

Mastering PostgreSQL 10

Expert techniques on PostgreSQL 10 development and
administration

Hans-Jürgen Schönig

BIRMINGHAM - MUMBAI

Mastering PostgreSQL 10
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Namrata Patil
Content Development Editor: Eisha Dsouza
Technical Editor: Varsha Shivhare
Copy Editors: Ulka Manjrekar, Safis Editing
Project Coordinator: Shweta H Birwatkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Kirk D'Penha
Production Coordinator: Shantanu Zagade

First published: January 2018

Production reference: 1300118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-229-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Hans-Jürgen Schönig has 18 years of experience with PostgreSQL. He is the CEO of a
PostgreSQL consulting and support company called Cybertec Schönig & Schönig GmbH. It
has successfully served countless customers around the globe.

Before founding Cybertec Schönig & Schönig GmbH in 2000, he worked as a database
developer at a private research company that focused on the Austrian labor market, where
he primarily worked on data mining and forecast models. He has also written several books
about PostgreSQL.

About the reviewer
Sheldon Strauch is a 23-year veteran of software consulting at companies such as IBM,
Sears, Ernst & Young, and Kraft Foods. He has a bachelor's degree in business
administration and leverages his technical skills to improve businesses' self-awareness. His
interests include data gathering, management, and mining; maps and mapping; business
intelligence; and the application of data analysis for continuous improvement. He is
currently focusing on the development of end-to-end data management and mining at
Enova International, a financial services company located in Chicago. In his spare time, he
enjoys performing arts, particularly music, and traveling with his wife, Marilyn.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: PostgreSQL Overview 5

What is new in PostgreSQL 10.0? 5
Understanding new database administration functions 6

Using additional information in pg_stat_activity 6
Introducing SCRAM-SHA-256 7

Improving support for replication 7
Understanding logical replication 7

Introducing quorum COMMIT 8
Partitioning data 9
Making use of CREATE STATISTICS 10
Improving parallelism 11

Introducing ICU encodings 11
Summary 12

Chapter 2: Understanding Transactions and Locking 13

Working with PostgreSQL transactions 14
Handling errors inside a transaction 16
Making use of SAVEPOINT 17
Transactional DDLs 18

Understanding basic locking 20
Avoiding typical mistakes and explicit locking 22

Considering alternative solutions 24
Making use of FOR SHARE and FOR UPDATE 25
Understanding transaction isolation levels 29

Considering SSI transactions 31
Observing deadlocks and similar issues 31
Utilizing advisory locks 34
Optimizing storage and managing cleanup 35

Configuring VACUUM and autovacuum 36
Digging into transaction wraparound-related issues 37
A word on VACUUM FULL 38

Watching VACUUM at work 39
Making use of snapshot too old 43

Summary 43

Table of Contents

[ii]

Chapter 3: Making Use of Indexes 44

Understanding simple queries and the cost model 45
Making use of EXPLAIN 46
Digging into the PostgreSQL cost model 48
Deploying simple indexes 50
Making use of sorted output 51

Using more than one index at a time 52
Using bitmap scans effectively 53
Using indexes in an intelligent way 54

Improving speed using clustered tables 56
Clustering tables 59
Making use of index only scans 60

Understanding additional b-tree features 61
Combined indexes 61
Adding functional indexes 62
Reducing space consumption 63
Adding data while indexing 65

Introducing operator classes 65
Hacking up an operator class for a b-tree 67

Creating new operators 67
Creating operator classes 71
Testing custom operator classes 71

Understanding PostgreSQL index types 72
Hash indexes 73
GiST indexes 73

Understanding how GiST works 74
Extending GiST 75

GIN indexes 76
Extending GIN 77

SP-GiST indexes 78
BRIN indexes 78

Extending BRIN indexes 80
Adding additional indexes 80

Achieving better answers with fuzzy searching 82
Taking advantage of pg_trgm 82
Speeding up LIKE queries 85
Handling regular expressions 86

Understanding full-text search - FTS 86
Comparing strings 87
Defining GIN indexes 88

Table of Contents

[iii]

Debugging your search 89
Gathering word statistics 90
Taking advantage of exclusion operators 91

Summary 92

Chapter 4: Handling Advanced SQL 93

Introducing grouping sets 93
Loading some sample data 94
Applying grouping sets 94

Investigating performance 97
Combining grouping sets with the FILTER clause 98

Making use of ordered sets 99
Understanding hypothetical aggregates 101
Utilizing windowing functions and analytics 102

Partitioning data 103
Ordering data inside a window 104
Using sliding windows 105
Abstracting window clauses 108
Making use of onboard windowing functions 108

The rank and dense_rank functions 109
The ntile() function 110
The lead() and lag() functions 111
The first_value(), nth_value(), and last_value() functions 114
The row_number() function 116

Writing your own aggregates 117
Creating simple aggregates 117
Adding support for parallel queries 121
Improving efficiency 121
Writing hypothetical aggregates 123

Summary 125

Chapter 5: Log Files and System Statistics 126

Gathering runtime statistics 126
Working with PostgreSQL system views 126

Checking live traffic 127
Inspecting databases 130

Inspecting tables 133
Making sense of pg_stat_user_tables 134
Digging into indexes 136
Tracking the background worker 137
Tracking, archiving, and streaming 138
Checking SSL connections 141
Inspecting transactions in real time 141

Table of Contents

[iv]

Tracking vacuum progress 142
Using pg_stat_statements 143

Creating log files 147
Configuring the postgresql.conf file 147

Defining log destination and rotation 148
Configuring syslog 150
Logging slow queries 150
Defining what and how to log 151

Summary 153

Chapter 6: Optimizing Queries for Good Performance 154

Learning what the optimizer does 154
Optimizations by example 155

Evaluating join options 155
Nested loops 156
Hash joins 156
Merge joins 156

Applying transformations 157
Inlining the view 157
Flattening subselects 158

Applying equality constraints 158
Exhaustive searching 159
Trying it all out 159
Making the process fail 160
Constant folding 161
Understanding function inlining 162
Join pruning 163
Speedup set operations 164

Understanding execution plans 166
Approaching plans systematically 166

Making EXPLAIN more verbose 168
Spotting problems 168

Spotting changes in runtime 169
Inspecting estimates 169
Inspecting buffer usage 171
Fixing high buffer usage 173

Understanding and fixing joins 173
Getting joins right 173
Processing outer joins 175
Understanding the join_collapse_limit variable 176

Enabling and disabling optimizer settings 177
Understanding genetic query optimization 180

Partitioning data 181
Creating partitions 182

Table of Contents

[v]

Applying table constraints 184
Modifying inherited structures 185
Moving tables in and out of partitioned structures 186
Cleaning up data 187
Understanding PostgreSQL 10.0 partitioning 188

Adjusting parameters for good query performance 189
Speeding up sorting 192
Speeding up administrative tasks 194

Summary 194

Chapter 7: Writing Stored Procedures 195

Understanding stored procedure languages 195
The anatomy of a stored procedure 197

Introducing dollar quoting 198
Making use of anonymous code blocks 199
Using functions and transactions 199

Understanding various stored procedure languages 201
Introducing PL/pgSQL 202

Handling quoting 203
Managing scopes 206
Understanding advanced error handling 207
Making use of GET DIAGNOSTICS 208
Using cursors to fetch data in chunks 210
Utilizing composite types 214
Writing triggers in PL/pgSQL 215

Introducing PL/Perl 220
Using PL/Perl for datatype abstraction 221
Deciding between PL/Perl and PL/PerlU 223
Making use of the SPI interface 224
Using SPI for set returning functions 224
Escaping in PL/Perl and support functions 226
Sharing data across function calls 226
Writing triggers in Perl 227

Introducing PL/Python 227
Writing simple PL/Python code 228
Using the SPI interface 229
Handling errors 231

Improving stored procedure performance 232
Reducing the number of function calls 232

Using cached plans 233
Assigning costs to functions 233

Using stored procedures 234
Summary 235

Table of Contents

[vi]

Chapter 8: Managing PostgreSQL Security 237

Managing network security 237
Understanding bind addresses and connections 238

Inspecting connections and performance 240
Living in a world without TCP 240

Managing pg_hba.conf 242
Handling SSL 244

Handling instance-level security 246
Creating and modifying users 249

Defining database-level security 251
Adjusting schema-level permissions 253
Working with tables 256
Handling column-level security 257
Configuring default privileges 259

Digging into row-level security - RLS 260
Inspecting permissions 264
Reassigning objects and dropping users 266
Summary 268

Chapter 9: Handling Backup and Recovery 269

Performing simple dumps 269
Running pg_dump 270
Passing passwords and connection information 271

Using environment variables 272
Making use of .pgpass 273
Using service files 273

Extracting subsets of data 274
Handling various formats 275
Replaying backups 276
Handling global data 277
Summary 278

Chapter 10: Making Sense of Backups and Replication 279

Understanding the transaction log 280
Looking at the transaction log 281
Understanding checkpoints 282
Optimizing the transaction log 282

Transaction log archiving and recovery 284
Configuring for archiving 284
Configuring the pg_hba.conf file 286
Creating base backups 286

Table of Contents

[vii]

Reducing the bandwidth of a backup 288
Mapping tablespaces 288
Using different formats 288
Testing transaction log archiving 289

Replaying the transaction log 290
Finding the right timestamp 292

Cleaning up the transaction log archive 294
Setting up asynchronous replication 295

Performing a basic setup 295
Improving security 298

Halting and resuming replication 298
Checking replication to ensure availability 299
Performing failovers and understanding timelines 302
Managing conflicts 303
Making replication more reliable 306

Upgrading to synchronous replication 307
Adjusting durability 309

Making use of replication slots 311
Handling physical replication slots 312
Handling logical replication slots 314

Use cases of logical slots 317
Making use of CREATE PUBLICATION and CREATE SUBSCRIPTION 318
Summary 319

Chapter 11: Deciding on Useful Extensions 321

Understanding how extensions work 322
Checking for available extensions 323

Making use of contrib modules 326
Using the adminpack 326
Applying bloom filters 328
Deploying btree_gist and btree_gin 329
Dblink - considering phasing out 331
Fetching files with file_fdw 332
Inspecting storage using pageinspect 334
Investigating caching with pg_buffercache 336
Encrypting data with pgcrypto 338
Prewarming caches with pg_prewarm 338
Inspecting performance with pg_stat_statements 339
Inspecting storage with pgstattuple 339
Fuzzy searches with pg_trgm 342
Connecting to remote servers using postgres_fdw 342

Table of Contents

[viii]

Handling mistakes and typos 346
Other useful extensions 346
Summary 347

Chapter 12: Troubleshooting PostgreSQL 348

Approaching an unknown database 348
Inspecting pg_stat_activity 349

Querying pg_stat_activity 349
Treating Hibernate statements 351
Figuring out where queries come from 351

Checking for slow queries 352
Inspecting individual queries 353
Digging deeper with perf 354

Inspecting the log 355
Checking for missing indexes 356
Checking for memory and I/O 357
Understanding noteworthy error scenarios 359

Facing clog corruption 359
Understanding checkpoint messages 360
Managing corrupted data pages 361
Careless connection management 362
Fighting table bloat 363

Summary 364

Chapter 13: Migrating to PostgreSQL 365

Migrating SQL statements to PostgreSQL 366
Using lateral joins 366

Supporting lateral 366
Using grouping sets 367

Supporting grouping sets 367
Using the WITH clause – common table expressions 368

Supporting the WITH clause 368
Using the WITH RECURSIVE clause 369

Supporting the WITH RECURSIVE clause 369
Using the FILTER clause 369

Supporting the FILTER clause 370
Using windowing functions 370

Supporting windowing and analytics 371
Using ordered sets – WITHIN GROUP clause 371

Supporting the WITHIN GROUP clause 372
Using the TABLESAMPLE clause 372

Supporting TABLESAMPLE clause 373

Table of Contents

[ix]

Using limit/offset 373
Supporting the FETCH FIRST clause 374

Using OFFSET 374
Supporting the OFFSET clause 374

Using temporal tables 375
Supporting temporal tables 375

Matching patterns in time series 375
Moving from Oracle to PostgreSQL 376

Using the oracle_fdw extension to move data 376
Using ora2pg to migrate from Oracle 378
Common pitfalls 380

Moving from MySQL or MariaDB to PostgreSQL 382
Handling data in MySQL and MariaDB 382

Changing column definitions 384
Handling null values 386
Expecting problems 387

Migrating data and schema 387
Using pg_chameleon 387
Using FDWs 388

Summary 391

Other Books You May Enjoy 392

Index 395

Preface
PostgreSQL is an advanced relational open source database, which is also an excellent
foundation for NoSQL workloads. It is capable of handling large datasets and running
complex SQL for your business needs. This book will enable you to build better PostgreSQL
applications and administer databases more efficiently. It will give you valuable insights
into how to use PostgreSQL best for your advantage.

Who this book is for
This book has explicitly been written for people who want to know more about PostgreSQL
and who are not satisfied with basic information. The aim is to write a book that goes a bit
deeper and explains the most important stuff in a clear and easy-to-understand way.

What this book covers
Chapter 1, PostgreSQL Overview, provides an overview of PostgreSQL and its features. You
will learn new stuff and the new functionalities available in PostgreSQL.

Chapter 2, Understanding Transactions and Locking, covers one of the most important aspects
of any database system: proper database work is usually not possible without the existence
of transactions. Understanding transactions and locking is vital to performance, as well as
professional work.

Chapter 3, Making Use of Indexes, covers everything you need to know about indexes.
Indexes are key to performance and are therefore an important cornerstone if you want a
good user experience and high throughput. All the important aspects of indexing will be
covered.

Chapter 4, Handling Advanced SQL, introduces you to some of the most important concepts
of modern SQL. You will learn about windowing functions as well as other important
current elements of SQL.

Chapter 5, Log Files and System Statistics, guides you through administrative tasks such as
log file management and monitoring. You will learn how to inspect your servers and extract
runtime information from PostgreSQL.

Preface

[2]

Chapter 6, Optimizing Queries for Good Performance, tells you everything you need to know
about good PostgreSQL performance. The chapter covers SQL tuning as well as information
about memory management.

Chapter 7, Writing Stored Procedures, teaches you some of the advanced topics related to
server-side code. The most important server-side programming languages are covered and
important aspects are pointed out.

Chapter 8, Managing PostgreSQL Security, is designed to help you improve the security of
your server. The chapter features everything from user management to Row-Level Security
(RLS). Information about encryption is also included.

Chapter 9, Handling Backup and Recovery, is all about backups and data recovery. You will
learn to back up your data , which will enable you to restore things in the event of a
disaster.

Chapter 10, Making Sense of Backups and Replication, is all about redundancy. You will learn
to asynchronously and synchronously replicate PostgreSQL database systems. All modern
features are covered as extensively as possible.

Chapter 11, Deciding on Useful Extensions, describes widely used modules that add more
functionality to PostgreSQL. You will learn about the most common extensions.

Chapter 12, Troubleshooting PostgreSQL, offers a systematic approach to fixing problems in
PostgreSQL. It will enable you to spot common problems and approach them in an
organized way.

Chapter 13, Migrating to PostgreSQL, is the final chapter of this book and shows you how to
migrate from commercial databases to PostgreSQL. The chapter covers the most important
databases migrated these days.

To get the most out of this book
This book has been written for a broad audience. In order to follow the examples presented
in this book, it makes sense to have at least some experience with SQL and maybe even
PostgreSQL in general (although this is not a strict requirement). In general, it is a good idea
to be familiar with the UNIX command line.

Preface

[3]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​MasteringPostgreSQL10_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To figure out what is going wrong, PostgreSQL offers the EXPLAIN command."

Any command-line input or output is written as follows:

test=# EXPLAIN SELECT * FROM t_test
ORDER BY id DESC
LIMIT 10;

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostgreSQL10_ColorImages.pdf

Preface

[4]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
PostgreSQL Overview

PostgreSQL is one of the world's most advanced open source database systems, and it has
many features that are widely used by developers and system administrators alike. Starting
with PostgreSQL 10, many new features have been added to PostgreSQL, which contribute
greatly to the success of this exceptional open source product. In this book, many of these
cool features will be covered and discussed in great detail.

In this chapter, you will be introduced to PostgreSQL and its cool new features available in
PostgreSQL 10.0 and beyond. All relevant new functionalities will be covered in detail.
Given the sheer number of changes made to the code and given the size of the PostgreSQL
project, this list of features is of course by far not complete, so I tried to focus on the most
important aspects relevant to most people.

The features outlined in this chapter will be split into the following categories:

Database administration
SQL and developer related
Backup, recovery, and replication
Performance-related topics

What is new in PostgreSQL 10.0?
PostgreSQL 10.0 has been released in late 2017 and is the first version that follows the new
numbering scheme introduced by the PostgreSQL community. From now on, the way
major releases are done will change and therefore, the next major version after PostgreSQL
10.0 will not be 10.1 but PostgreSQL 11. Versions 10.1 and 10.2 are merely service releases
and will only contain bug fixes.

PostgreSQL Overview Chapter 1

[6]

Understanding new database administration
functions
PostgreSQL 10.0 has many new features that can help the administrator reduce work and
make systems more robust.

One of these features that makes life easier for administrators is related to additional
information in pg_stat_activity.

Using additional information in pg_stat_activity
Before PostgreSQL 10.0, pg_stat_activity only contained information about normal
backend processes serving end users (connections). However, this has changed. Since
PostgreSQL 10.0, a lot more information is exposed. It is possible to figure out what these
other system processes are doing.

The following listing shows the content of pg_stat_activity on an idle database
instance:

test=# \x
Expanded display is on.

test=# SELECT pid, wait_event_type, wait_event, backend_type
 FROM pg_stat_activity ;

-[RECORD 1]---+--------------------
pid | 12159
wait_event_type | Activity
wait_event | AutoVacuumMain
backend_type | autovacuum launcher
-[RECORD 2]---+--------------------
pid | 12161
wait_event_type | Activity
wait_event | LogicalLauncherMain
backend_type | background worker
-[RECORD 3]---+--------------------
pid | 12628
wait_event_type |
wait_event |
backend_type | client backend
-[RECORD 4]---+--------------------
pid | 12156
wait_event_type | Activity
wait_event | BgWriterMain

PostgreSQL Overview Chapter 1

[7]

backend_type | background writer
-[RECORD 5]---+--------------------
pid | 12155
wait_event_type | Activity
wait_event | CheckpointerMain
backend_type | checkpointer
-[RECORD 6]---+--------------------
pid | 12157
wait_event_type | Activity
wait_event | WalWriterMain
backend_type | walwriter

What you see here is that every server process is listed. It will allow you to gain some
insights into what is happening the server.

Introducing SCRAM-SHA-256
Most people use passwords to connect to the database and manage security. Traditionally,
people utilized md5. However, md5 is not safe anymore and therefore new authentication
methods are needed. Starting with version 10.0, PostgreSQL supports SCRAM-SHA-256,
which is far safer than the previous authentication method.

The old way of doing it is still supported. However, it is strongly recommended to move to
SCRAM-SHA-256 in favor of md5.

Improving support for replication
The introduction of PostgreSQL also saw the introduction of logical replication, which has
not been in the core before.

Understanding logical replication
Since version 8.0, PostgreSQL has supported binary replication (also often referred to as
WAL-shipping). The ability to distribute transaction log (WAL) has been improved steadily
over the years.

With the introduction of PostgreSQL 10.0, a new feature has been added to
PostgreSQL—Logical replication. How does it work? Logical replication allows you to
publish a set of tables on one server and ask other servers to subscribe to the changes.

PostgreSQL Overview Chapter 1

[8]

To publish data, the new CREATE PUBLICATION command has been introduced:

test=# \h CREATE PUBLICATION
Command: CREATE PUBLICATION
Description: define a new publication
Syntax:
CREATE PUBLICATION name
 [FOR TABLE [ONLY] table_name [*] [, ...]
 | FOR ALL TABLES]
 [WITH (publication_parameter [= value] [, ...])]

Once the data has been published, remote servers can subscribe to these changes and
receive information about what has happened to those published data sets:

test=# \h CREATE SUBSCRIPTION
Command: CREATE SUBSCRIPTION
Description: define a new subscription
Syntax:
CREATE SUBSCRIPTION subscription_name
 CONNECTION 'conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

CREATE SUBSCRIPTION is used on the slave side to attach to these changes. The beauty of
the concept is that a server can publish one set of tables while subscribing to some other
tables at the same time—there is no such thing as always master or always slave anymore.
Logical replication allows you to flexibly distribute data.

Introducing quorum COMMIT
PostgreSQL has offered support to synchronous replication for quite some time now.
Traditionally, only one server could act as a synchronous standby. This has changed. In
PostgreSQL 10.0, the community has introduced quorum COMMITs. The idea is actually
quite simple. Suppose you want five out of seven servers to confirm a transaction before the
master returns a COMMIT. This is exactly what a quorum COMMIT does. It gives the
developers and administrators a chance to define what COMMIT does in a more fine-
grained way.

PostgreSQL Overview Chapter 1

[9]

To configure quorum COMMITs, the syntax of synchronous_standby_names has been
extended. Here are two simple examples:

synchronous_standby_names = ANY 1 (s1, s2)
synchronous_standby_names = ANY 2 (s1, s2, s3)

Partitioning data
There have been talks about introducing partitioning to PostgreSQL for years. However,
big, important features take time to implement and this is especially true if you are aiming
for a good, extensible, and future-proof implementation. In PostgreSQL 10.0, table
partitioning has finally made it to the PostgreSQL core. Of course, the implementation is far
from complete, and a lot of work has to be done in the future to add even more features.
However, support for partitioning is important and will definitely be one of the most
desirable things in PostgreSQL 10.0.

As of now, partitioning is able to:

Automatically create proper child constraints
Route changes made to the parent table to the child table

However, as stated earlier, there are still a couple of missing features that have not been
addressed yet. Here are some of the more important things:

Create child tables automatically in case data comes in, which is not covered by
partitioning criteria yet
No support for hash partitioning
Move updated rows that no longer match the partition
Handle partitions in parallel

The roadmap for PostgreSQL 11.0 already suggests that many of these things might be
supported in the next release.

PostgreSQL Overview Chapter 1

[10]

Making use of CREATE STATISTICS
CREATE STATISTICS is definitely one of my personal favorite features of PostgreSQL 10.0
because it allows consultants to help customers in many real-world situations. So, what is it
all about? When you run SQL, the optimizer has to come up with clever decisions to speed
up your queries. However, to do so, it has to rely heavily on estimates to figure out how
much data a certain clause or a certain operation returns. Before version 10.0, PostgreSQL
only had information about individual columns. Let's look at an example:

SELECT * FROM car WHERE vendor = 'Ford' AND model = 'Mini Clubman';

In version 9.6, PostgreSQL checks which fraction of the table matches Ford and which
fraction matches Mini Clubman. Then, it would try to guess how many rows match both
criteria. Remember, PostgreSQL 9.6 only has information about each column—it does not
know that these columns are actually related. Therefore, it will simply multiply the odds of
finding Ford with the odds of finding Mini Clubman and use this number. However, Ford
does not produce a Mini Clubman instance—only BMW does. Therefore, the estimate is
wrong. The same cross column correlation problem can happen in other cases too. The
number of rows returned by a join might not be clear and the number of groups returned by
a GROUP BY clause might be an issue.

Consider the following example:

SELECT gender, age, count(*) FROM children_born GROUP BY gender, age

The number of children born to people of a certain age will definitely depend on their age.
The likelihood that some 30 year old women will have children is pretty high and therefore
there will be a count. However, if you happen to be 98, you might not be so lucky and it is
pretty unrealistic to have a baby, especially if you are a man (men tend to not give birth to
children).

CREATE STATISTICS will give the optimizer a chance to gain deeper insights into what is
going on by storing multivariate statistics. The idea is to help the optimizer handle
functional dependencies.

PostgreSQL Overview Chapter 1

[11]

Improving parallelism
PostgreSQL 9.6 was the first version supporting parallel queries in their most basic form. Of
course, not all parts of the server are fully parallel yet. Therefore, it is an ongoing effort to
speed up even more operations than before. PostgreSQL 10.0 is a major step towards even
more parallelism as a lot more operations can now benefit from multi-core systems.

Indexes are a key area of improvement and will benefit greatly from additional features
introduced into PostgreSQL 10.0. There is now full support for parallel b-tree scans as well
as for bitmap scans. For now, only b-tree indexes can benefit from parallelism but this will
most likely change in future releases too, to ensure that all types of indexes can enjoy an
even better performance.

In addition to indexing, the PostgreSQL community has also worked hard to introduce
support for parallel merge joins and to allow for more procedures to run in parallel. Some
of the latest blog posts from the PostgreSQL community already suggest that many new
features related to parallelism are in the pipeline for PostgreSQL 11.0.

Introducing ICU encodings
When a PostgreSQL database is created, the administrator can choose the encoding, which
should be used to store the data. Basically, the configuration decides which characters exist
and in which order they are displayed. Here is an example—de_AT@UTF-8. In this case, we
will use Unicode characters, which will be displayed in an Austrian sort order (Austrians
speak some sort of German). So, de_AT will define the order in which the data will be
sorted.

To achieve this kind of sorting, PostgreSQL relies heavily on the operating system. The
trouble is that if the sort order of characters changes in the operating system for some
reason (maybe because of a bug or because of some other reason), PostgreSQL will have
troubles with its indexes. A normal b-tree index is basically a sorted list, and if the sort
order changes, naturally, there is a problem.

The introduction of the ICU library is supposed to fix this problem. ICU offers stronger
promises than the operating system and is, therefore, more suitable for long-term storage of
data. With the introduction of PostgreSQL 10.0, ICU encodings can be enabled.

PostgreSQL Overview Chapter 1

[12]

Summary
In PostgreSQL 10.0, a lot of functionalities have been added that allow people to run even
more professional applications even faster and more efficiently. All areas of the database
server have been improved and many new professional features have been added. In the
future, even more improvements will be made. Of course, the changes listed in this chapter
are by far not complete because many small changes were made.

2
Understanding Transactions

and Locking
Locking is an important topic in any kind of database. It is not enough to understand just
how it works to write proper or better applications; it is also essential from a performance
point of view. Without handling locks properly, your applications might not only be slow,
they might also be wrong and behave in very unexpected ways. In my opinion, locking is
the key to performance and having a good overview will certainly help. Therefore,
understanding locking and transaction is important for administrators and developers
alike. In this chapter, you will learn the following topics:

Working with PostgreSQL transactions
Understanding basic locking
Making use of FOR SHARE and FOR UPDATE
Understanding transaction isolation levels
Considering SSI transactions
Observing deadlocks and similar issues
Optimizing storage and managing cleanups

At the end of the chapter, you will be able to understand and utilize PostgreSQL
transactions in the most efficient way possible.

Understanding Transactions and Locking Chapter 2

[14]

Working with PostgreSQL transactions
PostgreSQL provides you with a highly advanced transaction machinery that offers
countless features to developers and administrators alike. In this section, it is time to look at
the basic concept of transactions.

