

Работа с PostgreSQL: настройка и
масштабирование

А. Ю. Васильев aka leopard

Creative Commons Attribution-Noncommercial 2.5
2010–2012

Содержание

Содержание 1

1 Введение 6

2 Настройка производительности 7
2.1 Введение . 7

Не используйте настройки по умолчанию 8
Используйте актуальную версию сервера 8
Стоит ли доверять тестам производительности 9

2.2 Настройка сервера . 10
Используемая память . 10
Журнал транзакций и контрольные точки 14
Планировщик запросов . 16
Сбор статистики . 18

2.3 Диски и файловые системы 18
Перенос журнала транзакций на отдельный диск 19
CLUSTER . 19

2.4 Примеры настроек . 20
Среднестатистическая настройка для максимальной

производительности . 20
Среднестатистическая настройка для оконного приложения

(1С), 2 ГБ памяти . 20
Среднестатистическая настройка для Web приложения, 2

ГБ памяти . 20
Среднестатистическая настройка для Web приложения, 8

ГБ памяти . 21
2.5 Автоматическое создание оптимальных настроек: pgtune . . 21
2.6 Оптимизация БД и приложения 22

Поддержание базы в порядке 22
Использование индексов . 23
Перенос логики на сторону сервера 26
Оптимизация конкретных запросов 26
Утилиты для оптимизации запросов 28

1

Содержание

2.7 Заключение . 32

3 Партиционирование 33
3.1 Введение . 33
3.2 Теория . 34
3.3 Практика использования . 35

Настройка . 35
Тестирование . 37
Управление партициями . 39
Важность «constraint_exclusion» для партиционирования . . 39

3.4 Заключение . 41

4 Репликация 42
4.1 Введение . 42
4.2 Streaming Replication (Потоковая репликация) 44

Введение . 44
Установка . 45
Настройка . 45
Общие задачи . 52

4.3 Slony-I . 53
Введение . 53
Установка . 53
Настройка . 53
Общие задачи . 59
Устранение неисправностей . 61

4.4 Londiste . 64
Введение . 64
Установка . 64
Настройка . 65
Общие задачи . 69
Устранение неисправностей . 71

4.5 Bucardo . 72
Введение . 72
Установка . 72
Настройка . 72
Общие задачи . 75

4.6 RubyRep . 75
Введение . 75
Установка . 76
Настройка . 76
Устранение неисправностей . 78

4.7 Заключение . 79

5 Шардинг 81
5.1 Введение . 81

2

Содержание

5.2 PL/Proxy . 82
Установка . 83
Настройка . 84
Все ли так просто? . 87

5.3 Postgres-XC . 88
Архитектера . 88
Установка . 90
Распределение данных и масштабируемость 90
Таблици и запросы к ним . 91
Высокая доступность (HA) . 97
Ограничения . 98
Заключение . 98

5.4 HadoopDB . 98
Установка и настройка . 103
Заключение . 115

5.5 Заключение . 116

6 PgPool-II 117
6.1 Введение . 117
6.2 Давайте начнем! . 118

Установка pgpool-II . 118
Файлы конфигурации . 119
Настройка команд PCP . 120
Подготовка узлов баз данных 121
Запуск/Остановка pgpool-II 121

6.3 Ваша первая репликация . 122
Настройка репликации . 122
Проверка репликации . 123

6.4 Ваш первый параллельный запрос 124
Настройка параллельного запроса 124
Настройка SystemDB . 125
Установка правил распределения данных 128
Установка правил репликации 129
Проверка параллельного запроса 130

6.5 Master-slave режим . 131
Streaming Replication (Потоковая репликация) 131

6.6 Онлайн востановление . 132
Streaming Replication (Потоковая репликация) 133

6.7 Заключение . 135

7 Мультиплексоры соединений 136
7.1 Введение . 136
7.2 PgBouncer . 136
7.3 PgPool-II vs PgBouncer . 137

3

Содержание

8 Кэширование в PostgreSQL 139
8.1 Введение . 139
8.2 Pgmemcache . 140

Установка . 140
Настройка . 141
Проверка . 142
Заключение . 146

9 Расширения 147
9.1 Введение . 147
9.2 PostGIS . 147
9.3 pgSphere . 147
9.4 HStore . 148

Пример использования . 148
Заключение . 149

9.5 PLV8 . 150
Скорость работы . 150
Использование . 152
Вывод . 155

9.6 Smlar . 155
Похожесть . 155
Расчет похожести . 156
Smlar . 157
Пример: поиск дубликатов картинок 159
Вывод . 162

9.7 PostPic . 162
9.8 Fuzzystrmatch . 163
9.9 Tsearch2 . 165
9.10 OpenFTS . 165
9.11 PL/Proxy . 165
9.12 Texcaller . 166
9.13 Pgmemcache . 166
9.14 Prefix . 166
9.15 Dblink . 166
9.16 Ltree . 167
9.17 Заключение . 167

10 Бэкап и восстановление PostgreSQL 168
10.1 Введение . 168
10.2 SQL бэкап . 169

SQL бэкап больших баз данных 170
10.3 Бекап уровня файловой системы 171
10.4 Непрерывное резервное копирование 172

Настройка . 172
10.5 Утилиты для непрерывного резервного копирования 173

4

Содержание

WAL-E . 174
Barman . 179

10.6 Заключение . 186

11 Стратегии масштабирования для PostgreSQL 187
11.1 Введение . 187

Суть проблемы . 188
11.2 Проблема чтения данных . 188

Методы решения . 188
11.3 Проблема записи данных . 189

Методы решения . 189
11.4 Заключение . 189

12 Советы по разным вопросам (Performance Snippets) 190
12.1 Введение . 190
12.2 Советы . 190

Размер объектов в базе данных 190
Размер самых больших таблиц 191
«Средний» count . 192
Узнать значение по-умолчанию у поля в таблице 193
Случайное число из диапазона 193
Алгоритм Луна . 194
Выборка и сортировка по данному набору данных 197
Куайн, Запрос который выводит сам себя 197
Ускоряем LIKE . 197
Поиск дубликатов индексов 200
Размер и статистика использования индексов 200

Литература 202

5

1

Введение

Послушайте — и Вы забудете,
посмотрите — и Вы
запомните, сделайте — и Вы
поймете.

Конфуций

Данная книга не дает ответы на все вопросы по работе с PostgreSQL.
Главное её задание — показать возможности PostgreSQL, методики
настройки и масштабируемости этой СУБД. В любом случае, выбор
метода решения поставленной задачи остается за разработчиком или
администратором СУБД.

6

2

Настройка производительности

Теперь я знаю тысячу
способов, как не нужно
делать лампу накаливания.

Томас Алва Эдисон

2.1 Введение
Скорость работы, вообще говоря, не является основной причиной

использования реляционных СУБД. Более того, первые реляционные базы
работали медленнее своих предшественников. Выбор этой технологии был
вызван скорее

∙ возможностью возложить поддержку целостности данных на СУБД;
∙ независимостью логической структуры данных от физической.

Эти особенности позволяют сильно упростить написание приложений,
но требуют для своей реализации дополнительных ресурсов.

Таким образом, прежде, чем искать ответ на вопрос «как заставить
РСУБД работать быстрее в моей задаче?» следует ответить на вопрос «нет
ли более подходящего средства для решения моей задачи, чем РСУБД?»
Иногда использование другого средства потребует меньше усилий, чем
настройка производительности.

Данная глава посвящена возможностям повышения
производительности PostgreSQL. Глава не претендует на исчерпывающее
изложение вопроса, наиболее полным и точным руководством
по использованию PostgreSQL является, конечно, официальная
документация и официальный FAQ. Также существует англоязычный
список рассылки postgresql-performance, посвящённый именно этим
вопросам. Глава состоит из двух разделов, первый из которых
ориентирован скорее на администратора, второй — на разработчика
приложений. Рекомендуется прочесть оба раздела: отнесение многих
вопросов к какому-то одному из них весьма условно.

7

2.1. Введение

Не используйте настройки по умолчанию
По умолчанию PostgreSQL сконфигурирован таким образом, чтобы

он мог быть запущен практически на любом компьютере и не слишком
мешал при этом работе других приложений. Это особенно касается
используемой памяти. Настройки по умолчанию подходят только для
следующего использования: с ними вы сможете проверить, работает ли
установка PostgreSQL, создать тестовую базу уровня записной книжки
и потренироваться писать к ней запросы. Если вы собираетесь
разрабатывать (а тем более запускать в работу) реальные приложения, то
настройки придётся радикально изменить. В дистрибутиве PostgreSQL,
к сожалению, не поставляется файлов с «рекомендуемыми» настройками.
Вообще говоря, такие файлы создать весьма сложно, т.к. оптимальные
настройки конкретной установки PostgreSQL будут определяться:

∙ конфигурацией компьютера;
∙ объёмом и типом данных, хранящихся в базе;
∙ отношением числа запросов на чтение и на запись;
∙ тем, запущены ли другие требовательные к ресурсам процессы

(например, вебсервер).

Используйте актуальную версию сервера
Если у вас стоит устаревшая версия PostgreSQL, то наибольшего

ускорения работы вы сможете добиться, обновив её до текущей. Укажем
лишь наиболее значительные из связанных с производительностью
изменений.

∙ В версии 7.1 появился журнал транзакций, до того данные в таблицу
сбрасывались каждый раз при успешном завершении транзакции.

∙ В версии 7.2 появились:

– новая версия команды VACUUM, не требующая блокировки;
– команда ANALYZE, строящая гистограмму распределения

данных в столбцах, что позволяет выбирать более быстрые
планы выполнения запросов;

– подсистема сбора статистики.
∙ В версии 7.4 была ускорена работа многих сложных запросов

(включая печально известные подзапросы IN/NOT IN).
∙ В версии 8.0 были внедрены метки востановления, улучшение

управления буфером, CHECKPOINT и VACUUM улучшены.
∙ В версии 8.1 был улучшен одновременный доступ к разделяемой

памяти, автоматически использование индексов для MIN() и MAX(),
pg_autovacuum внедрен в сервер (автоматизирован), повышение
производительности для секционированных таблиц.

∙ В версии 8.2 была улучшена скорость множества SQL запросов,
усовершенствован сам язык запросов.

8

2.1. Введение

∙ В версии 8.3 внедрен полнотекстовый поиск, поддержка SQL/XML
стандарта, параметры конфигурации сервера могут быть
установлены на основе отдельных функций.

∙ В версии 8.4 были внедрены общие табличные выражения,
рекурсивные запросы, параллельное восстановление, улучшенна
производительность для EXISTS/NOT EXISTS запросов.

∙ В версии 9.0 «асинхронная репликация из коробки», VACUUM/VAC-
UUM FULL стали быстрее, расширены хранимые процедуры.

∙ В версии 9.1 «синхронная репликация из коробки», нелогируемые
таблицы (очень быстрые на запись, но при падении БД
данные могут пропасть), новые типы индексов, наследование
таблиц в запросах теперь могжет вернуться многозначительно
отсортированные результаты, позволяющие оптимизации MIN/-
MAX.

∙ В версии 9.2 «каскадная репликация из коробки», сканирование по
индексу, JSON тип данных, типы данных на диапазоны, сортировка
в памяти улучшена на 25%, ускорена команда COPY.

Следует также отметить, что большая часть изложенного в статье
материала относится к версии сервера не ниже 8.4.

Стоит ли доверять тестам производительности
Перед тем, как заниматься настройкой сервера, вполне естественно

ознакомиться с опубликованными данными по производительности, в
том числе в сравнении с другими СУБД. К сожалению, многие
тесты служат не столько для облегчения вашего выбора, сколько для
продвижения конкретных продуктов в качестве «самых быстрых». При
изучении опубликованных тестов в первую очередь обратите внимание,
соответствует ли величина и тип нагрузки, объём данных и сложность
запросов в тесте тому, что вы собираетесь делать с базой? Пусть,
например, обычное использование вашего приложения подразумевает
несколько одновременно работающих запросов на обновление к таблице
в миллионы записей. В этом случае СУБД, которая в несколько раз
быстрее всех остальных ищет запись в таблице в тысячу записей, может
оказаться не лучшим выбором. Ну и наконец, вещи, которые должны
сразу насторожить:

∙ Тестирование устаревшей версии СУБД.
∙ Использование настроек по умолчанию (или отсутствие информации

о настройках).
∙ Тестирование в однопользовательском режиме (если, конечно, вы не

предполагаете использовать СУБД именно так).
∙ Использование расширенных возможностей одной СУБД при

игнорировании расширенных возможностей другой.

9

2.2. Настройка сервера

∙ Использование заведомо медленно работающих запросов (см. пункт
3.4).

2.2 Настройка сервера
В этом разделе описаны рекомендуемые значения параметров,

влияющих на производительность СУБД. Эти параметры обычно
устанавливаются в конфигурационном файле postgresql.conf и влияют на
все базы в текущей установке.

Используемая память
Общий буфер сервера: shared_buffers

PostgreSQL не читает данные напрямую с диска и не пишет их сразу
на диск. Данные загружаются в общий буфер сервера, находящийся в
разделяемой памяти, серверные процессы читают и пишут блоки в этом
буфере, а затем уже изменения сбрасываются на диск.

Если процессу нужен доступ к таблице, то он сначала ищет нужные
блоки в общем буфере. Если блоки присутствуют, то он может
продолжать работу, если нет — делается системный вызов для их загрузки.
Загружаться блоки могут как из файлового кэша ОС, так и с диска, и эта
операция может оказаться весьма «дорогой».

Если объём буфера недостаточен для хранения часто используемых
рабочих данных, то они будут постоянно писаться и читаться из кэша ОС
или с диска, что крайне отрицательно скажется на производительности.

В то же время не следует устанавливать это значение слишком
большим: это НЕ вся память, которая нужна для работы PostgreSQL,
это только размер разделяемой между процессами PostgreSQL памяти,
которая нужна для выполнения активных операций. Она должна
занимать меньшую часть оперативной памяти вашего компьютера, так как
PostgreSQL полагается на то, что операционная система кэширует файлы,
и не старается дублировать эту работу. Кроме того, чем больше памяти
будет отдано под буфер, тем меньше останется операционной системе и
другим приложениям, что может привести к своппингу.

К сожалению, чтобы знать точное число shared_buffers, нужно
учесть количество оперативной памяти компьютера, размер базы данных,
число соединений и сложность запросов, так что лучше воспользуемся
несколькими простыми правилами настройки.

На выделенных серверах полезным объемом будет значение от 8 МБ до
2 ГБ. Объем может быть выше, если у вас большие активные порции базы
данных, сложные запросы, большое число одновременных соединений,
длительные транзакции, вам доступен большой объем оперативной
памяти или большее количество процессоров. И, конечно же, не забываем

10

2.2. Настройка сервера

об остальных приложениях. Выделив слишком много памяти для базы
данных, мы можем получить ухудшение производительности. В качестве
начальных значений можете попробовать следующие:

∙ Начните с 4 МБ (512) для рабочей станции
∙ Средний объём данных и 256–512 МБ доступной памяти: 16–32 МБ

(2048–4096)
∙ Большой объём данных и 1–4 ГБ доступной памяти: 64–256 МБ

(8192–32768)

Для тонкой настройки параметра установите для него большое
значение и потестируйте базу при обычной нагрузке. Проверяйте
использование разделяемой памяти при помощи ipcs или других
утилит(например, free или vmstat). Рекомендуемое значение параметра
будет примерно в 1,2 –2 раза больше, чем максимум использованной
памяти. Обратите внимание, что память под буфер выделятся при
запуске сервера, и её объём при работе не изменяется. Учтите также,
что настройки ядра операционной системы могут не дать вам выделить
большой объём памяти. В руководстве администратора PostgreSQL
описано, как можно изменить эти настройки: www.postgresql.org

Вот несколько примеров, полученных на личном опыте и при
тестировании:

∙ Laptop, Celeron processor, 384 МБ RAM, база данных 25 МБ: 12 МБ
∙ Athlon server, 1 ГБ RAM, база данных поддержки принятия решений

10 ГБ: 200 МБ
∙ Quad PIII server, 4 ГБ RAM, 40 ГБ, 150 соединений, «тяжелые»

транзакции: 1 ГБ
∙ Quad Xeon server, 8 ГБ RAM, 200 ГБ, 300 соединений, «тяжелые»

транзакции: 2 ГБ

Память для сортировки результата запроса: work_mem

Ранее известное как sort_mem, было переименовано, так как сейчас
определяет максимальное количество оперативной памяти, которое может
выделить одна операция сортировки, агрегации и др. Это не разделяемая
память, work_mem выделяется отдельно на каждую операцию (от одного
до нескольких раз за один запрос). Разумное значение параметра
определяется следующим образом: количество доступной оперативной
памяти (после того, как из общего объема вычли память, требуемую
для других приложений, и shared_buffers) делится на максимальное
число одновременных запросов умноженное на среднее число операций
в запросе, которые требуют памяти.

Если объём памяти недостаточен для сортироки некоторого
результата, то серверный процесс будет использовать временные файлы.

11

http://www.postgresql.org/docs/devel/static/kernel-resources.html

2.2. Настройка сервера

Если же объём памяти слишком велик, то это может привести к
своппингу.

Объём памяти задаётся параметром work_mem в файле postgresql.conf.
Единица измерения параметра — 1 кБ. Значение по умолчанию — 1024.
В качестве начального значения для параметра можете взять 2–4%
доступной памяти. Для веб-приложений обычно устанавливают низкие
значения work_mem, так как запросов обычно много, но они простые,
обычно хватает от 512 до 2048 КБ. С другой стороны, приложения
для поддержки принятия решений с сотнями строк в каждом запросе
и десятками миллионов столбцов в таблицах фактов часто требуют
work_mem порядка 500 МБ. Для баз данных, которые используются и
так, и так, этот параметр можно устанавливать для каждого запроса
индивидуально, используя настройки сессии. Например, при памяти 1–
4 ГБ рекомендуется устанавливать 32–128 MB.

Память для работы команды VACUUM: maintenance_work_mem

Предыдущее название в PostgreSQL 7.x vacuum_mem. Этот параметр
задаёт объём памяти, используемый командами VACUUM, ANALYZE,
CREATE INDEX, и добавления внешних ключей. Чтобы операции
выполнялись максимально быстро, нужно устанавливать этот параметр
тем выше, чем больше размер таблиц в вашей базе данных. Неплохо бы
устанавливать его значение от 50 до 75% размера вашей самой большой
таблицы или индекса или, если точно определить невозможно, от 32 до
256 МБ. Следует устанавливать большее значение, чем для work_mem.
Слишком большие значения приведут к использованию свопа. Например,
при памяти 1–4 ГБ рекомендуется устанавливать 128–512 MB.

Free Space Map: как избавиться от VACUUM FULL

Особенностями версионных движков БД (к которым относится и
используемый в PostgreSQL) является следующее:

∙ Транзакции, изменяющие данные в таблице, не блокируют
транзакции, читающие из неё данные, и наоборот (это хорошо);

∙ При изменении данных в таблице (командами UPDATE или
DELETE) накапливается мусор1 (а это плохо).

В каждой СУБД сборка мусора реализована особым образом, в Post-
greSQL для этой цели применяется команда VACUUM (описана в пункте
3.1.1).

До версии 7.2 команда VACUUM полностью блокировала таблицу.
Начиная с версии 7.2, команда VACUUM накладывает более слабую
блокировку, позволяющую параллельно выполнять команды SELECT,

1под которым понимаются старые версии изменённых/удалённых записей

12

2.2. Настройка сервера

INSERT, UPDATE и DELETE над обрабатываемой таблицей. Старый
вариант команды называется теперь VACUUM FULL.

Новый вариант команды не пытается удалить все старые версии
записей и, соответственно, уменьшить размер файла, содержащего
таблицу, а лишь помечает занимаемое ими место как свободное. Для
информации о свободном месте есть следующие настройки:

∙ max_fsm_relations

Максимальное количество таблиц, для которых будет отслеживаться
свободное место в общей карте свободного пространства. Эти данные
собираются VACUUM. Параметр max_fsm_relations должен быть не
меньше общего количества таблиц во всех базах данной установки
(лучше с запасом).

∙ max_fsm_pages

Данный параметр определяет размер реестра, в котором хранится
информация о частично освобождённых страницах данных, готовых
к заполнению новыми данными. Значение этого параметра нужно
установить чуть больше, чем полное число страниц, которые
могут быть затронуты операциями обновления или удаления между
выполнением VACUUM. Чтобы определить это число, можно
запустить VACUUM VERBOSE ANALYZE и выяснить общее число
страниц, используемых базой данных. max_fsm_pages обычно
требует немного памяти, так что на этом параметре лучше не
экономить.

Если эти параметры установленны верно и информация обо всех
изменениях помещается в FSM, то команды VACUUM будет достаточно
для сборки мусора, если нет – понадобится VACUUM FULL, во время
работы которой нормальное использование БД сильно затруднено.

ВНИМАНИЕ! Начиная с 8.4 версии fsm параметры были убраны,
поскольку Free Space Map сохраняется на жесткий диск, а не в память.

Прочие настройки

∙ temp_buffers

Буфер под временные объекты, в основном для временных таблиц.
Можно установить порядка 16 МБ.

∙ max_prepared_transactions

Количество одновременно подготавливаемых транзакций (PRE-
PARE TRANSACTION). Можно оставить по дефолту — 5.

∙ vacuum_cost_delay

Если у вас большие таблицы, и производится много одновременных
операций записи, вам может пригодиться функция, которая
уменьшает затраты на I/O для VACUUM, растягиваяя его по

13

2.2. Настройка сервера

времени. Чтобы включить эту функциональность, нужно поднять
значение vacuum_cost_delay выше 0. Используйте разумную
задержку от 50 до 200 мс. Для более тонкой настройки повышайте
vacuum_cost_page_hit и понижайте vacuum_cost_page_limit. Это
ослабит влияние VACUUM, увеличив время его выполнения. В
тестах с параллельными транзакциями Ян Вик (Jan Wieck) получил,
что при значениях delay — 200, page_hit — 6 и предел — 100 вляние
VACUUM уменьшилось более чем на 80%, но его длительность
увеличилась втрое.

∙ max_stack_depth

Специальный стек для сервера, в идеале он должен совпадать
с размером стека, выставленном в ядре ОС. Установка большего
значения, чем в ядре, может привести к ошибкам. Рекомендуется
устанавливать 2–4 MB.

∙ max_files_per_process

Максимальное количество файлов, открываемых процессом и его
подпроцессами в один момент времени. Уменьшите данный
параметр, если в процессе работы наблюдается сообщение «Too many
open files».

Журнал транзакций и контрольные точки
Журнал транзакций PostgreSQL работает следующим образом: все

изменения в файлах данных (в которых находятся таблицы и индексы)
производятся только после того, как они были занесены в журнал
транзакций, при этом записи в журнале должны быть гарантированно
записаны на диск.

В этом случае нет необходимости сбрасывать на диск изменения
данных при каждом успешном завершении транзакции: в случае сбоя
БД может быть восстановлена по записям в журнале. Таким образом,
данные из буферов сбрасываются на диск при проходе контрольной точки:
либо при заполнении нескольких (параметр checkpoint_segments, по
умолчанию 3) сегментов журнала транзакций, либо через определённый
интервал времени (параметр checkpoint_timeout, измеряется в секундах,
по умолчанию 300).

Изменение этих параметров прямо не повлияет на скорость чтения, но
может принести большую пользу, если данные в базе активно изменяются.

Уменьшение количества контрольных точек: checkpoint_segments

Если в базу заносятся большие объёмы данных, то контрольные точки
могут происходить слишком часто1. При этом производительность упадёт

1«слишком часто» можно определить как «чаще раза в минуту». Вы также можете
задать параметр checkpoint_warning (в секундах): в журнал сервера будут писаться

14

2.2. Настройка сервера

из-за постоянного сбрасывания на диск данных из буфера.
Для увеличения интервала между контрольными точками

нужно увеличить количество сегментов журнала транзакций (check-
point_segments). Данный параметр определяет количество сегментов
(каждый по 16 МБ) лога транзакций между контрольными точками. Этот
параметр не имеет особого значения для базы данных, предназначенной
преимущественно для чтения, но для баз данных со множеством
транзакций увеличение этого параметра может оказаться жизненно
необходимым. В зависимости от объема данных установите этот
параметр в диапазоне от 12 до 256 сегментов и, если в логе появляются
предупреждения (warning) о том, что контрольные точки происходят
слишком часто, постепенно увеличивайте его. Место, требуемое на
диске, вычисляется по формуле (checkpoint_segments * 2 + 1) * 16 МБ,
так что убедитесь, что у вас достаточно свободного места. Например,
если вы выставите значение 32, вам потребуется больше 1 ГБ дискового
пространства.

Следует также отметить, что чем больше интервал между
контрольными точками, тем дольше будут восстанавливаться данные по
журналу транзакций после сбоя.

fsync и стоит ли его трогать

Наиболее радикальное из возможных решений — выставить значение
«off» параметру fsync. При этом записи в журнале транзакций не будут
принудительно сбрасываться на диск, что даст большой прирост скорости
записи. Учтите: вы жертвуете надёжностью, в случае сбоя целостность
базы будет нарушена, и её придётся восстанавливать из резервной копии!

Использовать этот параметр рекомендуется лишь в том случае, если вы
всецело доверяете своему «железу» и своему источнику бесперебойного
питания. Ну или если данные в базе не представляют для вас особой
ценности.

Прочие настройки

∙ commit_delay (в микросекундах, 0 по умолчанию) и commit_siblings
(5 по умолчанию)

определяют задержку между попаданием записи в буфер журнала
транзакций и сбросом её на диск. Если при успешном завершении
транзакции активно не менее commit_siblings транзакций, то запись
будет задержана на время commit_delay. Если за это время
завершится другая транзакция, то их изменения будут сброшены на
диск вместе, при помощи одного системного вызова. Эти параметры

предупреждения, если контрольные точки происходят чаще заданного.

15

2.2. Настройка сервера

позволят ускорить работу, если параллельно выполняется много
«мелких» транзакций.

∙ wal_sync_method

Метод, который используется для принудительной записи данных на
диск. Если fsync=off, то этот параметр не используется. Возможные
значения:

– open_datasync — запись данных методом open() с параметром
O_DSYNC

– fdatasync — вызов метода fdatasync() после каждого commit
– fsync_writethrough — вызов fsync() после каждого commit,

игнорируя параллельные процессы
– fsync — вызов fsync() после каждого commit
– open_sync — запись данных методом open() с параметром

O_SYNC

Не все эти методы доступны на разных ОС. По умолчанию
устанавливается первый, который доступен для системы.

∙ full_page_writes

Установите данный параметр в off, если fsync=off. Иначе,
когда этот параметр on, PostgreSQL записывает содержимое
каждой записи в журнал транзакций при первой модификации
таблицы. Это необходимо, поскольку данные могут записаться
лишь частично, если в ходе процесса «упала» ОС. Это приведет
к тому, что на диске окажутся новые данные смешанные со
старыми. Строкового уровня записи в журнал транзакций
может быть недостаточно, чтобы полностью восстановить данные
после «падения». full_page_writes гарантирует корректное
восстановление, ценой увелечения записываемых данных в журнал
транзакций (Единственный способ снижения объема записи в
журнал транзакций заключается в увеличении checkpoint_interval).

∙ wal_buffers

Количество памяти используемое в SHARED MEMORY для ведения
транзакционных логов1. Стоит увеличить буфер до 256–512 кБ, что
позволит лучше работать с большими транзакциями. Например, при
доступной памяти 1–4 ГБ рекомендуется устанавливать 256–1024 КБ.

Планировщик запросов
Следующие настройки помогают планировщику запросов правильно

оценивать стоимости различных операций и выбирать оптимальный план
выполнения запроса. Существуют 3 настройки планировщика, на которые
стоит обратить внимание:

1буфер находится в разделяемой памяти и является общим для всех процессов

16

2.2. Настройка сервера

∙ default_statistics_target

Этот параметр задаёт объём статистики, собираемой командой ANA-
LYZE (см. пункт 3.1.2). Увеличение параметра заставит эту команду
работать дольше, но может позволить оптимизатору строить более
быстрые планы, используя полученные дополнительные данные.
Объём статистики для конкретного поля может быть задан командой
ALTER TABLE . . . SET STATISTICS.

∙ effective_cache_size

Этот параметр сообщает PostgreSQL примерный объём файлового
кэша операционной системы, оптимизатор использует эту оценку для
построения плана запроса1.

Пусть в вашем компьютере 1,5 ГБ памяти, параметр shared_buffers
установлен в 32 МБ, а параметр effective_cache_size в 800 МБ.
Если запросу нужно 700 МБ данных, то PostgreSQL оценит, что все
нужные данные уже есть в памяти и выберет более агрессивный
план с использованием индексов и merge joins. Но если ef-
fective_cache_size будет всего 200 МБ, то оптимизатор вполне
может выбрать более эффективный для дисковой системы план,
включающий полный просмотр таблицы.

На выделенном сервере имеет смысл выставлять effective_cache_size
в 2/3 от всей оперативной памяти; на сервере с другими
приложениями сначала нужно вычесть из всего объема RAM размер
дискового кэша ОС и память, занятую остальными процессами.

∙ random_page_cost

Переменная, указывающая на условную стоимость индексного
доступа к страницам данных. На серверах с быстрыми дисковыми
массивами имеет смысл уменьшать изначальную настройку до
3.0, 2.5 или даже до 2.0. Если же активная часть вашей
базы данных намного больше размеров оперативной памяти,
попробуйте поднять значение параметра. Можно подойти к выбору
оптимального значения и со стороны производительности запросов.
Если планировщик запросов чаще, чем необходимо, предпочитает
последовательные просмотры (sequential scans) просмотрам с
использованием индекса (index scans), понижайте значение. И
наоборот, если планировщик выбирает просмотр по медленному
индексу, когда не должен этого делать, настройку имеет смысл
увеличить. После изменения тщательно тестируйте результаты
на максимально широком наборе запросов. Никогда не опускайте
значение random_page_cost ниже 2.0; если вам кажется, что ran-
dom_page_cost нужно еще понижать, разумнее в этом случае менять
настройки статистики планировщика.

1Указывает планировщику на размер самого большого объекта в базе данных,
который теоретически может быть закеширован

17

2.3. Диски и файловые системы

Сбор статистики
У PostgreSQL также есть специальная подсистема — сборщик

статистики, — которая в реальном времени собирает данные об активности
сервера. Поскольку сбор статистики создает дополнительные накладные
расходы на базу данных, то система может быть настроена как на сбор, так
и не сбор статистики вообще. Эта система контролируется следующими
параметрами, принимающими значения true/false:

∙ track_counts включать ли сбор статистики. По умолчанию
включён, поскольку autovacuum демону требуется сбор статистики.
Отключайте, только если статистика вас совершенно не интересует
(как и autovacuum).

∙ track_functions отслеживание использования определенных
пользователем функций.

∙ track_activities передавать ли сборщику статистики информацию о
текущей выполняемой команде и времени начала её выполнения.
По умолчанию эта возможность включена. Следует отметить,
что эта информация будет доступна только привилегированным
пользователям и пользователям, от лица которых запущены
команды, так что проблем с безопасностью быть не должно.

Данные, полученные сборщиком статистики, доступны через
специальные системные представления. При установках по умолчанию
собирается очень мало информации, рекомендуется включить все
возможности: дополнительная нагрузка будет невелика, в то время как
полученные данные позволят оптимизировать использование индексов (а
также помогут оптимальной работе autovacuum демону).

2.3 Диски и файловые системы
Очевидно, что от качественной дисковой подсистемы в сервере

БД зависит немалая часть производительности. Вопросы выбора и
тонкой настройки «железа», впрочем, не являются темой данной главы,
ограничимся уровнем файловой системы.

Единого мнения насчёт наиболее подходящей для PostgreSQL
файловой системы нет, поэтому рекомендуется использовать ту, которая
лучше всего поддерживается вашей операционной системой. При этом
учтите, что современные журналирующие файловые системы не намного
медленнее нежурналирующих, а выигрыш — быстрое восстановление
после сбоев — от их использования велик.

Вы легко можете получить выигрыш в производительности без
побочных эффектов, если примонтируете файловую систему, содержащую
базу данных, с параметром noatime1.

1при этом не будет отслеживаться время последнего доступа к файлу

18

2.3. Диски и файловые системы

Перенос журнала транзакций на отдельный диск
При доступе к диску изрядное время занимает не только собственно

чтение данных, но и перемещение магнитной головки.
Если в вашем сервере есть несколько физических дисков (несколько

логических разделов на одном диске здесь, очевидно, не помогут: головка
всё равно будет одна), то вы можете разнести файлы базы данных и
журнал транзакций по разным дискам. Данные в сегменты журнала
пишутся последовательно, более того, записи в журнале транзакций сразу
сбрасываются на диск, поэтому в случае нахождения его на отдельном
диске магнитная головка не будет лишний раз двигаться, что позволит
ускорить запись.

Порядок действий:

∙ Остановите сервер (!).
∙ Перенесите каталоги pg_clog и pg_xlog, находящийся в каталоге с

базами данных, на другой диск.
∙ Создайте на старом месте символическую ссылку.
∙ Запустите сервер.

Примерно таким же образом можно перенести и часть файлов,
содержащих таблицы и индексы, на другой диск, но здесь потребуется
больше кропотливой ручной работы, а при внесении изменений в схему
базы процедуру, возможно, придётся повторить.

CLUSTER
CLUSTER table [USING index] — команда для упорядочивание

записей таблицы на диске согласно индексу, что иногда за счет
уменьшения доступа к диску ускоряет выполнение запроса. Возможно
создать только один физический порядок в таблице, поэтому и таблица
может иметь только один кластерный индекс. При таком условии нужно
тщательно выбирать, какой индекс будет использоваться для кластерного
индекса.

Кластеризация по индексу позволяет сократить время поиска по диску:
во время поиска по индексу выборка данных может быть значительно
быстрее, так как последовательность данных в таком же порядке, как
и индекс. Из минусов можно отметить то, что команда CLUSTER
требует «ACCESS EXCLUSIVE» блокировку, что предотвращает любые
другие операции с данных (чтения и записи) пока кластеризация не
завершит выполнение. Также кластеризация индекса в PostgreSQL не
утверждает четкий порядок следования, поэтому требуется повторно
выполнять CLUSTER для поддержания таблицы в порядке.

19

2.4. Примеры настроек

2.4 Примеры настроек

Среднестатистическая настройка для максимальной
производительности

Возможно для конкретного случая лучше подойдут другие настройки.
Внимательно изучите данное руководство и настройте PostgreSQL
опираясь на эту информацию.

RAM — размер памяти;

∙ shared_buffers = 1/8 RAM или больше (но не более 1/4);
∙ work_mem в 1/20 RAM;
∙ maintenance_work_mem в 1/4 RAM;
∙ max_fsm_relations в планируемое кол–во таблиц в базах * 1.5;
∙ max_fsm_pages в max_fsm_relations * 2000;
∙ fsync = true;
∙ wal_sync_method = fdatasync;
∙ commit_delay = от 10 до 100 ;
∙ commit_siblings = от 5 до 10;
∙ effective_cache_size = 0.9 от значения cached, которое показывает

free;
∙ random_page_cost = 2 для быстрых cpu, 4 для медленных;
∙ cpu_tuple_cost = 0.001 для быстрых cpu, 0.01 для медленных;
∙ cpu_index_tuple_cost = 0.0005 для быстрых cpu, 0.005 для

медленных;
∙ autovacuum = on;
∙ autovacuum_vacuum_threshold = 1800;
∙ autovacuum_analyze_threshold = 900;

Среднестатистическая настройка для оконного приложения
(1С), 2 ГБ памяти

∙ maintenance_work_mem = 128MB
∙ effective_cache_size = 512MB
∙ work_mem = 640kB
∙ wal_buffers = 1536kB
∙ shared_buffers = 128MB
∙ max_connections = 500

Среднестатистическая настройка для Web приложения, 2 ГБ
памяти

∙ maintenance_work_mem = 128MB;
∙ checkpoint_completion_target = 0.7
∙ effective_cache_size = 1536MB

20

2.5. Автоматическое создание оптимальных настроек: pgtune

∙ work_mem = 4MB
∙ wal_buffers = 4MB
∙ checkpoint_segments = 8
∙ shared_buffers = 512MB
∙ max_connections = 500

Среднестатистическая настройка для Web приложения, 8 ГБ
памяти

∙ maintenance_work_mem = 512MB
∙ checkpoint_completion_target = 0.7
∙ effective_cache_size = 6GB
∙ work_mem = 16MB
∙ wal_buffers = 4MB
∙ checkpoint_segments = 8
∙ shared_buffers = 2GB
∙ max_connections = 500

2.5 Автоматическое создание оптимальных
настроек: pgtune

Для оптимизации настроек для PostgreSQL Gregory Smith
создал утилиту pgtune1 в расчёте на обеспечение максимальной
производительности для заданной аппаратной конфигурации. Утилита
проста в использовании и во многих Linux системах может идти в составе
пакетов. Если же нет, можно просто скачать архив и распаковать. Для
начала:

Код 2.1 Pgtune

Line 1 pgtune - i $PGDATA/ po s t g r e s q l . conf \
- - o $PGDATA/ po s t g r e s q l . conf . pgtune

опцией - i , -- input-config указываем текущий файл postgresql.conf, а -o,
--output-config указываем имя файла для нового postgresql.conf.

Есть также дополнительные опции для настройки конфига.

∙ -M, --memory Используйте этот параметр, чтобы определить общий
объем системной памяти. Если не указано, pgtune будет пытаться
использовать текущий объем системной памяти.

∙ -T, -- type Указывает тип базы данных. Опции: DW, OLTP, Web,
Mixed, Desktop.

∙ -c, --connections Указывает максимальное количество соединений.
Если он не указан, то будет браться в зависимости от типа базы
данных.

1http://pgtune.projects.postgresql.org/

21

2.6. Оптимизация БД и приложения

Хочется сразу добавить, что pgtune не панацея для оптимизации
настройки PostgreSQL. Многие настройки зависят не только от
аппаратной конфигурации, но и от размера базы данных, числа
соединений и сложности запросов, так что оптимально настроить базу
данных возможно только учитывая все эти параметры.

2.6 Оптимизация БД и приложения
Для быстрой работы каждого запроса в вашей базе в основном

требуется следующее:

1. Отсутствие в базе мусора, мешающего добраться до актуальных
данных. Можно сформулировать две подзадачи:

a) Грамотное проектирование базы. Освещение этого вопроса
выходит далеко за рамки этой книги.

b) Сборка мусора, возникающего при работе СУБД.
2. Наличие быстрых путей доступа к данным — индексов.
3. Возможность использования оптимизатором этих быстрых путей.
4. Обход известных проблем.

Поддержание базы в порядке
В данном разделе описаны действия, которые должны периодически

выполняться для каждой базы. От разработчика требуется только
настроить их автоматическое выполнение (при помощи cron) и опытным
путём подобрать оптимальную частоту.

Команда ANALYZE

Служит для обновления информации о распределении данных в
таблице. Эта информация используется оптимизатором для выбора
наиболее быстрого плана выполнения запроса.

Обычно команда используется в связке с VACUUM ANALYZE. Если
в базе есть таблицы, данные в которых не изменяются и не удаляются, а
лишь добавляются, то для таких таблиц можно использовать отдельную
команду ANALYZE. Также стоит использовать эту команду для отдельной
таблицы после добавления в неё большого количества записей.

Команда REINDEX

Команда REINDEX используется для перестройки существующих
индексов. Использовать её имеет смысл в случае:

∙ порчи индекса;
∙ постоянного увеличения его размера.

22

2.6. Оптимизация БД и приложения

Второй случай требует пояснений. Индекс, как и таблица, содержит
блоки со старыми версиями записей. PostgreSQL не всегда может
заново использовать эти блоки, и поэтому файл с индексом постепенно
увеличивается в размерах. Если данные в таблице часто меняются, то
расти он может весьма быстро.

Если вы заметили подобное поведение какого-то индекса, то стоит
настроить для него периодическое выполнение команды REINDEX.
Учтите: команда REINDEX, как и VACUUM FULL, полностью блокирует
таблицу, поэтому выполнять её надо тогда, когда загрузка сервера
минимальна.

Использование индексов
Опыт показывает, что наиболее значительные проблемы с

производительностью вызываются отсутствием нужных индексов.
Поэтому столкнувшись с медленным запросом, в первую очередь
проверьте, существуют ли индексы, которые он может использовать.
Если нет — постройте их. Излишек индексов, впрочем, тоже чреват
проблемами:

∙ Команды, изменяющие данные в таблице, должны изменить также
и индексы. Очевидно, чем больше индексов построено для таблицы,
тем медленнее это будет происходить.

∙ Оптимизатор перебирает возможные пути выполнения запросов.
Если построено много ненужных индексов, то этот перебор будет
идти дольше.

Единственное, что можно сказать с большой степенью определённости —
поля, являющиеся внешими ключами, и поля, по которым объединяются
таблицы, индексировать надо обязательно.

Команда EXPLAIN [ANALYZE]

Команда EXPLAIN [запрос] показывает, каким образом PostgreSQL
собирается выполнять ваш запрос. Команда EXPLAIN ANALYZE [запрос]
выполняет запрос1 и показывает как изначальный план, так и реальный
процесс его выполнения.

Чтение вывода этих команд — искусство, которое приходит с опытом.
Для начала обращайте внимание на следующее:

∙ Использование полного просмотра таблицы (seq scan).
∙ Использование наиболее примитивного способа объединения таблиц

(nested loop).
1и поэтому EXPLAIN ANALYZE DELETE . . . — не слишком хорошая идея

23

2.6. Оптимизация БД и приложения

∙ Для EXPLAIN ANALYZE: нет ли больших отличий в
предполагаемом количестве записей и реально выбранном? Если
оптимизатор использует устаревшую статистику, то он может
выбирать не самый быстрый план выполнения запроса.

Следует отметить, что полный просмотр таблицы далеко не всегда
медленнее просмотра по индексу. Если, например, в таблице–справочнике
несколько сотен записей, умещающихся в одном-двух блоках на диске, то
использование индекса приведёт лишь к тому, что придётся читать ещё
и пару лишних блоков индекса. Если в запросе придётся выбрать 80%
записей из большой таблицы, то полный просмотр опять же получится
быстрее.

При тестировании запросов с использованием EXPLAIN ANA-
LYZE можно воспользоваться настройками, запрещающими оптимизатору
использовать определённые планы выполнения. Например,

SET enable_seqscan=false;

запретит использование полного просмотра таблицы, и вы сможете
выяснить, прав ли был оптимизатор, отказываясь от использования
индекса. Ни в коем случае не следует прописывать подобные команды
в postgresql.conf! Это может ускорить выполнение нескольких запросов,
но сильно замедлит все остальные!

Использование собранной статистики

Результаты работы сборщика статистики доступны через специальные
системные представления. Наиболее интересны для наших целей
следующие:

∙ pg_stat_user_tables содержит — для каждой пользовательской
таблицы в текущей базе данных — общее количество полных
просмотров и просмотров с использованием индексов, общие
количества записей, которые были возвращены в результате
обоих типов просмотра, а также общие количества вставленных,
изменённых и удалённых записей.

∙ pg_stat_user_indexes содержит — для каждого пользовательского
индекса в текущей базе данных — общее количество просмотров,
использовавших этот индекс, количество прочитанных записей,
количество успешно прочитанных записей в таблице (может быть
меньше предыдущего значения, если в индексе есть записи,
указывающие на устаревшие записи в таблице).

∙ pg_statio_user_tables содержит — для каждой пользовательской
таблицы в текущей базе данных — общее количество блоков,
прочитанных из таблицы, количество блоков, оказавшихся при этом
в буфере (см. пункт 2.1.1), а также аналогичную статистику для

24

2.6. Оптимизация БД и приложения

всех индексов по таблице и, возможно, по связанной с ней таблицей
TOAST.

Из этих представлений можно узнать, в частности:

∙ Для каких таблиц стоит создать новые индексы (индикатором
служит большое количество полных просмотров и большое
количество прочитанных блоков).

∙ Какие индексы вообще не используются в запросах. Их имеет смысл
удалить, если, конечно, речь не идёт об индексах, обеспечивающих
выполнение ограничений PRIMARY KEY и UNIQUE.

∙ Достаточен ли объём буфера сервера.

Также возможен «дедуктивный» подход, при котором сначала
создаётся большое количество индексов, а затем неиспользуемые индексы
удаляются.

Возможности индексов в PostgreSQL

Функциональные индексы Вы можете построить индекс не только по
полю/нескольким полям таблицы, но и по выражению, зависящему от
полей. Пусть, например, в вашей таблице foo есть поле foo_name, и
выборки часто делаются по условию «первая буква foo_name = ’буква’, в
любом регистре». Вы можете создать индекс

CREATE INDEX foo_name_first_idx
ON foo ((lower(substr(foo_name, 1, 1))));

и запрос вида

SELECT * FROM foo
WHERE lower(substr(foo_name, 1, 1)) = ’ы’;

будет его использовать.
Частичные индексы (partial indexes) Под частичным индексом

понимается индекс с предикатом WHERE. Пусть, например, у вас есть
в базе таблица scheta с параметром uplocheno типа boolean. Записей, где
uplocheno = false меньше, чем записей с uplocheno = true, а запросы по
ним выполняются значительно чаще. Вы можете создать индекс

CREATE INDEX scheta_neuplocheno ON scheta (id)
WHERE NOT uplocheno;

который будет использоваться запросом вида

SELECT * FROM scheta WHERE NOT uplocheno AND ...;

Достоинство подхода в том, что записи, не удовлетворяющие условию
WHERE, просто не попадут в индекс.

25

2.6. Оптимизация БД и приложения

Перенос логики на сторону сервера
Этот пункт очевиден для опытных пользователей PostrgeSQL и

предназначен для тех, кто использует или переносит на PostgreSQL
приложения, написанные изначально для более примитивных СУБД.

Реализация части логики на стороне сервера через хранимые
процедуры, триггеры, правила1 часто позволяет ускорить работу
приложения. Действительно, если несколько запросов объединены в
процедуру, то не требуется

∙ пересылка промежуточных запросов на сервер;
∙ получение промежуточных результатов на клиент и их обработка.

Кроме того, хранимые процедуры упрощают процесс разработки и
поддержки: изменения надо вносить только на стороне сервера, а не
менять запросы во всех приложениях.

Оптимизация конкретных запросов
В этом разделе описываются запросы, для которых по разным

причинам нельзя заставить оптимизатор использовать индексы, и которые
будут всегда вызывать полный просмотр таблицы. Таким образом,
если вам требуется использовать эти запросы в требовательном к
быстродействию приложении, то придётся их изменить.

SELECT count(*) FROM <огромная таблица>

Функция count() работает очень просто: сначала выбираются все
записи, удовлетворяющие условию, а потом к полученному набору записей
применяется агрегатная функция — считается количество выбраных
строк. Информация о видимости записи для текущей транзакции
(а конкурентным транзакциям может быть видимо разное количество
записей в таблице!) не хранится в индексе, поэтому, даже если
использовать для выполнения запроса индекс первичного ключа таблицы,
всё равно потребуется чтение записей собственно из файла таблицы.

