, чтобы итоговые конфигурации были
симметри<шыми.

1. Убедиться, что на обоих серверах находятся совершенно одинаковые данные.

2. Включить запись в двоичный журнал, назначить серверам уникальные иденти­

фикаторы и добавить учетные записи для репликации.

3. Включить режим журналирования обновлений подчиненного сервера. Как вы
вскоре увидите, это очень важно для аварийного переключения на резервный

сервер и обратно.

Можно не останавливать репликацию, а на время отключить заш1сь в двои•1ный журнал

командой SET SQL_LOG_ВIN=O. Кроме того, некоторые команды, к примеру OPТIMIZE
TABLE, поддерживают режимы LOCAL или NO _ WRITE_ TO _BJNLOG, останавливающие
запись в двоичный журнал. Тем самым вы можете точнее выбирать время работы, а не просто

позволять команде AL TER выполняться тогда, когда это происходит в потоке репликации .

Топологии репликации 541

4. Не обязательно - сконфигурировать пассивный сервер в режиме чтения во избе­
жание изменений, которые могли бы конфликтовать с изменениями на активном
сервере.

5. З;шустить MySQL на обоих серверах.

6. Сконфигурировать каждый сервер так, чтобы он был подчиненным для другого,
начав с пустого двоичного журнала.

Теперь проследим за тем, что происходит, когда на активном сервере производится

какое-либо изменение. Оно записывается в его двоичный журнал и реплицируется
в журнал ретрансляции пассивного сервера. Пассивный сервер выполняет запрос

и записывает событие в собственный двоичный журнал, поскольку режим log_slave_
updates включен. Затем активный сервер игнорирует это событие, так как иденти­
фикатор сервера совпадает с его собственным. (Подробнее о том, как поменять роли,
см. в подразделе «Смена главного сервера» далее в этой главе.)

В некотором смысле топологию «главный - главный» в режиме «активный - пас­

сивный» можно считать способом горячего резервирования с тем, однако, отличием,
что резервный сервер иногда используется для повышения производительности .

С него можно читать данные, выполнять на нем резервное копирование, обслужива­
ние в офлайновом режиме, устанавливать новые версии программного обеспечения
и т. д. Ничего этого на настоящем сервере горячего резерва делать нельзя . Однако
такая конфигурация не дает возможности повысить производительность записи по
сравнению с одиночным сервером (мы еще скажем несколько слов по этому поводу).

По мере рассмотрения других сценариев и способов применения репликации мы
будем воэвращаться к этой конфигурации. Она широко распространена и очень по­
лезна.

«Главный сервер - главный сервер с подчиненными»

Существует похожая конфигурация, при которой у каждого главного сервера есть

один или несколько подчиненных (рис. 10.8).

Главный

сервер

Подчиненный
сервер

Главный
сервер

Подчиненный
сервер

Рис. 10.8. Топология «главный сервер - главный сервер с подчиненными»

542 Глава 10 • Репликация

Достоинством этой конфигурации является дополнительная избыточность. В случае

репликации между территориально удаленными центрами она позволяет устранить

единственную точку отказа в каждом центре. Кроме того, как обычно, на подчинен­

ных серверах можно вьшолнять запросы, •штающие много данных.

Но даже если вы собираетесь применять топологию «главный - 1·лавный» только для
переключения на резервный сервер при отказе, эта конфигурация все равно полезна.

Один из подчиненных серверов может взять на себя роль отказавшего главного, хотя
реализовать это несколько труднее. Можно также перепол.чишпь один из серверов

другому главному. Впрочем, нужно принимать во внимание повышенную сложность

этих действий.

Кольцевая репликация

Конфигурация с двумя главными серверами на самом деле лишь частный слу•1ай 1

кольцевой репликации (рис. 10.9). В кольце есть три главных сервера или более.
Каждый сервер выступает в роли подчиненного для предшествующего ему сервера

и в роли главного - для последующего. Такая топология также называется круговой

репликацией.

Главный
сервер

Главный
сервер

Главный

сервер

Рис. 10.9. Топология кольцевой репликации

Кольцо нс обладает некоторыми существенными достоинствами топологии «глав­

ный - главный», например симметричностью конфигурации и простотой аварийного

переключения. Кроме того, для работы такой системы необходимо, чтобы все входя­

щие в кольцо серверы были доступны, а это существенно увеличивает вероятность
ее отказа. Если удалить из кольца один узел , то порожденные им репликационные

события могут курсировать по кольцу бесконечно, так как отфильтровать событие
может лишь создавший его сервер. Таким образом, кольца по природе своей хрупки,

и, несмотря на вашу ловкость, лучше к ним не прибегать.

В какой-то степени снизить риски, присущие кольцевой репликации, можно, до­

бавив в каждом узле подчиненные серверы и тем самым увеличив избыточность

Чуть более осмысленный частный случай, могли бы мы добавить.

Топологии репликации 543

(рис. 10.1 О). Но это лишь страховка на случай отказа сервера. Выключение питания
или иные проблемы, приводящие к исчезновению соединения между узлами, все
равно разрушают кольцо.

Подчиненный
сервер

Главный
сервер

Главный
сервер

Подчиненный
сервер

Главный
сервер

Подчиненный
сервер

Рис. 10.10. Кольцевая репликация с дополнительными подчиненными серверами в каждом узле

Главный сервер, главный сервер-распространитель
и подчиненные

Мы уже отме•1а;1и, что при наличии большого количества подчиненных серверов на­
грузка на главный может оказаться чре:Jмерной. Каждый подчиненный сервер соз­

дает на главном отдельный поток, который выполняет специальную команду binlog
dump. Эта команда читает данные из двоич1юго журнала и посылает их подчиненному
серверу. Для каждого подчиненного потока работа дублируется, никакого совмест­

ного использования ресурсов, необходимых команде дампа, не предусмотрено.

Если подчиненных серверов много и в двоичном журнале встретится какое-то

особо громоздкое событие, например LOAD DATA INFILE для очень длинного файла,

то нагрузка на главный сервер может резко возрасти. У главного сервера может

даже закончиться память, поскольку все подчиненные запрашивают это событие
одtювременно. Итог - аварийное завершение. В то же время, если все подчиненные

544 Глава 10 • Репликация

серверы извлекают из двоичного журнала разные события, которые уже вытеснены
из кэша файловой системы, возрастает количество операций поиска на диске, что
тоже может негативно повлиять на производительность главного сервера и привести

к конкуренции на мьютексе.

Так что, если необходимо много подчиненных серверов, часто имеет смысл раэrрузить
главный сервер и ввести в схему так называемый главный сервер-распространитель.
Это подчиненный сервер, который выполняет одну-единственную функцию - читать
двоичные журналы с главного сервера и передавать их дальше. К серверу-распростра­
нителю можно подключить много подчиненных, сняв тем самым нагрузку с основ­

ного сервера. Чтобы не тратить ресурсы распространителя на выполнение запросов,
нужно задать на нем для всех таблиц подсистему хранения Blackhole (рис. 10.11).

Главный
сервер

l
Главный сервер-распространитель
с подсистемой хранения Blackhole

Много подчиненных

серверов

Рис. 10.11. Главный сервер, главный сервер-распространитель и много подчиненных

Трудно определенно скаэать, сколько подчиненных серверов может обслужить глав­
ный без распространителя. В качестве грубого ориентира можно принять следующее
соображение: если пропускная способность главного сервера используется прак­
тически полностью, то не стоит присоединять к нему больше десяти подчиненных.
Если количество операций записи очень мало или реплицируется лишь несколько
таблиц, то главный сервер, наверное, сможет обслужить и больше подчиненных.
Кроме того, не обязательно ограничиваться только одним распространителем. Если
количество подчиненных серверов очень велико, то можно организовать и несколько

распространителей и даже создать из них пирамиду. В некоторых случаях снять часть
нагрузки с главного сервера помогает установка параметра slave_compressed_protocol.
Это наиболее полезно для перекрестной репликации между дата-центрами.

Топологии репликации 545

Серверы-распространители можно задействовать и для других целей, например

задав на них правила фильтрации и перезаписи событий в двоичном журнале.
Это гораздо эффективнее, чем повторять запись в журнал, перезапись и фильтрацию

на каждом подчиненном сервере.

Если на сервере-распространителе используется подсистема хранения Blackhole, то
количество обслуживаемых им подчиненных серверов можно увеличить. Распростра­
нитель станет выполнять запросы, но затраты на них будут минимальными, так
как в таблицах типа Blackhole никакие данные не хранятся. Недостатком таблиц
Blackhole является то, что у них есть ошибки. Например, в некоторых случаях авто­
инкрементные идентификаторы не помещаются в двоичные журналы. Поэтому при

использовании таблиц Blackhole будьте очень осторожны 1 •

Часто задают вопрос: как гарантировать, что все таблицы на сервере-распространите­
ле используют подсистему хранения Blackhole? Что, если кто-то создаст на главном
сервере новую таблицу, указав другую подсистему хранения? Вообще эта проблема

возникает всякий раз, когда нужно сделать разными подсистемы хранения на глав­

ном и подчиненном серверах. Обычно для ее решения на сервере задают следующий
параметр:

storage_engine = Ыackhole

Он распространяется только на команды CREATE TABLE, в которых подсистема хране­

ния не указана явно. Если вы пользуетесь неподконтрольным вам приложением, то

такая топология может оказаться хрупкой. Можно с помощью параметра skip_innodb
запретить использование InnoDB, тем самым заменив подсистему хранения на
MyISAM, но отключить подсистемы MyISAM и Memory не получится.

Еще один существенный недостаток - сложность подмены главного сервера одним

из подчиненных (конечных). Сделать подчиненный сервер главным трудно, так как

из-за наличия промежуточного сервера координаты в двоичном журнале почти на­

верняка будут не такими, как на исходном главном сервере2 •

Дерево или пирамида

Если главный сервер реплицируется на множество подчиненных - неважно, с целью

распределения данных по географическому признаку или просто для повышения

пропускной способности чтения, - может оказаться удобной пирамидальная топо­
логия (рис. 10.12).

Для начала взгляните на ошибки 35 178 и 62 829. В целом, если вы используете нестан­
дартную подсистему хранения или функцию, поищите, что пишут об уже исправленных

и еще не исправленных в них ошибках.

Для создания приближенного глобального идентификатора транзакции можно исполь­

зовать утилиту pt-heartЬeat из пакета Percona Toolkit. Это значительно упрощает поиск
позиции в двоичном журнале на разных серверах, потому что сама таблица heartЬeat со­

держит приблизительные позиции двоичного журнала.

546 Глава 10 • Репликация

Подчиненный
сервер

Подчиненный
сервер

Главный
сервер

Подчиненный
сервер

Подчиненный

сервер

Подчиненный Подчиненный
сервер сервер

Рис. 10.12. Топология репликации «пирамида»

Преимущество такой конфигурации состоит в том, что разгружается главный сервер,
как и в случае применения распределителя. Недостаток же таков: отказ на промежу­

точном уровне распространяется сразу на несколько серверов, чего не произошло бы,
будь все они подключены к главному напрямую. К тому же чем больше промежуточ­
ных уровней, тем сложнее восстановление после сбоев.

Пользовательские схемы репликации

Механизм репликации в MySQL достаточно гибок для того, чтобы можно было
создавать пользовательские схемы, приспособленные под нужды конкретного при­
ложения. Как правило, применяется комбинация фильтрации, распространения
и репликации с использованием различных подсистем хранения. Можно также при­

бегать к различным трюкам, например задавать для таблиц на исходном или конеч­
ном сервере подсистему хранения Blackhole (как описано ранее). Схема может быть
сколь угодно изощренной. Нужно лишь стараться, чтобы сложность мониторинга
и администрирования оставалась в разумных пределах, и учитывать имеющиеся

ресурсы (пропускную способность сети, мощность процессора и т. д.).

Избирательная репликация

Чтобы в полной мере использовать локальность ссылок и уместить рабочее множество

для запросов на чтение в памяти, можно реплицировать небольшие порции данных на
множество подчиненных серверов. Если на каждом подчиненном сервере находится

лишь малая часть информации, то, разослав запросы на чтение всем таким серверам,

можно добиться гораздо более эффективного использования памяти на каждом под­
чиненном сервере. Кроме того, на каждую реплику будет приходиться лишь часть
общей нагрузки, порождаемой операциями записи на главном сервере, так что главный
сервер можно будет сделать более мощным, не опасаясь, что подчиненные отстанут.

Топологии репликации 547

Эта схема напоминает горизонтальное секционирование данных, о котором мы по­
дробно поговорим в следующей главе, но ее достоинство в том, что все же имеется
один сервер - главный, на котором хранятся все данные. Это означает, что любая

операция записи производится только на одном сервере, а если для некоторой опе­

рации чтения не существует единственного подчиненного сервера, содержащего все

необходимые данные, то всегда можно выполнить ее на главном сервере. Даже если
все операции чтения невозможно выполнить на подчиненных серверах, то за счет

переноса большей их части все-таки можно разгрузить главный.

Простейший способ реализовать эту схему заключается в том, чтобы поместить ин­
формацию в разные базы на главном сервере, а потом реплицировать каждую базу на
разные подчиненные серверы. Например, можно разнести по подчиненным серверам

данные, относящиеся к различным подразделениям компании: sales, marketing,
procurement и т. д. Тогда на каждом подчиненном сервере нужно будет задать конфи­
гурационный параметр replicate_wild_do_taЫe, который ограничивает восприни­

маемые им данные одной базой. Вот как это может выглядеть для базы данных sales:

replicate_wild_do_taЫe = sales.%

Полезна также фильтрация на сервере-распространителе. Например, если требуется
реплицировать какую-то часть сильно загруженного сервера по медленной или очень

затратной сети, то можно организовать локальный распространитель с таблицами
типа Blackhole и правилами фильтрации. Фильтры на этом сервере будут удалять
ненужные записи из журналов. Это позволит одновременно избежать задания небез­
опасных параметров журналирования на главном сервере и передачи всех журналов

по сети удаленным подчиненным.

Разграничение функций

Многие приложения представляют собой смесь оперативной обработки транзакций
(OLTP) и оперативной аналитической обработки (OLAP). ОLТР-запросы обычно
бывают короткими и транзакционными. Напротив, ОLАР-запросы большие, выпол­
няются медленно, зато не требуют стопроцентно актуальных данных. Запросы разных
видов по-разному нагружают сервер. Поэтому лучше выполнять их на различных

серверах с разными конфигурациями и, возможно, даже разными подсистемами

хранения и оборудованием.

Часто эту проблему решают путем репликации данных с ОLТР-сервера на подчи­
ненные серверы, специально настроенные для работы в условиях ОLАР-нагрузки.
На них может быть установлено другое оборудование, построены другие индексы
и применены иные подсистемы хранения. Если для ОLАР-запросов выделяется

отдельный подчиненный сервер, то, возможно, придется смириться с более зна­
чительным отставанием репликации или каким-то другим снижением качества

обслуживания на нем. Зато этот сервер можно использовать для задач, которые на
невыделенном подчиненном сервере работали бы недопустимо долго, например для
выполнения очень долгих запросов.

Никакой специальной схемы репликации для этого придумывать не надо, хотя мож­

но не реплицировать часть данных с главного сервера, если это позволит добиться

548 Глава 10 • Репликация

ощутимой экономии на подчиненном сервере. Напомним, что игнорирование даже

небольшой части данных за счет фильтров репликации на журнале ретрансляции
может заметно снизить объем ввода/вывода и активность кэша.

Архивация данных

На подчиненном сервере можно хранить архив данных, удаленных с главного.

Для этого нужно выполнить на главном сервере команду удаления так, чтобы она

не была повторена на подчиненном. Это можно сделать двумя способами: выборочно
отключить запись в двоичный журнал на главном сервере или сконфигурировать

правила replicate_ignore_db на подчиненном. (Да, оба способа небезопасны.)

В первом случае нужно сначала выполнить команду SЕТ SQL_L0G_BIN=0 в процессе,

который уничтожает данные на главном сервере, а уже потом приступать к удале­

нию. Его достоинство заключается в том, что не требуется как-то специально кон­
фигурировать репликацию на подчиненном сервере, а поскольку команды удаления
даже не записываются в двоичный журнал, то и за счет этого эффективность хоть

немного, да повышается. Основной же недостаток кроется в том, что двоичный

журнал главного сервера невозможно использовать для аудита или восстановления

на конкретный момент в прошлом, поскольку часть изменений, произведенных на

сервере, в нем отсутствует. Кроме того, этот способ требует привилегии SUPER.

При использовании второго подхода нужно выполнить на главном сервере команду

USE, то есть сделать текущей какую-то базу данных перед тем, как начинать удаление.
Например, можно создать специальную базу с именем purge, указать в файле my. cnf
на подчиненном сервере параметр replicate_ignore_db=purge и перезапустить его.
В результате подчиненный сервер будет игнорировать все команды, выполненные
в контексте текущей базы purge. У этого способа нет минусов, присущих предыдуще­
му, но есть другой (не очень серьезный) недостаток: подчиненный сервер вынужден

выбирать из двоичного журнала все события, даже те, в которых не заинтересован.
Кроме того, есть опасность, что кто-то по ошибке выполнит в контексте базы дан­
ных purge запрос, не связанный с удалением архивных данных, и тогда этот запрос
не будет воспроизведен на подчиненном сервере.

Утилита pt-archiver, входящая в комплект инструментов Percona Toolkit, поддер­
живает оба метода.

Есть и третий способ - воспользоваться параметром Ьiпlog_igпore_db для
фильтрации событий репликации, но ранее мы отмечали, что считаем этот
вариант слишком опасным.

Использование подчиненных серверов для полнотекстового поиска

Во многих приложениях необходимо сочетать транзакции с полнотекстовым по­
иском. Однако на момент написания книги возможность полнотекстового поис­

ка существует лишь для таблиц типа MyISAM, а они не поддерживают транзак-

Топологии репликации 549

ции. (Предварительная версия полнотекстового поиска для InnoDB реализована
в MySQL 5.6, но это еще не GA.) Типичное обходное решение заключается в том,
чтобы сконфигурировать для полнотекстового поиска подчиненный сервер, поменяв
на нем для некоторых таблиц подсистему хранения. Затем на подчиненном сервере
можно построить полнотекстовые индексы. Тем самым удастся избежать потенци­
альных проблем, связанных с использованием в одном запросе транзакционных

и нетранзакционных подсистем хранения, а заодно снять с главного сервера заботу
о поддержании полнотекстовых индексов.

Подчиненные серверы только для чтения

Во многих организациях предпочитают использовать подчиненные серверы только

для чтения, чтобы непреднамеренные изменения не нарушили репликацию. Этого
можно добиться с помощью параметра read_only, который запрещает большинство
операций записи, исключение составляют только потоки репликации, пользователи

с привилегией SUPER и запись во временные таблицы. Эта тактика отлично работает
при условии, что обычным пользователям не дают привилегию SUPER (этого не сле­
дует делать в любом случае).

Эмуляция репликации с несколькими главными серверами

В настоящее время MySQL не поддерживает репликацию с несколькими главными
серверами, то есть наличие нескольких главных серверов для одного подчиненного.

Однако ее можно эмулировать, поочередно изменяя главный сервер у подчиненного.

Например, сначала вы назначаете в качестве главного сервер А, некоторое время ра­

ботаете в такой конфигурации, потом делаете главным сервер В, снова какое-то время
работаете, после чего опять возвращаетесь к серверу А. Насколько хороша такая
схема, зависит от данных и от того, какой объем работы передают на подчиненный
сервер оба главных. Если главные серверы не слишком загружены и выполняемые
ими обновления не конфликтуют между собой, то все будет работать нормально.

Но придется позаботиться об отслеживании координат двоичного журнала обоих
главных серверов. Кроме того, желательно, чтобы поток ввода/вывода на подчинен­
ном сервере не извлекал больше данных, чем вы намереваетесь обрабатывать в каж­
дом цикле, иначе можно значительно увеличить сетевой трафик, загружая и тут же

выбрасывая большой объем информации на каждой его итерации.

Репликацию с несколькими главными серверами можно эмулировать также с помо­

щью топологии «Главный сервер - главный сервер~ (или кольцо) с использованием

подсистемы хранения Blackhole на подчиненном сервере (рис. 10.13).

В этой конфигурации оба главных сервера содержат свои собственные данные.
Дополнительно на каждом созданы такие же таблицы, как на другом главном, но
поскольку используется подсистема хранения Blackhole, то реальные данные в них
не хранятся. Подчиненный сервер подключен к одному из главных - неважно,

к какому именно. Но на подчиненном сервере подсистема хранения Blackhole не ис­
пользуется, поэтому фактически он подчинен обоим главным.

550 Глава 10 • Репликация

Главный 1

ЕJБД1

EJБд2~~,...-t-~~l-

Подсистемы

хранения

Blackhole

Главный 2

~

БД1~

БД2

БД1

БД2

Подчиненный 1

Рис. 10.13. Эмуляция репликации с несколькими главными серверами с применением двух главных
серверов и подсисrемы хранения Blackhole

На самом деле для достижения желаемого эффекта топология «главный сервер -
главный сервер» не нужна. Можно просто реплицировать с serverl на server2 и далее
на подчиненный. Если server2 использует подсистему хранения Blackhole для таблиц,
реплицированных с serverl, то он не будет хранить данные, поступающие с serverl.
Такая схема изображена на рис. 10.14.

Главный 1 БД1

Главный 2
БД1*

БД2

БД1

Подчиненный

БД2

Рис. 10.14. Еще один способ эмулировать репликацию с несколькими главными серверами

Топологии репликации 551

Каждой из этих конфигураций свойственны общие проблемы, например конфлик­
тующие обновления и команды СRЕАТЕ TABLE с явно заданной подсистемой хранения.

Еще один вариант состоит в использовании Continuent Tungsten Replicator, о кото­
ром мы поговорим позже.

Создание сервера журналов

Среди прочего механизм репликации в MySQL позволяет создать сервер журналов,
единственное назначение которого - упростить повтор и/или фильтрацию событий
двоичного журнала. Далее в этой главе мы увидим, что это весьма полезно для воз­

обновления репликации после сбоя. Кроме того, это полезно для восстановления
данных на конкретный момент времени в прошлом, что мы обсудим в главе 15.

Представьте, что имеется набор двоичных журналов или журналов ретрансляции -
быть может, из резервной копии, а может, с «упавшего),) сервера - и вы хотите вос­
произвести хранящиеся в них события. Можно было бы извлечь события с помощью
утилиты mysqlЬinlog, но удобнее и эффективнее просто настроить экземпляр MySQL
вообще без данных и заставить его поверить, что это его собственные журналы. Чтобы
создать временный сервер журналов, можно воспользоваться скриптом MySQL Sandbox
(расположен по адресу http://mysqlsandbox.net). Серверу журналов не нужны никакие
данные, потому что он будет не исполнять журналы, а только транслировать их дру­
гим серверам (однако учетная запись для репликации должна существовать).

Давайте посмотрим, как работает эта техника (примеры ее применения приведем
далее). Предположим, что журналы называются somelog-bin. 000001, somelog­
bin. 000002 и т. д. Поместим эти файлы в каталог двоичных журналов на сервере
журналов. Пусть это будет /var/log/mysql. Затем перед запуском сервера журналов
изменим файл my. cnf следующим образом:

log_Ьin = /var/log/mysql/somelog-Ыn
log_Ыn_index = /var/log/mysql/somelog-Ыn.index

Автоматически сервер не найдет файлы журналов, поэтому нужно также обновить
индексный файл журналов сервера. В UNIХ-системах это делается с помощью такой

команды 1 :

/bin/ls -1 /var/log/mysql/somelog-bin.[0-9]* > /var/log/mysql/somelog-bin.index

Убедитесь, что пользователь, от имени которого работает MySQL, может читать
индексный файл и записывать в него. Теперь можно запустить сервер и с помощью

команды SHOW МASTER LOGS проверить, что он видит файлы журналов.

Почему для восстановления сервер журналов предпочтительнее утилиты mysq!Ьinlog?

По нескольким причинам.

О Репликация - это средство применения двоичных журналов, которое было
протестировано миллионами пользователей и, как известно, работает. Никто

Мы употребляем полное имя /Ьin/ls, чтобы не вызывалась программа с тем же именем,
которая добавляет управляющие символы для выделения цветом на экране.

552 Глава 10 • Репликация

не может дать гарантию, что инструмент mysq!Ьinlog будет работать так же, как
и репликация. Возможно, он не сможет точно воспроизвести изменения из би­

нарного журнала.

О Он быстрее, так как нет необходимости извлекать команды из журнала и по кон­
вейеру передавать их процессу mysql.

о Легко наблюдать за ходом работы.

о Легко обходить ошибки. Например, можно пропускать команды, которые не уда­
ется реплицировать.

о Легко отфильтровывать события репликации.

о Иногда mysq!Ьinlog не сможет прочитать двоичный журнал из-за изменившегося
формата.

Репликация и планирование производительности

Узким местом репликации являются операции записи, причем масштабированию они

поддаются плохо. Планируя, какую долю общей пропускной способности системы
отнимет добавление подчиненных серверов, нужно тщательно производить расчеты.
Когда дело касается репликации, очень легко ошибиться.

Пусть, например, рабочая нагрузка состоит на 20 % из операций записи и на 80 % из
операций чтения. Чтобы облегчить расчет, примем следующие очень приблизитель­

ные упрощающие предположения.

о Трудоемкость запросов на чтение и запись одинакова.

о Все серверы абсолютно идентичны между собой и способны обработать ровно
1 ООО запросов в секунду.

о Характеристики производительности главных и подчиненных серверов одина-

ковы.

о Все запросы на чтение можно переместить на подчиненные серверы.

Если в данный момент имеется один сервер, обрабатывающий 1 ООО запросов в секун­
ду, то сколько подчиненных серверов придется добавить, чтобы можно было удвоить
нагрузку и переместить на подчиненные серверы все запросы на чтение?

Может показаться, что нужно добавить два подчиненных сервера и распределить

между ними 1600 запросов на чтение. Однако не будем забывать, что к рабочей
нагрузке добавились 400 запросов на запись в секунду и распределить их между
главным и подчиненными серверами не получится. Каждый подчиненный сервер

должен выполнить 400 операций записи в секунду. Это означает, что он на 40 % за­
нят записью и может обслужить лишь 600 запросов на чтение. Следовательно, для
удвоения трафика нужно добавить не два, а три подчиненных сервера.

А что, если трафик снова удвоится? Теперь каждую секунду производится 800 опе­
раций записи, так что главный сервер пока справляется. Но каждый из подчиненных

занят записью на 80 %, поэтому для обработки 3200 операций чтения потребуется

Репликация и планирование производительности 553

уже 16 подчиненных серверов. А если трафик еще чуть-чуть возрастет, то главный
сервер может не справиться.

Как видите, масштабируемость далека от линейной: при увеличении количества за­
просов в четыре раза количество серверов возрастает в 17 раз. Это показывает, как
быстро уменьшается отдача при добавлении серверов, подчиненных одному глав­
ному. И это еще при нереалистичных предположениях, в которых не учитывается,

например, то, что при однопоточной покомандной репликации подчиненные серверы

обычно имеют меньшую пропускную способность, чем главный. Поэтому в реальных
условиях производительность репликации, скорее всего, будет еще хуже.

Почему репликация не помогает
масштабированию записи

Основная проблема неудачного соотношения количества серверов и производитель­
ности состоит в том, что операции записи нельзя распределить между несколькими

машинами так же равномерно, как операции чтения. Другими словами, репликация

пригодна для масштабирования чтения, но не записи.

Возникает вопрос: можно ли как-то применить репликацию для повышения про­

пускной способности записи? Ответ: нет, ни в малейшей степени. Единственный
способ масштабирования записи - секционирование данных, и мы обсудим его
в следующей главе.

Возможно, у некоторых читателей возникла мысль использовать топологию «глав­

ный сервер - главный сервер~ (см. подраздел «"Главный сервер - главный сервер"

в режиме "активный - активный"~ ранее в данной главе) и записывать на оба
главных сервера. При такой конфигурации можно слегка увеличить количество

операций записи по сравнению с топологией «главный - подчиненный~, так как

накладные затраты на сериализацию делятся пополам между обоими серверами.
Если на каждом сервере выполняется 50 % операций записи, то сериализовать
придется только те 50 %, которые обусловлены репликацией другого сервера.
Теоретически это лучше, чем выполнять все 100 % записей параллельно на одной
машине (главном сервере) и 100 % записей последовательно на другой машине
(подчиненном сервере).

Идея может показаться заманчивой. Однако такая конфигурация не в состоянии

обработать столько же операций записи, сколько один сервер. Сервер, для которого
сериализуются 50 % операций записи, работает медленнее, чем сервер, выполняющий
все операции записи параллельно.

Поэтому такая тактика не обеспечивает масштабирования записи. Это лишь способ
разделить неэффективные сериализованные операции на оба сервера, так что самое
слабое звено оказывается не таким уж слабым. Мы добьемся лишь сравнительно
небольшого улучшения по сравнению с конфигурацией «активный - пассивный~.
увеличив риски и почти ничего не получив взамен. Более того, как показано в сле­

дующем разделе, в общем случае не будет даже минимального выигрыша.

554 Глава 10 • Репликация

Когда подчиненные серверы начнут отставать

Обычный вопрос, который задают о подчиненных серверах, звучит так: как пред­

сказать, когда они не смогут справляться с изменениями, исходящими от главного

сервера? Трудно заметить разницу между подчиненными серверами, работающими
на 5 и 95 % от своей производительности. Тем не менее можно оценить произво­
дительность репликации и получить небольшое предупреждение о предстоящем
насыщении.

В первую очередь нужно следить за пиками задержки. Если у вас есть график от­

ставания репликации, можно заметить на нем небольшие кочки в те моменты, когда
подчиненный сервер в течение короткого периода времени при возрастании объема
работы не будет с ней справляться. По мере приближения рабочей нагрузки к пол­
ной загрузке подчиненного сервера эти кочки будут становиться все выше и шире.
Передняя сторона кочки, как правило, будет иметь постоянный наклон, а наклон
задней стороны, отражающий сокращение отставания подчиненного сервера, станет

все меньше и меньше. Наличие этих кочек и их рост - это сигнал, предупреждающий

о приближении к максимальной производительности подчиненного сервера.

Чтобы предсказать, что произойдет в какой-то момент в будущем, намеренно за­
держите работу подчиненного сервера, а затем посмотрите, как быстро он сможет
нагнать. Цель этого действия состоит в определении крутизны задней поверхности

кочки. Если вы остановите работу подчиненного сервера на час, затем запустите
снова и он ликвидирует отставание за один час, значит, он работает наполовину от
своей максимальной производительности. То есть, если вы остановите его в полдень

и запустите снова в 13:00, а отставание будет ликвидировано к 14:00, это будет оз­
начать, что он за 1 час зафиксировал все изменения, произошедшие с 12:00 до 14:00.
То есть за этот час он работал на двойной скорости.

Отметим, что в Percona Server и MariaDB вы можете напрямую измерить уровень
использования репликации. Включите переменную сервера userstat, а затем выпол­
ните следующее:

mysql> SELECT * FROМ INFORМATION_SCHEМA.USER_STATISTICS
-> WНERE USER='#mysql_system#'\G

*************************** 1. row ***************************
USER: #mysql_system#

TOTAL_CONNECTIONS: 1
CONCURRENT_CONNECTIONS: 2

CONNECTED_TIME: 46188
BUSY_ТIME: 719

ROWS_FETCHED: 0
ROWS_UPDATED: 1882292

SELECT_COММANDS: 0
UPDATE_COММANDS: 580431
OTHER_COММANDS: 338857

COМMIT_TRANSACTIONS: 1016571
ROLLBACK_TRANSACTIONS: 0

Для того чтобы узнать, сколько времени поток репликации активно обрабатывал
команды, сравните значение BUSY_ТIME с половиной величины CONNECTED_ТIME, по-

Администрирование и обслуживание репликации 555

скольку на подчиненном сервере есть два потока репликации 1 • В нашем примере

подчиненный сервер использует около 3 % своей производительности. Это не озна­
чает, что у него не будет случайных всплесков отставания, - если главный сервер
выполнит изменение, которое займет 1 О минут, вполне вероятно, что подчиненный
отстанет примерно на такое же время при фиксации этого изменения. Однако это

хороший индикатор того, что подчиненный сервер сможет восстановиться после

любых испытываемых им всплесков нагрузки.

Запланированная недогрузка

Намеренная недогрузка серверов может оказаться наиболее правильным и экономич­
ным способом построения крупномасштабных приложений, особенно если применя­
ется репликация. Сервер, располагающий резервной производительностью, лучше

выдерживает всплески нагрузки, обладает ресурсами для выполнения медленных
запросов и операций обслуживания (например, команд OPТIMIZE TABLE) и лучше
справляется с репликацией.

Попытка немного уменьшить затраты репликации за счет записи на оба узла в топо­
логии «главный - главный.-, как правило, оказывается ложной экономией. Обычно
любой сервер в паре нельзя загружать чтением более чем на 50 %, так как в противном
случае в случае сбоя одного из них производительность окажется недостаточной.
Если оба сервера способны справиться с нагрузкой самостоятельно, то, наверное,
вообще нет смысла беспокоиться о затратах на однопоточную репликацию.

Кроме того, резервирование избыточной производительности - один из лучших
способов обеспечить высокую доступность, хотя существуют и другие, например
выполнение приложения в неполноценном режиме в случае отказа. В главе 12 эта
тема будет рассмотрена подробнее.

Администрирование
и обслуживание репликации

Вряд ли вам придется заниматься настройкой репликации постоянно, если только

количество серверов не слишком велико. Но коль скоро репликация включена, то

ее мониторинг и администрирование становятся регулярной задачей, сколько бы

серверов ни было задействовано.

Эту работу следует максимально автоматизировать. Но писать собственные при­
ложения для этой цели, возможно, и не понадобится: в главе 16 мы рассмотрим
несколько инструментов повышения продуктивности для MySQL, средства мони­
торинга репликации уже встроены во многие из них или реализованы в виде под­

ключаемых модулей.

Если потоки репликации всегда работают, можете просто использовать время работы
сервера, а не половину CONNECTED _ ТIМЕ.

556 Глава 10 • Репликация

Мониторинг репликации

При использовании репликации сложность мониторинга MySQL возрастает. Хотя
она производится как на главном, так и на подчиненном сервере, большую часть
работы выполняет последний, и именно здесь чаще возникают проблемы. Все ли
подчиненные серверы реплицируют данные? Были ли на каком-нибудь из них
ошибки? Насколько отстал самый медленный из подчиненных серверов? MySQL
предоставляет большую часть информации, необходимой, чтобы ответить на эти
вопросы, но автоматизация процедуры мониторинга и обеспечение надежной ре­
пликации возлагаются на вас.

На главном сервере можно воспользоваться командой SHOW МASTER STATUS, которая

покажет текущую позицию в двоичном журнале главного сервера и его конфигу­

рацию (см. раздел <~Конфигурирование главного и подчиненного серверов~ ранее

в данной главе). Можно также узнать, какие двоичные журналы есть на диске:

mysql> SHOW МASTER LOGS;
+------------------+-----------+
1 Log_name 1 File_size 1

+------------------+-----------+
mysql-bin.000220 425605 1

mysql-bin.000221 1134128 1

mysql-bin.000222 13653 1

mysql-bin.000223 13634 1

+------------------+-----------+
Эти сведения востребованы при определении параметров команды PURGE MASТER
LOGS. Для просмотра событий репликации в двоичном журнале полезна команда SHOW

BINLOG EVENTS. Например, после выполнения предыдущей директивы мы создали

таблицу на неиспользуемом сервере. Поскольку точно известно, что это единственная

команда, изменяющая данные, то мы знаем, что ее смещение в двоичном журнале

равно 13634, поэтому можно посмотреть, что туда было записано:

mysql> SНOW BINLOG EVENTS IN 'mysql-bin.000223' FROМ 13634\G
*************************** 1. row ***************************

Log_name: mysql-bin.000223
Pos: 13634

Event_type: Query
Server_id: 1

End_log_pos: 13723
Info: use 'test'; CREATE TABLE test.t(a int)

Измерение отставания подчиненного сервера

Часто возникает необходимость следить за тем, насколько главный сервер опережает

подчиненный. Хотя столбец Seconds_behind_master в таблице, которую выдает ко­
манда SHOW SLAVE STATUS, теоретически показывает отставание подчиненного сервера,

фактически он не всегда точен по разным причинам.

D Подчиненный сервер вычисляет Seconds_behind_master, сравнивая текущую
временную метку сервера с временной меткой, записанной в событии двоичного

Администрирование и обслуживание репликации 557

журнала, поэтому подчиненный сервер не может даже сообщить о своем отстава­
нии, если не обрабатывает в данный момент какой-нибудь запрос.

О Обычно подчиненный сервер возвращает NULL, если на нем не работают процессы
репликации.

О Некоторые ошибки (например, несоответствие конфигурационных параметров
max_allowed_packet на главном и подчиненном серверах или неустойчивая сеть)
могут нарушить репликацию и/или остановить потоки репликации на подчинен­

ном сервере, но в столбце Seconds_behind_master при этом будет 0, а не сообщение
об ошибке.

О Иногда подчиненный сервер не в состоянии вычислить свое отставание, хотя

процессы репликации работают. В этом случае он может вывести как 0, так
и NULL.

О Очень длительная транзакция может вызвать флуктуации отображаемого от­
ставания. Например, если транзакция, обновляющая данные, остается открытой
в течение часа, а затем выполняется коммит, то запись об обновлении попадет
в двоичный журнал спустя час после того, как оно фактически состоялось. Ког­

да подчиненный сервер приступит к обработке этой команды, он сообщит, что
отставание от главного составляет час, а сразу вслед за этим - что никакого от­

ставания нет.

О Если главный сервер-распространитель отстает, а ему подчинены какие-то сер­

веры, то последние будут сообщать, что отставание составляет О секунд, если

успевают за распространителем, хотя отставание от настоящего главного сервера

ненулевое.

Все эти проблемы можно решить, если игнорировать величину Seconds_behind_
master и судить об отставании подчиненного сервера с помощью чего-то, что можно
наблюдать и измерять непосредственно. Неплохое решение дает запись пульсации,
которая представляет собой временную метку, обновляемую на главном сервере
один раз в секунду. Чтобы вычислить отставание, достаточно вычесть значение
пульсации из текущей временной метки на подчиненном сервере. Этот метод

лишен всех упомянутых недостатков и имеет дополнительное преимущество -
удобную временную метку, показывающую, на какой момент времени актуальны
данные на подчиненном сервере. Скрипт pt-heartbeat, входящий в состав комплекта
инструментов Percona Toolkit, - наиболее популярная реализация репликации
пульсации.

У пульсации есть и другие достоинства. Репликация записей пульсации в двоичном

журнале полезна для многих целей, например аварийного восстановления, невоз­

можного в других случаях.

Ни одна из рассмотренных метрик отставания не позволяет судить о том, сколько

времени понадобится подчиненному серверу, чтобы догнать главный. Это зависит
от целого ряда факторов, например от мощности подчиненного сервера и количества

запросов, продолжающих поступать главному (см. подраздел «Когда подчиненные

серверы начнут отставатм ранее в данной главе).

558 Глава 10 • Репликация

Как узнать, согласованы ли
подчиненные серверы с главным

В идеальном мире подчиненный сервер всегда являлся бы точной копией главно­
го. Но грубая реальность такова, что иногда из-за ошибок репликации данные на
подчиненном и главном серверах могут рассинхронизироваться. Даже если явных

ошибок нет, это все равно может произойти, поскольку некоторые операции MySQL
реплицируются неправильно из-за ошибок в коде MySQL, искажений в сети, сбоев,
некорректных остановов и т. д. 1

Опыт показывает, что это правило, а не исключение, а значит, проверка согласован­

ности подчиненных серверов с главными должна стать рутинной задачей. Особенно
важно это, когда репликация применяется для резервного копирования, поскольку

вряд ли вам захочется снимать резервную копию подчиненного сервера с искажен­

ными данными.

В MySQL нет встроенного способа определить, совпадают ли данные на двух серве­
рах. Зато имеются кое-какие заготовки для вычисления контрольной суммы таблиц
и данных, например CHECKSUM TABLE. Однако сравнение подчиненного сервера с глав­

ным в момент, когда репликация работает, - задача нетривиальная.

В комплекте Percona Toolkit есть инструмент pt-taЬle-checksum, который решает
эту и ряд других задач. Его основная возможность состоит в проверке синхронизи­

рованности данных на главном и подчиненном серверах. Принцип работы основан
на выполнении запросов INSERT ••• SELECТ на главном сервере.

В этих запросах вычисляется контрольная сумма данных, и результаты вставляют­

ся в таблицу. Затем указанные команды реплицируются и повторно выполняются
на подчиненном сервере. Далее можно сравнить результаты, полученные на обоих
серверах, и узнать, различаются ли данные. Поскольку вся процедура основана на

репликации, то для получения правильных результатов не нужно одновременно

блокировать таблицы на обоих серверах.

Типичный способ использования этого инструмента состоит в том, чтобы запустить
его на главном сервере примерно с такими параметрами:

$ pt-taЫe-checksum --replicate=test.checksum <master_host>

Данная команда вычисляет контрольные суммы всех таблиц и вставляет результаты

в таблицу test. checksum. После того как эти запросы реплицированы на подчинен­
ные серверы, можно выполнить простой запрос, который проверит, есть ли отличия от

главного. Скрипт pk-taЬle-checksum автоматически находит все серверы, подчиненные

данному, запускает на каждом из них запрос и выводит результаты. На момент на­

писания этой книги pt-taЬle-checksum был единственным инструментом, который
может достоверно сравнить данные реплики с данными на главном сервере.

Если вы пользуетесь нетранзакционной подсистемой хранения, то останов rервера без

предварительной команды STOP SLAVE считается некорректным.

Администрирование и обслуживание репликации 559

Восстановление синхронизации

подчиненного сервера с главным

Возможно, вы еще не один раз столкнетесь с рассинхронизацией подчиненного сер­

вера. Может быть, расхождения будут выявлены в результате подсчета контрольных

сумм, а может, вы знаете, что некий запрос был пропущен подчиненным сервером

или что кто-то изменил данные непосредственно на нем.

Традиционно для восстановления синхронизации рекомендуют остановить под­

чиненный сервер и заново клонировать главный. Если несогласованность состоя­

ния критична, то, вероятно, стоит вывести подчиненный сервер из промышленной

эксплуатации немедленно после обнаружения проблемы. Затем его можно заново
клонировать или восстановить из резервной копии.

Недостаток этого подхода - неудобство, особенно когда объем хранимой инфор­

мации велик. Если можно определить, какие данные различаются, то есть более
эффективные способы, чем клонирование всего сервера. А если обнаруженная
рассогласованность некритична, можно оперативно оставить подчиненный сервер

и восстановить синхронизацию только затронутых данных.

Простейшая мера - выгрузить и снова загрузить рассогласованные объекты с по­
мощью утилиты mysqldump. Этот подход вполне приемлем, если на протяжении
данного процесса содержимое баз не изменяется. Тогда достаточно заблокировать
таблицу на главном сервере, выгрузить ее, дождаться, пока подчиненный сервер до­

гонит главный, и импортировать ее на подчиненный сервер (ждать нужно для того,

чтобы не внести несогласованность в другие таблицы, например обновлявшиеся по

результатам соединения с рассинхронизированной).

Во многих случаях такая тактика работает, однако к постоянно занятому серверу ее

применить нельзя. Есть у нее и другой недостаток: данные на подчиненном сервере

изменяются в обход репликации. Обычно безопаснее всего модифицировать инфор­
мацию на подчиненном сервере посредством репликации, производя изменения на

главном, поскольку при этом не возникает неприятных гонок и других сюрпризов.

Кроме того, если объем данных очень велик или пропускная способность сети огра­

ниченна, то выгрузка становится чересчур затратной. Что, если различаются только

каждая тысячная строки в таблице, содержащей миллион строк? В этой ситуации

выгрузка и загрузка всей таблицы - чрезмерное расточительство.

В комплекте Percona Toolkit есть инструмент pt-taЫe-sync, решающий некото­
рые из описанных проблем. Он умеет эффективно находить и устранять различия

между таблицами. К тому же его работа основана на механизме репликации, так

что синхронизация подчиненного сервера достигается путем выполнения запросов

на главном, что позволяет избежать гонок. Он интегрируется с таблицей контроль­
ной суммы, созданной инструментом pt-taЬle-check-sum, поэтому может работать
с теми фрагментами таблиц, о которых известно, 'ПО они различаются. Впрочем, он

пригоден далеко не всегда: для корректной работы необходимо, чтобы репликация

560 Глава 10 • Репликация

функционировала, поэтому в случае ошибки репликации рассчитывать на этот сце­

нарий не приходится. Разработчики позаботились о максимальной эффективности
утилиты pt-taЬle-sync, но для очень больших объемов данных все равно нет смысла

ее использовать. Сравнение терабайта данных на главном и подчиненном серверах

неизбежно создает дополнительную нагрузку на оба. И все-таки в тех случаях, когда
сценарий работает, он может сэкономить немало времени и сил.

Смена главного сервера

Рано или поздно наступает момент, когда подчиненному серверу требуется другой

главный. Возможно, серверы ротируются для перехода на новую версию, или произо­

шел сбой и бывший подчиненный сервер необходимо сделать главным, или просто
требуется перераспределить производительность. Независимо от причины, подчи­

ненному серверу нужно сообщить, что с этого момента назначенный ему главный
сервер изменился.

Хорошо, когда процедура спланирована заранее, - так лучше, чем действовать

в условиях стресса. Вам просто нужно выполнить команду CHANGE МASTER на под­

чиненном сервере, указав правильные параметры. Большинство параметров не­

обязательны - можно задавать лишь те, которые нужно изменить. Подчиненный
сервер отбросит текущую конфигурацию и журналы ретрансляции, после чего

начнет реплицировать с вновь назначенного главного. Кроме того, новые параметры

будут записаны в файл master. info, чтобы изменения не оказались потеряны после
перезапуска.

Самая трудная часть процедуры - определить позицию в двоичном журнале нового

главного сервера, чтобы подчиненный продолжил репликацию с той же логической
точки, на которой остановился в момент внесения изменений.

Преобразование подчиненного сервера в главный несколько сложнее. Существует

два основных сценария замены главного сервера одним из подчиненных ему. Первый -
запланированное повышение, второй - незапланированное.

Запланированное повышение

Концептуально преобразовать подчиненный сервер в главный несложно. Далее пере­

числены шаги этой процедуры.

1. Остановить запись на старом главном сервере.

2. Дать возможность подчиненным серверам догнать главный (это не обязательно,
но упрощает последующие шаги).

3. Сконфигурировать подчиненный сервер так, чтобы он стал новым главным.

4. Сообщить другим подчиненным серверам о новом главном и перенаправить на
него операции записи.

Администрирование и обслуживание репликации 561

Но проблема, как всегда, кроется в деталях. В зависимости от топологии реплика­

ции существуют различные ситуации. Так, описанные шаги выглядят несколько

по-разному в конфигурациях «главный - главный~ и «главный - подчиненный~.

Опишем подробнее действия, которые, по всей вероятности, придется предпринять

в большинстве конфигураций.

1. Прекратить любую запись на текущем главном сервере. Если возможно, прину­

дительно остановить все клиентские программы, кроме соединений, связанных

с репликацией. Неплохо, если в клиентские приложения встроен флаг Не работать,

которым вы можете управлять. Если используются виртуальные IР-адреса, то

можно попросту отключить виртуальный адрес, а затем прервать все клиентские

соединения, чтобы закрыть открытые транзакции.

2. Запретить дальнейшие операции записи на главном сервере, выполнив команду

FLUSH TABLES WIТH READ LOCK (это не обязательно). Можно также перевести главный

сервер в режим чтения, установив параметр read_only. Начиная с этого момента
никакие операции записи на сервере, который вскоре будет заменен, невозможны.

Ведь раз он больше не главный, любая запись на нем означала бы потерю данных! Од­

нако обратите внимание на то, что установка параметра read_only не препятствует
закоммичиванию транзакций. Для более надежной гарантии нужно прервать все

открытые транзакции - это действительно остановит все записи.

3. Выбрать подчиненный сервер, которому суждено стать главным, и убедиться,

что он полностью синхронизирован (позвольте ему закончить выполнение всех

журналов ретрансляции, полученных от старого главного сервера).

4. Проверить, что новый главный сервер содержит в точности те же данные, что

и старый (это необязательный шаг).

5. Выполнить на новом главном сервере команду STOP SLAVE.

6. Выполнить на новом главном сервере команду CHANGE МASTER то МASTER_HOST=

а затем RESEТ SLAVE, чтобы он отключился от старого главного и исключил инфор­

мацию об этом соединении из своего файла master. info. (Это не будет работать
правильно, если информация о соединении задана в файле my. cnf. В частности,
поэтому мы рекомендуем не помещать ее туда.)

7. Получить координаты двоичного журнала нового главного сервера, выполнив

команду SHOW МАSТЕR STATUS.

8. Дождаться, пока все прочие подчиненные серверы догонят главный.

9. Остановить старый главный сервер.

10. В версии MySQL 5.1 и более поздних активизировать события на новом главном
сервере, если это необходимо.

11. Позволить клиентам соединяться с новым главным сервером.

12. Выполнить на каждом подчиненном сервере команду CHANGE МАSТЕR, указав на

новый главный сервер. Использовать координаты двоичного журнала полученные

при выполнении команды SHOW МАSТЕR STATUS.

562 Глава 10 • Репликация

При повышении подчиненного сервера до уровня главного не забудьте уда­
лить на нем все специфичные для подчиненных серверов базы данных, табли­
цы и привилегии. Кроме того, необходимо изменить все относящиеся к подчи­
ненным серверам конфигурационные параметры, например нестрогий режим
inпodb_flush_log_at_trx_commit. Аналогично, если вы понижаете главный сек­
тор до подчиненного, обязательно переконфигурируйте его по мере необхо­
димости.

Если главные и подчиненные серверы сконфигурированы одинаково, то ме­

нять ничего не нужно.

Незапланированное повышение

Если произошел аварийный отказ главного сервера и его необходимо заменить под­

чиненным, процедура может осложниться. В случае, когда вы располагаете всего

одним подчиненным сервером, выбирать не из чего. Но если таковых несколько,
придется выполнить ряд дополнительных шагов.

Здесь добавляется проблема потенциальной потери событий репликации. Может слу­
читься, что некоторые обновления, произведенные на главном сервере, еще не дошли
ни до одного подчиненного. Возможно даже, что команда была выполнена на главном
сервере, а затем отменена, но откат еще не реплицирован на подчиненный, - таким

образом подчиненный сервер может опередить главный с точки зрения логической
позиции репликации'. Если можно восстановить данные главного сервера на какой­
то момент, то, может быть, вы сумеете найти потерянные команды и применить их
вручную.

На всех последующих шагах в ходе вычислений следует использовать значения

Master _Log_File и Read_Master _Log_Pos. Далее описана процедура повышения под­
чиненного сервера для топологии «главный - подчиненные>.>.

1. Определить, какой из подчиненных серверов содержит наиболее актуальные дан­
ные. Выполнить на каждом из них команду SHOW SLAVE STATUS и выбрать тот, для
которого координаты репликации Master _Log_File/Read_Master _Log_Pos самые
свежие.

2. Дать всем подчиненным серверам закончить обработку журналов ретрансляции,
полученных со старого главного сервера до момента его сбоя. Если сменить глав­
ный сервер до того, как подчиненный просмотрел весь журнал ретрансляции,

оставшиеся в нем события будут отброшены и вы никогда не узнаете, на чем под­
чиненный сервер остановился.

3. Выполнить шаги 5-7 из списка, приведенного в предыдущем разделе.

Это действительно возможно, хотя MySQL не журналирует события до коммита тран­
закции (подробнее см. в подразделе «Смешивание транзакционных и нетранзакционных

таблиц» далее). Кроме того, это может произойти, когда главный сервер аварийно завершил
работу и восстанавливается, но значение параметра innodb_flush_log_at_trx_commit от­
личалось от 1, поэтому сервер потерял некоторые изменения.

Администрирование и обслуживание репликации 563

4. Сравнить координаты Master _Log_File/Read_Master _Log_Pos на каждом подчи-
ненном сервере с соответствующими координатами на новом главном.

5. Выполнить шаги 10-12 из списка, приведенного в предыдущем разделе.

Мы предполагаем, что на всех подчиненных серверах включены параметры log_Ьin

и log_slave_updates, как было рекомендовано в начале главы. В этом случае вы смо­
жете восстановить все подчиненные серверы на один и тот же момент времени, что

по-другому надежно сделать невозможно.

Нахождение нужных позиций в журнале

Если какой-нибудь подчиненный сервер находится не в той же позиции, что главный,
то вам предстоит найти в двоичных журналах нового главного сервера позицию, соот­

ветствующую последнему событию, реплицированному на этот подчиненный сервер,
и указать ее в команде CHANGE МАSТЕR то. Утилита mysqlЬinlog позволяет узнать по­
следний выполненный подчиненным сервером запрос и найти его в двоичном журнале

нового главного сервера. Возможно, придется проделать кое-какие вычисления.

Чтобы проиллюстрировать сказанное, предположим, что номера событий журнала воз­
растают и что самый актуальный подчиненный сервер - новый главный - успел вы­

брать событие 100 как раз перед сбоем старого главного. Предположим также, что есть
еще два подчиненных сервера, replica2 и replicaЗ, причем replica2 извлек событие 99,
а replicaЗ - событие 98. Если для обоих подчиненных серверов указать текущую по­
зицию в двоичном журнале нового главного, то они начнут репликацию с события 101,
то есть произойдет рассинхронизация. Но· если двоичный журнал нового главного сер­

вера велся в режиме log_slave_updates, то вы сможете найти в нем события 99 и 100
и тем самым восстановить согласованное состояние подчиненных серверов.

Из-за перезапуска сервера, различий в конфигурации, ротации журналов или выпол­

нения команды FLUSH LOGS смещение одного и того же события от начала журнала на
разных серверах может различаться. Поиск событий иногда утомителен и занимает
много времени, но обычно ничего сложного в нем нет. Достаточно просмотреть по­
следнее событие, выполненное на каждом из серверов, запустив утилиту mysqlЬinlog
для двоичного журнала или журнала ретрансляции подчиненного сервера. Затем

нужно отыскать тот же запрос в двоичном журнале нового главного сервера, опять же

с помощью mysq!Ьinlog. В результате мы получим смещение запроса в байтах, которое

можно подставить в команду CHANGE МАSТЕR ТО 1 •

Эту процедуру можно ускорить, вычислив разность смещений событий, на которых
остановились новый главный и подчиненный серверы. Если затем вычесть эту вели­

чину из текущей позиции в двоичном журнале нового главного сервера, то искомый

запрос, скорее всего, будет находиться в получившейся позиции. Только не забудьте
убедиться в этом, и если все так, то вы нашли позицию, с которой нужно запускать
подчиненный сервер.

Как уже упоминалось, записи пульсации из pt-heartЬeat могут помочь в определении того,
где именно в двоичном журнале вы должны искать свое событие.

564 Глава 10 • Репликация

Рассмотрим конкретный пример. Предположим, serverl - главный сервер для server2
и serverЗ, причем serverl вышел из строя. Исходя из значений Master _Log_File/
Read_Master _Log_Pos, показанных командой SHOW SLAVE STATUS, делаем вывод, что
server2 реплицировал все события из 1щоич1юго журнала serverl, но данные на
serverЗ еще неактуальны. Эта картина нзображс11а на рис. 10.15 (события в журнале
и байтовые смещения приведены только для иллюстрации).

Сервер 1

mysql-Ьin.000001

1450 UPDATE
1493 DELEТE

1582 INSERT

Сервер 2 Сервер3

Master_log_File = mysql-Ьin.000001
Read_Master _Log_Pos= 1582

Master_Log_File = mysql-Ьin .0000011
Read_Master_Log_Pos = 1493

mysql-Ыn.000009

8035 UPDATE
8078 DELEТE

8167 INSERT

[np:.~т~J
ДВОИЧНЫИ

журнал

опущен

Рис. 10.15. В момент сбоя сервера 1 сервер 2 успел обработать все события, а сервер З отстал

Как видно из рис. 10.15, server2 реплицировал все события из двоичного журнала
главного сервера, так как значения Master _Log_File и Read_Master _Log_Pos на нем
совпадают с последней позицией на serverl. Поэтому server2 можно сделать новым
главным, а serverЗ - его подчиненным.

Но какие параметры нужно указать в команде CHANGE МАSТЕR то на serverЗ? Здесь
придется немножко посчитать и подумать. Как видите, serverЗ остановился на сме­

щении 1493, которое на 89 байт отстает от смещения 1582, соответствующего послед­
ней команде, выполненной server2. В данный момент указатель записи в двоичном
журнале на server2 находится в позиции 8167; 8167 - 89 = 8078, поэтому теоретиче­
ски мы должны указать serverЗ именно эту позицию в двоичном журнале server2.
Но все же следует посмотреть, какие события есть в окрестности этой позиции,

и убедиться, что там действительно находится то, что нам нужно. Не исключено, что
в этом месте оказалась другая команда, например, из-за обновлений данных, которые

выполнялись только на server2.

Администрирование и обслуживание репликации 565

Предположим, что события совпадают, тогда сделать serverЗ подчиненным для
server2 можно следующей командой:

server2> CНANGE МASTER ТО MASTER_НOST="server2", MASTER_LOG_FILE="mysql-Ьin.000009",
МASTER_LOG_POS=8078;

А что, если к моменту сбоя serverl уже закончил выполнение и журналирование еще
одного события со смещением, большим 1582? Поскольку server2 успел прочитать
и выполнить события только до смещения 1582, то одно событие можно потерять
навсегда. Однако если диск старого главного сервера не поврежден, то отсутству­

ющее событие все-таки удастся восстановить из его двоичного журнала с помощью
утилиты mysq!Ьinlog или сервера журналов.

Если возникает необходимость восстановить отсутствующие события со старого
главного сервера, то рекомендуем делать это после назначения нового главного, но до

подключения к нему клиентов. В этом случае не придется вручную воспроизводить

потерянные события на каждом подчиненном сервере - об этом позаботится меха­
низм репликации. Но если вышедший из строя главный сервер вообще недоступен,
то придется подождать и проделать эту работу позже.

Вариацией на ту же тему является надежное хранение двоичных журналов главного

сервера, например в SАN-сети или на распределенном реплицируемом блочном
устройстве (distributed replicated Ыосk device, DRBD). Даже если главный сервер
полностью вышел из строя, его двоичные журналы никуда не денутся. Можно на­

строить сервер журналов, сделать его главным для всех подчиненных серверов и дать

им возможность дойти то той точки, где главный сервер вышел из строя. После этого

повышение любого из подчиненных серверов до главного довольно тривиально - по
существу, оно ничем не отличается от запланированного повышения. В следующей

главе мы рассмотрим различные системы внешней памяти.

При повышении подчиненного сервера до уровня главного не изменяйте
его идентификатор. Сделав это, вы не сможете применить сервер журналов
для воспроизведения событий старого главного сервера. Это одна из многих
причин, по которым идентификаторы серверов следует рассматривать как
неизменяемые атрибуты.

Смена ролей в конфигурации «главный сервер -
u

главныи сервер»

Одно из достоинств топологии репликации «главный - главный~ состоит в том,

что можно без труда поменять активный и пассивный серверы ролями, так как эта
конфигурация симметрична. В этом разделе рассмотрим, как выполняется такое

переключение.

При переключении ролей в данной конфигурации важнее всего гарантировать, что

в любой момент запись производится только на один из двух серверов. Если она вы­
полняется на оба сервера, то могут возникнуть конфликты. Иными словами, после

566 Глава 10 • Репликация

смены ролей пассивный сервер не должен получать события из двоичного журнала

активного. Чтобы гарантировать такое положение вещей, вы должны подождать, пока
поток репликации на подчиненном сервере подберет все события активного сервера,
и только потом разрешать запись на нем.

Далее изложена последовательность действий, при которой смена ролей не грозит

конфликтами в результате обновлений.

1. Прекратите все операции записи на активном сервере.

2. Выполните на активном сервере команду SET @@global. read_only = 1 и устано­
вите параметр read_only в конфигурационном файле, чтобы изменение не было

утрачено после перезапуска. Напомним, что это не помешает обновлять данные
пользователям с привилегией SUPER. Если вы хотите запретить всем пользовате­
лям вносить изменения, выполните команду FLUSH TABLES WПН READ LOCK. В про­
тивном случае следует разорвать все соединения с клиентами, чтобы гарантиро­

ванно не осталось долго работающих команд и незакоммиченных транзакций.

3. Выполните на активном сервере команду SHOW МАSТЕR STATUS и запишите коорди­
наты репликации.

4. Выполните на пассивном сервере команду SELECT МASTER_POS_WAIТ(), указав в ней

координаты двоичного журнала активного сервера. Эта команда блокирует работу
до тех пор, пока все подчиненные процессы не догонят активный сервер.

5. Выполните на пассивном сервере команду SET@@global. read_only = 0, тем самым
превратив его в активный.

6. Измените конфигурацию приложений так, чтобы они вели запись на новый ак-
тивный сервер.

В зависимости от особенностей приложений, возможно, придется выполнить и дру­
гие действия, например изменить IР-адреса обоих серверов. Поговорим об этом
в следующих главах.

Проблемы репликации и их решение

Нарушить репликацию в MySQL совсем нетрудно. Простота реализации, позволя­
ющая так легко настраивать механизм, означает одновременно, что его можно

с той же легкостью остановить, запутать или иным способом вывести из строя. В этом
разделе расскажем о типичных проблемах - о том, как они проявляются и как можно
их разрешить или даже предотвратить.

Ошибки, вызванные повреждением
v

или утратои данных

По разным причинам репликация в MySQL не очень устойчива к сбоям, исчезнове­
нию электропитания и повреждению данных, вызванному ошибками диска, памяти
или сети. Почти наверняка из-за таких ошибок вам рано или поздно придется пере­
запускать репликацию.

Проблемы репликации и их решение 567

Причиной многих проблем, появляющихся после неожиданного останова сервера,

является то, что один серверов не сбросил что-то на диск. Далее описаны неприят­
ности, с которыми можно столкнуться после неожиданного останова.

1:1 Неожиданный останов l!lавного сервера. Если главный сервер не сконфигурирован
в режиме sync_Ьinlog, то последние несколько событий перед сбоем могли быть
не сброшены в двоичный журнал. Поэтому поток ввода/вывода на подчиненном
сервере мог находиться в процессе чтения события, которое так и не попало на
диск. После перезапуска главного сервера подчиненный повторно соединится

с ним и попробует снова прочитать то событие, на котором остановился, однако
получит ответ, что события с таким смещением нет. Передача данных из двоично­
го журнала главного сервера на подчиненный происходит практически мгновенно,

поэтому подобную ситуацию нельзя назвать из ряда вон выходящей.

Решение проблемы состоит в том, чтобы заставить подчиненный сервер начать
чтение с начала следующего двоичного журнала. А чтобы события журнала не те­
рялись, надо задать на главном сервере режим sync_Ьinlog.

Даже при установке режима sync_Ьinlog данные в таблицах типа MyISAM мо­
гут быть повреждены при сбое, а транзакции подсистемы lnnoDB - утрачены
(но данные останутся неповрежденными), если параметр innodb_flush_logs_at_
trx_commit не равен 1.

1:1 Неожиданный останов подчиненного сервера. Когда подчиненный сервер переза­
пускается после незапланированного останова, он читает свой файл master. info,
чтобы понять, на чем прервалась репликация. К сожалению, этот файл не син­
хронизирован с диском, поэтому информация в нем может не соответствовать

действительности. Подчиненный сервер, скорее всего, попытается повторно

выполнить несколько событий, находящихся в двоичном журнале. Это чрева­
то ошибками в связи с дублированием ключа в уникальном индексе. Если вы
не можете определить, где на самом деле остановился подчиненный сервер (что

маловероятно), то останется только проигнорировать такие ошибки. В этом может
помочь инструмент pt-slave-restart, входящий в комплект Percona Toolkit.

1:1 Если вы работаете только с таблицами InnoDB, то можете заглянуть в журнал
ошибок MySQL после перезапуска подчиненного сервера. Процесс восстановле­
ния InnoDB выводит координаты двоичного журнала вплоть до точки восстанов­
ления. Их можно использовать, чтобы указать подчиненному серверу позиции
в двоичном журнале главного. Percona Server дает возможность автоматически
извлечь эту информацию во время процесса восстановления и обновления файла
master. info, фактически передавая координаты репликации подчиненному серве­
ру. MySQL 5.5 также предлагает параметры для управления тем, как master. info
и другие файлы синхронизируются с диском, тем самым уменьшая эти проблемы.

Помимо потери данных из-за некорректного останова MySQL, не так уж редко
случается повреждение двоичных журналов или журналов ретрансляции на диске.

Перечислим наиболее типичные случаи.

1:1 Повреждение двоичных журна.лов на l!lавном сервере. Если повреждены двоичные
журналы на главном сервере, то единственный выход - попробовать обойти ис­
порченный фрагмент. Можно выполнить на главном сервере команду FLUSH LOGS,

568 Глава 10 • Репликация

чтобы он начал новый файл журнала, и указать подчиненному на его начало.

Либо можно попытаться найти конец поврежденной области. Иногда полезна

команда SET GLOBAL SQL_SLAVE_SKIP _COUNТER = 1, позволяющая пропустить ОДНО

поврежденное событие. Если таких событий несколько, попробуйте повторять эту

команду, пока не пропустите их все. Но если повреждений много, вы, возможно,

не сможете этого сделать: поврежденные заголовки событий могут помешать

серверу найти следующее событие. В этом случае придется искать следующее

неповрежденное событие вручную.

О Повреждение журншюв ретрансляции на подчиненном сервере. Если двоичные

журналы главного сервера не повреждены, то можно воспользоваться командой

CHANGE МАSТЕR ТО, чтобы отбросить поврежденные журналы ретрансляции и по­

пытаться получить их заново. Для этого нужно указать подчиненному серверу

ту же позицию, на которой остановилась репликация (Relay_Master _Log_File/
Exec_Master _Log_Pos). Это заставит его отбросить все имеющиеся на диске журна­
лы ретрансляции. В MySQL 5.5 дела обстоят получше: она может автоматически
обновлять журналы ретрансляции после сбоя.

О Двоичный журнал рассинхронuзирован с журналом транзакций InnoDB. В случае
сбоя главного сервера InnoDB может пометить транзакцию как закоммиченную,
хотя она не попала в двоичный журнал на диске. Отсутствующую транзакцию

восстановить невозможно, если только она не попала в журнал ретрансляции под­

чиненного сервера. Предотвратить такую ситуацию помогут параметр sync_Ьinlog

в MySQL 5.0 или пара параметров, sync_Ьinlog и safe_Ьinlog, в MySQL 4.1.

Если двоичный журнал поврежден, то количество данных, которое удастся вос­

становить из него, зависит от характера повреждения. Наиболее распространены

следующие варианты.

о Байты изменены, но событие представляет собой допустимую SQL-команду.

К сожалению, MySQL не способна даже обнаружить такое повреждение. Поэтому
имеет смысл время от времени проверять корректность данных на подчиненных

серверах. Видимо, это изменят в следующих версиях.

О Байты изменены, и событие представляет собой недопустимую SQL-команду.

Возможно, удастся извлечь такое событие с помощью mysqlЬinlog и увидеть ис­

каженные данные, например:

UPDATE tЫ SET col?????????????????

Попробуйте найти начало следующего события, для чего нужно сложить смеще­

ние и длину, и напечатайте его. Быть может, удастся просто пропустить повре­

жденный фрагмент.

О Байты пропали и/или длина события неверна. В этом случае rnysqlЬinlog иногда

завершается с ошибкой или даже аварийно, поскольку не может ни прочитать

событие, ни найти начало следующего.

о Несколько событий повреждены или затерты либо произошло смещение данных

в журнале, так что смещение следующего события указано неверно. И в этом

случае mysqlЬinlog мало чем поможет.

Проблемы репликации и их решение 569

Если повреждение настолько серьезно, что mysqlblnlog не может прочитать события
в журнале, то для поиска границ между событиями остается прибегнуть к шест­
надцатеричному редактору или иному столь же трудоемкому методу. Но обычно

особых трудностей не возникает, так как события разделены четко опознаваемыми
маркерами.

Рассмотрим пример. Сначала взглянем, какие смещения событий в журнале пока­
зывает mysqlЬinlog:

$ mysqlbinlog mysql-bin.000113 1 egrep •л# at '
at 4
at 98
at 185
at 277
at 369
at 447

Простой путь поиска смещения в журнале заключается в их сравнении с результатом

следующей команды strings:

$ strings -n 2 -t d mysql-bin.000113
1 binpC'G

25 5.0.38-Ubuntu_0ubuntul.1-log
99 C'G

146 std
156 test
161 create tаЫе test(a int)
186 C'G
233 std
243 test
248 insert into test(a) values(l)
278 C'G
325 std
335 test
340 insert into test(a) values(2)
370 C'G
417 std
427 test
432 drop tаЫе test
448 D'G
474 mysql-bin.000114

Существует легко распознаваемый паттерн, позволяющий отыскивать начало со­

бытия. Обратите внимание на то, что строки, оканчивающиеся буквой G, отстоят от
начала события на один байт. Они являются частью заголовка события, имеющего

фиксированную длину.

Точное значение зависит от исследуемого сервера. После небольшого расследования
вы сможете обнаружить этот паттерн в своем двоичном журнале и определить смеще­

ние следующего неповрежденного события. После этого можно попытаться пропустить

испорченные события, задав в командной строке mysqlblnlog аргумент - -start-posi tion
или указав параметр МASTER_LOG_POS в команде CHANGE МАSТЕR ТО.

570 Глава 10 • Репликация

Использование нетранзакционных таблиц

Пока все идет нормально, покомандная репликация, как правило, отлично работает

с нетранзакционными таблицами. Но если при обновлении нетранзакционной табли­

цы произошла ошибка, например команда была прервана до того, как завершилась,
то на главном и подчиненном серверах могут оказаться разные данные.

Предположим, вы обновляете таблицу типа MyISAM, содержащую 100 строк. Что про­
изойдет, если 50 строк обновились, а потом команда была прервана? Половина строк
изменится, половина - нет. В результате реплика окажется рассинхронизирована,

так как команда будет повторена на подчиненном сервере, где обновит все 100 строк
(MySQL обнаружит, что команда завершилась с ошибкой на главном сервере, но
не на подчиненном, и репликация остановится с сообщением об ошибке).

Если вы работаете с таблицами типа MyISAM, не забывайте выполнять команду STOP

SLAVE перед остановом сервера, иначе в ходе останова будут прерваны все выполняю­
щиеся запросы, в том числе незавершенные команды обновления. У транзакционных

подсистем хранения такой проблемы не возникает. Незавершенное обновление тран­

закционной таблицы на главном сервере откатится, и информация о нем не попадет

в двоичный журнал.

Смешивание транзакционных и нетранзакционных таблиц

При использовании транзакционной подсистемы хранения MySQL не записывает
команды в двоичный журнал, пока транзакция не закоммичена. Следовательно,

в случае отката транзакции соответствующие команды не журналируются и не по­

вторяются на подчиненном сервере.

Но если команда затрагивает одновременно транзакционные и нетранзакционные

таблицы и происходит откат, то MySQL откатывает лишь изменения в транзакци­
онных таблицах, а изменения в нетранзакционных сохраняются. Пока не возникают
ошибки, например прерванное обновление, никакой проблемы это не составляет:
вместо того чтобы вообще не журналировать выполненные команды, MySQL за­
носит в журнал сначала их, а потом команду ROLLBACK. В результате на подчиненном

сервере выполняются те же самые команды, что и на главном, и все хорошо. Конечно,

это не слишком эффективно, так как подчиненный сервер должен проделать некую

работу только для того, чтобы отбросить ее результат, но хотя бы теоретически син­

хронизация между подчиненным и главным серверами сохраняется.

Но все хорошо только до поры. Проблема появляется, когда на подчиненном сервере
возникает взаимоблокировка, которой не было на главном. Изменения в таблицах
транзакционного типа на подчиненном сервере откатываются, а в нетранзакционных

остаются. В итоге данные на подчиненном и главном серверах различаются.

Единственный способ предотвратить такую ситуацию - не смешивать транзакци­

онные и нетранзакционные таблицы в одной транзакции. Столкнувшись с подобной

Проблемы репликации и их решение 571

проблемой, вы можете сделать только одну вещь - игнорировать ошибку на подчи­

ненном сервере и заново синхронизировать рассогласованные таблицы.

При построчной репликации данной проблемы не возникает. В этом случае жур­
налируются изменения строк, а не SQL-команды. Если команда изменяет какие-то

строки в МуISАМ-таблице и в InnоDВ-таблице, а затем на главном сервере возни­
кает взаимоблокировка и изменения в InnоDВ-таблице откатываются, то изменения
в МуISАМ-таблице все равно записываются в двоичный журнал и воспроизводятся

на подчиненном сервере.

Недетерминированные команды

Любая команда, изменяющая данные недетерминированным образом, может при­

вести к расхождению информации, хранящейся на главном и подчиненном серверах.

Например, команда UPDAТE с ключевым словом LIMIТ зависит от порядка выборки

строк из таблицы. Если не гарантируется, что этот порядок на главном и подчи­

ненном серверах совпадает, - скажем, если строки упорядочены по первичному

ключу, - то команда может обновить на двух серверах разные строки. Такого рода

ошибки выявить непросто, поэтому некоторые пользователи придерживаются пра­
вила не использовать LIMIТ в командах, которые изменяют данные. Другим неожи­

данным источником недетерминированного поведения является команда REPLACE или
INSERT IGNORE на таблице с более чем одним уникальным индексом - <1победители~
на главном и подчиненном серверах могут различаться.

Обращайте также внимание на команды, в которых участвуют таблицы из схемы

INFORМAТION_SCHEМA. Они вполне могут быть различными на главном и подчинен­
ном серверах, что опять-таки приведет к расхождению. Наконец, имейте в виду, что

большинство серверных переменных, например @@server _id и ~hostname, в версиях
до MySQL 5.1 реплицируются некорректно.

У построчной репликации таких ограничений нет.

Использование различных подсистем хранения
на главном и подчиненном серверах

Мы уже упоминали, что на подчиненном сервере часто бывает удобно использо­

вать не ту подсистему хранения, что на главном. Однако в некоторых случаях это

приводит к тому, что покомандная репликация порождает на подчиненном сервере

иные данные. Например, вероятность того, что недетерминированные команды

(в частности, упомянутые в предыдущем разделе) приведут к рассогласованию,

растет.

Если вы обнаружите, что некоторые таблицы рассогласованы, то проверьте, какие
подсистемы хранения используются для них на обоих серверах, а также изучите все

запросы на обновление, в которых участвуют эти таблицы.

572 Глава 10 • Репликация

Изменение данных на подчиненном сервере

Покомандная репликация полагается на то, что данные на главном и подчиненном

серверах одинаковы, поэтому не следует вносить или позволять изменения на подчи­

ненном сервере (это легко гарантировать с помощью конфигурационной переменной

read_only). Рассмотрим следующую команду:

mysql> INSERT INTO tаЫе1 SELECT * FROМ tаЫе2;

Если таблица tаЫе2 на подчиненном сервере содержит не те же данные, что на
главном, то после выполнения этой команды и таблица taЫel станет отличаться.
Другими словами, рассогласование одних таблиц имеет тенденцию перекидывать­
ся на другие. Данное утверждение относится ко всем типам запросов, а не только

к INSERT • • • SELECT. Окончиться это может двумя способами: либо вы получите
на подчиненном сервере сообщение о нарушении ограничения уникальности, либо
не получите никакого сообщения. Оповещение об ошибке - это удача, так как вы
хотя бы будете знать, что произошла рассинхронизация подчиненного сервера с глав­
ным. Если же ошибка не сопровождается сообщением, хаос неминуем.

Единственный способ устранить последствия ошибки - заново синхронизировать
данные с имеющимися на главном сервере.

Неуникальный идентификатор сервера

Это одна из самых трудноуловимых ошибок, с которыми можно столкнуться при
репликации. Если случайно присвоить двум подчиненным серверам один и тот же

идентификатор, то может показаться, что все работает нормально. Однако стоит вни­
мательно приглядеться к журналам ошибок или понаблюдать за главным сервером
с помощью утилиты innotop, как обнаружатся странные вещи.

Видно, что в каждый момент времени к главному серверу подключен только один из

двух подчиненных (обычно подчиненные серверы подключены одновременно и все
время занимаются репликацией). В журнале ошибок на подчиненном сервере вы
увидите частые сообщения о разрыве и восстановлении соединения, но не найдете
никакого упоминания о неправильно сконфигурированном идентификаторе.

В зависимости от версии MySQL подчиненные серверы могут реплицировать пра­
вильно, но медленно, или вовсе неправильно - любой из них может пропускать

события в двоичном журнале или, наоборот, дважды обрабатывать одно и то же
событие, что способно привести к нарушению ограничения уникальности (или
к искажению данных без всяких сообщений). Возможны даже сбой или повре­
ждение данных на главном сервере из-за возрастания нагрузки вследствие борьбы
подчиненных серверов между собой. А если эта борьба становится особенно оже­
сточенной, то за очень короткое время журналы ошибок могут вырасти до необъ­

ятных размеров.

Единственное решение этой проблемы - быть очень внимательными при настройке
подчиненных серверов. Возможно, стоит вести список идентификаторов, присвоен-

Проблемы репликации и их решение 573

ных подчиненным серверам, чтобы не забыть, какой идентификатор какому из них
назначен 1 • Если все подчиненные серверы находятся в одной подсети, то в качестве
идентификатора можно выбрать последний октет IР-адреса.

Неопределенный идентификатор сервера

Если в файле my. cnf не определен идентификатор сервера, то MySQL позволит на­
строить репликацию командой CHANGE МASTER ТО, но не даст запустить подчиненный
сервер:

mysql> START SLAVE;
ERROR 1200 (НУ000): The server is not configured as slave; fix in config file or with
CHANGE МASTER ТО

Эта ошибка вызывает особенно сильное недоумение, если вы только что выполнили
команду CHANGE MASTER ТО и проверили настройки командой SHOW SLAVE STATUS.
Команда SELECT @X@server _id вернет какое-то значение, но это всего лишь значение
по умолчанию. Вы должны задать идентификатор явно.

Зависимости от нереплицируемых данных

Если на главном сервере имеются базы данных или таблицы, отсутствующие на
подчиненном, или наоборот, то по неосторожности можно легко нарушить ре­

пликацию. Предположим, что главный сервер хранит таблицу scratch, которой
не существует на подчиненном. Если на главном сервере будет выполнена любая
команда обновления с участием данной таблицы, то репликация нарушится, так
как подчиненный сервер не сможет эту команду повторить. Аналогично, если вы

создаете на главном сервере таблицу, которая уже существует на подчиненвом,
репликация будет прервана.

У проблемы нет обходного решения. Избежать ее можно только одним способом:
не создавать на главном сервере таблиц, которых нет на подчиненном.

Как вообще появляются такие таблицы? Вариантов много, и некоторые предотвра­
тить довольно трудно. Допустим, к примеру, что база данных scratch изначально
была создана только на подчиненном сервере, а затем по какой-то причине главный
и подчиненный серверы поменялись ролями. После этого вы, видимо, забыли удалить
базу scratch и ее привилегии. Далее кто-то подключается к новому главному серверу
и запускает в этой базе данных запрос или периодическое задание обнаруживает
в ней таблицы и для каждой из них выполняет команду OPТIMIZE TABLE.

Об этом надо помнить, когда вы меняете подчиненный сервер на главный или дума­
ете о том, как сконфигурировать подчиненные серверы. Любое отличие подчинен­
ного сервера от главного - источник потенциальных проблем в будущем.

Быть может, вам захочется сохранить его в таблице базы данных? Это лишь отчасти шут­

ка - вполне можно добавить уникальный индекс по столбцу ID.

574 Глава 10 • Репликация

Отсутствующие временные таблицы

Временные таблицы очень удобны для ряда задач, но, к сожалению, несовместимы

с покомандной репликацией. В случае сбоя или останова подчиненного сервера все

временные таблицы, которые использовались в потоке репликации, внезапно ис­

чезают. После перезапуска сервера последующие команды, которые ссылаются на

отсутствующие временные таблицы, завершаются ошибкой.

Не существует безопасного способа использования временных таблиц на главном

сервере в сочетании с покомандной репликацией. Многие настолько трепетно от­

носятся к временным таблицам, что убедить их в этом почти невозможно, но, увы,

это так1 • Пусть даже временная таблица существует очень короткое время, она все

равно может воспрепятствовать останову и запуску подчиненных серверов и вос­

становлению после сбоя. Это верно даже в случае, если такая таблица используется

в пределах лишь одной транзакции. (Применение временных таблиц на подчиненном

сервере, где они могут оказаться удобными, вызывает меньше проблем, но только

если подчиненный сервер одновременно не является главным.)

Если репликация останавливается, потому что подчиненный сервер не может найти

временную таблицу после перезапуска, у вас есть всего два выхода. Можно ипюри­

ровать ошибку или вручную создать таблицу с такими же именем и структурой, как

у пропавшей временной. В любом случае данные на подчиненном и главном серверах,

скорее всего, окажутся различными, если существовал хотя бы один запрос на запись

с участием временной таблицы.

Избавиться от временных таблиц не так трудно, как кажется. У них есть два очень

полезных свойства.

О Временная таблица видна только в контексте того соединения, где была создана,

поэтому не конфликтует с одноименными таблицами, которые были созданы

в других соединениях.

О Временная таблица исчезает при закрытии соединения, поэтому ее не нужно

удалять явно.

Эти свойства можно эмулировать, зарезервировав специальную базу данных для

псевдовременных таблиц, которые на самом деле являются постоянными. Нужно

лишь выбирать для таблиц уникальные имена. К счастью, сделать это довольно про­

сто - достаточно приписать к имени таблицы идентификатор соединения. Например,

вместо команды СRЕАТЕ ТEMPORARY TABLE top_users(•••) можно написать СRЕАТЕ

TABLE temp. top_ users_1234(•••), где 1234 - значение, возвращенное функцией

Мы встречали людей, которые упорно пытались всеми возможными способами обойти

эту проблему. Однако способа, позволяющего сделать временные таблицы безопасными

для покомандной репликации, не существует. Точка. Неважно, что именно вы считаете;

мы доказали, что это не сработает.

Проблемы репликации и их решение 575

CONNECТION_ID(). После того как приложение закончило работать с псевдовременной
таблицей, ее можно удалить явно или поручить это специальному процессу очистки.
Наличие идентификатора соединения в имени позволяет легко определить, какие

таблицы больше не используются, - можно получить список активных соединений

с помощью команды SHOW PROCESSLIST и сравнить их с идентификаторами в именах
таблиц 1 •

У использования постоянных таблиц вместо временных есть и другие преимущества.
Например, это упрощает отладку приложения, так как данные, которыми манипу­

лирует приложение, видны из другого соединения. При использовании временных

таблиц эта возможность была бы недоступна.

Однако постоянные таблицы, в отличие от временных, привносят некоторые на­
кладные затраты: на их создание уходит больше времени, поскольку соответству­

ющие . frm-файлы необходимо сбрасывать на диск. Для ускорения этой процедуры
можно отключить режим sync_frm, но это опасно.

Если вы все-таки используете временные таблицы, то перед остановом подчиненного

сервера не забывайте проверять, что переменная состояния Slave_open_temp_taЫes

равна 0. Если вы перезапустите подчиненный сервер при ненулевом значении, то
в будущем, скорее всего, получите проблемы. Правильная последовательность дей­

ствий такова: выполнить команду STOP SLAVE, проверить переменную и только потом
останавливать сервер. Проверка переменной до остановки процессов репликации

чревата гонками.

Репликация не всех обновлений

Если вы неправильно используете команду SET SQL_LOG_BIN=0 или не понимаете пра­
вил фильтрации репликации, то подчиненный сервер может не выполнить некоторые

обновления, произведенные на главном. Иногда именно такая цель и ставится (для

архивирования), но чаще это происходит непреднамеренно и приводит к плачевным

последствиям.

Предположим, что имеется правило replicate_do_db, которое разрешает реплициро­
вать только базу данных sakila на один из подчиненных серверов. Если выполнить
на главном сервере следующие команды:

mysql> USE test;
mysql> UPDATE sakila.actor •.•

то данные на подчиненном и главном серверах рассинхронизируются. Другие

команды могут даже вызвать ошибку репликации из-за нереплицируемых зави­

симостей.

Утилита pt-find, также из пакета Percona Toolkit, позволяет легко удалять псевдовремен­
ные таблицы, если задать аргументы --connection-id и --server-id.

576 Глава 10 • Репликация

Конкуренция, вызванная блокировками
при выполнении SELECТ в InnoDB
Обычно в InnoDB команды SELECТ не приводят к блокировке, но в некоторых случаях
блокировку все же требуется установить. В частности, команда INSERT ••• SELECТ
по умолчанию блокирует все строки, которые читает из исходной таблицы. MySQL
вынуждена ставить блокировки для того, чтобы эта команда давала тот же самый

результат при повторении на подчиненном сервере. По существу, блокировка сериа­
лизует команду на главном сервере, что совпадает со способом ее выполнения на
подчиненном.

Такое проектное решение может привести к конкуренции за блокировки и к тайм­
аутам в ожидании блокировки. Чтобы несколько сгладить остроту проблемы, не дер­
жите транзакцию на главном сервере открытой дольше, чем необходимо, - это

уменьшит время удержания блокировок.

Кроме того, можно разбивать длинные команды на более короткие. Это эффективный
способ уменьшить конкуренцию за блокировки, и даже если сделать это трудно, по­
пытаться все равно стоит. (Добиться этого довольно просто с помощью инструмента

pt-archiver пакета Percona Toolkit.)

Еще один обходной путь - заменить на главном сервере команды INSERT ... SELECТ

последовательностью команд SELECT INTO OUТFILE и LOAD DATA INFILE. Работает
такой способ быстро и не требует блокирования. Мы согласны, что это трюк, но
иногда он бывает полезен. Самое трудное здесь - выбрать уникальное имя выход­
ного файла, которого не должно существовать на момент начала работы, и стереть

его по ее завершении. Для подбора уникального имени можно воспользоваться
техникой работы с функцией CONNECТION_ID() и периодически запускать задание,
которое будет удалять файлы после того, как завершатся соединения, в которых

они были созданы (с помощью crontab в UNIХ-системах или планировщика задач
в Windows).

Возможно, вы попытаетесь отключить блокировки вовсе вместо использования

описанных обходных путей. Так можно сделать, но в большинстве случаев это безрас­
судство, поскольку в результате подчиненный сервер может рассинхронизироваться

с главным без отправки каких бы то ни было сообщений. Кроме того, двоичный
журнал станет бесполезным для восстановления сервера. Если вы все же решите, что
риск оправдан, то установите следующий конфигурационный параметр:

ЭТО НЕБЕЗОПАСНО!
innodb_locks_unsafe_for_binlog = 1

Теперь результат выполнения команды может зависеть от данных, при чтении ко­

торых не ставились блокировки. Если какая-то другая команда модифицирует эти
данные и завершится раньше первой, то при повторе тех же команд на подчиненном

сервере могут получиться иные результаты. Это справедливо как для репликации,

так и для восстановления на конкретный момент времени в прошлом.

Проблемы репликации и их решение 577

Чтобы понять, как блокировка предотвращает подобный хаос, представьте, что есть

две таблицы, одна пустая , а другая с единственной строкой, в которой хранится

значение 99. Указанные данные обновляются в двух транзакциях. Транзакция 1
вставляет содержимое второй таблицы в первую, а транзакция 2 обновляет вторую
(исходную) таблицу (рис. 10.16).

•
•

•

•

•

Исходное

состояние

Транзакция 1
INSERT /SELECT
с разделяемой
блокировкой

Транзакция 2
UPDATE
устанавливает

монопольную

блокировку

Транзакция 1
выполняет коммит

и освобождает
блокировку

Транзакция 2
продолжает

работу и выполняет

коммит

ТЫ1 ТЫ2

D

99----+-"0

SЕТ = 100

Двоичный
журнал

о

Рис. 10.16. Две транзакции обновляют данные, устанавливая разделяемые блокировки,
чтобы сериализовать обновления

В этой последовательности действий очень важен шаг 2. На нем транзакция 2 пы­
тается обновить исходную таблицу, для чего должна поставить монопольную

блокировку (записи) на строки, которые собирается обновить. Монопольная бло­

кировка несовместима ни с какой другой, в том числе с разделяемой блокировкой ,

поставленной на строку транзакцией 1, поэтому транзакция 2 должна дождаться
коммита транзакции 1. Транзакции записываются в двоичный журнал в порядке
коммита, поэтому их повтор на подчиненном сервере даст точно такие же резуль­

таты, как на главном.

В то же время если транзакция 1 не ставит разделяемую блокировку на строки ,

читаемые для команды INSERT, то никаких гарантий не дается . Изучите рис. 10.17,
где показана возможная последовательность событий в случае, когда блокировки
не ставятся .

578 Глава 10 • Репликация

Двоичный

ТЬ11 ТЫ2 журнал

• Транзакция 1 ~ INSERT /SELECT 99
без блокировки

• Транзакция 2 SЕТ = 100 Трэнз·
выполнена

~
акция 2

и зафиксирована

• Транзакция 1 ~ зафиксирована

1 Позднее
на подчиненном

сервере

• Транзакция 2
UPDATE

• Транзакция 1 ~ INSERT /SELECT 100

Рис. 10.17. Две транзакции обновляют данные, не устанавливая разделяемые блокировки
для сериализации обновлений

Отсутствие блокировок позволяет записать транзакции в двоичный журнал в таком
порядке, при котором повторное воспроизведение даст иные результаты, что и видно

на рисунке. Сначала MySQL журналирует транзакцию 2, поэтому она повлияет на
результаты выполнения транзакции 1 на подчиненном сервере. На главном ничего
подобного не было. В итоге данные на главном и подчиненном серверах различаются.

Мы настоятельно рекомендуем в большинстве случаев оставлять параметр innodb_
locks_unsafe_for _Ьiпlog равным 0. Этой ситуании можно избежать при построч ной
репликации, при которой журналируются фактические изменения данных, а не

команды.

Запись на обоих главных серверах в конфигурации
«главный - главный»

Писать на оба главных сервера - ужасная идея. Часть возникающих при этом про·
блем можно разрешить безопасным способом , 1ю нс все. Но чтобы 11онять разницу
между ними, требуется эксперт, набивший множество шишек.

В версии MySQL 5.0 появились два конфигурационных параметра, которые по·

могают разрешить конфликт между автоинкрементными первич11ь1ми столбцами .
Они называются auto_increment_increment и auto_increment_offset. Их можно

Проблемы репликации и их решение 579

использовать для того, чтобы значения, генерируемые на разных серверах, чере­
довались, а не повторялись.

Однако это не решает всех проблем с выполнением записи на два главных сервера -
так решается только проблема автоинкремента, а это лишь малая толика трудностей,
с которыми придется столкнуться, если вы захотите записывать на оба сервера. Более
того, это решение на самом деле порождает ряд новых проблем.

о Усложняется смена ролей серверов, участвующих в репликации.

О Из-за промежутков в нумерации напрасно расходуется пространство ключей.

О Оно работает только в том случае, когда для всех таблиц определены автоинкре-
ментные первичные ключи (AUTO_INCREMENT), а делать это не всегда имеет смысл.

Вы можете самостоятельно генерировать неконфликтующие первичные ключи. Один

из способов - создать первичный ключ по нескольким столбцам и в первом столбце
хранить идентификатор сервера. Такой метод работает, но увеличивается длина
первичного ключа, а в InnoDB это отражается еще и на внешних ключах.

В качестве альтернативы можно строить первичный ключ по одному столбцу,
а идентификатор сервера хранить в старших битах целочисленного значения ключа.
Реализуется это простыми операциями поразрядного сдвига влево (или умножения)

и сложения. Например, если 8 старших бит беззнакового столбца типа BIGINT
(64-разрядного) отведено под идентификатор сервера, то вставить значение 11 на
сервере 15 можно так:

mysql> INSERT INTO test(pk_col, •••) VALUES{ {15 << 56) + 11, •••);

Понять, что при этом происходит, проще всего, если перейти к основанию 2 и до­
полнить результат нулями до длины 64:

mysql> SELECT LPAD{CONV(pk_col, 10, 2), 64, '0') FROМ test;
+--+
1 LPAD(CONV(pk_col, 10, 2), 64, '0')
+--+
1 00001111001011 1

+--+
Но при таком подходе вам придется генерировать значения ключей самостоятельно,

поскольку режим AUTO_INCREMENT отключен. Не используйте @@server _id вместо
константы 15 в команде INSERT, поскольку тогда на подчиненном сервере получатся
другие результаты.

Можно также прибегнуть к псевдослучайным значениям, используя такие функции,
как MDS() или UUID(), но это негативно скажется на производительности, так как
ключи получаются длинными и случайными, что плохо, в частности, для InnoDB.
(Не пользуйтесь функцией UUID(), если только не генерируете значения в коде при­
ложения, поскольку эта функция некорректно реплицируется в случае покомандной

репликации.)

В общем, эта задача с трудом поддается решению, поэтому обычно мы рекомендуем
перепроектировать приложение так, чтобы запись производилась только на один
главный сервер. Кто бы мог подумать?

580 Глава 10 • Репликация

Слишком большое отставание репликации

Отставание репликации - распространенная проблема. Вне зависимости от причи­

ны рекомендуется проектировать приложение таким образом, чтобы оно сохраняло

работоспособность при небольшом отставании подчиненных серверов. Если система
не может работать в подобных условиях, то, по-видимому, ее архитектура не должна
быть основана на репликации. Однако можно предпринять кое-какие шаги, чтобы
подчиненные серверы не отставали от главного слишком намного.

Однопоточная природа репликации в MySQL означает, что на подчиненном сервере
она принципиально менее эффективна. Даже очень быстрый подчиненный сервер
с большим количеством дисков, процессоров и кучей памяти легко может отстать от
главного, поскольку единственный поток обычно задействует лишь один процессор
и диск. Но в любом случае подчиненный сервер должен быть не менее мощным, чем
основной.

Блокировка на подчиненных серверах также представляет проблему. Прочие запро­

сы, работающие на подчиненном сервере, могут заблокировать поток репликации.
Поскольку репликация однопоточная, во время ожидания этот поток не может вы­

полнять никакой полезной работы.

Отставание репликации может проявляться двояко: в виде кратковременных вспле­

сков, после которых подчиненный сервер догоняет главный, и постоянного отстава­

ния. В первом случае запаздывание обычно вызвано одиночным долго работающим

запросом, тогда как во втором никаких особенно длительных запросов может и не
быть, а отставание все равно накапливается.

К сожалению, как уже говорилось, в настоящее время нелегко понять, насколько

подчиненный сервер близок к исчерпанию своей производительности. Если нагруз­

ка строго равномерна во времени, то подчиненный сервер будет одинаково хорошо

работать вне зависимости от того, какая доля пропускной способности задействова­
на - 10 или 99 %, но при достижении 100 % он внезапно начнет отставать. На прак­
тике нагрузка редко бывает равномерной, поэтому по мере приближения к пределу
пропускной способности в пиковые моменты вы, вероятно, будете наблюдать, как
отставание растет.

Журналирование запросов на подчиненном сервере и использование какого-нибудь
инструмента анализа журналов, который может показать самые медленные запро­

сы, - едва ли не лучшее, что можно сделать, когда подчиненный сервер перестает

справляться. Не доверяйте интуитивным представлениям о том, что может работать
медленно, и не основывайтесь на сведениях, как те или иные запросы выполняются

на главном сервере, поскольку характеристики производительности на главном

и подчиненном серверах сильно различаются. Самый лучший способ проделать такой
анализ - временно включить журнал медленных запросов на подчиненном сервере

и проанализировать его с помощью утилиты pt-query-digest, как было показано
в главе 3. Стандартный журнал медленных запросов MySQL может журналировать
запросы потока репликации в MySQL версии 5.1 и более поздних, если вы включите

Проблемы репликации и их решение 581

параметр log_slow_slave_statements. Тем самым вы увидите, какие запросы во вре­
мя репликации работают медленно. Percona Server и MariaDB позволяют включать
и отключать этот параметр без перезапуска сервера.

Если подчиненный сервер не справляется с репликацией, то его настройка мало чего

позволит добиться, положительного эффекта можно достичь, разве что установив
более быстрые диски и процессоры (очень сильно могут помочь твердотельные ди­
ски, о них говорится в главе 9). Большинство рекомендаций связано с отключением
чего-нибудь в попытке слегка уменьшить нагрузку на подчиненный сервер. Одно
из простых решений - уменьшить частоту сброса на диск в подсистеме InnoDB,
вследствие чего транзакции станут коммититься быстрее. Для этого присвойте па­

раметру innodb_flush_log_at_trx_commit значение 2. Можно также отключить на
подчиненном сервере запись в двоичный журнал. Для этого в случае InnoDB нужно
задать параметр innodb_locks_unsafe_for _Ьinlog равным 1, а в случае MyISAM -
присвоить параметру delay_key_write значение ALL. Но за быстродействие прихо­
дится расплачиваться надежностью. Если будете повышать подчиненный сервер до
уровня главного, не забудьте восстановить безопасные значения.

Не дублируйте затратные операции записи

Часто самый лучший способ помочь подчиненным серверам справиться с нагрузкой
заключается в том, чтобы перепроектировать приложение и/или оптимизировать за­
просы. Попробуйте свести к минимуму объем работы, дублируемой в разных частях
системы. Любая затратная операция записи на главном сервере должна быть по­
вторена на каждом подчиненном. Если можно переместить часть работы с главного
сервера на подчиненный, то выполнять ее придется только одному из подчиненных

серверов. Затем результаты работы можно загрузить на главный сервер, например
командой LOAD DATA INFILE.

Приведем пример. Предположим, что имеется очень большая таблица, которую не­
обходимо агрегировать и свести к меньшей по размерам:

mysql> REPLACE INTO main_db.su11111ary_taЫe (со11, со12, •••)
-> SELECT со11, sum(col2, •••)
-> FROМ main_db.enormous_taЫe GROUP ВУ со11;

Если выполнять эту операцию на главном сервере, то каждый подчиненный выну­

жден будет повторить гигантский запрос с фразой GROUP ВУ. Когда подобных запросов
станет много, подчиненные серверы начнут отставать. Поможет перенос запроса на

какой-нибудь подчиненный сервер. На нем можно завести специальную базу, чтобы
избежать конфликтов при обновлении данных, реплицируемых с главного сервера,

и выполнить такой запрос:

mysql> REPLACE INTO sununary_db.su11111ary_taЫe (со11, со12, •••)
-> SELECT со11, sum(col2, •••)
-> FROМ main_db.enormous_taЫe GROUP ВУ со11;

Теперь можно выполнить команду SELECT INTO OUTFILE, а вслед за ней команду LOAD
DATA INFILE на главном сервере, чтобы загрузить в его базу данных результаты.

582 Глава 10 • Репликация

Вуаля - дублирование работы свелось к выполнению простейшей директивы LOAD

DATA INFILE. Если имеется N подчиненных серверов, то мы сэкономили N - 1 боль­
ших запросов с фразой GROUP ВУ.

Впрочем, у этой стратегии есть и недостаток - неактуальные данные. Иногда бывает

трудно получить согласованные результаты, выполняя чтение таблиц на подчинен­

ном сервере и запись - на главном (эту проблему мы обсудим в следующих главах).

Если чтение на подчиненном сервере вызывает сложности, то задачу можно упро­

стить, сэкономив подчиненным серверам массу работы. Если отделить части REPLACE

и SELECT друг от друга, то можно произвести выборку результатов в приложении,

а затем вставить эти результаты обратно в базу данных на главном сервере. Сначала

выполним на главном сервере следующий запрос:

mysql> SELECТ со11, sum(col2, •••) FROfll main_db.enormous_taЫe GROUP ВУ со11

Затем вставим полученные результаты в сводную таблицу, повторив для каждой

строки результирующего набора такой запрос:

mysql> REPLACE INTO main_db.summary_taЫe (со11, со12, •••) VALUES (?, ?, •••);

Как и раньше, нам удалось избавить подчиненные серверы от выполнения трудоем­

кой группировки. Разделение SELECT и REPLACE означает, что часть команд SELECT,

которая отвечает за агрегацию, не повторяется на каждом подчиненном сервере.

Общая стратегия - избавление подчиненных серверов от затратной части операции

записи - помогает во многих ситуациях, когда результаты запроса сложно получить,

но после получения легко обработать.

Выполняйте параллельную запись без репликации

Еще один прием, помогающий сократить отставание подчиненных серверов, - обой­

ти репликацию вовсе. Любая операция записи, выполненная на главном сервере,

должна быть сериализована на подчиненном, поэтому сериализованную запись

можно рассматривать как дефицитный ресурс. Задайтесь вопросом: все ли операции

записи необходимо пропускать через репликацию от главного к подчиненному? Как

сделать так, чтобы ограниченное количество ресурса ~сериализованная запись»

расходовалось только на те процедуры, которые действительно должны проходить

через репликацию?

Такая постановка вопроса помогает определить приоритеты среди операций записи.

В частности, если удастся выявить операции записи, легко выполняемые вне репли­

кации, их можно распараллелить и сэкономить драгоценный ресурс подчиненного

сервера.

Замечательным примером является архивирование, уже обсуждавшееся в этой главе.

В О L ТР-системах данные часто архивируются по строке за раз. Если просто пере­
местить ненужные строки из одной таблицы в другую, то причина для репликации

таких операций записи на подчиненных серверах может просто исчезнуть. Вместо

этого можно отключить запись в двоичный журнал для команд архивирования, а за-

Проблемы репликации и их решение 583

тем запустить отдельные идентичные процессы архивирования на главном и всех

подчиненных серверах.

Мысль копировать данные на другой сервер самостоятельно вместо того, чтобы
полагаться на репликацию, может показаться безумной, но в некоторых програм­
мах имеет смысл применять этот прием. В особенности тогда, когда приложение
является единственным источником обновлений в некотором наборе таблиц. Часто
узким местом является небольшое подмножество всех таблиц, и если именно их
вывести из общей последовательности репликации, то можно существенно вы­

играть в скорости.

Инициализируйте кэш для потока репликации

Если позволяет рабочая нагрузка, то можно получить выигрыш от распараллелива­
ния ввода/вывода на подчиненные серверы за счет предварительной загрузки данных

в память. Эта техника не очень хорошо известна, но мы знаем, что она успешно при­

меняется в некоторых крупных приложениях. В большинстве случаев использовать
ее не придется, поскольку, если нет правильно сконфигурированного оборудования,
а у рабочей нагрузки неподходящие характеристики, это будет безрезультатно.
Другие типы изменений, которые мы только что обсуждали, обычно намного луч­
ше и могут использоваться шире, чем вы думаете. Однако нам знакомо некоторое

количество больших приложений, которые извлекают выгоду из предварительной

выборки данных с диска.

Реализовать эту идею можно двумя способами. Первый состоит в том, чтобы ис­
пользовать программу, которая немного опережает поток SQL в чтении данных из
журналов ретрансляции и выполняет запросы в виде команд SELECT. В результате
сервер считывает информацию с диска в память, так что к тому моменту, как поток

SQL дойдет до соответствующей команды в журнале ретрансляции, ему не при­
дется ждать выборки данных с диска. По существу, мы распараллеливаем ввод/

вывод, который поток SQL обычно должен производить последовательно. Пока
одна команда изменяет данные, в память с диска загружаются значения для сле­

дующей команды.

Этот прием работает только при следующих условиях.