The first important thing to know is that in PostgreSQL, everything is a transaction. If you
send a simple query to the server, it is already a transaction. Here is an example:

test=# \x
Expanded display is on.
test=# SELECT now(), now();
 now | now
-------------------------------+------------------------------
 2017-08-24 16:03:27.174253+02 | 2017-08-24 16:03:27.174253+02
(1 row)

In this case, the SELECT statement will be a separate transaction. If the same command is
executed again, different timestamps will be returned.

Keep in mind that the now() function will return the transaction time. The
SELECT statement will, therefore, always return two identical timestamps.

If more than one statement has to be a part of the same transaction, the BEGIN statement
must be used:

test=# \h BEGIN
Command: BEGIN
Description: Start a transaction block
Syntax:
BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ
 | READ COMMITTED | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Understanding Transactions and Locking Chapter 2

[15]

The BEGIN statement will ensure that more than one command will be packed into a
transaction. Here is how it works:

test=# BEGIN;
BEGIN
test=# SELECT now();
 now

 2017-08-24 16:04:08.105131+02
(1 row)
test=# SELECT now();
 now

 2017-08-24 16:04:08.105131+02
(1 row)
test=# COMMIT;
COMMIT

The important point here is that both timestamps will be identical. As mentioned earlier, we
are talking about transaction time here.

To end the transaction, COMMIT can be used:

test=# \h COMMIT
Command: COMMIT
Description: Commit the current transaction
Syntax:
COMMIT [WORK | TRANSACTION]

There are a couple of syntax elements here. You can just use COMMIT, COMMIT WORK, or
COMMIT TRANSACTION. All three options have the same meaning. If this is not enough,
there is more:

test=# \h END
Command: END
Description: commit the current transaction
Syntax:
END [WORK | TRANSACTION]

Understanding Transactions and Locking Chapter 2

[16]

The END clause is the same as the COMMIT clause.

ROLLBACK is the counterpart of COMMIT. Instead of successfully ending a transaction, it will
simply stop the transaction without ever making things visible to other transactions:

test=# \h ROLLBACK
Command: ROLLBACK
Description: Abort the current transaction
Syntax:
ROLLBACK [WORK | TRANSACTION]

Some applications use ABORT instead of ROLLBACK. The meaning is the same.

Handling errors inside a transaction
It is not always the case that transactions are correct from beginning to end. However, in
PostgreSQL, only error-free transactions can be committed. Here is what happens:

test=# BEGIN;
BEGIN
test=# SELECT 1;
 ?column?

 1
(1 row)
test=# SELECT 1 / 0;
ERROR: division by zero
test=# SELECT 1;
ERROR: current transaction is aborted, commands ignored until end of
transaction block
test=# COMMIT;
ROLLBACK

Note that division by zero did not work out.

In any proper database, an instruction similar to this will instantly error-
out and make the statement fail.

Understanding Transactions and Locking Chapter 2

[17]

It is important to point out that PostgreSQL will error-out, unlike MySQL, which is far less
strict. After an error has occurred, no more instructions will be accepted even if those
instructions are semantically and syntactically correct. It is still possible to issue a COMMIT.
However, PostgreSQL will roll back the transaction because it is the only correct thing to be
done at this point.

Making use of SAVEPOINT
In professional applications, it can be pretty hard to write reasonably long transactions
without ever encountering a single error. To solve the problem, users can utilize something
called SAVEPOINT. As the name indicates, it is a safe place inside a transaction that the
application can return to in the event things go terribly wrong. Here is an example:

test=# BEGIN;
BEGIN
test=# SELECT 1;
 ?column?

 1
(1 row)

test=# SAVEPOINT a;
SAVEPOINT
test=# SELECT 2 / 0;
ERROR: division by zero
test=# SELECT 2;
ERROR: current transaction is aborted, commands ignored until end of
transaction block
test=# ROLLBACK TO SAVEPOINT a;
ROLLBACK
test=# SELECT 3;
 ?column?

 3

Understanding Transactions and Locking Chapter 2

[18]

(1 row)

test=# COMMIT;
COMMIT

After the first SELECT clause, I decided to create SAVEPOINT to make sure that the
application can always return to this point inside the transaction. As you can
see, SAVEPOINT has a name, which is referred to later.

 After returning the savepoint called a, the transaction can proceed normally. The code has
jumped back before the error, so everything is fine.

The number of savepoints inside a transaction is practically unlimited. We have seen
customers with over 250,000 savepoints in a single operation. PostgreSQL can easily handle
this.

If you want to remove a SAVEPOINT from inside a transaction, there is a RELEASE
SAVEPOINT:

test=# \h RELEASE SAVEPOINT

Command: RELEASE SAVEPOINT

Description: Destroy a previously defined SAVEPOINT
Syntax:
RELEASE [SAVEPOINT] savepoint_name

Many people ask, what will happen if you try to reach a savepoint after a transaction has
ended? The answer is, the life of a savepoint ends as soon as the transaction ends. In other
words, there is no way to return to a certain point in time after the transactions have been
completed.

Transactional DDLs
PostgreSQL has a very nice feature that is unfortunately not present in many commercial
database systems. In PostgreSQL, it is possible to run DDLs (commands that change the
data structure) inside a transaction block. In a typical commercial system, a DDL will
implicitly commit the current transaction. Not so in PostgreSQL.

Understanding Transactions and Locking Chapter 2

[19]

Apart from some minor exceptions (DROP DATABASE, CREATE TABLESPACE/DROP
TABLESPACE, and so on), all DDLs in PostgreSQL are transactional, which is a huge plus
and a real benefit to end users.

Here is an example:

test=# \d
No relations found.
test=# BEGIN;
BEGIN
test=# CREATE TABLE t_test (id int);
CREATE TABLE
test=# ALTER TABLE t_test ALTER COLUMN id TYPE int8;
ALTER TABLE
test=# \d t_test
 Table "public.t_test"
 Column | Type | Modifiers
--------+--------+-----------
 id | bigint |

test=# ROLLBACK;
ROLLBACK
test=# \d
No relations found.

In this example, a table has been created and modified, and the entire transaction is aborted
instantly. As you can see, there is no implicit COMMIT or any other strange behavior.
PostgreSQL simply acts as expected.

Transactional DDLs are especially important if you want to deploy software. Just imagine
running a Content Management System (CMS). If a new version is released, you'll want to
upgrade. Running the old version would still be OK; running the new version is also OK
but you really don't want a mixture of old and new. Therefore, deploying an upgrade in a
single transaction is definitely highly beneficial as it upgrades an atomic operation.

In order to facilitate good software practices, we can include several
separately-coded modules from our source control system into a single
deployment transaction.

Understanding Transactions and Locking Chapter 2

[20]

Understanding basic locking
In this section, you will learn basic locking mechanisms. The goal is to understand how
locking works in general and how to get simple applications right.

To show how things work, a simple table can be created. For demonstration purposes, I will
add one row to the table:

test=# CREATE TABLE t_test (id int);
CREATE TABLE
test=# INSERT INTO t_test VALUES (1);
INSERT 0 1

The first important thing is that tables can be read concurrently. Many users reading the
same data at the same time won't block each other. This allows PostgreSQL to handle
thousands of users without problems.

Multiple users can read the same data at the same time without blocking
each other.

The question now is: what happens if reads and writes occur at the same time? Here is an
example. Let us assume that the table contains one row and its id = 0:

Transaction 1 Transaction 2

BEGIN; BEGIN;

UPDATE t_test SET id = id + 1 RETURNING *;

User will see 1 SELECT * FROM t_test;

User will see 1

COMMIT; COMMIT;

Two transactions are opened. The first one will change a row. However, this is not a
problem as the second transaction can proceed. It will return the old row as it was before
the UPDATE. This behavior is called Multi-Version Concurrency Control (MVCC).

Understanding Transactions and Locking Chapter 2

[21]

A transaction will see data only if it has been committed by the writing
transaction prior to the initiation of the read transaction. One transaction
cannot inspect the changes made by another active connection. A
transaction can see only those changes that have already been committed.

There is also a second important aspect: many commercial or open source databases are still
(as of 2017) unable to handle concurrent reads and writes. In PostgreSQL, this is absolutely
not a problem. Reads and writes can coexist.

Writing transactions won't block reading transactions.

After the transaction has been committed, the table will contain 2.

What will happen if two people change data at the same time? Here is an example:

Transaction 1 Transaction 2

BEGIN; BEGIN;

UPDATE t_test SET id = id
+ 1 RETURNING *;

It will return 3 UPDATE t_test SET id = id + 1 RETURNING *;

It will wait for transaction 1

COMMIT; It will wait for transaction 1

It will reread the row, find 3, set the value, and return
4

COMMIT;

Suppose you want to count the number of hits on a website. If you run the code as outlined
just now, no hit can be lost because PostgreSQL guarantees that one UPDATE is performed
after the other.

Understanding Transactions and Locking Chapter 2

[22]

PostgreSQL will only lock rows affected by UPDATE. So, if you have 1,000
rows, you can theoretically run 1,000 concurrent changes on the same
table.

It is also noteworthy that you can always run concurrent reads. Our two writes will not
block reads.

Avoiding typical mistakes and explicit locking
In my life as a professional PostgreSQL consultant (https:/ ​/​www. ​cybertec- ​postgresql.
com), I have seen a couple of mistakes that are made again and again. If there are constants
in life, these typical mistakes are definitely some of the things that never change.

Here is my favorite:

Transaction 1 Transaction 2

BEGIN; BEGIN;

SELECT max(id) FROM product; SELECT max(id) FROM product;

User will see 17 User will see 17

User will decide to use 18 User will decide to use 18

INSERT INTO product ... VALUES
(18, ...)

INSERT INTO product ... VALUES
(18, ...)

COMMIT; COMMIT;

In this case, there will be either a duplicate key violation or two identical entries. Neither
variation of the problem is all that appealing.

One way to fix the problem is to use explicit table locking:

test=# \h LOCK
Command: LOCK
Description: lock a table
Syntax:
LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE]
 [NOWAIT]

where lockmode is one of the following:

https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com

Understanding Transactions and Locking Chapter 2

[23]

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE |
 SHARE UPDATE EXCLUSIVE| SHARE |
 SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

As you can see, PostgreSQL offers eight types of locks to lock an entire table. In PostgreSQL,
a lock can be as light as an ACCESS SHARE lock or as heavy as an ACCESS EXCLUSIVE lock.
The following list shows what these locks do:

ACCESS SHARE: This type of lock is taken by reads and conflicts only with
ACCESS EXCLUSIVE, which is set by DROP TABLE and the like. Practically, this
means that SELECT cannot start if a table is about to be dropped. This also implies
that DROP TABLE has to wait until a reading transaction is completed.
ROW SHARE: PostgreSQL takes this kind of lock in the case of SELECT FOR
UPDATE/SELECT FOR SHARE. It conflicts with EXCLUSIVE and ACCESS
EXCLUSIVE.
ROW EXCLUSIVE: This lock is taken by INSERT, UPDATE, and DELETE. It conflicts
with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE.
SHARE UPDATE EXCLUSIVE: This kind of lock is taken by CREATE INDEX
CONCURRENTLY, ANALYZE, ALTER TABLE, VALIDATE, and some other flavors of
ALTER TABLE as well as by VACUUM (not VACUUM FULL). It conflicts with the
SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE lock modes.
SHARE: When an index is created, SHARE locks will be set. It conflicts with ROW
EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE,
and ACCESS EXCLUSIVE.
SHARE ROW EXCLUSIVE: This one is set by CREATE TRIGGER and some forms of
ALTER TABLE and conflicts with everything but ACCESS SHARE.
EXCLUSIVE: This type of lock is by far the most restrictive one. It protects against
reads and writes alike. If this lock is taken by a transaction, nobody else can read
or write to the table affected.
ACCESS EXCLUSIVE: This lock prevents concurrent transactions from reading
and writing.

Given the PostgreSQL locking infrastructure, one solution to the max-problem outlined
previously would be as follows:

BEGIN;
LOCK TABLE product IN ACCESS EXCLUSIVE MODE;
INSERT INTO product SELECT max(id) + 1, ... FROM product;
COMMIT;

Understanding Transactions and Locking Chapter 2

[24]

Keep in mind that this is a pretty nasty way of doing this kind of operation because nobody
else can read or write to the table during your operation. Therefore, ACCESS EXCLUSIVE
should be avoided at all costs.

Considering alternative solutions
There is an alternative solution to the problem. Consider the following example: you are
asked to write an application generating invoice numbers. The tax office might require you
to create invoice numbers without gaps and without duplicates. How would you do it? Of
course, one solution would be a table lock. However, you can really do better. Here is what
I would do:

test=# CREATE TABLE t_invoice (id int PRIMARY KEY);
CREATE TABLE
test=# CREATE TABLE t_watermark (id int);
CREATE TABLE
test=# INSERT INTO t_watermark VALUES (0);
INSERT 0
test=# WITH x AS (UPDATE t_watermark SET id = id + 1 RETURNING *)
 INSERT INTO t_invoice
 SELECT * FROM x RETURNING *;
id

 1
(1 row)

In this case, I introduced a table called t_watermark. It contains just one row. The WITH
will be executed first. The row will be locked and incremented, and the new value will be
returned. Only one person can do this at a time. The value returned by the CTE is then used
in the invoice table. It is guaranteed to be unique. The beauty is that there is only a simple
row lock on the watermark table; no reads will be blocked in the invoice table. Overall, this
way is more scalable.

Understanding Transactions and Locking Chapter 2

[25]

Making use of FOR SHARE and FOR
UPDATE
Sometimes, data is selected from the database; then some processing happens in the
application and, finally, some changes are made back on the database side. This is a classic
example of SELECT FOR UPDATE.

Here is an example:

BEGIN;
SELECT * FROM invoice WHERE processed = false;
** application magic will happen here **
UPDATE invoice SET processed = true ...
COMMIT;

The problem here is that two people might select the same unprocessed data. Changes
made to these processed rows will then be overwritten. In short, a race condition will occur.

To solve this problem, developers can make use of SELECT FOR UPDATE. Here is how it
works:

BEGIN;
SELECT * FROM invoice WHERE processed = false FOR UPDATE;
** application magic will happen here **
UPDATE invoice SET processed = true ...
COMMIT;

The SELECT FOR UPDATE will lock rows just like an UPDATE would. This means that no
changes can happen concurrently. All locks will be released on COMMIT as usual.

If one SELECT FOR UPDATE is waiting for some other SELECT FOR UPDATE, one has to
wait until the other one completes (COMMIT or ROLLBACK). If the first transaction does not
want to end, for whatever reason, the second transaction might potentially wait forever. To
avoid this, it is possible to use SELECT FOR UPDATE NOWAIT.

Understanding Transactions and Locking Chapter 2

[26]

Here is how it works:

Transaction 1 Transaction 2

BEGIN; BEGIN;

SELECT ... FROM tab WHERE ...
FOR UPDATE NOWAIT;

Some processing SELECT ... FROM tab WHERE ... FOR
UPDATE NOWAIT;

Some processing ERROR: could not obtain lock on row
in relation tab

If NOWAIT is not flexible enough for you, consider using lock_timeout. It will contain the
amount of time you want to wait on locks. You can set this on a per-session level:

test=# SET lock_timeout TO 5000;
SET

In this, the value is set to 5 seconds.

While SELECT does basically no locking, SELECT FOR UPDATE can be pretty harsh. Just
imagine the following business process: we want to fill up an airplane providing 200 seats.
Many people want to book seats concurrently. In this case, the following might happen:

Transaction 1 Transaction 2

BEGIN; BEGIN;

SELECT ... FROM flight LIMIT 1 FOR
UPDATE;

Waiting for user input
SELECT ... FROM flight LIMIT
1
FOR UPDATE;

Waiting for user input It has to wait

Understanding Transactions and Locking Chapter 2

[27]

The trouble is that only one seat can be booked at a time. There are potentially 200 seats
available but everybody has to wait for the first person. While the first seat is blocked,
nobody else can book a seat even if people don't care which seat they get in the end.

SELECT FOR UPDATE SKIP LOCKED will fix the problem. Let's create some sample data
first:

test=# CREATE TABLE t_flight AS
 SELECT * FROM generate_series(1, 200) AS id;
SELECT 200

Now comes the magic:

Transaction 1 Transaction 2

BEGIN; BEGIN;

SELECT * FROM t_flight LIMIT 2 FOR
UPDATE SKIP LOCKED;

SELECT * FROM t_flight LIMIT 2 FOR
UPDATE SKIP LOCKED;

It will return 1 and 2 It will return 3 and 4

If everybody wants to fetch two rows, we can serve 100 concurrent transactions at a time
without having to worry about blocking transactions.

Keep in mind that waiting is the slowest form of execution. If only one
transaction can be active at a time, it is pointless to buy ever bigger
servers.

However, there is more. In some cases, a FOR UPDATE can have unintended consequences.
Most people are not aware of the fact that FOR UPDATE will have an impact on foreign keys.
Let's assume that we have two tables: one to store currencies and the other to store
accounts:

CREATE TABLE t_currency (id int, name text, PRIMARY KEY (id));
INSERT INTO t_currency VALUES (1, 'EUR');
INSERT INTO t_currency VALUES (2, 'USD');

CREATE TABLE t_account (
 id int,
 currency_id int REFERENCES t_currency (id)
 ON UPDATE CASCADE
 ON DELETE CASCADE,

Understanding Transactions and Locking Chapter 2

[28]

 balance numeric);
INSERT INTO t_account VALUES (1, 1, 100);
INSERT INTO t_account VALUES (2, 1, 200);

Now, we want to run SELECT FOR UPDATE on the account table:

Transaction 1 Transaction 2

BEGIN;

SELECT * FROM t_account FOR UPDATE; BEGIN;

Waiting for user to proceed UPDATE t_currency SET id = id *
10;

Waiting for user to proceed It will wait on transaction 1

Although there is a SELECT FOR UPDATE on accounts, the UPDATE on the currency table be
will be blocked. This is necessary because otherwise, there is a chance of breaking the
foreign key constraint altogether. In a fairly complex data structure, you can therefore easily
end up with contentions in an area where they are least expected (some highly important
lookup tables).

On top of FOR UPDATE, there are FOR SHARE, FOR NO KEY UPDATE, and FOR KEY SHARE.
The following listing describes what these modes actually mean:

FOR NO KEY UPDATE: This one is pretty similar to FOR UPDATE. However, the
lock is weaker and, therefore, it can coexist with SELECT FOR SHARE.
FOR SHARE: FOR UPDATE is pretty strong and works on the assumption that you
are definitely going to change rows. FOR SHARE is different because more than
one transaction can hold a FOR SHARE lock at the same time.
FOR KEY SHARE: This behaves similarly to FOR SHARE, except that the lock is
weaker. It will block FOR UPDATE but will not block FOR NO KEY UPDATE.

The important thing here is to simply try things out and observe what happens. Improving
locking behavior is really important as it can dramatically improve the scalability of your
application.

Understanding Transactions and Locking Chapter 2

[29]

Understanding transaction isolation levels
Up until now, you have seen how to handle locking as well as some basic concurrency. In
this section, you will learn transaction isolation. To me, this is one of the most neglected
topics in modern software development. Only a small fraction of software developers are
actually aware of this issue, which in turn leads to mind-boggling bugs.

Here is an example of what can happen:

Transaction 1 Transaction 2

BEGIN;

SELECT sum(balance) FROM t_account;

User will see 300 BEGIN;

INSERT INTO t_account (balance)
VALUES (100);

COMMIT;

SELECT sum(balance) FROM t_account;

User will see 400

COMMIT;

Most users would actually expect the left transaction to always return 300 regardless of the
second transaction. However, this is not true. By default, PostgreSQL runs in the READ
COMMITTED transaction isolation mode. This means that every statement inside a
transaction will get a new snapshot of the data, which will be constant throughout the
query.

An SQL statement will operate on the same snapshot and will ignore
changes by concurrent transactions while it is running.

Understanding Transactions and Locking Chapter 2

[30]

If you want to avoid this, you can use TRANSACTION ISOLATION LEVEL REPEATABLE
READ. In this transaction isolation level, a transaction will use the same snapshot through
the entire transaction. Here is what will happen:

Transaction 1 Transaction 2

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE
READ;

SELECT sum(balance) FROM t_account;

User will see 300 BEGIN;

INSERT INTO t_account
(balance) VALUES (100);

COMMIT;

SELECT sum(balance) FROM t_account;
SELECT sum(balance) FROM
t_account;

User will see 300 User will see 400

COMMIT;

As just outlined, the first transaction will freeze its snapshot of the data and provide us with
constant results throughout the entire transaction. This feature is especially important if you
want to run reports. The first and the last page of a report should always be consistent and
operate on the same data. Therefore, the repeatable read is key to consistent reports.

Note that isolation-related errors won't always pop up instantly. It can happen that trouble
is noticed years after an application has been moved to production.

Repeatable read is not more expensive than read committed. There is no
need to worry about performance penalties. For normal Online-
Transaction-Processing (OLTP), read committed has various advantages
because changes can be seen much earlier and the odds of unexpected
errors are usually lower.

Understanding Transactions and Locking Chapter 2

[31]

Considering SSI transactions
On top of read committed and repeatable read, PostgreSQL offers Serializable Snapshot
Isolation (SSI) transactions. So, in all, PostgreSQL supports three isolation levels. Note that
read uncommitted (which still happens to be the default in some commercial databases) is
not supported: if you try to start a read uncommitted transaction, PostgreSQL will silently
map to read committed. Let us get back to the serializable isolation level.

The idea behind serializable is simple; if a transaction is known to work correctly when
there is only a single user, it will also work in the case of concurrency when this isolation
level is chosen. However, users have to be prepared; transactions may fail (by design) and
error-out. In addition to this, a performance penalty has to be paid.

If you want to know more about this isolation level, consider checking
out https://wiki.postgresql.org/wiki/Serializable.

Consider using serializable only when you have a decent understanding
of what is going on inside the database engine.

Observing deadlocks and similar issues
Deadlocks are an important issue and can happen in every database I am aware of.
Basically, a deadlock will happen if two transactions have to wait on each other.

In this section, you will see how this can happen. Let's suppose we have a table containing
two rows:

CREATE TABLE t_deadlock (id int);
INSERT INTO t_deadlock VALUES (1), (2);

https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/Serializable

Understanding Transactions and Locking Chapter 2

[32]

The next listing shows what can happen:

Transaction 1 Transaction 2

BEGIN; BEGIN;

UPDATE t_deadlock
SET id = id * 10
WHERE id = 1;

UPDATE t_deadlock
SET id = id * 10
WHERE id = 2;

UPDATE t_deadlock
SET id = id * 10
WHERE id = 2;

Waiting on transaction 2
UPDATE t_deadlock
SET id = id * 10
WHERE id = 1;

Waiting on transaction 2 Waiting on transaction 1

Deadlock will be resolved after one second
(deadlock_timeout)

COMMIT; ROLLBACK;

As soon as the deadlock is detected, the following error message will show up:

ERROR: deadlock detected
DETAIL: Process 91521 waits for ShareLock on transaction 903;
 blocked by process 77185.
Process 77185 waits for ShareLock on transaction 905;
blocked by process 91521.
HINT: See server log for query details.
CONTEXT: while updating tuple (0,1) in relation "t_deadlock"

Understanding Transactions and Locking Chapter 2

[33]

PostgreSQL is even kind enough to tell us which row has caused the conflict. In my
example, the root of all evil is a tuple (0, 1). What you can see here is ctid, which is a
unique identifier of a row in a table. It tells us about the physical position of a row inside
the table. In this example, it is the first row in the first block (0).

It is even possible to query this row if it is still visible to your transaction:

test=# SELECT ctid, * FROM t_deadlock WHERE ctid = '(0, 1)';
ctid | id
-------+----
(0,1) | 1
(1 row)

Keep in mind that this query might not return a row if it has already been deleted or
modified.

However, it isn't only the case that deadlocks can lead to potentially failing transactions. It
can also happen that transactions are not serialized for various reasons. The following
example shows what can happen. To make the example work, I assume that you've still got
two rows, id = 1 and id = 2.

Transaction 1 Transaction 2

BEGIN ISOLATION LEVEL REPEATABLE READ;

SELECT * FROM t_deadlock;

Two rows will be returned

DELETE FROM t_deadlock;

SELECT * FROM t_deadlock;

Two rows will be returned

DELETE FROM t_deadlock;

The transaction will error-out

ROLLBACK; - we cannot COMMIT anymore

Understanding Transactions and Locking Chapter 2

[34]

In this example, two concurrent transactions are at work. As long as transaction 1 is just
selecting data, everything is fine because PostgreSQL can easily preserve the illusion of
static data. But what happens if the second transaction commits a DELETE? As long as there
are only reads, there is still no problem. The trouble begins when transaction 1 tries to
delete or modify data, which is at this point already really dead. The only solution here for
PostgreSQL is to error-out:

test=# DELETE FROM t_deadlock;
ERROR: could not serialize access due to concurrent update

Practically, this means that end users have to be prepared to handle erroneous transactions.
If something goes wrong, properly written applications must be able to try again.

Utilizing advisory locks
PostgreSQL has a highly efficient and sophisticated transaction machinery that is capable of
handling locks in a really fine-grained and efficient way. Some years ago, some people came
up with the idea of using this code to synchronize applications with each other.

Thus, advisory locks were born.

When using advisory locks, it is important to mention that they won't go away on COMMIT
as normal locks do. Therefore, it is really important to make sure that unlocking is done
properly and in a totally reliable way.

If you decide to use an advisory lock, what you really lock is a number. So, this is not about
rows or data; it is really just a number. Here is how it works:

Session 1 Session 2

BEGIN;

SELECT pg_advisory_lock(15);

SELECT pg_advisory_lock(15);

It has to wait

COMMIT; It still has to wait

SELECT pg_advisory_unlock(15); It still waiting

Lock is taken

Understanding Transactions and Locking Chapter 2

[35]

The first transaction will lock 15. The second transaction has to wait until this number has
been unlocked again. The second session will even wait after the first one has committed.
This is highly important as you cannot rely on the fact that the end of the transaction will
nicely and miraculously solve things for you.

If you want to unlock all locked numbers, PostgreSQL offers the
pg_advisory_unlock_all() function to do exactly this:

test=# SELECT pg_advisory_unlock_all();
pg_advisory_unlock_all

(1 row)

Sometimes, you might want to see if you can get a lock and error-out if it is not possible. To
achieve this, PostgreSQL offers a couple of function, to see a list of all such available
functions, at the command line, enter: df *try*advisory*.

Optimizing storage and managing cleanup
Transactions are an integral part of the PostgreSQL system. However, transactions come
with a small price tag attached. As already shown in this chapter, it can happen that
concurrent users will be presented with different data. Not everybody will get the same
data returned by a query. In addition to this, DELETE and UPDATE are not allowed to
actually overwrite data as ROLLBACK would not work. If you happen to be in the middle of
a large DELETE operation, you cannot be sure whether you will be able to COMMIT or not. In
addition to this, data is still visible while you perform DELETE, and sometimes data is even
visible once your modification has long since finished.

Consequently, this means that cleanup has to happen asynchronously. A transaction cannot
clean up its own mess and COMMIT/ROLLBACK might be too early to take care of dead rows.