Проблема Запрос вида

Код 2.2 SQL

Line 1 SELECT count (*) FROM foo ;

осуществляет полный просмотр таблицы foo, что весьма долго для таблиц
с большим количеством записей.

Решение Простого решения проблемы, к сожалению, нет. Возможны
следующие подходы:

1RULE — реализованное в PostgreSQL расширение стандарта SQL, позволяющее, в
частности, создавать обновляемые представления

26

2.6. Оптимизация БД и приложения

1. Если точное число записей не важно, а важен порядок1, то
можно использовать информацию о количестве записей в таблице,
собранную при выполнении команды ANALYZE:

Код 2.3 SQL

Line 1 SELECT r e l t u p l e s FROM pg_class WHERE relname = ’ foo ’ ;

2. Если подобные выборки выполняются часто, а изменения в таблице
достаточно редки, то можно завести вспомогательную таблицу,
хранящую число записей в основной. На основную же таблицу
повесить триггер, который будет уменьшать это число в случае
удаления записи и увеличивать в случае вставки. Таким образом,
для получения количества записей потребуется лишь выбрать одну
запись из вспомогательной таблицы.

3. Вариант предыдущего подхода, но данные во вспомогательной
таблице обновляются через определённые промежутки времени
(cron).

Медленный DISTINCT

Текущая реализация DISTINCT для больших таблиц очень медленна.
Но возможно использовать GROUP BY взамен DISTINCT. GROUP BY
может использовать агрегирующий хэш, что значительно быстрее, чем
DISTINCT.

Код 2.4 DISTINCT

Line 1 pos tg r e s=# s e l e c t count (*) from (s e l e c t d i s t i n c t i from g)
a ;

- count
- - - - - - - -
- 19125
5 (1 row)
-
- Time : 580 ,553 ms
-
-

10 pos tg r e s=# s e l e c t count (*) from (s e l e c t d i s t i n c t i from g)
a ;

- count
- - - - - - - -
- 19125
- (1 row)

15
- Time : 36 ,281 ms

1«на нашем форуме более 10000 зарегистрированных пользователей, оставивших
более 50000 сообщений!»

27

2.6. Оптимизация БД и приложения

Код 2.5 GROUP BY

Line 1 pos tg r e s=# s e l e c t count (*) from (s e l e c t i from g group by
i) a ;

- count
- - - - - - - -
- 19125
5 (1 row)
-
- Time : 26 ,562 ms
-
-

10 pos tg r e s=# s e l e c t count (*) from (s e l e c t i from g group by
i) a ;

- count
- - - - - - - -
- 19125
- (1 row)

15
- Time : 25 ,270 ms

Утилиты для оптимизации запросов
pgFouine

pgFouine1 — это анализатор log-файлов для PostgreSQL, используемый
для генерации детальных отчетов из log-файлов PostgreSQL. pgFouine
поможет определить, какие запросы следует оптимизировать в
первую очередь. pgFouine написан на языке программирования PHP
с использованием объектно-ориентированных технологий и легко
расширяется для поддержки специализированных отчетов, является
свободным программным обеспечением и распространяется на условиях
GNU General Public License. Утилита спроектирована таким образом,
чтобы обработка очень больших log-файлов не требовала много ресурсов.

Для работы с pgFouine сначала нужно сконфигурировать PostgreSQL
для создания нужного формата log-файлов:

∙ Чтобы включить протоколирование в syslog

Код 2.6 pgFouine

Line 1 l og_des t ina t i on = ’ sy s l o g ’
- r ed i r e c t_s td e r r = o f f
- si lent_mode = on

∙ Для записи запросов, длящихся дольше n миллисекунд:
1http://pgfouine.projects.pgfoundry.org/

28

2.6. Оптимизация БД и приложения

Код 2.7 pgFouine

Line 1 log_min_duration_statement = n
- log_durat ion = o f f
- log_statement = ’ none ’

Для записи каждого обработанного запроса установите
log_min_duration_statement на 0. Чтобы отключить запись запросов,
установите этот параметр на -1.

pgFouine — простой в использовании инструмент командной строки.
Следующая команда создаёт HTML-отчёт со стандартными параметрами:

Код 2.8 pgFouine

Line 1 pgfou ine . php - f i l e your/ log / f i l e . l og > your - r epo r t . html

С помощью этой строки можно отобразить текстовый отчёт с 10
запросами на каждый экран на стандартном выводе:

Код 2.9 pgFouine

Line 1 pgfou ine . php - f i l e your/ log / f i l e . l og - top 10 - format text

Более подробно о возможностях, а также много полезных
примеров, можно найти на официальном сайта проекта
pgfouine.projects.pgfoundry.org.

pgBadger

pgBadger1 — аналогичная утилита, что и pgFouine, но написаная
на Perl. Еще одно большое преимущество проекта в том, что он
более активно сейчас разрабатывается (на момент написания этого текта
последний релиз pgFouine был в 24.02.2010, а последняя версия pgBadger —
12.10.2012). Установка pgBadger проста:

Код 2.10 Установка pgBadger

Line 1 ta r xz f pgbadger - 2 . x . ta r . gz
- cd pgbadger - 2 . x/
- pe r l Make f i l e .PL
- make && sudo make i n s t a l l

Как и с случае с pgFouine нужно настроить PostgreSQL логи:

Код 2.11 Настройка логов PostgreSQL

Line 1 l o g g i n g_co l l e c t o r = on
- log_min_messages = debug1
- log_min_error_statement = debug1
- log_min_duration_statement = 0
5 l og_l ine_pre f i x = ’%t [%p] : [% l - 1] user=%u , db=%d ’

1http://dalibo.github.com/pgbadger/

29

http://pgfouine.projects.pgfoundry.org/

2.6. Оптимизация БД и приложения

- log_checkpoints = on
- l og_connect ions = on
- l og_di s connec t i ons = on
- log_lock_waits = on

10 log_temp_fi les = 0

Парсим логи PostgreSQL через pgBadger:

Код 2.12 Запуск pgBadger

Line 1 $. / pgbadger
~/pgsq l /master /pg_log/ pos tg r e sq l -2012 -08 -30_132*

- [========================>] Parsed 10485768 bytes o f
10485768 (100.00%)

- [========================>] Parsed 10485828 bytes o f
10485828 (100.00%)

- [========================>] Parsed 10485851 bytes o f
10485851 (100.00%)

5 [========================>] Parsed 10485848 bytes o f
10485848 (100.00%)

- [========================>] Parsed 10485839 bytes o f
10485839 (100.00%)

- [========================>] Parsed 982536 bytes o f 982536
(100.00%)

В результате получится HTML файлы, которые содержат статистику
по запросам к PostgreSQL. Более подробно о возможностях можно найти
на официальном сайта проекта dalibo.github.com/pgbadger.

pg_stat_statements

pg_stat_statements — расширение для сбора статистики выполнения
запросов в рамках всего сервера. Преимущество данного расширения в
том, что ему не требуется собирать и парсить логи PostgreSQL, как это
делает pgFouine и pgBadger. Для начала установим и настроим его:

Код 2.13 Настройка pg_stat_statements в postgresql.conf

Line 1 shared_pre load_l ib ra r i e s = ’ pg_stat_statements ’
- custom_var iab le_classes = ’ pg_stat_statements ’ # данная

настройка нужна для PostgreSQL 9 .1 и ниже
-
- pg_stat_statements .max = 10000
5 pg_stat_statements . t rack = a l l

После внесения этих параметров PostgreSQL потребуется перегрузить.
Параметры конфигурации pg_stat_statements:

1. «pg_stat_statements.max (integer)» — максимальное количество sql
запросов, которые будет хранится расширением (удаляются записи
с наименьшим количеством вызовов)

30

http://dalibo.github.com/pgbadger/

2.6. Оптимизация БД и приложения

2. «pg_stat_statements.track (enum)» — какие SQL запросы требуется
записывать. Возможные параметры: top (только запросы от
приложения/клиента), all (все запросы, например в функциях) и
none (отключить сбор статистики).

3. «pg_stat_statements.save (boolean)» — следует ли сохранять
собраную статистику после остановки PostgreSQL. По-умолчанию
включено.

Далее активируем расширение:

Код 2.14 Активация pg_stat_statements

Line 1 # CREATE EXTENSION pg_stat_statements ;

Пример собраной статистики:

Код 2.15 pg_stat_statements статистика

Line 1 # SELECT query , c a l l s , total_time , rows , 100 .0 *
shared_blks_hit /

- n u l l i f (shared_blks_hit + shared_blks_read ,
0) AS hit_percent

- FROM pg_stat_statements ORDER BY total_time DESC
LIMIT 10 ;

- - [RECORD 1
] -

5 query | SELECT query , c a l l s , total_time , rows , ? *
shared_blks_hit /

- | n u l l i f (shared_blks_hit +
shared_blks_read , ?) AS hit_percent

- | FROM pg_stat_statements ORDER BY
total_time DESC LIMIT ? ;

- c a l l s | 3
- tota l_time | 0 .994

10 rows | 7
- hit_percent | 100.0000000000000000
- - [RECORD 2

] -
- query | i n s e r t i n to x (i) s e l e c t g ene ra t e_se r i e s (? , ?) ;
- c a l l s | 2

15 tota l_time | 0 .591
- rows | 110
- hit_percent | 100.0000000000000000
- - [RECORD 3

] -
- query | s e l e c t * from x where i = ? ;

20 c a l l s | 2
- tota l_time | 0 .157
- rows | 6

31

2.7. Заключение

- hit_percent | 100.0000000000000000
- - [RECORD 4

] -
25 query | SELECT pg_stat_statements_reset () ;

- c a l l s | 1
- tota l_time | 0 .102
- rows | 1
- hit_percent |

Для сброса статистики есть команда pg_stat_statements_reset:

Код 2.16 Сброс статистика

Line 1 # SELECT pg_stat_statements_reset () ;
- - [RECORD 1] - - - - - - - - - - - -+ -
- pg_stat_statements_reset |
-
5 # SELECT query , c a l l s , total_time , rows , 100 .0 *

shared_blks_hit /
- n u l l i f (shared_blks_hit + shared_blks_read ,

0) AS hit_percent
- FROM pg_stat_statements ORDER BY total_time DESC

LIMIT 10 ;
- - [RECORD 1] -
- query | SELECT pg_stat_statements_reset () ;

10 c a l l s | 1
- tota l_time | 0 .175
- rows | 1
- hit_percent |

Хочется сразу отметить, что расширение только с версии PostgreSQL
9.2 contrib нормализирует SQL запросы. В версиях 9.1 и ниже SQL
запросы сохраняются как есть, а значит «select * from table where id =
3» и «select * from table where id = 21» буду разными записями, что почти
бесполезно для сбора полезной статистики.

2.7 Заключение
К счастью, PostgreSQL не требует особо сложной настройки.

В большинстве случаев вполне достаточно будет увеличить объём
выделенной памяти, настроить периодическое поддержание базы в
порядке и проверить наличие необходимых индексов. Более сложные
вопросы можно обсудить в специализированном списке рассылки.

32

3

Партиционирование

Решая какую-либо проблему,
всегда полезно заранее знать
правильный ответ. При
условии, конечно, что вы
уверены в наличии самой
проблемы.

Народная мудрость

3.1 Введение
Партиционирование (partitioning, секционирование) — это разбиение

больших структур баз данных (таблицы, индексы) на меньшие кусочки.
Звучит сложно, но на практике все просто.

Скорее всего у Вас есть несколько огромных таблиц (обычно
всю нагрузку обеспечивают всего несколько таблиц СУБД из всех
имеющихся). Причем чтение в большинстве случаев приходится только
на самую последнюю их часть (т.е. активно читаются те данные,
которые недавно появились). Примером тому может служить блог — на
первую страницу (это последние 5. . . 10 постов) приходится 40. . . 50% всей
нагрузки, или новостной портал (суть одна и та же), или системы личных
сообщений, впрочем понятно. Партиционирование таблицы позволяет
базе данных делать интеллектуальную выборку — сначала СУБД уточнит,
какой партиции соответствует Ваш запрос (если это реально) и только
потом сделает этот запрос, применительно к нужной партиции (или
нескольким партициям). Таким образом, в рассмотренном случае, Вы
распределите нагрузку на таблицу по ее партициям. Следовательно
выборка типа «SELECT * FROM articles ORDER BY id DESC LIMIT 10»
будет выполняться только над последней партицией, которая значительно
меньше всей таблицы.

Итак, партиционирование дает ряд преимуществ:

33

3.2. Теория

∙ На определенные виды запросов (которые, в свою очередь,
создают основную нагрузку на СУБД) мы можем улучшить
производительность.

∙ Массовое удаление может быть произведено путем удаления одной
или нескольких партиций (DROP TABLE гораздо быстрее, чем
массовый DELETE).

∙ Редко используемые данные могут быть перенесены в другое
хранилище.

3.2 Теория
На текущий момент PostgreSQL поддерживает два критерия для

создания партиций:

∙ Партиционирование по диапазону значений (range) — таблица
разбивается на «диапазоны» значений по полю или набору полей
в таблице, без перекрытия диапазонов значений, отнесенных к
различным партициям. Например, диапазоны дат.

∙ Партиционирование по списку значений (list) — таблица разбивается
по спискам ключевых значений для каждой партиции.

Чтобы настроить партиционирование таблицы, достаточно выполните
следующие действия:

∙ Создается «мастер» таблица, из которой все партиции будут
наследоваться. Эта таблица не будет содержать данные. Также не
нужно ставить никаких ограничений на таблицу, если конечно они
не будут дублироваться на партиции.

∙ Создайте несколько «дочерних» таблиц, которые наследуют от
«мастер» таблицы.

∙ Добавить в «дочерние» таблицы значения, по которым они будут
партициями. Стоить заметить, что значения партиций не должны
пересекаться. Например:

Код 3.1 Пример неверного задлания значений партиций

Line 1 CHECK (out l e t ID BETWEEN 100 AND 200)
- CHECK (out l e t ID BETWEEN 200 AND 300)

неверно заданы партиции, поскольку не понятно какой партиции
пренадлежит значение 200.

∙ Для каждой партиции создать индекс по ключевому полю (или
нескольким), а также указать любые другие требуемые индексы.

∙ При необходимости, создать триггер или правило для
перенаправления данных с «мастер» таблицы в соответствующую
партицию.

34

3.3. Практика использования

∙ Убедиться, что параметр «constraint_exclusion» не отключен в
postgresql.conf. Если его не включить, то запросы не будут
оптимизированы при работе с партиционирование.

3.3 Практика использования
Теперь начнем с практического примера. Представим, что в нашей

системе есть таблица, в которую мы собираем данные о посещаемости
нашего ресурса. На любой запрос пользователя наша система логирует
действия в эту таблицу. И, например, в начале каждого месяца (неделю)
нам нужно создавать отчет за предыдущий месяц (неделю). При
этом, логи нужно хранить в течении 3 лет. Данные в такой таблице
накапливаются быстро, если система активно используется. И вот, когда
в таблице уже миллионы, а то, и милиарды записей, создавать отчеты
становится все сложнее (да и чистка старых записей становится не легким
делом). Работа с такой таблицей создает огромную нагрузку на СУБД.
Тут нам на помощь и приходит партиционирование.

Настройка
Для примера, мы имеем следующию таблицу:

Код 3.2 «Мастер» таблица

Line 1 CREATE TABLE my_logs (
- id SERIAL PRIMARY KEY,
- user_id INT NOT NULL,
- l ogdate TIMESTAMP NOT NULL,
5 data TEXT,
- some_state INT
-) ;

Поскольку нам нужны отчеты каждый месяц, мы будем делить
партиции по месяцам. Это поможет нам быстрее создавать отчеты и
чистить старые данные.

«Мастер» таблица будет «my_logs», структуру которой мы указали
выше. Далее создадим «дочерние» таблицы (партиции):

Код 3.3 «Дочерние» таблицы

Line 1 CREATE TABLE my_logs2010m10 (
- CHECK (logdate >= DATE ’ 2010 -10 -01 ’ AND logdate < DATE

’ 2010 -11 -01 ’)
-) INHERITS (my_logs) ;
- CREATE TABLE my_logs2010m11 (
5 CHECK (logdate >= DATE ’ 2010 -11 -01 ’ AND logdate < DATE

’ 2010 -12 -01 ’)
-) INHERITS (my_logs) ;

35

3.3. Практика использования

- CREATE TABLE my_logs2010m12 (
- CHECK (logdate >= DATE ’ 2010 -12 -01 ’ AND logdate < DATE

’ 2011 -01 -01 ’)
-) INHERITS (my_logs) ;

10 CREATE TABLE my_logs2011m01 (
- CHECK (logdate >= DATE ’ 2011 -01 -01 ’ AND logdate < DATE

’ 2010 -02 -01 ’)
-) INHERITS (my_logs) ;

Данными командами мы создаем таблицы «my_logs2010m10»,
«my_logs2010m11» и т.д., которые копируют структуру с «мастер»
таблицы (кроме индексов). Также с помощью «CHECK» мы задаем
диапазон значений, который будет попадать в эту партицию (хочу опять
напомнить, что диапазоны значений партиций не должны пересекатся!).
Поскольку партиционирование будет работать по полю «logdate», мы
создадим индекс на это поле на всех партициях:

Код 3.4 Создание индексов

Line 1 CREATE INDEX my_logs2010m10_logdate ON my_logs2010m10
(logdate) ;

- CREATE INDEX my_logs2010m11_logdate ON my_logs2010m11
(logdate) ;

- CREATE INDEX my_logs2010m12_logdate ON my_logs2010m12
(logdate) ;

- CREATE INDEX my_logs2011m01_logdate ON my_logs2011m01
(logdate) ;

Далее для удобства создадим функцию, которая будет перенаправлять
новые данные с «мастер» таблицы в соответствующую партицию.

Код 3.5 Функция для перенаправления

Line 1 CREATE OR REPLACE FUNCTION my_logs_insert_tr igger ()
- RETURNS TRIGGER AS $$
- BEGIN
- IF (NEW. logdate >= DATE ’ 2010 -10 -01 ’ AND
5 NEW. logdate < DATE ’ 2010 -11 -01 ’) THEN
- INSERT INTO my_logs2010m10 VALUES (NEW.*) ;
- ELSIF (NEW. logdate >= DATE ’ 2010 -11 -01 ’ AND
- NEW. logdate < DATE ’ 2010 -12 -01 ’) THEN
- INSERT INTO my_logs2010m11 VALUES (NEW.*) ;

10 ELSIF (NEW. logdate >= DATE ’ 2010 -12 -01 ’ AND
- NEW. logdate < DATE ’ 2011 -01 -01 ’) THEN
- INSERT INTO my_logs2010m12 VALUES (NEW.*) ;
- ELSIF (NEW. logdate >= DATE ’ 2011 -01 -01 ’ AND
- NEW. logdate < DATE ’ 2011 -02 -01 ’) THEN

15 INSERT INTO my_logs2011m01 VALUES (NEW.*) ;
- ELSE

36

3.3. Практика использования

- RAISE EXCEPTION ’ Date out o f range . Fix the
my_logs_insert_tr igger () func t i on ! ’ ;

- END IF ;
- RETURN NULL;

20 END;
- $$
- LANGUAGE p lpg sq l ;

В функции ничего особенного нет: идет проверка поля «logdate», по
которой направляются данные в нужную партицию. При не нахождении
требуемой партиции — вызываем ошибку. Теперь осталось создать триггер
на «мастер» таблицу для автоматического вызова данной функции:

Код 3.6 Триггер

Line 1 CREATE TRIGGER insert_my_logs_tr igger
- BEFORE INSERT ON my_logs
- FOR EACH ROW EXECUTE PROCEDURE my_logs_insert_tr igger () ;

Партиционирование настроено и теперь мы готовы приступить к
тестированию.

Тестирование
Для начала добавим данные в нашу таблицу «my_logs»:

Код 3.7 Данные

Line 1 INSERT INTO my_logs (user_id , logdate , data , some_state)
VALUES(1 , ’ 2010 -10 -30 ’ , ’ 30 . 10 .2010 data ’ , 1) ;

- INSERT INTO my_logs (user_id , logdate , data , some_state)
VALUES(2 , ’ 2010 -11 -10 ’ , ’ 10 . 11 .2010 data2 ’ , 1) ;

- INSERT INTO my_logs (user_id , logdate , data , some_state)
VALUES(1 , ’ 2010 -12 -15 ’ , ’ 15 . 12 .2010 data3 ’ , 1) ;

Теперь проверим где они хранятся:

Код 3.8 «Мастер» таблица чиста

Line 1 pa r t i t i o n i n g_t e s t=# SELECT * FROM ONLY my_logs ;
- id | user_id | l ogdate | data | some_state
- - - - -+ - - - - - - - - -+ - - - - - - - - -+ - - - - - -+ - - - - - - - - - - - -
- (0 rows)

Как видим в «мастер» таблицу данные не попали — она чиста. Теперь
проверим а есть ли вообще данные:

Код 3.9 Проверка данных

Line 1 pa r t i t i o n i n g_t e s t=# SELECT * FROM my_logs ;
- id | user_id | l ogdate | data |

some_state
- - - - -+ - - - - - - - - -+ -+ - - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - -

37

3.3. Практика использования

- 1 | 1 | 2010 -10 -30 00 : 00 : 00 | 30 . 10 .2010 data |
1

5 2 | 2 | 2010 -11 -10 00 : 00 : 00 | 10 . 11 .2010 data2 |
1

- 3 | 1 | 2010 -12 -15 00 : 00 : 00 | 15 . 12 .2010 data3 |
1

- (3 rows)

Данные при этом выводятся без проблем. Проверим партиции,
правильно ли хранятся данные:

Код 3.10 Проверка хранения данных

Line 1 pa r t i t i o n i n g_t e s t=# Se l e c t * from my_logs2010m10 ;
- id | user_id | l ogdate | data |

some_state
- - - - -+ - - - - - - - - -+ -+ - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - -
- 1 | 1 | 2010 -10 -30 00 : 00 : 00 | 30 . 10 .2010 data |

1
5 (1 row)
-
- pa r t i t i o n i n g_t e s t=# Se l e c t * from my_logs2010m11 ;
- id | user_id | l ogdate | data |

some_state
- - - - -+ - - - - - - - - -+ -+ - - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - -

10 2 | 2 | 2010 -11 -10 00 : 00 : 00 | 10 . 11 .2010 data2 |
1

- (1 row)

Отлично! Данные хранятся на требуемых нам партициях. При этом
запросы к таблице «my_logs» менять не нужно:

Код 3.11 Проверка запросов

Line 1 pa r t i t i o n i n g_t e s t=# SELECT * FROM my_logs WHERE user_id = 2 ;
- id | user_id | l ogdate | data |

some_state
- - - - -+ - - - - - - - - -+ -+ - - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - -
- 2 | 2 | 2010 -11 -10 00 : 00 : 00 | 10 . 11 .2010 data2 |

1
5 (1 row)
-
- pa r t i t i o n i n g_t e s t=# SELECT * FROM my_logs WHERE data LIKE

’%0.1% ’ ;
- id | user_id | l ogdate | data |

some_state
- - - - -+ - - - - - - - - -+ -+ - - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - -

10 1 | 1 | 2010 -10 -30 00 : 00 : 00 | 30 . 10 .2010 data |
1

- 2 | 2 | 2010 -11 -10 00 : 00 : 00 | 10 . 11 .2010 data2 |
1

38

3.3. Практика использования

- (2 rows)

Управление партициями
Обычно при работе с партиционированием старые партиции перестают

получать данные и остаются неизменными. Это дает огоромное
приемущество над работой с данными через партиции. Например, нам
нужно удалить старые логи за 2008 год, 10 месяц. Нам достаточно
выполить:

Код 3.12 Чистка логов

Line 1 DROP TABLE my_logs2008m10 ;

поскольку «DROP TABLE» работает гораздо быстрее, чем удаление
милионов записей индивидуально через «DELETE». Другой
вариант, который более предпочтителен, просто удалить партицию
из партиционирования, тем самым оставив данные в СУБД, но уже не
доступные через «мастер» таблицу:

Код 3.13 Удаляем партицию из партиционирования

Line 1 ALTER TABLE my_logs2008m10 NO INHERIT my_logs ;

Это удобно, если мы хотим эти данные потом перенести в другое
хранилище или просто сохранить.

Важность «constraint_exclusion» для партиционирования
Параметр «constraint_exclusion» отвечает за оптимизацию запросов,

что повышает производительность для партиционированых таблиц.
Например, выпоним простой запрос:

Код 3.14 «constraint_exclusion» OFF

Line 1 pa r t i t i o n i n g_t e s t=# SET cons t ra in t_exc lu s i on = o f f ;
- pa r t i t i o n i n g_t e s t=# EXPLAIN SELECT * FROM my_logs WHERE

logdate > ’ 2010 -12 -01 ’ ;
-
- QUERY PLAN
5 -
- Result (co s t =6 .81 . . 104 . 66 rows=1650 width=52)
- -> Append (co s t =6 .81 . . 104 . 66 rows=1650 width=52)
- -> Bitmap Heap Scan on my_logs (co s t =6 . 81 . . 2 0 . 93

rows=330 width=52)
- Recheck Cond : (l ogdate > ’ 2010 -12 -01

00 : 00 : 00 ’ : : timestamp without time zone)
10 -> Bitmap Index Scan on my_logs_logdate

(co s t =0 . 00 . . 6 . 7 3 rows=330 width=0)

39

3.3. Практика использования

- Index Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Heap Scan on my_logs2010m10 my_logs
(co s t =6 . 81 . . 2 0 . 93 rows=330 width=52)

- Recheck Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Index Scan on
my_logs2010m10_logdate (co s t =0 . 00 . . 6 . 7 3 rows=330
width=0)

15 Index Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Heap Scan on my_logs2010m11 my_logs
(co s t =6 . 81 . . 2 0 . 93 rows=330 width=52)

- Recheck Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Index Scan on
my_logs2010m11_logdate (co s t =0 . 00 . . 6 . 7 3 rows=330
width=0)

- Index Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

20 -> Bitmap Heap Scan on my_logs2010m12 my_logs
(co s t =6 . 81 . . 2 0 . 93 rows=330 width=52)

- Recheck Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Index Scan on
my_logs2010m12_logdate (co s t =0 . 00 . . 6 . 7 3 rows=330
width=0)

- Index Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Heap Scan on my_logs2011m01 my_logs
(co s t =6 . 81 . . 2 0 . 93 rows=330 width=52)

25 Recheck Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- -> Bitmap Index Scan on
my_logs2011m01_logdate (co s t =0 . 00 . . 6 . 7 3 rows=330
width=0)

- Index Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- (22 rows)

Как видно через команду «EXPLAIN», данный запрос сканирует все
партиции на наличие данных в них, что не логично, поскольку данное
условие «logdate > 2010-12-01» говорит о том, что данные должны братся
только с партицый, где подходит такое условие. А теперь включим
«constraint_exclusion»:

Код 3.15 «constraint_exclusion» ON

Line 1 pa r t i t i o n i n g_t e s t=# SET cons t ra in t_exc lu s i on = on ;

40

3.4. Заключение

- SET
- pa r t i t i o n i n g_t e s t=# EXPLAIN SELECT * FROM my_logs WHERE

logdate > ’ 2010 -12 -01 ’ ;
- QUERY PLAN
5 -
- Result (co s t =6 . 81 . . 4 1 . 87 rows=660 width=52)
- -> Append (co s t =6 . 81 . . 4 1 . 87 rows=660 width=52)
- -> Bitmap Heap Scan on my_logs (co s t =6 . 81 . . 2 0 . 93

rows=330 width=52)
- Recheck Cond : (l ogdate > ’ 2010 -12 -01

00 : 00 : 00 ’ : : timestamp without time zone)
10 -> Bitmap Index Scan on my_logs_logdate

(co s t =0 . 00 . . 6 . 7 3 rows=330 width=0)
- Index Cond : (l ogdate > ’ 2010 -12 -01

00 : 00 : 00 ’ : : timestamp without time zone)
- -> Bitmap Heap Scan on my_logs2010m12 my_logs

(co s t =6 . 81 . . 2 0 . 93 rows=330 width=52)
- Recheck Cond : (l ogdate > ’ 2010 -12 -01

00 : 00 : 00 ’ : : timestamp without time zone)
- -> Bitmap Index Scan on

my_logs2010m12_logdate (co s t =0 . 00 . . 6 . 7 3 rows=330
width=0)

15 Index Cond : (l ogdate > ’ 2010 -12 -01
00 : 00 : 00 ’ : : timestamp without time zone)

- (10 rows)

Как мы видим, теперь запрос работает правильно, и сканирует
только партиции, что подходят под условие запроса. Но включать
«constraint_exclusion» не желательно для баз, где нет партиционирования,
поскольку команда «CHECK» будет проверятся на всех запросах,
даже простых, а значит производительность сильно упадет. Начиная
с 8.4 версии PostgreSQL «constraint_exclusion» может быть «on»,
«off» и «partition». По умолчанию (и рекомендуется) ставить
«constraint_exclusion» не «on», и не «off», а «partition», который будет
проверять «CHECK» только на партиционированых таблицах.

3.4 Заключение
Партиционирование — одна из самых простых и менее безболезненных

методов уменьшения нагрузки на СУБД. Именно на этот вариант стоит
посмотреть сперва, и если он не подходит по каким либо причинам —
переходить к более сложным. Но если в системе есть таблица, у которой
актуальны только новые данные, но огромное количество старых (не
актуальных) данных дает 50% или более нагрузки на СУБД — Вам стоит
внедрить партиционирование.

41

4

Репликация

Когда решаете проблему, ни о
чем не беспокойтесь. Вот
когда вы её решите, тогда и
наступит время беспокоиться.

Ричард Филлипс Фейман

4.1 Введение
Репликация (англ. replication) — механизм синхронизации

содержимого нескольких копий объекта (например, содержимого
базы данных). Репликация — это процесс, под которым понимается
копирование данных из одного источника на множество других и
наоборот. При репликации изменения, сделанные в одной копии объекта,
могут быть распространены в другие копии. Репликация может быть
синхронной или асинхронной.

В случае синхронной репликации, если данная реплика обновляется,
все другие реплики того же фрагмента данных также должны быть
обновлены в одной и той же транзакции. Логически это означает,
что существует лишь одна версия данных. В большинстве продуктов
синхронная репликация реализуется с помощью триггерных процедур
(возможно, скрытых и управляемых системой). Но синхронная
репликация имеет тот недостаток, что она создаёт дополнительную
нагрузку при выполнении всех транзакций, в которых обновляются
какие-либо реплики (кроме того, могут возникать проблемы, связанные
с доступностью данных).

В случае асинхронной репликации обновление одной реплики
распространяется на другие спустя некоторое время, а не в той же
транзакции. Таким образом, при асинхронной репликации вводится
задержка, или время ожидания, в течение которого отдельные реплики
могут быть фактически неидентичными (то есть определение реплика
оказывается не совсем подходящим, поскольку мы не имеем дело
с точными и своевременно созданными копиями). В большинстве

42

4.1. Введение

продуктов асинхронная репликация реализуется посредством чтения
журнала транзакций или постоянной очереди тех обновлений, которые
подлежат распространению. Преимущество асинхронной репликации
состоит в том, что дополнительные издержки репликации не связаны с
транзакциями обновлений, которые могут иметь важное значение для
функционирования всего предприятия и предъявлять высокие требования
к производительности. К недостаткам этой схемы относится то, что
данные могут оказаться несовместимыми (то есть несовместимыми с
точки зрения пользователя). Иными словами, избыточность может
проявляться на логическом уровне, а это, строго говоря, означает, что
термин контролируемая избыточность в таком случае не применим.

Рассмотрим кратко проблему согласованности (или, скорее,
несогласованности). Дело в том, что реплики могут становиться
несовместимыми в результате ситуаций, которые трудно (или даже
невозможно) избежать и последствия которых трудно исправить. В
частности, конфликты могут возникать по поводу того, в каком порядке
должны применяться обновления. Например, предположим, что в
результате выполнения транзакции А происходит вставка строки в
реплику X, после чего транзакция B удаляет эту строку, а также
допустим, что Y — реплика X. Если обновления распространяются
на Y, но вводятся в реплику Y в обратном порядке (например, из-за
разных задержек при передаче), то транзакция B не находит в Y
строку, подлежащую удалению, и не выполняет своё действие, после чего
транзакция А вставляет эту строку. Суммарный эффект состоит в том,
что реплика Y содержит указанную строку, а реплика X — нет.

В целом задачи устранения конфликтных ситуаций и обеспечения
согласованности реплик являются весьма сложными. Следует отметить,
что, по крайней мере, в сообществе пользователей коммерческих баз
данных термин репликация стал означать преимущественно (или даже
исключительно) асинхронную репликацию.

Основное различие между репликацией и управлением копированием
заключается в следующем: Если используется репликация, то обновление
одной реплики в конечном счёте распространяется на все остальные
автоматически. В режиме управления копированием, напротив, не
существует такого автоматического распространения обновлений. Копии
данных создаются и управляются с помощью пакетного или фонового
процесса, который отделён во времени от транзакций обновления.
Управление копированием в общем более эффективно по сравнению
с репликацией, поскольку за один раз могут копироваться большие
объёмы данных. К недостаткам можно отнести то, что большую
часть времени копии данных не идентичны базовым данным, поэтому
пользователи должны учитывать, когда именно были синхронизированы
эти данные. Обычно управление копированием упрощается благодаря
тому требованию, чтобы обновления применялись в соответствии со

43

4.2. Streaming Replication (Потоковая репликация)

схемой первичной копии того или иного вида.
Для репликации PostgreSQL существует несколько решений, как

закрытых, так и свободных. Закрытые системы репликации не будут
рассматриваться в этой книге (ну, сами понимаете). Вот список свободных
решений:

∙ Slony-I — асинхронная Master-Slave репликация, поддерживает
каскады(cascading) и отказоустойчивость(failover). Slony-I
использует триггеры PostgreSQL для привязки к событиям INSERT/
DELETE/UPDATE и хранимые процедуры для выполнения
действий.

∙ PGCluster — синхронная Multi-Master репликация. Проект на мой
взгляд мертв, поскольку уже год не обновлялся.

∙ pgpool-I/II — это замечательный инструмент для PostgreSQL (лучше
сразу работать с II версией). Позволяет делать:

– репликацию (в том числе, с автоматическим переключением на
резервный stand-by сервер);

– online-бэкап;
– pooling коннектов;
– очередь соединений;
– балансировку SELECT-запросов на несколько

postgresql-серверов;
– разбиение запросов для параллельного выполнения над

большими объемами данных.

∙ Bucardo — асинхронная репликация, которая поддерживает
Multi-Master и Master-Slave режимы, а также несколько видов
синхронизации и обработки конфликтов.

∙ Londiste — асинхронная Master-Slave репликация. Входит в состав
Skytools1. Проще в использовании, чем Slony-I.

∙ Mammoth Replicator — асинхронная Multi-Master репликация.
∙ Postgres-R — асинхронная Multi-Master репликация.
∙ RubyRep — написанная на Ruby, асинхронная Multi-Master

репликация, которая поддерживает PostgreSQL и MySQL.

Это, конечно, не весь список свободных систем для репликации, но я
думаю даже из этого есть что выбрать для PostgreSQL.

4.2 Streaming Replication (Потоковая репликация)

Введение
Потоковая репликация (Streaming Replication, SR) дает возможность

непрерывно отправлять и применять wall xlog записи на резервные
1http://pgfoundry.org/projects/skytools/

44

http://www.slony.info/
http://pgfoundry.org/projects/pgcluster/
http://pgpool.projects.postgresql.org/
http://bucardo.org/
http://skytools.projects.postgresql.org/doc/londiste.ref.html
http://www.commandprompt.com/products/mammothreplicator/
http://www.postgres-r.org/
http://www.rubyrep.org/

4.2. Streaming Replication (Потоковая репликация)

сервера для создания точной копии текущего. Данная функциональность
появилась у PostgreSQL начиная с 9 версии (репликация из коробки!).
Этот тип репликации простой, надежный и, вероятней всего, будет
использоваться в качестве стандартной репликации в большинстве
высоконагруженых приложений, что используют PostgreSQL.

Отличительными особенностями решения являются:

∙ репликация всего инстанса PostgreSQL
∙ асинхронный механизм репликации
∙ простота установки
∙ мастер база данных может обслуживать огромное количество

слейвов из-за минимальной нагрузки

К недостаткам можно отнести:

∙ невозможность реплицировать только определенную базу данных из
всех на PostgreSQL инстансе

∙ асинхронный механизм — слейв отстает от мастера (но в отличие от
других методов репликации, это отставание очень короткое, и может
составлять всего лишь одну транзакцию, в зависимости от скорости
сети, нагружености БД и настроек «Hot Standby»)

Установка
Для начала нам потребуется PostgreSQL не ниже 9 версии. В момент

написания этой главы была доступна 9.0.1 версия. Все работы, как
пологается, будут проводится на ОС Linux.

Настройка
Для начала обозначим мастер сервер как masterdb(192.168.0.10) и слейв

как slavedb(192.168.0.20).

Предварительная настройка

Для начала позволим определенному пользователю без пароля ходить
по ssh. Пусть это будет postgres юзер. Если же нет, то создаем набором
команд:

Код 4.1 Создаем пользователя userssh

Line 1 $sudo groupadd use r s sh
- $sudo useradd -m -g use r s sh -d /home/ use r s sh - s / bin /bash \
- - c " user ssh a l low " use r s sh

Дальше выполняем команды от имени пользователя (в данном случае
postgres):

45

4.2. Streaming Replication (Потоковая репликация)

Код 4.2 Логинимся под пользователем postgres

Line 1 su po s tg r e s

Генерим RSA-ключ для обеспечения аутентификации в условиях
отсутствия возможности использовать пароль:

Код 4.3 Генерим RSA-ключ

Line 1 pos tg r e s@ lo ca lho s t ~ $ ssh - keygen - t r sa -P ""
- Generating pub l i c / p r i va t e r sa key pa i r .
- Enter f i l e in which to save the key

(/ var / l i b / po s t g r e s q l / . ssh / id_rsa) :
- Created d i r e c t o r y ’ /var / l i b / po s t g r e s q l / . ssh ’ .
5 Your i d e n t i f i c a t i o n has been saved in

/var / l i b / po s t g r e s q l / . ssh / id_rsa .
- Your pub l i c key has been saved in

/var / l i b / po s t g r e s q l / . ssh / id_rsa . pub .
- The key f i n g e r p r i n t i s :
- 1 6 : 0 8 : 2 7 : 9 7 : 2 1 : 3 9 : b5 : 7 b : 8 6 : e1 : 4 6 : 9 7 : bf : 1 2 : 3 d :76

po s tg r e s@ lo ca lho s t

И добавляем его в список авторизованных ключей:

Код 4.4 Добавляем его в список авторизованных ключей

Line 1 cat $HOME/ . ssh / id_rsa . pub >> $HOME/ . ssh / authorized_keys

Этого должно быть более чем достаточно, проверить
работоспособность соединения можно просто написав:

Код 4.5 Пробуем зайти на ssh без пароля

Line 1 ssh l o c a l h o s t

Не забываем предварительно инициализировать sshd:

Код 4.6 Запуск sshd

Line 1 / e tc / i n i t . d/ sshd s t a r t

После успешно проделаной операции скопируйте «$HOME/.ssh» на
slavedb. Теперь мы должны иметь возможность без пароля заходить с
мастера на слейв и со слейва на мастер через ssh.

Также отредактируем pg_hba.conf на мастере и слейве, разрешив им
друг к другу доступ без пароля(trust) (тут добавляется роль replication):

Код 4.7 Мастер pg_hba.conf

Line 1 host r e p l i c a t i o n a l l 192 . 168 . 0 . 20/32 t r u s t

Код 4.8 Слейв pg_hba.conf

Line 1 host r e p l i c a t i o n a l l 192 . 168 . 0 . 10/32 t r u s t

Не забываем после этого перегрузить postgresql на обоих серверах.

46

4.2. Streaming Replication (Потоковая репликация)

Настройка мастера

Для начала настроим masterdb. Установим параметры в postgresql.conf
для репликации:

Код 4.9 Настройка мастера

Line 1 # To enable read - only qu e r i e s on a standby se rver ,
wal_leve l must be s e t to

- # "hot_standby" . But you can choose " a r ch ive " i f you never
connect to the

- # se rv e r in standby mode .
- wal_leve l = hot_standby
5
- # Set the maximum number o f concurrent connect ions from the

standby s e r v e r s .
- max_wal_senders = 5
-
- # To prevent the primary s e r v e r from removing the WAL

segments r equ i r ed f o r
10 # the standby s e r v e r be f o r e sh ipp ing them , s e t the minimum

number o f segments
- # re ta in ed in the pg_xlog d i r e c t o r y . At l e a s t

wal_keep_segments should be
- # la r g e r than the number o f segments generated between the

beg inning o f
- # onl ine - backup and the s ta r tup o f streaming r e p l i c a t i o n .

I f you enable WAL
- # arch iv ing to an arch ive d i r e c t o r y a c c e s s i b l e from the

standby , t h i s may
15 # not be nece s sa ry .

- wal_keep_segments = 32
-
- # Enable WAL arch iv ing on the primary to an arch ive

d i r e c t o r y a c c e s s i b l e from
- # the standby . I f wal_keep_segments i s a high enough number

to r e t a i n the WAL
20 # segments r equ i r ed f o r the standby se rver , t h i s may not be

nece s sa ry .
- archive_mode = on
- archive_command = ’ cp %p /path_to/ arch ive/%f ’

Давайте по порядку:

∙ «wal_level = hot_standby» — сервер начнет писать в WAL логи так
же как и при режиме «archive», добавляя информацию, необходимую
для востановления транзакции (можно также поставить «archive», но
тогда сервер не может быть слейвом при необходимости).

∙ «max_wal_senders = 5» — максимальное количество слейвов.

47

4.2. Streaming Replication (Потоковая репликация)

∙ «wal_keep_segments = 32» — минимальное количество файлов c
WAL сегментами в pg_xlog директории.

∙ «archive_mode = on» — позволяем сохранять WAL сегменты в
указаное переменной «archive_command» хранилище. В данном
случае в директорию «/path_to/archive/».

По-умолчанию репликация асинхронная. В версии 9.1 добавили
параметр «synchronous_standby_names», который включает синхронную
репликацию. В данные параметр передается «application_name», который
используется на слейвах в recovery.conf:

Код 4.10 recovery.conf для синхронной репликации на слейве

Line 1 restore_command = ’ cp /tmp/%f %p ’ # e . g . ’ cp
/mnt/ s e r v e r / a r ch i v ed i r/%f %p ’

- standby_mode = on
- primary_conninfo = ’ host=l o c a l h o s t port=59121

user=r e p l i c a t i o n password=r e p l i c a t i o n
application_name=newc lus te r ’ # e . g .
’ host=l o c a l h o s t port=5432 ’

- t r i g g e r _ f i l e = ’ /tmp/ tr ig_f_newcluster ’

После изменения параметров перегружаем PostgreSQL сервер. Теперь
перейдем к slavedb.

Настройка слейва

Для начала нам потребуется создать на slavedb точную копию
masterdb. Перенесем данные с помощью «Онлайн бекапа».

Для начала зайдем на masterdb сервер. Выполним в консоли:

Код 4.11 Выполняем на мастере

Line 1 psq l - c "SELECT pg_start_backup (’ l abe l ’ , t rue) "

Теперь нам нужно перенести данные с мастера на слейв. Выполняем
на мастере:

Код 4.12 Выполняем на мастере

Line 1 rsync -C -a - - d e l e t e - e ssh - - exc lude po s t g r e s q l . conf
- - exc lude postmaster . pid \

- - - exc lude postmaster . opts - - exc lude pg_log - - exc lude
pg_xlog \

- - - exc lude recovery . conf master_db_datadir/
slavedb_host : slave_db_datadir /

где

∙ «master_db_datadir» — директория с postgresql данными на
masterdb

48

4.2. Streaming Replication (Потоковая репликация)

∙ «slave_db_datadir» — директория с postgresql данными на slavedb
∙ «slavedb_host» — хост slavedb(в нашем случае - 192.168.1.20)

После копирования данных с мастера на слейв, остановим онлайн
бекап. Выполняем на мастере:

Код 4.13 Выполняем на мастере

Line 1 psq l - c "SELECT pg_stop_backup () "

Устанавливаем такие же данные в конфиге postgresql.conf, что и у
мастера (чтобы при падении мастера слейв мог его заменить). Так же
установим допольнительный параметр:

Код 4.14 Конфиг слейва

Line 1 hot_standby = on

Внимание! Если на мастере поставили «wal_level = archive», тогда
параметр оставляем по умолчанию (hot_standby = off).

Далее на slavedb в директории с данными PostgreSQL создадим файл
recovery.conf с таким содержимым:

Код 4.15 Конфиг recovery.conf

Line 1 # S p e c i f i e s whether to s t a r t the s e r v e r as a standby . In
streaming r e p l i c a t i o n ,

- # th i s parameter must to be s e t to on .
- standby_mode = ’ on ’
-
5 # S p e c i f i e s a connect ion s t r i n g which i s used f o r the

standby s e r v e r to connect
- # with the primary .
- primary_conninfo = ’ host =192 .168 .0 .10 port=5432

user=pos tg r e s ’
-
- # S p e c i f i e s a t r i g g e r f i l e whose presence should cause

streaming r e p l i c a t i o n to
10 # end (i . e . , f a i l o v e r) .

- t r i g g e r _ f i l e = ’ /path_to/ t r i g g e r ’
-
- # S p e c i f i e s a command to load arch ive segments from the WAL

arch ive . I f
- # wal_keep_segments i s a high enough number to r e t a i n the

WAL segments
15 # requ i r ed f o r the standby server , t h i s may not be

nece s sa ry . But
- # a l a r g e workload can cause segments to be r e cy c l ed be f o r e

the standby
- # i s f u l l y synchronized , r e qu i r i n g you to s t a r t again from

a new base backup .

49

4.2. Streaming Replication (Потоковая репликация)

- restore_command = ’ scp masterdb_host : / path_to/ arch ive/%f
"%p" ’

где

∙ «standby_mode=’on’» — указываем серверу работать в режиме слейв
∙ «primary_conninfo» — настройки соединения слейва с мастером
∙ «trigger_file» — указываем триггер-файл, при наличии которого

будет остановлена репликация.
∙ «restore_command» — команда, которой будет востанавливатся WAL

логи. В нашем случае через scp копируем с masterdb (masterdb_host
- хост masterdb).

Теперь мы можем запустить PostgreSQL на slavedb.