Q Поток SQL выполняет большой объем ввода/вывода, но в целом подчиненный
сервер не перегружен этими операциями. Если это не так, то предварительная

выборка не даст никакого выигрыша, поскольку диски сервера не простаивают.

Q Подчиненный сервер оснащен большим количеством дисков - по восемь и более
дисков на каждом подчиненном сервере.

Q Используется подсистема хранения InnoDB, а рабочее множество настолько
велико, что не помещается в памяти.

В качестве примера рабочей нагрузки, которая выигрывает от предварительной вы­
борки, можно назвать большое количество команд UPDAТE, обновляющих по одной
строке в разных местах базы данных. Такая нагрузка обычно допускает высокую

584 Глава 10 • Репликация

степень конкуренции на главном сервере. Команды DE LЕТЕ тоже можно ускорить

таким образом. Для команд INSERT это менее вероятно, особенно если строки встав­

ляются последовательно, поскольку конец индекса и так уже горячее место после

предыдущих вставок.

Если по столбцам таблицы построено много индексов, то не всегда возможно пред­

варительно выбрать все данные, которые команда может изменить. Команда UPDAТE

в состоянии модифицировать каждый индекс, тогда как SELECT обычно читает только

первичный ключ и в лучшем случае один вторичный индекс. Поскольку UPDATE долж­

на будет прочитать и другие индексы перед тем, как их модифицировать, тактика

предварительной выборки оказывается не так эффективна.

Описанная техника не панацея. Существует много причин, по которым она может

не дать эффекта и даже усугубить ситуацию. Применять ее следует лишь после тща­

тельного изучения оборудования и операционной системы. Мы знаем людей, кото­

рым этот подход позволил увеличить скорость репликации на 300-400 %, но, когда
попробовали его сами, у нас ничего не вышло. Очень важно правильно выставить

параметры, но не всегда нужное сочетание настроек существует.

Инструмент mk-slave-prefetch, входящий в состав комплекта Maatkit, - один из

пригодных для реализации идей, описанных в этом разделе. У него множество воз­

можностей для работы в наибольшем числе случаев. Однако он довольно сложный

и подходит только для опытных пользователей. Другим инструментом является

slavereadahead Андерса Карлссона (Anders Karlsson), доступный по адресу http://
sourceforge. net/projects/slavereadahead/.

Еще одна методика, разрабатываемая на момент написания книги, является вну­

тренней для InnoDB. Она реализует транзакции в специальном режиме, который
заставляет InnoDB подделывать обновления, поэтому процесс может произвести
эти поддельные обновления, а затем поток репликации может быстро выполнить

реальные обновления. Нечто подобное мы разрабатываем в Percona Server специ­
ально для очень популярного, масштабируемого в Интернете приложения. Проверьте,

возможно, в настоящий момент оно уже разработано.

Если вы рассматриваете эту методику, мы полагаем, что лучше всего получить квали­

фицированный совет от эксперта, который знаком с тем, когда она работает и какие

еще варианты доступны. Лучше всего оставить это напоследок, когда все остальное

не получится.

Чрезмерно большие пакеты от главного сервера

Еще одна трудно обнаруживаемая проблема репликации связана с тем, что параметр

max_allowed_packet на главном и подчиненном серверах не совпадает. В этом слу­
чае главный сервер может поместить в журнал пакет, который подчиненный сочтет

слишком большим, и при попытке прочитать событие из двоичного журнала возник­

нут разного рода сбои. Это может, в частности, вызвать бесконечный цикл ошибок

и повторных попыток чтения или повредить журнал ретрансляции.

Проблемы репликации и их решение 585

Ограниченная пропускная способность сети

Если репликация производится по сети с ограниченной пропускной способностью, то
можно включить на подчиненном сервере режим slave_compressed_protocol (реали­
зован в версии MySQL 4.0 и более поздних). Когда подчиненный сервер соединяется
с главным, он запрашивает сжатие - точно такое же, какое доступно любому кли­
енту MySQL. Для сжатия используется библиотека zlib, и наши тесты показывают,
что текстовые данные иногда удается сжать до трети от первоначального размера.

Но при этом требуется дополнительное процессорное время как на главном сервере
для упаковки, так и на подчиненном - для распаковки.

Если канал на стороне главного сервера медленный, а на другом его конце много

подчиненных серверов, то имеет смысл установить между главным и подчиненными

серверами сервер-распространитель. Тогда с главным сервером по медленному кана­

лу будет соединяться только один сервер, что уменьшит и потребление пропускной
способности, и нагрузку на процессор главного сервера.

Отсутствие места на диске

Репликация может заполнить диски двоичными журналами, журналами ретрансля­

ции и временными файлами, особенно если на главном сервере выполняется много

команд LOAD DATA INFILE, а на подчиненном включен режим log_slave_updates. Чем
сильнее отстает подчиненный сервер, тем больше места необходимо для журналов
ретрансляции, которые уже прочитаны с главного сервера, но еще не обработаны.
Чтобы предотвратить такие ошибки, следите за свободным местом на дисках и ис­
пользуйте параметр relay_log_space.

Ограничения репликации

Репликация в MySQL может остановиться или привести к рассинхронизации с со­
общением об ошибке или без него, просто из-за присущих ей ограничений. Перечень
функций SQL и приемов программирования, которые невозможно надежно реплици­
ровать, довольно обширен (многие из них уже упоминались в данной главе). Трудно
гарантировать, что ничего из этого списка не просочится в код промышленной си­

стемы, особенно если приложение большое или им занимается большой коллектив

разработчиков1 •

Немало неприятностей причиняют и ошибки в коде сервера. Не хотим показаться
критиканами, но ошибки встречались в коде репликации большинства основных
версий MySQL, особенно в первых выпусках. А появление новых возможностей,
в частности хранимых процедур, приводило к новым ошибкам.

Увы, в MySQL отсутствует параметр forbid_operations_unsafe_for_replication (запретить
операции, небезопасные для решшкации). Однако в последних версиях она очень активно

предупреждает об опасных процессах и даже отказывается от некоторых.

586 Глава 10 • Репликация

Для большинства пользователей это не причина сторониться новых возможностей.

Это лишь повод для более тщательного тестирования, особенно при переходе на но­

вую версию приложения или MySQL. Важен и мониторинг - проблема не должна

оставаться незамеченной.

Репликация в MySQL устроена сложно, а чем сложнее приложение, тем тщательнее
должно быть тестирование. Но если понять, как работать с репликацией, то все будет

хорошо.

Насколько быстро работает репликация

Говоря о репликации, часто спрашивают: <1Насколько быстро она работает?~ Коротко

можно ответить, что в общем случае настолько быстро, насколько MySQL успевает
копировать события с главного сервера и воспроизводить их с очень небольшими

накладными затратами. Если сеть медленная, а события в двоичном журнале очень

велики, то задержка между записью в двоичный журнал и выполнением на подчи­

ненном сервере может оказаться заметной. Если запросы выполняются долго, а сеть

быстрая, то можно ожидать, что время выполнения запроса на подчиненном сервере

будет составлять наибольшую долю общего времени, необходимого для репликации
события.

Чтобы дать более точный ответ, нужно измерить все шаги процедуры и понять, на

какие из них затрачивается больше всего времени. Некоторым читателям достаточно

того, что обычно промежуток времени между журналированием событий на главном

сервере и их копированием в журнал ретрансляции очень мал. Для тех же, кто любит

детали, мы провели небольшой эксперимент.

Мы усовершенствовали процедуру, описанную в первом издании этой книги, и вос­

пользовались методикой Джузеппе Максиа (Giuseppe Maxia)1, для того чтобы
с высокой точностью измерить скорость репликации. А еще написали недетерми­

нированную пользовательскую функцию (UDF), которая возвращает системное
время с точностью до микросекунд (ее исходный код приведен в разделе <1Функции,

определяемые пользователем~ главы 7):

mysql> SELECT NOW_USEC()
+----------------------------+
1 NOW_USEC()

+----------------------------+
1 2007-10-23 10:41:10.743917 1

+----------------------------+
Это позволило измерить скорость репликации, для чего мы вставляли значение

NOW_USEC() в таблицу на главном сервере, а затем сравнивали его со значением на

подчиненном сервере.

См.: http://datacharmer.blogspot.com/2006/04/шeasuring-replication-speed.html.

Насколько бысrро работает репликация 587

Мы измеряли задержку, когда оба экземпляра MySQL были установлены на одной
машине, чтобы избежать неточностей из-за расхождений в показаниях системных

часов. Один экземпляр сконфигурировали как подчиненный другому, а затем вы­

полнили на главном экземпляре следующие запросы:

mysql> CREATE TABLE test.lag_test(
-> id INT NOT NULL AUTO_INCREMENT PRIМARY КЕУ,
-> now_usec VARCНAR(2б) NOT NULL
->);

mysql> INSERT INTO test.lag_test(now_usec) VALUES(NOW_USEC());

Мы воспользовались столбцом типа VARCHAR, потому что встроенные в MySQL типы
для работы с временем не могут хранить временные данные с точностью более чем
секунда (хотя некоторые функции умеют производить подобные вычисления). Оста­

ется лишь определить разность между моментами времени на главном и подчинен­

ном серверах. Для этого отлично подойдет таблица типа Federated1• На подчиненном

сервере был выполнен запрос

mysql> CREATE TABLE test.master_val
-> id INТ NOT NULL AUТO_INCREMENT PRIМARY КЕУ,
-> now_usec VARCНAR(2б) NOT NULL
-> ENGINE=FEDERATED
-> CONNECTION='mysql://user:pass@127.0.0.1/test/lag_test',;

Простое соединение таблиц и функция ТIMESTAМPDIFF() позволяют узнать, сколько

микросекунд прошло между выполнением запроса на главном и подчиненном сер­

верах:

mysql> SELECT m.id, TIMESTAМPDIFF(FRAC_SECOND, m.now_usec, s.now_usec) AS usec_lag
-> FROМ test.lag_test as s
-> INNER JOIN test.master_val AS m USING(id);

+----+----------+
1 id 1 usec_lag 1

+----+----------+
1 1 476 1

+----+----------+

Мы написали скрипт на языке Perl, которой вставляет 1000 строк в таблицу на глав­
ном сервере с 1 О-миллисекундной задержкой между последовательными вставками,
чтобы предотвратить борьбу между главным и подчиненным экземплярами за про­

цессорное время. Затем построили временную таблицу, содержащую задержки для
каждого события:

mysql> CREATE TABLE test.lag AS
> SELECT TIMESTAМPDIFF{FRAC_SECOND, m.now_usec, s.now_usec) AS lag

-> FROМ test.master_val AS m
-> INNER JOIN test.lag_test as 5 USING(id);

Кстати, это единственный случай, коrда кое-кто из авторов использовал подсистему хра­

нения Federated.

588 Глава 10 • Репликация

Далее мы сгруппировали результаты по времени, чтобы узнать, какая задержка
встречалась чаще всего:

mysql> SELECT ROUND(lag / 1000000.0, 4) * 1000 AS msec_lag, COUNT(*)
-> FROМ lag
-> GROUP ВУ msec_lag
-> ORDER ВУ msec_lag;

+----------+----------+
1 msec_lag 1 COUNT(*) 1

+----------+----------+
0.1000 392
0.2000 468
0.3000 75
0.4000 32
0.5000 15
0.6000 9
0.7000 2
1.3000 2
1.4000 1
1.8000 1
4.6000 1
6.6000 1

24.3000 1
+----------+----------+
Как видите, для большинства мелких запросов между выполнением на главном и под­
чиненном серверах проходит менее 0,3 миллисекунды.

Что мы не можем измерить таким образом, так это время доставки события на под­
чиненный сервер после того, как оно было записано в двоичный журнал главного.
А хорошо бы его знать, поскольку чем раньше подчиненный сервер получит собы­
тие, тем лучше. Если событие получено, то подчиненный сервер будет иметь копию
в случае сбоя главного.

Хотя измерения не показывают, сколько времени занимает эта часть процедуры,

теоретически она должна выполняться чрезвычайно быстро (ограничена только
скоростью сети). Процесс дампа двоичного журнала не опрашивает главный сервер

о появлении новых событий - это было бы медленно и неэффективно. Вместо этого

главный сервер уведомляет подчиненный о новых событиях. Чтение события из
двоичного журнала главного сервера - это блокирующий системный вызов, который
начинает посылать данные практически сразу после записи в журнал. Таким образом,
можно с большой долей уверенности сказать, что событие прибывает на подчинен­
ный сервер за то время, которое требуется, чтобы разбудить поток репликации на
подчиненном сервере и передать информацию по сети.

Расширенные возможности репликации MySQL
В MySQL версии 5.5 Oracle значительно улучшил выполнение репликации, кроме
того, много усовершенствований будет включено в релиз MySQL 5.6. Некоторые из
них делают репликацию более надежной, другие добавляют многопоточную (парал­
лельную) репликацию для смягчения проблем, связанных с существующим узким

Расширенные возможности репликации MySQL 589

местом (речь идет об однопоточности), а третьи увеличивают гибкость и улучшают
контроль. Мы не будем много размышлять о функциональности, которая не от­
носится к выпуску стабильной версии, однако есть несколько моментов, которые

хотелось бы упомянуть, говоря об улучшениях, сделанных в MySQL 5.5.

В первую очередь нужно сказать о полусинхронной репликации, основанной на работе,
которую Google выполнил несколько лет назад. Это, вероятно, самое большое изме­
нение в этой сфере, начиная с версии MySQL 5.1, в которой была представлена по­
строчная репликация. Такая репликация поможет вам убедиться, что на подчиненных
серверах действительно есть копия данных главного сервера, поэтому вероятность

потери данных в случае полного краха главного сервера уменьшилась.

Полусинхронная репликация добавляет задержку в процесс закоммичивания: при
выполнении коммита транзакции события двоичного журнала должны быть пере­
даны по меньшей мере одному подключенному подчиненному серверу до того, как

клиентское соединение получит уведомление о завершении запроса. Эта задержка

добавляется после того, как главный сервер выполнит коммит транзакции на свои
диски. Таким образом, на самом деле это просто задержка для клиентов, которая
не дает им выдавать множество транзакций на главный сервер быстрее, чем он может
отправлять их на подчиненные.

Существует несколько распространенных заблуждений относительно полусинхрон­
ной репликации. Вот чего она не делает.

1:1 Не блокирует выполнение коммита на главном сервере, пока подчиненные серве­
ры не подтвердят получение. Коммит выполняется на главном сервере, и только

уведомление клиента о коммите задерживается.

1:1 Не блокирует клиента, пока подчиненные серверы не применили транзакцию.
Подтверждение приходит после получения транзакции, а не после ее применения.

1:1 Не обладает отказоустойчивостью. Если реплики не подтверждают получение,
время ожидания постепенно истекает и происходит возврат к «обычномуi> режиму
асинхронной репликации.

Тем не менее это очень полезный инструмент, который помогает гарантировать, что
реплики действительно обеспечивают большую избыточность и надежность.

С точки зрения производительности полусинхронная репликация немного увели­

чивает запаздывание выполнения коммита, каким его видит клиент. Существует

небольшая задержка из-за времени передачи по сети, времени, необходимого для
записи и синхронизации данных с диском подчиненного сервера (если так скон­

фигурировано), и сетевого времени для подтверждения. Казалось бы, их можно
сложить, однако в тестах это время оказалось едва заметным, вероятно, из-за того,

что запаздывание скрыто другими причинами задержки. Джузеппе Максиа (Giuseppe
Maxia) обнаружил приблизительно 200-секундную задержку производительности
на каждый коммит 1 • Затраты будут более заметны по мере уменьшения размера
транзакции.

См.: http://datacharmer.Ьlogspot.com/2011/05/price-ot'-safe-data-benchmarking-semi.htшl.

590 Глава 10 • Репликация

Фактически полусинхронная репликация может обеспечить достаточную гибкость
для повышения производительности в некоторых случаях, сделав более безопасной
возможность ослабить параметр sync_Ьinlog на главном сервере. Запись в удаленную
память (подтверждение от подчиненного сервера) происходит быстрее, чем запись
на локальный диск (синхронизация при коммите). Хенрик Ин го (Henrik Ingo) провел
несколько сравнительных тестов, показавших повышение производительности при

использовании полусинхронной репликации вместо строгой сохраняемости/устойчи­

вости данных на ведущем узле 1 • В любой системе невозможно добиться абсолютной
надежности - только более и более высоких ее уровней, и похоже, что полусинхронная
репликация является наименее затратным способом повысить надежность данной
системы, чем некоторые из альтернативных вариантов.

Помимо полусинхронной репликации, MySQL 5.5 поддерживает также репликацию
пульсации, которая помогает подчиненным серверам оставаться соединенными

с главным и избегать незаметного отсоединения. Если сетевое соединение будет
разорвано, подчиненный сервер заметит отсутствие пульсации. Существуют улуч­

шения, направленные на обработку разных типов данных между главным и подчи­
ненным серверами, когда используется построчная репликация, а также несколько

вариантов конфигурации того, как файлы метаданных репликации фактически

синхронизируются с диском и как журналы ретрансляции обрабатываются после
сбоя, что уменьшает вероятность возникновения проблем после сбоя и восстанов­

ления реплик.

Тем не менее мы еще не видели широкого промышленного развертывания каких-либо
улучшений версии MySQL 5.5, направленных на репликацию, так что этот вопрос
следует изучить подробнее.

Помимо сказанного приведем краткий перечень улучшений в работе либо MySQL,
либо сторонних продуктов, таких как Percona Server и MariaDB.

о Oracle сделал множество улучшений в сборке MySQL 5.6 и промежуточных
релизах.

• Достигнуто состояние транзакционной репликации - отсутствуют файлы ме­

таданных, которые могут рассинхронизироваться при сбое. (Некоторое время
они существовали в Percona Server и MariaDB в другой форме.)

• Вычисляются контрольные суммы двоичного журнала событий, помогающие
обнаружить поврежденные события в журнале ретрансляции.

• Реализована репликация с задержкой как замена инструмента pt-slave-delay
из пакета Percona Toolkit.

• Построчные двоичные журналы событий могут содержать исходный SQL-кoд,
выполняемый на главном сервере.

• Применяется многопоточная репликация (параллельная репликация).

о MySQL 5.6, Percona Server, заплатки Facebook и MariaDB имеют три разных вари­
анта исправления проблем с групповыми коммитами, появившихся в MySQL 5.0.

См.: http://openlife.cc/Ьlogs/2011/may /drbd-and-semi-sync-shootout-large-server.

Прочие технологии репликации 591

Прочие технологии репликации

Встроенная репликация - это не единственный способ репликации данных с одного
сервера на другой, хотя, вероятно, лучше всего приспособленный для достижения
большинства целей. (В отличие от PostgreSQL MySQL не имеет большого количе­
ства надстраиваемых возможностей репликации, возможно, потому, что встроенная

репликация была добавлена на раннем этапе жизни продукта.)

Мы на короткой ноге с парочкой надстраиваемых технологий для репликации

MySQL, например Oracle GoldenGate, но действительно недостаточно хорошо
знакомы с большинством из них, чтобы много писать о них. Однако о двух хоте­
лось бы упомянуть. Первая - это синхронная репликация Percona XtraDB Cluster,
которую мы обсудим в главе 12, поскольку она лучше подходит для главы о высо­
кой доступности. Вторая - Continuent's Tungsten Replicator (http://code.google.com/p/
tungsten-replicator/).

Tungsten - продукт репликации промежуточного программного обеспечения
с открытым исходным кодом, написанный на Java. Он имеет сходство с Oracle
GoldenGate и, похоже, в будущих релизах получит множество сложных функ­
ций. На момент написания этой книги уже реализованы такие возможности, как

репликация данных между серверами, автоматическое шардирование данных, па­

раллельное применение изменений в подчиненных серверах (многопоточная

репликация), повышение подчиненного сервера до главного при сбое последнего,
кросс-платформенная и многосерверная репликация (несколько серверов реплици­

руются в один). Это версия с открытым исходным кодом пакета для кластеризации

базы данных Tungsten Enterprise, которая является коммерческим программным
обеспечением Continuent.

Кроме того, Tungsten реализует кластеры, состоящие из нескольких главных сер­
веров, где записи могут быть направлены на любой сервер в кластере. Обобщенная
реализация этой архитектуры требует обнаружения конфликтов и/или их разреше­
ния. Это очень сложно, да и не всегда то, что нужно. Взамен Tungsten обеспечивает
немного ограниченную реализацию, в которой не все данные доступны для записи

на всех узлах, а каждый узел помечен как система записи для определенных битов
данных. Это означает, что, например, офис в Сиэтле может записывать свои данные,

которые реплицируются в Хьюстоне и Балтиморе. В Хьюстоне и Балтиморе данные

доступны локально для чтения с малой задержкой, но Tungsten не дает их запи­
сывать, поэтому конфликтующие обновления невозможны. Хьюстон и Балтимор
могут, конечно, обновлять собственные данные, которые также реплицируются во
всех других местах. Такой подход к системе записи решает проблему, которую часто
пытаются решить встроенной репликацией MySQL, известной как кольцо. Однако
мы уже говорили, что она ни безопасна, ни надежна.

Tungsten Replicator не просто подключается и управляет репликацией MySQL - он
заменяет ее. Он фиксирует изменения данных на серверах, читая их двоичные жур­

налы. То же самое делает и встроенная функция MySQL, однако на этом ее функцио­
нал, в отличие от функционала Tungsten Replicatoг, заканчивается. Он считывает

592 Глава 10 • Репликация

двоичные журналы и извлекает транзакции, а затем выполняет их на подчиненных

серверах.

Набор возможностей этого процесса намного богаче, чем у репликации MySQL.
В частности, Tungsten Replicator стал первым продуктом, предлагающим параллель­
ную репликацию для MySQL. Мы еще не видели этого в реальных условиях, но, как
утверждается, в зависимости от характеристик рабочей нагрузки ожидается до трех­
кратного увеличения скорости репликации. С учетом всего того, что мы знаем об ар­
хитектуре продукта и о нем самом, эта информация кажется нам вполне достоверной.

Приведем список того, что нам нравится в Tungsten Replicator.

О Он обеспечивает встроенную проверку согласованности данных. Можно не про­
должать.

О Он предлагает возможности подключаемого модуля, чтобы вы могли писать
собственные пользовательские функции. Исходный код репликации MySQL
очень трудно понять и еще сложнее изменить. Даже очень талантливые про­

граммисты наделали немало ошибок на сервере, пытаясь изменить код репли­
кации. Приятно иметь возможность изменять репликацию без изменения кода
репликации MySQL.

О Существуют глобальные идентификаторы транзакций, которые позволяют вам
определять состояние серверов по отношению друг к другу, не пытаясь сопоста­

вить имена и смещения двоичных журналов.

О Это хорошее решение с высокой доступностью, которое позволяет быстро повы­
шать подчиненный сервер до главного.

О Он поддерживает гетерогенную репликацию (например, между MySQL и Post­
greSQL или MySQL и Oracle).

О Он поддерживает репликацию между версиями MySQL в случаях, когда реплика­
ция MySQL не является обратно совместимой. Это очень хорошо для определен­
ных сценариев обновления, где в противном случае вы, скорее всего, не сможете
создать работоспособный сценарий отката, если обновление пойдет не так как
хочется. Либо вам придется обновлять серверы не в том порядке, который вы бы
предпочли.

О Проектирование параллельной репликации подходит для шардированных или

многоклиентских приложений.

О Приложенияjаvа могут без изменения кода записывать на главный сервер и чи­
тать из подчиненных.

О Он стал намного проще и легче в настройке и администрировании, чем раньше,

во многом благодаря добросовестной работе директора по качеству Джузеппе
Максиа (Giuseppe Maxia).

Приведем и ряд недостатков.

О Надо полагать, что он все же сложнее, чем встроенная репликация MySQL, по­
скольку включает в себя больше элементов, которые надо настраивать и админи­
стрировать. В конце концов, это промежуточное программное обеспечение.

Итоги главы 593

[] Это еще один элемент вашего стека приложений, который надо изучить и понять.

[] Он не такой легковесный, как встроенная репликация MySQL, и не имеет такой
хорошей производительности. Однопоточная репликация медленнее, чем одно­

поточная репликация MySQL.

[] Он не так широко тестировался и развертывался, как репликация MySQL, по-
этому выше риск возникновения ошибок и проблем.

В целом, мы рады, что Tungsten Replicator доступен и активно развивается, стабиль­
но получая новые возможности и функциональность. Приятно иметь альтернативу

встроенной репликации, тем самым MySQL становится подходящей для исполь­
зования в большем количестве случаев и достаточно гибкой для удовлетворения
требований, которые, по-видимому, никогда не сможет удовлетворить встроенная

репликация MySQL.

Итоги главы

Репликация MySQL - это швейцарский армейский нож встроенных возможностей

MySQL, она значительно расширяет диапазон функциональности и полезности
MySQL. На самом деле это, возможно, одна из ключевых причин, почему MySQL
так быстро стала настолько популярной.

Хотя репликация имеет множество ограничений и оговорок, выясняется, что боль­
шинство из них относительно неважны либо основная масса поль.зователей их легко
преодолевает. Многие из недостатков - это просто особое поведение расширенных
возможностей, которые большинство людей не используют, но которые очень по­

лезны для нуждающегося в них меньшинства.

Репликация предлагает важный и сложный функционал, но при этом сам сервер

не позволяет конфигурировать, контролировать, администрировать и оптимизи­

ровать все имеющиеся «примочки». Здесь огромную помощь могут оказать ин­

струменты сторонних производителей. Мы субъективны, но считаем, что наиболее

заметными инструментами для улучшения вашей жизни с помощью репликации

являются Percona Toolkit и Percona XtraBackup. Советуем проверить их тестовые
комплекты, прежде чем использовать какие-либо другие инструменты. Если у них
нет официальных автоматизированных наборов тестов, задумайтесь, прежде чем

доверять им свои данные.

Когда дело доходит до репликации, ваш девиз должен быть K.l.S.S 1• Не делайте ни­
чего необычного, например не используйте кольца репликации, таблицы Blackhole
или фильтры репликации, если не уверены, что вам это действительно необходимо.

«Будь проще, Шварц!» (Кеер It Simple, Schwartz!) Кое-кто из нас считает, что K.I.S.S.
означает именно это.

K.I.S.S. может расшифровываться по-разному. Например: «Пусть будет коротко и ясно» (Кеер
It Short and Simple) или «Будь проще, дурачок» (Кеер It Simple, Stupid). - Примеч. пер.

594 Глава 10 • Репликация

Используйте репликацию просто для зеркалирования полной копии ваших данных,

включая все привилегии. Поддержание подчиненного сервера полностью идентич­

ным главному поможет вам избежать многих проблем.

Говоря о поддержании подчиненного сервера идентичным главному, приведем

краткий список важных операций, которые нужно выполнять при использовании

репликации.

Q Применяйте утилиту pt-taЬle-checksum из пакета Percona Toolkit для проверки
того, являются ли реплики истинными копиями главного сервера.

Q Контролируйте репликацию, чтобы убедиться, что она работает и не отстает от

главного сервера.

Q Не забывайте об асинхронном характере репликации и разрабатывайте при­

ложение так, чтобы либо избежать чтения устаревших данных из подчиненного
сервера, либо это было неважно.

Q Не делайте записи на несколько серверов. Настройте подчиненные серверы как

доступные только для чтения и заблокируйте привилегии для предотвращения
изменения данных.

Q Включите настройки безопасности и готовности к работе, как описано в этой

главе.

Как будет сказано в главе 12, сбой при репликации является одной из наиболее рас­
пространенных причин простоев MySQL. Чтобы избежать проблем с репликацией,
прочитайте эту главу и попытайтесь применить ее рекомендации на практике. Кроме

того, внимательно изучите посвященный репликации раздел руководства по MySQL
и узнайте, как она работает и как ее администрировать. Если вам нравится читать,

книга MySQL High Auailahility (Charles Bell et а!" издательство O'Reilly) также со­
держит полезную информацию о внутренних функциях репликации. Но все равно

нужно прочитать инструкцию!

Масштабирование
MySQL

В этой главе мы покажем, как на основе MySQL можно построить решение, которое
может сильно увеличиться в размерах, оставаясь при этом быстрым, эффективным

и экономичным.

Какой совет можно дать по поводу масштабируемости приложений, которые отлич­
но подходят для одного или пары серверов? Большинство людей никогда не будут

поддерживать чрезвычайно большие системы, поэтому тактику, используемую

в очень больших компаниях, нельзя применять для любых компаний. В этой главе

попытаемся охватить целый диапазон стратегий. Мы создали или помогли создать

множество приложений, начиная с тех, которые используют один-два сервера, и за­

канчивая такими, которые используют тысячи. Выбор подходящей стратегии для

вашего приложения часто является ключом к экономии денег и времени, которые

можно было бы инвестировать куда-то еще.

MySQL часто критикуют за то, что она тяжело масштабируется. Иногда это так
и есть. Однако вы можете удачно масштабировать MySQL, если выберете правиль­
ную архитектуру и хорошо ее реализуете. Но далеко не все правильно понимают, что

такое масштабируемость, поэтому мы начнем с разъяснения этого понятия.

Что такое масштабируемость

В разговоре такие термины, как «масштабируемость», «высокая доступность»

и «производительность», часто употребляют как синонимы, но на самом деле они

обозначают совершенно разные вещи. Как мы писали в главе 3, под производитель­
ностью мы понимаем время отклика. Масштабируемость рассмотрим подробнее
чуть позже, но в двух словах - это способность системы получать эффект от каждого

вложенного рубля по мере того, как вы добавляете ресурсы для увеличения выпол­

ненной работы. Плохо масштабируемая система достигает точки минимума отдачи
и не может расти дальше.

596 Глава 11 • Масштабирование MySQL

Мощность1 - это родственная категория. Мощность системы - это объем работы,
которую она может выполнить за определенный промежуток времени2• Однако мощ­

ность должна отвечать требованиям системы. Максимальная пропускная способность
системы не то же самое, что ее мощность. Большинство эталонных тестов измеряют

максимальную пропускную способность системы, но в реальности системы так не на­
гружают. Если вы это сделаете, производительность ухудшится, а время отклика

станет неприемлемо большим и непостоянным. Мы определяем фактическую мощ­
ность системы как пропускную способность, которой она может достичь, обеспечивая
приемлемую производительность. Вот почему результаты эталонных тестов обычно
не должны сводиться к одному показателю.

Мощность и масштабируемость не связаны с производительностью. Проведем ана­
логию с машинами на шоссе.

О Производительность - это скорость, с которой может ехать автомобиль.

О Мощность - это ограничение скорости и количество автомобилей на автомаги­
страли.

О Масштабируемость - предел, до которого можно увеличивать количество авто-
мобилей и полос движения без снижения скорости транспортного потока.

В этой аналогии масштабируемость зависит от таких факторов, как удобство раз­
вязок, количество поломок машин и дорожно-транспортных происшествий, а также

интенсивность перестроения из ряда в ряд, но в общем случае не зависит от мощности

двигателей. Это не означает, что производительность не имеет значения, поскольку

это не так. Мы просто хотим сказать, что системы могут быть масштабируемыми,
даже если не являются высокопроизводительными.

С высоты птичьего полета масштабируемость - это возможность увеличить прои.з­
водительность при увеличении ресурсов.

Даже если ваша архитектура MySQL масштабируема, приложение может таковым
не являться. Если в силу каких-либо причин мощность увеличить сложно, прило­
жение в целом не масштабируется. Минуту назад мы определили мощность с точки
зрения пропускной способности, но стоит посмотреть на нее с высоты птичьего
полета. С этой точки зрения мощность просто означает способность обрабатывать
нагрузку, а ее также следует рассматривать с разных точек зрения.

О Обьем дттых. Рост объема данных, накапливаемых приложением, - одна из
самых типичных проблем масштабирования. Особенно актуально это для мно­
гих современных веб-приложений, которые никогда не удаляют данные. На-

В оригинале употреблен термин capacity, который здесь переводится как «мощность~>, но
его следует отличать от роwег. - Примеч. пер.

В академической физике мощность определяется как «работа, выполняемая в единицу

времени~>. Но в вычислительной технике семантика слова «мощность~> столь многогранна,

что мы стараемся избегать этого термина из-за его многозначности. Поэтому при описании
систем корректнее говорить о мощности (capacity) как о максимальном КПД, достижимом
в данной системе.

Что такое масштабируемость 597

пример, сайты социальных сетей обычно не удаляют старые сообщения и ком­
ментарии.

Q Количество пользователей. Даже если каждый пользователь порождает небольшой
объем данных, при увеличении их числа он суммируется. Помимо этого, общий
объем данных может расти несоизмеримо быстрее, чем количество пользователей.
Кроме того, обычно чем больше пользователей, тем больше транзакций, и за­
висимость между количеством транзакций и количеством пользователей тоже

может быть нелинейной. Наконец, с увеличением числа пользователей (и объема
данных) сложность запросов чаще всего возрастает, особенно если они зависят от
количества связей между пользователями (количество связей ограничено сверху

величиной (N(N- 1)) / 2, где N- число пользователей).

Q Аюпuвность пользователей. Не все пользователи одинаково активны, и их актив­

ность распределена неравномерно. Если внезапно активность пользователей возрас­

тет, например, из-за появления новых возможностей, то нагрузка на приложение мо­

жет значительно увеличиться. Активность пользователей не сводится к количеству

просмотров страниц - при неизменном числе просмотров нагрузка может стать

больше, если популярной окажется часть сайта, требующая большей работы для
генерации страниц. Кроме того, некоторые пользователи гораздо активнее прочих:

у них больше друзей, сообщений или фотографий, чем у среднего пользователя.

Q Размер взаuмосвязаниых наборов данных. Если между пользователями имеются
связи, то, возможно, нриложению приходится выполнять запросы или вычис­

ления для целых групп связанных пользователей. Это сложнее, чем работать
с индивидуальными пользователями и их данными. Сайты социальных сетей

нередко сталкиваются с непростыми проблемами из-за особо популярных групп
или пользователей, у которых много друзей 1 •

Формальное определение. Стоит изучить математическое определение термина
«масштабируемость»-, поскольку это позволит вам понимать более сложные концеп­
ции. Без этого могут возникнуть проблемы с пониманием или точным определением
этого термина. Не беспокойтесь, это не связано с высшей математикой - вы сможете
понять эту концепцию интуитивно, даже не будучи математи•1еским гением.

Ключевым аспектом является фраза, которую мы использовали ранее: «Получать

эффект на каждый вложенный рубль»-. Другими словами масштабируемость можно
определить как уровень, при котором система обеспечивает одинаковую рентабель­
ность инвестиций (return on investment, ROI) по мере добавления ресурсов для
обработки нагрузки и увеличения мощности. Предположим, у нас есть система
с одним сервером и мы можем измерить ее максимальную мощность. Этот сценарий

проиллюстрирован на рис. 11.1.

Теперь добавим еще один сервер, и мощность системы удвоится (рис. 11.2).

Это линейная масштабируемость. Мы удвоили количество серверов и как результат
удвоили мощность системы. Большинство систем не являются линейно масштаби­
руемыми, они часто масштабируются так, как показано на рис. 11.3.

Джастин Бибер, мы тебя 110-nрежнему любим!

598 Глава 11 • Масштабирование MySQL

Серверы

Рис. 11.1. Система с одним сервером

2 Серверы

Рис. 11.2. У линейно масштабируемой системы при двух серверах двойная мощность

2 Сер11еры

Рис. 11.3. Система, не масштабируемая линейно

Что такое масштабируемость 599

Большинство систем при низких коэффициентах масштабирования обеспечивают
масштабируемость чуть хуже линейной, однако отклонение от линейности стано­

вится более заметным при высоких коэффициентах масштабирования. Фактически

большинство систем в конце концов достигают точки максимальной пропускной

способности, за которой дополнительные инвестиции обеспечивают отрицатель­

ную отдачу, - добавьте рабочую нагрузку, и вы фактически уменьшите пропускную

способность системы! 1

Почему это возможно? На протяжении многих лет с разной степенью успеха и реа­

лизма создавались различные модели масштабируемости. Модель масштабируемо­

сти, на которую ссылаемся мы, основана на некоторых базовых механизмах, которые

начинают влиять на системы по мере их масштабирования. Это универсальный

закон о масштабируемости доктора Нейла Дж. Гюнтера (Neilj. Gunter) (Universal
ScalaЬility Law, USL). Доктор Гюнтер подробно рассказал об этом в своих книгах,
в том числе Guemlla Capacity Planning (издательство Springer). Здесь мы не будем
углубляться в математику, но если вам интересно, эта книга и учебные курсы, пред­

лагаемые его компанией Performance Dynamics, могут оказаться полезными2 •

Краткое введение в USL заключается в том, что отклонение от линейной масшта­
бируемости можно моделировать двумя факторами: одна часть работы не может

выполняться параллельно, а другая требует перекрестных коммуникаций. Моде­

лирование первого фактора приводит к известному закону Амдала, который гаран­

тирует выравнивание пропускной способности. Когда часть задачи не может быть

распараллелена независимо от того, как вы разделяете и властвуете, выполнение

задачи потребует как минимум столько же времени, сколько требуется для реали­

зации последовательных инструкций.

Добавление второго фактора - внутриузловой или внутрипроцессной коммуника­

ции - к закону Амдала приводит к USL. Затраты на эту коммуникацию зависят от
количества каналов связи, которое увеличивается квадратично относительно числа

работников в системе. Таким образом, затраты в конечном счете растут быстрее,

чем выгода, и именно из-за этого получается такая ретроградная масштабируемость.

На рис. 11.4 изображены три рассмотренные концепции: линейное масштабирова­
ние, масштабирование по закону Амдала и масштабирование USL. Большинство
реальных систем выглядят как кривая USL.

Фактически термин «рентабельность инвестиций» можно рассматривать также в конте­

ксте ваших финансовых вложений. Модернизация компонента, позволяющая удвоить его

мощность, часто требует вложений, более чем в два раза превышающих первоначальные

инвестиции. Мы часто сталкивались с этим на практике, но здесь не будем рассматривать

этот момент, чтобы не усложнять и так уже запутанную тему.

Можете также прочитать нашу статью Forecasting MySQL Scalability with the Universal
Scalabllity l,aw, в которой приводится краткий обзор математического аппарата и прин­
ципов работы в USL. Статья доступна по адресу http://www.percona.coш.

600 Глава 11 • Масштабирование MySQL

Количество серверов

Линейная

масштабируем ость

Масштабируемость
по закону Амдала

Универсальный закон
масштабируемости ---------------------

Рис. 11.4. Сравнение разных типов масштабируемости: линейной, по закону Амдала и по закону
универсальной масштабируемости

USL можно применять как к аппаратным средствам, так и к программному обеспе­
чению. В первом случае на оси Х откладываются единицы оборудования, такие как

серверы или процессоры, а рабочая нагрузка, объем данных и сложность запросов

на единицу оборудования должны оставаться постоянными 1• В случае программного

обеспечения ось Хна графике показывает конкурентные единицы, такие как пользо­

ватели или потоки, рабочая нагрузка на конкурентную единицу должна оставаться

постоянной.

Важно понимать, что USL не сможет отлично описать какую-то реальную систе­
му, поскольку это упрощенная модель. Тем не менее это хорошая основа для того,

чтобы понять, почему системы по мере роста не обеспечивают постоянную отдачу

от каждого вложенного рубля. Он также раскрывает важный принцип построения

высокомасштабируемых систем: старайтесь избегать последовательных операций
и перекрестных коммуникаций внутри системы.

Можно измерить систему и использовать регрессию для определения объема по­

следовательных операций и перекрестных коммуникаций. Вы можете принять эти

данные за наилучшую верхнюю границу для планирования мощности и прогно­

зирования производительности. А также изучить, насколько система отклоняется

от модели USL, используя ее как наихудшую нижнюю границу для определения
областей, в которых система не работает, как следовало бы. В обоих случаях USL
даст вам основания для обсуждения масштабируемости. Без этого вы смотрели бы

на систему и не понимали, чего от нее следует ожидать. Полное исследование этой

темы заслуживает отдельной книги, и доктор Гюнтер уже написал ее, поэтому мы

не будем вдаваться в подробности.

На практике очень сложно точно определить аппаратную масштабируемость, поскольку

трудно сохранить все эти параметры постоянными при изменении количества серверов

в системе.

Что такое масштабируемость 601

Понять проблемы масштабируемости может помочь теория ограничений, в которой
объясняется, как повысить пропускную способность и эффективность системы за
счет сокращения зависимых событий и статистических изменений. Она рассмотрена
в книге Элиаху М. Голдратта (Eliyahu М. Goldratt) The Goal (издательство North
River), которая представляет собой расширенную притчу о менеджере на производ­
ственном объекте. Хотя может показаться, что эта книга далека от области сервера
базы данных, рассмотренные в ней принципы совпадают с принципами теории оче­
редей и другими аспектами оперативных исследований.

Масuпабируемые модели - это не последнее слово

Это все теория, но насколько хорошо она работает на практике? Точно так же, как

законы Ньютона, которые оказались приближениями, довольно хорошо работа­

ющими, когда вы не близки к скорости света, законы масштабируемости - это упро­

щенные модели, которые хорошо работают в некоторых случаях. Иногда говорят,

что все модели ошибочны. Тем не менее некоторые модели полезны, в частности,

lJSL полезен для понимания некоторых факторов, влияющих на плохую масштаби­
руемость.

lJSL перестает работать, когда возникают всякие тонкости во взаимодействии ра­
бочей нагрузки с системой, на которой она выполняется. Например, особенно часто

встречающаяся ситуация, которую lJSL не удается хорошо моделировать, такова: по­
ведение системы меняется, поскольку общий размер памяти кластера изменяется от­

носительно размера набора данных. U SL не допускает возможности лучшего масшта­
бирования, чем линейное, но в реальном мире мы иногда видим, как это происходит.

Например, когда добавляем ресурсы в систему и заменяем нагрузку, использующую

в том числе и операции ввода/вывода на диск, на нагрузку, работающую исключи­

тельно с памятью.

Существуют и другие случаи, когда модель USL не очень хорошо описывает поведе­
ние системы. Она не моделирует все возможные способы изменения алгоритмиче­

ской сложности при изменении размера систем или изменении набора данных. (USL
имеет компоненты 0(1) и O(N), но как насчет компонента O(log N) или O(N log N),
например?) Немного поразмыслив и попрактиковавшись, мы могли бы, вероятно,

расширить USL и тем самым охватить некоторые из этих распространенных случаев.
Однако это превратит простую и удобную модель в более запутанную и сложную для

использования. Это довольно полезная модель, которая во многих случаях вполне

применима на практике. Она хорошо моделирует обычное поведение системы, а спра­

виться с отклонениями от модели ваш разум должен самостоятельно. Вот поэтому мы

считаем, что эта модель - хороший компромисс между корректностью и применимо­

стью. Короче говоря, отнеситесь к ней с изрядной долей скепсиса и, использовав ее,

проверьте, оправдываются ли ваши ожидания.

602 Глава 11 • Масштабирование MySQL

Масштабирование MySQL
Размещение всех данных приложения на единственном экземпляре MySQL - не тот

подход, который хорошо масштабируется. Рано или поздно увеличившаяся нагрузка
на сервер приведет к появлению узких мест и, как следствие, к снижению произво­

дительности. Традиционно в этом случае просто покупают более мощные серверы.
Такой подход называется вертикальным масштабированием. Альтернативный
подход - распределение работы между несколькими компьютерами - называется
горизонтальным масштабированием. Мы обсудим, как объединить горизонтальную
и вертикальную масштабируемость при консолидации и как выполнять масштабиро­
вание с использованием кластерных решений. В большинстве приложений имеются
данные, которые используются редко или не используются вовсе, их можно удалить

или заархивировать. Такой подход мы называем обратным масштабированием, про­
сто чтобы сохранить аналогию с другими терминами.

Планирование масштабируемости

О масштабируемости начинают задумываться, когда у сервера возникают трудности
при увеличении нагрузки. Обычно это проявляется как снижение производительно­
сти - в виде замедления обработки запросов, смещения рабочей нагрузки от исполь­
зования процессора в сторону ввода/вывода, роста конкуренции между запросами

и увеличения задержки. Как правило, причина связана с увеличением сложности за­

просов или с тем, что какая-то часть данных или индекса, которая раньше помещалась

в память, теперь в нее не помещается. Возможно, ухудшение будет заметно лишь для
некоторых видов запросов, а дpyrne продолжат работать, как раньше. Нередко длинные
и сложные запросы начинают страдать раньше, чем более простые.

Если приложение масштабируемо, то достаточно добавить несколько серверов,
и трудности с производительностью исчезнут. В противном случае вы будете посто­
янно с чем-то воевать. Этого можно избежать, если планировать масштабируемость
с самого начала.

Самая трудная часть планирования масштабируемости - оценить, с какой нагрузкой
придется иметь дело. Абсолютно точная оценка не нужна, но желательно знать хотя бы
порядок величины. Если оценка завышена, то некоторое время будет зря потрачено
на разработку, а если занижено, то возросшая нагрузка застанет вас врасплох.

Кроме того, следует приблизительно оценить темпы роста нагрузки, то есть знать,
где находится горизонт. Для некоторых приложений простенький прототип вполне

может работать в течение нескольких месяцев, а за это время вы сможете привлечь
инвестиции и создать более масштабируемую архитектуру. Для других текущая
архитектура должна обладать запасом мощности хотя бы на два года.

Планируя масштабируемость, вы должны задать себе следующие вопросы.

О Насколько полна функциональность приложения? Многие решения, которые мы

собираемся предложить, усложняют реализацию некоторых возможностей. Если
вы еще не реализовали какие-то базовые функции, то не исключено, что потом их

Масштабирование MySQL 603

будет трудно встроить в масштабированное приложение. Аналогично не всегда
легко принять правильное решение о масштабировании, не зная, как эти функции
работают в действительности.

О Какова ожидаемая пиковая нагрузка? Приложение должно ее выдерживать.
Что случится, если ваш сайт станет таким же популярным, как начальная стра­

ница Yahoo! News или Slashdot? Но даже если ваше приложение не является
сверхпопулярным сайтом, все равно оно может испытывать пиковые нагрузки.
Например, для сайта интернет-магазина пиковыми являются праздничные дни,
особенно те, которые традиционно посвящают шопингу, например, несколько
предрожденственских недель. В США День святого Валентина и уик-энд перед
Днем матери часто становится пиком продаж в интернет-магазинах, торгующих

цветами.

О Если требуется, чтобы нагрузку выдерживали все части системы, то что случится,
если какая-то из них откажет? Например, если операции чтения должны быть
распределены по реплицируемым подчиненным серверам, то сохранит ли система

работоспособность, если один из них выйдет из строя? Не придется ли отключать
часть функциональности? На случай возникновения подобных проблем можно
заложить избыточную мощность.

Перед тем как приступать к масштабированию

Как хорошо было бы жить в идеальном мире, где все распланировано заранее, раз­
работчиков достаточно, бюджетных ограничений не существует и т. д. Увы, в реаль­
ности все намного сложней, и при масштабировании приложения приходится идти
на компромиссы. В частности, не исключено, что некоторые крупные изменения

в проекте придется на время отложить. Прежде чем вплотную заняться рассмотре­
нием масштабирования MySQL, приведем перечень того, что можно сделать сразу,
еще не предпринимая серьезных усилий по масштабированию.

о Оптимизировать производительность. Часто существенного выигрыша можно
добиться ценой сравнительно простых изменений, например, правильно проин­
дексировав таблицы или перейдя с подсистемы хранения MyISAM на InnoDB.
Если производительность ограничена уже сейчас, то первым делом нужно вклю­

чить и проанализировать журнал медленных запросов (см. главу 3).
Существует точка сокращения отдачи. После того как большая часть серьезных
проблем исправлена, становится все сложнее улучшать производительность.
Каждая следующая оптимизация требует все больших усилий и дает все менее
заметный результат, хотя сложность приложения при этом быстро возрастает.

о Приобрести более мощное оборудование. Иногда модернизация имеющихся сер­
веров или добавление новых дает неплохие результаты. Приобретение несколь­
ких лишних серверов или памяти особенно целесообразно, когда приложение
находится на ранней стадии жизненного цикла. В качестве альтернативы можно
попробовать оставить приложение на одном сервере. Как правило, практичнее
купить дополнительные единицы оборудования, чем менять архитектуру при­
ложения. Особенно если время поджимает, а разработчиков не хватает.

604 Глава 11 • Масштабирование MySQL

Покупка дополнительного оборудования - приемлемое решение, если приложение
либо невелико, либо спроектировано так, что может воспользоваться новым обо­

рудованием. Это типичная ситуация для вновь созданных продуктов, которые еще

не выросли или правильно спроектированы. Приобретение оборудования для зрелых
крупномасштабных приложений может ничего не дать либо оказаться слишком до­
рогостоящим. Например, переход от одного сервера к трем обойдется дешево, а от
100 к 300 - совсем другое дело, дороговато. В таком случае имеет смысл направить

время и усилия на выжимание всей возможной производительности из существу­

ющей системы.

Вертикальное масштабирование

Вертикальное масштабирование означает покупку более мощного оборудования,
и для многих приложений это все, что вам нужно сделать. У этой стратегии есть

множество преимуществ. Например, один сервер, в отличие от нескольких, гораз­

до проще поддерживать и развивать, что обеспечивает значительную экономию

средств. Резервное копирование и восстановление приложения на одном сервере

также выполняется проще, поскольку никогда не возникает вопроса о согласован­

ности или о том, какой набор данных является правильным. Есть и другие при­
чины. Затраты связаны со сложностью, а вертикальное масштабирование проще,

чем горизонтальное.

Масштабировать по вертикали можно довольно далеко. Сегодня на рынке доступны
серверы с объемом памяти 0,5 Тбайт, с 32 или большим количеством ядер процессора
и большей мощностью ввода/вывода, чем вы можете использовать в MySQL (напри­
мер, флеш-память на РСiе-картах). Благодаря умному проектированию приложений

и баз данных и хорошим навыкам оптимизации производительности можете созда­

вать очень большие приложения для работы с MySQL на таких серверах.

Насколько сильно можно масштабировать MySQL на современном оборудовании?
Хотя ее можно запустить на очень мощных серверах, окажется, что, как и большин­

ство серверов баз данных, MySQL масштабируется не великолепно (неожиданно!)
при добавлении аппаратных ресурсов. Для запуска MySQl, на больших железных
ящиках вам обязательно понадобится последняя версия сервера. Из-за проблем
с внутренней масштабируемостью версии MySQL 5.0 и 5.1 плохо работают на
таком большом оборудовании. Вам понадобится MySQL 5.5 или более новых вер­
сий или Percona Server 5.1 или новее. Тем не менее в настоящее время разумная
точка уменьшения отдачи примерно такова: 256 Гбайт ОЗУ, 32 ядра и флеш­
накопитель PCie. MySQL будет продолжать улучшать производительность на
более крупном оборудовании, чем это, однако соотношение цены и производитель­

ности не будет таким же хорошим. На самом деле даже в этих системах вы часто

можете получить гораздо лучшую производительность за счет запуска нескольких

меньших экземпляров MySQL вместо одного большого, который использует все
ресурсы сервера. Но все настолько быстро меняется, что этот совет, вероятно, бы­
стро устареет.

Масштабирование MySQL 605

Вертикальное масштабирование может работать в течение некоторого времени, но
лишь до тех пор, пока масштаб приложения не превысит критическую отметку 1 •

Первая причина этого - деньги. Вне зависимости от программного обеспечения
в какой-то момент наращивание мощности оборудования становится неприемлемым

из финансовых соображений. Существует некий диапазон аппаратных решений
с оптимальным соотношением цены и производительности. За пределами этого диа­

пазона находится в основном специализированное и, соответственно, более дорогое
оборудование. Тем самым положен практический предел тому, как далеко можно
зайти при вертикальном масштабировании. Даже если главный сервер способен
эффективно использовать много процессоров, маловероятно, что вам удастся по­

добрать подчиненный сервер, который успевал бы реплицировать данные. Сильно
загруженный главный сервер легко справляется с гораздо большим объемом работы,
чем подчиненный сервер с таким же оборудованием. Связано это с тем, что поток
репликации на подчиненном сервере не может толком задействовать несколько

процессоров и дисков.

Наконец, невозможно масштабировать по вертикали до бесконечности, поскольку
даже самые мощные компьютеры имеют пределы. Обычно приложения, работающие
на одном сервере, сначала упираются в ограничения при чтении, особенно при об­
работке сложных запросов выборки. Такие запросы внутри MySQL функционируют
в однопоточном режиме, а следовательно, используют всего один ЦП, и ни за какие

деньги вы не сможете существенно повысить их производительность. Самые быстрые
из имеющихся на рынке процессоров, специально предназначенные для серверов,

всего-то раза в два быстрее стандартных потребительских ЦП. Добавление несколь­
ких процессоров или процессорных ядер не поможет медленным запросам работать
быстрее. При этом по мере того, как данные перестают умещаться в кэше, сервер
начинает ощущать нехватку памяти. Обычно это проявляется в виде интенсивного

обращения к дискам, а диски - один из самых медленных компонентов современного
компьютера.

Наиболее очевидное место, где невозможно вертикальное масштабирование, - это
облако. Обычно вы не можете использовать очень мощные серверы в большинстве
общественных облаков, поэтому, если ваше приложение должно вырасти очень
большим, вертикальное масштабирование ситуацию не спасет. Мы обсудим эту тему
в главе 13.

По этим причинам рекомендуем не планировать вертикальное масштабирование
в тех случаях, когда вполне реально упереться в потолок масштабируемости, что
станет серьезной проблемой для бизнеса. Если вы знаете, что приложение будет расти
очень быстро, то вполне допустимо купить более мощный сервер на тот непродол­
жительный промежуток времени, пока вы будете работать над другим решением.

Однако рано или поздно вам все же придется перейти к горизонтальному масшта­

бированию, что и является темой следующего раздела.

Мы избегаем слова «Неб-масштабирование», поскольку оно потеряло всякий смысл

(см.: http://www.xtranorшal.coш/watch/6995033/).

606 Глава 11 • Масштабирование MySQL

Масштабирование по горизонтали

Мы можем разбить тактику масштабирования на три большие группы: репликация,
секционирование и шардирование.

Простейший и наиболее распространенный способ масштабирования по горизонта­
ли - распределить данные по нескольким серверам с помощью репликации, а затем

выполнять чтение на подчиненных серверах. Эта техника хорошо работает в прило­
жениях, где много запросов на чтение. У нее есть недостатки, например дублирование
кэша, но даже эта проблема может оказаться не слишком серьезной, если размер
данных ограничен. Мы немало говорили на данную тему в предыдущей главе и еще

вернемся к ней в текущей.

Еще один широко употребительный метод горизонтального масштабирования -
секционирование рабочей нагрузки по нескольким узлам. Конкретный способ сек­
ционирования требует тщательного обдумывания. Большинство крупномасштабных
приложений на основе MySQL не автоматизируют секционирование или по крайней
мере автоматизируют не полностью. В этом разделе мы рассмотрим некоторые вари­

анты секционирования и обсудим их сильные и слабые стороны.

Узлом называется функциональная единица в архитектуре MySQL. Если вы заранее
не планируете избыточность и высокую доступность, то узлом может быть и один
сервер. Если же проектируется система с резервированием и возможностью аварий­

ного переключения при отказе, то узлом могут быть:

О пара серверов в топологии репликации «главный сервер - главный сервер» сак­

тивным главным и пассивным подчиненным сервером;

О один главный и много подчиненных серверов;

О активный сервер, использующий распределенное реплицируемое блочное устрой-
ство (DRBD) в качестве резерва;

О кластер на базе SAN.

В большинстве случаев на всех серверах внутри одного узла должны храниться оди­
наковые данные. Нам нравится схема с репликацией типа «главный сервер - главный

сервер», состоящая из двух серверов в активном и пассивном режиме.

Функциональное секционирование

Функциональное секционирование, или разделение обязанностей, означает, что
под разные задачи выделяются разные узлы. Мы уже встречались с несколькими

подобными подходами - например, в предыдущей главе упоминалось о назначении

разных серверов для OLTP- и ОLАР-запросов. Функциональное секционирование
развивает эту идею, предлагая назначать отдельные серверы или узлы разным при­

ложениям так, чтобы в каждом узле хранились только данные, необходимые кон­
кретному приложению.

Масштабирование MySQL 607

Здесь мы употребляем слово «приложение» в широком смысле. Имеется в виду

не отдельная программа, а набор взаимосвязанных программ, которые можно лег­
ко отделить от другого ПО, не имеющего к ним отношения. Например, если сайт

включает разделы, не связанные общими данными, то можно секционировать его по

функциональному назначению. Нередко можно встретить порталы, на которых пред­

ставлены не связанные между собой области: из портала можно перейти в новостной

раздел, форумы, область технической поддержки, базы знаний и т. д. Данные для

каждой из этих функциональных областей могут храниться на отдельном сервере

MySQL. Такая организация представлена на рис. 11.5.

Форумы Новости Техnоддержка

Рис. 11.5. Портал и узлы, выделенные nод различные функциональные области

Если приложение очень велико, то под каждую функциональную область можно

отвести свой веб-сервер, хотя так делают редко.

Еще один подход к функциональному секционированию заключается в том, чтобы
разделить данные одного приложения на множество таблиц, которые никогда не со­

единяются друг с другом . При необходимости можно иногда соединять таблицы из

разных множеств либо на прикладном уровне, если это не критично для производи­

тельности. У этого приема есть несколько вариаций, но общим для них является то,

что данные каждого типа находятся на одном узле. Такой способ секционирования

применяется нечасто, поскольку его очень трудно реализовать эффективно, а суще­

ственных преимуществ по сравнению с другими методами он не дает.

Однако и возможности функционального секционирования небезграничны, так как
если некоторая область связана с одним узлом MySQL, то она должна масштабиро­
ваться по вертикали. Рано или поздно какое-нибудь приложение или функциональ­

ная область разрастется слишком сильно, и тогда придется искать другую стратегию.
А если зайти по этому пути слишком далеко, то впоследствии изменить архитектуру

на лучше масштабируемую может оказаться сложно.

608 Глава 11 • Масштабирование MySQL

Шардирование данных

Шардирование данных1 сейчас является наиболее распространенным и успешным
подходом к масштабированию очень больших приложений на базе MySQL. Для
этого данные разбивают на меньшие куски, или секции (shards), и хранят их на раз­
ных узлах.

Шардирование хорошо сочетается с некоторыми видами функционального секци­

онирования. В большинстве подобных систем есть также некоторые глобальные
значения, которые не шардируются вовсе (скажем, списки городов или логины).

Обычно такие данные хранятся на одном узле, доступ к которому часто организуется
через специальный кэш, например memcached.

На практике в большинстве приложений шардируется только информация, которая
в этом нуждается, - как правило, те части набора данных, которые будут расти осо­
бенно быстро. Предположим, что вы создаете службу блогов. Если ожидается 1 О мил­
лионов пользователей, то, быть может, шардировать регистрационную информацию
пользователей и не обязательно, так как вся она (или по крайней мере относящаяся
к активным пользователям) помещается в памяти. Если же ожидается 500 миллионов
пользователей, то шардировать их профили имеет смысл. Генерируемый пользовате­

лями контент - сообщения и комментарии - почти наверняка придется шардировать
в любом случае, поскольку эти записи гораздо длиннее и их намного больше.

В больших приложениях может быть несколько логических наборов данных, кото­
рые можно шардировать по-разному. Их можно хранить на разных серверах, хотя

это и не обязательно. Кроме того, одни и те же данные можно шардировать разными
способами в зависимости от того, как организован доступ к ним. Пример такого под­
хода будет приведен в дальнейшем.

Проектирование приложений, построенных на основе шардирования данных, прин­

ципиально отличается от того, как обычно строят приложения на начальном этапе.
Переход от монолитного хранилища данных к шардированной архитектуре может
оказаться весьма непростым делом. Поэтому гораздо проще с самого начала закла­

дывать идеологию шардирования, если есть основания полагать, что это понадобится
в будущем.

Большинство приложений, в которые шардирование не было встроено изначально,
впоследствии, по мере роста, проходят через промежуточные этапы. Например,

в службе блогов можно поначалу воспользоваться репликацией для масштабирова­
ния запросов на чтение, но в конце концов это решение перестанет работать. Тогда
ничто не помешает разбить службу на три части: пользователи, сообщения и коммен­
тарии. Их можно поместить на разные серверы (функциональное секционирование),
возможно, с сервис-ориентированной архитектурой, а соединение таблиц выполнять

на уровне приложения. На рис. 11.6 показан постепенный переход от использования
одного сервера к функциональному секционированию.

Употребляются также термины splintering (дробление) и partitioning (секционирование),
но мы используем термин sharding (шардирование) во избежание путаницы. Google на­
зывает эту операцию шардированием. А если это подходит Google, это подойдет и нам.

Пользователи

оmравляют

коммекrарии

Единственный
экземпляр

Глобальные данные
о пользователях

Масштабирование MySQL 609

Пользователи
оmравляют комментарии

Главный и подчиненные серверы

Сообщения Комментарии

Функциональное секционирование

Рис. 11.6. От одного экземпляра к функционально секционированному хранилищу данных

Наконец, сообщения и комментарии можно шардировать по идентификатору пользо­
вателя, а информацию о пользователях хранить на отдельном узле. Если применить

конфигурацию «главный - подчиненный~ для глобального узла и пары «главный
сервер - главный сервер~ для шардированных узлов, окон•1ательное хранилище

данных может выглядеть так, как показано на рис. 11.7.

Если заранее известно, что потребуется масштабировать очень большую систему,
и понятны оrра~ш•1ения функционального секционирования. то можно пропустить

промежуточные этапы и сразу перейти от единственного узла к шардированному

хранилищу. Дальновидность часто помогает избежать появления уродливых шарщt­

рованных схем, •по может произойти при постепенном решении возникающих задач.

В шардированных приложениях часто применяется библиотека абстрагирования
базы данных, которая упрощает взаимодействие между программой и шардированным
хранилищем. ОбьР11ю такие библиотеки не скрывают шардирование полностью,

поскольку часто приложение знает о запросе нечто такое, что нсизвеспю хранилищу

610 Глава 11 • Масштабирование MySQL

данных. При слишком высоком уровне абстракции могут выполняться неэффектив­
ные действия, например опрос всех узлов в поисках информации, которая заведомо
хранится только на одном узле.

Глобальные
данные

о пользователе

Сообщения Комментарии

Шардированное хранилище данных

Рис. 11.7. Хранилище данных с одним глобальным узлом и шесrыо парами «главный - главный»

Шардированное хранилище данных может показаться элегантным решением, но его

трудно реализовать. Так почему же мы голосуем за такую архитектуру? Ответ прост:

если вы хотите масштабировать операции записи, то просто обязаны секционировать
данные. Имея единственный главный сервер, невозможно масштабировать запись,

сколько бы ни было подчиненных серверов. Шардирование при всех его недостат­
ках - предпочтительное, на наш взгляд, решение этой проблемы .

Шардировать или не шардировать?

Вот в чем вопрос, не так ли? А вот простой ответ: не шардировать, если в этом нет не­

обходимости. Посмотрите, можете ли вы избежать его с помощью оптимизации произ­

водительности, или улучшения приложения, или проектирования базы данных. Если

шардирование можно отложить на довольно длительный срок, возможно, проще ку­

пить большой сервер, обновить MySQL до новой версии с более высокой производи­
тельностью и продолжать работать с одним сервером плюс-минус репликация.

Проще говоря, шардирование неизбежно, когда размер данных или рабочая нагруз­

ка по операциям записи становятся слишком большими для одного сервера. Вы бы

удивились, узнав, как сильно можно масштабировать системы, не прибегая к шарди­

рованию, - просто грамотно проектируя приложение. Некоторые очень популярные

приложения, которые, как вы могли бы предположить, шардированы с самого начала,

на самом деле выросли до продуктов с многомиллиардной стоимостью и безумным

объемом трафика без шардирования. Это нс единственная возможность. Это сложный

способ создать приложение, и если он не нужен, не стоит его использовать.

Масштабирование MySQL 611

Выбор ключа секционирования

Самая важная и сложная задача, возникающая при шардировании, - поиск и вы­

борка данных. Способ поиска зависит от того, как они шардированы. Сделать это
можно разными методами - одни получше, другие похуже.

Наша цель состоит в том, чтобы самые важные и часто встречающиеся запросы за­
трагивали как можно меньше шардов (помните, что один из принципов масштаби­

руемости состоит в уменьшении перекрестных коммуникаций между узлами). Здесь

очень важно выбрать ключ (или ключи) секционирования данных. Ключ секциони­

рования определяет, в какой шард попадет та или иная строка. Если известен ключ

секционирования некоторого объекта, то можно ответить на два вопроса.

1:1 Где следует сохранить данные?

1:1 Где найти запрошенные данные?

Далее мы покажем разные способы выбора и использования ключа секциониро­
вания. А пока рассмотрим пример. Допустим, что мы поступаем так же, как NDB
Cluster, и применяем хеш первичного ключа таблицы для распределения данных по
шардам. Это очень простой подход, но он плохо масштабируется, поскольку часто
заставляет искать информацию во всех шардах. Например, если вы хотите найти все

сообщения в блоге пользователя 3, где их искать? Вероятнее всего, они равномерно
распределены по всем шардам, так как секционирование производилось по первич­

ному ключу, а не по идентификатору пользователя. Использование хеша первичного

ключа упрощает получение информации о том, где хранятся данные, но может за­

труднить их извлечение. Это зависит от того, какие данные вам нужны и знаете ли

вы первичный ключ.

Запросы к нескольким шардам хуже, чем запросы к одному из них, но если они за­

трагивают не слишком много шардов, то все не так уж плохо. Самый худший случай,

когда у вас нет ни малейшего представления о том, где находятся данные, и прихо­

дится просматривать все шарды без исключения.

Обычно хорошим ключом секционирования является идентификатор какой-нибудь
важной сущности в базе данных. Такие сущности называются единицами шардирова­
ния. Например, если информация секционируется по идентификатору пользователя

или клиента, то единицей шардирования является соответственно пользователь или

клиент.

Для начала неплохо изобразить модель данных в виде диаграммы ~сущность -
связь» или эквивалентного представления, на котором видны все сущности и связи

между ними. Постарайтесь нарисовать диаграмму так, чтобы взаимосвязанные

сущности располагались близко друг к другу. Часто с помощью визуального из­
учения диаграммы можно найти таких кандидатов на роль ключа секционирования,

которых иначе вы бы не заметили. Но не ограничивайтесь одной лишь диаграммой,
примите во внимание также запросы, выполняемые приложением. Даже если между

двумя сущностями существует какая-то связь, но соединение по ней производится

612 Глава 11 • Масштабирование MySQL

редко или вообще никогда, то при шардировании эту связь можно не принимать во

внимание.

Одни модели данных лучше поддаются шардированию, чем другие, - вес зависит от

степени связности графа ~сущность - связь~. На рис. 11.8 слева изображена модель,
которая легко шардируется, а справа - шардируемая с трудом.

О Ключи секционирования

Рис. 11.8. Две модели данных - одна шардируется легко, другая с трудом

Левую модель данных легко шардировать, потому что в ней много связных rюдгра­

фов, состоящих в основном из узлов, между которыми есть всего одна связь, и мож­

но сравнительно легко разрезать связи между подграфами. Правую модель трудно

шардировать, потому что в ней таких подграфов нет. Большинство моделей данных

представляются скорее левой, чем правой диаграммой.

Выбирая ключ секнионирования, попробуйте подобрать что-то, •по позволит вам по

максимуму избежать запросов к нескольким шардам, но чтобы при этом шарды были
настолько маленькими, что у вас не будет проблем с непропорционально большими

фрагментами данных. Желательно, чтобы шарды были одинаково маленькими, если

это возможно, а если нет, то по крайней мере достаточно небольшими, чтобы их

можно было легко сбалансировать, объединив в группы разное количество шардов.

Например, если ваше приложение использует данные только о США и вы хотите

ра>делить набор данных на 20 шардов, не стоит, по-видимому, шардировать на основе

отдельных штатов, поскольку в Калифорнии очень большое население. Однако вы

можете выполнить шардирование по 1·рафствам или телефонному коду местности ,

поскольку, хотя шарды и не будут равномерно наполнены, их окажется довольно

много, чтобы вы могли сформировать 20 наборов, в совокупности 11а1юл11еш1ых
примерно одинаково. Тогда вы сможете выбрать их так, чтобы избежать занросоll
к разным шардам.

Масштабирование MySQL 613

Несколько ключей секционирования

Если модель данных сложна, то и шардировать ее труднее. Во многих приложениях

существует более одного ключа секционирования, особенно если в данных можно
выделить несколько важных параметров. Иными словами, приложение должно иметь

возможность эффективно взглянуть на информацию под разными углами зрения

и получить целостное представление. Это означает, что некоторые данные придется

хранить в двух разных видах.

Например, данные приложения для ведения блогов можно шардировать по иденти­

фикатору пользователя и идентификатору сообщения, поскольку то и другое - уни­
версальные способы взглянуть на данные. Действительно, часто вы хотите видеть все

сообщения одного пользователя и все комментарии к сообщению. Но шардирование

по пользователям не поможет в поиске комментариев к сообщению, а шардирование
по сообщениям бесполезно для поиска сообщений данного пользователя. Если вы

хотите, чтобы оба запроса затрагивали только один шард, то придется шардировать

обоими способами.

Тот факт, что необходимы несколько ключей секционирования, еще не означает, что

требуется проектировать два дублирующих друг друга хранилища данных. Рассмо­

трим еще один пример: сайт социальной сети книголюбов, на котором пользователи
могут оставлять свои комментарии о книгах. На нем могут отображаться все коммен­

тарии к некоторой книге, а также все книги, которые прочитал и прокомментировал

данный пользователь.

В таком случае можно построить одно шардированное хранилище с данными о поль­

зователях и второе - с данными о книгах. В комментариях хранится как идентифи­

катор пользователя, так и идентификатор книги, поэтому они пересекают границы

шардов. Вместо того чтобы полностью дублировать комментарии, можно хранить

их вместе с данными о пользователях. Тогда вместе с данными о книгах достаточно

хранить только заголовок и идентификатор комментария. При этом для построения

большинства страниц, содержащих комментарии к книгам, не придется обращаться

к обоим хранилищам данных, ну а если потребуется вывести полный текст коммен­
тария, то его можно будет достать из хранилища данных о пользователях.

Запросы в разных шардах

В большинстве шардированных приложений встречаются запросы, требующие агре­

гирования или соединения данных, хранящихся в разных шардах. Например, если на

сайте книголюбов нужно показать наиболее активных или наиболее популярных
пользователей, то по определению необходимо обращаться ко всем шардам. Оптими­

зация подобных запросов - самая сложная часть реализации шардирования, посколь­

ку то, что приложение видит как один запрос, на самом деле надо разделить и парал­

лельно выполнить в каждом шарде. Хорошо написанный слой абстраrnрования базы

данных может в какой-то мере облегчить решение этой задачи, но все равно такие

614 Глава 11 • Масштабирование MySQL

запросы выполняются гораздо медленнее запросов к одному шарду, к тому же настоль­

ко затратны, что обычно необходимо применять агрессивное кэширование.

Некоторые языки, в частности РНР, плохо поддерживают параллельное выполнение

нескольких запросов. Чтобы обойти эту трудность, обычно разрабатывают вспомога­
тельное приложение, часто на языке С илиjаvа, которое отправляет запросы и объ­
единяет результаты. Тогда РНР-страница может обратиться к этому приложению,
обычно представляющему собой веб-сервис или рабочий сервис, такой как Gearman.

Выполнение запросов к нескольким шардам можно ускорить за счет наличия свод­

ных таблиц. Для их заполнения нужно обойти все шарды и по завершении сохранить
данные также на серверах каждого шарда, чтобы обеспечить резервирование. Если
дублирование информации на каждом шарде слишком расточительно, то можно со­
брать все сводные таблицы в каком-нибудь специальном хранилище.

Нешардированные данные часто размещаются на глобальном узле, а для его защиты
от перегрузки активно применяют кэширование.

В некоторых приложениях используется случайное шардирование в тех случаях,

когда важно равномерное распределение данных или подходящего ключа секцио­

нирования не существует. Хорошим примером могут служить распределенные про­

граммы поиска, где запросы в разных шардах и агрегирование являются нормой, а не

исключением.

Запросы в разных шардах - не единственная сложность, встречающаяся при орга­

низации шардирования. Трудно также поддерживать согласованность данных.

Внешние ключи через границы шардов не действуют, поэтому обычно контроль
производится на уровне приложения. Можно использовать внешние ключи внутри

шарда, поскольку согласованность данных внутри него является самой важной

задачей. Можно обратиться к ХА-транзакциям, но из-за высоких издержек так по­

ступают редко.

Можно также спроектировать процесс очистки, который время от времени будет за­
пускаться. Например, если срок хранения учетной записи в клубе книголюбов истек,
то необязательно удалять ее немедленно. Можно написать периодическое задание,

которое удалит комментарии пользователя из шарда с данными о книгах. Можно

также подготовить скрипт, который станет периодически запускаться и проверять

согласованность информации в разных шардах.

Распределение данных по шардам и узлам

Между шардами и узлами не обязательно должно существовать взаимно однозначное

соответствие. Часто бывает разумнее сделать размер шарда значительно меньше, чем
емкость узла, чтобы в одном узле можно было хранить несколько шардов.

Чем меньше размер шарда, тем проще обслуживать находящиеся в нем данные.
В результате упрощаются резервное копирование и восстановление информации,

а кроме того, для небольших таблиц быстрее завершаются такие действия, как из­
менение схемы. Пусть, например, имеется таблица размером 100 Гбайт. Ее можно

Масштабирование MySQL 615

хранить целиком в одном месте или разбить на 100 шардов по 1 Гбайт, разместив
их все на одном узле. Теперь предположим, что над этой таблицей нужно построить
новый индекс. На 100-гигабайтном шарде это заняло бы гораздо больше времени,
чем требуется на совокупное индексирование гигабайтных кусочков, поскольку
шард размером 1 Гбайт целиком помещается в память. Возможно, вам потребуется
во время работы команды AL ТЕR TABLE сделать данные недоступными, тогда лучше

заблокировать 1 Гбайт, а не все 100.

Также шарды меньшего размера удобнее перемещать, что упрощает задачу пере­
распределения емкости и поиска оптимального баланса между шардами и узлами.
Вообще говоря, перемещение шарда не слишком эффективная процедура. Обычно
нужно перевести его в режим только для чтения (эту возможность необходимо
встроить в приложение), выгрузить данные и переместить их на другой узел. Для

выгрузки чаще всего используется программа mysqldump, а для загрузки - mysql.
Если вы работаете с Percona Server, то можете применить XtraBackup для переме­
щения файлов между серверами, что намного эффективнее, чем выгрузка данных

и их перезагрузка.

Помимо перемещения шардов между узлами, нужно подумать еще и о перемещении

данных между шардами, желательно не прекращая обслуживания пользователей.
Если шарды слишком велики, то балансировать мощность путем перемещения шар­
дов целиком будет труднее, так что придется придумать способ переноса отдельных

логических блоков данных (например, данных об одном пользователе) из одного
шарда в другой. Перемещение данных между шардами обычно намного сложнее,
чем перемещение самих шардов, поэтому по возможности старайтесь этого избегать.
Вот почему мы рекомендуем ограничивать размер шарда так, чтобы им можно было
управлять.

Относительные размеры шардов зависят от нужд приложения. Определяя, что такое

поддающийся управлению размер, мы обычно предлагаем такую грубую оценку: это
размер, при котором таблицы настолько малы, что для регулярного выполнения та­
ких задач обслуживания, как AL ТЕR TABLE, СНЕСК TABLE, OPТIMIZE TABLE, достаточно
5-10 минут.

Если размер шардов слишком мал, то может появиться чересчур много таблиц, что
негативно отразится на файловой системе или на внутренних структурах MySQL.
К тому же чем меньше размер шардов, тем больше запросов придется выполнять

в разных шардах.

Организация шардов на узлах

Необходимо решить, как организовывап, шарды на одном узле. Есть несколько рас­

пространенных методов.

О Размещать в каждом шарде одну базу данных и называть все эти базы одинаково.
Такой метод обычно применяют, когда хотят, чтобы каждый шард повторял струк­

туру исходного приложения. Он неплохо работает, если запускаются несколько
экземпляров приложения, каждый из которых знает только об одном шарде.

616 Глава 11 • Масштабирование MySQL

О Помещать таблицы из нескольких шардов в одну базу данных и включать номер
шарда в имена таблиц (например, bookclub. comments_23). При такой конфигура­
ции в одной базе данных могут храниться несколько шардов.

о Использовать одну базу данных на каждый шард и помещать в эту базу все табли­

цы приложения. Включать номер шарда в имя базы, а не таблицы (то есть полное

имя таблицы будет имеет вид bookclub_23.comments, bookclub_23.users и т. д.).
Этот метод применяется, когда приложение соединяется с одной базой данных,

а имя базы в запросах не указывается. Преимущество состоит в том, что запро­
сы не нужно подстраивать под каждый шард. За счет этого упрощается переход

к архитектуре шардов для приложений, работающих только с одной базой.

о Использовать одну базу данных на каждый шард и включать номер шарда

как в имя базы, так и в имена таблиц (то есть полное имя таблицы имеет вид
bookclub_23. comments_23).

о Запускать несколько экземпляров MySQL для каждого узла, каждый из которых
есть один или несколько шардов, расположенных в любой разумной комбинации

только что упомянутых способов.

Если номер шарда является частью имени таблицы, то нужен какой-то способ под­

ставить его в шаблон запроса. Как правило, в шаблон включают специальные значения
заполнителя в запросах, например спецификаторы в духе функции sprintf (скажем, %s)
или строковую интерполяцию с помощью переменных. Вот один из способов запи­
сать шаблон запроса в РНР:

$sql = "SELECT book_id, book_title FROМ bookclub_%d.conrnents_%d ... ";
$res = mysql_query(sprintf($sql, $shardno, $shardno), $conn);

А вот как можно применить строковую интерполяцию:

$sql = "SELECT book_id, book_title FROM bookclub_$shardno.conrnents_$shardno
$res = mysql_query($sql, $conn);

"·

Эта идея легко реализуется в новых приложениях, но добавить шаблоны в существу­
ющую программу сложнее. При создании нового приложения, когда с шаблонами
запросов проблем не возникает, мы предпочитаем заводить по одной базе на шард,

включая номер шарда в имя базы и имена таблиц. Хотя такое решение несколько
усложняет задачи наподобие включения команды AL ТЕR TABLE в скрипты, у него есть

и преимущества.

о Если шард целиком находится в одной базе данных, то его легко переместить

с помощью утилиты mysqldump.

о Поскольку база данных представляет собой каталог в файловой системе, легко

манипулировать файлами шарда.

о Если один шард не перемешан с другими, то его размер легко определяется.

о Глобально уникальные имена таблиц помогают избежать ошибок. Если имена таб­

лиц, находящихся в разных местах, совпадают, то можно случайно обратиться не к тому
шарду, установив соединение не с тем узлом, с которым нужно, или импортировать

данные, предназначенные одному шарду, в таблицу, принадлежащую другому.

Масштабирование MySQL 617

Имеет смысл задаться вопросом, не характерна ли для данных приложения близость
шардов (shard affinity). Возможно, удастся получить выигрыш, поместив некоторые
шарды недалеко друr от друга (на одном сервере, в одной подсети, в одном центре

обработки данных или на узлах сети, обслуживаемых одним коммутатором), чтобы
воспользоваться сходством типичных способов доступа к данным. Например, мож­
но шардировать информацию по пользователям и поместить всех пользователей из

одной страны в шарды, находящиеся на одних и тех же узлах.

Когда поддержка шардов добавляется в существующее приложение, часто предпо­
читают размещать по одному шарду на каждом узле. При таком упрощенном подходе

минимизируется объем изменений в коде запросов, выполняемых приложением.
С введением шардирования приложение и так придется серьезно переработать,
а лишние проблемы никому не нужны. Если шардирование производится так, что на

каждом узле оказывается уменьшенная копия всех данных приложения, то большую
часть запросов изменять не придется, как не придется и задумываться о том, каким

образом маршрутизировать запросы нужному узлу.

Фиксированное распределение

Существует два основных способа распределения данных по шардам: фиксированное

и динамическое. Для обеих стратегий необходима функция секционирования, кото­
рая принимает на входе ключ секционирования строки и возвращает номер секции,

в которой эта строка находится 1•

Для фиксированного распределения применяется функция разбиения, которая за­
висит только от значения ключа секционирования. В качестве примеров можно при­

вести деление по модулю или хеш-функции. Такие функции отображают значения
ключей секционирования на конечное число ячеек (buckets), в которых хранятся
данные.

Пусть имеется 100 ячеек и требуется найти, в какую из них поместить пользователя 111.
Применение деления по модулю дает ответ: остаток от деления 111на100 равен 11,
поэтому пользователь должен находиться в шарде 11.

Если же для хеширования задействована функция СRСЗ2(), то в результате полу­
чается 81:

mysql> SELECT CRC32(111) % 100;
+------------------+
1 СRСЗ2(111) % 100 1

+------------------+
81 1

+------------------+

Здесь слово ~функция~ употребляется в математическом смысле как отображение множе­
ства входных значений (области определения) на множество выходных значений (область
значений). Как будет показано, такую функцию можно реализовать разными способами,
в том числе с использованием справочной таблицы в базе данных.

618 Глава 11 • Масштабирование MySQL

Основные достоинства фиксированного распределения - простота и низкие наклад­

ные затраты. К тому же ее легко встроить в приложение.

Однако у этой стратегии есть и недостатки.

О Если шарды велики и их немного, то сбалансировать нагрузку в них будет сложно.

О При фиксированном распределении вы лишены возможности решать, куда по-

мещать конкретную запись, а это важно в приложениях, где нагрузка на единицы

шардирования неравномерна. Некоторые части данных используются гораздо

чаще, чем остальные, и когда такие обращения по большей части адресуются

одному и тому же шарду, стратегия фиксированного распределения не позволяет

снять нагрузку, переместив часть данных в другой шард. (Эта проблема не слиш­

ком серьезна, если элементы данных малы, но их количество в каждом шарде

велико - закон больших чисел все расставит по своим местам.)

О Как правило, изменить алгоритм шардирования сложнее, потому что требуется

перераспределить все существующие данные. Например, если шардирование

производилось делением по модулю 10, то имеется 10 шардов. Когда приложение
вырастет и шарды станут слишком большими, возникнет желание увеличить их

количество до 20. Но для этого придется хешировать все заново, обновить очень
много данных и перераспределить их по новым шардам.

В силу указанных ограничений мы обычно предпочитаем в новых приложениях

пользоваться динамическим распределением. Но при добавлении шардирования

в существующее приложение бывает проще применить фиксированную стратегию,

поскольку она проще. Тем не менее большинство приложений, использующих фи­

ксированное распределение, рано или поздно переходят к стратегии динамического

распределения.

Динамическое распределение

Альтернативой фиксированному распределению является динамическое распреде­

ление, описание которого хранится отдельно в виде отображения единицы данных

на номер шарда. Примером может служить таблица с двумя столбцами, в которых

размещены идентификатор пользователя и идентификатор шарда:

CREATE TABLE user_to_shard
user_id INT NOT NULL,
shard_id INT NOT NULL,
PRIМARY КЕУ (user_id)

);

Функцией секционирования служит сама таблица. Зная ключ секционирования

(идентификатор пользователя), можно найти соответствующий номер шарда. Если

подходящей строки не существует, можно выбрать нужный шард и добавить строку

в таблицу. Впоследствии сопоставление можно будет изменить, поэтому стратегия
и называется динамической.

С динамическим распределением связаны определенные накладные затраты, так как

требуется обращение к внешнему ресурсу, например серверу каталогов (узлу, на ко­

тором хранится отображение). Для поддержания приемлемой эффективности такая

Масштабирование MySQL 619

архитектура часто нуждается в дополнительных слоях программного обеспечения.
Например, можно использовать распределенную систему кэширования, в памяти

которой хранятся данные с сервера каталогов, на практике изменяющиеся довольно

редко. Или, что, вероятно, происходит чаще, вы можете просто добавить столбец
shard_id в таблицу users и хранить его там.

Основное достоинство динамического распределения - более точное управление
местом хранения данных. Это упрощает равномерное разделение данных по шардам

и позволяет гибко адаптироваться к непредвиденным изменениям.

Кроме того, динамическое распределение дает возможность выстраивать многоуров­

невую стратегию шардирования поверх простого отображения ключей на шарды.
Например, можно организовать двойное отображение, при котором каждой единице
шардирования сопоставляется некоторая группа (например, группа членов клуба

книголюбов), а сами группы по возможности размещаются в одном шарде. Это поз­
воляет воспользоваться преимуществами близости шардов и избегать запросов
между шардами.

Динамическое распределение дает возможность создавать несбалансированные
шарды. Это полезно, когда не все серверы одинаково мощные или когда некоторые

из них используются и для других целей, например архивирования данных. Если

при этом имеется еще и возможность в любой момент перебалансировать шарды, то
можно поддерживать взаимно однозначное соответствие между шардами и узлами,

не растрачивая впустую емкость дисков. Некоторым нравится та простота, которая

свойственна хранению в каждом узле ровно одного шарда (но не забывайте, что имеет
смысл делать секции относительно небольшими).

Динамическое распределение и толковое применение близости шардов может
предотвратить рост числа запросов между шардами по мере масштабирования. Пред­
ставьте себе запрос к другому шарду в хранилище данных с четырьмя узлами. При
фиксированном распределении может случиться так, что любой запрос затрагивает
все шарды, тогда как динамическое распределение позволит сделать возможным

запуск всего на трех узлах. Кажется, что разница невелика, но подумайте, что про­

изойдет, когда количество шардов возрастет до 400: фиксированное распределение
заставит опрашивать каждый из 400 шардов, а динамическое - все те же три.

Динамическое распределение позволяет организовать стратегию шардирования

любой сложности, фиксированное такого богатства выбора не предоставляет.

Комбинирование динамического
и фиксированного распределения

Можно также применять комбинацию динамического и фиксированного распреде­
ления. Зачастую это полезно, а иногда даже необходимо. Динамическое распределе­
ние хорошо работает, когда отображение не слишком велико. С ростом количества
единиц шардирования его эффективность падает.

В качестве примера рассмотрим систему, в которой хранятся ссылки между сайтами.

В ней необходимо хранить десятки миллиардов строк, а ключом секционирования

620 Глава 11 • Масштабирование MySQL

является комбинация исходного и конечного URL. (На любой из двух URL могут
быть сделаны сотни миллионов ссылок, поэтому ни один из них по отдельности

не является достаточно селективным.) Однако невозможно хранить все комбинации

исходного и конечного URL в таблице сопоставления, поскольку их слишком много,
а каждый URL занимает много места.

Одно из возможных решений - конкатенировать URL и написать хеш-функцию,
отображающую получившиеся строки на фиксированное число ячеек, которые за­

тем можно динамически отображать на шарды. Если количество ячеек велико, ска­

жем 1 миллион, то в каждый шард их можно поместить довольно много. В результате
мы сможем пользоваться преимуществами динамического шардирования, не заводя

гигантскую таблицу отображения.

Явное распределение

Третья стратегия позволяет приложению явно выбрать шард при создании строки.

Это трудно сделать для уже существующих данных, поэтому такое решение редко

применяется при переработке имеющегося приложения с учетом шардирования.

Однако иногда оно бывает полезно.

Смысл его заключается в том, чтобы закодировать номер шарда в идентификаторе:
похожая техника применяется, чтобы избежать дублирования значений ключей
в репликации типа «главный - главный>.> (см. подраздел «Запись на обоих главных

серверах в конфигурации "главный - главный">.> в главе 10).

Пусть, например, приложение хочет создать пользователя 3 и назначить ему шард
11 и для номера шарда вы отвели 8 старших бит в столбце типа BIGINT. Тогда поль­

зователю будет присвоен идентификатор (11 « 56) + 3, или 792633534417207299.

Впоследствии приложение без труда сможет извлечь из этого числа и номер поль­
зователя, и номер шарда. Делается это следующим образом:

mysql> SELECT (792633534417207299 >> 56) AS shard_id,
-> 792633534417207299 & ~(11 << 56) AS user_id;

+----------+---------+
1 shard_id 1 user_id 1

+----------+---------+
11 1 3 1

+----------+---------+
Теперь предположим, что требуется создать для этого пользователя комментарий

и сохранить его в том же самом шарде. Приложение может присвоить комментарию

номер 5 и точно так же, как ранее, объединить его с номером секции - 11.

Достоинство такого подхода заключается в том, что идентификатор каждого объекта

уже несет в себе собственный ключ секционирования, тогда как остальные решения

подразумевают соединение таблиц или иную операцию поиска для нахождения тако­

го ключа. Если вы хотите извлечь из базы конкретный комментарий, то вовсе не обя­

зательно знать, какому пользователю он принадлежит: сам идентификатор объекта

Масштабирование MySQL 621

скажет, где его искать. Если бы объекты динамически шардировались по идентифи­
катору пользователя, то пришлось бы сначала найти владельца комментария, а затем
запросить у сервера каталогов, в каком шарде этот пользователь находится.

Еще одно решение - хранить ключ секционирования вместе с -объектом, но в раз­
ных столбцах. Например, вы никогда не обращаетесь просто к комментарию с но­
мером 5, а всегда к комментарию 5, принадлежащему пользователю 3. Возможно,
кому-то такой подход понравится больше, поскольку он не нарушает первую
нормальную форму, однако дополнительные столбцы увеличивают накладные за­
траты, требуют написания лишнего кода и вообще вызывают всяческие неудобства.
(Это тот случай, когда, на наш взгляд, хранение двух значений в одном столбце
оправданно.)

Недостаток явного распределения кроется в том, что шардирование фиксировано

и заново балансировать шарды становится сложнее. В то же время этот метод хорошо
работает в сочетании с комбинацией фиксированного и динамического распреде­
ления. Вместо того чтобы хешировать заранее заданное количество ячеек и затем
отображать ячейки на узлы, ячейки просто кодируются в самом объекте. Это позво­
ляет приложению управлять местонахождением данных и, в частности, помещать

взаимосвязанные значения в один и тот же шард.

На сайте BoardReader (http://boardreader.com) применяется вариант этой методики:
ключ секционирования закодирован в идентификаторе документа в системе Sphinx.
Поэтому становится просто найти данные, ассоциированные с любым из результатов
поиска, в шардированном хранилище данных. Дополнительную информацию о си­

стеме Sphinx см. в приложении А.

Мы включили описание комбинированного распределения, поскольку сталкивались
со случаями, когда оно было полезно, но, вообще говоря, не рекомендуем применять
его. Предпочитаем использовать динамическое распределение и по возможности
избегать явного.

Повторное балансирование секций

При необходимости можно переместить данные из одного шарда в другой, чтобы
сбалансировать нагрузку. Многие читатели, наверное, слышали, как разработчики
больших сайтов фотогалерей или популярных социальных сетей рассказывали о сво­
их инструментах перемещения пользователей в другие шарды.

Способность перемещать данные между шардами открывает целый ряд возмож­
ностей. Например, чтобы модернизировать оборудование, можно перенести всех
пользователей из старого шарда в новый, не останавливая шард целиком и не пере­

водя его в режим «только для чтения».

Однако мы стараемся по возможности избегать повторного балансирования, так
как это может вызвать приостановку обслуживания. Из-за перемещения данных
становится сложнее добавлять в приложение новые функции, поскольку их прихо-

622 Глава 11 • Масштабирование MySQL

дится учитывать в скриптах повторного балансирования. Если шарды не слишком
велики, то прибегать к этому, возможно, и не понадобится: часто для балансирования

нагрузки достаточно перенести шард целиком, а это гораздо проще, чем перемещать

часть шарда (и более эффективно, если говорить о затратах в расчете на одну строку
данных).

Одна из хорошо зарекомендовавших себя стратегий состоит в использовании ди­

намического шардирования и распределения новых данных по шардам случайным

образом. Когда шард заполнен, можно выставить флаг, который говорит приложе­
нию, что туда не нужно добавлять информацию. Если в будущем вы захотите снова

открыть шард для записи, флаг можно будет сбросить.

Предположим, что установлен новый узел MySQL и на нем размещены 100 шардов.
В самом начале флаг всех секций равен 1, то есть они открыты для записи. Как только

в секции накопится достаточно данных (например, 10 ООО пользователей), ее флаг
сбрасывается в 0. Если через какое-то время узел окажется недогруженным из-за

того, что владельцы забросили свои учетные записи, некоторые шарды можно заново

открыть для добавления новых пользователей.

Если в ходе развития приложения были добавлены новые возможности, повысившие

нагрузку на каждый шард, или вы просто просчитались при оценке нагрузки, то не­

которые шарды можно перенести на новые узлы. Неприятность заключается в том,

что на время выполнения этой операции весь шард должен быть переведен в режим

«только для чтения1> или вообще выведен из оперативного доступа. Вам и вашим

пользователям решать, насколько такое решение приемлемо.

Мы используем и другую тактику - создание двух реплик шарда, каждая из кото­

рых содержит полную копию его данных. Затем назначаем каждую реплику ответ­

ственной за половину данных и прекращаем отправку запросов в исходный шард.

В каждой реплике содержатся некоторые данные, которые она не использует. Мы за­

пускаем фоновое задание, удаляющее нежелательные данные, для чего задействуем

специальный инструмент, такой как pt-archiver пакета Реrсопа Toolkit. Это просто
и уменьшает время простоя фактически до нуля.

Генерация глобально уникальных идентификаторов

По ходу преобразования системы в шардированное хранилище данных зачастую не­

обходимо генерировать глобально уникальные идентификаторы на разных машинах.

В монолитной базе для этой цели обычно используют автоинкрементные столбцы,
но по умолчанию модификатор AUTO_INCREMENT предназначен для использования на

одном сервере, где гарантировать уникальность несложно.

Есть несколько способов решения этой проблемы.

о Использовать конфигурационные параметры aиto_iпcreтent_increтeпt и аиtо_

iпcreтeпt_offset. Они говорят серверу MySQL, на какую величину увеличивать
автоинкрементный столбец и с какого значения начинать нумерацию. Например,

Масштабирование MySQL 623

в простейшем случае, когда есть всего два сервера, можно сконфигурировать их

так, что первый начнет нумерацию с 1, а второй - с 2 (впрочем, значение 0 тоже

годится), а увеличивать счетчик каждый сервер будет на 2. Тогда на одном сер­
вере в этом столбце будут только четные числа, а на другом___: только нечетные.

Эти параметры применяются ко всем таблицам на данном сервере.

Из-за своей простоты и независимости от какого-либо центрального узла этот

способ генерации значений стал очень популярен, но он требует внимания при
конфигурировании серверов. Очень легко случайно настроить их так, что будут

генерироваться дубликаты, особенно если роль сервера меняется в результате

добавления новых серверов или в ходе восстановления после сбоя.

D Создать таблицу 11а глобаль11ом узле. Можно создать таблицу с автоинкремент­

ным столбцом в глобальной базе данных и обращаться к ней из приложений для
генерации уникальных чисел.

D Использовать тетсасhеd. В API сервера memcached имеется функция incr(),
позволяющая в ходе неделимой операции инкрементировать число и вернуть

результат. Также можно использовать Redis.

D Выделять з11аче11ия сериями. Приложение может запросить у глобального узла
серию чисел, использовать ее, а затем запросить новую.

D Использовать комби11ацию з11аче11ий. Чтобы добиться уникальности идентифика­
торов на каждом сервере, можно использовать комбинацию значений, например

номер шарда и увеличивающееся число. Эта методика обсуждалась в предыдущем
разделе.

D Использовать з11аче11ия GU/D. Вы можете генерировать глобально уникальные
значения с помощью функции UUID(). Однако обратите внимание: эта функция

не реплицируется корректно с помощью покомандной репликации, хотя отлично

работает, если ваше приложение выбирает значение в собственную память и затем
использует его как литерал в операторах. Значения GUID большие и непоследо­
вательные, поэтому они не станут хорошими первичными ключами для таблиц
InnoDB. Подробнее об этом написано в подразделе <:<Вставка строк в порядке
первичного ключа в InnoDB» на с. 212. Кроме того, в MySQL 5.1 и более поздних
версиях есть функция UUID_SHORT(), обладающая несколькими хорошими свой­

ствами: она возвращает последовательные короткие значения - 64 бит вместо 128.

Если для создания значений вы пользуетесь каким-то глобальным генератором,
следите за тем, чтобы эта единственная точка конкурентного доступа не стала узким

местом приложения.

Хотя решение на основе memcached может работать очень быстро (десятки тысяч
значений в секунду), сервер не сохраняет свое состояние. После каждой перезагруз­

ки сервера memcached придется инициализировать начальное значение. Для этого
предстоит найти значение, чаще всего используемое во всех шардах, что может по­

требовать очень много времени. К тому же затруднительно реализовать эту операцию
как неделимую.

624 Глава 11 • Масштабирование MySQL

Инструменты для выполнения шардирования

Одна из главных задач, стоящих перед вами при проектировании шардированного

приложения, - написание кода для опроса нескольких источников данных.

Раскрытие приложению нескольких источников данных без какого бы то ни было
абстрагирования считается порочной практикой, поскольку сильно увеличивает
сложность кода. Лучше скрыть источники за каким-нибудь уровнем абстракции.

Этот уровень мог бы:

О соединяться с нужным шардом и отправлять ему запрос;

О выполнять распределенную проверку согласованности;

О объединять результаты, полученные от нескольких шардов;

о отсылать запросы в разные шарды;

О управлять блокировками и транзакциями;

О создавать шарды (или по крайней мере автоматически обнаруживать новые
шарды на лету) и повторно выполнять их балансирование (если есть время для
реализации такой функциональности).

Совсем не обязательно создавать всю инфраструктуру шардирования с нуля. Суще­
ствует несколько инструментов и систем, которые либо уже частично предоставляют
необходимую функциональность, либо специально предназначены для реализации

шардированной архитектуры.

Один слой абстракции базы данных с поддержкой шардов - это Hibernate Shards
(http://shards.hibernate.org), расширение Google для основанной на Java библиотеки
Hibernate для объектно-реляционного сопоставления (ORM) с открытым исходным
кодом. Оно обеспечивает реализацию интерфейсов Hibernate Core, поэтому для
использования шардированного хранилища приложение не обязательно переписы­
вать. На самом деле ему даже не нужно знать, что оно работает с таким хранилищем.

Для распределения данных по секциям применяется стратегия фиксированного

распределения.

Еще одна система шардирования называется HiveDB (http://www.hivedb.org).

В РНР вы можете использовать систему Shard-Query написанную Джастином
Сванхартом (Justin Swanhart) (http://code.google.com/p/shard-query/), которая автомати­
чески разделяет запросы на составляющие, выполняет их параллельно и объединяет

результаты. Коммерческие системы, ориентированные на аналогичные варианты

использования, - ScaleBase (http://www.scalebase.com), Sca!Arc (http://www.scalarc.com)
и dbShards (http://www.dbshards.com).

Система Sphinx предназначена для полнотекстового поиска, а не для хранения и из­
влечения секционированных данных, тем не менее для некоторых видов запросов

к шардированному хранилищу она полезна. Она умеет параллельно опрашивать у да­

ленные системы и объединять результаты (дополнительную информацию о Sphinx
см. в приложении Е).

Маrопабирование MySQL 625

Масштабирование с помощью консолидации

Архитектура, использующая шарды, позволяет увеличить отдачу от вашего обо­

рудования. Наши исследования и опыт показывают, что MySQL Re может на 100 %
использовать возможности современного оборудования. При масштабировании
системы до более чем 24 ядер процессора эффективность MySQL перестает расти.
Аналогичная ситуация складывается за пределами 128 Гбайт памяти, и MySQL немо­
жет даже приблизиться к использованию максимума возможностей ввода/вывода
высокопроизводительных флеш-устройств PCle, таких как карты Virident и Fusion-io.
Кроме реализации единственного экземпляра сервера на мощной машине, есть

и другой вариант. Вы можете сделать свои шарды довольно маленькими и поме­

стить по нескольку на машину (практика, которая нам кажется разумной в любом
случае). При этом следует запускать несколько экземпляров на каждом сервере, деля

физические ресурсы сервера таким образом, чтобы каждому экземпляру досталась
какая-то часть.

Этот прием действительно работает, хотя мы хотели бы обойтись без него. Это соче­
тание методов вертикального и горизонтального масштабирования. Того же резуль­
тата можно добиться и другими способами - вам не нужно использовать шардирова­

ние, но оно естественным образом подходит для консолидации на больших серверах.

Некоторые любят добиваться консолидации с помощью виртуализации, в чем есть

свои преимущества. Но во многих случаях виртуализация также требует довольно
больших затрат производительности. Затраты зависят от технологии, но обычно они
весьма велики, и накладные затраты особенно возрастают, когда операции ввода/
вывода выполняются очень быстро. В качестве альтернативы можно запустить не­

сколько экземпляров MySQL, каждый из которых прослушивает разные сетевые
порты или привязывается к различным IР-адресам.

Нам удалось достичь коэффициента консолидации 10х или 15х на мощном обо­
рудовании. Чтобы найти подходящий вариант, вам придется сравнивать затраты на
сложность администрирования с выгодой от повышения производительности.

На данный момент, скорее всего, узким местом станет сеть - это проблема, с кото­

рой большинство пользователей MySQL сталкиваются нечасто. Вы можете решить
ее, используя несколько связанных сетевых адаптеров. Подходит ли для этого ядро

Linux, зависит от версии, поскольку более старые ядра могут использовать только
один процессор для сетевых прерываний на каждое связанное устройство. Так что

не следует соединять слишком много кабелей с немногочисленными виртуаль­

ными устройствами, иначе вы столкнетесь с другим узким местом сети внутри ядра.

Новые ядра должны помочь в этом, поэтому проверьте разводку кабеля, чтобы узнать,
какими возможностями вы располагаете.

Еще один способ добиться значительного эффекта от этой стратегии - связать

каждый экземпляр MySQL с конкретными ядрами. Это объясняется двумя причи­
нами: во-первых, тем, что MySQL обеспечивает более высокую производительность
в пересчете на одно ядро при меньшем количестве ядер, поскольку внутренний

626 Глава 11 • Масштабирование MySQL

потенциал масштабируем ости ядра ограничен, а во-вторых, тем, что, когда экземпляр

работает с потоками на нескольких ядрах, синхронизация общих данных между

ядрами уменьшает накладные затраты. Это помогает избежать ограничений масшта­

бируемости самого оборудования. Подключение MySQL лишь к нескольким ядрам
может уменьшить перекрестные запросы между ядрами ЦП. Обратили внимание на

повторяющуюся тему? Подключите процесс к ядрам, которые находятся на одном

физическом сокете, чтобы получить наилучшие результаты.

Масштабирование кластеризацией

Сценарий мечты для масштабирования - это единая логическая база данных, ко­

торая может хранить столько данных, сколько вам нужно, обслуживать столько

запросов, сколько требуется, и увеличиваться настолько, насколько вы хотите.

Многие люди в первую очередь думают о создании кластера или сетки, которые

легко справляются с этим, из-за чего приложению не нужно делать никакой грязной

работы. В то же время оно будет знать, что данные располагаются на многих серверах,

а не на одном. С появлением облака становится интересным также автомасштаби­

рование - динамическое добавление серверов или удаление их из кластера в ответ

на изменения рабочей нагрузки или размера данных. Во втором издании этой книги

мы выразили сожаление в связи с тем, что доступная технология в действительности

не соответствует этой задаче. С тех пор было много шума по поводу так называемых

NоSQL-технологий. Многие сторонники NoSQL делали странные и необоснованные
утверждения, например: «Реляционная модель не может масштабироваться» или

«SQL не может масштабироваться». Появились новые концепции, и все стали про­
возглашать новые лозунги. Кто в наши дни не слышал о согласованности в конечном

счете, BASE, векторных часах или теореме САР?