Understanding Transactions and Locking Chapter 2

[36]

The solution to this problem is VACUUM:

test=# \h VACUUM
Command: VACUUM
Description: garbage-collect and optionally analyze a database
Syntax:
VACUUM [({ FULL | FREEZE | VERBOSE | ANALYZE } [, ...])] [table_name [
(column_name [, ...])]]
VACUUM [FULL] [FREEZE] [VERBOSE] [table_name]
VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE [table_name [(column_name
[, ...])]]

VACUUM will visit all pages that potentially contain modifications and find all the dead
space. The free space found is then tracked by Free Space Map (FSM) of the relation.

Note that VACUUM will, in most cases, not shrink the size of a table. Instead, it will track and
find free space inside existing storage files.

Tables will usually have the same size after VACUUM. If there are no valid
rows at the end of a table, file sizes can go down in some rare cases. This is
not the rule but rather the exception.

What this means to the end users will be outlined in the Watching VACUUM at work section
of this chapter.

Configuring VACUUM and autovacuum
Back in the early days of PostgreSQL projects, people had to run VACUUM manually.
Fortunately, this is long gone. Nowadays, administrators can rely on a tool called
autovacuum, which is part of the PostgreSQL Server infrastructure. It automatically takes
care of cleanup and works in the background. It wakes up once per minute (see
autovacuum_naptime = 1 in postgresql.conf) and checks if there is work to do. If
there is work, autovacuum will fork up to three worker processes (see
autovacuum_max_workers in postgresql.conf).

The main question is, when does autovacuum trigger the creation of a worker process?

Actually, the autovacuum process does not fork processes itself. Instead, it
tells the main process to do so. This is done to avoid zombie processes in
the case of failure and to improve robustness.

Understanding Transactions and Locking Chapter 2

[37]

The answer to this question can again be found in postgresql.conf:

autovacuum_vacuum_threshold = 50
autovacuum_analyze_threshold = 50
autovacuum_vacuum_scale_factor = 0.2
autovacuum_analyze_scale_factor = 0.1

autovacuum_vacuum_scale_factor tells PostgreSQL that a table is worth vacuuming if
20% of data has been changed. The trouble is that if a table consists of one row, one change
is already 100%. It makes absolutely no sense to fork a complete process to clean up just one
row. Therefore, autovacuum_vacuuum_threshold says that we need 20% and this 20%
must be at least 50 rows. Otherwise, VACUUM won't kick in. The same mechanism is used
when it comes to optimizer stats creation. 10% and at least 50 rows are needed to justify
new optimizer stats. Ideally, autovacuum creates new statistics during a normal VACUUM to
avoid unnecessary trips to the table.

Digging into transaction wraparound-related issues
There are two more settings in postgresql.conf that are quite important to understand:

autovacuum_freeze_max_age = 200000000
autovacuum_multixact_freeze_max_age = 400000000

To understand the overall problem, it is important to understand how PostgreSQL handles
concurrency. The PostgreSQL transaction machinery is based on the comparison of
transaction IDs and the states transactions are in.

Let's look at an example. If I am transaction ID 4711 and if you happen to be 4712, I won't
see you because you are still running. If I am transaction ID 4711 but you are transaction ID
3900, I will see you provided you have committed, and I will ignore you if you failed.

The trouble is as follows: transaction IDs are finite, not unlimited. At some point, they will
start to wrap around. In reality, this means that transaction number 5 might actually be
after transaction number 800,000,000. How does PostgreSQL know what was first? It does
so by storing a watermark. At some point, those watermarks will be adjusted, and this is
exactly when VACUUM starts to be relevant. By running VACUUM (or autovacuum), you can
ensure that the watermark is adjusted in a way that there are always enough future
transaction IDs left to work with.

Understanding Transactions and Locking Chapter 2

[38]

Not every transaction will increase the transaction ID counter. As long as a
transaction is still reading, it will only have a virtual transaction ID. This
ensures that transaction IDs are not burned too quickly.

autovacuum_freeze_max_age defines the maximum number of transactions (age) that a
table's pg_class.relfrozenxid field can attain before a VACUUM operation is forced to
prevent transaction ID wraparound within the table. This value is fairly low because it also
has an impact on clog cleanup (the clog or commit log is a data structure that stores two bits
per transaction, which indicate whether a transaction is running, aborted, committed, or
still in a subtransaction).

autovacuum_multixact_freeze_max_age configures the maximum age (in multixacts)
that a table's pg_class.relminmxid field can attain before a VACUUM operation is forced to
prevent multixact ID wraparound within the table. Freezing tuples is an important
performance issue and there will be more about this process in Chapter 6, Optimizing
Queries for Good Performance, where we will discuss query optimization.

In general, trying to reduce the VACUUM load while maintaining operational security is a
good idea. A VACUUM instance on large tables can be expensive, and therefore keeping an
eye on these settings makes perfect sense.

A word on VACUUM FULL
Instead of normal VACUUM, you can also use VACUUM FULL. However, I really want to point
out that VACUUM FULL actually locks the table and rewrites the entire relation. In the case of
a small table, this might not be an issue. However, if your tables are large, the table lock can
really kill you in minutes! VACUUM FULL blocks upcoming writes and therefore some
people talking to your database might have the feeling that it is actually down. Hence, a lot
of caution is advised.

To get rid of VACUUM FULL, I recommend that you check out pg_squeeze
(http://www.cybertec.at/introducing-pg_squeeze-a-postgresql-extension-to-auto-
rebuild-bloated-tables/), which can rewrite a table without blocking writes.

https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
https://www.cybertec-postgresql.com/en/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/

Understanding Transactions and Locking Chapter 2

[39]

Watching VACUUM at work
After this introduction, it is time to see VACUUM in action. I have included this section here
because my practical work as a PostgreSQL consultant and supporter (http:/ ​/​postgresql-
support.​de/​) indicates that most people only have a very vague understanding of what
happens on the storage side.

To stress this point again, in most cases, VACUUM will not shrink your tables; space is usually
not returned to the filesystem.

Here is my example:

CREATE TABLE t_test (id int) WITH (autovacuum_enabled = off);
INSERT INTO t_test
 SELECT * FROM generate_series(1, 100000);

The idea is to create a simple table containing 100,000 rows. Note that it is possible to turn
autovacuum off for specific tables. Usually, this is not a good idea for most applications.
However, there are corner case, where autovacuum_enabled = off makes sense. Just
consider a table whose life cycle is very short. It does not make sense to clean out tuples if
the developer already knows that the entire table will be dropped within seconds. In data
warehousing, this can be the case if you use tables as staging areas. VACUUM is turned off in
this example to ensure that nothing happens in the background; all you see is triggered by
me and not by some process.

First of all, the size of the table is checked:

test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
pg_size_pretty

 3544 kB
(1 row)

pg_relation_size returns the size of a table in bytes. pg_size_pretty will take this
number and turn it into something human-readable.

https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/
https://www.cybertec-postgresql.com/de/

Understanding Transactions and Locking Chapter 2

[40]

Then, all rows in the table will be updated:

test=# UPDATE t_test SET id = id + 1;
UPDATE 100000

What happens is highly important to understand PostgreSQL; the database engine has to
copy all the rows. Why? First of all, we don't know whether the transaction will be
successful, so the data cannot be overwritten. The second important aspect is that a
concurrent transaction might still be seeing the old version of the data.

The UPDATE operation will copy rows.

Logically, the size of the table will be larger after the change has been made:

test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
 pg_size_pretty

 7080 kB
(1 row)

After UPDATE, people might try to return space to the filesystem:

test=# VACUUM t_test;
VACUUM

As stated previously, VACUUM does not return space to the filesystem in most cases. Instead,
it will allow space to be reused. The table, therefore, does not shrink at all:

test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
 pg_size_pretty

 7080 kB
(1 row)

Understanding Transactions and Locking Chapter 2

[41]

However, the next UPDATE will not make the table grow because it will eat the free space
inside the table. Only a second UPDATE would make the table grow again, because all the
space is gone and so additional storage is needed:

test=# UPDATE t_test SET id = id + 1;
UPDATE 100000
test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
 pg_size_pretty

 7080 kB
(1 row)

test=# UPDATE t_test SET id = id + 1;
UPDATE 100000
test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
 pg_size_pretty

 10 MB
(1 row)

If I had to decide on a single thing, you should remember after reading this book, this is it.
Understanding storage is the key to performance and administration in general.

Let us run some more queries:

VACUUM t_test;
UPDATE t_test SET id = id + 1;
VACUUM t_test;

Again the size is unchanged. Let's see what is inside the table:

test=# SELECT ctid, * FROM t_test ORDER BY ctid DESC;
ctid | id
-----------+--------
(1327, 46) | 112
(1327, 45) | 111
(1327, 44) | 110
(884, 20) | 99798
(884, 19) | 99797
...

Understanding Transactions and Locking Chapter 2

[42]

ctid is the physical position of a row on a disk. Using ORDER BY ctid DESC, you will
basically read the table backwards in the physical order. Why should you care? The reason
is that there are some very small values and some very big values at the end of the table.
What happens if they are deleted?

test=# DELETE FROM t_test WHERE id > 99000 OR id < 1000;
DELETE 1999
test=# VACUUM t_test;
VACUUM
test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
 pg_size_pretty

 3504 kB
(1 row)

Although only 2% of the data has been deleted, the size of the table has gone down by two
thirds. The reason is that if VACUUM only finds dead rows after a certain position in the table,
it can return space to the filesystem. This is the only case in which you will actually see the
table size go down. Of course, normal users have no control over the physical position of
data on the disk. Therefore, storage consumption will most likely stay somewhat the same
unless all rows are deleted.

Why are there so many small and big values at the end of the table
anyway? After the table is initially populated with 100,000 rows, the last
block is not completely full, so the first UPDATE will fill up the last block
with changes. This naturally shuffles the end of the table a bit. In this
carefully crafted example, this is the reason for the strange layout at the
end of the table.

In real-world applications, the impact of this observation cannot be stressed enough. There
is no performance tuning without really understanding storage.

Understanding Transactions and Locking Chapter 2

[43]

Making use of snapshot too old
VACUUM does a good job and it will reclaim free space as needed. However, when can
VACUUM actually clean out rows and turn them into free space? The rule is this: if a row
cannot be seen by anybody anymore, it can be reclaimed. In reality, this means that
everything that is no longer seen even by the oldest active transaction can be considered to
be really dead.

This also implies that really long transactions can postpone cleanup for quite some time.
The logical consequence is table bloat. Tables will grow beyond proportion and
performance will tend to go downhill. Fortunately, starting with PostgreSQL 9.6, the
database has a nice feature that allows the administrator to intelligently limit the duration
of a transaction. Oracle administrators will be familiar with the snapshot too old error; since
PostgreSQL 9.6, this error message is also available. However, it is more of a feature than an
unintended side-effect of bad configuration (which it actually is in Oracle).

To limit the lifetime of snapshots, you can make use of a setting in postgresql.conf:

old_snapshot_threshold = -1
 # 1min-60d; -1 disables; 0 is immediate

If this variable is set, transactions will fail after a certain amount of time. Note that this
setting is on an instance level and it cannot be set inside a session. By limiting the age of a
transaction, the risk of insanely long transactions will decrease drastically.

Summary
In this chapter, you learned transactions, locking and its logical implications, and the
general architecture the PostgreSQL transaction machinery can have for storage,
concurrency, and administration. You saw how rows are locked and which features are
available in PostgreSQL.

In Chapter 3, Making use of Indexes, you will learn one of the most important topics in
database work: indexing. You will learn about the PostgreSQL query optimizer as well as
various types of indexes and their behavior.

3
Making Use of Indexes

In Chapter 2, Understanding Transactions and Locking, you learned concurrency and locking.
In this chapter, it is time to attack indexing head on. The importance of this topic cannot be
stressed enough—indexing is (and will most likely remain) one of the most important topics
in the life of every database engineer.

After 18 years of professional, full-time PostgreSQL consulting and PostgreSQL 24x7
support (www.cybertec-postgresql.com), I can say one thing for sure—bad indexing is the
main source of bad performance. Of course, it is important to adjust memory parameters
and all that. However, it is all in vain if indexes are not used properly. There is simply no
replacement for a missing index.

Therefore, I have dedicated an entire chapter to indexing alone to give you as many insights
as possible.

In this chapter, you will learn these topics:

When does PostgreSQL use indexes?
How does an optimizer handle things?
What types of indexes are there and how do they work?
Using your own indexing strategies

At the end of the chapter, you will be able to understand how indexes can be used
beneficially in PostgreSQL.

https://www.cybertec-postgresql.com/de/

Making Use of Indexes Chapter 3

[45]

Understanding simple queries and the cost
model
In this section, we will get started with indexes. To show how things work, some test data is
needed. The following code snippet shows how data can be created easily:

test=# CREATE TABLE t_test (id serial, name text);
CREATE TABLE
test=# INSERT INTO t_test (name) SELECT 'hans'
 FROM generate_series(1, 2000000);
INSERT 0 2000000
test=# INSERT INTO t_test (name) SELECT 'paul'
 FROM generate_series(1, 2000000);
INSERT 0 2000000

In the first line, a simple table is created. Two columns are used: an autoincrement
column that just keeps creating numbers and a column that will be filled with static values.

The generate_series function will generate numbers from 1 to 2
million. So, in this example, 2 million static values for hans and 2 million
static values for paul are created.

In all, 4 million rows have been added:

test=# SELECT name, count(*) FROM t_test GROUP BY 1;
 name | count
------+---------
 hans | 2000000
 paul | 2000000
(2 rows)

These 4 million rows have some nice properties. IDs are ascending and there are only two
distinct names.

Making Use of Indexes Chapter 3

[46]

Let's run a simple query now:

test=# \timing
Timing is on.
test=# SELECT * FROM t_test WHERE id = 432332;
 id | name
--------+------
 432332 | hans
(1 row)

Time: 176.949 ms

In this case, the timing command will tell psql to show the runtime of a query. Note that
this is not the real execution time on the server, but the time measured by psql. In case of
very short queries, network latency can be a substantial part of the total time, so this has to
be taken into account.

Making use of EXPLAIN
In this example, reading 4 million rows has taken more than 100 milliseconds. From a
performance point of view, it is a total disaster. To figure out what goes wrong, PostgreSQL
offers the EXPLAIN command:

test=# \h EXPLAIN
Command: EXPLAIN
Description: show the execution plan of a statement
Syntax:
EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 BUFFERS [boolean]
 TIMING [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

When you have a feeling that a query is not performing well, EXPLAIN will help you to
reveal the real performance problem.

Making Use of Indexes Chapter 3

[47]

Here is how it works:

test=# EXPLAIN SELECT * FROM t_test WHERE id = 432332;
 QUERY PLAN

 Gather (cost=1000.00..43463.92 rows=1 width=9)
 Workers Planned: 2
 -> Parallel Seq Scan on t_test
 (cost=0.00..42463.82 rows=1 width=9)
 Filter: (id = 432332)
(4 rows)

What you see in this listing is an execution plan. In PostgreSQL, a SQL statement will be
executed in four stages. The following components are at work:

The parser will check for syntax errors and obvious problems
The rewrite system takes care of rules (views and other things)
The optimizer will figure out how to execute a query in the most efficient way
and work out a plan
The plan provided by the optimizer will be used by the executor to finally create
the result

The purpose of EXPLAIN is to see what the planner has come up with to run the query
efficiently. In my example, PostgreSQL will use a parallel sequential scan. This means that
two workers will cooperate and work on the filter condition together. The partial results are
then united through a thing called a gather node, which has been introduced in PostgreSQL
9.6 (it is a part of the parallel query infrastructure). If you look at the plan more precisely,
you will see how many rows PostgreSQL expects at each stage of the plan (in this
example, rows = 1, that is, one row will be returned).

In PostgreSQL 9.6 and 10.0, the number of parallel workers will be
determined by the size of the table. The larger an operation is, the more
parallel workers PostgreSQL will fire up. For a very small table,
parallelism is not used as it would create too much overhead.

Parallelism is not a must. It is always possible to reduce the number of parallel workers to
mimic pre-PostgreSQL 9.6 behavior by setting the following variable to 0:

test=# SET max_parallel_workers_per_gather TO 0;
SET

Note that this change has no side effect as it is only in your session. Of course, you can also
decide the change in the postgresql.conf file, but I would not advise you to do this, as
you might lose quite a lot of performance provided by the parallel queries.

Making Use of Indexes Chapter 3

[48]

Digging into the PostgreSQL cost model
If only one CPU is used, the execution plan will look like this:

test=# EXPLAIN SELECT * FROM t_test WHERE id = 432332;
 QUERY PLAN
--
 Seq Scan on t_test (cost=0.00..71622.00 rows=1 width=9)
 Filter: (id = 432332)
(2 rows)

PostgreSQL will sequentially read (sequential scan) the entire table and apply the filter. It
expects the operation to cost 71622 penalty points. Now, what does this mean? Penalty
points (or costs) are mostly an abstract concept. They are needed to compare different ways
to execute a query. If a query can be executed by the executor in many different ways,
PostgreSQL will decide on the execution plan promising the lowest cost possible. The
question now is how did PostgreSQL end up with 71622 points?

Here is how it works:

test=# SELECT pg_relation_size('t_test') / 8192.0;

 ?column?

 21622.000000
(1 row)

The pg_relation_size function will return the size of the table in bytes. Given the
example, you can see that the relation consists of 21622 blocks (8k each). According to the
cost model, PostgreSQL will add costs of one for each block it has to read sequentially.

The configuration parameter to influence that is as follows:

test=# SHOW seq_page_cost;
 seq_page_cost

 1
(1 row)

However, reading a couple of blocks from a disk is not everything we have to do. It is also
necessary to apply the filter and to send these rows through a CPU. Two parameters are
here to account for these costs:

test=# SHOW cpu_tuple_cost;
 cpu_tuple_cost

Making Use of Indexes Chapter 3

[49]

 0.01
(1 row)
test=# SHOW cpu_operator_cost;
 cpu_operator_cost

 0.0025
(1 row)

This leads to the following calculation:

test=# SELECT 21622*1 + 4000000*0.01 + 4000000*0.0025;

 ?column?

 71622.0000
(1 row)

As you can see, this is exactly the number seen in the plan. Costs will consist of a CPU part
and an I/O part, which will all be turned into a single number. The important thing here is
that costs have nothing to do with real execution, so it is impossible to translate costs to
milliseconds. The number the planner comes up with is really just an estimate.

Of course, there are some more parameters outlined in this brief example. PostgreSQL also
has special parameters for index-related operations, as follows:

random_page_cost = 4: If PostgreSQL uses an index, there is usually a lot of
random I/O involved. On traditional spinning disks, random reads are much
more important than sequential reads, so PostgreSQL will account for them
accordingly. Note that on SSDs, the difference between random and sequential
reads does not exist anymore, so it can make sense to set random_page_cost =
1 in the postgresql.conf file.
cpu_index_tuple_cost = 0.005: If indexes are used, PostgreSQL will also
consider that there is some CPU cost invoiced.

If you are utilizing parallel queries, there are even more cost parameters:

parallel_tuple_cost = 0.1: This defines the cost of transferring one tuple
from a parallel worker process to another process. It basically accounts for the
overhead of moving rows around inside the infrastructure.
parallel_setup_cost = 1000.0: This adjusts the costs of firing up a worker
process. Of course, starting processes to run queries in parallel is not free, and so,
this parameter tries to model those costs associated with process management.

Making Use of Indexes Chapter 3

[50]

min_parallel_relation_size = 8 MB: This defines the minimum size of a
table considered for parallel queries. The larger a table grows, the more CPUs
PostgreSQL will use. The size of the table has to triple to allow for one more
worker process.

Deploying simple indexes
Firing up more worker processes to scan ever larger tables is sometimes not the solution.
Reading entire tables to find just a single row is usually not a good idea.

Therefore, it makes sense to create indexes:

test=# CREATE INDEX idx_id ON t_test (id);
CREATE INDEX
test=# SELECT * FROM t_test WHERE id = 43242;
 id | name
-------+------
 43242 | hans
(1 row)
Time: 0.259 ms

PostgreSQL uses Lehman-Yao's high concurrency b-tree for standard indexes. Along with
some PostgreSQL specific optimizations, these trees provide end users with excellent
performance. The most important thing is that Lehman-Yao allows you to run many
operations (reading and writing) on the very same index at the same time, which helps to
improve throughput dramatically.

However, indexes are not free:

test=# \di+
 List of relations
 Schema | Name | Type | Owner | Table | Size | Description
--------+--------+-------+-------+--------+-------+-------------
 public | idx_id | index | hs | t_test | 86 MB |
(1 row)

As you can see, our index containing 4 million rows will eat up 86 MB of disk space. In
addition to this, writes to the table will be slower because the index has to be kept in sync
all the time.

In other words, if you insert into a table featuring 20 indexes, you also have to keep in mind
that we have to write to all those indexes on INSERT, which seriously slows down the
writing.

Making Use of Indexes Chapter 3

[51]

Making use of sorted output
B-tree indexes are not only used to find rows; they are also used to feed sorted data to the
next stage in the process:

test=# EXPLAIN SELECT * FROM t_test ORDER BY id DESC
LIMIT 10;

 QUERY PLAN

 Limit (cost=0.43..0.74 rows=10 width=9)
 -> Index Scan Backward using idx_id on t_test
 (cost=0.43..125505.43 rows=4000000 width=9)
(2 rows)

In this case, the index already returns data in the right sort order and therefore there is no
need to sort the entire set of data. Reading the last 10 rows of the index will be enough to
answer this query. Practically, this means that it is possible to find the top N rows of a table
in a fraction of a millisecond.

However, ORDER BY is not the only operation requiring sorted output. The min and max
functions are also all about sorted output, so an index can be used to speed up these two
operations as well. Here is an example:

test=# explain SELECT min(id), max(id) FROM t_test;
 QUERY PLAN
--
 Result (cost=0.93..0.94 rows=1 width=8)
 InitPlan 1 (returns $0)
 -> Limit (cost=0.43..0.46 rows=1 width=4)
 -> Index Only Scan using idx_id on t_test
 (cost=0.43..135505.43 rows=4000000 width=4)
 Index Cond: (id IS NOT NULL)
 InitPlan 2 (returns $1)
 -> Limit (cost=0.43..0.46 rows=1 width=4)
 -> Index Only Scan Backward using idx_id on t_test t_test_1
 (cost=0.43..135505.43 rows=4000000 width=4)
 Index Cond: (id IS NOT NULL)
(9 rows)

In PostgreSQL, an index (a b-tree, to be more precise) can be read in normal order or
backwards. The thing now is that a b-tree can be seen as a sorted list. So, naturally, the
lowest value is at the beginning and the highest value is at the end. Therefore, min and max
are perfect candidates for a speed up. What is also worth noticing is that in this case, the
main table needs not be referenced at all.

Making Use of Indexes Chapter 3

[52]

In SQL, many operations rely on sorted input; therefore, understanding these operations is
essential because there are serious implications on the indexing side.

Using more than one index at a time
Up until now, you have seen that one index at a time has been used. However, in many
real-world situations, this is, by far, not sufficient. There are cases demanding more logic in
the database.

PostgreSQL allows the use of multiple indexes in a single query. Of course, this makes sense
if many columns are queried at the same time. However, that's not always the case. It can
also happen that a single index is used multiple times to process the very same column.

Here is an example:

test=# explain SELECT * FROM t_test WHERE id = 30 OR id = 50;

 QUERY PLAN

 Bitmap Heap Scan on t_test (cost=8.88..16.85 rows=2 width=9)
 Recheck Cond: ((id = 30) OR (id = 50))
 -> BitmapOr (cost=8.88..8.88 rows=2 width=0)
 -> Bitmap Index Scan on idx_idv
 (cost=0.00..4.44 rows=1 width=0)
 Index Cond: (id = 30)
 -> Bitmap Index Scan on idx_id (cost=0.00..4.44 rows=1 width=0)
 Index Cond: (id = 50)
(7 rows)

The point here is that the id column is needed twice. First, the query looks for 30 and then,
for 50. As you can see, PostgreSQL will go for a bitmap scan.

A bitmap scan is not the same as a bitmap index, which people from an
Oracle background might know. They are two totally distinct things and
have nothing in common. Bitmap indexes are an index type in Oracle,
while bitmap scans are a scan method.

The idea behind a bitmap scan is that PostgreSQL will scan the first index, collecting a list of
blocks containing the data. Then, the next index will be scanned to again compile a list of
blocks. This works for as many indexes as desired. In the case of OR, these lists will then be
unified, leaving us with a large list of blocks containing the data. Using this list, the table
will be scanned to retrieve these blocks.

Making Use of Indexes Chapter 3

[53]

The trouble now is that PostgreSQL has retrieved a lot more data than needed. In our case,
the query will look for two rows; however, a couple of blocks might have been returned by
the bitmap scan. Therefore, the executor will do as recheck to filter out these rows, which do
not satisfy our conditions.

Bitmap scans will also work for AND conditions or a mixture of AND and OR. However, if
PostgreSQL sees an AND condition, it does not necessarily force itself into a bitmap scan.
Let's suppose that we got a query looking for everybody living in Austria and a person with
a certain ID. It really makes no sense to use two indexes here because after searching for the
ID, there is really not much data left. Scanning both indexes would be much more
expensive because there are 8 million people (including me) living in Austria, and reading
so many rows to find just one person is pretty pointless from a performance standpoint. The
good news is that the PostgreSQL optimizer will make all these decisions for you by
comparing the costs of different options and potential indexes, so there is no need to worry.

Using bitmap scans effectively
The question naturally arising now is, when is a bitmap scan most beneficial and when is it
chosen by the optimizer? From my point of view, there are really only two use cases:

Avoiding using the same block over and over again
Combining relatively bad conditions

The first case is quite common. Suppose you are looking for everybody who speaks a
certain language. For the sake of the example, we can assume that 10% of all people speak
the required language. Scanning the index would mean that a block in the table has to be
scanned all over again as many skilled speakers might be stored in the same block. By
applying a bitmap scan, it is ensured that a specific block is only used once, which of course
leads to better performance.

The second common use case is to use relatively weak criteria together. Let's suppose we
are looking for everybody between 20 and 30 years of age owning a yellow shirt. Now,
maybe 15% of all people are between 20 and 30 and maybe 15% of all people actually own a
yellow shirt. Scanning a table sequentially is expensive, and so PostgreSQL might decide to
choose two indexes because the final result might consist of just 1% of the data. Scanning
both indexes might be cheaper than reading all of the data.

In PostgreSQL 10.0, parallel bitmap heap scans are supported. Usually, bitmap scans are
used by comparatively expensive queries. Added parallelism in this area is, therefore, a
huge step forward and definitely beneficial.

Making Use of Indexes Chapter 3

[54]

Using indexes in an intelligent way
So far, applying an index feels like the Holy Grail, which always improves performance
magically. However, this is not the case. Indexes can also be pretty pointless in some cases.