Тестирование репликации

Теперь мы можем посмотреть отставание слейвов от мастера с
помощью таких команд:

Код 4.16 Тестирование репликации

Line 1 $ psq l - c "SELECT pg_current_xlog_location () "
- h192 . 1 6 8 . 0 . 1 0 (masterdb)

- pg_current_xlog_location
- -
- 0/2000000
5 (1 row)
-
- $ psq l - c " s e l e c t pg_last_xlog_rece ive_locat ion () "

- h192 . 1 6 8 . 0 . 2 0 (s lavedb)
- pg_last_xlog_rece ive_locat ion
- -

10 0/2000000
- (1 row)
-
- $ psq l - c " s e l e c t pg_last_xlog_replay_locat ion () "

- h192 . 1 6 8 . 0 . 2 0 (s lavedb)
- pg_last_xlog_replay_locat ion

15 -
- 0/2000000
- (1 row)

Начиная с версии 9.1 добавили дополнительные view для просмотра
состояния репликации. Теперь master знает все состояния slaves:

Код 4.17 Состояние слейвов

Line 1 # SELECT * from pg_stat_rep l i cat ion ;

50

4.2. Streaming Replication (Потоковая репликация)

- procpid | u s e sy s i d | usename | application_name |
c l i ent_addr | c l ient_hostname | c l i en t_por t |
backend_start | s t a t e | s ent_locat ion |
wr i t e_loca t i on | f l u sh_ lo ca t i on | r ep lay_locat i on |
sync_pr io r i ty | sync_state

-
- - - - - - - - -+ - - - - - - - - - -+ - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - -+ -+ - - - - - - - - - - -+ - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - - -+ - - - - - - - - - - - -

- 17135 | 16671 | r e p l i c a t i o n | newc lus te r |
1 2 7 . 0 . 0 . 1 | | 43745 | 2011 -05 -22
18 :13 :04 .19283+02 | streaming | 1/30008750 |
1/30008750 | 1/30008750 | 1/30008750 |

1 | sync

Также с версии 9.1 добавили view pg_stat_database_conflicts, с
помощью которой на слейв базах можно просмотреть сколько запросов
было отменено и по каким причинам:

Код 4.18 Состояние слейва

Line 1 # SELECT * from pg_stat_database_conf l i cts ;
- dat id | datname | con f l_tab l e space | con f l_ lock |

conf l_snapshot | c on f l_bu f f e rp in | conf l_deadlock
-

- - - - - - -+ - - - - - - - - - - -+ - - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - -+ - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - - - -
- 1 | template1 | 0 | 0 |

0 | 0 | 0
5 11979 | template0 | 0 | 0 |

0 | 0 | 0
- 11987 | po s t g r e s | 0 | 0 |

0 | 0 | 0
- 16384 | marc | 0 | 0 |

1 | 0 | 0

Еще проверить работу репликации можно с помощью утилиты ps:

Код 4.19 Тестирование репликации

Line 1 [masterdb] $ ps - e f | grep sender
- pos tg r e s 6879 6831 0 10 :31 ? 00 : 00 : 00 po s tg r e s :

wal sender p roce s s po s tg r e s 1 27 . 0 . 0 . 1 (4 4663) streaming
0/2000000

-
- [s lavedb] $ ps - e f | grep r e c e i v e r
5 pos tg r e s 6878 6872 1 10 :31 ? 00 : 00 : 01 po s tg r e s :

wal r e c e i v e r p roce s s streaming 0/2000000

Теперь проверим реприкацию. Выполним на мастере:

Код 4.20 Выполняем на мастере

Line 1 $psq l test_db

51

4.2. Streaming Replication (Потоковая репликация)

- test_db=# cr ea t e t ab l e t e s t 3 (id i n t not nu l l primary
key , name varchar (20)) ;

- NOTICE: CREATE TABLE / PRIMARY KEY w i l l c r e a t e imp l i c i t
index " test3_pkey" f o r t ab l e " t e s t 3 "

- CREATE TABLE
5 test_db=# i n s e r t i n to t e s t 3 (id , name) va lues (’ 1 ’ , ’ t e s t 1 ’) ;
- INSERT 0 1
- test_db=#

Теперь проверим на слейве:

Код 4.21 Выполняем на слейве

Line 1 $psq l test_db
- test_db=# s e l e c t * from t e s t 3 ;
- id | name
- - - - -+ - - - - - - -
5 1 | t e s t 1
- (1 row)

Как видим, таблица с данными успешно скопирована с мастера на
слейв.

Общие задачи
Переключение на слейв при падении мастера

Достаточно создать триггер-файл (trigger_file) на слейве, который
становится мастером.

Остановка репликации на слейве

Создать триггер-файл (trigger_file) на слейве. Также с версии 9.1
добавили команды pg_xlog_replay_pause() и pg_xlog_replay_resume()
для остановки и возобновления репликации.

Перезапуск репликации после сбоя

Повторяем операции из раздела «Настройка слейва». Хочется
заметить, что мастер при этом не нуждается в остановке при выполнении
данной задачи.

Перезапуск репликации после сбоя слейва

Перезагрузить PostgreSQL на слейве после устранения сбоя.

52

4.3. Slony-I

Повторно синхронизировать репликации на слейве

Это может потребоватся, например, после длительного отключения от
мастера. Для этого останавливаем PostgreSQL на слейве и повторяем
операции из раздела «Настройка слейва».

4.3 Slony-I

Введение
Slony это система репликации реального времени, позволяющая

организовать синхронизацию нескольких серверов PostgreSQL по сети.
Slony использует триггеры Postgre для привязки к событиям INSERT/
DELETE/UPDATE и хранимые процедуры для выполнения действий.

Система Slony с точки зрения администратора состоит из двух главных
компонент, репликационного демона slony и административной консоли
slonik. Администрирование системы сводится к общению со slonik-ом,
демон slon только следит за собственно процессом репликации. А админ
следит за тем, чтобы slon висел там, где ему положено.

О slonik-e

Все команды slonik принимает на свой stdin. До начала
выполнения скрипт slonik-a проверяется на соответствие синтаксису, если
обнаруживаются ошибки, скрипт не выполняется, так что можно не
волноваться если slonik сообщает о syntax error, ничего страшного не
произошло. И он ещё ничего не сделал. Скорее всего.

Установка
Установка на Ubuntu производится простой командой:

Код 4.22 Установка

Line 1 sudo apt i tude i n s t a l l s lony1 - bin

Настройка
Рассмотрим теперь установку на гипотетическую базу данных

customers (названия узлов, кластеров и таблиц являются
вымышленными).

Наши данные

∙ БД: customers
∙ master_host: customers_master.com
∙ slave_host_1: customers_slave.com
∙ cluster name (нужно придумать): customers_rep

53

4.3. Slony-I

Подготовка master-сервера

Для начала нам нужно создать пользователя Postgres, под которым
будет действовать Slony. По умолчанию, и отдавая должное системе, этого
пользователя обычно называют slony.

Код 4.23 Подготовка master-сервера

Line 1 pgsql@customers_master$ c r e a t eu s e r - a -d s lony
- pgsql@customers_master$ psq l -d template1 - c " a l t e r \
- user s lony with password ’ slony_user_password ’ ; "

Также на каждом из узлов лучше завести системного пользователя
slony, чтобы запускать от его имени репликационного демона slon. В
дальнейшем подразумевается, что он (и пользователь и slon) есть на
каждом из узлов кластера.

Подготовка одного slave-сервера

Здесь я рассматриваю, что серверы кластера соединены посредством
сети Internet (как в моём случае), необходимо чтобы с каждого из
ведомых серверов можно было установить соединение с PostgreSQL на
мастер-хосте, и наоборот. То есть, команда:

Код 4.24 Подготовка одного slave-сервера

Line 1 anyuser@customers_slave$ psq l -d customers \
- -h customers_master . com -U s lony

должна подключать нас к мастер-серверу (после ввода пароля,
желательно). Если что-то не так, возможно требуется поковыряться в
настройках firewall-a, или файле pg_hba.conf, который лежит в $PGDATA.

Теперь устанавливаем на slave-хост сервер PostgreSQL. Следующего
обычно не требуется, сразу после установки Postgres «up and ready», но
в случае каких-то ошибок можно начать «с чистого листа», выполнив
следующие команды (предварительно сохранив конфигурационные
файлы и остановив postmaster):

Код 4.25 Подготовка одного slave-сервера

Line 1 pgsql@customers_slave$ rm - r f $PGDATA
- pgsql@customers_slave$ mkdir $PGDATA
- pgsql@customers_slave$ i n i t db -E UTF8 -D $PGDATA
- pgsql@customers_slave$ c r e a t eu s e r - a -d s lony
5 pgsql@customers_slave$ psq l -d template1 - c " a l t e r \
- user s lony with password ’ slony_user_password ’ ; "

Запускаем postmaster.
Внимание! Обычно требуется определённый владелец для

реплицируемой БД. В этом случае необходимо завести его тоже!

54

4.3. Slony-I

Код 4.26 Подготовка одного slave-сервера

Line 1 pgsql@customers_slave$ c r e a t eu s e r - a -d customers_owner
- pgsql@customers_slave$ psq l -d template1 - c " a l t e r \
- user customers_owner with password

’ customers_owner_password ’ ; "

Эти две команды можно запускать с customers_master, к командной
строке в этом случае нужно добавить «-h customers_slave», чтобы все
операции выполнялись на slave.

На slave, как и на master, также нужно установить Slony.

Инициализация БД и plpgsql на slave

Следующие команды выполняются от пользователя slony. Скорее
всего для выполнения каждой из них потребуется ввести пароль
(slony_user_password). Итак:

Код 4.27 Инициализация БД и plpgsql на slave

Line 1 slony@customers_master$ createdb -O customers_owner \
- -h customers_slave . com customers
- slony@customers_master$ c r e a t e l ang -d customers \
- -h customers_slave . com p lpg sq l

Внимание! Все таблицы, которые будут добавлены в replication set
должны иметь primary key. Если какая-то из таблиц не удовлетворяет
этому условию, задержитесь на этом шаге и дайте каждой таблице primary
key командой ALTER TABLE ADD PRIMARY KEY.

Если столбца который мог бы стать primary key не находится, добавьте
новый столбец типа serial (ALTER TABLE ADD COLUMN), и заполните
его значениями. Настоятельно НЕ рекомендую использовать «table add
key» slonik-a.

Продолжаем. Создаём таблицы и всё остальное на slave:

Код 4.28 Инициализация БД и plpgsql на slave

Line 1 slony@customers_master$ pg_dump - s customers | \
- psq l -U s lony -h customers_slave . com customers

pg_dump -s сдампит только структуру нашей БД.
pg_dump -s customers должен пускать без пароля, а вот для psql

-U slony -h customers_slave.com customers придётся набрать пароль
(slony_user_pass). Важно: я подразумеваю что сейчас на мастер-хосте
ещё не установлен Slony (речь не про make install), то есть в БД нет таблиц
sl_*, триггеров и прочего. Если есть, то возможно два варианта:

∙ добавляется узел в уже функционирующую систему репликации
(читайте раздел 5)

∙ это ошибка :-) Тогда до переноса структуры на slave выполните
следующее:

55

4.3. Slony-I

Код 4.29 Инициализация БД и plpgsql на slave

Line 1 s l o n i k <<EOF
- c l u s t e r name = customers_slave ;
- node Y admin conn in fo = ’dbname=customers

host=customers_master . com
- port=5432 user=s lony password=slony_user_pass ’ ;
5 un i n s t a l l node (id = Y) ;
- echo ’ okay ’ ;
- EOF

Y — число. Любое. Важно: если это действительно ошибка, cluster
name может иметь какой-то другое значение, например T1 (default).
Нужно его выяснить и сделать uninstall.

Если структура уже перенесена (и это действительно ошибка),
сделайте uninstall с обоих узлов (с master и slave).

Инициализация кластера

Если Сейчас мы имеем два сервера PgSQL которые свободно «видят»
друг друга по сети, на одном из них находится мастер-база с данными, на
другом — только структура.

На мастер-хосте запускаем такой скрипт:

Код 4.30 Инициализация кластера

Line 1 #!/bin / sh
-
- CLUSTER=customers_rep
-
5 DBNAME1=customers
- DBNAME2=customers
-
- HOST1=customers_master . com
- HOST2=customers_slave . com

10
- PORT1=5432
- PORT2=5432
-
- SLONY_USER=slony

15
- s l o n i k <<EOF
- c l u s t e r name = $CLUSTER;
- node 1 admin conn in fo = ’dbname=$DBNAME1 host=$HOST1

port=$PORT1
- user=s lony password=slony_user_password ’ ;

20 node 2 admin conn in fo = ’dbname=$DBNAME2 host=$HOST2
- port=$PORT2 user=s lony password=slony_user_password ’ ;

56

4.3. Slony-I

- i n i t c l u s t e r (id = 1 , comment = ’ Customers DB
- r e p l i c a t i o n c l u s t e r ’) ;
-

25 echo ’ Create s e t ’ ;
-
- c r e a t e s e t (id = 1 , o r i g i n = 1 , comment = ’ Customers
- DB r e p l i c a t i o n s e t ’) ;
-

30 echo ’Adding t ab l e s to the sub s c r i p t i on s e t ’ ;
-
- echo ’ Adding tab l e pub l i c . customers_sa les . . . ’ ;
- s e t add tab l e (s e t id = 1 , o r i g i n = 1 , id = 4 , f u l l

q u a l i f i e d
- name = ’ pub l i c . customers_sa les ’ , comment = ’ Table

pub l i c . customers_sa les ’) ;
35 echo ’ done ’ ;

-
- echo ’ Adding tab l e pub l i c . customers_something . . . ’ ;
- s e t add tab l e (s e t id = 1 , o r i g i n = 1 , id = 5 , f u l l

q u a l i f i e d
- name = ’ pub l i c . customers_something ,

40 comment = ’ Table pub l i c . customers_something) ;
- echo ’ done ’ ;
-
- echo ’ done adding ’ ;
- s t o r e node (id = 2 , comment = ’Node 2 , $HOST2 ’) ;

45 echo ’ s to r ed node ’ ;
- s t o r e path (s e r v e r = 1 , c l i e n t = 2 , conn in fo =

’dbname=$DBNAME1 host=$HOST1
- port=$PORT1 user=s lony password=slony_user_password ’) ;
- echo ’ s to r ed path ’ ;
- s t o r e path (s e r v e r = 2 , c l i e n t = 1 , conn in fo =

’dbname=$DBNAME2 host=$HOST2
50 port=$PORT2 user=s lony password=slony_user_password ’) ;

-
- s t o r e l i s t e n (o r i g i n = 1 , prov ide r = 1 , r e c e i v e r = 2) ;
- s t o r e l i s t e n (o r i g i n = 2 , prov ide r = 2 , r e c e i v e r = 1) ;
- EOF

Здесь мы инициализируем кластер, создаём репликационный набор,
включаем в него две таблицы. Важно: нужно перечислить все таблицы,
которые нужно реплицировать, id таблицы в наборе должен быть
уникальным, таблицы должны иметь primary key.

Важно: replication set запоминается раз и навсегда. Чтобы добавить
узел в схему репликации не нужно заново инициализировать set.

Важно: если в набор добавляется или удаляется таблица нужно
переподписать все узлы. То есть сделать unsubscribe и subscribe заново.

57

4.3. Slony-I

Подписываем slave-узел на replication set

Скрипт:

Код 4.31 Подписываем slave-узел на replication set

Line 1 #!/bin / sh
-
- CLUSTER=customers_rep
-
5 DBNAME1=customers
- DBNAME2=customers
-
- HOST1=customers_master . com
- HOST2=customers_slave . com

10
- PORT1=5432
- PORT2=5432
-
- SLONY_USER=slony

15
- s l o n i k <<EOF
- c l u s t e r name = $CLUSTER;
- node 1 admin conn in fo = ’dbname=$DBNAME1 host=$HOST1
- port=$PORT1 user=s lony password=slony_user_password ’ ;

20 node 2 admin conn in fo = ’dbname=$DBNAME2 host=$HOST2
- port=$PORT2 user=s lony password=slony_user_password ’ ;
-
- echo ’ sub s c r i b i ng ’ ;
- sub s c r i b e s e t (id = 1 , prov ide r = 1 , r e c e i v e r = 2 , forward

= no) ;
25

- EOF

Старт репликации

Теперь, на обоих узлах необходимо запустить демона репликации.

Код 4.32 Старт репликации

Line 1 slony@customers_master$ s l on customers_rep \
- "dbname=customers user=s lony "

и

Код 4.33 Старт репликации

Line 1 s lony@customers_slave$ s l on customers_rep \
- "dbname=customers user=s lony "

58

4.3. Slony-I

Сейчас слоны обменяются сообщениями и начнут передачу данных.
Начальное наполнение происходит с помощью COPY, slave DB на это
время полностью блокируется.

В среднем время актуализации данных на slave-системе составляет до
10-ти секунд. slon успешно обходит проблемы со связью и подключением
к БД, и вообще требует к себе достаточно мало внимания.

Общие задачи
Добавление ещё одного узла в работающую схему репликации

Выполнить 4.3.1 и выполнить 4.3.2.
Новый узел имеет id = 3. Находится на хосте customers_slave3.com,

«видит» мастер-сервер по сети и мастер может подключиться к его PgSQL.
после дублирования структуры (п 4.3.2) делаем следующее:

Код 4.34 Общие задачи

Line 1 s l o n i k <<EOF
- c l u s t e r name = customers_slave ;
- node 3 admin conn in fo = ’dbname=customers

host=customers_slave3 . com
- port=5432 user=s lony password=slony_user_pass ’ ;
5 un i n s t a l l node (id = 3) ;
- echo ’ okay ’ ;
- EOF

Это нужно чтобы удалить схему, триггеры и процедуры, которые были
сдублированы вместе с таблицами и структурой БД.

Инициализировать кластер не надо. Вместо этого записываем
информацию о новом узле в сети:

Код 4.35 Общие задачи

Line 1 #!/bin / sh
-
- CLUSTER=customers_rep
-
5 DBNAME1=customers
- DBNAME3=customers
-
- HOST1=customers_master . com
- HOST3=customers_slave3 . com

10
- PORT1=5432
- PORT2=5432
-
- SLONY_USER=slony

15

59

4.3. Slony-I

- s l o n i k <<EOF
- c l u s t e r name = $CLUSTER;
- node 1 admin conn in fo = ’dbname=$DBNAME1 host=$HOST1
- port=$PORT1 user=s lony password=slony_user_pass ’ ;

20 node 3 admin conn in fo = ’dbname=$DBNAME3
- host=$HOST3 port=$PORT2 user=s lony

password=slony_user_pass ’ ;
-
- echo ’ done adding ’ ;
-

25 s t o r e node (id = 3 , comment = ’Node 3 , $HOST3 ’) ;
- echo ’ sored node ’ ;
- s t o r e path (s e r v e r = 1 , c l i e n t = 3 , conn in fo =

’dbname=$DBNAME1
- host=$HOST1 port=$PORT1 user=s lony

password=slony_user_pass ’) ;
- echo ’ s to r ed path ’ ;

30 s t o r e path (s e r v e r = 3 , c l i e n t = 1 , conn in fo =
’dbname=$DBNAME3

- host=$HOST3 port=$PORT2 user=s lony
password=slony_user_pass ’) ;

-
- echo ’ again ’ ;
- s t o r e l i s t e n (o r i g i n = 1 , prov ide r = 1 , r e c e i v e r = 3) ;

35 s t o r e l i s t e n (o r i g i n = 3 , prov ide r = 3 , r e c e i v e r = 1) ;
-
- EOF

Новый узел имеет id 3, потому что 2 уже есть и работает. Подписываем
новый узел 3 на replication set:

Код 4.36 Общие задачи

Line 1 #!/bin / sh
-
- CLUSTER=customers_rep
-
5 DBNAME1=customers
- DBNAME3=customers
-
- HOST1=customers_master . com
- HOST3=customers_slave3 . com

10
- PORT1=5432
- PORT2=5432
-
- SLONY_USER=slony

15
- s l o n i k <<EOF

60

4.3. Slony-I

- c l u s t e r name = $CLUSTER;
- node 1 admin conn in fo = ’dbname=$DBNAME1 host=$HOST1
- port=$PORT1 user=s lony password=slony_user_pass ’ ;

20 node 3 admin conn in fo = ’dbname=$DBNAME3 host=$HOST3
- port=$PORT2 user=s lony password=slony_user_pass ’ ;
-
- echo ’ sub s c r i b i ng ’ ;
- sub s c r i b e s e t (id = 1 , prov ide r = 1 , r e c e i v e r = 3 , forward

= no) ;
25

- EOF

Теперь запускаем slon на новом узле, так же как и на остальных.
Перезапускать slon на мастере не надо.

Код 4.37 Общие задачи

Line 1 s lony@customers_slave3$ s l on customers_rep \
- "dbname=customers user=s lony "

Репликация должна начаться как обычно.

Устранение неисправностей
Ошибка при добавлении узла в систему репликации

Периодически, при добавлении новой машины в кластер возникает
следующая ошибка: на новой ноде всё начинает жужжать и работать,
имеющиеся же отваливаются с примерно следующей диагностикой:

Код 4.38 Устранение неисправностей

Line 1 %slon customers_rep "dbname=customers user=slony_user "
- CONFIG main : s l on ve r s i on 1 . 0 . 5 s t a r t i n g up
- CONFIG main : l o c a l node id = 3
- CONFIG main : l oad ing cur r ent c l u s t e r c on f i gu r a t i on
5 CONFIG storeNode : no_id=1 no_comment=’CustomersDB
- r e p l i c a t i o n c l u s t e r ’
- CONFIG storeNode : no_id=2 no_comment=’Node 2 ,
- node2 . example . com ’
- CONFIG storeNode : no_id=4 no_comment=’Node 4 ,

10 node4 . example . com ’
- CONFIG storePath : pa_server=1 pa_cl ient=3
- pa_conninfo="dbname=customers
- host=mainhost . com port=5432 user=slony_user
- password=slony_user_pass " pa_connretry=10

15 CONFIG s t o r eL i s t e n : l i_ o r i g i n=1 l i_ r e c e i v e r=3
- l i_prov ide r=1
- CONFIG s t o r eS e t : set_id=1 se t_or i g in=1
- set_comment=’CustomersDB r e p l i c a t i o n s e t ’

61

4.3. Slony-I

- WARN remoteWorker_wakeup : node 1 - no worker thread
20 CONFIG s to r eSubs c r i b e : sub_set=1 sub_provider=1

sub_forward=’ f ’
- WARN remoteWorker_wakeup : node 1 - no worker thread
- CONFIG enab l eSubsc r ip t i on : sub_set=1
- WARN remoteWorker_wakeup : node 1 - no worker thread
- CONFIG main : c on f i gu r a t i on complete - s t a r t i n g threads

25 CONFIG enableNode : no_id=1
- CONFIG enableNode : no_id=2
- CONFIG enableNode : no_id=4
- ERROR remoteWorkerThread_1 : " begin t r an sa c t i on ; s e t
- t r an sa c t i on i s o l a t i o n l e v e l

30 s e r i a l i z a b l e ; l o ck tab l e "_customers_rep" . s l_conf ig_lock ;
s e l e c t

- "_customers_rep" . enab l eSubsc r ip t i on (1 , 1 , 4) ;
- no t i f y "_customers_rep_Event" ; n o t i f y

"_customers_rep_Confirm" ;
- i n s e r t i n to "_customers_rep" . s l_event (ev_origin , ev_seqno ,
- ev_timestamp , ev_minxid , ev_maxxid , ev_xip ,

35 ev_type , ev_data1 , ev_data2 , ev_data3 , ev_data4) va lue s
- (’ 1 ’ , ’ 219440 ’ ,
- ’2005 -05 -05 18 : 52 : 4 2 . 7 08351 ’ , ’52501283 ’ , ’52501292 ’ ,
- ’ ’ ’ 52501283 ’ ’ ’ , ’ENABLE_SUBSCRIPTION’ ,
- ’ 1 ’ , ’ 1 ’ , ’ 4 ’ , ’ f ’) ; i n s e r t i n to "_customers_rep" .

40 s l_conf i rm (con_origin , con_received ,
- con_seqno , con_timestamp) va lue s (1 , 3 , ’219440 ’ ,
- CURRENT_TIMESTAMP) ; commit t r an sa c t i on ; "
- PGRES_FATAL_ERROR ERROR: i n s e r t or update on tab l e
- " s l_subsc r ibe " v i o l a t e s f o r e i g n key

45 c on s t r a i n t " s l_subscr ibe - sl_path - r e f "
- DETAIL: Key (sub_provider , sub_rece iver) =(1 ,4)
- i s not pre sent in t ab l e " sl_path" .
- INFO remoteListenThread_1 : d i s connec t ing from
- ’ dbname=customers host=mainhost . com

50 port=5432 user=slony_user password=slony_user_pass ’
- %

Это означает что в служебной таблице _<имя кластера>.sl_path;,
например _customers_rep.sl_path на уже имеющихся узлах отсутствует
информация о новом узле. В данном случае, id нового узла 4, пара (1,4)
в sl_path отсутствует.

Видимо, это баг Slony. Как избежать этого и последующих ручных
вмешательств пока не ясно.

Чтобы это устранить, нужно выполнить на каждом из имеющихся
узлов приблизительно следующий запрос (добавить путь, в данном случае
(1,4)):

Код 4.39 Устранение неисправностей

62

4.3. Slony-I

Line 1 slony_user@masterhost$ psq l -d customers -h
_every_one_of_slaves -U s lony

- customers=# i n s e r t i n to _customers_rep . sl_path
- va lue s (’ 1 ’ , ’ 4 ’ , ’ dbname=customers host=mainhost . com
- port=5432 user=slony_user

password=slony_user_password , ’ 10 ’) ;

Если возникают затруднения, да и вообще для расширения кругозора
можно посмотреть на служебные таблицы и их содержимое. Они не
видны обычно и находятся в рамках пространства имён _<имя кластера>,
например _customers_rep.

Что делать если репликация со временем начинает тормозить

В процессе эксплуатации наблюдаю как со временем растёт нагрузка
на master-сервере, в списке активных бекендов — постоянные SELECT-ы
со слейвов. В pg_stat_activity видим примерно такие запросы:

Код 4.40 Устранение неисправностей

Line 1 s e l e c t ev_origin , ev_seqno , ev_timestamp , ev_minxid ,
ev_maxxid , ev_xip ,

- ev_type , ev_data1 , ev_data2 , ev_data3 , ev_data4 , ev_data5 ,
ev_data6 ,

- ev_data7 , ev_data8 from "_customers_rep" . s l_event e where
- (e . ev_or ig in = ’ 2 ’ and e . ev_seqno > ’ 336996 ’) or
5 (e . ev_or ig in = ’ 3 ’ and e . ev_seqno > ’ 1712871 ’) or
- (e . ev_or ig in = ’ 4 ’ and e . ev_seqno > ’ 721285 ’) or
- (e . ev_or ig in = ’ 5 ’ and e . ev_seqno > ’ 807715 ’) or
- (e . ev_or ig in = ’ 1 ’ and e . ev_seqno > ’ 3544763 ’) or
- (e . ev_or ig in = ’ 6 ’ and e . ev_seqno > ’ 2529445 ’) or

10 (e . ev_or ig in = ’ 7 ’ and e . ev_seqno > ’ 2512532 ’) or
- (e . ev_or ig in = ’ 8 ’ and e . ev_seqno > ’ 2500418 ’) or
- (e . ev_or ig in = ’ 10 ’ and e . ev_seqno > ’ 1692318 ’)
- order by e . ev_origin , e . ev_seqno ;

Не забываем что _customers_rep — имя схемы из примера, у вас будет
другое имя.

Таблица sl_event почему-то разрастается со временем, замедляя
выполнение этих запросов до неприемлемого времени. Удаляем ненужные
записи:

Код 4.41 Устранение неисправностей

Line 1 de l e t e from _customers_rep . s l_event where
- ev_timestamp<NOW() - ’ 1 DAY’ : : i n t e r v a l ;

Производительность должна вернуться к изначальным значениям.
Возможно имеет смысл почистить таблицы _customers_rep.sl_log_*
где вместо звёздочки подставляются натуральные числа, по-видимому

63

4.4. Londiste

по количеству репликационных сетов, так что _customers_rep.sl_log_1
точно должна существовать.

4.4 Londiste

Введение
Londiste представляет собой движок для организации репликации,

написанный на языке python. Основные принципы: надежность
и простота использования. Из-за этого данное решение имеет
меньше функциональности, чем Slony-I. Londiste использует в качестве
транспортного механизма очередь PgQ (описание этого более чем
интересного проекта остается за рамками данной главы, поскольку он
представляет интерес скорее для низкоуровневых программистов баз
данных, чем для конечных пользователей — администраторов СУБД
PostgreSQL). Отличительными особенностями решения являются:

∙ возможность потабличной репликации
∙ начальное копирование ничего не блокирует
∙ возможность двухстороннего сравнения таблиц
∙ простота установки

К недостаткам можно отнести:

∙ отсутствие поддержки каскадной репликации,
отказоустойчивости(failover) и переключение между серверами
(switchover) (все это обещают к 3 версии реализовать)

Установка
На серверах, которые мы настраиваем расматривается ОС Linux, а

именно Ubuntu Server. Автор данной книги считает, что под другие
операционные системы (кроме Windows) все мало чем будет отличаться,
а держать кластера PostgreSQL под ОС Windows, по меньшей мере,
неразумно.

Поскольку Londiste — это часть Skytools, то нам нужно ставить этот
пакет. На таких системах, как Debian или Ubuntu skytools можно найти в
репозитории пакетов и поставить одной командой:

Код 4.42 Установка

Line 1 sudo apt i tude i n s t a l l s ky t oo l s

Но все же лучше скачать самую последнюю версию пакета с
официального сайта. На момент написания статьи последняя версия была
2.1.11. Итак, начнем:

64

http://skytools.projects.postgresql.org/skytools-3.0/doc/skytools3.html
http://pgfoundry.org/projects/skytools

4.4. Londiste

Код 4.43 Установка

Line 1 $wget
http :// pgfoundry . org / f r s /download . php/2561/ skytoo l s - 2 . 1 . 1 1 . ta r . gz

- $tar zxvf skytoo l s - 2 . 1 . 1 1 . ta r . gz
- $cd skytoo l s - 2 . 1 . 1 1 /
- # это для сборки deb пакета
5 $sudo apt i tude i n s t a l l bui ld - e s s e n t i a l autoconf \
- automake autotoo l s - dev dh -make \
- debhe lper d ev s c r i p t s f ake roo t x u t i l s l i n t i a n pbu i lde r \
- python - dev yada
- # ставим пакет исходников для po s t g r e s q l 8 . 4 . x

10 $sudo apt i tude i n s t a l l po s tg r e sq l - s e rve r - dev - 8 . 4
- # python - psycopg нужен для работы Londiste
- $sudo apt i tude i n s t a l l python - psycopg2
- # данной командой я собираю deb пакет для
- # pos t g r e s q l 8 . 4 . x для(8 . 3 . x например будет "make deb83")

15 $sudo make deb84
- $cd . . /
- # ставим sky too l s
- $dpkg - i skytoo l s - modules - 8 . 4_2 . 1 . 1 1 _i386 . deb
- skytools_2 . 1 . 1 1 _i386 . deb

Для других систем можно собрать Skytools командами

Код 4.44 Установка

Line 1 . / c on f i gu r e
- make
- make i n s t a l l

Дальше проверим, что все у нас правильно установилось

Код 4.45 Установка

Line 1 $ l o nd i s t e . py -V
- Skytoo l s v e r s i on 2 . 1 . 1 1
- $pgqadm . py -V
- Skytoo l s v e r s i on 2 . 1 . 1 1

Если у Вас похожий вывод, значит все установленно правильно и
можно приступать к настройке.

Настройка
Обозначения:

∙ host1 — мастер;
∙ host2 — слейв;

65

4.4. Londiste

Настройка ticker-а

Londiste требуется ticker для работы с мастер базой данных, который
может быть запущен и на другой машине. Но, конечно, лучше его
запускать на той же, где и мастер база данных. Для этого мы
настраиваем специальный конфиг для ticker-а (пусть конфиг будет у нас
/etc/skytools/db1-ticker.ini):

Код 4.46 Настройка ticker-а

Line 1 [pgqadm]
- # название
- job_name = db1 - t i c k e r
-
5 # мастер база данных
- db = dbname=P host=host1
-
- # Задержка между запусками обслуживания
- # ротация(очередей и тп . .) в секундах

10 maint_delay = 600
-
- # Задержка между проверками наличия активности
- # новых(пакетов данных) в секундах
- loop_delay = 0 .1

15
- # log и pid демона
- l o g f i l e = /var / log /%(job_name) s . l og
- p i d f i l e = /var /pid/%(job_name) s . pid

Теперь необходимо инсталлировать служебный код (SQL) и запустить
ticker как демона для базы данных. Делается это с помощью утилиты
pgqadm.py следующими командами:

Код 4.47 Настройка ticker-а

Line 1 pgqadm . py / e tc / sky t oo l s /db1 - t i c k e r . i n i i n s t a l l
- pgqadm . py / e tc / sky t oo l s /db1 - t i c k e r . i n i t i c k e r -d

Проверим, что в логах (/var/log/skytools/db1-tickers.log) всё
нормально. На данном этапе там должны быть редкие записи (раз
в минуту).

Если нам потребуется остановить ticker, мы можем воспользоватся этой
командой:

Код 4.48 Настройка ticker-а

Line 1 pgqadm . py / e tc / sky t oo l s /db1 - t i c k e r . i n i t i c k e r - s

или если потребуется «убить» ticker:

Код 4.49 Настройка ticker-а

Line 1 pgqadm . py / e tc / sky t oo l s /db1 - t i c k e r . i n i t i c k e r -k

66

4.4. Londiste

Востанавливаем схему базы

Londiste не умеет переносить изменения структуры базы данных.
Поэтому на всех slave базах данных перед репликацией должна быть
создана такая же структура БД, что и на мастере.

Создаём конфигурацию репликатора

Для каждой из реплицируемых баз создадим конфигурационные
файлы (пусть конфиг будет у нас /etc/skytools/db1-londiste.ini):

Код 4.50 Создаём конфигурацию репликатора

Line 1 [l o n d i s t e]
- # название
- job_name = db1 - l o nd i s t e
-
5 # мастер база данных
- provider_db = dbname=db1 port=5432 host=host1
- # слейв база данных
- subscr iber_db = dbname=db1 host=host2
-

10 # Это будет использоваться в качестве
- # SQLидентификатора - , тч . . не используйте
- # точки и пробелы .
- # ВАЖНО! Если есть живая репликация на другой слейв ,
- # именуем очередь также -

15 pgq_queue_name = db1 - l ond i s t e - queue
-
- # log и pid демона
- l o g f i l e = /var / log /%(job_name) s . l og
- p i d f i l e = /var /run/%(job_name) s . pid

20
- # рзмер лога
- l og_s i z e = 5242880
- log_count = 3

Устанавливаем Londiste в базы на мастере и слейве

Теперь необходимо установить служебный SQL для каждой из
созданных в предыдущем пункте конфигураций.

Устанавливаем код на стороне мастера:

Код 4.51 Londiste

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i p rov ide r i n s t a l l

и подобным образом на стороне слейва:

67

4.4. Londiste

Код 4.52 Londiste

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i s ub s c r i b e r
i n s t a l l

После этого пункта на мастере будут созданы очереди для репликации.

Запускаем процессы Londiste

Для каждой реплицируемой базы делаем:

Код 4.53 Запускаем

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i r ep lay -d

Таким образом запустятся слушатели очередей репликации, но, т.к. мы
ещё не указывали какие таблицы хотим реплицировать, они пока будут
работать в холостую.

Убедимся что в логах нет ошибок (/var/log/db1-londistes.log).

Добавляем реплицируемые таблицы

Для каждой конфигурации указываем что будем реплицировать с
мастера:

Код 4.54 Добавляем реплицируемые таблицы

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i p rov ide r add
- - a l l

и что со слейва:

Код 4.55 Добавляем реплицируемые таблицы

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i s ub s c r i b e r add
- - a l l

В данном примере я использую спец-параметр «–all», который означает
все таблицы, но вместо него вы можете перечислить список конкретных
таблиц, если не хотите реплицировать все.

Добавляем реплицируемые последовательности (sequence)

Так же для всех конфигураций. Для мастера:

Код 4.56 Добавляем последовательности

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i p rov ide r add - seq
- - a l l

Для слейва:

Код 4.57 Добавляем реплицируемые таблицы

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i s ub s c r i b e r
add - seq - - a l l

68

4.4. Londiste

Точно также как и с таблицами можно указать конкретные
последовательности вместо «–all».

Проверка

Итак, всё что надо сделано. Теперь Londiste запустит так
называемый bulk copy процесс, который массово (с помощью COPY)
зальёт присутствующие на момент добавления таблиц данные на слейв,
а затем перейдёт в состояние обычной репликации.

Мониторим логи на предмет ошибок:

Код 4.58 Проверка

Line 1 l e s s / var / log /db1 - l o nd i s t e . l og

Если всё хорошо, смотрим состояние репликации. Данные уже
синхронизированы для тех таблиц, где статус отображается как "ok".

Код 4.59 Проверка

Line 1 l o n d i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i s ub s c r i b e r t ab l e s
-
- Table State
- pub l i c . t ab l e1 ok
5 pub l i c . t ab l e2 ok
- pub l i c . t ab l e3 in - copy
- pub l i c . t ab l e4 -
- pub l i c . t ab l e5 -
- pub l i c . t ab l e6 -

10 . . .

Для удобства представляю следующий трюк с уведомление в почту об
окончании первоначального копирования (мыло поменять на своё):

Код 4.60 Проверка

Line 1 (
- whi le [$ (
- python l o nd i s t e . py / e tc / sky t oo l s /db1 - l o nd i s t e . i n i

s ub s c r i b e r t ab l e s |
- t a i l -n+2 | awk ’ { p r i n t $2} ’ | grep -v ok | wc - l) - ne 0] ;
5 do s l e ep 60 ; done ; echo ’ ’ | mail - s ’ Rep l i c a t i on done EOM’

user@domain . com
-) &

Общие задачи
Добавление всех таблиц мастера слейву

Просто используя эту команду:

69

4.4. Londiste

Код 4.61 Добавление всех таблиц мастера слейву

Line 1 l o n d i s t e . py <in i > prov ide r t ab l e s | xargs l o nd i s t e . py <in i >
sub s c r i b e r add

Проверка состояния слейвов

Этот запрос на мастере дает некоторую информацию о каждой очереди
и слейве.

Код 4.62 Проверка состояния слейвов

Line 1 SELECT queue_name , consumer_name , lag , la s t_seen
- FROM pgq . get_consumer_info () ;

«lag» столбец показывает отставание от мастера в синхронизации,
«last_seen» — время последней запроса от слейва. Значение этого столбца
не должно быть больше, чем 60 секунд для конфигурации по умолчанию.

Удаление очереди всех событий из мастера

При работе с Londiste может потребоватся удалить все ваши настройки
для того, чтобы начать все заново. Для PGQ, чтобы остановить
накопление данных, используйте следующие API:

Код 4.63 Удаление очереди всех событий из мастера

Line 1 SELECT pgq . unregister_consumer (’ queue_name ’ ,
’ consumer_name ’) ;

Или воспользуйтесь pgqadm.py:

Код 4.64 Удаление очереди всех событий из мастера

Line 1 pgqadm . py <t i c k e r . i n i > un r e g i s t e r queue_name consumer_name

Добавление столбца в таблицу

Добавляем в следующей последовательности:

1. добавить поле на все слейвы
2. BEGIN; – на мастере
3. добавить поле на мастере
4. SELECT londiste.provider_refresh_trigger(’queue_name’,

’tablename’);
5. COMMIT;

70

4.4. Londiste

Удаление столбца из таблицу

1. BEGIN; – на мастере
2. удалить поле на мастере
3. SELECT londiste.provider_refresh_trigger(’queue_name’,

’tablename’);
4. COMMIT;
5. Проверить «lag», когда londiste пройдет момент удаления поля
6. удалить поле на всех слейвах

Хитрость тут в том, чтобы удалить поле на слейвах только тогда, когда
больше нет событий в очереди на это поле.

Устранение неисправностей
Londiste пожирает процессор и lag растет

Это происходит, например, если во время сбоя админ забыл
перезапустить ticker. Или когда вы сделали большой UPDATE или
DELETE в одной транзакции, но теперь что бы реализовать каждое
собитие в этом запросе создаются транзакции на слейвах . . .

Следующий запрос позволяет подсчитать, сколько событий пришло в
pgq.subscription в колонках sub_last_tick и sub_next_tick.

Код 4.65 Устранение неисправностей

Line 1 SELECT count (*)
- FROM pgq . event_1 ,
- (SELECT tick_snapshot
- FROM pgq . t i c k
5 WHERE tick_id BETWEEN 5715138 AND 5715139
-) as t (snapshots)
- WHERE txid_vis ib le_in_snapshot (ev_txid , snapshots) ;

В нашем случае, это было более чем 5 миллионов и 400 тысяч событий.
Многовато. Чем больше событий с базы данных требуется обработать
Londiste, тем больше ему требуется памяти для этого. Мы можем
сообщить Londiste не загружать все события сразу. Достаточно добавить
в INI конфиг ticker-а следующую настройку:

Код 4.66 Устранение неисправностей

Line 1 pgq_lazy_fetch = 500

Теперь Londiste будет брать максимум 500 событий в один пакет
запросов. Остальные попадут в следующие пакеты запросов.

71

4.5. Bucardo

4.5 Bucardo

Введение
Bucardo — асинхронная master-master или master-slave репликация

PostgreSQL, которая написана на Perl. Система очень гибкая,
поддерживает несколько видов синхронизации и обработки конфликтов.

Установка
Установку будем проводить на Ubuntu Server. Сначала нам нужно

установить DBIx::Safe Perl модуль.

Код 4.67 Установка

Line 1 sudo apt i tude i n s t a l l l i bdb ix - sa f e - p e r l

Для других систем можно поставить из исходников1:

Код 4.68 Установка

Line 1 ta r xvfz DBIx - Safe - 1 . 2 . 5 . t a r . gz
- cd DBIx - Safe - 1 . 2 . 5
- pe r l Make f i l e .PL
- make && make t e s t && sudo make i n s t a l l

Теперь ставим сам Bucardo. Скачиваем2 его и инсталируем:

Код 4.69 Установка

Line 1 ta r xvfz Bucardo - 4 . 4 . 0 . t a r . gz
- cd Bucardo - 4 . 4 . 0
- pe r l Make f i l e .PL
- make
5 sudo make i n s t a l l

Для работы Bucardo потребуется установить поддержку pl/perlu языка
PostgreSQL.

Код 4.70 Установка

Line 1 sudo apt i tude i n s t a l l po s tg r e sq l - p lp e r l - 8 . 4

Можем приступать к настройке.

Настройка
Инициализация Bucardo

Запускаем установку командой:
1http://search.cpan.org/CPAN/authors/id/T/TU/TURNSTEP/
2http://bucardo.org/wiki/Bucardo#Obtaining_Bucardo

72

4.5. Bucardo

Код 4.71 Инициализация Bucardo

Line 1 bucardo_ctl i n s t a l l

Bucardo покажет настройки подключения к PostgreSQL, которые
можно будет изменить:

Код 4.72 Инициализация Bucardo

Line 1 This w i l l i n s t a l l the bucardo database in to an e x i s t i n g
Postgres c l u s t e r .

- Postgres must have been compiled with Per l support ,
- and you must connect as a superuse r
-
5 We w i l l c r e a t e a new superuse r named ’ bucardo ’ ,
- and make i t the owner o f a new database named ’ bucardo ’
-
- Current connect ion s e t t i n g s :
- 1 . Host : <none>

10 2 . Port : 5432
- 3 . User : po s t g r e s
- 4 . Database : po s t g r e s
- 5 . PID d i r e c t o r y : / var /run/bucardo

Когда вы измените требуемые настройки и подтвердите установку,
Bucardo создаст пользователя bucardo и базу данных bucardo. Данный
пользователь должен иметь право логинится через Unix socket, поэтому
лучше заранее дать ему такие права в pg_hda.conf.

Настройка баз данных

Теперь нам нужно настроить базы данных, с которыми будет работать
Bucardo. Пусть у нас будет master_db и slave_db. Сначала настроим
мастер:

Код 4.73 Настройка баз данных

Line 1 bucardo_ctl add db master_db name=master
- bucardo_ctl add a l l t ab l e s herd=a l l_ tab l e s
- bucardo_ctl add a l l sequences herd=a l l_ tab l e s

Первой командой мы указали базу данных и дали ей имя master (для
того, что в реальной жизни master_db и slave_db имеют одинаковое
название и их нужно Bucardo отличать). Второй и третей командой мы
указали реплицыровать все таблицы и последовательности, обьеденив их
в групу all_tables.

Дальше добавляем slave_db:

Код 4.74 Настройка баз данных

Line 1 bucardo_ctl add db slave_db name=r e p l i c a port=6543
host=slave_host

73

4.5. Bucardo

Мы назвали replica базу данных в Bucardo.

Настройка синхронизации

Теперь нам нужно настроить синхронизацию между этими базами
данных. Делается это командой (master-slave):

Код 4.75 Настройка синхронизации

Line 1 bucardo_ctl add sync de l t a type=pushde l ta source=a l l_ tab l e s
targetdb=r e p l i c a

Данной командой мы установим Bucardo тригеры в PostgreSQL. А
теперь по параметрам:

∙ type

Это тип синхронизации. Существует 3 типа:

– Fullcopy. Полное копирование.
– Pushdelta. Master-slave репликация.
– Swap. Master-master репликация. Для работы в таком

режиме потребуется указать как Bucardo должен решать
конфликты синхронизации. Для этого в таблице «goat»
(в которой находятся таблицы и последовательности) нужно
в «standard_conflict» поле поставить значение (это значение
может быть разным для разных таблиц и последовательностей):

* source — при конфликте мы копируем данные с source
(master_db в нашем случае).

* target — при конфликте мы копируем данные с target
(slave_db в нашем случае).

* skip — конфликт мы просто не реплицируем. Не
рекомендуется.

* random — каждая БД имеет одинаковый шанс, что её
изменение будет взято для решение конфликта.

* latest — запись, которая была последней изменена решает
конфликт.

* abort — синхронизация прерывается.

∙ source

Источник синхронизации.
∙ targetdb

БД, в которум производим репликацию.