По прошествии времени справедливость была хотя бы частично восстановлена.

Опыт показывает, что многие базы данных NoSQL по-своему примитивны и сами
не могут решать множество задач 1• В то же время возникло множество технологий на

базе SQL - то, что Мэтт Аслетт (Matt Aslett) из группы 451 называет базами данных
NewSQL. В чем же разница между SQL и NewSQL? Базы данных NewSQI~ устанав­
ливают, чтобы доказать, что SQL и реляционная технология не являются проблемой.
Скорее, проблемы с масштабируемостью в реляционных базах данных являются

проблемами реализации, а новые реализации показывают лучшие результаты.

Все новое - это хорошо забытое старое? И да и нет. Многие высокопроизводитель­

ные реализации кластерных реляционных баз данных построены на низкоуровневых

строительных блоках, которые выглядят похожими на базы данных NoSQL, особенно
хранилища «ключ - значение». Например, NDB Cluster не является базой данных
SQL - это масштабируемая база данных, к которой можно получить доступ через

свой собственный API, в котором очень много от NoSQL, но который также может

Да-да, мы знаем, выбирайте правильный инструмент для работы. Можете вставить сюда

еще одну очевидную, но подходящую цитату.

Масштабирование MySQL 627

понимать команды SQL, когда вы вместе с ним используете подсистему хранения
MySQL. Это полностью распределенный, без разделения ресурсов, высокопроизво­
дительный, автошардированный, транзакционный сервер базы данных без единой

точки отказа. Это очень продвинутая база данных, которая не имеет равных для до­
стижения конкретных целей. И за последние несколько лет она стала намного более

мощной, сложной и универсальной. В то же время базы данных NoSQL постепенно
начинают все больше походить на реляционные базы данных, а некоторые даже раз­

рабатывают языки запросов, которые напоминают SQL. Типичная кластерная база
данных будущего, вероятно, будет немного похожа на смесь SQL и NoSQL, с несколь­
кими механизмами доступа для разных вариантов использования. Итак, мы учимся

у NoSQL, но и SQL остается в разряде кластеризованных баз данных.

На момент написания книги инструменты технологий кластерной или распределен­

ной базы данных, близкие к MySQL, - это, например, NDB Cluster, Clustrix, Percona
XtraDB Clusteг, Galera, Schooner Active Cluster, Continuent Tungsten, ScaleBase,
ScaleArc, dbShards, Xeround, Akiban, VoltDB и GenieDB. Все они более или менее
встроены, доступны через MySQL или связаны с ней. Рассмотрим некоторые из них
далее в этой книге, например, поговорим о Xeround в главе 13. Еще в главе 10 мы
обсудили Continuent Tungsten и несколько других технологий, но и здесь отведем
немного места паре из них.

Прежде чем начать, нужно еще раз подчеркнуть, что масштабируемость, высокая
доступность, транзакционная способность и т. д. являются независимыми друг от

друга свойствами систем баз данных. Некоторые ошибочно рассматривают их как
одно и то же, но это не так. В этой главе мы фокусируемся на масштабируемости.
Однако в реальной жизни масштабируемая база данных не очень хороша, если она
не высокопроизводительна. Кроме того, вряд ли кто-то хочет масштабироваться без
высокой доступности и пр. Определенная комбинация всех этих приятных свойств -
это святой Грааль баз данных, который очень трудно найти. Однако это выходит за
рамки данной главы.

Наконец, большинство кластерных продуктов NewSQL появились сравнительно
недавно (за исключением NDB Cluster). Мы встречались с ними не настолько часто,
чтобы хорошо знать их сильные и слабые стороны. И хотя они могут использовать
протокол связи MySQL или иначе быть связанными с MySQL, все же это не MySQL,
поэтому действительно выходят за рамки этой книги. Так что просто упомянем их

и предоставим вам делать выводы об их пригодности для использования.

MySQL Cluster (NDB Cluster)

MySQI~ Cluster представляет собой комбинацию двух технологий: базы данных NDB
и подсистемы хранения MySQL в качестве интерфейса SQL. NDB - это распреде­

ленная отказоустойчивая база данных без разделения ресурсов, которая предлагает
синхронную репликацию и автоматическое секционирование данных по узлам. Под­

система хранения NDB Cluster преобразует SQL в вызовы API NDB и выполняет
операции внутри сервера MySQL, когда их нельзя передать для выполнения NDB.

628 Глава 11 • Масштабирование MySQL

(NDB является хранилищем данных с парой «ключ - значение» и не может выпол­

нять сложные операции, такие как соединения и агрегация.)

NDB - это сложная база данных, имеющая очень мало общего с MySQL. Для исполь­
зования NDB MySQL не нужна: NDB можно запускать как автономный сервер базы
данных для пар «ключ - значение». Ее сильные стороны включают чрезвычайно вы­

сокую пропускную способность для заниси и поиска по ключу. NDB автоматически
определяет, какой узел должен содержать заданное значение, основанное на хеше

ключа. Когда вы получаете доступ к NDB через MySQL, первичный ключ строки
является ключом, а остальная часть строки - значением.

Поскольку NDB основана на совершенно новом наборе технологий и поскольку
кластер отказоустойчив и распределен, администрировать ее правильно совсем

не просто. Есть много динамических элементов, и, чтобы избежать проблем, такие
операции, как обновление кластера или добавление узла, нужно выполнять опре­
деленным образом. NDB - технология с открытым исходным кодом, но вы можете
приобрести коммерческую поддержку от Oracle. Часть этой подписки является за­
патентованным продуктом Cluster Manager, который помогает автоматизировать
многие утомительные и сложные задачи. (Severalnines также предлагает продукт
управления кластерами, см. http://www.severalnlnes.com.)

MySQL Cluster быстро приобретает все больше возможностей и способностей.
Например, недавно выпущенные версии поддерживают больше типов изменений
в кластере без простоя и могут выполнять некоторые виды запросов на узлах, где
хранятся данные. Тем самым уменьшается необходимость в передаче данных по
сети и выполнении запросов внутри MySQL. (Эта функция была переименована
из push-down joins в adaptive query localization.)

Ранее в NDB был реализован профиль производительности, который абсолютно
отличался от других подсистем хранения MySQL, однако последние версии ста11и
более универсальны. Таким образом, она становится хорошим решением для все
большего числа приложений, в том числе игр и мобильных приложений. Мы должны
подчеркнуть, что NDB - это серьезная технология, которая позволяет использовать

одно из крупнейших приложений, предназначенное для решения важных задач при

чрезвычайно высоких нагрузках, требующее задержки и безотказной работы. Напри­
мер, практически любой телефонный звонок, совершенный в сотовой сети в любой
точке мира, использует NDB, и не просто случайным образом - это важнейшая база
данных для многих сотовых провайдеров.

NDB нужна быстрая и надежная сеть для подключения узлов, а для достижения
лучшей производительности желательно иметь специальные высокоскоростные

внутренние соединения. Кроме того, она работает в основном в памяти, поэтому для
нее требуется большой объем памяти на серверах.

Каковы же ее недостатки? Пока еще она не очень хорошо работает при сложных за­
просах, в которых используется много соединений или агрегаций. Кроме того, не рас­
считывайте на ее применение для хранения данных. Это транзакционная система, но
она не поддерживает MVCC, и при чтении возникают блокировки. Она также не об-

Масштабирование MySQL 629

наруживает взаимных блокировок. При возникновении взаимной блокировки NDB
пытается решить проблему посредством ожидания. Есть еще множество тонкостей
и моментов, о которых вы должны знать. Однако все они заслуживают отдельной

книги. (Книги по MySQL Cluster есть, однако большинство из них устарело. Лучше
всего обратиться к руководству пользователя.)

Clustrix

Clustrix (http://www.clustrix.com)- это распределенная база данных, которая понимает
протокол MySQL, так что ее можно считать упрощенной заменой MySQL. Однако
если не брать в расчет протокол, то это совершенно новая технология, построенная
не на основе MySQL. Это полностью ACID, транзакционная база данных SQL с под­
держкой МУСС, ориентированная на рабочие нагрузки OLTP. Clustrix секционирует
данные по узлам для отказоустойчивости и распределяет запросы к данным, которые

выполняются параллельно на узлах, вместо того чтобы извлекать данные из узлов

хранения в централизованный узел выполнения. Кластер расширяется онлайн с по­

мощью добавления узлов для обработки большего количества данных или большей

нагрузки. В некотором роде Clustrix похожа на MySQL Cluster. Ключевыми отличия­
ми являются полностью распределенное выполнение и отсутствие верхнего уровня

прокси или координатора запросов перед кластером. Clustrix естественным образом
понимает протокол MySQL, поэтому MySQI. не нужно переводить команды из своего
протокола в протокол Clustrix. Напротив, кластер MySQL на самом деле объединяет
три компонента: MySQL, подсистему хранения NDBCLUSTER и NDB.

Выполненные нами лабораторные исследования и эталонное тестирование подтвержда­

ют, 'IТО Clustrix предлагает высокую производительность и масштабируемость. Clustrix
выглядит очень перспективной технологией, так что мы пристально следим за ней.

ScaleBase

ScaleBase (http://www.scaleЬase.com) - это программа прокси, которая находится между
вашим приложением и несколькими внутренними серверами MySQL. Она разбивает
входящие запросы на части, распределяет их для одновременного выполнения на

внутренних серверах и собирает результаты для доставки обратно в приложение.
Однако до сих пор мы с ней не работали. Конкурирующие технологии - ScaleArc
(http: //www.scalearc.com) и dbShards (http://www.dbshards.com).

GenieDB

GenieDB (http://www.geniedb.com) родилась как хранилище документов NoSQL для гео­
графически распределенного развертывания. Теперь в ней реализован уровень SQL,
доступный через подсистему хранения MySQL. Она построена на наборе технологий,
включая локальный кэш в памяти, уровень обмена сообщениями и постоянное дис­
ковое хранилище данных. Они работают вместе, чтобы обеспечить для приложения
возможность быстрого выполнения запросов к локальным данным с помощью

630 Глава 11 • Масштабирование MySQL

гарантий нестрогой согласованности в конечном счете или к распределенному кластеру

(с добавленной задержкой сети), и таким образом гарантировать просмотр наиболее

новых данных.

Уровень совместимости с MySQL с помощью подсистемы хранения не обеспечивает
100 % возможностей MySQL, но может поддерживать такие готовые приложения,
кaкjoomla!, Word-Press и Drupal. Вариант использования для подсистемы хранения
MySQL таков: сделать GenieDB доступной наряду с подсистемой хранения данных
ACID, такой как InnoDB. GenieDB не является базой данных ACID.

Мы сами не работали с GenieDB и не видели каких-либо производственных раз­
вертываний.

Akiban

Вероятно, Akiban (http://www.akiЬan.com) лучше всего можно описать как ускоритель
запросов. Она физически хранит данные, чтобы соответствовать паттернам запросов,

что позволяет выполнять соединения между таблицами с гораздо меньшими затратами.

Хотя это и похоже на денормализацию, расположение данных не является избыточ­

ным, поскольку это не то же самое, что предварительное вычисление соединений и со­

хранение результатов. Вместо этого кортежи из соединенных таблиц чередуются друг

с другом, поэтому их можно просматривать последовательно в порядке соединения.

Для этого требуется, чтобы администратор определил паттерны запросов, которые

выиграли бы от так называемой методики группировки таблиц, и спроектировал опти­

мальные группы таблиц для таких запросов. В настоящее время системная архитектура

предполагает настройку Akiban таким образом, чтобы она использовалась для реплика­
ции данных с главного сервера MySQL и обслуживания запросов, которые в противном
случае выполнялись бы медленно. Предполагается, что тем самым будет достигнуто

увеличение скорости на пару порядков. Однако мы не видели производственных раз­

вертываний и не проводили лабораторных исследований1 •

Обратное масштабирование

Один из самых простых способов справиться с увеличившимся объемом данных

и ростом рабочей нагрузки состоит в том, чтобы архивировать и удалять ставшую

ненужной информацию. В зависимости от рабочей нагрузки это может дать весьма

ощутимый эффект. Конечно, такой подход не отменяет другие стратегии масшта­

бирования, но в качестве краткосрочной стратегии, позволяющей выиграть время,

годится. Да и в более долгосрочной перспективе он может применяться для борьбы

с ростом объема данных.

Возможно, мы немного жульничаем, включая Akiban в список кластерных баз данных,
поскольку она таковой не является. Однако в некоторых моментах она очень похожа на

множество других баз данных NewSQL.

Масштабирование MySQL 631

При проектировании стратегии архивирования и удаления данных нужно принимать

во внимание следующие факторы.

1:1 Влияние на приложение. Хорошая стратегия архивирования позволяет убрать
данные с сильно нагруженного ОLТР-сервера, не оказывая заметного влияния

на обработку транзакций. Основная идея состоит в том, что сначала нужно найти
подлежащие удалению строки, а затем удалять их небольшими порциями. Обыч­
но необходимо отыскать такое соотношение между количеством строк в одной

порции и размером транзакции, которое обеспечивает приемлемый баланс между

уровнем конкурентности и транзакционными издержками. Задания архивирова­

ния должны быть написаны так, чтобы при необходимости они уступали сервер
транзакционным задачам.

1:1 Какие строки архивировать. Если вы точно знаете, что некоторые данные больше
не понадобятся, можете удалить или архивировать их. Однако можно спроек­

тировать приложение и так, чтобы оно архивировало данные, к которым редко

обращаются. Архивированные данные можно хранить в отдельных таблицах

и обращаться к ним через представления или даже полностью переместить на

другой сервер.

1:1 Поддержание согласованности данных. Наличие связей между данными может
усложнить архивирование и удаление. Хорошо спроектированная программа

архивирования сохраняет логическую согласованность информации, по крайней

мере в той степени, в которой это нужно приложению, не открывая гигантские

транзакции с несколькими таблицами.

При наличии связей принять решение о том, какие таблицы архивировать в пер­

вую очередь, всегда трудно. Необходимо учитывать возможность появления

в ходе архивирования ~<осиротевших>.> или «овдовевших>.> строк. Обычно вы долж­

ны либо пойти на нарушение ограничений внешних ключей (в InnoDB отключить
такие ограничения можно командой SЕТ FOREIGN_KEY_CHECKS=0), либо оставить

на время записи с «висячими>.> указателями. Что именно предпочесть, зависит от

того, как приложение обращается к данным. Если программа просматривает набор

взаимосвязанных таблиц сверху вниз, то и архивировать их следует в таком же

порядке. Например, если заказы всегда читаются до счетов-фактур, то сначала ар­

хивируйте заказы: приложение не должно видеть «осиротевших>.> счетов-фактур,

а архивировать их можно будет позже.

1:1 Как избежать потери данных. Если архивируются данные, расположенные на
нескольких серверах, то не стоит применять распределенные транзакции, тем

более что архивирование может производиться в таблицы MyISAM или иного не­
транзакционного типа. Поэтому, чтобы избежать потери данных, следует сначала

вставить значения в конечную таблицу и лишь потом удалять их из исходной.

Кроме того, разумно попутно записывать архивированные данные в файл. Про­

грамма архивирования должна быть спроектирована так, чтобы ее можно было

в любой момент прервать, а затем перезапустить и это не приводило бы к рассо­
гласованности данных или повреждению индексов.

632 Глава 11 • Масштабирование MySQL

О Разархивацuя. Зачастую можно убрать значительно больше данных, если процедура
архивации дополняется стратегией разархивации. Такой подход позволяет архи­

вировать данные, не будучи уверенными в том, что они больше не понадобятся,

поскольку всегда есть возможность в случае необходимости восстановить их. Если

удается выявить несколько точек, в которых система может проверить, нужно ли

извлечь архивированные данные, то такую стратегию реализовать довольно просто.

Например, если архивируются неактивные пользователи, такой точкой может быть
процедура входа в систему. Если вход невозможен из-за отсутствия пользователя,

то программа посмотрит, нет ли такого пользователя в архиве, и, если есть, из­

влечет его оттуда и продолжит выполнение процедуры входа.

@"'"'· " .
""

В пакете Регсопа Toolkit имеется инструмент pt-archiver, помогающий эффективно
архивировать и очищать таблицы MySQL. Однако разархивирования он не под­
держивает .

Отделение активных данных. Даже если вы не перемещаете устаревшую информа­

цию на другой сервер, производительность многих приложений может увеличить­

ся, если отделить активные данные от неактивных. Это повышает эффективность

использования кэша и позволяет применять для активных и неактивных данных

различные аппаратные и программные архитектуры. Далее перечислены несколько

способов решения этой задачи.

о Разбиение таблицы на несколько частей. Часто имеет смысл разбивать таблицу
на части, особенно если она не помещается в память целиком. Например, табли­
цу users можно разделить на active_users и inactive_users. Возможно, вам
кажется, что это не обязательно, поскольку в кэше базы данных в любом случае
задерживаются только часто используемые (горячие) данные, однако это зависит

от подсистемы хранения. В InnoDB единицей кэширования является страница.
Если на одной странице умещаются 100 пользователей, лишь 1 О % из которых
активны, то с точки зрения InnoDB каждая страница будет горячей, и тем не менее
90 % данных на странице - пустая трата памяти. Разбиение таблицы могло бы
существенно улучшить использование ОЗУ.

о Секционирование на уровне MySQL. В версии MySQL 5.1 появился механизм
секционирования таблиц, который может помочь удерживать недавно использо­

вавшиеся данные в памяти. Подробнее о секционировании см. в главе 7.

о Секционирование данных по времени. Если приложение постоянно получает новые

данные, то вполне вероятно, что недавние данные будут гораздо активнее более
старых. Например, нам известна служба блогов, в которой основной трафик по­
рождают сообщения и комментарии, созданные за последние семь дней. Большая

часть обновлений также относится к этим данным. В результате разработчики
хранят информацию за последнюю неделю целиком в памяти и применяют репли­

кацию для создания копии на другом диске на случай сбоя. Прочая информация

постоянно хранится в другом месте.

Балансирование нагрузки 633

Нам также встречались системы, в которых данные, относящиеся ко всем поль­

зователям, содержатся в шардах на двух узлах. Новые значения поступают на

активный узел, на котором очень много памяти и быстрые диски. Эти данные
оптимизированы для очень быстрого доступа. Второй узел, где хранятся более
старые данные, оснащен очень большими, но сравнительно медленными дисками.
Приложение исходит из предположения, что обращения к старым записям мало­

вероятны. Для большинства приложений это вполне здравое предположение,

позволяющее удовлетворить 90 % и даже более запросов на основе лишь 1 О %
данных, поступивших в последнее время.

Такую стратегию несложно реализовать посредством динамического шардиро­

вания. Например, определение таблицы с каталогом шардов могло бы выглядеть
следующим образом:

CREATE TABLE users
user_id int unsigned not null,
shard_new int unsigned not null,
shard_archive int unsigned not null,
archive_timestamp timestamp,
PRIМARY КЕУ (user_id)

) ;

Скрипт архивирования может перемещать старые данные с активного узла на ар­

хивный, обновляя по ходу дела столбец archive_timestamp. В столбцах shard_new
и shard_archi ve хранится информация о том, в шардах с какими номерами находятся
новые и архивированные данные соответственно.

Балансирование нагрузки

Основная идея балансирования нагрузки проста: максимально равномерно распре­
делить ее по нескольким серверам. Обычно это решается путем внедрения баланси­
ровщика нагрузки (часто он представляет собой специализированное оборудование)
перед серверами. Балансировщик передает запрос на установление соединения

наименее загруженному из имеющихся серверов. На рис. 11.9 изображена типичная
схема балансирования нагрузки для большого сайта, когда один балансировщик
обслуживает НТТР-трафик, а другой - МуSQL-трафик.

Балансированием нагрузки обычно направлено на достижение следующих пяти

целей.

1:1 Масштабируемость. Балансирование нагрузки может помочь при определенных

типах стратегий масштабируемости, таких как разделение чтения и записи для
чтения с подчиненных серверов.

1:1 Эффективность. Балансирование нагрузки позволяет более эффективно исполь­
зовать ресурсы, поскольку вы можете управлять тем, как маршрутизируются за­

просы. Это особенно важно, когда используются серверы разной мощности - на
более мощные можно направлять больше работы.

634 Глава 11 • Масштабирование MySQL

Балансировщик

нагрузки

Веб-серверы

Балансировщик

нагрузки

Главный
MySQL-cepвep

Подчиненные
Му SQL-cepвepы

Рис. 11.9. Типичная архитектура балансирования нагрузки
для сайта с большим количеством запросов на чтение

О Достутюсть. Интеллектуальный балансировщик нагрузки передает запросы
только серверам, доступным в данный момент.

О Прозрачность. Клиентам не нужно знать о том, как сконфигурировано баланси­
рование нагрузки. Им все равно, сколько машин находится за балансировщиком
и как они называются, - балансировщик представляет внешним клиентам
единый виртуальный сервер.

О Согласованность. Если приложение наделено состоянием (транзакции базы
данных, сеансы сайта и т. д.), то сам балансировщик должен направлять взаимо­
связанные запросы одному и тому же серверу, чтобы состояние не утрачивалось.
Это освобождает приложение от обязанности следить за тем , с каким сервером
оно соединилось.

В мире MySQL балансирование нагрузки часто применяется в сочетании с шар­
дированием и репликацией. Можно как угодно комбинировать эти технологии
и размещать их на том уровне, где это наиболее удобно приложению. Например,
можно балансировать нагрузку между несколькими узлами в кластере MySQL. Или
балансировать нагрузку между центрами обработки данных, а внутри каждого из них
применять шардирование между узлами, каждый из которых является реплициру­

емой парой <~главный - главный с несколькими подчиненными серверами» , н<lгрузка

Балансирование нагрузки 635

между которыми также балансируется. То же относится и к стратегии обеспечения
высокой доступности - переключение при отказе может быть организовано на не­

скольких уровнях архитектуры.

У технологии балансирования нагрузки есть много нюансов. Например, как управ­
лять политиками чтения-записи? Некоторые балансировщики делают это самостоя­
тельно, а другие требуют, чтобы приложение знало, какие узлы доступны только для
чтения, а какие - еще и для записи.

Вы должны учитывать это, принимая решение о том, как реализовать балансирова­
ние нагрузки. Решений существует множество, начиная от одноранговых реализаций

типа Wackamole (http://www.backhand.org/wackamole/) до подходов на основе системы
доменных имен (DNS), виртуального сервера Linux (Linux Virtual Server, LVS, http://
www.linuxvirtualserver.org), аппаратных балансировщиков, MySQL Proxy и управления
балансированием нагрузки из приложения.

Большинство наших клиентов, по-видимому, пользуются методикой, предполага­

ющей применение специального оборудования для балансирования нагрузки. Мно­
гие из них задействуют HAProxy (http://haproxy.lwt.eu), который, кажется, очень по­
пулярен и работает довольно хорошо. Некоторые используют другой ТСР-прокси,
например Реп (http://siag.nu/pen/). Мы видим, что MySQL Proxy применяется
не слишком часто.

Прямое подключение

Некоторые подсознательно ассоциируют балансирование нагрузки с центральной
системой, которая устанавливается между приложением и серверами MySQL. Но это
не единственный вариант. Можно одновременно сбалансировать нагрузку и сохра­

нить возможность прямого подключения к серверу MySQL из приложения. На самом
деле централизованные системы балансирования обычно хорошо работают только
тогда, когда имеется пул серверов, которые с точки зрения приложения эквивалент­

ны. Если приложение должно принимать решение, например, безопасно ли читать
данные с подчиненного сервера, то обычно требуется уметь напрямую подключаться
к этому серверу.

Принятие решений о балансировании нагрузки в приложении позволяет не только
учесть особые случаи, но и добиться очень высокой эффективности. Например, если
имеются два идентичных подчиненных сервера, то можно на одном из них выполнять

все запросы к некоторому подмножеству шардов, а на другом - запросы ко всем

остальным шардам. Это позволит эффективно использовать память подчиненных

серверов, так как каждому придется кэшировать лишь часть информации на диске.

В случае отказа одного из них второй по-прежнему располагает всеми данными, не­

обходимыми для обслуживания запросов ко всем шардам.

В следующих разделах обсуждаются некоторые общепринятые способы прямого
подключения из приложения и факторы, которые нужно принимать во внимание

при выборе того или иного варианта.

636 Глава 11 • Масштабирование MySQL

Распределение запросов на чтение и запись при репликации

Механизм репликации в MySQL позволяет поддерживать несколько копий данных
и решать, где выполнять запросы - на главном или 11одчиненном сервере. Основная

сложность состоит в том, что делать с неактуальностью данных на подчиненном

сервере, неизбежной в силу асинхронной природы репликации. Кроме того, под­
чиненные серверы должны использоваться только для чтения, тогда как главный

может выполнять запросы любого вида.

Обычно приложение приходится модифицировать с учетом этих соображений.
Приложение может посылать все запросы на запись главному серверу, а запросы на

чтение распределять между главным и подчиненными серверами. В случае, когда не­

которое устаревание данных несущественно, можно читать с подчиненных серверов,

а если необходимы гарантированно актуальные данные, то с главного. Мы называем
такой подход распределением чтения-записи.

Те же рассуждения применимы к паре «главный - главный~> с активным и пассив­

ным главными серверами, хотя в данном случае запросы на запись следует отправ­

лять только активному серверу. Чтение можно выполнять и на пассивном сервере,

если потенциальное устаревание не страшно.

Самая серьезная проблема - как избежать аномалий при чтении неактуальных дан­
ных. Классическая ситуация такого рода возникает, когда пользователь вносит некое

изменение, скажем, добавляет комментарий в благ, затем перезагружает страницу
и не видит этого изменения, поскольку приложение прочитало неактуальные данные

с подчиненного сервера.

Далее перечислены некоторые часто применяемые методы распределения запросов

на чтение и запись.

Q Распределение с учетом запроса. Самый простой способ - направлять активно­
му или главному серверу все запросы на запись, а также те запросы на чтение,

для которых неактуальные данные неприемлемы. Остальные запросы на чтение

попадают на подчиненный или пассивный сервер. Эту стратегию легко реализо­

вать, но на практике подчиненный сервер будет задействован не в полной мере,
поскольку не так уж много существует запросов, которым всегда безразлична
актуальность данных.

Q Распределение по степени неактуалыюсти данных. Это некоторое усовершен­
ствование стратегии распределения с учетом запроса. От приложения требуется

сравнительно немного дополнительной работы, чтобы понять, насколько отстает
подчиненный сервер, и решить, являются ли данные слишком устаревшими.

Так поступают многие приложения, формирующие отчеты: коль скоро все данные

за предыдущий день реплицированы на подчиненный сервер, наличие стопро­

центной синхронизации с главным сервером не имеет значения.

Q Распределение с учетом сеанса. Чуть более сложный алгоритм решения вопроса
о том, откуда читать данные, - учитывать, изменял ли их конкретный пользо­

ватель. Работающему с приложением не обязательно видеть все модификации,
внесенные другими пользователями, но свои он наблюдать должен. Чтобы реали-

Балансирование нагрузки 637

зовать это на уровне сеанса, достаточно установить на нем флажок, который по­

казывает, что в ходе сеанса было произведено изменение, и в течение некоторого
времени после этого события направлять запросы на чтение, исходящие от этого
пользователя, главному серверу. Обычно мы рекомендуем данную стратегию на­
шим клиентам, поскольку она является хорошим компромиссом между простотой

и эффективностью.

Этот прием можно сочетать с мониторингом отставания репликации: если поль­

зователь изменил какие-то данные 1 О секунд назад и ни один подчиненный сервер
не отстает более чем на 5 секунд, то читать с подчиненного сервера безопасно.
Очень разумно было бы выбрать какой-то один подчиненный сервер и задейство­
вать его на протяжении всего сеанса, в противном случае пользователь будет на­
блюдать странные эффекты, вызванные тем, что некоторые подчиненные серверы
отстают больше других.

О Распределение с учетом версии. Эта стратегия похожа на распределение с учетом
сеанса: можно отслеживать номера версий и/или временные метки объектов
и читать номер версии или временную метку с подчиненного сервера, чтобы
понять, насколько свежие на нем данные. Если информация на подчиненном

сервере сильно устарела, то можно обратиться за актуальными данными к глав­
ному серверу. Можно также увеличивать номер версии объекта верхнего уровня
даже в том случае, когда сам объект не изменяется, - это упрощает проверку на
устаревание (необходимо заглядывать только в одно место - в объект верхнего
уровня). Например, можно обновлять версию пользователя, если он помещает
в свой благ новую запись. В таком случае запросы на чтение будут направляться
главному серверу.

Чтение версии объекта с подчиненного сервера означает дополнительные наклад­
ные расходы, которые можно уменьшить за счет кэширования. Вопрос о кэширо­

вании и версиях объектов мы рассмотрим в следующих главах.

О Глобальное распределение с учетом версии или сеанса. Это вариация на тему рас­
пределений с учетом версии и сеанса. Производя операцию записи, приложение

выполняет запрос SHOW MASТER STATUS после коммита транзакции. Координаты

в журнале главного сервера сохраняются в кэше и считаются модифицированным

номером версии объекта и/или сеанса. Затем, когда приложение подключается
к подчиненному серверу, оно выполняет команду SHOW SLAVE STATUS и сравнивает
координаты подчиненного сервера с версией, которую запомнил. Если подчинен­

ный сервер дошел хотя бы до той точки, где главный закоммитил транзакцию, то
читать с него безопасно.

В большинстве решений по распределению запросов на чтение и запись необходимо
следить за отставанием подчиненного сервера и, исходя из этого, решать, куда от­

правлять запрос. Но имейте в виду, что столбец Seconds_behind_master в результатах
команды SHOW SLAVE STATUS - ненадежный способ определения отставания подчинен­
ного сервера (см. главу 1 О). Инструмент pt-heartbeat из пакета Percona Toolkit может
помочь как в мониторинге задержки репликации, так и в сохранении метаданных,

таких как позиция в двоичном журнале. Тем самым облегчается реализация некото­
рых рассмотренных стратегий.

638 Глава 11 • Масштабирование MySQL

Если вам неважно, сколько оборудования потребуется для обслуживания нагрузки,
то можно упростить себе жизнь и вовсе не пользоваться репликацией для масшта­
бирования. Это поможет избежать сложностей, связанных с распределением запро­
сов между главным и подчиненными серверами. Некоторые считают такой подход

оправданным, другие видят в нем расточительное использование оборудования.

Такое различие во мнениях отражает разные цели: чего именно требуется достичь -
только масштабируемости или еще и эффективности? Если одной из целей является
эффективность и, следовательно, хотелось бы задействовать подчиненные серверы
не только для хранения копий данных, то, вероятно, вам придется пойти на увели­

чение сложности.

Изменение конфигурации приложения

Один из способов распределения нагрузки - изменение конфигурации приложения.
Например, можно настроить несколько машин так, чтобы они разделяли между собой
бремя генерации больших отчетов. В этом случае разные компьютеры подключаются
к разным серверам MySQL и каждый генерирует отчет для каждого N-го заказчика
или сайта.

Реализовать подобную систему обычно совсем не сложно, но если при этом потребу­
ется вносить изменения в код, в том числе в конфигурационные файлы, то система

станет слишком хрупкой и громоздкой. Любое решение, требующее изменений
программного кода на каждом сервере или даже одного изменения в каком-то цен­

тральном пункте, откуда оно публикуется путем копирования файлов или команд
обновления в системе управления версиями, принципиально порочно. В то же вре­
мя, если конфигурация хранится в базе данных и/или в кэше, можно обойтись без
публикации изменений, внесенных в код.

Изменение доменных имен

Создание доменных имен для разных целей - это очень прямолинейная техника

балансирования нагрузки, которая тем не менее неплохо работает в некоторых про­
стых приложениях. Затем по мере необходимости вы можете указать имена на разных
серверах. В простейшем случае имеется одно доменное имя для серверов, допуска­

ющих только чтение, и еще одно - для сервера, на котором выполняются операции

записи. Если подчиненные серверы успевают за главным, то можно изменить первое

доменное имя так, чтобы оно указывало на подчиненные серверы: когда они начина­
ют отставать, это имя перенаправляется на главный сервер.

Методику на основе доменных имен очень легко реализовать, но и недостатков у нее

масса. И самый главный - то, что система DNS вам не полностью подконтрольна.

О Изменения в системе DNS не мгновенны и не неделимы. Требуется довольно
длительное время для того, чтобы изменение распространилось по сети или

между сетями.

о Данные DNS кэшируются в разных местах, и срок хранения является рекоменда­
тельным, а не обязательным.

Балансирование нагрузки 639

Q Для того чтобы изменение в системе DNS было воспринято полностью, возможно,
придется перезагрузить приложение или сервер.

Q Не стоит использовать несколько IР-адресов для одного доменного имени и по­

лагаться на алгоритм циклического перебора для балансирования запросов.
Поведение этого алгоритма не всегда предсказуемо.

(] Администратор базы данных не всегда имеет прямой доступ к системе DNS.

Если ваше приложение не слишком простое, то довольно опасно полагаться на си­

стему, которая не полностью контролируема. Степень контролируемости немного

повысится, если вносить изменения в файл /etc/hosts, а не в систему DNS. Можно
с уверенностью сказать, что изменение вступило в силу сразу после модификации

этого файла. Это лучше, чем дожидаться, пока истечет срок хранения DNS-записи

в кэше, но все равно неидеально.

Обычно мы не рекомендуем создавать приложения, хоть как-то зависящие от DNS.
Лучше избегать такой зависимости даже в простом ПО, поскольку никто не знает,
как оно разрастется в будущем.

Переключение IР-адресов

Некоторые способы балансирования нагрузки базируются на переключении вирту­
альных IР-адресов 1 между серверами - иногда такая техника прекрасно работает.
На первый взгляд это похоже на изменение доменных имен, но на самом деле общего
между технологиями мало. Серверы прослушивают сетевой трафик не по доменному

имени, а по конкретному IР-адресу, поэтому переключение IР-адресов сохраняет

статичные доменные имена. Известить об изменении IР-адреса можно неделимой
операцией и очень быстро с помощью команд протокола определения адреса (Address
Resolution Protocol, ARP).

Наиболее часто мы видели, как для этих целей применяли технологию Pacemaker,
которая является преемницей инструмента Heartbeat проекта Linux-НА. Напри­
мер, у вас может быть один IР-адрес, связанный с ролью «только для чтения», и он
позаботится о том, чтобы по мере необходимости переместить IР-адрес между
машинами. Другими инструментами для достижения этой цели являются L VS
и Wackamole.

Полезный прием состоит в том, чтобы назначить фиксированный IР-адрес каж­
дому физическому серверу. Этот адрес - принадлежность самого сервера, и он

никогда не изменяется. Далее каждой логической службе выделяется виртуальный
IР-адрес. Эти адреса могут передаваться от одного сервера другому, следовательно,

возникает возможность перемещать экземпляры служб и приложений без пере­
конфигурирования приложения. Это очень удобно, даже если для балансирования
нагрузки или обеспечения высокой доступности не приходится часто переключать

IР-адреса.

Виртуальный IР-адрес не связан ни с каким конкретным компьютером или сетевым ин­

терфейсом; он мигрирует от одного компьютера к другому.

640 Глава 11 • Масштабирование MySQL

Представляем посредника

До сих пор мы предполагали, что приложение взаимодействует напрямую с сер­

верами MySQL. Однако во многих схемах балансирования нагрузки встречается
посредник, задача которого - выступать в роли прокси-сервера сетевого трафика.

Посредник принимает весь трафик и направляет его нужному серверу, при этом

ответы сервера доставляются компьютеру, с которого поступил исходный запрос.

Иногда посредник реализуется аппаратно, а иногда - программно1 • Такая архитек­

тура изображена на рис. 11.1 О. Подобные решения обычно работают очень хорошо,
но если сам балансировщик нагрузки не резервирован, то он становится единой
точкой отказа. Мы видели множество балансировщиков, успешно испол~,зуемых

в различном программном обеспечении, - от продуктов с открытым исходным
кодом, таких как HAProxy, до практически любой известной вам коммерческой
системы.

Серверы приложений Серверы баз данных

Рис. 11.10. Балансировщик нагрузки, работающий как посредник

Балансировщики нагрузки

На рынке представлено немало аппаратных и программных решений для балан­
сирования нагрузки, но лишь немногие спроектированы специально для серверов

MySQU. Гораздо чаще в балансировании нагрузки нуждаются веб-серверы, поэтому
во многие универсальные устройства встроена специальная поддержка протокола

НТТР и минимальные базовые средства для всего остального. Поскольку соедине­
ния с сервером MySQL - это обычные ТСР /IР-соединения, то для MySQL можно
использовать балансировщики нагрузки общего назначения. Однако отсутствие
специальной поддержки MySQL накладывает следующие ограничения.

О Если балансировщик нагрузки не знает об истинной нагрузке на MySQL, то он
с11особен лишь распределять запросы, а не балансировать нагрузку. Не все за­
просы одинаковы, но универсальный балансировщик обычно не видит различий
между ними.

Систему L VS можно сконфигурировать так, что она вступает в игру только тогда, когда

приложению необходимо создать новое соединение, а после этого не выполняет функции

посредника.

MySQL Proxy является исключением, однако ему присущ ряд проблем, таких как узкие

места добавленной задержки и масштабируемости.

Балансирование нагрузки 641

1:1 Большинство балансировщиков знают о структуре НТТР-запроса и умеют ас­
социировать сеанс с сервером, сохраняя тем самым состояние веб-сервера. У со­
единений MySQL тоже имеется состояние, но балансировщик понятия не имеет,
как связать все запросы на соединение, исходящие из одного сеанса, с одним сер­

вером MySQL. Результатом оказывается снижение эффективности (если бы все
запросы от одного сеанса попадали одному серверу MySQL, то кэш этого сервера
использовался бы более эффективно).

1:1 Наличие пула соединений и постоянных соединений может помешать балан­
сировщику нагрузки распределять запросы на соединение. Пусть, например,

пул открывает заданное количество соединений, а балансировщик нагрузки
распределяет их между четырьмя серверами MySQL. А теперь предположим,
что добавлены еще два сервера. Поскольку пул не запрашивает создание новых
соединений, то эти серверы простаивают. Кроме того, соединения из пула могут

распределяться между серверами несправедливо, так что некоторые окажутся

перегруженными, а другие - недогруженными. Эти проблемы можно частично
решить, задавая на различных уровнях срок хранения соединений в пуле, но это

сложно и труднореализуемо. Пул соединений работает оптимально, когда само­
стоятельно занимается балансированием нагрузки.

1:1 Большинство универсальных балансировщиков нагрузки умеют контролировать
состояние соединения только для НТТР-серверов. Простой балансировщик может
проверить, что сервер принимает соединение с некоторым ТСР-портом, - это абсо­
лютно необходимый минимум. Более развитый балансировщик может отправить
НТТР-запрос и проанализировать код ответа, чтобы удостовериться в нормальной
работе веб-сервера. Но MySQL не принимает НТТР-запросы на порт 3306, так что
контролировать работоспособность придется самостоятельно. Можно установить
на компьютер, где работает сервер MySQL, еще и НТТР-сервер и направить ба­
лансировщик нагрузки на специальный скрипт, который уже проверит состояния

MySQL и вернет соответствующий код1 • Обращать внимание нужно прежде всего
на загрузку операционной системы (обычно эти данные доступны в файле / proc/
loadavg), состояние репликации и количество соединений с сервером MySQL.

Алгоритмы балансирования нагрузки

Существует много разных алгоритмов для определения того, какой сервер должен

получить следующий запрос на соединение. Каждый поставщик применяет собствен­
ную терминологию в этой области, но из приведенного далее перечня должно быть
понятно, какие имеются варианты.

1:1 Случайное балансирование. Балансировщик передает соединение серверу, случай­
но выбранному из пула доступных серверов.

1:1 Циклическое балансирование. Балансировщик передает соединения серверам по
кругу: А, В, С, А, В, С и т. д.

Если вы способны самостоятельно написать программу, которая будет прослушивать

порт 80, и можете сконфигурировать демон xinetd так, чтобы он вызывал вашу программу,
то и веб-сервер устанавливать не придется.

642 Глава 11 • Масштабирование MySQL

О Минимум соединений. Следующее соединение передается серверу, с которым
в данный момент установлено наименьшее количество соединений.

О Самый быстрый ответ. Следующее соединение передается серверу, который
быстрее всего обрабатывает запросы. Этот алгоритм неплохо работает, когда
в пул включены как быстрые, так и медленные компьютеры. Однако применить
его к SQL проблематично, поскольку сложность запросов варьируется в очень
широких пределах. Даже один и тот же запрос может вести себя очень по-разному
в зависимости от обстоятельств, например от того, обслуживается он с диска или
из кэша запросов.

о Хешированное балансирование. Балансировщик хеширует IР-адрес источника
соединения, отображая его на один из серверов в пуле. Таким образом, все соеди­
нения от одного источника поступают одному и тому же серверу. Отображение
модифицируется лишь при изменении количества компьютеров в пуле.

о Взвешенное балансирование. Балансировщик может применять сразу несколько
алгоритмов, приписывая каждому определенный вес. Например, в наличии могут

быть компьютеры с одним и двумя процессорами. Машины с двумя процессорами
примерно в два раза мощнее тех, что с одним, поэтому балансировщик нагрузки
можно сконфигурировать так, чтобы он посылал им в среднем в два раза больше
соединений.

Какой алгоритм окажется для вас наилучшим, зависит от рабочей нагрузки. Например,
балансирование по минимуму соединений может привести к перегрузке запросами
вновь добавленных в пул серверов как раз в тот момент, когда их кэш еще не «про­
грет>.>. Авторы первого издания настоящей книги сталкивались с этой проблемой на
практике.

Для подбора оптимального для имеющейся рабочей нагрузки решения необходимо
экспериментировать. Обязательно протестируйте его не только в нормальных, но
и в экстраординарных условиях. Только при необычных обстоятельствах - высокой
нагрузке, изменении схемы или ненормально большом количестве серверов, выве­
денных из эксплуатации, - можно допустить аномальное поведение.

Мы описали только алгоритмы немедленного обслуживания, когда запросы на со­
единение не ставятся в очередь. Иногда алгоритмы с очередями оказываются более
эффективными. Например, можно поддерживать на сервере баз данных заданный
уровень конкуренции - скажем, не более N активных транзакций в каждый момент
времени. Если транзакций слишком много, то очередной запрос ставится в очередь

и обслуживается, когда какой-нибудь сервер станет доступен в соответствии с вы­
бранным критерием. Некоторые пулы соединений поддерживают подобные алго­
ритмы с очередями.

Добавление серверов в пул и удаление из пула

Чтобы добавить новый сервер в пул, обычно недостаточно просто включить его в сеть
и уведомить балансировщик о его существовании. Если вам кажется, что все будет
хорошо, если сервер не перегружен запросами на соединение, то это не всегда верно.

Иногда можно увеличивать нагрузку на сервер постепенно, но некоторые серверы

Балансирование нагрузки 643

с холодным кэшем могут отвечать настолько медленно, что в течение некоторого

времени не должны получать вообще никаких запросов. Если на то, чтобы показать
страницу пользователю, уходит 30 секунд, то такой сервер нельзя счесть пригод­
ным для использования даже при небольшом объеме трафика. Чтобы решить эту
проблему, можно в течение некоторого времени повторять на новом сервере все
запросы SELECT с какого-нибудь активного сервера и только потом известить о нем
балансировщик нагрузки. Для этого достаточно читать и воспроизводить на новом
сервере файлы журналов активного сервера либо зафиксировать сетевой трафик
работающего сервера и воспроизвести часть его запросов на новом. Инструмент
pt-query-digest пакета Percona Toolkit может помочь в этом. Другой хорошей ме­
тодикой является использование возможностей быстрого «прогрева,,, в Percona
Server или MySQL 5.6.

Конфигурировать серверы, входящие в пул соединений, следует так, чтобы резервной
пропускной способности оказалось достаточно на время вывода некоторых серверов
для обслуживания и для случая, если какой-то из них откажет. Мощность всех узлов
должна быть заложена с запасом.

Убедитесь, что конфигурационные лимиты достаточно высоки для продолжения
работы после удаления некоторых серверов из пула. Например, если каждый сервер
MySQL обычно обрабатывает 100 соединений, то для параметра max_connections
должно быть установлено значение 200. Тогда даже если половина узлов выйдет из
строя, тех, что остались в пуле, хватит для обработки такого же количества соедине­
ний, что и раньше.

Балансирование нагрузки при наличии одного главного
и нескольких подчиненных серверов

Самая распространенная топология репликации - это один главный и несколько

подчиненных серверов. Отойти от такой архитектуры не всегда легко. Во многих при­

ложениях предполагается, что существует единственное место для всех операций за­

писи или имеется один сервер, на котором в любой момент присутствуют все данные.
Хотя с точки зрения масштабирования такая архитектура не является наилучшей,
ее можно с успехом применить, если воспользоваться балансированием нагрузки.
В данном разделе рассматриваются некоторые подходы к этому.

О Функциональное секционирование. Мощность можно немного увеличить, если
сконфигурировать некоторые подчиненные серверы или группы таких серверов

для достижения конкретных целей. Например, выделить серверы для генерации

отчетов и анализа данных, организации хранилищ и полнотекстового поиска.

о ФШlьmрация и секционирова1tие да1t1tых. Данные можно распределить по подчи­
ненным серверам с помощью фильтров репликации (см. главу 1 О). Эта стратегия
хорошо работает, если информация на главном сервере уже находится в разных
базах или таблицах. К сожалению, не существует встроенного способа выполнять
фильтрацию на уровне строк. Вам нужно будет сделать что-то творческое (читай:
хакерское), чтобы реализовать это. Возможно, придется использовать триггеры
и множество разных таблиц.

644 Глава 11 • Масштабирование MySQL

Даже если вы не секционируете данные между подчиненными серверами, эффек­
тивность кэша можно повысить за счет секционирования операций чтения вместо

того, чтобы распределять их случайно. Например, можно направлять запросы на чте­
ние для пользователей, чьи фамилии начинаются с букв А - М, на один подчинен­
ный сервер, а запросы для остальных пользователей - на другой. Тогда кэш каждого

сервера будет использоваться эффективнее, так как более вероятно, что данные для
повторяющихся запросов уже находятся в кэше. В лучшем случае, когда операций

записи нет вообще, такая стратегия дает кэш, размер которого равен сумме размеров
кэшей обоих серверов. Для сравнения: если распределять запросы на чтение между
серверами случайным образом, то данные в кэше каждого сервера дублируются,
поэтому его полный эффективный размер не превышает размер самого большого
кэша на всех подчиненных серверах независимо от их количества.

С1 Перенос части операций записи на подчиненный сервер. Не всегда главный сер­
вер обязан выполнять все операции записи. И главный, и подчиненные серверы
можно освободить от значительного объема работы, если разложить запросы на
части и некоторые из них выполнять непосредственно на подчиненных серверах.

Дополнительную информацию по этой теме см. в главе 10.

С1 Гарантироваюtая актуалыюсть данных на подчиненном сервере. Если на под­
чиненном сервере требуется запустить некий процесс, которому важно, чтобы
данные были актуальными хотя бы на известный момент времени, даже если при­
дется подождать, то можно воспользоваться функцией МASТER_POS_WAIТ(), которая
блокирует процесс до тех пор, пока подчиненный сервер не достигнет желаемой
степени синхронизации с главным. Или можно применить для контроля актуаль­

ности записи пульсацию репликации (подробнее см. в главу 10).

С1 Синхронизация записи. Можно воспользоваться функцией MASТER_POS_WAIТ(),
которая позволяет гарантировать, что операция записи действительно дошла до

одного или нескольких подчиненных серверов. Если приложение желает эму­

лировать синхронную репликацию для обеспечения гарантированной безопас­
ности данных, то можно перебирать все подчиненные серверы в цикле, выполняя
MASТER_POS_WAIТ() для каждого. Тем самым создается барьер синхронизации,
для пересечения которого может потребоваться длительное время, если какие-то
из подчиненных серверов сильно отстают; поэтому применять такую технику

следует только в случае крайней необходимости. (Если нужно лишь гарантиро­
вать, что какой-то сервер получил событие, то можно дожидаться синхронизации
именно этого сервера. В MySQL 5.5 реализована полусинхронная репликация,
которая поддерживает этот метод естественным образом.)

Итоги главы

Правильное масштабирование MySQL немного менее гламурно, чем зачастую ка­
жется. Правильный способ масштабирования - не строить будущую архитектуру
Facebook с первого дня. Лучшая стратегия - делать то, что явно требуется для ва­
шего приложения, и предполагать, что если оно на самом деле будет быстро расти,
то ваши успехи позволят финансировать любые шаги, необходимые для решения
НОВЫХ задач.

Итоги главы 645

Полезно иметь математическое определение масштабируемости и точную концепцию
производительности, основываясь на законе универсальной масштабируемости. Зна­
ние того, 'ПО системы не могут масштабироваться линейно из-за последовательных
инструкций и внутриузловой коммуникации, может помочь избежать возникновения
этих проблем в приложении. В то же время многие проблемы масштабируемости
не являются математическими, они могут быть вызваны проблемами внутри органи­
зации, такими как отсутствие командной работы или что-то менее конкретное. Книги
Guerrilla Capacity Planning (автор - доктор Нил Дж. Гюнтер (NeilJ. Gunther)) и The
Goal (автор - Элияху М. Голдратт (Eliyahu М. Goldratt)) полезно прочитать всем,
кто хочет понять, почему системы не масштабируются.

Что касается стратегий масштабируемости MySQL, то типичное приложение, кото­
рое сильно разрослось, обычно начинает с единственного сервера, а затем переходит
на горизонтально масштабируемую архитектуру с чтением с подчиненных серве­
ров. После этого приложение движется к шардированию и/или функциональному
секционированию. Мы не согласны с теми, кто выступает за подход «шардируйте

рано, шардируйте часто~ для каждого приложения. Это сложно и дорого и многим

приложениям никогда не понадобится. Ничто не мешает вам потратить время и по­
смотреть, что произойдет с новым оборудованием, новыми версиями MySQL или
новыми разработками в MySQL Cluster, и даже оценить запатентованную систему,
такую как Clustrix. В конце концов, шардирование - это ручная система кластери­
зации, так что не стоит изобретать велосипед.

При использовании нескольких серверов возникают проблемы с согласованностью
и неделимостью. Наиболее распространенными затруднениями, с которыми мы
сталкивались, были отсутствие согласованности сеансов (публикация комментария
на сайте, обновление страницы и отсутствие комментария, который вы только что
опубликовали) и сбои при передаче приложению информации о том, с каких сер­
веров надо считывать данные и на какие записывать. Последние проблемы гораздо
серьезнее, поскольку, если вы направляете записи более чем в одно место в своем
приложении, то неизбежно столкнетесь с проблемами с данными, решать которые
придется долго и мучительно. В этом могут помочь балансировщики нагрузки, одна­
ко они сами могут вызывать проблемы, иногда даже усугубляя те, которые призваны
решить. Именно поэтому следующая глава посвящена высокой доступности.

Высокая
доступность

В этой главе рассматривается последняя часть троицы, куда входят репликация,

масштабируемость и высокая доступность. Под высокой доступностью мы подра­

зумеваем малое время простоя. К сожалению, высокую доступность часто смешивают

с близкими понятиями, такими как избыточность, защита от потери данных и ба­

лансировка нагрузки. Мы надеемся, что предыдущие две главы подготовили почву

для ясного понимания высокой доступности. Однако нельзя сказать, что эта глава

посвящена исключительно высокой доступности, - как и при разговоре о других

частях троицы, в ней рассмотрены несколько связанных тем.

Что такое высокая доступность

На самом деле высокая доступность - это в чем-то мифический зверь. Обычно

она выражается в процентах, что само по себе является подсказкой: не существует

предельно высокой доступности, а лишь более или менее высокая доступность.

Стопроцентная доступность просто недостижима. Правило девяток является наи­

более распространенным способом выражения цели доступности. Как вы, возможно,

знаете, пять девяток означает 99,999 % безотказной работы, что составляет чуть более
5 минут простоя в год. Это отлично для большинства приложений, хотя некоторые
из них достигают еще большего числа девяток.

У разных приложений требования к доступности очень разнятся. Прежде чем

формулировать, какую долю времени система должна быть доступной, подумайте,

чего вы на самом деле хотите добиться. Каждое следующее увеличение степени

доступности, как правило, обходится дороже предыдущего, отношение доступ­

ности к потраченным усилиям и затратам нелинейно. Рабочее время, в котором

вы нуждаетесь, обычно зависит от того, что вы можете себе позволить. Вся идея

с высокой доступностью заключается в уравновешивании стоимости простоя

Что такое высокая доступность 647

с затратами на сокращение простоев. Иными словами, если вам нужно потратить

много денег, чтобы увеличить время безотказной работы, но подобный результат

позволит заработать лишь немногим больше, то, скорее всего, оно того не стоит.

В общем, начиная с некоторого момента сделать приложение высокодоступным

сложно и дорого, поэтому мы советуем ставить реалистичные цели и избегать чрез­

мерного усложнения. К счастью, усилия, необходимые для достижения двух или

трех девяток времени безотказной работы, могут быть не очень высокими. Но это

зависит от приложения.

Иногда люди определяют доступность как долю времени, в течение которого служба

работает. Мы считаем, что это определение также должно включать в себя следу­

ющую характеристику: обслуживаются ли запросы с хорошей производительностью.

Существует множество вариантов, при которых сервер может работать, но реально

быть недоступным. Обычный случай - сразу после перезапуска сервера MySQL.
Для большого сервера потребуется довольно много времени, чтобы разогреться и на­

чать обслуживать запросы с приемлемым временем отклика, даже если сервер будет

эксплуатироваться не на полную мощность.

Еще один фактор, который следует учитывать: возможна ли потеря информации,

хотя приложение и не переставало работать. В случае катастрофического отказа
сервера данные могут быть частично потеряны, по крайней мере те транзакции,

которые были записаны в утраченный двоичный журнал, но не попали в журнал

ретрансляции подчиненного сервера. С этим можно смириться? Для большинства

приложений ответ положительный, если же это не так, то потребуется, как правило,

дорогостоящее и сложное решение, сопряженное с дополнительными накладными

затратами. Например, можно воспользоваться синхронной репликацией или по­

местить двоичный журнал на устройство, реплицируемое с помощью механизма

DRBD, так что журнал не будет потерян даже при полном отказе системы. (Однако
электричество может отключиться во всем центре хранения данных.)

Продуманная архитектура приложения зачастую может снизить требования к до­
ступности, по крайней мере для части системы, так что обеспечить высокую доступ­

ность в целом будет проще. Разделение системы на критические и некритические

части поможет сэкономить немало труда и денег, поскольку чем меньше система,

тем легче обеспечить высокую доступность. Выявить наиболее значимые опасности

можно, вычислив подверженность риску, то есть вероятность отказа, умноженную

на стоимость этого отказа. Простенькая таблица рисков, содержащая столбцы «Ве­

роятность», «Стоимость», «Подверженность риску», поможет распределить усилия

по приоритетности.

В предыдущей главе мы рассмотрели способы достижения большей масштабиру­

емости путем устранения причин плохой масштабируемости. Здесь мы используем
аналогичный подход, поскольку считаем, что доступность проще всего понять, изу­

чая ее противоположность - время простоя. Давайте начнем с обсуждения причин

простоев.

648 Глава 12 • Высокая доступность

Причины простоев

Нам доводилось слышать, что основной причиной простоев на серверах баз данных

являются плохо написанные SQL-запросы. Но правда ли это? В 2009 году мы решили
проанализировать нашу базу данных об инцидентах с клиентами и определить, ка­

кие причины на самом деле приводят к простоям и как их предотвратить'. Хотя ряд

представлений был подтвержден полученными результатами, другие представления

оказались ошибочными, а мы многому научились.

Сначала мы классифицировали случаи простоя не по причине, а по их проявлениям.

Грубо говоря, ведущим местом проявления простоев оказалось то, что мы назвали
операционной средой: здесь было зафиксировано около 35 % инцидентов. Опера­
ционная среда - это набор систем и ресурсов, которые поддерживают сервер базы

данных, таких как операционная система, диски и сеть. Проблемы с производитель­

ностью заняли с небольшим отрывом второе место, здесь также было зафиксировано

около 35 % инцидентов, связанных с простоями. Следующая - репликация, на кото­

рую приходится 20 % инцидентов, и оставшиеся 1 О % пришлись на различные типы
потери данных или повреждений, а также несколько иных проблем.

Классифицировав типы инцидентов, мы определили их причины. Приведем не­

сколько основных.

О В операционной среде наиболее распространенной проблемой, лидирующей

с большим отрывом, была нехватка дискового пространства.

о Самая распространенная причина простоя в группе проблем с производительно­

стью - это действительно плохое выполнение SQL, хотя вина далеко не всегда
ложилась на плохо написанные запросы. Например, множество проблем было

вызвано ошибками сервера или его аномальным поведением.

О Плохие схема и проектирование индексов - следующие по распространенности

проблемы производительности.

О Проблемы с репликацией обычно были вызваны различиями в данных между

главным и подчиненными серверами.

О Проблемы с потерей данных обычно были вызваны командой DROP TABLE и всегда

сопровождались отсутствием доступных резервных копий.

Обратите внимание на то, что репликация - одна из методик, направленных на уве­

личение времени безотказной работы, - часто приводит к простоям. Обычно это про­

исходит из-за неправильного ее применения, так что данная ситуация иллюстрирует

известный тезис: многие приемы, направленные на достижение высокой доступности,

могут иметь обратные последствия. С этим мы столкнемся еще раз позже.

Мы написали длинный технический документ, где провели полный анализ инцидентов,

вызвавших простои у наших клиентов, а затем другой, в котором описали способы предот­

вращения простоев, включая подробные списки деятельности, которую нужно периодиче­

ски проверять. В этой книге нет места для освещения всех этих подробностей, однако оба

документа можно найти на сайте Percona (http://\\'ww.percona.coш).

Достижение высокой доступности 649

Теперь, когда известно, какие типы простоев встречаются и каковы причины их

возникновения, можно подробно рассмотреть способы достижения высокой до­
ступности.

Достижение высокой доступности

Высокая доступность достигается применением двух методик, которые должны

идти рука об руку. Во-первых, попробуйте сократить время простоев, убрав их при­
чины. Многие из них легко устраняются с помощью таких шагов, как правильная

настройка, мониторинг и защита от человеческой ошибки. Во-вторых, постарайтесь

обеспечить быстрое восстановление после простоев. Обычная тактика заключается
в создании избыточности и отказоустойчивости в системах. Эти два уровня высокой

доступности можно найти измерением двух показателей: среднего времени между от­

казами (mean time Ьetween failures, MTBF) и среднего времени восстановления (mean
time to recoveгy, MTTR). Некоторые организации тщательно отслеживают их.

Второй пункт - быстрое восстановление за счет избыточности - к сожалению,
кажется, привлекает наибольшее внимание, однако рентабельность инвестиций
в усилия по предотвращению простоев может быть весьма высока. Давайте немного

изучим мероприятия по их предотвращению.

Сокращение среднего времени между отказами

Вы можете избежать продолжительных простоев с помощью несложных мероприя­
тий. Классифицируя случаи простоев и объясняя их причины, мы определили
и способы их предотвращения. Мы обнаружили, что множество простоев может

быть предотвращено просто с помощью разумного подхода к управлению системами.

Следующие рекомендации выбраны из списка, приведенного в нашей работе, посвя­
щенной детальным результатам анализа.

D Протестируйте инструменты и процедуры восстановления, в том числе инстру-

менты восстановления из резервных копий.

D Следуйте принципу минимизации привилегий.

D Держите свои системы в чистоте и порядке.

D Используйте качественные соглашения о наименованиях и организации. Это по­
может избежать путаницы независимо от того, применяются ли эти серверы в раз­

работке или в реальной работе.

D Составьте разумный график обновления сервера базы данных, тем самым под­
держивая его актуальность.

D Тщательно тестируйте обновления перед их установкой, например, с помощью
инструмента pt-upgrade из пакета Percona Toolkit.

D Используйте InnoD В, настройте ее правильно и убедитесь, что она является подси­
стемой хранения по умолчанию, а сервер не может запуститься, если она отключена.

650 Глава 12 • Высокая доступность

О Убедитесь, что настройки основного сервера сконфигурированы правильно.

о Отключите DNS с помощью параметра skip_name_resolve.

о Если нужность кэша запросов не доказана, отключите его.

О Избегайте сложностей, таких как фильтры репликации и триггеры, если без них
можно обойтись.

О Контролируйте важные компоненты и функции - особенно важные элементы,

такие как дисковое пространство и состояние тома RAID. Но избегайте ложнопо­
зитивных результатов - задавайте выдачу оповещений только о тех показателях,

которые достоверно указывают на проблемы.

О Запишите как можно больше полученных ранее показателей, характеризующих
состояние и производительность сервера, и сохраните их навсегда, если это воз­

можно.

о Регулярно проверяйте целостность репликации.

О Назначьте подчиненным серверам режим «только для чтения» и не допускайте

автоматического запуска репликации.

О Регулярно проверяйте запросы.

О Архивируйте и удаляйте ненужные данные.

О Зарезервируйте место в файловых системах. В GNU /Linux можете использовать
параметр -m для резервирования места в самой файловой системе. Также можно
оставить свободное пространство в группе томов L VM. Возможно, самый про­
стой способ состоит в создании большого файла-заглушки, который можно будет
удалить, если файловая система будет заполнена до конца1 •

О Приобретите привычку просматривать информацию об изменениях в системе,
о ее состоянии и производительности, а также управлять ею.

Мы обнаружили, что провалы в управлении изменениями в системе - это наибо­
лее важная причина инцидентов, связанных с простоями. Типичными ошибками

являются неосторожные обновления, ошибки программы, вызванные отсутствием
обновлений, изменение схемы или запроса для рабочей версии без их предваритель­
ного тестирования, отсутствие планирования таких моментов, как например, дости­

жение предела емкости диска. Еще одна значимая причина проблем - отсутствие

должной осмотрительности, например пренебрежение проверкой способности

восстановления с резервных копий. Наконец, люди часто отслеживают в MySQL
не то, что следовало бы. Получение сообщений о таких показателях, как, например,
коэффициент попадания в кэш, которые не обозначают реальную проблему и выда­

ют множество ложнопозитивных результатов, приводит к тому, что многие считают

систему мониторинга бесполезной и игнорируют предупреждения. Иногда система
мониторинга отказывает, и никто об этом даже не догадывается. А потом приходится
отвечать на справедливые вопросы недовольного босса, например: «Почему Nagios
не предупредила нас о том, что диск заполнен?»

Это на 100 % кросс-платформенная совместимость!

Достижение высокой доступности 651

Сокращение среднего времени восстановления

Как уже упоминалось, часто возникает соблазн, стремясь достичь высокой доступ­
ности, сосредоточиться исключительно на сокращении времени восстановления

после простоев. Фактически иногда люди идут еще дальше и ограничиваются только

одним аспектом сокращения времени восстановления, а именно предотвращением

полного сбоя системы за счет создания в ней избыточности и устранения одиночных
точек отказа.

Очень важно приложить усилия к достижению быстрого восстановления, ключевым
аспектом чего является хорошая системная архитектура, обеспечивающая избыточ­
ность и отказоустойчивость. Однако получение высокой доступности - это не только

техническая проблема. Необходимо принимать во внимание человеческий и орга­
низационный компоненты. Организации и отдельные лица различаются по уровню

зрелости и способности избегать простоев и восстанавливаться после них.

Ваши сотрудники - важнейшие из ресурсов, необходимых для обеспечения высокой
доступности, так что продуманные процедуры восстановления жизненно необходимы.
Квалифицированные, способные адаптироваться, хорошо обученные сотрудники, во­
оруженные хорошо документированными и проверенными процедурами для работы
в чрезвычайных ситуациях, могут в значительной степени способствовать быстрому
восстановлению после простоев. Не стоит доверять исключительно инструментам

и системам, поскольку они не понимают нюансов и временами делают, в принципе,

правильные вещи, однако совершенно неприемлемые в данном конкретном случае.

Изучение инцидентов, связанных с простоями, может быть очень полезным с точки

зрения обучения сотрудников и позволит избежать подобных инцидентов в буду­
щем. Остерегайтесь, однако, переоценки таких методов, как «анализ постфактум»,

или «постмортем». Когда мы оглядываемся назад, реальность искажается, а стрем­

ление найти одну основную причину случившегося часто приводит к неверным

выводам 1 • Многие популярные подходы, например «Пять "почему?"», не получа­
ется применить соответствующим образом, так как люди сосредоточены на поиске

единственного козла отпущения. Трудно оглянуться назад на ситуацию, которая

разрешилась, и понять ее реальные причины, тем более что их всегда много. Так что,
хотя анализ постфактум может принести пользу, все же следует относиться к нему

с изрядной долей скепсиса. Даже наши собственные рекомендации, основанные на

длительном исследовании причин и способов предупреждения простоев, являются
всего лишь частным мнением.

Стоит повторить: все случаи простоев происходят вследствие сочетания нескольких

сбоев и, таким образом, для их предотвращения достаточно одного-единственного

Два примера противоречий здравому смыслу можно встретить в следующих источниках:

в статье Ричарда Кука (Richard Cook) How Complex Systems r'ail (http://www.ctlab.org/
documents/How%20Complex%20Systems%20Fail.pdf) и эссе Малькольма Гладуэлла (Malcolm
Gladwell) о катастрофе шаттла «Челленджер~>, включенном в его книrу What the Dog Saw
(издательство Little, Brown).

652 Глава 12 • Высокая доступность

защитного механизма. Но необходимо предотвратить все эти сбои, а не разрушить
в их цепи одно-единственное звено. Например, люди, которые обращаются к нам

за помощью в восстановлении данных, обычно страдают как от потери данных (сбой
работы хранилищ, ошибка администратора базы данных и т. п.), так и от отсутствия
доступных резервных копий.

С учетом сказанного, нельзя говорить, что люди и организации проявляют излишнее

рвение в расследовании причин простоев и попытках их предотвратить или ускорить

восстановление после них. Вместо этого они часто сосредоточиваются на технических

мерах, особенно крутых, таких как кластерные системы и избыточные архитектуры.
В этом есть смысл, однако не забывайте, что системы также подвержены ошибкам.
Один из инструментов, упомянутых во втором издании этой книги, а именно мене­

джер репликации МММ, больше не пользуется нашим расположением, поскольку ока­
залось, что он вызывает больше простоев, чем предотвращает. Вас, видимо, не удивит
тот факт, что набор скриптов Perl иногда работает плохо, и даже чрезвычайно дорогие
и сложные системы могут давать катастрофические сбои - да, даже SAN, которая
стоит целое состояние. Мы видели множество сбоев SAN.

Устранение отдельных критических точек

Поиск и устранение отдельных критических точек в вашей системе в сочетании

с механизмом переключения на использование запасного компонента - один из спо­

собов улучшения доступности за счет сокращения времени восстановления (MTTR).
Хорошо постаравшись, можно сократить время восстановления до нуля, хотя это

довольно сложно в общем случае. (Даже очень впечатляющие технологии, такие как
дорогостоящие балансировки нагрузки, дают какую-то задержку - им нужно время,
чтобы заметить проблемы и отреагировать на них.)

Подумайте о своем приложении и попытайтесь выделить все критические точки.

Это может быть жесткий диск, сервер, коммутатор, маршрутизатор или питание

для одного блока. Располагаются ли все ваши машины в одном ЦОДе или предо­
ставлены ли резервные ЦОДы одной компанией? Любая точка в системе, которая
не является избыточной, - это критическая точка. Обычными критическими точ­
ками в зависимости от ваших потребностей могут быть такие службы, как DNS,
единственный сетевой провайдер1, единственная облачная зона доступности и един­
ственная энергосистема.

Далеко не всегда можно устранить отдельные критические точки. Создание избы­
точного компонента может оказаться невозможным из-за какого-то ограничения,

с которым вы ничего не сможете сделать, например географического, бюджетного
или временного. Попытайтесь учесть все компоненты, влияющие на доступность,
составьте взвешенную картину рисков и начните работу с наиболее значимых. Неко-

Это паранойя? Убедитесь, что ваши избыточные сетевые соединения действительно под­

ключены к различным магистралям Интернета и что они физически не проложены по

одной и той же улице или не висят на одном и том же столбе, поэтому не будут обрезаны
одним и тем же экскаватором или оборваны одним автомобилем.

Устранение отдельных критических точек 653

торые разработчики прилагают множество усилий к тому, чтобы создать программу,
которая сможет пережить любые аппаратные сбои, но простои из-за ошибок в ней
могут оказаться больше, чем если бы ее вообще не было. Те, кто строит «Непотопляе­
мые~ системы, в которых резервировано все, что только можно, забывают, что центр
обработки данных может быть обесточен или лишен доступа к сети. А быть может,
разработчики не принимают во внимание разрушительные действия хакеров или
неумышленные ошибки программистов, приведшие к удалению или повреждению
данных. Случайная команда DROP TABLE тоже может стать причиной простоя.

Избыточность системы может принимать две формы: наличие запасной мощности
и дублирование компонентов. Обеспечить запас мощности довольно просто - можно
воспользоваться любым из упомянутых в этой и предыдущей главах методов. Один
из способов повышения доступности состоит в том, чтобы создать кластер или пул
серверов и применить тот или иной способ балансирования нагрузки. Если какой­
нибудь сервер выходит из строя, то нагрузка перераспределяется между остальными.
Вообще говоря, разумно по возможности не загружать компоненты под завязку, по­
скольку в этом случае остается запас для поддержания нужной производительности

при возрастании нагрузки или отказе некоторых компонентов.

Дублирование компонентов может потребоваться во многих ситуациях. При этом
придется держать резервный наготове, чтобы выполнить аварийное переключение на
него в случае отказа основного. Дублировать можно сетевые карты, маршрутизаторы,
накопители на жестких дисках - все, что с большой вероятностью способно выйти
из строя. Дублировать сервер MySQL целиком несколько сложнее, поскольку без
данных он бесполезен. Следовательно, нужно позаботиться о том, чтобы резервные
серверы имели доступ к базам основного сервера. Разделяемое или реплицированное
хранилище является одним из популярных способов достижения этого. Но являет­
ся ли это архитектурой с высокой доступностью? Попробуем разобраться.

Разделяемое хранилище данных
v

или реплицированныи диск

Разделяемое хранилище - это способ ослабить связь между сервером базы данных
и хранилищем данных. Обычно в этом качестве выступают SАN-сети. При устройстве
такого хранилища активный сервер монтирует свою файловую систему и функцио­

нирует как обычно. Если активный сервер выходит из строя, то резервный может
подмонтировать ту же самую файловую систему, выполнить операции восстановле­

ния и запустить MySQL для работы с файлами отказавшего сервера. Логически этот
процесс ничем не отличается от починки отказавшего узла, только все происходит

намного быстрее, так как резервный сервер уже загружен и готов к работе. Проверка
файловой системы, восстановление на уровне InnoDB и «прогрев~ 1 - самые большие

Percona Server предлагает возможность восстановления сохраненного состояния буферного
пула после перезапуска, и это отлично работает с рааделяемым хранилищем. Тем самым

время прогрева может сократиться на часы или даже дни. В MySQL 5.6 будет реализована
аналогичная возможность.

654 Глава 12 • Высокая досrупность

задержки, с которыми вы, вероятно, столкнетесь при переходе на резервный сервер,

однако в большинстве случаев само обнаружение сбоев может занять довольно дли­
тельное время.

У разделяемого хранилища есть два преимущества: оно помогает избежать потери
данных при сбое любого другого компонента, кроме хранилища, а также позволяет
создавать избыточность в компонентах, не связанных с хранением. Эта стратегия
помогает снизить требования к доступности в некоторых частях системы, что упро­
щает достижение общей высокой доступности, поскольку усилия концентрируются
на меньшем наборе компонентов. Но само разделяемое хранилище по-прежнему
является единой точкой отказа. Если оно выходит из строя, вся система прекращает

работу, и хотя SAN, как правило, очень хорошо спроектированы, они могут выйти
из строя и выходят, иногда эффектно. Даже SAN, которые сами по себе являются
избыточными, могут прекратить работу.

Доступ к ра3Деляемому хранилищу в режиме •активный - активный•

Что можно сказать о запуске нескольких серверов в режиме 4активный - активный"

на SAN, NAS или в кластерной файловой системе? MySQL не может этого сделать.
Она не предназначена для синхронизации доступа к данным с другими экземплярами

MySQL, поэтому нельзя запустить несколько экземпляров MySQL, работающих с од­
ними и теми же данными. (Технически вы могли бы, если бы использовали MyISAM
для статических данных в режиме •только для чтения>,>, но на практике мы никогда

с таким не встречались.)

Подсистема хранения ScaleDB, работающая под MySQL, взаимодействует через
API с архитектурой разделяемого хранилища, но мы не проверяли ее и не видели
в реальных условиях. На момент написания книги она находится в стадии бета­

тестирования.

Разделяемое хранилище подвержено определенным рискам. Если сбой, такой как,
например, выход из строя MySQL, приводит к повреждению файлов данных, то
резервный сервер может оказаться не в состоянии выполнить восстановление.

Мы настоятельно рекомендуем использовать InnoDB или другую надежную ACID
подсистему хранения с разделяемым хранилищем. Любой сбой почти наверняка по­
вредит таблицы MyISAM, и их восстановление может занять много времени и при­
вести к потере строк. Также настоятельно рекомендуем выполнять журналирование

файловой системы с разделяемым хранилищем. Нам встречались серьезные невос­
становимые повреждения файловой системой без журналирования и SAN (это была
ошибка файловой системы, а не SAN).

Реплицируемый диск - еще один способ получить такой же результат, как и при
использовании SAN. Совместно с MySQL чаще всего задействуется система DRBD
(http://www.drЬd.org) в сочетании с инструментами из проекта Linux-HA (подробнее
об этом поговорим в дальнейшем).

Устранение отдельных критических точек 655

DRBD - это синхронный механизм репликации блочного уровня, реализованный
в виде модуля ядра Linux. Он копирует каждый блок первичного устройства по
сети на другое блочное устройство (вторичное устройство) и записывает этот блок
в место назначения еще до того, как он будет закоммичен на первичном устройстве 1 •
Поскольку любая операция записи должна завершиться на вторичном устройстве

раньше, чтобы запись на первичное считалась состоявшейся, то вторичное устрой­
ство должно быть как минимум таким же быстрым, как и первичное, иначе оно будет
ограничивать производительность основной системы. Кроме того, если для создания

резерва используется DRBD, то оборудование резервного сервера должно быть таким
же, как и основного. Также при использовании DRBD необходим хороший RАID­
контроллер с кэшем записи с резервным источником питания - без него произво­
дительность будет очень низкой.

Если активный сервер выходит из строя, можно сделать вторичное устройство

первичным. Но поскольку DRBD реплицирует диск на блочном уровне, файловая
система рискует оказаться рассогласованной. Следовательно, для быстрого восста­
новления лучше использовать журналируемую файловую систему. По завершении

ее воссоздания MySQL, скорее всего, должна будет запустить собственные средства
восстановления. Когда первый сервер снова вступит в строй, он синхронизирует

свое устройство с новым первичным устройством и примет на себя роль вторичного.

С точки зрения фактической реализации переключения на резерв при отказе система

DRBD аналогична SAN: имеется резервный компьютер, который начинает обслужи­
вать те же данные, что и машина, вышедшая из строя. Основное отличие заключается

в том, что это реплицируемая, а не разделяемая память, поэтому при использовании

DRBD вы обслуживаете копию данных, тогда как в случае применения SAN речь
идет об обслуживании той же самой информации, расположенной на том же физи­
ческом устройстве, к которому обращалась отказавшая машина. В обоих случаях
кэши сервера MySQL будут пусты в тот момент, когда он запускается на резервной
машине. Напротив, кэши подчиненного сервера репликации, скорее всего, будут
хотя бы частично «прогреты».

У системы DRBD есть возможности, позволяющие предотвратить проблемы, свой­
ственные ПО кластеризации. В качестве примера назовем синдром разделения вы­
числительных мощностей, который возникает, когда два узла пытаются сделаться

первичными одновременно. DRBD можно сконфигурировать таким образом, что этот
феномен никогда не возникнет. Однако система DRBD годится не для всех ситуаций.
Рассмотрим некоторые присущие ей недостатки.

О Переключение на резервный сервер при сбое в DRBD осуществляется не мгно­
венно. Обычно для превращения вторичного устройства в первичное требуется

несколько секунд, и это не считая восстановления файловой системы и MySQL.

Уровень синхронизации DRBD поддается настройке. Можно установить асинхронный
режим, режим, в котором система ждет получения данных удаленным устройством, или

режим блокировки до завершения записи на удаленный диск. Кроме того, настоятельно

рекомендуется отводить по DRBD отдельную сетевую карту.

656 Глава 12 • Высокая доступность

О Работа DRBD весьма затратна, поскольку она функционирует только в активно­
пассивном режиме. Когда реплицируемое устройство на сервере горячей замены

работает в пассивном режиме, оно больше ни для чего не пригодно. Считать ли это
недостатком, зависит от принятой точки зрения. Если требуется по-настоящему
высокая доступность и вы не можете смириться с понижением уровня обслужива­
ния при сбое, то ни на какую пару машин нельзя давать нагрузку, превышающую
нагрузку на одну машину, поскольку в этом случае при выходе любой машины
из строя оставшаяся не сможет справиться с работой. Конечно, можно использо­
вать резервный сервер еще для чего-нибудь, например, как подчиненный сервер
репликации, но часть ресурсов все равно будет простаивать.

О Для таблиц типа MyISAM этот механизм практически бесполезен, поскольку их
проверка и восстановление занимают слишком много времени. Вообще, подси­

стема хранения MyISAM - неудачный выбор для обеспечения высокой доступ­
ности. Применяйте вместо нее InnoDB или любую другую подсистему с хорошей
скоростью восстановления.

О Система DRBD не заменяет резервного копирования. Если данные на диске по­
вреждены в результате злонамеренного вмешательства, ошибки, оплошности или
аппаратного сбоя, то DRBD не поможет: реплицированные данные представляют
собой точный дубликат испорченного оригинала. Для защиты от такого рода
проблем необходима резервная копия (или репликация на уровне MySQ1- с за­
держкой по времени).

О Она добавляет некоторые накладные затраты для операции записи. Насколько
они велики? Часто приводят значение в процентах, но это не очень хороший по­

казатель. Вместо этого вам нужно понять, что операции записи страдают от до­

полнительной задержки из-за отправки и получения данных по сети и хранения на

удаленном сервере, а эти затраты в относительном выражении значительнее для

небольших записей. Хотя дополнительная задержка из-за сети может составлять
всего около 0,3 с, что кажется сравнительно небольшим значением по сравнению
с задержкой 4-10 мс при фактическом вводе/выводе на локальный диск, это
примерно в три-четыре раза превышает задержку, которой можно ожидать от за­

писи в кэш хорошего RАID-контроллера. Наиболее распространенной причиной

замедления работы сервера с DRBD является то, что MySQL с lnnoDB в режиме
полной устойчивости выполняет много коротких операций записи и вызовов

функции fsync(), которые сильно замедляются DRBD1•

Мы предпочитаем использовать DRBD для репликации только тех устройств, на
которых хранятся двоичные журналы. При выходе из строя активного сервера

можно запустить на пассивном узле сервер журналов и использовать восстановлен­

ные двоичные журналы для приведения всех серверов, подчиненных отказавшему

Большие последовательные записи - это совсем другая история. Дополнительная за­

держка из-за DRBD практически исчезает, но в игру вступают ограничения пропускной
способности. Нормальный RАID-массив должен обеспечивать от 200 до 500 Мбайт в се­
кунду пропускной способности последовательной записи, что намного выше того, чего

может достичь сеть GigE.

Устранение отдельных критических точек 657

главному, к последней точке синхронизации. После этого можно выбрать какой-то
из подчиненных серверов и выдвинуть его на роль главного, заменив тем самым

систему, вышедшую из строя.

В конечном счете разделяемые хранилища и реплицированные диски важны

не столько для достижения высокой доступности (небольшого времени простоя),
сколько для безопасного хранения данных. Пока у вас есть данные, вы можете вос­
становить данные после сбоев с показателем MTTR ниже, чем при невозможности
сделать это (даже длительное время восстановления меньше, чем полное отсутствие

восстановления). Однако по сравнению с архитектурами, которые позволяют ожида­

ющему резервному серверу работать постоянно, у большинства разделяемых систем
хранения или реплицированных дисков МТТR больше. Существует два способа под­
держки сервера в постоянной готовности и запуска при необходимости: стандартная
репликация MySQL, о которой мы говорили в главе 10, и синхронная репликация,
которую обсудим в следующем разделе.

Синхронная репликация MySQL

При синхронной репликации транзакция на главном сервере не может завершиться,

пока не будет закоммичена на одном или нескольких подчиненных. Тем самым до­
стигаются две цели: никакие закоммиченные транзакции не теряются, если сервер

выходит из строя, и есть по крайней мере еще один сервер с ~живой» копией данных.

Большинство синхронных архитектур репликации работают в активном режиме.
Это означает, что каждый сервер является кандидатом на аварийное переключение

в любое время, что упрощает большую доступность за счет избыточности.

На момент написания этой книги сама MySQL не предлагает синхронную репликацию1 ,
однако существуют два основанных на MySQL решения кластеризации, которые ее
поддерживают. Кроме того, вы можете освежить в памяти главы 10, 11 и 13, в которых
обсуждались другие интересные продукты, такие как Continuent Tungsten и Clustгix.

MySQL Cluster

Лучшим способом синхронной репликации в MySQL является MySQL Cluster
(NDB Cluster). Он имеет синхронную репликацию в режиме ~активный - активный»
между всеми узлами. Это означает, что вы можете записывать на любой узел - все
они одинаково способны читать и писать. Каждая строка хранится избыточно, по­
этому вы можете потерять узел без потери данных, и кластер остается работоспо­
собным. Хотя MySQL Cluster по-прежнему не является полным решением для всех
типов приложений, как мы упоминали в предыдущей главе, в последних релизах

он быстро улучшается. И теперь в нем реализован огромный список новых воз­
можностей и особенностей: дисковое хранилище для неиндексированных данных,
онлайновое масштабирование путем добавления узлов данных, таблицы ndЬinfo

Существует поддержка полусинхронной репликации в MySQL 5.5 (см. главу 10).

658 Глава 12 • Высокая доступность

для управления кластером, скрипты для инициализации и управления кластером,

многопоточные операции, перемещение операций соединения к узлам, содержащим

данные, - сейчас это принято называть адаптивной локализацией запроса (adaptive
query localization), способность обрабатывать типами BLOB и таблицами с большим
количеством столбцов, централизованное управление пользователями и доступ

к NoSQL через API NDB, а также протокол memcached. Предстоящие выпуски будут
предусматривать возможность запуска в режиме согласованности в конечном счете

с обнаружением и разрешением конфликтов транзакций в сети W AN для репликации
между центрами данных в режиме «активный - активный». Короче говоря, MySQL
Cluster - впечатляющий технологический продукт.

Существуют по крайней мере два поставщика настраиваемых продуктов для упро­

щения развертывания кластеров и управления ими: контракты на поддержку Oracle
для кластера MySQI, включают его продукт MySQL Cluster Manager, а Severalnines
предлагает Cluster Control (http://www.severalnines.com). Этот продукт также может
помочь в развертывании кластеров репликации и управлении ими.

Percona XtraDB Cluster

Percona XtraDB Cluster - относительно новая технология, которая добавляет возмож­

ность синхронной репликации и кластеризации самой подсистеме хранения XtraDB
(InnoDB), а не через новую подсистему хранения или внешний сервер. Он построен
на Galera1 -библиотеке, которая реплицирует записи по узлам в кластере. Как и MySQL
Cluster, Percona XtraDB Cluster предлагает синхронную репликацию с несколькими
главными серверами2 с возможностью записи на любом узле. Как и MySQL Cluster,
он может обеспечить высокую доступность, а также гарантировать нулевую потерю

данных (устойчивость - D (duraЬility) в ACID), когда узел выходит из строя. И ко­
нечно же, узлы могут выйти из строя, не вызывая сбоя всего кластера.

В лежащей в основе сервера технологии Galera используется методика, называемая
репликацией множества строк, изменяемых при записи. Изменяемое множество строк

кодируется как построчные события двоичного журнала для передачи их между

узлами и обновления других узлов в кластере, хотя двоичный журнал включать

не обязательно.

Percona XtraDB Cluster работает очень быстро. Репликация между узлами может
быть более быстрой, чем некластеризованная, поскольку запись в удаленную опе­

ративную память выполняется быстрее, чем запись на локальный диск в режиме

Технология Galeгa разработана Codership Оу (http://www.codership.com) и доступна
в виде патча для стандартных MySQL и InnoDB. Регсоnа XtraDB Cluster включает в себя
модифицированную версию этого набора патчей, а также другие возможности и функции.

Percona XtraDB Cluster - это решение на базе Galera, поставляемое в готовом виде.

Вы также можете использовать ero в конфигурации «главный сервер - подчиненный

сервер~>, выполняя операции записи только на один узел, но при этом режиме работы

в конфигурации кластера нет никаких различий.

Устранение отдельных критических точек 659

полной устойчивости. Если есть желание, можно повысить производительность за

счет снижения устойчивости на каждом узле, при этом поддерживая устойчивость

за счет наличия нескольких узлов с копиями данных. NDB работает по такому же
принципу. Устойчивость кластера в целом не снижается - уменьшается только

локальная устойчивость. Кроме того, он поддерживает построчную параллельную

(многопоточную) репликацию, поэтому для выполнения изменения множества строк
можно использовать несколько ядер процессора. Эти особенности в совокупности

делают Percona XtraDB Cluster привлекательным в средах облачных вычислений,
где диски и процессоры, как правило, медленнее обычных.

Для того чтобы узлы не генерировали конфликтующие значения, кластер реализует
автоинкрементные ключи с помощью параметров auto_increment_offset и auto_
increment_increment. Блокировка обычно производится так же, как и в стандартной
InnoDB. Используется оптимистический контроль конкурентности. Изменения
сериализуются и передаются между узлами после коммита транзакции с процессом

сертификации, так что, если возникают конфликты при обновлении, кто-то должен

уступить. Если несколько узлов одновременно меняют одни и те же строки, это

может привести к множеству взаимных блокировок и откатов.

Percona XtraDB Cluster обеспечивает высокую доступность, сохраняя узлы онлайн,
пока они образуют кворум. Если узлы обнаруживают, что они не являются частью
кворума, они отделяются от кластера, как следствие им приходится повторно вы­

полнять синхронизацию, прежде чем снова присоединиться к кластеру. В результате

кластер не может обрабатывать сценарии разделения вычислительных мощностей:
если такой сценарий встретится, работа прекратится. Если в двухузловом кластере

выходит из строя один узел, оставшийся не является кворумом и перестает функ­

ционировать, поэтому на практике для кластера высокой доступности требуется
использовать как минимум три узла.

Percona XtraDB Cluster обладает множеством преимуществ.

t:J Он обеспечивает прозрачную кластеризацию на основе InnoDB, поэтому нет
необходимости переходить на другую технологию, например на NDB, которая
разительно отличается с точки зрения обучения и администрирования.

t:J Он на самом деле обеспечивает высокую доступность, при этом все узлы равны
и готовы к чтению и записи в любое время. Напротив, встроенная в MySQL
асинхронная или полусинхронная репликация требует наличия только одного

главного сервера. Тем самым не гарантируется репликация ваших данных, а также

актуальность подчиненных серверов и их готовность выполнить чтение или быть

повышенными до главного сервера.

t:J Он защищает от потери данных при сбое узла. Фактически, поскольку все узлы
содержат все данные, вы можете позволить выйти из строя всем узлам, кроме од­

ного, и все еще не потерять данные, даже если в кластере применяется разделение

вы<шслительных мощностей и он перестал работать. Этим он отличается от NDB,
где данные секционированы на группах узлов и некоторые данные могут быть
потеряны, если все серверы группы выйдут из строя.

660 Глава 12 • Высокая доступность

Q Подчиненные серверы не могут отстать от главного сервера, поскольку изменения
множества строк распространяются и сертифицируются на каждом узле кластера

до коммита транзакции.

Q Он использует построчный журнал событий для применения изменений в под­
чиненных серверах, поэтому изменение множества строк может быть менее

затратным, чем их создание, как и при обычной построчной репликации. Это в со­

четании с многопоточным применением наборов записей может сделать его ре­

пликацию более масштабируемой, чем репликация MySQL.

Конечно же, мы обязаны упомянуть об его недостатках.

а Он новый, опыт его использования сравнительно невелик. Поэтому нет под­

робной информации о его сильных и слабых сторонах, а также о подходящих
вариантах использования.

Q Весь кластер выполняет запись так же медленно, как самый медленный узел.

Таким образом, для всех узлов необходимо примерно одинаковое аппаратное
обеспечение, и если один узел замедляется (например, поскольку RAID-кapтa
выполняет цикл проверки батареи), все остальные тоже замедляются. Если веро­

ятность медленного выполнения одним узлом равна Р, трехузловой кластер будет

медленным с вероятностью ЗР.

Q Он не так эффективно использует пространство, как NDB, поскольку каждый
узел хранит все данные, а не только их часть. В то же время он основан на Percona
XtraDB, которая является усовершенствованной версией InnoDB, поэтому у него,
в отличие NDB, нет ограничений в отношении данных на диске.

Q В настоящее время он запрещает применение некоторых операционных приемов,

возможных при асинхронной репликации. Например, таких, как изменение схе­

мы в автономном режиме на подчиненном сервере и повышение его до уровня

главного сервера, чтобы можно было повторить в автономном режиме изменения

на других узлах. Альтернативой является использование такой методики, как

онлайновый инструмент преобразования схем пакета Percona Toolkit.

Q При добавлении нового узла в кластер необходимо скопировать на него данные.

Кроме того, он должен быть синхронизирован с текущими операциями записи,

поэтому большой кластер с большим количеством операций записи трудно на­

ращивать. Это накладывает ограничения на размер данных кластера. Мы не знаем,

каким должен быть этот размер, но, согласно пессимистической оценке, ограни­

чения начнут сказываться уже примерно при 100 Гбайт. Хотя критический размер
может оказаться и большим - время и опыт покажут.

Q На момент написания книги протокол репликации, по-видимому, довольно чув­

ствителен к небольшим сетевым сбоям, что может привести к остановке узлов

и выходу их из кластера, поэтому рекомендуем использовать высокопроизво­

дительную сеть с хорошей избыточностью. Если у вас нет надежной сети, скорее

всего, вам придется постоянно возвращать узлы обратно в кластер. Для этого

требуется повторная синхронизация данных. На момент написания книги инкре­

ментная передача состояния, позволяющая избежать копирования полного набора

Устранение отдельных критических точек 661

данных, почти готова к использованию, так что в будущем это, по-видимому, пере­
станет быть проблемой. Кроме того, можно сконфигурировать Galera так, чтобы
она была более терпимой к сетевым задержкам (ценой отложенного обнаружения
сбоев), а для будущих релизов запланированы более надежные алгоритмы.

D Если вы не будете тщательно следить за кластером, он может стать слишком

большим и не сможет перезапускать выходящие из строя узлы, так же как и ре­

зервные копии могут стать слишком большими для восстановления в разумные
сроки. У нас не хватает практического опыта, чтобы точно сказать, как это будет

работать на практике.

D Из-за взаимодействия между узлами, необходимого при коммите транзакции, по
мере добавления узлов в кластер операции записи будут замедляться, а взаимо­

блокировки и откаты - становиться все более частыми. (Более подробную ин­
формацию о том, почему это происходит, см. в предыдущей главе.)

Как Percona XtraDB Cluster, так и Galera все еще находятся на раннем этапе своего
жизненного цикла, быстро меняются и постоянно совершенствуются. Сейчас мы

можем сказать о недавних или предстоящих улучшениях поведения кворума, без­
опасности, синхронности, управления памятью, передачи состояния и множества

других элементов. Кроме того, в будущем вы сможете использовать узлы в автоном­
ном режиме для таких операций, как локальное изменение схемы.

Избыточность на основе репликации

Менеджеры репликации - это инструменты, которые пытаются использовать

стандартную репликацию MySQL как строительный блок для избыточности 1 • Хотя
есть возможность улучшить доступность с помощью репликации, существует «сте­

клянный потолок», который не позволяет текущей асинхронной и полусинхронной

репликации MySQL получить те же результаты, которые достигаются с помощью
истинной синхронной репликации. Вы не можете гарантировать мгновенный пере­

ход на другой ресурс и нулевую потерю информации, а также не имеете права рас­

сматривать все узлы как идентичные.

Менеджеры репликации обычно контролируют три вещи: коммуникацию между при­
ложением и MySQL, работоспособность серверов MySQL и отношения репликации
между серверами MySQL, а также управляют ими. Они либо изменяют конфигура­
цию балансировки нагрузки, либо по мере необходимости перемещают виртуальные
IР-адреса, чтобы приложение подключалось к надлежащим серверам, а также управ­
ляют репликацией, выбирая сервер, на который происходит запись в псевдокластере.

В принципе, это несложно: просто убедитесь, что записи никогда не направляются на
сервер, который не готов к записи, и получите правильные координаты репликации

при повышении подчиненного сервера до главного.

В этом разделе мы стараемся избежать путаницы. Избыточность - это не то же самое, что

высокая доступность.

662 Глава 12 • Высокая доступность

Это приемлемо звучит в теории, однако опыт показывает, что на практике все так

хорошо работает далеко не всегда. На самом деле это очень плохо, поскольку ино­
гда было бы хорошо иметь облегченный набор инструментов, помогающих восста­
новлению при обычных сбоях, и получить немного более высокую доступность без
больших затрат. К сожалению, мы не знаем ни одного хорошего набора инструментов,
который надежно решает эту задачу. Назовем два менеджера репликации1, однако

один из них - новый, а в другом - масса проблем.

Нам доводилось видеть, как многие пытаются написать свои менеджеры реплика­

ции. При этом они обычно попадают в те же ловушки, что и другие до них. Не стоит

создавать собственные продукты. В этом случае возникает риск потери данных,
поскольку вы, скорее всего, к нормально работающим асинхронным компонентам
добавите ошибочные режимы. Если вы никогда не сталкивались с этими ошибками,
вам будет очень сложно написать программу так, чтобы она должным образом об­
рабатывала их. Фактически машина может попасть в ситуацию, которую способен
исправить квалифицированный пользователь и которую можно усугубить, совершая
неправильные действия.

Первый менеджер репликации, который мы хотим назвать, - МММ (http://mysql­
mmm.org). У авторов этой книги нет единого мнения о том, насколько подходит этот
набор инструментов для развертывания в производственных условиях (хотя его
автор предположил, что он не заслуживает доверия). Кое-кто из нас считает, что в не­

которых случаях этот инструмент может быть полезен, если его применять в режиме
ручного аварийного переключения, другие предпочли бы никогда не использовать его

ни в каком режиме. Однако множество наших клиентов, у которых он работает в ре­

жиме автоматического аварийного переключения, имеют с ним множество серьезных

проблем. Он может выводить офлайн работоспособные серверы, отправлять записи
в неправильное место и задавать подчиненным серверам неправильные координаты.

Иногда это приводит к хаосу.

Другим средством, довольно новым, является инструментарий МНА Йошинори
Мацунобу (Yoshinori Matsunobu) (http://code.google.com/p/mysql-master-ha/). Он по­
хож на МММ в том, что это набор сценариев для создания псевдокластера, действу­

ющий схожими методами. Однако это не полная замена: он не пытается выполнять

столько же действий и полагается на Pacemaker при перемещении виртуальных IР­
адресов. Одно из главных отличий заключается в том, что у него есть набор тестов,
способный предотвратить часть проблем, с которыми столкнулся МММ. Пока мы
не сформировали обоснованного мнения об этом инструменте. Мы не используем
его сами и не обсуждали ни с кем, кроме Йошинори, который применяет его в ре­
альных условиях.

Избыточность на основе репликации - это в конечном счете палка о двух концах.
Ее целесообразно использовать тогда, когда доступность гораздо важнее, чем со­

гласованность или гарантии отсутствия потерь данных. Например, некоторые люди

Сейчас мы работаем над решением, основанным на Pacemaker и стеке Linux-HA, но пока
не готовы назвать его.

Аварийное переключение и восстановление после сбоев 663

в действительности зарабатывают деньги не функционалом своего сайта, а только его
доступностью. Кого волнует, что случился сбой и с сайта пропали несколько ком­

ментариев, фотографии или что-то еще? Пока доход от рекламы продолжает расти,

затраты на обеспечение действительно высокой доступности могут не окупаться.

Однако тактика приложения максимальных усилий для поддержания высокой до­

ступности с помощью репликации, несет в себе потенциальную угрозу серьезных

простоев, восстановление после которых может оказаться чрезвычайно трудоемким

занятием. Во многом это рулетка, вероятно, слишком рискованная для всех, кроме

самых блаженных (или опытных) пользователей.

Проблема заключается в том, что многие не знают, как самостоятельно оценить, под­

ходит ли для них рулетка репликации. Этому есть две причины. Во-первых, они не ви­

дят «стеклянный потолок» и ошибочно полагают, что набор виртуальных IР-адресов,

репликации и скриптов управления может обеспечить реально высокую доступность.

Во-вторых, недооценивают сложность технологии и, следовательно, серьезность

сбоев, которые могут произойти, и трудность восстановления после них. В резуль­

тате иногда люди считают, что могут справиться с избыточностью на основе репли­

кации, но позже, возможно, жалеют, что не выбрали более простую систему, обеспе­

чивающую большие гарантии.

У других типов репликации, таких как DRBD или SAN, есть свои недостатки - по­

жалуйста, не думайте, что мы продвигаем их как железобетонные и говорим, что ре­

пликация MySQL плоха, - у нас даже в мыслях такого нет. Написать плохие скрипты

для аварийного переключения для DRBD так же легко, как и для репликации MySQL.
Основное различие заключается в том, что репликация MySQL намного сложнее, с го­
раздо большим количеством нюансов, и она не мешает вам совершать ошибки.

Аварийное переключение
и восстановление после сбоев

Избыточность - это здорово, но на самом деле она не дает ничего, кроме возмож­

ности оправиться от сбоя. (Ха-ха, вы можете добиться этого с помощью резервных

копий.) Избыточность не увеличивает доступность и не сокращает время простоев
ни на йоту. Высокая доступность построена поверх избыточности с помощью про­

цесса аварийного переключения. При наличии избыточности в случае выхода ком­

понента из строя вы можете прекратить его использование и начать использовать его

избыточный резерв, находящийся в состоянии ожидания. Сочетание избыточности

и аварийного переключения позволяет вам быстрее восстанавливаться, а как вы

знаете, уменьшение MTTR сокращает время простоев и повышает доступность.

Мы последовательно употребляем здесь термин «обход/обработка отказа» (failover),
некоторые используют в качестве синонима термин «аварийный возврат к первично­

му серверу» (fallback). Также говорят о «переключении на резервный сервер», чтобы
подчеркнуть, что речь идет о запланированном переключении, а не о реакции на ава­

рийную ситуацию. Конечно, конечно, все именно так и было.

664 Глава 12 • Высокая доступность

Мы используем термин «восстановление после сбоя» (failback) для обозначения
процедуры, обратной переключению на резервный сервер. Если в систему встроен
механизм возврата на основной сервер, то переключение на резервный становится

двухэтапным процессом: после того как сервер А отказал и был заменен сервером Б,
можно починить сервер А и вернуть ему роль основного.

Аварийное переключение подходит не только для восстановления после сбоев.

Вы также можете планировать аварийное переключение для сокращения простоев

(улучшения доступности) во время таких событий, как обновление, изменение схемы,
модификация приложения или плановое техническое обслуживание.

Нужно определить, как быстро должно выполняться аварийное переключение, также
следует знать, как скоро после этого вы должны заменить неисправный компонент.

До тех пор пока вы не восстановите исчерпанную резервную мощность системы, ее

избыточность будет меньше, а значит, она подвергается повышенному риску. Таким
образом, наличие ожидающего сервера не устраняет необходимости своевременной
замены неисправных компонентов. Как быстро вы сможете создать новый ожида­
ющий сервер, установить на него операционную систему и загрузить актуальную

копию данных? У вас достаточно ожидающих машин? Возможно, понадобится
больше одной.

Есть много разновидностей аварийного переключения на резервный сервер при отка­

зе. Некоторые мы уже обсуждали, поскольку во многих отношениях балансирование
нагрузки и аварийное переключение схожи и граница между ними размыта. В целом

мы полагаем, что полноценное предназначенное для обхода отказов решение как
минимум должно обеспечивать мониторинг и автоматическую замену компонентов.
В идеале все это должно быть прозрачно для приложения. Балансирование нагрузки
такими возможностями не располагает.

В мире UNIX для аварийного переключения обычно используются инструменты,
разрабатываемые в рамках проекта Higl1 Availabllity Linux (http://linux-ha.org), кото­
рые работают во многих UNIХ-подобных операционных системах. За последние
несколько лет стек Linux-HA стал значительно более функциональным. Сегодня
большинство людей считает Pacemaker основным компонентом в стеке. Pacemaker
заменил старый инструмент пульсации. Прочие инструменты обладают функциями
захвата IP и балансировки нагрузки. Все это можно сочетать с D RBD и/или L VS

Самая важная часть механизма аварийного переключения - это восстановление.

Если невозможно по желанию менять роли серверов, то аварийное переключение -
тупик, который только отсрочивает останов. Поэтому нам так нравятся симметрич­

ные топологии репликации, например конфигурация с двумя главными серверами,

и не нравится топология «кольцо>,;>, когда главных серверов три или больше. Если
конфигурация симметрична, то переключение и возврат - одна и та же операция,

выполняемая в разных направлениях (стоит отметить, что в систему DRBD встро­
ены средства возврата).

Для некоторых приложений критически важно, чтобы переключение и возврат
управления производились настолько быстро и одномоментно, насколько возможно.
Но даже если это не так, все равно не стоит полагаться на то, что вам неподконтрольно,

Аварийное переключение и восстановление после сбоев 665

например на изменение параметров DNS или конфигурационных файлов приложения.
Некоторые наиболее серьезные проблемы не проявляются, пока система не станет до­

статочно велика и такие неприятности, как вынужденный перезапуск приложений или

необходимость в единовременной операции, не встанут во весь рост.

Поскольку балансирование нагрузки и переключение при отказе так тесно связаны
и часто для решения обеих задач применяется одно и то же аппаратное и программ­
ное обеспечение, мы рекомендуем выбирать такую методику балансирования на­

грузки, которая поддерживала бы и переключение. Именно по этой причине не со­

ветуем выполнять балансирование нагрузки с помощью изменения DNS или кода.
При подобном подходе вы только создаете себе лишнюю работу: существующий код

придется переписать, когда потребуется обеспечить высокую доступность.

В следующих разделах обсуждаются некоторые распространенные методы аварий­

ного переключения.

Повышение подчиненного сервера, или перемена ролей

Повышение подчиненного сервера до уровня главного, или перемена ролей (актив­

ной и пассивной), в топологии репликации «главный - главный» - важная составная

часть многих решений по переключению на резерв при отказе для MySQL. О том,
как это сделать в ручном режиме, подробно написано в главе 10. А ранее в этой главе
упоминалось, что мы не знаем никаких автоматизированных инструментов, которые

правильно действуют во всех ситуациях, или по крайней мере ни одного, за который

мы могли бы поручиться репутацией.