Before digging into things more deeply, here is the data structure we have used for this
example. Remember that there are only two distinct names and unique IDs:

test=# \d t_test
 Table "public.t_test"
 Column | Type | Modifiers
--------+---------+------------------------------------
 id | integer | not null default nextval('t_test_id_seq'::regclass)
 name | text |
Indexes:
 "idx_id" btree (id)

At this point, one index has been defined, which covers the id column. In the next step,
the name column will be queried. Before doing this, an index on the name will be created:

test=# CREATE INDEX idx_name ON t_test (name);
CREATE INDEX

Now, it is time to see if the index is used correctly:

test=# EXPLAIN SELECT * FROM t_test WHERE name = 'hans2';
 QUERY PLAN

Index Scan using idx_name on t_test
 (cost=0.43..4.45 rows=1 width=9)
 Index Cond: (name = 'hans2'::text)
(2 rows)

As expected, PostgreSQL will decide on using the index. Most users would expect this. But
note that my query says hans2. Remember, hans2 does not exist in the table and the query
plan perfectly reflects this. rows=1 indicates that the planner only expects a very small
subset of data being returned by the query.

There is not a single row in the table, but PostgreSQL will never estimate
zero rows because it would make subsequent estimations a lot harder
because useful cost calculations of other nodes in the plan would be close
to impossible.

Making Use of Indexes Chapter 3

[55]

Let's see what happens if we look for more data:

test=# EXPLAIN SELECT *
 FROM t_test
 WHERE name = 'hans'
 OR name = 'paul';
 QUERY PLAN
--
 Seq Scan on t_test (cost=0.00..81622.00 rows=3000011 width=9)
 Filter: ((name = 'hans'::text) OR (name = 'paul'::text))
(2 rows)

In this case, PostgreSQL will go for a straight sequential scan. Why is that? Why is the
system ignoring all indexes? The reason is simple; hans and paul make up the entire dataset
because there are no other values (PostgreSQL knows that by checking the system
statistics). Therefore, PostgreSQL figures that the entire table has to be read anyway. There
is no reason to read all of the index and the full table if reading just the table is sufficient.

In other words, PostgreSQL will not use an index just because there is one. PostgreSQL will
use indexes when they make sense. If the number of rows is smaller, PostgreSQL will again
consider bitmap scans and normal index scans:

test=# EXPLAIN SELECT *
 FROM t_test
 WHERE name = 'hans2'
 OR name = 'paul2';

 QUERY PLAN
--
 Bitmap Heap Scan on t_test (cost=8.88..12.89 rows=1 width=9)
 Recheck Cond: ((name = 'hans2'::text) OR (name = 'paul2'::text))
 -> BitmapOr (cost=8.88..8.88 rows=1 width=0)
 -> Bitmap Index Scan on idx_name
 (cost=0.00..4.44 rows=1 width=0)
 Index Cond: (name = 'hans2'::text)
 -> Bitmap Index Scan on idx_name
 (cost=0.00..4.44 rows=1 width=0)
 Index Cond: (name = 'paul2'::text)

The most important point to learn here is that execution plans depend on input values.

They are not static and not independent of the data inside the table. This is a very important
observation, which has to be kept in mind all the time. In real-world examples, the fact that
plans change can often be the reason for unpredictable runtimes.

Making Use of Indexes Chapter 3

[56]

Improving speed using clustered tables
In this section, you will learn about the power of correlation and the power of clustered
tables. What is the whole idea? Consider you want to read a whole area of data. This might
be a certain time range, some block, IDs, or so.

The runtime of such queries will vary depending on the amount of data and the physical
arrangement of data on the disk. So, even if you are running queries that return the same
number of rows, two systems might not provide the answer within the same time span, as
the physical disk layout might make a difference.

Here is an example:

test=# EXPLAIN (analyze true, buffers true, timing true)
 SELECT *
 FROM t_test
 WHERE id < 10000;

 QUERY PLAN
--
 Index Scan using idx_id on t_test
 (cost=0.43..370.87 rows=10768 width=9)
 (actual time=0.011..2.897 rows=9999 loops=1)
 Index Cond: (id < 10000)
 Buffers: shared hit=85
 Planning time: 0.078 ms
 Execution time: 4.081 ms
(5 rows)

As you might remember, the data has been loaded in an organized and sequential way.
Data has been added ID after ID, and so it can be expected that the data will be on the disk
in a sequential order. This holds true if data is loaded into an empty table using some
autoincrement column.

You have already seen EXPLAIN in action. In this example, EXPLAIN (analyze true, buffers
true, and timing true) has been utilized. The idea is that analyze will not just show the plan
but also execute the query and show us what has happened.

EXPLAIN analyze is perfect for comparing planner estimates with what really happened.

It is the best way to figure out whether the planner was correct or way off. The buffers true
parameter will tell us how many 8k blocks were touched by the query. In this example, a
total of 85 blocks were touched. Shared hit means that data was coming from the
PostgreSQL I/O cache (shared buffers). Altogether, it took PostgreSQL around four
milliseconds to retrieve the data.

Making Use of Indexes Chapter 3

[57]

What happens if the data in your table is somewhat random? Will things change?

To create a table containing the same data but in random order, you can simply use ORDER
BY random(). It will make sure that the data is indeed shuffled on disk:

test=# CREATE TABLE t_random AS SELECT * FROM t_test ORDER BY random();
SELECT 4000000

To ensure a fair comparison, the same column is indexed:

test=# CREATE INDEX idx_random ON t_random (id);
CREATE INDEX

To function properly, PostgreSQL will need optimizer statistics. These statistics will tell
PostgreSQL how much data there is, how values are distributed, and whether the data is
correlated on disk. To speed things up even more, I have added a VACUUM call. Please mind
that VACUUM will be discussed later in this book in a broader detail:

test=# VACUUM ANALYZE t_random;
VACUUM

Now, let's run the same query as before:

test=# EXPLAIN (analyze true, buffers true, timing true)
 SELECT * FROM t_random WHERE id < 10000;

 QUERY PLAN
--
 Bitmap Heap Scan on t_random
 (cost=203.27..18431.86 rows=10689 width=9)
 (actual time=5.087..13.822 rows=9999 loops=1)
 Recheck Cond: (id < 10000)
 Heap Blocks: exact=8027
 Buffers: shared hit=8057
 -> Bitmap Index Scan on idx_random
 (cost=0.00..200.60 rows=10689 width=0)
 (actual time=3.558..3.558 rows=9999 loops=1)
 Index Cond: (id < 10000)
 Buffers: shared hit=30
 Planning time: 0.075 ms
 Execution time: 14.411 ms
(9 rows)

Making Use of Indexes Chapter 3

[58]

There are a couple of things to observe here. First of all, a staggering total of 8,057 blocks
were needed and the runtime has skyrocketed to over 14 milliseconds. The only thing here
is that the somewhat rescued performance was the fact that data was again coming from the
memory and not from the disk. Just imagine what it would mean if you had to access the
disk 8,057 times just to answer this query. It would be a total disaster because disk wait
would certainly slow down things dramatically.

However, there is more to see. You can even see that the plan has changed. PostgreSQL
now uses a bitmap scan instead of a normal index scan. This is done to reduce the number
of blocks needed in the query to prevent the even worse behavior.

How does the planner know how data is stored on the disk? pg_stats is a system view
containing all the statistics about the content of the columns. The following query reveals
the relevant content:

test=# SELECT tablename, attname, correlation
 FROM pg_stats
 WHERE tablename IN ('t_test', 't_random')
 ORDER BY 1, 2;
 tablename | attname | correlation
------------+---------+-------------
 t_random | id | -0.0114944
 t_random | name | 0.493675
 t_test | id | 1
 t_test | name | 1
(4 rows)

You can see that PostgreSQL takes care of every single column. The content of the view is
created by a thing called ANALYZE, which is vital to the performance:

test=# \h ANALYZE
Command: ANALYZE
Description: Collect statistics about a database
Syntax:
ANALYZE [VERBOSE] [table_name [(column_name [, ...])]]

Usually, ANALYZE is automatically executed in the background using the autovacuum
daemon, which will be covered later in this book.

Back to our query. As you can see, both tables have two columns (id and name). In the case
of t_test.id, the correlation is 1, which means that the next value somewhat depends on
the previous one. In my example, numbers are simply ascending. The same applies
to t_test.name. First, we have entries containing hans and then we have entries
containing paul. All identical names are therefore stored together.

Making Use of Indexes Chapter 3

[59]

In t_random, the situation is quite different; a negative correlation means that data is
shuffled. You can also see that the correlation for the name column is around 0.5. In reality,
it means that there is usually no straight sequence of identical names in the table, but it
rather means that names keep switching all the time when the table is read in the physical
order.

Why does this lead to so many blocks being hit by the query? The answer is relatively
simple. If the data we need is not packed together tightly but spread out over the table
evenly, more blocks are needed to extract the same amount of information, which in turn
leads to worse performance.

Clustering tables
In PostgreSQL, there is a command called CLUSTER that allows us to rewrite a table in the
desired order. It is possible to point to an index and store data in the same order as the
index:

test=# \h CLUSTER
Command: CLUSTER
Description: cluster a table according to an index
Syntax:
CLUSTER [VERBOSE] table_name [USING index_name]
CLUSTER [VERBOSE]

The CLUSTER command has been around for many years and serves its purpose well. But,
there are some things to consider before blindly running it on a production system:

The CLUSTER command will lock the table while it is running. You cannot insert
or modify data while CLUSTER is running. This might not be acceptable on a
production system.
Data can only be organized according to one index. You cannot order a table by
postal code, name, ID, birthday, and so on, at the same time. It means
that CLUSTER will make sense if there is a search criteria, which is used most of
the time.
Keep in mind that the example outlined in this book is more of a worst-case
scenario. In reality, the performance difference between a clustered and a non-
clustered table will depend on the workload, the amount of data retrieved, cache
hit rates, and a lot more.
The clustered state of a table will not be maintained as changes are made to a
table during normal operations. Correlation will usually deteriorate as time goes
by.

Making Use of Indexes Chapter 3

[60]

Here is an example of how to run the CLUSTER command:

test=# CLUSTER t_random USING idx_random;
CLUSTER

Depending on the size of the table, the time needed to cluster will vary.

Making use of index only scans
So far, you have seen when an index is used and when it is not. In addition to this, bitmap
scans have been discussed.

However, there is more to indexing. The following two examples will only differ slightly
although the performance difference might be fairly large. Here is the first query:

test=# EXPLAIN SELECT * FROM t_test WHERE id = 34234;

 QUERY PLAN
--
 Index Scan using idx_id on t_test
 (cost=0.43..8.45 rows=1 width=9)
 Index Cond: (id = 34234)

There is nothing unusual here. PostgreSQL uses an index to find a single row. What
happens if only a single column is selected?

test=# EXPLAIN SELECT id FROM t_test WHERE id = 34234;

 QUERY PLAN
--
 Index Only Scan using idx_id on t_test
 (cost=0.43..8.45 rows=1 width=4)
 Index Cond: (id = 34234)
(2 rows)

As you can see, the plan has changed from an index scan to an index only scan. In our
example, the id column has been indexed, so its content is naturally in the index. There is
no need to go to the table in most cases if all the data can already be taken out of the index.
Going to the table is (almost) only required if additional fields are queried, which is not the
case here. Therefore, the index only scan will promise significantly better performance than
a normal index scan.

Making Use of Indexes Chapter 3

[61]

Practically, it can even make sense to include an additional column into an index here and
there to enjoy the benefit of this feature. In MS SQL, adding additional columns is known as
covering indexes. Similar behavior can be achieved in PostgreSQL as well.

Understanding additional b-tree features
In PostgreSQL, indexing is a large field and covers many aspects of database work. As I
have outlined in this book already, indexing is the key to performance. There is no good
performance without proper indexing. Therefore, it is worth inspecting these indexing-
related features in more detail.

Combined indexes
In my job, as a professional PostgreSQL support vendor, I am often asked about the
difference between combined and individual indexes. In this section, I will try to shed some
light on this question.

The general rule is this if a single index can answer your question, it is usually the best
choice. However, you cannot index all possible combinations of fields people are filtering
on. What you can do is use the properties of combined indexes to achieve as much gain as
possible.

Let's suppose we have a table containing three columns: postal_code, last_name,
and first_name. A telephone book would make use of a combined index like this. You
will see that data is ordered by location. Within the same location, data will be sorted by last
name and first name.

The following table will show which operations are possible given the three column index:

Query Possible Remarks

postal_code = 2700 AND
last_name = 'Schönig'
AND first_name =
'Hans'

Yes This is the ideal use case for this index.

postal_code = 2700 AND
last_name = 'Schönig' Yes No restrictions.

Making Use of Indexes Chapter 3

[62]

last_name = 'Schönig
AND
postal_code = 2700

Yes PostgreSQL will simply swap conditions.

postal_code = 2700 Yes
This is just like an index on postal_code;
the combined index just needs more space on
the disk.

first_name = 'Hans'
Yes, but a
different use
case

PostgreSQL cannot use the sorted property of
the index anymore. However, in some rare
cases (usually very broad tables, including
countless columns), PostgreSQL will scan the
entire index if it is as cheap as reading the
very broad table.

If columns are indexed separately, you will most likely end up seeing bitmap scans. Of
course, a single hand-tailored index is better.

Adding functional indexes
So far, you have seen how to index the content of a column as it is. However, this might not
always be what you really want. Therefore, PostgreSQL allows the creation of functional
indexes. The basic idea is very simple; instead of indexing a value, the output of a function
is stored in the index.

The following example shows how the cosine of the id column can be indexed:

test=# CREATE INDEX idx_cos ON t_random (cos(id));
CREATE INDEX
test=# ANALYZE;
ANALYZE

All you have to do is put the function on the list of columns and you are done. Of course,
this won't work for all kinds of functions. Functions can only be used if their output is
immutable:

test=# SELECT age('2010-01-01 10:00:00'::timestamptz);
 age

 6 years 9 mons 14:00:00
(1 row)

Making Use of Indexes Chapter 3

[63]

Functions such as age are not really suitable for indexing because their output is not
constant. Time goes on and consequently, the output of age will change too. PostgreSQL
will explicitly prohibit functions that have the potential to change their result given the
same input. The cos function is fine in this respect because the cosine of a value will still be
the same in 1,000 years from now.

To test the index, I have written a simple query to show what will happen:

test=# EXPLAIN SELECT * FROM t_random WHERE cos(id) = 10;
 QUERY PLAN
--
 Index Scan using idx_cos on t_random (cost=0.43..8.45 rows=1 width=9)
 Index Cond: (cos((id)::double precision) = '10'::double precision)
(2 rows)

As expected, the functional index will be used just like any other index.

Reducing space consumption
Indexing is nice and its main purpose is to speed up things as much as possible. As with all
the good stuff, indexing comes with a price tag: space consumption. To do its magic, an
index has to store values in an organized fashion. If your table contains 10 million integer
values, the index belonging to the table will logically contain these 10 million integer values
plus additional overhead.

A b-tree will contain a pointer to each row in the table, and so it is certainly not free of
charge. To figure out how much space an index will need, you can ask the psql using
the di+ command:

test=# \di+
 List of relations
 Schema | Name | Type | Owner | Table | Size
--------+------------+-------+-------+----------+-------
 public | idx_cos | index | hs | t_random | 86 MB
 public | idx_id | index | hs | t_test | 86 MB
 public | idx_name | index | hs | t_test | 86 MB
 public | idx_random | index | hs | t_random | 86 MB
(4 rows)

Making Use of Indexes Chapter 3

[64]

In my database, the staggering amount of 344 MB has been burned to store these indexes.
Now, compare this to the amount of storage burned by the underlying tables:

test=# \d+
 List of relations
 Schema | Name | Type | Owner | Size
--------+---------------+----------+-------+------------
 public | t_random | table | hs | 169 MB
 public | t_test | table | hs | 169 MB
 public | t_test_id_seq | sequence | hs | 8192 bytes
(3 rows)

The size of both tables combined is just 338 MB. In other words, our indexing needs more
space than the actual data. In the real world, this is common and actually pretty likely.
Recently, I visited a Cybertec customer in Germany and I saw a database in which 64% of
the database size was made up of indexes that were never used (not a single time over the
period of months). So, over-indexing can be an issue just like under-indexing. Remember,
these indexes don't just consume space. Every INSERT or UPDATE must maintain the values
in the indexes as well. In extreme cases, like our example, this vastly decreases write
throughput.

If there are just a handful of different values in the table, partial indexes are a solution:

test=# DROP INDEX idx_name;
DROP INDEX
test=# CREATE INDEX idx_name ON t_test (name)
 WHERE name NOT IN ('hans', 'paul');
CREATE INDEX

In this case, the majority has been excluded from the index and a small, efficient index can
be enjoyed:

test=# \di+ idx_name
 List of relations
 Schema | Name | Type | Owner | Table | Size
--------+----------+-------+-------+--------+-----------
 public | idx_name | index | hs | t_test | 8192 bytes
(1 row)

Note that it only makes sense to exclude very frequent values that make up a large part of
the table (at least 25% or so). Ideal candidates for partial indexes are gender (we assume that
most people are male or female), nationality (assuming that most people in your country
have the same nationality), and so on. Of course, applying this kind of trickery requires
some deep knowledge of your data, but it certainly pays off.

Making Use of Indexes Chapter 3

[65]

Adding data while indexing
Creating an index is easy. However, keep in mind that you cannot modify a table while an
index is being built. The CREATE INDEX command will lock up the table using a SHARE lock
to ensure that no changes happen. While this is clearly no problem for small tables, it will
cause issues on large ones on production systems. Indexing a terabyte of data or so will take
some time and therefore, blocking a table for too long can become an issue.

The solution to the problem is the CREATE INDEX CONCURRENTLY command. Building the
index will take a lot longer (usually at least twice as long), but you can use the table
normally during index creation.

Here is how it works:

test=# CREATE INDEX CONCURRENTLY idx_name2 ON t_test (name);
CREATE INDEX

Note that PostgreSQL does not guarantee success if you are using the CREATE INDEX
CONCURRENTLY command. An index can end up being marked as invalid if the operations
going on on your system somehow conflict with the index creation.

Introducing operator classes
So far, the goal was to figure out what to index and to blindly apply an index on this
column or on a group of columns. There is one assumption, however, that we have silently
accepted to make this work. Up until now, we have worked on the assumption that the
order in which the data has to be sorted is a somewhat fixed constant. In reality, this
assumption might not hold true. Sure, numbers will always be in the same order, but other
kinds of data will most likely not have a predefined, fixed sort order.

To prove my point, I have compiled a real-world example. Take a look at the following two
records:

1118 09 08 78
2345 01 05 77

Making Use of Indexes Chapter 3

[66]

My question now is, are those two rows ordered properly? They might be because one
comes before another. However, this is wrong because these two rows do have some
hidden semantics. What you see here are two Austrian social security numbers. 09 08
78 actually means August 9, 1978, and 01 05 77 actually means May 1, 1977. The first four
numbers consist of a checksum and some sort of auto-incremented three digit number. So in
reality, 1977 comes before 1978 and we might consider swapping those two lines to achieve
the desired sort order.

The problem is that PostgreSQL has no idea what these two rows actually mean. If a
column is marked as text, PostgreSQL will apply the standard rules to sort the text. If the
column is marked as a number, PostgreSQL will apply the standard rules to sort numbers.
Under no circumstances will it ever use something as odd as I've described. If you think
that the facts I outlined previously are the only things to consider when processing those
numbers, you are wrong. How many months does a year have? 12? Far from true. In the
Austrian social security system, these numbers can hold up to 14 months. Why?
Remember, ... three digits are simply an auto-increment value. The trouble is that if an
immigrant or a refugee has no valid paperwork and if his birthday is not known, he will be
assigned an artificial birthday in the 13th month. During the Balkan wars in 1990, Austria
offered asylum to over 115,000 refugees. Naturally, this three-digit number was not enough,
and a 14th month was added. Now, which standard data type can handle this kind of
COBOL-leftover from the early 1970s (that was when the layout of the social security
number was introduced)? The answer is, none.

To handle special-purpose fields in a sane way, PostgreSQL offers operator classes:

test=# \h CREATE OPERATOR CLASS
Command: CREATE OPERATOR CLASS
Description: define a new operator class
Syntax:
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)]
 [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])]
 function_name (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Making Use of Indexes Chapter 3

[67]

An operator class will tell an index how to behave. Let's take a look at a standard binary
tree. It can perform five operations:

Strategy Operator Description

1 < Less than

2 <= Less than or equal to

3 = Equal to

4 >= Greater than or equal to

5 > Greater than

The standard operator classes support the standard data types and standard operators we
have used throughout this book. If you want to handle social security numbers, it is
necessary to come up with your own operators capable of providing you with the logic you
need. Those custom operators can then be used to form an operator class, which is
nothing more than a strategy passed to the index to configure how it should behave.

Hacking up an operator class for a b-tree
To give you a practical example of what an operator class looks like, I have hacked up
some code to handle social security numbers. To keep it simple, I have paid no attention to
details such as checksums.

Creating new operators
The first thing that has to be done is come up with the desired operators. Note that five
operators are needed. There is one operator for each strategy. A strategy of an index is
really like a plugin that allows you to put in your own code.

Before getting started, I have compiled some test data:

CREATE TABLE t_sva (sva text);

INSERT INTO t_sva VALUES ('1118090878');
INSERT INTO t_sva VALUES ('2345010477');

Making Use of Indexes Chapter 3

[68]

Now that the test data is there, it is time to create an operator. For this purpose, PostgreSQL
offers the CREATE OPERATOR command:

test=# \h CREATE OPERATOR
Command: CREATE OPERATOR
Description: define a new operator
Syntax:
CREATE OPERATOR name (
 PROCEDURE = function_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
)

Basically, the concept is as follows; operator calls a function, which gets one or two
parameters, one for the left argument and one for the right argument of the operator.

As you can see, an operator is nothing more than a function call. So, consequently, it is
necessary to implement the logic needed into those functions hidden by the operators. In
order to fix the sort order, I have written a function called normalize_si:

CREATE OR REPLACE FUNCTION normalize_si(text) RETURNS text AS $$
 BEGIN
 RETURN substring($1, 9, 2) ||
 substring($1, 7, 2) ||
 substring($1, 5, 2) ||
 substring($1, 1, 4);
 END; $$
LANGUAGE 'plpgsql' IMMUTABLE;

Calling the function will return the following result:

test=# SELECT normalize_si('1118090878');
 normalize_si

 7808091118 (1 row)

As you can see, all we did is swap some digits. It is now possible to just use the normal
string sort order. In the next step, this function can already be used to compare social
security numbers directly.

The first function needed is the less than function, which is needed by the first strategy:

CREATE OR REPLACE FUNCTION si_lt(text, text) RETURNS boolean AS $$
 BEGIN
 RETURN normalize_si($1) < normalize_si($2);

Making Use of Indexes Chapter 3

[69]

 END;
$$ LANGUAGE 'plpgsql' IMMUTABLE;

There are two important things to note here:

The function must not be written in SQL. It only works in a procedural or in a
compiled language. The reason for that is SQL functions can be inline under some
circumstances and this would cripple the entire endeavor.
The second issue is that you should stick to the naming convention used in this
chapter—it is widely accepted by the community. Less than functions should
be called _lt, less or equal to functions should be called _le, and so on.

Given this knowledge, the next functions needed by our future operators can be defined:

-- lower equals
CREATE OR REPLACE FUNCTION si_le(text, text)
 RETURNS boolean AS
$$
 BEGIN
 RETURN normalize_si($1) <= normalize_si($2);
 END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;

-- greater equal
CREATE OR REPLACE FUNCTION si_ge(text, text)
 RETURNS boolean AS
$$
BEGIN
 RETURN normalize_si($1) >= normalize_si($2);
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;

-- greater
CREATE OR REPLACE FUNCTION si_gt(text, text)
 RETURNS boolean AS
$$
BEGIN
 RETURN normalize_si($1) > normalize_si($2);
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;

Making Use of Indexes Chapter 3

[70]

So far, four functions have been defined. A fifth function for the equals operator is not
necessary. We can simply take the existing operator because equals do not depend on sort
order anyway.

Now that all functions are in place, it is time to define these operators:

-- define operators
CREATE OPERATOR <# (PROCEDURE=si_lt,
 LEFTARG=text,
 RIGHTARG=text);

The design of the operator is actually very simple. The operator needs a name (in my case
<#), a procedure, which is supposed to be called, as well as the datatype of the left and the
right argument. When the operator is called, the left argument will be the first parameter
of si_lt and the right argument will be the second argument.

The remaining three operators follow the same principle:

CREATE OPERATOR <=# (PROCEDURE=si_le,
 LEFTARG=text,
 RIGHTARG=text);

CREATE OPERATOR >=# (PROCEDURE=si_ge,
 LEFTARG=text,
 RIGHTARG=text);

CREATE OPERATOR ># (PROCEDURE=si_gt,
 LEFTARG=text,
 RIGHTARG=text);

Depending on the type of index you are using, a couple of support functions are needed. In
the case of standard b-trees, there is only one support function needed, which is used to
speed things up internally:

CREATE OR REPLACE FUNCTION si_same(text, text) RETURNS int AS $$
 BEGIN
 IF normalize_si($1) < normalize_si($2)
 THEN
 RETURN -1;
 ELSIF normalize_si($1) > normalize_si($2)
 THEN
 RETURN +1;
 ELSE
 RETURN 0;
 END IF;
 END;
$$ LANGUAGE 'plpgsql' IMMUTABLE;

Making Use of Indexes Chapter 3

[71]

The si_same function will either return -1 if the first parameter is smaller, 0 if both
parameters are equal, and 1 if the first parameter is greater. Internally, the _same function
is the workhorse, so you should make sure that your code is optimized.

Creating operator classes
Finally, all components are in place and it is finally possible to create the operator class
needed by the index:

CREATE OPERATOR CLASS sva_special_ops
FOR TYPE text USING btree
AS
 OPERATOR 1 <# ,
 OPERATOR 2 <=# ,
 OPERATOR 3 = ,
 OPERATOR 4 >=# ,
 OPERATOR 5 ># ,

 FUNCTION 1 si_same(text, text);

The CREATE OPERATOR CLASS command connects strategies and operators OPERATOR 1.

<# means that strategy 1 will use the <# operator. Finally, the _same function is connected
with the operator class.

Note that the operator class has a name and that it has been explicitly defined to work with
b-trees. The operator class can already be used during index creation:

CREATE INDEX idx_special ON t_sva (sva sva_special_ops);

Creating an index works in a slightly different way than previously: sva
sva_special_ops means that the sva column is indexed using
the sva_special_ops operator class. If sva_special_ops is not explicitly used, then
PostgreSQL will not go for our special sort order but decide on the default operator class.

Testing custom operator classes
In our example, the test data consists of just two rows. Therefore, PostgreSQL will never use
an index because the table is just too small to justify the overhead of even opening the
index. To be able to still test without having to load too much data, you can advise the
optimizer to make sequential scans more expensive.

Making Use of Indexes Chapter 3

[72]

Making operations more expensive can be done in your session using the following
instruction:

SET enable_seqscan TO off;

The index works as expected:

test=# explain SELECT * FROM t_sva WHERE sva = '0000112273';
 QUERY PLAN
--
 Index Only Scan using idx_special on t_sva
 (cost=0.13..8.14 rows=1 width=32)
 Index Cond: (sva = '0000112273'::text)
(2 rows)

test=# SELECT * FROM t_sva;
 sva

 2345010477
 1118090878
(2 rows)

Understanding PostgreSQL index types
So far, only binary trees have been discussed. However, in many cases, b-trees are just not
enough. Why is that the case? As discussed in this chapter, b-trees are basically based on
sorting. Operators <, <=, =, >=, and > can be handled using b-trees. The trouble is, not all.