Для master-master:

Код 4.76 Настройка синхронизации

Line 1 bucardo_ctl add sync de l t a type=swap source=a l l_ tab l e s
targetdb=r e p l i c a

74

4.6. RubyRep

Запуск/Остановка репликации

Запуск репликации:

Код 4.77 Запуск репликации

Line 1 bucardo_ctl s t a r t

Остановка репликации:

Код 4.78 Остановка репликации

Line 1 bucardo_ctl stop

Общие задачи
Просмотр значений конфигурации

Просто используя эту команду:

Код 4.79 Просмотр значений конфигурации

Line 1 bucardo_ctl show a l l

Изменения значений конфигурации

Код 4.80 Изменения значений конфигурациии

Line 1 bucardo_ctl s e t name=value

Например:

Код 4.81 Изменения значений конфигурации

Line 1 bucardo_ctl s e t s y s l o g_ f a c i l i t y=LOG_LOCAL3

Перегрузка конфигурации

Код 4.82 Перегрузка конфигурации

Line 1 bucardo_ctl r e load_con f ig

Более полный список команд — bucardo.org/wiki/Bucardo_ctl

4.6 RubyRep

Введение
RubyRep представляет собой движок для организации асинхронной

репликации, написанный на языке ruby. Основные принципы: простота
использования и не зависить от БД. Поддерживает как master-master,
так и master-slave репликацию, может работать с PostgreSQL и MySQL.
Отличительными особенностями решения являются:

75

http://bucardo.org/wiki/Bucardo_ctl

4.6. RubyRep

∙ возможность двухстороннего сравнения и синхронизации баз данных
∙ простота установки

К недостаткам можно отнести:

∙ работа только с двумя базами данных для MySQL
∙ медленная работа синхронизации
∙ при больших обьемах данных «ест» процессор и память

Установка
RubyRep поддерживает два типа установки: через стандартный Ruby

или JRuby. Рекомендую ставить JRuby вариант — производительность
будет выше.

Установка JRuby версии
Предварительно должна быть установлена Java (версия 1.6).

1. Загрузите последнюю версию JRuby rubyrep c Rubyforge.
2. Распакуйте
3. Готово

Установка стандартной Ruby версии

1. Установить Ruby, Rubygems.
2. Установить драйвера базы данных.

Для Mysql:

Код 4.83 Установка

Line 1 sudo gem i n s t a l l mysql

Для PostgreSQL:

Код 4.84 Установка

Line 1 sudo gem i n s t a l l po s t g r e s

3. Устанавливаем rubyrep:

Код 4.85 Установка

Line 1 sudo gem i n s t a l l rubyrep

Настройка
Создание файла конфигурации

Выполним команду:

Код 4.86 Настройка

Line 1 rubyrep generate myrubyrep . conf

76

4.6. RubyRep

Команда generate создала пример конфигурации в файл
myrubyrep.conf:

Код 4.87 Настройка

Line 1 RR: : I n i t i a l i z e r : : run do | c on f i g |
- c on f i g . l e f t = {
- : adapter => ’ po s t g r e s q l ’ , # or ’ mysql ’
- : database => ’SCOTT’ ,
5 : username => ’ s c o t t ’ ,
- : password => ’ t i g e r ’ ,
- : host => ’ 1 7 2 . 1 6 . 1 . 1 ’
- }
-

10 c on f i g . r i g h t = {
- : adapter => ’ po s t g r e s q l ’ ,
- : database => ’SCOTT’ ,
- : username => ’ s c o t t ’ ,
- : password => ’ t i g e r ’ ,

15 : host => ’ 1 7 2 . 1 6 . 1 . 2 ’
- }
-
- c on f i g . i nc lude_tab l e s ’ dept ’
- c on f i g . i nc lude_tab l e s /^e/ # regexp matches a l l t a b l e s

s t a r t i n g with e
20 # con f i g . inc lude_tab l e s / ./ # regexp matches a l l t a b l e s

- end

В настройках просто разобраться. Базы данных делятся на «left»
и «right». Через config.include_tables мы указываем какие таблицы
включать в репликацию (поддерживает RegEx).

Сканирование баз данных

Сканирование баз данных для поиска различий:

Код 4.88 Сканирование баз данных

Line 1 rubyrep scan - c myrubyrep . conf

Пример вывода:

Код 4.89 Сканирование баз данных

Line 1 dept 100% . 0
- emp 100% . 1

Таблица dept полностью синхронизирована, а emp — имеет одну не
синхронизированую запись.

77

4.6. RubyRep

Синхронизация баз данных

Выполним команду:

Код 4.90 Синхронизация баз данных

Line 1 rubyrep sync - c myrubyrep . conf

Также можно указать только какие таблицы в базах данных
синхронизировать:

Код 4.91 Синхронизация баз данных

Line 1 rubyrep sync - c myrubyrep . conf dept /^e/

Настройки политики синхронизации позволяют указывать как решать
конфликты синхронизации. Более подробно можно почитать в
документации.

Репликация

Для запуска репликации достаточно выполнить:

Код 4.92 Репликация

Line 1 rubyrep r e p l i c a t e - c myrubyrep . conf

Данная команда установить репликацию (если она не была
установлена) на базы данных и запустит её. Чтобы остановить
репликацию, достаточно просто убить процесс. Даже если репликация
остановлена, все изменения будут обработаны триггерами rubyrep. После
перезагрузки, все изменения будут автоматически восстановлены.

Для удаления репликации достаточно выполнить:

Код 4.93 Репликация

Line 1 rubyrep un i n s t a l l - c myrubyrep . conf

Устранение неисправностей
Ошибка при запуске репликации

При запуске rubyrep через Ruby может возникнуть подобная ошибка:

Код 4.94 Устранение неисправностей

Line 1 $rubyrep r e p l i c a t e - c myrubyrep . conf
- Ver i f y ing RubyRep t ab l e s
- Checking f o r and removing rubyrep t r i g g e r s from

unconf igured t ab l e s
- Ver i f y ing rubyrep t r i g g e r s o f con f i gu r ed t ab l e s
5 Sta r t i ng r e p l i c a t i o n
- Exception caught : Thread#j o i n : deadlock 0xb76ee1ac - mutual

j o i n (0 xb758cfac)

78

http://www.rubyrep.org/configuration.html

4.7. Заключение

Это проблема с запусками потоков в Ruby. Решается двумя способами:

1. Запускать rubyrep через JRuby (тут с потоками не будет проблем)
2. Пофиксить rubyrep патчем:

Код 4.95 Устранение неисправностей

Line 1 - - -
/ Library /Ruby/Gems/1 .8/ gems/ rubyrep - 1 . 1 . 2 / l i b / rubyrep/

- r ep l i ca t i on_runner . rb 2010 -07 -16 15 :17 :16 .000000000
-0400

- +++ ./ rep l i ca t i on_runner . rb 2010 -07 -16
17 :38 :03 .000000000 -0400

- @@ -2 ,6 +2 ,12 @@
5
- r e qu i r e ’ optparse ’
- r e qu i r e ’ thread ’
- +requ i r e ’ monitor ’
- +

10 +c l a s s Monitor
- + a l i a s l ock mon_enter
- + a l i a s unlock mon_exit
- +end
-

15 module RR
- # This c l a s s implements the f u n c t i o n a l i t y o f the

’ r e p l i c a t e ’ command .
- @@ -94 ,7 +100 ,7 @@
- # I n i t i a l i z e s the wa i te r thread used f o r

r e p l i c a t i o n pauses
- # and proc e s s i ng

20 # the proce s s TERM s i g n a l .
- de f in i t_wa i t e r
- - @termination_mutex = Mutex . new
- + @termination_mutex = Monitor . new
- @termination_mutex . l o ck

25 @waiter_thread | |= Thread . new
{@termination_mutex . l o ck ;

- s e l f . terminat ion_requested = true }
- %w(TERM INT) . each do | s i g n a l |

4.7 Заключение
Репликация — одна из важнейших частей крупных приложений,

которые работают на PostgreSQL. Она помогает распределять нагрузку
на базу данных, делать фоновый бэкап одной из копий без нагрузки на
центральный сервер, создавать отдельный сервер для логирования и м.д.

79

4.7. Заключение

В главе было рассмотрено несколько видов репликации PostgreSQL.
Нельзя четко сказать какая лучше всех. Потоковая репликация — одна
из самых лучших вариантов для поддержки идентичных кластеров
баз данных, но доступна только с 9.0 версии PostgreSQL. Slony-I —
громоздкая и сложная в настройке система, но имеющая в своем
арсенале множество функций, таких как поддержка каскадной
репликации, отказоустойчивости (failover) и переключение между
серверами (switchover). В тоже время Londiste не обладает подобным
функционалом, но компактный и прост в установке. Bucardo — система
которая может быть или master-master, или master-slave репликацией, но
не может обработать огромные обьекты, нет отказоустойчивости(failover)
и переключение между серверами (switchover). RubyRep, как для
master-master репликации, очень просто в установке и настройке, но за
это ему приходится расплачиватся скоростью работы — самый медленный
из всех (синхронизация больших обьемов данных между таблицами).

80

5

Шардинг

Если ешь слона, не пытайся
запихать его в рот целиком.

Народная мудрость

5.1 Введение
Шардинг — разделение данных на уровне ресурсов. Концепция

шардинга заключается в логическом разделении данных по различным
ресурсам исходя из требований к нагрузке.

Рассмотрим пример. Пусть у нас есть приложение с регистрацией
пользователей, которое позволяет писать друг другу личные сообщения.
Допустим оно очень популярно и много людей им пользуются ежедневно.
Естественно, что таблица с личными сообщениями будет намного
больше всех остальных таблиц в базе (скажем, будет занимать 90%
всех ресурсов). Зная это, мы можем подготовить для этой (только
одной!) таблицы выделенный сервер помощнее, а остальные оставить
на другом (послабее). Теперь мы можем идеально подстроить сервер
для работы с одной специфической таблицей, постараться уместить ее
в память, возможно, дополнительно партиционировать ее и т.д. Такое
распределение называется вертикальным шардингом.

Что делать, если наша таблица с сообщениями стала настолько
большой, что даже выделенный сервер под нее одну уже не спасает.
Необходимо делать горизонтальный шардинг — т.е. разделение одной
таблицы по разным ресурсам. Как это выглядит на практике? Все просто.
На разных серверах у нас будет таблица с одинаковой структурой, но
разными данными. Для нашего случая с сообщениями, мы можем хранить
первые 10 миллионов сообщений на одном сервере, вторые 10 - на втором
и т.д. Т.е. необходимо иметь критерий шардинга — какой-то параметр,
который позволит определять, на каком именно сервере лежат те или иные
данные.

Обычно, в качестве параметра шардинга выбирают ID пользователя
(user_id) — это позволяет делить данные по серверам равномерно и

81

5.2. PL/Proxy

просто. Т.о. при получении личных сообщений пользователей алгоритм
работы будет такой:

∙ Определить, на каком сервере БД лежат сообщения пользователя
исходя из user_id

∙ Инициализировать соединение с этим сервером
∙ Выбрать сообщения

Задачу определения конкретного сервера можно решать двумя путями:

∙ Хранить в одном месте хеш-таблицу с соответствиями
«пользователь=сервер». Тогда, при определении сервера, нужно
будет выбрать сервер из этой таблицы. В этом случае узкое место —
это большая таблица соответсвия, которую нужно хранить в одном
месте. Для таких целей очень хорошо подходят базы данных
«ключ=значение»

∙ Определять имя сервера с помощью числового (буквенного)
преобразования. Например, можно вычислять номер сервера, как
остаток от деления на определенное число (количество серверов,
между которыми Вы делите таблицу). В этом случае узкое место —
это проблема добавления новых серверов — Вам придется делать
перераспределение данных между новым количеством серверов.

Для шардинга не существует решения на уровне известных платформ,
т.к. это весьма специфическая для отдельно взятого приложения задача.

Естественно, делая горизонтальный шардинг, Вы ограничиваете себя
в возможности выборок, которые требуют пересмотра всей таблицы
(например, последние посты в блогах людей будет достать невозможно,
если таблица постов шардится). Такие задачи придется решать другими
подходами. Например, для описанного примера, можно при появлении
нового поста, заносить его ID в общий стек, размером в 100 элементом.

Горизонтальный шардинг имеет одно явное преимущество — он
бесконечно масштабируем. Для создания шардинга PostgreSQL
существует несколько решений:

∙ Postgres-XC
∙ PL/Proxy
∙ HadoopDB (Shared-nothing clustering)
∙ Greenplum Database

5.2 PL/Proxy
PL/Proxy представляет собой прокси-язык для удаленного вызова

процедур и партицирования данных между разными базами. Основная
идея его использования заключается в том, что появляется возможность
вызывать функции, расположенные в удаленных базах, а также свободно

82

http://postgres-xc.sourceforge.net/
http://plproxy.projects.postgresql.org/doc/tutorial.html
http://db.cs.yale.edu/hadoopdb/hadoopdb.html
http://www.greenplum.com/products/greenplum-database

5.2. PL/Proxy

работать с кластером баз данных (например, вызвать функцию на
всех узлах кластера, или на случайном узле, или на каком-то одном
определенном).

Чем PL/Proxy может быть полезен? Он существенно упрощает
горизонтальное масштабирование системы. Становится удобным
разделять таблицу с пользователями, например, по первой латинской
букве имени — на 26 узлов. При этом приложение, которое работает
непосредственно с прокси-базой, ничего не будет замечать: запрос
на авторизацию, например, сам будет направлен прокси-сервером на
нужный узел. То есть администратор баз данных может проводить
масштабирование системы практически независимо от разработчиков
приложения.

PL/Proxy позволяет полностью решить проблемы масштабирования
OLTP систем. В систему легко вводится резервирование с failover-ом не
только по узлам, но и по самим прокси-серверам, каждый из которых
работает со всеми узлами.

Недостатки и ограничения:

∙ все запросы и вызовы функций вызываются в autocommit-режиме
на удаленных серверах

∙ в теле функции разрешен только один SELECT; при необходимости
нужно писать отдельную процедуру

∙ при каждом вызове прокси-сервер стартует новое соединение к
бакенд-серверу; в высоконагруженных системах целесообразно
использовать менеджер для кеширования соединений к
бакенд-серверам, для этой цели идеально подходит PgBouncer

∙ изменение конфигурации кластера (количества партиций, например)
требует перезапуска прокси-сервера

Установка
1. Скачать PL/Proxy1 и распаковать.
2. Собрать PL/Proxy командами make и make install.

Так же можно установить PL/Proxy из репозитория пакетов.
Например в Ubuntu Server достаточно выполнить команду для PostgreSQL
8.4:

Код 5.1 Установка

Line 1 sudo apt i tude i n s t a l l po s tg r e sq l - 8 . 4 - plproxy

1http://pgfoundry.org/projects/plproxy

83

5.2. PL/Proxy

Настройка
Для примера настройки используется 3 сервера PostgreSQL. 2 сервера

пусть будут node1 и node2, а главный, что будет проксировать запросы
на два других — proxy. Для корректной работы pl/proxy рекомендуется
использовать количество нод равное степеням двойки. База данных будет
называтся plproxytest, а таблица в ней — users. Начнем!

Для начала настроим node1 и node2. Команды написаные нижу нужно
выполнять на каждом ноде.

Создадим базу данных plproxytest(если её ещё нет):

Код 5.2 Настройка

Line 1 CREATE DATABASE p lp roxy t e s t
- WITH OWNER = pos tg r e s
- ENCODING = ’UTF8 ’ ;

Добавляем табличку users:

Код 5.3 Настройка

Line 1 CREATE TABLE pub l i c . u s e r s
- (
- username charac t e r vary ing (255) ,
- emai l cha rac t e r vary ing (255)
5)
- WITH (OIDS=FALSE) ;
- ALTER TABLE pub l i c . u s e r s OWNER TO pos tg r e s ;

Теперь создадим функцию для добавления данных в таблицу users:

Код 5.4 Настройка

Line 1 CREATE OR REPLACE FUNCTION pub l i c . i n s e r t_use r (i_username
text ,

- i_emai laddress t ex t)
- RETURNS in t e g e r AS
- $BODY$
5 INSERT INTO pub l i c . u s e r s (username , emai l) VALUES ($1 , $2) ;
- SELECT 1 ;
- $BODY$
- LANGUAGE ’ s q l ’ VOLATILE;
- ALTER FUNCTION pub l i c . i n s e r t_use r (text , t ex t) OWNER TO

pos tg r e s ;

С настройкой нодов закончено. Приступим к серверу proxy.
Как и на всех нодах, на главном сервере (proxy) должна

присутствовать база данных:

Код 5.5 Настройка

Line 1 CREATE DATABASE p lp roxy t e s t

84

5.2. PL/Proxy

- WITH OWNER = pos tg r e s
- ENCODING = ’UTF8 ’ ;

Теперь надо укзать серверу что эта база данных управляется с
помощью pl/proxy:

Код 5.6 Настройка

Line 1 CREATE OR REPLACE FUNCTION pub l i c . p lproxy_cal l_handler ()
- RETURNS language_handler AS
- ’ $ l i b d i r / plproxy ’ , ’ p lproxy_cal l_handler ’
- LANGUAGE ’ c ’ VOLATILE
5 COST 1 ;
- ALTER FUNCTION pub l i c . p lproxy_cal l_handler ()
- OWNER TO pos tg r e s ;
- - - language
- CREATE LANGUAGE plproxy HANDLER plproxy_cal l_handler ;

10 CREATE LANGUAGE p lpg sq l ;

Также, для того что бы сервер знал где и какие ноды него есть надо
создать 3 сервисные функции которые pl/proxy будет использовать в
своей работе. Первая функция — конфиг для кластера баз данных. Тут
указывается параметры через kay-value:

Код 5.7 Настройка

Line 1 CREATE OR REPLACE FUNCTION pub l i c . ge t_c lus te r_con f i g
- (IN cluster_name text , OUT "key" text , OUT val t ex t)
- RETURNS SETOF record AS
- $BODY$
5 BEGIN
- - - l e t s use same con f i g f o r a l l c l u s t e r s
- key := ’ connec t i on_l i f e t ime ’ ;
- va l := 30*60 ; - - 30m
- RETURN NEXT;

10 RETURN;
- END;
- $BODY$
- LANGUAGE ’ p lpg sq l ’ VOLATILE
- COST 100

15 ROWS 1000 ;
- ALTER FUNCTION pub l i c . ge t_c lus te r_con f i g (t ex t)
- OWNER TO pos tg r e s ;

Вторая важная функция код которой надо будет подправить. В ней
надо будет указать DSN нод:

Код 5.8 Настройка

Line 1 CREATE OR REPLACE FUNCTION
- pub l i c . g e t_c lu s t e r_par t i t i on s (cluster_name text)

85

5.2. PL/Proxy

- RETURNS SETOF text AS
- $BODY$
5 BEGIN
- IF cluster_name = ’ u s e r c l u s t e r ’ THEN
- RETURN NEXT ’dbname=p lp roxy t e s t host=node1

user=pos tg r e s ’ ;
- RETURN NEXT ’dbname=p lp roxy t e s t host=node2

user=pos tg r e s ’ ;
- RETURN;

10 END IF ;
- RAISE EXCEPTION ’Unknown c l u s t e r ’ ;
- END;
- $BODY$
- LANGUAGE ’ p lpg sq l ’ VOLATILE

15 COST 100
- ROWS 1000 ;
- ALTER FUNCTION pub l i c . g e t_c lu s t e r_par t i t i on s (t ex t)
- OWNER TO pos tg r e s ;

И последняя:

Код 5.9 Настройка

Line 1 CREATE OR REPLACE FUNCTION
- pub l i c . ge t_c lus te r_vers ion (cluster_name text)
- RETURNS in t e g e r AS
- $BODY$
5 BEGIN
- IF cluster_name = ’ u s e r c l u s t e r ’ THEN
- RETURN 1 ;
- END IF ;
- RAISE EXCEPTION ’Unknown c l u s t e r ’ ;

10 END;
- $BODY$
- LANGUAGE ’ p lpg sq l ’ VOLATILE
- COST 100 ;
- ALTER FUNCTION pub l i c . ge t_c lus te r_vers ion (t ex t)

15 OWNER TO pos tg r e s ;

Ну и собственно самая главная функция которая будет вызываться
уже непосредственно в приложении:

Код 5.10 Настройка

Line 1 CREATE OR REPLACE FUNCTION
- pub l i c . i n s e r t_use r (i_username text , i_emai laddress t ex t)
- RETURNS in t e g e r AS
- $BODY$
5 CLUSTER ’ u s e r c l u s t e r ’ ;
- RUN ON hashtext (i_username) ;

86

5.2. PL/Proxy

- $BODY$
- LANGUAGE ’ plproxy ’ VOLATILE
- COST 100 ;

10 ALTER FUNCTION pub l i c . i n s e r t_use r (text , t ex t)
- OWNER TO pos tg r e s ;

Все готово. Подключаемся к серверу proxy и заносим данные в базу:

Код 5.11 Настройка

Line 1 SELECT inse r t_use r (’ Sven ’ , ’ sven@somewhere . com ’) ;
- SELECT inse r t_use r (’Marko ’ , ’marko@somewhere . com ’) ;
- SELECT inse r t_use r (’ Steve ’ , ’ steve@somewhere . com ’) ;

Пробуем извлечь данные. Для этого напишем новую серверную
функцию:

Код 5.12 Настройка

Line 1 CREATE OR REPLACE FUNCTION
- pub l i c . get_user_email (i_username text)
- RETURNS SETOF text AS
- $BODY$
5 CLUSTER ’ u s e r c l u s t e r ’ ;
- RUN ON hashtext (i_username) ;
- SELECT emai l FROM pub l i c . u s e r s
- WHERE username = i_username ;
- $BODY$

10 LANGUAGE ’ plproxy ’ VOLATILE
- COST 100
- ROWS 1000 ;
- ALTER FUNCTION pub l i c . get_user_email (t ex t)
- OWNER TO pos tg r e s ;

И попробуем её вызвать:

Код 5.13 Настройка

Line 1 s e l e c t plproxy . get_user_email (’ Steve ’) ;

Если потом подключится к каждой ноде отдельно, то можно четко
увидеть, что данные users разбросаны по таблицам каждой ноды.

Все ли так просто?
Как видно на тестовом примере ничего сложного в работе с pl/proxy

нет. Но, я думаю все кто смог дочитать до этой строчки уже поняли
что в реальной жизни все не так просто. Представьте что у вас 16 нод.
Это же надо как-то синхронизировать код функций. А что если ошибка
закрадётся — как её оперативно исправлять?

Этот вопрос был задан и на конференции Highload++ 2008, на что
Аско Ойя ответил что соответствующие средства уже реализованы внутри

87

5.3. Postgres-XC

самого Skype, но ещё не достаточно готовы для того что бы отдавать их
на суд сообществу opensource.

Второй проблема которая не дай бог коснётся вас при разработке
такого рода системы, это проблема перераспределения данных в тот
момент когда нам захочется добавить ещё нод в кластер. Планировать
эту масштабную операцию прийдётся очень тщательно, подготовив все
сервера заранее, занеся данные и потом в один момент подменив код
функции get_cluster_partitions.

5.3 Postgres-XC
Postgres-XC – система для создания мульти-мастер кластеров,

работающих в синхронном режиме – все узлы всегда содержат
актуальные данные. Postgres-XC поддерживает опции для увеличения
масштабирования кластера как при преобладании операций записи, так
и при основной нагрузке на чтение данных: поддерживается выполнение
транзакций с распараллеливанием на несколько узлов, за целостностью
транзакций в пределах всего кластера отвечает специальный узел GTM
(Global Transaction Manager).

Измерение производительности показало, что КПД кластера
Postgres-XC составляет примерно 64%, т.е. кластер из 10 серверов
позволяет добиться увеличения производильности системы в целом
в 6.4 раза, относительно производительности одного сервера (цифры
приблизительные).

Система не использует в своей работе триггеры и представляет
собой набор дополнений и патчей к PostgreSQL, дающих возможность
в прозрачном режиме обеспечить работу в кластере стандартных
приложений, без их дополнительной модификации и адаптации
(полная совместимость с PostgreSQL API). Кластер состоит из одного
управляющего узла (GTM), предоставляющего информацию о состоянии
транзакций, и произвольного набора рабочих узлов, каждый из которых
в свою очередь состоит из координатора и обработчика данных (обычно
эти элементы реализуются на одном сервере, но могут быть и разделены).

Хоть Postgres-XC и выглядит похожим на MultiMaster, но он им
не является. Все сервера кластера должны быть соединены сетью
с минимальными задержками, никакое географически-распределенное
решение с разумной производительностью построить на нем не возможно
(это важный момент).

Архитектера
Рис. 5.1 показывает архитектуру Postgres-XC с тремя её основными

компонентами:

88

5.3. Postgres-XC

Рис. 5.1: Архитектура Postgres-XC

1. Глобальный менеджер транзакций (GTM) — собирает и
обрабатывает информацию о транзакциях в Postgres-XC, решает
вопросы глобального идентификатора транзакции по операциям
(для поддержания согласованного представления базы данных
на всех узлах). Он обеспечивает поддержку других глобальных
данных, таких как последовательности и временные метки. Он
хранит данные пользователя, за исключением управляющей
информации.

2. Координаторы (coordinators) — обеспечивают точку подключения
для клиента (приложения). Они несут ответственность за разбор
и выполнение запросов от клиентов и возвращение результатов
(при необходимости). Они не хранят пользовательские данные,
а собирать их из обработчиков данных (datanodes) с помощью
запросов SQL через PostgreSQL интерфейс. Координаторы
также обрабатывать данные, если требуется, и даже управляют
двухфазной фиксацией. Координаторы используются также для
разбора запросов, составления планов запросов, поиска данных и
т.д.

3. Обработчик данных (datanodes) — обеспечивают сохранения

89

5.3. Postgres-XC

пользовательских данных. Datanodes выполняют запросы от
координаторов и возвращают им полученый результат.

Установка
Установить Postgres-XC можно из исходников или же из пакетов

системы. Например в Ubuntu 12.10 можно установить postgres-xc так:

Код 5.14 Установка Postgres-XC

Line 1 sudo apt - get i n s t a l l postgres - xc postgres - xc - c l i e n t
postgres - xc - con t r i b postgres - xc - s e rver - dev

По-умолчанию он создаст один координатор и два обработчика
данных.

Распределение данных и масштабируемость
Postgres-XC предусматривает два способа хранения данных в таблицах:

Рис. 5.2: Распределенные таблицы

1. Распределенные таблицы (distributed tables, рис. 5.2): данные по
таблице распределяются на указаный набор обработчиков данных
с использованием указаной стратегии (hash, round-robin, modulo).
Каждая запись в таблице находится только на одном обработчике
данных. Паралельно могут быть записаны или прочитаны данные
с различных обработчиков данных. За счет этого значительно
улучшена производительность на запись и чтение.

2. Реплицированные таблицы (replicated tables, рис. 5.3): данные
по таблице реплицируется (клонируются) на указаный набор
обработчиков данных. Каждая запись в таблице находится на

90

http://postgres-xc.sourceforge.net/docs/1_0/install-short.html

5.3. Postgres-XC

Рис. 5.3: Реплицированные таблицы

всех обработчиках данных (которые были указаны) и любые
изменения дублируются на все обработчики данных. Так как
все данные доступны на любом обработчике данных, координатор
может собрать все данные из одного узла, что позволяет направить
различные запросы на различные обработчики данных. Таким
образом создается балансировка нагрузки и увеличения пропускной
способности на чтение.

Таблици и запросы к ним
После установки работа с Postgres-XC ведется как с обыкновенным

PostgreSQL. Подключатся для работы с данными нужно только к
координаторам (по-умолчанию координатор работает на порту 5432). Для
начала создадим распределенные таблицы.

Код 5.15 Создание распределенных таблиц

Line 1 CREATE TABLE
- users_with_hash (id SERIAL, type INT , . . .)
- DISTRIBUTE by HASH(id) TO NODE dn1 , dn2 ;
-
5 CREATE TABLE
- users_with_modulo (id SERIAL, type INT , . . .)
- DISTRIBUTE by MODULO(id) TO NODE dn1 , dn2 ;
-
- CREATE TABLE

10 users_with_rrobin (id SERIAL, type INT , . . .)
- DISTRIBUTE by ROUND ROBIN TO NODE dn1 , dn2 ;

На листинге 5.15 создано 3 распределенные таблицы:

1. Таблица «users_with_hash» распределяется по хешу значения из

91

5.3. Postgres-XC

указаного поля в таблице (тут указано поле id) по обработчикам
данных. Вот как распределились первые 15 значений:

Код 5.16 Данные с координатора и обработчиков данных

Line 1 # координатор
- $ psq l
- # SELECT id , type from users_with_hash ORDER BY id ;
- id | type
5 - - - - - - -+ - - - - - - -
- 1 | 946
- 2 | 153
- 3 | 484
- 4 | 422

10 5 | 785
- 6 | 906
- 7 | 973
- 8 | 699
- 9 | 434

15 10 | 986
- 11 | 135
- 12 | 1012
- 13 | 395
- 14 | 667

20 15 | 324
-
- # первый обработчик данных
- $ psq l - p15432
- # SELECT id , type from users_with_hash ORDER BY id ;

25 id | type
- - - - - - -+ - - - - - - -
- 1 | 946
- 2 | 153
- 5 | 785

30 6 | 906
- 8 | 699
- 9 | 434
- 12 | 1012
- 13 | 395

35 15 | 324
-
- # второй обработчик данных
- $ psq l - p15433
- # SELECT id , type from users_with_hash ORDER BY id ;

40 id | type
- - - - - - - -+ - - - - - - -
- 3 | 484
- 4 | 422

92

5.3. Postgres-XC

- 7 | 973
45 10 | 986

- 11 | 135
- 14 | 667

2. Таблица «users_with_modulo» распределяется по модулю значения
из указаного поля в таблице (тут указано поле id) по обработчикам
данных. Вот как распределились первые 15 значений:

Код 5.17 Данные с координатора и обработчиков данных

Line 1 # координатор
- $ psq l
- # SELECT id , type from users_with_modulo ORDER BY id ;
- id | type
5 - - - - - - -+ - - - - - - -
- 1 | 883
- 2 | 719
- 3 | 29
- 4 | 638

10 5 | 363
- 6 | 946
- 7 | 440
- 8 | 331
- 9 | 884

15 10 | 199
- 11 | 78
- 12 | 791
- 13 | 345
- 14 | 476

20 15 | 860
-
- # первый обработчик данных
- $ psq l - p15432
- # SELECT id , type from users_with_modulo ORDER BY id ;

25 id | type
- - - - - - - -+ - - - - - - -
- 2 | 719
- 4 | 638
- 6 | 946

30 8 | 331
- 10 | 199
- 12 | 791
- 14 | 476
-

35 # второй обработчик данных
- $ psq l - p15433
- # SELECT id , type from users_with_modulo ORDER BY id ;
- id | type

93

5.3. Postgres-XC

- - - - - - -+ - - - - - - -
40 1 | 883

- 3 | 29
- 5 | 363
- 7 | 440
- 9 | 884

45 11 | 78
- 13 | 345
- 15 | 860

3. Таблица «users_with_rrobin» распределяется циклическим
способом(round-robin) по обработчикам данных. Вот как
распределились первые 15 значений:

Код 5.18 Данные с координатора и обработчиков данных

Line 1 # координатор
- $ psq l
- # SELECT id , type from users_with_rrobin ORDER BY id ;
- id | type
5 - - - - - - -+ - - - - - - -
- 1 | 890
- 2 | 198
- 3 | 815
- 4 | 446

10 5 | 61
- 6 | 337
- 7 | 948
- 8 | 446
- 9 | 796

15 10 | 422
- 11 | 242
- 12 | 795
- 13 | 314
- 14 | 240

20 15 | 733
-
- # первый обработчик данных
- $ psq l - p15432
- # SELECT id , type from users_with_rrobin ORDER BY id ;

25 id | type
- - - - - - - -+ - - - - - - -
- 2 | 198
- 4 | 446
- 6 | 337

30 8 | 446
- 10 | 422
- 12 | 795
- 14 | 240

94

5.3. Postgres-XC

-
35 # второй обработчик данных

- $ psq l - p15433
- # SELECT id , type from users_with_rrobin ORDER BY id ;
- id | type
- - - - - - -+ - - - - - - -

40 1 | 890
- 3 | 815
- 5 | 61
- 7 | 948
- 9 | 796

45 11 | 242
- 13 | 314
- 15 | 733

Теперь создадим реплицированную таблицу:

Код 5.19 Создание реплицированной таблицы

Line 1 CREATE TABLE
- us e r s_rep l i c a t ed (id SERIAL, type INT , . . .)
- DISTRIBUTE by REPLICATION TO NODE dn1 , dn2 ;

Естественно данные идентичны на всех обработчиках данных:

Код 5.20 Данные с координатора и обработчиков данных

Line 1 # SELECT id , type from use r s_rep l i c a t ed ORDER BY id ;
- id | type
- - - - - - - -+ - - - - - - -
- 1 | 75
5 2 | 262
- 3 | 458
- 4 | 779
- 5 | 357
- 6 | 51

10 7 | 249
- 8 | 444
- 9 | 890
- 10 | 810
- 11 | 809

15 12 | 166
- 13 | 605
- 14 | 401
- 15 | 58

Рассмотрим как выполняются запросы для таблиц. Выберем все
записи из распределенной таблицы:

Код 5.21 Выборка записей из распределенной таблицы

95

5.3. Postgres-XC

Line 1 # EXPLAIN VERBOSE SELECT * from users_with_modulo ORDER BY
id ;

- QUERY PLAN
- -
- Sort (co s t =49 . 83 . . 52 . 33 rows=1000 width=8)
5 Output : id , type
- Sort Key : users_with_modulo . id
- -> Result (co s t =0 . 00 . . 0 . 0 0 rows=1000 width=8)
- Output : id , type
- -> Data Node Scan on users_with_modulo

(co s t =0 . 00 . . 0 . 0 0 rows=1000 width=8)
10 Output : id , type

- Node/ s : dn1 , dn2
- Remote query : SELECT id , type FROM ONLY

users_with_modulo WHERE true
- (9 rows)

Как видно на листинге 5.21 координатор собирает данные и
обработчиков данных, а потом собирает их вместе.

Подсчет суммы с групировкой по полю из распределенной таблицы:

Код 5.22 Выборка записей из распределенной таблицы

Line 1 # EXPLAIN VERBOSE SELECT sum(id) from users_with_modulo
GROUP BY type ;

-
QUERY PLAN

- -
- HashAggregate (co s t =5 . 00 . . 5 . 0 1 rows=1 width=8)
5 Output : pg_catalog . sum((sum(users_with_modulo . id))) ,

users_with_modulo . type
- -> Mat e r i a l i z e (co s t =0 . 00 . . 0 . 0 0 rows=0 width=0)
- Output : (sum(users_with_modulo . id)) ,

users_with_modulo . type
- -> Data Node Scan on "__REMOTE_GROUP_QUERY__"

(co s t =0 . 00 . . 0 . 0 0 rows=1000 width=8)
- Output : sum(users_with_modulo . id) ,

users_with_modulo . type
10 Node/ s : dn1 , dn2

- Remote query : SELECT sum(group_1 . id) ,
group_1 . type FROM (SELECT id , type FROM ONLY
users_with_modulo WHERE true) group_1 GROUP BY 2

- (8 rows)

JOIN между и с участием реплицированных таблиц, а также JOIN
между распределенными по одному и тому же полю в таблицах
будет выполняются на обработчиках данных. Но JOIN с участием
распределенных таблиц по другим ключам будут выполнены на
координаторе и скорее всего это будет медленно (листинг 5.23).

96

5.3. Postgres-XC

Код 5.23 Выборка записей из распределенной таблицы

Line 1 # EXPLAIN VERBOSE SELECT * from users_with_modulo ,
users_with_hash WHERE users_with_modulo . id =
users_with_hash . id ;

- QUERY PLAN
- -
- Nested Loop (co s t =0 . 00 . . 0 . 0 1 rows=1 width=16)
5 Output : users_with_modulo . id , users_with_modulo . type ,

users_with_hash . id , users_with_hash . type
- Join F i l t e r : (users_with_modulo . id = users_with_hash . id)
- -> Data Node Scan on users_with_modulo

(co s t =0 . 00 . . 0 . 0 0 rows=1000 width=8)
- Output : users_with_modulo . id ,

users_with_modulo . type
- Node/ s : dn1 , dn2

10 Remote query : SELECT id , type FROM ONLY
users_with_modulo WHERE true

- -> Data Node Scan on users_with_hash (co s t =0 . 00 . . 0 . 0 0
rows=1000 width=8)

- Output : users_with_hash . id , users_with_hash . type
- Node/ s : dn1 , dn2
- Remote query : SELECT id , type FROM ONLY

users_with_hash WHERE true
15 (11 rows)

Пример выборки данных из реплицированной таблицы:

Код 5.24 Выборка записей из реплицированной таблицы

Line 1 # EXPLAIN VERBOSE SELECT * from use r s_rep l i c a t ed ;
- QUERY PLAN
- -
- Data Node Scan on "__REMOTE_FQS_QUERY__" (co s t =0 . 00 . . 0 . 0 0

rows=0 width=0)
5 Output : u s e r s_rep l i c a t ed . id , u s e r s_rep l i c a t ed . type
- Node/ s : dn1
- Remote query : SELECT id , type FROM use r s_rep l i c a t ed
- (4 rows)

Как видно из запроса для выборки данных используется один
обработчик данных, а не все (что и логично).

Высокая доступность (HA)
По архитектуре у Postgres-XC всегда есть согласованность данных. По

теореме CAP1 в такой системе тяжело обезпечить высокую доступность.
Для достижения высокой доступности в распределенных системах

1http://en.wikipedia.org/wiki/CAP_theorem

97

5.4. HadoopDB

требуется избыточность данных, резервные копии и автоматическое
восстановление. В Postgres-XC избыточность данных может быть
достигнута с помощью PostgreSQL потоковой (streaming) репликации
с hot-standby для обработчиков данных. Каждый координатор
способен записывать и читать данные независимо от другого, поэтому
координаторы способны заменять друг друга. Поскольку GTM отдельный
процесс и может стать точкой отказа, лучше создать GTM-standby как
резервную копию. Ну а вот для автоматического восстановления придется
использовать сторонние утилиты.

Ограничения
1. Postgres-XC базируется на PostgreSQL 9.1 (9.2 в разработке)
2. Нет системы репартиционирования при добавлении или удалении

нод (в разработке)
3. Нет глобальных UNIQUE на распределенных таблицах
4. Не поддерживаются foreign keys между нодами поскольку такой

ключ должен вести на данные расположенные на том же обработчике
данных

5. Не поддерживаются курсоры (в разработке)
6. Не поддерживается INSERT . . . RETURNING (в разработке)
7. Невозможно удаление и добавление нод в кластер без полной

реинициализации кластера (в разработке)

Заключение
Postgres-XC очень перспективное решение для создание кластера

на основе PostgreSQL. И хоть это решение имеет ряд недостатков,
нестабильно (очень часты случаи падения координаторов при тяжелых
запросах) и еще очень молодое, со временем это решение может стать
стандартом для масштабирования систем на PostgreSQL.

5.4 HadoopDB
Hadoop представляет собой платформу для построения приложений,

способных обрабатывать огромные объемы данных. Система
основывается на распределенном подходе к вычислениям и хранению
информации, основными ее особенностями являются:

∙ Масштабируемость: с помощью Hadoop возможно надежное
хранение и обработка огромных объемов данных, которые могут
измеряться петабайтами;

∙ Экономичность: информация и вычисления распределяются по
кластеру, построенному на самом обыкновенном оборудовании.
Такой кластер может состоять из тысяч узлов;

98

5.4. HadoopDB

∙ Эффективность: распределение данных позволяет выполнять их
обработку параллельно на множестве компьютеров, что существенно
ускоряет этот процесс;

∙ Надежность: при хранении данных возможно предоставление
избыточности, благодаря хранению нескольких копий. Такой подход
позволяет гарантировать отсутствие потерь информации в случае
сбоев в работе системы;

∙ Кроссплатформенность: так как основным языком
программирования, используемым в этой системе является Java,
развернуть ее можно на базе любой операционной системы, имеющей
JVM.

HDFS
В основе всей системы лежит распределенная файловая система под

незамысловатым названием Hadoop Distributed File System. Представляет
она собой вполне стандартную распределенную файловую систему, но все
же она обладает рядом особенностей:

∙ Устойчивость к сбоям, разработчики рассматривали сбои в
оборудовании скорее как норму, чем как исключение;

∙ Приспособленность к развертке на самом обыкновенном ненадежном
оборудовании;

∙ Предоставление высокоскоростного потокового доступа ко всем
данным;

∙ Настроена для работы с большими файлами и наборами файлов;
∙ Простая модель работы с данными: один раз записали — много раз

прочли;
∙ Следование принципу: переместить вычисления проще, чем

переместить данные;

Архитектура HDFS

∙ Namenode

Этот компонент системы осуществляет всю работу с метаданными.
Он должен быть запущен только на одном компьютере в кластере.
Именно он управляет размещением информации и доступом ко
всем данным, расположенным на ресурсах кластера. Сами данные
проходят с остальных машин кластера к клиенту мимо него.

∙ Datanode

На всех остальных компьютерах системы работает именно этот
компонент. Он располагает сами блоки данных в локальной
файловой системе для последующей передачи или обработки их по
запросу клиента. Группы узлов данных принято называть Rack, они
используются, например, в схемах репликации данных.

99

5.4. HadoopDB

Рис. 5.4: Архитектура HDFS

∙ Клиент

Просто приложение или пользователь, работающий с файловой
системой. В его роли может выступать практически что угодно.

Пространство имен HDFS имеет классическую иерархическую
структуру: пользователи и приложения имеют возможность создавать
директории и файлы. Файлы хранятся в виде блоков данных
произвольной (но одинаковой, за исключением последнего; по-умолчанию
64 mb) длины, размещенных на Datanode’ах. Для обеспечения
отказоустойчивости блоки хранятся в нескольких экземплярах на разных
узлах, имеется возможность настройки количества копий и алгоритма
их распределения по системе. Удаление файлов происходит не сразу,
а через какое-то время после соответствующего запроса, так как после
получения запроса файл перемещается в директорию /trash и хранится
там определенный период времени на случай если пользователь или
приложение передумают о своем решении. В этом случае информацию
можно будет восстановить, в противном случае — физически удалить.

Для обнаружения возникновения каких-либо неисправностей,
Datanode периодически отправляют Namenode’у сигналы о своей
работоспособности. При прекращении получения таких сигналов
от одного из узлов Namenode помечает его как «мертвый», и
прекращает какой-либо с ним взаимодействие до возвращения

100

5.4. HadoopDB

его работоспособности. Данные, хранившиеся на «умершем» узле
реплицируются дополнительный раз из оставшихся «в живых» копий и
система продолжает свое функционирование как ни в чем не бывало.

Все коммуникации между компонентами файловой системы проходят
по специальным протоколам, основывающимся на стандартном TCP/IP.
Клиенты работают с Namenode с помощью так называемого ClientProtocol,
а передача данных происходит по DatanodeProtocol, оба они обернуты в
Remote Procedure Call (RPC).

Система предоставляет несколько интерфейсов, среди которых
командная оболочка DFSShell, набор ПО для администрирования
DFSAdmin, а также простой, но эффективный веб-интерфейс. Помимо
этого существуют несколько API для языков программирования: Java
API, C pipeline, WebDAV и так далее.

MapReduce
Помимо файловой системы, Hadoop включает в себя framework для

проведения масштабных вычислений, обрабатывающих огромные объемы
данных. Каждое такое вычисление называется Job (задание) и состоит
оно, как видно из названия, из двух этапов:

∙ Map

Целью этого этапа является представление произвольных данных
(на практике чаще всего просто пары ключ-значение) в виде
промежуточных пар ключ-значение. Результаты сортируются и
групируются по ключу и передаются на следующий этап.

∙ Reduce

Полученные после map значения используются для финального
вычисления требуемых данных. Практические любые данные
могут быть получены таким образом, все зависит от требований и
функционала приложения.

Задания выполняются, подобно файловой системе, на всех машинах
в кластере (чаще всего одних и тех же). Одна из них выполняет
роль управления работой остальных — JobTracker, остальные же ее
бесприкословно слушаются — TaskTracker. В задачи JobTracker’а
входит составление расписания выполняемых работ, наблюдение за ходом
выполнения, и перераспределение в случае возникновения сбоев.

В общем случае каждое приложение, работающее с этим framework’ом,
предоставляет методы для осуществления этапов map и reduce, а также
указывает расположения входных и выходных данных. После получения
этих данных JobTracker распределяет задание между остальными
машинами и предоставляет клиенту полную информацию о ходе работ.

Помимо основных вычислений могут выполняться вспомогательные
процессы, такие как составление отчетов о ходе работы, кэширование,
сортировка и так далее.

101

5.4. HadoopDB

HBase
В рамках Hadoop доступна еще и система хранения данных, которую

правда сложно назвать СУБД в традиционном смысле этого слова. Чаще
проводят аналогии с проприетарной системой этого же плана от Google —
BigTable.

HBase представляет собой распределенную систему хранения больших
объемов данных. Подобно реляционным СУБД данные хранятся в
виде таблиц, состоящих из строк и столбцов. И даже для доступа к
ним предоставляется язык запросов HQL (как ни странно — Hadoop
Query Language), отдаленно напоминающий более распространенный
SQL. Помимо этого предоставляется итерирующмй интерфейс для
сканирования наборов строк.

Одной из основных особенностей хранения данных в HBase является
возможность наличия нескольких значений, соответствующих одной
комбинации таблица-строка-столбец, для их различения используется
информация о времени добавления записи. На концептуальном уровне
таблицы обычно представляют как набор строк, но физически же
они хранятся по столбцам, достаточно важный факт, который стоит
учитывать при разработки схемы хранения данных. Пустые ячейки
не отображаются каким-либо образом физически в хранимых данных,
они просто отсутствуют. Существуют конечно и другие нюансы, но я
постарался упомянуть лишь основные.

HQL очень прост по своей сути, если Вы уже знаете SQL, то
для изучения его Вам понадобится лишь просмотреть по диагонали
коротенький вывод команды help;, занимающий всего пару экранов в
консоли. Все те же SELECT, INSERT, UPDATE, DROP и так далее, лишь
со слегка измененным синтаксисом.

Помимо обычно командной оболочки HBase Shell, для работы с
HBase также предоставлено несколько API для различных языков
программирования: Java, Jython, REST и Thrift.

HadoopDB
В проекте HadoopDB специалисты из университетов Yale и Brown

предпринимают попытку создать гибридную систему управления
данными, сочетающую преимущества технологий и MapReduce,
и параллельных СУБД. В их подходе MapReduce обеспечивает
коммуникационную инфраструктуру, объединяющую произвольное
число узлов, в которых выполняются экземпляры традиционной
СУБД. Запросы формулируются на языке SQL, транслируются в среду
MapReduce, и значительная часть работы передается в экземпляры
СУБД. Наличие MapReduce обеспечивается масштабируемость и
отказоустойчивость, а использование в узлах кластера СУБД позволяет
добиться высокой производительности.

102

5.4. HadoopDB

Установка и настройка
Вся настройка ведется на Ubuntu Server операционной системе.