Наличие рабочей нагрузки не позволит вам мгновенно перейти к пассивному под­

чиненному серверу. Подчиненные серверы воспроизводят записи главного, но если

при этом не используются для чтения, то будут недостаточно «разогреты» для того,

чтобы обслуживать производственную нагрузку. Если вы хотите, чтобы подчиненный

сервер был готов к чтению трафика, то должны постоянно «обучать» его, либо позво­

ляя находиться под рабочей нагрузкой, либо зеркалируя на него реальные запросы

на чтение. Мы иногда делали так: анализировали трафик ТСР, отфильтровывали

все, кроме запросов SELECT, и воспроизводили их на подчиненном сервере. В Percona
Toolkit есть инструменты, которые могут помочь с этим.

Виртуальные IР-адреса .и передача IР-адреса

Можно назначить логический IР-адрес экземпляру MySQL, который должен вы­
полнять определенные функции. Если этот экземпляр выйдет из строя, IР-адрес

можно будет передать другому серверу MySQL. По существу, это тот же самый под­
ход, который был описан в предыдущей главе, только теперь он используется для

переключения, а не для балансирования нагрузки.

Достоинство этого подхода в его прозрачности для приложения. Конечно, существу­

ющие соединения будут разорваны, но изменять конфигурацию ПО не придется.

Кроме того, передачу IР-адреса можно осуществить одномоментно, так что все

666 Глава 12 • Высокая доступность

приложения увидят результат изменения одновременно. Это особенно важно, когда

сервер раскачивается между доступным и недоступным состояниями.

Недостатки этого процесса следующие.

О Либо все IР-адреса должны находиться в одном и том же сегменте сети, либо не­

обходимо организовать соединение сетей типа ~мосн.

О Для изменения IР-адреса требуется доступ в систему с правами администратора.

О Иногда приходится обновлять кэши протокола разрешения адресов (ARP).
Некоторые сетевые устройства хранят записи в АRР-кэше слишком долго, по­

этому соответствие между IР-адресом и МА С-адресом компьютеров изменяется

не мгновенно. Нам встречалось множество случаев, когда сетевое оборудование

или другие компоненты не взаимодействуют и поэтому различные части системы

не понимают, где действительно хранится IР-адрес.

О Сетевое оборудование должно поддерживать передачу IР-адреса. Иногда для

правильной работы требуется иметь возможность клонировать МАС-адреса.

О Бывает, что сервер сохраняет за собой IР-адрес, хотя и не функционирует в пол­

ном объеме. Тогда необходимо физически останавливать сервер и отключать его

от сети. Это действие известно под прекрасным акронимом STONITH: ~стрелять
в другой узел в голове» (Shoot the otheг node in the head). Также это действие на­
зывают фехтованием - это название элегантнее и звучит как официальное.

Плавающие IР-адреса и передача адреса от одного компьютера другому хорошо рабо­

тают, когда нужно обеспечить перехват управления машиной, которая расположена

рядом с отказавшей, то есть в той же самой подсети. Однако вы должны понимать,

что эта стратегия не всегда железобетонна, поскольку ее результат зависит от сете­

вого оборудования и т. д.

Ожидание распространения изменений

Часто при организации избыточности на некотором уровне приходится ждать, пока

нижележащий уровень выполнит изменение. Ранее в этой главе мы уже отмечали,

что замена серверов средствами DNS - плохое решение, так как изменения в системе

DNS распространяются слишком медленно. Замена IР-адресов дает больший кон­
троль, но распространение IР-адресов в локальной сети зависит от уровня, который

находится еще ниже, - протокола ARP.

Решения на основе посредника

Для реализации переключения на резерв и возврата на основной сервер при отказе

можно использовать прокси-серверы, переадресацию портов, трансляцию сетевых

адресов (NAT) и аппаратные балансировщики нагрузки. Эти решения хороши,
поскольку, в отличие от других, которые часто создают неопределенность (все ли

Аварийное переключение и восстановление после сбоев 667

ком1юнснты системы действительно согласны с тем, какая из них является главной

базой данных? Может ли она быть изменеиа мгновенно и одним действием?), они

выступают как центральный орган, контролирующий соединения между приложе­

нием и базой данных. Однако они сами становятся едиными точками отказа, поэтому

во избежание проблем необходимо делать их избыточными.

Среди прочего с помощью такого рода решения можно сделать так, что удаленный

центр обработки данных будет выглядеть как находящийся в той же сети, что и при­

ложение. Это позволяет использовать такие методы, как плавающие IР-адреса, чтобы

приложение начало взаимодействовать с совершенно другим центром обработки

данных. Можно сконфигурировать сервер приложений в каждом центре обработки

данных так, чтобы он подключался к собственному посреднику, который марш­

рутизирует трафик компьютерам в активном центре обработки данных. Подобная
конфигурация изображена на рис. 12.1.

r-
Серверы MySQL Репликация Серверы MySQL

(акивные) --------r--t-.:.:(n.::ассивные)

ЦОД1 ЦОД2

Веб­
сервер

Прокси­
сервер

Рис. 12.1. Исnоnьзование MySQL посредника дпя маршрутизации соединений
между центрами обработки данных

Если активный центр обработки данных полностью выходит из строя, то посредник

может на,~ать маршрутизировать трафик пулу серверов в другом центре, и приложе­

нию знать об этом ни к чему. Основной недостаток такой конфигурации - большая

задержка между сервером Apache в одном центре обработки данных и серверами
MySQL в другом. Чтобы сгладить эту проблему, можно запускать веб-сервер в режи­

ме переадресации. В этом случае весь трафик перенаправляется в центр обработки

данных, где находится пул активных серверов MySQL. Того же эффекта можно до­

биться с помощью НТТР-прокси.

На рис. 12.1 средством соединения серверов MySQL является программа MySQL
Proxy, но подойдут и другие архитектуры с посредником, например LVS и аппарат­
ные балансировщики нагрузки.

668 Глава 12 • Высокая доступность

Обработка переключения на резерв
при отказе на уровне приложения

Иногда более простым или гибким действием является обработка переключения на

резерв при отказе на уровне самого приложения. Например, если в приложении воз­

никает ошибка, которая обычно не обнаруживается внешним наблюдателем, скажем,

поступает сообщение, свидетельствующее о повреждении данных, то оно может само

запустить процедуру переключения.

Хотя идея интеграции процесса переключения при отказе может показаться при­

влекательной, на самом деле этот подход не очень удачен. Большинство приложений

состоит из многих компонентов: заданий cron, конфигурационных файлов, скриптов
на разных языках программирования. Поэтому добавление сюда еще и переключения

делает приложение излишне громоздким, особенно по мере его естественного роста

и усложнения.

Однако встроить в ПО средство мониторинга и позволить ему инициировать процесс

переключения - вполне здравая идея. Кроме того, приложение должно уведомлять

пользователей о снижении функциональности с помощью соответствующих со­

общений.

Итоги главы

Высокой доступности можно достичь за счет сокращения времени простоев, на

которое следует воздействовать с двух сторон: увеличивая время между отказами

(MTBF) и уменьшая время восстановления после сбоев (MTTR).

Чтобы увеличить время между отказами, попытайтесь их предотвратить. К сожале­

нию, когда вы предотвращаете отказы, многим кажется, что вы ничем не занимае­

тесь, так как профилактическая работа часто не учитывается. Мы назвали основные

моменты процесса предотвращения простоев в системах MySQL (скучные детали
рассматриваются в наших статьях, доступных по адресу http://www.percona.com). Ста­
райтесь учиться на своих простоях, но остерегайтесь возводить на пьедестал анализ

основных причин и постмортем.

Сокращение времени восстановления может стать сложным и затратным. В то же

время, выполняя мониторинг, вы можете рано обнаружить проблемы и записать

значения множества показателей, что поможет диагностировать проблемы. Кроме

того, эти показатели иногда можно использовать для определения проблем до того,

как они приведут к простоям. Наблюдайте и выдавайте оповещения избирательно,

чтобы они не превращались в шум, но при этом тщательно записывайте показатели

состояния и производительности.

Другим приемом сокращения времени восстановления является создание избыточ­

ности в системе и обеспечение возможности аварийного переключения так, чтобы

Итоги главы 669

вы могли переключаться между избыточными компонентами, когда один из них вы­

ходит из строя. К сожалению, избыточность делает системы очень сложными. Теперь
основные процессы не централизованы - они распределены, а это означает необхо­

димость координации и синхронизации, а также применения теоремы САР, задачи

византийских генералов и пр. Вот почему системы наподобие NDB Cluster трудно
как просто создать, так и сделать достаточно общими, чтобы можно было обслужи­

вать рабочие нагрузки любого пользователя. Но ситуация постепенно улучшается,
и, возможно, в четвертом издании мы сможем спеть осанну одной или нескольким

кластерным базам данных.

В этой и двух предыдущих главах рассмотрены темы, которые часто объединяют:
репликация, масштабируемость и высокая доступность. Мы попытались рассмотреть

их по отдельности, поскольку полезно четко их разделять. Итак, как связаны эти три

главы?

Люди обычно хотят получить от своих баз данных по мере роста их приложений три
возможности:

l:J возможность добавлять мощность для обслуживания увеличенной нагрузки без
ущерба для производительности;

l:J защиту от потери закоммиченной транзакции;

!:] чтобы приложения оставались онлайновыми и обслуживали транзакции, тем
самым продолжая зарабатывать деньги.

Достижение этого комплекса целей обычно начинают с избыточности. Она в сочета­
нии с механизмом аварийного переключения обеспечивает высокую доступность за

счет минимизации MTTR. Кроме того, избыточность добавляет резервные мощности
для обслуживания большей нагрузки.

Разумеется, нужно дублировать и данные, а не только ресурсы. Это может помочь
предотвратить потерю данных при выходе из строя сервера, что добавляет устойчи­

вости. Единственный способ дублирования данных - каким-то образом их репли­
цировать. К сожалению, при дублировании данных возникает вероятность несогла­

сованности, а тем самым и необходимость в координации и коммуникации между

узлами. Из-за этого в системе увеличиваются накладные затраты; поэтому системы

являются более или менее масштабируемыми.

Дублирование также требует больше ресурсов (больше жестких дисков, больше
оперативной памяти и т. д.), что увеличивает затраты. Один из способов снизить как
потребление ресурсов, так и накладные затраты на поддержание согласованности
заключается в секционировании (шардировании) данных и распределении каждого

шарда на определенную систему. Это уменьшает дублирование данных и ослабляет
зависимость избыточности данных из избыточности ресурсов.

Итак, слово за слово, мы возвращаемся к группе связанных концепций и приемов

для достижения целого набора целей. Однако это не просто разные способы говорить
об ОДНОМ и том же.

670 Глава 12 • Высокая доступность

В конце концов, нужно выбрать стратегию, которая подходит вам и вашему при­

ложению. Решение о полной сквозной стратегии высокой доступности не следует

принимать на базе простых эмпирических правил. Возможно, мы можем помочь,
предложив приблизительные рекомендации.

Чтобы добиться очень небольшого времени простоев, вам понадобятся избыточные
серверы, которые готовы мгновенно принять на себя рабочую нагрузку приложения.

Они должны быть онлайн и постоянно обрабатывать запросы, а не просто ожидать,

то есть должны быть «разогреты~> и готовы к работе. Если вам нужны твердые га­
рантии, то подойдет кластерный продукт, такой как MySQL Clusteг, Регсоnа XtгaDB
Clusteг или Clustгix. Если небольшое проседание производительности в процессе
аварийного переключения некритично, то хорошей альтернативой может быть

стандартная репликация. Будьте осторожны при использовании автоматических

механизмов аварийного переключения - в определенных ситуациях они могут

уничтожить данные.

Если для вас время аварийного переключения не очень значимо, но нужно избежать
потери данных, то вам потребуется строго гарантированная избыточность данных,

то есть синхронная репликация. На уровне хранилища обеспечить ее с минималь­
ными затратами поможет DRBD, на другом конце спектра затрат можете исполь­
зовать две SAN, синхронно реплицированные между собой. Кроме того, вы можете
реплицировать данные на уровне базы данных, используя такие технологии, как
MySQL Clusteг, Регсоnа XtгaDB Clusteг или Clustгix. А еще можно задействовать
промежуточное программное обеспечение, такое как Tungsten Replicatoг. Если вам
не нужна сильная защита и вы хотите, чтобы все оставалось как можно более про­

стым, обычная асинхронная или полусинхронная репликация может стать хорошим
вариантом по разумной цене.

Либо можно просто разместить приложение в облаке. Почему нет? Разве это не сде­

лает его доступным и бесконечно масштабируемым? Давайте выясним.

1 MySQL
в облаке

Множество людей используют MySQL в облаке, иногда в очень больших масштабах,
и это неудивительно. По нашим наблюдениям, большинство из них задействуют

платформу Amazon Web Services (AWS), в частности тома Amazon Elastic Compute
Cloud (ЕС2), Elastic Block Store (EBS) и в меньшей степени Relational Database
Service (RDS).

Один из способов начать обсуждение MySQL в облаке - разделить ее на две большие
категории.

1:] IaaS (Infrastrncture as а Semice - инфраструктура как услуга). IaaS - это об­
лачная инфраструктура для размещения вашего собственного сервера MySQL.
Вы можете приобрести ресурс виртуального сервера в облаке и использовать
его для установки и запуска своего экземпляра MySQI~. У вас есть возможность

конфигурировать MySQL и операционную систему по своему усмотрению, но
нет доступа к базовому оборудованию в материальном виде и возможности за­
глянуть в него.

1:] DBaaS (Database as а Semice - база данных как услуга). Сама MySQL является
облачным ресурсом. Вы получаете учетные данные доступа к серверу MySQL.
Вы можете конфигурировать некоторые параметры MySQL, но у вас нет доступа
к базовой операционной системе или возможности заглянуть в нее или экземпляр
виртуального сервера. Например, Amazon RDS работает с MySQL. Некоторые
из этих служб на самом деле не содержат MySQL, но совместимы с протоколом
MySQL и языком запросов.

В основном мы будем говорить о первой категории - облачном хостинге на таких

платформах, как А WS, Rack-space Cloud и Joyent1• С одной стороны, есть много
хороших ресурсов, обучающих развертыванию MySQL и управлению ею, а также
ресурсов, необходимых для ее запуска, а с другой - платформ слишком много, чтобы

Хорошо, хорошо, мы признаем это. Aшazon Web Services - это облако. Эта глава в основном

касается А WS.

672 Глава 13 • MySQL в облаке

мы могли их все охватить в этой книге. Поэтому не станем приводить примеры кода

и обсуждать операционные методы. Вместо этого в данной главе уделим основное
внимание ключевым различиям между запуском MySQL в облаке и традиционным
развертыванием сервера, а также полученным экономическим и эксплуатационным

характеристикам. Мы предполагаем, что вы знакомы с облачными вычислениями.
Это не введение в данную тему - мы хотим помочь вам избежать некоторых под­

водных камней, с которыми вы можете столкнуться, если не являетесь экспертом по

работе с MySQL в облаке.

В целом MySQL отлично работает в облаке. Запуск MySQL в облаке не отличается
принципиально от запуска MySQL на любой другой платформе, однако у него есть
несколько очень важных особенностей. Чтобы получить хорошие результаты, следует
знать о них и соответствующим образом разрабатывать свое приложение и архитек­
туру. В некоторых случаях хостинг MySQL в облаке не очень подходящее решение,
а иногда это лучшее изобретение человечества после хлеба, нарезанного для тостера.
Но в большинстве случаев это просто еще одна платформа развертывания.

Важно понимать, что облако - это платформа развертывания, а не архитектура. На вашу
архитектуру влияет платформа, но платформа и архитектура не одно и то же. Если

вы путаете эти два понятия, то, скорее всего, сделаете плохой выбор, который может
вызвать проблемы в будущем. Именно поэтому мы потратим массу времени на об­
суждение важных отличий MySQL в облаке от традиционной модели.

Достоинства, недостатки и мифы облака
У облачных вычислений есть множество достоинств, часть из которых проявляется
только тогда, когда они используются вместе с MySQL. На эту тему написано мно­
жество книг1, поэтому не станем тратить на нее слишком много времени. Однако

перечислим несколько важных моментов, поскольку вскоре собираемся обсудить
недостатки облаков, но при этом не хотели бы, чтобы вы считали, что мы настроены
по отношению к ним чрезмерно критично.

О Облако - это способ вынести часть инфраструктуры на аутсорсинг, так что вам
не нужно будет управлять ею. Не придется приобретать оборудование и развивать
связи внутри цепочек поставок, заменять неисправные жесткие диски и т, д.

о Облако, как правило, рассчитано на оплату по мере использования. Тем самым
платежи, производимые в момент осуществления инвестиций, трансформируются

в текущие операционные расходы.

О Облако постепенно становится дороже, поскольку поставщики услуг предо­
ставляют новые сервисы и снижают затраты. Вам не нужно ничего делать само­

стоятельно (например, обновлять свои серверы), чтобы воспользоваться этими
улучшениями, просто с течением времени появится больше вариантов (которые
к тому же лучше предыдущих) по более низкой цене.

См. книгу Джорджа Риза (George Reese) Cloud Application Architectures (издательство
O'Reilly).

Досгоинсrва, недосгатки и мифы облака 673

1:1 Облако позволяет легко вводить в эксплуатацию серверы и другие ресурсы
и выводить их по мере надобности, и вам не нужно будет что-то делать с ними по
окончании эксплуатации или возмещать расходы, перепродавая их.

1:1 Облако - это другой способ предоставления инфраструктуры как ресурсов, ко­
торые определяются и контролируются через API, и это позволяет гораздо лучше
их автоматизировать. Эти преимущества можно получить и в частном облаке.

Конечно, не все в облаке так радужно. Перечислим некоторые недостатки, способ­
ные вызвать проблемы (чуть позже в этой главе отметим минусы, специфичные для

MySQL).

J:1 Ресурсы являются разделяемыми и непредсказуемыми, и вы можете получить

даже больше, чем заплатите. Это приятный момент, но в то же время он может
затруднить планирование мощности. Если вы получаете больше своей доли вы­
числительных ресурсов и не осознаете этого, существует риск, что кто-то другой

будет требовать для себя справедливую долю ресурсов, уменьшая вашу произво­
дительность до такой, какой она должна была быть. В общем, довольно трудно
точно понять, что именно вы должны получить, и при этом большинство провай­
деров облачных хостингов не могут дать конкретных ответов на такие вопросы.

J:1 Нет гарантии обеспечения мощности или доступности. Вы можете планировать
ввод в эксплуатацию новых экземпляров, но что станете делать, если у провайдера

переполнится лимит подписки? Так происходит во многих разделяемых ресурсах,

может случиться и в облаке.

1:1 В случае неполадок с виртуализованными и разделяемыми ресурсами устранить их

может оказаться сложно, особенно потому, что у вас нет доступа к реальному обо­
рудованию для проверки и измерения того, что происходит. Например, мы видели

системы, в которых утилита iostat утверждала, что ввод/вывод в полном порядке
или утилита vmstat показывала, что процессор работает как надо. А результат измере­
ния времени, прошедшего до завершения выполнения задач, свидетельствовал, что

ресурсы явно были перегружены чем-то еще в системе. Столкнувшись с проблема­
ми производительности на облачной платформе, провести тщательные измерения
даже более важно, чем обычно. Если вы плохо разбираетесь в этом, возможно, вам
не удастся определить, это базовая система тормозит или вы сделали что-то, что
заставляет приложение предъявлять необоснованные требования к ней.

Мы можем подытожить сказанное, заявив, что облако не слишком прозрачно и в нем
хуже контроль над производительностью, доступностью и мощностью. Наконец,

приведем несколько мифов об облаках, которые нужно учитывать.

1:1 Облако по своей природе более масштабируемо. Приложения, их архитектуры
и организации, которые ими управляют, масштабируемы или нет. Облако по
своей природе не является масштабируемым только потому, что это облако,
а выбор масштабируемой платформы автоматически не делает ваше приложение
масштабируемым. Действительно, если у провайдера облачного хостинга не пере­
полняется лимит подписки, то имеются ресурсы, которые вы можете приобрести,
однако доступность ресурсов, когда они вам нужны, - это лишь один из аспектов

масштабируемости.

674 Глава 13 • MySQL в облаке

О Облако автоматически улучшает или даже гарантирует время безотказной
работы. На самом деле отдельные серверы с облачным хранилищем с большей
вероятностью выйдуr из строя или столкнуrся с отключением электричества, чем

хорошо продуманная выделенная инфраструктура. Однако многие этого не осо­

знают. Например, один человек написал: <!Мы модернизируем свою инфраструк­

туру до облачной системы, чтобы обеспечить 100 % времени безотказной работы
и масштабируемостЬ». Это случилось сразу после того, как в А WS произошли
два огромных отключения электричества, которые повредили большие фрагменты
базы ее пользователей. Хороший разработчик архитектуры может проектировать
надежные системы с ненадежными компонентами, но в целом более надежная
инфраструктура способствует повышению доступности. (Но, конечно, не 100 %
времени безотказной работы.)

В то же время, подписываясь на службу облачных вычислений, вы покупаете
платформу, созданную экспертами. Они за вас позаботились о большом количе­
стве низкоуровневых элементов, а это означает, что вы можете сосредоточиться

на задачах более высокого уровня. Если вы строите собственную платформу и не
являетесь экспертом по всем этим мелочам, то, вероятно, допустите ошибки но­
вичка, из-за которых рано или поздно случится простой. Таким образом, облачные
вычисления могут помочь увеличить время безотказной работы.

О Облако - это единственное, что обеспечивает (вставьте здесь, что именно).
Многие преимущества облака унаследованы от технологий, используемых для
создания облачных платформ, и могут быть получены и с облаком, и без него 1 •
Например, при надлежащем управлении виртуализацией и планированием мощ­

ности вы можете развернуrь новую машину так же легко и быстро, как и в любом
облаке. Для этого вам не нужно облако.

о Облако - это панацея. Может показаться абсурдным, что кто-то действительно
может это сказать, но некоторые говорят. Это ерунда.

Разумеется, облачные вычисления обеспечивают уникальные преимущества, и со
временем мы лучше разберемся, что они собой представляют и когда полезны. Одно
можно сказать наверняка: все это новинки, и любые прогнозы, сделанные сейчас,
вряд ли мирно состарятся. Мы будем осторожны в своей книге и оставим прочие
вопросы этой темы для личных обсуждений.

Экономика MySQL в облаке
В некоторых случаях облачный хостинг, безусловно, может быть экономичней, чем
традиционное развертывание сервера. По нашему опыту, облачный хостинг - от­
личное решение для многих компаний, работающих на прототипах, или компаний,
которые постоянно разворачивают новые концепции и в основном управляют ими

через пробную версию. На ум сразу приходят разработчики мобильных приложе-

Мы не утверждаем, что это будет легко или дешево. Мы просто говорим, что облако

не единственная технология, с помощью которой можно получить эти преимущества.

Экономика MySQL в облаке 675

ний и игр. Рынок этих технологий расширяется с распространением мобильных
вычислений, и это быстро развивающийся мир. Во многих случаях факторы успеха
не контролируются разработчиками. Это такие факторы, как устные рекомендации
или время выхода, совпадающее с важными мировыми событиями.

Мы помогали многим компаниям создавать в облаке мобильные приложения, со­

циальные сети и игровые программы. Одной из стратегий, которую многие из них

используют, является разработка и выпуск приложений как можно быстрее и дешев­
ле. Если приложение окажется удачным, компания будет инвестировать средства
в его расширение, в противном случае работу над ним быстро прекратят. Некоторые

компании создают и выпускают приложения с жизненным циклом всего лишь в не­

сколько недель. В такой среде облачный хостинг не требует больших усилий.

Если у вас небольшая компания, вы, скорее всего, не можете позволить себе иметь
собственный центр обработки данных с таким количеством оборудования, чтобы
соответствовать кривой масштабирования популярного вирусного приложения для
Facebook. Мы также помогали масштабировать некоторые из крупнейших приложе­
ний для Facebook. Удивительно, как быстро они растут - иногда кажется, что даже
быстрее, чем некоторые хостинговые компании устанавливают серверы. Но что еще

хуже, рост этих приложений совершенно непредсказуем: точно так же ими может

заинтересоваться всего лишь парочка пользователей. Мы работали над такими при­
ложениями как в центрах обработки данных, так и в облаке. Если у вас небольшая
компания, облако может помочь уменьшить риск того, что придется масштабиро­
ваться больше и быстрее, чем позволяет капитал, которым вы располагаете.

Другим потенциально замечательным способом использования облака является

запуск некритической инфраструктуры, такой как среда интеграции или тестовые

стенды для развертывания и анализа. Предположим, что жизненный цикл вашего

развертывания длится две недели. Испытываете ли вы em каждый час на протяжении
всего этого времени или тестируете, приближаясь к финишу? Во многих случаях

пользователям необходимо тестировать окружающую среду на стадиях разработки
и обкатки только время от времени. В таких случаях облачный хостинг может по­

мочь сэкономить деньги.

Расскажем о двух способах, какими мы сами используем облака. Первый из них явля­
ется частью процесса интервью при приеме на работу технического персонала, в ходе
которого мы просили претендентов решить какие-то реальные проблемы. Мы раз­
вертывали «сломанные~ машины с Amazon Machine Images (AMI), который создали
для этой цели, и просили их войти в систему и выполнить разнообразные задачи на
серверах. Мы не должны открывать доступ к нашей собственной сети, а этот прием
необыкновенно дешев. Другой способ задействования облачного хостинга состоит

в использовании серверов разработки и обкатки для новых проектов. Один проект
запускается на сервере обкатки в облаке в течение нескольких месяцев. Общий счет
за эту услугу составляет менее одного доллара! Мы никак не можем добиться того же
на собственной инфраструктуре. Простая отправка электронной почты нашему
системному администратору с просьбой о создании сервера для обкатки потребует
времени, стоимость которого превышает один доллар.

676 Глава 13 • MySQL в облаке

В то же время облачный хостинг может оказаться более дорогим в долгосрочной пер­
спективе. Вы должны потратить время и выполнить самостоятельные вычисления,

если планируете долго его использовать. Это потребует провести эталонное тестиро­
вание и учесть общую стоимость владения им (total cost of ownership, ТСО), а также
попытаться спрогнозировать, какой будет отдача от инноваций как в облачные вы­
числения, так и в стандартное оборудование. Чтобы принять правильное решение,
учитывая все важные детали, вам нужно свести все к одному числу - количеству

бизнес-транзакций, выполняемых за доллар. Все меняется быстро, поэтому сами
расчеты мы оставляем в качестве упражнения для читателей.

Масштабирование MySQL и НА в облаке
Как мы уже отмечали, MySQL автоматически не становится более масштабируемой
в облаке. Фактически менее мощные доступные машины намного раньше заставляют
использовать стратегии горизонтального масштабирования. В свою очередь, облачные
серверы менее надежны и предсказуемы, чем выделенное оборудование, поэтому для
достижения высокой доступности требуется изобретательность.

По большому счету, не так уж много различий между масштабированием MySQL
в облаке и обычным ее масштабированием. Самое большое состоит в возможности
получения серверов по требованию. Однако существует ряд ограничений, которые
затрудняют масштабирование и обеспечение высокой доступности, по крайней мере
в некоторых облачных средах. Например, в облачной платформе А WS вы не можете
использовать эквивалент виртуальных IР-адресов для быстрого выполнения аварий­
ного переключения. Ограниченный контроль над этими ресурсами просто означает,

что вам нужно использовать другие подходы, такие как прокси. (Стоит обратить
внимание на ScaleBase.)

Другая замануха - это мечта об автоматическом масштабировании, то есть разверты­
вании большего количества экземпляров при возрастании спроса и их отключении,
когда спрос уменьшится. Этого можно добиться с помощью частей стека без сохране­
ния состояния, таких как веб-серверы, однако очень сложно сделать с сервером базы
данных, потому что он сохраняет состояние. В особых случаях, таких как использо­
вание приложений, предназначенных для чтения, вы можете получить упрощенную

форму автоматического масштабирования с помощью добавления подчиненных
серверов 1 , но это решение не на все случаи жизни. На практике, несмотря на то

что многие приложения могут использовать автомасштабирование на веб-уровне,
MySQL не способна работать в кластере серверов без общего хранилища, в котором
все серверы одноранговые.

Это можно сделать с помощью архитектуры шардов, которая автоматически шарди­

руется заново и растет или сжимаетсяl по мере необходимости, однако MySQL сама
по себе автоматически масштабироваться не может.

Популярный сервис с открытым исходным кодом для автоматического масштабирования

репликации MySQL в облаке Scalr (http://scalr.net).

Это то, что специалисты по информатике любят называть нетривиальным вызовом.

Четыре основных ресурса 677

Фактически, поскольку сервер MySQL обычно основной или единственный компо­
нент приложения с сохранением состояния, для людей вполне типично перемещать

приложение в облако из-за преимуществ, которые оно предоставляет всем компо­
нентам, кроме базы данных, - веб-серверам, серверам очереди заданий, кэшу и т. п.
И MySQL просто вынуждена перемещаться туда, куда идут остальные компоненты.

В конце концов база данных не является центром мироздания. Если преимущества
для остальных компонентов приложения перевешивают дополнительные затраты

и усилия, необходимые для того, чтобы заставить MySQL работать так, как надо,
тогда вопрос не в том, произойдет ли это в принципе. Вопрос будет звучать так:
<!Как это будет происходить 7» Чтобы ответить на него, следует понять, с какими еще
проблемами вы можете столкнуться в облаке. Обычно они сосредоточены вокруг
ресурсов, доступных серверу базы данных.

Четыре основных ресурса

Для выполнения своей работы MySQL нуждается в четырех основных ресурсах: ци­
клах процессоров, памяти, вводе/выводе и сети. В большинстве облачных платформ
эти ресурсы имеют характерные и важные различия. Одним из полезных способов
принятия решения о размещении MySQL в облаке является изучение этих различий
и их последствий для MySQL.

t:J Процессоры, как правило, меньше и медленнее. Крупнейшие стандартные экзем­

пляры ЕС2 на момент написания книги предлагают восемь виртуальных ядер

процессора. Виртуальные процессоры ЕС2 работают значительно медленнее, чем
лучшие процессоры (некоторые тонкости будут рассмотрены в этой главе чуть
позже вместе с нашими эталонными тестами). Вероятно, это довольно типично

для большинства облачных хостингов, хотя могут быть вариации. ЕС2 предла­
гает экземпляры с большим количеством ресурсов процессора, но у них меньше
максимальный объем памяти. На момент написания книги в стандартных сер­
верах используются десятки ядер процессора - и даже больше, если учитывать
аппаратные потоки 1•

t:J Объем памяти ограничен. Самые большие экземпляры ЕС2 в настоящее время
предлагают 68,4 Гбайт памяти. В свою очередь, стандартные серверы предлагают
от 512 Гбайт до 1 Тбайт памяти.

t:J Производительность ввода/вывода ограничена пропускной способностью, за­
держкой и согласованностью. Существует два варианта хранения в облаке А WS.

Первый использует тома EBS, которые похожи на облачную SAN. Хорошим прие­
мом в облаке А WS является создание серверов в томе RAID 1 О поверх EBS. Одна­
ко EBS - это разделяемый ресурс, как и сетевое соединение между серверами ЕС2

и EBS. Задержка может быть высокой и непредсказуемой даже при умеренной
пропускной способности. Задержка ввода/вывода для устройств EBS, согласно

Стандартное оборудование по-прежнему предлагает больше возможностей, чем MySQL,
оно может эффективно использоваться с точки зрения ЦП, ОЗУ и ввода/вывода, поэтому

сравнивать облако с самой большой мощностью, доступной вне облака, нецелесообразно.

678 Глава 13 • MySQL в облаке

нашим измерениям, оказалась равной десятым долям секунды. Для сравнения:

напрямую подключенные стандартные жесткие диски продемонстрировали ре­

акцию в несколько миллисекунд, а флеш-устройства были на порядок быстрее

жестких дисков. Однако у томов EBS есть множество приятных функций, таких
как интеграция с другими службами А WS, быстрая фиксация состояния и т. п.

Второй вариант хранения - локальное хранилище экземпляра. У каждого сервера

ЕС2 есть локальное хранилище некоторого объема, которое фактически привяза­
но к базовому серверу. Оно может обеспечить более стабильную производитель­

ность, чем EBS1, но при остановке экземпляра данные теряются. Эфемерный
характер локального хранилища делает его непригодным в большинстве случаев.

(] Производительность сети обычно вполне приличная, однако она является раз­
деляемым ресурсом и может варьироваться. Вы можете добиться более быстрой
работы и стабильной производительности сети при использовании стандартного

оборудования, однако процессор, ОЗУ и ввод/вывод часто оказываются узкими
местами. При этом у нас никогда не было проблем с производительностью сети

в облаке А WS.

Как можно заметить, три из четырех основных ресурсов ограничены в облаке А WS,
и в некоторых случаях весьма значительно. В целом основные ресурсы в облаке
не так мощны, как то, что доступно на стандартном оборудовании. Конкретные по­
следствия этого обсудим в следующем разделе.

Производительность MySQL
в облачном хостинге

В целом производительность MySQL на облачных платформах, таких как А WS,
меньше той, которой можно добиться в другом месте, из-за более слабой производи­
тельности процессора, памяти и ввода/вывода. Конкретные показатели варьируются

от одной облачной платформы к другой, но общая тенденция не меняется2• Тем не ме­
нее облачный хостинг может оказаться платформой, по-прежнему предоставляющей
уровень производительности, достаточный для ваших потребностей. Естественно, он
лучше подходит для одних нужд, чем для других.

Неудивительно, что, используя в облаке более слабые ресурсы для базы данных, вы

не можете заставить MySQL работать так же быстро, как и вне его. Но, возможно,
вас удивит тот факт, что вы не сможете заставить ее работать так же быстро, как на
физическом оборудовании с аналогичными параметрами. Например, если вы ис-

На самом деле для экземпляра не выделяется локальное хранилище до момента записи

в него, что приводит к издержкам при первой операции записи для каждого записыва­

емого блока данных. Чтобы избежать этих издержек, можно предварительно заполнить

все устройство данными с помощью утилиты dd.

Если вы верите http://www.xkcd.cшn/908/, то очевидно, что у всех облаков имеются одни
и те же недостатки. Мы просто озвучили.

Производительность MySQL в облачном хостинге 679

пользуете сервер с восемью ядрами процессора, 16 Гбайт памяти и RАID-массивом
среднего уровня, то можете предположить, что аналогичной производительности

можно добиться от экземпляра ЕС2 с восемью вычислительными единицами ЕС2,

15 Гбайт памяти и несколькими томами EBS. Однако аналогичная производительность
отнюдь не гарантирована. Производительность экземпляра ЕС2, по всей видимости,

будет варьироваться сильнее, чем производительность физического оборудования,
особенно потому что этот экземпляр не является супербольшим и, по-видимому, на
одном физическом оборудовании разделяет ресурсы с другими экземплярами.

Переменная производительность - это действительно большая проблема. MySQL
и InnoDB, в частности, ее не любят, особенно переменную производительность вво­
да/вывода. Операции ввода/вывода могут захватывать блокировки мьютекса внутри

сервера, и если так происходит в течение длительного времени, могут начаться сбои,
которые проявляются в большом количестве застрявших процессов, необъясни­
мо длительных запросах и всплесках значений таких переменных состояния, как

Threads_running или Threads_connected.

Практический результат изменчивой или непредсказуемой производительности за­

ключается в том, что очередь становится более серьезной. Она является естественным

следствием изменчивости времени отклика и длительности промежутков между

доступом к ресурсу. Существует раздел математики, посвященный теории очередей.

Все компьютеры представляют собой сети очередей, а запросы на ресурсы должны
ждать, если ресурс (ЦП, ввод/вывод, сеть и т. п.) занят. Когда производительность

ресурсов более изменчива, запросы чаще пересекаются и стоят в большем количестве
очередей. В результате на большинстве платформ облачных вычислений немного

сложнее добиться высокой конкурентности или постоянного низкого времени от­

клика. У нас есть большой опыт наблюдения за этими ограничениями на платформе
ЕС2. По нашему опыту, наибольшая конкурентность, которой можно ожидать от
MySQL при максимальных размерах экземпляра, - это величина Threads_running
от 8 до 12 при типичных рабочих нагрузках сети О L ТР. Как правило, при более высо­
кой конкурентности производительность становится неприемлемой.

Обратите внимание, что мы сказали «типичные рабочие нагрузки сети OLTP!>. Не все
рабочие нагрузки одинаково реагируют на ограничения облачных платформ. Оказы­

вается, на самом деле есть рабочие нагрузки, отлично работающие в облаке, в то же
время в некоторых случаях производительность падает особенно сильно. Давайте
посмотрим, о чем идет речь.

С] Как мы только что обсудили, рабочие нагрузки, требующие высокой конкурент­

ности, не слишком хорошо подходят для облачных вычислений. То же самое
относится к приложениям, требующим чрезвычайно быстрого времени отклика.

Причина сводится к ограниченным числу и скорости виртуальных процессоров.

Каждый запрос выполняется на одном процессоре внутри MySQL, поэтому вре­
мя отклика запроса ограничено чистой скоростью процессора. Если требуется
короткое время отклика, то нужны быстрые процессоры. Чтобы поддерживать
высокий уровень конкурентности, нужно много процессоров. Это правда, что

MySQL и InnoDB не обеспечивают большую отдачу на вложенный доллар

680 Глава 13 • MySQL в облаке

на многих десятках процессорных ядер, но в целом в настоящее время они, как

правило, хорошо горизонтально масштабируются, по крайней мере до 24 ядер.
Как правило, это больше, чем вы можете получить в облаке.

1:1 При рабочей нагрузке, характеризующейся большим объемом ввода/вывода, про­

изводительность в облаке снижается. Если операции ввода/вывода медленные

и их объем меняется, работа быстро останавливается. В то же время, если рабочая

нагрузка не требует множества операций ввода/вывода по пропускной способ­

ности (количеству операций в секунду) или по ширине полосы (количеству байт

в секунду), MySQL может работать как часы.

Предыдущие пункты фактически вытекают из слабых сторон процессора и ресурсов

ввода/вывода в облаке. Что вы можете с этим поделать? С ограничениями процессора
сделать можно немного. Если ресурса процессора не хватает, значит, его не хватает.

Однако система ввода/вывода - это совсем другое дело. Фактически ввод/вывод -
это обмен между двумя типами памяти: энергозависимой (ОЗУ) и постоянной (диск,

EBS или что там у вас есть). В результате на запросы ввода/вывода MySQL может
влиять объем памяти системы. Если его достаточно, чтение может производиться из
кэша, тем самым количество операций ввода/вывода, необходимых для чтения и за­

писи, уменьшается. Обычно операции записи могут быть записаны в буфер памяти,

а несколько записей в одни и те же биты памяти могут быть объединены, а затем

выполнены с помощью одной операции ввода/вывода.

Вот здесь на первый план выходят ограничения на память. При объеме памяти, до­

статочном для хранения рабочего множества данных1, необходимость в операциях

ввода/вывода для определенных рабочих нагрузок может значительно сократиться.

Более крупные экземпляры ЕС2 также обеспечивают лучшую производительность

сети, что способствует улучшению операций ввода/вывода в тома EBS. Но если ваше
рабочее множество слишком велико и не помещается в самые большие доступные

экземпляры, потребность в операциях ввода/вывода возрастает в геометрической

прогрессии и все начинает блокироваться и стопориться так же, как описывалось

ранее. Самые большие экземпляры со значительным объемом памяти в ЕС2 имеют

достаточно памяти, чтобы хорошо обслуживать серьезную рабочую нагрузку. Однако

вы должны помнить, что ~прогрев» может продолжаться очень долго (подробнее об

этой теме позже в этом разделе).

Какие типы рабочей нагрузки нельзя улучшить, добавив больше памяти? Независимо

от буферизации некоторые рабочие нагрузки со значительным объемом операций

записи просто нуждаются в большем количестве операций ввода/вывода, чем можно

ожидать от большинства платформ облачных вычислений. Например, если выпол­

няется множество транзакций в секунду, которые для надежности требуют много

операций ввода/вывода, вы можете добиться только такой пропускной способности

системы, которую может дать EBS. Аналогично если вы загружаете большое количе­
ство данных в базу, то можете превысить доступную ширину полосы.

См. главу 9 для определения рабочего множества и обсуждения того, как оно влияет на
операции ввода/вывода.

Производительность MySQL в облачном хостинге 681

Возможно, вы считаете, что можно улучшить производительность ввода/вывода,

разделив и зеркалируя тома EBS с помощью RAID. Это поможет, но только до опре­
деленной степени. Проблема состоит в том, что, добавляя тома EBS, вы фактически
увеличиваете вероятность того, что в какой-то момент один из них станет плохо

работать. В свою очередь, способ работы операций ввода/вывода внутри InnoDB
приводит к тому, что слабое звено становится узким местом всей системы. Мы опро­
бовали десять наборов RAID 10 и 20 томов EBS, и RAID с 20 томами имел больше
проблем со стопором, чем десятитомный. Измерив производительность ввода/вы­
вода базовых блочных устройств, мы выяснили, что только один или два тома EBS
работали медленно, тем не менее пострадал весь сервер.

Чтобы уменьшить потребность в операциях ввода/вывода, можно внести измене­
ния в приложение и сервер. Тщательное логическое и физическое проектирование

базы данных (схема и индексирование) сильно влияет на сокращение количества

операций ввода/вывода, а также оптимизацию приложений и запросов. Это самые

могучие рычаги из тех, что можно использовать для сокращения количества опера­

ций ввода/вывода. При некоторых рабочих нагрузках, например характеризующихся
большим количеством вставок, может помочь разумное использование секциониро­

вания для концентрации операций ввода/вывода в одной секции, индексы которой

помещаются в память. Вы можете уменьшить долговечность, например установив

innodb_flush_logs_at_trx_commit = 2 и sync_Ьinlog = 0 или перемещая журналы
транзакций InnoDB и двоичные журналы из томов EBS на локальные диски (хотя
это и опасно). Но чем больше вы попытаетесь выдоить из сервера, тем больше слож­
ностей (и, следовательно, затрат) неизбежно добавите.

Кроме того, можно обновить программное обеспечение сервера MySQL. Последние
версии MySQL и InnoDB (последние версии MySQL 5.1 с плагином InnoDB или
MySQL 5.5 и новее) предлагают значительно улучшенную производительность
операций ввода/вывода и меньшее количество внутренних узких мест. При этом они

будут реже испытывать проблемы со стопором и нагромождениями, чем старый код

в ранней версии 5.1 и предыдущих. Percona Server может предложить еще больше
преимуществ при определенных нагрузках. Например, возможность Percona Server
быстро прогреть буферный пул после перезагрузки чрезвычайно помогает в быстром
восстановлении работы сервера, особенно если производительность операций ввода/
вывода невелика, а сервер полагается на работу в памяти. Это один из рассмотрен­
ных нами сценариев обеспечения хорошей производительности в облаке, поскольку
облачные серверы чаще выходят из строя, чем физическое оборудование. Percona
Server может сократить время «прогрева>,'> от часов или даже дней до нескольких
минут. На момент написания книги аналогичные возможности были доступны в раз­

рабатываемом релизе MySQL 5.6.

Однако в конечном счете растущее приложение достигнет точки, когда вам придет­

ся шардировать базу данных, чтобы остаться в облаке. Мы стараемся максимально

избегать шардирования, но, когда у вас ограничены лошадиные силы, в какой-то

момент придется либо уйти в другое место (покинуть облако), либо разбить целое
на много маленьких кусочков, требования которых не превышают возможностей

682 Глава 13 • MySQL в облаке

доступного виртуального оборудования. Обычно предполагается, что необходимость
шардирования возникает тогда, когда рабочее множество перестает помещаться

в память, что означает 50-60 Гбайт на крупнейших экземплярах ЕС2. Имея большой
опыт работы с многотерабайтными базами данных на физическом оборудовании,
мы можем утверждать: при работе в облаке необходимость шардирования наступает

гораздо раньше.

Эталонное тестирование MySQL в облаке. Мы провели несколько эталонных
тестов, чтобы проиллюстрировать производительность MySQL в облачной среде
А WS. Если требуется выполнять много онераций ввода/вывода, то 11ракти 11ески

невозможно получить согласованные и воспроизводимые эталонные тесты в облаке,

поэтому мы выбрали работу в памяти и измерили практически все, кроме операций

ввода/вывода. Мы использовали Percona Server версии 5.5.16 с четырехгигабайтным
буферным пулом для запуска стандартного эталонного теста SysBench в режиме
«только для чтения» на 1 О миллионов строк данных. Это позволило сравнить
результаты при различных размерах экземпляров. Мы исключ~1ли экземпляры

с мощными процессорами, поскольку они фактически имеют меньшую мощность

процессора, 'Iем экземпляр m2.4xlaгge, а в качестве ориентира задействовали сервер
Cisco. Машина Cisco была довольно мощная, но немного устаревшая, с двумя про­
цессорами Intel Хеоп Х5670 Nehalem с тактовой частотой 2,93 ГГц. Каждый про­
цессор содержал шесть ядер с двумя аппаратными потоками на каждом, которые

операционная система видела в общей сложности как 24 процессора. На рис. 13.1
показаны результаты.

9000

6000

3000

о 2 4 8 16 32 64 128

m2.4xlarge
m2.2xlarge
m2.xlarge
ml.xlarge
ml.large
Cisco

Рис. 13.1. Эталонное тестирование MySQL в облаке AWS при помощи инструмента SysВeпch
в режиме «только для чтения»

Если учитывать рабочую нагрузку и а1111аратное обеспечение, результаты удивлять

не должны. Например, самый большой экэемпляр ЕС2 достигает пика на восьми по­

токах, поскольку он имеет восемь ядер процессора. (При связанной с чтением/записью

нагрузке часть времени экземпляр выпол11яст ввод/вывод, не задействуя CPU, так •по

База данных MySQL как услуга 683

мы фактически получим более восьми конкурентных потоков.) На основе этой диа­
граммы можно прийти к выводу, что преимущество Cisco заключается в мощности
процессора, как мы и думали. Чтобы в этом убедиться, мы провели эталонное тестиро­

вание производительности только процессора, используя эталонный тест prime-number
утилиты SysBench. На рис. 13.2 представлены результаты.

2 4 в 16 32 64 128

m2.4xlarge
m2.2xlarge
m2.xlarge
m1.xlarge
m1.large
Cisco

Рис. 13.2. Эталонное тестирование тестом prime-пumber процессора для серверов AWS
при помощи инструмента SysВeпch

Производительность в расчете на процессор у сервера Cisco меньше, чем у серверов

ЕС2. Удивлены? Мы были немного удивлены. Эталонный тест prime-number - это,
по сути, исходные инструкции процессора, и ноэтому он не должен иметь заметных

накладных затрат на виртуализацию или большой объем трафика. Таким образом ,
объяснить полученные результаты, вероятно, можно так: процессорам сервера

Cisco уже пара лет, и они медленнее, чем процессоры серверов ЕС2 . Но при вы­

полнении более сложных задач, таких как запуск сервера базы данных, накладные
затраты на виртуализацию ухудшают производительность серверов ЕС2. Не всегда

ле1·ко разграничивать медленные процессоры, медленный доступ к памяти и на­

кладные затраты на виртуализацию, но в данном случае различия кажутся довольно

очевидными.

База данных MySQL как услуга
У станов ка MySQL на облачном сервере не является единственным вариантом ее ис­
пользования в облаке. Все больше компаний предлагают саму базу данных в качестве

облачного ресурса, называя ее «база данных как услуга~ (DBaaS, а иногда и DaaS).
Это означает, что вы можете использовать базу данных где-нибудь в облаке, а ее фак­
тическое обслуживание оставить кому-то другому. Хотя в этой главе мы посвятили

большую часть времени изучению IaaS, рынок IaaS быстро становится массовым
и мы ожидаем , что в будущем упор будет сделан на DBaaS. На момент написания
книги существовало несколько поставщиков DBaaS.

684 Глава 13 • MySQL в облаке

Amazon RDS
Мы видели гораздо больше развертываний в сервисе реляционных баз данных
Amazon (Relational Database Service, RDS), чем в любых других сервисах DBaaS.
Amazon RDS - это не только совместимый с MySQL сервис, это на самом деле
MySQL, поэтому он полностью совместим с вашим собственным сервером MySQL1
и может служить его упрощенной заменой. Мы не знаем наверняка, но, как и боль­

шинство людей, полагаем, что RDS размещается на машине ЕС2, поддерживаемой
томами EBS. Amazon официально не подтвердила базовые технологии, но, поскольку
мы хорошо знаем RDS, нам кажется довольно очевидным, что это просто MySQL,
ЕС2 и EBS.

Amazon выполняет за вас все системное администрирование. Вы не имеете досту­
па к машине ЕС2 - только учетные данные для входа в MySQL и все. Вы можете
создавать базы данных, вставлять данные и т. д. Вы не заблокированы, если хотите,
можете экспортировать данные и перемещать их в другое место, а также создавать

копии томов и монтировать их на других машинах.

В RDS есть ряд ограничений, не позволяющих вам изучать то, как Amazon управляет
сервером или хостом, или вмешиваться в процесс. Например, существуют некоторые

ограничения привилегий. Вы не можете использовать SELECТ INTO OUТFILE, FILE (),
LOAD DATA INFILE или любой другой способ доступа к файловой системе сервера через
MySQL. Не можете сделать ничего связанного с репликацией и не можете расширить
свои привилегии, чтобы предоставить себе эти права. Для предотвращения этого
Amazon включила триггеры в системные таблицы. И принимая условия обслужива­
ния, вы соглашаетесь не пытаться обойти эти ограничения.

Установленную версию MySQL слегка изменили, чтобы не дать вам вмешаться
в работу сервера, но в остальном это, судя по всему, всем знакомая MySQL. Мы про­
вели эталонное тестирование RDS с EBS и ЕС2 и не обнаружили никакцх отличий,
кроме зависящих от платформы. То есть, похоже, Amazon не предприняла никаких
улучшений производительности сервера.

В зависимости от конкретных условий RDS может предложить несколько неоспо­
римых преимуществ.

о Amazon выполняет за вас работу системного администратора и даже большую
часть администрирования базы данных. Например, обрабатывает репликацию
и гарантирует, что вы ее не испортите.

О В зависимости от структуры затрат и кадровых ресурсов RDS может быть дешевле
альтернативных вариантов.

О Ограничения можно рассматривать как плюсы: Amazon забирает у вас заряжен­
ный пистолет, из которого вы могли бы выстрелить себе в ногу.

Если вы не используете альтернативную подсистему хранения или какую-либо другую

нестандартную модификацию для MySQL.

База данных MySQL как услуга 685

Однако у нее есть несколько потенциальных недостатков.

Q Поскольку вы не можете получить доступ к серверу, то не знаете, что происходит

в операционной системе. Например, не можете измерить время отклика операций

ввода/вывода или уровень загрузки процессора. Amazon обеспечивает эти воз­
можности с помощью другого своего сервиса, Cloud Watch. Он предоставляет до­
статочно подробные характеристики, пригодные для поиска и устранения многих
проблем с производительностью, но иногда вам нужны исходные данные, чтобы
точно знать, что происходит. (Также вы не можете использовать такие функции,

как FILE (),для доступа к /proc/diskstats.)

Q Нельзя получить полный файл журнала медленных запросов. Вы можете указать

MySQL журналировать медленные запросы в таблицу журналирования CSV,
но это хуже. Она потребляет гораздо больше ресурсов сервера и предоставляет
менее точную информацию о времени отклика. Это затрудняет профилирование

и устранение неполадок SQL.

Q Если вам нужны самые последние и самые грандиозные усовершенствования или

некоторые улучшения производительности, например те, что можно получить

с Percona Server, вам не повезло. RDS их не предлагает.

Q Вам приходится полагаться на службу поддержки Amazon для решения некото­
рых проблем, которые вы могли бы исправить самостоятельно. Например, пред­
положим, что запросы зависают или ваш сервер выходит из строя из-за повре­

ждения данных. Можете либо ждать, пока Amazon это исправит, либо взять дело
в свои руки. Но чтобы сделать последнее, вы должны получить данные где-то

в другом месте, так как не можете для исправления экземпляра получить к нему

доступ. Вам придется потратить дополнительное время и заплатить за дополни­

тельные ресурсы, если хотите что-то сделать. Это не просто теоретизирование -
нам поступало множество просьб о помощи в ситуациях, когда для устранения
неполадок действительно нужен доступ к системе. Но в результате пользователи

RDS не могли решить проблемы.

Что касается производительности, то, как мы уже говорили, RDS вполне сопоставима
с большим экземпляром ЕС2 со значительным объемом памяти, хранилищем EBS
и аналогичной MySQL. Вы можете выжать немного больше производительности из
облака А WS, если напрямую используете ЕС2 и EBS, а также установите и настроите
более высокопроизводительную версию MySQL, такую как Percona Server. Однако про­
изводительность вырастет не на порядок. Понимая это, имеет смысл основывать реше­

ние об использовании RDS для своих бизнес-потребностей не на производительности.
Если она для вас действительно важна, не стоит вообще использовать облако А WS.

Другие решения DBaaS
Amazon RDS не единственный вариант DBaaS для пользователей MySQL. Су­
ществуют и такие сервисы, как FathomDB (http://fathomdb.com) и Xeround (http://
xeround.com). Однако у нас недостаточно опыта, чтобы рекомендовать один из них,
поскольку мы не выполняли в них никаких производственных развертываний.

686 Глава 13 • MySQL в облаке

Широкой публике доступна ограниченная информация о них. На ее основании мож­
но сделать вывод, что FathomDB, по-видимому, похож на Amazoв RDS, хотя доступен
и в облаке Rackspace, и в облаке А WS. На момент написания книги он существовал
в бета-версии для частного использования.

Xerouвd - совсем другое дело. Это распределенный кластер серверов с интерфейсом
MySQL с запатентованной подсистемой хранения. Судя по всему, либо у него есть
небольшая несовместимость с MySQL, либо он отличается от стандартной версии
MySQL. Однако стабильная версия (GA) появилась сравнительно недавно, так что
судить об этом продукте слишком рано. Подсистема хранения, по-видимому, вза­

имодействует с внутренней кластерной системой, которая имеет сходство с ND В
Cluster. Кроме того, у него есть возможность автоматического шардирования, по
мере увеличения и уменьшения рабочей нагрузки узлы добавляются и удаляются
(динамическое масштабирование).

Существует множество других сервисов DBaaS, да и новые появляются довольно
часто. Все, что мы пишем о них, устареет к тому моменту, когда вы это прочтете, по­

этому мы оставляем вам возможность исследовать это поле самостоятельно.

Итоги главы

Существует как минимум два основных способа использования MySQL в облаке:
установить ее на облачных серверах или применить возможности DBaaS. MySQL
хорошо работает в облачном хостинге, но ограничения облачной среды обычно
приводят к шардированию намного раньше, чем это становится необходимым за
пределами облака. Кроме того, облачные серверы, которые кажутся сопоставимыми
с существующим реальным оборудованием, скорее всего, приведут к снижению про­

изводительности и качества обслуживания.

Кажется, что иногда люди говорят: «Облако - это ответ. А в чем вопрос?~ Это одна

из крайностей, но тот, кто горячо верует, что облако - это панацея от всех труд­
ностей, скорее всего, будет иметь проблемы. Три из четырех фундаментальных
ресурсов, необходимых базе данных (процессор, память и диск), вероятно, будут
значительно слабее и/или менее эффективны в облаке, что напрямую влияет на
производительность MySQI~.

Тем не менее MySQL отлично работает в облаке при большинстве рабочих нагрузок.
В целом все будет в порядке, если вы сможете поместить свое рабочее множество
в память и не создадите бdльшую рабочую нагрузку на запись, чем сможет обрабо­
тать облачный ввод/вывод. Тщательно спроектировав архитектуру, а также выбрав
подходящую версию MySQL и правильно ее сконфигурировав, вы сможете уравнять
нагрузку и возможности вашей базы данных с сильными сторонами облака. Одна­
ко по своей природе MySQL не является облачной базой данных, то есть не может
использовать все теоретически возможные преимущества облачных вы<шслений,
например автомасштабирование. Альтернативные технологии, такие как Xerouпd,
пытаются устранить эти недостатки.

Итоги главы 687

Здесь так много говорилось о недостатках облака, что может создаться впечатление:
мы против облаков. Это не так. Просто мы пытаемся сосредоточиться на MySQL,
а не перечислять все преимущества облачных вычислений, так как это не сильно от­
личалось бы от того, что вы можете прочесть в других источниках. Мы попытались
рассказать, чем отличается запуск MySQL в облаке и что вам действительно нужно
о нем знать.

Наибольшие успехи, которые мы отмечали при облачных вычислениях, достигались
тогда, когда облако использовали по коммерческим соображениям. Даже если сто­
имость одной бизнес-транзакции в долгосрочной перспективе будет выше в облаке,
другие факторы, такие как повышенная гибкость, уменьшение первоначальных за­
трат, сокращение времени выхода на рынок и снижение риска, могут оказаться более
важными. И преимущества для других элементов ваших приложений (не MySQL)
могут компенсировать любые недостатки, связанные с использованием MySQL
в облаке.

1 Оптимизация на уровне
приложения

Если вы потратили много времени на улучшение производительности MySQL, ваш
взгляд легко может замылиться и вы просто забудете обратить внимание на опыт

пользователя. Можно вернуться на шаг назад и осознать: MySQL настолько опти­
мизирована, что вносит лишь небольшую лепту в общее время отклика. Таким об­
разом, пришло время сфокусироваться на какой-то другой проблеме. Это отличная

мысль, особенно для администратора базы данных, и именно то, что нужно сделать.

Но что же вызывает проблемы, если не MySQL? Ответ можно найти наиболее на­
дежным и быстрым способом, проведя измерения с использованием методов, по­
казанных в главе 3. Если вы тщательно профилируете и следуете логике процессов,
вам не составит труда найти корень проблемы. Однако иногда, даже если проблема

связана с MySQL, проще всего решить ее в другой части системы!

Независимо от того, в чем заключается причина проблемы, обязательно найдется

хоть один отличный инструмент, который сможет ее измерить, часто даже бесплатно.

Например, если у вас проблемы cjavaScript или отображением страниц, можно ис­
пользовать профилировщик, включенный в расширение Firebug для браузера Firefox,
либо инструмент YSlow от Yahoo!. Мы называли несколько инструментов уровня
приложения в главе 3. Некоторые инструменты даже профилируют весь стек; New
Relic является примером инструмента, который профилирует интерфейс, приложе­
ние и серверную часть сетевых приложений.

Типичные проблемы

При анализе различных приложений мы постоянно натыкаемся на одни и те же

проблемы. Часто причиной их возникновения становится использование при соз­

дании приложений плохо спроектированных готовых систем или популярных сред,

упрощающих разработку. Иногда действительно проще и быстрее воспользоваться

чем-то написанным другими людьми, однако на этом пути вас подстерегает опас-

Типичные проблемы 689

ность: вы не знаете точно, как все устроено. Приведем перечень того, на что следует

обращать внимание.

О Кто именно потребляет ресурсы процессора, диска, сети и памяти на каждом

из составляющих систему компьютеров? Выглядят ли показатели, отражающие

потребление, разумными? Если нет, взгляните пристальнее на приложения -
основные пожиратели ресурсов. Часто простейшим способом решения проблемы

является изменение конфигурации. Например, если сервер Apache израсходовал
всю память, потому что создал 1 ООО рабочих процессов по 50 Мбайт каждый, то
можно сконфигурировать приложение так, чтобы для него требовалось меньше

рабочих процессов. Или сконфигурировать систему так, чтобы каждый рабочий

процесс потреблял меньше памяти.

О Действительно ли приложение использует все данные, которые получает? Делать

выборку 1000 строк только для того, чтобы вывести десять из них, а остальные
отбросить, - очень распространенная ошибка (однако, если приложение кэширует

остальные 990 строк, планируя использовать их в будущем, это может быть пред­
намеренной оптимизацией).

О Выполняет ли приложение обработку, которую следовало бы сделать в базе дан­

ньtх, или наоборот? Два примера: выборка всех строк из таблицы для того, чтобы

подсчитать их количество, и выполнение сложных манипуляций со строками

средствами базы данных. База данных прекрасно справляется с подсчетом строк,
тогда как прикладным языкам программирования нет равных в работе с регуляр­

ными выражениями. Используйте подходящий инструмент.

О Не слишком ли много запросов выполняет приложение? Часто в возникновении

такой ситуации следует винить интерфейсы на базе объектно-реляционных ото­

бражений (ORM), которые «избавляют программиста от необходимости писать
SQL-кoд~. Сервер базы данных изначально спроектирован для сопоставления

данных из нескольких таблиц. Уберите вложенные циклы из кода и напишите

вместо них запрос с соединением таблиц.

О Не слишком ли мало запросов выполняет приложение? Только что мы сказали, что

слишком большое количество запросов - это зло. Но иногда ручное соединение

и иные подобные приемы могут оказаться полезными, так как позволяют реа­

лизовать более детальное и эффективное кэширование, уменьшить количество

блокировок, а то и ускорить работу приложения за счет эмуляции хеш-соединений

в прикладном коде (применяемый в MySQL метод соединения на основе вложен­
ных циклов не всегда эффективен).

О Не подключается ли приложение к MySQL понапрасну? Если можно получить
данные из кэша, может, не стоит устанавливать соединение?

О Не подключается ли приложение слишком часто к одному и тому же экземпля­
ру MySQL, потому что разные его части открывают собственные соединения?
Обычно гораздо лучше использовать одно и то же соединение на протяжении

всей работы.

690 Глава 14 • Оптимизация на уровне приложения

Q Не выполняет ли приложение массу мусорных запросов? Типичный пример - про­

верка состояния сервера непосредственно перед запросом или выбор нужной базы
данных перед каждым из них. Возможно, было бы лучше всегда подключаться
к одной базе, но для таблиц указывать полные имена (заодно упростится анализ
запросов в журнале или с ПОМОЩЬЮ команды SHOW PROCESSLIST, так как их МОЖНО
будет выполнить, не изменяя текущую базу). Еще одна типичная проблема - под­
готовка соединения. В частности, драйвер в языке J ava в это время выполняет массу
операций, большую часть которых можно подавить. Другой распространенный
источник мусорных запросов - команда SЕТ NAMES UTF8, которая в любом случае
не нужна (она не изменяет кодировку в клиентской библиотеке, а воздействует
только на сервер). Если приложению для выполнения большей части работы
нужна конкретная кодировка, то можно не устанавливать ее при каждом запросе,

а назначить в качестве значения по умолчанию.

Q Использует ли приложение пул соединений? Это может быть и хорошо и плохо.
С одной стороны, это позволяет ограничить количество соединений, что непло­

хо, когда на одном соединении выполняется немного запросов (типичный при­

мер - приложения на основе технологии Ajax). С другой - возможны побочные
эффекты, например, из-за того, что приложение вмешивается в чужие транзакции,

временные таблицы, изменяет чужие настройки соединения и переменные, опре­
деленные пользователем.

Q Применяются ли в приложении постоянные соединения? Если да, то в результате
этого может образовываться слишком много соединений с MySQL. В общем слу­
чае так делать не следует, за исключением ситуации, когда подключение к MySQL
становится слишком затратным из-за медленной сети, или когда соединение

используется всего для одного-двух быстрых запросов, или когда подключение
производится настолько часто, что не хватает номеров локальных портов. Если

MySQL сконфигурирована правильно, то необходимости в постоянных соеди­
нениях может и не возникнуть. Применяйте нараметр skip-name-resolve, чтобы
подавить обратные DNS-запросы, устанавливайте достаточно большое значение
параметра thread_cache и увеличивайте back_log (подробнее см. в главах 8 и 9).

Q Остаются ли соединения открытыми даже тогда, когда не используются? Если
да, особенно при подключении сразу к нескольким серверам, то, возможно, вы
используете соединения, которые могли бы пригодиться другим процессам.
Пусть, например, приложение подключается к десяти серверам MySQL. У стано­
вить десять соединений из процесса Apache нетрудно, но лишь на одном из них
в каждый момент времени происходит что-то полезное. Остальные девять просто

проводят время в состоянии Sleep. Если один сервер начинает работать медленно
или наблюдается длительный сетевой вызов, то остальные серверы могут испы­

тывать нехватку соединений. Решение состоит в том, чтобы контролировать ис­

пользование соединений приложением. Например, можно отправлять каждому

экземпляру MySQL пакет запросов и закрывать соединение с ним перед тем, как
обращаться к следующим. Если выполняется продолжительная операция, напри­
мер обращение к веб-службе, то можно вообще закрыть соединение с MySQL,
дождаться завершения запроса, а потом открыть соединение заново и продолжить

работу с базой данных.

Проблемы веб-сервера 691

Различие между постоянными соединениями и пулом соединений может сбивать
с толку. Постоянные соединения моrут вызывать те же побочные эффекты, что и пул
соединений, поскольку при повторном использовании соединения в любом случае
сохраняется его состояние.

Однако пул обычно не приводит к открытию очень большого количества соединений,
так как они используются несколькими процессами совместно. В то же время постоян­

ные соединения создаются в рамках одного процесса и не разделяются с другими.

Кроме того, пул позволяет более точно управлять политикой создания соединений.
Можно сконфигурировать пул так, что он будет автоматически увеличиваться, но
обычно при исчерпании пула новые запросы ставятся в очередь. В этом случае за­
прос на открытие соединения ожидает на сервере приложений, а не перегружает

сервер MySQL.

Существует много способов ускорить выполнение запросов и создание соединений,
но общее правило состоит в том, что лучше не ускорять, а попытаться обойтись со­
всем без них.

Проблемы веб-сервера

Наиболее популярным сервером для создания веб-приложений является Apache.
Он хорош для самых разных ситуаций, но при неправильном использовании может

потреблять очень много ресурсов. Самые распространенные причины проблем состоят
в том, что процессы живут слишком долго и используются для достижения компле­

кса целей. Лучше оптимизировать различные экземпляры для каждого типа задач.

Обычно Apache запускается с модулями mod_php, mod_perl и mod_python в конфиrу­
рации с заранее порожденными рабочими процессами. При этом каждому запросу
назначается отдельный процесс. Поскольку скрипты на РНР, Perl и Python могут
быть очень требовательны к ресурсам, нередко складывается ситуация, когда каждый
процесс потребляет 50, а то и 100 Мбайт памяти. По завершении обработки запро­
са большая часть памяти возвращается операционной системе, но не вся. Apache
не завершает процесс, а повторно использует его для последующих запросов. Таким

образом, если следующим поступит запрос на статический ресурс, например СSS­
файл или изображение, то этот простенький запрос будет обслуживаться очень
<!Толстым» процессом. Именно поэтому так опасно использовать Apache в качестве
универсального веб-сервера. Он действительно является универсальным, но специа­
лизация позволяет добиться более высокой производительности.

Еще одна серьезная проблема возникает из-за того, что процесс долго остается занятым,
если включен режим Keep-Alive. Но даже если этот режим не включен, процесс может
жить слишком долго, отдавая данные медленному клиенту в час по чайной ложке1 •

Феномен кормления с ложечки возникает, когда клиент отправляет НТГР-запрос, но не за­

бирает данные достаточно быстро. Пока клиент не получит все данные, НТГР-соединение,

а значит, и процесс Apache остаются открытыми.

692 Глава 14 • Оптимизация на уровне приложения

Часто администраторы совершают ошибку, оставляя включенным подразумеваемый

по умолчанию набор модулей Apache. Размер памяти, занимаемый Apache, можно
уменьшить, отключив ненужные модули. Сделать это просто: достаточно закоммен­

тировать лишние строки в конфигурационном файле Apache, а потом перезапустить
его. Можно также удалить ненужные модули РНР из файла php. ini.

Подытоживая, повторим: если Apache запущен в универсальной конфигурации и на­
прямую обслуживает запросы, поступающие из Веб, то может быть порождено много

тяжеловесных процессов. Это приводит к расточительному расходованию ресурсов

веб-сервера. К тому же эти процессы могут открывать много соединений с MySQL,
истощая и его ресурсы тоже. Приведем несколько рекомендаций, как уменьшить

нагрузку на серверы 1•

О Не задействуйте Apache для обслуживания статического содержимого или по
крайней мере используйте для этой цели отдельный экземпляр Apache.
Популярными альтернативами являются Nginx (http://www.nginx.com) и lighttpd
(http://www.lighttpd.net).

О Применяйте кэширующий прокси-сервер, например Squi<I или Varnish, чтобы во­
обще не допустить запросы до веб-сервера. Даже если на этом уровне невозможно

кэшировать страницу целиком, иногда удается кэшировать большую ее часть

и воспользоваться технологией edge side includes (ESI, см. http://www.esi.org) для

включения небольшого динамического фрагмента в кэшированную статическую

часть страницы.

О Задавайте срок хранения для статического и динамического содержимого.

Кэширующий прокси-сервер, например Squid, позволяет явно сделать содержи­
мое недействительным. На сайте <1Википедии» эта техника применяется для

удаления измененных статей из кэша.

О Иногда для того, чтобы увеличить срок хранения в кэше, требуется внести изме­

нения в приложение. Например, если вы потребуете, чтобы браузер кэшировал

CSS- иjavaScript-фaйлы вечно, а затем измените НТМL-разметку сайта, страни­
цы могут прорисовываться неправильно. Для борьбы с этим рекомендуется явно

вклю<1ать в имя файла номер версии. Например, скрипт публикации сайта можно

написать так, чтобы СSS-файлы копировались с именем /css/12З_frontpage. css,
где 123 - номер редакции в системе Subversion. То же самое относится к файлам
изображений - никогда не используйте повторно одни и те же имена, и после
изменения графики страница будет отображаться правильно независимо от того,

какой срок хранения задан в кэше браузера.

О Не позволяйте Apache кормить клиента с ложечки. Мало того что это медлен­
но, так вы еще и распахиваете дверь для атак типа <1отказ от обслуживания».

Оптимизации веб-приложений посвящена хорошая книга Стива Соудерса (Steve Souders)
High Performance Web Sites (издательство O'Reilly). Хотя в ней рассматривается главным
образом создание быстрых с точки зрения клиента сайтов, предлагаемые рекомендации

будут положительно влиять и на серверы. Следующая книга Стива Even Faster W еЬ Sites
также хороша.

Проблемы веб-сервера 693

Аппаратные балансировщики нагрузки обычно буферизуют ответы веб-сервера,
поэтому Apache может завершить свою часть работы быстро, а уж балансиров­
щик будет потихоньку отдавать клиенту содержимое из буфера. Можно также

поставить перед 11риложением Nginx, Sчuid или Apache в режиме управления
событиями.

о Включайте gziр-сжатие. Для современных процессоров эти з;праты ничтожны,

зато позволяют сильно сэкономить на трафике. Если вы хотите сэко11омить ци­

клы процессора, то можете кэшировать сжатые версии страниц и обслуживать их
с помощью облегченного веб-сервера, такого как Nginx.

о Нс включайте в Apache режим Keep-Alive для соединений на больших расстояни­
ях, поскольку в этом случае процессы Apacl1e будут существовать слишком долго.
Jly•1111c поручите заботу о режиме Keep-Alive прокси-серверу. который защищает
Apachc от клиента. Для соединений между Apache и nрокси-сервером режим
Keep-Лlive вполне допустим, потому •по nрокси открывает всего несколько

соеди11е11ий для 11олучсния данных от Apache. Это различие иллюстрируется на
рис. 14.1.

Клиенты

Клиенты

-Соединения в режиме Keep-Alive

Соединения
в режиме Keep-Alive

Прокси­
сервер

Рабочие процессы
Apache

Соединения
в режиме Keep-Alive---.

Рабочие
процессы

Apache

Рис. 14.1. Прокси-сервер может оградить Apache от долгоживущих соединений
в режиме Keep-Alive, что позволяет уменьшить количество рабочих процессов Apache

Описанные приемы позволяют сократить время жизни процессов Apache, так что
их будет нс больше, чем действительно необходимо. Однако некоторые операции
все же могут задержать процесс Apacl1e надолго, потребляя при этом много ресур­
сов . Примером может служить запрос к внешнему ресурсу с большой задержкой,
в частности к удаленному веб-сервису. Такие проблемы часто окаэываются нераз­
решимыми.

694 Глава 14 • Оптимизация на уровне приложения

В поисках оптимального уровня конкурентности. У каждого веб-сервера имеется

оптимальный уровень конкурентности, то есть такое число конкурентных соедине­

ний, при котором запросы обрабатываются с максимальной скоростью, не пере­

гружая систему. Это максимальная мощность системы, о которой мы говорили

в главе 11. Для получения этого волшебного числа могут потребоваться небольшое
измерение и моделирование или просто применение метода проб и ошибок, но ре­

зультат того стоит.

Нередко бывает так, что сильно нагруженный веб-сервер одновременно обслужи­

вает тысячи соединений, но лишь малая их часть занята активной обработкой дан­

ных. Остальные читают запросы, обеспечивают закачку файлов или просто ждут
дальнейших запросов от клиента. По мере увеличения уровня конкурентности на­

ступает момент, когда сервер достигает пика пропускной способности. После этого

она перестает увеличиваться, а часто даже начинает снижаться. Но важнее то, что

одновременно из-за очередей растет время отклика (задержка).

Чтобы понять, почему так происходит, предположим, что имеется один процессор

и сервер одновременно обслуживает 100 запросов. На обслуживание каждого за­
проса процессор тратит 1 секунду. Предположим, что планировщик операционной
системы работает вообще без накладных затрат и что на контекстное переключение
тоже не расходуется время. Тогда для обработки всех запросов потребуется 100 се­
кунд процессорного времени.

Как лучше всего обслуживать запросы? Можно выбирать их из очереди один за

другим или обрабатывать параллельно, переключаясь с одного на другой и уделяя

каждому из них одинаковое количество времени. В обоих случаях пропускная
способность составляет один запрос в секунду. Однако средняя задержка при

обработке по очереди (уровень конкурентности 1) составляет 50 секунд, а при
параллельной (уровень конкурентности 100) - 100 секунд. На практике при па­
раллельной обработке задержка будет даже выше из-за затрат на переключение

контекста.

Если рабочая нагрузка ограничена процессорными ресурсами, то оптимальный

уровень конкурентности равен количеству процессоров (или ядер). Однако процесс

не готов к работе постоянно, поскольку он выполняет блокирующие системные вы­

зовы, например запросы ввода/вывода, обращения к базе данных или сети. Поэтому,
как правило, оптимальный уровень конкурентности несколько выше, чем количество

процессоров.

Оценить оптимальный уровень конкуренции можно, но для этого потребуется

точное профилирование. Обычно проще поэкспериментировать и посмотреть, при

каком уровне конкурентности получается пиковая пропускная способность без за­

медления реакции, либо измерить и проанализировать реальную рабочую нагрузку.
Инструмент pt-tcp-model пакета Percona Toolkit может помочь вам измерить и смо­
делировать масштабируемость и производительность вашей системы на основе со­
держимого памяти ТСР.

Кэширование 695

Кэширование

Кэширование жизненно необходимо для высоконагруженных приложений. Типичное

веб-приложение тратит на генерацию страницы гораздо больше ресурсов, чем на ее вы­

борку из кэша (даже с учетом проверки и устаревания данных), поэтому обычно кэши­
рование позволяет повысить производительность на несколько порядков. Сложность

кроется в том, чтобы найти правильное сочетание детальности и правил истечения срока

хранения. Кроме того, нужно решить, какое содержимое кэшировать и в каком месте.

В типичном высоконагруженном приложении существует много уровней кэши­

рования. Оно производится не только на ваших серверах, но и на всем пути сле­

дования, включая браузер пользователя (именно для этой цели предназначены

НТТР-заголовки, содержащие указания относительно срока хранения содержимого).

В общем случае чем ближе кэш к клиенту, тем больше ресурсов он экономит и тем

он эффективнее. Извлекать изображение из кэша браузера лучше, чем из памяти
веб-сервера, а последнее лучше, чем читать его с диска сервера. Каждому типу кэша
присущи свои характеристики, например размер и задержка. Некоторые из них мы

рассмотрим в последующих разделах.

Кэши можно подразделить на две большие категории: пассивные и активные.
Пассивный кэш только хранит и возвращает данные. Запрашивая что-то из пассив­

ного кэша, вы получаете либо результат, либо сообщение «такого у меня нет». При­
мером пассивного кэша является memcached.

Напротив, активный кэш выполняет какие-то действия, когда искомое не обнаружи­
вается. Обычно он передает поступивший запрос какой-то другой части приложения,

которая и генерирует затребованный результат. Затем кэш сохраняет его и возвраща­
ет запросившей программе. Кэширующий прокси-сервер Squid - типичный пример

активного кэша.

При проектировании приложения обычно стремятся сделать кэши активными
(их еще называют прозрачными), поскольку они скрывают от программного обес­
печения логику проверки, генерации и сохранения. Активные кэши можно строить

поверх пассивных.

Кэширование на уровне ниже приложения

У сервера MySQL есть свои внутренние кэши, да и вам никто не запрещает создать
собственные кэшированные и сводные таблицы. Кэшированные таблицы можно
спроектировать так, чтобы они повышали скорость фильтрации, сортировки, соеди­

нения с другими таблицами и решения других специализированных задач. К тому же
кэшированные таблицы существуют дольше, чем большинство кэшей на уровне при­
ложения, поскольку они не исчезают при перезапуске сервера.

Мы писали об этих стратегиях кэширования в главах 4 и 5, поэтому здесь сфокуси­
руемся на кэшировании на уровне приложения и выше.

696 Глава 14 • Оптимизация на уровне приложения

Кэширование не всегда помогает

Нужно убедиться, что в результате кэширования производительность действительно

повышается, потому что иногда кэш не помогает вовсе. Например, на практике часто

быстрее обслужить запрос из памяти Nginx, чем из кэша прокси-сервера на диске.

Причина проста: с кэшированием связаны определенные накладные затраты. Необходимо

проверить наличие данных в кэше и, если это так, обслужить запрос оттуда. Чтобы

поместить данные в кэш или сделать их недействительными, тоже требуются наклад­

ные затраты. Кэширование полезно лишь в том случае, когда они не превышают за­

трат на генерацию и обслуживание страницы без кэша.

Если вы знаете, каковы затраты на все эти операции, то можно подсчитать, в какой

мере кэш окажется полезен. Стоимость обслуживания без кэша - это затраты на гене­

рацию данных при каждом запросе. Стоимость обслуживания с кэшем равна затратам

на проверку наличия данных в кэше плюс вероятность непопадания, умноженная на

затраты на генерацию данных, плюс вероятность попадания, умноженная на затраты

на обслуживание данных из кэша.

Если стоимость при использовании кэша меньше стоимости без его применения, то

производительность может повыситься, хотя это и не гарантируется. Также имейте

в виду, что, как и в случае обслуживания данных из памяти Nginx, а не из кэша на
nрокси-сервере, некоторые кэши менее затратны, чем другие.

Кэширование на уровне приложения

Кэш уровня приложения обычно размещается в памяти на том же самом компьютере

или в памяти другого компьютера, доступного по сети.

Кэширование на уровне приложения может оказаться более эффективным, чем на

более низких уровнях, поскольку позволяет приложению сохранять в кэше частич­

но вычисленные результаты. Поэтому кэш избавляет ПО от двух видов деятель­

ности: выборки данных и вычислений с ними. Хороший пример показывают блоки

НТМL-разметки. Приложение может сгенерировать НТМL-фрагменты, например

заголовки новостей, и поместить их в кэш. При последующих просмотрах страницы

нужно будет лишь вставить в нее кэшированный текст. В общем случае чем глубже

обработка данных перед кэшированием, тем больше времени удается сэкономить

при попадании в кэш.

Недостаток состоит в том, что коэффициент попадания в кэш может оказаться низ­

ким, а сам кэш будет занимать больше памяти. Предположим, нужны 50 вариантов
новостных заголовков, чтобы пользователь видел те, которые относятся к местно­

сти, где он проживает. Тогда кэш займет память, необходимую для хранения всех

вариантов, но на каждый вариант будет приходиться меньше попаданий, да и логика

удаления из кэша усложнится.

Кэширование 697

Существует много разных видов кэшей на уровне приложения. Опишем некоторые

из них.

1:1 Локальные кэши. Обычно невелики и существуют только в памяти процесса на
протяжении обработки одного запроса. Они полезны, когда нужно избежать по­
вторного обращения к ресурсу, который необходим более одного раза. В таком
кэше нет ничего хитроумного, обычно это просто переменная или хеш-таблица
в коде приложения. Пусть, например, нужно вывести имя пользователя, зная его

идентификатор. Можно написать функцию get_name_ from_id () и реализовать
в ней кэширование, как показано далее:

<?php
function get_name_from_id($user_id) {

}
?>

static $name; // ключевое слово static сохраняет
// значение переменной между вызовами

if (!$name) {
// Выбрать имя из базы данных

}
return $name;

На языке Perl стандартный способ кэширования результатов вызова функций
дает модуль Memoize:

use Memoize qw(memoize);
memoize 'get_name_from_id';
sub get_name_from_id {

}

my ($user_id) = @_;
my $name = # get name f rom database
return $name;

Эти приемы просты, но позволяют избавить приложение от лишней работы.

1:1 Кэши в локальной разделяемой памяти. Это кэши среднего размера - до не­

скольких гигабайтов, они работают быстро, но с трудом поддаются синхрониза­
ции между несколькими машинами. Хороши для небольших, полустатических
фрагментов данных. В качестве примеров можно привести списки городов шта­

тов, функцию секционирования (таблицу отображения) для шардированного

хранилища данных или значения, которые делаются недействительными по

истечении времени жизни (time-to-live, TTL). Основное достоинство разделя­
емой памяти - очень высокая скорость доступа, обычно она гораздо выше, чем

для любого удаленного кэша.

1:1 Распределенные кэши в памяти. Самый известный пример такого рода - memcached.
Объем распределенных кэшей гораздо больше, чем кэша в локальной разделяемой
памяти, и их размер легко увеличивается. В кэше создается всего одна копия дан­

ных, поэтому не нужно тратить время и решать проблемы согласования, возника­
ющие, когда одна и та же информация кэшируется в разных местах. Распределенная

память прекрасно подходит для хранения таких разделяемых объектов, как про­
фили пользователей, комментарии и фрагменты НТГР-разметки.

698 Глава 14 • Оптимизация на уровне приложения

Но время задержки у таких кэшей гораздо выше, чем у кэшей в локальной раз­

деляемой памяти, поэтому наиболее эффективный способ их использования -
получение сразу нескольких объектов за одно обращение. Кроме того, вам следует

продумать, как будут добавляться новые узлы и что делать, если какой-нибудь

узел откажет. В обеих ситуациях приложение должно решить, как распределять

или перераспределять объекты между узлами.

Согласованность кэширования важна в случае, когда в кластер кэшей добавля­

ется новый сервер или какой-то сервер из кластера удаляется. Для memcached,
находящегося по адресу http://www.audioscrobЫer.net/development/ketama/, имеется

библиотека обеспечения согласованности.

О Кэши на диске. Диски - медленные устройства, поэтому на них лучше кэшировать

объекты, не помещающиеся в памяти, или статическое содержимое, например

предварительно сгенерированные изображения.

Очень полезный прием, применяемый в случае кэширования на диске в контексте

веб-сервера, состоит в том, чтобы написать обработчик ошибки 404, который
будет перехватывать непопадания в кэш. Предположим, что веб-приложение по­

казывает в заголовке генерируемое на лету изображение, содержащее имя поль­

зователя (~с возвращением, Джон!~.). На это изображение можно сослаться по

адресу /images/welcomeback/john.jpg. Если его еще не существует, то возникнет
ошибка 404 и будет вызван ее обработчик. Он сгенерирует изображение, поместит
его на диск и либо выполнит перенаправление, либо просто вернет браузеру поток

байтов, представляющий собой изображение. Все последующие запросы будут

просто возвращать картинку из файла.

Этот прием годится и для многих других типов содержимого. Например, вместо

того, чтобы кэшировать заголовки последних новостей в виде блоков HTML, мож­
но сохранить их в виде JavaScript-фaйлa и затем сослаться на этот файл /latest_
headlines. j s из заголовка веб-страницы.

Сделать элемент кэша недействительным очень просто: достаточно удалить файл.

Чтобы реализовать удаление по истечении времени жизни, можно периодически

запускать задание, которое будет стирать файлы, созданные более N минут назад.
А если требуется ограничить размер кэша, то можно применить политику вытес­

нения по давности использования (least recently used, LRU) элементов, удаляя
файлы в порядке времени последнего доступа.

Для того чтобы вытеснение по времени последнего доступа работало, необходимо

включить в параметрах монтирования файловой системы режим регистрации

данного события (нужно лишь снять флаг noatime). Но если вы решите так по­
ступить, то следует задействовать файловую систему в памяти, иначе диск будет

использоваться очень активно.

Стратегии управления кэшем

Кэшам присуща та же проблема, что и денормализованной базе данных: значения

дублируются, то есть информацию приходится обновлять в нескольких местах

и необходимо принимать меры к тому, чтобы избежать чтения некорректных дан-

Кэширование 699

ных. Далее описываются некоторые наиболее употребительные стратегии управ­
ления кэшем.

1:1 ПL (время жизни). Вместе с кэшированным объектом хранится момент истечения
срока хранения - можно либо удалять все объекты, для которых этот момент
уже наступил, с помощью специального процесса, либо дождаться следующего
обращения и заменить объект более актуальной версией. Такая стратегия вытес­
нения больше подходит для редко изменяющихся данных или таких, для которых
требования к актуальности некритичны.

1:1 Явная инвалидация. Если кэширование устаревших данных неприемлемо, то про­
цесс, который обновляет исходную информацию, может делать недействительной
версию в кэше. У такой стратегии есть два варианта: инвалидировать при записи
и обновить при записи. Стратегия инвалидации при записи проста: нужно про­
сто пометить данные в кэше флажком, показывающим, что срок хранения истек

и можно удалить эти данные из кэша. Обновление при записи требует чуть больше
работы, поскольку нужно заменить устаревший элемент в кэше обновленным.
Но это может дать заметный выигрыш, особенно в тех случаях, когда генериро­
вать кэшируемые значения затратно, а процесс, осуществляющий обновление,
возможно, их уже имеет. Если данные в кэше обновлены, то последующие запро­
сы не должны будут ждать, пока приложение сгенерирует их. Если инвалидация
производится в фоновом режиме (такова инвалидация по времени жизни), то

новые версии удаленных элементов можно сгенерировать в процессе, никак

не связанном с запросами пользователей.

1:1 Инвалидация при чтении. Вместо того чтобы инвалидировать устаревшие данные
из кэша в момент изменения исходных значений, можно сохранить информацию,

которая позволит определить, истек ли срок хранения данных, в момент чтения их

из кэша. По сравнению с явным инвалидированием у этой стратегии есть важное

преимущество: фиксированные затраты на операцию распределяются по времени.

Предположим, что изменился объект, от которого зависят миллион других объ­
ектов в кэше. Если применять стратегию инвалидации при записи, то придется

за один раз сделать недействительными миллион кэшированных элементов, что

может занять длительное время, даже если вы придумаете эффективный алго­

ритм поиска таких элементов. Если же производить инвалидацию при чтении, то

запись можно выполнить сразу, а миллион операций чтения отложить на потом.

Таким образом, затраты на вытеснение распределяются по времени и нам удается
избежать пиков нагрузки и больших задержек.

Один из самых простых подходов к реализации инвалидации при чтении - отслежи­

вание версий объектов. В этом случае вместе с объектом в кэше хранится номер теку­
щей версии или временная метка данных, от которых зависит кэшированный объект.
Пусть, например, кэшируется статистика блога пользователя, в том числе количество
отправленных им сообщений. Вместе с объектом Ыog_stats в кэш помещается номер
текущей версии пользователя, поскольку статистика зависит именно от него.

При каждом обновлении любых данных, которые также зависят от этого пользовате­
ля, обновляется номер его версии. Предположим, что начальный номер версии - О,
и в этот момент статистика генерируется и сохраняется в кэше. Когда пользователь

700 Глава 14 • Оптимизация на уровне приложения

публикует в своем благе новое сообщение, номер версии увеличивается на 1 (его сле­
довало бы сохранить и в самом сообщении, хотя для рассматриваемого примера это

не обязательно). Позже при отображении статистики мы сравниваем версию объекта

Ыog_stats в кэше с версией пользователя. Поскольку номер версии пользователя

больше, то мы знаем, что статистика устарела и должна быть вычислена заново.

Это довольно грубый способ инвалидации содержимого, поскольку предполагается,

что любые данные, как-то зависящие от пользователя, влияют на любые другие дан­

ные. Не всегда это так. Например, если пользователь редактирует свое сообщение,

то номер его версии будет изменен, что приведет к инвалидации статистики, хотя

она (количество сообщений в благе) и не изменилась. В обмен на такую неточность

мы получаем простоту. Незамысловатую стратегию инвалидации не только проще

реализовать, не исключено, что и работать она будет эффективнее.

Отслеживание версий объектов - это упрощенный вариант тегированного кэша,

который может учитывать и более сложные зависимости. Тегированный кэш знает

о разнообразных зависимостях и для каждой из них поддерживает самостоятельные

версии. Возвращаясь к примеру с клубом книголюбов из главы 11, можно было бы
кэшировать комментарии в зависимости от версии пользователя и версии книги.

Для этого нужно было бы снабдить комментарий тегом, состоящим из двух номеров

версий: user _ver=1234 и book_ver=5678. Если хотя бы одна версия изменится, то
нужно будет обновить комментарий в кэше.

Кэширование иерархий объектов

Иерархическое хранение объектов в кэше может упростить выборку и инвалидацию

и помочь более эффективно использовать память. Вместо того чтобы кэшировать

только сами объекты, можно кэшировать их идентификаторы, а также группы иден­

тификаторов объектов, которые обычно извлекаются совместно.

Хороший пример применения такой техники дает сайт электронной торговли.

Результатом поиска может быть список подходящих товаров, включающий наиме­

нования, описания, миниатюры фотографий и цены. Кэшировать список целиком

было бы неэффективно: вполне вероятно, что другой поиск вернет некоторые из

уже найденных товаров, так что мы будем хранить дубликаты, впустую транжиря

память. Более того, при такой стратегии было бы сложно найти и сделать недей­

ствительными те из кэшированных результатов поиска, которые содержат товары

с изменившейся ценой, поскольку для этого пришлось бы просматривать все списки

без исключения.

Вместо того чтобы кэшировать перечень товаров полностью, можно сохранить лишь

минимальную информацию о поиске, например количество найденных элементов

и список их идентификаторов. А каждый товар будет кэшироваться по отдельности.

Тем самым мы решаем обе проблемы: результаты не дублируются и вытеснение

можно производить с точностью до отдельного товара.

Кэширование 701

Недостаток заключается в том, что из кэша приходится извлекать несколько объек­

тов, а не один полный результат поиска. Однако сохранение списка идентификаторов

делает эту процедуру довольно эффективной. При попадании в кэш возвращается

список идентификаторов, который затем используется для повторного обращения

к кэшу. Результатом второго обращения может быть группа товаров, если кэш по­

зволяет получать несколько объектов за одно обращение (memcached поддерживает
такую возможность посредством функции mget ()).

Однако, если вы будете невнимательны, этот подход может дать странные результа­

ты. Допустим, применяется стратегия инвалидации результатов поиска по времени

жизни, а объекты, описывающие отдельные товары, вытесняются при изменении.

Представьте, что произойдет, когда описание товара изменится так, что перестанет

содержать ключевые слова, отвечающие условиям поиска, однако результат поиска

еще не удален из кэша. Пользователи увидят устаревшие данные, поскольку кэши­

рованный список идентификаторов ссылается на товар, который больше не удовле­

творяет заданным критериям поиска.

Для большинства приложений это не слишком серьезная проблема. Но если для

вашего ПО такая ситуация неприемлема, то можно воспользоваться кэшированием

с версиями и хранить вместе с результатами поиска версии товаров. Обнаружив

поисковый результат в кэше, вы можете сравнить версию товара в нем с текущим

(кэшированным) параметром. Если какой-нибудь товар устарел, можно повторить

поиск и заново кэшировать результаты.

Важно понимать, насколько затратен доступ к удаленно хранимому кэшу. Хотя кэши

бывают быстрыми и не требуют больших объемов работы, сетевое взаимодействие на

сервере кэширования в локальной сети обычно занимает около 0,3 миллисекунды.
Мы встречали немало случаев, когда для сборки сложной неб-страницы требовалось

выполнить около 1000 запросов к кэшу. В итоге это составляет 3 секунды сетевой
задержки, что означает: ваша страница может загружаться недопустимо медленно,

даже если она обслуживается без обращений к базе данных! Использование вызова,

позволяющего получать много объектов за одно обращение к кэшу, в такой ситуации

необходимо. Использование иерархии кэша с небольшим локальным кэшем также

может быть очень полезным.

Предварительная генерация содержимого

Помимо кэширования данных на уровне приложения, можно заранее запрашивать

некоторые страницы из фоновых процессов и сохранять полученные результаты

в виде статических страниц. Если страницы формируются динамически, то можно

заранее сгенерировать какие-то их части, а для построения полной страницы при­

менить технологию включения на стороне сервера. Это позволит сократить раз­

мер предварительной генерации содержимого и затраты на нее, поскольку в про­

тивном случае придется дублировать значительные объемы данных из-за мелких

702 Глава 14 • Оптимизация на уровне приложения

различий в порядке сборки страницы из отдельных частей. Стратегию предваритель­
ной генерации можно использовать почти для любого типа кэширования, включая
и memcached.

Предварительная генерация содержимого обладает несколькими важными досто­
инствами.

О Код приложения становится проще, поскольку не учитывает ситуации попаданий

и непопаданий в кэш.

О Эта стратегия работает хорошо, когда операции, следующие за непопаданием
в кэш, являются неприемлемо медленным, поскольку она гарантирует, что не­

попаданий никогда не будет. Фактически при проектировании системы кэ­
ширования любого типа вы всегда должны учитывать, насколько медленно
выполняются операции, если попадания в кэш не произошло. Если средняя

производительность значительно возрастает, но случайный запрос становится

чрезвычайно медленным из-за восстановления кэшированного содержимого, то

кэширование может оказаться даже худшей стратегией, чем отказ от использо­

вания кэша. Постоянная величина производительности часто так же важна, как

и высокая производительность.

о Предварительная генерация содержимого не вызывает бегство кэша в случае
непопадания.

Для кэширования предварительно сгенерированного содержимого может потребо­

ваться много места, и не всегда возможно создать все страницы. Но, как обычно при
кэшировании, важно заранее подготовить то содержимое, которое запрашивается

чаще всего, поэтому можно применить технику генерации по необходимости с по­

мощью обработчиков ошибки 404, которую мы упоминали в этой главе.

Иногда можно получить выигрыш, организуя хранение предварительно сгенериро­

ванного содержимого в файловой системе, размещенной в памяти, чтобы избежать
дискового ввода/вывода.

Кэш как инфраструктурный компонент

Скорее всего, кэш будет важной частью вашей инфраструктуры. Легко попасть в ло­
вушку, думая о кэше как о некоем удобстве, которое неплохо иметь, но не о том, что
настолько важно, что вы не можете жить без него. Возможно, вы считаете, что если
сервер кэша выйдет из строя или вы потеряете кэшированное содержание, запрос

просто будет перенаправлен в базу данных. Так и случится, когда вы первоначально
добавляете кэш в приложение, но кэш может позволить приложению значительно
расти без увеличения ресурсов, предназначенных для некоторой части системы,
как правило базы данных. В результате вы можете стать зависимыми от кэша, даже

не осознавая этого.

Например, если коэффициент попадания в кэш составляет 90 % и по какой-то при­
чине вы кэш потеряете, время загрузки базы данных увеличится в десять раз. Скорее
всего, это превысит мощность сервера базы данных.

Расширение MySQL 703

Чтобы избежать таких неожиданностей, следует подумать о каком-то решении
с высокой доступностью для кэша (как данных, так и службы) или по крайней мере

измерить влияние отключения кэша или потери содержащихся в нем данных на про­

изводительность. Например, вам может потребоваться разработать приложение для
ухудшения его функциональности.

Использование HandlerSocket и доступа к memcached
Вместо хранения данных в MySQL и кэширования их вне MySQL можно предусмо­
треть более быстрый путь для доступа к MySQL и последующего игнорирования
кэша. При небольших простых запросах большая часть накладных затрат может

возникнуть в результате разбора SQL, проверки привилегий, создания плана вы­
полнения и т. д. Если они будут устранены, при простых запросах MySQL может
оказаться очень быстрой.

В настоящее время есть два решения, которые используют эту ситуацию, позволяя

так называемой NoSQL получить доступ к MySQL. Первым является служебный
плагин под названием HandlerSocket, который был создан на DeNA- крупном сайте
японской социальной сети. Он позволяет вам получить доступ к объекту InnoDB
Handler через простой протокол. По сути, вы проходите мимо верхних уровней
сервера и напрямую подключаетесь к InnoDB по сети. Имеются сообщения о том,
что HandlerSocket выполняет более 750 ООО запросов в секунду. HandlerSocket
распространяется вместе с Percona Server, а memcached-дocтyп к InnoDB включен
в тестовый релиз MySQL 5.6.

Второй способ - доступ к InnoDB через протокол memcached. В лабораторных ре­
лизах MySQL 5.6 есть плагин, который позволяет это.

Оба подхода несколько ограничены, особенно подход через memcached, который
не поддерживает столько методов доступа к данным. Зачем бы вам хотеть получить

доступ к данным через что-либо еще помимо SQL? Самая важная, помимо скорости,
причина - вероятно, простота. Избавиться от кэша и всей сопутствующей логики

инвалидации и дополнительной инфраструктуры - это большая победа.

Расширение MySQL
Если MySQL не умеет делать того, что вам требуется, можно попытаться расширить
ее возможности. Мы не станем показывать, как это делается, но упомянем некоторые

способы. Если вы хотите пойти по этому пути, то в Сети найдете немало отличных

сетевых ресурсов и книг, в которых рассматриваются многие из затронутых здесь тем.

Говоря: «MySQL не умеет делать того, что вам требуется~, мы обычно имеем в виду
две вещи: MySQL вообще не умеет этого делать или умеет, но недостаточно быстро
или слишком неуклюже. В каждом из этих случаев имеет смысл подумать о расши­

рении. К счастью, MySQL становится все более и более модульной и универсальной
системой.

704 Глава 14 • Оптимизация на уровне приложения

Подсистемы хранения - отличный способ расширить MySQL для решения узкоспе­
циализированной задачи. Брайан Эйкер (Brian Aker) написал заготовку подсистемы
хранения и опубликовал серию статей и презентаций, посвященных началу разра­

ботки собственной подсистемы. Они послужили основой для создания нескольких

значимых подсистем хранения от сторонних производителей. Ныне многие компании

пишут собственные подсистемы хранения для внутренних целей. Например, неко­

торые социальные сети применяют специальную подсистему хранения для работы

с графами, описывающими отношения между людьми. Нам известна также компания,

создавшая подсистему хранения для нечеткого поиска. Простенькую подсистему

хранения написать не так уж трудно.

Кроме того, подсистему хранения можно использовать в качестве интерфейса для

другого программного обеспечения. Хорошим примером является подсистема хране­

ния Sphinx, которая взаимодействует с программным обеспечением полнотекстового
поиска Sphinx (см. приложение Е).

Альтернативы MySQL
MySQL не может удовлетворить все мыслимые потребности. Порой гораздо лучше
решать некую задачу вне MySQL, даже если теоретически она способна с ней спра­
виться.

Один из самых очевидных примеров - хранение данных в традиционной файловой

системе, а не в таблицах. Классический случай - файлы изображений: их можно по­

местить в столбец типа BLOB, но это редко бывает оправданно 1 • Обычно изображения

и другие большие двоичные файлы размещают в файловой системе, а внутри MySQL
хранят только их имена, и приложение может получить файл в обход MySQL. В веб­
приложении это достигается записью имени файла в атрибут src тега .

Полнотекстовый поиск также лучше реализовывать внешними средствами, посколь­

ку MySQL не способна делать это так же хорошо, как, скажем, системы Lucene или
Sphinx.

Для некоторых задач полезен NDB API. Например, хотя подсистема хранения NDB
Cluster пока непригодна для хранения всех данных в высокопроизводительном
неб-приложении, ее все же можно использовать в качестве хранилища информа­

ции о сеансах или регистрационных данных пользователей. Подробнее о NDB API
можно прочитать на странице http://dev.mysql.com/doc/ndЬapi/en/index.html. Существует

также mod_ndb - модуль NDB для Apache, который можно скачать с сайта http://
code.google.com/p/mod-ndb/.

Наконец, для некоторых операций, например обхода деревьев и работы с графами,
реляционная база данных просто не предназначена. MySQL плохо приспособлена

Один из случаев, когда хранение файлов в MySQL оправданно, - это использование ре­

пликации для быстрой доставки изображений на множество машин. И мы знаем несколько

приложений, в которых такая техника применяется.

Итоги главы 705

для взаимодействия с распределенными данными, поскольку ей недостает средств

распараллеливания обработки запросов. По-видимому, для этой цели стоит поис­
кать другие инструменты (возможно, в сочетании с MySQL). На ум приходят такие
примеры.

1:1 Мы заменили MySQL на Redis, в котором простые пары <~ключ - значение~,. об­
рабатывались с такой высокой СКОJЮСтью, что подчиненные серверы отстали, хотя
главный сервер справлялся с нагрузкой просто отлично. Redis также популярен
для очередей благодаря хорошей поддержке операций в очереди.

1:1 И еще Hadoop - слона-то вы приметили, правда? Гибридные варианты развер­
тывания MySQL/Hadoop очень распространены для обработки больших или
полуструктуриJХJванных набоJЮв данных.

Итоги главы

Оптимизация - это задача не только базы данных. Как мы предположили в главе 3,
лучшая форма оптимизации ориентирована как на бизнес-логику, так и на удобство
пользователя. Оптимизация производительности во всем стеке - то, что действи­

тельно необходимо для достижения этой цели.

Первое, что нужно сделать, - как всегда, выполнить измерения. Сосредоточьтесь на

профилировании, поочередно рассматривая слои. На каких слоях на отклик затра­

чивается больше всего времени? Определите их. Если удобство работы с браузером
зависит в основном от того, как в нем отображается модель DOM, а быстродействие
MySQL незначительно сказывается на общем времени отклика, то дальнейшая
оптимизация запросов практически ничем не поможет пользователю. После изме­

рений, как правило, становится очевидно, куда следует направить основные усилия.

Мы рекомендуем прочитать книгу Стива Судерса (Steve Souders) High Performance
Web Sites and Even Faster Web Sites и использовать New Relic.

Часто проблему можно решить конфигурацией веб-сервера и кэшированием. Соглас­
но стереотипному представлению, «проблема всегда с базой данных1,>, но это просто
неверно. Другие слои в приложении не менее важны, и их точно так же можно непра­

вильно сконфигуриJХJвать, хотя иногда эффект от этого менее очевиден. В частности,

кэш может помочь получить много контента с гораздо меньшими затратами, чем это

можно было бы сделать только с MySQL. Несмотря на то что Apache по-прежнему
является самым популярным в мире программным обеспечением для веб-серверов,
это не всегда наилучший инструмент для работы, поэтому в некоторых ситуациях
имеет смысл обратить внимание на альтернативы, например Nginx.

Резервное копирование
и восстановление

Если вы не запланировали резервное копирование на ранних этапах проекта, то по­

том можете обнаружить, что отказались от полезного действия. Например, вы уже

сконфигурировали сервер, а затем осознали, что надо бы воспользоваться L VM для
создания мгновенных снимков файловой системы, но уже было поздно. Кроме того,
может выясниться, что настройка системы для резервного копирования серьезно

вт1яет на производительность. И если заранее не сформировать план восстановления

и не испытать его на практике, то в момент аварии все пойдет совсем не так гладко,

как хотелось бы.