Data types can be sorted in a useful way. Just imagine a polygon. How would you sort
these objects in a useful way? Sure, you can sort by the area covered, its length or so, but
doing this won't allow you to actually find them using a geometric search.

The solution to the problem is to provide more than just one index type. Each index will
serve a special purpose and do exactly what is needed. The following index types are
available (as of PostgreSQL 10.0):

test=# SELECT * FROM pg_am;
 amname | amhandler | amtype
---------+-------------+--------
 btree | bthandler | i
 hash | hashhandler | i
 GiST | GiSThandler | i
 gin | ginhandler | i
 spGiST | spghandler | i

Making Use of Indexes Chapter 3

[73]

 brin | brinhandler | i
(6 rows)

There are six types of indexes. B-trees have already been discussed in great detail, but what
are those other index types good for? The following sections will outline the purpose of
each index type available in PostgreSQL.

Note that there are some extensions out there that can be used on top of what you can see
here. Additional index types available on the web are rum, vodka, and in the future,
cognac.

Hash indexes
Hash indexes have been around for many years. The idea is to hash the input value and
store it for later lookups. Having hash indexes actually makes sense. However, before
PostgreSQL 10.0, it was not advised to use hash indexes because PostgreSQL had no WAL
support for them. In PostgreSQL 10.0, this has changed. Hash indexes are now fully logged
and are therefore ready for replication and are considered to be a 100% crash safe.

Hash indexes are generally a bit larger than b-tree indexes. Suppose you want to index 4
million integer values. A btree will need around 90 MB of storage to do this. A hash index
will need around 125 MB on disk. The assumption made by many people that a hash is
super small on the disk is therefore, in many cases, just wrong.

GiST indexes
Generalized Search Tree (GiST) indexes are highly important index types because they are
used for a variety of different things. GiST indexes can be used to implement R-tree
behavior and it is even possible to act as b-tree. However, abusing GiST for b-tree indexes is
not recommended.

Typical use cases for GiST are as follows:

Range types
Geometric indexes (for example, used by the highly popular PostGIS extension)
Fuzzy searching

Making Use of Indexes Chapter 3

[74]

Understanding how GiST works
To many people, GiST is still a black box. Therefore, I have decided to add a section to this
chapter outlining how GiST works internally.

Consider the following diagram:

Figure 3.1: Source: http://leopard.in.ua/assets/images/postgresql/pg_indexes/pg_indexes2.jpg

Take a look at the tree. You will see that R1 and R2 are on top. R1 and R2 are the bounding
boxes containing everything else. R3, R4, and R5 are contained by R1. R8, R9, and R10 are
contained by R3, and so on. A GiST index is therefore hierarchically organized. What you
can see in the diagram is that some operations, which are not available in b-trees are
supported. Some of those operations are overlaps, left of, right of, and so on. The layout of a
GiST tree is ideal for geometric indexing.

Making Use of Indexes Chapter 3

[75]

Extending GiST
Of course, it is also possible to come up with your own operator classes. The following
strategies are supported:

Operation Strategy number

Strictly left of 1

Does not extend to right of 2

Overlaps 3

Does not extend to left of 4

Strictly right of 5

Same 6

Contains 7

Contained by 8

Does not extend above 9

Strictly below 10

Strictly above 11

Does not extend below 12

If you want to write operator classes for GiST, a couple of support functions have to be
provided. In the case of a b-tree, there is only the same function - GiST indexes provide a lot
more:

Function Description
Support
function
number

consistent
The functions determine whether a key satisfies the query
qualifier. Internally, strategies are looked up and checked.

1

union
Calculate the union of a set of keys. In case of numeric values,
simply the upper and lower values or a range are computed. It
is especially important to geometries.

2

compress Compute a compressed representation of a key or value. 3

decompress This is the counterpart of the compress function. 4

Making Use of Indexes Chapter 3

[76]

penalty

During insertion, the cost of inserting into the tree will be
calculated. The cost determines where the new entry will go
inside the tree. Therefore, a good penalty function is key to the
good overall performance of the index.

5

picksplit

Determines where to move entries in case of a page split. Some
entries have to stay on the old page while others will go to the
new page being created. Having a good picksplit function is
essential to a good index performance.

6

equal
The equal function is similar to the same function you have
already seen in b-trees.

7

distance
Calculates the distance (a number) between a key and the query
value. The distance function is optional and is needed in case
KNN search is supported.

8

fetch
Determine the original representation of a compressed key.
This function is needed to handle index only scans as
supported by the recent version of PostgreSQL.

9

Implementing operator classes for GiST indexes is usually done in C. If you are interested in
a good example, I advise you to check out the btree_GiST module in
the contrib directory. It shows how to index standard data types using GiST and is a good
source of information as well as inspiration.

GIN indexes
Generalized inverted (GIN) indexes are a good way to index text. Suppose you want to
index a million text documents. A certain word may occur millions of times. In a normal b-
tree, this would mean that the key is stored millions of times. Not so in a GIN. Each key (or
word) is stored once and assigned to a document list. Keys are organized in a standard b-
tree. Each entry will have a document list pointing to all entries in the table having the same
key. A GIN index is very small and compact. However, it lacks an important feature found
in the b-trees-sorted data. In a GIN, the list of item pointers associated with a certain key is
sorted by the position of the row in the table and not by some arbitrary criteria.

Making Use of Indexes Chapter 3

[77]

Extending GIN
Just like any other index, GIN can be extended. The following strategies are available:

Operation Strategy number

Overlap 1

Contains 2

Is contained by 3

Equal 4

On top of this, the following support functions are available:

Function Description
Support
function
number

compare
The compare function is similar to the same function you
have seen in b-trees. If two keys are compared, it
returns -1 (lower), 0 (equal), or 1 (higher).

1

extractValue
Extract keys from a value to be indexed. A value can have
many keys. For example, a text value might consist of
more than one word.

2

extractQuery Extract keys from a query condition. 3

consistent Check whether a value matches a query condition. 4

comparePartial
Compare a partial key from a query and a key from the
index. Returns -1, 0, or 1 (similar to the same function
supported by b-trees).

5

triConsistent
Determine whether a value matches a query condition
(ternary variant). It is optional if the consistent function is
present.

6

If you are looking for a good example of how to extend GIN, consider looking at
the btree_gin module in the PostgreSQL contrib directory. It is a valuable source of
information and a good way to start your own implementation.

If you are interested in full-text search, more information will be provided later on in this
chapter.

Making Use of Indexes Chapter 3

[78]

SP-GiST indexes
Space partitioned GiST (SP-GiST) has mainly been designed for in-memory use. The
reason for this is an SP-GiST stored on disk needs a fairly high number of disk hits to
function. Disk hits are way more expensive than just following a couple of pointers in RAM.

The beauty is that SP-GiST can be used to implement various types of trees such as quad-
trees, k-d trees, and radix trees (tries).

The following strategies are provided:

Operation Strategy number

Strictly left of 1

Strictly right of 5

Same 6

Contained by 8

Strictly below 10

Strictly above 11

To write your own operator classes for SP-GiST, a couple of functions have to be provided:

Function Description
Support
function
number

config
Provides information about the operator class in
use

1

choose
Figures out how to insert a new value into an inner
tuple

2

picksplit Figures out how to partition/split a set of values 3

inner_consistent
Determine which subpartitions need to be searched
for a query

4

leaf_consistent Determine whether key satisfies the query qualifier 5

Making Use of Indexes Chapter 3

[79]

BRIN indexes
Block range indexes (BRIN) are of great practical use. All indexes discussed until now need
quite a lot of disk space. Although a lot of work has gone into shrinking GIN indexes and
the like, they still need quite a lot because an index pointer is needed for each entry. So, if
there are 10 million entries, there will be 10 million index pointers. Space is the main
concern addressed by the BRIN indexes. A BRIN index does not keep an index entry for
each tuple but will store the minimum and the maximum value of 128 (default) blocks of
data (1 MB). The index is therefore very small but lossy. Scanning the index will return
more data than we asked for. PostgreSQL has to filter out these additional rows in a later
step.

The following example demonstrates how small a BRIN index really is:

test=# CREATE INDEX idx_brin ON t_test USING brin(id);
CREATE INDEX
test=# \di+ idx_brin
 List of relations
 Schema | Name | Type | Owner | Table | Size
--------+----------+-------+-------+--------+-------+-------------
 public | idx_brin | index | hs | t_test | 48 KB
(1 row)

In my example, the BRIN index is 2,000 times smaller than a standard b-tree. The question
naturally arising now is, why don't we always use BRIN indexes? To answer this kind of
question, it is important to reflect on the layout of BRIN; the minimum and maximum value
for 1 MB are stored. If the data is sorted (high correlation), BRIN is pretty efficient because
we can fetch 1 MB of data, scan it, and we are done. However, what if the data is shuffled?
In this case, BRIN won't be able to exclude chunks of data anymore because it is very likely
that something close to the overall high and the overall low is within 1 MB of data.
Therefore, BRIN is mostly made for highly correlated data. In reality, correlated data is
quite likely in data warehousing applications. Often, data is loaded every day and therefore
dates can be highly correlated.

Making Use of Indexes Chapter 3

[80]

Extending BRIN indexes
BRIN supports the same strategies as a b-tree and therefore needs the same set of operators.
The code can be reused nicely:

Operation Strategy number

Less than 1

Less than or equal 2

Equal 3

Greater than or equal 4

Greater than 5

The support functions needed by BRIN are as follows:

Function Description
Support
function
number

opcInfo Provide internal information about the indexed columns 1

add_value Add an entry to an existing summary tuple 2

consistent Check whether a value matches a condition 3

union
Calculate the union of two summary entries
(minimum/maximum values)

4

Adding additional indexes
Since PostgreSQL 9.6, there has been an easy way to deploy entirely new index types as
extensions. This is pretty cool because if those index types provided by PostgreSQL are not
enough, it is possible to add additional ones serving precisely your purpose. The instruction
to do this is CREATE ACCESS METHOD:

test=# \h CREATE ACCESS METHOD

Command: CREATE ACCESS METHOD
Description: define a new access method
Syntax:

Making Use of Indexes Chapter 3

[81]

CREATE ACCESS METHOD name
 TYPE access_method_type
 HANDLER handler_function

Don't worry too much about this command—just in case you ever deploy your own index
type, it will come as a ready-to-use extension.

One of these extensions implements bloom filters. Bloom filters are probabilistic data
structures. They sometimes return too many rows but never too few. Therefore, a bloom
filter is a good method to pre-filter data.

How does it work? A bloom filter is defined on a couple of columns. A bitmask is calculated
based on the input values, which is then compared to your query. The upside of a bloom
filter is that you can index as many columns as you want. The downside is that the entire
bloom filter has to be read. Of course, the bloom filter is smaller than the underlying data
and so it is, in many cases, very beneficial.

To use bloom filters, just activate the extension, which is a part of the PostgreSQL contrib
package:

test=# CREATE EXTENSION bloom;
CREATE EXTENSION

As stated previously, the idea behind a bloom filter is that it allows you to index as many
columns as you want. In many real-world applications, the challenge is to index many
columns without knowing which combinations the user will actually need at runtime. In
the case of a large table, it is totally impossible to create standard b-tree indexes on, say, 80
fields or more. A bloom filter might be an alternative in this case:

test=# CREATE TABLE t_bloom (x1 int, x2 int, x3 int, x4 int,
 x5 int, x6 int, x7 int);
CREATE TABLE

Creating the index is easy:

test=# CREATE INDEX idx_bloom ON t_bloom USING bloom(x1, x2, x3, x4,
 x5, x6, x7);
CREATE INDEX

Making Use of Indexes Chapter 3

[82]

If sequential scans are turned off, the index can be seen in action:

test=# SET enable_seqscan TO off;
SET
test=# explain SELECT * FROM t_bloom WHERE x5 = 9 AND x3 = 7;
 QUERY PLAN

 Bitmap Heap Scan on t_bloom (cost=18.50..22.52 rows=1 width=28)
 Recheck Cond: ((x3 = 7) AND (x5 = 9))
 -> Bitmap Index Scan on idx_bloom (cost=0.00..18.50 rows=1 width=0)
 Index Cond: ((x3 = 7) AND (x5 = 9))

Note that I have queried a combination of random columns; they are not related to the
actual order in the index. The bloom filter will still be beneficial.

If you are interested in bloom filters, consider checking out the
website: https://en.wikipedia.org/wiki/Bloom_filter.

Achieving better answers with fuzzy
searching
Performing precise searching is not the only thing expected by users these days. Modern
websites have educated users in a way that they always expect a result, regardless of the
user input. If you search on Google, there will always be an answer even if the user input is
wrong, full of typos, or simply pointless. People expect good results regardless of the input
data.

Taking advantage of pg_trgm
To do fuzzy searching with PostgreSQL, you can add the pg_trgm extension. To activate
the extension, just run the following instruction:

test=# CREATE EXTENSION pg_trgm;
CREATE EXTENSION

The pg_trgm extension is pretty powerful, and to show what it is capable of, I have
compiled some sample data consisting of 2,354 names of villages and cities here in Austria,
Europe.

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter

Making Use of Indexes Chapter 3

[83]

Our sample data can be stored in a simple table:

test=# CREATE TABLE t_location (name text);
CREATE TABLE

My company website has all the data and PostgreSQL enables you to load the data directly:

test=# COPY t_location FROM PROGRAM
 'curl https://www.cybertec-postgresql.com/secret/orte.txt';
COPY 2354

The curl (a command-line tool to fetch data) has to be installed. If you
don't have this tool, download the file normally and import it from your
local filesystem.

Once the data has been loaded, it is possible to check out the content of the table:

test=# SELECT * FROM t_location LIMIT 4;
 name

 Eisenstadt
 Rust
 Breitenbrunn am Neusiedler See
 Donnerskirchen
(4 rows)

If German is not your mother tongue, it will be impossible to spell the names of those
locations without severe mistakes.

The pg_trgm provides us with a distance operator that computes the distance between two
strings:

test=# SELECT 'abcde' <-> 'abdeacb';
 ?column?

 0.833333
(1 row)

Making Use of Indexes Chapter 3

[84]

The distance is a number between zero and one. The lower the number, the more similar the
two strings are.

How does this work? Trigrams take a string and dissect it into sequences of three characters
each:

test=# SELECT show_trgm('abcdef');
 show_trgm

 {" a"," ab",abc,bcd,cde,def,"ef "}
(1 row)

These sequences will then be used to come up with the distance you have just seen. Of
course, the distance operator can be used inside a query to find the closest match:

test=# SELECT *
FROM t_location
ORDER BY name <-> 'Kramertneusiedel'
LIMIT 3;
 name

 Gramatneusiedl
 Klein-Neusiedl
 Potzneusiedl
(3 rows)

Gramatneusiedl is pretty close to Kramertneusiedel. It sounds similar and using
a K instead of a G is a pretty common mistake. On Google, you will sometimes see did you
mean. It is quite likely that Google is using n-grams here to do that.

In PostgreSQL, it is possible to use GiST to index on text using trigrams:

test=# CREATE INDEX idx_trgm ON t_location
 USING GiST(name GiST_trgm_ops);
CREATE INDEX

Making Use of Indexes Chapter 3

[85]

pg_trgm provides us with the GiST_trgm_ops operator class designed to do similarity
searches. The following listing shows that the index is used as expected:

test=# explain SELECT *
 FROM t_location
 ORDER BY name <-> 'Kramertneusiedel'
 LIMIT 5;
 QUERY PLAN

 Limit (cost=0.14..0.58 rows=5 width=17)
 -> Index Scan using idx_trgm on t_location
 (cost=0.14..207.22 rows=2354 width=17)
 Order By: (name <-> 'Kramertneusiedel'::text)
(3 rows)

Speeding up LIKE queries
LIKE queries definitely cause some of the worst performance problems faced by people
around the globe these days. In most database systems, LIKE is pretty slow and requires a
sequential scan. In addition to that, end users quickly figure out that a fuzzy search will, in
many cases, return better results than precise queries. A single type of LIKE query on a
large table can, therefore, often cripple the performance of an entire database server if it is
called often enough.

Fortunately, PostgreSQL offers a solution to the problem and the solution happens to be
installed already:

test=# explain SELECT * FROM t_location WHERE name LIKE '%neusi%';
 QUERY PLAN

 Bitmap Heap Scan on t_location
 (cost=4.33..19.05 rows=24 width=13)
 Recheck Cond: (name ~~ '%neusi%'::text)
 -> Bitmap Index Scan on idx_trgm (cost=0.00..4.32 rows=24 width=0)
 Index Cond: (name ~~ '%neusi%'::text)
(4 rows)

The trigram index deployed in the previous section is also suitable to speed up LIKE. Note
that the % symbols can be used at any point in the search string. This is a major advantage
over standard b-trees, which just happen to speed up wildcards at the end of the query.

Making Use of Indexes Chapter 3

[86]

Handling regular expressions
However, this is still not everything. Trigram indexes are even capable of speeding up
simple regular expressions. The following example shows how this can be done:

test=# SELECT * FROM t_location WHERE name ~ '[A- C].*neu.*';
 name

 Bruckneudorf
(1 row)

test=# explain SELECT * FROM t_location WHERE name ~ '[A-C].*neu.*';
 QUERY PLAN

 Index Scan using idx_trgm on t_location (cost=0.14..8.16
 rows=1 width=13)
 Index Cond: (name ~ '[A-C].*neu.*'::text)
(2 rows)

PostgreSQL will inspect the regular expression and use the index to answer the question.

Internally, PostgreSQL can transform the regular expression into a graph
and traverse the index accordingly.

Understanding full-text search - FTS
If you are looking up names or for simple strings, you are usually querying the entire
content of a field. In Full-Text-Search (FTS), this is different. The purpose of the full-text
search is to look for words or groups of words, which can be found in a text. Therefore, FTS
is more of a contains operation as you are basically never looking for an exact string.

In PostgreSQL, FTS can be done using GIN indexes. The idea is to dissect a text, extract
valuable lexemes (= "preprocessed tokens of words"), and index those elements rather than
the underlying text. To make your search even more successful, those words are
preprocessed.

Making Use of Indexes Chapter 3

[87]

Here is an example:

test=# SELECT to_tsvector('english', 'A car, I want a car. I would not even
mind having many cars');
 to_tsvector

 'car':2,6,14 'even':10 'mani':13 'mind':11 'want':4 'would':8
(1 row)

The example shows a simple sentence. The to_tsvector function will take the string,
apply English rules, and perform a stemming process. Based on the configuration
(english), PostgreSQL will parse the string, throw away stop words, and stem individual
words. For example, car and cars will be transformed to the car. Note that this is not about
finding the word stem. In the case of many, PostgreSQL will simply transform the string
to mani by applying standard rules working nicely with the English language.

Note that the output of the to_tsvector function is highly language dependent. If you tell
PostgreSQL to treat the string as dutch, the result will be totally different:

test=# SELECT to_tsvector('dutch', 'A car, I want a car. I would not even
mind having many cars');
 to_tsvector

 'a':1,5 'car':2,6,14 'even':10 'having':12 'i':3,7 'many':13
 'mind':11 'not':9 'would':8
(1 row)

To figure out which configurations are supported, consider running the following query:

SELECT cfgname FROM pg_ts_config;

Comparing strings
After taking a brief look at the stemming process, it is time to figure out how a stemmed
text can be compared to a user query. The following code snippet checks for the
word wanted:

test=# SELECT to_tsvector('english', 'A car, I want a car. I would not even
mind having many cars') @@ to_tsquery('english', 'wanted');
 ?column?

 t
(1 row)

Making Use of Indexes Chapter 3

[88]

Note that wanted does not actually show up in the original text. Still, PostgreSQL will
return true. The reason is that want and wanted are both transformed to the same lexeme,
so the result is true. Practically, this makes a lot of sense. Imagine you are looking for a car
on Google. If you find pages selling cars, this is totally fine. Finding common lexemes is,
therefore, an intelligent idea.

Sometimes, people are not only looking for a single word, but want to find a set of words.
With to_tsquery, this is possible, as shown in the next example:

test=# SELECT to_tsvector('english', 'A car, I want a car. I would not even
mind having many cars') @@ to_tsquery('english', 'wanted & bmw');
?column?

 f
(1 row)

In this case, false is returned because bmw cannot be found in our input string. In
the to_tsquery function, & means and and | means or. It is therefore easily possible to
build complex search strings.

Defining GIN indexes
If you want to apply text search to a column or a group of columns, there are basically two
choices:

Create a functional index using GIN
Add a column containing ready-to-use tsvectors and a trigger to keep them in
sync

In this section, both options will be outlined. To show how things work, I have created
some sample data:

test=# CREATE TABLE t_fts AS SELECT comment
 FROM pg_available_extensions;
SELECT 43

Indexing the column directly with a functional index is definitely a slower but more space
efficient way to get things done:

test=# CREATE INDEX idx_fts_func ON t_fts
 USING gin(to_tsvector('english', comment));
CREATE INDEX

Making Use of Indexes Chapter 3

[89]

Deploying an index on the function is easy, but it can lead to some overhead. Adding a
materialized column needs more space, but will lead to a better runtime behavior:

test=# ALTER TABLE t_fts ADD COLUMN ts tsvector;
ALTER TABLE

The only trouble is, how do you keep this column in sync? The answer is by using a trigger:

test=# CREATE TRIGGER tsvectorupdate
 BEFORE INSERT OR UPDATE ON t_fts
 FOR EACH ROW
 EXECUTE PROCEDURE
 tsvector_update_trigger(somename, 'pg_catalog.english', 'comment');

Fortunately, PostgreSQL already provides a C function that can be used by a trigger to sync
the tsvector column. Just pass a name, the desired language, as well as a couple of
columns to the function, and you are already done. The trigger function will take care of all
that is needed. Note that a trigger will always operate within the same transaction as the
statement making the modification. Therefore, there is no risk of being inconsistent.

Debugging your search
Sometimes, it is not quite clear why a query matches a given search string. To debug your
query, PostgreSQL offers the ts_debug function. From a user's point of view, it can be used
just like to_tsvector. It reveals a lot about the inner workings of the FTS infrastructure:

test=# \x
Expanded display is on.

test=# SELECT * FROM ts_debug('english', 'go to
www.postgresql-support.de');
-[RECORD 1]+----------------------------
alias | asciiword
description | Word, all ASCII
token | go
dictionaries | {english_stem}
dictionary | english_stem
lexemes | {go}
-[RECORD 2]+----------------------------
alias | blank
description | Space symbols
token |
dictionaries | {}
dictionary |
lexemes |

Making Use of Indexes Chapter 3

[90]

-[RECORD 3]+----------------------------
alias | asciiword
description | Word, all ASCII
token | to
dictionaries | {english_stem}
dictionary | english_stem
lexemes | {}
-[RECORD 4]+----------------------------
alias | blank
description | Space symbols
token |
dictionaries | {}
dictionary |
lexemes |
-[RECORD 5]+----------------------------
alias | host
description | Host
token | www.postgresql-support.de
dictionaries | {simple}
dictionary | simple
lexemes | {www.postgresql-support.de}

ts_debug will list every token found and display information about the token. You will see
which token the parser found, the dictionary used, as well as the type of object. In my
example, blanks, words, and hosts have been found. You might also see numbers, email
addresses, and a lot more. Depending on the type of string, PostgreSQL will handle things
differently. For example, it makes absolutely no sense to stem hostnames and e-mail
addresses.

Gathering word statistics
Full-text search can handle a lot of data. To give end users more insights into their texts,
PostgreSQL offers the pg_stat function, which returns a list of words:

SELECT * FROM ts_stat('SELECT to_tsvector(''english'', comment) FROM
pg_available_extensions') ORDER BY 2 DESC LIMIT 3;
 word | ndoc | nentry
----------+------+--------
 function | 10 | 10
 data | 10 | 10
 type | 7 | 7
(3 rows)

Making Use of Indexes Chapter 3

[91]

The word column contains the stemmed word, ndoc tells us about the number of
documents a certain word occurs. nentry indicates how often a word was found all
together.

Taking advantage of exclusion operators
So far, indexes have been used to speed things up and to ensure uniqueness. However, a
couple of years ago, somebody came up with the idea of using indexes for even more. As
you have seen in this chapter, GiST supports operations such as intersects, overlaps,
contains, and a lot more. So, why not use those operations to manage data integrity?

Here is an example:

test=# CREATE EXTENSION btree_gist;
test=# CREATE TABLE t_reservation (
 room int,
 from_to tsrange,
 EXCLUDE USING GiST (room with =,
 from_to with &&)
);
CREATE TABLE

The EXCLUDE USING GiST clause defines additional constraints. If you are selling rooms,
you might want to allow different rooms to be booked at the same time. However, you
don't want to sell the same room twice during the same period. What the EXCLUDE clause
says in my example is this, if a room is booked twice at the same time, an error should pop
up (the data in from_to with must not overlap (&&) if it is related to the same room).

The following two rows will not violate constraints:

test=# INSERT INTO t_reservation
 VALUES (10, '["2017-01-01", "2017-03-03"]');
INSERT 0 1
test=# INSERT INTO t_reservation
 VALUES (13, '["2017-01-01", "2017-03-03"]');
INSERT 0 1

Making Use of Indexes Chapter 3

[92]

However, the next INSERT will cause a violation because the data overlaps:

test=# INSERT INTO t_reservation
 VALUES (13, '["2017-02-02", "2017-08-14"]');
ERROR: conflicting key value violates exclusion constraint
"t_reservation_room_from_to_excl"
DETAIL: Key (room, from_to)=(13, ["2017-02-02 00:00:00","2017-08-14
00:00:00"]) conflicts with existing key (room, from_to)=(13, ["2017-01-01
00:00:00","2017-03-03 00:00:00"]).

The use of exclusion operators is very useful and can provide you with highly advanced
means to handle integrity.

Summary
This chapter was all about indexes. You learned when PostgreSQL will decide on an index
and which types of indexes exist. On top of just using indexes, it is also possible to
implement your own strategies to speed up your applications with custom operators and
indexing strategies.

For those of you who really want to take things to the limit, PostgreSQL offers custom
access methods.

Chapter 4, Handling Advanced SQL, is all about advanced SQL. Many people are not aware
of what SQL is really capable of, and therefore, I am going to show people some efficient,
more advanced SQL stuff.

4
Handling Advanced SQL

In Chapter 3, Making Use of Indexes, you learned about indexing as well as about
PostgreSQL's ability to run custom indexing code to speed up queries. In this chapter, you
will learn about advanced SQL. Most readers of this book will have some experience of
using SQL. However, experience has shown that the advanced features outlined in this
book are not widely known and therefore it makes sense to cover them in this context to
help people to achieve their goals faster and more efficiently. There has been a long
discussion on whether the database is just a simple data store or whether business logic
should be in the database or not. Maybe this chapter will shed some light and show how
capable a modern relational database really is.