Установка Hadoop

Перед тем, как приступить собственно говоря к установке Hadoop,
необходимо выполнить два элементарных действия, необходимых для
правильного функционирования системы:

∙ открыть доступ одному из пользователей по ssh к этому же
компьютеру без пароля, можно например создать отдельного
пользователя для этого [hadoop]:

Код 5.25 Создаем пользователя с правами

Line 1 $sudo groupadd hadoop
- $sudo useradd -m -g hadoop -d /home/hadoop - s / bin /bash

\
- - c "Hadoop so f tware owner" hadoop

Далее действия выполняем от его имени:

Код 5.26 Логинимся под пользователем hadoop

Line 1 su hadoop

Генерим RSA-ключ для обеспечения аутентификации в условиях
отсутствия возможности использовать пароль:

Код 5.27 Генерим RSA-ключ

Line 1 hadoop@localhost ~ $ ssh - keygen - t r sa -P ""
- Generating pub l i c / p r i va t e r sa key pa i r .
- Enter f i l e in which to save the key

(/home/hadoop / . ssh / id_rsa) :
- Your i d e n t i f i c a t i o n has been saved in

/home/hadoop / . ssh / id_rsa .
5 Your pub l i c key has been saved in

/home/hadoop / . ssh / id_rsa . pub .
- The key f i n g e r p r i n t i s :
- 7b : 5 c : c f : 7 9 : 6 b : 9 3 : d6 : d6 : 8 d : 4 1 : e3 : a6 : 9 d : 0 4 : f 9 : 85

hadoop@localhost

И добавляем его в список авторизованных ключей:

Код 5.28 Добавляем его в список авторизованных ключей

Line 1 cat $HOME/ . ssh / id_rsa . pub >> $HOME/ . ssh / authorized_keys

Этого должно быть более чем достаточно, проверить
работоспособность соединения можно просто написав:

103

5.4. HadoopDB

Код 5.29 Пробуем зайти на ssh без пароля

Line 1 ssh l o c a l h o s t

Не забываем предварительно инициализировать sshd:

Код 5.30 Запуск sshd

Line 1 / e tc / i n i t . d/ sshd s t a r t

∙ Помимо этого необходимо убедиться в наличии установленной JVM
версии 1.5.0 или выше.

Код 5.31 Устанавливаем JVM

Line 1 sudo apt i tude i n s t a l l openjdk -6 - jdk

Дальше скачиваем и устанавливаем Hadoop:

Код 5.32 Устанавливаем Hadoop

Line 1 cd /opt
- sudo wget http ://www. g t l i b . gatech . edu/pub/apache/hadoop
- / core /hadoop - 0 . 2 0 . 2 / hadoop - 0 . 2 0 . 2 . ta r . gz
- sudo ta r zxvf hadoop - 0 . 2 0 . 2 . ta r . gz
5 sudo ln - s /opt/hadoop - 0 . 2 0 . 2 /opt/hadoop
- sudo chown -R hadoop : hadoop /opt/hadoop /opt/hadoop - 0 . 2 0 . 2
- sudo mkdir -p /opt/hadoop - data/tmp - base
- sudo chown -R hadoop : hadoop /opt/hadoop - data/

Далее переходим в /opt/hadoop/conf/hadoop-env.sh и добавляем
вначале:

Код 5.33 Указываем переменные окружения

Line 1 export JAVA_HOME=/usr / l i b /jvm/ java -6 - openjdk
- export HADOOP_HOME=/opt/hadoop
- export HADOOP_CONF=$HADOOP_HOME/ conf
- export HADOOP_PATH=$HADOOP_HOME/bin
5 export HIVE_HOME=/opt/ hive
- export HIVE_PATH=$HIVE_HOME/bin
-
- export PATH=$HIVE_PATH:$HADOOP_PATH:$PATH

Далее добавим в /opt/hadoop/conf/hadoop-site.xml:

Код 5.34 Настройки hadoop

Line 1 <con f i gu r a t i on>
- <property>
- <name>hadoop . tmp . d i r</name>
- <value>/opt/hadoop - data/tmp - base</ value>
5 <de s c r i p t i o n>A base f o r other temporary

d i r e c t o r i e s</ d e s c r i p t i o n>

104

5.4. HadoopDB

- </property>
-
- <property>
- <name>f s . d e f au l t . name</name>

10 <value>l o c a l h o s t : 5 4 3 1 1</ value>
- <de s c r i p t i o n>
- The name o f the d e f au l t f i l e system .
- </ de s c r i p t i o n>
- </property>

15
- <property>
- <name>hadoopdb . c on f i g . f i l e</name>
- <value>HadoopDB . xml</ value>
- <de s c r i p t i o n>The name o f the HadoopDB

20 c l u s t e r c on f i g u r a t i on f i l e</ d e s c r i p t i o n>
- </property>
- </ con f i gu r a t i on>

В /opt/hadoop/conf/mapred-site.xml:

Код 5.35 Настройки mapreduce

Line 1 <con f i gu r a t i on>
- <property>
- <name>mapred . job . t r a cke r</name>
- <value>l o c a l h o s t : 5 4 3 1 0</ value>
5 <de s c r i p t i o n>
- The host and port that the
- MapReduce job t r a cke r runs at .
- </ de s c r i p t i o n>
- </property>

10 </ con f i gu r a t i on>

В /opt/hadoop/conf/hdfs-site.xml:

Код 5.36 Настройки hdfs

Line 1 <con f i gu r a t i on>
- <property>
- <name>df s . r e p l i c a t i o n</name>
- <value>1</value>
5 <de s c r i p t i o n>
- Defau l t b lock r e p l i c a t i o n .
- </ de s c r i p t i o n>
- </property>
- </ con f i gu r a t i on>

Теперь необходимо отформатировать Namenode:

Код 5.37 Форматирование Namenode

Line 1 $ hadoop namenode - format

105

5.4. HadoopDB

- 10/05/07 14 : 24 : 12 INFO namenode .NameNode : STARTUP_MSG:
- /* ***
- STARTUP_MSG: S ta r t i ng NameNode
5 STARTUP_MSG: host = hadoop1 / 1 2 7 . 0 . 1 . 1
- STARTUP_MSG: args = [- format]
- STARTUP_MSG: ve r s i on = 0 . 2 0 . 2
- STARTUP_MSG: bu i ld = https : // svn . apache . org / repos
- / a s f /hadoop/common/branches /branch - 0 . 2 0 - r

10 911707; compiled by ’ chr i sdo ’ on Fr i Feb 19 08 : 07 : 34 UTC
2010

- *** */
- 10/05/07 14 : 24 : 12 INFO namenode . FSNamesystem :
- fsOwner=hadoop , hadoop
- 10/05/07 14 : 24 : 12 INFO namenode . FSNamesystem :

15 supergroup=supergroup
- 10/05/07 14 : 24 : 12 INFO namenode . FSNamesystem :
- i sPermiss ionEnabled=true
- 10/05/07 14 : 24 : 12 INFO common . Storage :
- Image f i l e o f s i z e 96 saved in 0 seconds .

20 10/05/07 14 : 24 : 12 INFO common . Storage :
- Storage d i r e c t o r y /opt/hadoop - data/tmp - base / d f s /name has

been
- s u c c e s s f u l l y formatted .
- 10/05/07 14 : 24 : 12 INFO namenode .NameNode :
- SHUTDOWN_MSG:

25 /* ***
- SHUTDOWN_MSG: Shutt ing down NameNode at hadoop1 /1 2 7 . 0 . 1 . 1
- *** */

Готово. Теперь мы можем запустить Hadoop:

Код 5.38 Запуск Hadoop

Line 1 $ s ta r t - a l l . sh
- s t a r t i n g namenode , l ogg ing to /opt/hadoop/bin / . .
- / l o g s /hadoop - hadoop - namenode - hadoop1 . out
- l o c a l h o s t : s t a r t i n g datanode , l ogg ing to
5 /opt/hadoop/bin / . . / l o g s /hadoop - hadoop - datanode - hadoop1 . out
- l o c a l h o s t : s t a r t i n g secondarynamenode , l ogg ing to
- /opt/hadoop/bin / . . / l o g s /hadoop - hadoop - secondarynamenode - hadoop1 . out
- s t a r t i n g jobt racke r , l ogg ing to
- /opt/hadoop/bin / . . / l o g s /hadoop - hadoop - jobt racke r - hadoop1 . out

10 l o c a l h o s t : s t a r t i n g ta sk t racke r , l ogg ing to
- /opt/hadoop/bin / . . / l o g s /hadoop - hadoop - ta sk t racke r - hadoop1 . out

Остановка Hadoop производится скриптом stop-all.sh.

106

5.4. HadoopDB

Установка HadoopDB и Hive

Теперь скачаем HaddopDB1 и распакуем hadoopdb.jar в
$HADOOP_HOME/lib:

Код 5.39 Установка HadoopDB

Line 1 $cp hadoopdb . j a r $HADOOP_HOME/ l i b

Также нам потребуется PostgreSQL JDBC библиотека. Скачайте её2 и
распакуйте в директорию $HADOOP_HOME/lib.

Hive используется HadoopDB как SQL интерфейс. Подготовим
директорию в HDFS для Hive:

Код 5.40 Установка HadoopDB

Line 1 hadoop f s -mkdir /tmp
- hadoop f s -mkdir / user / h ive /warehouse
- hadoop f s -chmod g+w /tmp
- hadoop f s -chmod g+w / user / h ive /warehouse

В архиве HadoopDB также есть архив SMS_dist. Распакуем его:

Код 5.41 Установка HadoopDB

Line 1 ta r zxvf SMS_dist . t a r . gz
- sudo mv d i s t /opt/ h ive
- sudo chown -R hadoop : hadoop hive

Поскольку мы успешно запустили Hadoop, то и проблем с запуском
Hive не должно быть:

Код 5.42 Установка HadoopDB

Line 1 $ hive
- Hive h i s t o r y f i l e =/tmp/hadoop/
- hive_job_log_hadoop_201005081717_1990651345 . txt
- hive>
5
- hive> qu i t ;

Тестирование

Теперь проведем тестирование. Для этого скачаем бенчмарк:

Код 5.43 Тестирование

Line 1 svn co http :// g r a f f i t i . c s . brown . edu/svn/benchmarks/
- cd benchmarks/datagen/ teragen

Изменим скрипт benchmarks/datagen/teragen/teragen.pl к виду:
1http://sourceforge.net/projects/hadoopdb/files/
2http://jdbc.postgresql.org/download.html

107

5.4. HadoopDB

Код 5.44 Тестирование

Line 1 use s t r i c t ;
- use warnings ;
-
- my $CUR_HOSTNAME = ‘ hostname - s ‘ ;
5 chomp($CUR_HOSTNAME) ;
-
- my $NUM_OF_RECORDS_1TB = 10000000000;
- my $NUM_OF_RECORDS_535MB = 100 ;
- my $BASE_OUTPUT_DIR = "/data" ;

10 my $PATTERN_STRING = "XYZ" ;
- my $PATTERN_FREQUENCY = 108299;
- my $TERAGEN_JAR = " teragen . j a r " ;
- my $HADOOP_COMMAND = $ENV{ ’HADOOP_HOME’ } . "/bin /hadoop" ;
-

15 my %f i l e s = ("535MB" => 1 ,
-) ;
- system ("$HADOOP_COMMAND f s - rmr $BASE_OUTPUT_DIR") ;
- f o r each my $ta rge t (keys %f i l e s) {
- my $output_dir = $BASE_OUTPUT_DIR. "/ SortGrep$target " ;

20 my $num_of_maps = $ f i l e s { $ ta rge t } ;
- my $num_of_records = ($ ta rg e t eq "535MB" ?
- $NUM_OF_RECORDS_535MB : $NUM_OF_RECORDS_1TB) ;
- pr in t "Generating $num_of_maps f i l e s in ’ $output_dir ’\n" ;
-

25 ##
- ## EXEC: hadoop j a r te ragen . j a r 10000000000
- ## /data/SortGrep/ XYZ 108299 100
- ##
- my @args = ($num_of_records ,

30 $output_dir ,
- $PATTERN_STRING,
- $PATTERN_FREQUENCY,
- $num_of_maps) ;
- my $cmd = "$HADOOP_COMMAND ja r $TERAGEN_JAR " . j o i n (" " ,

@args) ;
35 pr in t "$cmd\n" ;

- system ($cmd) == 0 | | d i e ("ERROR: $! ") ;
- } # FOR
- e x i t (0) ;

При запуске данного Perl скрипта сгенерится данные, которые будут
сохранены на HDFS. Поскольку мы настроили систему как единственный
кластер, то все данные будут загружены на один HDFS. При работе
с большим количеством кластеров данные были бы распределены по
кластерам. Создадим базу данных, таблицу и загрузим данные, что мы
сохранили на HDFS, в нее:

108

5.4. HadoopDB

Код 5.45 Тестирование

Line 1 $hadoop f s - get /data/SortGrep535MB/part -00000 my_file
- $psq l
- psql> CREATE DATABASE grep0 ;
- psql> USE grep0 ;
5 psql> CREATE TABLE grep (
- -> key1 cha rac t e r vary ing (255) ,
- -> f i e l d cha rac t e r vary ing (255)
- ->) ;
- COPY grep FROM ’ my_file ’ WITH DELIMITER ’ | ’ ;

Теперь настроим HadoopDB. В архиве HadoopDB можно найти пример
файла Catalog.properties. Распакуйт его и настройте:

Код 5.46 Тестирование

Line 1 #Prope r t i e s f o r Catalog Generation
- ##################################
- nodes_f i l e=machines . txt
- re lat ions_unchunked=grep , EntireRankings
5 re lat ions_chunked=Rankings , Us e rV i s i t s
- c a t a l o g_ f i l e=HadoopDB . xml
- ##
- #DB Connection Parameters
- ##

10 port=5432
- username=pos tg r e s
- password=password
- d r i v e r=com . po s t g r e s q l . Dr iver
- ur l_pre f i x=jdbc \ : p o s t g r e s q l \ ://

15 ##
- #Chunking p r op e r t i e s
- ##
- chunks_per_node=0
- unchunked_db_prefix=grep

20 chunked_db_prefix=cdb
- ##
- #Rep l i c a t i on Prope r t i e s
- ##
- dump_script_prefix=/root /dump_

25 r e p l i c a t i o n_s c r i p t_p r e f i x=/root / load_repl ica_
- dump_file_u_prefix=/mnt/dump_udb
- dump_file_c_prefix=/mnt/dump_cdb
- ##
- #Clus te r Connection

30 ##
- ssh_key=id_rsa

109

5.4. HadoopDB

Создайте файл machines.txt и добавте туда «localhost» строчку (без
кавычек). Тепер создадим HadoopDB конфиг и скопируем его в HDFS:

Код 5.47 Тестирование

Line 1 java - cp $HADOOP_HOME/ l i b /hadoopdb . j a r \
- > edu . ya l e . c s . hadoopdb . ca ta l og . SimpleCatalogGenerator \
- > Catalog . p r op e r t i e s
- hadoop d f s - put HadoopDB . xml HadoopDB . xml

Также возможно создать конфиг для создания репликации командой:

Код 5.48 Репликация

Line 1 java - cp hadoopdb . j a r
edu . ya l e . c s . hadoopdb . ca ta l og . SimpleRandomReplicationFactorTwo
Catalog . p r op e r t i e s

Инструмент генерирует новый файл HadoopDB.xml, в котором
случайные порции данных реплицируются на все узлы. После этого не
забываем обновить конфиг на HDFS:

Код 5.49 Обновляем конфиг

Line 1 hadoop d f s - rmr HadoopDB . xml
- hadoop d f s - put HadoopDB . xml HadoopDB . xml

и поставить «true» для «hadoopdb.config.replication» в
HADOOP_HOME/conf/hadoop-site.xml.

Теперь мы готовы проверить работы HadoopDB. Теперь можем
протестировать поиск по данным, загруженым ранее в БД и HDFS:

Код 5.50 Тестирование

Line 1 java - cp $CLASSPATH: hadoopdb . j a r \
- > edu . ya l e . c s . hadoopdb . benchmark . GrepTaskDB \
- > - pattern %wo% - output padra ig - hadoop . c on f i g . f i l e

HadoopDB . xml

Приблизительный результат:

Код 5.51 Тестирование

Line 1 $java - cp $CLASSPATH: hadoopdb . j a r
edu . ya l e . c s . hadoopdb . benchmark . GrepTaskDB \

- > - pattern %wo% - output padra ig - hadoop . c on f i g . f i l e
HadoopDB . xml

- 14 .08 .2010 19 : 08 : 48 edu . ya l e . c s . hadoopdb . exec . DBJobBase
in i tCon f

- INFO: SELECT key1 , f i e l d FROM grep WHERE f i e l d LIKE
’%%wo%%’ ;

5 14 .08 .2010 19 : 08 : 48
org . apache . hadoop . met r i c s . jvm . JvmMetrics i n i t

110

5.4. HadoopDB

- INFO: I n i t i a l i z i n g JVM Metr ics with processName=JobTracker ,
s e s s i o n I d=

- 14 .08 .2010 19 : 08 : 48 org . apache . hadoop . mapred . JobCl ient
configureCommandLineOptions

- WARNING: Use Gener icOpt ionsParser f o r par s ing the arguments .
- App l i ca t i on s should implement Tool f o r the same .

10 14 .08 .2010 19 : 08 : 48 org . apache . hadoop . mapred . JobCl ient
monitorAndPrintJob

- INFO: Running job : job_local_0001
- 14 .08 .2010 19 : 08 : 48

edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
getConnect ion

- INFO: Data l o c a l i t y f a i l e d f o r leo - pgsq l
- 14 .08 .2010 19 : 08 : 48

edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
getConnect ion

15 INFO: Task from leo - pgsq l i s connect ing to chunk 0 on host
l o c a l h o s t with

- db u r l jdbc : p o s t g r e s q l : // l o c a l h o s t :5434/ grep0
- 14 .08 .2010 19 : 08 : 48 org . apache . hadoop . mapred . MapTask

runOldMapper
- INFO: numReduceTasks : 0
- 14 .08 .2010 19 : 08 : 48

edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
c l o s e

20 INFO: DB times (ms) : connect ion = 104 , query execut ion =
20 , row r e t r i e v a l = 79

- 14 .08 .2010 19 : 08 : 48
edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
c l o s e

- INFO: Rows r e t r i e v e d = 3
- 14 .08 .2010 19 : 08 : 48 org . apache . hadoop . mapred . Task done
- INFO: Task : attempt_local_0001_m_000000_0 i s done . And i s in

the proce s s o f commiting
25 14 .08 .2010 19 : 08 : 48

org . apache . hadoop . mapred . LocalJobRunner$Job statusUpdate
- INFO:
- 14 .08 .2010 19 : 08 : 48 org . apache . hadoop . mapred . Task commit
- INFO: Task attempt_local_0001_m_000000_0 i s a l lowed to

commit now
- 14 .08 .2010 19 : 08 : 48

org . apache . hadoop . mapred . FileOutputCommitter commitTask
30 INFO: Saved output o f task ’ attempt_local_0001_m_000000_0 ’

to f i l e : / home/ l e o / padra ig
- 14 .08 .2010 19 : 08 : 48

org . apache . hadoop . mapred . LocalJobRunner$Job statusUpdate
- INFO:

111

5.4. HadoopDB

- 14 .08 .2010 19 : 08 : 48 org . apache . hadoop . mapred . Task sendDone
- INFO: Task ’ attempt_local_0001_m_000000_0 ’ done .

35 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . JobCl ient
monitorAndPrintJob

- INFO: map 100% reduce 0%
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . JobCl ient

monitorAndPrintJob
- INFO: Job complete : job_local_0001
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og

40 INFO: Counters : 6
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: Fi leSystemCounters
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: FILE_BYTES_READ=141370

45 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: FILE_BYTES_WRITTEN=153336
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: Map- Reduce Framework
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og

50 INFO: Map input r e co rd s=3
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: Sp i l l e d Records=0
- 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: Map input bytes=3

55 14 .08 .2010 19 : 08 : 49 org . apache . hadoop . mapred . Counters l og
- INFO: Map output r e co rd s=3
- 14 .08 .2010 19 : 08 : 49 edu . ya l e . c s . hadoopdb . exec . DBJobBase run
- INFO:
- JOB TIME : 1828 ms .

Результат сохранен в HDFS, в папке padraig:

Код 5.52 Тестирование

Line 1 $ cd padra ig
- $ cat part -00000
- some data

Проверим данные в PostgreSQL:

Код 5.53 Тестирование

Line 1 psql> s e l e c t * from grep where f i e l d l i k e ’%wo%’ ;
- +- -+ - - - - - - - - - - - - - - - - - - -+
- | key1 | f i e l d
- |
5 +- -+ - - - - - - - - - - - - - - - - - - -+
- some data
-
- 1 rows in s e t (0 . 00 sec)

112

5.4. HadoopDB

-
10 psql>

Значения совадают. Все работает как требуется.
Проведем еще один тест. Добавим данные в PostgreSQL:

Код 5.54 Тестирование

Line 1 psql> INSERT into grep (key1 , f i e l d) VALUES(’ I am l i v e ! ’ ,
’Maybe ’) ;

- psql> INSERT into grep (key1 , f i e l d) VALUES(’ I am l i v e ! ’ ,
’Maybewqe ’) ;

- psql> INSERT into grep (key1 , f i e l d) VALUES(’ I am l i v e ! ’ ,
’Maybewqesad ’) ;

- psql> INSERT into grep (key1 , f i e l d) VALUES(’ :) ’ , ’May coo l
s t r i n g ! ’) ;

Теперь проверим через HadoopDB:

Код 5.55 Тестирование

Line 1 $ java - cp $CLASSPATH: hadoopdb . j a r
edu . ya l e . c s . hadoopdb . benchmark . GrepTaskDB - pattern %May%
- output padra ig - hadoopdb . c on f i g . f i l e
/opt/hadoop/ conf /HadoopDB . xml

- padra ig
- 01 .11 .2010 23 : 14 : 45 edu . ya l e . c s . hadoopdb . exec . DBJobBase

in i tCon f
- INFO: SELECT key1 , f i e l d FROM grep WHERE f i e l d LIKE

’%%May%%’ ;
5 01 .11 .2010 23 : 14 : 46

org . apache . hadoop . met r i c s . jvm . JvmMetrics i n i t
- INFO: I n i t i a l i z i n g JVM Metr ics with processName=JobTracker ,

s e s s i o n I d=
- 01 .11 .2010 23 : 14 : 46 org . apache . hadoop . mapred . JobCl ient

configureCommandLineOptions
- WARNING: Use Gener icOpt ionsParser f o r par s ing the

arguments . App l i ca t i on s should implement Tool f o r the
same .

- 01 .11 .2010 23 : 14 : 46 org . apache . hadoop . mapred . JobCl ient
monitorAndPrintJob

10 INFO: Running job : job_local_0001
- 01 .11 .2010 23 : 14 : 46

edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
getConnect ion

- INFO: Data l o c a l i t y f a i l e d f o r leo - pgsq l
- 01 .11 .2010 23 : 14 : 46

edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
getConnect ion

113

5.4. HadoopDB

- INFO: Task from leo - pgsq l i s connect ing to chunk 0 on host
l o c a l h o s t with db u r l
jdbc : p o s t g r e s q l : // l o c a l h o s t :5434/ grep0

15 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . MapTask
runOldMapper

- INFO: numReduceTasks : 0
- 01 .11 .2010 23 : 14 : 47

edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
c l o s e

- INFO: DB times (ms) : connect ion = 181 , query execut ion =
22 , row r e t r i e v a l = 96

- 01 .11 .2010 23 : 14 : 47
edu . ya l e . c s . hadoopdb . connector . AbstractDBRecordReader
c l o s e

20 INFO: Rows r e t r i e v e d = 4
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Task done
- INFO: Task : attempt_local_0001_m_000000_0 i s done . And i s in

the proce s s o f commiting
- 01 .11 .2010 23 : 14 : 47

org . apache . hadoop . mapred . LocalJobRunner$Job statusUpdate
- INFO:

25 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Task commit
- INFO: Task attempt_local_0001_m_000000_0 i s a l lowed to

commit now
- 01 .11 .2010 23 : 14 : 47

org . apache . hadoop . mapred . FileOutputCommitter commitTask
- INFO: Saved output o f task ’ attempt_local_0001_m_000000_0 ’

to f i l e : / home/hadoop/ padra ig
- 01 .11 .2010 23 : 14 : 47

org . apache . hadoop . mapred . LocalJobRunner$Job statusUpdate
30 INFO:

- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Task sendDone
- INFO: Task ’ attempt_local_0001_m_000000_0 ’ done .
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . JobCl ient

monitorAndPrintJob
- INFO: map 100% reduce 0%

35 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . JobCl ient
monitorAndPrintJob

- INFO: Job complete : job_local_0001
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: Counters : 6
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og

40 INFO: Fi leSystemCounters
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: FILE_BYTES_READ=141345
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: FILE_BYTES_WRITTEN=153291

114

5.4. HadoopDB

45 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: Map- Reduce Framework
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: Map input r e co rd s=4
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og

50 INFO: Sp i l l e d Records=0
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: Map input bytes=4
- 01 .11 .2010 23 : 14 : 47 org . apache . hadoop . mapred . Counters l og
- INFO: Map output r e co rd s=4

55 01 .11 .2010 23 : 14 : 47 edu . ya l e . c s . hadoopdb . exec . DBJobBase run
- INFO:
- JOB TIME : 2332 ms .

Как паттерн поиска я задал «May». В логах можно увидеть как
производится поиск. На выходе получаем:

Код 5.56 Тестирование

Line 1 $ cd padra ig
- $ cat part -00000
- I am l i v e ! Maybe
- I am l i v e ! Maybewqe
5 I am l i v e ! Maybewqesad
- :) May coo l s t r i n g !

В упрощенной системе с одним кластером PostgreSQL не понятно ради
чего такие сложности. Но если к HadoopDB подключить более одного
кластера PostgreSQL, то данной методикой возможно работать с данными
PostgreSQL, объединенных в shared-nothing кластер.

Более подробно по HadoopDB можно почитать по данной ссылке
hadoopdb.sourceforge.net.

Заключение
В данной статье не показывается, как работать с Hive, как более проще

работать с HadoopDB. Эта книга не сможет учесть все, что требуется для
работы c Hadoop. Назначение этой главы — дать основу для работы с
Hadoop и HaddopDB.

HadoopDB не заменяет Hadoop. Эти системы сосуществуют,
позволяя аналитику выбирать соответствующие средства в зависимости
от имеющихся данных и задач.

HadoopDB может приблизиться в отношении производительности
к параллельным системам баз данных, обеспечивая при этом
отказоустойчивость и возможность использования в неоднородной
среде при тех же правилах лицензирования, что и Hadoop. Хотя
производительность HadoopDB, вообще говоря, ниже производительности
параллельных систем баз данных, во многом это объясняется тем, что в

115

http://hadoopdb.sourceforge.net/guide/quick_start_guide.html

5.5. Заключение

PostgreSQL таблицы хранятся не по столбцам, и тем, что в PostgreSQL
не использовалось сжатие данных. Кроме того, Hadoop и Hive — это
сравнительно молодые проекты с открытыми кодами.

В HadoopDB применяется некоторый гибрид подходов параллельных
СУБД и Hadoop к анализу данных, позволяющий достичь
производительности и эффективности параллельных систем баз данных,
обеспечивая при этом масштабируемсть, отказоустойчивость и гибкость
систем, основанных на MapReduce. Способность HadoopDB к прямому
включению Hadoop и программного обеспечения СУБД с открытыми
исходными текстами (без изменения кода) делает HadoopDB особенно
пригодной для выполнения крупномасштабного анализа данных в
будущих рабочих нагрузках.

5.5 Заключение
В данной главе расмотрено лиш базовые настройки кластеров БД.

Про кластеры PostgreSQL потребуется написать отдельную книгу, чтобы
растмотреть все шаги с установкой, настройкой и работой кластеров.
Надеюсь, что несмотря на это, информация будет полезна многим
читателям.

116

6

PgPool-II

Имеется способ сделать
лучше — найди его.

Томас Алва Эдисон

6.1 Введение
pgpool-II это прослойка, работающая между серверами PostgreSQL и

клиентами СУБД PostgreSQL. Она предоставляет следующие функции:

∙ Объединение соединений
pgpool-II сохраняет соединения с серверами PostgreSQL и использует
их повторно в случае если новое соединение устанавливается с
теми же параметрами (т.е. имя пользователя, база данных, версия
протокола). Это уменьшает накладные расходы на соединения и
увеличивает производительность системы вцелом.

∙ Репликация
pgpool-II может управлять множеством серверов PostgreSQL.
Использование функции репликации данных позволяет создание
резервной копии данных в реальном времени на 2 или более
физических дисков, так что сервис может продолжать работать без
остановки серверов в случае выхода из строя диска.

∙ Балансировка нагрузки
Если база данных реплицируется, то выполнение запроса
SELECT на любом из серверов вернет одинаковый результат.
pgpool-II использует преимущество функции репликации для
уменьшения нагрузки на каждый из серверов PostgreSQL
распределяя запросы SELECT на несколько серверов, тем самым
увеличивая производительность системы вцелом. В лучшем случае
производительность возрастает пропорционально числу серверов
PostgreSQL. Балансировка нагрузки лучше всего работает в случае
когда много пользователей выполняют много запросов в одно и
тоже время.

117

6.2. Давайте начнем!

∙ Ограничение лишних соединений

Существует ограничение максимального числа одновременных
соединений с PostgreSQL, при превышении которого новые
соединения отклоняются. Установка максимального числа
соединений, в то же время, увеличивает потребление ресурсов
и снижает производительность системы. pgpool-II также имеет
ограничение на максимальное число соединений, но «лишние»
соединения будут поставлены в очередь вместо немедленного
возврата ошибки.

∙ Параллельные запросы

Используя функцию параллельных запросов можно разнести данные
на множество серверов, благодаря чему запрос может быть выполнен
на всех серверах одновременно для уменьшения общего времени
выполнения. Параллельные запросы работают лучше всего при
поиске в больших объемах данных.

pgpool-II общается по протоколу бэкенда и фронтенда PostgreSQL и
располагается между ними. Таким образом, приложение базы данных
(фронтенд) считает что pgpool-II — настоящий сервер PostgreSQL, а
сервер (бэкенд) видит pgpool-II как одного из своих клиентов. Поскольку
pgpool-II прозрачен как для сервера, так и для клиента, существующие
приложения, работающие с базой данных, могут использоваться с
pgpool-II практически без изменений в исходном коде.

Оригинал руководства доступен по адресу
pgpool.projects.pgfoundry.org.

6.2 Давайте начнем!
Перед тем как использовать репликацию или параллельные запросы

мы должны научиться устанавливать и настраивать pgpool-II и узлы базы
данных.

Установка pgpool-II
Установка pgpool-II очень проста. В каталоге, в который вы

распаковали архив с исходными текстами, выполните следующие
команды.

Код 6.1 Установка pgpool-II

Line 1 . / c on f i gu r e
- make
- make i n s t a l l

Скрипт configure собирает информацию о вашей системе и использует
ее в процедуре компиляции. Вы можете указать параметры в командной

118

http://pgpool.projects.pgfoundry.org/pgpool-II/doc/tutorial-en.html

6.2. Давайте начнем!

строке скрипта configure чтобы изменить его поведение по-умолчанию,
такие, например, как каталог установки. pgpool-II по-умолчанию будет
установлен в каталог /usr/local.

Команда make скомпилирует исходный код, а make install установит
исполняемые файлы. У вас должно быть право на запись в каталог
установки.

Обратите внимание: для работы pgpool-II необходима библиотека libpq
для PostgreSQL 7.4 или более поздней версии (3 версия протокола). Если
скрипт configure выдает следующее сообщение об ошибке, возможно не
установлена библиотека libpq или она не 3 версии.

Код 6.2 Установка pgpool-II

Line 1 c on f i gu r e : e r r o r : l i bpq i s not i n s t a l l e d or l i bpq i s o ld

Если библиотека 3 версии, но указанное выше сообщение все-таки
выдается, ваша библиотека libpq, вероятно, не распознается скриптом
configure.

Скрипт configure ищет библиотеку libpq начиная от каталога
/usr/local/pgsql. Если вы установили PostgreSQL в каталог отличный от
/usr/local/pgsql используйте параметры командной строки –with-pgsql или
–with-pgsql-includedir вместе с параметром –with-pgsql-libdir при запуске
скрипта configure.

Во многих Linux системах pgpool-II может находится в репозитории
пакетов. Для Ubuntu Linux, например, достаточно будет выполнить:

Код 6.3 Установка pgpool-II

Line 1 sudo apt i tude i n s t a l l pgpool2

Файлы конфигурации
Параметры конфигурации pgpool-II хранятся в файле pgpool.conf.

Формат файла: одна пара «параметр = значение» в строке. При
установке pgpool-II автоматически создается файл pgpool.conf.sample. Мы
рекомендуем скопировать его в файл pgpool.conf, а затем отредактировать
по вашему желанию.

Код 6.4 Файлы конфигурации

Line 1 cp / usr / l o c a l / e t c /pgpool . conf . sample
/ usr / l o c a l / e t c /pgpool . conf

pgpool-II принимает соединения только с localhost на порт 9999.
Если вы хотите принимать соединения с других хостов, установите для
параметра listen_addresses значение «*».

Код 6.5 Файлы конфигурации

Line 1 l i s t en_addr e s s e s = ’ l o c a l h o s t ’
- port = 9999

119

6.2. Давайте начнем!

Мы будем использовать параметры по-умолчанию в этом руководстве.
В Ubuntu Linux конфиг находится /etc/pgpool.conf.

Настройка команд PCP
У pgpool-II есть интерфейс для административных целей — получить

информацию об узлах базы данных, остановить pgpool-II и т.д. — по
сети. Чтобы использовать команды PCP, необходима идентификация
пользователя. Эта идентификация отличается от идентификации
пользователей в PostgreSQL. Имя пользователя и пароль нужно указывать
в файле pcp.conf. В этом файле имя пользователя и пароль указываются
как пара значений, разделенных двоеточием (:). Одна пара в строке.
Пароли зашифрованы в формате хэша md5.

Код 6.6 Настройка команд PCP

Line 1 pos tg r e s : e8a48653851e28c69d0506508fb27fc5

При установке pgpool-II автоматически создается файл
pcp.conf.sample. Мы рекомендуем скопировать его в файл pcp.conf
и отредактировать.

Код 6.7 Настройка команд PCP

Line 1 $ cp / usr / l o c a l / e t c /pcp . conf . sample / usr / l o c a l / e t c /pcp . conf

В Ubuntu Linux файл находится /etc/pcp.conf.
Для того чтобы зашифровать ваш пароль в формате хэша md5

используете команду pg_md5, которая устанавливается как один из
исполняемых файлов pgpool-II. pg_md5 принимает текст в параметре
командной строки и отображает текст его md5 хэша.

Например, укажите «postgres» в качестве параметра командной строки
и pg_md5 выведет текст хэша md5 в стандартный поток вывода.

Код 6.8 Настройка команд PCP

Line 1 $ / usr / bin /pg_md5 pos tg r e s
- e8a48653851e28c69d0506508fb27fc5

Команды PCP выполняются по сети, так что в файле pgpool.conf
должен быть указан номер порта в параметре pcp_port.

Мы будем использовать значение по-умолчанию для параметра
pcp_port 9898 в этом руководстве.

Код 6.9 Настройка команд PCP

Line 1 pcp_port = 9898

120

6.2. Давайте начнем!

Подготовка узлов баз данных
Теперь нам нужно настроить серверы бэкендов PostgreSQL для

pgpool-II. Эти серверы могут быть размещены на одном хосте с pgpool-II
или на отдельных машинах. Если вы решите разместить серверы на
том же хосте, для всех серверов должны быть установлены разные
номера портов. Если серверы размещены на отдельных машинах, они
должны быть настроены так чтобы могли принимать сетевые соединения
от pgpool-II.

В этом руководстве мы разместили три сервера в рамках одного
хоста вместе с pgpool-II и присвоили им номера портов 5432, 5433,
5434 соответственно. Для настройки pgpool-II отредактируйте файл
pgpool.conf как показано ниже.

Код 6.10 Подготовка узлов баз данных

Line 1 backend_hostname0 = ’ l o c a l h o s t ’
- backend_port0 = 5432
- backend_weight0 = 1
- backend_hostname1 = ’ l o c a l h o s t ’
5 backend_port1 = 5433
- backend_weight1 = 1
- backend_hostname2 = ’ l o c a l h o s t ’
- backend_port2 = 5434
- backend_weight2 = 1

В параметрах backend_hostname, backend_port, backend_weight
укажите имя хоста узла базы данных, номер порта и коэффициент для
балансировки нагрузки. В конце имени каждого параметра должен быть
указан идентификатор узла путем добавления положительного целого
числа начиная с 0 (т.е. 0, 1, 2).

Параметры backend_weight все равны 1, что означает что запросы
SELECT равномерно распределены по трем серверам.

Запуск/Остановка pgpool-II
Для старта pgpool-II выполните в терминале следующую команду.

Код 6.11 Запуск

Line 1 pgpool

Указанная выше команда, однако, не печатает протокол своей работы
потому что pgpool отсоединяется от терминала. Если вы хотите показать
протокол работы pgpool, укажите параметр -n в командной строке при
запуске pgpool. pgpool-II будет запущен как процесс не-демон и терминал
не будет отсоединен.

Код 6.12 Запуск

Line 1 pgpool -n &

121

6.3. Ваша первая репликация

Протокол работы будет печататься на терминал, так что
рекомендуемые для использования параметры командной строки,
например, такие.

Код 6.13 Запуск

Line 1 pgpool -n -d > /tmp/pgpool . l og 2>&1 &

Параметр -d включает генерацию отладочных сообщений.
Указанная выше команда постоянно добавляет выводимый протокол

работы в файл /tmp/pgpool.log. Если вам нужно ротировать файлы
протоколов, передавайте протоколы внешней команде, у которой есть
функция ротации протоколов. Вам поможет, например, cronolog.

Код 6.14 Запуск

Line 1 pgpool -n 2>&1 | / usr / sb in / crono log
- - - ha rd l ink=/var / log / pgsq l / pgpool . l og
- ’ / var / log / pgsq l/%Y-%m-%d - pgpool . l og ’ &

Чтобы остановить процесс pgpool-II, выполните следующую команду.

Код 6.15 Остановка

Line 1 pgpool stop

Если какие-то из клиентов все еще присоединены, pgpool-II ждет
пока они не отсоединятся и потом завершает свою работу. Если вы
хотите завершить pgpool-II насильно, используйте вместо этой следующую
команду.

Код 6.16 Остановка

Line 1 pgpool -m f a s t stop

6.3 Ваша первая репликация
Репликация включает копирование одних и тех же данных на

множество узлов базы данных.
В этом разделе мы будем использовать три узла базы данных, которые

мы уже установили в разделе «6.2. Давайте начнем!», и проведем вас
шаг за шагом к созданию системы репликации базы данных. Пример
данных для репликации будет сгенерирован программой для тестирования
pgbench.

Настройка репликации
Чтобы включить функцию репликации базы данных установите

значение true для параметра replication_mode в файле pgpool.conf.

122

6.3. Ваша первая репликация

Код 6.17 Настройка репликации

Line 1 repl icat ion_mode = true

Если параметр replication_mode равен true, pgpool-II будет отправлять
копию принятого запроса на все узлы базы данных.

Если параметр load_balance_mode равен true, pgpool-II будет
распределять запросы SELECT между узлами базы данных.

Код 6.18 Настройка репликации

Line 1 load_balance_mode = true

В этом разделе мы включили оба параметра replication_mode и
load_balance_mode.

Проверка репликации
Для отражения изменений, сделанных в файле pgpool.conf, pgpool-II

должен быть перезапущен. Пожалуйста обращайтесь к разделу
«Запуск/Остановка pgpool-II».

После настройки pgpool.conf и перезапуска pgpool-II, давайте проверим
репликацию в действии и посмотрим все ли работает хорошо.

Сначала нам нужно создать базу данных, которую будем
реплицировать. Назовем ее «bench_replication». Эту базу данных
нужно создать на всех узлах. Используйте команду createdb через
pgpool-II и база данных будет создана на всех узлах.

Код 6.19 Проверка репликации

Line 1 createdb -p 9999 bench_rep l i cat ion

Затем мы запустим pgbench с параметром -i. Параметр -i
инициализирует базу данных предопределенными таблицами и данными
в них.

Код 6.20 Проверка репликации

Line 1 pgbench - i -p 9999 bench_rep l i cat ion

Указанная ниже таблица содержит сводную информацию о таблицах и
данных, которые будут созданы при помощи pgbench -i. Если на всех узлах
базы данных перечисленные таблицы и данные были созданы, репликация
работает корректно.

Имя таблицы Число строк
branches 1
tellers 10

accounts 100000
history 0

Для проверки указанной выше информации на всех узлах используем
простой скрипт на shell. Приведенный ниже скрипт покажет число строк

123

6.4. Ваш первый параллельный запрос

в таблицах branches, tellers, accounts и history на всех узлах базы данных
(5432, 5433, 5434).

Код 6.21 Проверка репликации

Line 1 f o r port in 5432 5433 5434 ; do
- > echo $port
- > fo r table_name in branches t e l l e r s accounts h i s t o r y ;

do
- > echo $table_name
5 > psq l - c "SELECT count (*) FROM $table_name" -p \
- > $port bench_rep l i cat ion
- > done
- > done

6.4 Ваш первый параллельный запрос
Данные из разных диапазонов сохраняются на двух или более узлах

базы данных параллельным запросом. Это называется распределением
(часто используется без перевода термин partitioning прим. переводчика).
Более того, одни и те же данные на двух и более узлах базы данных могут
быть воспроизведены с использованием распределения.

Чтобы включить параллельные запросы в pgpool-II вы должны
установить еще одну базу данных, называемую «Системной базой данных»
(«System Database») (далее будем называть ее SystemDB).

SystemDB хранит определяемые пользователем правила,
определяющие какие данные будут сохраняться на каких узлах бызы
данных. Также SystemDB используется чтобы объединить результаты
возвращенные узлами базы данных посредством dblink.

В этом разделе мы будем использовать три узла базы данных, которые
мы установили в разделе «6.2. Давайте начнем!», и проведем вас шаг за
шагом к созданию системы баз данных с параллельными запросами. Для
создания примера данных мы снова будем использовать pgbench.

Настройка параллельного запроса
Чтобы включить функцию выполнения параллельных запросов

установите для параметра parallel_mode значение true в файле
pgpool.conf.

Код 6.22 Настройка параллельного запроса

Line 1 paral le l_mode = true

Установка параметра parallel_mode равным true не запустит
параллельные запросы автоматически. Для этого pgpool-II нужна

124

6.4. Ваш первый параллельный запрос

SystemDB и правила определяющие как распределять данные по узлам
базы данных.

Также SystemDB использует dblink для создания соединений с
pgpool-II. Таким образом, нужно установить значение параметра
listen_addresses таким образом чтобы pgpool-II принимал эти соединения.

Код 6.23 Настройка параллельного запроса

Line 1 l i s t en_addr e s s e s = ’ * ’

Внимание: Репликация не реализована для таблиц, которые
распределяются посредством параллельных запросов и, в то же время,
репликация может быть успешно осуществлена. Вместе с тем, из-за того
что набор хранимых данных отличается при параллельных запросах и при
репликации, база данных «bench_replication», созданная в разделе «6.3.
Ваша первая репликация» не может быть повторно использована.

Код 6.24 Настройка параллельного запроса

Line 1 repl icat ion_mode = true
- load_balance_mode = f a l s e

ИЛИ

Код 6.25 Настройка параллельного запроса

Line 1 repl icat ion_mode = f a l s e
- load_balance_mode = true

В этом разделе мы установим параметры parallel_mode и
load_balance_mode равными true, listen_addresses равным «*»,
replication_mode равным false.

Настройка SystemDB
В основном, нет отличий между простой и системной базами

данных. Однако, в системной базе данных определяется функция dblink
и присутствует таблица, в которой хранятся правила распределения
данных. Таблицу dist_def необходимо определять. Более того, один
из узлов базы данных может хранить системную базу данных, а
pgpool-II может использоваться для распределения нагрузки каскадным
подключеним.

В этом разделе мы создадим SystemDB на узле с портом 5432. Далее
приведен список параметров конфигурации для SystemDB

Код 6.26 Настройка SystemDB

Line 1 system_db_hostname = ’ l o c a l h o s t ’
- system_db_port = 5432
- system_db_dbname = ’ pgpool ’
- system_db_schema = ’ pgpool_catalog ’

125

6.4. Ваш первый параллельный запрос

5 system_db_user = ’ pgpool ’
- system_db_password = ’ ’

На самом деле, указанные выше параметры являются параметрами
по-умолчанию в файле pgpool.conf. Теперь мы должны создать
пользователя с именем «pgpool» и базу данных с именем «pgpool» и
владельцем «pgpool».

Код 6.27 Настройка SystemDB

Line 1 c r e a t eu s e r -p 5432 pgpool
- createdb -p 5432 -O pgpool pgpool

Установка dblink

Далее мы должны установить dblink в базу данных «pgpool». dblink —
один из инструментов включенных в каталог contrib исходного кода
PostgreSQL.

Для установки dblink на вашей системе выполните следующие
команды.

Код 6.28 Установка dblink

Line 1 USE_PGXS=1 make -C cont r i b / dbl ink
- USE_PGXS=1 make -C cont r i b / dbl ink i n s t a l l

После того как dblink был установлен в вашей системе мы добавим
функции dblink в базу данных «pgpool». Если PostgreSQL установлен
в каталог /usr/local/pgsql, dblink.sql (файл с определениями функций)
должен быть установлен в каталог /usr/local/pgsql/share/contrib. Теперь
выполним следующую команду для добавления функций dblink.

Код 6.29 Установка dblink

Line 1 psq l - f / usr / l o c a l / pgsq l / share / con t r i b / dbl ink . s q l -p 5432
pgpool

Создание таблицы dist_def

Следующим шагом мы создадим таблицу с именем «dist_def», в
которой будут храниться правила распределения данных. Поскольку
pgpool-II уже был установлен, файл с именем system_db.sql должен
буть установлен в /usr/local/share/system_db.sql (имейте в виду что
это учебное руководство и мы использовали для установки каталог
по-умолчанию – /usr/local). Файл system_db.sql содержит директивы для
создания специальных таблиц, включая и таблицу «dist_def». Выполните
следующую команду для создания таблицы «dist_def».

Код 6.30 Создание таблицы dist_def

126

6.4. Ваш первый параллельный запрос

Line 1 $ psq l - f / usr / l o c a l / share /system_db . s q l -p 5432 -U pgpool
pgpool

Все таблицы в файле system_db.sql, включая «dist_def»,
создаются в схеме «pgpool_catalog». Если вы установили параметр
system_db_schema на использование другой схемы вам нужно,
соответственно, отредактировать файл system_db.sql.

Описание таблицы «dist_def» выглядит так как показано ниже. Имя
таблицы не должно измениться.