В отличие от авторов первого и второго изданий этой книги мы полагаем, что

большинство читателей используют InnoDB, а не MyISAM. Мы не собираемся рас­
сматривать в этой главе все компоненты хорошо спроектированного решения по

резервному копированию и восстановлению - только части, относящиеся к MySQL.
Вот несколько тем, которые мы решили в нее не включать.

1:J Безопасность (доступ к резервному копированию, привилегии для восстановле­

ния данных, должны ли файлы быть зашифрованы).

1:J Где хранить резервные копии, в том числе как далеко от источника они должны

находиться (на другом диске, на другом сервере или за его пределами) и как пере­

мещать данные из источника в пункт назначения.

1:] Политика хранения, аудит, требования законодательства и связанные с этим

темы.

1:J Системы хранения и носители, сжатие и инкрементное копирование.

1:J Форматы хранения данных.

1:J Мониторинг и отчеты о резервном копировании.

1:J Встроенные в уровни хранения возможности резервного копирования или специ­

альные устройства, такие как готовые аппаратные файловые серверы.

Эти темы раскрыты в книгах, нанример в Backup & RecoiJery, написанной В. Кёрти­
сом Престоном (W. Curtis Preston) (издательство O'Reilly).

зачем нужно резервное копирование 707

Прежде всего уточним основные термины. Во-первых, вы часто услышите о так

называемом горячем, теплом и холодном резервном копировании. Обычно этими
словами описывается влияние резервного копирования на текущую работу. Напри­

мер, горячее резервное копирование означает, что сервер не нужно останавливать.

Проблема в том, что не все одинаково понимают эти термины. В названиях некото­

рых инструментов даже присутствует слово hot (горячий), хотя они определенно
не выполняют то, что мы понимаем под горячим резервным копированием. Мы по­

стараемся избегать таких понятий, а вместо этого будем говорить о том, в какой мере
конкретная методика или инструмент прерывают работу сервера.

Еще два сбивающих с толку слова - restore (возвращать) и recover (восстанавли­
вать). В этой главе им придается вполне конкретный смысл. Под возвратом мы по­

нимаем извлечение данных из резервной копии и либо загрузку их в MySQL, либо
размещение файлов там, где MySQL ожидает их найти. Под восстановлением обычно
понимается весь процесс приведения системы или ее части в рабочее состояние после

того, как что-то пошло не так. Сюда входит не только возврат данных из резервной

копии, но и прочие шаги, необходимые для возобновления функционирования
в полном объеме, в частности перезапуск MySQL, изменение конфигурации, прогрев
кэшей сервера и т. д.

Для многих восстановление означает лишь исправление поврежденных в резуль­

тате сбоя таблиц. Но это совсем не то же самое, что восстановление всего сервера.
Процедура восстановления подсистемы хранения должна привести в соответствие

файлы данных и журналов. Она также должна гарантировать, что в файлах данных
отражены только модификации, произведенные закоммиченными транзакциями,

и повторить те транзакции из журналов, которые еще не были применены к файлам

данных. Это может быть частью общего процесса восстановления или даже частью
резервного копирования. Однако это не то восстановление, которое может потребо­

ваться после случайного выполнения команды DROP TABLE.

Зачем нужно резервное копирование

Приведем несколько причин необходимости резервного копирования.

О Аварийное восстановление. Аварийное восстановление - это то, что требуется,

когда аппаратное обеспечение выходит из строя, ужасная ошибка повреждает

ваши данные или сервер и его данные становятся недоступными или непригод­

ными для использования по какой-то другой причине. Вы должны быть готовыми

ко всему: от того, что кто-то случайно подключился не к тому серверу и выполнил

команду AL ТЕR TABLE1, до пожара в здании, от атаки хакера до ошибки MySQL.
Пусть вероятности конкретных аварий не очень высоки, но они имеют тенденцию

суммироваться.

Бэрон все еще помнит свою первую после колледжа работу: он удалил два столбца из табли­

цы счетов рабочего сервера на сайте, занимающемся электронной торговлей.

708 Глава 15 • Резервное копирование и воссrановление

D Изменение решения. Вы бы удивились, узнав, как часто люди намеренно удаляют

данные, а затем хотят их восстановить.

D Аудит. Иногда вам требуется узнать, как выглядели данные или схема в какой-то
момент времени в прошлом. Например, вы вовлечены в судебный процесс или обна­

ружили ошибку в приложении и хотите понять, что было написано в этом коде рань­

ше (иногда того, что ваш код находится в системе контроля версий, недостаточно).

D Тестирование. Одним из самых простых способов тестирования на реальных

данных является периодическое обновление тестового сервера с использованием

последних рабочих данных. Если вы делаете резервные копии, это легко - просто

восстановите резервную копию на тестовом сервере.

Проверьте свои предположения. Например, полагаете ли вы, что ваш хостинг-про­

вайдер поддерживает резервную копию сервера MySQL, предоставляемого вместе
с вашим аккаунтом? Одни хостинг-провайдеры не делают резервных копий серверов

MySQL, а другие просто копируют файлы во время работы сервера, что, вероятно,
создает поврежденную резервную копию, которая может оказаться бесполезной.

Определение требований
к восстановлению

Пока все идет хорошо, о восстановлении как-то не задумываешься. Но когда момент

настанет, не спасет даже самая лучшая в мире система резервного копирования.

Вместо этого понадобится хорошая система восстановления.

Проблема в том, что организовать гладкий процесс резервного копирования проще,
чем создать хорошие процедуры и инструменты восстановления. И вот почему.

D Резервное копирование происходит раньше. Если нет резервной копии, то вос­

станавливать будет не с чего, поэтому при построении системы внимание уделяют

прежде всего резервному копированию.

D Резервное копирование автоматизировано с помощью скриптов и заданий. Поэто­

му вы думаете главным образом о том, как автоматизировать и настроить именно

его, часто даже не отдавая себе в этом отчета. Пять минут в день на улучшение

процедуры копирования - вроде бы пустяк, но уделяете ли вы ежедневно такое же

внимание восстановлению?

D Снятие резервной копии обычно происходит без всякого стресса, а восстановле­
ние - как правило, в кризисной ситуации.

D Часто в дело вступают соображения безопасности. Если резервное копирование

производится за пределами рабочей площадки, то, скорее всего, данные в копии

шифруются или защищаются как-то иначе. Очень легко рассуждать об ущербе,

который нанесет компрометация данных, и совсем упустить из виду то, что прои­

зойдет, если никто не сможет прочитать зашифрованный том, чтобы восстановить

с него данные, или позабыть о том, чего стоит извлечь один файл из монолитного

зашифрованного файла-архива.

Определение требований к восстановлению 709

Q Один человек может спланировать, спроектировать и реализовать процедуру

резервного копирования. Но его может не оказаться на месте, когда грянет гром.

Необходимо обучить нескольких человек и позаботиться о том, чтобы кто-нибудь
из них постоянно присутствовал, но не поручать восстановление данных неква­

лифицированному сотру дни ку.

Приведем слу<1ай из практики: некий заказчик сообщил, что резервное копиро­
вание стало выполняться с молниеносной скоростью, стоило указать при запуске

mysqldump флаг -d, и поинтересовался, почему никто не сообщил ему, что этот флаг
может настолько ускорить процедуру. Если бы он попытался вернуть данные с таких
копий, то очень быстро понял бы причину: при наличии флага -d данные вообще
не копируются! Заказчика интересовало только резервное копирование, а не вос­

становление, поэтому он и не ведал о грозящей беде.

Существуют два Больших Важных Требования, которые могут оказаться полезными
при планировании стратегии резервного копирования и восстановления. Это целевая

точка восстановления (recovery point objective, RPO) и целевое время восстановления
(recovery time objective, RTO). Они определяют, сколько данных вы готовы потерять
и как долго готовы ждать их восстановления. При определении своих RPO и RTO
попытайтесь ответить на следующие типы вопросов.

Q Сколько данных вы можете потерять без серьезных последствий? Понадобит­
ся ли восстановление на конкретный момент времени в прошлом или допустимо

потерять всю работу с момента снятия последней резервной копии? Существу­
ют ли какие-то законодательные требования?

Q Насколько быстрым должно быть восстановление? Каково допустимое время
простоя? С чем будут готовы смириться приложение и пользователи (например,
с частичной недоступностью) и как вы собираетесь обеспечить продолжение
функционирования в таких условиях?

Q Что необходимо восстанавливать? Обычно речь идет обо всем сервере, об отдель­
ной базе данных, отдельной таблице или о конкретных транзакциях и командах.

Задокументируйте ответы на эти вопросы, а также всю политику резервного копи­

рования и его процедуры.

Миф о резервном копировании № 1: я использую репликацию
как резервное копирование

Эта ошибка нам встречалась очень часто. Подчиненный сервер не может быть заменой

резервной копии. И RАID-массив тоже. Чтобы понять почему, задумайтесь над таким во­

просом: помогут ли они восстановить данные после случайного выполнения команды

DROP DATABASE для промышленной базы данных? Ни RАID-массив. ни репликация

не пройдут этого простейшего теста. Их нельзя относить к технологиям резервного копи­

рования. Они даже не могут заменить резервную копию! Ничто, кроме самого резервного

копирования, не способно реализовать функции резервного копирования.

710 Глава 15 • Резервное копирование и восстановление

Проектирование резервного копирования в MySQL
Резервное копирование MySQL сложнее, чем кажется. Прежде всего, резервная
копия - это лишь копия данных, но потребности вашего приложения, архитектура
подсистемы хранения MySQL и конфигурация системы могут затруднить ее соз­
дание.

Прежде чем подробно описывать существующие варианты, дадим некоторые реко­
мендации.

1:] Для больших баз данных физическое резервное копирование просто необходимо:

логическое копирование выполняется очень медленно, потребляет много ресур­
сов, а восстановление с копии выполняется долго. Самые лучшие варианты -
это резервное копирование на основе снимков, применение Percona XtraBackup
и MySQL Enterprise Backup. Для маленьких баз ;щнных логическое копирование
работает вполне нормально.

1:] Сохраняйте несколько поколений резервных копий.

1:] Периодически создавайте логические резервные копии (возможно, из физиче­

ских копий).

1:] Храните двоичные журналы для восстановления на определенный момент време­

ни. Установите довольно большое значение параметра expire_logs_days, чтобы
можно было восстановить минимум два поколения исходных резервных копий
и существовала возможность создать под•шненный сервер и запустить его из

работающего главного без применения двоичных журналов.

Создайте резервные копии двоичных журналов, не зависящие от заданного срока

хранения, и храните их в резервной копии так долго, чтобы была возможность
восстановления по крайней мере из последней логической резервной копии.

1:] Ведите мониторинг процесса резервного копирования и самих резервных копий

независимо от тех инструментов, которые применяются для резервного копиро­

вания. Необходимо независимое подтверждение их пригодности.

1:] Периодически проверяйте процедуру резервного копирования и восстановления,

проходя процесс восстановления от начала до конца. Измеряйте ресурсы, необхо­
димые для восстановления (процессор, объем диска, физическое время, полоса

сети и т. п.).

1:] Не упускайте из виду безопасность. Что случится, если кто-то скомпрометирует

сервер, - сможет ли он получить доступ и к серверу резервных копий? А на­

оборот?

Знание своих RPO и RTO станет определяющим при выработке вами стратегии
резервного копирования. Нужна ли возможность воссоздания баз на конкретный
момент времени или достаточно восстановить данные с копии, снятой прошлой

ночью, смирившись с потерей всей проделанной с тех пор работы? Если восстановле­
ние на конкретный момент времени необходимо, то, вероятно, придется выполнять
регулярное копирование и включить режим записи в двоичный журнал, чтобы можно
было вернуть данные, а затем накатить на них журналы до нужного момента.

Проектирование резервного копирования в MySQL 711

Вообще говоря, чем больше данных вы готовы потерять, тем проще процедура резерв­

ного копирования. Если же требования очень жесткие, то гарантировать воссоздание

всей информации гораздо сложнее. Существуют даже разные варианты восстанов­

ления на конкретный момент времени. Мягкие требования допускают воссоздание
данных по состоянию, довольно близкому к моменту сбоя. Жесткие требования
подразумевают необходимость восстановить все зафиксированные транзакции,

даже если произошло что-то ужасное, например, сервер в буквальном смысле сгорел.
Для этого применяют специальные методы: хранят двоичные журналы в отдельном

SАN-томе или используют DRВD-репликацию диска.

Оперативное или автономное
резервное копирование?

Остановить сервер MySQL на время резервного копирования, если это допусти­
мо, - самый безопасный и просто наилучший способ получить копию данных с ми­
нимальной вероятностью внести искажения или несогласованность. Если сервер

остановлен, то информацию можно копировать, не заботясь о таких неприятностях,
как ~грязные~ буферы в буферном пуле InnoDB или в других кэшах. Не нужно бес­
покоиться о том, что данные модифицируются в процессе резервного копирования,

а поскольку сервер не испытывает никакой нагрузки со стороны приложения, то

копирование происходит быстрее.

Однако вывод сервера из эксплуатации более затратен, чем может показаться.

Даже если удается свести к минимуму само время простоев, останов и запуск MySQL
могут занять довольно много времени, когда нагрузка и объем данных велики, что

обсуждалось в главе 8. Мы показали некоторые методы минимизации этого воз­
действия, но его нельзя свести к нулю. В результате вам почти наверняка придется

создавать резервные копии без останова сервера. И в зависимости от требований
к согласованности создание резервной копии во время работы сервера может при­
вести к значительным прерываниям в работе.

Одной из наибольших проблем при реализации многих методик резервного копиро­
вания является использование ими команды FLUSH TABLES WПН READ LOCK. Тем са­
мым мы говорим MySQL, чтобы она закрыла и заблокировала все таблицы, сбросила
данные файлов MyISAM (но не InnoDB) на диск, а также опустошила кэш запросов.
На это требуется время, сколько конкретно - предсказать невозможно: оно окажется

большим, если для получения глобальной блокировки чтения придется ждать за­
вершения выполнения длительной команды или если количество таблиц велико.

Пока блокировки не будут освобождены, изменить данные на сервере невозможно.
Все процессы будут заблокированы и станут ожидать в очередях 1 • Выполнение

Да, даже запросы SELECT окажутся заблокированными, поскольку обязательно будет за­
прос, который попытается изменить некоторые данные. И как только он начнет ожидать

блокировки записи в таблице, все запросы, пытающиеся получить блокировки чтения,
тоже должны будут ждать.

712 Глава 15 • Резервное копирование и восстановление

команды FLUSH TABLES WПН READ LOCK не так затратно, как останов сервера, потому

что большая часть данных остается кэшированной в памяти и сервер ~прогреп, но

команда все равно мешает нормальной работе. Всякий, кто говорит, что она вы­

полняется быстро, вероятно, пытается вам что-то продать и никогда не работал на

реальном сервере MySQL.

Лучший способ избежать использования FLUSH TABLES WПН READ LOCK - задейство­

вать только таблицы InnoDB. Вы не можете не использовать таблицы MyISAM для
привилегий и другой системной информации, но если эти данные редко меняются

(что нормально), вы можете сбрасывать и блокировать только эти таблицы, не соз­

давая проблем.

Перечислим несколько факторов, связанных с производительностью, которые сле­

дует учитывать при планировании резервного копирования.

О Время блокировки. Как долго вам нужно удерживать такие глобальные блокиров­
ки, как FLUSH TABLES WПН READ LOCK, при резервном копировании?

о Время резервного копирования. Сколько времени требуется, чтобы передать ре­

зервную копию в пункт назначения?

О Резервная загрузка. Как сильно влияет на производительность сервера передача

резервной копии в пункт назначения?

о Время восстановления. Сколько времени занимает передача резервной копии

из хранилища на сервер MySQL, повторное использование двоичных журна­
лов и т. д.?

Самое главное - найти компромисс между временем резервного копирования и вре­

менем восстановления. Как правило, один показатель можно улучшить за счет

другого, например, вы можете повысить приоритет резервного копирования ценой

сокращения производительности сервера.

Можно проектировать резервное копирование так, чтобы использовались преимуще­

ства паттернов загрузки. Например, если сервер загружен только на 50 % за 8 часов
ночного времени, можете попытаться спроектировать резервное копирование так,

чтобы он оказался загружен менее чем на 50 % и весь процесс завершился в течение
8 часов. Это можно сделать по-разному: например использовать утилиты ionice
и nice, чтобы отдать предпочтение операциям копирования или сжатия, применить
разные уровни сжатия или сжимать данные на сервере резервного копирования

вместо сервера MySQL. Можно также применять утилиты lzo или pigz для более
быстрого сжатия. Вы можете использовать функции O_DIRECT или fadvise(), чтобы
не задействовать кэш операционной системы для операций копирования и тем

самым не загрязнять кэши сервера. Такие инструменты, как Percona XtraBackup
и MySQL Enterprise Backup, также имеют параметры пропуска тактов, и вы можете
использовать утилиту pv с параметром --rate-limit для ограничения пропускной

способности написанных вами скриптов.

Проектирование резервного копирования в MySQL 713

Логическое и физическое
резервное копирование

Существует два основных способа резервного копирования данных в MySQL: ло­
гическое (такая копия также называется дампом) и путем копирования исходных
файлов. В логической резервной копии данные представлены в формате, который

MySQL может интерпретировать как SQL-команды или текст с разделителями 1 •

Исходные файлы - это просто файлы в том виде, в каком они находятся на диске.

У каждого способа копирования данных имеются свои плюсы и минусы.

Логические резервные копии

У логических резервных копий есть следующие достоинства.

о Это обычные файлы, которые можно обрабатывать в стандартных текстовых ре­
дакторах и с помощью таких инструментов командной строки, как grep или sed.
Это очень полезно, когда требуется вернуть информацию или просто просмотреть ее.

о Из них легко восстанавливать данные. Достаточно просто подать файл по кон-

вейеру на вход программы mysql или воспользоваться программой mysqlimport.

о Резервное копирование и возврат данных можно выполнять по сети, то есть не на

той же машине, где работает сервер MySQL.

о Они могут работать в таких системах, как Amazon RDS, где у вас нет доступа
к базовой файловой системе.

о Процедуру можно очень гибко настраивать, потому что mysqldump - инструмент,
которым многие предпочитают пользоваться для снятия логических копий, -
принимает множество параметров, например раздел WHERE, позволяющий указать,

какие строки включать в резервную копию.

о Они не зависят от подсистемы хранения. Поскольку для создания логической ко­

пии данные запрашиваются у сервера MySQL, то различия между подсистемами
хранения нивелируются. Следовательно, очень просто снять копию таблицы типа

InnoDB и восстановить ее в таблицу типа MyISAM. С физическими резервными
копиями такой фокус не пройдет.

о Они могут помочь избежать повреждения данных. Если диски сбоят, то при ко­
пировании физических файлов получится поврежденная резервная копия, и если

Логические резервные копии, создаваемые утилитой mysqldump, не всегда являются тексто­
выми файлами. SQL-дамп может содержать текст в различных кодировках и даже двоич­

ные данные, которые по определению не соответствуют печатаемым символам. Да и строки

могут оказаться слишком длинными для многих редакторов. И все же, как правило, такие

файлы можно открыть и прочитать в текстовом редакторе, особенно если mysqldump за­
пускалась с флагом --hех-ЫоЬ.

714 Глава 15 • Резервное копирование и восстановление

вы специально не проверите ее по окончании резервного копирования, то узнаете

об этом только тогда, когда не сможете воспользоваться ею для восстановления.
Но если данные MySQL в памяти не повреждены, то иногда можно получить
заслуживающую доверия логическую копию, когда снять хорошую физическую

не удается

Есть у логических резервных копий и недостатки.

D Для их генерации требуется, чтобы сервер работал, так что процессор окаэывается
сильнее загруженным.

D В некоторых случаях логические копии оказываются объемнее исходных фи­
зических файлов 1 • АSСII-представление данных не всегда так же эффективно,
как внутреннее представление в подсистеме хранения. Например, для хранения

целого числа необходимо 4 байта, но для записи его в виде АSСII-текста может
понадобиться до 12 символов. Зачастую логические копии хорошо поддаются
сжатию, но для этого нужно дополнительное процессорное время. (Если ис­

пользуется много индексов, то логические резервные копии обычно меньше, чем
исходные резервные копии.)

D Копирование и восстановление данных не всегда гарантирует их получение
в исходном виде. Утрата точности в представлении чисел с плавающей точкой,

ошибки и т. п. могут вызывать проблемы, хоть это происходит и редко.

D Для восстановления данных из логической копии необходимо загружать и ин­
терпретировать команды и перестраивать индексы, что заставляет сервер еще

больше работать.

Но главный недостаток - затраты на выгрузку данных из MySQL и обратную их
загрузку с помощью команд SQL. Если вы используете логическое резервное копи­
рование, стоит проверить время, необходимое для восстановления данных.

Инструмент mysqldump, включенный в Percona Server, может помочь, если вы рабо­
таете с таблицами InnoDB. Дело в том, что он форматирует вывод так, что при его по­
вторной загрузке используется код быстрого создания индекса InnoDB. Проведенное
нами тестирование показало, что время восстановления может сократиться на две

трети или даже больше. Чем больше индексов, тем это выгоднее.

Физические резервные копии

У физических резервных копий есть следующие достоинства.

D Для получения физической копии следует просто скопировать нужные файлы
в другое место. Никакой дополнительной работы для их генерации не требу­

ется.

D Трудоемкость возврата данных из физической копии может быть меньшей и за­
висит от подсистемы хранения. При использовании MylSAM достаточно просто

Наш опыт показывает, что обычно логические резервные копии меньше физических, но

так бывает не всегда.

Проектирование резервного копирования в MySQL 715

скопировать файлы в исходное место, тогда как для lnnoD В требуется остановить
сервер и, возможно, предпринять еще какие-то действия.

1J Физические копии данных InnoDB и MyISAM можно переносить между плат­
формами, операционными системами и версиями MySQL. (Логические дампы
тоже. Мы просто укажем на это, побы исключить любые проблемы, которые

могут у вас возникнуть.)

1J Восстановление с физических копий может оказаться более быстрым, потому что
серверу не нужно выполнять SQL-команды и выстраивать индексы. При наличии

таблиц InnoDB, которые не помещаются целиком в память сервера, восстанов­
ление данных из физических файлов можно выполнить гораздо быстрее - на
порядок или даже больше. На самом деле одной из самых неприятных вещей
в логических резервных копиях является непредсказуемое время восстановления.

Но есть и недостатки.

1J Объем физических файлов InnoDB, как правило, гораздо больше объема соот­
ветствующих логических копий. Обычно в табличном пространстве InnoDB
очень много неиспользуемого места. К тому же какое-то пространство отведено

под цели, не связанные с хранением табличных данных (буфер вставки, сегмент
отката и т. д.).

1J Не всегда физическую копию можно перенести на другую платформу, в операцион­
ную систему или версию MySQL. В частности, препятствием могут стать чувстви­
тельность к регистру букв и формат чисел с плавающей точкой. Перенос файлов
в систему с другим форматом чисел с плавающей точкой вообще невозможен
(впрочем, в большинстве современных процессоров применяется формат IEEE).

Работать с физическими копиями обычно проще и эффективнее 1 • Но не следует
целиком полагаться на них при необходимости долговременного хранения или
удовлетворения требований законодательства, время от времени нужно делать

и логические копии.

Не считайте резервную копию (особенно физическую) пригодной для использо­
вания, пока не проверили ее. В случае InnoDB это означает, что нужно запустить
экземпляр MySQL, дать InnoDB завершить процедуру восстановления, а затем
выполнить команду СНЕСК TABLES. Можно опустить этот шаг или просто проверить

файлы утилитой innochecksum, но мы советуем так не делать. Для MyISAM следует
выполнить команду СНЕСК TABLES или воспользоваться утилитой myisamchk. Для всех
таблиц можно использовать команду СНЕСК TABLES с утилитой mysqlcheck.

Рекомендуем комбинировать оба подхода: снять физические копии, а потом запу­
стить экземпляр MySQL и утилиту mysqlcheck. Затем, по крайней мере время от
времени, выполнить дамп данных с помощью утилиты mysqldump для получения
логической резервной копии. В результате вы возьмете все лучшее от обоих под­
ходов, не создавая на промышленном сервере излишней нагрузки по формированию

Стоит отметить, что вероятность возникновения ошибок в физических резервных копиях

больше - простоту шysqlduшp превзойти сложно.

716 Глава 15 • Резервное копирование и восстановление

дампа. Это особенно удобно, когда есть возможность делать мгновенные снимки

файловой системы: вы создаете снимок, копируете его на другой сервер, развора­

чиваете, а затем проверяете физические файлы и выполняете логическое резервное

копирование.

Что копировать

Требования к восстановлению диктуют, что нужно копировать. Простейшая стра­
тегия состоит в том, чтобы скопировать данные и определения таблиц, однако это

лишь необходимый минимум. Обычно для полного восстановления промышленного
сервера требуется гораздо больше. Перечислим кое-что из того, что стоит включать

в состав резервной копии MySQL.

[J Неочевидные данные. Не забудьте о данных, которые не бросаются в глаза, напри­

мер о двоичных журналах и журналах транзакций InnoDB.

[J Код. В современном сервере MySQL может содержаться большой объем про­
граммного кода, в частности триггеры и хранимые процедуры. Если вы выполня­

ете резервное копирование базы данных mysql, то большая часть этого кода в нее
войдет. Однако тогда становится трудно восстановить единственную базу из всего

множества, поскольку часть данных этой базы, к примеру хранимые процедуры,

на самом деле содержится в базе mysql.

[J Конфигурация репликации. Для восстановления сервера, участвующего в репли­

кации, следует включать в резервную копию все необходимые для репликации

файлы: двоичные журналы, журналы ретрансляции, индексные файлы журналов

и . infо-файлы. Как минимум, следует добавить результаты выполнения команды
SHOW МASTER STATUS и/или SHOW SLAVE STATUS. Полезно также выполнить команду

FLUSH LOGS, чтобы MySQL начала новый двоичный журнал. Восстановление на
конкретный момент времени выполнить проще, когда отсчет ведется от начала,

а не от середины журнала.

[J Конфигурация сервера. Если потребуется восстановить данные после настоящей

катастрофы, скажем, выстроить сервер с нуля в новом центре обработки данных

после землетрясения, то вы оцените полезность хранения конфигурационных

файлов сервера в составе резервной копии.

а Отдельные файлы операционной системы. Как и в случае с конфигурацией сер­

вера, очень важно сохранить все внешние конфигурационные файлы, имеющие

значение для работы операционной системы. На UNIX-cepвepe это могут быть

таблицы cron, конфигурация пользователей и групп, административные сценарии
и правила sudo.

Подобные рекомендации во многих случаях расцениваются как совет: «Копируйте

все~. Но если информации очень много, то это может оказаться слишком дорогим

удовольствием, поэтому при выполнении резервного копирования стоит проявить

изворотливость. Например, данные, двоичные журналы и конфигурационные файлы

операционной системы и сервера можно копировать по отдельности.

Проектирование резервного копирования в MySQL 717

Инкрементное и дифференциальное резервное копирование. При наличии боль­
шого объема данных общепринятой стратегией является регулярное инкрементное
или дифференциальное копирование. Различия между ними могут быть слегка
непонятными, поэтому давайте уточним термины: дифференциальная резервная

копия - это резервная копия всего, что изменилось с момента создания последней

полной резервной копии, тогда как инкрементная резервная копия содержит все, что

изменилось с момента выполнения последней резервной копии любого типа.

Например, предположим, что вы делаете полную резервную копию каждое вос­

кресенье. В понедельник создаете дифференциальную резервную копию всего, что

изменилось с воскресенья. Во вторник есть два варианта: можно создать резервную

копию всего, что было изменено с воскресенья (дифференциальная), или создавать
резервные копии только данных, которые были изменены с момента резервного ко­
пирования в понедельник (инкрементная).

Как дифференциальные, так и инкрементные резервные копии являются частичными

резервными копиями: они, как правило, не содержат полного набора данных, поскольку
некоторые данные почти наверняка не изменились. Зачастую желательно выполнять

частичные резервные копии для экономии накладных затрат на сервере, времени

резервного копирования и резервного пространства. Однако некоторые частичные

резервные копии в действительности не уменьшают эти затраты на сервере. Например,

Percona XtraBackup и MySQL Enterprise Backup сканируют каждый блок данных на
сервере, поэтому не слишком уменьшают накладные затраты, хотя и экономят время

работы, много процессорного времени для сжатия и, конечно, дисковое пространство 1 •

Вы можете использовать довольно любопытные современные методы резервного

копирования, но чем сложнее решение, тем более рискованным это будет. Остере­

гайтесь скрытых опасностей, таких как создание множества поколений резервных

копий, которые тесно связаны друг с другом, поскольку, если одно поколение со­

держит ошибку, оно может сделать недостоверными все остальные.

Поделимся некоторыми мыслями по этому поводу.

Q Используйте инкрементные функции резервного копирования Percona XtraBackup
или MySQL Enterprise Backup.

Q Делайте резервную копию двоичных журналов. Можно также использовать FLUSH

LOGS, чтобы начинать новый двоичный журнал после каждой резервной копии,

а затем создавать резервные копии только новых двоичных журналов.

Q Не копируйте таблицы, которые не изменялись. Некоторые подсистемы хра­

нения, например MyISAM, записывают время последней модификации каждой
таблицы. Узнать его можно, заглянув в файл на диске или воспользовавшись ко­
мандой SHOW TABLE STATUS. При использовании InnoDB можно написать триггер,

В настоящий момент разрабатывается функция истинного инкрементного резервного копи­

рования для Percona XtraBackup. Она сможет создавать резервные копии блоков, которые
были изменены, не сканируя все блоки.

718 Глава 15 • Резервное копирование и восстановление

который поможет отследить время последнего изменения, занося его в специ­

альную маленькую таблицу, названную «Время последнего измененияi>. Но это

нужно делать только для таблиц, которые изменяются редко, чтобы издержки

были минимальными. Специальный скрипт резервного копирования сможет

легко определить, какие таблицы были изменены.

Справочные таблицы, например содержащие названия месяцев на разных языках

или сокращенные названия государств или регионов, имеет смысл поместить

в отдельную базу данных, которая не копируется каждый раз.

О Не копируйте строки, которые не изменялись. Если записи в таблицу только
добавляются (командой INSERT) - такова, например, таблица, где хранится про­

токол посещения страниц сайта, - то можно создать в ней столбец типа ПМЕSТАМР

и включать в резервную копию только строки, добавленные с момента последнего

копирования.

О Некоторую информацию не копируйте вовсе. Иногда это вполне оправданно -
например, если имеется хранилище, которое создается из других данных и, строго

говоря, является избыточным, то можно включать в копию лишь те элементы,

которые нужны для воссоздания хранилища, а его само не копировать. Эта идея

может оказаться здравой, даже если воссоздавать хранилище из исходных данных

очень долго. Отказ от копирования всех данных может со временем принести

многократно большую экономию, чем удалось бы получить при наличии полной

копии. Кроме того, можно не копировать некоторые временные значения, напри­

мер таблицы, в которых хранятся данные о веб-сеансах.

о Создавайте резервные копии всего чего только можно, но позаботьтесь, чтобы они

попали туда, где есть возможность устранения избыточности данных, например

в файловую систему ZFS.

Недостаток инкрементного резервного копирования - повышенная сложность вос­

становления, увеличенный риск и большее время восстановления. Если у вас есть

возможность снимать полные резервные копии, то мы рекомендуем ею воспользо­

ваться, чтобы упростить работу.

В любом случае время от времени выполнять полное копирование необходимо -
советуем делать это раз в неделю. Вряд ли стоит рассчитывать на то, что можно

будет восстановиться, имея только инкрементные копии за год. Даже неделя - это

трудоемко и рискованно.

Подсистемы хранения и согласованность

Наличие в MySQL различных подсистем хранения может существенно осложнить
процедуру резервного копирования. Проблема заключается в том, как получить со­

гласованную копию базы данных при наличии в ней таблиц произвольных типов.

Существуют два вида согласованности: согласованность данных и согласованность

файлов.

Проектирование резервного копирования в MySQL 719

Согласованность данных

При снятии резервной копии необходимо гарантировать, что данные в ней согласова­

ны по времени. Например, в базе данных сайта электронной торговли счета-фактуры

и платежи должны быть согласованы друг с другом. Восстановление платежа без
соответствующего счета или наоборот - прямая дорога к неприятностям!

При оперативном резервном копировании (без остановки сервера) необходимо

получить согласованные дубликаты всех взаимосвязанных таблиц. Это означает,
что нельзя просто блокировать и копировать таблицы по одной, то есть процедура

резервного копирования должна знать о структуре базы больше, чем хотелось бы.

Если используется нетранзакционная подсистема хранения, то не остается ничего

другого, как выполнить команду LOCK TABLES для всех таблиц, которые должны ко­

пироваться вместе, и освободить блокировки только после того, как процедура будет

полностью завершена.

Встроенная в InnoDB технология MVCC способна в этом помочь. Вы можете начать
транзакцию, скопировать группу взаимосвязанных таблиц и потом закоммитить

транзакцию. (Не следует одновременно с этим использовать команду LOCK TABLES,

если хотите получить согласованную копию, поскольку она неявно коммитит транз­

акцию, - детали см. в руководстве по MySQL.) Если установлен уровень изоляции
REPEATABLE READ и не выполняются команды группы DDL, этот метод позволит по­
лучить идеально согласованный по времени снимок данных, не блокируя при этом

работу сервера на время снятия копии.

Однако такой подход не защитит от неудачно спроектированной логики приложе­

ния. Предположим, что интернет-магазин вставляет запись о платеже, выполняет

коммит транзакции, а затем вставляет счет-фактуру уже в другой транзакции. Про­

цедура резервного копирования может начаться между двумя этими операциями,

и тогда платеж войдет в копию, а счет-фактура - нет. Поэтому к использованию

транзакций следует подходить со всей ответственностью, объединяя взаимосвя­

занные операции.

Получить согласованную логическую копию таблиц InnoDB позволяет также про­
грамма mysqldump, которая поддерживает флаг --single-transaction, делающий
в точности то, что было описано ранее. Однако при этом могут возникать очень

длинные транзакции, что при некоторых характеристиках рабочей нагрузки приво­

дит к неприемлемо высоким затратам.

Согласованность файлов

Не менее важна внутренняя согласованность каждого файла. Например, в резервную

копию не должен попасть файл, состояние которого отражает частичное выполнение

большой команды UPDAТE. Кроме того, необходимо, чтобы все скопированные файлы
были согласованы друг с другом. Если внутренняя согласованность нарушена, то при

восстановлении вас поджидают неприятные сюрпризы (скорее всего, данные будут

720 Глава 15 • Резервное копирование и восстановление

повреждены). А если взаимосвязанные объекты копируются в разные моменты

времени, то они не будут согласованы между собой. Примерами могут служить

файлы MyISAM с расширениями . МУD и . МУI. InnoDB будет журналировать ошибки
или даже остановит сервер, если обнаружит несогласованность или повреждение

данных.

В случае использования нетранзакционной подсистемы хранения, в частности

MyISAM, единственный вариант - заблокировать и сбросить таблицы. Иными

словами, нужно выполнить команды LOCK TABLES и FLUSH TABLES, чтобы сервер со­

хранил на диск накопившиеся в памяти изменения, или команду FLUSH TABLES WПН

READ LOCK. По завершении сброса можно безопасно копировать физические файлы,

в которых хранятся таблицы MyISAM.

В случае InnoDB гарантировать согласованность файлов на диске несколько
сложнее. Даже после команды FLUSH TABLES WПН READ LOCK InnoDB не прекращает
работу в фоновом режиме: потоки буфера вставки, журнала и записи продолжают

сохранять изменения в журнал и файлы табличного пространства. Эти потоки за­
думаны асинхронными - именно выполнение работы в фоновых режимах позволяет

InnoDB достигать высокого уровня конкурентности, - поэтому от команды LOCK

TABLES они не зависят. Следовательно, нужно гарантировать не только внутрен­

нюю согласованность каждого файла, но и то, что файлы журналов и табличного

пространства копируются в один и тот же момент времени. Если резервная копия

снимается, когда некоторый поток изменяет файл, или файлы журналов копируют­

ся не одновременно с файлами табличного пространства, то после восстановления

данные могут оказаться поврежденными. Избежать такого развития событий можно

несколькими способами.

Q Дождаться, пока потоки вытеснения и объединения с буфером вставки завершат

работу. Можно следить за тем, что выводит команда SHOW INNODB STATUS, и на­

чинать копирование, когда не останется «грязных» или ожидающих операций

записи буферов. Но на это может уйти много времени, а кроме того, приходится
гадать на кофейной гуще и все равно из-за наличия фоновых потоков безопас­

ность не гарантируется. Поэтому мы не рекомендуем применять такой подход.

Q Делать согласованный снимок файлов данных и журналов с помощью такой си­

стемы, как LVM. Обязательно следует снимать файлы данных и журналов согла­
сованно относительно друг друга - делать снимки по отдельности бессмысленно.
Позже в этой главе мы еще будем обсуждать снимки LVM.

Q Отправьте сигнал STOP в MySQL, сделайте резервную копию, а затем отправьте
сигнал CONT, чтобы запустить MySQL снова. Это может показаться странной ре­
комендацией, но ее стоит обдумать, если единственной альтернативой является

останов сервера во время резервного копирования. По крайней мере, этот метод

не требует «прогрева» сервера после повторного запуска.

После того как файлы куда-то скопированы, можно снять блокировки и продолжить

эксплуатацию сервера MySQL в обычном режиме.

Проектирование резервного копирования в MySQL 721

Репликация

Основное преимущество резервного копирования на подчиненном сервере состоит

в том, что не нужно прерывать работу и дополнительно нагружать главный. Это само

по себе серьезная причина для организации подчиненного сервера, даже если он

не нужен с целью балансирования нагрузки или обеспечения высокой доступности.

Если бюджет ограничен, то всегда можно использовать сервер резервного копирова­

ния и в других целях, например для генерации отчетов, при условии, что вы не будете

производить на нем никаких операций записи, изменяющих резервируемые данные.

Подчиненный сервер не обязательно должен быть целиком выделен только для

копирования, важно лишь, чтобы он успевал догнать главный к моменту снятия сле­

дующей копии, если другие занятия не позволяют ему реплицировать информацию

без задержек постоянно.

Делая резервные копии на подчиненном сервере, не забывайте сохранять всю ин­

формацию о процедуре репликации, например позицию подчиненного сервера от­

носительно главного. Это полезно для клонирования новых подчиненных серверов,

повторного применения двоичных журналов к главному серверу с целью восстанов­

ления на конкретный момент времени, повышения подчиненного сервера до уровня

главного и достижения многих других целей. Кроме того, убедитесь, что в момент

останова подчиненного сервера нет открытых временных таблиц, поскольку это

может помешать возобновлению репликации.

Для восстановления после некоторых сбоев бывает очень полезна намеренная

задержка репликации. Предположим, что вы производите репликацию с паузой

1 час. Если на главном сервере была выполнена нежелательная команда, то у вас
есть час, чтобы это заметить и остановить подчиненный сервер до того, как он вос­

произведет это событие из своего журнала ретрансляции. Затем можно назначить

подчиненный сервер главным и выполнить несколько событий из журнала, обой­

дя ненужные команды. Это может оказаться намного быстрее, чем применять тех­

нику восстановления на конкретный момент, которую мы обсудим в дальнейшей.

Инструмент pt-slave-delay из комплекта Percona Toolkit может помочь в решении
этой задачи.

Информация на подчиненном и главном серверах может различаться. Часто

думают, что подчиненные серверы - точные копии главных, но наш опыт

показывает, что расхождения в данных - обычное дело и у MySQL нет средств
для обнаружения этой проблемы. Единственный способ выявить ее - вос­
пользоваться таким инструментом, как pt-taЫe-checksum из пакета Percona
Toolkit

Наличие реплицированной копии может защитить от таких проблем, как рас­
плавление диска на главном сервере, но гарантий никаких нет. Репликация -
это не резервное копирование.

722 Глава 15 • Резервное копирование и восстановление

Управление и резервное копирование
двоичных журналов

Двоичные журналы сервера - одна из важнейших вещей, которые следует включать

в резервную копию. Они совершенно необходимы для восстановления на конкрет­
ный момент времени, а поскольку их размер обычно меньше, чем сами данные, то
копировать их можно чаще. Если существуют резервная копия информации, снятая

в какой-то момент времени, и все двоичные журналы, накопившиеся с этого момента,

то эти журналы можно воспроизвести, то есть накатить изменения, произошедшие

с момента создания последней полной резервной копии.

В MySQL двоичный журнал также используется для репликации. Это означает, что
стратегии резервного копирования и восстановления тесно связаны с конфигурацией

репликации.

Двоичные журналы - это что-то особенное. Если вы потеряли данные, то утратить
еще и журналы было бы совсем некстати. Чтобы уменьшить риск потери журналов, их
можно хранить в отдельном томе. Это нормально, даже если вы хотите делать снимки

двоичных журналов средствами LVM. Для пущей безопасности журналы можно раз­
местить в SАN-хранилище или реплицировать на другое устройство с помощью DRBD.

Мы рекомендуем копировать журналы почаще. Если потеря данных более чем за
30 минут недопустима, то копируйте их по крайней мере раз в 30 минут. Можно
также использовать подчиненный сервер репликации, работающий в режиме только
чтения, установив флаг --log_slave_updates. Позиции в журналах подчиненного
и главного сервера, конечно, не будут совпадать, но обычно найти нужную для вос­
становления точку не составляет труда. Наконец, версия mysq!Ьinlog для MySQL 5.6
имеет очень удобную функцию для подключения к серверу и зеркалирования его
двоичных журналов в реальном времени, что намного проще, чем запуск экземпляра

mysqld. Он обратно совместим со старыми версиями сервера.

Наши рекомендации по конфигурации сервера для двоичного журналирования при­

ведены в главах 8 и 1 О.

Формат двоичного журнала

Двоичный журнал содержит последовательность событий. У каждого события имеется

заголовок фиксированной длины, в котором хранится разнообразная информация,
в частности текущая временная метка и имя подразумеваемой по умолчанию базы
данных. Для просмотра содержимого двоичного журнала можно воспользоваться

инструментом mysq!Ьinlog, который распечатывает часть сведений из заголовка.
Далее приведен пример вывода:

1 # at 277
2 #071030 10:47:21 server id
3 end_log_pos 369 Query thread_id=13 exec_time=0
error_code=0 3 SET TIMESTAМP=ll93755641/*!*/;
4 insert into test(a) values(2}/*!*/;

Управление и резервное копирование двоичных журналов 723

В строке 1 указано смещение в байтах от начала файла журнала (в данном случае 277).

В строке 2 приведена следующая информация:

1:1 дата и время события, MySQL использует их для генерации команды SET

ТIMESTAMP;

1:1 идентификатор исходного сервера, который необходим для нредотвращения за­

цикливания репликации и других проблем;

1:1 величина end_log_pos, то есть смещение начала следующего события в байтах.
Для большинства событий в транзакции из нескольких команд это значение не­
корректно. Во время выполнения транзакции MySQL копирует события в буфер
на главном сервере, но позиция следующего события в журнале в этот момент
неизвестна;

1:1 тип события. В приведенном примере это Query, но существует много других
типов;

1:1 идентификатор потока, обработавшего событие на исходном сервере. Он важен
для аудита и для выполнения функции CONNECТION_ID();

1:1 величина exec_ time, которая представляет собой разницу между временной мет­
кой команды и временем, в которое команда была записана в двоичный журнал.
Не стоит ориентироваться на этот показатель, поскольку его значение может быть
ошибочным, если подчиненный сервер сильно отстал от главного;

1:1 код ошибки, возникшей при обработке события на исходном сервере. Если при
воспроизведении на подчиненном сервере возникнет иная ошибка, репликация
на всякий случай прекратится.

В остальных строках печатаются SQL-команды, необходимые для воспроизведения
события. Здесь же вы найдете переменные, определенные пользователем, и прочие
специальные установки, например временную метку на момент начала обработки
команды.

При использовании построчного журналирования, появившегося в версии

MySQL 5.1, событие не содержит текста SQL-команд, а является образом
модификаций, произведенных данной командой в таблице. Эти события

не предназначены для чтения человеком.

Безопасное удаление старых
двоичных журналов

Необходимо продумать стратегию удаления двоичных журналов, чтобы MySQL
не заполнила ими весь диск. До какого размера вырастет журнал, зависит от его фор­

мата и рабочей нагрузки (при построчном журналировании, появившемся в версии
MySQL 5.1, размер одной записи больше). Мы рекомендуем по возможности хранить
журналы до тех пор, пока они не станут бесполезными. Двоичные журналы могут

724 Глава 15 • Резервное копирование и воссrановление

пригодиться для настройки подчиненных серверов репликации, анализа рабочей

нагрузки, аудита и восстановления на конкретный момент времени с помощью пол­

ной резервной копии. Учитывайте все это, когда будете решать, как долго хранить

журналы.

Обычно используют конфигурационную переменную expire_logs_days, которая со­
общает MySQL, по истечении какого времени следует удалять журналы. До выхода
версии MySQL 4.1 этой переменной не существовало, поэтому журналы приходи­
лось удалять вручную. Еще с тех времен осталась рекомендация уничтожать старые

двоичные журналы такой командой в списке заданий cron:

0 0 * * * /usr/Ьin/find /var/log/mysql -mtime +N -name "mysql-Ыn.[0-9]*" 1 xargs rm

Хотя до версии MySQL 4.1 это был единственный способ удалить двоичные журна­
лы, в более поздних версиях так делать ни в коем случае не следует! Если стереть
журналы командой rm, то индексный файл mysql-bin. index рассинхронизируется
с файлами на диске и некоторые команды, например SHOW МASTER LOGS, начнут рабо­

тать неправильно, но что самое опасное - пользователь не получит никаких сообще­

ний об ошибках. Ручная корректировка файла mysql-Ыn. index не поможет. Поэтому
вставляйте в таблицу cron такую команду:

0 0 * * * /usr/Ьin/mysql -е "PURGE МASTER LOGS BEFORE CURRENT_DAТE - INТERVAL N DAY"

Значение параметра expire_logs_days считывается на этапе запуска сервера или
в момент, когда MySQL сменяет двоичный журнал, поэтому, если он никогда не за­
полняется до конца и не сменяется, сервер не будет удалять старые записи. Решение

о том, какие файлы уничтожить, сервер принимает, исходя из даты модификации

файла, а не из его содержимого.

Резервное копирование данных

Как обычно, существуют хорошие и плохие способы резервного копирования, при­

чем самые очевидные из них не обязательно лучшие. Хитрость состоит в том, чтобы

по максимуму задействовать мощность сети, диска и процессора и постараться за­

кончить копирование как можно быстрее. Для того чтобы найти золотую середину,
придется поэкспериментировать.

Снятие логической резервной копии

Нужно четко понимать, что существует две разновидности логических копий: SQL­
дампы и файлы с разделителями.

SQL-дампы

SQL-дамп лучше знаком пользователям, так как это именно то, что по умолчанию

создает утилита mysqldump. Например, при выгрузке дампа небольшой таблицы
с параметрами по умолчанию получится такой результат (мы кое-что опустили):

Резервное копирование данных 725

$ mysqldump test tl
-- [Комментарий: номер версии и информация о сервере]
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

[Дополнительные комментарии, зависящие от версии,

с параметрами, необходимыми Д/lЯ восстановления]

Структура таблицы · tl ·
DROP TABLE IF EXISTS 'tl';

CREATE TABLE 'tl' (
·а· iпt(ll) NOT NULL,
PRIMARY КЕУ ('а')
) ENGINE=MyISAM DEFAULT CHARSET=latiпl;

-- дамп данных таблицы 'tl'
-- LOCK TABLES 'tl' WRITE;
/*140000 ALTER TABLE 'tl' DISABLE KEYS */;
INSERT INTO 'tl' VALUES (1);
/*140000 ALTER TABLE 'tl' ENABLE KEYS */;
UNLOCK TABLES;
/*140103 SET TIME_ZONE=@OLD_TIME_ZONE */;
/*140101 SET SQL_МODE=@OLD_SQL_МODE */;
-- [Другие параметры восстановления]

Файл дампа содержит как описание таблицы, так и данные, причем и то и другое
представлено в виде корректных SQL-команд. Файл начинается с комментариев,
в которых устанавливаются значения различных параметров MySQL. Они вклю­
чены для того, чтобы помочь вам при восстановлении, а также ради совместимости
и корректности. Затем идут описание таблицы и данные. В самом конце сценарий
воссоздает параметры, которые были изменены в начале дампа.

Созданный дамп может быть выполнен для восстановления данных. Это удобно,
но подразумеваемые по умолчанию параметры mysqldump не годятся для снятия
очень больших резервных копий (в дальнейшем рассмотрим параметры mysqldump
подробнее).

Утилита mysqldump - не единственный инструмент, позволяющий создать логическую
резервную копию. Это можно сделать, к примеру, с помощью phpMy Admin 1• Но мы
хотим отметить не столько проблемы, свойственные тому или иному инструменту,
сколько недостатки монолитной логической копии как таковой. Перечислим их.

D Схема и данные хранятся вместе. Хотя это удобно, когда нужно восстановить
все из одного файла, но усложняет задачу, если требуется восстановить только
одну таблицу или только данные. Эту трудность можно устранить, выгрузив дамп
дважды: один раз для данных, другой - для схемы, но от следующих проблем все
равно никуда не деться.

D Огромные SQL-команды. Разбор и выполнение всех SQL-команд в дампе требует
от сервера значительных усилий. Поэтому загрузка данных происходит довольно

медленно.

D Один гигантский файл. Большинство текстовых редакторов не умеют обрабаты­
вать большие файлы или файлы с очень длинными строками. Хотя в некоторых

Пожалуйста, не используйте утилиты шk-parallel-duшp и шk-parallel-restore из пакета Maat­
kit. Они небезопасны.

726 Глава 15 • Резервное копирование и восстановление

случаях для извлечения нужных данных можно воспользоваться потоковыми

редакторами, например sed или grep, лучше, чтобы файлы были поменьше.

О Создание лотческой копии - весъ.ма затратная процедура. Существуют более эф­
фективные способы извлечь из М ySQL данные, помимо передачи их по протоколу
взаимодействия между клиентом и сервером в виде результирующих наборов.

Все эти ограничения означают, что по мере роста таблиц SQL-дамп становится не­
пригодным для работы. Однако существует и другая возможность: экспортировать
информацию в файлы с разделителями.

Резервные копии в виде файлов с разделителями

Для создания логической копии данных в формате файла с разделителями можно

воспользоваться командой SELECT INTO OUТFILE SQL. (Эту же команду выполнит
утилита mysqldump, запущенная с флагом - -tab.) Файлы с разделителями содержат
значения, представленные в кодировке ASCII, без SQL-команд, комментариев и имен
столбцов. Следующая команда выводит результат в формате с разделителями-за­
пятыми (CSV), общепринятом для представления табличных данных.

mysql> SELECT * INТO OUTFILE '/tmp/tl.txt'
-> FIELDS ТERМINAТED BV ',' OPТIONALLV ENCLOSED BV '"'
-> LINES TERMINATED BV '\n'
-> FROМ test.tl;

Результирующий файл компактнее, и им проще манипулировать с помощью ути­

лит командной строки, чем SQL-дампа. Но главное достоинство кроется не в этом,

а в скорости резервного копирования и последующего возврата данных. Для загрузки

информации назад в таблицу предназначена команда LOAD DATA INFILE, которой
следует указать те же параметры, что и при выгрузке:

mysql> LOAD DATA INFILE '/tmp/tl.txt'
-> INТO ТАВLЕ test.tl
-> FIELDS TERMINATED BV ',' OPTIONALLV ENCLOSED BV
-> LINES TERMINATED BV '\n';

Далее для демонстрации различий в скорости создания SQL-дампа и файла с раз­

делителями приведены результаты неофициального теста. Мы воспользовались

слегка адаптированными данными из промышленной базы. Выгружаемая таблица

имеет следующую структуру:

CREATE TABLE load_test (
coll date NOT NULL,
со12 int NOT NULL,
соlЗ smallint unsigned NOT NULL,
со14 mediumint NOT NULL,
со15 mediumint NOT NULL,
соlб mediumint NOT NULL,
со17 decimal(З,1) default NULL,
со18 varchar(10) NOT NULL default
со19 int NOT NULL,
PRIМARV KEV (coll, со12)

ENGINE=InnoDB;

Резервное копирование данных 727

Она содержкr 15 миллионов строк и занимает примерно 700 Мбайт на диске. В табл. 15.1
приведены результаты сравнения двух методов резервного копирования и восстанов­

ления. Как видите, разница в скорости восстановления весьма значительна.

Табпица 15.1. Время резервного копирования и восстановления для SQL-дaмna и файла
с разделителями

Метод Размер файла, Время Время

Мбайт выгрузки, с восстановnения,с

SQL-дамп 727 102 600

Файл с разделителями 669 86 301

Однако у метода SELECТ INTO OUTFILE есть ограничения.

О Копировать данные можно только в файл, находящийся на том же компьютере,

где работает MySQL. (Но можно написать собственный вариант команды SELECТ
INTO OUTFILE в виде программы, которая читает результат SELECT и записывает
его на диск. Мы знаем людей, которые так и делали.)

о У MySQL должно быть разрешение на запись в каталог, где создается файл, по­
скольку именно сервер MySQL, а не пользователь, запустивший команду, пишет
в этот файл.

о Из соображений безопасности MySQL отказывается перезаписывать существу­
ющий файл вне зависимости от имеющихся разрешений.

о Невозможно записывать дамп в сжатый файл.

о С экспортом и импортом некоторых элементов, например нестандартных наборов
символов, могут быть проблемы.

Снимки файловой системы

Снимок файловой системы - прекрасный способ сделать оперативную резервную
копию. Файловые системы, поддерживающие снимки, способны мгновенно создать
согласованный образ содержимого, который затем можно использовать в качестве
резервной копии. К числу таких файловых систем и устройств относятся FreeBSD,
ZFS, GNU/Linux Logical Volume Manager (LVM), а также многие SАN-системы
и файловые хранилища, например NetApp.

Не путайте снимок с резервной копией. Снимок лишь позволяет уменьшить вре­

мя удержания блокировок, после того как блокировки сняты, файлы необходимо
поместить в резервную копию. На самом деле можно даже делать снимки таблиц
InnoDB без захвата блокировок. Мы покажем два способа использования LVM для
резервного копирования базы, состоящей только из таблиц InnoDB: с минимальной
блокировкой и вообще без блокировки.

Снимки могут быть отличным способом сделать резервную копию для определен­
ных целей. Например, в случае возникновения проблемы во время обновления.

728 Глава 15 • Резервное копирование и восстановление

Вы можете сделать снимок, обновиться, а в случае возникновения проблемы просто
откатиться назад к снимку. То же самое можно выполнить для любой операции, ко­
торая является неопределенной и рискованной, например для изменения огромной

таблицы, которое занимает неопределенное время.

Как работают снимки LVM
В LYM для создания снимка применяется технология копирования при записи, а это
означает, что логическая копия всего тома снимается мгновенно. Чем-то это напо­

минает технологию МУСС в базах данных, отличие заключается в том, что хранится

лишь одна версия устаревшей информации.

Обратите внимание: мы не говорим о физической копии. Может показаться , что
логическая копия содержит данные, которые были в томе в момент снимка, но на
самом деле изначально в ней нет вообще никаких данных. Вместо того чтобы копи­
ровать информацию в снимок, L УМ лишь запоминает момент времени, в который
он был создан. Позже, когда вы будете запрашивать данные из снимка, LYM начнет
читать информацию из ее исходного местоположения. Поэтому-то операция перво­

начального копирования производится мгновенно независимо от размера тома, для

которого создается снимок.

Когда что-то меняется в данных в исходном томе, LYM копирует прежнее содержи­
мое блоков в область, зарезервированную для снимка, и лишь затем вносит моди­
фикации. L УМ не хранит несколько старых версий данных, поэтому последующая
запись в уже измененные блоки не требует никакой дополнительной работы. Иными
словами, только при первой записи блок копируется в зарезервированную область.

Когда кто-то запрашивает эти блоки из снимка, LYM читает данные из копий в за­
резервированной области, а не с рабочего тома. Это позволяет неизменно видеть
в снимке одну и ту же информацию, хотя блокировки тома ни в какой момент не про­

изводилось. Эта схема изображена на рис. 15.1 .

Исходный
том

А

в

с

D

Зарезервированная Приложение изменяет Зарезервированная
область исходный том область

Одна и та же
логическая копия

исходного тома

А

в

с

D

Снимок

Рис. 15.1. Технология копирования при записи сокращает место,
необходимое для хранения снимка тома

Резервное копирование данных 729

Снимку соответствует новое логическое устройство в каталоге /dev, которое можно
смонтировать, как и любое другое.

Теоретически можно сделать снимок огромного тома, затратив на это очень немного

физического пространства. Однако необходимо заранее оценить, сколько блоков мо­
жет обновиться, пока снимок открыт, и отвести для них достаточно места. Если для
копирования при записи не хватит дискового пространства, то снимок переполнится

и устройство станет недоступно. Выглядит это как отсоединение внешнего диска:
любая операция чтения с устройства, в том числе резервное копирование, заверша­
ется с ошибкой ввода/вывода.

Необходимые условия и конфигурация

Создание снимка - почти тривиальная задача, но нужно сконфигурировать систему
так, чтобы получать согласованный дубликат всех файлов, которые планируется
включить в резервную копию, в один и тот же момент времени. Прежде всего убеди­
тесь, что система удовлетворяет следующим условиям.

О Все файлы InnoDB (файлы табличного пространства и журналы транзакций
InnoDB) должны находиться в одном физическом томе (разделе). Необходима
абсолютная согласованность во времени, а LVM не умеет одномоментно делать
согласованные снимки нескольких томов. (Это ограничение LVM, в некоторых
других системах таких проблем нет.)

о Если необходимо включить в резервную копию также определения таблиц, то
в том же томе должен находиться каталог данных MySQL. Если для резервного
копирования определений таблиц применяется какой-то другой метод, например
хранение схемы в системе управления версиями, то об этом можно не беспоко­
иться.

О В группе томов должно быть достаточно свободного места для создания снимка,
сколько именно - зависит от рабочей нагрузки. Поэтому при конфигурировании
системы оставьте нераспределенное пространство для последующих снимков.

В L УМ существует понятие группы томов, в которую входит один или несколько
логических томов. Посмотреть, какие имеются группы томов, можно следующим

образом:

vgs
VG #PV #LV #SN Attr VSize VFree
vg 1 4 0 wz--n- 534.lBG 249.lBG

Здесь мы видим, что существует одна группа, состоящая из четырех логических

томов, которые находятся в одном физическом томе, в котором свободно примерно
250 Гбайт. При необходимости можно получить более подробную информацию с по­
мощью утилиты vgdisplay. Теперь посмотрим на сами логические тома:
lvs

LV VG Attr LSize Origin Snap% Move Log Сору%
home vg -wi-ao 40.00G
mysql vg -wi-ao 225.00G
tmp vg -wi-ao 10.00G
var vg -wi-ao 10.00G

730 Глава 15 • Резервное копирование и восстановление

Мы видим, что размер тома mysql составляет 225 Гбайт. Данное устройство назы­
вается /dev/vg/mysql. Это всего лишь имя, хотя выглядит оно как путь в файловой

системе. Еще сильнее запутывает ситуацию то, что существует символическая

ссылка с этого имени на узел реального устройства /dev/mapper/vg-mysql, которую

показывают команды ls и mount:

ls -1 /dev/vg/mysql
lrwxrwxrwx 1 root root 20 Sep 19 13:08 /dev/vg/mysql -> /dev/mapper/vg-mysql
mount 1 grep mysql

/dev/mapper/vg-mysql оп /var/liЬ/mysql

Вооружившись этой информацией, вы можете приступить к созданию снимка фай­

ловой системы.

Создание, монтирование и удаление снимка LVM

Создать снимок можно одной командой. Нужно лишь решить, куда его поместить

и сколько места отвести под копирование при записи. Не бойтесь указать больше

места, чем может реально потребоваться. L УМ не займет этот объем немедленно,
а просто зарезервирует для использования в будущем, поэтому резервирование очень

большого пространства не принесет никакого вреда, если только вам одновременно

не нужно оставлять место для других снимков.

Давайте попрактикуемся в создании снимка. Отведем для копирования при записи

16 Гбайт и назовем снимок backup_mysql:

lvcreate --size lбG --snapshot --name backup_mysql /dev/vg/mysql
Logical volume "backup_mysql" created

Мы сознательно назвали том backup_mysql, а не mysql_backup, чтобы не воз­
никало неоднозначности при автоматическом завершении команды после

нажатия клавиши ТаЬ. Это позволяет подстраховаться от случайного удаления

тома mysql при автодополнении имени файла нажатием кнопки ТаЬ.

Теперь посмотрим на состояние только что созданных томов:

lvs
LV VG
backup_mysql vg
home vg
mysql vg
tmp vg
var vg

Attr LSize Origin Snap% Move Log Сору%
swi-a- 16.00G mysql 0.01
-wi-ao 40.00G
owi-ao 22S.00G
-wi-ao 10.00G
-wi-ao 10.00G

Обратите внимание на то, что атрибуты снимка и исходного устройства различаются

и что показана кое-какая дополнительная информация: источник снимка и сведения

о том, какая часть из отведенных 16 Гбайт в данный момент уже израсходована на
копирование при записи. Мы настоятельно рекомендуем следить за состоянием во

Резервное копирование данных 731

время снятия резервной копии, чтобы не пропустить момент, когда снимок близок

к заполнению и грозит отказом. Вести мониторинг состояния устройств можно ин­

терактивно или с помощью таких систем, как Nagios.

watch 'lvs 1 grep backup'

Как видно из представленной ранее выдачи команды mount, том mysql содержит
файловую систему. Следовательно, она же будет и в томе снимка и ее можно мон­

тировать и использовать, как и любую другую файловую систему:

mkdir /tmp/backup
mount /dev/mapper/vg-backup_mysql /tmp/backup
ls -1 /tmp/backup/mysql
total 5336
-rw-r----- 1 mysql mysql
-rw-r----- 1 mysql mysql
-rw-r----- 1 mysql mysql
-rw-r----- 1 mysql mysql
-rw-r----- 1 mysql mysql
-rw-r----- 1 mysql mysql
.•• опущено •••

0 Nov 17 2006 columns_priv.MYD
1024 Mar 24 2007 columns_priv.MYI
8820 Mar 24 2007 columns_priv.frm

10512 Jul 12 10:26 db.МYD
4096 Jul 12 10:29 db.MYI
9494 Mar 24 2007 db.frm

Поскольку мы лишь практикуемся, размонтируем и удалим снимок командой

lvremove:

umount /tmp/backup
rmdir /tmp/backup
lvremove --force /dev/vg/backup_mysql

Logical volume "backup_mysql" successfully removed

Применение снимков LVM для оперативного
резервного копирования

Мы нау'шлись создавать, монтировать и удалять снимки, теперь воспользуемся ими

для снятия резервных копий. Сначала посмотрим, как сделать резервную копию

базы данных с таблицами InnoDB, не останавливая сервер MySQL. Подключитесь
к серверу и сбросьте таблицы на диск, установив глобальную блокировку чтения,

а затем получите координаты в двоичном журнале:

mysql> FLUSH TAВLES WITH READ LOCK; sнow МASTER STATUS;

Запишите результаты, выданные командой SHOW МАSТЕR STATUS, и оставьте соедине­

ние с MySQL открытым, чтобы не освобождать блокировку. Теперь можно сделать
снимок LVM и сразу же снять блокировку чтения, выполнив команду UNLOCK TABLES

либо закрыв соединение. И наконец, смонтируйте снимок и поместите файлы в ре­

зервную копию.

Основная проблема при таком подходе заключается в том, что на получение блокиров­

ки чтения может уйти довольно много времени, особенно если выполняется длинный

запрос. Пока соединение ожидает глобальной блокировки чтения, все запросы также

блокируются и невозможно заранее сказать, как долго это будет продолжаться.

732 Глава 15 • Резервное копирование и воссrановление

Снимки файловой системы и InnoDB

Фоновые потоки IппоDВ продолжают работать даже после блокировки всех таблиц,

поэтому они могут вести запись в файлы, когда делается снимок. Кроме того, поскольку

подсистема IппоDВ не выполняла корректную последовательность останова, файлы

в снимке будут выглядеть так, будто сервер был неожиданно отсоединен от сети.

Это не проблема, поскольку IппоDВ - система ACID. В любой момент, в том числе
в момент снятия снимка, любая закоммиченная транзакция находится либо в файлах

данных InnoDB, либо в файлах журналов. После того как MySQL будет запущена
на восстановленном снимке, IпnoDB инициирует свою процедуру восстановления

точно так же, как в случае отключения питания сервера. Она найдет в журнале все за­

фиксированные транзакции, которые еще не попали в файлы данных, и применит их,

поэтому потери транзакций не произойдет. Вот почему так важно включать файлы

данных и журналов IппоDВ в один снимок.

По той же причине следует тестировать резервные копии сразу после снятия. Запустите

экземпляр MySQL, сообщите ему, где находится новая копия, позвольте InпoDB
завершить восстановление и проверьте все таблицы. Тогда вы будете уверены, что

в резервную копию незаметно для вас не просочились поврежденные данные (файлы

могут оказаться испорченными по самым разным причинам). У такого подхода есть

и еще один плюс: в будущем воссоздание информации с этой копии пройдет быстрее,

так как вы уже запустили процесс восстановления.

Описанные действия можно проделать над снимком еще до того, как он будет поме­

щен в резервную копию, хотя это добавляет затрат. Но обязательно запланируйте его,

подробнее об этом - позже.

Применение снимков LVM для резервного копирования InnoDB
без блокировок

Техника резервного копирования без блокировок отличается от описанной незна­
чительно. Различие в том, что не выполняется команда FLUSH TABLES WПН READ LOCK.

Это означает, что для файлов MyISAM на диске нет никаких гарантий согласован­
ности, но если все таблицы имеют тип InnoDB, это не имеет существенного значения.
В системной базе данных mysql все равно есть кое-какие таблицы типа MyISAM, но
в условиях типичной рабочей нагрузки маловероятно, что они будут изменяться

в момент снятия снимка.

Если вы полагаете, что системные таблицы в базе mysql все же могут изменяться, то
заблокируйте их и сбросьте на диск. К таким таблицам не предъявляются длительные
запросы, поэтому обычно все происходит очень быстро:

mysql> LOCK TABLES mysql.user READ, mysql.db READ,
mysql> FLUSH TABLES mysql.user, mysql.db, ••• ;

... ,

Резервное копирование данных 733

Поскольку глобальная блокировка на чтение не ставилась, то ничего полезного от

команды SHOW МASTER STATUS не получить. Однако при запуске MySQL на снимке для
проверки целостности копии вы увидите в журнале примерно такие сообщения:

InnoDB: Doing recovery: scanned up to log sequence number 0 40817239
InnoDB: Starting an apply batch of log records to the database ...
InnoDB: Progress in percents: З 4 5 6 •.. [omitted] ..• 97 98 99
InnoDB: Apply batch completed
InnoDB: Last МySQL Ыnlog file position 0 3304937, file name /var/log/mysql/
mysql-bin.000001 070928 14:08:42
InnoDB: Started; log sequence number 0 40817239

InnoDB журналирует в двоичном журнале позицию, соответствующую точке, до
которой он был восстановлен. Именно эту позицию можно использовать при вос­

становлении на конкретный момент времени.

У описанного подхода к резервному копированию без блокировки с помощью сним­
ков в версии MySQL 5.0 и более поздних есть один недостаток. В этих версиях для
координации между InnoDB и двоичным журналом применяется технология ХА
(распределенные транзакции). Если восстановить копию на сервер с идентифика­

тором server _id, отличным от того, на котором снималась копия, то сервер может
обнаружить транзакции, подготовленные сервером с идентификатором, не совпада­

ющим с его собственным. В таком случае сервер рискует запутаться, и после восста­

новления транзакция может зависнуть в состоянии PREPARED. Хоть и редко, но такое

случается. Поэтому обязательно проверяйте копию - не считайте, что с ней априори

все нормально. Может оказаться, что восстановиться с нее не удастся!

Если снимок выполнялся на подчиненном сервере, то процедура восстановления

InnoDB напечатает также такие строки:

InnoDB: In а MySQL replica the last master binlog file
InnoDB: position 0 115, file name mysql-bin.001717

Эти строчки содержат координаты в двоичном журнале главного (а не подчиненного)

сервера той точки, до которой прошло восстановление. Это может оказаться очень

полезным при создании резервных копий на подчиненных серверах или для клони­

рования одних подчиненных серверов из других.

Планирование резервного копирования с помощью LVM

Резервное копирование с помощью снимков L УМ не дармовое удовольствие. Чем боль­
ше сервер записывает в исходный том, тем больше издержки. Когда сервер модифи­

цирует много блоков, расположенных в случайном порядке, головка диска должна

постоянно перемещаться в зарезервированную для копирования область, чтобы
записать туда старую версию данных. Чтение из снимка также сопряжено с из­

держками, так как большую часть информации L УМ читает из исходного тома, а из
зарезервированной области - только по необходимости. Таким образом, логически

последовательное чтение из снимка на самом деле приводит к хаотичному переме­

щению головки.

734 Глава 15 • Резервное копирование и воссrановление

Это необходимо учитывать при планировании. По существу, получается, что как
при чтении, так и при записи исходный том и снимок функционируют хуже, чем

обычно, а если в зарезервированной области оказалось много блоков, то, вероятно,
даже гораздо хуже. В результате может замедлиться как работа сервера MySQL, так
и процесс копирования файлов в резервную копию. Мы провели эталонное тести­

рование и выяснили, что затраты на снимок L VM намного больше, чем следовало
бы, - мы обнаружили, что производительность может оказаться в пять раз ниже
в зависимости от рабочей нагрузки и файловой системы. Помните об этом, планируя
резервное копирование.

Кроме того, важно выделить достаточно места для снимка. Мы рекомендуем следу­

ющую тактику.

о Помните, что LVM должен скопировать каждый измененный блок в снимок толь­
ко один раз. Когда MySQL записывает блок в исходный том, LVM копирует блок
в снимок, а затем вносит пометку о скопированном блоке в таблицу исключений.
При последующих изменениях того же блока он уже не копируется.

о Если в базе имеются только таблицы типа InnoDB, то примите во внимание, как
InnoDB сохраняет информацию. Поскольку любой элемент данных записывает­
ся дважды, то по меньшей мере половина всех операций ввода/вывода попадает

в буфер двойной записи, файлы журналов и сравнительно компактные области
на диске. Тем самым одни и те же блоки перезаписываются снова и снова, так что
при первой модификации они оказывают влияние на снимок, но потом сохранение

туда прекращается.

о Затем оцените, какая часть операций ввода/вывода сопряжена с записью в блоки,
которые еще не копировались в снимок, по сравнению с повторной модификацией

уже измененных данных. Не бойтесь завысить оценку.

О С помощью vmstat или iostat соберите статистику о количестве блоков, записы­
ваемых в секунду.

о Измерьте (или оцените), сколько времени требуется для копирования резервной
копии в другое место, иными словами, как долго нужно будет держать снимок
L VM открытым.

Предположим, вы прикинули, что половина операций записи пойдет в область, за­
резервированную для копирования при записи, и что сервер сохраняет 1 О Мбайт в се­
кунду. Если для копирования снимка на другой сервер требуется 1 час (3600 секунд),
то для снимка понадобится 1/2 х 10 Мбайт х 3600 = 18 Гбайт. На всякий случай
оставьте побольше.

Иногда бывает легко вычислить, сколько данных изменится, пока снимок открыт.

Вернемся к примеру, который встречался уже неоднократно. Система поиска по фо­

румам BoardReader хранит на каждом узле примерно 1 Тбайт данных в виде таблиц
InnoDB. Однако мы знаем, что наибольшие затраты обусловлены загрузкой новых
данных. Каждый день добавляется примерно 1 О Гбайт информации, поэтому для
снимка вполне хватит 50 Гбайт. Впрочем, эта оценка не всегда корректна. Как-то раз
мы запустили длительную команду AL TER TABLE, которая последовательно изменяла

Восстановление из резервной копии 735

каждый шард, и в сумме было модифицировано гораздо больше чем 50 Гбайт - пока
эта команда работала, мы не могли снять резервную копию. Чтобы избежать таких
проблем, стоит после создания моментального снимка некоторое время подождать,
поскольку пик дополнительной загрузки наблюдается сразу после его создания.

Миф о резервном копировании No 2: •Мой снимок - 3ТО моя резервная копия•

Снимок, будь то снимок L VM, моментальный снимок ZFS или моментальный снимок
SAN, не является реальной резервной копией, поскольку не содержит полной копии
ваших данных. Поскольку копии являются копиями при записи, они содержат толь­

ко различия между фактической копией данных и данными в тот момент, когда был

сделан снимок. Если немодифицированный блок оказывается поврежденным в фак­

тической копии данных, то хорошая копия этого блока, которую можно было бы ис­

пользовать для восстановления, отсутствует и каждый снимок видит тот же повреж­

денный блок, что и существующий том. Используйте снимки, чтобы ~зафиксировать~>

свои данные во время резервного копирования, но не полагайтесь на сам снимок как

на резервную копию.

Другие варианты применения и альтернативы

Снимки можно использовать не только для резервного копирования. Например, они

полезны для записи контрольной точки непосредственно перед выполнением опас­

ной операции. Некоторые файловые системы позволяют вернуть данные из снимка

на основную файловую систему. Это позволяет без труда откатиться к состоянию
перед созданием снимка.

Снимки файловой системы не единственный способ получить мгновенную копию
данных. Еще один вариант - это расщепление RАID-массива: если имеется зерка­

лированный программно реализованный RАID-массив из трех дисков, то можно

исключить один диск из зеркала и смонтировать его отдельно. Тогда никаких за­

трат на копирование при записи не будет, а в случае необходимости очень легко
сделать такой снимок главной копией. Однако после добавления этого диска обратно
в RАID-массив его придется повторно синхронизировать. К сожалению, бесплатного
сыра не бывает.

Восстановление из резервной копии

Порядок восстановления зависит от того, как снималась резервная копия. Вам может

понадобиться выполнить все или некоторые из перечисленных далее шагов.

О Остановить сервер MySQL.

О Записать куда-нибудь конфигурацию сервера и права доступа к файлам.

О Скопировать данные с резервной копии в каталог данных MySQC.

736 Глава 15 • Резервное копирование и восстановление

1:1 Внести изменения в конфигурационные файлы.

1:1 Изменить права доступа к файлам.

1:1 Запустить сервер в режиме ограниченного доступа и подождать, пока он перейдет

в состояние готовности.

1:1 Загрузить логические файлы резервной копии.

1:1 Проверить и воспроизвести двоичные журналы.

1:1 Убедиться, что все восстановлено.

1:1 Перезапустить сервер в режиме полного доступа.

В следующих разделах мы покажем, как выполняется каждый из этих шагов. А позже

сделаем некоторые замечания о конкретных методах резервного копирования и со­

ответствующих инструментах.

Если можно предположить, что текущие версии файлов еще понадобятся,

не замещайте их файлами из резервной копии. Например, если копия
не содержит двоичных журналов, а они необходимы для восстановления

на конкретный момент времени, то не затирайте существующие журналы
устаревшими версиями из копии. При необходимости переименуйте их или
скопируйте в другое место.

Во время восстановления часто бывает важно, чтобы к MySQL не мог обращаться
никто, кроме процесса восстановления. Чтобы гарантировать, что сервер будет недо­

ступен для приложений, пока мы все не проверим, запускаем его с флагами --skip­
networking и - -socket=/tmp/mysql_recover. sock. Это особенно важно для логических
копий, которые загружаются по частям.

Восстановление из физических файлов

Процедура возврата данных из физических файлов довольно прямолинейна, иначе

говоря, вариантов здесь немного. Хорошо это или плохо, зависит от требований

к восстановлению. Обычно все сводится к простому копированию файлов туда, где
им надлежит находиться.

Нужно ли останавливать MySQL, определяет подсистема хранения. Файловые
объекты MyISAM обычно не зависят друг от друга, поэтому простого копирования
файлов с расширениями . frm, • MYI и . МУD для каждой таблицы достаточно, даже на
работающем сервере. Сервер найдет таблицу, как только к ней поступит запрос или

будет выполнена иная команда, для которой необходима данная таблица (например,

SHOW TABLES). Если во время копирования этих файлов таблица была открыта, то

вполне возможны неприятности, поэтому предварительно удалите или переименуйте

ее либо заблокируйте командами LOCK TABLES и FLUSH TABLES.

Восстановление из резервной копии 737

С InnoDB дело обстоит иначе. Если восстанавливается традиционно сконфигури­
рованная база InnoDB, когда все таблицы хранятся в одном табличном простран­
стве, то нужно будет остановить MySQL, скопировать или переместить файлы
на место, а затем перезапустить сервер. Кроме того, следует убедиться, что файл
журнала транзакций соответствует файлам, содержащим табличное пространство.
Если эти файлы не соответствуют друг другу, например, табличное пространство

вы заменили, а о журнале транзакций забыли, то InnoDB откажется запускаться.
Поэтому так важно включать в резервную копию не только файлы данных, но

и журнал транзакций.

Если используется возможность размещать по одной таблице в каждом файле (ре­
жим innodb_file_per _tаЫе), то InnoDB хранит данные и индексы для каждой та­
блицы в файле с расширением . ibd, представляющем собой нечто вроде комбинации
.МУI- и .МУD-файлов в подсистеме MyISAM. Резервное копирование и восстановле­
ние отдельных таблиц в этом случае может выполняться простым копированием этих

файлов, и делать это можно на работающем сервере, но не так просто, как в случае

MyISAM. Отдельные файлы не являются независимыми от InnoDB в целом. В каж­
дом .iЬd-файле записана информация, сообщающая InnoDB о том, как этот файл
связан с основным (общим) табличным пространством. При возврате такого файла

необходимо попросить InnoDB импортировать его.

У этой процедуры много ограничений, о которых можно прочитать в разделе руко­

водства по MySQL, посвященном табличным пространствам с раздельным хранением
таблиц. Самое серьезное заключается в том, что восстановить таблицу можно только

на тот сервер, с которого она была скопирована. Не то чтобы резервное копирование

и восстановление таблиц в этой конфигурации было вообще невозможно, но это не­

сколько сложнее, чем может показаться.

0 ...
•

• •:

В Регоопа Server и Percona XtraВackup сделаны усовершенствования, которые
снимают некоторые ограничения этого процесса, такие как восстановление

на том же сервере.

Наличие таких сложностей означает, что восстановление физических файлов

способно оказаться очень трудоемким процессом, в ходе которого можно наделать

ошибок. Эмпирическое правило состоит в том, что чем сложнее и труднее ста­

новится процедура восстановления, тем важнее оградить себя от неприятностей,

создавая также логические копии. Всегда полезно иметь такую копию на случай,

если что-то пойдет не так и вы не сможете заставить MySQL использовать физи­
ческую копию.

Запуск MySQL после восстановления физических файлов. Перед тем как запускать
восстановленный сервер MySQL, нужно сделать несколько шагов.

738 Глава 15 • Резервное копирование и восстановление

Первое и самое важное, о чем легче всего забыть, - проверить конфиrурацию сервера

и убедиться в том, что для восстановленных файлов заданы правильный владелец

и права доступа. Это нужно делать до попытки запустить сервер. Если эти атрибуты

хоть чем-то отличаются от необходимых, MySQL может не запуститься. В различных
системах они задаются по-разному, поэтому посмотрите в своих записях, как они

должны быть установлены. Обычно для файлов и каталогов указываются владелец

и группа mysql, причем владельцу и группе должны быть разрешены чтение и запись,
а всем остальным запрещен всякий доступ.

Советуем также следить за журналом ошибок MySQL в ходе запуска. В UNIХ­
подобных системах для этого можно выполнить такую команду:

$ tail -f /var/log/mysql/mysql.err

Точное местоположение журнала ошибок зависит от системы. Начав мониторинг
этого файла, запускайте сервер MySQL и наблюдайте за тем, что будет появляться
в журнале. Если ошибок не возникнет, значит, сервер восстановился нормально

и может работать.

Наблюдение за журналом ошибок особенно важно в последних версиях MySQL.
В прежних реализациях сервер просто не запускался, если InnoDB обнаруживала
ошибку, но теперь он запускается, однако InnoDB отключается. Даже если кажется,
что сервер стартовал без проблем, следует в каждой базе данных выполнить команду

SHOW TABLE STATUS и снова проверить журнал ошибок.

Восстановление из логической копии

Если восстановление производится из логической резервной копии, а не из физи­

ческих файлов, то для загрузки данных в таблицы понадобится сам сервер MySQL.
Копирования файлов на уровне операционной системы недостаточно.

Прежде чем загружать файл дампа, посмотрите на его размер и подумайте, сколько

времени он будет обрабатываться и не надо ли что-то сделать перед началом про­

цедуры, например уведомить пользователей или деактивировать часть приложе­

ния. Полезно на этот период отключить запись в двоичный журнал, если только

вы не хотите реплицировать восстанавливаемые данные на подчиненный сервер:

загружать огромный дамп серверу и так-то нелегко, а запись в двоичный журнал

только увеличивает затраты (возможно, без всякой необходимости). Кроме того,

в некоторых подсистемах хранения загрузка очень больших файлов требует особых
предосторожностей. Например, не стоит загружать файл размером 100 Гбайт в та­
блицу InnoDB одной транзакцией, поскольку в результате образуется огромный
сегмент отката. Необходимо разбить файл на порции и коммитить транзакцию после

загрузки каждой из них.

Существует две разновидности восстановления в соответствии с двумя видами ло­

гических копий.

Восстановление из резервной копии 739

Загрузка SQL-файлов

SQL-дамп содержит исполняемые команды SQL. Вам остается только запустить его.
Предположим, что демонстрационная база данных Sakila выгружена в один файл вместе
со схемой. Тогда для восстановления данных обычно используется такая команда:

$ mysql < sakila-backup.sql

Можно также загрузить файл из клиента mysql командой SOURCE. Хотя это в общем-то

лишь другой способ сделать то же самое, выполнить некоторые вещи при этом оказы­

вается проще. Например, если вы обладаете административными правами в MySQL,
то можете отключить запись в двоичный журнал команд, выполняемых в текущем

соединении, а затем загрузить файл без перезапуска сервера:

mysql> SET SQL_LOG_BIN = 0;
mysql> SOURCE sakila-backup.sql;
mysql> SET SQL_LOG_BIN = 1;

Но при использовании команды SOURCE имейте в виду, что ошибка не прерывает

выполнения пакета команд, как это происходит по умолчанию в случае чтения из

стандартного ввода mysql.

Если резервная копия была сжата, то не нужно перед загрузкой отдельно распако­

вывать ее. Разархивирование и загрузку можно объединить в одной операции, что

будет гораздо быстрее:

$ gunzip -с sakila-backup.sql.gz 1 mysql

О том, как загрузить сжатый файл командой SOURCE, будет рассказано при обсужде­

нии именованных каналов в следующем разделе.

А вдруг нам понадобится вернуть данные только для одной таблицы (например,

actor)? Если данные не содержат символов перехода на новую строку и схема табли­
цы уже присутствует, то восстановить такую таблицу нетрудно:

$ grep 'INSERT INTO ·actor·' sakila-backup.sql 1 mysql sakila

Или для сжатого файла:

$ gunzip -с sakila-backup.sql.gz 1 grep 'INSERT INTO ·actor· '1 mysql sakila

Если нужно не только восстановить информацию, но и создать таблицу, а вся база

данных находится в одном файле, то этот файл придется отредактировать. Именно

поэтому многие предпочитают выгружать каждую таблицу в отдельный файл. Боль­

шинство редакторов не умеют работать с очень большими файлами, особенно сжаты­

ми. Но вам, собственно, и не требуется редактировать файл, достаточно лишь извлечь

из него нужные строки, поэтому подойдут утилиты командной строки. Довольно

просто воспользоваться инструментом grep для выборки только команд INSERT, от­

носящихся к данной таблице (как показано ранее), но извлечь команду CREATE TABLE

сложнее. Ниже приведен скрипт sed, извлекающий ровно то, что необходимо:

$ sed -е '/./{H;$1d;}' -е 'x;/CREATE TABLE ·actor'/!d;q' sakila-backup.sql

740 Глава 15 • Резервное копирование и восстановление

Да, признаем, выглядит загадочно. Если для восстановления данных вам прихо­

дится идти на подобные трюки, значит, процедура резервного копирования плохо
продумана. Когда все распланировано заранее, можно будет избежать ситуаций, при

которых вы в панике пытаетесь разобраться, как работает sed. Просто копируйте
каждую таблицу в отдельный файл, а еще лучше - помещайте данные и схему

в разные файлы.

Загрузка файлов с разделителями

При выгрузке данных командой SELECT INTO OUТFILE загружать их обратно следует
командой LOAD DATA INFILE с теми же параметрами. Можно также воспользоваться
утилитой mysqlimport, которая является не чем иным, как оберткой вокруг LOAD
DATA INFILE. Куда загружать данные из файла, утилита mysqlimport определяет на
основании соглашений об именовании.

Мы надеемся, что вы выгрузили не только данные, но и схему. В таком случае это SQL­
дамп, и для его загрузки можно воспользоваться приемами из предыдущего пункта.

Для команды LOAD DATA INFILE существует замечательная оптимизация. Посколь­
ку эта директива читает данные непосредственно из файла, то может возникнуть

мысль предварительно его распаковать, а это очень длительная операция, которая

к тому же активно обращается к диску. Но существует обходной путь, по крайней
мере в системах, поддерживающих именованные каналы f'IFO, к каковым относится
и GNU /Linux. Сначала создайте именованный канал и направьте в него распакован­
ные данные:

$ mkfifo /tmp/backup/default/sakila/payment.fifo
$ chmod 666 /tmp/backup/default/sakila/payment.fifo
$ gunzip -с /tmp/backup/default/sakila/payment.txt.gz

> /tmp/backup/default/sakila/payment.fifo

Обратите внимание на употребление знака «больше~ (>) для перенаправления рас­
пакованного потока в файл payment. fi fo - нужен именно он, а не знак ' 1 ',который

создает анонимный канал между программами. Мы используем payment. fi fo - име­

нованный канал, поэтому анонимный нам ни к чему.

Канал ждет, когда какая-нибудь программа откроет его и начнет читать данные

с другого конца. В этом-то и заключается изюминка: сервер MySQL может получать
распакованные данные из канала точно так же, как из обычного файла. Не забудьте
отключить запись в двоичный журнал, если она не нужна:

mysql> SET SQL_LOG_BIN = 0; -- Необязательно

-> LOAD DATA INFILE '/tmp/backup/default/sakila/payment.fifo'
-> INTO TABLE sakila.payment;

Query ОК, 16049 rows affected (2.29 sec)
Records: 16049 Deleted: 0 Skipped: 0 Warnings: 0

После того как MySQL закончит загрузку данных, утилита gunzip завершится и имено­
ванный канал можно будет удалить. Такую же технику можно применять для загрузки
сжатых файлов из командного клиента mysql директивой SOURCE. Программа pt-fifo-split

Восстановление из резервной копии 741

в пакете Percona Toolkit может помо'IЬ загружать большие файлы не за одну большую
транзакцию, а партиями, что может оказаться намного более эффективным.

Вы не можете добраться туда отсюда

Однажды один из авторов этой книги поменял тип столбца с DАТЕТIМЕ на ТIМЕSТАМР,

чтобы сэкономить место и ускорить обработку, как рекомендовано в главе 3. В резуль­
тате определение таблицы стало выглядеть так:

CREATE TABLE tЫ (

);

coll timestamp NOT NULL,
со12 timestamp NOT NULL default CURRENT_TIMESTAMP

on update CURRENT_TIMESTAMP,
. . . nрочие столбцы ...

Такое определение таблицы вызывает синтаксическую ошибку в версии MySQL 5.0.40,
в которой оно было создано. Выгрузить данные удастся, а загрузить обратно - нет.

Вот из-за таких странных непредвиденных ошибок и надо проверять резервные ко­

пии. Никогда заранее не знаешь, что помешает вернуть данные!

Восстановление на конкретный момент времени

Самый распространенный способ восстановления на конкретный момент времени
в MySQL заключается в том, чтобы вернуть данные с последней полной резервной
копии, а затем воспроизвести двоичные журналы, накопившиеся за этот период

(иногда это называется накатом журналов). Имея двоичный журнал, можно вос­

становиться на любой момент времени. Можно даже без особого труда восстановить
только одну базу данных.

Главный недостаток процесса заключается в том, что воспроизведение двоичного

журнала может выполняться медленно. Оно, по сути, эквивалентно репликации.

Если у вас есть подчиненный сервер и вы измерили степень использования потока

SQL, то узнаете, как скоро можно будет воспроизвести двоичные журналы. Напри­
мер, если поток SQL используется примерно на 50 %, восстановление двоичных
журналов за неделю может занять от трех до четырех дней.

Нередко возникает задача отменить действие необдуманно выполненной команды,
например DROP TABLE. Рассмотрим упрощенный пример, на котором покажем, как

это сделать, когда имеются только таблицы типа MyISAM.

Предположим, что в полночь задание резервноrо копирования выполнило следу­

ющие команды, которые копируют базу данных в другое место на том же сервере:

mysql> FLUSH TABLES WITH READ LOCK;
-> serverl# ер -а /var/liЬ/mysql/sakila /backup/sakila;

mysql> FLUSH LOGS;
-> serverl# mysql -е "SНOW MASТER STATUS" --vertical > /backup/master.info;

mysql> UNLOCK TABLES;

742 Глава 15 • Резервное копирование и восстановление

Допустим, что позже в тот же день кто-то выполнил следующую команду:

mysql> USE sakila;
mysql> DROP ТАВLЕ sakila.payment;

Для простоты предположим, что мы можем корректно восстановить эту базу дан­
ных отдельно от других (то есть в этой базе не существует таблиц, которые были
вовлечены в запросы, затрагивающие несколько баз данных). Предположим также,

что ошибочная команда была обнаружена спустя некоторое время. Наша задача -
восстановить все, что происходило с этой базой данных, за исключением вышеупо­

мянутой команды.

Иными словами, мы должны сохранить все обновления в других таблицах, в том
числе выполненные после злополучной команды.

Это не так уж трудно сделать. Прежде всего остановим MySQL, чтобы предотвратить
дальнейшие модификации, и вернем из резервной копии только базу данных Sakila:

serverl# /etc/init.d/mysql stop
serverl# mv /var/liЬ/mysql/sakila /var/liЬ/mysql/sakila.tmp
serverl# ер -а /backup/sakila /var/liЬ/mysql

Запретим обычные соединения, временно добавив в файл my. cnf такие строчки:

skip-networking
socket=/tmp/mysql_recover.sock

Теперь можно без опаски запустить сервер:

serverl# /etc/init.d/mysql start

Следующая задача - найти в двоичном журнале те команды, которые мы хотим

воспроизвести, и те, которые следует пропустить. Как выясняется, после полуночи

сервер создал только один двоичный журнал. Мы можем обработать его утилитой
grep и найти ошибочно выполненную команду:

serverl# mysqlbinlog --database=sakila /var/log/mysql/mysql-Ыn.000215
1 grep -ВЗ -i "drop tаЫе sakila.payment'
at 352

#070919 16:11:23 server id 1 end_log_pos 429 Query thread_id=lб exec_time=0
error_code=0
SET TIMESTAМP=1190232683/*I*/;
DROP TABLE sakila.payment/*I*/;

Итак, команда, которую мы хотим пропустить, начинается с позиции 352 в файле жур­
нала, а следующая за ней - с позиции 429. Воспроизведем журнал до позиции 352
и далее с позиции 429 до конца:

serverl# mysqlЫnlog --database=sakila /var/log/mysql/mysql-bin.000215
--stop-position=352 1 mysql -uroot -р

serverl# mysqlЫnlog --database=sakila /var/log/mysql/mysql-Ыn.000215
--start-position=429 1 mysql -uroot -р

Теперь осталось только еще раз проверить данные, остановить сервер, вернуть файл

my. cnf в исходное состояние и снова запустить сервер.

Восстановление из резервной копии 743

Более сложные методы восстановления

В основе репликации и восстановления на конкретный момент времени лежит

один и тот же механизм - двоичный журнал. Это означает, что репликация может

оказаться полезным, хотя и не вполне очевидным, инструментом восстановления.

В этом разделе мы продемонстрируем некоторые возможности. Список неполон,

но содержит некоторые мысли о том, как спроектировать процедуру восстанов­

ления с учетом своих потребностей. Еще раз напомним - оформляйте все, что

может понадобиться в процессе восстановления, в виде скрипта и прогоняйте его

на тестовом сервере.

Быстрое восстановление с помощью отложенной репликации

Ранее в этой главе мы уже отмечали, что наличие подчиненного сервера, реплициру­

ющего данные с задержкой, может существенно упростить и ускорить восстанов­

ление на конкретный момент времени, если вы успели заметить случайную ошибку

до того, как подчиненный сервер выполнил породившую ее команду.

Эта процедура немного отличается от описанной в предыдущем разделе, но идея

та же самая. Останавливаем подчиненный сервер, а затем применяем команду START

SLAVE UNТIL, чтобы воспроизвести события, предшествующие команде, которую

нужно пропустить. Затем выполняем команду SET GLOBAL SQL_SLAVE_SKIP _COUNTER=l,

чтобы пропустить ошибочную директиву. Если нужно проигнорировать несколько
событий, задайте значение больше 1 или просто воспользуйтесь командой CHANGE

MASТER, чтобы продвинуть вперед позицию, с которой подчиненный сервер читает
журнал.

Осталось только выполнить команду START SLAVE и дать подчиненному серверу воз­

можность закончить обработку своих журналов повтора. В результате подчиненный

сервер проделает за вас всю утомительную работу по восстановлению на конкретный

момент времени. Затем делаем подчиненный сервер главным - и восстановление

закончено, причем почти без прерывания обслуживания.

Даже если подчиненного сервера с отложенной репликацией нет, все равно такие

серверы могут быть полезны, потому что копируют двоичные журналы главного
сервера на другую машину. Если диск на главном сервере выйдет из строя, то жур­

налы повтора на подчиненном могут оказаться единственным местом, где имеются

сравнительно актуальные двоичные журналы главного сервера.

Восстановление с помощью сервера журналов

Существует еще один способ применить репликацию для восстановления: настро­
ить сервер журналов. Мы считаем, что репликация более надежна, чем утилита

mysq!Ьinlog, в которой могут встретиться странные ошибки и которая к тому же
иногда ведет себя неожиданно. Кроме того, использование сервера журналов - более
гибкий и простой путь восстановления, чем работа с утилитой mysq!Ьinlog, не только

744 Глава 15 • Резервное копирование и восстановление

из-за наличия команды START SLAVE UNТIL, но и из-за действующих правил репликации

(например, replicate-do-taЫe). При наличии сервера журналов можно реализовать

гораздо более сложные правила фильтрации, чем без него.

Например, сервер журналов позволяет без труда восстановить одну таблицу. С по­
мощью mysqlЬinlog и утилит командной строки сделать это значительно труднее -
настолько, что мы не советуем даже пытаться.

Предположим, что наш беспечный разработчик удалил ту же таблицу, что и раньше,
а нам нужно восстановить ее, не возвращая весь сервер в то состояние, в котором он

находился в момент снятия ночной копии. Вот как можно это сделать с помощью

сервера журналов.

1. Пусть сервер, подлежащий восстановлению, называется server1.

2. Восстановим ночную копию на другом сервере - server2. Запустим на нем про­
цедуру восстановления, чтобы не ухудшить ситуацию в случае, если в ходе этого
процесса будет допущена ошибка.

3. Настроим сервер журналов так, чтобы он обслуживал двоичные журналы сервера
server1, следуя указаниям, приведенным в главе 10 (было бы неплохо для стра­
ховки скопировать журналы на какой-нибудь другой сервер и настроить сервер
журналов там).

4. Изменим конфигурационный файл server2, включив в него следующую строку:

replicate-do-taЬle=sakila.payment

5. Перезапустим server2 и сделаем его подчиненным серверу журналов с помощью
команды CHANGE МASTER ТО. Сконфигурируем его так, чтобы он читал двоичный
журнал с позиции, соответствующей ночной копии. Но пока не будем выполнять
команду START SLAVE.

6. Выполним на сервере server2 команду SHOW SLAVE STATUS и убедимся, что все
правильно. Семь раз отмерь, один раз отрежь!

7. Найдем в двоичном журнале место, с которого начинается ошибочная команда,
и выполним команду START SLAVE UNТIL, чтобы воспроизвести все события вплоть
до этой позиции.

8. Остановим процесс репликации на сервере server2 командой STOP SLAVE. Теперь
таблица существует в виде, непосредственно предшествующем виду в момент

удаления.

9. Скопируем таблицу с server2 на server1.

Все это возможно только в том случае, если данная таблица не участвует в командах
UPDAТE, DELEТE или INSERT, которые выполняют многотабличные обновления. Любая
такая команда будет выполняться в состоянии базы данных, отличном от того, ко­
торое существовало в момент записи событий в двоичный журнал, поэтому, скорее
всего, после восстановления таблица будет содержать не ту информацию, которую
должна бы. (Это справедливо только в том случае, если вы используете покомандное
двоичное журналирование, если же задействовано построчное журналирование, про­

цесс восстановления не будет подвержен возникновению этой ошибки.)

Восстановление из резервной копии 745

Восстановление InnoDB
InnoDB проверяет файлы данных и журналов при каждом запуске, чтобы понять,
нужно ли начинать процедуру восстановления. Однако восстановление InnoDB -
не то же самое, о чем мы говорим в этой главе. Речь идет не о воссоздании данных

из резервной копии, а о применении к файлам данных тех транзакций, которые

хранятся в журнале, и об откате незакоммиченных транзакций.

Детали процедуры восстановления InnoDB слишком сложны, чтобы описывать их
здесь. Вместо этого расскажем о том, как выполнить эту процедуру на практике,

когда в работе InnoDB возникает серьезная проблема.

Обычно InnoDB прекрасно исправляет ошибки самостоятельно. Если только в са­
мом коде MySQL нет дефекта и оборудование исправно, то ничего экстраординар­
ного вам делать не придется даже после отключения питания сервера. InnoDB просто
произведет штатное восстановление при запуске, и все будет хорошо. В журнале
ошибок вы увидите примерно такие сообщения:

InnoDB: Doing recovery: scanned up to log sequence number 0 40817239
InnoDB: Starting an apply batch of log records to the database ...

InnoDB выводит в журнал сообщения о ходе восстановления (сколько уже вы­
полнено в процентах). Некоторые пользователи жаловались, что не видят никаких

сообщений, пока процесс не завершится. Но будьте терпеливы, ускорить эту проце­
дуру невозможно. Если вы принудительно завершите ее и начнете заново, то лишь

продлите ожидание.

Если возникла серьезная неисправность оборудования, скажем, поврежден диск или
память, или же вы наткнулись на ошибку в коде MySQL или InnoDB, то, возможно,
придется вмешаться и либо принудительно запустить восстановление, либо отменить
штатную процедуру.

Причины повреждения InnoDB

Вообще говоря, подсистема InnoDB очень надежна. Она проектировалась именно
с такой, в нее встроено множество проверок, направленных на то, чтобы предотвра­
тить порчу данных, а также найти и исправить их повреждение, - гораздо больше,
чем в некоторых других подсистемах хранения. Однако она не может защитить себя
от всего на свете.

Как минимум InnoD В полагается на то, что обращения к небуферизованному вво­
ду /выводу и системному вызову fsync() не возвращают управление, пока данные
не будут окончательно записаны на физический носитель. Если оборудование не га­
рантирует этого, то InnoDB не сможет защитить информацию и сбой приведет к ее
повреждению.

Многие проблемы, связанные с порчей данных в таблицах InnoDB, обусловлены
работой оборудования, например неправильной записью на страницу из-за сбоя
питания или ошибки памяти. Но наш опыт показывает, что гораздо чаще причиной

746 Глава 15 • Резервное копирование и восстановление

является некорректная конфигурация устройств. К числу типичных ошибок можно

отнести включение кэша записи на карте RАID-контроллера без резервного пита­

ния или включение кэша записи в самих накопителях на жестких дисках. Из-за

таких ошибок контроллер лжет, сообщая, что вызов fsync () завершен, тогда как на
самом деле данные еще находятся в кэше записи, а не на диске. Другими словами,

оборудование не дает гарантий, необходимых InnoDB для безопасного хранения
данных.

Иногда компьютеры конфигурируются так по умолчанию, поскольку этот режим

обеспечивает более высокую производительность. Для каких-то целей это, может

быть, хорошо, но только не для сервера транзакционной базы данных.

Повреждения возможны и тогда, когда InnoDB работает с хранилищем, подключен­
ным по сети (N AS), поскольку завершение системного вызова fsync () в этом случае
означает лишь, что устройство получило данные. Сами данные будут в безопасности,

если выйдет из строя IвnoDB, но могут оказаться испорчены в случае отказа NАS­

устройства.

Степень повреждения может быть различной. Серьезные ошибки способны вы­

звать аварийный останов InnoDB или сервера MySQL, а менее серьезные означают
просто потерю некоторых транзакций из-за того, что файл журнала не был сброшен

на диск.

Как восстановить поврежденные

данные InnoDB

Существует три основных типа повреждений InnoDB, и в каждом случае для вос­
становления применяются различные методы.

1:1 Повреждение вторичного индекса. Исправить повреждение вторичного индекса
часто удается с помощью команды OPТIMIZE TABLE. Как альтернативу можно ис­

пользовать команду SELECT INTO OUTFILE, удалить и заново создать таблицу, а за­

тем загрузить в нее данные командой LOAD DATA INFILE. (Также можно перевести

таблицу в подсистему хранения MyISAM и обратно.) Повреждение устраняется
за счет того, что строится новая таблица и, следовательно, испорченный индекс

тоже перестраивается.

1:1 Повреждение кластерного индекса. Возможно, нужно будет воспользоваться

параметром innodb_force_recovery, чтобы выгрузить дамп таблицы (подробнее
об этом далее). Иногда в процессе выгрузки InnoDB аварийно завершает рабо­
ту, в этом случае приходится выгружать таблицу по частям, чтобы обойти по­

врежденные страницы, вызывающие аварию сервера. Повреждение кластерного

индекса серьезнее, чем вторичного, поскольку затронутыми оказываются сами

строки с данными, по во многих случаях поврежденные таблицы все-таки можно

исправить.

1:1 Повреждение системных структур. К системным структурам относятся журнал
транзакций InnoD В, область отмены в табличном пространстве и словарь данных.

Восстановление из резервной копии 747

Для исправления таких повреждений, скорее всего, потребуется произвести пол­

ную выгрузку и восстановление, потому что затронутыми могут оказаться многие

внутренние механизмы работы InnoDB.

Обычно поврежденный вторичный индекс удается исправить без потери данных.
Но в остальных двух случаях утрата какой-то части информации вполне вероятна.

При наличии резервной копии лучше вернуть данные с нее, а не пытаться извлечь

их из поврежденных файлов.

Если никакой альтернативы извлечению данных из поврежденных файлов нет, то

сначала нужно запустить InnoDB, а потом выполнить команду SELECT INTO OUTFILE
для выгрузки информации в файл. Если сервер аварийно завершил работу и не
удается даже запустить InnoDB, то можно сконфигурировать его так, чтобы не за­
гружались штатные процессы восстановления и фоновые потоки. Возможно, после

этого удастся стартовать и создать логическую копию с ослабленным контролем
целостности или вовсе без него.