This chapter is about modern SQL and its features. A variety of different and sophisticated
SQL features are included and presented in detail. The topics covered are:

Grouping sets
Ordered sets
Hypothetical aggregates
Windowing functions and analytics

At the end of the chapter, you will be able to understand and use advanced SQL.

Introducing grouping sets
Every advanced user of SQL should be familiar with GROUP BY and HAVING clauses. But are
you also aware of CUBE, ROLLUP, and GROUPING SETS? If not, you might find this chapter
worth reading.

Handling Advanced SQL Chapter 4

[94]

Loading some sample data
To make this chapter a pleasant experience for you, I have compiled some sample data,
which has been taken from the BP energy report:
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-wo
rld-energy/downloads.html.

Here is the data structure that will be used:

test=# CREATE TABLE t_oil (
 region text,
 country text,
 year int,
 production int,
 consumption int
);
CREATE TABLE

The test data can be downloaded from our website using curl directly:

test=# COPY t_oil FROM PROGRAM '
 curl https://www.cybertec-postgresql.com/secret/oil_ext.txt ';
COPY 644

As in the previous chapter, you can download the file before importing it. On some
operating systems, curl is not there by default or has not been installed, so downloading the
file before might be an easier option for many people.

There is data for between 1965 and 2010, for 14 nations in two regions of the world:

test=# SELECT region, avg(production) FROM t_oil GROUP BY region;
 region | avg
---------------+-----------------------
 Middle East | 1992.6036866359447005
 North America | 4541.3623188405797101
(2 rows)

Applying grouping sets
The GROUP BY clause will turn many rows into one row per group. However, if you do
reporting in real life, you might also be interested in the overall average. One additional line
might be needed.

http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

Handling Advanced SQL Chapter 4

[95]

Here is how this can be achieved:

test=# SELECT region, avg(production)
 FROM t_oil
 GROUP BY ROLLUP (region);
 region | avg
----------------+-----------------------
 Middle East | 1992.6036866359447005
 North America | 4541.3623188405797101
 | 2607.5139860139860140
(3 rows)

ROLLUP will inject an additional line, which will contain the overall average. If you do
reporting, it is highly likely that a summary line will be needed. Instead of running two
queries, PostgreSQL can provide the data by running just a single query. There is also a
second thing you might notice here: different versions of PostgreSQL might return data in a
different order. The reason for that is that in PostgreSQL 10.0 the way those grouping sets
are implemented has improved significantly. Back in 9.6 and before, PostgreSQL had to do
a lot of sorting. Starting with 10.0, it is already possible to use hashing for those operations,
which will speed things up, dramatically in many cases:

test=# explain SELECT region, avg(production)
 FROM t_oil
 GROUP BY ROLLUP (region);

 QUERY PLAN
--
 MixedAggregate (cost=0.00..17.31 rows=3 width=44)
 Hash Key: region
 Group Key: ()
 -> Seq Scan on t_oil (cost=0.00..12.44 rows=644 width=16)
(4 rows)

In case you want data to be sorted, and if you want to ensure that all versions return the
data in exactly the same order, it is necessary to add an ORDER BY clause to the query.

Of course, this kind of operation can also be used if you are grouping by more than just one
column:

test=# SELECT region, country, avg(production)
 FROM t_oil
 WHERE country IN ('USA', 'Canada', 'Iran', 'Oman')
 GROUP BY ROLLUP (region, country);
 region | country | avg
---------------+---------+-----------------------
 Middle East | Iran | 3631.6956521739130435

Handling Advanced SQL Chapter 4

[96]

 Middle East | Oman | 586.4545454545454545
 Middle East | | 2142.9111111111111111
 North America | Canada | 2123.2173913043478261
 North America | USA | 9141.3478260869565217
 North America | | 5632.2826086956521739
 | | 3906.7692307692307692
(7 rows)

In this example, PostgreSQL will inject three lines into the result set. One line will be
injected for the Middle East and one for North America. On top of that, we will get a line for
the overall averages. If you are building a web application, the current result is ideal
because you can easily build a GUI to drill into the result set by filtering out the null values.

ROLLUP is suitable when you instantly want to display a result. I have always used it to
display final results to end users. However, if you are doing reporting, you might want to
pre-calculate more data to ensure more flexibility. The CUBE keyword is what you might
have been looking for:

test=# SELECT region, country, avg(production)
 FROM t_oil
 WHERE country IN ('USA', 'Canada', 'Iran', 'Oman')
 GROUP BY CUBE (region, country);
 region | country | avg
---------------+---------+-----------------------
 Middle East | Iran | 3631.6956521739130435
 Middle East | Oman | 586.4545454545454545
 Middle East | | 2142.9111111111111111
 North America | Canada | 2123.2173913043478261
 North America | USA | 9141.3478260869565217
 North America | | 5632.2826086956521739
 | | 3906.7692307692307692
 | Canada | 2123.2173913043478261
 | Iran | 3631.6956521739130435
 | Oman | 586.4545454545454545
 | USA | 9141.3478260869565217
(11 rows)

Note that even more rows have been added to the result. CUBE will create the same data as:
GROUP BY region, country + GROUP BY region + GROUP BY country + the

overall average. So, the whole idea is to extract many results and various levels of
aggregation at once. The resulting cube contains all possible combinations of groups.

Handling Advanced SQL Chapter 4

[97]

ROLLUP and CUBE are really just convenience features on top of the GROUPING SETS clause.
With the GROUPING SETS clause, you can explicitly list the aggregates you want:

test=# SELECT region, country, avg(production)
 FROM t_oil
 WHERE country IN ('USA', 'Canada', 'Iran', 'Oman')
 GROUP BY GROUPING SETS ((), region, country);
 region | country | avg
----------------+---------+-----------------------
 Middle East | | 2142.9111111111111111
 North America | | 5632.2826086956521739
 | | 3906.7692307692307692
 | Canada | 2123.2173913043478261
 | Iran | 3631.6956521739130435
 | Oman | 586.4545454545454545
 | USA | 9141.3478260869565217
(7 rows)

In this, I went for three grouping sets: the overall average, GROUP BY region, and GROUP BY
country. If you want regions and countries combined, use (region, country).

Investigating performance
Grouping sets is a powerful feature; they help to reduce the number of expensive queries.
Internally, PostgreSQL will basically turn to traditional GroupAggregates to make things
work. A GroupAggregate node requires sorted data, so be prepared that PostgreSQL
might do a lot of temporary sorting:

test=# explain SELECT region, country, avg(production)
 FROM t_oil
 WHERE country IN ('USA', 'Canada', 'Iran', 'Oman')
 GROUP BY GROUPING SETS ((), region, country);
 QUERY PLAN

 GroupAggregate (cost=22.58..32.69 rows=34 width=52)
 Group Key: region
 Group Key: ()
 Sort Key: country
 Group Key: country
 -> Sort (cost=22.58..23.04 rows=184 width=24)
 Sort Key: region
 -> Seq Scan on t_oil
 (cost=0.00..15.66 rows=184 width=24)

Handling Advanced SQL Chapter 4

[98]

 Filter: (country = ANY
 ('{USA,Canada,Iran,Oman}'::text[]))
(9 rows)

In PostgreSQL, hash aggregates are only supported for normal GROUP BY clauses involving
no grouping sets. In PostgreSQL 10.0, the planner already has more options than in
PostgreSQL 9.6. Expect grouping sets to be faster in the new version.

Combining grouping sets with the FILTER clause
In real-world applications, grouping sets can often be combined with FILTER clauses. The
idea behind the FILTER clause is to be able to run partial aggregates.

Here is an example:

test=# SELECT region,
 avg(production) AS all,
 avg(production) FILTER (WHERE year < 1990) AS old,
 avg(production) FILTER (WHERE year >= 1990) AS new
FROM t_oil
GROUP BY ROLLUP (region);
 region | all | old | new
---------------+----------------+----------------+----------------
 Middle East | 1992.603686635 | 1747.325892857 | 2254.233333333
 North America | 4541.362318840 | 4471.653333333 | 4624.349206349
 | 2607.513986013 | 2430.685618729 | 2801.183150183
(3 rows)

The idea here is that not all columns will use the same data for aggregation. The FILTER
clauses allow you to selectively pass data to those aggregates. In my example, the second
aggregate will only consider data before 1990, while the third aggregate will take care of
more recent data.

If it is possible to move conditions to a WHERE clause, it is always more
desirable, as less data has to be fetched from the table. FILTER is only
useful if the data left by the WHERE clause is not needed by each aggregate.

Handling Advanced SQL Chapter 4

[99]

FILTER works for all kinds of aggregates and offers a simple way to pivot your data. Also,
FILTER is faster than mimicking the same behavior with CASE WHEN ... THEN NULL ...
ELSE END. You can find some real performance comparison here: https:/ ​/​www. ​cybertec-
postgresql.​com/​en/ ​postgresql- ​9- ​4- ​aggregation- ​filters- ​they- ​do-​pay- ​off/ ​.

Making use of ordered sets
Ordered sets are powerful features, but are not widely regarded as such and not widely
known in the developer community. The idea is actually quite simple: data is grouped
normally and then the data inside each group is ordered given a certain condition. The
calculation is then performed on this sorted data.

A classic example would be the calculation of the median.

The median is the middle value. If you are, for example, earning the
median income, the number of people earning less and more than you is
identical. 50% of people do better and 50% of people do worse.

One way to get the median is to take sorted data and move 50% into the dataset. This is an
example of what the WITHIN GROUP clause will ask PostgreSQL to do:

test=# SELECT region,
 percentile_disc(0.5) WITHIN GROUP (ORDER BY production)
FROM t_oil
GROUP BY 1;
 region | percentile_disc
----------------+-----------------
 Middle East | 1082
 North America | 3054
(2 rows)

The percentile_disc function will skip 50% of the group and return the desired value.
Note that the median can significantly deviate from the average. In economics, the
deviation between median and average income can even be used as an indicator for social
equality or inequality. The higher the median compared to the average, the more the
income inequality. To provide more flexibility, the ANSI standard does not just propose a
median function. Instead, percentile_disc allows you to use any value between 0 and 1.

https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/
https://www.cybertec-postgresql.com/en/postgresql-9-4-aggregation-filters-they-do-pay-off/

Handling Advanced SQL Chapter 4

[100]

The beauty is that you can even use ordered sets along with grouping sets:

test=# SELECT region,
 percentile_disc(0.5) WITHIN GROUP (ORDER BY production)
FROM t_oil
GROUP BY ROLLUP (1);
 region | percentile_disc
----------------+-----------------
 Middle East | 1082
 North America | 3054
 | 1696
(3 rows)

In this case, PostgreSQL will again inject additional lines into the result set.

As proposed by the ANSI SQL standard, PostgreSQL provides you with two percentile_
functions. The percentile_disc function will return a value that is really contained by
the dataset. The percentile_cont function will interpolate a value if no exact match is
found. The following example shows how this works:

test=# SELECT percentile_disc(0.62) WITHIN GROUP (ORDER BY id),
 percentile_cont(0.62) WITHIN GROUP (ORDER BY id)
FROM generate_series(1, 5) AS id;
 percentile_disc | percentile_cont
-----------------+-----------------
 4 | 3.48
(1 row)

4 is a value that really exists–3.48 has been interpolated. The percentile_ functions
are not the only ones provided by PostgreSQL. To find the most frequent value within a
group, the mode function is available. Before showing an example of how to use the mode
function, I have compiled a query telling us a bit more about the content of the table:

test=# SELECT production, count(*)
 FROM t_oil
 WHERE country = 'Other Middle East'
 GROUP BY production
 ORDER BY 2 DESC
 LIMIT 4;
 production | count
------------+-------
 50 | 5
 48 | 5
 52 | 5
 53 | 4

(4 rows)

Handling Advanced SQL Chapter 4

[101]

Three different values occur exactly five times. Of course, the mode function can only give
us one of them:

test=# SELECT country, mode() WITHIN GROUP (ORDER BY production)
 FROM t_oil
 WHERE country = 'Other Middle East'
 GROUP BY 1;
 country | mode
--------------------+------
 Other Middle East | 48
(1 row)

The most frequent value is returned but SQL won't tell us how often the number actually
shows up. It might be that the number only shows up once.

Understanding hypothetical aggregates
Hypothetical aggregates are pretty similar to standard ordered sets. However, they help to
answer a different kind of question: what would be the result if a value was there? As you
can see, this is not about values inside the database but about the result if a certain value
was actually there.

The only hypothetical function provided by PostgreSQL is rank:

test=# SELECT region,
 rank(9000) WITHIN GROUP
 (ORDER BY production DESC NULLS LAST)
FROM t_oil
GROUP BY ROLLUP (1);
 region | rank
---------------+------
 Middle East | 21
 North America | 27
 | 47
(3 rows)

It tells us: If somebody produced, 9000 barrels per day, it would be ranked the 27th best
year in North America and 21st in the Middle East.

In my example, I used NULLS LAST. When data is sorted, nulls are usually
at the end. However, if sort order is reversed, nulls should still be at the
end of the list. NULLS LAST ensures exactly that.

Handling Advanced SQL Chapter 4

[102]

Utilizing windowing functions and analytics
Now we have discussed ordered sets, it is time to take a look at windowing functions.
Aggregates follow a fairly simple principle: take many rows and turn them into fewer,
aggregated rows. A windowing function is different. It compares the current row with all
rows in the group. The number of rows returned does not change.

Here is an example:

test=# SELECT avg(production) FROM t_oil;
 avg

 2607.5139
(1 row)

test=# SELECT country, year, production,
 consumption, avg(production) OVER ()
 FROM t_oil
 LIMIT 4;
country | year | production | consumption | avg
---------+-------+------------+-------------+----------
USA | 1965 | 9014 | 11522 | 2607.5139
USA | 1966 | 9579 | 12100 | 2607.5139
USA | 1967 | 10219 | 12567 | 2607.5139
USA | 1968 | 10600 | 13405 | 2607.5139
(4 rows)

The average production in our dataset is around 2.6 million barrels per day. The goal of this
query is to add this value as a column. It is now easy to compare the current row to the
overall average.

Keep in mind that the OVER clause is essential. PostgreSQL is not able to process the query
without it:

test=# SELECT country, year, production, consumption, avg(production) FROM
t_oil;
ERROR: column "t_oil.country" must appear in the GROUP BY clause or be
used in an aggregate function
LINE 1: SELECT country, year, production, consumption, avg(productio...

This actually makes sense because the average has to be defined precisely. The database
engine cannot just guess at any value.

Handling Advanced SQL Chapter 4

[103]

Other database engines can accept aggregate functions without an OVER or
even a GROUP BY clause. However, from a logical point of view this is
wrong, and on top of that, a violation of SQL.

Partitioning data
So far, the same result can also easily be achieved using a subselect. However, if you want
more than just the overall average, subselects will turn your queries into nightmares.
Suppose, you don't just want the overall average but the average of the country you are
dealing with. A PARTITION BY clause is what you need:

test=# SELECT country, year, production, consumption,
 avg(production) OVER (PARTITION BY country)
FROM t_oil;
 country | year | production | consumption | avg
----------+-------+------------+-------------+-----------
 Canada | 1965 | 920 | 1108 | 2123.2173
 Canada | 2010 | 3332 | 2316 | 2123.2173
 Canada | 2009 | 3202 | 2190 | 2123.2173
 ...
 Iran | 1966 | 2132 | 148 | 3631.6956
 Iran | 2010 | 4352 | 1874 | 3631.6956
 Iran | 2009 | 4249 | 2012 | 3631.6956
 ...

The point here is that each country will be assigned to the average of the country. The OVER
clause defines the window we are looking at. In this case, the window is the country the
row belongs to. In other words, the query returns the rows compared to all rows in this
country.

The year column is not sorted. The query does not contain an explicit sort
order so it might be that data is returned in a random order. Remember,
SQL does not promise sorted output unless you explicitly state what you
want.

Basically, a PARTITION BY clause takes any expression. Usually, most people will use a
column to partition the data. Here is an example:

test=# SELECT year, production,
 avg(production) OVER (PARTITION BY year < 1990)
FROM t_oil
WHERE country = 'Canada'
ORDER BY year;

Handling Advanced SQL Chapter 4

[104]

 year | production | avg
-------+------------+-----------------------
 1965 | 920 | 1631.6000000000000000
 1966 | 1012 | 1631.6000000000000000
 ...
 1990 | 1967 | 2708.4761904761904762
 1991 | 1983| 2708.4761904761904762
 1992 | 2065| 2708.4761904761904762
 ...

The point is that data is split using the expression. year < 1990 can return two values: true
or false. Depending on the group a year is in, it will be assigned to the pre-1990 average or
to the post-1990 average. PostgreSQL is really flexible here. Using functions to determine
group membership is not uncommon in real-world applications.

Ordering data inside a window
A PARTITION BY clause is not the only possible thing you can put into an OVER clause.
Sometimes it is necessary to sort data inside a window. ORDER BY will provide data to your
aggregate functions in a certain way. Here is an example:

test=# SELECT country, year, production,
 min(production) OVER (PARTITION BY country ORDER BY year)
FROM t_oil
WHERE year BETWEEN 1978 AND 1983 AND country IN ('Iran', 'Oman');
country | year | production | min
---------+-----+------------+------
Iran | 1978 | 5302 | 5302
Iran | 1979 | 3218 | 3218
Iran | 1980 | 1479 | 1479
Iran | 1981 | 1321 | 1321
Iran | 1982 | 2397 | 1321
Iran | 1983 | 2454 | 1321
Oman | 1978 | 314 | 314
Oman | 1979 | 295 | 295
Oman | 1980 | 285 | 285
Oman | 1981 | 330 | 285
...

Two countries (Iran and Oman) are chosen from our dataset for the period 1978 to 1983.
Keep in mind, there was a revolution going on in Iran in 1979 so this had some impact on
the production of oil. The data reflects that.

Handling Advanced SQL Chapter 4

[105]

What the query does is to calculate the minimum production up to a certain point in our
time series. At this point is a good way for SQL students to remember what an ORDER BY
clause does inside an OVER clause. In this example, the PARTITION BY clause will create
one group for each country and order data inside the group. The min function will loop
over the sorted data and provide the required minimums.

If you are new to windowing functions, there is something you should be aware of: it really
makes a difference whether you use an ORDER BY clause or not:

test=# SELECT country, year, production,
 min(production) OVER (),
 min(production) OVER (ORDER BY year)
 FROM t_oil
 WHERE year BETWEEN 1978 AND 1983
 AND country = 'Iran';
 country | year | production | min | min
---------+------+-------------+------+------
 Iran | 1978 | 5302| 1321 | 5302
 Iran | 1979 | 3218 | 1321 | 3218
 Iran | 1980 | 1479 | 1321 | 1479
 Iran | 1981 | 1321 | 1321 | 1321
 Iran | 1982 | 2397 | 1321 | 1321
 Iran | 1983 | 2454 | 1321 | 1321
(6 rows)

If the aggregate is used without ORDER BY it will automatically take the minimum of the
entire dataset inside your windows. This doesn't happen if there is an ORDER BY. In this
case, it will always be the minimum up to this point given the order you have defined.

Using sliding windows
So far the window we have used inside our query has been static. However, for calculations
such as a moving average, this is not enough. A moving average needs a sliding window
that moves along as data is processed.

Handling Advanced SQL Chapter 4

[106]

Here is an example of how a moving average can be achieved:

test=# SELECT country, year, production,
 min(production) OVER (PARTITION BY country
ORDER BY year ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
FROM t_oil
WHERE year BETWEEN 1978 AND 1983
 AND country IN ('Iran', 'Oman');
country | year | production | min
---------+-------+------------+------
Iran | 1978 | 5302 | 3218
Iran | 1979 | 3218 | 1479
Iran | 1980 | 1479 | 1321
Iran | 1981 | 1321 | 1321
Iran | 1982 | 2397 | 1321
Iran | 1983 | 2454 | 2397
Oman | 1978 | 314 | 295
Oman | 1979 | 295 | 285
Oman | 1980 | 285 | 285
Oman | 1981 | 330 | 285
Oman | 1982 | 338 | 330
Oman | 1983 | 391 | 338
(12 rows)

The most important thing is that a moving window should be used with an ORDER BY
clause. Otherwise, there will be major problems. PostgreSQL would actually accept the
query but the result would be total crap. Remember, feeding data to a sliding window
without ordering it first will simply lead to random data.

ROWS BETWEEN 1 PRECEDING and 1 FOLLOWING defines the window. In my example, up
to three rows will be in use: the current row, the one before, and the one after the current
row. To illustrate how the sliding window works, check out the following example:

test=# SELECT *, array_agg(id)
 OVER (ORDER BY id ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
 FROM generate_series(1, 5) AS id;
id | array_agg
----+-----------
 1 | {1,2}
 2 | {1,2,3}
 3 | {2,3,4}
 4 | {3,4,5}
 5 | {4,5}
(5 rows)

Handling Advanced SQL Chapter 4

[107]

The array_agg function will turn a list of values into a PostgreSQL array. It will help to
explain how the sliding window operates.

Actually, this trivial query has some very important aspects. What you see is that the first
array contains only two values. There is no entry before 1 and therefore the array is not full.
PostgreSQL does not add null entries because they would be ignored by aggregates
anyway. The same happens at the end of the data.

However, sliding windows offer more. There are a couple of keywords that can be used to
specify the sliding window:

test=# SELECT *,
 array_agg(id) OVER (ORDER BY id ROWS BETWEEN
 UNBOUNDED PRECEDING AND 0 FOLLOWING)
FROM generate_series(1, 5) AS id;
 id | array_agg
----+-------------
 1 | {1}
 2 | {1,2}
 3 | {1,2,3}
 4 | {1,2,3,4}
 5 | {1,2,3,4,5}
(5 rows)

The UNBOUNDED PRECEDING keywords that everything before the current line will be in the
window. The counterpart to UNBOUNDED PRECEDING is UNBOUNDED FOLLOWING:

test=# SELECT *,
 array_agg(id) OVER (ORDER BY id ROWS BETWEEN
 2 FOLLOWING AND UNBOUNDED FOLLOWING)
FROM generate_series(1, 5) AS id;
 id | array_agg
----+-----------
 1 | {3,4,5}
 2 | {4,5}
 3 | {5}
 4 |
 5 |
(5 rows)

As you can see, it is also possible to use a window, that is in the future. PostreSQL is very
flexible here.

Handling Advanced SQL Chapter 4

[108]

Abstracting window clauses
A windowing function allows us to add columns to the result set that have been calculated
on the fly. However, what happens quite frequently is that many columns are based on the
same window. Putting the same clauses into your queries over and over again is definitely
not a good idea, because your queries will be hard to read and therefore hard to maintain.

The WINDOW clause allows developers to predefine a window and use it at various places in
the query. Here is how it works:

SELECT country, year, production,
 min(production) OVER (w),
 max(production) OVER (w)
FROM t_oil
WHERE country = 'Canada'
 AND year BETWEEN 1980
 AND 1985
WINDOW w AS (ORDER BY year);
country | year | production | min | max
--------+-------+------------+------+------
Canada | 1980 | 1764 | 1764 | 1764
Canada | 1981 | 1610 | 1610 | 1764
Canada | 1982 | 1590 | 1590 | 1764
Canada | 1983 | 1661 | 1590 | 1764
Canada | 1984 | 1775 | 1590 | 1775
Canada | 1985 | 1812 | 1590 | 1812
(6 rows)

The example shows that min and max will use the same clause.

Of course, it is possible to have more than just one WINDOW clause—PostgreSQL does not
impose serious restrictions on users here.

Making use of onboard windowing functions
Having introduced you to the basic concepts, it is time to take a look at which windowing
functions PostgreSQL will support out-of-the-box. You have already seen that windowing
works with all standard aggregate functions. On top of those functions, PostgreSQL offers
some additional functions that are exclusively for windowing and analytics.

In this section, some highly important functions will be explained and discussed.

Handling Advanced SQL Chapter 4

[109]

The rank and dense_rank functions
The rank() and dense_rank() functions are, in my judgment, the most prominent
functions around. The rank() function returns the number of the current row within its
window. Counting starts at one.

Here is an example:

test=# SELECT year, production,
 rank() OVER (ORDER BY production)
FROM t_oil
WHERE country = 'Other Middle East'
ORDER BY rank
LIMIT 7;
 year | production | rank
-------+------------+------
 2001 | 47 | 1
 2004 | 48 | 2
 2002 | 48 | 2
 1999 | 48 | 2
 2000 | 48 | 2
 2003 | 48 | 2
 1998 | 49 | 7
(7 rows)

The rank column will number those tuples in your dataset. Note that many rows in my
sample are equal. Therefore, rank will jump from 2 to 7 directly, because many production
values are identical. If you want to avoid that, the dense_rank() function is the way to go:

test=# SELECT year, production,
 dense_rank() OVER (ORDER BY production)
FROM t_oil
WHERE country = 'Other Middle East'
ORDER BY dense_rank
LIMIT 7;
 year | production | dense_rank
-------+------------+------------
 2001 | 47 | 1
 2004 | 4| 2
 ...
 2003 | 48 | 2
 1998 | 49 | 3
(7 rows)

PostgreSQL will pack the numbers more tightly. There will be no more gaps.

Handling Advanced SQL Chapter 4

[110]

The ntile() function
Some applications require data to be split into ideally equal groups. The ntile() function
will do exactly that for you.

The following example shows how data can be split into groups:

test=# SELECT year, production, ntile(4)
 OVER (ORDER BY production)
 FROM t_oil
 WHERE country = 'Iraq'
AND year BETWEEN 2000 AND 2006;

year | production | ntile
------+------------+-------
2003 | 1344 | 1
2005 | 1833 | 1
2006 | 1999 | 2
2004 | 2030 | 2
2002 | 2116 | 3
2001 | 2522 | 3
2000 | 2613 | 4
(7 rows)

The query splits data into four groups. The trouble is that only seven rows are selected,
which makes it impossible to create four, even groups. As you can see, PostgreSQL will fill
up the first three groups and make the last one a bit smaller. You can rely on the fact that
the groups at the end will always tend to be a bit smaller than the rest.

In this example, only a handful of rows are used. In real-world
applications, millions of rows will be involved and therefore it is no
problem if groups are not perfectly equal.

The ntile() function is usually not used alone. Sure, it helps to assign a group ID to a row.
However, in real-world applications, people want to perform calculations on top of those
groups. Suppose you want to create a quartile distribution for your data. Here is how it
works:

test=# SELECT grp, min(production), max(production), count(*)
FROM (
 SELECT year, production, ntile(4)
 OVER (ORDER BY production) AS grp
 FROM t_oil
 WHERE country = 'Iraq'
) AS x

Handling Advanced SQL Chapter 4

[111]

GROUP BY ROLLUP (1);
 grp | min | max | count
-----+------+------+-------
 1 | 285 | 1228 | 12
 2 | 1313 | 1977 | 12
 3 | 1999 | 2422 | 11
 4 | 2428 | 3489 | 11
 | 285 | 3489 | 46
(5 rows)

The most important thing is that the calculation cannot be done in one step. When doing
SQL training courses here at Cybertec (https://www.cybertec-postgresql.com), I try to
explain to students that whenever you don't know how to do it all at once, consider using a
subselect. In analytics, this is usually a good idea. In this example, the first thing done (in
the subselect) is the attachment of a group label to each group. Then those groups are taken
and processed in the main query.