Код 6.31 Создание таблицы dist_def

Line 1 CREATE TABLE pgpool_catalog . d i s t_de f (
- dbname text , - - имя базы данных
- schema_name text , - - имя схемы
- table_name text , - - имя таблицы
5 col_name text NOT NULL CHECK (col_name = ANY

(c o l_ l i s t)) ,
- - - столбец ключ для распределения данных
- c o l_ l i s t t ex t [] NOT NULL, - - список имен столбцов
- type_ l i s t t ex t [] NOT NULL, - - список типов столбцов
- dist_def_func text NOT NULL,

10 - - имя функции распределения данных
- PRIMARY KEY (dbname , schema_name , table_name)
-) ;

Записи, хранимые в таблице «dist_def», могут быть двух типов.

∙ Правило Распределения Данных (col_name, dist_def_func)
∙ Мета-информация о таблицах (dbname, schema_name, table_name,

col_list, type_list)

Правило распределения данных определяет как будут распределены
данные на конкретный узел базы данных. Данные будут распределены
в зависимости от значения столбца «col_name». «dist_def_func» — это
функция, которая принимает значение «col_name» в качестве агрумента
и возвращает целое число, которое соответствует идентификатору узла
базы данных, на котором должны быть сохранены данные.

Мета-информация используется для того чтобы переписывать запросы.
Параллельный запрос должен переписывать исходные запросы так чтобы
результаты, возвращаемые узлами-бэкендами, могли быть объединены в
единый результат.

Создание таблицы replicate_def

В случае если указана таблица, для которой производится репликация
в выражение SQL, использующее зарегистрированную в dist_def таблицу
путем объединения таблиц, информация о таблице, для которой
необходимо производить репликацию, предварительно регистрируется в

127

6.4. Ваш первый параллельный запрос

таблице с именем replicate_def. Таблица replicate_def уже была создана
при обработке файла system_db.sql во время создания таблицы dist_def.
Таблица replicate_def описана так как показано ниже.

Код 6.32 Создание таблицы replicate_def

Line 1 CREATE TABLE pgpool_catalog . r ep l i c a t e_de f (
- dbname text , - - имя базы данных
- schema_name text , - - имя схемы
- table_name text , - - имя таблицы
5 c o l_ l i s t t ex t [] NOT NULL, - - список имен столбцов
- type_ l i s t t ex t [] NOT NULL, - - список типов столбцов
- PRIMARY KEY (dbname , schema_name , table_name)
-) ;

Установка правил распределения данных
В этом учебном руководстве мы определим правила распределения

данных, созданных программой pgbench, на три узла базы данных.
Тестовые данные будут созданы командой «pgbench -i -s 3» (т.е.
масштабный коэффициент равен 3). Для этого раздела мы создадим
новую базу данных с именем «bench_parallel».

В каталоге sample исходного кода pgpool-II вы можете найти файл
dist_def_pgbench.sql. Мы будем использовать этот файл с примером
для создания правил распределения для pgbench. Выполните следующую
команду в каталоге с распакованным исходным кодом pgpool-II.

Код 6.33 Установка правил распределения данных

Line 1 psq l - f sample/dist_def_pgbench . s q l -p 5432 pgpool

Ниже представлено описание файла dist_def_pgbench.sql.
В файле dist_def_pgbench.sql мы добавляем одну строку в таблицу

«dist_def». Это функция распределения данных для таблицы accounts. В
качестве столбца-ключа указан столбец aid.

Код 6.34 Установка правил распределения данных

Line 1 INSERT INTO pgpool_catalog . d i s t_de f VALUES (
- ’ bench_para l l e l ’ ,
- ’ pub l i c ’ ,
- ’ accounts ’ ,
5 ’ a id ’ ,
- ARRAY[’ a id ’ , ’ bid ’ , ’ abalance ’ , ’ f i l l e r ’] ,
- ARRAY[’ i n t e g e r ’ , ’ i n t e g e r ’ , ’ i n t e g e r ’ ,
- ’ cha rac t e r (84) ’] ,
- ’ pgpool_catalog . dist_def_accounts ’

10) ;

128

6.4. Ваш первый параллельный запрос

Теперь мы должны создать функцию распределения данных для
таблицы accounts. Заметим, что вы можете использовать одну и ту же
функцию для разных таблиц. Также вы можете создавать функции с
использованием языков отличных от SQL (например, PL/pgSQL, PL/Tcl,
и т.д.).

Таблица accounts в момент инициализации данных хранит значение
масштабного коэффициента равное 3, значения столбца aid от 1 до 300000.
Функция создана таким образом что данные равномерно распределяются
по трем узлам базы данных.

Следующая SQL-функция будет возвращать число узлов базы данных.

Код 6.35 Установка правил распределения данных

Line 1 CREATE OR REPLACE FUNCTION
- pgpool_catalog . dist_def_branches (anyelement)
- RETURNS in t e g e r AS $$
- SELECT CASE WHEN $1 > 0 AND $1 <= 1 THEN 0
5 WHEN $1 > 1 AND $1 <= 2 THEN 1
- ELSE 2
- END;
- $$ LANGUAGE sq l ;

Установка правил репликации
Правило репликации — это то что определяет какие таблицы должны

быть использованы для выполнения репликации.
Здесь это сделано при помощи pgbench с зарегистрированными

таблицами branches и tellers.
Как результат, стало возможно создание таблицы accounts и

выполнение запросов, использующих таблицы branches и tellers.

Код 6.36 Установка правил репликации

Line 1 INSERT INTO pgpool_catalog . r ep l i c a t e_de f VALUES (
- ’ bench_para l l e l ’ ,
- ’ pub l i c ’ ,
- ’ branches ’ ,
5 ARRAY[’ bid ’ , ’ bbalance ’ , ’ f i l l e r ’] ,
- ARRAY[’ i n t e g e r ’ , ’ i n t e g e r ’ , ’ cha rac t e r (88) ’]
-) ;
-
- INSERT INTO pgpool_catalog . r ep l i c a t e_de f VALUES (

10 ’ bench_para l l e l ’ ,
- ’ pub l i c ’ ,
- ’ t e l l e r s ’ ,
- ARRAY[’ t i d ’ , ’ bid ’ , ’ tba lance ’ , ’ f i l l e r ’] ,
- ARRAY[’ i n t e g e r ’ , ’ i n t e g e r ’ , ’ i n t e g e r ’ , ’ cha rac t e r (84) ’]

15) ;

129

6.4. Ваш первый параллельный запрос

Подготовленный файл Replicate_def_pgbench.sql находится в каталоге
sample. Команда psql запускается с указанием пути к исходному коду,
определяющему правила репликации, например, как показано ниже.

Код 6.37 Установка правил репликации

Line 1 psq l - f sample/ repl icate_def_pgbench . s q l -p 5432 pgpool

Проверка параллельного запроса
Для отражения изменений, сделанных в файле pgpool.conf, pgpool-II

должен быть перезапущен. Пожалуйста обращайтесь к разделу
«Запуск/Остановка pgpool-II».

После настройки pgpool.conf и перезапуска pgpool-II, давайте проверим
хорошо ли работают параллельные запросы.

Сначала нам нужно создать базу данных, которая будет распределена.
Мы назовем ее «bench_parallel». Эту базу данных нужно создать на всех
узлах. Используйте команду createdb посредством pgpool-II и база данных
будет создана на всех узлах.

Код 6.38 Проверка параллельного запроса

Line 1 createdb -p 9999 bench_para l l e l

Затем запустим pgbench с параметрами -i -s 3. Параметр -i
инициализирует базу данных предопределенными таблицами и данными.
Параметр -s указывает масштабный коэффициент для инициализации.

Код 6.39 Проверка параллельного запроса

Line 1 pgbench - i - s 3 -p 9999 bench_para l l e l

Созданные таблицы и данные в них показаны в разделе «Установка
правил распределения данных».

Один из способов проверить корректно ли были распределены
данные — выполнить запрос SELECT посредством pgpool-II и напрямую
на бэкендах и сравнить результаты. Если все настроено правильно база
данных «bench_parallel» должна быть распределена как показано ниже.

Имя таблицы Число строк
branches 3
tellers 30

accounts 300000
history 0

Для проверки указанной выше информации на всех узлах и
посредством pgpool-II используем простой скрипт на shell. Приведенный
ниже скрипт покажет минимальное и максимальное значение в таблице
accounts используя для соединения порты 5432, 5433, 5434 и 9999.

Код 6.40 Проверка параллельного запроса

130

6.5. Master-slave режим

Line 1 f o r port in 5432 5433 5434 i 9999 ; do
- > echo $port
- > psq l - c "SELECT min(a id) , max(a id) FROM accounts " \
- > -p $port bench_para l l e l
5 > done

6.5 Master-slave режим
Этот режим предназначен для использования pgpool-II с

другой репликацией (например Slony-I, Londiste). Информация
про БД указывается как для репликации. master_slave_mode и
load_balance_mode устанавливается в true. pgpool-II будет посылать
запросы INSERT/UPDATE/DELETE на Master DB (1 в списке), а
SELECT — использовать балансировку нагрузки, если это возможно.

При этом, DDL и DML для временной таблицы может быть выполнен
только на мастере. Если нужен SELECT только на мастере, то для
этого нужно использовать комментарий /*NO LOAD BALANCE*/ перед
SELECT.

В Master/Slave режиме replication_mode должен быть установлен false,
а master_slave_mode — true.

Streaming Replication (Потоковая репликация)
В master-slave режиме с потоковой репликацией, если мастер или

слейв упал, возможно использовать отказоустоичивый функционал
внутри pgpool-II. Автоматически отключив упавший нод PostgreSQL,
pgpool-II переключится на следующий слейв как на новый мастер (при
падении мастера), или останется работать на мастере (при падении
слейва). В потоковой репликации, когда слейв становится мастером,
требуется создать триггер файл (который указан в recovery.conf, параметр
«trigger_file»), чтобы PostgreSQL перешел из режима восстановления в
нормальный. Для этого можно создать небольшой скрипт:

Код 6.41 Скрипт выполняется при падении нода PostgreSQL

Line 1 #! /bin / sh
- # Fa i l ove r command f o r streming r e p l i c a t i o n .
- # This s c r i p t assumes that DB node 0 i s primary , and 1 i s

standby .
- #
5 # I f standby goes down , does nothing . I f primary goes down ,

c r e a t e a
- # t r i g g e r f i l e so that standby take over primary node .
- #
- # Arguments : $1 : f a i l e d node id . $2 : new master hostname .

$3 : path to

131

6.6. Онлайн востановление

- # t r i g g e r f i l e .
10

- fa i l ed_node=$1
- new_master=$2
- t r i g g e r _ f i l e=$3
-

15 # Do nothing i f standby goes down .
- i f [$ fa i l ed_node = 1] ; then
- e x i t 0 ;
- f i
-

20 # Create t r i g g e r f i l e .
- / usr / bin / ssh -T $new_master / bin / touch $ t r i g g e r_ f i l e
-
- e x i t 0 ;

Работает он просто: если падает слейв — скрипт ничего не выполняет,
при падении мастера — создает триггер файл на новом мастере. Сохраним
этот файл под именем «failover_stream.sh» и в pgpool.conf добавим:

Код 6.42 Что выполнять при падении нода

Line 1 failover_command = ’ /path_to_script / fa i l ove r_st ream . sh %d
%H /tmp/ t r i g g e r _ f i l e ’

где «/tmp/trigger_file» — триггер файл, указаный в конфиге recovery.conf.
Теперь, если мастер СУБД упадет, слейв будет переключен с режима

восстановления в обычный и сможет принимать запросы на запись.

6.6 Онлайн востановление
pgpool-II, в режиме репликации, может синхронизировать базы

данных и добавлять их как ноды к pgpool. Называется это «онлайн
восстановление». Этот метод также может быть использован, когда нужно
вернуть в репликацию упавший нод базы данных.

Вся процедура выполняется в два задания. Несколько секунд или
минут клиента может ждать подключения к pgpool, в то время как
восстановливается узел базы данных. Онлайн востановление состоит из
следующих шагов:

∙ CHECKPOINT;
∙ Первый этап восстановления;
∙ Ждем, пока все клиенты не отключатся;
∙ CHECKPOINT;
∙ Второй этап восстановления;
∙ Запуск postmaster (выполнить pgpool_remote_start);
∙ Восстанавливаем нод СУБД;

132

6.6. Онлайн востановление

Для работы онлайн восстановления потребуется указать следующие
параметры:

∙ backend_data_directory

Каталог данных определенного PostgreSQL кластера.
∙ recovery_user

Имя пользователя PostgreSQL.
∙ recovery_password

Пароль пользователя PostgreSQL.
∙ recovery_1st_stage_command

Параметр указывает команду для первого этапа онлайн
восстановления. Файл с командами должен быть помещен в
каталог данных СУБД кластера из-за проблем безопасности.
Например, если
recovery_1st_stage_command = ’some_script’, то pgpool-II выполнит
$PGDATA/some_script. Обратите внимание, что pgpool-II
принимает подключения и запросы в то время как выполняется
recovery_1st_stage.

∙ recovery_2nd_stage_command

Параметр указывает команду для второго этапа онлайн
восстановления. Файл с командами должен быть помещен в
каталог данных СУБД кластера из-за проблем безопасности.
Например, если
recovery_2st_stage_command = ’some_script’, то pgpool-II выполнит
$PGDATA/some_script. Обратите внимание, что pgpool-II НЕ
принимает подключения и запросы в то время как выполняется
recovery_2st_stage. Таким образом, pgpool-II будет ждать, пока все
клиенты не закроют подключения.

Streaming Replication (Потоковая репликация)
В master-slave режиме с потоковой репликацией, онлайн

восстановление отличное средство вернуть назад упавший нод PostgreSQL.
Вернуть возможно только слейв ноды, таким методом не восстановить
упавший мастер. Для восстановления мастера потребуется остановить
все PostgreSQL ноды и pgpool-II (для восстановления из резервной копии
мастера).

Для настройки онлайн восстановления нам потребуется:

∙ Установить «recovery_user». Обычно это «postgres».

Код 6.43 recovery_user

Line 1 recovery_user = ’ po s tg r e s ’

133

6.6. Онлайн востановление

∙ Установить «recovery_password» для «recovery_user» для
подключения к СУБД.

Код 6.44 recovery_password

Line 1 recovery_password = ’ some_password ’

∙ Настроить «recovery_1st_stage_command». Для этого создадим
скрипт basebackup.sh и положим его в папку с данными мастера
($PGDATA), установив ему права на выполнение. Содержание
скрипта:

Код 6.45 basebackup.sh

Line 1 #! /bin / sh
- # Recovery s c r i p t f o r streaming r e p l i c a t i o n .
- # This s c r i p t assumes that DB node 0 i s primary , and 1

i s standby .
- #
5 datad i r=$1
- des thos t=$2
- de s t d i r=$3
-
- psq l - c "SELECT pg_start_backup (’ Streaming

Rep l i ca t ion ’ , t rue) " po s tg r e s
10

- rsync -C -a - - d e l e t e - e ssh - - exc lude po s t g r e s q l . conf
- - exc lude postmaster . pid \

- - - exc lude postmaster . opts - - exc lude pg_log - - exc lude
pg_xlog \

- - - exc lude recovery . conf $datad i r / $des thos t : $d e s td i r /
-

15 ssh -T l o c a l h o s t mv $de s td i r / recovery . done
$de s td i r / recovery . conf

-
- psq l - c "SELECT pg_stop_backup () " po s tg r e s

При восстановления слейва, скрипт запускает бэкап мастера и через
rsync передает данные с мастера на слейв. Для этого необходимо
настроить SSH так, чтобы «recovery_user» мог логинится с мастера
на слейв без пароля.

Далее добавим скрипт на выполнение для первого этапа онлайн
востановления:

Код 6.46 recovery_1st_stage_command

Line 1 recovery_1st_stage_command = ’ basebackup . sh ’

∙ Оставляем «recovery_2nd_stage_command» пустым. После
успешного выполнения первого этапа онлайн восстановления,

134

6.7. Заключение

разницу в данных, что успели записатся во время работы скрипта
basebackup.sh, слейв заберет через WAL файлы с мастера.

∙ Устанавливаем C и SQL функции для работы онлайн востановления
на каждый нод СУБД.

Код 6.47 Устанавливаем C и SQL функции

Line 1 $ cd pgpool - I I - x . x . x/ s q l /pgpool - r ecovery
- $ make
- $ make i n s t a l l
- $ psq l - f pgpool - r ecovery . s q l template1

Вот и все. Теперь возможно использовать «pcp_recovery_node» для
онлайн восстановления упарших слейвов.

6.7 Заключение
PgPool-II — прекрасное средство, которое нужно применять при

масштабировании PostgreSQL.

135

7
Мультиплексоры соединений

Если сразу успеха не
добились, пытайтесь снова и
снова. Затем оставьте эти
попытки. Какой смысл глупо
упорствовать?

Уильям Клод Филдс

7.1 Введение
Мультиплексоры соединений(программы для создания пула

коннектов) позволяют уменьшить накладные расходы на базу данных,
в случае, когда огромное количество физических соединений ведет
к падению производительности PostgreSQL. Это особенно важно на
Windows, когда система ограничивает большое количество соединений.
Это также важно для веб-приложений, где количество соединений может
быть очень большим.

Вот список программ, которые создают пулы соединений:

∙ PgBouncer
∙ Pgpool

7.2 PgBouncer
Это мультиплексор соединений для PostgreSQL от компании Skype.

Существуют три режима управления.

∙ Session Pooling. Наиболее «вежливый» режим. При начале сессии
клиенту выделяется соединение с сервером; оно приписано ему в
течение всей сессии и возвращается в пул только после отсоединения
клиента.

∙ Transaction Pooling. Клиент владеет соединением с бакендом только
в течение транзакции. Когда PgBouncer замечает, что транзакция
завершилась, он возвращает соединение назад в пул.

136

7.3. PgPool-II vs PgBouncer

∙ Statement Pooling. Наиболее агрессивный режим. Соединение с
бакендом возвращается назад в пул сразу после завершения запроса.
Транзакции с несколькими запросами в этом режиме не разрешены,
так как они гарантировано будут отменены. Также не работают
подготовленные выражения (prepared statements) в этом режиме.

К достоинствам PgBouncer относится:

∙ малое потребление памяти (менее 2 КБ на соединение);
∙ отсутствие привязки к одному серверу баз данных;
∙ реконфигурация настроек без рестарта.

Базовая утилита запускается так:

Код 7.1 PgBouncer

Line 1 pgbouncer [- d] [-R] [- v] [- u user] <pgbouncer . i n i >

Простой пример для конфига:

Код 7.2 PgBouncer

Line 1 [databases]
- template1 = host =127 .0 .0 .1 port=5432 dbname=template1
- [pgbouncer]
- l i s t en_por t = 6543
5 l i s t en_addr = 12 7 . 0 . 0 . 1
- auth_type = md5
- auth_f i l e = u s e r l i s t . txt
- l o g f i l e = pgbouncer . l og
- p i d f i l e = pgbouncer . pid

10 admin_users = someuser

Нужно создать файл пользователей userlist.txt примерного
содержания:”someuser” ”same_password_as_in_server”

Админский доступ из консоли к базе данных pgbouncer:

Код 7.3 PgBouncer

Line 1 psq l -h 1 2 7 . 0 . 0 . 1 -p 6543 pgbouncer

Здесь можно получить различную статистическую информацию с
помощью команды SHOW.

7.3 PgPool-II vs PgBouncer
Все очень просто. PgBouncer намного лучше работает с пулами

соединений, чем PgPool-II. Если вам не нужны остальные фичи, которыми
владеет PgPool-II (ведь пулы коннектов это мелочи к его функционалу),
то конечно лучше использовать PgBouncer.

137

7.3. PgPool-II vs PgBouncer

∙ PgBouncer потребляет меньше памяти, чем PgPool-II
∙ у PgBouncer возможно настроить очередь соединений
∙ в PgBouncer можно настраивать псевдо базы данных (на сервере они

могут называтся по другому)

Хотя некоторые используют PgBouncer и PgPool-II совместно.

138

8

Кэширование в PostgreSQL

Чтобы что-то узнать, нужно
уже что-то знать.

Станислав Лем

8.1 Введение
Кэш или кеш — промежуточный буфер с быстрым доступом,

содержащий информацию, которая может быть запрошена с наибольшей
вероятностью. Кэширование SELECT запросов позволяет повысить
производительность приложений и снизить нагрузку на PostgreSQL.
Преимущества кэширования особенно заметны в случае с относительно
маленькими таблицами, имеющими статические данные, например,
справочными таблицами.

Многие СУБД могут кэшировать SQL запросы, и данная возможность
идет у них, в основном, «из коробки». PostgreSQL не обладает подобным
функционалом. Почему? Во-первых, мы теряем транзакционную чистоту
происходящего в базе. Что это значит? Управление конкурентным
доступом с помощью многоверсионности (MVCC — MultiVersion
Concurrency Control) — один из механизмов обеспечения одновременного
конкурентного доступа к БД, заключающийся в предоставлении каждому
пользователю «снимка» БД, обладающего тем свойством, что вносимые
данным пользователем изменения в БД невидимы другим пользователям
до момента фиксации транзакции. Этот способ управления позволяет
добиться того, что пишущие транзакции не блокируют читающих, и
читающие транзакции не блокируют пишущих. При использовании
кэширования, которому нет дела к транзакциям СУБД, «снимки» БД
могут быть с неверними данними. Во-вторых, кеширование результатов
запросов, в основном, должно происходить на стороне приложения, а
не СУБД. В таком случае управление кэшированием может работать
более гибко (включать и отключать его где потребуется для приложения),
а СУБД будет заниматся своей непосредственной целью — хранение и
предоставление целосности данных.

139

8.2. Pgmemcache

Но, несмотря на все эти минуси, многим разработчикам требуется
кэширование на уровне базы данных. Для организации кэширования
существует два инструмента для PostgreSQL:

∙ Pgmemcache (с memcached)
∙ Pgpool-II (query cache)

8.2 Pgmemcache
Memcached1 — компьютерная программа, реализующая сервис

кэширования данных в оперативной памяти на основе парадигмы
распределенной хеш-таблицы. С помощью клиентской библиотеки
позволяет кэшировать данные в оперативной памяти одного или
нескольких из множества доступных серверов. Распределение реализуется
путем сегментирования данных по значению хэша ключа по аналогии с
сокетами хэш-таблицы. Клиентская библиотека используя ключ данных
вычисляет хэш и использует его для выбора соответствующего сервера.
Ситуация сбоя сервера трактуется как промах кэша, что позволяет
повышать отказоустойчивость комплекса за счет наращивания количества
memcached серверов и возможности производить их горячую замену.

Pgmemcache2 — это PostgreSQL API библиотека на основе libmemcached
для взаимодействия с memcached. С помощью данной библиотеки
PostgreSQL может записывать, считывать, искать и удалять данные
из memcached. Попробуем, что из себя представляет данный тип
кэширования.

Установка
Во время написания этой главы была доступна 2.0.4 версия

pgmemcache3. Pgmemcache будет устанавливатся и настраиватся на
PostgreSQL версии 8.4 (для версии 9.0 все аналогично), операционная
система — Ubuntu Server 10.10. Поскольку Pgmemcache идет как модуль,
то потребуется PostgreSQL с PGXS (если уже не установлен, поскольку в
сборках для Linux присутствует PGXS). Также потребуется memcached и
libmemcached библиотека версии не ниже 0.38.

После скачивания и распаковки исходников, существует два варианта
установки Pgmemcache:

∙ Установка из исходников

Для этого достаточно выполнить в консоли:
1http://memcached.org/
2http://pgfoundry.org/projects/pgmemcache/
3http://pgfoundry.org/frs/download.php/2672/pgmemcache_2.0.4.tar.bz2

140

8.2. Pgmemcache

Код 8.1 Установка из исходников

Line 1 $ make
- $ sudo make i n s t a l l

∙ Создание и установка deb пакета (для Debian, Ubuntu)

Иногда, если у Вас на серверах Debian или Ubuntu, удобнее создать
deb пакет нужной программы и распостранать его через собственный
репозиторий на все сервера с PostgreSQL:

Код 8.2 Создание и установка deb пакета

Line 1 $ sudo apt - get i n s t a l l libmemcached - dev
pos tg r e sq l - s e rve r - dev - 8 . 4 l ibpq - dev d ev s c r i p t s yada
f l e x b i son

- $ make deb84
- # устанавливаем deb пакет
- $ sudo dpkg - i . . / po s tg r e sq l - pgmemcache - 8 . 4 * . deb

Для версии 2.0.4 утилита yada выдавала ошибку при создании deb
пакета со следующим текстом:

Код 8.3 Создание и установка deb пакета

Line 1 Cannot r e cogn i z e source name in ’ debian / changelog ’ at
/ usr / bin /yada l i n e 145 , <CHANGELOG> l i n e 1 .

- make : *** [deb84] Ошибка 9

Для устранения этой ошибки потребуется удалить первую строчку
текста в «debian/changelog» в каталоге, котором происходит сборка:

Код 8.4 Создание и установка deb пакета

Line 1 $PostgreSQL : pgmemcache/debian / changelog , v 1 .2
2010/05/05 19 : 56 : 50 ormod Exp $ < - - - - удалить

- pgmemcache (2 . 0 . 4) unstab l e ; urgency=low
-
- * v2 . 0 . 4

Устранив эту проблему, сборка deb пакета не должна составить
никаких проблем.

Настройка
После успешной установки Pgmemcache потребуется добавит во все

базы данных (на которых вы хотите использовать Pgmemcache) функции
для работы с этой библиотекой:

Код 8.5 Настройка

Line 1 % psq l [mydbname] [pguser]
- [mydbname]=# BEGIN;

141

8.2. Pgmemcache

- [mydbname]=# \ i
/ usr / l o c a l / po s t g r e s q l / share / con t r i b /pgmemcache . s q l

- # для Debian : \ i
/ usr / share / po s t g r e s q l /8 .4/ cont r i b /pgmemcache . s q l

5 [mydbname]=# COMMIT;

Теперь можно добавлять сервера memcached через
memcache_server_add и работать с кэшем. Но есть одно но. Все
сервера memcached придется задавать при каждом новом подключении к
PostgreSQL. Это ограничение можно обойти, если настроить параметры
в postgresql.conf файле:

∙ Добавить «pgmemcache» в shared_preload_libraries (автозагрузка
библиотеки pgmemcache во время старта PostgreSQL)

∙ Добавить «pgmemcache» в custom_variable_classes (устанавливаем
переменную для pgmemcache)

∙ Создаем «pgmemcache.default_servers», указав в формате «host:port»
(port - опционально) через запятую. Например:

Код 8.6 Настройка default_servers

Line 1 pgmemcache . d e f au l t_se rv e r s = ’ 1 2 7 . 0 . 0 . 1 ,
1 92 . 168 . 0 . 2 0 : 1 1211 ’ # подключили два сервера memcached

∙ Также можем настроить работу самой библиотеки pgmemcache
через «pgmemcache.default_behavior». Настройки соответствуют
настрокам libmemcached. Например:

Код 8.7 Настройка pgmemcache

Line 1 pgmemcache . de fau l t_behavior=’BINARY_PROTOCOL:1 ’

Теперь не требуется при подключении к PostgreSQL указывать сервера
memcached.

Проверка
После успешной установки и настройки pgmemcache, становится

доступен список команд для работы с memcached серверами:
Посмотрим работу в СУБД данных функций. Для начала узнаем

информацию по memcached серверах:

Код 8.8 Проверка memcache_stats

Line 1 pgmemcache=# SELECT memcache_stats () ;
- memcache_stats
- -
-
5 Server : 1 2 7 . 0 . 0 . 1 (11211)
- pid : 1116

142

8.2. Pgmemcache

Table 8.1: Список команд pgmemcache

Команда Описание

memcache_server_add(’hostname:port’::TEXT)
memcache_server_add(’hostname’::TEXT)

Добавляет memcached сервер в список
доступных серверов. Если порт не указан, по
умолчанию используется 11211.

memcache_add(key::TEXT, value::TEXT,
expire::TIMESTAMPTZ)
memcache_add(key::TEXT, value::TEXT,
expire::INTERVAL)
memcache_add(key::TEXT, value::TEXT)

Добавляет ключ в кэш, если ключ не
существует.

newval = memcache_decr(key::TEXT,
decrement::INT4)
newval = memcache_decr(key::TEXT)

Если ключ существует и является целым
числом, происходит уменьшение его значения
на указаное число (по умолчанию на единицу).
Возвращает целое число после уменьшения.

memcache_delete(key::TEXT,
hold_timer::INTERVAL)
memcache_delete(key::TEXT)

Удаляет указанный ключ. Если указать
таймер, то ключ с таким же названием
может быть добавлен только после окончания
таймера.

memcache_flush_all() Очищает все данные на всех memcached
серверах.

value = memcache_get(key::TEXT) Выбирает ключ из кэша. Возвращает NULL,
если ключ не существует, иначе — текстовую
строку.

memcache_get_multi(keys::TEXT[])
memcache_get_multi(keys::BYTEA[])

Получает массив ключей из кэша.
Возвращает список найденных записей в
виде «ключ=значение».

newval = memcache_incr(key::TEXT,
increment::INT4)
newval = memcache_incr(key::TEXT)

Если ключ существует и является целым
числом, происходит увеличение его значения
на указаное число (по умолчанию на единицу).
Возвращает целое число после увеличения.

memcache_replace(key::TEXT, value::TEXT,
expire::TIMESTAMPTZ)
memcache_replace(key::TEXT, value::TEXT,
expire::INTERVAL)
memcache_replace(key::TEXT, value::TEXT)

Заменяет значение для существующего ключа.

memcache_set(key::TEXT, value::TEXT,
expire::TIMESTAMPTZ)
memcache_set(key::TEXT, value::TEXT,
expire::INTERVAL)
memcache_set(key::TEXT, value::TEXT)

Создаем ключ со значение. Если такой ключ
существует — заменяем в нем значение на
указаное.

stats = memcache_stats() Возвращает статистику по всем серверам mem-
cached.

- uptime : 70
- time : 1289598098
- ve r s i on : 1 . 4 . 5

10 po in t e r_s i z e : 32
- rusage_user : 0 . 0
- rusage_system : 0 .24001
- curr_items : 0
- tota l_items : 0

143

8.2. Pgmemcache

15 bytes : 0
- curr_connect ions : 5
- to ta l_connec t ions : 7
- connect ion_st ructure s : 6
- cmd_get : 0

20 cmd_set : 0
- get_hits : 0
- get_misses : 0
- e v i c t i o n s : 0
- bytes_read : 20

25 bytes_written : 782
- l imit_maxbytes : 67108864
- threads : 4
-
- (1 row)

Теперь сохраним данные в memcached и попробуем их забрать:

Код 8.9 Проверка

Line 1 pgmemcache=# SELECT memcache_add(’ some_key ’ , ’ tes t_value ’) ;
- memcache_add
- - - - - - - - - - - - - - -
- t
5 (1 row)
-
- pgmemcache=# SELECT memcache_get (’ some_key ’) ;
- memcache_get
- - - - - - - - - - - - - - -

10 test_value
- (1 row)

Можно также проверить работу счетчиков в memcached (данный
функционал может пригодится для создания последовательностей):

Код 8.10 Проверка

Line 1 pgmemcache=# SELECT memcache_add(’ some_seq ’ , ’ 10 ’) ;
- memcache_add
- - - - - - - - - - - - - - -
- t
5 (1 row)
-
- pgmemcache=# SELECT memcache_incr (’ some_seq ’) ;
- memcache_incr
- - - - - - - - - - - - - - - -

10 11
- (1 row)
-
- pgmemcache=# SELECT memcache_incr (’ some_seq ’) ;

144

8.2. Pgmemcache

- memcache_incr
15 - - - - - - - - - - - - - - -

- 12
- (1 row)
-
- pgmemcache=# SELECT memcache_incr (’ some_seq ’ , 10) ;

20 memcache_incr
- - - - - - - - - - - - - - - -
- 22
- (1 row)
-

25 pgmemcache=# SELECT memcache_decr (’ some_seq ’) ;
- memcache_decr
- - - - - - - - - - - - - - - -
- 21
- (1 row)

30
- pgmemcache=# SELECT memcache_decr (’ some_seq ’) ;
- memcache_decr
- - - - - - - - - - - - - - - -
- 20

35 (1 row)
-
- pgmemcache=# SELECT memcache_decr (’ some_seq ’ , 6) ;
- memcache_decr
- - - - - - - - - - - - - - - -

40 14
- (1 row)

Для работы с pgmemcache лучше создать функции и, если требуется,
активировать эти функции через триггеры.

Например, наше приложение кэширует зашифрованые пароли
пользователей в memcached (для более быстрого доступа), и нам требуется
обновлять информацию в кэше, если она изменяется в СУБД. Создаем
функцию:

Код 8.11 Функция для обновления данных в кэше

Line 1 CREATE OR REPLACE FUNCTION auth_passwd_upd () RETURNS
TRIGGER AS $$

- BEGIN
- IF OLD. passwd != NEW. passwd THEN
- PERFORM memcache_set (’ user_id_ ’ | |

NEW. user_id | | ’ _password ’ , NEW. passwd) ;
5 END IF ;
- RETURN NEW;
- END;
- $$ LANGUAGE ’ p lpg sq l ’ ;

145

8.2. Pgmemcache

Активируем триггер для обновления таблицы пользователей:

Код 8.12 Триггер

Line 1 CREATE TRIGGER auth_passwd_upd_trg AFTER UPDATE ON passwd
FOR EACH ROW EXECUTE PROCEDURE auth_passwd_upd () ;

Но(!!!) данный пример транзакционно не безопасен — при отмене
транзации кэш не вернется на старое значение. Поэтому лучше очищать
старые данные:

Код 8.13 Очистка ключа в кэше

Line 1 CREATE OR REPLACE FUNCTION auth_passwd_upd () RETURNS
TRIGGER AS $$

- BEGIN
- IF OLD. passwd != NEW. passwd THEN
- PERFORM memcache_delete (’ user_id_ ’ | |

NEW. user_id | | ’ _password ’) ;
5 END IF ;
- RETURN NEW;
- END; $$ LANGUAGE ’ p lpg sq l ’ ;

Также нужен триггер на чистку кэша при удалении записи из СУБД:

Код 8.14 Триггер

Line 1 CREATE TRIGGER auth_passwd_del_trg AFTER DELETE ON passwd
FOR EACH ROW EXECUTE PROCEDURE auth_passwd_upd () ;

Замечу от себя, что создавать кэш в memcached на кешированый
пароль нового пользователя (или обновленного) лучше через приложение.

Заключение
PostgreSQL с помощью Pgmemcache библиотеки позволяет работать

с memcached серверами, что может потребоватся в определенных
случаях для кэширования данных напрямую с СУБД. Удобство данной
библиотеки заключается в полном доступе к функциям memcached, но
вот готовой реализации кэширование SQL запросов тут нет, и её придется
дорабатывать вручную через функции и триггеры PostgreSQL.

146

9

Расширения

Гибкость ума может заменить
красоту.

Стендаль

9.1 Введение
Один из главных плюсов PostgreSQL это возможность расширения его

функционала с помощью расширений. В данной статье я затрону только
самые интересные и популярные из существующих расширений.

9.2 PostGIS
Лицензия: Open Source
Ссылка: www.postgis.org
PostGIS добавляет поддержку для географических объектов в

PostgreSQL. По сути PostGIS позволяет использовать PostgreSQL в
качестве бэкэнда пространственной базы данных для геоинформационных
систем (ГИС), так же, как ESRI SDE или пространственного расширения
Oracle. PostGIS следует OpenGIS «Простые особенности Спецификация
для SQL» и был сертифицирован.

9.3 pgSphere
Лицензия: Open Source
Ссылка: pgsphere.projects.postgresql.org
pgSphere обеспечивает PostgreSQL сферическими типами данных, а

также функциями и операторами для работы с ними. Используется для
работы с географическими (может использоватся вместо PostGIS) или
астронамическими типами данных.

147

http://www.postgis.org/
http://pgsphere.projects.postgresql.org/

9.4. HStore

9.4 HStore
Лицензия: Open Source
HStore – расширение, которое реализует тип данных для хранения

ключ/значение в пределах одного значения в PostgreSQL (например в
одном текстовом поле). Это может быть полезно в различных ситуациях,
таких как строки с многими атрибутами, которые редко вибираются, или
полу-структурированные данные. Ключи и значения являются простыми
текстовыми строками.

Пример использования
Для начала активируем расширение:

Код 9.1 Активация hstore

Line 1 # CREATE EXTENSION hsto r e ;

Проверим работу расширения:

Код 9.2 Проверка hstore

Line 1 # SELECT ’ a=>1,a=>2 ’ : : h s to r e ;
- hs to r e
- - - - - - - - - - -
- "a"=>"1"
5 (1 row)

Как видно на листинге 9.2 ключи в hstore уникальны. Создадим
тоблицу и заполним её данными:

Код 9.3 Проверка hstore

Line 1 CREATE TABLE products (
- id s e r i a l PRIMARY KEY,
- name varchar ,
- a t t r i b u t e s h s to r e
5) ;
- INSERT INTO products (name , a t t r i b u t e s)
- VALUES (
- ’Geek Love : A Novel ’ ,
- ’ author => "Katherine Dunn" ,

10 pages => 368 ,
- category => f i c t i o n ’
-) ,
- (
- ’ Le ica M9 ’ ,

15 ’ manufacturer => Leica ,
- type => camera ,
- megapixe ls => 18 ,
- s enso r => " f u l l - frame 35mm" ’

148

9.4. HStore

-) ,
20 (’MacBook Air 11 ’ ,

- ’ manufacturer => Apple ,
- type => computer ,
- ram => 4GB,
- s t o rage => 256GB,

25 proc e s s o r => "1 .8 ghz I n t e l i 7 duel core " ,
- weight => 2.38 l b s ’
-) ;

Теперь можно производить поиск по ключу:

Код 9.4 Поиск по ключу

Line 1 # SELECT name , a t t r i bu t e s -> ’ pages ’ as page FROM products
WHERE a t t r i b u t e s ? ’ pages ’ ;

- name | page
- -+ - - - - - -
- Geek Love : A Novel | 368
5 (1 row)

Или по значению ключа:

Код 9.5 Поиск по значению ключа

Line 1 # SELECT name , a t t r i bu t e s -> ’ manufacturer ’ as manufacturer
FROM products WHERE at t r i bu t e s -> ’ type ’ = ’ computer ’ ;

- name | manufacturer
- - - - - - - - - - - - - - - - -+ - - - - - - - - - - - - - -
- MacBook Air 11 | Apple
5 (1 row)

Создание индексов:

Код 9.6 Индексы

Line 1 CREATE INDEX products_hstore_index ON products USING GIST
(a t t r i b u t e s) ;

- CREATE INDEX products_hstore_index ON products USING GIN
(a t t r i b u t e s) ;

Можно также cоздавать индекс на ключ:

Код 9.7 Индекс на ключ

Line 1 CREATE INDEX product_manufacturer
- ON products ((products . a t t r i bu t e s -> ’ manufacturer ’)) ;

Заключение
HStore — расширение для удобного и индексируемого хранения

слабоструктурированых данных в PostgreSQL.

149

9.5. PLV8

9.5 PLV8
Лицензия: Open Source
Ссылка: code.google.com/p/plv8js
PLV8 является расширением, которое предоставляет PostgreSQL

процедурный язык с движком V8 JavaScript. С помощью этого
расширения можно писать в PostgreSQL JavaScript функции, которые
можно вызывать из SQL.

Скорость работы
V81 компилирует JavaScript код непосредственно в собственный

машинный код и с помощью этого достигается высокая скорость работы.
Для примера расмотрим расчет числа Фибоначи. Вот функция написана
на plpgsql:

Код 9.8 Фибоначи на plpgsql

Line 1 CREATE OR REPLACE FUNCTION
- p s q l f i b (n i n t) RETURNS in t AS $$
- BEGIN
- IF n < 2 THEN
5 RETURN n ;
- END IF ;
- RETURN p s q l f i b (n - 1) + p s q l f i b (n - 2) ;
- END;
- $$ LANGUAGE p lpg sq l IMMUTABLE STRICT;

Замерим скорость её работы:

Код 9.9 Скорость расчета числа Фибоначи на plpgsql

Line 1 SELECT n , p s q l f i b (n) FROM gene ra t e_se r i e s (0 , 30 , 5) as n ;
- n | p s q l f i b
- - - - -+ - - - - - - - - -
- 0 | 0
5 5 | 5
- 10 | 55
- 15 | 610
- 20 | 6765
- 25 | 75025

10 30 | 832040
- (7 rows)
-
- Time : 16003 ,257 ms

Теперь сделаем тоже самое, но с использованием PLV8:
1http://en.wikipedia.org/wiki/V8_(JavaScript_engine)

150

http://code.google.com/p/plv8js/

9.5. PLV8

Код 9.10 Фибоначи на plv8

Line 1 CREATE OR REPLACE FUNCTION
- f i b (n i n t) RETURNS in t as $$
-
- f unc t i on f i b (n) {
5 r e turn n<2 ? n : f i b (n - 1) + f i b (n - 2)
- }
- r e turn f i b (n)
-
- $$ LANGUAGE plv8 IMMUTABLE STRICT;

Замерим скорость работы:

Код 9.11 Скорость расчета числа Фибоначи на plv8

Line 1 SELECT n , f i b (n) FROM gene ra t e_se r i e s (0 , 30 , 5) as n ;
- n | f i b
- - - - -+ - - - - - - - -
- 0 | 0
5 5 | 5
- 10 | 55
- 15 | 610
- 20 | 6765
- 25 | 75025

10 30 | 832040
- (7 rows)
-
- Time : 59 ,254 ms

Как видим PLV8 приблизительно в 270 (16003.257/59.254) раз быстрее
plpgsql. Можно ускорить работу расчета числа Фибоначи на PLV8 за счет
кеширования:

Код 9.12 Фибоначи на plv8

Line 1 CREATE OR REPLACE FUNCTION
- f i b 1 (n i n t) RETURNS in t as $$
- var memo = {0 : 0 , 1 : 1} ;
- f unc t i on f i b (n) {
5 i f (! (n in memo))
- memo[n] = f i b (n - 1) + f i b (n - 2)
- r e turn memo[n]
- }
- r e turn f i b (n) ;

10 $$ LANGUAGE plv8 IMMUTABLE STRICT;

Замерим скорость работы:

Код 9.13 Скорость расчета числа Фибоначи на plv8

Line 1 SELECT n , f i b 1 (n) FROM gene ra t e_se r i e s (0 , 30 , 5) as n ;

151

9.5. PLV8

- n | f i b 1
- - - - -+ - - - - - - - -
- 0 | 0
5 5 | 5
- 10 | 55
- 15 | 610
- 20 | 6765
- 25 | 75025

10 30 | 832040
- (7 rows)
-
- Time : 0 ,766 ms

Теперь расчет на PLV8 приблизительно в 20892 (16003.257/0.766) раза
быстрее, чем на plpgsql.

Использование
Одно из полезных применение PLV8 является создание из

PostgreSQL документоориенторованое хранилище. Для хранения
неструктурированных данных можно использовать hstore, но у него есть
свои недостатки:

∙ нет вложенности
∙ все данные (ключ и значение по ключу) это строка

Для хранения данных многие документоориентированые базы данных
используют JSON (MongoDB, CouchDB, Couchbase и т.д.). Для этого
начиная с PostgreSQL 9.2 добавлен тип данных JSON. Такой тип можно
добавить для PostgreSQL 9.1 и ниже используя PLV8 и DOMAIN:

Код 9.14 Создание типа JSON

Line 1 CREATE OR REPLACE FUNCTION
- va l id_json (j son text)
- RETURNS BOOLEAN AS $$
- t ry {
5 JSON. parse (j son) ; r e turn t rue ;
- } catch (e) {
- r e turn f a l s e ;
- }
- $$ LANGUAGE plv8 IMMUTABLE STRICT;

10
- CREATE DOMAIN json AS TEXT
- CHECK(va l id_json (VALUE)) ;

Функция «valid_json» используется для проверки JSON данных.
Пример использования:

152

9.5. PLV8

Код 9.15 Проверка JSON

Line 1 $ INSERT INTO members
- VALUES(’ not good j son ’) ;
- ERROR: value f o r domain j son
- v i o l a t e s check c on s t r a i n t " json_check"
5 $ INSERT INTO members
- VALUES(’ {"good " : " j son " , " i s " : t rue } ’) ;
- INSERT 0 1
- $ s e l e c t * from members ;
- p r o f i l e

10 -
- {"good" : " j son " , " i s " : t rue }
- (1 row)

Расмотрим пример использования JSON для хранения данных и PLV8
для их поиска. Для начала создадим таблицу и заполним её данными:

Код 9.16 Таблица с JSON полем

Line 1 $ CREATE TABLE members (id SERIAL, p r o f i l e j son) ;
- $ SELECT count (*) FROM members ;
- count
- - - - - - - - - -
5 1000000
- (1 row)
-
- Time : 201.109 ms

В «profile» поле мы записали приблизительно такую структуру JSON:

Код 9.17 JSON структура

Line 1 { +
- "name" : " L i tzy S a t t e r f i e l d " , +
- "age" : 24 , +
- " s i b l i n g s " : 2 , +
5 " f a cu l t y " : f a l s e , +
- "numbers" : [+
- { +
- " type" : "work" , +
- "number" : " 684 .573 .3783 x368"+

10 } , +
- { +
- " type" : "home" , +
- "number" : " 625 .112 .6081 " +
- } +

15] +
- }

Теперь создадим функцию для вывода значения по ключу из JSON (в
данном случае ожидаем цифру):

153

9.5. PLV8

Код 9.18 Функция для JSON

Line 1 CREATE OR REPLACE FUNCTION get_numeric (json_raw json , key
text)

- RETURNS numeric AS $$
- var o = JSON. parse (json_raw) ;
- r e turn o [key] ;
5 $$ LANGUAGE plv8 IMMUTABLE STRICT;

Теперь мы можем произвести поиск по таблице фильтруя по значениям
ключей «age», «siblings» или другим циферным:

Код 9.19 Поиск по данным JSON

Line 1 $ SELECT * FROM members WHERE get_numeric (p r o f i l e , ’ age ’) =
36 ;

- Time : 9340.142 ms
- $ SELECT * FROM members WHERE get_numeric (p r o f i l e ,

’ s i b l i n g s ’) = 1 ;
- Time : 14320.032 ms

Поиск работает, но скорость очень маленькая. Чтобы улучшить
скорость, нужно создать функциональные индексы:

Код 9.20 Создание индексов

Line 1 CREATE INDEX member_age ON members (get_numeric (p r o f i l e ,
’ age ’)) ;

- CREATE INDEX member_siblings ON members
(get_numeric (p r o f i l e , ’ s i b l i n g s ’)) ;

С индексами скорость поиска по JSON станет достаточно высокая:

Код 9.21 Поиск по данным JSON с индексами

Line 1 $ SELECT * FROM members WHERE get_numeric (p r o f i l e , ’ age ’) =
36 ;

- Time : 57 .429 ms
- $ SELECT * FROM members WHERE get_numeric (p r o f i l e ,

’ s i b l i n g s ’) = 1 ;
- Time : 65 .136 ms
5 $ SELECT count (*) from members where get_numeric (p r o f i l e ,

’ age ’) = 26 and get_numeric (p r o f i l e , ’ s i b l i n g s ’) = 1 ;
- Time : 106.492 ms

Получилось отличное документоориентированое хранилище из
PostgreSQL.