Параметр innodb_force_recovery управляет тем, какие операции InnoOB выпол­
няет при запуске и во время нормальной работы. Обычно он равен 0, но его можно
увеличить до 6. В руководстве по MySQL описано поведение сервера в каждом из
режимов. Мы не будем здесь дублировать эту информацию, но отметим, что значения

вплоть до 4 не представляют особой опасности. При таких настройках можно лишь

потерять некоторые данные на поврежденных страницах, но если пойти дальше, то

не исключено извлечение некорректной информации из поврежденных страниц.

Также повышается риск аварийного завершения во время выполнения команды

SELECT INTO OUTFILE. Иными словами, уровни с нулевого до четвертого не наносят

вреда данным, но InnoDB может не воспользоваться некоторыми возможностями
их исправления, на уровнях 5 и 6 попытки ликвидировать повреждения становятся
более настойчивыми, во это сопряжено с риском нанести ущерб данным.

Если параметр innodb_force_recovery больше 0, то InnoDB, по существу, работает
в режиме чтения, но создавать и удалять таблицы все же можно. Это предотвращает

развитие повреждений и заставляет InnoDB немного смягчить обычные проверки
и не прекращать работу немедленно в случае обнаружения испорченных данных.
В обычных условиях принудительное завершение работы при обнаружении ис­
порченной информации служит предохранителем, но во время восстановления это

нежелательно. Если нужно заставить InnoDB выполнить восстановление, то имеет
смысл сконфигурировать MySQL так, чтобы обычные подключения отвергались до
завершения процедуры.

Если данные InnoOB повреждены настолько сильно, что MySQL вообще не запуска­
ется, то можно воспользоваться комплектом инструментов Percona InnoDB Recovery
Toolkit, чтобы извлечь информацию напрямую из страниц табличного пространства.
Эти инструменты можно бесплатно скачать с сайта http://www.percona.com/software/.
Percona Server может работать даже тогда, когда некоторые таблицы повреждены,
что отличает его от поведения MySQL по умолчанию, при котором при обнаружении
одной поврежденной страницы происходит останов всего сервера.

748 Глава 15 • Резервное копирование и восстановление

Инструменты резервного копирования

и восстановления

В настоящий момент существует множество хороших и не очень инструментов ре­

зервного копирования. Мы предпочитаем mylvm-backup для изготовления резерв­
ных копий снимков LVM и Percona XtraBackup (с открытым исходным кодом) или
MySQL Enterprise Backup (запатентовано) для горячего резервного копирования
InnoDB. Рекомендуем не пользоваться утилитой mysql-dump для резервного копи­
рования значительного объема данных из-за перегрузки сервера и непредсказуемо
длительного времени восстановления.

Существует несколько инструментов резервного копирования, которые давно долж­

ны были бы исчезнуть, но, к сожалению, не исчезли. Наиболее очевидным примером
является mk-parallel-dump из пакета Maatkit, который никогда не работал правильно,
хотя его несколько раз перепроектировали. Другим примером является mysqlhotcopy,
который вроде бы раньше работал в таблицах MyISAM. Ни одному из этих инстру­
ментов полностью доверять нельзя, хотя они могут заставить вас поверить в то, что

данные резервируются, когда этого не происходит. Например, mysqlhotcopy будет
копировать . iЬd-файлы, если вы используете InnoDB с параметром innodb_file_
per _tаЫе, что заставит некоторых поверить (и напрасно), что InnoDB выполнила
резервное копирование данных. В некоторых случаях оба инструмента могут небла­
гоприятно повлиять на работающий сервер.

Если вы видели планы MySQL в 2008 или 2009 году, то, вероятно, слышали об он­
лайновом резервном копировании MySQL. Речь шла о возможности, позволяющей
запускать резервное копирование и восстановление с сервера с помощью команд

SQL. Первоначально она была запланирована для MySQL 5.2, позже перенесена на
MySQL 6.0, а затем, насколько нам известно, отменена совсем.

MySQL Enterprise Backup
Этот инструмент, ранее известный как InnoDB Hot Backup, или ibbackup, является
частью подписки на MySQL Enterprise от Oracle. Его использование не требует
остановки MySQL, установки блокировок или прерывания нормальной работы базы
данных, хотя и вызовет некоторое увеличение нагрузки на ваш сервер. Он поддер­

живает такие возможности, как изготовление сжатых резервных копий, инкремент­

ное резервное копирование и потоковое резервное копирование на другой сервер.

Это официальный инструмент резервного копирования для MySQL.

Percona XtraBackup
Инструмент Percona XtraBackup во многом похож на MySQL Enterprise Backup,
но у него открытый исходный код и он бесплатный. В дополнение к основному ин­
струменту резервного копирования здесь есть также скрипт-обертка, написанный
на Perl, который улучшает функциональность и позволяет решать более сложные

Инсrрументы резервного копирования и воссrановления 749

задачи. Он поддерживает потоковые, инкрементные, сжатые и многопоточные (па­
раллельные) операции резервного копирования. А также имеет множество специ­

альных возможностей для уменьшения влияния резервного копирования на сильно

загруженные системы.

Percona XtraBackup работает с хвостом файлов журнала InnoDB в фоновом потоке,
а затем копирует файлы данных InnoDB. Это слегка запутанный процесс со специ­
альными проверками для обеспечения постоянного копирования данных. Когда все
файлы данных копируются, останавливается поток, копирующий журналы. Резуль­

татом является копия всех данных, но в разные моменты времени. Теперь журналы

могут быть применены к файлам данных с использованием процедур аварийного
восстановления InnoDB, что должно привести все файлы данных в согласованное
состояние. Это называется процессом подготовки. После подготовки резервная

копия полностью согласована и содержит все закоммиченные транзакции на мо­

мент завершения процесса копирования файлов. Все эти процессы происходят вне

MySQL, поэтому серверу не нужно каким-либо образом подключаться к MySQL
или обращаться к ней.

Скрипт-обертка добавляет возможность восстановления резервной копии, скопиро­
вав ее обратно в исходное местоположение. Кроме того, существует проект Lachlan
Mulcahy XtraBackup Manager с еще большей функциональностью (для получения
дополнительной информации см. http://code.google.com/p/xtrabackup-manager/).

mylvmbackup
Написанный Ленцем Гриммером (Lenz Grimmer) на языке Perl скрипт mylvmbackup
(http://lenz.homelinux.org/mylvmbackup/) призван автоматизировать создание резервных
копий MySQL с помощью снимков LVM. Он получает глобальную блокировку
чтения, создает снимок, а затем снимает блокировку. После этого данные упаковы­
ваются с помощью программы tar и снимок удаляется. Архиву присваивается имя,
основанное на времени создания копии. У инструмента есть несколько дополни­

тельных параметров, но в целом он предназначен просто для выполнения резервного

копирования LVM.

Zmanda Recovery Manager
Программа Zmanda Recovery Manager для MySQL (ZRM) (http://www.zmanda.com)
распространяется в виде бесплатной (на условиях лицензии GPL) и коммерческой
версий. В состав редакции для предприятия (Enterprise Edition) входят консоль
управления, реализующая графический веб-интерфейс конфигурирования, резервного
копирования, верификации, восстановления, генерации отчетов и запуска по распи­

санию. Версия с открытым исходным кодом никоим образом не урезана, однако она
не включает в себя некоторые дополнительные тонкости, такие как веб-консоль.

Как и следует из ее названия, ZRM на самом деле является менеджером резерв­
ного копирования и восстановления, а не просто инструментом. Он обертывает

750 Глава 15 • Резервное копирование и восстановление

собственную функциональность вокруг стандартных инструментов и методов, таких
как mysqldump, снимки L VM и Percona XtraBackup. ZRM автоматизирует большую
часть серьезной работы по резервному копированию и восстановлению.

mydumper
Несколько нынешних и бывших инженеров, работавших над MySQL, используя
накопленный за многие годы опыт, создали утилиту mydumper в качестве замены
mysqldump. Это многопоточный (параллельный) набор инструментов для резерв­
ного копирования и восстановления для MySQL и Drizzle с множеством приятных
функций. Многие, по-видимому, посчитают скорость многопоточного резервного

копирования и восстановления основным достоинством этого инструмента. Мы зна­

ем тех, кто использует его в работе, однако у нас самих такого опыта нет. Больше

подробностей об этом инструменте вы можете получить на http://www.mydumper.org.

mysqldump
Большинство людей используют программы, которые поставляются с MySQL,
поэтому, несмотря на свои недостатки, наиболее распространенным вариантом

для создания логических резервных копий данных и схем является mysqldump.
Это инструмент общего назначения, пригодный для решения многих задач, таких
как копирование таблицы с одного сервера на другой.

$ mysqldump --host=serverl test tl 1 mysql --host=server2 test

В этой главе мы уже приводили примеры создания логических копий с помощью

mysqldurnp. По умолчанию эта программа выводит скрипт, содержащий все команды,
необходимые для создания таблицы и заполнения ее данными, существуют также
флаги для вывода представлений, хранимых процедур и триггеров. Вот несколько

типичных примеров ее использования.

О Создание логической копии всего, что хранится на сервере, в виде одного файла,

со всеми таблицами во всех базах данных в один и тот же момент времени:

$ mysqldump --all-databases > dump.sql

О Создание логической копии базы данных Sakila:

$ mysqldum8p --databases sakila > dump.sql

О Создание логической копии только таблицы sakila. actor:

$ mysqldump sakila actor > dump.sql

Флаг --result-file позволяет задать выходной файл, 'IТО предотвращает преобра­
зование символов перехода на новую строку на платформе Windows:

$ mysqldump sakila actor --result-file=dump.sql

Параметры mysqldump, подразумеваемые по умолчанию, не годятся для серьезного
резервного копирования. Было бы правильно явно задать некоторые флаги. Далее

Скрипты резервного копирования 751

перечислены флаги, которыми мы часто пользуемся для того, чтобы повысить эф­
фективность mysqldump и упростить работу с генерируемыми файлами.

l:J - -opt. Относится к группе параметров, отключающих буферизацию, которая
может привести к исчерпанию памяти сервера, порождает меньше SQL-команд
в дампе, так что они загружаются более эффективно, и делает ряд других полез­
ных вещей. Подробную информацию можно почерпнуть из справки. Если эту
группу параметров отключить, то mysqldump будет сохранять каждую выгружа­
емую таблицу в памяти перед тем, как записать ее на диск, для больших таблиц
это непрактично.

l:J --allow-keywords, --quote-names. Позволяет выгружать и загружать таблицы,
имена которых совпадают с зарезервированными словами.

l:J --complete-insert. Позволяет перемещать данные между таблицами с неодина­
ковыми столбцами.

l:J - -t z -ut с. Позволяет перемещать данные между серверами, находящимися в раз­
ных часовых поясах.

l:J --lock-all-taЬles. Выполняет команду FLUSH TABLES WПН READ LOCK для полу­
чения глобально согласованной резервной копии.

l:J --tab. Формирует файлы дампов с помощью команды SELECT INTO OUТFILE.

l:J - -skip-extended-insert. Выводит каждую строку данных в виде отдельной ко­
манды INSERT. Это позволит при необходимости избирательно восстанавливать
некоторые строки. Но в таком случае большие файлы будут импортироваться
в MySQL дольше, поэтому задавать флаг нужно с осторожностью.

При задании флагов - -databases или - -all-databases сформированные для каждой
базы дампы будут содержать согласованные данные, потому что mysqldump блокирует
и выгружает все таблицы в базе одновременно. Однако таблицы из разных баз все же
могут оказаться рассогласованными. Флаг --lock-all-taЫes решает и эту проблему.

Для резервного копирования InnoDB следует добавить параметр - -single-transaction,
который использует возможности MVCC InnoDB для создания согласованной резерв­
ной копии в единый момент времени вместо применения LOCK TABLES. Если вы до­
бавите параметр --master-data, резервная копия будет содержать также координаты
двоичного журнала сервера в момент резервного копирования, что очень полезно для

восстановления на конкретный момент времени и настройки подчиненных серверов.

Однако имейте в виду, что она будет использовать команду FLUSH TABLES WIТH READ LOCK,
чтобы приостановить работу сервера и дать ему возможность получить координаты.

Скрипты резервного копирования

Часто возникает необходимость в написании скрипта для резервного копирования.
Вместо того чтобы приводить пример демонстрационной программы, что только за­
няло бы место на страницах книги, мы перечислим составные части типичного скрипта
и покажем несколько фрагментов на языке Perl. Можете считать их кирпичиками,

752 Глава 15 • Резервное копирование и восстановление

из которых можно собрать свой собственный сценарий. Приведем их примерно в том
порядке, в котором они используются.

О Проверка корректности. Облегчите жизнь себе и своим коллегам - включите
строгий контроль ошибок и используйте английские имена переменных:

use strict:
use warnings FATAL => 'all';
use English qw(-no_match_vars);

Если скрипт пишется на языке оболочки bash, то можно также включить строгий
контроль переменных. Следующие команды заставляют интерпретатор выдавать

соответствующее сообщение, если в подстановке встретится неопределенная пере­
менная или какая-то программа завершится с ошибкой:

set -u;
set -е;

О Аргументы командной строки. Лучший способ добавить обработку параметров
командной строки - это воспользоваться стандартными библиотеками, которые
входят в любую установку языка Perl:

use Getopt::Long;
Getopt::Long::Configure('no_ignore_case', 'bundling');
GetOptions(...•);

О Подключение к серверу MySQL. Стандартный Реr\-модуль DВI доступен практи­
чески везде и обеспечивает необходимые выразительность и гибкость. О том, как
с ним ~эаботать, говорится в документации, сгенерированной программой perldoc
(имеется на сайте http://search.cpan.org). Подключиться к MySQL, используя DBI,
можно следующим образом:

use DBI;
$dbh = DBI->connect(

'DBI:mysql:;host=localhost', 'user', 'pass', {RaiseError => 1 });

О написании скриптов командной строки прочитайте в оперативной справке,

которую программа mysql выводит при задании флага - -help. У нее масса параме­
тров, облегчающих использование в составе скриптов. Вот, например, как можно
перебрать список баз данных в Ьаsh-скрипте:

mysql -ss -е 'SHOW DATABASES' 1 while read DB; do
echo "${DB}"

done

О Останов и запуск MySQL. Самый лучший способ остановить и запустить сервер
MySQL - воспользоваться методом, принятым в вашей операционной системе,

например выполнить скрипт инициализации /etc/init.d/mysql или задейство­
вать диспетчер служб (для Windows). Но это не единственный способ. Можно
остановить СУБД из Реr\-скрипта, имея какое-нибудь соединение с базой данных:

$dbh- >func ("shutdown ", 'admin') ;

Не следует считать, что MySQL будет остановлена после того, как эта команда
завершится, - возможно, процесс останова все еще идет. Можно также остановить

MySQL из командной строки:

$ mysqladmin shutdown

Скрипты резервного копирования 753

1:1 Получение списков баз данньLХ и таблиц. Любой скрипт резервного копирования
запрашивает у MySQL список баз данных и таблиц. Помните, что в этот список
могут входить и ненастоящие базы данных, например каталог lost+found в не­
которых журналирующих файловых системах, а также INFORMAТION_SCHEMA.

Убедитесь, что ваш скрипт правильно обрабатывает представления, и не забывай­
те, что выполнение команды SHOW TABLE STATUS может занять много времени,

когда вы имеете дело с большими объемами данных в таблицах типа InnoDB:

mysql> sнow DATAВASES;
mysql> SНOW /*150002 FULL*/ TAВLES FROМ <database>;
mysql> sнow TABLE STATUS FROМ <database>;

1:1 Блокировка, сброс и разблокировка таблиц. Иногда необходимо выполнять
блокировку и/или сброс одной или нескольких таблиц. Можно либо заблоки­
ровать все нужные таблицы, перечислив их имена, либо захватить глобальную

блокировку:

mysql> LOCK TABLES <database.taЬle> READ [, •••];
mysql> FLUSH TABLES;
mysql> FLUSH TAВLES <database.taЬle> [, •••];
mysql> FLUSH TAВLES WITH READ LOCK;
mysql> UNLOCK TAВLES;

Не забывайте о возможной гонке при получении списков таблиц и их блокировке.
Могут быть созданы новые таблицы, а старые удалены или переименованы.
Если вы блокируете и копируете таблицы поодиночке, то согласованной копии
не получится.

1:1 Сброс двоичньLХ журналов. Очень полезно попросить сервер начать новый двоич­
ный журнал (делайте это после блокировки таблиц, но перед тем, как начинать
резервное копирование):

mysql> FLUSH LOGS;

Восстановление и инкрементное резервное копирование будет проще выпол­
нить, если не придется думать о том, с какого места в середине файла журнала

начинать. Но возможны побочные эффекты, связанные со сбросом и открытием
новых журналов, а кроме того, есть вероятность уничтожить старые записи, по­

этому внимательно следите за тем, чтобы не отбросить данные, которые еще могут
понадобиться.

1:1 Получение позиции в двоичном журнале. Скрипт должен получить и куда-то за­
писать состояние как главного, так и подчиненного сервера, даже если данный

сервер выступает только в роли главного или только в роли подчиненного:

mysql> sнow МASTER STATUS\G
mysql> sнow SLAVE STATUS\G

Выполните обе команды и игнорируйте возможные ошибки, чтобы скрипт полу­
чил всю возможную информацию.

1:1 Выzрузка данньLХ. Лучше всего использовать утилиту mysqldump и команду SELECT

INTO OUTFILE.

1:1 Копирование данньLХ. Используйте какой-либо из методов, рассмотренных в этой
главе.

754 Глава 15 • Резервное копирование и восстановление

Это кирпичики, из которых состоит любой скрипт резервного копирования. Самое

трудное - написать скрипт восстановления. Если вам хочется узнать, как сделать

это правильно, изучите исходный код системы ZRM.

Итоги главы

Все знают, что резервные копии нужны, но не все понимают, что им нужны восста­

навливаемые резервные копии. Существует множество способов создания резервных

копий, которые противоречат требованиям к восстановлению. Чтобы избежать этой

проблемы, стоит определить и задокументировать целевую точку восстановления

и целевое время восстановления и использовать их как ориентиры при выборе си­

стемы резервного копирования.

Также важно регулярно тестировать процесс восстановления, чтобы быть уверенны­

ми в том, что он работает. Очень просто настроить утилиту mysqldump и позволить
ей работать каждую ночь, не понимая, что объем данных со временем разрастется до

такой степени, что для их импорта может потребоваться несколько дней или даже

недель. Хуже всего обнаружить, сколько времени требуется на восстановление, тогда,
когда вам оно действительно необходимо. Резервная копия, на создание которой за­

трачиваются часы работы, может потребовать в прямом смысле нескольких недель

для восстановления в зависимости от используемого оборудования, схемы, индексов

и данных.

Не попадите в ловушку, посчитав, что подчиненный сервер - это резервная копия.

Это менее разрушающий источник для резервного копирования, но не резервная

копия. То же самое можно сказать о RAID-тoмe, SAN и снимках файловой системы.
Убедитесь, что ваши резервные копии могут пройти тест DROP TABl,E (или тест
~меня взломали»), а также тест потери центра обработки данных. Если вы берете

резервные копии с подчиненного сервера, убедитесь, что проверяете целостность

репликации с помощью утилиты pt-taЬle-checksum.

Два наших любимых способа резервного копирования - копирование данных из

файловой системы или снимков SAN или использование Регсоnа XtraBackup. Оба
они позволяют создавать неразрушающие двоичные (физические) резервные копии

ваших данных, которые затем можно верифицировать, запустив экземпляр mysqld
и проверяя таблицы.

Иногда вы даже можете одним выстрелом убить двух зайцев: каждый день проверять

восстановление данных, возвращая их из резервной копии на разработку или обкатку
на сервер. Вы также можете сбросить данные из этого экземпляра, чтобы создать

логическую резервную копию. Мы считаем необходимым наряду с этим создавать

резервные копии двоичных журналов и хранить достаточное количество резервных

копий и двоичных журналов разных версий, благодаря которым можно выполнить
восстановление или настроить новый подчиненный сервер, даже если последняя

резервная копия непригодна для использования.

Итоги главы 755

Помимо продуктов с открытым исходным кодом, о которых мы упоминали, су­

ществуют хорошие коммерческие инструменты резервного копирования, прежде

всего MySQL Enterprise Backup. Будьте осторожны с инструментами резервного
копирования, которые входят в состав графического редактора SQL-запросов, ин­

струментами управления сервером и т. п. А также с плагинами резервного копиро­

вания MySQL от компаний, которые создают один на все случаи жизни инструмент
резервного копирования, поддерживающий в том числе и MySQL. На самом деле вам
нужен отличный инструмент резервного копирования, предназначенный в первую

очередь для MySQL, а не тот, который просто поддерживает MySQL и сотни других
продуктов. Многие поставщики инструментов резервного копирования не знают воз­

можностей таких методов, как использование FLUSH TABLES WIТH READ LOCK, или немо­

гут их верно оценить. На наш взгляд, использование этой команды SQL однозначно
не позволяет считать такое резервное копирование горячим. Если вы используете

только таблицы InnoDB, вам это обычно не нужно.

Инструменты
для пользователей MySQL

В дистрибутив сервера MySQL не входят инструменты для решения многих ти­
пичных задач, например мониторинга сервера или сравнения данных, хранящихся

на разных серверах. К счастью, Oracle предлагает ряд полезных коммерческих ин­
струментов, расширяющих эти возможности. Кроме того, сообщество, сложившееся
вокруг MySQI., разработало множество полезных утилит, избавляя вас от необходи­
мости придумывать собственные.

Средства организации интерфейса
Инструменты из :пой категории помогают запускать запросы, создавать таблицы
и новых пользователей, а также решать другие рутинные задачи. В этом разделе мы

приведем краткий перечень наиболее популярных приложений такого рода. Как пра­
вило, все или большинство их функций можно реализовать с помощью запросов
или SQL-команд, они лишь помогают работать быстрее и с большим комфортом,
допуская меньше ошибок

1:1 MySQL Workbench. Это инструмент «всё в одном~> для таких задач, как управление
сервером, запись запросов, разработка хранимых процедур и работа со схемами.
Он оснащен подключаемый интерфейсом, который позволяет вам писать собствен­
ные инструменты и интегрировать их в рабочую среду. Кроме того, существуют
скрипты и библиотеки языка Python, использующие этот подключаемый интер­
фейс. Существует как бесплатная, так и коммерческая версия MySQL Workbench,
при этом в последней имеются некоторые дополнительные возможности. Однако

бесплатной версии более чем достаточно для большинства потребностей. Вы мо­
жете узнать больше на http://www.mysql.com/products/workЬench/.

1:1 SQLyog. Один из самых популярных визуальных инструментов для MySQL
с несколькими отличными возможностями. Это инструмент того же класса, что

и MySQL Workbench, однако каждый из них обладает некоторыми возможно­
стями, отсутствующими у другого. Реализован он только на платформе Microsoft
Windows, причем полная версия платная, а издание с ограниченной функциональ­
ностью распространяется бесплатно. Дополнительную информацию о программе
SQLyog см. на сайте http://www.webyog.com

Утилиты командной строки 757

О phpMyAdтin. Это популярный инструмент администрирования, который работает
на веб-сервере и предоставляет веб-интерфейс к серверам MySQL. Хотя доступ
к браузеру иногда бывает приятным, phpMy Admin - это большой и сложный
инструмент, и говорят о том, что у него много проблем с безопасностью. Будьте
с ним предельно осторожны. Мы рекомендуем не устанавливать его на систему,

доступную из Интернета. Более подробную информацию можно найти на странице
http://sourceforge.net/projects/phpmyadmin/.

о Adтiner. Это облегченный, безопасный инструмент администрирования на основе
браузера, который относится к той же категории, что и phpMyAdmin. Разработчик
позиционирует его как наилучшую замену phpMyAdmin. Хотя он кажется более
безопасным, мы по-прежнему рекомендуем соблюдать осторожность при установ­
ке его в любом общедоступном месте. Дополнительная информация доступна по
адресу http://www.adminer.org.

Утилиты командной строки
MySQL поставляется с некоторыми утилитами командной строки, такими как
mysqladmin и mysql-check. Они перечислены и задокументированы в руководстве
по MySQL. Сообщество, сложившееся вокруг MySQL, в дополнение к этим ути­
литам создало широкий набор высококачественных инструментов с хорошей
документацией.

о Percona Toolkit. Percona Toolkit - обязательный набор инструментов для админи­
страторов MySQL. Он является наследником Maatkit и Aspersa - наборов инстру­
ментов, ранее созданных Бэроном, которые множество пользователей называют

обязательными для всех, кто серьезно развертывает MySQL. Он включает в себя
множество инструментов для таких целей, как анализ журналов, проверка

целостности репликации, синхронизация данных, анализ схем и индексирова­

ния, консультирование по запросам и архивирование данных. Если вы только

начинаете работать с MySQL, предлагаем сначала изучить следующие основные
инструменты: pt-mysql-summary, pt-taЫe-checksum, pt-taЫe-sync и pt-query­
digest. Дополнительная информация доступна по адресу http://www.percona.com/
software/.

О Maatkit и Aspersa. Эти два инструмента в той или иной форме существуют
с 2006 года, и оба считались полезными для пользователей MySQL. Сейчас они
объединены в Percona Toolkit.

о Набор openark. Этот набор, созданный Шломи Ноачем (Shlomi Noach) (http://
code.openark.org/forge/openark-kit), содержит скрипты, написанные на языке Python,
которые можно использовать для самых разных административных задач.

о Утилиты MySQL Workbench. Некоторые из утилит MySQL Workbench можно
использовать в качестве обособленных скриптов Python. Их можно скачать на
https://la unchpad. net/mysql-utilities.

Помимо этих инструментов, существует множество других, которые разработаны
и поддерживаются менее формально. Многие из известных членов сообщества,

758 Глава 16 • Инструменты для пользователей MySQL

сложившегося вокруг MySQL, время от времени создавали свои инструменты,
в основном размещая их на своих сайтах или на MySQI, Forge (http://forge.mysql.com).
Разнообразную информацию можно найти в блоге Planet MySQL (http://planet.mysql.com),
но, к сожалению, для всех этих инструментов нет единого централизованного ка­

талога.

Утилиты SQL
Существует множество бесплатных надстроек и утилит, которые можно использовать

на самом сервере, некоторые из них довольно мощные.

О common_schema. Проект Шломи Ноача common_schema (http://code.openark.org/
forge/common_schema) - это мощный набор подпрограмм и представлений для

серверных скриптов и администрирования. Для MySQL common_schema - как
jQuery для javaScript.

О mysql-sr-lib. Джузеппе Максиа (Giuseppe Maxia) создал библиотеку хранимых
процедур для MySQL, которую вы можете найти по адресу http://www.nongnu.org/
mysql-sr-lib/.

О Репозиторий UDF для MySQL. Роланд Бауман (Roland Bouman) организовал
создание набора пользовательских функций для MySQL, который доступен по
адресу http://www.mysqludf.org.

О MySQL Forge. В MySQL Forge (http://forge.mysql.com) вы найдете сотни программ,
скриптов, фрагментов кода, утилит, подсказок и трюков, распространяемых со­

обществом.

Инструменты мониторинга

Мониторинг MySQL - тема, заслуживающая отдельной книги. Это большая и слож­
ная задача, причем разные приложения зачастую предъявляют различные требова­

ния. Однако мы можем рассказать о некоторых наиболее полезных инструментах
и ресурсах, посвященных этой тематике.

Слово «мониторинг~ чрезвычайно многозначно. Многие употребляют его, подразу­
мевая, что собеседник знает, о чем идет речь. Но наш опыт показывает, что в боль­

шинстве центров, где используется MySQL, имеется необходимость в различных
видах мониторинга.

Мы уделим внимание инструментам как для интерактивного, так и для неинтерак­

тивного мониторинга. Неинтерактивный мониторинг обычно подразумевает наличие

автоматизированной системы, которая собирает результаты измерений и может
уведомить администратора о том, что какой-то параметр вышел за пределы безопас­

ного диапазона. Инструменты интерактивного мониторинга позволяют наблюдать за

работой сервера в режиме реального времени. Каждая категория будет далее описана
в отдельном разделе.

Инструменты мониторинга 759

Вас могут заинтересовать и другие различия между инструментами, например, для

пассивного (примером может служить innotop) и активного мониторинга. В послед­
нем случае инструмент может посылать оповещения или инициировать некоторые

действия (таков, например, Nagios). А быть может, вы ищете утилиту, которая соз­
дает хранилище информации, а не просто отображает текущую статистику. По ходу
изложения будем отмечать и такие детали.

Наш опыт свидетельствует о том, что большинство вычислительных центров MySQL
в первую очередь нуждаются в двух видах мониторинга: мониторинге работоспособ­
ности для обнаружения ситуаций, когда что-то идет не так, и предупреждении о них

и записи показателей для трендов, диагностики, устранения неполадок, планиро­

вания мощности и т. д. Большинство систем хорошо справляются только с одной

из этих задач и не могут справиться с обеими. К сожалению, существуют десятки

инструментов, так что процесс выбора наиболее подходящего становится очень

трудоемким.

Большинство систем мониторинга не проектировались специально для мониторинга

серверов MySQL. Напротив, они представляют собой системы общего назначения,
предназначенные для периодической проверки состояния многих видов ресурсов,

от компьютеров и маршрутизаторов до программного обеспечения (например,
MySQL). Они обычно имеют модульную архитектуру и часто поставляются как
плагины для MySQL.

Как правило, система мониторинга устанавливается на своем собственном сервере
и используется для мониторинга других серверов. Если вы используете ее для мони­

торинга важных систем, он быстро станет важной частью инфраструктуры, поэтому

вам, скорее всего, придется предпринять дополнительные шаги, например сделать

систему мониторинга избыточной с аварийным переключением.

Инструменты мониторинга с открытым исходным кодом

Приведем наиболее популярные системы мониторинга с открытым исходным кодом,
решающие обе задачи.

О Nagios. Nagios (http://www.nagios.org) - вероятно, самая популярная система с от­

крытым исходным кодом для обнаружения неполадок и предупреждения о них.

Она периодически проверяет заданные службы и сравнивает результаты с опреде­
ленными явно или по умолчанию лимитами. Если результаты выходят за пределы

заданного диапазона, то Nagios может запустить программу и/или оповестить
кого-то о неполадках. Система регистрации ответственных лиц и оповещений,

реализованная в Nagios, позволяет поднимать тревогу, направляя оповещение
другому лицу, изменять уведомления или отправлять их в разные места в за­

висимости от времени суток и других условий, а также учитывать запланиро­

ванное время вывода системы из эксплуатации. Nagios также понимает, каковы
зависимости между службами, поэтому не будет беспокоить вас сообщением об
остановке MySQL, если замечает, что сервер недоступен из-за того, что вышел

760 Глава 16 • Инструменты для пользователей MySQL

из строя маршрутизатор на пути к нему или остановлен сам сервер, на котором

работает MySQL.

Nagios может запускать любой исполняемый файл как подключаемый модуль при
условии, что он принимает определенные параметры и генерирует ожидаемый

результат. Поэтому дополнительные компоненты для Nagios пишутся на разных
языках, включая язык оболочки, Perl, Python, Ruby и другие языки скриптов.
И если не удается найти модуль, который делает именно то, что вам надо, то со­

всем несложно написать свой собственный. От него требуется лишь умение при­
нимать стандартные аргументы, завершаться с определенным кодом состояния

и, возможно, выводить текст, который Nagios сможет перехватить.

Однако у Nagios есть серьезные недостатки. Даже хорошо изучив эту систему,
поддерживать ее довольно трудно. К тому же вся конфигурационная информация

хранится в файлах, а не в базе данных. У этих файлов специальный синтаксис,
в котором легко допустить ошибку, а модифицировать конфигурацию по мере раз­
вития и роста наблюдаемых систем - весьма трудоемкое занятие. Nagios не очень
хорошо расширяется: вы можете легко писать плагины для мониторинга, но это

все, что можно сделать. Наконец, средства построения графиков, анализа трендов

и визуализации у нее ограничены. Nagios может хранить некоторые показатели
производительности и другие сведения в базе данных MySQL и генерировать
графики по этим данным, но все же в этом отношении она уступает в гибкости
иным системам. Все эти проблемы усугубляются политикой. Nagios раздваи­
валась минимум дважды из-за реальных или вымышленных трудностей работы

с кодом и персоналом. Версии называются Opsview (http://www.opsview.com) и Icinga
(http://www.icinga.org). Многие предпочитают использовать именно эти системы,
а не Nagios.

Системе Nagios посвящено несколько книг. Нам нравится книга Вольфганга
Барта (Wolfgang Baгth) Nagios System and Netliюrk Monitoring (издательство No
Starch Press).

О Zabbix. Это полнофункциональная система мониторинга и сбора показателей.
Вся конфигурационная информация и прочие данные хранятся в базе, а не в кон­
фигурационных файлах. Кроме того, количество типов сохраняемых данных

больше, чем в Nagios, поэтому она лучше анализирует тенденции и генерирует
более качественные отчеты. Средства построения графиков и визуализации также
значительно лучше, чем в Nagios, и многие считают, что ее проще конфигуриро­
вать, она более гибкая и лучше масштабируется. Дополнительную информацию
можно найти на сайте http://www.zabblx.com.

О Zenoss. Программа написана на языке Python и имеет неб-интерфейс, построенный
на основе технологии Ajax, что повысило быстродействие и продуктивность.
Она умеет автоматически обнаруживать ресурсы в сети и объединяет в одном уни­
фицированном инструменте средства мониторинга, оповещения, анализа тенденций,

построения графиков и сохранения ранее полученных данных. Zenoss использует
протокол SNMP для сбора данных с удаленных компьютеров, но может работать
и по протоколу SSH. Имеется также поддержка подключаемых модулей Nagios.
Дополнительную информацию можно найти на сайте http://www.zenoss.com.

Инструменты мониторинга 761

о Hyperic HQ. Это система мониторинга, написанная на языке java, она в большей
степени ориентирована на так называемый корпоративный мониторинг, чем

другие системы этого класса. Как и Zenoss, умеет автоматически обнаруживать
ресурсы и поддерживает подключаемые модули Nagios, но архитектурно устроена
иначе и более тяжеловесна. Дополнительную информацию можно найти на сайте

http://www.hyperic.com.

о OpenNMS. Система написана нajava, вокруг нее сложилось активное сообщество
разработчиков. Она обладает обычными средствами, такими как мониторинг

и оповещение, к которым добавляет построение графиков и анализ тенденций.
При проектировании ставились следующие цели: высокая производительность

и масштабируемость, автоматизация и гибкость. Как и Hyperic, она предназначена
для мониторинга крупных критически важных систем масштаба предприятия.
Дополнительную информацию можно найти на сайте http://www.opennms.org.

о Groundwork Ореп Source. Система построена на базе Nagios и объединяет Nagios
с несколькими другими инструментами, предоставляя портальный интерфейс.

Быть может, правильнее всего описать ее как систему, которую можно было бы
построить самостоятельно, будь вы экспертом в программах Nagios, Cacti и целом
ряде других и располагай временем для их интеграции друг с другом. Дополнитель­

ную информацию можно найти на сайте http://www.groundworkopensource.com.

Помимо систем, решающих обе задачи, существует множество программ, которые
сосредоточены на сборе показателей и позволяют представлять их графически
и визуализировать, но при этом не проверяют работоспособность. Многие из них по­
строены поверх RRDTool (http://www.rrdtool.org), который хранит данные временных
рядов в файлах с циклической базой данных (RRD). Они агрегируют поступающие
данные, интерполируют отсутствующие значения, если входные сведения не посту­

пают в ожидаемое время, и располагают мощным инструментарием для генерации

красивых графиков. На базе RRDTool разработаны несколько систем. Вот самые
популярные.

о MRTG. Программа Multi Router Traffic Grapher (http://oss.oetiker.ch/mrtg/) пред­
ставляет собой квинтэссенцию систем на базе RRDTool. Она предназначена для
протоколирования сетевого трафика, но может быть обобщена для протоколиро­
вания и визуализации других данных.

О Cacti. Cacti (http://www.cacti.net) - возможно, самая популярная система на базе
RRDTool. Это РНР-интерфейс к RRDTool. Она использует базу данных MySQL
для определения серверов, плагинов, графиков и т. д. Системой управляют ша­

блоны, поэтому вы можете определить их, а затем применить к своим системам.
Бэрон написал очень популярный набор шаблонов для MySQL и других систем
(дополнительную информацию можно получить на http://code.google.com/p/mysql­
cacti-templates/). Они были перенесены в Munin, OpenNMS и ZabЬix.

О Ganglia. Система Ganglia (http://ganglia.sourceforge.net) аналогична Cacti, но пред­
назначена для мониторинга кластеров и grid-cиcтeм, поэтому позволяет просма­
тривать обобщенные сведения по нескольким серверам с возможностью детализи­
ровать отчет до уровня отдельного сервера.

762 Глава 16 • Инструменты для пользователей MySQL

l:J Munin. Система М uniв (http://munin.projects.linpro.no) собирает данные, передает
их RRDToo\, а затем генерирует по ним графики с различными уровнями дета­
лизации. На основе конфигурационных параметров она создает статические

НТМL-файлы, которые можно посмотреть в браузере и легко выявить тенденции.
Определить график нетрудно - требуется создать подключаемый скрипт, кото­
рый выводит информацию в специальном синтаксисе. Мuвiв интерпретирует

эти данные как инструкции по построению графика.

Системы на основе RRDTool имеют некоторые ограничения, такие как невозмож­
ность запросить сохраненные данные с помощью стандартного языка запросов,

невозможность бессрочно хранить данные, проблемы с видами данных, которые

не вписываются легко в простые счетчики или датчики, требование предопределять
показатели и графики и т. д. В идеале мы хотели бы иметь систему, которая может

просто принимать любые показатели, которые вы ей отправляете, без предваритель­
ного определения того, что они собой представляют, и впоследствии строить на их

основе произвольные графики, также без необходимости предопределять их. Веро­
ятно, из того, что мы видели, ближе всего к этому идеалу система Graphite (http://
graphite.wil<idot.com).

Эти системы могут использоваться для сбора, записи и отображения данных и отчетов
в системах MySQL с разной степенью гибкости и различающимися целями. Но им
не хватает действительно гибкого средства оповещения, когда что-то идет не так.

Основная проблема большинства упомянутых нами систем заключается в том, что
они были специально разработаны людьми, недовольными тем, что существующие
системы не вполне соответствуют их потребностям. Поэтому они написали еще одну
систему, которая не вполне соответствует множеству других потребностей других

людей. У большинства этих систем есть фундаментальные ограничения, такие как
странная внутренняя модель данных, которая не всегда хорошо работает. Неприятно
об этом говорить, но в большинстве случаев использование одной из этих систем по­
хоже на попытку забить круглый колышек в квадратное отверстие.

Коммерческие системы мониторинга

Хотя мы знаем множество пользователей MySQL, которые любят использовать
инструменты с открытым исходным кодом, но знаем и тех, которые готовы платить

за патентованное программное обеспечение, если оно улучшает работу и экономит
время и усилия. Вот некоторые из доступных коммерческих вариантов.

1:J MySQL Enterprise Monitor. Этот инструмент включен в подписку на поддержку
MySQL от Orac\e. Он сочетает в себе такие возможности, как мониторинг, из­
мерение показателей и построение графиков, консультационные услуги и анализ

запросов. Он использует агента на серверах для мониторинга своих счетчиков

состояния, включая ключевые показатели операционной системы. Он может

фиксировать запросы двумя способами: через MySQL Proxy или с помощью соот­
ветствующих соединителей MySQL, таких как Conвector/.J для Java или MySQLi
для РНР. Хотя инструмент спроектирован для мониторинга MySQL, его можно

Инструменты мониторинга 763

несколько расширить. Тем не менее вы вряд ли найдете его адекватным средством

мониторинга всех серверов и служб в своей инфраструктуре. Дополнительную
информацию можно получить по адресу http://www.mysql.com/products/en terprise/
monitor.html.

о MONyog. MONyog (http://www.webyog.com) - это система мониторинга без агентов,
основанная на браузере и предназначенная для работы на пользовательском ком­
пьютере. Она запускает НТТР-сервер. Вы можете указать этот сервер браузеру
и использовать систему.

о New Relic. New Relic (http://newrelic.com) представляет собой размещенную в Ин­
тернете и поставляемую как услугу систему управления производительностью

приложений, которая может анализировать производительность всего вашего

приложения, начиная с кода приложения (на Ruby, PHP,Java и других языках)
и заканчивая JavaScript, выполняемым на браузере, вызовами SQL, которые вы
делаете к базе данных, пространством на диске сервера, использованием процес­
сора и другими показателями.

О Circonus. Circonus (https://circonus.com) представляет собой размещенную в Интер­
нете систему мониторинга SaaS и систему оповещения от OmniTI. Агент собирает
показатели с одного или нескольких серверов и пересылает их в Circonus, где вы
просматриваете их через панель управления на основе браузера.

о Monitis. Monitis (http://monitis.com) - это еще одна система мониторинга SaaS с об­
лачным хостингом. Она предназначена для мониторинга всего, а это означает, что

она ничем особо не примечательна. У нее есть бесплатный кузен с минималь­
ной конфигурацией Monitor.us (http://mon.itor.us), у которого также есть плагин
для MySQI,.

О Splunk. Splunk (http://www.splunk.com) - это агрегатор журналов и поисковая систе­
ма, которые помогут вам получить оперативное представление обо всех данных,
сгенерированных компьютером в вашей среде.

О Pingdom. Pingdom (http://www.pingdom.com) удаленно контролирует доступность
и производительность вашего сайта. Существует множество таких сервисов,

как Pingdom, и мы не готовы рекомендовать какой-то конкретный, однако дей­
ствительно советуем использовать какую-либо внешнюю службу мониторинга,
которая сможет известить вас, если ваш сайт недоступен. Многие службы могут
делать гораздо больше, чем просто пинговать или скачивать веб-страницу.

Есть множество других инструментов коммерческого мониторинга - мы могли бы
по памяти назвать десяток или больше. Однако, используя любую систему монито­
ринга, необходимо обращать внимание на их влияние на сервер. Некоторые инстру­
менты довольно неудачные, поскольку разработаны компаниями, не имеющими прак­
тического опыта работы с большими и сильно загруженными МуSQL-системами.
Например, мы решили не одну аварийную проблему отключением функции системы
мониторинга, которая выполняла SHOW TABLE STATUS в каждой базе данных каждую
минуту. (Эта команда чрезвычайно разрушительна для больших систем с большой
нагрузкой на операции ввода/вывода.) Инструменты, которые слишком часто за­

прашивают некоторые таблицы INFORМAТION_SCHEMA, также могут иметь негативные

последствия.

764 Глава 16 • Инструменты для пользователей MySQL

Мониторинг из командной строки с использованием Innotop
Создано несколько инструментов мониторинга на основе командной строки, боль­

шинство из которых тем или иным образом эмулируют инструмент top Unix. Самым
сложным и функциональным является innotop (http://code.google.com/p/innotop/), кото­
рый мы рассмотрим подробнее. Однако существуют и другие, например mtop (http://
mtop.sourceforge.net), mytop (http://jeremy.zawodny.com/mysql/mytop/), а также клоны mytop
с неб-интерфейсом.

Хотя mytop - это клон оригинального top для MySQL, innotop способен выполнять
все, что может и он, а также многое другое, поэтому мы сфокусируемся именно на

inпotop.

Программу innotop написал Бэрон Шварц, один из авторов этой книги. Она в реаль­
ном времени дает представление о том, что происходит на вашем сервере. Несмотря

на свое название, она не ограничивается только мониторингом InnoDB, а способна
мониторить практически любой аспект MySQL. Она предоставляет возможность
вести наблюдение сразу за несколькими экземплярами MySQL. Ко всему прочему,
инструмент очень гибко конфигурируется и допускает расширение.

Перечислим некоторые возможности iпnotop:

О составление списка всех текущих транзакций InnoDB;

О создание списка выполняемых в текущий момент запросов;

о составление списка текущих блокировок и ожиданий блокировок;

о сбор сводной информации о состоянии сервера и переменных, отражающей от­
носительные величины значений;

о установление режимов для вывода информации о внутреннем состоянии InnoDB,
в частности о буферах, взаимоблокировках, ошибках внешнего ключа, вводе/вы­
воде, операциях со строками, семафорах и пр.;

О мониторинг репликации, причем состояние главного и подчиненных серверов

можно увидеть одновременно;

о задание режима для просмотра любых серверных переменных;

О реализация функции группировки серверов, которая позволяет удобно органи-

зовать их логическое расположение на экране;

о задание неинтерактивного режима для применения в командных скриптах.

Установить innotop нетрудно. Можно сделать это из репозитория пакетов для вашей
операционной системы. Или загрузить исходный код с сайта http://code.google.com/p/
innotop/, распаковать его и запустить стандартную процедуру make install:

perl Makefile. PL
make install

У становив программу, вызовите iпnotop из командной строки, и она проведет вас

по всему процессу подключения к серверу MySQL. Поскольку innotop умеет читать
конфигурационный файл ~;. my. cnf, то, возможно, вам придется указать лишь имя

компьютера, на котором работает сервер, и несколько раз нажать клавишу Enter.

Инструменты мониторинга 765

После подключения вы окажетесь в режиме Т (InnoDB Transaction) и увидите список
текущих транзакций InnoDB, показанный на рис. 16.1

Рис. 16.1. innotop в режиме Т (Тransaction)

По умолчанию innotop применяет фильтры , чтобы не загромождать экран (как
и везде в innotop, вы можете писать собственные или модифицировать встроенные
фильтры). На рис. 16.1 большинство траюакций отфильтровано, оставлены только
пять активных. Чтобы отключить фильтр и вывести на экран столько транзакций,

сколько поместится, нажмите клавишу 1.

Н этом режиме iпnotop отображает заголовок и главный список потоков. В заголовке
показана сводная информация об InпoDB, например длина списка истории, коли­

чество неудаленных транзакций, процентная доля ~грязных» буферов в пуле и т. п.

Первым делом нажмите клавишу?, чтобы просмотреть справку. Содержимое этого
ок11а зависит от того, в каком режиме работает innotop, но в любом случае будет при­
веден список горячих клавиш, чтобы можно было увидеть все доступные действия.

На рис. 16.2 изображено окно справки в режиме Т.

Рис. 16.2. Окно справки innotop

766 Глава 16 • Инструменты для пользователей MySQL

Мы не станем подробно рассматривать остальные режимы, но, как легко понять,
глядя на окно справки, возможности innotop весьма обширны.

Единственное, на чем еще мы хотим остановиться, - это выполнение простенькой

настройки с целью продемонстрировать, как можно следить именно за тем, что вы

хотите. Одна из сильных сторон innotop - умение интерпретировать определенные

пользователем выражения, например, выражение Uptime/Questions обозначает параметр
«количество запросов в секунду~. Можно вывести результат, рассчитанный за время

с момента запуска сервера и/или инкрементно с момента последнего опроса.

Таким способом можно добавлять собственные столбцы в отображаемые таблицы.
Например, в режиме Q (Query List - список запросов) имеется заголовок, в котором

демонстрируется сводная информация о сервере. Посмотрим, как модифицировать

его, чтобы отображались сведения о заполненности кэша ключей. Запустите innotop
и нажмите клавишу Q для входа в режим Q. Результат будет выглядеть так, как по­
казано на рис. 16.3.

• [1)(

Q L t (7 f h l) 1 2~21 SЗ 43 40 47 QPS 24 thd S О 40 t . .
CXN wt1en Load QPS Slov QCacheH1 t KCacheH1 t Вpsln Bps~t
SГ•Г 1 Nov 0.01 40 47 о 53.52% 100.00\ 13S.48k 319.S5k
srvr) Total 0.00 140 26 11.9lk б.02\ 96,33'\ ll0.58k 872 50!<

CXN ID User Host DB T1me Quer1I

Рис~ 16.З. innotop в режиме Q (Query List)

Этот снимок экрана обрезан, поскольку в данном случае сам список запросов нас
не интересует - важен только заголовок.

В заголовке показана статистика «Сейчас~ (измеряет инкрементную активность

с момента последнего извлечения данных с сервера утилитой innotop) и «Всего~ (из­
меряет активность с момента запуска сервера MySQL 25 дней назад). Каждое поле
в заголовке является результатом вычисления некоторого выражения, содержащего

значения, которые возвращают команды SHOW STATUS и SHOW VARIABLES. Отображае­
мые по умолчанию поля (см. рис. 16.3) встроены, но легко добавить и собственные.

Нужно лишь включить соответствующий столбец в таблицу заголовка. Нажмите
клавишу л, чтобы запустить редактор таблиц, а затем наберите q_header в ответ на
вопрос о том, какой заголовок вы собираетесь изменять (рис. 16.4). Механизм за­
вершения, вызываемый нажатием клавиши ТаЬ, встроен, так что достаточно нажать

клавишу Q, а затем ТаЬ - для завершения слова.

Рис. 16.4. Добавление заголовка (начало)

Инструменты мониторинга 767

После этого вы увидите определение заголовка в режиме Q (рис. 16.5). Оно пред­
ставлено в виде таблицы, в которой выделен первый столбец. Мы можем перемещать
выделение, переупорядочивать и редактировать столбцы, а также выполнять другие
действия (чтобы увидеть полный перечень, нажмите клавишу?). Но сейчас мы хотим
просто создать новый столбец. Нажмите клавишу N и введите имя столбца (рис. 16.6).

VoCI

О L t (? f h l)
• D)(

1 25+21 53 53 44 14 QPS 24 thd 5 О 40 t . .
Edit1nq taьte def1n1t1on for Q·•ode Header Press ? tor help. q to qu1t .

name hdr 1 аЬе t src
> cxn

\l/ien
load
qps
sto"'
q_cache_hit
key_buffer_l11t
bps_in
bps_out

CXN
When
Load
QPS
Sto"'
QCacheHi t
KCacheКlt

Bpsin •
BpsOut

Connect1on fro~ \lh1ch t he data cxn
Тае scale
Server toad
на" ~any quer1es/sec
Но"' ~any s to"' quнies
QIJery cacl1e h1t ratio
Кеу сэсhе hi t ratio
Bytes per second received Ьу
Ву tes рег second sent Ьу tl1e s

vl1en
$cur->{Threads со

Questions/Up t i~ё_h
Slow_querie~
(Qcache hi ts 110)/(
l· (Key_reads/(f:ey_
Bytes recei ved/Upt
Ву tes=sent/Upt11e_

Рис. 16.5. Добавление заголовка (выбор)

• r.>

Cl1oose а na1e fo r the со tu1n. Th1s na~e is not d1 sp tэyed. and lS on 1 у used f о r
1nternal reference . It c;in only contilП tovercase letters, numbers, and
ш1dе rscores .

El1ter colu1n Ш!.:_ kc_usedl ·

Рис. 16.6. Добавление заголовка (присвоение имени столбцу)

Затем введите заголовок столбца (рис. 16.7) и выберите источник данных для него.
Это выражение, которое innotop компилирует во внутреннее представление в виде
функции. В выражении можно использовать имена переменных, возвращаемых ко­

мандами SHOW VARIABLES и SHOW STATUS. Мы добавили скобки и Регl-оператор or, чтобы
предотвратить деление на нуль, но в остальном это выражение не содержит ничего

сложного. Мы также воспользовались встроенной в innotop функцией преобразова­
ния percent() , чтобы отформатировать результат в виде процента (дополнительную
информацию см. в документации по innotop). Выражение показано на рис. 16.8.

Enter colu~n header: KCacheUsedl

Рис. 16.7. Добавление заголовка (текста над столбцом)

Choose а source for the colu1n's da1a · .

Enter colu~n ~ i ercent(l • ((Key_Ыocks_unused • key_cache_Ыock_s1ze) / (
key_buffer_size\ \1))) . ·. ;":ot . · .

- - :._-:.:. _~_ "t • ·~....' l • '

Рис. 16.8. Добавление заголовка (вычисляемое выражение)

768 Глава 16 • Инструменты для пользователей MySQL

Нажав Enter, вы увидите то же определение таблицы, что и прежде, но внизу по­
явится описание добавленного столбца. Несколько раз нажмите клавишу+, чтобы
поднять этот столбец выше и разместить его в списке после столбца key_buffer _hit ,
а затем Q, чтобы выйти из редактора. Вуаля - новый столбец расположился между
KCacheHit и Bpsln (рис. 16.9). Как видите, настроить программу innotop так, чтобы
она отслеживала именно то, что вам нужно, совсем не трудно. Можно даже написать

подключаемый модуль, если по-другому ничего не получается. Полная документация

по innotop имеется на сайте http://code.google.com/p/innotop/.

1 tl х
OU L t (? f h t) . . 1 251-22 21 17 358 81 QPS 31 thd 5 о 40 l А . ~ . . .

CXN When Load QPS Sl°"' QCacheHi t ксасh~н1 t KCacheused Вpsln
srvr l Now 0.00 358 .81 О 62 . 75~ 100.00\ 100.СЮ\ 157.0бlr:
srvr) Totat 0 .00 140 . 43 ll.92k 6.60\ 96 .32\ 18.87\ 110. 72k

Cxrl ID useг Нost 00 T1te Quer)I

Рис. 16.9. Добавление заголовка (результат)

Итоги главы

Для администрирования MySQL необходимы хорошие инструменты. Вы полу­
чили полезные советы о применении некоторых превосходных инструментов: они

доступны, широко протестированы и популярны, как, например Percona Toolkit
(в девичестве Maatkit). Приступая к работе на новом сервере, самое первое, что мы
делаем, - запускаем pt-summary и pt-mysql-summary. Когда мы работаем на сервере,
то, как правило, наблюдаем за ним и связанными с ним серверами на другом терми­
нале с помощью утилиты innotop.

Инструменты мониторинга являются более сложной темой, поскольку они 0•1ень
важны для организации. Если вы сторонник программ с открытым исходным кодом

и хотите использовать такие системы мониторинга, можете попробовать либо ком­
бинацию Nagios и Cacti с шаблонами для Cacti, созданными Бэроном, либо Zabblx,
если вас не смущает его сложный интерфейс. Если собираетесь применить для мо­
ниторинга MySQL коммерческий инструмент, можете выбрать MySQL Enterprise
Monitor, который неплохо работает у многих знакомых нам пользователей. Если же
хотите иметь что-то, способное контролировать всю вашу среду и все программное
обеспечение и оборудование в ней, вам нужно будет провести собственное исследо­

вание - это более значительная тема, чем мы хотели затронуть в этой книге.

Приложения

Приложение А. Ветки
И· версии MySQL

В главе 1 мы рассмотрели историю поглощения MySQL компанией Sun Microsystems,
а затем приобретения Sun корпорацией Oracle и то, как сервер пережил эти изме­
нения в управлении. Но у этой истории есть продолжение. MySQL теперь доступна
не только для Oracle. В процессе двух поглощений появилось несколько вариантов
MySQL. Хотя большинство пользователей вряд ли захотят использовать что-либо
отличное от официальной версии MySQL от Oracle, варианты на самом деле важны
и оказали существенное влияние на всех пользователей MySQL, даже тех, кто ни­
когда и не подумал бы об их использовании.

За эти годы было создано несколько вариантов MySQL, но испытание временем вы­
держали только три основных - Percona Server, MariaDB и Drizzle. Вокруг каждого
из них сформировалось активное сообщество пользователей, а кроме того, у них
есть и некоторая коммерческая поддержка. Их все поддерживают независимые по­

ставщики услуг.

Как создатели Percona Server, мы в некоторой степени предвзяты, однако считаем,
что это приложение здесь вполне уместно, поскольку мы обеспечиваем обслужи­
вание, поддержку, консультирование, обучение и разработку для всех вариантов
MySQL. Кроме того, мы пригласили Брайана Акера (Brian Aker) и Монти Видениуса
(Monty Widenius), которые создали Drizzle и MariaDB соответственно, для участия
в написании этого приложения, так что это будет не только наша версия истории.

Регсопа Server
Percona Server (http://www.percona.com/software/) вырос из наших усилий, направленных
на решение проблем клиентов. Во втором издании этой книги упоминались некото­
рые из исправлений, которые мы сделали для улучшения журналирования сервера

MySQL и его оснащения инструментами. Это было действительно зарождение
Percona Server. Мы изменили исходный код сервера, столкнувшись с проблемами,
которые нельзя было решить другим способом.

Percona Server должен обеспечивать достижение трех основных целей.

С] Прозрачность. Добавленные инструменты позволяют пользователям лучше ис­
следовать внутренние элементы и поведение сервера. Сюда входят такие функции,

как счетчики в SHOW STATUS, таблицы в INFORMAТION_SCHEМA и особенно новый
уровень детализации в журнале медленных запросов.

С] Производительность. Percona Server включает в себя множество улучшений про­
изводительности и масштабируемости. Производительность важна сама по себе,

Maria DB 771

однако Percona Server повышает также предсказуемость и стабильность уровня
производительности. Основной акцент сделан на подсистеме хранения InnoDB.

о Операционная гибкость. Percona Server содержит множество возможностей,
устраняющих ограничения. Хотя некоторые ограничения кажутся несерьезными,

тем не менее они могут затруднить для оперативного персонала и системных ад­

министраторов запуск MySQL в качестве надежного и стабильного компонента
их инфраструктуры.

Percona Server является обратно совместимой упрощенной заменой для MySQL
с минимальными изменениями, не изменяющими синтаксис SQL, клиент-серверный
протокол или форматы файлов на диске 1 • Все, что работает на М ySQL, будет работать
без изменений и на Percona Server. Для перехода на Percona Server требуется только
выключить MySQL и запустить Percona Server, экспортировать и повторно импор­
тировать данные не нужно. Обратное переключение также безболезненно, и это на
самом деле очень важно: множество проблем можно решить, если выполнить времен­
ное переключение, использовать для диагностики проблемы усовершенствованный
инструментарий, а затем возвратиться к стандартной MySQL.

Мы выбираем улучшения, которые отклоняются от стандартной MySQL только там,
где это необходимо и приносит значительную выгоду. Мы полагаем, что большинству
пользователей вполне хватает возможностей официальной версии MySQL, распро­
страняемой Oracle, и стараемся не уходить от нее далеко.

Percona Server включает в себя подсистему хранения Percona XtraDB, расширенную
версию InnoDB. В ней также реализована обратная совместимость. Например, если
вы создаете таблицу в подсистеме хранения InnoDB, Percona Server автоматически
распознает ее и будет использовать Percona XtraDB. Percona XtraDB также входит
в состав MariaDB.

Некоторые из усовершенствований Percona Server были включены в версию
MySQL Oracle, а ряд других - реализованы несколько иным способом. В резуль­
тате Percona Server стал своего рода предварительной демонстрацией возможно­
стей, которые в отдельных случаях позже могут появиться в стандартной MySQL.
Многие из улучшений, сделанных в Percona Server 5.1 и 5.5, вероятно, будут реа­
лизованы в MySQL 5.6.

Maria DB
После того как Sun приобрела MySQL, Монти Видениус, один из создателей MySQL,
покинул Sun Microsystems из-за разногласий, возникших в ходе работы над MySQL.
Он основал Monty Program АВ и создал MariaDB для культивирования «открытой
среды разработки, которая поощряла бы внешнее участие~. Цели MariaDB - это раз­
витие сообщества, исправление ошибок, реализация множества новых возможностей,
а также интеграция разработанных участниками сообщества функций. Процитируем

Исторически сложилось так, что в форматы файлов было внесено несколько изменений.

По умолчанию они отключены, но при желании их можно включить.

772 Приложение А. Ветки и версии MySQL

Монти еще раз 1 : «Концепция MariaDB заключается в ориентации на пользователя
и клиента, а также на широкое использование патчей и плагинов, разработанных

членами сообщества».

Каковы отличительные особенности MariaDB? По сравнению с Percona Server она
включает в себя гораздо более широкие изменения на сервере. (Большинство круп­

ных новшеств в Percona Server реализованы в подсистеме хранения Percona XtraDB,
а не на уровне сервера.) Например, реализовано много изменений в оптимизаторе

запросов и репликации. Кроме того, она использует подсистему хранения Aria вме­
сто MyISAM для внутренних временных таблиц (тех, которые используются для
сложных запросов, таких как запросы с ключевым словом DISТINCT или подзапросы).

Aria первоначально называлась Maria и во времена Sun рассматривалась как замена
InnoDB. По сути, это отказоустойчивая версия MyISAM.

MariaDB, помимо Percona XtraDB и Aria, содержит ряд подсистем хранения, раз­
работанных членами сообщества, например SphinxSE и РВХТ.

MariaDB является дополнением к существующей MySQL, поэтому все приложения
должны работать без изменений, как и в случае с Percona Server. Тем не менее она
будет работать намного лучше при реализации некоторых сценариев, таких как

сложные подзапросы или соединения многих таблиц. Кроме того, в ней реализован

сегментированный кэш ключей MyISAM, что делает MyISAM гораздо более масшта­
бируемой на современном оборудовании.

Возможно, самым лучшим вариантом MariaDB является MariaDB 5.3 - на момент

написания книги существовала ее предвыпускная версия. Во время подготовки

этой версии была проведена огромная работа над оптимизатором запросов -
сделаны, возможно, самые большие улучшения оптимизатора, которые MySQL
видела за десятилетие. В ней добавлены новые планы выполнения запросов, такие

как хеш-соединения, и исправлены многие проблемные моменты, на которые мы

указали в этой книге, например внешнее выполнение подзапроса. Кроме того,

реализованы значительные расширения для сервера, такие как динамические

столбцы, управление доступом на основе ролей и поддержка микросекундной
метки времени.

Для того чтобы познакомиться с более полным списком улучшений, сделанных

в MariaDB, прочитайте документацию на сайте http://www.askmonty.org или на следу­
ющих сайтах (здесь сведены все изменения): http://askmonty.org/blog/the-2-year-old-mariadb/
и http://kb.askmonty.org/en/what-is-ma rladb-53.

Drizzle
Drizzle - это настоящая ветка MySQL, а не просто вариант или усовершенствование.
Он несовместим с MySQL, хотя и не настолько отличается от нее, чтобы быть не-

Цитаты взяты с сайтов http://monty-says.Ыogspot.com/2009/02/time-to-move-on.html

и http:/ /monty-says.Ьlogspot.com/201 О /03/time-flies-one-year-of-mariadb.html.

Drizzle 773

узнаваемым. В большинстве случаев вы не можете просто отключить сервер MySQL
и заменить его на Drizzle из-за сделанных в нем изменений, таких как необычный
синтаксис SQL.

Drizzle был создан в 2008 году, чтобы лучше удовлетворять потребности пользо­
вателей MySQL. Он разработан для реализации основных функций, необходимых
веб-приложениям. Он четко организован и значительно упрощен по сравнению
с MySQL, количество вариантов в нем гораздо меньше - например, для хранения

символов используется только формат UTF8 и существует лишь один тип BLOB.

Он построен в основном для 64-битного оборудования и поддерживает IРv6-сеть.

Одной из ключевых задач сервера базы данных Drizzle является исключение суще­
ствующих в MySQL неожиданностей поведения и устаревшего функционала, таких
как объявление столбца NOT NULL, а затем обнаружение того, что база данных каким-то
образом хранит в ней значение NULL. Плохо реализованные или громоздкие функции,

которые можно обнаружить в MySQL, такие как триггеры, кэш запросов и команда
INSERT ON DUPLICAТE КЕУ UPDAТE, просто удалены.

Архитектура Drizzle представляет собой микроядра с гибким ядром и плагинами.
Ядро сервера разделено на гораздо меньшие фрагменты кода, чем MySQL. Почти все
функции являются подключаемыми, даже такие как SLEEP(). Это позволяет очень

просто и продуктивно работать с Dizzle на уровне исходного кода.

Drizzle использует стандартные библиотеки с открытым исходным кодом, такие
как Boost, и соответствует стандартам в кодировании, построении инфраструктуры
и API. Она применяет Google Protocol Buffers - формат открытых сообщений для
таких целей, как репликация, и использует модифицированную версию InnoDB
в качестве подсистемы хранения по умолчанию.

Специалисты Drizzle очень рано начали эталонное тестирование на сервере с исполь­
зованием стандартных эталонных тестов с точностью до 1024 потоков для измерения
производительности при высокой конкурентности. Повышение производительности

при высоком уровне конкурентности важнее, чем при низком, и в этом смысле были
достигнуты немалые успехи.

Drizzle создается сообществом пользователей, и их вклад в его разработку как про­
граммы с открытым исходным кодом намного больше, чем в MySQL. Лицензия
сервера - это чистая GPL без двойного лицензирования. Однако - и это один из

самых важных аспектов для разработки коммерческой экосистемы - имеется новая
клиентская библиотека, которая использует клиент-серверный протокол MySQL,
но лицензируется по принципу, действующему в BSD. Это означает, что вы може­
те создать запатентованное приложение, которое подключается к MySQL через
клиентскую библиотеку Drizzle, и вам не нужно приобретать коммерческую лицен­
зию в клиентской библиотеке MySQL или делать свое программное обеспечение
доступным по лицензии GPL. Существование клиентской библиотеки libmysql
для MySQL было одной из основных причин того, что компании покупали ком­
мерческие лицензии для MySQL - без коммерческой лицензии, которая позволя­
ла им ссылаться на libmysql, они были бы вынуждены выпускать свое программное

774 Приложение А. Ветки и версии MySQL

обеспечение под GPL. Этого больше не требуется, поскольку теперь они могут
использовать библиотеку Drizzle.

Drizzle развертывается в некоторых производственных средах, но, насколько мы
знаем, не очень широко. Философия проекта Drizzle, состоящая в отказе от обратной
совместимости, означает, что эта база данных, скорее всего, должна использоваться
для новых приложений, а не для переноса существующих.

Другие варианты MySQL
Имеются или по крайней мере существовали ранее множество других вариантов сер­

вера MySQL. Крупные компании, такие как Google, Facebook и еВау, поддерживают
измененные версии сервера, которые соответствуют их конкретным потребностям

и сценариям развертывания. Большая часть исходного кода этих версий доступна

широкой публике, возможно, наиболее известными примерами являются патчи для
MySQL от Facebook и Google.

Кроме того, было несколько ветвей или более новых дистрибутивов, таких как
OurDelta, Dorsa\Source и просуществовавший некоторое время дистрибутив от
Хенрика Инго (Henrik Ingo).

Вдобавок многие не понимают, что, устанавливая MySQL из репозиториев пакетов
дистрибутива GNU /Linux, они на самом деле получают модифицированную - в не­
которых случаях довольно сильно - версию сервера. Red Hat и DeЬian (а значит,
Fedora и Ubuntu) поставляют нестандартную версию MySQL, то же самое касается
Gentoo и практически всех прочих дистрибутивов GNU /Linux. В отличие от других
вариантов, которые мы назвали, эти дистрибутивы не сообщают, как сильно в них
изменен исходный код сервера, поскольку в имена всех входит название MySQL.

В прошлом у нас было много проблем с модифицированными версиями MySQL.
Это одна из причин, по которой мы склонны выступать за использование версии

MySQL Oracle, если нет веских оснований этого не делать.

Итоги

Ветви и варианты MySQL редко содержали значительное количество кода, который
включали в исходное кодовое дерево MySQL, но тем не менее они существенно
повлияли на направление и темпы развития MySQL. В некоторых случаях они обе­
спечивают превосходную альтернативу. Должны ли вы использовать fork вместо
официального MySQL Oracle? Мы не думаем, что в большинстве случаев это стоит
делать. Выбор обычно основан на ощущениях (они никогда не бывают четкими)
или бизнес-соображениях, таких как наличие общеорганизационных отношений
с Oracle. Есть две категории людей, которые склонны отказаться от официальной
версии сервера:

О те, кто столкнулся с конкретной проблемой, которую нельзя решить без измене­
ния исходного кода;

Итоги 775

О те, кто не доверяют руководству Oracle в отношении MySQL1 и чувствуют себя

более счастливыми с версией, которая, на их взгляд, является версией с действи­

тельно открытым исходным кодом.

Зачем вам выбирать какую-то конкретную ветвь? Мы потдытожим аргументы сле­

дующим образом. Если вы хотите быть как можно ближе к официальной версии

MySQL, но получить лучшую производительность, удобство и полезные функции,
выберите Percona Server. Выбирайте MariaDB, если вам удобнее работать с больши­
ми изменениями на сервере или если вам нужен широкий набор разработок членов

сообщества, таких как, например, дополнительные механизмы хранения. Выберите

Drizzle, если вам нужен скудный, урезанный сервер базы данных и вас не смущает
то, что он несовместим с MySQL, однако вы хотите намного проще вносить свои
собственные улучшения в базу данных.

Насколько популярны разные ветви и варианты? Никто толком не знает, но все

согласны с тем, что, если объединить все развертывания неофициальных версий

MySQL, они составят лишь небольшую долю от числа официальных развертываний
MySQL в мире. Что касается относительной популярности, мы предвзяты, поскольку
многие наши клиенты предпочитают использовать Percona Server, но, насколько мы
видим, на практике самым популярным является Percona Server, на втором месте -
MariaDB.

В целом все поставщики услуг имеют большой опыт работы с официальной MySQL,
но, естественно, в Percona больше всего специалистов по работе с Percona Server, а со­
трудникам Monty Program, соответственно, наиболее знакома MariaDB. Это очень
важно, если вам нужны контракты на поддержку и исправление ошибок. Только

Oracle может гарантировать, что ошибка будет исправлена в официальных версиях
MySQL; другие поставщики могут вносить исправления, но не имеют возможности
включать их в официальные релизы. Это один из ответов на вопрос о том, почему

стоит выбирать ветвь: некоторые выбирают одну из ветвей просто потому, что это

такая версия MySQI~, которую их поставщик услуг полностью контролирует и может

исправлять и улучшать.

Как мы говорили в главе 1, мы на самом деле довольны, что Oracle является владельцем
MySQL.

Приложение Б. Состояние
сервера MySQL

На многие вопросы о сервере MySQL можно ответить, оценив его состояние. MySQL
раскрывает информацию о своем внутреннем состоянии двумя способами: самый
новый - база данных PERFORМANCE_SCHEМA в MySQL 5.5, однако стандартизированная
база данных INFORМAПON_SCHEМA существовала уже в версии MySQL 5.0, кроме того,
имеется набор команд SHOW, которые были практически всегда. Кое-какая информа­
ция, которую можно получить с помощью команд SHOW, пока отсутствует в таблицах
базы INFORМAТION_SCHEМA.

Вы должны знать, как определить, что именно относится к вашей проблеме, как полу­
чить нужную информацию и как ее интерпретировать. Хотя MySQL предоставляет
очень много сведений о том, что происходит внутри сервера, воспользоваться ими

не так-то легко. Для понимания того, что есть что, нужно терпение, опыт и свободный
доступ к руководству по MySQL. Кроме того, могут помочь хорошие инструменты.

Это приложение является главным образом справочным материалом, однако вы
сможете найти здесь также кое-какую информацию о внутреннем устройстве сервера,

особенно в разделах, посвященных InnoDB.

Системные переменные

MySQL показывает множество серверных системных переменных в результате при­
менения команды SHOW VARIABLES. Их можно использовать в выражениях, а также
в командной строке, запуская программу mysqladmin. Начиная с версии 5.1, доступ
к ним можно получить через таблицы базы данных INFORМAТION_SCHEМA.

Эти переменные представляют разнообразную конфигурационную информацию,
например подразумеваемую по умолчанию подсистему хранения (storage_engine),
поддерживаемые названия часовых поясов, схему упорядочения для соединения

и параметры запуска. О том, как устанавливать и использовать системные перемен­

ные, мы рассказывали в главе 8.

Команда SHOW STATUS
Команда SHOW STATUS выводит переменные состояния сервера в виде таблицы с двумя
столбцами, в которых содержатся имя и значение. В отличие от серверных пере­
менных, упомянутых в предыдущем разделе, эти предназначены только для чтения.

Посмотреть их можно с помощью SQL-команды SHOW STATUS или вызвав программу
mysqladmin extended-status из командной строки. При использовании SQL-команды

Команда SHOW SТATUS 777

можно использовать разделы LIKE и WHERE для фильтрации результатов: оператор LIKE
выполняет стандартное сопоставление имени переменной с шаблоном. В обоих случаях
возвращается таблица результатов, но ее нельзя сортировать, соединять с другими та­
блицами и выполнять иные стандартные операции, применимые к таблицам MySQL.
В MySQL 5.1 и более поздних версиях можно извлекать значения непосредственно
из таблиц INFORМAТION_SCHEМA.GLOBAL_STATUS и INFORМAТION_SCHEМA.SESSION_STATUS.

0
11~.

' • 4,'

Мы используем термин «переменная состояния», говоря о переменных, которые
выводит команда SHOW SТATUS, и термин «серверная системная переменная»,
когда речь идет о конфигурационной переменной сервера .

Поведение команды SHOW STATUS в версии MySQL 5.0 существенно изменилось, но
этого можно не заметить, если специально не присматриваться. Теперь MySQL под­
держивает некоторые переменные глобально, а другие - на уровне отдельного соеди­
нения. Таким образом, SHOW STATUS выводит и глобальные, и сеансовые переменные.
У многих из них двойная область видимости: глобальные и сеансовые переменные
называются одинаково. Кроме того, команда SHOW STATUS теперь по умолчанию по­
казывает только сеансовые переменные, так что, если вы привыкли просматривать

с ее помощью глобальные, вас ждет разочарование. Для просмотра глобальных пере­
менных нужно выполнить команду sнow GLOBAL STATUS1•

Существуют сотни переменных состояния, и с каждой новой версией их количество

увеличивается. Большинство представляют собой счетчики либо содержат текущее
значение какого-то показателя. Счетчики увеличиваются всякий раз, как MySQL
выполняет какое-то действие, например инициирует полное сканирование таблицы
(Select_scan). Показатели, в частности количество открытых соединений, могут как
увеличиваться, так и уменьшаться. Иногда несколько переменных относятся к од­

ному и тому же действию, например Connections (количество попыток соединения
с сервером) и Threads_connected (количество подсоединенных потоков). В таком
случае переменные взаимосвязаны, но из их имен это не всегда очевидно.

Счетчики хранятся в виде целых чисел без знака. В 32-разрядных сборках они за­
нимают 4 байта, а в 64-разрядных - 8 байт. По достижении максимального значения
счетчик обращаются в нуль. Когда ведется непрерывный мониторинг переменных,
такой переход через нуль нужно отслеживать и учитывать: следует понимать, что

если сервер проработал довольно долго, то наблюдаемое значение может оказаться
меньше ожидаемого просто потому, что когда-то произошел переход через нуль

(в 64-разрядных сборках эта проблема возникает гораздо реже).

Хороший способ оценить общую рабочую нагрузку состоит в сравнении значения
внутри группы связанных переменных состояния, например при просмотре всех

переменных вида Select_ *или Handler _ *. Если вы используете утилиту innotop, это
легко сделать в режиме Command Summary, но можно и вручную с помощью команды

Здесь вас подстерегает сюрприз: при использовании старой версии mysqladmin с новым
сервером команда SHOW GLOBAL STATUS не вызывается, так что отображается «не­
правильная,,, информация.

778 Приложение Б. Состояние сервера MySQL

mysqladmin extended -r -i60 \ grep Handler _.Вот что показала утилита innotop для
переменных вида Select_ * на одном сервере из тех, что мы проверяли:

Command Summary
Name Value Pct Last Incr Pct
Select_scan 756582 59.89% 2 100.00%
Select_range 497675 39.40% 0 0.00%
Select_full_join 7847 0.62% 0 0.00%
Select_full_range_join 1159 0.09% 0 0.00%
Select_range_check 1 0.00% 0 0.00%

Первые два столбца отображают значения с момента загрузки сервера, а последние
два - с момента последнего обновления (в данном случае это произошло 10 секунд
назад). Процентные значения отражают долю от суммы значений, отображенных на
экране, а не от суммы значений всех запросов.

Для сопоставления текущих и предыдущих снимков состояния и поиска различий

между ними можно использовать также инструмент pt-mext из пакета Percona Toolkit
или этот умный запрос созданный Шломи Ноачем 1 :

SELECT STRAIGHT_JOIN
LOWER(gs0.VARIABLE_NAМE) AS variaЬle_name,
gs0.VARIABLE_VALUE AS value_0,
gsl.VARIAВLE_VALUE AS value_l,
(gsl.VARIABLE_VALUE - gs0.VARIABLE_VALUE) AS diff,
(gsl.VARIABLE_VALUE - gs0.VARIABLE_VALUE) / 10 AS per_sec,
(gsl.VARIABLE_VALUE - gs0.VARIABLE_VALUE) • 60 / 10 AS per_min

FROМ (
SELECT VARIAВLE_NAМE, VARIAВLE_VALUE
FROМ INFORМATION_SCHEМA.GLOВAL_STATUS

UNION ALL
SELECT '', SLEEP{10) FROМ DUAL

) AS gs0
JOIN INFORМATION_SCHEМA.GLOBAL_STATUS gsl USING {VARIABLE_NAМE)

WHERE gsl.VARIABLE_VALUE <> gs0.VARIABLE_VALUE;

+-----------------------+---------+---------+------+---------+---------+
1 variaЫe_name 1 value_0 1 value_l 1 diff 1 per_sec 1 per_min 1

+-----------------------+---------+---------+------+---------+---------+
handler_read_rnd_next 2366 2953 587 58.7 3522
handler_write 2340 3218 878 87.8 5268
open_files 22 20 -2 -0.2 -12
select_full_join 2 3 1 0.1 6
select_scan 7 9 2 0.2 12

+-----------------------+---------+---------+------+---------+---------+

Очень полезно посмотреть на значения всех этих переменных и показателей за по­

следние несколько минут, а также за весь период работы сервера.

Далее приведен обзор - но не исчерпывающий список - различных категорий
переменных, которые вы увидите в выводе команды SHOW STATUS. Для получения
полной информации о данной переменной следует обратиться к руководству по
MySQL, в котором все они хорошо документированы (находится по адресу http://

Впервые опубликован на сайте http://code.openark.org/Ьlog/mysql/mysql-global-status­
difference-using-single-query.

Команда SHOW SТATUS 779

dev.mysql.com/doc/en/ mysqld-option-taЫes.html). Когда мы обсуждаем набор связанных
переменных, имена которых начинаются с общего префикса, то называем эту группу
переменными <prefix>_*.

Статистика потоков и соединений

В следующих переменных отслеживаются:

о попытки соединения - Connections, Max_used_connections, Threads_connected;

о разорванные соединения - Aborted_clients, Aborted_connects;

о статистика сетевого трафика - Bytes_received, Bytes_sent;

о статистика использования потоков - Slow_launch_threads, Threads_cached,
Threads_created, Threads_runnin.

Если Aborted_connects не равна нулю, это свидетельствует, скорее всего, о проблемах
в сети или о неудавшейся попытке соединения (например, из-за того, что введены не­

верный пароль или имя базы данных или, возможно, система мониторинга открыла
ТСР порт 3306 для проверки того, работает ли сервер). Если это значение становится
чрезмерно большим, то возможны серьезные побочные эффекты: MySQL может за­
блокировать хост.

Имя переменной Aborted_clients похоже на имя предыдущей, но смысл ее совершен­
но иной. Увеличение ее значения обычно связано с ошибками в приложении, в част­
ности, из-за того, что программист забыл корректно закрыть соединение с MySQL
перед завершением программы. Как правило, это не является признаком серьезной

проблемы.

Состояние записи в двоичный журнал

Переменные состояния Binlog_cache_use и Binlog_cache_disk_use показывают
соответственно, сколько транзакций было сохранено в кэше двоичного журнала
и размер скольких транзакций оказался настолько велик, что они не поместились

в кэш и их пришлось записывать во временный файл. В MySQL 5.5 есть также пере­
менные Binlog_stmt_cache_use и Binlog_stmt_cache_disk_use, которые показывают
соответствующие показатели для нетранзакционных операторов. Так называемый

коэффициент попадания в бинарный журнал обычно не слишком полезен для на­
стройки размера кэша двоичного журнала (см. главу 8 для получения дополнитель­
ной информации по этой теме).

Счетчики команд

Переменные Com_ * подсчитывают, сколько раз вызывались SQL-команды или функ­
ции С API каждого вида. Например, Com_select - это количество команд SELECT,
а Com_change_db показывает, сколько раз изменялась подразумеваемая по умолчанию
база данных - то ли с помощью команды USE, то ли в результате вызова функции

780 Приложение Б. Состояние сервера MySQL

С АР!. В переменной Questions1 подсчитывается общее количество запросов и команд,
полученных сервером. Однако оно не равно сумме всех переменных Com_ * из-за по­
падания в кэш запросов, закрытых и разорванных соединений и, возможно, других

факторов.

Значение переменной состояния Com_admin_commands может быть очень велико.
Она подсчитывает не только административные команды, но и пинг-запросы к само­

му экземпляру сервера MySQL. Эти запросы выдаются с помощью функции С АР!
и обычно исходят из клиентского кода, например такого (на языке Perl):

my $dbh = DBI->connect(.•.);
while ($dbh && $dbh->ping) {

Что-то сделать
}

Такие рing-запросы считаются мусорными. Быть может, они не слишком нагружа­

ют сервер, но все равно впустую транжирят его ресурсы. Нам встречались системы

объектно-реляционного отображения (в голову приходит Ruby on Rails), которые
пингуют сервер перед каждым запросом, что абсолютно бессмысленно. Пингование
сервера, а затем запрос - это классический пример паттерна проектирования qHe зная

броду, не суйся в воду>.>, который создает гонку. Приходилось нам видеть и библиоте­
ки абстрагирования баз данных, в которых перед каждым запросом подразумеваемая
база изменяется, в результате чего значение переменной Com_change_db оказывается
очень велико. Того и другого лучше избегать.

Временные таблицы и файлы

Посмотреть переменные, в которых подсчитывается, сколько раз MySQL создавала
временные таблицы и файлы, можно такой командой:

mysql> sнow GLOBAL STATUS LIKE 'Created_tmp%';

Она показывает статистику по неявным временным таблицам и файлам, которые
создаются внутри базы данных для выполнения запросов. В Ре1тоnа Server также
есть команда, которая может отображать явные временные таблицы, которые создают
пользователи с помощью команды СRЕАТЕ ТEMPORARY TABLE:

mysql> sнow GLOBAL TEMPORARY TABLES;

Операции обработчиков

API обработчиков - это интерфейс между MySQL и ее подсистемами хранения.
Переменные Handler _ * подсчитывают, например, сколько раз MySQL просила
подсистему хранения прочитать следующую строку из индекса. Посмотреть на них

можно с помощью такой команды:

mysql> SHOW GLOBAL STATUS LIKE 'Handler_%';

В MySQL 5.1 эта переменная разделена на две: Questions и Queries с чуть-чуть различа­
ющимся смыслом.

Команда SHOW SТATUS 781

Буфер ключей MyISAM
Переменные Кеу _ * содержат показатели и счетчики, характеризующие буфер ключей
MyISAM. Посмотреть на них можно с помощью команды:

mysql> sнow GLOBAL STATUS LIKE 'Кеу_%';

Дескрипторы файлов

Если вы применяете главным образом подсистему хранения MyISAM, то пере­
менные Open_ * сообщат, как часто MySQL открывает файлы с расширениями .frm,
.MYI и .MYD. InnoDB хранит все данные в файлах табличного пространства, поэтому,
если вы используете преимущественно InnoDB, эти переменные не столь важны.
Посмотреть на переменные Open_ * можно с помощью такой команды:

mysql> SHOW GLOBAL STATUS LIKE 'Ореп_%';

Кэш запросов

Оценить работу кэша запросов позволяют переменные состояния Qcache_ *:

mysql> SНOW GLOBAL STATUS LIKE 'Qcache_%';

Типы команд SELECТ

В переменных Select_ * подсчитывается количество запросов определенных типов
SELECT. Они полезны, когда нужно оценить соотношение между запросами с разными
планами выполнения. К сожалению, для других типов команд, в частности UPDATE
и REPLACE, соответствующих переменных состояния не существует, однако для из­

учения производительности запросов, отличных от SELECT, можно воспользоваться
переменными состояния Handler _ * (см. ранее). Чтобы увидеть все переменные
Select_*, выполните такую команду:

mysql> SHOW GLOBAL STATUS LIKE 'Select_%';

На наш взгляд, переменные Select_ * можно расположить в порядке возрастания
затрат на запрос следующим образом.

Q Select_range. Количество операций соединения, в которых просматривался диа­
пазон индекса для первой таблицы.

Q Select_scan. Количество операций соединения, в которых выполнялось полное
сканирование первой таблицы. В этом нет ничего плохого, если в результат соедине­
ния должны войти все строки из первой таблицы, но никуда не годится, если нужны
только определенные строки, а для их эффективной выборки нет индекса.

Q Select_full_range_join. Количество операций соединения, в которых исполь­
зовалось значение из таблицы п для выборки строк по диапазону индекса для
таблицы п + 1. В зависимости от запроса затраты могут быть как выше, так и ниже,
чем при Select_scan.

782 Приложение Б. Состояние сервера MySQL

1:1 Select_range_check. Количество операций соединения, в которых для каждой
строки из таблицы п приходилось заново оценивать индексы таблицы п + 1, чтобы
понять, какой из них окажется наименее затратным. Обычно это означает, что

у таблицы п + 1 нет индексов, полезных для соединения. Издержки для такого
плана выполнения очень высоки.

1:1 Select_full_join. Количество перекрестных соединений либо соединений, для ко­
торых не заданы критерии отбора строк из таблиц. Количество просматриваемых
в этом случае строк равно произведению количества строк во всех соединяемых

таблицах. Обычно это очень плохо.

Обычно две последние переменные не должны быстро увеличиваться, однако, если
так происходит, это может оказаться индикатором плохого запроса. Дополнительную

информацию о том, как найти такие запросы, см. в главе 3.

Операции сортировки

Мы много говорили об оптимизации сортировки в нескольких предыдущих главах,
поэтому вы уже должны хорошо представлять себе механизм ее работы. Если MySQL
не может воспользоваться индексом для выборки строки в нужном порядке, то она
вынуждена прибегнуть к файловой сортировке, в результате чего увеличиваются пере­
менные состояния Sort_ *.Если не считать переменную Sort_merge_passes, то повлиять
на их значения можно только путем добавления индексов, которые MySQL могла бы
задействовать для сортировки. Что касается переменной Sort_merge_passes, то она за­
висит от серверной переменной sort_buffer _size (не путайте с серверной переменной
myisam_sort_buffer _size). MySQL использует буфер сортировки для хранения порции
обрабатываемых строк. После сортировки они объединяются с ранее вычисленным
результатом, переменная Sort_merge_passes увеличивается на 1 и буфер заполняется
следующей порцией строк. Однако не стоит использовать эту переменную в качестве

руководства при определении размера буфера сортировки, как показано в главе 3.

Посмотреть на переменные Sort_ * можно с помощью такой команды:

mysql> sнow GLOBAL STATUS LIKE 'Sort_%';

MySQL увеличивает переменные Sort_scan и Sort_range, когда читает отсортирован­
ные строки из результата файловой сортировки и возвращает их клиенту. Разница

между ними в том, что первая переменная увеличивается, когда план запроса привел

к увеличению Select_scan (см. предыдущий раздел), а вторая - когда увеличивается

Select_range. Оба вида сортировки идентичны с точки зрения реализации и затрат -
переменные просто отражают различие между типами планов запроса, приведших

к сортировке.

Блокирование таблиц

Переменные TaЫe_locks_immediate и TaЬle_locks_wai ted говорят о том, сколько бло­
кировок было выдано немедленно, а скольких пришлось ждать. Но имейте в виду, что
они отражают статистику блокировки на уровне сервера, а не подсистемы хранения.

Команда SHOW INNODB SТATUS 783

Переменные, относящиеся к InnoDB
Переменные Innodb_ *показывают некоторые данные, выдаваемые командой SHOW

ENGINE INNODB STATUS, которая рассматривается далее в этом приложении. Эти пере­

менные можно сгруппировать по имени: Innodb_buffer _pool_ *, Innodb_log_ * и т. д.
Внутренние механизмы InnoDB мы обсудим подробнее, когда будем говорить о ко­
манде SHOW ENGINE INNODB STATUS.

Эти переменные, появившиеся в версии MySQL 5.0, имеют важный побочный эф­
фект: при их просмотре запрашивается глобальная блокировка, которая удерживает­

ся в течение времени обхода всего буферного пула InnoDB. И пока это происходит,
остальные потоки блокируются и вынуждены ждать. Это искажает некоторые пере­
менные состояния, например Threads_running, значение которой оказывается выше,

чем обычно (иногда даже существенно выше, все зависит от того, насколько занят

сервер). Тот же эффект проявляется при выполнении команды SHOW ENGINE INNODB

STATUS и доступе к статистике с помощью таблиц INFORMAТION_SCHEMA (начиная

с версии MySQL 5.0 команды SHOW STATUS и SHOW VARIABLES реализованы с помощью

запросов к таблицам INFORМAТION_SCHEМA).

Поэтому в упомянутых версиях MySQL такие операции могут оказаться весьма за­
тратными - слишком частые проверки состояния сервера (скажем, раз в секунду)

сопряжены с заметными издержками. Использование команды SHOW STATUS LIKE

не помогает, так как сначала извлекаются все переменные состояния, а уже потом

отсеиваются ненужные.

В MySQL 5.5 гораздо больше переменных, чем в 5.1, а еще больше их в Percona Server.

Переменные, относящиеся к подключаемым модулям

Начиная с версии MySQL 5.1, поддерживается новая архитектура подключаемых
подсистем хранения и предоставляется механизм для регистрации подсистемами

собственных переменных состояния и конфигурации. Такие переменные появятся,

если вы подключите соответствующую подсистему хранения. Они всегда начинаются

с названия подключаемого модуля.

Команда SHOW INNODB STATUS
Подсистема хранения InnoDB выдает массу информации о своем внутреннем со­
стоянии по команде SHOW ENGINE INNODB STATUS или по ее более старому синониму
SHOW INNODB STATUS.

В отличие от большинства других команд SHOW, она выводит одну строку, а не табли­

цу, состоящую из строк и столбцов. Строка разделена на секции, в каждой из которых

представлены сведения о каком-то одном аспекте InnoDB. Часть этой информации
представляет интерес в основном для разработчиков InnoDB, но в остальном она
весьма полезна и даже необходима любому, кто желает разобраться в работе InnoDB
и настроить ее для получения максимальной производительности.

784 Приложение Б. Состояние сервера MySQL

Старые версии IппоDВ обычно выводят 64-разрядные числа двумя блоками:
старшие 32 бита и младшие 32 бита. Примером может служить идентификатор
транзакции: TRANSACПON О 3793469. Чтобы получить полное 64-разрядное
значение, нужно сдвинуть первое число на 32 бита влево и прибавить к нему
второе. Мы продемонстрируем эту технику позже.

Среди прочего команда SHOW ENGINE INNODB STATUS выводит определенную усред­

ненную статистику, например количество вызовов fsync() в секунду. Усреднение
производится за период с момента последнего выполнения команды, поэтому, если

вы хотите изучить статистику, запрашивайте ее с интервалами примерно 30 секунд,
чтобы данные успели накопиться. Не все результаты генерируются строго в один
и тот же момент, поэтому средние вычисляются за разные промежутки времени.

Кроме того, в InnoDB есть внутренний интервал сброса, он непредсказуем и меняется
от версии к версии. Необходимо обращать внимание на то, за какой временной проме­
жуток сгенерированы средние, поскольку в разных выборках он может различаться.

Результат содержит достаточно информации, чтобы при желании вручную вы­
числить среднее большинство значений. Однако большую помощь может оказать
инструмент мониторинга, например программа innotop, который сам вычисляет
разности между последовательными выборками и производит усреднение.

Заголовок

Первая секция представляет собой заголовок, который знаменует начало вывода,
содержит текущие дату и время, а также показывает, какой интервал прошел с мо­

мента последней распечатки. В строке 2 мы видим текущие дату и время. В строке 4
указано, за какой период производилось усреднение: либо со времени последней
распечатки, либо с момента внутреннего сброса:

1 =====================================
2 070913 10:31:48 INNODB МONITOR OUTPUT
3 =====================================
4 Per second averages calculated from the last 49 seconds

Секция SEMAPHORES
Если рабочая нагрузка характеризуется высокой конкурентностью, то имеет смысл
обратить внимание на секцию SEМAPHORES. В ней приведены данные двух видов: счет­
чики событий и текущий список ожиданий (его может и не быть). Если вы видите
какие-то узкие места, то эта информация поможет определить причину их появления.

К сожалению, выявить такие места недостаточно, надо еще понять, что с ними делать,

а это уже сложнее. Но некоторые рекомендации мы дадим. Вот пример распечатки:

1 ----------
2 SEМAPHORES

3 ----------
4 05 WAIT ARRAV INFO: reservation count 13569, signal count 11421

Команда SHOW INNODB SТAТUS 785

5 --Thread 1152170336 has waited at ./ .. /include/buf0buf.ic line 630 for 0.00
seconds the semaphore:

6 Mutex at 0х2а957858Ь8 created file buf0buf.c line 517, lock var 0
7 waiters flag 0
8 wait is ending
9 --Thread 1147709792 has waited at ./ .. /include/buf0buf.ic line 630 for 0.00

seconds the semaphore:
10 Mutex at 0х2а957858Ь8 created file buf0buf.c line 517, lock var 0
11 waiters flag 0
12 wait is ending
13 Mutex spin waits 5672442, rounds 3899888, 05 waits 4719
14 RW-shared spins 5920, 05 waits 2918; RW-excl spins 3463, OS waits 3163

В строке 4 приводится информация о массиве ожиданий операционной системы -
это массив слотов. InnoDB резервирует слоты в массиве семафоров. Семафор - это

примитив операционной системы, с помощью которого она сигнализирует потокам,

что ожидание закончилось и они могут продолжить работу. В этой строке показано,
сколько раз InnoDB пришлось использовать механизм ожиданий операционной
системы. Счетчик резервирования (reservation count) сообщает, как часто InnoDB
выделяла слоты, а счетчик сигналов (signal count) - сколько раз потокам посылались

сигналы с помощью семафоров из этого массива. Как мы скоро увидим, ожидание

с помощью примитивов ОС более затратно, чем активное ожидание (spin wait).

В строках 5-12 показаны потоки InnoDB, которые в данный момент ожидают осво­
бождения мьютекса. В этом примере мы видим два ожидания, каждое из которых
начинается словами -- Thread <num> has waited Если бы рабочая нагрузка
не характеризовалась высокой конкурентностью, заставляющей InnoDB прибегать
к услугам ОС, то эта секция была бы пуста. Если вы знакомы с исходным кодом
InnoDB, весьма полезной информацией станет имя файла, в котором поток ожидает
события. Оно позволяет понять, в каком месте InnoDB возникают горячие точки.
Например, если много потоков ожидают в файле bufObuf. ic, то имеется конкуренция
за буферный пул. В распечатке также показано, как долго поток ждет, а поле wai ters
flag говорит о том, сколько потоков стоят в очереди к мьютексу.

Фраза wait is ending означает, что мьютекс уже освободился, но операционная
система еще не запланировала выполнение потока.

Может возникнуть вопрос: чего именно ждет InnoDB? Эта подсистема применяет
мьютексы и семафоры для защиты критических участков кода, разрешая их выпол­

нение лишь одному потоку одновременно или блокируя выполняющие операции

записи потоков при наличии потоков читающих и т. д. В коде InnoDB имеется
множество критических секций, и при определенных условиях в распечатке может

появиться любая из них. Чаще всего речь идет о получении доступа к странице
буферного пула.

После списка ожидающих потоков, в строках 13 и 14, мы видим дополнительные счет­
чики событий. В строке 13 показаны несколько счетчиков, относящихся к мьютексам,
а в строке 14 - к разделяемым и монопольным блокировкам чтения/записи. И в том

и в другом случае демонстрируется, сколько раз InnoDB прибегала к ожиданию на
уровне ОС.

786 Приложение Б. Состояние сервера MySQL

В InnoDB применяется многоступенчатая стратегия ожидания. Сначала она пыта­
ется дождаться блокировки с помощью активного ожидания. Если после заранее
заданного числа итераций (определенных конфигурационным параметром innodb_
sync_spin_loops) получить блокировку не удалось, она обращается к более дорогому
и сложному массиву ожиданий 1 •

Активное ожидание, как правило, не очень затратно, но на него расходуется время

процессора, поскольку программа постоянно проверяет, можно ли заблокировать

ресурс. Это не так плохо, как может показаться, поскольку обычно у процессора есть
свободные циклы, пока он ожидает завершения ввода/вывода. И даже если свободных
циклов нет, все равно активное ожидание гораздо менее затратно, чем альтернатив­

ные способы. Однако опрос в цикле монополизирует процессор, не допуская к нему
другие потоки, в которых, возможно, нашлась бы полезная работа.

Альтернативой активному ожиданию является контекстное переключение на уровне

операционной системы, в результате которого другой поток получает возможность

поработать, пока первый ждет. Спящий поток будет разбужен сигналом от семафора
в массиве ожиданий. Сигнализация с помощью семафора реализована эффективно,

но вот контекстное переключение - очень затратная операция. Причем она произ­

водит кумулятивный эффект: тысячи контекстных переключений могут привести

к ощутимым издержкам.

Можно попытаться соблюсти баланс между активными ожиданиями и ожиданиями
на уровне ОС, изменив системную переменную innodb_sync_spin_loops. Если коли­
чество активных ожиданий в секунду не слишком велико (порядка сотен или тысяч),

то можно о них особо не беспокоиться. Это решение обычно нужно принимать,
анализируя исходный код или консультируясь с экспертами. Вы также можете рас­

смотреть использование Peгfoгmance Schema или посмотреть на результаты работы
команды SHOW ENGINE INNODB МUТЕХ.

Секция LATESТ FOREIGN КЕУ ERROR

Следующая секция, LAТEST FOREIGN КЕУ ERROR, появляется только в том случае,

если появились ошибки внешнего ключа. В исходном коде много мест, где могут
генерироваться такие ошибки, причем причины у них бывают разные. Иногда это

родительские либо дочерние строки, которые транзакция искала в попытке вставить,
обновить или удалить запись. А иногда виновато рассогласование между таблицами,

обнаруженное при попытке добавить или удалить внешний ключ. Также проблема
может возникнуть из-за изменения структуры таблицы, в которой уже есть внешний
ключ.

Информация, приведенная в этой секции, очень полезна для выяснения точных

причин сообщений об ошибках внешнего ключа, которые зачастую звучат туманно.

В версии MySQL 5.1 код массива ожиданий был переписан и стал гораздо более эффек­
тивным.

Команда SHOW INNODB SТAТUS 787

Рассмотрим несколько примеров. Для начала создадим две таблицы, связанные
внешним ключом, и вставим в них данные:

CREATE TABLE parent (
parent_id int NOT NULL,
PRIМARY KEY(parent_id)

) ENGINE=InnoDB;
CREATE TABLE child (

parent_id int NOT NULL,
КЕУ parent_id (parent_id),
CON5TRAINT child_ibfk_l FOREIGN КЕУ (parent_id) REFERENCE5 parent (parent_id)

ENGINE=InnoDB;

IN5ERT INTO parent(parent_id) VALUE5(1);
IN5ERT INTO child(parent_id) VALUE5(1);

Существуют два широких класса ошибок внешнего ключа. В первый попадают ошиб­
ки, которые возникают при добавлении, обновлении и удалении данных таким об­
разом, что нарушается ограничение внешнего ключа. Например, вот что произойдет,

если мы удалим строку из родительской таблицы:

DELETE FROМ parent;
ERROR 1451 (23000): Cannot delete or update а parent row: а foreign key constraint
fails ('test/child', CON5TRAINT 'child_ibfk_l' FOREIGN КЕУ ('parent_id') REFERENCE5
'parent' ('parent_id'))

Текст здесь понятен, такие сообщения выдаются при любой попытке добавить, обно­
вить или удалить строки так, что это приведет к рассогласованию. Вот что покажет

в этом случае команда SHOW ENGINE INNODB STATUS:

1
2
3

LATE5T FOREIGN КЕУ ERROR

4 070913 10:57:34 Transaction:
5 TRANSACTION 0 3793469, ACTIVE 0 sec, process no 5488, 05 thread id 1141152064

updating or deleting, thread declared inside InnoDB 499
6 mysql taЫes in use 1, locked 1
7 4 lock struct(s), heap size 1216, undo log entries 1
8 My5QL thread id 9, query id 305 localhost baron updating
9 DELETE FROM parent
10 Foreign key constraint fails for tаЫе 'test/child':
11
12 CON5TRAINT 'child_ibfk_l' FOREIGN КЕУ ('parent_id') REFERENCES 'parent'

('parent_ id')
13 Trying to delete or update in parent tаЫе, in index 'PRIMARY' tuple:
14 DATA TUPLE: 3 fields;
15 0: len 4; hex 80000001; asc ;; 1: len 6; hex 00000039e23d; asc 9 =;;

2: len 7; hex 000000002d0e24; asc - $;;
16
17 But in child tаЫе 'test/child', in index 'parent_id', there is а record:
18 PHY5ICAL RECORD: n_fields 2; compact format; info Ыts 0
19 0: len 4; hex 80000001; asc ;; 1: len 6; hex 000000000500; asc

В строке 4 демонстрируются дата и время последней ошибки, связанной с внешним
ключом. В строках 5-9 приведены подробные сведения о транзакции, в которой
произошла ошибка (мы поясним их смысл чуть позже). В строках 10-19 точно

788 Приложение Б. Состояние сервера MySQL

описывается, что именно пыталась изменить InnoDB, когда обнаружила проблему.
В основном это данные строки, приведенные к печатаемому виду (об этом мы тоже
еще поговорим).

Есть еще один класс ошибок внешнего ключа, которые отлаживать куда труднее. Вот
что произойдет, если мы попытаемся изменить структуру родительской таблицы:

ALTER TABLE parent MODIFY parent_id INT UNSIGNED NOT NULL;
ERROR 1025 (НУ000): Error on rename of './test/#sql-1570_9' to './test/parent'
(errno: 150)

Это сообщение уже не так понятно, но SHOW ENGINE INNODB STATUS проливает свет
на причину ошибки:

1 ------------------------
2 LATEST FOREIGN КЕУ ERROR
3 ------------------------
4. 070913 11:06:03 Error in foreign key constraint of tаЫе test/child:
S there is no index in referenced tаЫе which would contain
6 the columns as the first columns, or the data types in the
7 referenced tаЫе do not match to the ones in tаЫе. Constraint:
8 ,
9
10
11
12

CONSTRAINT child_ibfk_l FOREIGN КЕУ (parent_id) REFERENCES parent (parent_id)
The index in the foreign key in tаЫе is parent_id
See http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html
for correct foreign key definition.

В данном случае она возникла из-за различных типов данных. Столбцы, связанные
внешним ключом, должны иметь одинаковые типы данных, включая все модифика­

торы (в частности, UNSIGNED, из-за которого и произош.тiа ошибка). Если вы видите
ошибку 1025 и не понимаете, в чем дело, то начинать расследование нужно с изучения
распечатки SHOW ENGINE INNODB STATUS.

Сообщения об ошибках внешнего ключа перезаписываются каждый раз, когда по­
является новая ошибка. Инструмент pt-fk-error-logger из пакета Percona Toolkit
поможет вам сохранить их для последующего анализа.

Секция LATEST DЕТЕСТЕD DEADLOCK
Как и секция, относящаяся к внешним ключам, секция LAТEST DЕТЕСТЕD DEADLOCK
присутствует только в случае, если сервер обнаружил взаимоблокировку. Сообщения
об ошибках взаимоблокировки также перезаписываются каждый раз, когда появля­
ется новая ошибка, а инструмент pt-deadlock-logger от Percona Toolkit поможет вам
сохранить их для последующего анализа.