The result is already something that could be used in a real-world application (maybe as a
legend located next to a graph, and so on).

The lead() and lag() functions
While the ntile() function is essential for splitting a dataset into groups, the lead() and
lag() functions are here to move lines within the result set. A typical use case is to
calculate the difference in production from one year to the next:

test=# SELECT year, production,
 lag(production, 1) OVER (ORDER BY year)
FROM t_oil
WHERE country = 'Mexico'
LIMIT 5;
 year | production | lag
-------+------------+-----
 1965 | 362 |
 1966 | 370 | 362
 1967 | 411 | 370
 1968 | 439 | 411
 1969 | 461 | 439
(5 rows)

Before actually calculating the change in production, it makes sense to sit back and see what
the lag() function actually does. You can see that the column is moved by one row. The
data moved as defined in the ORDER BY clause. In my example, it means down. An ORDER
BY DESC clause would of course have moved data up.

https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com

Handling Advanced SQL Chapter 4

[112]

From this point on, the query is easy:

test=# SELECT year, production,
 production - lag(production, 1) OVER (ORDER BY year)
FROM t_oil
WHERE country = 'Mexico'
LIMIT 3;
 year | production | ?column?
------+------------+----------
 1965 | 362 |
 1966 | 370 | 8
 1967 | 411 | 41

(3 rows)

All you have to do is to calculate the difference as you would with any other column. Note
that the lag() function has two parameters. The first one indicates which column is to be
displayed. The second column tells PostgreSQL how many rows you want to move. Putting
in 7 therefore means that everything is off by seven rows.

Note that the first value is Null (and all other lagged rows without a preceding value).

The lead() function is the counterpart of the lag() function; it will move rows up instead
of down:

test=# SELECT year, production,
 production - lead(production, 1) OVER (ORDER BY year)
FROM t_oil
WHERE country = 'Mexico'
LIMIT 3;
 year | production | ?column?
-------+------------+----------
 1965 | 362 | -8
 1966 | 370 | -41
 1967 | 411 | -28

(3 rows)

Basically, PostgreSQL will also accept negative values for lead and lag columns.
The lag(production, -1) is therefore a replacement for lead(production, 1).
However, it is definitely cleaner to use the right function to move data in the direction you
want.

Handling Advanced SQL Chapter 4

[113]

So far you have seen how to lag a single column. In most applications, lagging a single
value will be the standard case used by most developers. The point is, PostgreSQL can do a
lot more than that. It is possible to lag entire lines:

test=# \x
Expanded display is on.
test=# SELECT year, production,
 lag(t_oil, 1) OVER (ORDER BY year)
FROM t_oil
WHERE country = 'USA'
LIMIT 3;

-[RECORD 1]-------------------------------------
year | 1965
production | 9014
lag |
-[RECORD 2]-------------------------------------
year | 1966
production | 9579
lag | ("North America",USA,1965,9014,11522)
-[RECORD 3]-------------------------------------
year | 1967
production | 10219
lag | ("North America",USA,1966,9579,12100)

The beauty here is that more than just a single value can be compared to the previous row.
The trouble, though, is that PostgreSQL will return the entire row as a composite type and
therefore it is hard to work with. To dissect a composite type, you can use parentheses and
a star:

test=# SELECT year, production,
 (lag(t_oil, 1) OVER (ORDER BY year)).*
FROM t_oil
WHERE country = 'USA'
LIMIT 3;

 year | prod | region | country | year | prod | consumption
------+-------+------------+---------+------+------+-------------
 1965 | 9014 | | | | |
 1966 | 9579 | N. America | USA | 1965 | 9014 | 11522
 1967 | 10219 | N. America | USA | 1966 | 9579 | 12100
(3 rows)

Handling Advanced SQL Chapter 4

[114]

Why is that useful? Lagging an entire row will make it possible to see if data has been
inserted more than once. It is pretty simple to detect duplicate rows (or close-to-duplicate
rows) in your time series.

Check out the following example:

test=# SELECT *
FROM (SELECT t_oil, lag(t_oil) OVER (ORDER BY year)
 FROM t_oil
 WHERE country = 'USA'
) AS x
WHERE t_oil = lag;
 t_oil | lag
--------+-----
(0 rows)

Of course, the sample data does not contain duplicates. However, in real-world examples,
duplicates can easily happen, and it is easy to detect them even if there is no primary key.

t_oil row is really the entire row. The lag returned by the subselect is
also a complete row. In PostgreSQL, composite types can be compared
directly in case the fields are identical. PostgreSQL will simply compare
one field after the other.

The first_value(), nth_value(), and last_value() functions
Sometimes, it is necessary to calculate data based on the first value of a data window.
Unsurprisingly, the function to do that is first_value():

test=# SELECT year, production,
 first_value(production) OVER (ORDER BY year)
FROM t_oil
WHERE country = 'Canada'
LIMIT 4;
 year | production | first_value
-------+------------+-------------
 1965 | 920 | 920
 1966 | 1012 | 920
 1967 | 1106 | 920
 1968 | 1194 | 920
(4 rows)

Handling Advanced SQL Chapter 4

[115]

Again, a sort order is needed to tell the system where the first value actually is. PostgreSQL
will then put the same value into the last column. If you want to find the last value in the
window, simply use the last_value() function instead of the first_value() function.

If you are not interested in the first or the last value but are looking for something in the
middle, PostgreSQL provides the nth_value() function:

test=# SELECT year, production,
 nth_value(production, 3) OVER (ORDER BY year)
FROM t_oil
WHERE country = 'Canada';

 year | production | nth_value
-------+------------+-----------
 1965 | 920 |
 1966 | 1012 |
 1967 | 1106 | 1106
 1968 | 1194 | 1106
 ...

In this, the third value will be put into the last column. However, note that the first two
rows are empty. The trouble is that when PostgreSQL starts going through the data, the
third value is not known yet. Therefore, null is added. The question now is: how can we
make the time series more complete and replace those two null values with the data to
come?

Here is one way to do it:

test=# SELECT *, min(nth_value) OVER ()
FROM (
 SELECT year, production,
 nth_value(production, 3) OVER (ORDER BY year)
 FROM t_oil
 WHERE country = 'Canada'
) AS x
LIMIT 4;
 year | production | nth_value | min
-------+------------+-----------+------
 1965 | 920 | | 1106
 1966 | 1012 | | 1106
 1967 | 1106 | 1106 | 1106
 1968 | 1194 | 1106 | 1106
(4 rows)

Handling Advanced SQL Chapter 4

[116]

The subselect will create the incomplete time series. The SELECT clause on top of that will
complete the data. The clue here is that completing the data might be more complex, and
therefore a subselect might create a couple of opportunities to add more complex logic than
just doing it in one step.

The row_number() function
The last function discussed in this section is the row_number() function, which can simply
be used to return a virtual ID. Sound simple? Here it is:

test=# SELECT country, production,
 row_number() OVER (ORDER BY production)
FROM t_oil
LIMIT 3;
 country | production | row_number
---------+------------+------------
 Yemen | 10 | 1
 Syria | 21 | 2
 Yemen | 26 | 3
(3 rows)

The row_number() function simply assigns a number to the row. There are definitely no
duplicates.

The interesting point here is that this can be done even without an order (in case it is not
relevant to you):

test=# SELECT country, production,
 row_number() OVER()
FROM t_oil
LIMIT 3;
 country | production | row_number
---------+------------+------------
 USA | 9014 | 1
 USA | 9579 | 2
 USA | 10219 | 3
(3 rows)

Handling Advanced SQL Chapter 4

[117]

Writing your own aggregates
In this book, you can see most of the on-board functions provided by PostgreSQL.
However, what SQL provides might not be enough for you. The good news is that it is
possible to add your own aggregates to the database engine. In this section, you will learn
how that can be done.

Creating simple aggregates
For the purpose of this example, the goal is to solve a very simple problem: if a customer
takes a taxi, they usually have to pay for getting in the taxi—for example, €2.50. Then, let us
assume that for each kilometer, the customer has to pay €2.20. The question now is: what is
the total price of a trip?

Of course, this example is simple enough to solve without a custom aggregate, however,
let's see how it works. First, some test data is created:

test=# CREATE TABLE t_taxi (trip_id int, km numeric);
CREATE TABLE
test=# INSERT INTO t_taxi
 VALUES (1, 4.0), (1, 3.2), (1, 4.5), (2, 1.9), (2, 4.5);
INSERT 0 5

To create aggregates, PostgreSQL offers the CREATE AGGREGATE command. The syntax of
this command has become so powerful and long over time that it does not make sense
anymore to include the output of here in this book. Instead, I recommend going to the
PostgreSQL documentation, which can be found at
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html.

The first thing needed when writing an aggregate is a function, which is called for every
line. It will take an intermediate value and data taken from the line processed. Here is an
example:

test=# CREATE FUNCTION taxi_per_line (numeric, numeric)
RETURNS numeric AS
$$
 BEGIN
 RAISE NOTICE 'intermediate: %, per row: %', $1, $2;
 RETURN $1 + $2*2.2;
 END;
$$
LANGUAGE 'plpgsql';
CREATE FUNCTION

https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html
https://www.postgresql.org/docs/devel/static/sql-createaggregate.html

Handling Advanced SQL Chapter 4

[118]

Now, it is already possible to create a simple aggregate:

test=# CREATE AGGREGATE taxi_price (numeric)
(
 INITCOND = 2.5,
 SFUNC = taxi_per_line,
 STYPE = numeric
);

CREATE AGGREGATE

As stated, every trip starts at €2.50 for getting in the taxi, which is defined by INITCOND
(the init condition). It represents the starting value for each group. Then a function is
called for each line in the group. In my example, this function is taxi_per_line and has
already been defined. As you can see, it needs two parameters. The first parameter is an
intermediate value. Those additional parameters (can be many) are the parameters passed
to the function by the user.

The following statement shows what data is passed when and how:

test=# SELECT trip_id, taxi_price(km) FROM t_taxi GROUP BY 1;
NOTICE: intermediate: 2.5, per row: 4.0
NOTICE: intermediate: 11.30, per row: 3.2
NOTICE: intermediate: 18.34, per row: 4.5
NOTICE: intermediate: 2.5, per row: 1.9
NOTICE: intermediate: 6.68, per row: 4.5
trip_id | taxi_price
---------+------------
 1 | 28.24
 2 | 16.58
(2 rows)

The system starts with trip one and €2.50 (the init condition). Then 4 kilometers are
added. Overall, the price is now 2.50 + 4 x 2.2. Then, the next line is added, which will add
3.2 x 2.2, and so on. The first trip therefore costs €28.24.

Then the next trip starts. Again, there is a fresh init condition and PostgreSQL will call one
function per line.

Handling Advanced SQL Chapter 4

[119]

In PostgreSQL, an aggregate can automatically be used as a windowing function too. No
additional steps are needed—you can use the aggregate directly:

test=# SELECT *, taxi_price(km) OVER (PARTITION BY trip_id ORDER BY km)
 FROM t_taxi;

NOTICE: intermediate: 2.5, per row: 3.2
NOTICE: intermediate: 9.54, per row: 4.0
NOTICE: intermediate: 18.34, per row: 4.5
NOTICE: intermediate: 2.5, per row: 1.9
NOTICE: intermediate: 6.68, per row: 4.5
 trip_id | km | taxi_price
---------+-----+------------
 1 | 3.2 | 9.54
 1 | 4.0 | 18.34
 1 | 4.5 | 28.24
 2 | 1.9 | 6.68
 2 | 4.5 | 16.58

(5 rows)

What the query does is to give us the price up to a given point in the trip.

The aggregate we have defined will call one function per line. However, how would users
be able to calculate an average? Without adding a FINALFUNC function, calculations like
that are not possible. To demonstrate how FINALFUNC works, we must extend our example.
Suppose the customer wants to give the taxi driver a 10% tip as soon as they leave the taxi.
That 10% has to be added at the end, as soon as the total price is known. That is the point at
which FINALFUNC kicks in. Here is how it works:

test=# DROP AGGREGATE taxi_price(numeric);
DROP AGGREGATE

First of all, the old aggregate is dropped. Then, FINALFUNC is defined. It will get the
intermediate result as a parameter and do its magic:

test=# CREATE FUNCTION taxi_final (numeric)
 RETURNS numeric AS
$$
 SELECT $1 * 1.1;
$$
LANGUAGE sql IMMUTABLE;

CREATE FUNCTION

Handling Advanced SQL Chapter 4

[120]

The calculation is pretty simple in this case—as stated previously, 10% is added to the final
sum.

Once the function has been deployed, it is already possible to recreate the aggregate:

test=# CREATE AGGREGATE taxi_price (numeric)
(
 INITCOND = 2.5,
 SFUNC = taxi_per_line,
 STYPE = numeric,
 FINALFUNC = taxi_final
);
CREATE AGGREGATE

And finally, the price will simply be a bit higher than before:

test=# SELECT trip_id, taxi_price(km) FROM t_taxi GROUP BY 1;
NOTICE: intermediate: 2.5, per row: 4.0
...
 trip_id | taxi_price
---------+------------
 1 | 31.064
 2 | 18.238
(2 rows)

PostgreSQL takes care of all the grouping and so on automatically.

For simple calculations, simple datatypes can be used for the intermediate result. However,
not all operations can be done by just passing simple numbers and text around. Fortunately,
PostgreSQL allows the use of composite data types, which can be used as intermediate
results.

Imagine you want to calculate an average of some data (maybe a time series). An
intermediate result might look as follows:

test=# CREATE TYPE my_intermediate AS (c int4, s numeric);
CREATE TYPE

Feel free to compose any arbitrary type that serves your purpose. Just pass it as the first
parameter and add data as additional parameters as needed.

Handling Advanced SQL Chapter 4

[121]

Adding support for parallel queries
What you have just seen is a simple aggregate, which has no support for parallel queries
and all that. To solve those challenges, the next couple of examples are all about
improvements and speedups.

When creating an aggregate, you can optionally define the following things:

[, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]

By default, an aggregate does not support parallel queries. For performance reasons it does
make sense, however, to explicitly state what the aggregate is capable of:

UNSAFE: In this mode, no parallel queries are allowed
RESTRICTED: In this mode, the aggregate can be executed in parallel mode, but
the execution is restricted to the parallel group leader
SAFE: In this mode, it provides full support for parallel queries

If you mark a function as SAFE, you have to keep in mind that the function must not have
side effects. An execution order must not have an impact on the result of the query. Only
then, should PostgreSQL be allowed to execute operations in parallel. Examples of
functions without side effects would be sin(x) and length(s). The IMMUTABLE functions are
good candidate for this, since they're guaranteed to return the same result given the same
inputs. The STABLE function can work if certain restrictions apply.

Improving efficiency
The aggregates defined so far can already achieve quite a lot. However, if you are using
sliding windows, the number of function calls will simply explode. Here is what happens:

test=# SELECT taxi_price(x::numeric)
 OVER (ROWS BETWEEN 0 FOLLOWING AND 3 FOLLOWING)
FROM generate_series(1, 5) AS x;
NOTICE: intermediate: 2.5, per row: 1
NOTICE: intermediate: 4.7, per row: 2
NOTICE: intermediate: 9.1, per row: 3
NOTICE: intermediate: 15.7, per row: 4
NOTICE: intermediate: 2.5, per row: 2
NOTICE: intermediate: 6.9, per row: 3
NOTICE: intermediate: 13.5, per row: 4
NOTICE: intermediate: 22.3, per row: 5
...

Handling Advanced SQL Chapter 4

[122]

For every line, PostgreSQL will process the full window. If the sliding window is large,
efficiency will go down the drain. To fix that, our aggregates can be extended. Before that
the old aggregate can be dropped:

DROP AGGREGATE taxi_price(numeric);

Basically, two functions are needed: the msfunc function will add the next row in the
window to the intermediate result:

CREATE FUNCTION taxi_msfunc(numeric, numeric)
 RETURNS numeric AS
$$
 BEGIN
 RAISE NOTICE 'taxi_msfunc called with % and %', $1, $2;
 RETURN $1 + $2;
 END;
$$ LANGUAGE 'plpgsql' STRICT;

The minvfunc function will remove the value falling out of the window from the
intermediate result:

CREATE FUNCTION taxi_minvfunc(numeric, numeric) RETURNS numeric AS
$$
BEGIN
 RAISE NOTICE 'taxi_minvfunc called with % and %', $1, $2;
 RETURN $1 - $2;
END;
$$
LANGUAGE 'plpgsql' STRICT;

In my example, all we do is add and subtract. In a more sophisticated example the
calculation can be arbitrarily complex.

The next statement shows how the aggregate can be recreated:

CREATE AGGREGATE taxi_price (numeric)
(
 INITCOND = 0,
 STYPE = numeric,
 SFUNC = taxi_per_line,
 MSFUNC = taxi_msfunc,
 MINVFUNC = taxi_minvfunc,
 MSTYPE = numeric
);

Handling Advanced SQL Chapter 4

[123]

Let us run the same query again now:

test# SELECT taxi_price(x::numeric)
 OVER (ROWS BETWEEN 0 FOLLOWING AND 3 FOLLOWING)
FROM generate_series(1, 5) AS x;
NOTICE: taxi_msfunc called with 1 and 2
NOTICE: taxi_msfunc called with 3 and 3
NOTICE: taxi_msfunc called with 6 and 4
NOTICE: taxi_minfunc called with 10 and 1
NOTICE: taxi_msfunc called with 9 and 5
NOTICE: taxi_minfunc called with 14 and 2
NOTICE: taxi_minfunc called with 12 and 3
NOTICE: taxi_minfunc called with 9 and 4

The number of function calls has decreased dramatically. Only a fixed handful of calls per
row have to be performed. There is no longer any need to calculate the same frame all over
again.

Writing hypothetical aggregates
Writing aggregates is not hard and can be highly beneficial for performing more complex
operations. In this section, the plan is to write a hypothetical aggregate, which has already
been discussed in this chapter.

Implementing hypothetical aggregates is not too different from writing normal aggregates.
The really hard part is to figure out when to actually use one. To make this section as easy
to understand as possible, I have decided to include a trivial example: given a specific
order, what would the result be if we added abc to the end of the string?

Here is how it works:

CREATE AGGREGATE name ([[argmode] [argname] arg_data_type [, ...]
]
 ORDER BY [argmode] [argname] arg_data_type
 [, ...])
(

 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size] [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, INITCOND = initial_condition]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }] [, HYPOTHETICAL]
)

Handling Advanced SQL Chapter 4

[124]

Two functions will be needed. The sfunc function will be called for every line:

CREATE FUNCTION hypo_sfunc(text, text)
 RETURNS text AS
$$
 BEGIN
 RAISE NOTICE 'hypo_sfunc called with % and %', $1, $2;
 RETURN $1 || $2;
 END;
$$ LANGUAGE 'plpgsql';

Two parameters will be passed to the procedure. The logic is the same as before. Just as we
did earlier, a final function call can be defined:

CREATE FUNCTION hypo_final(text, text, text)
 RETURNS text AS
$$
 BEGIN
 RAISE NOTICE 'hypo_final called with %, %, and %',

 $1, $2, $3;
 RETURN $1 || $2;
 END;
$$ LANGUAGE 'plpgsql';

Once those functions are in place the hypothetical aggregate can already be created:

CREATE AGGREGATE whatif(text ORDER BY text)
(
 INITCOND = 'START',
 STYPE = text,
 SFUNC = hypo_sfunc,
 FINALFUNC = hypo_final,
 FINALFUNC_EXTRA = true,
 HYPOTHETICAL
);

Note that the aggregate has been marked as hypothetical so that PostgreSQL will know
what kind of aggregate it actually is.

Handling Advanced SQL Chapter 4

[125]

After the aggregate has been created, it is possible to run it:

test=# SELECT whatif('abc'::text) WITHIN GROUP (ORDER BY id::text)
FROM generate_series(1, 3) AS id;
NOTICE: hypo_sfunc called with START and 1
NOTICE: hypo_sfunc called with START1 and 2
NOTICE: hypo_sfunc called with START12 and 3
NOTICE: hypo_final called with START123, abc, and <NULL>
whatif

 START123abc
(1 row)

The key to understanding all those aggregates is really to fully see when which kind of
function is called and how the overall machinery works.

Summary
In this chapter, you learned about the advanced features provided by SQL. On top of simple
aggregates, PostgreSQL provides ordered sets, grouping sets, windowing functions and
recursions, as well as an interface to create custom aggregates. The advantage of running
aggregations in the database is that code is easy to write, and a database engine will usually
have an edge when it comes to efficiency.

In Chapter 5, Log Files and System Statistics, we will turn our attention to more
administrative tasks, such as handling log files, understanding system statistics, and
implementing monitoring.

5
Log Files and System Statistics

In Chapter 4, Handling Advanced SQL, you learned a lot about advanced SQL and ways to
see SQL in a different light. However, database work does not only consist of hacking up
fancy SQL. Sometimes, it is also about keeping things running in a professional manner. To
do that, it is highly important to keep an eye on system statistics, log files, and so on.
Monitoring is the key to running databases professionally.

In this chapter, you will learn about the following topics:

Gathering runtime statistics
Creating log files
Gathering important information
Making sense of database statistics

At the end of this chapter, you will be able to configure PostgreSQL's logging infrastructure
properly and take care of log files in the most professional way possible.

Gathering runtime statistics
The first thing you really have to learn is to use and understand what PostgreSQL's onboard
statistics have got to offer. In my personal opinion, there is no way to improve performance
and reliability without first collecting the data to make prudent decisions.

This section will guide you through PostgreSQL's runtime statistics and explain in detail
how you can extract more data from your database setups.

Log Files and System Statistics Chapter 5

[127]

Working with PostgreSQL system views
PostgreSQL offers a large set of system views that allow administrators and developers
alike to take a deep look into what is really going on in their system. The trouble is that
many people actually collect all this data but cannot make real sense out of it. The general
rule is this: there is no point in drawing a graph for something you don't understand
anyway. The goal in this section, therefore, is to shed some light on what PostgreSQL has to
offer to hopefully make it easier for people to fully take advantage of what is there to serve
for them to use.

Checking live traffic
Whenever I inspect a system, there is a system view I like to inspect first before digging
deeper. I am, of course, talking about pg_stat_activity. The idea behind the view is to
give you a chance to figure out what is going on right now.

Here is how it works:

test=# \d pg_stat_activity
View "pg_catalog.pg_stat_activity"
 Column | Type |...
------------------+--------------------------+-...
 datid | oid | ...
 datname | name | ...
 pid | integer | ...
 usesysid | oid | ...
 usename | name | ...
 application_name | text | ...
 client_addr | inet | ...
 client_hostname | text | ...
 client_port | integer | ...
 backend_start | timestamp with time zone | ...
 xact_start | timestamp with time zone | ...
 query_start | timestamp with time zone | ...
 state_change | timestamp with time zone | ...
 wait_event_type | text | ...
 wait_event | text | ...
 state | text | ...
 backend_xid | xid | ...
 backend_xmin | xid | ...
 query | text | ...
 backend_type | text | ...

Log Files and System Statistics Chapter 5

[128]

pg_stat_activity will provide you with one line per active connection. You will see the
internal object ID of the database (datid), the name of the database somebody is connected
to, and the process ID serving this connection (pid). On top of that, PostgreSQL will tell you
who is connected (usename; note the missing r) and that user's internal object ID
(usesysid).

Then there is a field called application_name, which is worth commenting on a bit
more extensively. In general, application_name can be set freely by the end user:

test=# SET application_name TO 'www.cybertec-postgresql.com';
SET
test=# SHOW application_name;
 application_name

 www.cybertec-postgresql.com
(1 row)

The point is this: assume thousands of connections are coming from a single IP. Can you, as
the administrator, tell what a specific connection is really doing right now? You might not
know all the SQL by heart. If the client is kind enough to set an application_name
parameter, it is a lot easier to see what the purpose of a connection really is. In my example,
I have set the name to the domain the connection belongs to. This makes it easy to find
similar connections, which might cause similar problems.

The next three columns (client_) will tell you where a connection comes from.
PostgreSQL will show IP addresses and (if it has been configured) even hostnames.

backend_start will tell you when a certain connection has started. xact_start indicates
when a transaction has started. Then there are query_start and state_change. Back in
the dark old days, PostgreSQL would only show active queries. During a time when queries
took a lot longer than today, this made sense, of course. On modern hardware, OLTP
queries might only consume a fraction of a millisecond, and therefore it is hard to catch
such queries doing potential harm. The solution was to either show the active query or the
previous query executed by the connection you are looking at.

Here is what you might see:

test=# SELECT pid, query_start, state_change, state, query
FROM pg_stat_activity;
...
-[RECORD 2]+--
pid | 28001
query_start | 2016-11-05 10:03:57.575593+01 state_change | 2016-11-05
10:03:57.575595+01

Log Files and System Statistics Chapter 5

[129]

state | active
query | SELECT pg_sleep(10000000);

In this case, you can see that pg_sleep is being executed in a second connection. As soon as
this query is terminated, the output will change:

-[RECORD 2]+--
pid | 28001
query_start | 2016-11-05 10:03:57.575593+01
state_change | 2016-11-05 10:05:10.388522+01
state | idle
query | SELECT pg_sleep(10000000);

The query is now marked as idle. The difference between state_change and
query_start is the time the query needed to execute.

pg_stat_activity will therefore give you a great overview of what is going on in your
system right now. The new state_change field makes it a lot more likely to spot expensive
queries.

The question now is this: once you have found bad queries, how can you actually get rid of
them? PostgreSQL provides two functions to take care of these things:
pg_cancel_backend and pg_terminate_backend. The pg_cancel_backend function
will terminate the query but will leave the connection in place.

The pg_terminate_backend function is a bit more radical and will kill the entire database
connection along with the query.

If you want to disconnect all other users but yourself, here is how you can do that:

test=# SELECT pg_terminate_backend(pid)
 FROM pg_stat_activity
 WHERE pid <> pg_backend_pid()
 AND backend_type = 'client backend'
 pg_terminate_backend

 t
 t
(2 row)

If you happen to be kicked out, the following message will be displayed:

test=# SELECT pg_sleep(10000000);
FATAL: terminating connection due to administrator command server closed
the connection unexpectedly

Log Files and System Statistics Chapter 5

[130]

This probably means the server terminated abnormally before or while processing the
request. The connection to the server was lost. Attempting reset: Succeeded.

Only psql will try to reconnect. This is not true for most other clients,
especially not for client libraries.

Inspecting databases
Once you have inspected active database connections, you can dig deeper and inspect
database-level statistics. pg_stat_database will return one line per database inside your
PostgreSQL instance.

This is what you can find there:

test=# \d pg_stat_database
 View "pg_catalog.pg_stat_database"
Column | Type | Collation | Nullable | Default
----------------+--------------------------+-----------+----------+--------
-
 datid | oid | |
 datname | name | |
 numbackends | integer | |
 xact_commit | bigint | |
 xact_rollback | bigint | |
 blks_read | bigint | |
 blks_hit | bigint | |
 tup_returned | bigint | |
 tup_fetched | bigint | |
 tup_inserted | bigint | |
 tup_updated | bigint | |
 tup_deleted | bigint | |
 conflicts | bigint | |
 temp_files | bigint | |
 temp_bytes | bigint | |
 deadlocks | bigint | |
 blk_read_time | double precision | |
 blk_write_time | double precision | |
 stats_reset | timestamp with time zone | |

Log Files and System Statistics Chapter 5

[131]

Next to the database ID and the database name, there is a column called numbackends that
shows the number of database connections that are currently open.