PLV8 позволяет использовать некоторые JavaScript библиотеки внутри
PostgreSQL. Вот пример рендера Mustache1 темплейтов:

Код 9.22 Функция для рендера Mustache темплейтов
1http://mustache.github.com/

154

9.6. Smlar

Line 1 CREATE OR REPLACE FUNCTION mustache (template text , view
j son)

- RETURNS text as $$
- // . . . 400 l i n e s o f mustache j s
- r e turn Mustache . render (template , JSON. parse (view))
5 $$ LANGUAGE plv8 IMMUTABLE STRICT;

Код 9.23 Рендер темплейтов

Line 1 $ SELECT mustache (
- ’ h e l l o {{#th ings }}{{.}} {{/ th ing s } } :)

{{#data }}{{ key }}{{/ data }} ’ ,
- ’ {" th ing s " : [" world " , " from " , " po s t g r e s q l "] , "data " :

{"key " : "and me"}} ’
-) ;
5 mustache
- -
- h e l l o world from po s t g r e s q l :) and me
- (1 row)
-

10 Time : 0 .837 ms

Этот пример показывает как можно использовать PLV8. В
действительности рендерить Mustache в PostgreSQL не лучшая идея.

Вывод
PLV8 расширение предоставляет PostgreSQL процедурный язык с

движком V8 JavaScript, с помощью которого можно работать с JavaScript
билиотеками, индексировать JSON данные и использовать его как более
быстрый язык.

9.6 Smlar
Лицензия: Open Source
Ссылка: sigaev.ru
Поиск похожестей в больших базах данных является важным вопросом

в настоящее время для таких систем как блоги (похожие статьи),
интернет-магазины (похожие продукты), хостинг изображений (похожие
изображения, поиск дубликатов изображений) и т.д. PostgreSQL
позволяет сделать такой поиск более легким. Прежде всего, необходимо
понять, как мы будем вычислять сходство двух объектов.

Похожесть
Любой объект может быть описан как список характеристик.

Например, статья в блоге может быть описана тегами, продукт в

155

http://sigaev.ru/git/gitweb.cgi?p=smlar.git;a=blob;hb=HEAD;f=README

9.6. Smlar

интернет-магазине может быть описан размером, весом, цветом и т.д. Это
означает, что для каждого объекта можно создать цифровую подпись —
массив чисел, описывающих объект (отпечатки пальцев1, n-grams2).
Тоесть нужно создать массив из цифр для описания каждого объекта.
Что делать дальше?

Расчет похожести
Есть несколько методов вычисления похожести сигнатур обьектов.

Прежде всего, легенда для расчетов:
𝑁𝑎, 𝑁𝑏 — количество уникальных элементов в массивах
𝑁𝑢 — количество уникальных элементов при объединении массивов
𝑁𝑖 — количество уникальных элементов при пересечение массивов
Один из простейших расчетов похожести двух объектов - количество

уникальных элементов при пересечение массивов делить на количество
уникальных элементов в двух массивах:

𝑆(𝐴, 𝐵) = 𝑁𝑖

(𝑁𝑎 + 𝑁𝑏)
(9.1)

или проще

𝑆(𝐴, 𝐵) = 𝑁𝑖

𝑁𝑢

(9.2)

Преимущества:

∙ Легко понять
∙ Скорость расчета: 𝑁 * log 𝑁
∙ Хорошо работает на похожих и больших 𝑁𝑎 и 𝑁𝑏

Также похожесть можно рассчитана по формуле косинусов3:

𝑆(𝐴, 𝐵) = 𝑁𝑖√
𝑁𝑎 * 𝑁𝑏

(9.3)

Преимущества:

∙ Скорость расчета: 𝑁 * log 𝑁
∙ Отлично работает на больших 𝑁

Но у обоих этих методов есть общие проблемы:

∙ Если элементов мало то разброс похожестей не велик
∙ Глобальная статистика: частые элементы ведут к тому, что вес ниже
1http://en.wikipedia.org/wiki/Fingerprint
2http://en.wikipedia.org/wiki/N-gram
3http://en.wikipedia.org/wiki/Law_of_cosines

156

9.6. Smlar

∙ Спамеры и недобросовестные пользователи. Один «залетевший
дятел» разрушит цивилизацию - алгоритм перестанет работать на
Вас.

Для избежания этих проблем можно воспользоватся TF/IDF1

метрикой:

𝑆(𝐴, 𝐵) =
∑︀

𝑖<𝑁𝑎,𝑗<𝑁𝑏,𝐴𝑖=𝐵𝑗
𝑇𝐹𝑖 * 𝑇𝐹𝑗√︁∑︀

𝑖<𝑁𝑎
𝑇𝐹 2

𝑖 * ∑︀
𝑗<𝑁𝑏

𝑇𝐹 2
𝑗

(9.4)

где инвертированный вес элемента в коллекции:

𝐼𝐷𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = log (𝑁𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑁𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

+ 1) (9.5)

и вес элемента в массиве:

𝑇𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝐼𝐷𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 * 𝑁𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 (9.6)

Не пугайтесь! Все эти алгоритмы встроены в smlar расширение, учить
(или даже глубоко понимать) их не нужно. Главное понимать, что
для TF/IDF метрики требуются вспомогательная таблица для хранения
данных, по сравнению с другими простыми метриками.

Smlar
Перейдем к практике. Олег Бартунов и Теодор Сигаев разработали

PostgreSQL расширение smlar, которое предоставляет несколько методов
для расчета похожестей массивов (все встроенные типы данных
поддерживаются) и оператор для расчета похожести с поддержкой
индекса на базе GIST и GIN. Для начала установим это расширение
(PostgreSQL уже должен быть установлен):

Код 9.24 Установка smlar

Line 1 g i t c l one g i t : // s i ga ev . ru/ smlar
- cd smlar
- USE_PGXS=1 make && make i n s t a l l

В PostgreSQL 9.2 и выше это расширение должно встать без проблем,
для PostgreSQL 9.1 и ниже вам нужно сделать небольшое исправление в
исходниках. В файле «smlar_guc.c» на линии 214 сделайте изменение с:

Код 9.25 Фикс для 9.1 и ниже

Line 1 set_conf ig_opt ion (" smlar . th r e sho ld " , buf , PGC_USERSET,
PGC_S_SESSION ,GUC_ACTION_SET, true , 0) ;

на (нужно убрать последний аргумент):
1http://en.wikipedia.org/wiki/Tf*idf

157

9.6. Smlar

Код 9.26 Фикс для 9.1 и ниже

Line 1 set_conf ig_opt ion (" smlar . th r e sho ld " , buf , PGC_USERSET,
PGC_S_SESSION ,GUC_ACTION_SET, t rue) ;

Теперь проверим расширение:

Код 9.27 Проверка smlar

Line 1 $ psq l
- psq l (9 . 2 . 1)
- Type " help " f o r he lp .
-
5 t e s t=# CREATE EXTENSION smlar ;
- CREATE EXTENSION
-
- t e s t=# SELECT smlar (’ {1 ,4 ,6} ’ : : i n t [] , ’ {5 ,4 ,6} ’ : : i n t []) ;
- smlar

10 - - - - - - - - - -
- 0.666667
- (1 row)
-
- t e s t=# SELECT smlar (’ {1 ,4 ,6} ’ : : i n t [] , ’ {5 ,4 ,6} ’ : : i n t [] ,

’N. i / sq r t (N. a * N. b) ’) ;
15 smlar

- - - - - - - - - - -
- 0.666667
- (1 row)

Расширение установленно успешно, если у Вас такой же вывод в
консоли. Методы, которые предоставляет это расширение:

∙ «float4 smlar(anyarray, anyarray)» — вычисляет похожесть двух
массивов. Массивы должны быть одного типа.

∙ «float4 smlar(anyarray, anyarray, bool useIntersect)» — вычисляет
похожесть двух массивы составных типов. Составной тип выглядит
следующим образом:

Код 9.28 Составной тип

Line 1 CREATE TYPE type_name AS (element_name anytype ,
weight_name f l o a t 4) ;

useIntersect параметр для использования пересекающихся элементов
в знаменателе

∙ «float4 smlar(anyarray a, anyarray b, text formula)» — вычисляет
похожесть двух массивов по данной формуле, массивы должны быть
того же типа. Доступные переменные в формуле:

– N.i — количество общих элементов в обоих массивов
(пересечение)

158

9.6. Smlar

– N.a — количество уникальных элементов первого массива
– N.b — количество уникальных элементов второго массива

∙ «anyarray % anyarray» — возвращает истину, если похожесть
массивов больше, чем указаный предел. Предел указывается в
конфиге PostgreSQL:

Код 9.29 Smlar предел

Line 1 custom_var iab le_classes = ’ smlar ’
- smlar . th r e sho ld = 0 .8 # предел от 0 до 1

Также в конфиге можно указать дополнительные настройки для
smlar:

Код 9.30 Smlar настройки

Line 1 custom_var iab le_classes = ’ smlar ’
- smlar . th r e sho ld = 0 .8 # предел от 0 до 1
- smlar . type = ’ co s i n e ’ # по какой формуле производить расчет

похожести : cos ine , t f i d f , over lap
- smlar . s t a t t a b l e = ’ s t a t ’ # Имя таблицы для хранения

статистики при работе по формуле t f i d f

Более подробно можно прочитать в README этого расширения.

GiST и GIN индексы поддерживаются для оператора «%».

Пример: поиск дубликатов картинок
Расмотрим простой пример поиска дубликатов картинок. Алгоритм

помогает найти похожие изображения, которые например незначительно
отличаются (изображение обесцветили, добавили ватермарк, пропустили
через фильтры). Но, поскольку точность мала, то у алгоритма есть и
позитивная сторона — скорость работы. Как можно определить, что
картинки похожи? Самый простой метод — сравнивать попиксельно два
изображения. Но скорость такой работы будет не велика на больших
разрешениях. Тем более, такой метод не учитывает, что могли изменять
уровень света, насыщенность и прочее у изображения. Нам нужно создать
сигнатуру для картинок в виде массива цифр:

∙ Создаем пиксельную матрицу к изображению (изменения размера
изображения к требующему), например 15X15 пикселей(Рис. 9.1).

∙ Расчитаем интенсивность каждого пикселя (интенсивность
вычисляется по формуле 0.299 * красный + 0.587 * зеленый +
0.114 * синий). Интенсивность поможет нам находить похожие
изображения, не обращая внимание на используемые цвета в них.

∙ Узнаем отношение интенсивности каждого пикселя к среднему
значению интенсивности по всей матрице(Рис. 9.2).

159

9.6. Smlar

Рис. 9.1: Пиксельная матрица

∙ Генерируем уникальное число для каждой ячейки (отношение
интенсивности + координаты ячейки).

∙ Сигнатура для картинки готова.

Рис. 9.2: Пиксельная матрица

Создаем таблицу, где будем хранить имя картинки, путь к ней и её
сигнатуру:

160

9.6. Smlar

Код 9.31 Таблица для изображений

Line 1 CREATE TABLE images (
- id s e r i a l PRIMARY KEY,
- name varchar (50) ,
- img_path varchar (250) ,
5 image_array i n t e g e r []
-) ;

Создадим GIN или GIST индекс:

Код 9.32 Создание GIN или GIST индекса

Line 1 CREATE INDEX image_array_gin ON images USING
GIN(image_array _int4_sml_ops) ;

- CREATE INDEX image_array_gist ON images USING
GIST(image_array _int4_sml_ops) ;

Теперь можно произвести поиск дубликатов:

Код 9.33 Поиск дубликатов

Line 1 t e s t=# SELECT count (*) from images ;
- count
- - - - - - - - - -
- 1000000
5 (1 row)
-
- t e s t=# EXPLAIN ANALYZE SELECT count (*) FROM images WHERE

images . image_array %
’ {1010259 ,1011253 , . . . , 2423253 ,2424252} ’ : : i n t [] ;

-
- Bitmap Heap Scan on images (co s t =286 .64 . . 3969 .45 rows=986

width=4) (ac tua l time =504 .312 . . 2047 .533 rows=200000
loops=1)

10 Recheck Cond : (image_array %
’ {1010259 ,1011253 , . . . , 2423253 ,2424252} ’ : : i n t e g e r [])

- -> Bitmap Index Scan on image_array_gist
(co s t =0 .00 . . 286 . 39 rows=986 width=0) (ac tua l
time =446 .109 . . 446 .109 rows=200000 loops=1)

- Index Cond : (image_array %
’ {1010259 ,1011253 , . . . , 2423253 ,2424252} ’ : : i n t e g e r [])

- Total runtime : 2152.411 ms
- (5 rows)

где «’1010259,...,2424252’::int[]» — сигнатура изображения, для которой
пытаемся найти похожие изображения. С помощью «smlar.threshold»
управляем % похожести картинок (при каком проценте они будут попадать
в выборку).

Дополнительно можем добавить сортировку по самым похожим
изображениям:

161

9.7. PostPic

Код 9.34 Добавляем сортировку по сходству картинок

Line 1 t e s t=# EXPLAIN ANALYZE SELECT smlar (images . image_array ,
’ {1010259 , . . . , 2424252} ’ : : i n t []) as s i m i l a r i t y FROM
images WHERE images . image_array % ’ {1010259 ,1011253 ,
. . . , 2 423253 , 2424252} ’ : : i n t [] ORDER BY s i m i l a r i t y DESC;

-
-
- Sort (co s t =4020 .94 . . 4023 .41 rows=986 width=924) (ac tua l

time =2888 .472 . . 2901 .977 rows=200000 loops=1)
5 Sort Key : (smlar (image_array ,

’ { . . . , 2 4 24252} ’ : : i n t e g e r []))
- Sort Method : qu i ck so r t Memory : 15520kB
- -> Bitmap Heap Scan on images (co s t =286 .64 . . 3971 .91

rows=986 width=924) (ac tua l time =474 .436 . . 2729 .638
rows=200000 loops=1)

- Recheck Cond : (image_array %
’ { . . . , 2 4 24252} ’ : : i n t e g e r [])

- -> Bitmap Index Scan on image_array_gist
(co s t =0 .00 . . 286 . 39 rows=986 width=0) (ac tua l
time =421 .140 . . 421 .140 rows=200000 loops=1)

10 Index Cond : (image_array %
’ { . . . , 2 4 24252} ’ : : i n t e g e r [])

- Total runtime : 2912.207 ms
- (8 rows)

Достаточно эффективно для 1 милиона записей. P.S. Мои данные не
помещались в память и PostgreSQL читал их с диска, поэтому скорость
будет лучше, если у Вас эта таблица будет в памяти (или будут быстрые
диски).

Вывод
Smlar расширение может быть использовано в системах, где нам

нужно искать похожие объекты, такие как тексты, темы, блоги, товары,
изображения, видео, отпечатки пальцев и прочее.

9.7 PostPic
Лицензия: Open Source
Ссылка: github.com/drotiro/postpic
PostPic расширение для СУБД PostgreSQL, которое позволяет

обрабатывать изображения в базе данных, как PostGIS делает это с
пространственными данными. Он добавляет новый типа поля «image»,
а также несколько функций для обработки изображений (кроп, создание
миниатюр, поворот и т.д.) и извлечений его атрибутов (размер, тип,
разрешение).

162

http://github.com/drotiro/postpic

9.8. Fuzzystrmatch

9.8 Fuzzystrmatch
Лицензия: Open Source
Fuzzystrmatch предоставляет несколько функций для определения

сходства и расстояния между строками. Функция soundex используется
для согласования сходно звучащих имен путем преобразования их в
одинаковый код. Функция difference преобразует две строки в soundex
код, а затем сообщает количество совпадающих позиций кода. В soundex
код состоит из четырех символов, поэтому результат будет от нуля до
четырех: 0 — не совпадают, 4 — точное совпадение (таким образом,
функция названа неверно — как название лучше подходит similarity):

Код 9.35 soundex

Line 1 # CREATE EXTENSION fuzzystrmatch ;
- CREATE EXTENSION
- # SELECT soundex (’ h e l l o world ! ’) ;
- soundex
5 - - - - - - - - -
- H464
- (1 row)
-
- # SELECT soundex (’Anne ’) , soundex (’Ann ’) ,

d i f f e r e n c e (’Anne ’ , ’Ann ’) ;
10 soundex | soundex | d i f f e r e n c e

- - - - - - - - - -+ - - - - - - - - -+ - - - - - - - - - - - -
- A500 | A500 | 4
- (1 row)
-

15 # SELECT soundex (’Anne ’) , soundex (’Andrew ’) ,
d i f f e r e n c e (’Anne ’ , ’Andrew ’) ;

- soundex | soundex | d i f f e r e n c e
- - - - - - - - - -+ - - - - - - - - -+ - - - - - - - - - - - -
- A500 | A536 | 2
- (1 row)

20
- # SELECT soundex (’Anne ’) , soundex (’ Margaret ’) ,

d i f f e r e n c e (’Anne ’ , ’ Margaret ’) ;
- soundex | soundex | d i f f e r e n c e
- - - - - - - - - -+ - - - - - - - - -+ - - - - - - - - - - - -
- A500 | M626 | 0

25 (1 row)
-
- # CREATE TABLE s (nm text) ;
- CREATE TABLE
- # INSERT INTO s VALUES (’ john ’) , (’ joan ’) , (’ wobbly ’) ,

(’ j ack ’) ;
30 INSERT 0 4

163

9.8. Fuzzystrmatch

- # SELECT * FROM s WHERE soundex (nm) = soundex (’ john ’) ;
- nm
- - - - - - -
- john

35 joan
- (2 rows)
-
- # SELECT * FROM s WHERE d i f f e r e n c e (s .nm, ’ john ’) > 2 ;
- nm

40 - - - - - -
- john
- joan
- j ack
- (3 rows)

Функция levenshtein вычисляет расстояние Левенштейна1 между
двумя строками. levenshtein_less_equal ускоряется функцию levenshtein
для маленьких значений расстояния:

Код 9.36 levenshtein

Line 1 # SELECT l ev en sh t e i n (’GUMBO’ , ’GAMBOL’) ;
- l e v en sh t e i n
- - - - - - - - - - - - - -
- 2
5 (1 row)
-
- # SELECT l ev en sh t e i n (’GUMBO’ , ’GAMBOL’ , 2 , 1 , 1) ;
- l e v en sh t e i n
- - - - - - - - - - - - - -

10 3
- (1 row)
-
- # SELECT levenshte in_le s s_equa l (’ e x t en s i v e ’ , ’ exhaust ive ’ ,

2) ;
- l evenshte in_le s s_equa l

15 -
- 3
- (1 row)
-
- t e s t=# SELECT levenshte in_le s s_equa l (’ e x t en s i v e ’ ,

’ exhaust ive ’ , 4) ;
20 l evenshte in_le s s_equa l

- -
- 4
- (1 row)

1http://en.wikipedia.org/wiki/Levenshtein_distance

164

9.9. Tsearch2

Функция metaphone, как и soundex, построена на идее создания кода
для строки: две строки, которые будут считатся похожими, будут иметь
одинаковые коды. Последним параметром указывается максимальная
длина metaphone кода. Функция dmetaphone вычисляет два «как звучит»
кода для строки — «первичный» и «альтернативный»:

Код 9.37 metaphone

Line 1 # SELECT metaphone (’GUMBO’ , 4) ;
- metaphone
- - - - - - - - - - - -
- KM
5 (1 row)
- # SELECT dmetaphone (’ p o s t g r e s q l ’) ;
- dmetaphone
- - - - - - - - - - - - -
- PSTK

10 (1 row)
-
- # SELECT dmetaphone_alt (’ p o s t g r e s q l ’) ;
- dmetaphone_alt
- - - - - - - - - - - - - - - - -

15 PSTK
- (1 row)

9.9 Tsearch2
Лицензия: Open Source
Tsearch2 – расширение для полнотекстового поиска. Встроен в

PostgreSQL начиная с версии 8.3.

9.10 OpenFTS
Лицензия: Open Source
Ссылка: openfts.sourceforge.net
OpenFTS (Open Source Full Text Search engine) является продвинутой

PostgreSQL поисковой системой, которая обеспечивает онлайн
индексирования данных и актуальность данных для поиска по базе.
Тесная интеграция с базой данных позволяет использовать метаданные,
чтобы ограничить результаты поиска.

9.11 PL/Proxy
Лицензия: Open Source

165

http://openfts.sourceforge.net/

9.12. Texcaller

Ссылка: pgfoundry.org/projects/plproxy
PL/Proxy представляет собой прокси-язык для удаленного вызова

процедур и партицирования данных между разными базами. Подробнее
можно почитать в §5.2 главе.

9.12 Texcaller
Лицензия: Open Source
Ссылка: www.profv.de/texcaller
Texcaller — это удобный интерфейс для командной строки TeX, которая

обрабатывает все виды ошибок. Он написан в простом C, довольно
портативный, и не имеет внешних зависимостей, кроме TeX. Неверный
TeX документы обрабатываются путем простого возвращения NULL, а
не прерывать с ошибкой. В случае неудачи, а также в случае успеха,
дополнительная обработка информации осуществляется через NOTICEs.

9.13 Pgmemcache
Лицензия: Open Source
Ссылка: pgfoundry.org/projects/pgmemcache
Pgmemcache — это PostgreSQL API библиотека на основе libmemcached

для взаимодействия с memcached. С помощью данной библиотеки
PostgreSQL может записывать, считывать, искать и удалять данные из
memcached. Подробнее можно почитать в §8.2 главе.

9.14 Prefix
Лицензия: Open Source
Ссылка: pgfoundry.org/projects/prefix
Prefix реализует поиск текста по префиксу (prefix @> text). Prefix

используется в приложениях телефонии, где маршрутизация вызовов и
расходы зависят от вызывающего/вызываемого префикса телефонного
номера оператора.

9.15 Dblink
Лицензия: Open Source
Dblink – расширение, которое позволяет выполнять запросы к

удаленным базам данных непосредственно из SQL, не прибегая к помощи
внешних скриптов.

166

http://pgfoundry.org/projects/plproxy/
http://www.profv.de/texcaller/
http://pgfoundry.org/projects/pgmemcache/
http://pgfoundry.org/projects/prefix

9.16. Ltree

9.16 Ltree
Лицензия: Open Source
Ltree – расширение, которое позволяет хранить древовидные

структуры в виде меток, а так же предоставляет широкие возможности
поиска по ним. Реализация алгоритма Materialized Path (достаточно
быстрый как на запись, так и на чтение).

9.17 Заключение
Расширения помогают улучшить работу PostgreSQL в решении

специфичеких проблем. Расширяемость PostgreSQL позволяет создавать
собственные расширения, или же наоборот, не нагружать СУБД лишним,
не требуемым функционалом.

167

http://en.wikipedia.org/wiki/Materialized_path

10

Бэкап и восстановление PostgreSQL

Есть два типа
администраторов — те, кто не
делает бэкапы, и те, кто уже
делает

Народная мудрость

Если какая-нибудь
неприятность может
произойти, она случается.

Закон Мэрфи

10.1 Введение
Любой хороший сисадмин знает — бэкапы нужны всегда. На сколько

бы надежна не казалась Ваша система, всегда может произойти случай,
который был не учтен, и из-за которого могут быть потеряны данные.

Тоже самое касается и PostgreSQL баз данных. Бекапы должны
быть! Посыпавшийся винчестер на сервере, ошибка в фаловой системе,
ошибка в другой программе, которая перетерла весь каталог PostgreSQL
и многое другое приведет только к плачевному результату. И даже если
у Вас репликация с множеством слейвов, это не означает, что система в
безопасности — неверный запрос на мастер (DELETE, DROP), и у слейвов
такая же порция данных (точнее их отсутствие).

Существуют три принципиально различных подхода к резервному
копированию данных PostgreSQL:

∙ SQL бэкап;
∙ Бекап уровня файловой системы;
∙ Непрерывное резервное копирование;

Каждый из этих подходов имеет свои сильные и слабые стороны.

168

10.2. SQL бэкап

10.2 SQL бэкап
Идея этого подхода в создании текстового файла с командами SQL.

Такой файл можно передать обратно на сервер и воссоздать базу данных
в том же состоянии, в котором она была во время бэкапа. У PostgreSQL
для этого есть специальная утилита — pg_dump. Пример использования
pg_dump:

Код 10.1 Создаем бэкап с помощью pg_dump

Line 1 pg_dump dbname > o u t f i l e

Для восстановления такого бэкапа достаточно выполнить:

Код 10.2 Восстанавливаем бэкап

Line 1 psq l dbname < i n f i l e

При этом базу данных «dbname» потребуется создать перед
восстановлением. Также потребуется создать пользователей, которые
имеют доступ к данным, которые восстанавливаются (это можно и не
делать, но тогда просто в выводе восстановления будут ошибки). Если
нам требуется, чтобы восстановление прекратилось при возникновении
ошибки, тогда потребуется восстанавливать бэкап таким способом:

Код 10.3 Восстанавливаем бэкап

Line 1 psq l - - s e t ON_ERROR_STOP=on dbname < i n f i l e

Также, можно делать бэкап и сразу восстанавливать его на другую
базу:

Код 10.4 Бекап в другую БД

Line 1 pg_dump -h host1 dbname | psq l -h host2 dbname

После восстановления бэкапа желательно запустить «ANALYZE»,
чтобы оптимизатор запросов обновил статистику.

А что, если нужно сделать бэкап не одной базы данных, а всех, да и
еще получить в бэкапе информацию про роли и таблицы? В таком случае
у PostgreSQL есть утилита pg_dumpall. pg_dumpall используется для
создания бэкапа данных всего кластера PostgreSQL:

Код 10.5 Бекап кластера PostgreSQL

Line 1 pg_dumpall > o u t f i l e

Для восстановления такого бэкапа достаточно выполнить от
суперпользователя:

Код 10.6 Восстановления бэкапа PostgreSQL

Line 1 psq l - f i n f i l e po s tg r e s

169

10.2. SQL бэкап

SQL бэкап больших баз данных
Некоторые операционные системы имеют ограничения на

максимальный размер файла, что может вызывають проблемы при
создании больших бэкапов через pg_dump. К счастью, pg_dump
можете бэкапить в стандартный вывод. Так что можно использовать
стандартные инструменты Unix, чтобы обойти эту проблему. Есть
несколько возможных способов:

∙ Использовать сжатие для бэкапа.

Можно использовать программу сжатия данных, например GZIP:

Код 10.7 Сжатие бэкапа PostgreSQL

Line 1 pg_dump dbname | gz ip > f i l ename . gz

Восстановление:

Код 10.8 Восстановление бэкапа PostgreSQL

Line 1 gunzip - c f i l ename . gz | p sq l dbname

или

Код 10.9 Восстановление бэкапа PostgreSQL

Line 1 cat f i l ename . gz | gunzip | p sq l dbname

∙ Использовать команду split.

Команда split позволяет разделить вывод в файлы меньшего
размера, которые являются подходящими по размеру для файловой
системы. Например, бэкап делится на куски по 1 мегабайту:

Код 10.10 Создание бэкапа PostgreSQL

Line 1 pg_dump dbname | s p l i t -b 1m - f i l ename

Восстановление:

Код 10.11 Восстановление бэкапа PostgreSQL

Line 1 cat f i l ename * | psq l dbname

∙ Использовать пользовательский формат дампа pg_dump

PostgreSQL построен на системе с библиотекой сжатия Zlib, поэтому
пользовательский формат бэкапа будет в сжатом виде. Это похоже
на метод с импользованием GZIP, но он имеет дополнительное
преимущество — таблицы могут быть восстановлены выборочно:

Код 10.12 Создание бэкапа PostgreSQL

Line 1 pg_dump -Fc dbname > f i l ename

170

10.3. Бекап уровня файловой системы

Через psql такой бэкап не восстановить, но для этого есть утилита
pg_restore:

Код 10.13 Восстановление бэкапа PostgreSQL

Line 1 pg_restore -d dbname f i l ename

При слишком большой базе данных, вариант с командой split нужно
комбинировать с сжатием данных.

10.3 Бекап уровня файловой системы
Альтернативный метод резервного копирования заключается в

непосредственном копировании файлов, которые PostgreSQL использует
для хранения данных в базе данных. Например:

Код 10.14 Бэкап PostgreSQL файлов

Line 1 ta r - c f backup . ta r / usr / l o c a l / pgsq l /data

Но есть два ограничения, которые делает этот метод
нецелесообразным, или, по крайней мере, уступающим SQL бэкапу:

∙ PostgreSQL база данных должна быть остановленна, для того,
чтобы получить актуальный бэкап (PostgreSQL держит множество
обьектов в памяти, буферизация файловой системы). Излишне
говорить, что во время восстановления такого бэкапа потребуется
также остановить PostgreSQL.

∙ Не получится востановить только определенные данные с такого
бэкапа.

Как альтернатива, можно делать снимки (snapshot) файлов системы
(папки с файлами PostgreSQL). В таком случае останавливать PostgreSQL
не требуется. Однако, резервная копия, созданная таким образом,
сохраняет файлы базы данных в состоянии, как если бы сервер
базы данных был неправильно остановлен. Поэтому при запуске
PostgreSQL из резервной копии, он будет думать, что предыдущий
экземпляр сервера вышел из строя и повторит журнала WAL. Это не
проблема, просто надо знать про это (и не забыть включить WAL
файлы в резервную копию). Также, если файловая система PostgreSQL
распределена по разным файловым система, то такой метод бэкапа будет
очень не надежным — снимки файлов системы должны быть сделаны
одновременно(!!!). Почитайте документацию файловой системы очень
внимательно, прежде чем доверять снимкам файлов системы в таких
ситуациях.

Также возможен вариант с использованием rsync. Первым запуском
rsync мы копируем основные файлы с директории PostgreSQL (PostgreSQL

171

10.4. Непрерывное резервное копирование

при этом продолжает работу). После этого мы останавливаем PostgreSQL
и запускаем повторно rsync. Второй запуск rsync пройдет гораздо быстрее,
чем первый, потому что будет передавать относительно небольшой размер
данных, и конечный результат будет соответствовать остановленной
СУБД. Этот метод позволяет делать бекап уровня файловой системы с
минимальным временем простоя.

10.4 Непрерывное резервное копирование
PostgreSQL поддерживает упреждаюшию запись логов (Write Ahead

Log, WAL) в pg_xlog директорию, которая находится в директории
данных СУБД. В логи пишутся все изменения сделаные с данными в
СУБД. Этот журнал существует прежде всего для безопасности во время
краха PostgreSQL: если происходят сбои в системе, базы данных могут
быть восстановлены с помощью «перезапуска» этого журнала. Тем не
менее, существование журнала делает возможным использование третью
стратегии для резервного копирования баз данных: мы можем объединить
бекап уровня файловой системы с резервной копией WAL файлов. Если
требуется восстановить такой бэкап, то мы восстановливаем файлы
резервной копии файловой системы, а затем «перезапускаем» с резервной
копии файлов WAL для приведения системы к актуальному состоянию.
Этот подход является более сложным для администрирования, чем любой
из предыдущих подходов, но он имеет некоторые преимущества:

∙ Не нужно согласовывать файлы резервной копии системы. Любая
внутренняя противоречивость в резервной копии будет исправлена
путем преобразования журнала (не отличается от того, что
происходит во время восстановления после сбоя).

∙ Восстановление состояния сервера для определенного момента
времени.

∙ Если мы постоянно будем «скармливать» файлы WAL на другую
машину, которая была загружена с тех же файлов резервной базы,
то у нас будет резервный сервер PostgreSQL всегда в актуальном
состоянии (создание сервера горячего резерва).

Как и бэкап файловой системы, этот метод может поддерживать
только восстановление всей базы данных кластера. Кроме того, он требует
много места для хранения WAL файлов.

Настройка
Первый шаг — активировать архивирование. Эта процедура будет

копировать WAL файлы в архивный каталог из стандартного каталога
pg_xlog. Это делается в файле postgresql.conf:

172

10.5. Утилиты для непрерывного резервного копирования

Код 10.15 Настройка архивирования

Line 1 archive_mode = on # enable a r ch iv ing
- archive_command = ’ cp -v %p /data/ pgsq l / a r ch i v e s/%f ’
- archive_timeout = 300 # timeout to c l o s e bu f f e r s

После этого необходимо перенести файлы (в порядке их появления) в
архивный каталог. Для этого можно использовать функцию rsync. Можно
поставить функцию в список задач крона и, таким образом, файлы могут
автоматически перемещаться между хостми каждые несколько минут.

Код 10.16 Копирование WAL файлов на другой хост

Line 1 rsync - avz - - d e l e t e prod1 : / data/ pgsq l / a r ch i v e s / \
- /data/ pgsq l / a r ch i v e s / > /dev/ nu l l

В конце, необходимо скопировать файлы в каталог pg_xlog на сервере
PostgreSQL (он должен быть в режиме восстановления). Для этого
создается в каталоге данных PostgreSQL создать файл recovery.conf с
заданной командой копирования файлов из архива в нужную директорию:

Код 10.17 recovery.conf

Line 1 restore_command = ’ cp /data/ pgsq l / a r ch i v e s/%f "%p" ’

Документация PostgreSQL предлагает хорошее описание настройки
непрерывного копирования, поэтому я не углублялся в детали (например,
как перенести директорию СУБД с одного сервера на другой, какие могут
быть проблемы). Более подробно вы можете почитать по этой ссылке
http://www.postgresql.org/docs/9.0/static/continuous-archiving.html.

10.5 Утилиты для непрерывного резервного
копирования

Непрерывное резервное копирования один из лучших спрособ для
создания бэкапов и восстановления их. В основном бэкапы делаются
на той же файловой системе, что не очень удобно и безопасно (при
отключении сервера вы можете потерять все, вечно забитый жествий диск
бэкапами). Поэтому лучше, когда бэкапы складываются на отдельный
сервер или в «облачное хранилище» (например S31). Чтобы не писать
свой «велосипед» для автоматизации этого процесса на сегодняшний
день существует набор программ, которые облегчает процесс настройки и
поддержки процесса создания бэкапов на основе непрерывного резервного
копирования.

1http://aws.amazon.com/s3/

173

10.5. Утилиты для непрерывного резервного копирования

WAL-E
Ссылка: github.com/heroku/WAL-E
WAL-E предназначенная для непрерывной архивации PostgreSQL

WAL-logs в S3 и управления использованием pg_start_backup и
pg_stop_backup. Утилита написана на Python и разработана в компании
Heroku, где её активно используют.

Установка

У WAL-E есть пару зависимостей: lzop, psql, mbuffer, python 2.6+ и
несколько python библиотек (gevent >= 0.13, boto >= 2.0). Также для
удобства настроек переменных среды устанавливается daemontools. На
Ubuntu это можно все поставить одной командой:

Код 10.18 Установка зависимостей для WAL-E

Line 1 # PostgreSQL уже установлен
- apt i tude i n s t a l l g i t - core python - dev python - s e t up t oo l s

bui ld - e s s e n t i a l l i b event - dev l zop mbuffer daemontools
daemontools - run

Теперь установим WAL-E:

Код 10.19 Установка WAL-E

Line 1 g i t c l one g i t : // github . com/heroku/WAL-E. g i t
- cd WAL-E
- python setup . py bu i ld
- sudo python setup . py i n s t a l l

После успешной установки можно начать работать с WAL-E.

Настройка и работа

Как уже писалось, WAL-E сливает все данные в AWS S3, поэтому нам
потребуются «Access Key ID» и «Secret Access Key» (эти данные можно
найти в акаунте Amazon AWS). Команда для загрузки бэкапа всей базу
данный в S3:

Код 10.20 Загрузка бэкапа всей базы данных в S3

Line 1 AWS_SECRET_ACCESS_KEY= . . . wal - e \
- -k AWS_ACCESS_KEY_ID \
- - - s3 - p r e f i x=s3 :// some - bucket / d i r e c t o r y / or /whatever \
- backup - push /var / l i b / po s t g r e s q l /9 .2/ main

Где «s3-prefix» — урл, который содержит имя S3 бакета (bucket) и путь
к папке, куда следует складывать резервные копии. Команда для загрузки
WAL-логов на S3:

174

https://github.com/heroku/WAL-E
http://www.heroku.com/

10.5. Утилиты для непрерывного резервного копирования

Код 10.21 Загрузка WAL-логов на S3

Line 1 AWS_SECRET_ACCESS_KEY= . . . wal - e \
- -k AWS_ACCESS_KEY_ID \
- - - s3 - p r e f i x=s3 :// some - bucket / d i r e c t o r y / or /whatever \
- wal - push

/var / l i b / po s t g r e s q l /9 .2/ main/pg_xlog/WAL_SEGMENT_LONG_HEX

Для управления этими переменными окружения можно использовать
команду envdir (идет в поставке с daemontools). Для этого создадим envdir
каталог:

Код 10.22 WAL-E с envdir

Line 1 $ mkdir -p / e t c /wal - e . d/env
- $ echo " s e c r e t - key" > / etc /wal - e . d/env/AWS_SECRET_ACCESS_KEY
- $ echo " acces s - key" > / etc /wal - e . d/env/AWS_ACCESS_KEY_ID
- $ echo ’ s3 : // some - bucket / d i r e c t o r y / or /whatever ’ >

/ etc /wal - e . d/env/WALE_S3_PREFIX
5 $ chown -R root : po s tg r e s / e t c /wal - e . d

После создания данного каталога появляется возможность запускать
WAL-E команды гораздо проще и с меньшим риском случайного
использования некорректных значений:

Код 10.23 WAL-E с envdir

Line 1 $ envdi r / e t c /wal - e . d/env wal - e backup - push . . .
- $ envdi r / e t c /wal - e . d/env wal - e wal - push . . .

Теперь настроим PostgreSQL для сбрасывания WAL-логов в S3 c
помощью WAL-E. Отредактируем postgresql.conf:

Код 10.24 Настройка PostgreSQL

Line 1 wal_leve l = hot_standby # или arch ive , если PostgreSQL < 9.0
- archive_mode = on
- archive_command = ’ envdi r / e t c /wal - e . d/env

/ usr / l o c a l / bin /wal - e wal - push %p ’
- archive_timeout = 60

Лучше указать полный путь к WAL-E (можно узнать командой «which
wal-e»), поскольку PostgreSQL может его не найти. После этого нужно
перегрузить PostgreSQL. В логах базы вы должны увидить что то подобно:

Код 10.25 Логи PostgreSQL

Line 1 2012 -11 -07 14 : 52 : 19 UTC LOG: database system was shut down
at 2012 -11 -07 14 : 51 : 40 UTC

- 2012 -11 -07 14 : 52 : 19 UTC LOG: database system i s ready to
accept connect ions

- 2012 -11 -07 14 : 52 : 19 UTC LOG: autovacuum launcher s t a r t ed
- 2012 -11 -07T14 :52 :19 .784+00 pid=7653 wal_e . worker . s3_worker

INFO MSG: begin a r ch iv ing a f i l e

175

10.5. Утилиты для непрерывного резервного копирования

5 DETAIL: Uploading
"pg_xlog /000000010000000000000001" to
" s3 :// c leverdb - pg - backups/pg/wal_005 /000000010000000000000001. l z o " .

- 2012 -11 -07 14 : 52 : 19 UTC LOG: incomplete s ta r tup packet
- 2012 -11 -07T14 :52 :28 .234+00 pid=7653 wal_e . worker . s3_worker

INFO MSG: completed a r ch iv ing to a f i l e
- DETAIL: Archiv ing to

" s3 :// c leverdb - pg - backups/pg/wal_005 /000000010000000000000001. l z o "
complete at 21583.3KiB/ s .

- 2012 -11 -07T14 :52 :28 .341+00 pid=7697 wal_e . worker . s3_worker
INFO MSG: begin a r ch iv ing a f i l e

10 DETAIL: Uploading
"pg_xlog /000000010000000000000002.00000020. backup" to
" s3 :// c leverdb - pg - backups/pg/wal_005 /000000010000000000000002.00000020. backup . l z o " .

- 2012 -11 -07T14 :52 :34 .027+00 pid=7697 wal_e . worker . s3_worker
INFO MSG: completed a r ch iv ing to a f i l e

- DETAIL: Archiv ing to
" s3 :// c leverdb - pg - backups/pg/wal_005 /000000010000000000000002.00000020. backup . l z o "
complete at 00KiB/ s .

- 2012 -11 -07T14 :52 :34 .187+00 pid=7711 wal_e . worker . s3_worker
INFO MSG: begin a r ch iv ing a f i l e

- DETAIL: Uploading
"pg_xlog /000000010000000000000002" to
" s3 :// c leverdb - pg - backups/pg/wal_005 /000000010000000000000002. l z o " .

15 2012 -11 -07T14 :52 :40 .232+00 pid=7711 wal_e . worker . s3_worker
INFO MSG: completed a r ch iv ing to a f i l e

- DETAIL: Archiv ing to
" s3 :// c leverdb - pg - backups/pg/wal_005 /000000010000000000000002. l z o "
complete at 2466.67KiB/ s .

Если похожего не видно в логах, тогда нужно смотреть что за ошибка
появляется и исправлять её.

Для того, что бы бэкапить всю базу достаточно выполнить данную
команду:

Код 10.26 Загрузка бэкапа всей базы данных в S3

Line 1 $ envdi r / e t c /wal - e . d/env wal - e backup - push
/var / l i b / po s t g r e s q l /9 .2/ main

- 2012 -11 -07T14 :49 :26 .174+00 pid=7493
wal_e . operator . s3_operator INFO MSG: s t a r t upload
pos tg r e s v e r s i on metadata

- DETAIL: Uploading to
s3 :// c leverdb - pg - backups/pg/basebackups_005/base_000000010000000000000006_00000032/ extended_vers ion . txt .

- 2012 -11 -07T14 :49 :32 .783+00 pid=7493
wal_e . operator . s3_operator INFO MSG: po s tg r e s
v e r s i on metadata upload complete

5 2012 -11 -07T14 :49 :32 .859+00 pid=7493 wal_e . worker . s3_worker
INFO MSG: beg inning volume compress ion

176

10.5. Утилиты для непрерывного резервного копирования

- DETAIL: Bui ld ing volume 0 .
- . . .
- HINT: Check that your archive_command i s execut ing

proper ly . pg_stop_backup can be cance l ed s a f e l y , but
the database backup w i l l not be usab le without a l l the
WAL segments .

- NOTICE: pg_stop_backup complete , a l l r equ i r ed WAL segments
have been arch ived

Рис. 10.1: Папка бэкапов на S3

Рис. 10.2: Папка бэкапов базы на S3

Данный бэкап лучше делать раз в сутки (например, добавить в
crontab). На рис 10.1-10.3 видно как хранятся бэкапы на S3. Все
бэкапы сжаты через lzop1. Данный алгоритм сжимает хуже чем
gzip, но скорость сжатия намного быстрее (приблизительно 25Мб/сек
используя 5% ЦПУ). Чтобы уменьшить нагрузку на чтения с жесткого
диска бэкапы отправляются через mbuffer (опцией «cluster-read-rate-limit»
можно ограничить скорость чтения, если это требуется).

Теперь перейдем к восстановлению данных. Для восстановления базы
из резервной копии используется «backup-fetch» команда:

Код 10.27 Восстановление бэкапа базы из S3
1http://en.wikipedia.org/wiki/Lzop

177

10.5. Утилиты для непрерывного резервного копирования

Рис. 10.3: Папка WAL-логов на S3

Line 1 $ sudo -u po s tg r e s bash - c " envdi r / e t c /wal - e . d/env wal - e
- - s3 - p r e f i x=s3 :// some - bucket / d i r e c t o r y / or /whatever
backup - f e t ch /var / l i b / po s t g r e s q l /9 .2/ main LATEST"

Где «LATEST» означает восстановится из последнего актуального
бэкапа (PostgreSQL в это время должен быть остановлен). Для
восстановления из более поздней резервной копии:

Код 10.28 Восстановление из поздней резервной копии

Line 1 $ sudo -u po s tg r e s bash - c " envdi r / e t c /wal - e . d/env wal - e
- - s3 - p r e f i x=s3 :// some - bucket / d i r e c t o r y / or /whatever
backup - f e t ch /var / l i b / po s t g r e s q l /9 .2/ main
base_LONGWALNUMBER_POSITION_NUMBER"

Для получения списка доступных резервных копий есть команда
«backup-list»:

Код 10.29 Список резервных копий

Line 1 $ envdi r / e t c /wal - e . d/env wal - e backup - l i s t
- name last_modi f i ed expanded_size_bytes

wal_segment_backup_start
wal_segment_offset_backup_start wal_segment_backup_stop
wal_segment_offset_backup_stop

- base_000000010000000000000008_00000032
2012 -11 -07T14 : 0 0 : 0 7 . 0 0 0Z
000000010000000000000008 00000032

- base_00000001000000000000000C_00000032
2012 -11 -08T15 : 0 0 : 0 8 . 0 0 0Z
00000001000000000000000C 00000032

178

10.5. Утилиты для непрерывного резервного копирования

После завершения работы с основной резервной копией для полного
восстановления нужно считать WAL-логи (чтобы данные обновились до
последнего состояния). Для этого используется recovery.conf:

Код 10.30 recovery.conf

Line 1 restore_command = ’ envdi r / e t c /wal - e . d/env
/ usr / l o c a l / bin /wal - e wal - f e t ch "%f " "%p" ’

После создания этого файла нужно запустить PostgreSQL. Через
небольшой интервал времени база станет полностью восстановленной.

Для удаления старых резервных копий (или вообще всех) используется
команда «delete»:

Код 10.31 Удаление резервных копий

Line 1 # удаления старых бэкапов старше
base_00000004000002DF000000A6_03626144

- $ envdi r / e t c /wal - e . d/env wal - e d e l e t e - - conf i rm be f o r e
base_00000004000002DF000000A6_03626144

- # удаления всех бэкапов
- $ envdi r / e t c /wal - e . d/env wal - e d e l e t e - - conf i rm everyth ing

Без опции «confirm» команды будут запускатся и показывать, что будет
удаляться, но фактического удаления не будет производится (dry run).

Заключение

WAL-E помогает автоматизировать сбор резервных копий с PostgreSQL
и хранить их в достаточно дешевом и надежном хранилище — Amazon S3.

Barman
Ссылка: www.pgbarman.org
Barman, как и WAL-E, позволяет создать систему для бэкапа

и восстановления PostgreSQL на основе непрерывного резервного
копирования. Barman использует для хранения бэкапов отдельный сервер,
который может собирать бэкапы как с одного, так и с нескольких
PostgreSQL баз данных.