Взаимоблокировка возникает при наличии цикла в графе ожиданий (wait-for graph),
где представлены строки, на которые удерживается блокировка, и строки, для ко­
торых ожидается освобождение блокировки. Этот цикл может быть произвольно
большим. InnoDB обнаруживает взаимоблокировки мгновенно, так как проверяет
наличие цикла всякий раз, когда транзакция вынуждена ждать освобождения бло­
кировки строки. Взаимоблокировки могут быть весьма сложными, но в этой секции
показаны только последние две участвующие транзакции, завершающая команда

Команда SHOW INNODB SТATUS 789

в каждой из них и блокировки, образовавшие цикл в графе. Вы не увидите ни дру­
гих транзакций, которые, возможно, вносят свой вклад в цикл, ни команды, которая

в действительности захватила блокировки, если она была не последней. Тем не менее
изучение этой распечатки обычно помогает выявить причину взаимоблокировки.

На самом деле в InnoDB есть две разновидности взаимоблокировок. Первая, знакомая
многим, связана с наличием реального цикла в графе ожиданий. Вторая возникает,

когда граф ожиданий настолько велик, что искать в нем циклы слишком затратно. Если

требуется проверить граф, содержащий более 1 миллиона блокировок, или во время
проверки транзакций глубина рекурсии превысит 200, то InnoDB сдается и считает,
что взаимоблокировка имеется. Эти константы зашиты в код InnoDB и не конфигу­
рируются (хотя при желании их можно изменить, перекомпилировав исходный код

InnoDB). О наличии такой взаимоблокировки свидетельствует сообщение в распечатке
ТОО DEEP OR LONG SEARCH IN ТНЕ LOCK TABLE WAIТS-FOR GRAPH («Слишком глубокий или
продолжительный поиск в графе ожиданий блокировок>)).

InnoDB выводит не только номера транзакций и блокировки, которые они удержи­
вают или ожидают, но и сами записи. Эта информация полезна главным образом
разработчикам InnoDB, но в настоящее время отключить ее вывод невозможно.
К сожалению, она может заполнить все место, отведенное для распечатки, так что

вы не увидите последующие секции. Единственный способ как-то поправить ситуа­
цию - сделать так, чтобы вместо большой взаимоблокировки возникала маленькая,
или использовать Percona Server, в котором добавлены переменные конфигурации,
запрещающие вывод слишком подробного текста.

Далее приведен пример сведений о взаимоблокировке:

1 ------------------------
2 LATEST DETECTED DEADLOCK
3 ------------------------
4 070913 11:14:21
5 *** (1) TRANSACTION:
6 TRANSACTION 0 3793488, ACTIVE 2 sec, process no 5488, OS thread id 1141287232

starting index read
7 mysql taЫes in use 1, locked 1
8 LOCK WAIT 4 lock struct(s), heap size 1216
9 MySQL thread id 11, query id 350 localhost baron Updating
10 UPDATE test.tiny_dl SET а = 0 WHERE а <> 0
11 *** (1) WAITING FOR THIS LOCK ТО 8Е GRANTED:
12 RECORD LOCKS space id 0 page no 3662 n bits 72 index 'GEN_CLUST_INDEX' of tаЫе

'test/tiny_dl' trx id 0 3793488 lock_mode Х waiting
13 Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
14 0: len 6; hex 000000000501 ... [опущено] ...
15
16 *** (2) TRANSACTION:
17 TRANSACTION 0 3793489, ACTIVE 2 sec, process no 5488, 05 thread id 1141422400

starting index read, thread declared inside InnoDB 500
18 mysql taЫes in use 1, locked 1
19 4 lock struct(s), heap size 1216
20 MySQL thread id 12, query id 351 localhost baron Updating
21 UPDATE test.tiny_dl SET а = 1 WHERE а <> 1
22 *** (2) HOLDS ТНЕ LOCK(S):
23 RECORD LOCKS space id 0 page no 3662 n bits 72 index 'GEN_CLUST_INDEX' of tаЫе

'test/tiny_dl' trx id 0 3793489 lock mode 5

790 Приложение Б. Состояние сервера MySQL

24 Record lock, heap по 1 PHYSICAL RECORD: п_fields 1; compact format; iпfo bits 0
25 0: . . . [опущено] ...
26
27 *** (2) WAITING FOR THIS LOCK ТО ВЕ GRANTED:
28 RECORD LOCKS space id 0 page по 3662 п bits 72 iпdex "GEN_CLUST_INDEX' of tаЫе

'test/tiпy_dl' trx id 0 3793489 lock_mode Х waitiпg
29 Record lock, heap по 2 PHYSICAL RECORD: п_fields 4; compact format; iпfo bits 0
30 0: lеп 6; hex 000000000501 ..• [опущено] ...
31
32 *** WE ROLL ВАСК TRANSACTION (2)

В строке 4 показано, когда произошла взаимоблокировка, а в строках 5-1 О приведены
сведения о первой участвующей в ней транзакции. Назначение отдельных полей мы

объясним в следующем разделе.

В строках 11-15 показаны блокировки, которых ожидала транзакция 1 в момент,
когда была обнаружена взаимоблокировка. Кое-какую информацию в строке 14,
полезную только для отладки InnoDB, мы опустили. Обратите особое внимание на
строку 12, в которой говорится, что транзакция запросила монопольную (Х) блоки­
ровку на индекс GEN_CLUST_INDEX1 по таблице test. tiny_dl.

В строках 16-21 показано состояние второй транзакции, а в строках 22-26 - список

удерживаемых ею блокировок. В строке 25 перечислялись несколько записей, кото­
рые мы для краткости опустили. Одной из них как раз была запись, чьего освобож­
дения ожидала первая транзакция. Наконец, в строках 27-31 показаны блокировки,
которых ожидала вторая транзакция.

Цикл в графе ожиданий образовался из-за того, что каждая транзакция удерживает

блокировку, нужную другой транзакции. InnoDB не показывает все удерживаемые
и ожидаемые блокировки, но выводит достаточно информации, чтобы можно было

понять, какие индексы использовались при выполнении запросов. Это помогает

решить, можно ли что-то сделать для предотвращения взаимоблокировок.

Если удастся добиться того, чтобы оба запроса просматривали один и тот же индекс

в одном и том же направлении, то количество взаимоблокировок сократится, так как

при запросе блокировок в одном и том же порядке цикл никогда не возникает. Иногда

сделать это несложно. Например, если в транзакции нужно обновить несколько за­

писей, то отсортируйте их по первичному ключу в памяти приложения и обновляйте
именно в таком порядке - взаимоблокировки не будет. Но в других случаях ничего

не получится - например, когда два процесса работают с одной таблицей, используя

при этом разные индексы.

В строке 32 показано, какая транзакция выбрана жертвой взаимоблокировки. InnoDB
выбирает ту транзакцию, которую с ее точки зрения будет проще откатить, то есть

в которой количество обновлений наименьшее.

Очень полезно просмотреть общий журнал, найти в нем все запросы, выполненные
в тех потоках, которые участвовали в инциденте, и выяснить истинную причину

взаимоблокировки. В следующем разделе рассказано о том, где искать идентифика­

тор потока в распечатке сведений о взаимоблокировке.

Этот индекс InnoDB создает самостоятельно, если не задан первичный ключ.

Команда SHOW INNODB SТATUS 791

Секция TRANSACТIONS

В этой секции содержится сводная информация о транзакциях InnoDB, за которой
следует список активных транзакций. Вот первые несколько строчек (заголовок):

1 ------------
2 TRANSACТIONS
3 ------------
4 Trx id counter 0 80157601
5 Purge done for trx's n:o <0 80154573 undo n:o <0 0
6 History list length 6
7 Total number of lock structs in row lock hash tаЫе 0

Состав распечатки зависит от версии MySQL, но в любом случае имеется по крайней
мере следующая информация.

1:1 Строка 4 - текущий идентификатор транзакции. Это системная переменная,

увеличивающаяся на единицу для каждой новой транзакции.

1:1 Строка 5 - идентификатор транзакции, для которой InnoDB удалила старые МVСС­
версии строк. Узнать, сколько старых версий еще не удалено, можно, посмотрев

на разность между этим значением и текущим идентификатором транзакции.

Не существует четкого и однозначного правила, насколько большое значение этой
величины можно считать безопасным. Если никто не обновляет никаких данных,
то большое значение еще не означает, что скопилось много неудаленных версий,
потому что все транзакции на самом деле видят одну и ту же версию базы. Но если
обновляется много строк, то одна или даже несколько версий каждой строки
остаются в памяти. Наилучшая стратегия сокращения издержек - делать коммит

транзакции сразу после завершения работы, а не оставлять их открытыми на дли­
тельное время, поскольку даже если незакоммиченая транзакция ничего не делает,

она все равно не дает lnnoDB удалить старые версии строк.

Также в строке 5 указан номер записи в журнале отмены, с которым в настоящий
момент работает процесс очистки InnoDB. Если он равен 0 0, как в данном при­
мере, значит, процесс очистки простаивает.

1:1 Строка 6 - длина списка истории, то есть количество еще не удаленных транзак­

ций в пространстве отмены в файлах данных InnoDB. Когда транзакция произ­
водит обновление и коммитится, это число увеличивается. Как только процесс
очистки удаляет старые версии, оно уменьшается. Процедура очистки также

обновляет значение, показанное в строке 5.

1:1 Строка 7 - количество \осk-структур. В каждой \осk-структуре обычно хранится
несколько блокировок уровня строки, так что это не то же самое, что количество
заблокированных строк.

После заголовка идет список транзакций. В текущих версиях MySQL вложенные
транзакции не поддерживаются, поэтому в каждый момент времени в рамках одного со­

единения может существовать не более одной транзакции и каждая транзакция принад­
лежит ровно одному соединению. Под каждую транзакцию в этой распечатке отведено

по меньшей мере две строчки. Вот пример минимальной информации о транзакции:

1 ---TRANSACTION 0 3793494, not started, process no 5488, OS thread id 1141152064
2 MySQL thread id 15, query id 479 localhost baron

792 Приложение Б. Состояние сервера MySQL

Первая строчка начинается с идентификатора и состояния транзакции. Эта транз­

акция не начата, то есть закоммичена и не инициировала никаких команд, которые

могли бы повлиять на другие транзакции, - скорее всего, она просто ничего не де­
лает. Далее следует информация о процессе и потоке. Во второй строчке показан

идентификатор процесса MySQL - то же самое число, которое демонстрируется

в столбце Id в списке процессов, выдаваемых командой SHOW FULL PROCESSLIST.

Затем идут внутренний номер запроса и сведения о подключении, также печатаемые

командой SHOW FULL PROCESSLIST.

Однако о транзакции может быть приведено гораздо больше информации. Вот более
сложный пример:

1 ---TRANSACTION 0 80157600, ACTIVE 4 sec, process по 3396, 05 thread id 1148250464,
thread declared inside InnoDB 442

2 mysql taЫes in use 1, locked 0
3 MySQL thread id 8079, query id 728899 localhost baron Sending data
4 select sql_calc_found_rows * from Ь limit 5
5 Trx read view will not see trx with id>= 0 80157601, sees <0 80157597

Из строки 1 видно, что транзакция была активна 4 секунды. Возможны следующие
состояния: not started (<те начата»), active («активна»), prepared («подготовлена:!>)
и committed in memory («закоммичена в памяти»). После того как транзакция будет
закоммичена на диске, она переходит в состояние not started. Дополнительно может
быть выведена информация о том, чем сейчас занята транзакция, хотя в данном при­
мере этого нет. В исходном коде встречается свыше 30 строковых констант, которые
могут быть указаны в этом месте, например: fetching rows («выборка строк»), adding
foreign keys («добавление внешних ключей») и т. д.

Фраза thread declared inside InnoDB 442 («поток находится внутри InnoDB 442»)
в строке 1 означает, что поток занят какой-то операцией внутри ядра InnoDB и у него
осталось еще 442 неиспользованных «билета». Другими словами, этому SQL-зaпpocy
разрешено войти в ядро InnoDB еще 442 раза. Система «билетов» ограничивает
количество одновременно выполняющихся внутри ядра потоков с целью предот­

вратить их пробуксовку на некоторых платформах. Даже если показано состояние
потока inside InnoDB, это еще не означает, что он выполняет всю работу внутри
подсистемы хранения, - некоторые операции могут выполняться на уровне сервера

и лишь временами тем или иным образом взаимодействовать с InnoDB. Иногда
можно увидеть, что транзакция находится в состоянии sleeping Ьeforejoining InnoDB
queue («спит перед постановкой в очередь InnoDB») или waiting in InnoDB queue
(«Ждет в очереди InnoDB»).

В следующей строчке может содержаться информация о том, сколько таблиц исполь­

зуется и заблокировано текущей командой. Обычно InnoDB не блокирует таблицы,
но для некоторых команд это делается. Заблокированные таблицы могут появляться
и тогда, когда сервер MySQL выполнил блокировку на более высоком уровне, чем
InnoDB. Если транзакция заблокировала какие-то строки, то будет присутствовать
информация о количестве lосk-структур (еще раз подчеркнем, что это не то же самое,
что количество блокировок строк) и размере кучи (пример был показан ранее в рас­
печатке сведений о взаимоблокировке).

Команда SHOW INNODB SТATUS 793

Размер кучи - это объем памяти, отведенной для хранения блокировок строк.
В InnoDB блокировки строк реализованы с помощью специальной таблицы би­
товых векторов, которая теоретически позволяет представлять блокировку всего
одним битом. Наши тесты показывают, что в общем случае на блокировку отво­
дится не более 4 бит.

Строка 3 в этом примере содержит чуть больше информации, чем строка 2 - в пре­
дыдущем: в конце мы видим состояние потока Sending data («отправка данных!>).
Это именно то, что показывает команда SHOW FULL PROCESSLIST в столбце Command.

Если транзакция в данный момент занята выполнением запроса, то далее будет
приведен текст этого запроса (в некоторых версиях MySQL только его часть), как
в данном случае в строке 4.

В строке 5 показано представление базы (read view), используемое транзакцией,
то есть диапазоны идентификаторов транзакций, которые наверняка видны и навер­

няка не видны данной транзакции благодаря механизму многоверсионности. В дан­
ном случае между двумя диапазонами имеется промежуток в четыре транзакции,

относительно которых нельзя точно сказать, видны они или нет. При выполнении

запроса InnoDB должна проверить, видны ли строки, идентификаторы транзакций
для которых попадают в этот промежуток.

Если транзакция ожидает блокировки, то после запроса будет приведена информа­
ция об этой блокировке. Такие примеры встречаются в разделе о взаимоблокировках

ранее. К сожалению, распечатка ничего не говорит о том, какие транзакции удержи­

вают те блокировки, которых ожидает данная транзакция. Вы можете обнаружить их

в таблицах INFORМAТION_SCHEМA в MySQL 5.1 и более новых версиях, если используете
плагин InnoDB.

Если транзакций много, то InnoDB может ограничить их количество в распечатке,
чтобы объем вывода оказался не слишком велик. В таком случае вы увидите строку

••• truncated ••• («."обрезано."!>).

Секция FILE 1/0
В секции FILE I/O представлены сведения о состоянии вспомогательных потоков

ввода/вывода, а также счетчики производительности:

1 --------
2 FILE I/O
3 --------
4 I/0 thread 0 state: waiting for i/o request (insert buffer thread)
5 I/O thread 1 state: waiting for i/o request (log thread)
6 I/O thread 2 state: waiting for i/o request (read thread)
7 I/O thread 3 state: waiting for i/o request (write thread)
8 Pending normal aio reads: 0, aio writes: 0,
9 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
10 Pending flushes (fsync) log: 0; buffer pool: 0
11 17909940 05 file reads, 22088963 05 file writes, 1743764 05 fsyncs 12 0.20
reads/s, 16384 avg bytes/read, 5.00 writes/s, 0.80 fsyncs/s

794 Приложение Б. Состояние сервера MySQL

В строках 4-7 приведена информация о состоянии вспомогательных потоков вво­
да/ вывода. В строках 8-1 О показано количество еще не завершенных операций для
каждого такого потока, а также количество ожидающих процедур fsync () для пото­
ков журнала и пула буферов. Аббревиатура aio означает «асинхронный ввод/вывод»
(asynchronous 1/0). В строке 11 демонстрируется количество выполненных операций
чтения, записи и fsync (). Абсолютные значения зависят от рабочей нагрузки, поэтому
важнее следить за тем, как они изменяются во времени. В строке 12 указано количество
операций в секунду, усредненное по интервалу, который указан в секции заголовка.

Значения pending («незавершенные») в строках 8 и 9 - удобный способ выявить

приложения, занимающиеся преимущественно вводом/выводом. В этом случае для

большинства видов ввода/вывода будут присутствовать незавершенные операции.

На платформе Windows количество вспомогательных потоков ввода/вывода можно
регулировать с помощью конфигурационной переменной innodb_file_io_threads,
поэтому одновременно могут присутствовать несколько потоков чтения и записи.

Однако на любой платформе будут существовать по крайней мере следующие четыре

потока:

О Insert buffer thread (поток буфера вставки). Отвечает за объединение с буфером
вставки (то есть за перенос записей из буфера вставки в табличное пространство);

О Log thread (поток журнала). Отвечает за асинхронный сброс журнала на диск;

О Read thread (поток чтения). Выполняет операции упреждающего чтения для выборки
тех данных, которые, как считает InnoDB, понадобятся в ближайшем будущем;

о Write thread (поток записи). Сбрасывает на диск «грязные» буферы.

Секция INSERT BUFFER AND ADAPТIVE HASH INDEX
В этой секции отображается состояние буфера вставки и адаптивного хеш-индекса:

1 -------------------------------------
2 INSERT BUFFER AND ADAPTIVE HASH INDEX
3 -------------------------------------
4 Ibuf for space 0: size 1, free list len 887, seg size 889, is not empty
5 Ibuf for space 0: size 1, free list len 887, seg size 889,
6 2431891 inserts, 2672643 merged recs, 1059730 merges
7 Hash tаЫе size 8850487, used cells 2381348, node heap has 4091 buffer(s)
8 2208.17 hash searches/s, 175.05 non-hash searches/s

В строке 4 приведены информация о размере буфера вставки, длина его списка сво­
бодных блоков и размер сегмента. Фраза for space 0 вроде бы указывает на наличие
нескольких буферов вставки - по одному на каждое табличное пространство, но

это так и не было реализовано, поэтому в последних версиях MySQL фраза удалена.
Поскольку существует всего один буфер вставки, строка 5 - лишняя. В строке 6 по­
казана статистика работы с буфером. Отношение количества объединений (merges)
к количеству вставок (inserts) дает представление об эффективности буфера.

В строке 7 демонстрируется состояние адаптивного хеш-индекса. Из строки 8 мы
узнаем, сколько операций с этим индексом было произведено за время, указанное

Команда SHOW INNODB SТATUS 795

в секции заголовка. Отношение количества поисков по хеш-индексу к количеству

поисков без использования хеш-индекса приведено для справки, поскольку средств
для конфигурирования адаптивного хеш-индекса нет.

Секция LOG
В этой секции собрана статистика о подсистеме работы с журналом транзакций
(журналом обновлений) в InnoDB:

1
2 LOG
3
4 Log sequence number 84 3000620880
5 Log flushed up to 84 3000611265
6 Last checkpoint at 84 2939889199
7 0 pending log writes, 0 pending chkp writes
8 14073669 log i/o's done, 10.90 log i/o's/second

В строке 4 показан текущий порядковый номер журнала, а в строке 5 - место, до

которого журнал был сброшен на диск. Порядковый номер - это просто количество
байтов, записанных в файлы журнала, зная его, можно вычислить, сколько данных
из буфера журнала еще не сброшено в файлы. В данном случае эта величина равна
9615 байт (13 ООО 620 880 - 13 ООО 611 265). В строке 6 показана последняя кон­
трольная точка (она определяет момент времени, когда данные и файлы журналов

находились в известном состоянии, пригодном для восстановления). Если последняя

контрольная точка слишком сильно отстает от порядкового номера журнала, а раз­

ница сопоставима с размером файлов журнала, InnoDB начнет яростный сброс, что
очень плохо для производительности. В строках 7 и 8 отображаются количество не­
завершенных операций с журналом и статистика - ее можно сравнить с величинами

в секции FILE 1/0 и узнать, какая доля ввода/вывода приходится на подсистему
работы с журналом, а не обусловлена какими-то другими причинами.

Секция BUFFER POOL AND MEMORY
В этой секции приведена статистика использования пула буферов и памяти InnoDB
(о настройке пула буферов см. главу 6).

1 ----------------------
2 BUFFER POOL AND МЕМОRУ
3 ----------------------
4 Total memory allocated 4648979546; in additional pool allocated 16773888
5 Buffer pool size 262144
6 Free buffers 0
7 Database pages 258053
8 Modified db pages 37491
9 Pending reads 0
10 Pending writes: LRU 0, flush list 0, single page 0
11 Pages read 57973114, created 251137, written 10761167
12 9.79 reads/s, 0.31 creates/s, 6.00 writes/s
13 Buffer pool hit rate 999 / 1000

796 Приложение Б. Состояние сервера MySQL

В строке 4 демонстрируется общий объем памяти, выделенной InnoDB, и указано,
какая часть этой памяти отведена под дополнительный пул. Дополнительный пул

памяти - это просто объем памяти, как правило, небольшой, который выделяет
InnoDB, когда хочет использовать собственный распределитель внутренней памяти.
Современные версии InnoDB обычно используют распределитель памяти операцион­
ной системы, но более старые версии имеют собственный распределитель, поскольку
не все операционные системы обеспечивают приемлемую реализацию.

В строках 5-8 приведены различные показатели буферного пула, измеряемые в стра­
ницах: размер пула, количество свободных страниц, количество страниц, отведенных
для хранения страниц базы данных, и количество «грязных» страниц базы. Часть
страниц в пуле буферов подсистема хранения использует для индексов блокировок,
адаптивного хеш-индекса и других системных структур, поэтому количество страниц

базы данных в пуле никогда не совпадает с общим его размером.

В строках 9 и 10 показано число незавершенных операций чтения и записи (то есть
операций, которые InnoDB еще предстоит выполнить в буферном пуле). Эти значения
не совпадают со значениями в секции FILE I/O, так как InnoDB может объединять
несколько логических процедур в одну физическую. Аббревиатура LR U означает least
recently used («наиболее давно использованный») - это алгоритм освобождения места
для часто используемых страниц пула буферов за счет вытеснения и сброса на диск тех,
что задействуются редко. Список сброса (flush list) содержит старые страницы, кото­
рые процесс, создающий контрольные точки, должен сбросить на диск при установле­
нии следующей контрольной точки, а показатель «запись одиночных страниц» (single
page) относится к независимым операциям записи, которые не удалось объединить.

В строке 8 мы видим, что буферный пул включает 37 491 «грязную» страницу, которые
в какой-то момент нужно будет сбросить на диск (то есть они уже модифицированы
в памяти, но еще не сохранены). Однако строка 10 говорит, что в данный момент
операция сброса не запланирована. Ничего страшного, InnoDB сбросит их, когда ей
это будет нужно. Если вы видите большое количество ожидающих операций ввода/
вывода где-либо в выводе состояния InnoDB, то, как правило, это симптом довольно
серьезной проблемы.

В строке 11 показано, сколько страниц InnoDB прочитала, создала и записала.
Количество прочитанных и записанных страниц относится к данным, которые были
прочитаны соответственно с диска в буферный пул и обратно. Созданные страни­
цы - это те, для которых InnoDB выделила место в буфере, не читая их содержимое
из файла данных, потому что это содержимое ей безразлично (например, они могли
принадлежать таблице, которая уже удалена).

В строке 13 показан коэффициент попаданий в кэш, он говорит о том, как часто
InnoDB находит нужные страницы в буферном пуле. Он учитывает попадания
с момента последней распечатки состояния InnoDB, поэтому если с тех пор сервер
ничего не делал, то вы увидите сообщение No buffer pool page gets since the last
printout («С момента последней распечатки не было обращений к страницам из
пула буферов»). Эта информация не слишком полезна с точки зрения определения

размера буферного пула.

Команда SHOW INNODB SТATUS 797

В MySQL 5.5 может быть несколько буферных пулов, и в распечатке каждому из них
будет отведен свой раздел. Percona XtraDB также будет печатать более подробный
вывод, например показывая, где именно выделяется память.

Секция ROW OPERATIONS
В этой секции собрана информация об операциях со строками и прочая статистика
InnoDB:

1 --------------
2 ROW OPERATIONS
3 --------------
4 0 queries inside InnoDB, 0 queries in queue
5 1 read views open inside InnoDB
6 Main thread process по. 10099, id 88021936, state: waiting for server activity
7 Number of rows inserted 143, updated 3000041, deleted 0, read 24865563
8 0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s
9 ----------------------------
10 END OF INNODB MONITOR OUTPUT
11 ============================
В строке 4 показано, сколько потоков сейчас находится в ядре InnoDB (мы уже каса­
лись этой темы при обсуждении секции TRANSACТIONS). Запросы в очереди (queries in
queue) - это те потоки InnoDB, которые пока не допущены в ядро, чтобы ограничить
общее количество одновременно работающих потоков. Ранее мы также отмечали, что
перед постановкой в очередь запрос может некоторое время спать.

В строке 5 указывается количество открытых в настоящий момент представлений
базы (read view). Представление базы - это согласованный снимок многоверсион­
ного содержимого базы данных на момент начала транзакции. Посмотреть, имеет ли
конкретная транзакция представление базы, можно в секции TRANSACТIONS.

В строке 6 отображается состояние главного потока ядра. Оно может принимать
следующие значения:

Q doing background drop taЫes - фоновое удаление таблиц;

Q doing insert buffer merge - объединение с буфером вставки;

Q flushing buffer pool pages - сброс страниц из буферного пула;

Q flushing log - сброс журнала;

Q making checkpoint - запись контрольной точки;

Q purging - очистка;

Q reserving kernel mutex - резервирование мьютекса ядра;

Q sleeping - сон;

Q suspending - приостановка;

Q wai ting for buffer pool flush to end - ожидание завершения сброса буферного
пула;

Q waiting for server activity- ожидание действия со стороны сервера.

798 Приложение Б. Состояние сервера MySQL

На большинстве серверов вы, как правило, должны видеть значение «спящий~. Если
вы сделали несколько снимков и неоднократно видели другое состояние, например

«сброс страниц из буферного пула~. можно заподозрить наличие какой-то связанной
с этой деятельностью проблемы, например проблемы яростного сброса, причиной

которой может быть плохой алгоритм сброса в конкретной версии InnoDB или плохая
конфигурация, допустим слишком маленькие файлы журналов транзакций.

В строках 7 и 8 приведены статистика количества вставленных, обновленных,
удаленных и прочитанных строк, а также усредненные значения количества этих

операций в секунду. За ними имеет смысл наблюдать, если вы хотите знать, чем за­

нимается InnoDB.

Распечатка, выдаваемая командой SHOW ENGINE INNODB STATUS, заканчивается стро­

ками 9-11. Если вы их не видите, то, скорее всего, произошла большая взаимобло­
кировка, из-за которой пришлось обрезать распечатку.

Команда SHOW PROCESSLIST
Список процессов - это список соединений, или потоков, установленных с MySQL
в данный момент времени. Команда SHa..I PROCESSLIST выводит перечень всех потоков,

включая в него сведения об их состоянии, например:

mysql> sнow FULL PROCESSLIST\G
*************************** 1. row ***************************

Id: 61539
User: sphinx
Host: se02:58392

db: artl36
Command: Query

Тime: 0
State: Sending data

Info: SELECT a.id id, a.site_id site_id, unix_timestamp(inserted) AS
inserted,forum_id, unix_timestamp(p
*************************** 2. row ***************************

Id: 65094
User: mailboxer
Host: db01:59659

db: link84
Command: Killed

Тime: 12931
State: end

Info: update link84.link_in84 set url_to = replace(replace(url_to, '&', '&'),
'%20', '+'), url_prefix=repl

Существует несколько инструментов, в том числе innotop, умеющих показывать
список процессов в динамике.

Вы также можете получить эту информацию из таблицы в INFORMAТION_SCHEMA.

Percona Server и MariaD В добавляют в эту таблицу более полезную информацию,
такую как столбец времени с высокоточными значениями или столбец, указыва­
ющий, сколько работы выполнил запрос, который можно использовать в качестве

индикатора прогресса.

Команда SHOW ENGINE МUТЕХ SТATUS 799

В столбцах Command и State отображается состояние потока. Обратите внимание на
то, что первый процесс выполняет запрос и отправляет данные, тогда как второй был
прерван (Killed), возможно, потому, что работал слишком долго и кто-то сознательно
остановил его командой KILL. Поток может оставаться в этом состоянии в течение
определенного периода, потому что прерывание не происходит мгновенно. Например,

для отката начатой в потоке транзакции требуется время.

Команда Sl-GJ FULL PROCESSLIST (с дополнительным ключевым словом FULL) показывает
полный текст запроса, который в противном случае усекается до 100 символов.

Команда SHOW ENGINE MUTEX STATUS
Эта команда возвращает подробную информацию о мьютексах InnoDB и полезна
главным образом для разрешения проблем с масштабируемостью и конкурентно­
стью. Как уже объяснялось, каждый мьютекс защищает одну критическую секцию
программы.

Состав распечатки зависит от версии MySQL и параметров, заданных при компиля­
ции. Далее приведен пример для сервера MySQL 5.5:

mysql> SНOW ENGINE INNODB.MUTEX;
+--------+------------------------------+-------------+
1 Туре 1 Name 1 Status 1

+--------+------------------------------+-------------+
InnoDB &taЫe->autoinc_mutex os_waits=l
InnoDB &taЫe->autoinc_mutex os_waits=l
InnoDB &taЫe->autoinc_mutex os_waits=4
InnoDB &taЫe->autoinc_mutex os_waits=l
InnoDB &taЫe->autoinc_mutex os_waits=12
InnoDB &dict_sys->mutex os_waits=l
InnoDB &log_sys->mutex os_waits=12
InnoDB &fil_system->mutex os_waits=ll
InnoDB &kernel_mutex os_waits=l
InnoDB &dict_taЫe_stats_latches[i] os_waits=2
InnoDB &dict_taЫe_stats_latches[i] os_waits=54
InnoDB &dict_taЫe_stats_latches[i] os_waits=l
InnoDB &dict_taЫe_stats_latches[i] os_waits=Зl
InnoDB &dict_taЫe_stats_latches[i] os_waits=41
InnoDB &dict_taЫe_stats_latches[i] os_waits=12
InnoDB &dict_taЫe_stats_latches[i] os_waits=l
InnoDB &dict_taЫe_stats_latches[i] os_waits=90
InnoDB &dict_taЫe_stats_latches[i] os_waits=l
InnoDB &dict_operation_lock os_waits=lЗ
InnoDB &log_sys->checkpoint_lock os_waits=бб

InnoDB combined &Ыock->lock os_waits=2
+--------+------------------------------+-------------+
Проанализировав распечатку, на основе количества ожиданий можно понять, какие
части lnnoDB являются узкими местами. Всюду, где есть мьютекс, существует опас­
ность конкуренции. Возможно, следует написать скрипт для агрегирования распе­

чатки, которая может быть очень большой.

Существует три основных способа избежать узких мест: держаться подальше от из­
вестных слабостей lnnoDB, ограничить степень конкурентности и постараться найти

800 Приложение Б. Состояние сервера MySQL

компромисс между активным ожиданием, нагружающим процессор, и ожиданием

на уровне ОС, потребляющим ресурсы. Эти вопросы обсуждались ранее - в этом
приложении и в главе 8.

Состояние репликации

В MySQL есть несколько команд для мониторинга репликации. Выполнение коман­
ды Sнa-J МASTER STATUS на главном сервере показывает его состояние и конфигурацию
репликации:

mysql> SНOW li\ASTER STATUS\G
*************************** 1. row ***************************

File: mysql-bin.000079
Position: 13847

Binlog_Do_DB:
Binlog_Ignore_DB:

Выводится текущая позиция в двоичном журнале главного сервера. Получить список
всех двоичных журналов позволит команда SHOW BINARY LOGS:

mysql> SНOW BINARY LOGS
+------------------+-----------+
1 Log_name 1 File_size 1

+------------------+-----------+
1 mysql-bin.000044 13677

1 mysql-bin.000079 13847
+------------------+-----------+
36 rows in set (0.18 sec)

Чтобы просмотреть события в двоичных журналах, выполните команду SHOW BINLOG

EVENTS. В MySQL 5.5 также можно использовать команду SHOW RELAYLOG EVENTS.

Получить состояние и конфигурацию подчиненного сервера позволяет команда SHOW
SLAVE STATUS. Мы не стали включать в текст выдаваемую ею распечатку, потому что

она довольно длинная, но сделаем на ее счет несколько замечаний. Во-первых,

в ней показано состояние потока ввода/вывода и всех потоков SQL на подчиненном
сервере, включая любые ошибки. Кроме того, видно, насколько далеко подчинен­
ный сервер отстал от главного. И наконец, для резервного копирования и клони­

рования подчиненных серверов печатаются три набора координат в двоичном

журнале:

о Master _Log_File/Read_Master _Log_Pos - позиция, с которой поток ввода/вывода

читает двоичные журналы главного сервера;

о Relay_Log_File/Relay_Log_Pos - позиция команды в журнале ретрансляции под­

чиненного сервера, которую исполняет поток SQL;

О Relay_Master _Log_File/Exec_Master _Log_Pos - позиция команды в двоичном

журнале главного сервера, которую исполняет поток SQL. Логически это та же
позиция, которая обозначается парой Relay_Log_File/Relay_Log_Pos, но только
в журналах главного, а не подчиненного сервера. Иными словами, в указанной

позиции в обоих журналах находится одно и то же событие.

База данных INIORMAТION_SCHEMA 801

База данных INFORMATION_SCHEMA
Ба.1а данных INFORМAТION_SCHEМA представляет собой набор системных представлений
и соответствует стандарту SQL. В MySQL реализовано значительное число описан­
ных в стандарте представлений, а также добавлены свои. В версии MySQL 5.1 мно­
гим представлениям соответствуют команды SHOW, например SHOW FULL PROCESSLIST
и SHOW STATUS. Но есть и такие, для которых соответствующих команд SHOW не суще­

ствует.

Прелесть представлений из баэы данных INFORМAТION_SCHEМA заключается в том, что
их можно опрашивать с помощью стандартных команд SQL. В результате достигается
куда большая гибкость, чем при использовании команд SHOW, порождающих резуль­
тирующие наборы, которые невозможно агрегировать, соединять и которыми нельзя
как-то манипулировать с использованием обычных средств SQL. Наличие данных
в системных представлениях дает возможность составлять очень интересные и по­

лезные запросы.

Например, какие таблицы в демонстрационной базе данных Sakila ссылаются на
таблицу actor? При наличии последовательного соглашения об именовании опре­
делить это совсем не трудно:

mysql> SELECT ТАВLЕ_NАМЕ FROМ INFORМATION_SCHEМA.COLUМNS
-> WНERE TABLE_SCHEМA='sakila' AND COLUMN_NAМE='actor_id'
-> AND ТАВLЕ_NАМЕ <> 'actor';

+------------+
1 TABLE_NAМE 1

+------------+
1 actor_info 1
1 film_actor 1

+------------+

Для нескольких примеров из этой книги нужно было найти индексы по нескольким
столбцам. Вот соответствующий запрос:

mysql> SELECТ ТАВLЕ_NАМЕ, GROUP_CONCAT(COLUМN_NAМE)

-> FROМ INFORМATION_SCHEМA.KEY_COLUМN_USAGE

-> WНERE TAВLE_SCHEМA='sakila'

-> GROUP ВУ ТАВLЕ_NАМЕ, CONSTRAINT_NAМE
-> HAVING COUNТ(*) > 1;

+---------------+--------------------------------------+
1 TABLE_NAМE j GROUP_CONCAT(COLUMN_NAМE) 1

+---------------+--------------------------------------+
1 film_actor 1 actor_id,film_id 1

1 film_category 1 film_id,category_id 1

1 rental 1 customer_id,rental_date,inventory_id 1

+---------------+--------------------------------------+

Можно писать и более сложные запросы, точно так же, как для обычных таблиц.
Сайт MySQL Forge (http://forge.mysql.com) - отличное место для поиска запросов

к этим представлениям; там же вы можете поделиться своими идеями. Имеются

примеры запросов для поиска дублирующих или избыточных индексов, поиска

индексов с очень низкой избирательностью и многое, многое другое. Множество
полезных представлений, написанных поверх представлений INFORМAТION_SCHEMA,

802 Приложение Б. Состояние сервера MySQL

имеется также в проекте common_schema Шломи Ноача (http://code.openark.org/forge/
common_schema).

Основной недостаток представлений заключается в том, что некоторые из них

работают очень медленно по сравнению с соответствующими командами SHOW.
Как правило, они отбирают все данные, сохраняют их во временной таблице, а затем
делают эту таблицу доступной для запроса. Запрос к таблицам INFORМAТION_SCHEМA
на сервере с большим количеством данных или множеством таблиц может дать
большую нагрузку на сервер. Эта нагрузка может привести к тому, что он остано­
вится или перестанет отвечать на запросы других пользователей, поэтому будьте

осторожны при использовании таких запросов на сильно загруженных промыш­

ленных серверах. Основными таблицами, запросы к которым могут быть потенци­
ально опасными, являются те, в которых содержатся метаданные: TABLES, COLUMNS,
REFERENТIAL_CONSTRAINTS, KEY_COLUMN_USAGE и т. д. Запросы к этим таблицам могут
вынудить MySQL запрашивать подсистему хранения о таких данных, как индексная
статистика в таблицах на сервере, что особенно проблематично в InnoDB.

В текущей версии эти представления необновляемы. Хотя они позволяют извлечь
параметры сервера, обновить их так, чтобы изменилось его поведение, не удастся.
На практике эти ограничения означают, что для конфигурирования сервера по­
прежнему необходимо пользоваться командами SHOW и SET, пусть даже представления
из базы INFORМAТION_SCHEМA очень удобны для других целей.

Таблицы Inno DB
В MySQL 5.1 и более новых версиях плагин InnoDB создает несколько таблиц
в INFORМAТION _SСНЕМА. Это очень полезно. В MySQL 5.5 их больше, а в пока не вы­
пущенной версии MySQL 5.6 - еще больше. В MySQL 5.1 существуют следующие
таблицы:

1:1 INNODB_CMP и INNODB_CMP _RESET. В этих таблицах представлена информация о дан­
ных, сжатых в новом файловом формате InnoDB Barracuda. Во второй таблице
показана та же информация, что и в первой, но у нее имеется побочный эффект
сброса содержащихся в ней данных, примерно как в команде FLUSH;

1:1 INNODB_CMPMEM и INNODB_CMPMEM_RESEТ. В этих таблицах показана информация
о страницах буферного пула, используемых для сжатых данных InnoDB. Вторая
таблица - это снова таблица со сбросом;

1:1 INNODB_TRX и INNODB_LOCKS. Эти таблицы показывают обычные транзакции
и транзакции, которые удерживают блокировки и ждут их. Эти таблицы очень
важны для диагностики проблем ожидания блокировки и длительных транзак­
ций.

Помимо этих таблиц, в MySQL 5.5 добавлена таблица INNODB_LOCK_WAIТS, облегчаю­
щая диагностику других типов проблем с ожиданием блокировки. В MySQI, 5.6
будут добавлены таблицы, содержащие больше информации о внутренних функциях
InnoDB, включая буферный пул и словарь данных, а также таблица под названи­
ем INNODB_MEТRICS, которая станет альтернативой использованию Performance
Schema.

Performance Schema 803

Таблицы в Percona Server
В Percona Server в базу данных INFORМAТION_SCHEМA добавлено множество таблиц.
В версии MySQL 5.5 у сервера 39 таблиц, а в Percona Server 5.5 - уже 61 таблица.
Приведем обзор дополнительных таблиц.

о Таблицы •Статистика пользователя~. Они возникли в патчах Google для
MySQL. В них представлены показатели активности для клиентов, индексов, та­
блиц, потоков и пользователей. Мы упоминали об их использовании в этой книге,
например, в случае, если репликация приближается к пределу своей возможности
идти в ногу с главным сервером.

о Словарь данных InnoDB. Серия таблиц, в которых представлен внутренний сло­
варь данных InnoDB в виде таблиц только для чтения: столбцы, внешние ключи,
индексы, статистика и т. д. Они очень полезны для изучения и понимания подхода

к базе данных, реализованного в InnoDB, который может отличаться от подхода
MySQL. Дело в том, что работа MySQL зависит от .frm-файлов для хранения
словаря данных. Аналогичные таблицы будут включены в MySQL 5.6, когда она
будет выпущена.

О Буферный пул InnoDB. Эти таблицы позволяют вам запрашивать буферный
пул, как если бы это была таблица, в которой каждая страница является строкой.
Таким образом, вы можете видеть, какие страницы находятся в буферном пуле,
к каким типам они относятся и т. д. Эти таблицы доказали свою полезность при
диагностике таких проблем, как раздутый буфер вставки.

о Временные таблицы. В этих таблицах представлен тот же тип информации, что
и в таблице INFORМAТION_SCHEМA. TABLES, но для временных таблиц. Одна таблица
предназначена для временных таблиц вашего сеанса и одна - для всех временных
таблиц всего сервера. Обе весьма полезны для того, чтобы понять, какие времен­
ные таблицы существуют, в каких сеансах и сколько места они занимают.

о Разные таблицы. Существует парочка других таблиц, которые позволяют полу­
чить данные о времени выполнения запросов, файлах, табличном пространстве
и другую информацию о внутренних процессах InnoDB.

Документация о дополнительных таблицах Percona Server доступна на сайте http://
www.percona.com/doc/.

Performance Schema
Performance Schema (она находится в базе данных PERFORМANCE_SCHEМA) - это, начи­
ная с MySQL 5.5, новый дом для улучшенных инструментов MySQL. Мы частично
касались ее в главе 3.

По умолчанию Performance Schema отключена, и нужно включить как ее, так и особые
точки оснащения инструментами (потребителей), которые вы хотите собирать.
Мы провели эталонное тестирование сервера в нескольких разных конфигураци­

ях и обнаружили, что Performance Schema вносит в общий объем издержек от 8
до 11 %, даже не собирая данные, и от 19 до 25 % - при всех включенных потре-

804 Приложение Б. Состояние сервера MySQL

бителях в зависимости от того, заключалась ли рабочая нагрузка только в чтении
или и в чтении и записи. Насколько велики эти затраты, решайте сами.

Эту проблему собираются решить в MySQL 5.6, особенно когда ca.\fa функция вклю­
чена, но все точки оснащения инструментами отключены. Тем самым использование

Performance Schema станет более приемлемым для некоторых пользователей: ее будут
включать, но оставлять неактивной, пока не потребуется собирать каких-либо данные.

В MySQL 5.5 Performance Schema содержит таблицы, которые оснащают инстру­
ментами экземпляры условных переменных, мьютексов, блокировок чтения/записи
и файлового ввода/вывода. Кроме того, существуют таблицы, в которых оснащаются
инструментами периоды ожидания в экземплярах. Запросы к этим таблицам с со­
единениями с таблицами экземпляров должны интересовать вас в первую очередь.
Эти таблицы ожидания событий существуют в нескольких вариациях, содержащих
текущую и давно полученную информацию о поведении и производительности

сервера. Наконец, существует группа таблиц настройки, которая используется для
включения или отключения конкретных потребителей.

В версии MySQL 6 количество таблиц в Performance Schema увеличено с 17 до 49.
Это означает, что теперь в MySQL используется намного больше инструментов!
В частности, оснащаются инструментами операторы SQL, этапы операторов (в ос­
новном то же самое, что и состояние потока, которое вы можете увидеть в с помощью

команды SHOW PROCESS LIST), таблицы, индексы, хосты, потоки, пользователи, акка­
унты и множество разнообразных сводных таблиц и таблиц истории.

Как же можно использовать эти таблицы? Их уже 49, пора бы уже кому-нибудь на­
писать инструменты для их использования. О хороших примерах старомодного SQL­
зaпpoca к таблицам Performance Schema можно прочитать в постах в благе инженера
Oracle Марка Лейта (Mark Leith), таких как http://www.markleith.eo.uk/?p=471.

Итоги

Основными средствами MySQL для изучения внутренних процессов сервера являют­
ся команды SHOW, однако ситуация меняется. Введение в MySQL 5.1 подключаемых
таблиц INFORМAТION_SCHEМA позволило плагину InnoDB добавить несколько очень
полезных инструментальных средств. Percona Server эти возможности расширил
еще больше. Тем не менее способность читать и интерпретировать распечатку, ко­

торую выдает команда SHOW ENGINE INNODB STATUS, остается важным навыком для

управления InnoDB. В MySQL 5.5 и более поздних версиях появилась Performance
Schema - возможно, самое мощное и полное средство для проверки внутренних про­
цессов сервера. Самое замечательное в Performance Schema то, что она основана на
времени в том смысле, что MySQL наконец получила инструменты, оценивающие
истекшее время, а не просто подсчитывающие операции.

Приложение В. Передача
больших файлов

Копирование, упаковка и распаковка очень больших файлов (часто по сети) - задачи,
очень часто встречающиеся при администрировании MySQL, инициализации сер­
веров, клонировании подчиненных серверов, выполнении резервного копирования

и восстановления. Не всегда самый очевидный способ выполнения таких операций
является наиболее быстрым и лучшим, а разница между хорошим и плохим методами

может оказаться весьма значительной. В данном приложении мы покажем несколько

примеров применения стандартных утилит UNIX для передачи большого файла, со­
держащего образ резервной копии, с одного сервера на другой.

Обычно начинают с неупакованного файла, например табличного пространства
InnoDB или файлов журнала. Кроме того, желательно, чтобы по завершении копи­
рования файл в месте назначения тоже был распакован. Другая распространенная

ситуация - начать с упакованного файла, например образа резервной копии, и в ре­
зультате получить распакованный файл.

Если пропускная способность сети ограниченна, то обычно имеет смысл посылать
файл по сети в сжатом виде. Кроме того, во избежание компрометации данных мо­

жет понадобиться защитить файл во время передачи - это требование типично для

образов резервных копий.

Копирование файлов

Таким образом, задача заключается в том, чтобы эффективно выполнить следующие

операции.

1. У паковать данные (не обязательно).

2. Отправить их на другой компьютер.

3. Распаковать архив в месте назначения.

4. Проверить, не повреждены ли файлы в процессе копирования.

Мы провели эталонное тестирование разных методов достижения этих целей. Далее

опишем наши действия и сделаем вывод о самом быстром способе.

При решении многих обсуждавшихся в этой книге задач, например при резервном

копировании, следует решить, на какой машине выполнять сжатие. Если пропускная

способность сети высока, то можно переносить образы резервных копий без сжатия
и сэкономить ресурсы процессора на сервере MySQL для обработки запросов.

806 Приложение В. Передача больших файлов

Наивный пример

Начнем с наивного примера. Требуется безопасно передать неупакованный файл

с одной машины на другую, упаковать его по пути, а затем распаковать в месте

назначения. На исходном сервере, назовем его serverl, выполним следующие
команды:

server1$ gzip -с /backup/mydЬ/mytaЫe.MYD > mytaЫe.MYD.gz
server1$ scp mytaЫe.MYD.gz root@server2:/var/liЬ/myql/mydЫ

А затем на конечном сервере server2 дадим следующую команду:

server2$ gunzip /var/lib/mysql/mydЬ/mytaЫe.МYD.gz

Наверное, это самый простой подход, но вовсе не самый эффективный, потому что

все три шага - упаковка, копирование и распаковка - выполняются последова­

тельно. На каждом шаге необходимо производить медленные операции дискового
чтения-записи. Вот что на самом деле происходит при работе каждой из выше­
упомянутых команд: gzip производит чтение и запись на сервере serverl, scp читает
с serverl и записывает на server2, а gunzip читает и записывает на server2.

Метод с одним шагом

Более эффективно упаковывать и копировать файл на одном конце и распаковывать

на другом за один шаг. В этот раз мы воспользуемся безопасным протоколом SSH,
на котором основана программа SCP. Вот какую команду мы выполним на сервере
serverl:

server1$ gzip -с /backup/mydЬ/mytaЫe.MYD 1 ssh root@server2"gunzip -с - > /var/lib
>/mysql/mydЬ/mytaЫe .MYD"

Обычно этот метод работает гораздо быстрее, чем предыдущий, потому что суще­
ственно снижается объем дискового ввода/вывода: все сводится к чтению на serverl
и записи на server2. Поэтому диск может выполнять операции последовательно.

Можно также воспользоваться механизмом сжатия, встроенным в SSH, но мы по­
казали, как упаковывать и распаковывать с помощью конвейера, поскольку это более

гибкий метод. Например, если распаковывать файл на другом конце не нужно, то
сжатие на уровне SSH не подойдет.

Этот метод можно улучшить, если немного поиграть с флагами. Так, при задании

флага -1 программа gzip пакует быстрее. Обычно коэффициент сжатия при этом
уменьшается несущественно, зато скорость возрастает очень заметно, а это важно.

Можно применять и другие алгоритмы компрессии. Например, если нужна очень вы­

сокая степень сжатия и неважно, сколько это займет времени, то вместо gzip можно
использовать bzip2. Если же требуется максимально быстрая компрессия, то лу<1ше
выбрать какой-нибудь архиватор на основе алгоритма LZO. Размер сжатого файла
может оказаться процентов на 20 больше, зато паковаться он будет примерно в пять
раз быстрее.

Копирование файлов 807

Устранение затрат на шифрование

SSH - не самый быстрый способ транспортировки данных по сети, поскольку ему
присущи затраты на шифрование и дешифрование. Если шифровать данные не тре­

буется, то можно просто побитово скопировать их по сети с помощью программы

netcat. Для неинтерактивных операций, которые нас и интересуют, она вызывается
просто как nc.

Рассмотрим пример. Начнем прослушивать порт 12345 (подойдет любой неисполь­
зуемый порт) на сервере server2 и распаковывать все, что поступает через него в файл
с требуемым именем:

server2$ nc -1 -р 12345 1 gunzip -с - > /var/liЬ/mysql/mydЬ/mytaЫe.MYD

На сервере server1 запустим еще один экземпляр netcat, который будет отправлять
данные в порт, прослушиваемый в месте назначения. Флаг -q говорит netcat, что
после обнаружения конца входного файла соединение нужно закрыть. Это, в свою
очередь, приведет к тому, что netcat на принимающей стороне закроет полученный
файл и завершится:

server1$ gzip -с - /var/liЬ/mysql/mydЬ/mytaЫe.MYD 1 nc -q 1 server2 12345

Еще проще воспользоваться программой tar, при этом по сети будут передаваться
также имена файлов. Это устраняет потенциальный источник ошибок, так как файлы

автоматически записываются в нужное место. Параметр z заставляет tar использо­
вать gzip для сжатия и распаковки. Вот какую команду следует выполнить на сервере
server2:

server2$ nc -1 -р 12345 1 tar xvzf -

А вот такую - на server1:

server1$ tar cvzf - /var/liЬ/mysql/mydЬ/mytaЫe.MYD 1 nc -q 1 server2 12345

Эти команды можно поместить в один скрипт, который будет эффективно сжимать

и ко11ировать файлы по сети, а затем распаковывать их на другой стороне.

Другие способы

Еще один вариант - воспользоваться программой rsync. Она удобна тем, что по­
зволяет легко поддерживать зеркальное соответствие между исходным и конечным

серверами и возобновлять прерванную передачу. Но если используемый в ней ал­
горитм вычисления разности между двоичными файлами невозможно эффективно

применить, то она работает не очень хорошо. Пожалуй, имеет смысл применять
ее в тех случаях, когда изначально известно, что большую часть файла посылать

не потребуется, например для завершения прерванной операции копирования с по­
мощью nc.

Экспериментировать с передачей файлов следует в спокойных условиях, когда нет

никакой спешки, так как для нахождения самого быстрого варианта придется

808 Приложение В. Передача больших файлов

действовать методом проб и ошибок. Какой способ будет работать быстрее всего,

зависит от конкретной системы. Основными факторами тут являются количество

дисков, сетевых карт и процессоров, а также их относительное быстродействие.

Мы рекомендуем для начала выполнить команду vmstat -n 5, чтобы узнать, что
является узким местом - диски или процессор.

Если часть процессоров простаивает, то, возможно, операцию удастся ускорить,

запустив несколько процедур копирования параллельно. И наоборот, если про­

цессор является узким местом, зато у дисков и сети имеется свободная пропускная

способность, то можно исключить сжатие. И не забывайте вести мониторинг произ­

водительности серверов, чтобы понять, располагают ли они резервной пропускной

способностью. Попытка запустить слишком много параллельных операций может

даже привести к замедлению работы.

Эталонные тесты копирования файлов

Для сравнения в табл. В.1 показано, за какое время нам удалось скопировать те­

стовый файл по стандартной локальной сети Ethernet со скоростью 100 Мбит/с.
Размер исходного файла составлял 738 Мбайт, а упакованного программой gzip
с флагами по умолчанию - 100 Мбайт. На исходной и конечной машинах было до­
статочно памяти, ресурсов процессора и свободного места на диске, узким местом

была сеть.

Таблица В.1. Эталонные тесты копирования файлов no сети

Метод Время, с

rsyпc без сжатия 71

scp без сжатия 68

пс без сжатия 67

rsyпc со сжатием (-z) 63

gzip, scp и guпzip 60(44+10+6)

ssh со сжатием 44

пс со сжатием 42

Обратите внимание на то, как сжатие ускоряет передачу файла по сети: три метода,

в которых сжатие не применялось, оказались самыми медленными. Но, конечно,

ваши результаты могут отличаться от полученных нами. Если процессоры и диски

не отличаются быстродействием, зато имеется гигабитная сеть Ethernet, то узким
местом будут чтение и компрессия данных, поэтому, может быть, лучше обойтись

без сжатия.

Эталонные тесrы копирования файлов 809

Кстати, часто бывает гораздо выгоднее использовать быструю архивацию, напри­

мер gzip - -fast, чем стандартные уровни компрессии, которые потребляют много
процессорного времени, давая лишь небольшой выигрыш в коэффициенте сжатия.

Мы в своем тесте довольствовались уровнем сжатия по умолчанию.

Последний шаг - проверка того, что данные не были искажены в процессе пере­

дачи данных. Тут в вашем распоряжении много разнообразных методов, например
программа md5sum, применение которой, правда, довольно затратно, так как она
должна еще раз прочитать весь файл. Тут проявляется еще одна грань пользы

сжатия: алгоритм компрессии, как правило, уже включает по меньшей мере цикли­

ческий избыточный код (CRC), который отлавливает все ошибки, так что контроль
отсутствия искажений вы получаете бесплатно.

Приложение Г. Команда EXPLAIN

В этом приложении описывается, как с помощью команды EXPLAIN получать сведе­
ния о плане выполнения запроса и как интерпретировать результаты этой операции.

Команда EXPLAIN - основной способ узнать, какие решения принимает оптимиза­
тор запросов. У нее есть много ограничений, и не всегда она говорит правду, но

поскольку ничего лучшего все равно не существует, то имеет смысл научиться ею

пользоваться, тогда вы сможете делать обоснованные предположения о том, как вы­
полняются запросы.

Вызов команды EXPLAIN
Чтобы воспользоваться командой EXPLAIN, достаточно в запросе поставить слово
EXPLAIN перед словом SELECT. MySQL пометит этот запрос специальным флагом.
Во время его обработки этот флаг заставит сервер сообщать информацию о каждом
шаге плана выполнения, а не исполнять его. При этом возвращается одна или не­

сколько строк, описывающих этапы плана выполнения и порядок их запуска.

Далее показан простейший из возможных результатов применения EXPLAIN:

mysql> EXPLAIN SELECT 1\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: NULL
type: NULL

possiЫe_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: NULL
Extra: No taЫes used

Для каждой встречающейся в запросе таблицы выводится одна строка. Если со­
единяются две таблицы, то будут выведены две строки. Если одна и та же таблица
попадается дважды, например при соединении таблицы с самой собой, строк тоже
будет две. В этом контексте семантика слова «таблица>-> довольно широка: оно может
обозначать подзапрос, результат объединения (UNION) и т. д. Позже мы увидим, по­
чему так происходит.

Существует две важные разновидности команды EXPLAIN.

1:] Команда EXPLAIN EXТENDED, по всей видимости, ведет себя так же, как обычная
EXPLAIN, но говорит серверу, что требуется произвести обратную компиляцию
плана выполнения в команду SELECT. Чтобы просмотреть сгенерированный за-

Вызов команды EXPLAIN 811

прос, следует сразу после завершения EXPLAIN EXТENDED выполнить команду

SHOW WARNINGS. Отображаемая при этом директива получена непосредственно
из плана выполнения, а не из исходной SQL-команды, которая к этому моменту

уже преобразована в некую структуру данных. В большинстве случаев исходная
и восстановленная команды будут различаться. Сравнив их, вы поймете, как оп­
тимизатор трансформировал ваш запрос. Команда EXPLAIN EXTENDED появилась
в версии MySQL 5.0, а в версии MySQL 5.1 был добавлен дополнительный столбец
filtered (подробнее об этом поговорим позже).

1:1 Команда EXPLAIN PARТIТIONS показывает, к каким секциям обращается запрос
(если это имеет смысл). Она доступна начиная с версии MySQL 5.1.

Часто считают, что при наличии слова EXPLAIN MySQL не выполняет запрос. На самом
деле, если запрос содержит подзапрос в разделе FROМ, MySQL обрабатывает этот подза­
прос, помещает результат во временную таблицу, после чего продолжает оптимизацию
внешнего запроса. Сервер обязан выполнить все подзапросы перед тем, как сможет
завершить оптимизацию внешнего запроса, а в этом и состоит суть EXPLAIN1•

Таким образом, если запрос содержит сложные подзапросы или представления,
в которых применяется алгоритм TEMPTABLE, то выполнение EXPLAIN может означать
большой объем работы для сервера.

Имейте в виду, что команда EXPLAIN не более чем аппроксимация, иногда хорошая,
а иногда очень далекая от истины. Приведем перечень ее ограничений.

1:1 EXPLAIN ничего не говорит о том, как влияют на запрос триггеры, хранимые функ­
ции и функции, определенные пользователем.

1:1 Она не работает с хранимыми процедурами, хотя можно разложить процедуру на
отдельные запросы и вызвать EXPLAIN для каждого из них.

1:1 Она ничего не говорит об оптимизациях, которые MySQL производит уже на
этапе выполнения запроса.

1:1 Часть отображаемой статистической информации - всего лишь оценка, иногда
очень неточная.

1:1 Она не показывает все, что можно было бы сообщить о плане выполнения запроса
(когда представляется возможность, разработчики MySQL включают дополни­
тельную информацию).

1:1 Она не делает различий между некоторыми операциями, называя их одинаково.
Например, словом filesort обозначается и сортировка в памяти, и сортировка с по­
мощью временных файлов, а при использовании временных таблиц - все равно,
на диске или в памяти - она сообщает: Using temporary.

1:1 Результат может сбить с толку. Например, она может сообщить о полном скани­
ровании индекса для запроса, который отбирает небольшое число строк благодаря
наличию ключевого слова LIMIТ. (В версии MySQL 5.1 команда EXPLAIN выдает
более точную информацию о количестве подлежащих просмотру строк, но в пре­
дыдущих версиях ключевое слово LIMIТ не принималось во внимание.)

Это оrраничение будет устранено в MySQL 5.6.

812 Приложение Г. Команда EXPLAIN

Переписывание запросов, отличных от SELECT. Команда EXPLAIN работает толь­
ко для запросов типа SELECT, но не для хранимых процедур, команд INSERT, UPDAТE,

DELEТE и пр. Однако некоторые отличные от SELECT запросы можно переписать в виде,

который можно объяснить. Для этого следует преобразовать команду в эквивалент­
ный запрос SE LECT, который выбирает те же самые столбцы. Любой упоминаемый
в исходной директиве столбец должен встречаться либо в списке SELECT, либо
в условии соединения, либо в разделе WHERE.

Предположим, например, что нужно переписать следующую команду UPDATE, сделав

ее объясняемой:

UPDATE sakila.actor
INNER JOIN sakila.film_actor USING (actor_id)

SET actor.last_update=film_actor.last_update;

Следующая директива EXPLAIN не эквивалентна этой команде UPDAТE, так как от сер­

вера не требуется выбирать столбец last_update ни из одной таблицы:

mysql> EXPLAIN SELECT film_actor.actor_id
-> FROМ sakila.actor
-> INNER JOIN sakila.film_actor USING (actor_id)\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: actor
type: index

possiЫe_keys: PRIМARY

key: PRIMARY
key_len: 2

ref: NULL
rows: 200

Extra: Using index
*************************** 2. row ***************************

id: 1
select_type: SIMPLE

tаЫе: film_actor
type: ref

possiЫe_keys: PRIMARY
key: PRIMARY

key_len: 2
ref: sakila.actor.actor_id

rows: 13
Extra: Using index

Это различие очень важно. EXPLAIN показывает, что MySQL будет использовать
покрывающие индексы, а это было бы невозможно в случае выборки и обновления
столбца last_update. Следующий вариант гораздо ближе к оригиналу:

mysql> EXPLAIN SELECT film_actor.last_update, actor.last_update
-> FROМ sakila.actor
-> INNER JOIN sakila.film_actor USING (actor_id)\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
tаЫе: actor

type: ALL
possiЫe_keys: PRIМARY

key: NULL
key_len: NULL

ref: NULL
rows: 200

Extra:

Столбцы результата команды EXPLAIN 813

*************************** 2. row ***************************
id: 1

select_type: SIMPLE
tаЫе: film_actor
type: ref

possiЬle_keys: PRIМARY

key: PRIМARY
key_len: 2

ref: sakila.actor.actor_id
rows: 13

Extra:

Переписывание запросов - не точная наука, но часто этого бывает достаточно, чтобы
узнать, как будет выполняться запрос 1 •

Важно понимать, что не существует такого понятия, как эквивалентный запрос на

чтение, который показал бы план выполнения запроса на запись. От запроса типа
SE LЕСТ требуется найти и вернуть всего одну копию данных. В то же время запрос,
модифицирующий данные, должен найти и изменить все копии данных во всех ин­

дексах. Часто это оказывается гораздо затратнее, чем эквивалентный запрос SELECT.

Столбцы результата команды EXPLAIN
Результат команды EXPLAIN всегда состоит из одних и тех же столбцов (за исклю­
чением команды EXPLAIN EXТENDED, которая в версии MySQL 5.1 добавляет столбец
filtered, и команды EXPLAIN PARТIТIONS, которая добавляет столбец partitions).
Изменяются лишь количество и содержимое строк. Однако, чтобы не усложнять
примеры, мы не всегда будем показывать все столбцы.

В следующих разделах объясним назначение столбцов в результате, выдаваемом
командой EXPLAIN. Имейте в виду, что порядок строк такой, в котором MySQL фак­
тически выполняет части запроса, а он не всегда совпадает с порядком упоминания

в исходной SQL-команде.

Столбец id
В этом столбце всегда находится число, идентифицирующее запрос SELECT, которому
принадлежит строка. Если в исходной команде нет ни подзапросов, ни ключевого

слова UNION, то существует лишь один запрос SELECT, так что во всех строках этот

В MySQL 5.6 будет возможность использовать команду EXPLAIN для запросов без SELECТ.
Ура!

814 Приложение Г. Команда EXPLAIN

столбец будет содержать 1. В противном случае внутренние запросы SELECT обычно

нумеруются последовательно в том порядке, в котором стоят в исходной команде.

MySQL разбивает все запросы SELECT на простые и составные, причем составные
запросы можно отнести к одной из трех категорий: простые подзапросы, так называ­

емые производные таблицы (подзапросы в разделе FROМ) и объединения UNION 1• Вот
пример простого подзапроса:

mysql> EXPLAIN SELECT (SELECT 1 FROМ sakila.actor LIMIT 1) FROМ sakila.film;
+----+-------------+-------+ .. .
1 id 1 select_type 1 tаЫе 1 .. .

+----+-------------+-------+ .. .
1 1 PRIМARY 1 film 1 .. .

2 1 SUBQUERY 1 actor 1 .. .

+----+-------------+-------+ .. .

Подзапросы в разделе FROM и UNION усложняют содержимое столбца id. Вот пример
несложного подзапроса в разделе FROM:

mysql> EXPLAIN SELECT film_id FROМ (SELECT film_id FROМ sakila.film) AS der;
+----+-------------+------------+ .. .
1 id 1 select_type 1 tаЫе 1 .. .

+----+-------------+------------+ .. .
1 1 PRIМARY 1 <derived2> 1 .. .

2 1 DERIVED 1 film 1 .. .

+----+-------------+------------+ .. .

Как вы знаете, этот запрос выполняется с помощью анонимной временной таблицы.

MySQL ссылается на данную временную таблицу из внешнего запроса по псевдо­
ниму der, который в более сложных запросах указывается в столбце ref.

Наконец, приведем запрос с UNION:

mysql> EXPLAIN SELECT 1 UNION ALL SELECT 1;
+------+--------------+------------+ .. .
1 id 1 select_type 1 tаЫе 1 .. .

+------+--------------+------------+ .. .
1 1 PRIМARY 1 NULL 1 .. .

2 1 UNION 1 NULL 1 " .

NULL 1 UNION RESULT 1 <unionl,2> 1 .. .

+------+--------------+------------+ .. .

Обратите внимание на дополнительную строку, соответствующую результату вы­
полнения UNION. Итоги обработки UNION всегда помещаются в анонимную временную
таблицу, из которой MySQL затем считывает их обратно. Эта временная таблица
отсутствует в исходной SQL-команде, поэтому в столбце id для нее стоит NULL.

В отличие от предыдущего примера, иллюстрирующего подзапрос в разделе FROM,

Утверждение •всякий подзапрос в разделе FROM является производной таблицей• ис­
тинно, однако утверждение .~всякая производная таблица является подзапросом в раз­

деле FROM• ложно. В языке SQL понятие •производная таблица• употребляется более
широко.

Столбцы результата команды EXPLAIN 815

временная таблица, порождаемая в ходе выполнения запроса, показана в последней,
а не в первой строке.

До сих пор все было довольно просто, но комбинация всех трех категорий команд

может существенно усложнить результат, в чем мы скоро убедимся.

Столбец select_type
Этот столбец показывает, какому запросу SELECT соответствует строка, простому или
составному, и если составному, то к какой из трех категорий он относится. Атрибут
SIMPLE означает, что запрос не содержит ни подзапросов, ни UNION. Если же в запро­

се имеются такие компоненты, то самый внешний запрос помечается признаком

PRIМARY, а остальные - следующим образом:

1:1 SUBQUERY. Запрос SELECT, который содержится в подз<щросе, находящемся

в разделе SELECT (иными словами, не в разделе FROM), помечается признаком

SUBQUERY;

1:1 DERIVED. Значение DERIVED означает, что данный запрос SELECT является подза­

просом в разделе FROM. MySQL выполняет его рекурсивно и помещает результат
во временную таблицу. Внутри сервер ссылается на нее по имени ~производная

таблица», так как она произведена из подзапроса;

1:1 UNION. Второй и последующий запросы SELECT, входящие в объединение UNION,

помечаются признаком UNION. При этом первый SELECT помечается так, будто
он является частью внешнего запроса. Именно поэтому первый SELECT в UNION

из предыдущего примера помечен как PRIМARY. Если бы это объединение UNION

было частью подзапроса в разделе FROM, то его первый SELECT был бы помечен
как DERIVED;

1:1 UNION RESUL т. Запрос SE LECT, применяемый для выборки результатов из времен­
ной таблицы, созданной в ходе выполнения UNION, помечается признаком UNION

RESULT.

Помимо этих значений, признаки SUBQUERY и UNION могут быть дополнительно квали­

фицированы как DEPENDENT и UNCACHEABLE. DEPENDENT означает, что результат SELECT

зависит от данных, встречающихся во внешнем запросе, UNCACHEABLE говорит о том,

что нечто в запросе SELECT мешает поместить результаты в кэш Item_cache. (Кэш

Item_cache не задокументирован - это не то же самое, что кэш запросов, хотя по­

мещению в тот и другой могут воспрепятствовать одни и те же конструкции, на­

пример функция RAND().)

Столбец tаЫе

Этот столбец показывает, к какой таблице относится данная строка. В большин­

стве случаев все просто - это таблица или ее псевдоним, встречающиеся в SQL­
команде.

816 Приложение Г. Команда EXPLAIN

Читать этот столбец следует сверху вниз, чтобы видеть порядок соединения таблиц,
выбранный оптимизатором . Например, в следующем примере MySQl, выбрала по­
рядок соединения, отличный от указанного в самом запросе:

mysql> EXPLAIN SELECT film.film_id
-> FROМ sakila.film
-> INNER JOIN sakila.film_actor USING(film_id)
-> INNER JOIN sakila.actor USING(actor_id);

+----+-------------+------------+ ...
1 id 1 select_type 1 tаЫе 1 •••

+----+-------------+------------+ . ..
1 1 SIMPLE 1 actor 1 •••

1 1 SIMPLE 1 film_actor 1 •••

1 1 SIMPLE 1 film 1 " •

+----+-------------+------------+ ...

Вспомните диаграммьJ в виде деревьев, наклоненных влево, из главы 6. Планы вы­
полнения в MySQL всегда представляются деревьями, наклоненными влево. Если
положить такой план на бок, можно читать его по порядку названия листьев, и это
будет соответствовать рядам в выводе команды EXPLAIN. План предыдущего запроса
выглядит так, как показано на рис. Г.1.

id select_type tаЫе

SIMPLE
SIMPLE
SIMPLE

Рис. Г.1. Соответствие плана выполнения запроса

строкам результата команды EXPLAIN

actor
film_actor
film

Производные таблицы и объединения. Столбец tаЫе становится существенно
сложнее, если запрос содержит подзапрос в разделе FROM или объединение UNION.
В этих случаях не существует таблицы, на которую можно было бы сослаться, так
как анонимная временная таблица существует лишь до тех пор, пока запрос вы­
полняется.

Для подзапроса в разделе FROМ столбец tаЫе принимает вид <deri vedN>, где N - иден­
тификатор подзапроса. Это всегда опережающая ссылка, то есть N относится к строке,
которая стоит в выданном EXPLAIN результате ниже.

Для запросов, содержащих UNION, строка UNION RESUL Т в столбце tаЫе содержит
список идентификаторов запросов (id), для которых производится объединение.
Это всегда обратная ссылка, поскольку строка с признаком UNION RESUL Т встречается
после всех строк, относящихся к частям UNION. Если в списке более 20 идентификато­
ров, то столбец tаЫе может быть обрезан и всех значений вы не увидите. К счастью,

Столбцы результата команды EXPLAIN 817

нетрудно догадаться, какие строки были в него включены, поскольку идентификатор

первой из них всегда виден, а все, что находится между ней и строкой UNION RESUL Т,
так или иначе включено.

Пример с различными типами составных запросов SELECT. Далее в качестве при­
мера приведен бессмысленный запрос, который тем не менее в компактной форме

демонстрирует некоторые типы составных запросов SELECT:

1 EXPLAIN
2 SELECT actor_id,
З (SELECT 1 FROМ sakila.film_actor WHERE film_actor.actor_id
4 der_l.actor_id LIMIT 1)
5 FROM (
б SELECT actor_id
7 FROM sakila.actor LIMIT 5
8 AS der_l
9 UNION ALL
10 SELECT film_id,
11 (SELECT @varl FROM sakila.rental LIMIT 1)
12 FROМ (
13 SELECT film_id,
14 (SELECT 1 FROМ sakila.store LIMIT 1)
15 FROМ sakila.film LIMIT 5
16 AS der_2;

Ключевые слова LIMIТ включены в него только для удобства - на случай, если вы

захотите выполнить этот запрос без EXPLAIN и посмотреть результаты его работы.
Вот как выглядит результат EXPLAIN:

+------+----------------------+------------+ ...
1 id 1 select_type 1 tаЫе 1 •••

+------+----------------------+------------+ ...
1 1 PRIМARY <derivedЗ> 1 •••

1 3 DERIVED actor 1 •••

1 2 DEPENDENT SUBQUERY film_actor 1 •••

1 4 UNION <derivedб> 1 •••

1 6 DERIVED film 1 •••

1 7 SUВQUERY store 1 •••

1 5 UNCACHEABLE SUBQUERY rental 1 •••

1 NULL UNION RESULT <unionl,4> 1 •••

+------+----------------------+------------+ ...

Мы специально построили запрос так, чтобы каждая его часть обращалась к разным

таблицам и было понятно, что куда попадает. И тем не менее разобраться в нем

трудно! Начнем сверху.

О Первая строка является опережающей ссылкой на производную таблицу der _1,

которая в запросе помечена как <derivedЗ>. Она соответствует строке 2 исходной
SQL-команды. Чтобы понять, какие строки результата относятся к командам

SELECT, являющимся частью <derivedЗ>, смотрим вперед ...

О ... на вторую строку с идентификатором 3. Значение З объясняется тем, что строка
относится к третьему по порядку запросу SELECT и помечена признаком DERIVED,

818 Приложение Г. Команда EXPLAIN

поскольку соответствующий подзапрос встречается в разделе FROM (строки 6 и 7
исходной SQL-команды).

1:1 Третья строка имеет идентификатор 2 и соответствует строке 3 исходной SQL­
команды. Отметим, что она идет после строки с большим id, то есть соответ­

ствующий ей подзапрос выполняется позже, как и должно быть. Она помечена

признаком DEPENDENT SUBQUERY, что означает, что ее результат зависит от итогов

обработки внешнего запроса (также называемого коррелировттым подзапросом).
В данном случае внешний запрос начинается в строке 2 и выбирает данные из
таблицы der _1.

1:1 Четвертая строка помечена признаком UNION, следовательно, соответствует вто­

рому или последующему подзапросу SELECT в UNION. В столбце tаЫе находится
значение <derivedб>, это означает, что данные выбираются из результатов подза­

проса в разделе FROM и добавляются во временную таблицу для результатов UNION.

Как и раньше, чтобы найти в результате EXPLAIN строки, в которых показан план
выполнения этого подзапроса, нужно заглянуть вперед.

1:1 Пятая строка соответствует подзапросу der _2, определенному в строках 13, 14
и 15. EXPLAIN ссылается на него по имени <derivedб>.

1:1 Шестая строка - это обычный подзапрос в списке SELECT таблицы <derivedб>.
Его id равен 7, что существенно".

1:1 ".так как он больше 5 - идентификатора седьмой строки. Почему это так важно?
Потому что очерчивает границы подзапроса <derivedб>. Каждая выведенная

EXPLAIN строка с признаком DERIVED является началом вложенной области ви­

димости. Как только появляется строка с меньшим идентификатором (в данном

случае 5 меньше 6), вложенная область видимости закрывается. Поэтому мы
знаем, что седьмая строка - часть списка SELECT, в котором выбираются данные
из <derivedб>, то есть часть списка SELECT из четвертой строки (строка 11 в исход­
ной SQL-команде). Этот пример довольно легко понять, даже не зная о правилах
вложенных областей видимости, но так бывает не всегда. Стоит также отметить,

что эта строка помечена признаком UNCACHEABLE SUBQUERY из-за пользовательской

переменной.

1:1 Наконец, последняя строка помечена признаком UNION RESUL Т. Она представляет

этап считывания строк из временной таблицы, соответствующей UNION. Можете,
если хотите, начать с этой строки и двигаться в обратном направлении: она воз­
вращает объединение результатов, полученных в строках с идентификаторами 1
и 4, которые, в свою очередь, ссылаются на <derivedЗ> и <derivedб>.

Как видите, комбинация сложных подзапросов SELECT может порождать трудные для

восприятия результаты EXPLAIN. Знание правил облегчает их чтение, но нет ничего

лучше практики.

При изучении результатов EXPLAIN часто приходится заглядывать вперед и возвра­

щаться назад. Возьмем, к примеру, первую строку результата. Глядя на нее, невоз­

можно сказать, что она является частью UNION. Это становится ясно только после
ознакомления с последней строкой.

Столбцы результата команды EXPLAIN 819

Столбец type
В руководстве по MySQL сказано, что в этом столбце отражается тип соединения, но
нам кажется, что следует говорить скорее о методе доступа, иными словами, о том,

как MySQL решила искать строки в таблице. Перечислим наиболее важные методы
доступа в порядке от наихудшего к наилучшему.

о ALL. Этот подход обычно называют сканированием таблицы. В общем случае речь
идет о том, что MySQL должна просмотреть таблицу от начала до конца, чтобы
найти нужную строку. (Существуют исключения, например запросы с ключевым

словом LIMIТ или запросы, для которых в столбце Extra отображается значение
Using distinct/not exists.)

О index. То же, что сканирование таблицы, только MySQL просматривает ее в по­
рядке, задаваемом индексом, а не в порядке следования строк. Основное преиму­

щество заключается в том, что не требуется сортировка, недостаток же - высокие
затраты на чтение всей таблицы в порядке, задаваемом индексом. Обычно это
означает, что строки выбираются произвольным образом, что крайне накладно.

Если в столбце Extra при этом находится значение Using index, значит, MySQL
использует покрывающий индекс и просматривает только данные в индексе,

не обращаясь к строкам. Это менее затратно, чем сканирование таблицы в зада­
ваемом индексом порядке.

О range. Просмотр диапазона - это ограниченная форма сканирования индекса.

Просмотр начинается в определенной точке индекса и возвращает строки в не­

котором диапазоне значений. Это лучше, чем полное сканирование, так как

не приходится перебирать индекс целиком. Очевидные примеры просмотра диа­
пазона - запросы с условиями BEТWEEN или >в разделе WHERE.

Когда MySQL использует индекс для поиска в списке значений, например при
вычислении предиката IN() или условий, объединенных связкой OR, также при­
меняется просмотр диапазона. Однако это совершенно разные методы доступа

с иными характеристиками производительности. Дополнительную информацию

см. во врезке «Что такое условие поиска по диапазону~ в главе 5.

К этому методу применимы те же самые соображения о затратах, что и к методу index.

О ref. Это доступ по индексу (иногда он называется поиском по индексу), в резуль­
тате которого возвращаются строки, соответствующие единственному заданному

значению. Но таких строк может быть несколько, поэтому поиск сочетается с про­
смотром. Данный тип доступа возможен лишь в случае существования неуникаль­

ного индекса или неуникального префикса ключа в уникальном индексе. Он на­

зывается ref, потому что значения ключей в индексе сравниваются с некоторой
справочной (reference) величиной. Эта величина может быть как константой, так
и значением из предыдущей таблицы, если в запросе участвуют несколько таблиц.

Одним из вариантов ref является тип доступа ref _or _null. В этом случае MySQL
должна выполнить второй просмотр для поиска записей с ключом NULL.

О eq_ref. Это поиск по индексу в случае, когда МуSQL точно знает, что будет возвра­
щено не более одного значения. Такой метод доступа применяется, когда MySQI,

820 Приложение Г. Команда EXPLAIN

решает использовать первичный ключ или уникальный индекс для сравнения на

равенство с некоторой справочной величиной. Этот тип доступа MySQL умеет от­
лично оптимизировать, так как заранее известно, что не придется просматривать

диапазоны отвечающих условию строк или искать дополнительные строки после

того, как одна уже найдена.

О const, system. Эти типы доступа MySQL применяет, когда в процессе оптимизации
какую-то часть запроса можно преобразовать в константу. Например, если вы
выбираете первичный ключ строки и помещаете его в условие WHERE, то MySQL
может преобразовать этот запрос в константу. Затем соответствующая таблица,
по существу, удаляется из операции соединения.

О NULL. Этот метод означает, что MySQL сумела разрешить запрос на фазе оптимиза­
ции, так что в ходе выполнения вообще не потребуется обращаться к таблице или
индексу. Например, для выборки минимального значения проиндексированного

столбца достаточно просмотреть только индекс, не обращаясь к таблице.

Столбец possiЬle_keys

Этот столбец показывает, какие индексы можно было бы задействовать для выпол­
нения запроса, исходя из того, к каким столбцам производится обращение и какие
операторы сравнения используются. Список создается на ранних этапах фазы

оптимизации, поэтому на последующих стадиях может выясниться, что некоторые

индексы бесполезны.

Столбец key
Этот столбец показывает, какой индекс MySQL решила использовать для оптимиза­
ции доступа к таблице. Если этот индекс отсутствует в столбце possiЫe_keys, значит,
MySQL выбрала его по какой-то другой причине. Например, покрывающий индекс
может быть выбран даже в том случае, если раздела WHERE нет вообще.

Иными словами, столбец possiЫe_keys показывает, какие индексы могли бы спо­

собствовать эффективному поиску строк, тогда как столбец key говорит о том, на
каком индексе оптимизатор остановился, чтобы минимизировать затраты на запрос
(о показателях стоимости запроса см. главу 6). Приведем пример:

mysql> EXPLAIN SELECT actor_id, film_id FROМ sakila.film_actor\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: film_actor
type: index

possiЫe_keys: NULL
key: idx_fk_film_id

key_len: 2
ref: NULL

rows: 5143
Extra: Using index

Столбцы результата команды EXPLAIN 821

Столбец key _len
Этот столбец показывает, сколько байтов индекса использует MySQL. Если за­
действованы лишь некоторые индексированные столбцы, то, зная это значение,
можно определить, какие именно. Напомним, что MySQL 5.5 и более старых версий
может использовать только левый префикс индекса. Например, первичный ключ

таблицы sakila. film_actors состоит из двух столбцов типа SМALLINT, а длина типа
SМALLINT - 2 байта, поэтому каждая запись в индексе содержит 4 байта. Рассмотрим
такой запрос:

mysql> EXPLAIN SELECT actor_id, film_id FROM sakila.film_actor WHERE actor_id=4;
... +------+---------------+---------+---------+ .. .
... 1 type 1 possiЫe_keys 1 key 1 key_len 1 .. .

... +------+---------------+---------+---------+ .. .

... 1 ref 1 PRIМARY 1 PRIМARY 1 2 1 .. .

... +------+---------------+---------+---------+ .. .
Исходя из значения столбца key_len, можно сделать вывод, что для поиска по ин­
дексу задействован только первый столбец, actor _id. Определяя, какие столбцы
используются, не забывайте о кодировке символьных столбцов:

mysql> CREATE TABLE t (
-> а char(З) NOT NULL,
-> Ь int(11) NOT NULL,
-> с char(1) NOT NULL,
-> PRl/llARY КЕУ (а,Ь,с)

->) ENGINE=MyISAМ DEFAULT CHARSET=utfB
mysql> INSERT INTO t(a, Ь, с)

-> SELECT DISTINCT LEFT(TABLE_SCHEMA, З), ORD(TABLE_NAМE),

-> LEFT(COLUМN_NAМE, 1)
-> FROМ INFOR/llATION_SCHE/llA.COLUMNS:

mysql> EXPLAIN SELECT а FROМ t WНERE a='sak' AND Ь = 112;
... +------+---------------+---------+---------+ .. .
... 1 type 1 possiЫe_keys 1 key 1 key_len 1 .. .

... +------+---------------+---------+---------+ .. .

... 1 ref 1 PRIМARY 1 PRIМARY 1 13 1 .. .

... +------+---------------+---------+---------+ .. .
Длина ключа 13 байт в этом запросе равна сумме длин столбцов а и Ь. Длина столб­
ца а составляет три символа, для каждого из которых в кодировке UTF8 может по­
надобиться до 3 байт, а столбец Ь представляет собой четырехбайтовое целое число.

MySQL не всегда показывает, какая часть индекса реально используется. Напри­
мер, для запроса с предикатом LIKE, в котором производится сопоставление с ша­
блоном по совпадению префикса, MySQL сообщит, что задействована вся ширина
столбца.

В столбце key_len отражается максимально возможная длина индексированных
полей, а не фактическая длина данных, хранимых в таблице. Так, в предыдущем
примере MySQL всегда показывает 13 байт, даже если столбец а не содержит более
одного символа. Иными словами, значение key_len вычисляется исходя из опреде­
ления структуры таблицы, а не значений в ней.

822 Приложение Г. Команда EXPLAIN

Столбец ref

Этот столбец показывает, какие столбцы и константы из предыдущих таблиц ис­

пользуются для поиска в индексе, имя которого указано в столбце key. В следующем
примере демонстрируется сочетание условий соединения и псевдонимов. Обратите
внимание на столбец ref, в котором показано, что таблица film фигурирует в тексте
запроса под псевдонимом f:

mysql> EXPLAIN
-> SELECT STRAIGНТ_JOIN f .film_id
-> FROМ sakila.film AS f
-> INNER JOIN sakila.film_actor AS fa
-> ON f.film_id=fa.film_id AND fa.actor_id = 1
-> INNER JOIN sakila.actor AS а USING{actor_id);

... +-------+ ... +--------------------+---------+------------------------+ ...
•.• 1 tаЫе 1 ••• 1 key 1 key_len 1 ref 1 •••

... +-------+ ... +--------------------+---------+------------------------+ ...
• • • 1 а 1 .•• 1 PRIМARY 1 2 1 const 1 •••

• • • 1 f 1 ••• 1 idx_fk_language_id 1 1 1 NULL 1 •••

• • • 1 fa 1 ••• 1 PRIМARY 1 4 1 const, sakila. f. film_id 1 •••

... +-------+ ... +--------------------+---------+------------------------+ ...

Столбец rows

В этом столбце демонстрируется, сколько строк, по оценке MySQL, придется про­
читать, чтобы найти запрошенные. Это значение вычисляется в расчете на каждую

итерацию плана выполнения с вложенными циклами. Иными словами, это не про­

сто количество строк, которые, по мнению MySQL, предстоит прочитать, а среднее
количество строк, которые нужно будет прочитать, чтобы удовлетворить критерию,
действующему в данной точке выполнения запроса. (Критерием может быть как
константа, заданная в SQL-команде, так и текущее значение столбца из предыдущей
таблицы в порядке соединения.)

Оценка может оказаться очень неточной, это зависит от имеющейся статистики та­

блицы и избирательности индекса. Кроме того, в версии MySQL 5.0 и более ранних
не учитывается ключевое слово LIMIТ. Например, при обработке следующего запроса

не будут просматриваться 1022 строки:

mysql> EXPLAIN SELECT * FROМ sakila.film LIMIT 1\G

rows: 1022

Грубо оценить количество просматриваемых строк для всего запроса можно, пере­

множив все значения в столбце rows. Например, при выполнении следующего запро­
са, возможно, понадобится просмотреть примерно 2600 строк:

mysql> EXPLAIN
-> SELECT f.film_id
-> FROМ sakila.film AS f
-> INNER JOIN sakila.film_actor AS fa USING{film_id)

Столбцы результата команды EXPLAIN 823

-> INNER JOIN sakila.actor AS а USING(actor_id);
•.. +------+ ...
• • • 1 rows 1 • ••

. . . +------+ •..
• • • 1 200 1 •••

• • • 1 13 1 •••

• • • 1 1 1 •••

. • . +------+ .••

Напомним, что речь идет не о числе строк в результирующем наборе, а о количестве
строк, которое MySQL должна будет просмотреть. Кроме того, имейте в виду, что
существует множество оптимизаций, например буферы соединения и кэши, которые
не учитываются при оценивании количества строк. Очень может быть, что число
реально читаемых сервером строк окажется меньше предсказанного. К тому же
MySQL ничего не знает о кэшах, реализованных на уровне операционной системы
и оборудования.

Столбец fi ltered
Этот столбец появился в версии MySQL 5.1 и отображается при выполнении коман­
ды EXPLAIN EXTENDED. Он показывает пессимистическую оценку процентной доли
строк, удовлетворяющих некоторому критерию, заданному, например, в разделе

WHERE или в условии соединения. Если умножить значение в столбце rows на этот
процент, то получится оценка числа строк, которые MySQL должна будет соединить
с предыдущими таблицами. В настоящее время оптимизатор использует эту оценку
только для методов доступа ALL, index, range и index_merge.

Для иллюстрации мы создали следующую таблицу:

CREATE TABLE tl (

);

id INT NOT NULL AUTO_INCREMENT,
filler char(200),
PRIМARY KEY(id)

Затем вставили в нее 1000 строк со случайным текстом в столбце filler. Его на­
значение состоит в том, чтобы MySQL не использовала покрывающий индекс при
выполнении следующего запроса:

mysql> EXPLAIN EXTENDED SELECT * FROМ t1 WНERE id < 500\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

tаЫе: tl
type: ALL

possiЫe_keys: PRIМARY

key: NULL
key_len: NULL

ref: NULL
rows: 1000

filtered: 49.40
Extra: Using where

824 Приложение Г. Команда EXPLAIN

MySQL могла бы воспользоваться методом доступа range для поиска всех строк,
в которых поле id меньше 500, но не стала так поступать, потому что при этом уда­
лось бы исключить только половину строк. Сервер полагает, что полное сканирова­
ние таблицы будет менее затратно. При этом лишние строки отфильтровываются
по условию, указанному в разделе WHERE. Имея оценку стоимости, вычисленную для
просмотра диапазона, сервер знает, сколько строк это условие отсеет. Поэтому-то

в столбце fil tered и отображается значение 49,40 %.

Столбец Extra
Этот столбец содержит дополнительную информацию, для которой не нашлось места
в других столбцах. В руководстве по MySQL документированы многие значения, ото­
бражаемые в указанном столбце, часть из них упоминалась на страницах этой книги.

Наиболее важны следующие выражения, с которыми вам придется сталкиваться
чаще всего.

Q Using index. Означает, что MySQL воспользуется покрывающим индексом, чтобы
избежать доступа к самой таблице. Не путайте покрывающие индексы с методом
доступа по индексу.

Q Using where. Означает, что сервер произведет дополнительную фильтрацию строк,
отобранных подсистемой хранения. Многие условия WHERE, в которых имеются
индексированные столбцы, могут быть проверены подсистемой хранения, когда
(и если) она читает индекс, поэтому не для всех запросов со словом WHERE признак
Using where существует. Иногда его наличие означает лишь, что запрос можно
было бы выполнить более эффективно при другом индексировании.

Q Using temporary. Означает, что MySQL будет применять временную таблицу для
сортировки результатов запроса.

Q Using filesort. Означает, что MySQL прибегнет к внешней сортировке для упоря­
дочения результатов, а не станет читать строки из таблицы в порядке, задаваемом
индексом. В MySQL реализованы два алгоритма файловой сортировки, о которых
можно прочитать в главе 6. В обоих случаях сортировка может быть произведена
в памяти или на диске. EXPLAIN ничего не говорит о том, какой тип файловой со­
ртировки будет использован и где именно это произойдет.

Q range checked for each record (index map: N). Означает, что подходящего индекса
не нашлось, поэтому сервер будет заново искать индекс при обработке каждой
строки в операции соединения. N представляет собой битовую карту индексов,
показанных в столбце possiЫe_keys, так что эта информация избыточна.

Вывод плана выполнения в виде дерева

Пользователи MySQL говорили, что неплохо было бы выводить результат работы
EXPLAIN в виде дерева, поскольку оно может более точно отразить структуру плана
выполнения. Существующее представление не очень удобно для изучения плана,
но древовидное отображение сложно совместить с табличным форматом. Неудоб-

Улучшения в версии MySQL 5.6 825

ство особенно наглядно проявляется в большом количестве возможных значений
в столбце Extra, а также в представлении UNION. Конструкция UNION совершенно
не похожа на другие виды соединений, выполняемых MySQL, поэтому плохо со­
четается с форматом EXPLAIN.

Хорошо разбираясь в различных правилах и особенностях EXPLAIN, можно восста­
новить изначально древовидный план выполнения. Но это утомительное занятие,

которое лучше оставить автоматическому инструменту. Как раз такой инструмент

pt-visual-explain имеется в пакете Percona Toolkit.

Улучшения в версии MySQL 5.6
MySQL 5.6 будет включать в себя важное улучшение команды EXPLAIN - возмож­
ность объяснять такие команды, как UPDATE, INSERT и т. п. Это очень полезно, посколь­
ку, хотя команду DML можно преобразовать в квазиэквивалентный запрос с клю­
чевым словом SELECT и объяснить его, результат не будет отражать то, как на самом
деле выполняется исходная команда. При разработке и использовании инструментов,
таких как pt-upgrade из пакета Percona Toolkit, которые пытаются использовать эту
методику, мы столкнулись с несколькими случаями, когда оптимизатор не шел по

пути, которого мы от него ожидали при преобразовании команд в SELECT. Таким
образом, возможность использования EXPLAIN для команды без преобразования ее
в SELECT помогает понять, что действительно происходит во время выполнения.

MySQL 5.6 также будет включать в себя множество улучшений оптимизатора запро­
сов и подсистемы выполнения, которые позволят создавать анонимные временные

таблицы как можно позднее, вместо того чтобы всегда создавать и заполнять их
перед оптимизацией и выполнением относящихся к ним частей запроса. Это по­

зволит MySQL сразу же объяснять запросы с подзапросами, не выполняя их пред­
варительно.

Наконец, в MySQL 5.6 связанные с оптимизатором области будут улучшены путем
добавления серверу функциональности трассировки оптимизатора. Это позволит
пользователю просматривать принятые оптимизатором решения, а также входные

параметры (например, кардинальность индекса) и причины принятия решений.

Это будет очень полезно для понимания не только плана выполнения, выбранного
сервером, но и причин такого выбора.

Приложение д. Отладка
блокировок

В любой системе, где для управления совместным доступом к разделяемым ресур­
сам применяются блокировки, очень трудно отлаживать возникающие вследствие

конкуренции за их получение ошибки. Возможно, вы пытаетесь добавить в таблицу
новый столбец или просто запускаете запрос и внезапно обнаруживаете, что операция
не выполняется, потому что кто-то другой заблокировал таблицу или необходимые

вам строки. Зачастую нужно лишь понять, почему запрос заблокирован, но ино­

гда хочется определить, кто его заблокировал, чтобы знать, какой процесс убивать.
В этом приложении мы покажем, как решить обе задачи.

Ожидание блокировки на уровне сервера

Блокировки могут происходить как на уровне сервера, так и на уровне подсистемы

хранения1 • (Блокировки на уровне приложения тоже могут представлять проблему,

но сейчас мы говорим только о сервере MySQL.) Сам сервер MySQL применяет не­
сколько типов блокировок.

1:1 Табличные блокировки. Таблицы можно блокировать, устанавливая явные
блокировки чтения и записи. Существует несколько разновидностей подобных

блокировок, например локальные блокировки чтения. Прочитать обо всех раз­

новидностях можно в разделе руководства по MySQL, посвященном команде
LOCK TABLES. Помимо явных блокировок, запросы захватывают неявные на время

своего выполнения.

1:1 Глобальные блокировки. Существует единственная глобальная блокировка, за­
хватываемая командой FLUSH TABLES WПН READ LOCK либо установкой параметра

read_only = 1. Эта блокировка конфликтует с табличными.

1:1 Блокировки на имя. Блокировка на имя - это разновидность табличной блоки­

ровки, которую сервер захватывает, когда переименовывает или удаляет таблицу.

1:1 Строковые блокировки. Можно захватить и освободить блокировку на про­
извольную строку на уровне сервера, воспользовавшись функцией GET_LOCK()

и родственными ей.

В последующих разделах мы рассмотрим все эти блокировки более подробно.

Если вы забыли о том, как разделяются обязанности между сервером и подсистемами
хранения, посмотрите на рис. 1.1.

Ожидание блокировки на уровне сервера 827

Табличные блокировки

Табличные блокировки могут быть явными и неявными. Явная блокировка захваты­

вается командой LOCK TABLES. Например, если в сеансе работы с программой mysql
выполнить следующую команду:

mysql> LOCK TAВLES sakila.film READ;

то будет захвачена явная блокировка на таблицу sakila. film.

Если затем в другом сеансе выполнить показанную далее команду:

mysql> LOCK TAВLES sakila.film WRITE;

то запрос повиснет и не завершится.

На первом соединении вы увидите ожидающий поток:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 7
User: baron
Host: localhost

db: NULL
Command: Query

Time: 0
State: NULL

Info: SHOW PROCESSLIST
*************************** 2. row ***************************

Id: 11
User: baron
Host: localhost

db: NULL
Command: Query

Тime: 4
State: Locked

Info: LOCK TABLES sakila.film WRITE
2 rows in set (0.01 sec)

Обратите внимание на то, что поток 11 находится в состоянии Locked. В коде MySQL
есть только одно место, где поток входит в это состояние: там, где он пытается полу­

чить блокировку на таблицу, которая в данный момент заблокирована другим по­
током. Таким образом, увидев подобную картину, можно сразу же сказать, что поток

ждет блокировки на уровне сервера, а не какой-то подсистемы хранения.

Однако явные блокировки не единственная причина остановки подобной операции.
Как мы уже отмечали, сервер неявно блокирует таблицы на время выполнения за­

просов. Продемонстрировать это проще всего, запустив длительный запрос, для чего

достаточно применить функцию SLEEP{):

mysql> SELECT SLEEP(З0) FROМ sakila.film LIMIT 1;

Если попытаться еще раз заблокировать таблицу sakila. film, пока работает этот
запрос, то операция повиснет из-за неявной блокировки - точно так же, как это

828 Приложение д. Отладка блокировок

произошло бы в случае явной. В списке процессов вы будете наблюдать такую же
ситуацию, как и ранее:

mysql> SНOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 7
User: baron
Host: localhost

db: NULL
Command: Query

Time: 12
State: Sending data
Info: SELECT SLEEP(30) FROM sakila.film LIMIT 1

*************************** 2. row ***************************
Id: 11

User: baron
Host: localhost

db: NULL
Command: Query

Time: 9
State: Locked

Info: LOCK TABLES sakila.film WRITE

В этом примере неявно захваченная при выполнении команды SELECT блокировка
чтения препятствует получению явной блокировки на запись командой LOCK TABLES.
Неявные блокировки могут блокировать и друг друга.

Может возникнуть вопрос: чем неявные блокировки отличаются от явных? На вну­
треннем уровне их структура одинакова, и управляются они одним и тем же кодом.

А на внешнем вы можете управлять явными блокировками с помощью команд LOCK
TABLES и UNLOCK TABLES.

Однако, когда речь заходит о подсистемах хранения, отличных от MyISAM, между
этими блокировками обнаруживается одно очень важное различие. Блокировка, соз­
данная явно, делает именно то, о чем вы попросили, тогда как неявные блокировки
скрыты и ведут себя магическим образом. Сервер захватывает и освобождает неявные
блокировки автоматически по мере необходимости и сообщает о них подсистеме
хранения. Подсистема хранения конвертирует эти блокировки, исходя из своих по­
требностей. Например, в InnoDB существуют правила, диктующие, какую табличную
блокировку следует создавать для данной табличной блокировки на уровне сервера.
Поэтому трудно понять, какие же блокировки InnoDB создает в реальности.

Определение владельца блокировки. Если вы видите много процессов в состоянии
Locked, то, возможно, дело в том, что MyISAM или похожая подсистема хранения
применяется в условиях рабочей нагрузки с высокой конкурентностью. Это может
помешать ручному выполнению той или иной операции, например построению но­

вого индекса. Если в очереди на получение блокировки для таблицы типа MyISAM
стоит запрос UPDAТE, то не могут выполняться даже SЕLЕСТ-запросы. (Дополнитель­

ную информацию об очередях на получение блокировки и о приоритетах можно
почерпнуть из руководства по MySQL.)

Иногда становится очевидно, что какое-то соединение удерживает блокировку на
таблицу слишком долго и его просто нужно принудительно разорвать (или воззвать

Ожидание блокировки на уровне сервера 829

к совести пользователя и попросить, чтобы он не мешал работать всем остальным!).

Но как определить, какое соединение владеет блокировкой?

В настоящее время не существует SQL-команды, показывающей, какой поток удер­

живает табличные блокировки, которые не дают выполнить ваш запрос. Команда
SHOW PROCESSLIST демонстрирует только процессы, которые ждут блокировки, но

не процессы, которые их захватили. К счастью, существует команда debug, которая
выводит информацию о блокировках в журнал ошибок сервера. Чтобы запустить ее,

воспользуйтесь утилитой mysqladmin:

$ mysqladmin debug

Она выводит довольно много отладочной информации, и ближе к концу на­

ходится то, что нас интересует. Эта распечатка получена после того, как мы за­

блокировали таблицу в одном соединении и затем попробовали заблокировать
ее же в другом:

Thread database.taЫe_name Locked/Waiting
7 sakila.film Locked - read
8 sakila.film Waiting - write

Lock_type
Read lock without concurrent inserts
Highest priority write lock

Как видите, поток 8 ожидает блокировку, удерживаемую потоком 7.

Глобальная блокировка чтения

Сервер MySQL реализует также глобальную блокировку чтения. Получить ее можно
следующим образом:

mysql> FLUS~ TABLES WITH READ LOCK;

Если теперь попытаться заблокировать любую таблицу в другом сеансе, то этот сеанс
повиснет:

mysql> LOCK TAВLES sakila.film WRITE;

Как узнать, ждет запрос глобальную блокировку чтения или табличную блокировку?

Следует взглянуть на результат команды SHOW PROCESSLIST:

mysql> SНOW PROCESSLIST\G

*************************** 2. row ***************************
Id: 22

User: baron
Host: localhost

db: NULL
Command: Query

Тime: 9
State: Waiting for release of readlock

Info: LOCK TABLES sakila.film WRITE

Обратите внимание на состояние процесса Wai ting for release of readlock (Ожидает
освобождения блокировки чтения). Это как раз и означает, что запрос ждет глобаль­
ную блокировку чтения, а не табличную блокировку.

MySQL не позволяет узнать, кто удерживает глобальную блокировку чтения.

830 Приложение д. Отладка блокировок

Блокировки на имя

Блокировка на имя - это разновидность табличной блокировки, которую сервер за­
хватывает, когда собирается переименовать или удалить таблицу. Такая блокировка
конфликтует с обычной табличной блокировкой, все равно, явной или неявной.
Например, если мы, как и раньше, выполним в одном сеансе команду LOCK TABLES,

а в другом попытаемся эту таблицу переименовать, то запрос повиснет, но на этот

раз не в состоянии Locked:

mysql> RENAМE TABLE sakila.film2 то sakila.film;

Посмотрев на заблокированный запрос в списке процессов, мы увидим, что он на­

ходится в состоянии Wai ting for tаЫе (Ожидает таблицу):

mysql> sнow PROCESSLIST\G

*************************** 2. row ***************************
Id: 27

User: baron
Host: localhost

db: NULL
Command: Query

Тime: З

State: Waiting for tаЫе
Info: rename tаЫе sakila.film to sakila.film 2

Результат блокировки на имя можно увидеть также, применив комаfщу SНQ>J OPEN TABLES:

mysql> SНOW OPEN TAВLES;
+----------+-----------+--------+-------------+
1 Database 1 ТаЬlе 1 In_use 1 Name_locked 1

+----------+-----------+--------+-------------+
1 sakila 1 film_text З 1 0 1

1 sakila 1 film 2 1 1 1

1 sakila 1 film2 1 1 1 1

+----------+-----------+--------+-------------+
З rows in set (0.00 sec)

Обратите внимание на то, что заблокированы оба имени - и старое и новое. Имя

sakila. film_text заблокировано, потому что к таблице sakila. film присоединен
ссылающийся на нее триггер. Таким образом, мы видим, что блокировки могут про­
являться там, где их и не ожидаешь. При обращении к таблице sakila. film триггер
вызывает неявное обращение к sakila. film_text, а стало быть, и захват неявной
блокировки на нее. Вообще-то при переименовании триггер не должен срабатывать,

поэтому, строго говоря, блокировка не нужна, по так уж сложилось: уровень детали­
зации блокировок в MySQL не всегда такой, каким хотелось бы его видеть.