Установка и настройка

Рассмотрим простом случай с одним экземпляром PostgreSQL (один
сервер) и пусть его хост будет «pghost». Наша задача — автоматизировать
сбор и хранение бэкапов этой базы на другом сервере (его хость будет
«brhost»). Для взаимодействия эти два сервера должны быть полность
открыты по SSH (доступ без пароля, по ключам). Для этого можно
использовать authorized_keys файл.

179

http://www.pgbarman.org/

10.5. Утилиты для непрерывного резервного копирования

Код 10.32 Проверка подключения по SSH

Line 1 # Проверка подключения с сервера PostgreSQL (pghost)
- ssh barman@brhost
- # Проверка подключения с сервера бэкапов (brhost)
- ssh postgres@pghost

Далее нужно установить на сервере для бэкапов barman. Сам barman
написан на python и имеет пару зависимостей: python 2.6+, rsync >= 3.0.4
и python библиотеки (argh, psycopg2, python-dateutil < 2.0 (для python 3.0
не нужен), distribute). На Ubuntu все зависимости можно поставить одной
командой:

Код 10.33 Установка зависимостей barman

Line 1 apt i tude i n s t a l l python - dev python - argh python - psycopg2
python - d a t e u t i l r sync python - s e t up t oo l s

Далее нужно установить barman:

Код 10.34 Установка barman

Line 1 # tar - xz f barman - 1 . 1 . 1 . ta r . gz
- # cd barman - 1 . 1 . 1 /
- # python setup . py bu i ld
- # sudo python setup . py i n s t a l l

Теперь перейдем к серверу с PostgreSQL. Для того, что бы barman мог
подключатся к базе данных без проблем, нам нужно выставить настройки
доступа в конфигах PostgreSQL:

Код 10.35 Отредактировать в postgresql.conf

Line 1 l i s t en_ad r e s s = ’ * ’

Код 10.36 Добавить в pg_hba.conf

Line 1 host a l l a l l brhost /32 t r u s t

После этих изменений нужно перегрузить PostgreSQL. Теперь можем
проверить с сервера бэкапов подключение к PostgreSQL:

Код 10.37 Проверка подключения к базе

Line 1 $ psq l - c ’SELECT ve r s i on () ’ -U pos tg r e s -h pghost
- ve r s i on
- -
- PostgreSQL 9 . 2 . 1 on x86_64 - unknown - l inux - gnu , compiled by

gcc (Ubuntu/Linaro 4 . 7 . 2 - 2 ubuntu1) 4 . 7 . 2 , 64 - b i t
5 (1 row)

Далее создадим папку на сервере с бэкапами для хранения этих самых
бэкапов:

180

10.5. Утилиты для непрерывного резервного копирования

Код 10.38 Папка для хранения бэкапов

Line 1 # sudo mkdir -p / srv /barman
- # sudo chown barman : barman / srv /barman

Для настройки barman создадим /etc/barman.conf:

Код 10.39 barman.conf

Line 1 [barman]
- ; Main d i r e c t o r y
- barman_home = / srv /barman
-
5 ; Log l o c a t i o n
- l o g_ f i l e = /var / log /barman/barman . l og
-
- ; De fau l t compress ion l e v e l : p o s s i b l e va lue s are None

(d e f au l t) , bzip2 , gz ip or custom
- compress ion = gz ip

10
- ; ’main ’ PostgreSQL Server c on f i g u r a t i on
- [main]
- ; Human readab le d e s c r i p t i o n
- d e s c r i p t i o n = "Main PostgreSQL Database"

15
- ; SSH opt ions
- ssh_command = ssh postgres@pghost
-
- ; PostgreSQL connect ion s t r i n g

20 conn in fo = host=pghost user=pos tg r e s

Секция «main» (так мы назвали для barman наш PostgreSQL севрер)
содержит настроки для подключения к PostgreSQL серверу и базе.
Проверим настройки:

Код 10.40 Проверка barman настроек

Line 1 # barman show - s e r v e r main
- Server main :
- a c t i v e : t rue
- d e s c r i p t i o n : Main PostgreSQL Database
5 ssh_command : ssh postgres@pghost
- conn in fo : host=pghost user=pos tg r e s
- backup_directory : / s rv /barman/main
- basebackups_directory : / s rv /barman/main/base
- wals_directory : / s rv /barman/main/wals

10 incoming_wals_directory : / s rv /barman/main/ incoming
- l o c k_ f i l e : / s rv /barman/main/main . l o ck
- compress ion : gz ip
- custom_compress ion_f i l ter : None
- custom_decompress ion_f i l ter : None

181

10.5. Утилиты для непрерывного резервного копирования

15 r e t en t i on_po l i cy : None
- wal_retent ion_pol icy : None
- pre_backup_script : None
- post_backup_script : None
- current_xlog : None

20 last_shipped_wal : None
- archive_command : None
- server_txt_vers ion : 9 . 2 . 1
- data_directory : / var / l i b / po s t g r e s q l /9 .2/ main
- archive_mode : o f f

25 c o n f i g_ f i l e :
/ e t c / po s t g r e s q l /9 .2/ main/ po s t g r e s q l . conf

- hba_f i l e : / e t c / po s t g r e s q l /9 .2/ main/pg_hba . conf
- i d e n t_ f i l e : / e t c / po s t g r e s q l /9 .2/ main/pg_ident . conf
-
- # barman check main

30 Server main :
- ssh : OK
- PostgreSQL : OK
- archive_mode : FAILED (p l e a s e s e t i t to ’ on ’)
- archive_command : FAILED (p l e a s e s e t i t a c co rd ing ly

to documentation)
35 d i r e c t o r i e s : OK

- compress ion s e t t i n g s : OK

Все хорошо, вот только PostgreSQL не настроен. Для этого на сервере
с PostgreSQL отредактируем конфиг базы:

Код 10.41 Настройка PostgreSQL

Line 1 wal_leve l = hot_standby # arch ive для PostgreSQL < 9.0
- archive_mode = on
- archive_command = ’ rsync - a %p

barman@brhost :INCOMING_WALS_DIRECTORY/%f ’

где «INCOMING_WALS_DIRECTORY» — директория для
складывания WAL-логов. Её можно узнать из вывода команды
«barman show-server main»(смотри листинг 10.40, тут указано
«/srv/barman/main/incoming»). После изменения настроек нужно
перегрузить PostgreSQL. Теперь проверим статус на сервере бэкапов:

Код 10.42 Проверка

Line 1 # barman check main
- Server main :
- ssh : OK
- PostgreSQL : OK
5 archive_mode : OK
- archive_command : OK
- d i r e c t o r i e s : OK

182

10.5. Утилиты для непрерывного резервного копирования

- compress ion s e t t i n g s : OK

Все готово. Для добавления нового сервера процедуру потребуется
повторить, а в barman.conf добавить новый сервер.

Работа

Получение списка серверов:

Код 10.43 Список серверов

Line 1 # barman l i s t - s e r v e r
- main - Main PostgreSQL Database

Запуск создания резервной копии PostgreSQL (сервер указывается
последним параметром):

Код 10.44 Создание бэкапа

Line 1 # barman backup main
- Sta r t i ng backup f o r s e r v e r main in

/ srv /barman/main/base /20121109T090806
- Backup s t a r t at x log l o c a t i o n : 0/3000020

(000000010000000000000003 , 00000020)
- Copying f i l e s .
5 Copy done .
- Asking PostgreSQL s e r v e r to f i n a l i z e the backup .
- Backup end at x log l o c a t i o n : 0/30000D8

(000000010000000000000003 , 000000D8)
- Backup completed

Такую задачу лучше выполнять раз в сутки (добавить в cron).
Посмотреть список бэкапов для указаной базы:

Код 10.45 Список бэкапов

Line 1 # barman l i s t - backup main
- main 20121110T091608 - Fr i Nov 10 09 : 20 : 58 2012 - S i z e : 1 . 0

GiB - WAL S i z e : 446 .0 KiB
- main 20121109T090806 - Fr i Nov 9 09 : 08 : 10 2012 - S i z e :

23 .0 MiB - WAL S i z e : 477 .0 MiB

Более подробная информация о выбраной резервной копии:

Код 10.46 Информация о выбраной резервной копии

Line 1 # barman show - backup main 20121110T091608
- Backup 20121109T091608 :
- Server Name : main
- Status : : DONE
5 PostgreSQL Vers ion : 90201
- PGDATA d i r e c t o r y : / var / l i b / po s t g r e s q l /9 .2/ main
-

183

10.5. Утилиты для непрерывного резервного копирования

- Base backup in fo rmat ion :
- Disk usage : 1 . 0 GiB

10 Timel ine : 1
- Begin WAL : 00000001000000000000008C
- End WAL : 000000010000000000000092
- WAL number : 7
- Begin time : 2012 -11 -10 09 : 16 : 08 . 856884

15 End time : 2012 -11 -10 09 : 20 : 58 . 478531
- Begin O f f s e t : 32
- End Of f s e t : 3576096
- Begin XLOG : 0/8C000020
- End XLOG : 0/92369120

20
- WAL in format ion :
- No o f f i l e s : 1
- Disk usage : 446 .0 KiB
- Last a v a i l a b l e : 000000010000000000000093

25
- Catalog in fo rmat ion :
- Previous Backup : 20121109T090806
- Next Backup : - (t h i s i s the l a t e s t base backup)

Также можно сжимать WAL-логи, которые накапливаются в каталогах
командой «cron»:

Код 10.47 Архивирование WAL-логов

Line 1 # barman cron
- Proce s s ing x log segments f o r main
- 000000010000000000000001
- 000000010000000000000002
5 000000010000000000000003
- 000000010000000000000003.00000020. backup
- 000000010000000000000004
- 000000010000000000000005
- 000000010000000000000006

Эту команду требуется добавлять в cron. Частота выполнения данной
команды зависит от того, как много WAL-логов накапливается (чем
больше файлов - тем дольше она выполняется). Barman может сжимать
WAL-логи через gzip, bzip2 или другой компрессор данных (команды
для сжатия и распаковки задаются через custom_compression_filter и
custom_decompression_filter соответственно).

Для восстановления базы из бэкапа используется команда «recover»:

Код 10.48 Восстановление базы

Line 1 # barman recove r - - remote - ssh - command " ssh postgres@pghost "
main 20121109T090806 /var / l i b / po s t g r e s q l /9 .2/ main

184

10.5. Утилиты для непрерывного резервного копирования

- Sta r t i ng remote r e s t o r e f o r s e r v e r main us ing backup
20121109T090806

- Dest inat i on d i r e c t o r y : / var / l i b / po s t g r e s q l /9 .2/ main
- Copying the base backup .
5 Copying r equ i r ed wal segments .
- The archive_command was s e t to ’ f a l s e ’ to prevent data

l o s s e s .
-
- Your PostgreSQL s e r v e r has been s u c c e s s f u l l y prepared f o r

recovery !
-

10 Please rev iew network and arch ive r e l a t e d s e t t i n g s in the
PostgreSQL

- c on f i gu r a t i on f i l e b e f o r e s t a r t i n g the j u s t recovered
in s t ance .

-
- WARNING: Before s t a r t i n g up the recovered PostgreSQL server ,
- p l e a s e rev iew a l s o the s e t t i n g s o f the f o l l ow i n g

c on f i gu r a t i on
15 opt ions as they might i n t e r f e r e with your cur rent recovery

attempt :
-
- data_directory = ’ /var / l i b / po s t g r e s q l /9 .1/ main ’

use data in another d i r e c t o r y
- ex t e rna l_p id_f i l e =

’ /var /run/ po s t g r e s q l /9 .1 - main . pid ’ # wr i t e
an extra PID f i l e

- hba_f i l e = ’ / e t c / po s t g r e s q l /9 .1/ main/pg_hba . conf ’ #
host - based au then t i c a t i on f i l e

20 i d e n t_ f i l e =
’ / e tc / po s t g r e s q l /9 .1/ main/pg_ident . conf ’ # ident
c on f i gu r a t i on f i l e

Barman может восстановить базу из резервной копии на удаленном
сервере через SSH (для этого есть опция «remote-ssh-command»).
Также barman может восстановить базу используя PITR1: для этого
используются опции «target-time» (указывается время) или «target-xid»
(id транзакции).

Заключение

Barman помогает автоматизировать сбор и хранение резервных копий
PostgreSQL данных на отдельном сервере. Утилита проста, позволяет
хранить и удобно управлять бэкапами нескольких PostgreSQL серверов.

1http://en.wikipedia.org/wiki/Point-in-time_recovery

185

10.6. Заключение

10.6 Заключение
В любом случае, усилия и время, затраченные на создание

оптимальной системы создания бэкапов, будут оправданы. Невозможно
предугадать когда произойдут проблемы с базой данных, поэтому бэкапы
должны быть настроены для PostgreSQL (особенно, если это продакшн
система).

186

11

Стратегии масштабирования для
PostgreSQL

То, что мы называем
замыслом (стратегией),
означает избежать бедствия и
получить выгоду.

У-цзы

В конце концов, все решают
люди, не стратегии.

Ларри Боссиди

11.1 Введение
Многие разработчики крупных проектов сталкиваются с проблемой,

когда один единственный сервер базы данных никак не может справится
с нагрузками. Очень часто такие проблемы происходят из-за неверного
проектирования приложения(плохая структура БД для приложения,
отсутствие кеширования). Но в данном случае пусть у нас есть
«идеальное» приложение, для которого оптимизированы все SQL запросы,
используется кеширование, PostgreSQL настроен, но все равно не
справляется с нагрузкой. Такая проблема может возникнуть как на этапе
проектирования, так и на этапе роста приложения. И тут возникает
вопрос: какую стратегию выбрать при возникновении подобной ситуации?

Если Ваш заказчик готов купить супер сервер за несколько тысяч
долларов (а по мере роста — десятков тисяч и т.д.), чтобы сэкономить
время разработчиков, но сделать все быстро, можете дальше эту главу не
читать. Но такой заказчик — мифическое существо и, в основном, такая
проблема ложится на плечи разработчиков.

187

11.2. Проблема чтения данных

Суть проблемы
Для того, что-бы сделать какой-то выбор, необходимо знать суть

проблемы. Существуют два предела, в которые могут уткнуться сервера
баз данных:

∙ Ограничение пропускной способности чтения данных;
∙ Ограничение пропускной способности записи данных;

Практически никогда не возникает одновременно две проблемы, по
крайне мере, это маловероятно (если вы конечно не Twitter или Facebook
пишете). Если вдруг такое происходит — возможно система неверно
спроектирована, и её реализацию следует пересмотреть.

11.2 Проблема чтения данных
Обычно начинается проблема с чтением данных, когда СУБД не

в состоянии обеспечить то количество выборок, которое требуется. В
основном такое происходит в блогах, новостных лентах и т.д. Хочу
сразу отметить, что подобную проблему лучше решать внедрением
кеширования, а потом уже думать как масштабировать СУБД.

Методы решения
∙ PgPool-II v.3 + PostgreSQL v.9 с Streaming Replication — отличное

решение для масштабирования на чтение, более подробно можно
ознакомится по ссылке. Основные преимущества:

– Низкая задержка репликации между мастером и слейвом
– Производительность записи падает незначительно
– Отказоустойчивость (failover)
– Пулы соединений
– Интеллектуальная балансировка нагрузки – проверка задержки

репликации между мастером и слейвом (сам проверяет
pg_current_xlog_location и pg_last_xlog_receive_location).

– Добавление слейв СУБД без остановки pgpool-II
– Простота в настройке и обслуживании

∙ PgPool-II v.3 + PostgreSQL с Slony — аналогично предыдущему
решение, но с использованием Slony. Основные преимущества:

– Отказоустойчивость (failover)
– Пулы соединений
– Интеллектуальная балансировка нагрузки – проверка задержки

репликации между мастером и слейвом.
– Добавление слейв СУБД без остановки pgpool-II
– Можно использовать Postgresql ниже 9 версии

∙ Postgres-XC — подробнее можно прочитать в §5.3 главе.

188

http://pgpool.projects.pgfoundry.org/contrib_docs/simple_sr_setting/index.html

11.3. Проблема записи данных

11.3 Проблема записи данных
Обычно такая проблема возникает в системах, которые производят

анализ больших обьемов данных (например ваш аналог Google Analytics).
Данные активно пишутся и мало читаются (или читается только сумарный
вариант собранных данных).

Методы решения
Один из самых популярных методов решение проблем — размазать

нагрузку по времени с помощью систем очередей.

∙ PgQ — это система очередей, разработанная на базе PostgreSQL.
Разработчики — компания Skype. Используется в Londiste
(подробнее §4.4). Особенности:

– Высокая производительность благодаря особенностям
PostgreSQL

– Общая очередь, с поддержкой нескольких обработчиков и
нескольких генераторов событий

– PgQ гарантирует, что каждый обработчик увидит каждое
событие, как минимум один раз

– События достаются из очереди «пачками» (batches)
– Чистое API на SQL функциях
– Удобный мониторинг

Также можно воспользоватся еще одной утилитой — RabbitMQ.
RabbitMQ — платформа, реализующая систему обмена сообщениями
между компонентами программной системы (Message Oriented
Middleware) на основе стандарта AMQP (Advanced Message Queuing
Protocol). RabbitMQ выпускается под Mozilla Public License.
RabbitMQ создан на основе испытанной Open Telecom Platform,
обеспечивающий высокую надёжность и производительность
промышленного уровня и написан на языке Erlang.

∙ Postgres-XC — подробнее можно прочитать в §5.3 главе.

11.4 Заключение
В данной главе показаны только пару возможных вариантов решения

масштабирования PostgreSQL. Таких стратегий существует огромное
количество и каждая из них имеет как сильные, так и слабые стороны.
Самое важное то, что выбор оптимальной стратегии масштабирования
для решения поставленных задач остается на плечах разработчиков и/или
администраторов СУБД.

189

12

Советы по разным вопросам
(Performance Snippets)

Быстро найти правильный
ответ на трудный вопрос — ни
с чем не сравнимое
удовольствие.

Макс Фрай. Обжора-Хохотун

– Вопрос риторический.
– Нет, но он таким кажется,
потому что у тебя нет ответа.

Доктор Хаус (House M.D.),
сезон 1 серия 1

12.1 Введение
Иногда возникают очень интересные проблемы по работе с PostgreSQL,

которые при нахождении ответа поражают своей лаконичностью,
красотой и простым исполнением (а может и не простым). В данной
главе я решил собрать интересные методы решения разных проблем, с
которыми сталкиваются люди при работе с PostgreSQL. Я не являюсь
огромным специалистом по данной теме, поэтому многие решения мне
помогали находить люди из PostgreSQL комьюнити, а иногда хватало и
поиска по Интернету.

12.2 Советы

Размер объектов в базе данных
Данный запрос показывает размер объектов в базе данных (например

таблиц и индексов).

190

12.2. Советы

Скачать snippets/biggest_relations.sql

Line 1 SELECT nspname | | ’ . ’ | | relname AS " r e l a t i o n " ,
- pg_size_pretty (pg_re lat ion_s ize (C. o id)) AS " s i z e "
- FROM pg_class C
- LEFT JOIN pg_namespace N ON (N. o id = C. re lnamespace)
5 WHERE nspname NOT IN (’ pg_catalog ’ , ’ information_schema ’)
- ORDER BY pg_re lat ion_s ize (C. o id) DESC
- LIMIT 20 ;

Пример вывода:

Код 12.1 Поиск самых больших объектов в БД. Пример вывода

Line 1 r e l a t i o n | s i z e
- -+ - - - - - - - - - - - -
- pub l i c . accounts | 326 MB
- pub l i c . accounts_pkey | 44 MB
5 pub l i c . h i s t o r y | 592 kB
- pub l i c . t e l l e r s_pkey | 16 kB
- pub l i c . branches_pkey | 16 kB
- pub l i c . t e l l e r s | 16 kB
- pub l i c . branches | 8192 bytes

Размер самых больших таблиц
Данный запрос показывает размер самых больших таблиц в базе

данных.

Скачать snippets/biggest_tables.sql

Line 1 SELECT nspname | | ’ . ’ | | relname AS " r e l a t i o n " ,
- pg_size_pretty (pg_tota l_re la t ion_s ize (C. o id)) AS

" t o t a l_ s i z e "
- FROM pg_class C
- LEFT JOIN pg_namespace N ON (N. o id = C. re lnamespace)
5 WHERE nspname NOT IN (’ pg_catalog ’ , ’ information_schema ’)
- AND C. r e l k i nd <> ’ i ’
- AND nspname !~ ’^pg_toast ’
- ORDER BY pg_tota l_re la t ion_s ize (C. o id) DESC
- LIMIT 20 ;

Пример вывода:

Код 12.2 Размер самых больших таблиц. Пример вывода

Line 1 r e l a t i o n | t o t a l_ s i z e
- -+ - - - - - - - - - - - -
- pub l i c . a c t i on s | 4249 MB
- pub l i c . product_history_records | 197 MB
5 pub l i c . product_updates | 52 MB

191

http://postgresql.leopard.in.ua/codes/snippets/biggest_relations.sql
http://postgresql.leopard.in.ua/codes/snippets/biggest_tables.sql

12.2. Советы

- pub l i c . import_products | 34 MB
- pub l i c . products | 29 MB
- pub l i c . v i s i t s | 25 MB

«Средний» count
Данный метод позволяет узнать приблизительное количество записей

в таблице. Для огромных таблиц этот метод работает быстрее, чем
обыкновенный count.

Скачать snippets/count_estimate.sql

Line 1 CREATE LANGUAGE p lpg sq l ;
- CREATE FUNCTION count_estimate (query text) RETURNS in t e g e r

AS $$
- DECLARE
- r e c record ;
5 rows i n t e g e r ;
- BEGIN
- FOR rec IN EXECUTE ’EXPLAIN ’ | | query LOOP
- rows := subs t r i ng (r ec . "QUERY PLAN" FROM ’

rows = ([[: d i g i t :]] +) ’) ;
- EXIT WHEN rows IS NOT NULL;

10 END LOOP;
-
- RETURN rows ;
- END;
- $$ LANGUAGE p lpg sq l VOLATILE STRICT;

Пример:

Код 12.3 «Средний» count. Пример

Line 1 CREATE TABLE foo (r double p r e c i s i o n) ;
- INSERT INTO foo SELECT random () FROM gene ra t e_se r i e s (1 ,

1000) ;
- ANALYZE foo ;
-
5 # SELECT count (*) FROM foo WHERE r < 0 . 1 ;
- count
- - - - - - - -
- 92
- (1 row)

10
- # SELECT count_estimate (’SELECT * FROM foo WHERE r < 0 .1 ’) ;
- count_estimate
- - - - - - - - - - - - - - - - -
- 94

15 (1 row)

192

http://postgresql.leopard.in.ua/codes/snippets/count_estimate.sql

12.2. Советы

Узнать значение по-умолчанию у поля в таблице
Данный метод позволяет узнать значение по-умолчанию у поля в

таблице (заданое через DEFAULT).

Скачать snippets/default_value.sql

Line 1 CREATE OR REPLACE FUNCTION ret_def (text , text , t ex t) RETURNS
text AS $$

- SELECT
- COLUMNS. column_default : : t ex t
- FROM
5 information_schema .COLUMNS
- WHERE table_name = $2
- AND table_schema = $1
- AND column_name = $3
- $$ LANGUAGE sq l IMMUTABLE;

Пример:

Код 12.4 Узнать значение по-умолчанию у поля в таблице. Пример

Line 1 # SELECT ret_def (’ schema ’ , ’ t ab l e ’ , ’ column ’) ;
-
- SELECT ret_def (’ pub l i c ’ , ’ image_f i l e s ’ , ’ id ’) ;
- ret_def
5 -
- nextva l (’ image_fi les_id_seq ’ : : r e g c l a s s)
- (1 row)
-
- SELECT ret_def (’ pub l i c ’ , ’ schema_migrations ’ , ’ v e r s i on ’) ;

10 ret_def
- - - - - - - - - -
-
- (1 row)

Случайное число из диапазона
Данный метод позволяет взять случайное(random) число из указаного

диапазона (целое или с плавающей запятой).

Скачать snippets/random_from_range.sql

Line 1 CREATE OR REPLACE FUNCTION random(numeric , numeric)
- RETURNS numeric AS
- $$
- SELECT ($1 + ($2 - $1) * random ()) : : numeric ;
5 $$ LANGUAGE ’ s q l ’ VOLATILE;

Пример:

193

http://postgresql.leopard.in.ua/codes/snippets/default_value.sql
http://postgresql.leopard.in.ua/codes/snippets/random_from_range.sql

12.2. Советы

Код 12.5 Случайное число из диапазона. Пример

Line 1 SELECT random (1 ,10) : : int , random (1 ,10) ;
- random | random
- - - - - - - - -+ - - - - - - - - - - - - - - - - - -
- 6 | 5.11675184825435
5 (1 row)
-
- SELECT random (1 ,10) : : int , random (1 ,10) ;
- random | random
- - - - - - - - -+ - - - - - - - - - - - - - - - - - -

10 7 | 1.37060070643201
- (1 row)

Алгоритм Луна
Алгоритм Луна или формула Луна1 — алгоритм вычисления

контрольной цифры, получивший широкую популярность. Он
используется, в частности, при первичной проверке номеров банковских
пластиковых карт, номеров социального страхования в США и Канаде.
Алгоритм был разработан сотрудником компании «IBM» Хансом Петером
Луном и запатентован в 1960 году.

Контрольные цифры вообще и алгоритм Луна в частности
предназначены для защиты от случайных ошибок, а не преднамеренных
искажений данных.

Алгоритм Луна реализован на чистом SQL. Обратите внимание, что
эта реализация является чисто арифметической.

Скачать snippets/luhn_algorithm.sql

Line 1 CREATE OR REPLACE FUNCTION luhn_ver i fy (i n t8) RETURNS
BOOLEAN AS $$

- - - Take the sum of the
- - - doubled d i g i t s and the even - numbered undoubled d i g i t s ,

and see i f
- - - the sum i s evenly d i v i s i b l e by zero .
5 SELECT
- - - Doubled d i g i t s might in turn be two d i g i t s . In

that case ,
- - - we must add each d i g i t i n d i v i d u a l l y ra the r than

adding the
- - - doubled d i g i t va lue to the sum . I e i f the

o r i g i n a l d i g i t was
- - - ‘ 6 ’ the doubled r e s u l t was ‘12 ’ and we must add

‘1+2 ’ to the
10 - - sum rathe r than ‘ 1 2 ’ .

1http://en.wikipedia.org/wiki/Luhn_algorithm

194

http://postgresql.leopard.in.ua/codes/snippets/luhn_algorithm.sql

12.2. Советы

- MOD(SUM(doubled_dig it / INT8 ’ 10 ’ + doubled_dig it
% INT8 ’ 10 ’) , 10) = 0

- FROM
- - - Double odd - numbered d i g i t s (count ing l e f t with
- - - l e a s t s i g n i f i c a n t as ze ro) . I f the doubled d i g i t s end up

15 - - having va lue s
- - - > 10 (i e they ’ re two d i g i t s) , add t h e i r d i g i t s toge the r .
- (SELECT
- - - Extract d i g i t ‘n ’ count ing l e f t from l e a s t

s i g n i f i c a n t
- - - as ze ro

20 MOD(($1 : : i n t8 / (10^n) : : i n t8) , 1 0 : : i n t8)
- - - Double odd - numbered d i g i t s
- * (MOD(n , 2) + 1)
- AS doubled_dig it
- FROM gene ra t e_se r i e s (0 , CEIL(LOG($1)) : : INTEGER -

1) AS n
25) AS doubled_dig i t s ;

-
- $$ LANGUAGE ’SQL ’
- IMMUTABLE
- STRICT;

30
- COMMENT ON FUNCTION luhn_ver i fy (i n t8) IS ’ Return true i f f

the l a s t d i g i t o f the
- input i s a c o r r e c t check d i g i t f o r the r e s t o f the input

accord ing to Luhn ’ ’ s
- a lgor i thm . ’ ;
- CREATE OR REPLACE FUNCTION luhn_generate_checkdig it (i n t8)

RETURNS in t8 AS $$
35 SELECT

- - - Add the d i g i t s , doubl ing even - numbered d i g i t s
(count ing l e f t

- - - with l e a s t - s i g n i f i c a n t as zero) . Subtract the
remainder o f

- - - d i v i d i ng the sum by 10 from 10 , and take the
remainder

- - - o f d i v i d i ng that by 10 in turn .
40 ((INT8 ’ 10 ’ - SUM(doubled_dig it / INT8 ’ 10 ’ +

doubled_dig it % INT8 ’ 10 ’) %
- INT8 ’ 10 ’) % INT8 ’ 10 ’) : : INT8
- FROM (SELECT
- - - Extract d i g i t ‘n ’ count ing l e f t from l e a s t

s i g n i f i c a n t \
- - - as ze ro

45 MOD(($1 : : i n t8 / (10^n) : : i n t8) , 1 0 : : i n t8)
- - - double even - numbered d i g i t s

195

12.2. Советы

- * (2 - MOD(n , 2))
- AS doubled_dig it
- FROM gene ra t e_se r i e s (0 , CEIL(LOG($1)) : : INTEGER -

1) AS n
50) AS doubled_dig i t s ;

-
- $$ LANGUAGE ’SQL ’
- IMMUTABLE
- STRICT;

55
- COMMENT ON FUNCTION luhn_generate_checkdig it (i n t8) IS ’ For

the input
- value , generate a check d i g i t accord ing to Luhn ’ ’ s

a lgor i thm ’ ;
- CREATE OR REPLACE FUNCTION luhn_generate (i n t8) RETURNS in t8

AS $$
- SELECT 10 * $1 + luhn_generate_checkdig it ($1) ;

60 $$ LANGUAGE ’SQL ’
- IMMUTABLE
- STRICT;
-
- COMMENT ON FUNCTION luhn_generate (i n t8) IS ’Append a check

d i g i t generated
65 accord ing to Luhn ’ ’ s a lgor i thm to the input value . The

input value must be no
- g r e a t e r than (maxbigint /10) . ’ ;
- CREATE OR REPLACE FUNCTION luhn_str ip (in t8) RETURNS in t8 AS

$$
- SELECT $1 / 10 ;
- $$ LANGUAGE ’SQL ’

70 IMMUTABLE
- STRICT;
-
- COMMENT ON FUNCTION luhn_str ip (in t8) IS ’ S t r i p the l e a s t

s i g n i f i c a n t d i g i t from
- the input value . Intended f o r use when s t r i p p i n g the check

d i g i t from a number
75 i n c l ud ing a Luhn ’ ’ s a lgor i thm check d i g i t . ’ ;

Пример:

Код 12.6 Алгоритм Луна. Пример

Line 1 Se l e c t luhn_ver i fy (49927398716) ;
- luhn_ver i fy
- - - - - - - - - - - - - -
- t
5 (1 row)
-

196

12.2. Советы

- Se l e c t luhn_ver i fy (49927398714) ;
- luhn_ver i fy
- - - - - - - - - - - - - -

10 f
- (1 row)

Выборка и сортировка по данному набору данных
Выбор данных по определенному набору данных можно сделать

с помощью обыкновенного IN. Но как сделать подобную выборку и
отсортировать данные в том же порядке, в котором передан набор данных.
Например:

Дан набор: (2,6,4,10,25,7,9) Нужно получить найденные данные в
таком же порядке т.е. 2 2 2 6 6 4 4

Скачать snippets/order_like_in.sql

Line 1 SELECT foo . * FROM foo
- JOIN (SELECT id . val , row_number () over () FROM

(VALUES(3) , (2) , (6) , (1) , (4)) AS
- id (va l)) AS id
- ON (foo . cata log_id = id . va l) ORDER BY row_number ;

где
VALUES(3),(2),(6),(1),(4) — наш набор данных
foo – таблица, из которой идет выборка
foo.catalog_id — поле по которому ищем набор данных (замена

foo.catalog_id IN(3,2,6,1,4))

Куайн, Запрос который выводит сам себя
Куайн, квайн (англ. quine) — компьютерная программа (частный

случай метапрограммирования), которая выдаёт на выходе точную копию
своего исходного текста.

Скачать snippets/quine.sql

Line 1 s e l e c t a | | ’ from (s e l e c t ’ | | q uo t e_ l i t e r a l (a) | | b | | ’ ,
’ | | q uo t e_ l i t e r a l (b) | | ’ : : t ex t as b) as quine ’ from

- (s e l e c t ’ s e l e c t a | | ’ ’ from (s e l e c t ’ ’ | | q uo t e_ l i t e r a l (a)
| | b | | ’ ’ , ’ ’ | | q uo t e_ l i t e r a l (b) | | ’ ’ : : t ex t as b) as

- quine ’ ’ ’ : : t ex t as a , ’ : : t ex t as a ’ : : t ex t as b) as quine ;

Ускоряем LIKE
Автокомплит — очень популярная фишка в web системах. Реализуется

это простым LIKE «some%», где «some» — то, что пользователь успел

197

http://postgresql.leopard.in.ua/codes/snippets/order_like_in.sql
http://postgresql.leopard.in.ua/codes/snippets/quine.sql

12.2. Советы

ввести. Проблема в том, что и огромной таблице (например таблица тегов)
такой запрос будет очень медленный.

Для ускорения запроса типа «LIKE ’bla%’» можно использовать
text_pattern_ops (или varchar_pattern_ops если у поле varchar).

Скачать snippets/speed_like.sql

Line 1 p r e f i x_t e s t=# cr ea t e t ab l e tags (
- p r e f i x_t e s t (# tag text primary key ,
- p r e f i x_t e s t (# name text not nu l l ,
- p r e f i x_t e s t (# shortname text ,
5 p r e f i x_t e s t (# s ta tu s char d e f au l t ’S ’ ,
- p r e f i x_t e s t (#
- p r e f i x_t e s t (# check (s t a tu s in (’S ’ , ’R ’))
- p r e f i x_t e s t (#) ;
- NOTICE: CREATE TABLE / PRIMARY KEY w i l l c r e a t e imp l i c i t

index "tags_pkey" f o r t ab l e " tags "
10 CREATE TABLE

- p r e f i x_t e s t=# CREATE INDEX i_tag ON tags USING
btree (lower (tag) text_pattern_ops) ;

- CREATE INDEX
-
- p r e f i x_t e s t=# cr ea t e t ab l e inva l id_tags (

15 p r e f i x_t e s t (# tag text primary key ,
- p r e f i x_t e s t (# name text not nu l l ,
- p r e f i x_t e s t (# shortname text ,
- p r e f i x_t e s t (# s ta tu s char d e f au l t ’S ’ ,
- p r e f i x_t e s t (#

20 p r e f i x_t e s t (# check (s t a tu s in (’S ’ , ’R ’))
- p r e f i x_t e s t (#) ;
- NOTICE: CREATE TABLE / PRIMARY KEY w i l l c r e a t e imp l i c i t

index " inval id_tags_pkey" f o r t ab l e " inva l id_tags "
- CREATE TABLE
-

25
-
- p r e f i x_t e s t=# s e l e c t count (*) from tags ;
- count
- - - - - - - -

30 11966
- (1 row)
-
- p r e f i x_t e s t=# s e l e c t count (*) from inva l id_tags ;
- count

35 - - - - - - -
- 11966
- (1 row)
-

198

http://postgresql.leopard.in.ua/codes/snippets/speed_like.sql

12.2. Советы

- # EXPLAIN ANALYZE s e l e c t * from inva l id_tags where
lower (tag) LIKE lower (’ 0146% ’) ;

40 QUERY PLAN
- -
- Seq Scan on inva l id_tags (co s t =0 .00 . . 265 . 49 rows=60

width=26) (ac tua l time =0 .359 . . 20 . 695 rows=1 loops=1)
- F i l t e r : (lower (tag) ~~ ’0146% ’ : : t ex t)
- Total runtime : 20 .803 ms

45 (3 rows)
-
- # EXPLAIN ANALYZE s e l e c t * from inva l id_tags where

lower (tag) LIKE lower (’ 0146% ’) ;
- QUERY PLAN
- -

50 Seq Scan on inva l id_tags (co s t =0 .00 . . 265 . 49 rows=60
width=26) (ac tua l time =0 .549 . . 19 . 503 rows=1 loops=1)

- F i l t e r : (lower (tag) ~~ ’0146% ’ : : t ex t)
- Total runtime : 19 .550 ms
- (3 rows)
-

55 # EXPLAIN ANALYZE s e l e c t * from tags where lower (tag) LIKE
lower (’ 0146% ’) ;

- QUERY
PLAN

- -
- Bitmap Heap Scan on tags (co s t =5 . 49 . . 9 7 . 75 rows=121

width=26) (ac tua l time =0 .054 . . 0 . 057 rows=1 loops=1)
- F i l t e r : (lower (tag) ~~ ’0146% ’ : : t ex t)

60 -> Bitmap Index Scan on i_tag (co s t =0 . 00 . . 5 . 4 6 rows=120
width=0) (ac tua l time =0 .032 . . 0 . 032 rows=1 loops=1)

- Index Cond : ((lower (tag) ~>=~ ’ 0146 ’ : : t ex t) AND
(lower (tag) ~<~ ’ 0147 ’ : : t ex t))

- Total runtime : 0 .119 ms
- (5 rows)
-

65 # EXPLAIN ANALYZE s e l e c t * from tags where lower (tag) LIKE
lower (’ 0146% ’) ;

- QUERY
PLAN

- -
- Bitmap Heap Scan on tags (co s t =5 . 49 . . 9 7 . 75 rows=121

width=26) (ac tua l time =0 .025 . . 0 . 025 rows=1 loops=1)
- F i l t e r : (lower (tag) ~~ ’0146% ’ : : t ex t)

70 -> Bitmap Index Scan on i_tag (co s t =0 . 00 . . 5 . 4 6 rows=120
width=0) (ac tua l time =0 .016 . . 0 . 016 rows=1 loops=1)

- Index Cond : ((lower (tag) ~>=~ ’ 0146 ’ : : t ex t) AND
(lower (tag) ~<~ ’ 0147 ’ : : t ex t))

199

12.2. Советы

- Total runtime : 0 .050 ms
- (5 rows)

Поиск дубликатов индексов
Запрос находит несколько индексы, созданые на одинаковый набор

столбцов (индексы эквавалентны, а значит бесполезны).

Скачать snippets/duplicate_indexes.sql

Line 1 SELECT pg_size_pretty (sum(pg_re lat ion_s ize (idx)) : : b i g i n t)
AS s i z e ,

- (array_agg (idx)) [1] AS idx1 , (array_agg (idx)) [2] AS
idx2 ,

- (array_agg (idx)) [3] AS idx3 , (array_agg (idx)) [4] AS
idx4

- FROM (
5 SELECT ind e x r e l i d : : r e g c l a s s AS idx , (i n d r e l i d : : t ex t

| | E ’ \n ’ | | i n d c l a s s : : t ex t | | E ’ \n ’ | | indkey : : t ex t | | E ’ \n ’ | |
-

c o a l e s c e (indexprs : : text , ’ ’) | | E ’ \n ’ | |
c o a l e s c e (indpred : : text , ’ ’)) AS KEY

- FROM pg_index) sub
- GROUP BY KEY HAVING count (*)>1
- ORDER BY sum(pg_re lat ion_s ize (idx)) DESC;

Размер и статистика использования индексов

Скачать snippets/indexes_statustic.sql

Line 1 SELECT
- t . tablename ,
- indexname ,
- c . r e l t u p l e s AS num_rows ,
5

pg_size_pretty (pg_re lat ion_s ize (quote_ident (t . tablename) : : t ex t))
AS tab le_s ize ,

-
pg_size_pretty (pg_re lat ion_s ize (quote_ident (indexrelname) : : t ex t))
AS index_size ,

- CASE WHEN x . is_unique = 1 THEN ’Y ’
- ELSE ’N ’
- END AS UNIQUE,

10 idx_scan AS number_of_scans ,
- idx_tup_read AS tuples_read ,
- idx_tup_fetch AS tup le s_fetched
- FROM pg_tables t

200

http://postgresql.leopard.in.ua/codes/snippets/duplicate_indexes.sql
http://postgresql.leopard.in.ua/codes/snippets/indexes_statustic.sql

12.2. Советы

- LEFT OUTER JOIN pg_class c ON t . tablename=c . relname
15 LEFT OUTER JOIN

- (SELECT ind r e l i d ,
- max(CAST(ind i sun ique AS i n t e g e r)) AS is_unique
- FROM pg_index
- GROUP BY i n d r e l i d) x

20 ON c . o id = x . i n d r e l i d
- LEFT OUTER JOIN
- (SELECT c . relname AS ctablename , ipg . relname AS

indexname , x . indnat t s AS number_of_columns , idx_scan ,
idx_tup_read , idx_tup_fetch , indexrelname FROM pg_index x

- JOIN pg_class c ON c . o id = x . i n d r e l i d
- JOIN pg_class ipg ON ipg . o id = x . i n d e x r e l i d

25 JOIN pg_stat_all_indexes p sa i ON x . i n d e x r e l i d =
psa i . i n d e x r e l i d)

- AS foo
- ON t . tablename = foo . ctablename
- WHERE t . schemaname=’ pub l i c ’
- ORDER BY 1 ,2 ;

201

Литература

[1] Алексей Борзов (Sad Spirit) borz_off@cs.msu.su
PostgreSQL: настройка производительности
http://www.phpclub.ru/detail/store/pdf/postgresql-performance.pdf

[2] Eugene Kuzin eugene@kuzin.net Настройка репликации
в PostgreSQL с помощью системы Slony-I
http://www.kuzin.net/work/sloniki-privet.html

[3] Sergey Konoplev gray.ru@gmail.com Установка Londiste в подробностях
http://gray-hemp.blogspot.com/2010/04/londiste.html

[4] Dmitry Stasyuk Учебное руководство по pgpool-II
http://undenied.ru/2009/03/04/uchebnoe-rukovodstvo-po-pgpool-ii/

[5] Чиркин Дима dmitry.chirkin@gmail.com Горизонтальное
масштабирование PostgreSQL с помощью PL/Proxy
http://habrahabr.ru/blogs/postgresql/45475/

[6] Иван Блинков wordpress@insight-it.ru Hadoop
http://www.insight-it.ru/masshtabiruemost/hadoop/

[7] Padraig O’Sullivan Up and Running with HadoopDB
http://posulliv.github.com/2010/05/10/hadoopdb-mysql.html

[8] Иван Золотухин Масштабирование PostgreSQL: готовые решения от
Skype http://postgresmen.ru/articles/view/25

[9] Streaming Replication. http://wiki.postgresql.org/wiki/Streaming_Replication

[10] Den Golotyuk Шардинг, партиционирование, репликация - зачем и
когда? http://highload.com.ua/index.php/2009/05/06/шардинг-партиционирование-репликац/

[11] Postgres-XC — A PostgreSQL Clustering Solution
http://www.linuxforu.com/2012/01/postgres-xc-database-clustering-solution/

202

	Содержание
	Введение
	Настройка производительности
	Введение
	Не используйте настройки по умолчанию
	Используйте актуальную версию сервера
	Стоит ли доверять тестам производительности

	Настройка сервера
	Используемая память
	Журнал транзакций и контрольные точки
	Планировщик запросов
	Сбор статистики

	Диски и файловые системы
	Перенос журнала транзакций на отдельный диск
	CLUSTER

	Примеры настроек
	Среднестатистическая настройка для максимальной производительности
	Среднестатистическая настройка для оконного приложения (1С), 2 ГБ памяти
	Среднестатистическая настройка для Web приложения, 2 ГБ памяти
	Среднестатистическая настройка для Web приложения, 8 ГБ памяти

	Автоматическое создание оптимальных настроек: pgtune
	Оптимизация БД и приложения
	Поддержание базы в порядке
	Использование индексов
	Перенос логики на сторону сервера
	Оптимизация конкретных запросов
	Утилиты для оптимизации запросов

	Заключение

	Партиционирование
	Введение
	Теория
	Практика использования
	Настройка
	Тестирование
	Управление партициями
	Важность <<constraint_exclusion>> для партиционирования

	Заключение

	Репликация
	Введение
	Streaming Replication (Потоковая репликация)
	Введение
	Установка
	Настройка
	Общие задачи

	Slony-I
	Введение
	Установка
	Настройка
	Общие задачи
	Устранение неисправностей

	Londiste
	Введение
	Установка
	Настройка
	Общие задачи
	Устранение неисправностей

	Bucardo
	Введение
	Установка
	Настройка
	Общие задачи

	RubyRep
	Введение
	Установка
	Настройка
	Устранение неисправностей

	Заключение

	Шардинг
	Введение
	PL/Proxy
	Установка
	Настройка
	Все ли так просто?

	Postgres-XC
	Архитектера
	Установка
	Распределение данных и масштабируемость
	Таблици и запросы к ним
	Высокая доступность (HA)
	Ограничения
	Заключение

	HadoopDB
	Установка и настройка
	Заключение

	Заключение

	PgPool-II
	Введение
	Давайте начнем!
	Установка pgpool-II
	Файлы конфигурации
	Настройка команд PCP
	Подготовка узлов баз данных
	Запуск/Остановка pgpool-II

	Ваша первая репликация
	Настройка репликации
	Проверка репликации

	Ваш первый параллельный запрос
	Настройка параллельного запроса
	Настройка SystemDB
	Установка правил распределения данных
	Установка правил репликации
	Проверка параллельного запроса

	Master-slave режим
	Streaming Replication (Потоковая репликация)

	Онлайн востановление
	Streaming Replication (Потоковая репликация)

	Заключение

	Мультиплексоры соединений
	Введение
	PgBouncer
	PgPool-II vs PgBouncer

	Кэширование в PostgreSQL
	Введение
	Pgmemcache
	Установка
	Настройка
	Проверка
	Заключение

	Расширения
	Введение
	PostGIS
	pgSphere
	HStore
	Пример использования
	Заключение

	PLV8
	Скорость работы
	Использование
	Вывод

	Smlar
	Похожесть
	Расчет похожести
	Smlar
	Пример: поиск дубликатов картинок
	Вывод

	PostPic
	Fuzzystrmatch
	Tsearch2
	OpenFTS
	PL/Proxy
	Texcaller
	Pgmemcache
	Prefix
	Dblink
	Ltree
	Заключение

	Бэкап и восстановление PostgreSQL
	Введение
	SQL бэкап
	SQL бэкап больших баз данных

	Бекап уровня файловой системы
	Непрерывное резервное копирование
	Настройка

	Утилиты для непрерывного резервного копирования
	WAL-E
	Barman

	Заключение

	Стратегии масштабирования для PostgreSQL
	Введение
	Суть проблемы

	Проблема чтения данных
	Методы решения

	Проблема записи данных
	Методы решения

	Заключение

	Советы по разным вопросам (Performance Snippets)
	Введение
	Советы
	Размер объектов в базе данных
	Размер самых больших таблиц
	<<Средний>> count
	Узнать значение по-умолчанию у поля в таблице
	Случайное число из диапазона
	Алгоритм Луна
	Выборка и сортировка по данному набору данных
	Куайн, Запрос который выводит сам себя
	Ускоряем LIKE
	Поиск дубликатов индексов
	Размер и статистика использования индексов

	Литература