MySQL не позволяет узнать, кто удерживает блокировку на имя, но обычно это не­
существенно, так как такие блокировки очень быстротечны. Конфликт может быть
вызван скорее тем, что саму блокировку на имя не удается получить из-за того, что

кто-то захватил обычную табличную блокировку, но это как раз можно узнать с по­
мощью mysqladmin debug, как показано ранее.

Ожидание блокировки в InnoDB 831

Пользовательские блокировки

И последняя разновидность блокировок, реализованная на уровне сервера, - поль­

зовательские блокировки, по существу являющиеся не чем иным, как именованными
мьютексами. Вы задаете строку, на которую нужно получить блокировку, и время

ожидания в секундах, по истечении которого произойдет тайм-аут:

mysql> SELECT GET_LOCK('my lock', 100);
+--------------------------+
1 GET_LOCK('my lock', 100) 1

+--------------------------+
1 1

+--------------------------+
1 row in set (0.00 sec)

Эта попытка удалась с первого раза, так что теперь поток владеет данным имено­

ванным мьютексом. Если другой поток попытается получить блокировку на ту же

самую строку, то он подвиснет до истечения тайм-аута. В списке процессов для него

показывается специальное состояние:

mysql> SНOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 22
User: baron
Host: localhost

db: NULL
Command: Query

Time: 9
State: User lock

Info: SELECT GET_LOCK('my lock ·, 100)

Состояние User lock характерно только для таких блокировок. MySQL не позволяет
узнать, кто владеет пользовательской блокировкой.

Ожидание блокировки в InnoDB
Блокировки на уровне сервера отлаживать проще, чем блокировки внутри подсисте­

мы хранения. Механизм блокирования зависит от самой подсистемы, а некоторые
из них вообще не предоставляют средств для получения информации о своих блоки­

ровках. В этом приложении мы будем говорить в основном об InnoDB.

InnoD В раскрывает информацию о блокировках с помощью команды SHOW INNODB

STATUS. Если транзакция ожидает некоторую блокировку, то последняя будет присут­

ствовать в секции TRANSACТIONS. Например, выполнив следующие команды в одном

сеансе, вы захватите блокировку записи на первую строку таблицы:

mysql> SET АUТОСОММIТ=0;
mysql> BEGIN;
mysql> SELECT film_id FROМ sakila.film LIMIT 1 FOR UPDATE;

832 Приложение Д. Отладка блокировок

Если теперь выполнить те же команды в другом сеансе, то запрос повиснет в ожида­

нии блокировки, захваченной в первом. SHOW INNODB STATUS продемонстрирует, что
произошло (для простоты мы приводим только часть распечатки):

1 LOCK WAIT 2 lock struct(s), heap size 1216
2 MySQL thread id 8, query id 89 localhost Ьаrоп Seпdiпg data
з SELECT film_id FROМ sakila.film LIMIT 1 FOR UPDATE
4 ------- TRX HAS BEEN WAITING 9 SEC FOR THIS LOCK ТО ВЕ GRANTED:
5 RECORD LOCKS space id 0 page по 194 п bits 1072 iпdex "idx_fk_laпguage_id"

of tаЫе ·sakila/film· trx id 0 61714 lock_mode Х waitiпg

В последней строке показано, что запрос ожидает монопольную (lock_mode Х) бло­
кировку на страницу 194 индекса idx_fk_laпguage_id данной таблицы. В конечном
итоге тайм-аут ожидания истечет и запрос вернет такую ошибку:

ERROR 1205 (НУ000): Lock wait timeout exceeded; try restartiпg traпsactioп

К сожалению, не зная, кто удерживает блокировку, трудно понять, какая транзакция

стала источником проблемы. Иногда можно сделать обоснованное предположение,
посмотрев, какие транзакции открыты очень давно. Можно также активировать

монитор блокировок InnoDB, который показывает до десяти блокировок, удержива­
емых каждой транзакцией. Чтобы это сделать, нужно создать таблицу типа InnoDB
со специальным именем 1 :

mysql> CREATE TABLE inпodb_lock_moпitor(a int) ENGINE=INNOOВ;

После выполнения этого запроса InnoD В начинает периодически (с разной частотой,
но обычно несколько раз в минуту) помещать в стандартный поток вывода ту же
информацию, что и команда SHOW INNODB STATUS, но в слегка расширенном формате.

В большинстве систем стандартный поток вывода перенаправлен в журнал ошибок
сервера, поэтому, изучив его, вы сможете узнать, какие транзакции удерживают бло­
кировки. Чтобы остановить монитор, удалите эту таблицу.

Вот пример выдаваемой информации:

1 ---TRANSACTION 0 61717, ACTIVE з sec, process по 5102, 05 thread id 1141152080
2 З lock struct(s), heap size 1216
З MySQL thread id 11, query id 108 localhost Ьаrоп
4 show iппоdЬ status
5 TABLE LOCK tаЫе ·sakila/film" trx id 0 61717 lock mode IX
6 RECORD LOCKS space id 0 page по 194 п Ыts 1072 iпdex "idx_fk_laпguage_id" of

tаЫе ·sakila/film· trx id 0 61717 lock_mode Х
7 Record lock, heap по 2 PHYSICAL RECORD: п_fields 2; compact format; iпfo Ыts 0
8 ... опущено .•.
9
10 RECORD LOCKS space id 0 page по 231 п Ыts 168 iпdex 'PRIМARY' of tаЫе

·sakila/film· trx id 0 61717 lock_mode Х locks rec but поt gap
11 Record lock, heap по 2 PHYSICAL RECORD: п_fields 15; compact format; iпfo Ыts 0
12 ..• опущено ...

InnoDB понимает несколько волшебных имен таблиц. Сейчас предпочитают динамически
изменяемые серверные переменные, но InnoDB существует уже давно, поэтому сохранила
некоторые старые привычки.

Ожидание блокировки в InnoDB 833

Обратите внимание на строку 3, где показан идентификатор потока MySQL, - то же

самое значение, что в столбце Id в списке процессов. В строке 5 видно, что транзакция
владеет неявной монопольной блокировкой (IX) на таблицу. В строках 6-8 демон­
стрируется блокировка на индекс. Информацию в строке 8 мы опустили, потому
что это довольно длинный дамп заблокированной записи. В строках 9-11 показана
блокировка на первичный ключ (фраза FOR UPDAТE приводит к блокировке не только
индекса, но и самой строки).

При активизированном мониторе блокировок дополнительная информация появля­

ется и в распечатке, формируемой командой SHOW INNODB STATUS, поэтому не обяза­
тельно заглядывать в журнал ошибок сервера.

Монитор блокировок не самое оптимальное решение по нескольким причинам. Ос­
новная проблема - выдача чрезмерно подробной информации, которая включает
дамп заблокированных записей в шестнадцатеричном и АSСП-виде. Все это быстро
заполняет журнал ошибок и легко может переполнить буфер вывода SHOW INNODB

STATUS, размер которого фиксирован. А тогда вы не увидите именно то, что ищете, по­

скольку эти сведения находятся в последних секциях. Кроме того, в InnoDB зашито
ограничение на количество выводимых блокировок для одной транзакции (десять),

поэтому сведений об интересующей вас блокировке вы можете как раз и не увидеть.
Но даже если искомое имеется, найти его отнюдь не всегда просто (попробуйте ак­
тивизировать монитор на загруженном сервере и убедитесь сами!).

Сделать формат вывода информации о блокировках более удобным можно двумя пу­
тями. Во-первых, один из авторов этой книги написал заплату для InnoDB и сервера
MySQL, которая вошла в Percona Server и MariaDB. Эта заплата удаляет из выводи­
мой информации подробные дампы записей, включает информацию о блокировках
в команду SHOW INNODB STATUS по умолчанию (поэтому монитор вообще не нужно
активизировать) и добавляет динамически изменяемые серверные переменные для

управления уровнем подробности и количеством блокировок, печатаемых для одной
транзакции.

Второй способ - воспользоваться программой innotop для разбора и форматирова­
ния вывода. В режиме Lock она показывает блокировки, сгруппированные по соеди­
нению и по таблице, так что можно без труда понять, какие транзакции удерживают
блокировку на данную таблицу. Это небезупречный метод поиска виновной транз­

акции, так как для обнаружения заблокированной записи необходимо исследовать
дампы записей. Но все же он гораздо лучше имеющихся альтернатив и достаточно

хорош в большинстве случаев.

Использование таблиц INFORMAТION_SCHEМA. Использование SHOW INNODB

STATUS для просмотра блокировок - это, безусловно, устаревшая практика, поскольку

теперь у InnoDB есть таблицы INFORМAТION_SCHEМA, которые раскрывают свои тран­
закции и блокировки.

Если вы не видите таблицы, значит, используете старую версию InnoDB. Вам нужны
хотя бы MySQL 5.1 и плагин InnoDB. Если вы используете MySQL 5.1 и все
равно не видите таблицу INNODB_LOCKS, проверьте SHOW VARIABLES для переменной

834 Приложение Д. Отладка блокировок

innodb_version. Если не видите переменную, значит, не используете плагин InnoDB,
а это необходимо! Если вы видите переменную, но нет таблиц, вам необходимо убе­
диться, что параметр plugin_load в файле конфигурации сервера явно включает
таблицы. Чтобы узнать об этом подробнее, обратитесь к руководству по MySQL.

К счастью, в MySQL 5.5 вам не нужно беспокоиться обо всем этом - современная
версия InnoDB встроена в сервер.

В руководствах MySQL и InnoDB есть примеры запросов, с которыми нужно обра­
щаться к этим таблицам. Здесь мы не будем их повторять, однако приведем парочку
своих собственных. Например, вот запрос, который показывает, кто блокирует, кто
ждет и как долго:

SELECT r.trx_id AS waiting_trx_id, r.trx_mysql_thread_id AS waiting_thread,
TIMESTAМPDIFF(SECOND, r.trx_wait_started, CURRENT_TIMESTAМP) AS wait_time,
r.trx_query AS waiting_query,
l.lock_taЫe AS waiting_taЫe_lock,
b.trx_id AS Ыocking_trx_id, b.trx_mysql_thread_id AS Ыocking_thread,
SUBSTRING(p.host, 1, INSTR(p.host, ':') - 1) AS Ыocking_host,
SUBSTRING(p.host, INSTR(p.host, ':') +1) AS Ыocking_port,
IF(p.command = "Sleep", p.time, 0) AS idle_in_trx,
b.trx_query AS Ыocking_query

FROM INFORМATION_SCHEMA.INNODВ_LOCK_WAITS AS w
INNER JOIN INFORМATION_SCHEMA.INNODВ_TRX AS Ь ON b.trx_id = w.Ыocking_trx_id
INNER JOIN INFORМATION_SCHEМA.INNODB_TRX AS r ON r.trx_id = w.requesting_trx_id
INNER JOIN INFORМATION_SCHEМA.INNODB_LOCKS AS 1 ON w.requested_lock_id = l.lock_id
LEFT JOIN INFORМATION_SCHEMA.PROCESSLIST AS р ON p.id b.trx_mysql_thread_id
ORDER ВУ wait_time DESC\G
*************************** 1. row ***************************

waiting_trx_id: 5D03
waiting_thread: 3

wait_time: 6
waiting_query: select * from store limit 1 for update

waiting_taЫe_lock: ·sakila· .·store·
Ыocking_trx_id: 5002
Ыocking_thread: 2
Ыocking_host: localhost
Ыocking_port: 40298

idle_in_trx: 8
Ыocking_query: NULL

Результат показывает, что поток 3 ждет 6 секунд для блокировки строки в таблице
store. Она была заблокирована потоком 2, который простаивает в течение 8 секунд.

Если у вас большие проблемы из-за большого числа блокировок, возникших из-за
простаивающих в транзакциях потоков, узнать, правда без детализации, сколько за­
просов заблокировано и на каких потоках, поможет следующий вариант:

SELECT CONCAT('thread ', b.trx_mysql_thread_id, ' from ', p.host) AS who_Ыocks,
IF(p.conнnand = "Sleep", p.time, 0) AS idle_in_trx,
МAX(TIMESTAМPDIFF(SECOND, r.trx_wait_started, NOW())) AS max_wait_time,
COUNT(*) AS num_waiters

FROМ INFORМATION_SCHEМA.INNOOB_LOCK_WAITS

INNER JOIN INFORМATION_SCHEМA.INNODB_TRX
INNER JOIN INFORМATION_SCHEMA.INNODB_TRX

AS w
AS Ь ON b.trx_id = w.Ыocking_trx_id
AS r ON r.trx_id = w.requesting_trx_id

Ожидание блокировки в InnoDB 835

LEFT JOIN INFORМATION_SCHEМA.PROCESSLIST AS р ON p.id
GROUP ВУ who_Ыocks ORDER ВУ num_waiters DESC\G
*************************** 1. row ***************************

who_Ыocks: thread 2 from localhost:40298
idle_in_trx: 1016

max_wait_time: 37
num_waiters: 8

b.trx_mysql_thread_id

Результат показывает, что поток 2 теперь простаивает намного дольше и по крайней
мере один поток ждет до 37 секунд, пока он освободит свои блокировки. Имеется во­
семь потоков, ожидающих, пока поток 2 завершит свою работу и совершит коммит.

Мы обнаружили, что блокировка простоя в транзакции является общей причиной
чрезвычайных проблем и часто ее трудно обнаружить. Инструмент pt-kill из пакета
Percona Toolkit можно настроить так, чтобы он прерывал длительные бездействую­
щие транзакции для предотвращения такой ситуации. Кроме того, для достижения

той же цели в Percona Server имеется параметр ожидания тайм-аута транзакции.

Приложение Е. Использование
Sphinx совместно с MySQL

Sphinx (http://www.sphinxsearch.com) - это бесплатная полнотекстовая 1юисковая
система с открытым исходным кодом, которая изначально спроектирована в рас­

чете на интеграцию с базами данных. Она содержит ряд средств, характерных для
СУБД, работает очень быстро, поддерживает распределенный поиск и хорошо мас­
штабируется. Кроме того, в проект заложены эффективное использование памяти
и минимизация дискового ввода/вывода, что особенно важно, так как часто именно
эти факторы ограничивают производительность крупных операций.

Sphinx прекрасно работает в сочетании с MySQL. Ее можно использовать для уско­
рения разнообразных запросов, в том числе полнотекстовых, а также для выполнения
быстрой сортировки и группировки - и это далеко не все возможности ее примене­

ния. Она использует сетевой протокол MySQL и в основном совместимый с MySQL
диалект SQL, поэтому, работая с ней, можно реализовывать такие же запросы, как и в
ходе взаимодействия с базой данных MySQL. Кроме того, существует реализованная
в виде подключаемого модуля подсистема хранения, с помощью которой програм­

мист или администратор может обращаться к Sphinx напрямую из MySQL. Система
Sphinx особенно полезна для некоторых запросов, которые MySQL не очень хорошо
оптимизирует для больших наборов данных вследствие универсальности своей

архитектуры. Короче говоря, Sphinx дополняет функциональность сервера MySQI"
и повышает его производительность.

Источником данных для индекса Sphinx обычно является запрос SELECT к MySQL,
но, вообще говоря, можно построить индекс на основе неограниченного количества
источников разных типов, а каждый экземпляр Sphinx способен искать в произволь­
ном числе индексов. Например, можно включить в индекс некоторые документы

из базы данных MySQL, работающей на одном удаленном сервере, документы из
базы данных PostgreSQL, работающей на другом сервере, и данные, поставляемые
локальным сценарием по ХМL-конвейеру.

В этом приложении рассмотрим ряд случаев, когда возможности Sphinx позволяют
повысить производительность, опишем порядок установки и конфигурирования,

подробно расскажем о функциях системы и обсудим реальные примеры практиче­

ского применения.

Типичный поиск с помощью Sphinx
Начнем с простого, но довольно показательного примера использования Sphinx,
чтобы наметить отправную точку для дальнейшего обсуждения. Мы воспользуемся

языком РНР из-за его популярности, но API существует и для ряда других языков.

Типичный поиск с помощью Sphinx 837

Предположим, что нужно реализовать полнотекстовый поиск для использования

в системе сравнения товаров, к которой предъявляются следующие требования:

о поддерживать полнотекстовый индекс для поиска по таблице товаров, хранящей-
ся в базе данных MySQL;

о обеспечить полнотекстовый поиск по названию и описанию каждого товара;

D при необходимости выполнять поиск только в пределах заданной категории;

О иметь возможность сортировать результаты не только по релевантности, но и по

цене товара или дате поступления в продажу.

Для начала опишем источник данных и индекс в конфигурационном файле Sphinx:

source products
{

}

type mysql
sql_host localhost
sql_user shopping
sql_pass = mysecretpassword
sql_db shopping
sql_query SELECT id, title, description, \

cat_id, price, UNIX_TIMESTAМP(added_date) AS added_ts \
FROM products

sql_attr_uint cat_id
sql_attr_float price
sql_attr_timestamp added_ts

index products
{ source

path
docinfo

products
/usr/local/sphinx/var/data/products

= extern

В этом примере предполагается, что в базе данных shopping имеется таблица products,
из которой мы выбираем в запросе SE LECT столбцы для заполнения индекса Sphinx.
Сам индекс Sphinx также называется products. Создав новый источник данных и ин­
декс, мы запускаем программу indexer, которая создает начальный полнотекстовый
индекс, а затем запускаем или перезапускаем программу-демон searchd, которая
подхватит изменения:

$ cd /usr/local/sphinx/Ыn
$./indexer products
$./searchd --stop
$./searchd

Теперь индекс готов отвечать на запросы. Чтобы протестировать его, запустим
скрипт test. php, входящий в дистрибутив Sphinx:

$ php -q test.php -i products ipod

Query 'ipod ' retrieved З of З matches in 0.010 sec.
Query stats:

'ipod' found З times in З documents

838 Приложение Е. Использование Sphinx совмесrно с MySQL

Matches:
1. doc_id=123, weight=100, cat_id=100, price=159.99, added_ts=2008-01-03 22:38:26
2. doc_id=124, weight=100, cat_id=100, price=199.99, added_ts=2008-01-03 22:38:26
3. doc_id=125, weight=100, cat_id=100, price=249.99, added_ts=2008-01-03 22:38:26

Последний шаг - добавить функцию поиска в веб-приложение. Мы должны настро­
ить параметры сортировки и фильтрации в соответствии с пожеланиями пользовате­

ля и красиво отформатировать результаты. Кроме того, поскольку Sphinx возвращает
клиенту только идентификаторы документов и прописанные в конфигурационном

файле атрибуты (он не хранит исходные текстовые данные), то недостающую ин­
формацию мы должны получить от MySQL самостоятельно:

1 <?php
2 iпclude (··sphiпxapi. php") ;
3 // ... прочие директивы iпclude, код подключения к MySQL,
4 // вывод заголовка страницы, формы поиска и т. п. - все это здесь

5
6 //устанавливаем те параметры запроса, которые задал пользователь

7 $cl = пеw SphiпxClieпt ();
8 $sortby = $_REQUEST["sortby"];
9 if (!iп_array ($sortby, array ("price", "added_ts")))
10 $sortby = "price";
11 if ($_REQUEST['"sortorder"]=="asc")
12 $cl->SetSortМode (SPH_SORT_ATTR_ASC, $sortby);
13 else
14 $cl->SetSortМode (SPH_SORT_ATTR_DESC, $sortby);
15 $offset = ($_REQUEST["page"]-1)*$rows_per_page;
16 $cl->SetLimits ($offset, $rows_per_page);
17
18 // отправляем запрос, получаем результаты
19 $res = $cl->Query ($_REQUEST["query"], "products");
20
21 // обрабатываем оwибки поиска
22 if (!$res)
23 {
24 priпt "Search error:" . $cl->GetLastError ();
25 die;
26 }
27
28 // выбираем дополнительные столбцы из базы данных MySQL
29 $ids = joiп (",", array_keys ($res["matches"]);
30 $r = mysql_query ("SELECT id, title FROM products WHERE id IN ($ids)")
31 or die ("MySQL error: " . mysql_error()) ;
32 while ($row = mysql_fetch_assoc($r))
33 {
34 $id = $row["id"];
35 $res["matches"][$id]["sql ••] $row;
36 }
37
38 // выводим результаты в том порядке, в котором их вернула система Sphiпx

39 $п = 1 + $offset;
40 foreach ($res["matches"] as $id=>$match)
41 {
42 priпtf ("%d. <а href=details.php?id=%d>%s, USD %.2f
\п",

43
44 }
45
46 ?>

Типичный поиск с помощью Sphiпx 839

$n++, $id, $match["sql"]["title"], $match["attrs"]("price"]);

Хотя показанный код несложен, но кое-что в нем все же следует пояснить.

О Функция Set Limi ts () говорит Sphinx, что необходимо извлечь лишь то количе­
ство результатов, которое клиент желает вывести на странице. В Sphinx такое
ограничение обходится дешево (в отличие от поиска, встроенного в MySQL),
а число результатов, которое было бы возвращено, не будь этого ограниче­
ния, можно получить, не нагружая систему дополнительно, из переменной

$resul t ['total_ found'].

О Поскольку Sphinx только индексирует столбец ti tle, но не хранит его, мы должны
извлекать данные непосредственно из базы MySQL.

О Мы выбираем значения из базы MySQL одним запросом для всех документов,
перечисляя их идентификаторы в разделе WHERE id IN (...),а не выполняем
отдельные запросы для каждого найденного документа (это было бы неэффек­

тивно).

О Полученные от MySQL строки мы вставляем в результат полнотекстового поис­
ка, чтобы сохранить исходный порядок сортировки. Чуть позже мы еще вернемся
к этому пункту.

О Отображаемые строки сконструированы из значений, полученных как от Sphinx,
так и от MySQL.

Код включения данных в отображаемые строки специфичен для РНР и заслуживает
чуть более подробного объяснения. Мы не можем просто обойти результирующий
набор, возвращенный сервером MySQL, поскольку порядок строк в нем может (и, как
правило, так и происходит) отличаться от последовательности идентификаторов

в разделе WHERE id IN (...).Однако в хеше (ассоциативном массиве) РНР резуль­
таты хранятся в том порядке, в котором были туда помещены, поэтому при обходе
$result["matches"] мы формируем строки в той последовательности, в какой их
вернула система Sphinx. Таким образом, чтобы сохранить нужный порядок резуль­
татов (вместо полуслучайного порядка, в котором возвращает строки MySQL), мы
вставляем полученные от MySQL данные по одному в хеш, где РНР хранит резуль­
тирующий набор Sphinx.

Между MySQL и Sphinx имеется существенная разница как в реализации, так
и в производительности подсчета количества найденных результатов и применения

ключевого слова LIMIТ. Во-первых, сразу отметим, что LIMIТ обходится в Sphinx очень
дешево. Рассмотрим LIMIТ 500, 10. MySQL выбрала бы 51 О первых попавшихся строк
(это медленно) и 500 из них отбросила, тогда как Sphinx возвращает идентификато­
ры, с помощью которых вы позже выберете из базы MySQL именно те десять строк,
которые нужны. Во-вторых, Sphinx всегда возвращает точное количество найденных
записей независимо от того, что задано ключевым словом LIMIТ. MySQL не умеет
делать это эффективно, хотя в версии 5.6 произведены некоторые улучшения.

840 Приложение Е. Использование Sphinx совместно с MySQL

Зачем использовать Sphinx
Sphinx может дополнить приложение на основе MySQL разными способами, де­
монстрируя высокую производительность там, где MySQL не блещет, и предлагая
функциональность, которой MySQL не располагает. Перечислим некоторые типич­
ные сценарии использования.

1:1 Быстрый, эффективный, масштабируемый и релевантный полнотекстовый поиск.

1:1 Оптимизация условий WHERE, когда индекс отсутствует или обладает низкой
селективностью.

1:1 Оптимизация запросов с фразами ORDER ВУ • • • LIMIТ N и GROUP ВУ.

1:1 Параллельная генерация результирующих наборов.

1:1 Вертикальное и горизонтальное масштабирование.

1:1 Агрегирование секционированных данных.

В следующих разделах мы рассмотрим все эти сценарии. Но этот список неисчер­

пывающий, и пользователи постоянно находят Sphinx новое применение. Например,
один из наиболее важных способов практической работы с системой Sphinx - бы­
стрый поиск и фильтрация записей - результат творчества пользователей, он не за­

кладывался при проектировании.

Эффективный и масштабируемый полнотекстовый поиск

Средства полнотекстового поиска, встроенные в MySQL, хороши для небольших
наборов данных, но с ростом базы начинают работать очень медленно. Когда коли­
чество записей исчисляется миллионами, а объем индексированного текста - гига­
байтами, время выполнения запроса может варьироваться от секунды до 1 О минут
и более, что для высокопроизводительного неб-приложения, конечно, неприемлемо.
Полнотекстовый поиск средствами MySQL допускает масштабирование за счет рас­
пределения данных по нескольким серверам, но организовывать параллельный поиск

и объединение найденных результатов придется в приложении.

Sphinx работает значительно быстрее, чем встроенные в MySQL полнотекстовые
индексы. Например, на поиск в тексте размером свыше 1 Гбайт затрачивается
10-100 миллисекунд, а при объеме 10-100 Гбайт время линейно зависит от количе­
ства процессоров. Кроме того, система Sphinx обладает следующими достоинствами.

1:1 Может индексировать данные, хранящиеся в InnoDB и других подсистемах хра-
нения, а не только в MyISAM.

1:1 Может создавать индексы по данным, взятым из многих таблиц, а не только из
столбцов одной таблицы.

1:1 Может динамически объединять результаты поиска по нескольким индексам.

1:1 Помимо текстовых столбцов, индексы могут содержать неограниченное количе­
ство числовых атрибутов, их можно считать в некотором роде дополнительными

Зачем использовать Sphinx 841

столбцами. В качестве значений атрибутов допускается использовать целые
числа, числа с плавающей точкой и временные метки UNIX.

Q Умеет оптимизировать полнотекстовый поиск с дополнительными условиями

на атрибуты.

Q Алгоритм ранжирования, учитывающий полные фразы, позволяет возвращать
наиболее релевантные результаты. Например, при поиске в таблице песен о люб­
ви по запросу «Я люблю тебя, родная» песня, содержащая в точности эту фразу,
окажется в начале списка - раньше тех, которые несколько раз содержат слова

«люблю» и «родная».

Q Значительно упрощает горизонтальное масштабирование.

Эффективное применение условия WHERE
Иногда требуется сделать выборку из очень больших таблиц (с миллионами запи­
сей), а в запросе присутствуют условия WHERE для столбцов, по которым построены
индексы с очень низкой селективностью (то есть для заданного условия возвращается

слишком много строк) или не построены вообще. Типичные случаи - поиск поль­
зователей в социальной сети или лотов на аукционном сайте. Как правило, в форме
поиска можно задать десять и более столбцов, а сортироваться результаты могут со­
всем по другим столбцам. Пример такого приложения и соответствующей стратегии
индексирования см. в главе 5.

Если правильно спроектировать схему и провести оптимизацию запросов, то MySQL
вполне прилично справляется с такими ситуациями, если в условии WHERE не слиш­
ком много столбцов. Но по мере роста количества столбцов число индексов, необ­
ходимых для поддержки всех возможных комбинаций, растет экспоненциально.
Полное покрытие всех возможных сочетаний всего четырех столбцов находится
в опасной близости к пределу возможностей MySQL. К тому же поддержка таких
индексов - очень медленный и затратный процесс. Следовательно, практически бес­
смысленно строить все требуемые индексы для поддержки условий WHERE с большим
числом столбцов.

Но еще важнее тот факт, что, даже добавив индексы, толку от них вы получите не­
много, если они обладают низкой селективностью. Классический пример - столбец
gender, который мало чем помогает, потому что каждому значению соответствует
примерно половина всех строк. Если селективность индекса недостаточна, то MySQL
обычно предпочитает полное сканирование таблицы.

Sphinx выполняет такие запросы гораздо быстрее, чем MySQL. При построении
индекса Sphinx можно указать только требуемые столбцы из таблицы с данными.
Sphinx допускает два способа доступа к таблицам: поиск ключевого слова по индексу
или полное сканирование. В обоих случаях применяются фильтры - эквивалент
условия WHERE. Но в отличие от MySQL, которая сама определяет, использовать
индекс или прибегнуть к полному сканированию, Sphinx позволяет пользователю
выбирать метод доступа.

842 Приложение Е. Использование Sphinx совмесrно с MySQL

Чтобы воспользоваться полным сканированием с фильтрами, следует задать в ка­

честве критерия поиска пустую строку. Если же нужен поиск по индексу, то при его

построении включите в поисковые поля псевдоключевые слова, а затем ищите по

ним. Например, если требуется найти товары в категории 123, то на этапе индекси­
рования нужно добавить в документ ключевое слово категория123 и затем искать по
нему. Добавлять слова можно в одно из уже имеющихся полей с помощью функции

CONCAT(), а можно для большей гибкости создать специальное поисковое поле для
псевдоключевых слов. Обычно стоит использовать фильтры, когда критерий не­
селективен, то есть ему удовлетворяет больше 30 % строк, и фиктивные ключевые
слова - когда критерию удовлетворяет менее 10 % строк. В серой зоне от 10 до 30 %
возможно всякое, так что для поиска оптимального решения следует воспользоваться

эталонным тестированием.

Sphinx выполняет и поиск по индексу, и полное сканирование быстрее, чем MySQL.
Иногда для полного сканирования Sphinx требуется даже меньше времени, чем
MySQL на чтение из индекса.

Поиск первых нескольких результатов
с учетом сортировки

В веб-приложениях часто нужно искать первые N результатов с учетом задан­
ной сортировки. Как мы писали ранее, этот случай плохо поддается оптимизации

в MySQL 5.5 и более старых версиях.

Хуже всего дело обстоит, когда поиск по указанному условию WHERE возвращает
много строк (допустим, 1 миллион), а столбцы, перечисленные в разделе ORDER ВУ,
не проиндексированы. MySQL воспользуется индексом для поиска всех подходящих
строк, будет читать их одну за другой в буфер сортировки, собирая по всему диску,
затем произведет файловую сортировку - и все это только для того, чтобы большую
часть отбросить. На время обработки запроса MySQL вынуждена сохранять и об­
рабатывать все строки, игнорируя ограничение LIMIТ и потребляя огромное коли­
чество памяти. А если результат не помещается в буфер сортировки, то придется
прибегнуть к сортировке на диске, что лишь увеличивает число операций дискового

ввода/вывода.

Это крайний случай, и может даже показаться, что в реальной жизни такое случается

редко, но проблемы, которые он иллюстрирует, возникают сплошь и рядом. MySQL
ограничивает множество индексов, пригодных для сортировки: допускается исполь­

зование только левой части ключа, не поддерживается неплотный просмотр индекса

и разрешается только одно условие с указанием диапазона. Поэтому многие реаль­

ные запросы ничего не выигрывают от наличия индексов. А даже если выигрывают,

то дисковый ввод/вывод для извлечения строк в полуслучайном порядке способен

об ну лить производительность.

Еще одной проблемой в MySQL является разбиение результирующего набора на стра­
ницы, для которого обычно требуется выполнять запросы типа SELECT ••• LIMIТ N, М.
При этом с диска читается N + М строк и, следовательно, производится много опера-

Зачем использовать Sphinx 843

ций произвольной выборки, вследствие чего впустую расходуется память. Sphinx
может существенно ускорить выполнение таких запросов, устраняя две самые круп­

ные проблемы.

О Потребление памяти. Потребление памяти в Sphinx всегда строго ограничено,
причем лимиты можно конфигурировать. Sphinx поддерживает размер и смеще­
ние результирующего набора аналогично конструкции LIMIТ N, М, применяемой
в MySQL, но допускает также параметр max_matches. Он управляет размером
аналога буфера сортировки как на уровне сервера, так и на уровне отдельного за­
проса. Гарантируется, что потребление памяти в Sphinx не превышает заданных
ограничений.

О Ввод/вьmод. Если атрибуты находятся в памяти, то Sphinx вообще не обращается
к диску. Но даже если атрибуты хранятся на диске, то для их считывания Sphinx
выполняет последовательный ввод/вывод, что гораздо быстрее извлечения в по­
луслучайном порядке, характерного для MySQL.

Результаты поиска можно сортировать по комбинации релевантности (веса), зна­
чений атрибутов и (при использовании GROUP ВУ) значений агрегатной функции.
Синтаксис задания порядка сортировки аналогичен разделу ORDER ВУ в SQL:

<?php
$cl = пеw SphiпxClieпt ();
$cl->SetSortMode (SPH_SORT_EXTENDED, 'price DESC, @weight ASC');
11 дополнительный код и вызов Query()
?>

В этом примере price - это заданный пользователем атрибут, хранящийся в индексе,
a@weight - специальный атрибут, создаваемый во время выполнения и содержащий
вычисленную релевантность результата. Можно сортировать также по арифметиче­
скому выражению, включающему значения атрибутов, стандартные математические
операции и функции:

<?php
$cl = пеw SphiпxClieпt ();
$cl->SetSortMode (SPH_SORT_EXPR, '@weight + log(pageviews)*l.5');
11 дополнительный код и вызов Query() ...
?>

Оптимизация запросов, содержащих GROUP ВУ
Поддержка типичных для языка SQL фраз была бы неполной без функциональности
GROUP ВУ, поэтому в Sphinx она тоже реализована. Но в отличие от универсального
механизма, применяемого в MySQL, Sphinx специализируется на эффективном
решении полезного на практике подмножества задач с помощью конструкции GROUP
ВУ. Это подмножество покрывает генерацию отчетов по большим (1-100 миллионов
строк) наборам данных в случаях, когда выполняется одно из следующих условий.

О Результирующий набор составляет лишь малую толику от общего числа груп-
пируемых строк (здесь под малой толикой может пониматься от 100 тысяч до
1 миллиона строк).

844 Приложение Е. Использование Sphinx совместно с MySQL

О Требуется очень высокая скорость работы, поэтому можно смириться с тем, что
значение COUNT(*) будет приближенным, если много групп извлекается из данных,
распределенных между машинами, входящими в кластер.

Эти условия не настолько строго ограничивают, как может показаться. Первый

случай покрывает практически все мыслимые отчеты по времени. Например, для

построения детального почасового отчета за десять лет нужно извлечь менее 90 ООО
записей. Второй случай можно на естественном языке описать так: <.\Найти 20 наи­
более значимых записей в шардированой таблице из 100 миллионов строк настолько
быстро и точно, насколько это возможно».

Эта техника позволяет ускорить выполнение запросов общего вида, но ее можно

использовать и в приложениях с полнотекстовым поиском. Часто бывает нужно
не просто показать результаты полнотекстового поиска, но и агрегировать их тем или

иным способом. Например, на многих страницах поисковой выдачи отображается
количество результатов, найденных в каждой категории товаров, или выводится

график изменения счетчика обнаруженных документов в зависимости от времени.
Еще одно типичное требование - сгруппировать результаты и показать наиболее
релевантные в каждой категории. Поддержка GROUP ВУ в Sphinx позволяет комбини­
ровать группировку с полнотекстовым поиском и тем самым избежать издержек на

группировку в приложении или в MySQL.

Как и для сортировки, для группировки в Sphinx отведена память фиксированного
размера. Она работает немного эффективнее (на 10-50 %), чем аналогичные запро­
сы в MySQL, в случае, когда набор данных целиком умещается в памяти. При таком
условии преимущество системы Sphinx обусловлено ее способностью распределять
нагрузку и существенно уменьшать время задержки. Для очень больших наборов
данных, которые в память никак не уместить, можно в целях формирования отчетов

построить специальный индекс на диске с помощью встраиваемых атрибутов (по­

дробнее об этом позже). Запросы к таким индексам выполняются примерно с той же
скоростью, с какой можно считывать данные с диска: на современном оборудова­

нии - 30-100 Мбит/с. В таком случае производительность оказывается многократно
выше, чем у MySQL, хотя результаты получаются приближенными.

Самое важное различие между реализациями GROUP ВУ в MySQL и Sphinx состоит
в том, что Sphinx при определенных условиях дает примерные результаты. Тому
есть две причины.

о Для группировки используется память фиксированного размера. Если групп

больше, чем может поместиться в памяти, а результаты возвращаются в некото­
ром <.\Несчастливом» порядке, то счетчики по группам могут оказаться меньше

истинных значений.

О При распределенном поиске между узлами пересылаются только агрегирован­

ные результаты, а не сами найденные документы. Если в разных узлах имеются

записи-дубликаты, то счетчики различающихся записей в каждой группе могут
оказаться больше истинных значений, поскольку информация, которая позволи­
ла бы устранить дубликаты, между узлами не передается.

Зачем использовать Sphinx 845

На практике часто можно смириться с приближенными счетчиками по группам,

лишь бы они быстро вычислялись. Если же это недопустимо, то часто удается полу­
чить точные результаты, соответствующим образом настроив демон и клиентское

приложение.

Можно также получить эквивалент конструкции COUNT(DISТINCT <атрибуты>). Напри­

мер, этим можно воспользоваться на аукционном сайте для подсчета различных

продавцов в каждой категории.

Наконец, Sphinx позволяет задать критерий для выбора одного наилучшего доку­
мента в каждой группе. В частности, в ходе группировки по домену и сортировки

результирующего набора по счетчику найденных в домене можно выбрать наиболее
релевантный документ в каждом домене. В MySQL для этого понадобился бы очень
сложный запрос.

Генерация параллельных результирующих наборов

Sphinx позволяет одновременно генерировать несколько результирующих наборов
из одних и тех же данных, опять-таки не выходя за пределы ограничений по памяти.

Это дает ощутимый выигрыш по сравнению с традиционно применяемым в SQL
подходом, когда либо запускаются два запроса (в надежде, что после первого какие­
то данные останутся в кэше), либо для каждого результирующего набора создается
временная таблица.

Например, предположим, что нужно сгенерировать отчеты по дням, неделям и ме­

сяцам за некоторый период. Для этого в MySQL пришлось бы выполнить три
запроса с разными разделами GROUP ВУ, то есть обратиться к источнику данных
трижды. Sphinx умеет генерировать все три отчета параллельно, обрабатывая ис­
точник всего один раз. Для этого в Sphinx предусмотрен механизм мультизапросов.
Вместо того чтобы выдавать запросы по одному, вы собираете их в пакет и отправ­
ляете один раз:

<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXТENDED, "price desc");
$cl->AddQuery ("ipod");
$cl->SetGroupBy ("category_id", SPH_GROUPBY_ATTR, "@count desc");
$cl->AddQuery ("ipod");
$cl->RunQueries ();
?>

Sphinx проанализирует поступивший запрос, выделит из него отдельные части и, если
возможно, распараллелит их выполнение.

Например, Sphinx может заметить, что различаются только режимы сортировки
и группировки, а в остальном запросы одинаковы. Именно так обстоит дело в при­
мере, приведенном ранее, где сортировка производится по полю price, а группиров­
ка - по category _id. Для обработки таких запросов Sphinx создаст несколько оче­
редей сортировки. Затем каждая выбранная строка будет помещена во все очереди.

846 Приложение Е. Использование Sphinx совместно с MySQL

По сравнению с последовательным выполнением запросов это устраняет излишние

операции полнотекстового поиска или полного сканирования.

Отметим, что генерация параллельных результирующих наборов, будучи распро­

страненной и важной оптимизацией, является лишь 'Iастным случаем более общего
механизма мультизапросов. Это не единственная возможная оптимизация. Можно

посоветовать всюду, где возможно, объединять несколько запросов в один пакет,
так как это позволяет Sphinx применить различные внутренние оптимизации. Даже
если Sphinx не сумеет распараллелить выполнение запросов, все равно количество
обращений к серверу уменьшится. А если в будущих версиях появятся новые оп­
тимизации, то они будут применены к вашим запросам автоматически, так что вам
не потребуется ничего изменять.

Масштабирование

Sphinx отлично масштабируется как горизонтально, так и вертикально.

Sphinx можно распределять по нескольким компьютерам без ограничений. Во всех
вышеупомянутых способах ее применения можно получить выигрыш от распреде­

ления нагрузки между несколькими процессорами.

Поисковый демон Sphinx (searchd) поддерживает специальные распределенные ин­
дексы, которые знают, какие локальные и удаленные индексы следует опрашивать

и агрегировать. Это означает, что горизонтальное масштабирование становится

тривиальной конфигурационной задачей. Нужно лишь распределить данные по

узлам и сконфигурировать главный, который будет рассылать удаленные запросы,
выполняющиеся параллельно с локальными, и все.

Допустимо также вертикальное масштабирование, когда с целью уменьшения за­
держки на одной машине устанавливается большее количество процессоров или
ядер. Для этого нужно лишь запустить на одном компьютере несколько экземпляров

демона searchd и опрашивать их все с другого компьютера через распределенный
индекс. Или сконфигурировать единственный экземпляр так, чтобы он общался сам

с собой, тогда параллельные «удаленные» запросы на самом деле будут выполняться
на одной машине, но разными процессорами или ядрами.

Иными словами, в Sphinx можно сделать так, что один запрос будет исполняться
несколькими процессорами (несколько параллельных запросов автоматически

обрабатываются разными процессорами). Это основное отличие от MySQL, где од­
ному запросу всегда выделяется один процессор вне зависимости от того, сколько

их имеется в наличии. Кроме того, Sphinx не нуждается в синхронизации между
параллельно выполняющимися запросами. Это позволяет отказаться от мьютексов

(механизм синхронизации), которые являются печально известной причиной многих

узких мест в работе MySQL на машине с несколькими процессорами.

Еще один важный аспект вертикального масштабирования - это масштабирование
дискового ввода/вывода. Чтобы повысить пропускную способность и уменьшить

Зачем использовать Sphinx 847

задержку, различные индексы, в том числе части большого распределенного индекса,

можно без проблем поместить на разные физические диски или в разные тома RAID.
Этот подход обладает некоторыми достоинствами механизма секционированных

таблиц в версии MySQL 5.1, который также позволяет размещать данные в несколь­
ких местах. Однако у распределенных индексов есть преимущества по сравнению

с секционированными таблицами. Sphinx использует их как для разделения нагруз­
ки, так и для параллельной обработки частей запроса. Что же касается механизма

секционирования в MySQL, то он позволяет оптимизировать некоторые (но не все)
запросы за счет отсечения секций, но никак не распараллелить обработку. И хотя

методики секционирования и в Sphinx, и в MySQL повышают пропускную способ­
ность, но для запросов, требующих большого объема ввода/вывода, от Sphinx можно
ожидать линейного снижения задержки всегда, а от MySQL - только в тех случаях,

когда оптимизатору удается отсечь некоторые секции целиком.

Последовательность операций при распределенном поиске проста.

1. Разослать запросы всем удаленным серверам.

2. Выполнить последовательный локальный поиск по индексу.

3. Получить частичные результаты поиска от удаленных серверов.

4. Объединить все частичные результаты в окончательный и вернуть его клиенту.

Если оборудование позволяет, то можно запустить параллельный поиск по набору

индексов и на одной машине. При наличии нескольких физических дисков и про­

цессорных ядер эти одновременно выполняющиеся поиски не будут мешать друг

другу. Можно сделать вид, что некоторые индексы являются удаленными, и скон­

фигурировать searchd так, чтобы он обращался сам к себе для запуска параллельного
запроса на той же машине:

index distributed_sample
{

type = distributed
local = chunkl # resides on HDDl
agent = localhost:З312:chunk2 # resides on HDD2, searchd contacts itself

}

С точки зрения клиента распределенные индексы абсолютно ничем не от ли чаются

от локальных. Это позволяет создавать деревья распределенных индексов, используя

одни узлы как прокси для других. Например, узел первого уровня мог бы транслиро­

вать запросы нескольким узлам второго уровня, которые, в свою очередь, могли бы

либо обрабатывать их локально либо передавать запрос дальше. Причем глубина
дерева не ограничена.

Агрегирование шардированных данных

При построении масштабируемой системы часто применяется шардирование (секци­
онирование) информации на несколько физических серверов MySQL. Этот вопрос
мы подробно обсуждали в главе 11.

848 Приложение Е. Использование Sphinx совместно с MySQL

Если данные шардированы детально, то просто для выборки нескольких строк
с селективным условием WHERE (вообще-то это быстрая операция) необходимо обра­
титься к нескольким серверам, проконтролировать ошибки и объединить результаты

в самом приложении. Sphinx отчасти решает эту проблему, так как вся необходимая
функциональность уже реализована внутри поискового демона.

Рассмотрим пример. Пусть таблица размером 1 Тбайт, содержащая 1 миллиард по­
стов в благах, шардирована по идентификатору пользователя и размещена на десяти
физических серверах MySQL так, что все сообщения одного пользователя всегда
оказываются на одном и том же сервере. Если в запросе фигурирует только один

пользователь, то все хорошо: выбираем сервер по идентификатору пользователя
и дальше работаем как обычно.

Но предположим, что требуется реализовать страницы архива, на которых отобра­
жаются сообщения друзей данного пользователя. Как мы будем выводить другие
функции утилиты sysbench для записей с 981-й по 1000-ю, отсортированные по
дате сообщения? Скорее всего, данные, относящиеся к разным друзьям, находятся
на разных серверах. Если друзей всего десять, то вероятность того, что понадобится
обращаться более чем к восьми серверам, составляет 90 %, а когда друзей 20, она
возрастает до 99 %. Таким образом, для большинства запросов придется опрашивать
все серверы. Более того, нам предстоит отобрать 1 ООО сообщений с каждого серве­
ра и отсортировать их в приложении. Следуя рекомендациям, приведенным ранее

в этой книге, мы могли бы свести необходимые сведения только к идентификатору
сообщения и временной метке, но все равно придется отсортировать 1 О ООО записей
внутри приложения. У большинства современных скриптовых языков только на
эту сортировку уйдет масса процессорного времени. И не забудем, что нужно будет
опрашивать серверы последовательно (это медленно) или написать какой-то код,

который запустит параллельные потоки (а его трудно реализовать и сопровождать).

В таких ситуациях имеет смысл не изобретать велосипед, а обратиться к Sphinx.
Всего-то и нужно запустить несколько экземпляров Sphinx, скопировать наиболее
востребованные атрибуты из каждой таблицы - в данном случае идентификатор со­
общения, его дату и идентификатор пользователя - и запросить у главного экземпляра
Sphinx записи с 981-й по 100-ю, отсортированные по дате публикации. На все про все
требуется три строчки кода. Такой способ масштабирования куда разумнее.

Обзор архитектуры

Система Sphinx представляет собой автономный набор программ. Из них наиболее
важны две:

О indexer. Это приложение извлекает документы из указанных источников (напри­
мер, из результата выполнения запроса к MySQL) и строит по ним полнотексто­
вый индекс. Обычно оно периодически запускается в пакетном режиме;

о searchd. Программа-демон, которая выполняет запросы к индексам, построенным
программой indexer. Приложения обращаются к ней во время выполнения.

Обзор архитектуры 849

В дистрибутив Sphinx входят также API естественных клиентов searchd для несколь­
ких языков программирования (на момент написания книги в этот список входили

РНР, Python, Perl, Ruby иjava) и клиент SphinxSE, реализованный в виде подклю­
чаемой подсистемы хранения для версии MySQL 5.0 и более поздних. Данные API
и SphinxSE позволяют клиентскому приложению подключиться к демону searchd,
передать ему поисковый запрос и получить результаты поиска.

Полнотекстовый индекс Sphinx можно сравнить с таблицей базы данных, но со­
стоит он не из строк, а из документов. (В Sphinx есть также отдельная структура
данных, называемая многозначным атрибутом, мы обсудим ее позже.) У каждого
документа есть уникальный 32- или 64-разрядный целочисленный идентификатор,
который должен извлекаться из индексируемой таблицы базы данных (например,
из столбца, содержащеrо первичный ключ). Кроме того, в каждом документе име­
ются одно или несколько полнотекстовых полей, каждое из которых соответствует

одному текстовому столбцу в базе данных, и числовых атрибутов. Как и в таблице
базы данных, в одном индексе Sphinx состав полей и атрибутов во всех документах
одинаков. В табл. Е.1 проведена аналогия между таблицей базы данных и индексом
Sphinx.

Та6пица Е.1. Соответствие между структурами базы данных и индекса Sphinx

Структура базы данных Структура индекса Sphinx

CREATE Т ABLE docuшeпts (index docuшeпts

id int(11) NOT NULL auto _increшeпt, docuшeпt ID

title varchar(255), title field, full-text indexed

content text, content Бeld, full-text indexed

group_id iпt(11), group_id attribute, sql_attr_uint

added datetiшe, added attribute, sql_ attr _ tiшestaшp

PRIMARY КЕУ (id)

);

Sphinx не хранит текстовые поля из базы данных, а лишь использует их содержимое
для построения индекса.

Общие сведения об установке

Установка Sphinx не вызывает затруднений и обычно сводится к следующим шагам.

1. Сборка программ из исходных текстов:

$ configure && make && make install

2. Создание конфигурационного файла, содержащего описания источников данных

и полнотекстовые индексы.

3. Первоначальное индексирование.

4. Запуск searchd.

850 Приложение Е. Использование Sphinx совместно с MySQL

После этого функциональность поиска сразу же становится доступна клиентским

программам:

<?php
iпclude ('sphiпxapi.php');
$cl = пеw SphiпxClieпt ();
$res = $cl->Query ('test query', 'myiпdex');
11 здесь можно использовать результат поиска $res
?>

Остается только регулярно запускать indexer для обновления полнотекстового
индекса. Индексы, с которыми в данный момент работает демон searchd, остаются
полностью функциональными во время переиндексации: indexer видит, что они ис­
пользуются, создает теневой индекс и по завершении уведомляет searchd, что нужно
переключиться на него.

Полнотекстовые индексы хранятся в файловой системе (в каталоге, который указан

в конфигурационном файле) в специальном монолитном формате, плохо приспо­

собленном для инкрементных обновлений. Обычный способ обновления данных
в индексе - полная перестройка. Но это не такая серьезная проблема, как могло бы

показаться, по следующим причинам.

О Индексирование производится быстро. На современном оборудовании система
Sphinx способна индексировать простой текст (без НТМL-разметки) со ско­
ростью 4-8 Мбит/с.

О В следующем разделе показано, что данные можно секционировать на несколько

индексов и при каждом запуске indexer заново индексировать только измени­
вшиеся части.

О Нет необходимости дефрагментировать индексы - они строятся в расчете на
оптимальное использование подсистемы ввода/вывода, что повышает скорость

поиска.

о Числовые атрибуты можно обновлять без полной перестройки индекса.

В будущих версиях планируется реализовать дополнительные средства, которые
будут поддерживать обновление индексов в реальном масштабе времени.

Типичное применение секционирования

Давайте рассмотрим секционирование более подробно. Простейшая схема секциони­
рования называется «v~авиый +разностный», при этом по одному и тому же набору
документов создаются два индекса. Главный индекс построен по всем документам,

а разностный - только по тем, которые изменились с момента построения главного

индекса.

Эта схема прекрасно подходит для многих вариантов модификации данных. В каче­

стве примеров можно привести форумы, блоги, архивы почты и новостей, вертикаль­
ные поисковые системы. Данные в этих репозиториях по большей части не изменя­
ются после ввода, а число регулярно добавляемых или модифицируемых документов
мизерно по сравнению с общим количеством. Поэтому разностный индекс очень мал,

Специальные возможности 851

и его можно перестраивать часто (например, раз в 1-15 минут). Это эквивалентно
индексированию только вновь добавленных строк.

Для изменения ассоциированных с документами атрибутов нет необходимости
перестраивать индексы - это можно сделать оперативно с помощью searchd. Чтобы
пометить строку как удаленную, достаточно просто установить атрибут deleted
в главном индексе. А для обработки обновлений нужно будет пометить этим атри­
бутом документы в главном индексе, а затем перестроить разностный. Тогда поиск
всех документов, не имеющих признака deleted, вернет правильный результат.

Отметим, что данные для индексирования могут поступать в виде результата вы­

полнения произвольной команды SELECT, и не обязательно только из одной таблицы.
На структуру команды SELECT не накладывается никаких ограничений. Это озна­
чает, что перед индексированием можно обработать данные в базе. Обычно такая
предварительная обработка включает соединение с другими таблицами, создание
дополнительных полей на лету, исключение некоторых полей из индекса и манипу­

лирование значениями.

Специальные возможности

Помимо простого индексирования и поиска по содержимому базы данных, Sphinx
предлагает ряд специальных возможностей. Перечислим наиболее важные.

О Алгоритмы поиска и ранжирования принимают во внимание позиции слов и бли­
зость поисковой фразы к содержимому документа.

О К документам можно привязывать числовые атрибуты, в том числе многознач-
ные.

О Разрешается сортировать, фильтровать и группировать по значениям атрибутов.

О Можно создавать фрагменты документов, в которых поисковые слова подсвечены.

О Поиск можно производить сразу на нескольких машинах.

О Можно оптимизировать запросы, порождающие сразу несколько результирующих

наборов из одних и тех же данных.

О Подсистема хранения SphinxSE позволяет обращаться к результатам поиска не-
посредственно из MySQL.

О Можно настраивать нагрузку на сервер со стороны Sphinx.

Часть этих средств мы рассматривали ранее, а в данном разделе обсудим некоторые
из оставшихся.

Ранжирование по близости фразы

Как и другие поисковые системы с открытым исходным кодом, Sphinx запоминает
позиции начала каждого слова в документе. Но в отличие от большинства других она
использует эти позиции также для ранжирования результатов поиска, что позволяет

возвращать более релевантные результаты.

852 Приложение Е. Использование Sphinx совмесrно с MySQL

На окончательный ранг документа может повлиять множество факторов. В боль­
шинстве систем для ранжирования используется только частота появления поис­

ковых слов, то есть учитывается, сколько раз каждое слово встречалось в документе.

Классическая весовая функция ВМ251, которую применяют практически все полно­

текстовые поисковые системы, придает больший вес тем словам, которые чаще
встречаются в конкретном тексте или редко встречаются во всем наборе докумен­
тов. Обычно результат, возвращенный функцией ВМ25, считается окончательным
значением ранга.

Но Sphinx вычисляет также близость поисковой фразы, то есть величину самого
длинного отрезка фразы, встречающегося в документе, выраженную в количестве

слов. Например, близость фразы John Doe Jr к документу, содержащему текст John
Black,John WhiteJr, andjane Dunne, равна 1, потому что никакие два слова, указан­
ные в запросе, не встречаются в нем подряд и в том же порядке, что и в ключевой

фразе. Тот же запрос в применении к документу, содержащему предложение Mr.John
Doe Jr and friends, дает близость 3, поскольку здесь присутствуют все три слова из
запроса, причем в том же порядке. Близость искомой фразы к документу John Gray,
Jane Doejr равна 2 благодаря наличию отрезка Doejr.

По умолчанию Sphinx ранжирует результаты сначала по близости фразы, а по­
том по классической весовой функции ВМ25. Следовательно, буквальные цитаты
гарантированно окажутся первыми в списке, цитаты, отличающиеся только одним

словом, - под ними и т. д.

Когда и как близость фразы влияет на результаты? Рассмотрим поиск выражения
То Ье or not to Ье в 1 миллионе страниц текста. Sphinx поместит страницы, содержа­
щие буквальную цитату, в начало списка результатов, тогда как системы на основе
функции ВМ25 в первую очередь вернут страницы, где чаще всего встречаются слова

to, Ье, or и not, документы же с точной цитатой, в которых слово to встречается всего
несколько раз, будут зарыты в глубине результатов поиска.

Большинство современных крупных поисковых машин также ранжируют резуль­

таты поиска с учетом позиций ключевых слов. Поиск фразы в Google, скорее всего,
поместит документы, содержащие буквальную и близкую цитаты, в начало списка,
а уже потом будут располагаться тексты с <1мешком слов».

Однако для анализа позиций ключевых слов требуется дополнительное время, и ино­
гда этот этап желательно пропустить из соображений производительности. Бывает
также, что ранжирование с учетом близости фразы дает неожиданные результаты.
Например, поиск тегов в облаке лучше вести без учета позиций ключевых слов:
не имеет значения, насколько близко друг к другу находятся теги, встретившиеся
в документе.

Чтобы обеспечить необходимую гибкость, Sphinx предлагает несколько режимов
ранжирования. Помимо принимаемого по умолчанию - близость плюс ВМ25, - можно
выбрать и другие, в частности только весовая функция ВМ25, вообще без вычисления
веса (неплохая оптимизация, если вы не собираетесь сортировать по рангу) и т. д.

Подробнее см.: http://en.wikipedia.org/wiki/Okapi_BM25.

Специальные возможности 853

Поддержка атрибутов

Любой документ может содержать неограниченное количество числовых атрибутов.
Атрибуты определяются пользователем и могут содержать дополнительную инфор­
мацию, необходимую для решения конкретной задачи, например идентификатор
автора сообщения в благе, цену товара, идентификатор категории и т. д.

Атрибуты позволяют производить полнотекстовый поиск с дополнительной филь­

трацией, сортировкой и группировкой результатов. Теоретически их можно было бы
хранить в базе MySQL и извлекать оттуда каждый раз после завершения поиска. Но на
практике, если полнотекстовый поиск находит хотя бы сотни или тысячи строк (не так
уж много), последующая выборка их из базы будет недопустимо медленной.

Sphinx поддерживает два способа хранения атрибутов: встроенными в документ
и в отдельном внешнем файле. В случае встраивания в индексе приходится хранить

множество экземпляров значений атрибутов - по одному для каждого вхождения
идентификатора документа. Это приводит к разбуханию индекса и увеличению
объема операций ввода/вывода, но сокращает потребление памяти. Внешние же
атрибуты требуется предварительно загружать в память на этапе запуска searchd.

Как правило, атрибуты помещаются в ОЗУ, так что обычно их хранят отдельно.
При этом фильтрация, сортировка и группировка производятся очень быстро, по­
скольку для доступа к данным достаточно поиска в памяти. К тому же лишь внешние

атрибуты можно обновлять во время выполнения. Встраивание атрибутов следует
применять лишь тогда, когда для их хранения не хватает памяти.

Sphinx поддерживает также многозначные атрибуты (multivalued attributes (MVA)).
Такой атрибут состоит из списка целочисленных значений, ассоциированных с каж­
дым документом, имеющего произвольную длину. Примерами оправданного при­

менения MV А могут служить списки идентификаторов тегов, категорий товаров
и списки управления доступом.

Фильтрация

Имея доступ к атрибутам, Sphinx может использовать их для фильтрации и отвер­
гать потенциальных кандидатов на ранних стадиях поиска. Технически фильтрация
производится после того, как проверено, что документ содержит все заданные слова,

но перед началом трудоемких вычислений, например ранжирования. Благодаря

такой оптимизации применение Sphinx для комбинирования полнотекстового по­
иска с фильтрацией и сортировкой может оказаться в 10-100 раз быстрее, чем ис­
пользование Sphinx только для поиска с последующей фильтрацией результатов
средствами MySQL.

Sphinx поддерживает два типа фильтров, аналогичных простым условиям WHERE
вSQL.

Q Значение атрибута попадает в заданный диапазон (аналог ключевого слова
BETWEEN или числового сравнения).

Q Атрибут совпадает с одним из заданных значений (аналог списка IN()).

854 Приложение Е. Использование Sphinx совместно с MySQL

Если в фильтрах будет задаваться фиксированное количество величин (фильтры по

набору, а не по диапазону) и эти значения будут селективными, целесообразно за­
менить целые числа фиктивными ключевыми словами и индексировать их как текст,

а не как атрибуты. Это относится как к обычным, так и к многозначным числовым
атрибутам. Примеры того, как это делается, приведем в дальнейшем.

Sphinx может использовать фильтры также для оптимизации полного сканирования.
Sphinx запоминает минимальное и максимальное значения атрибута для короткого
непрерывного блока строк (по умолчанию 128 строк) и может быстро отбрасывать
целые блоки, не удовлетворяющие условиям фильтрации. Строки хранятся в порядке
возрастания идентификаторов документов, поэтому такая оптимизация лучше всего

работает, если значения столбцов коррелируют с идентификатором. Например, если
в таблице имеется временная метка, которая возрастает вместе с идентификатором, то

полное сканирование с фильтрацией по этой метке будет выполняться очень быстро.

Подключаемая подсистема хранения SphinxSE
Результаты полнотекстового поиска, полученные от Sphinx, почти всегда требуется
затем обработать средствами MySQL - по крайней мере для того, чтобы извлечь
значения текстовых столбцов, которые в Sphinx не хранятся. Поэтому нередко воз­
никает необходимость соединить результаты поиска с другими таблицами MySQL,
то есть выполнить операцию JOIN.

Это можно сделать, отправив MySQL запрос с идентификаторами найденных доку­
ментов, однако такая стратегия не позволяет получить элегантный и быстрый код.
Если речь идет о больших объемах данных, то лучше воспользоваться подсистемой
хранения SphinxSE, которую можно включить при компиляции MySQL версии 5.0
или старше либо загрузить как подключаемый модуль для версии 5.1 и новее.

SphinxSE позволяет программисту опрашивать демон searchd и получать результаты
поиска прямо из MySQL. Для этого достаточно создать специальную таблицу сука­
занием ENGINE=SPHINX (и необязательным параметром CONNECТION, который позволяет
найти сервер Sphinx, если его нет там, где он подразумевается по умолчанию), а затем
использовать ее в запросах:

mysql> CREATE TABLE search_taЫe (
-> id INTEGER NOT NULL,
-> weight INТEGER NOT NULL,
-> query VARCНAR(3072) NOT NULL,
-> group_id INTEGER,
-> INDEX(query)
->) ENGINE=SPHINX CONNECПON="sphinx://localhost:3312/test";

Query ОК, 0 rows affected (0.12 sec)

mysql> SELECT * FROМ search_taЫe WНERE query='test;mode=all' \G
*************************** 1. row ***************************

id: 123
weight: 1
query: test;mode=all

group_id: 45
1 row in set (0.00 sec)

Специальные возможности 855

Каждая команда SELECT передает Sphinx запрос, текст которого находится в условии
на столбец query в разделе WHERE (см. пример далее). Сервер searchd возвращает
результаты. Подсистема хранения SphinxSE преобразует их в формат MySQL и воз­
вращает команде SELECT.

В запросах можно употреблять операторы JOIN для соединения с другими таблицами
любого типа.

Подсистема хранения SphinxSE поддерживает большинство возможностей поис­
ка, доступных через API. Чтобы задать, к примеру, фильтрацию и лимиты, следует
включить дополнительные параметры в строку запроса:

mysql> SELECT * FROМ search_taЫe WHERE query='test;mode=all;
-> filter=group_id,5,7,11;maxmatches=3000';

Статистику по запросу и по словам, которую предоставляет API, можно получить
также с помощью команды SHOW STATUS:

mysql> SHOW ENGINE SPHINX STATUS \G
*************************** 1. row ***************************

Туре: SPH INX
Name: stats

Status: total: З, total found: З, time: 8, words: 1

*************************** 2. row ***************************
Туре: SPНINX

Name: words Status: test:З:S
2 rows in set {0.00 sec)

Даже при использовании SphinxSE эмпирическое правило предлагает оставить сор­
тировку, фильтрацию и группировку на откуп демону searchd, то есть включить все
необходимые для этого параметры в строку запроса, а не в разделы WHERE, ORDER ВУ
и GROUP ВУ. Особенно важно это для условий WHERE. Причина в том, что SphinxSE -
всего лишь клиент searchd, а не полноценная встроенная библиотека поиска. Следо­
вательно, для достижения максимальной производительности лучше передавать все

что можно подсистеме Sphinx.

Средства управления производительностью

Индексирование и поиск могут создавать дополнительную нагрузку как на поис­

ковый сервер, так и на сервер баз данных. Однако для ограничения нагрузки, созда­
ваемой системой Sphinx, имеется целый ряд параметров.

Нежелательная нагрузка на базу данных может быть вызвана запросами от indexer,
которые либо приводят к полной остановке работы MySQL из-за блокировок, либо
поступают слишком быстро и отнимают ресурсы у конкурирующих запросов.

Первая ситуация характерна для MyISAM, где длительные блокировки чтения бло­
кируют таблицы и приостанавливают другие операции чтения и записи - вы не смо­
жете выполнить команду SELECT * FROM big_taЫe на промышленном сервере, так как
есть риск помешать выполнению другой работы. Чтобы обойти эту сложность, Sphinx
поддерживает запросы с указанием диапазона. Вместо того чтобы конфигурировать

856 Приложение Е. Использование Sphinx совместно с MySQL

один гигантский запрос, можно задать запрос, который быстро вычислит диапазон
значений в индексируемых строках, и другой запрос, который будет выбирать данные

небольшими порциями:

sql_query_range = SELECT MIN(id),МAX(id) FROМ documents
sql_range_step = 1000
sql_query = SELECT id, title, body FROM documents \

WHERE id>=$start AND id<=$end

Эта возможность особенно полезна для индексирования таблиц типа MyISAM,
но стоит подумать и о применении ее к таблицам InnoDB. Хотя при выполнении
команды SELECT *к большому объему данных InnoDB не блокирует таблицы и не
мешает работе других запросов, все равно из-за особенностей архитектуры МУСС
потребляется много ресурсов. Многоверсионность для 1000 транзакций, каждая из
которых охватывает 1 ООО строк, может потребовать меньших затрат, чем для одной
длительной транзакции, затрагивающей 1 миллион строк.

Второй источник повышенной нагрузки проявляется, когда программа indexer об­
рабатывает данные быстрее, чем MySQL их поставляет. В этом случае также следует
использовать запросы с указанием диапазона. Параметр sql_ranged_throttle за­
ставляет indexer приостанавливать работу на заданный промежуток времени (в мил­
лисекундах) перед отправкой очередного запроса. Время индексирования при этом

увеличивается, зато нагрузка на MySQL снижается.

Интересно, что существует особый случай, когда имеет смысл настроить Sphinx для
достижения прямо противоположного эффекта: сократить время индексирования

за счет повышения нагрузки на MySQL. Если скорость сетевого соединения между
машинами, на которых работают indexer и MySQL, составляет 100 Мбит/с и строки
хорошо сжимаются (это типично для текстовых данных), то применение протокола

сжатия MySQL может уменьшить общее время индексирования. Правда, за это как
на стороне MySQL, так и на стороне indexer приходится расплачиваться дополни­
тельным расходованием процессорного времени на упаковку и распаковку строк,

передаваемых по сети. Тем не менее благодаря сокращению сетевого трафика время
индексирования может уменьшиться на 20-30 %.

Поисковые кластеры также могут испытывать кратковременные перегрузки, поэтому

Sphinx предоставляет несколько способов контроля нагрузки на searchd.

Во-первых, параметр max_children ограничивает количество одновременно выпол­
няемых запросов. Когда заданный порог достигнут, клиенту предлагается повторить

попытку позже.

Во-вторых, существуют лимиты на уровне запроса. Так, можно указать, что об­
работка запроса должна прекращаться, как только найдено максимальное количе­
ство документов или истекло отведенное время, для чего предназначены функции

Setlimi ts () и SetMaxQueryTime() соответственно. Поскольку это делается на уровне
запроса, то наиболее важные запросы можно выполнять до конца.

И наконец, при периодическом запуске indexer могут возникать всплески активности
ввода/вывода, что замедляет работу searchd. Избежать этого позволяют параметры

Примеры практической реализации 857

для ограничения обращений indexer к диску. Параметр max_iops создает задержку
между операциями ввода/вывода, ограничивая максимальное количество операций

ввода/вывода в секунду своим значением. Но даже одной операции может оказаться

слишком много (что, если она читает 100 Мбайт?). На этот случай есть параметр
max_iosize, гарантирующий, что длина каждой операции чтения или записи не будет
превышать заданного значения. Более длинные процессы автоматически разбиваются
на части, к которым затем применяется параметр max_iops.

Примеры практической реализации

Все описанные выше средства нашли успешное практическое применение в той или

иной системе. В следующих подразделах мы расскажем о нескольких реальных при­

мерах использования Sphinx, упомянув о конкретных сайтах и о некоторых деталях
реализации.

Полнотекстовый поиск
на сайте Mininova.org
Популярная система поиска торрентов Mininova (http://www.mininova.org) показывает
хороший пример оптимизации одного лишь полнотекстового поиска. Sphinx заме­
нила встроенные полнотекстовые индексы на нескольких подчиненных серверах

MySQL, которые не справлялись с объемами работы. После замены поисковые сер­
веры оказались недогруженными, средняя нагрузка составляла 0,3-0,4.

Приведем сведения о размере базы данных и особенностях работы сервера.

О На этом сайте база данных невелика - 300 000-500 ООО записей, а размер индекса
составляет 300-500 Мбайт.

О Нагрузка на сайт довольно высока - 8-1 О миллионов операций поиска в день (на
момент написания книги).

Данные по большей части представляют собой заданные пользователями имена
файлов, часто без соблюдения пунктуации. Поэтому вместо поиска по целым словам
применяется поиск по префиксу. В результате индекс оказывается в несколько раз

больше, чем мог бы быть, но все равно он довольно мал, так что строится быстро
и допускает эффективное кэширование.

Результаты 1000 наиболее частых запросов кэшируются на уровне приложения.
Примерно 20-30 % запросов обслуживаются из кэша. Поскольку для их распреде­
ления характерен длинный хвост, то увеличение размера кэша не помогло бы.

С целью повышения доступности сайт обслуживают два сервера, на каждом из ко­
торых хранятся идентичные реплики полнотекстовых индексов. Индексы перестра­

иваются полностью каждые несколько минут. Поскольку индексирование занимает

меньше минуты, смысла в реализации более сложной схемы нет.

858 Приложение Е. Использование Sphinx совместно с MySQL

Из этого примера можно извлечь следующие уроки.

О Кэширование результатов поиска на уровне приложения значительно повышает

производительность.

О Иногда нет необходимости в огромном кэше, даже если приложение сильно на­
гружено. Может хватать всего 1000-10 ООО записей.

О Если размер базы данных составляет примерно 1 Гбайт, то даже для нагруженного
сайта достаточно периодического полного переиндексирования вместо разра­

ботки более сложных схем.

Полнотекстовый поиск на сайте BoardReader.com
Mininova представляет одну крайность высоконаrруженных проектов - данных мало,

но к ним делается очень много запросов. Сайт BoardReader (http://www.boardreader.com)
представляет собой другую крайность - это система поиска по форумам, которая вы­
полняет гораздо меньше операций поиска, но на значительно более объемном наборе

данных. Sphinx заменила коммерческую поисковую систему, которой требовалось до
1 О секунд на поиск в наборе размером 1 Гбайт, и дала возможность масштабировать
BoardReader в широких пределах - как по размеру, так и по пропускной способности.

Приведем информацию общего характера.

О Документов больше 1 миллиарда, объем текста в базе данных - порядка 1,5 Тбайт.

О Ежедневно просматривается примерно 500 ООО страниц и выполняется от 700 ООО
до 1 миллиона операций поиска.

Когда создавалась эта книга, поисковый кластер состоял из шести серверов, каждый

из которых был оснащен четырьмя логическими ЦП (два двухъядерных процессора
Xeon), 16 Гбайт оперативной памяти и дисками совокупной емкостью 0,5 Тбайт. Сама
база данных находилась на отдельном кластере. Поисковый кластер использовался
только для индексирования и поиска.

На каждом из шести серверов запущено по четыре экземпляра searchd, чтобы были
задействованы все четыре ядра. Один из четырех экземпляров агрегирует результа­

ты, полученные остальными тремя. Всего действуют 24 экземпляра searchd. Данные
между ними распределены равномерно. Каждая копия searchd обслуживает несколь­
ко индексов, в сумме составляющих примерно 1/24 общего объема данных (около
60 Гбайт).

Результаты поиска, возвращенные шестью узлами первого уровня, в свою очередь,

аrрегируются еще одним демоном searchd, который работает на веб-сервере. Этот эк­
земпляр не содержит локальных данных, но обслуживает несколько распределенных
индексов, которые ссылаются на шесть поисковых серверов, входящих в кластер.

Зачем нужны четыре экземпляра searchd на одном узле? Почему бы не запустить
на каждом сервере по одному экземпляру, сконфиrурировав ero для обслуживания
четырех групп индексов, и не заставить его посылать самому себе «удаленные» за-

Примеры практической реализации 859

просы, чтобы задействовать несколько ЦП, как мы советовали ранее? Но у четырех
экземпляров вместо одного есть свои плюсы. Во-первых, сокращается время за­

пуска. Существует несколько гигабайт атрибутивных данных, которые необходимо
предварительно загрузить в память, и одновременный запуск нескольких демонов

позволяет распараллелить эту задачу. Во-вторых, улучшается доступность. Когда

выходит из строя или обновляется один экземпляр searchd, недоступной становится
только 1 /24 индекса, а не 1 /6.

На каждом из 24 экземпляров searchd в поисковом кластере мы применяем секцио­
нирование по времени, чтобы еще больше сократить нагрузку. Многие запросы
необходимо выполнять только для недавних данных, поэтому мы разделили весь

объем информации на три непересекающихся набора индексов: данные за послед­
нюю неделю, за последние три месяца и за все время. Эти индексы распределены

по нескольким физическим дискам, отнесенным к отдельным экземплярам. Таким

образом, у каждого экземпляра имеется собственный процессор и собственный фи­
зический диск, так что друг другу они не мешают.

Индексы периодически обновляются локальными заданиями cron. Данные извлека­
ются из MySQL по сети, но файлы индексов создаются локально.

Оказалось, что несколько отдельных неформатированных дисков работают быстрее
одного тома RAID. В этом случае можно точно контролировать, на какой неформа­
тированный диск записывается конкретный файл. В случае RAID это не так - здесь

контроллер решает, какой блок на какой диск отправить. Кроме того, неформа­
тированные диски гарантируют, что ввод/вывод в разные группы индексов будет
полностью распараллелен, тогда как при одновременном запуске нескольких поисков

на RАID-массиве возможна сериализация операций. Мы выбрали уровень RAID О,
не обеспечивающий резервирования, поскольку отказы дисков нас не заботили,
так как индексы на поисковых серверах легко перестроить. Можно было бы исполь­
зовать несколько томов RAID 1 (с зеркалированием) и получить ту же пропускную
способность, какую дают отдельные диски, но с повышенной надежностью.

На примере BoardReader интересно отметить еще одну вещь - то, как выполняется
переход на новую версию Sphinx. Очевидно, что останавливать кластер целиком
нельзя. Поэтому критичной оказывается обратная совместимость. К счастью, Sphinx
ее обеспечивает - новые версии searchd могут читать старые индексы и взаимодей­
ствовать по сети со старыми клиентами. Отметим, что узлы первого уровня, которые

служат для агрегирования результатов поиска, выглядят как обычные клиенты для
узлов второго уровня, где, собственно, и производится поиск. Поэтому сначала об­
новляются узлы второго уровня, потом - первого уровня, а в последнюю очередь -
приложение на веб-сервере.

Вот какие уроки мы извлекли из этого примера.

О Девиз разработчика очень большой базы данных: «Секционируй, секционируй,
секционируй, распараллеливай».

О На крупных поисковых фермах организуйте демоны searchd в виде древовидных
иерархий с несколькими уровнями.

860 Приложение Е. Использование Sphinx совместно с MySQL

О По возможности стройте оптимизированные индексы, каждый из которых со­

держит только часть данных.

О Устанавливайте соответствие между файлами и дисками явно, не полагаясь на

RАID-контроллер.

Оптимизация выборки на сайте Sahiblnden.com
У ведущего турецкого аукционного сайта Sahiblnden (http://www.sahiblnden.com) было
немало проблем с производительностью, в том числе из-за полнотекстового поиска.

После развертывания Sphinx и профилирования некоторых запросов выяснилось,
что Sphinx способна обрабатывать многие часто выполняемые запросы с фильтрами
быстрее, чем MySQL, несмотря на то что по одному из участвующих столбцов был
построен индекс. Кроме того, использование Sphinx для обычного (не полнотексто­
вого) поиска позволило унифицировать код приложения так, что его стало проще

писать и сопровождать.

MySQL не показывала высокой производительности, поскольку селективность ин­
дексов по отдельным столбцам была недостаточной для существенного сокращения

пространства поиска. Более того, было практически невозможно создать и поддер­
живать все необходимые индексы, так как в условиях отбора участвовало слишком

много столбцов. В таблице лотов было около 100 столбцов, и теоретически каждый
из них мог применяться для фильтрации или сортировки.

Интенсивная вставка и обновление горячих лотов выполнялись с черепашьей ско­

ростью, так как приходилось обновлять слишком много индексов.

Поэтому система Sphinx стала естественным выбором для выполнения всех, а не
только полнотекстовых запросов SELECT к таблице лотов.

Приведем размер базы данных и характеристики нагрузки.

О База данных содержит примерно 400 ООО записей, а ее объем составляет 500 Мбайт.

О В день выполняется около 3 миллионов запросов.

Чтобы эмулировать обычные запросы SELECT с условиями WHERE, в полнотексто­
вый индекс Sphinx были добавлены специальные ключевые слова. Они имели вид
__ CATN ___ ,где вместо Nподставлялся идентификатор соответствующей категории.

Это делалось на этапе индексирования путем включения функции CONCAT() в запрос

к MySQL, поэтому изменять источник данных не пришлось.

Индексы нужно было перестраивать как можно чаще. Мы решили делать это раз

в минуту. На полную перестройку индекса уходило 9-15 секунд на одном из многих
процессоров, поэтому схема «главный+ разностный!>, которую мы обсуждали ранее,

оказалась излишней.

Как выяснилось, API РНР тратил довольно много времени (7-9 миллисекунд на за­
прос) на разбор результирующего набора, в котором было много атрибутов. Обычно

эти расходы можно не принимать во внимание, так как затраты на полнотекстовый

Примеры практической реализации 861

поиск, особенно в больших наборах данных, безусловно, доминируют. Но в данном

случае необходимо было также выполнять неполнотекстовые запросы к небольшому

набору данных. Чтобы решить эту проблему, мы разбили индексы на пары, состо­

ящие из облегченного, который содержал 34 наиболее востребованных атрибута,
и полного, содержавшего все 99 атрибутов.

Можно было бы поступить и по-другому: воспользоваться подсистемой SphinxSE
или перенести в Sphinx только часть столбцов. Однако реализовать решение на базе
двух индексов оказалось быстрее, а время играло решающую роль.

Из этого примера мы извлекли следующие уроки.

1:1 Иногда полное сканирование средствами Sphinx работает быстрее, чем доступ по
индексу MySQL.

1:1 Для условий с высокой селективностью применяйте фиктивные ключевые сло­
ва вместо фильтрации по атрибутам, тогда подсистема полнотекстового поиска
сможет взять на себя большую часть работы.

1:1 API скриптовых языков может оказаться узким местом в некоторых нетипичных,
но встречающихся на практике случаях.

Оптимизация GROUP ВУ на сайте BoardReader.com
Для улучшения службы BoardReader потребовалось подсчитывать гиперссылки и стро­
ить по этим данным различные отчеты. Например, в одном из отчетов нужно было

показать N верхних доменов второго уровня, которые сослались на BoardReader.com
в течение прошлой недели. В другом отчете отображались N верхних доменов вто­
рого и третьего уровня, ссылающихся на данный сайт, например YouTube. Запросы,
необходимые для построения этих отчетов, обладали следующими общими харак­
теристиками.

1:1 Они всегда группировали по домену.

1:1 Они сортировали по количеству записей в группе или по количеству различных
значений в группе.

1:1 Они обрабатывали очень большой объем данных (миллионы записей), но резуль-
тирующий набор, состоящий из лучших групп, был мал.

1:1 Были допустимы приближенные результаты.

На этапе тестирования прототипа выяснилось, что MySQL тратит на выполнение таких
запросов до 300 секунд. Теоретически путем секционирования данных, размещения их
на разных серверах и ручного агрегирования результатов в приложении можно было

довести время выполнения до 10 секунд. Но подобную архитектуру трудно постро­
ить - даже одна лишь реализация секционирования далеко не тривиальна.

Поскольку мы добились успеха в применении Sphinx для распределения поисковой
нагрузки, решено было использовать Sphinx и в целях реализации приближенной
группировки. Для этого потребовалось обработать данные перед индексированием,

862 Приложение Е. Использование Sphinx совмесгно с MySQL

преобразовав все интересующие нас подстроки в отдельные 4Слова». Вот пример

URL до и после предобработки:

source_url
processed_url

= http://my.Ыogger.com/my/best-post.php
= my$Ьlogger$com, Ыoggercom, myЫoggercommy,

my$Ьlogger$commybest, my$Ыogger$commybest$post.php

Знаки доллара($) просто заменяют все символы-разделители в URL. Необходимо
это для того, чтобы поиск можно было выполнять по любой части URL, будь то до­
менное имя или путь. В результате предварительной обработки все интересные под­

строки выделяются в виде обособленных слов, чтобы поиск протекал максимально
быстро. Технически мы могли использовать для поиска целую фразу или применить

индексирование по префиксу, но тогда индексы получились бы более громоздкими,

а производительность снизилась бы.

Ссылки преобразуются во время индексирования с помощью специально написан­

ной пользовательской функции (UDF). Для решения этой задачи мы модифици­
ровали Sphinx так, чтобы она могла подсчитывать различные значения. В итоге мы
смогли полностью перенести запросы на поисковый кластер, распределить их и тем

самым существенно снизить время задержки.

Приведем размер базы данных и характеристики нагрузки.

О В базе 150-200 миллионов записей, после предварительной обработки это вы-
ливается в 50-100 Гбайт данных.

О Нагрузка составляет 60 000-100 ООО запросов с группировкой в день.

Индексы для распределенных запросов GROUP ВУ были размещены на том же поис­

ковом кластере из шести машин с 24 процессорами, который был описан ранее. Это
лишь немного увеличило нагрузку по сравнению с той, что создается поисковыми

запросами к базе данных объемом 1,5 Тбайт.

Sphinx позволила заменить точные, но медленные вычисления, выполняемые сер­
вером MySQL на одном процессоре, приближенными, но быстрыми и распределен­
ными. Присутствовали все факторы, вызывающие погрешности: входные данные

часто содержали слишком много строк, которые не помещались в буфер сортировки

(мы ограничили его размер - 100 ООО строк), использовалась агрегатная функция
COUNT(DISТINCT) и формировались результирующие наборы, полученные от разных
узлов. Несмотря на это, итоги для первых 10-1000 групп (а именно столько нужно
было для отчетов) оказались правильными на 99-100 %.

Индексированные данные сильно отличались от тех, что использовались бы при

обычном полнотекстовом поиске. Количество документов и ключевых слов огром­

но, хотя сами документы совсем маленькие. Их нумерация непоследовательная, так

как применяется специальное соглашение о присвоении номеров (сервер-источник,

таблица-источник и первичный ключ) и результирующий номер не умещается

в 32 бита. Огромное количество ключевых слов часто приводило к коллизиям при
вычислении СRСЗ2-свертки (в Sphinx используется алгоритм CRC32 для отображе-

Примеры практической реализации 863

ния самих ключевых слов на их внутренние идентификаторы). Из-за этого пришлось

повсюду перейти к 64-разрядным идентификаторам.

В настоящий момент производительность удовлетворительная. Для самых сложных

доменов запрос обычно завершается за О, 1-1,0 секунды.

Из этого примера мы извлекли следующие уроки.

О Для запросов с фразой GROUP ВУ точность иногда можно принести в жертву ско­

рости.

О Для очень больших наборов текстовых документов и даже для наборов умерен­

ного размера, во специального вида могут понадобиться 64-разрядные иденти­
фикаторы

Оптимизация запросов с JOIN
к шардированным данным на сайте Grouply.com
На сайте Grouply (http://www.grouply.com) решение на основе Sphinx позволило осу­
ществлять поиск в базе данных, насчитывающей многие миллионы тегированных
сообщений. Для повышения масштабируемости эта база распределена между не­
сколькими физическими серверами, поэтому иногда приходится опрашивать та­

блицы, находящиеся на разных машинах. Так как количество серверов, баз данных
и таблиц велико, то выполнять произвольные запросы с соединениями невозможно.

Для хранения тегов сообщений на сайте Grouply применяются многозначные атри­
буты Sphinx. Список тегов извлекается из кластера Sphinx с помощью API РНР.
Это позволяет заменить несколько последовательных запросов SELECT к разным

серверам. Чтобы уменьшить и количество SQL-запросов, некоторые данные, требу­
ющиеся только для отображения (например, короткий список пользователей, недав­

но прочитавших сообщение), также хранят в отдельном MVA и доступ к ним можно
получить через Sphinx.

Два основных новшества, примененных на этом сайте, - это эксплуатация системы

Sphinx для предварительного построения результатов соединения и использование
ее распределенных возможностей для объединения данных, разбросанных по многим

шардам. Сделать это с помощью одной лишь MySQL было бы почти невозможно.
Для эффективного объединения нужно было стремиться к уменьшению количества

серверов и таблиц, содержащих секции, но это вошло бы в противоречие с масшта­
бируемостью и расширяемостью.

Из этого примера мы извлекли следующие уроки.

О Sphinx можно использовать для эффективного агрегирования глубоко секцио­
нированных данных.

О Многозначные атрибуты можно использовать для хранения и оптимизации пред­

варительного построенных результатов операции JOIN.

864 Приложение Е. Использование Sphinx совместно с MySQL

Итоги

В этом приложении мы смогли лишь кратко рассмотреть систему полнотекстового

поиска Sphinx. Мы сознательно опустили многие средства Sphinx, например ин­
дексирование НТМL-документов, запросы с указанием диапазона для улучшенной

поддержки таблиц типа MyISAM, поддержку морфологии и синонимии, индекси­
рование по префиксам и инфиксам и индексирование документов на восточных

языках. Тем не менее надеемся, что вы смогли получить представление о том, как

с помощью Sphinx можно эффективно решать различные реальные задачи. Эта си­
стема не ограничивается полнотекстовым поиском, ее можно применить ко многим

трудным задачам, которые традиционно решались с помощью SQL.

Sphinx не является ни панацеей, ни заменой MySQL. Однако во многих случаях (а их
в современных веб-приложениях становится все больше) ее можно использовать как
полезное дополнение к MySQL. Она не только позволяет разгрузить сервер базы
данных, но и открывает новые возможности для создания приложений.

Скачайте Sphinx с сайта http://www.sphinxsearch.com и не забудьте поделиться своими
идеями!

Хотите выжать из MySQL максимум возможностей?

Вам поможет уникальная книга , написанная экспертами для экспертов.

Познакомьтесь с продвинутыми приемами работы с MySQL: разработкой схем,
индексов и запросов для настройки сервера, операционной системы и аппаратной

части , способами масштабирования приложений и репликацией , балансировкой

нагрузки, обеспечением доступности и восстановлением после отказов.

Прочитав эту книгу, вы узнаете, почему MySQL устроена именно так, познакомитесь
с разбором практичных кейсов, научитесь мыслить на одном языке с вашей

базой данных.

Бестселлер Шварца , Зайцева и Ткаченко - книга, необходимая любому профессионалу

и способная превратить самую страшную «нештатную ситуацию» в легко

преодолимый «рабочий момент».

Читайте и совершенствуйтесь!

Базы данных и системы управления базами данных (СУБД) Уровень пользователя : опытный

Закаэкниг:
тел.: [8121703-73-74
Ьooks@piter.com

WWW.PITER.COM
каталог книг

и интернет-магазин

@ vk.com/piterbooks

@ instagram.com/piterbooks

ф facebook.com/piterbooks

® youtube .com/ТhePiterBooks

·1·· 1''IГi'-)'"_,
9 785446 106967

	Предисловие
	Введение
	Структура книги
	Версии программного обеспечения и их доступность
	Условные обозначения
	О примерах кода
	Благодарности к третьему изданию
	Благодарности ко второму изданию
	Благодарности к первому изданию

	Глава 1. История и архитектура MySQL
	Логическая архитектура MySQL
	Управление соединениями и их безопасность
	Оптимизация и выполнение

	Управление конкурентным доступом
	Блокировки чтения/записи
	Детальность блокировок

	Транзакции
	Уровни изолированности
	Взаимоблокировки
	Ведение журнала транзакций
	Транзакции с MySQL

	Управление конкурентным доступом с помощью многоверсионности
	Подсистемы хранения в MySQL
	Подсистема хранения InnoDB
	Подсистема хранения MylSAM
	Другие встроенные подсистемы хранения данных MySQL
	Подсистемы хранения сторонних разработчиков
	Выбор подходящей подсистемы хранения
	Преобразования таблиц

	Хронология MySQL
	Модель развития MySQL
	Итоги главы

	Глава 2. Эталонное тестирование MySQL
	Зачем нужно эталонное тестирование
	Стратегии эталонного тестирования
	Тактики эталонного тестирования
	Проектирование и планирование эталонных тестов
	Должно ли быть длительным эталонное тестирование?
	Фиксация производительности и состояния системы
	Получение точных результатов
	Прогон эталонного теста и анализ результатов
	Важность построения графика

	Инструменты эталонного тестирования
	Полностековые инструменты
	Инструменты покомпонентного тестирования

	Примеры эталонного тестирования
	http_load 87
	MySQL Benchmark Suite
	sysbench
	Инструмент dbt2 TPC-C из комплекта Database Test Suite
	Инструмент Percona’s TPCC-MySQL

	Итоги главы

	Глава 3. Профилирование производительности сервера
	Введение в оптимизацию производительности
	Оптимизация с помощью профилирования
	Интерпретация профиля

	Профилирование приложения
	Профилирование запросов MySQL
	Профилирование рабочей нагрузки сервера
	Профилирование отдельных запросов
	Использование профиля для оптимизации

	Диагностика редко возникающих проблем
	Проблемы одиночного запроса или всего сервера?
	Фиксация данных диагностики
	Кейс по диагностике

	Другие инструменты профилирования
	Таблицы USER STATISTICS
	Инструмент strace

	Итоги главы

	Глава 4. Оптимизация схемы и типов данных
	Выбор оптимальных типов данных
	Целые числа
	Вещественные числа
	Строковые типы
	Типы Date и Time
	Битовые типы данных
	Выбор идентификаторов
	Специальные типы данных

	Подводные камни проектирования схемы в MySQL
	Нормализация и денормализация
	Достоинства и недостатки нормализованной схемы
	Достоинства и недостатки денормализованной схемы
	Сочетание нормализации и денормализации

	Кэшированные и сводные таблицы
	Материализованные представления
	Таблицы счетчиков

	Ускорение работы команды ALTER TABLE
	Модификация одного лишь irm-файла
	Быстрое построение индексов MylSAM

	Итоги главы

	Глава 5. Повышение производительности с помощью индексирования
	Основы индексирования
	Типы индексов
	Преимущества индексов

	Стратегии индексирования для достижения высокой производительности
	Изоляция столбца
	Префиксные индексы и селективность индекса
	Многостолбцовые индексы
	Выбор правильного порядка столбцов
	Кластерные индексы
	Покрывающие индексы
	Использование просмотра индекса для сортировки
	Упакованные (сжатые по префиксу) индексы
	Избыточные и дублирующиеся индексы
	Неиспользуемые индексы
	Индексы и блокировки

	Кейсы по индексированию
	Поддержка нескольких видов фильтрации
	Устранение дополнительных условий поиска по диапазону
	Оптимизация сортировки

	Обслуживание индексов и таблиц
	Поиск и исправление повреждений таблицы
	Обновление статистики индекса
	Уменьшение фрагментации индекса и данных

	Итоги главы

	Глава 6. Оптимизация производительности запросов
	Почему запросы бывают медленными
	Основная причина замедления: оптимизируйте доступ к данным
	Не запрашиваете ли вы лишние данные у базы?
	Не слишком ли много данных анализирует MySQL?

	Способы реструктуризации запросов
	Один сложный или несколько простых запросов?
	Разбиение запроса на части
	Декомпозиция соединения

	Основные принципы выполнения запросов
	Клиент-серверный протокол MySQL
	Кэш запросов
	Процесс оптимизации запроса
	Подсистема выполнения запросов
	Возврат результатов клиенту

	Ограничения оптимизатора MySQL
	Коррелированные подзапросы
	Ограничения UNION
	Оптимизация слияния индексов
	Распространение равенства
	Параллельное выполнение
	Хеш-соединения
	Непоследовательный просмотр индекса
	Функции MIN() и МАХ()
	SELECT и UPDATE для одной и той же таблицы

	Подсказки оптимизатору запросов
	Оптимизация запросов конкретных типов
	Оптимизация запросов с COUNT()
	Оптимизация запросов с JOIN
	Оптимизация подзапросов
	Оптимизация GROUP BY и DISTINCT
	Оптимизация GROUP BY WITH ROLLUP
	Оптимизация LIMIT и OFFSET
	Оптимизация SQL_CALC_FOUND_ROWS
	Оптимизация UNION
	Статический анализ запросов
	Переменные, определяемые пользователем

	Кейс
	Построение таблицы очередей в MySQL
	Вычисление расстояния между двумя точками
	Применение пользовательских функций

	Итоги главы

	Глава 7. Дополнительные возможности MySQL
	Секционированные таблицы
	Как работает секционирование
	Типы секционирования
	Как использовать секционирование
	Что может пойти не так
	Оптимизация запросов к секционированным таблицам
	Объединенные таблицы

	Представления
	Обновляемые представления
	Представления и производительность
	Ограничения представлений

	Ограничения внешнего ключа
	Хранение кода внутри MySQL
	Хранимые процедуры и функции
	Триггеры
	События
	Сохранение комментариев в хранимом коде

	Курсоры
	Подготовленные операторы
	Оптимизация подготовленных операторов
	SQL-интерфейс для подготовленных операторов
	Ограничения подготовленных операторов

	Функции, определяемые пользователем
	Плагины
	Кодировка и схемы упорядочения
	Использование кодировок в MySQL
	Выбор кодировки и схемы упорядочения
	Как кодировка и схема упорядочения влияют на запросы

	Полнотекстовый поиск
	Полнотекстовые запросы на естественном языке
	Булев полнотекстовый поиск
	Изменения в полнотекстовом поиске в версии MySQL 5.1
	Компромиссы полнотекстового поиска и обходные пути
	Настройка и оптимизация полнотекстового поиска

	Распределенные транзакции
	Внутренние ХА-транзакции
	Внешние ХА-транзакции

	Кэш запросов MySQL
	Как MySQL проверяет попадание в кэш
	Как кэш использует память
	Когда полезен кэш запросов
	Как настраивать и обслуживать кэш запросов
	InnoDB и кэш запросов
	Общие оптимизации кэша запросов
	Альтернативы кэшу запросов

	Итоги главы

	Глава 8. Оптимизация параметров сервера
	Основы конфигурации MySQL
	Синтаксис, область видимости и динамичность
	Побочные эффекты установки переменных
	Приступая к работе
	Итеративная оптимизация с помощью эталонного тестирования

	Чего делать не следует
	Создание конфигурационного файла MySQL
	Настройка использования памяти
	Сколько памяти может использовать MySQL
	Сколько памяти нужно соединению
	Резервирование памяти для операционной системы
	Выделение памяти для кэшей
	Буферный пул InnoDB
	Кэш ключей MylSAM
	Кэш потоков
	Кэш таблиц
	Словарь данных InnoDB

	Настройка ввода/вывода в MySQL
	InnoDB
	MylSAM

	Настройка конкурентного доступа в MySQL
	InnoDB
	MylSAM

	Настройка с учетом рабочей нагрузки
	Оптимизация работы с полями типа BLOB и TEXT
	Оптимизация файловой сортировки

	Завершение базовой конфигурации
	Настройки безопасности и готовности к работе
	Дополнительные настройки InnoDB
	Итоги главы

	Глава 9. Оптимизация операционной системы и оборудования
	Что ограничивает производительность MySQL
	Как выбирать процессоры для MySQL
	Что лучше: быстрые процессоры или много процессоров
	Архитектура ЦП
	Масштабирование на несколько процессоров и ядер

	Поиск баланса между памятью и дисками
	Произвольный и последовательный ввод/вывод
	Кэширование, чтение и запись
	Что такое рабочее множество
	Определение эффективного соотношения «память — диск»
	Выбор жестких дисков

	Твердотельные хранилища данных
	Обзор флеш-памяти
	Флеш-технологии
	Эталонное тестирование флеш-памяти
	Твердотельные диски
	Устройства хранения РС1е
	Другие типы твердотельных хранилищ данных
	Когда стоит использовать флеш-устройства
	Использование технологии Flashcache
	Оптимизация MySQL для твердотельных хранилищ данных

	Выбор оборудования для подчиненного сервера
	Оптимизация производительности с помощью RAID
	Отказ, восстановление и мониторинг RAID
	Выбор между аппаратной и программной реализациями RAID
	Конфигурация RAID и кэширование

	Сети хранения данных и сетевые системы хранения данных
	Эталонные тесты SAN-сетей
	Использование SAN-сетей через NFS или SMB
	Производительность MySQL в SAN
	Надо ли использовать SAN

	Использование нескольких дисковых томов
	Конфигурация сети
	Выбор операционной системы
	Выбор файловой системы
	Выбор планировщика дисковых очередей
	Многопоточность
	Подкачка
	Состояние операционной системы
	Как интерпретировать выдачу vmstat
	Как интерпретировать выдачу iostat
	Другие полезные инструменты
	Машина с нагруженным процессором
	Машина с нагруженной подсистемой ввода/вывода
	Машина с интенсивной подкачкой
	Простаивающая машина

	Итоги главы

	Глава 10. Репликация
	Обзор репликации
	Проблемы, решаемые репликацией
	Как работает репликация

	Настройка репликации
	Создание аккаунтов репликации
	Конфигурирование главного и подчиненного серверов
	Запуск подчиненного сервера
	Инициализация подчиненного сервера на основе существующего
	Рекомендуемая конфигурация репликации

	Взгляд на репликацию изнутри
	Покомандная репликация
	Построчная репликация
	Какая репликация лучше, покомандная или построчная
	Файлы репликации
	Отправка событий репликации другим подчиненным серверам
	Фильтры репликации

	Топологии репликации
	Один главный сервер с несколькими подчиненными
	«Главный сервер — главный сервер» в режиме «активный — активный»
	«Главный сервер — главный сервер» в режиме «активный — пассивный»
	«Главный сервер — главный сервер с подчиненными»
	Кольцевая репликация
	Главный сервер, главный сервер-распространитель и подчиненные
	Дерево или пирамида
	Пользовательские схемы репликации

	Репликация и планирование производительности
	Почему репликация не помогает масштабированию записи
	Когда подчиненные серверы начнут отставать
	Запланированная недогрузка

	Администрирование и обслуживание репликации
	Мониторинг репликации
	Измерение отставания подчиненного сервера
	Как узнать, согласованы ли подчиненные серверы с главным
	Восстановление синхронизации подчиненного сервера с главным
	Смена главного сервера
	Смена ролей в конфигурации «главный сервер — главный сервер»

	Проблемы репликации и их решение
	Ошибки, вызванные повреждением или утратой данных
	Использование нетранзакционных таблиц
	Смешивание транзакционных и нетранзакционных таблиц
	Недетерминированные команды
	Использование различных подсистем хранения на главном и подчиненном серверах
	Изменение данных на подчиненном сервере
	Неуникальный идентификатор сервера
	Неопределенный идентификатор сервера
	Зависимости от нереплицируемых данных
	Отсутствующие временные таблицы
	Репликация не всех обновлений
	Конкуренция, вызванная блокировками при выполнении SELECT в InnoDB
	Запись на обоих главных серверах в конфигурации «главный — главный».
	Слишком большое отставание репликации
	Чрезмерно большие пакеты от главного сервера
	Ограниченная пропускная способность сети
	Отсутствие места на диске
	Ограничения репликации

	Насколько быстро работает репликация
	Расширенные возможности репликации MySQL ~
	Прочие технологии репликации
	Итоги главы

	Глава 11. Масштабирование MySQL
	Что такое масштабируемость
	Масштабирование MySQL
	Планирование масштабируемости
	Перед тем как приступать к масштабированию
	Вертикальное масштабирование
	Масштабирование по горизонтали
	Масштабирование с помощью консолидации
	Масштабирование кластеризацией
	Обратное масштабирование

	Балансирование нагрузки
	Прямое подключение
	Представляем посредника
	Балансирование нагрузки при наличии одного главного и нескольких подчиненных серверов

	Итоги главы

	Глава 12. Высокая доступность
	Что такое высокая доступность
	Причины простоев
	Достижение высокой доступности
	Сокращение среднего времени между отказами
	Сокращение среднего времени восстановления

	Устранение отдельных критических точек
	Разделяемое хранилище данных или реплицированный диск
	Синхронная репликация MySQL
	Избыточность на основе репликации

	Аварийное переключение и восстановление после сбоев
	Повышение подчиненного сервера, или перемена ролей
	Виртуальные IP-адреса и передача IP-адреса
	Решения на основе посредника
	Обработка переключения на резерв при отказе на уровне приложения

	Итоги главы

	Глава 13. MySQL в облаке
	Достоинства, недостатки и мифы облака
	Экономика MySQL в облаке
	Масштабирование MySQL и НА в облаке
	Четыре основных ресурса
	Производительность MySQL в облачном хостинге
	База данных MySQL как услуга
	Amazon RDS
	Другие решения DBaaS

	Итоги главы

	Глава 14. Оптимизация на уровне приложения
	Типичные проблемы
	Проблемы веб-сервера
	Кэширование
	Кэширование на уровне ниже приложения
	Кэширование на уровне приложения
	Стратегии управления кэшем
	Кэширование иерархий объектов
	Предварительная генерация содержимого
	Кэш как инфраструктурный компонент
	Использование HandlerSocket и доступа к memcached

	Расширение MySQL
	Альтернативы MySQL
	Итоги главы

	Глава 15. Резервное копирование и восстановление
	Зачем нужно резервное копирование
	Определение требований к восстановлению
	Проектирование резервного копирования в MySQL
	Оперативное или автономное резервное копирование
	Логическое и физическое резервное копирование
	Что копировать
	Подсистемы хранения и согласованность
	Репликация

	Управление и резервное копирование двоичных журналов
	Формат двоичного журнала
	Безопасное удаление старых двоичных журналов

	Резервное копирование данных
	Снятие логической резервной копии
	Снимки файловой системы

	Восстановление из резервной копии
	Восстановление из физических файлов
	Восстановление из логической копии
	Восстановление на конкретный момент времени
	Более сложные методы восстановления
	Восстановление InnoDB

	Инструменты резервного копирования и восстановления
	MySQL Enterprise Backup
	Percona XtraBackup
	mylvmbackup
	Zmanda Recovery Manager
	mydumper
	mysqldump

	Скрипты резервного копирования
	Итоги главы

	Глава 16. Инструменты для пользователей MySQL
	Средства организации интерфейса
	Утилиты командной строки
	Утилиты SQL
	Инструменты мониторинга
	Инструменты мониторинга с открытым исходным кодом
	Коммерческие системы мониторинга
	Мониторинг из командной строки с использованием Innotop

	Итоги главы

	Приложение А. Ветки и версии MySQL
	Percona Server
	Maria D В
	Drizzle
	Другие варианты MySQL
	Итоги

	Приложение Б. Состояние сервера MySQL
	Системные переменные
	Команда SHOW STATUS
	Команда SHOW INNODB STATUS
	Команда SHOW PROCESSLIST
	Команда SHOW ENGINE MUTEX STATUS
	Состояние репликации
	База данных INFORMATION_SCHEM А
	Performance Schema
	Итоги

	Приложение В. Передача больших файлов
	Копирование файлов
	Эталонные тесты копирования файлов

	Приложение Г. Команда EXPLAIN
	Вызов команды EXPLAIN
	Столбцы результата команды EXPLAIN
	Вывод плана выполнения в виде дерева
	Улучшения в версии MySQL 5.6

	Приложение Д. Отладка блокировок
	Ожидание блокировки на уровне сервера
	Ожидание блокировки в InnoDB

	Приложение Е. Использование Sphinx совместно с MySQL
	Типичный поиск с помощью Sphinx
	Зачем использовать Sphinx
	Обзор архитектуры
	Специальные возможности
	Примеры практической реализации
	Итоги