Then there are xact_commit and xact_rollback. These two columns indicate whether
your application tends to commit or roll back. blks_hit and blks_read will tell you about
cache hits and cache misses. When inspecting these two columns, keep in mind that we are
mostly talking about shared buffer hits and shared buffer misses. There is no reasonable
way, on the database level, to distinguish filesystem cache hits and real disk hits. At
Cybertec (https:/​/ ​www. ​cybertec- ​postgresql. ​com), we like to correlate disk wait with
cache misses in pg_stat_database to get an idea of what really goes on in the system.

The tup_ columns will tell you whether there is a lot of reading or a lot of writing going on
in your system.

Then we have temp_files and temp_bytes. These two columns are of incredible
importance because they will tell you whether your database has to write temporary files to
disk, which will inevitably slow down operations. What can be the reasons for high
temporary file usage? The major reasons are as follows:

Poor settings: If your work_mem settings are too low, there is no way to do
anything in RAM, and therefore PostgreSQL will go to disk.
Stupid operations: It happens quite frequently that people torture their system
with fairly expensive, pointless queries. If you see many temporary files on an
OLTP system, consider checking for expensive queries.
Indexing and other administrative tasks: Once in a while, indexes might be
created or people might run DDLs. These operations can lead to temporary file
I/O but are not necessarily considered a problem (in many cases).

In short, temporary files can happen even if your system is perfectly fine. However, it
definitely makes sense to keep an eye on them and ensure that temp files are not needed
frequently.

Finally, there are two more important fields: blk_read_time and blk_write_time. By
default, these two fields are empty and no data is collected. The idea behind these fields is
to give you a way to see how much time was spent on I/O. The reason these fields are
empty is that track_io_timing is off by default. This is for good reasons. Imagine you
want to check how long it takes to read 1 million blocks. To do that, you have to call the
time function in your C library twice, which leads to 2 million additional function calls just
to read 8 GB of data. It really depends on the speed of your system as to whether this will
lead to a lot of overhead or not.

https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com
https://www.cybertec-postgresql.com

Log Files and System Statistics Chapter 5

[132]

Fortunately, there is a tool that helps you to determine how expensive the timing is:

[hs@zenbook ~]$ pg_test_timing
Testing timing overhead for 3 seconds.
Per loop time including overhead: 23.16 nsec
Histogram of timing durations:

 < usec % of total count
 1 97.70300 126549189
 2 2.29506 2972668
 4 0.00024 317
 8 0.00008 101
 16 0.00160 2072
 32 0.00000 5
 64 0.00000 6
 128 0.00000 4
 256 0.00000 0
 512 0.00000 0
 1024 0.00000 4
 2048 0.00000 2

In my case, the overhead of turning track_io_timing on for a session or in the
postgresql.conf file is around 23 nanoseconds, which is fine. Professional high-end
servers can provide you with numbers as low as 14 nanoseconds, while really bad
virtualization can return values up to 1,400 nanoseconds or even 1,900 nanoseconds. If you
are using some cloud service, you can expect around 100 - 120 nanoseconds (in most cases).
In case you are confronted with four digit values, measuring the I/O timing might surely
lead to real measurable overhead, which will slow down your system. The general rule is
this: on real hardware, timing is not an issue; on virtual systems, check it out before you
turn it on.

It is also possible to turn things on selectively by using ALTER DATABASE,
ALTER USER, or the like.

Log Files and System Statistics Chapter 5

[133]

Inspecting tables
Once you have gained an overview of what is going on in your databases, it might be a
good idea to dig deeper and see what is going on in individual tables. Two system views
are here to help you: pg_stat_user_tables and pg_statio_user_tables. Here is the
first one:

test=# \d pg_stat_user_tables
 View "pg_catalog.pg_stat_user_tables"
 Column | Type | ...
---------------------+--------------------------+-...
 relid | oid | ...
 schemaname | name |...
 relname | name |...
 seq_scan | bigint |...
 seq_tup_read | bigint |...
 idx_scan | bigint |...
 idx_tup_fetch | bigint |...
 n_tup_ins | bigint |...
 n_tup_upd | bigint |...
 n_tup_del | bigint |...
 n_tup_hot_upd | bigint |...
 n_live_tup | bigint |...
 n_dead_tup | bigint |...
 n_mod_since_analyze | bigint |...
 last_vacuum | timestamp with time zone |...
 last_autovacuum | timestamp with time zone |...
 last_analyze | timestamp with time zone |...
 last_autoanalyze | timestamp with time zone |...
 vacuum_count | bigint |...
 autovacuum_count | bigint |...
 analyze_count | bigint |...
 autoanalyze_count | bigint |...

By my judgment, pg_stat_user_tables is one of the most important but also one of the
most misunderstood or even ignored system views. I have a feeling that many people read
it but fail to extract the full potential of what can really be seen here. When used properly,
pg_stat_user_tables can, in some cases, be nothing short of a revelation.

Before we dig into the interpretation of data, it is important to understand which fields are
actually there. First of all, there is one entry for each table, which will show us the number
of sequential scans that happened on the table (seq_scan). Then we have seq_tup_read,
which tells us how many tuples the system has to read during those sequential scans.

Log Files and System Statistics Chapter 5

[134]

Remember the seq_tup_read column; it contains vital information,
which can help to find performance problems.

idx_scan is next on the list. It will show us how often an index was used for this table.
PostgreSQL will also show how many rows those scans returned. Then there are a couple of
columns starting with n_tup_. Those will tell us how much we inserted, updated, and
deleted. The most important thing here is related to HOT UPDATE. When running an
UPDATE, PostgreSQL has to copy a row to ensure that ROLLBACK will work correctly. HOT
UPDATE is pretty good because it allows PostgreSQL to ensure that a row does not have to
leave a block. The copy of the row stays inside the same block, which is beneficial for
performance in general. A fair amount of HOT UPDATE indicates that you are on the right
track in case of an UPDATE intense workload. The perfect ratio between normal and HOT
UPDATE cannot be stated here for all use cases. People have really got to think for
themselves to figure out which workload benefits from many in-place operations. The
general rule is this: the more UPDATE intense your workload is, the better it is to have many
HOT UPDATE clauses.

Finally, there are some VACUUM statistics, which mostly speak for themselves.

Making sense of pg_stat_user_tables
Reading all this data might be interesting; however, unless you are able to make sense out
of it, it is pretty pointless. One way to use pg_stat_user_tables is to detect which tables
might need an index. One way to get a clue to the right direction is to use the following
query, which has served me well over the years:

SELECT schemaname, relname, seq_scan, seq_tup_read,
 seq_tup_read / seq_scan AS avg, idx_scan
FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC
LIMIT 25;

The idea is to find large tables that have been used frequently in a sequential scan. Those
tables will naturally come out on top of the list to bless us with enormously high
seq_tup_read values, which can be mind-blowing.

Log Files and System Statistics Chapter 5

[135]

Work your way from top to bottom and look for expensive scans. Keep in
mind that sequential scans are not necessarily bad. They appear naturally
in backups, analytical statements, and so on without causing any harm.
However, if you are running large sequential scans all the time, your
performance will go down the drain.

Note that this query is really golden—it will help you to spot tables with missing indexes.
Practical experience of close to two decades has shown again and again that missing
indexes are the single most important reason for bad performance. Therefore, the query you
are looking at is literally gold.

Once you are done looking for potentially missing indexes, consider taking a brief look at
the caching behavior of your tables. pg_statio_user_tables will contain information
about all kinds of things, such as caching behavior of the table (heap_blks_), of your
indexes (idx_blks_), and of as The Oversized Attribute Storage Technique (TOAST)
tables. Finally, you can find out more about TID scans, which are usually not relevant to the
overall performance of the system:

test=# \d pg_statio_user_tables
 View "pg_catalog.pg_statio_user_tables"
 Column | Type | ...
-----------------+--------+-...
 relid | oid |...
 schemaname | name |...
 relname | name |...
 heap_blks_read | bigint |...
 heap_blks_hit | bigint |...
 idx_blks_read | bigint |...
 idx_blks_hit | bigint |...
 toast_blks_read | bigint |...
 toast_blks_hit | bigint |...
 tidx_blks_read | bigint |...
 tidx_blks_hit | bigint |...

Although pg_statio_user_tables contains important information, it is usually the case
that pg_stat_user_tables is more likely to provide you with a really relevant insight
(such as a missing index or so).

Log Files and System Statistics Chapter 5

[136]

Digging into indexes
While pg_stat_user_tables is important to spotting missing indexes, it is sometimes
necessary to find indexes which should really not exist. Recently, I was on a business trip to
Germany and discovered a system that contained mostly pointless indexes (74% of the total
storage consumption). While this might not be a problem if your database is really small, it
does make a difference in the case of large systems—having hundreds of gigabytes of
pointless indexes can seriously harm your overall performance.

pg_stat_user_indexes can be inspected to find those pointless indexes:

test=# \d pg_stat_user_indexes
 View "pg_catalog.pg_stat_user_indexes"
 Column | Type |...
---------------+--------+...
 relid | oid |...
 indexrelid | oid |...
 schemaname | name |...
 relname | name |...
 indexrelname | name |...
 idx_scan | bigint |...
 idx_tup_read | bigint |...
 idx_tup_fetch | bigint |...

The view tells us, for every index on every table in every schema, how often it has been
used (idx_scan). To enrich this view a bit, I suggest the following SQL:

SELECT schemaname, relname, indexrelname, idx_scan,
 pg_size_pretty(pg_relation_size(indexrelid)),
 pg_size_pretty(sum(pg_relation_size(indexrelid))
 OVER (ORDER BY idx_scan, indexrelid)) AS total
FROM pg_stat_user_indexes
ORDER BY 6 ;

Log Files and System Statistics Chapter 5

[137]

The output of this statement is very useful. It doesn't only contain information about how
often an index was used—it also tells us how much space has been wasted for each index.
Finally, it adds up all the space consumption in column 6. You can now go through the
table and rethink all those indexes that have rarely been used. It is hard to come up with a
general rule regarding when to drop an index, so some manual checking makes a lot of
sense.

Do not just blindly drop indexes. In some cases, indexes are simply not
used because end users use the application differently than expected. In
case end users change (a new secretary is hired or so on), an index might
very well turn into a useful object again.

There is also a view called pg_statio_user_indexes, which contains caching information
about an index. Although it is interesting, it usually does not contain information leading to
big leaps forward.

Tracking the background worker
In this section, it is time to take a look at the background writer statistics. As you might
know, database connections will, in many cases, not write blocks to disks directly. Instead,
data is written by the background writer process or by the checkpointer.

To see how data is written, the pg_stat_bgwriter view can be inspected:

test=# \d pg_stat_bgwriter
 View "pg_catalog.pg_stat_bgwriter"
 Column | Type |...
-----------------------+--------------------------+...
 checkpoints_timed | bigint |...
 checkpoints_req | bigint |...
 checkpoint_write_time | double precision |...
 checkpoint_sync_time | double precision |...
 buffers_checkpoint | bigint |...
 buffers_clean | bigint |...
 maxwritten_clean | bigint |...
 buffers_backend | bigint |...
 buffers_backend_fsync | bigint |...
 buffers_alloc | bigint |...
 stats_reset | timestamp with time zone |...

Log Files and System Statistics Chapter 5

[138]

The first thing that should catch your attention here is the first two columns. You will learn
later in this book that PostgreSQL will perform regular checkpoints, which are necessary to
ensure that data has really made it to disk. If your checkpoints are too close to each other,
checkpoint_req might point you in the right direction. If requested checkpoints are high,
it can mean that a lot of data is written and that checkpoints are always triggered because of
high throughput. In addition to that, PostgreSQL will tell you about the time needed to
write data during a checkpoint and the time needed to sync. In addition to that,
buffers_checkpoint indicates how many buffers were written during the checkpoint,
and how many were written by the background writer (buffers_clean).

But there is more: maxwritten_clean tells us about the number of times the background
writer stopped a cleaning scan because it had written too many buffers.

Finally, there are buffers_backend (the number of buffers directly written by a backend
database connection), buffers_backend_fsync (the number of buffers flushed by a
database connection), and buffers_alloc, which contains the number of buffers allocated.
In general, it is not a good thing if database connections start to write their own stuff
themselves.

Tracking, archiving, and streaming
In this section, we will take a look at some features related to replication and transaction log
archiving. The first thing to inspect is pg_stat_archiver, which tells us about the archiver
process moving the transaction log (WAL) from the main server to some backup device:

test=# \d pg_stat_archiver
 View "pg_catalog.pg_stat_archiver"
 Column | Type |...
--------------------+--------------------------+...
 archived_count | bigint |...
 last_archived_wal | text |...
 last_archived_time | timestamp with time zone |...
 failed_count | bigint |...
 last_failed_wal | text |...
 last_failed_time | timestamp with time zone |...
 stats_reset | timestamp with time zone |...

pg_stat_archiver contains important information about your archiving process. First of
all, it will inform you about the number of transaction log files that have been archived
(archived_count). It will also know the last file that was archived and when that
happened (last_archived_wal and last_achived_time).

Log Files and System Statistics Chapter 5

[139]

While knowing the number of WAL files is certainly interesting, it is not really that
important. Therefore, consider taking a look at failed_count and last_failed_wal. If
your transaction log archiving failed, it will tell you the latest file that failed and when that
happened. It is recommended to keep an eye on those fields, because otherwise it might it's
possible that archiving might not work without you even noticing.

If you are running a streaming replication, the following two views will be really important
for you. The first one is called pg_stat_replication and will provide information about
the streaming process from the master to the slave. One entry per WAL sender process will
be visible. If there is no single entry, there is no transaction log streaming going on, which
might not be what you want.

Let us take a look at pg_stat_replication:

test=# \d pg_stat_replication
 View "pg_catalog.pg_stat_replication"
 Column | Type |...
------------------+--------------------------+...
 pid | integer |...
 usesysid | oid |...
 usename | name |...
 application_name | text |...
 client_addr | inet |...
 client_hostname | text |...
 client_port | integer |...
 backend_start | timestamp with time zone |...
 backend_xmin | xid |...
 state | text |...
 sent_lsn | pg_lsn |...
 write_lsn | pg_lsn |...
 flush_lsn | pg_lsn |...
 replay_lsn | pg_lsn |...
 write_lag | interval |...
 flush_lag | interval |...
 replay_lag | interval |...
 sync_priority | integer |...
 sync_state | text |...

You will find columns to indicate the username connected via the streaming replication.
Then there is the application name, along with the connection data (client_). Then,
PostgreSQL will tell us when the streaming connection has started. In production, a young
connection can point to a network problem or to something even worse (reliability issues
and so on). The state column shows in which state the other side of the stream is. Note that
there will be more information on this in Chapter 10, Making Sense of Backups and
Replication.

Log Files and System Statistics Chapter 5

[140]

There are fields telling us how much transaction log has been sent over the network
connection (sent_location), how much has been sent to the kernel (write_location),
how much has been flushed to disk (flush_location), and how much has already been
replayed (replay_location). Finally, the sync status is listed. Since PostgreSQL 10.0 there
are also additional fields, which already contain the time difference between the master and
the slave. The *_lag fields contain intervals, which give some indication about the actual
time difference between your servers.

While pg_stat_replication can be queried on the sending server of a replication setup,
pg_stat_wal_receiver can be consulted on the receiving end. It provides similar
information and allows this information to be extracted on the replica.

Here is the definition of the view:

test=# \d pg_stat_wal_receiver
 View "pg_catalog.pg_stat_wal_receiver"
 Column | Type |...
-----------------------+--------------------------+...
 pid | integer |...
 status | text |...
 receive_start_lsn | pg_lsn |...
 receive_start_tli | integer |...
 received_lsn | pg_lsn |...
 received_tli | integer |...
 last_msg_send_time | timestamp with time zone |...
 last_msg_receipt_time | timestamp with time zone |...
 latest_end_lsn | pg_lsn |...
 latest_end_time | timestamp with time zone |...
 slot_name | text |...
 conninfo | text |...

First of all, PostgreSQL will tell us the process ID of the WAL receiver process. Then the
view shows us the status of the connection in use. receive_start_lsn will tell us the
transaction log position used when the WAL receiver was started. receive_start_tli
contains the timeline in use when the WAL receiver was started. At some point, you might
want to know the latest WAL position and timeline. To get those two numbers, use
received_lsn and received_tli.

In the next two columns, there are two timestamps: last_msg_send_time and
last_msg_receipt_time. The first one states when a message was last sent and when it
was received.

Log Files and System Statistics Chapter 5

[141]

latest_end_lsn contains the last transaction log position reported to the WAL sender
process at latest_end_time. Finally, there are the slot_name and an obfuscated version
of the connection information.

Checking SSL connections
Many people running PostgreSQL use SSL to encrypt connections from the server to the
client. More recent versions of PostgreSQL provide a view to gain an overview of those
encrypted connections, which is pg_stat_ssl:

test=# \d pg_stat_ssl
 View "pg_catalog.pg_stat_ssl"
 Column | Type |...
-------------+---------+...
 pid | integer |...
 ssl | boolean |...
 version | text |...
 cipher | text |...
 bits | integer |...
 compression | boolean |...
 clientdn | text |...

Every process is represented by the process ID. If a connection uses SSL, the second column
is set to true. The third and fourth column will define the version as well as the cipher.
Finally, there are the number of bits used by the encryption algorithm, an indicator of
whether compression is used or not, as well as the Distinguished Name (DN) field from
the client certificate.

Inspecting transactions in real time
Thus far, some statistics tables have been discussed. The idea behind all of them is to see
what is going on in the entire system. But what if you are a developer who wants to inspect
an individual transaction? pg_stat_xact_user_tables is here to help. It does not contain
system-wide transactions, but only data about your current transaction:

test=# \d pg_stat_xact_user_tables
 View "pg_catalog.pg_stat_xact_user_tables"
 Column | Type |...
---------------+--------+...
 relid | oid |...
 schemaname | name |...
 relname | name |...
 seq_scan | bigint |...

Log Files and System Statistics Chapter 5

[142]

 seq_tup_read | bigint |...
 idx_scan | bigint |...
 idx_tup_fetch | bigint |...
 n_tup_ins | bigint |...
 n_tup_upd | bigint |...
 n_tup_del | bigint |...
 n_tup_hot_upd | bigint |...

Developers can therefore look into a transaction just before it commits to see whether it has
caused any performance issues. It helps to distinguish overall data from what has just been
caused by your application.

The ideal way for application developers to use this view is to add a function call in the
application before a commit to track what the transaction has done.

This data can then be inspected so that the output of the current transaction can be
distinguished from the overall workload.

Tracking vacuum progress
In PostgreSQL 9.6, the community introduced a system view many people have been
waiting for. For many years, people wanted to track the progress of a vacuum process to see
how long things might still take.

pg_stat_progress_vacuum has been invented to address this issue:

test=# \d pg_stat_progress_vacuum
 View "pg_catalog.pg_stat_progress_vacuum"
 Column | Type |...
--------------------+---------+...
 pid | integer |...
 datid | oid |...
 datname | name |...
 relid | oid |...
 phase | text |...
 heap_blks_total | bigint |...
 heap_blks_scanned | bigint |...
 heap_blks_vacuumed | bigint |...
 index_vacuum_count | bigint |...
 max_dead_tuples | bigint |...
 num_dead_tuples | bigint |...

Log Files and System Statistics Chapter 5

[143]

Most of the columns speak for themselves, and therefore I won't go into too much detail.
There are just a couple of things that should be kept in mind. First of all, the process is not
linear—it can jump quite a bit. In addition to that, a vacuum is usually pretty fast, so
progress can be rapid and hard to track.

Using pg_stat_statements
After discussing the first couple of views, it is time to turn our attention to one of the most
important views, which can be used to spot performance problems. I am, of course,
speaking about pg_stat_statements. The idea is to have information about queries on
your system. It helps to figure out which types of queries are slow and how often queries
are called.

To use the module, three steps are necessary:

Add pg_stat_statements to shared_preload_libraries in the
postgresql.conf file
Restart the database server
Run CREATE EXTENSION pg_stat_statements in the database(s) of your
choice

Let's inspect the definition of the view:

test=# \d pg_stat_statements
 View "public.pg_stat_statements"
 Column | Type |...
---------------------+------------------+...
 userid | oid |...
 dbid | oid |...
 queryid | bigint |...
 query | text |...
 calls | bigint |...
 total_time | double precision |...
 min_time | double precision |...
 max_time | double precision |...
 mean_time | double precision |...
 stddev_time | double precision |...
 rows | bigint |...
 shared_blks_hit | bigint |...
 shared_blks_read | bigint |...
 shared_blks_dirtied | bigint |...
 shared_blks_written | bigint |...
 local_blks_hit | bigint |...

Log Files and System Statistics Chapter 5

[144]

 local_blks_read | bigint |...
 local_blks_dirtied | bigint |...
 local_blks_written | bigint |...
 temp_blks_read | bigint |...
 temp_blks_written | bigint |...
 blk_read_time | double precision |...
 blk_write_time | double precision |...

pg_stat_statements provides simply fabulous information. For every user in every
database, it provides one line per query. By default it tracks 5,000 (this can be changed by
setting pg_stat_statements.max).

Queries and parameters are separated. PostgreSQL will put placeholders into the query.
This allows identical queries, which just use different parameters, to be aggregated. SELECT
... FROM x WHERE y = 10 will be turned into SELECT ... FROM x WHERE y = ?

For each query, PostgreSQL will tell us the total time it has consumed along with the
number of calls. In more recent versions, min_time, max_time, mean_time, and stddev
have been added. The standard deviation is especially noteworthy because it will tell us
whether a query has stable or fluctuating runtimes. Unstable runtimes can happen for
various reasons:

If the data is not fully cached in RAM, queries, which have to go to disk, will take
a lot longer than their cached counterparts
Different parameters can lead to different plans and totally different result sets
Concurrency and locking can have an impact

PostgreSQL will also tell us about the caching behavior of a query. The shared_ columns
show how many blocks came from the cache (_hit) or from the operating system (_read).
If many blocks come from the operating system, the runtime of a query might fluctuate.

The next block of columns is all about local buffers. Local buffers are memory blocks
allocated by the database connection directly.

Log Files and System Statistics Chapter 5

[145]

On top of all this information, PostgreSQL provides information about temporary file I/O.
Note that temporary file I/O will naturally happen when a large index is built or when some
other large DDL is executed. However, temporary files are usually a very bad thing to have
in OLTP as it will slow down the entire system by potentially blocking the disk. A high
amount of temporary file I/O can point to some undesirable things. The following list
contains my top three:

Undesirable work_mem settings (OLTP)
Suboptimal maintenance_work_mem settings (DDLs)
Queries, which should not be run in the first place

Finally, there are two fields containing information about I/O timing. By default, those two
fields are empty. The reason for this is that measuring timing can involve quite a lot of
overhead on some systems. Therefore, the default value for track_io_timing is false--
remember to turn it on if you need this data.

Once the module has been enabled, PostgreSQL is already collecting data and you can use
the view.

Never run SELECT * FROM pg_stat_statements in front of a
customer. More than once, people have started pointing at queries. They
happened to know and started to explain why, who, what, when, and so
on. When you use this view, always create a sorted output so that the most
relevant information can be seen instantly.

Here at Cybertec, we have found the following query very helpful to gain an overview of
what is happening on the database server:

test=# SELECT round((100 * total_time / sum(total_time)
 OVER ())::numeric, 2) percent,
 round(total_time::numeric, 2) AS total,
 calls,
 round(mean_time::numeric, 2) AS mean,
 substring(query, 1, 40)
FROM pg_stat_statements
ORDER BY total_time DESC
LIMIT 10;
 percent | total | calls | mean | substring
---------+-----------+--------+-------+--------------------------------
 54.47 | 111289.11 | 122161 | 0.91 | UPDATE pgbench_branches SET
 bbalance = b
 43.01 | 87879.25 | 122161 | 0.72 | UPDATE pgbench_tellers SET
 tbalance = tb
 1.46 | 2981.06 | 122161 | 0.02 | UPDATE pgbench_accounts SET

Log Files and System Statistics Chapter 5

[146]

 abalance = a
 0.50 | 1019.83 | 122161 | 0.01 | SELECT abalance FROM
 pgbench_accounts WH
 0.42 | 856.22 | 122161 | 0.01 | INSERT INTO pgbench_history
 (tid, bid, a
 0.04 | 85.63 | 1 | 85.63 | copy pgbench_accounts from
 stdin
 0.02 | 44.11 | 1 | 44.11 | vacuum analyze pgbench_accounts
 0.02 | 42.86 | 122161 | 0.00 | END;
 0.02 | 34.08 | 122171 | 0.00 | BEGIN;
 0.01 | 22.46 | 1 | 22.46 | alter table pgbench_accounts
 add primary
(10 rows)

It shows the top 10 queries and their runtime, including a percentage. It also makes sense to
display the average execution time of the queries so that you can decide whether the
runtime of those queries is too high or not.

Work your way down the list and inspect all the queries that seem to run too long on
average.

Keep in mind that working through the top 1,000 queries is usually not worth it. In most
cases, the first queries are already responsible for most of the load on the system.

In my example, I have used a substring to shorten the query to fit on a
page. This makes no sense if you really want to see what is going on.

Remember that pg_stat_statements will by default cut off queries at 1,024 bytes:

test=# SHOW track_activity_query_size;
 track_activity_query_size

 1024

(1 row)

Consider increasing this value to, say, 16,384. If your clients are running Java applications
based on Hibernate, a larger value of track_activity_query_size will ensure that
queries are not cut off before the interesting part is shown.

Log Files and System Statistics Chapter 5

[147]

At this point, I want to use the situation to point out how important pg_stat_statements
really is. It is by far the easiest way to track down performance problems. A slow query log
can never be as useful as pg_stat_statements, because a slow query log will only point
to individual slow queries—it won't show us problems caused by tons of medium queries.
Therefore, it is recommended to always turn this module on. The overhead is really small
and in no way harms the overall performance of the system.

By default, 5,000 types of queries are tracked (as of PostgreSQL 9.6). In most reasonably
sane applications, this will be enough.

To reset the data, consider using the following instruction:

test=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

Creating log files
After taking a deep look at the system views provided by PostgreSQL, it is time to configure
logging. Fortunately, PostgreSQL provides an easy way to work with log files and helps
people to set up a good configuration easily.

Collecting logs is important because it can point to errors and potential database problems.

The postgresql.conf file has all the parameters you need to provide you with all the
information.

Configuring the postgresql.conf file
In this section, we will go through some of the most important entries in the
postgresql.conf file to configure logging and see how logging can be used in the most
beneficial way.

Log Files and System Statistics Chapter 5

[148]

Before we get started, I want to say a few words about logging in PostgreSQL in general.
On Unix systems, PostgreSQL will send log information to stderr by default. However,
stderr is not a good place for logs to go because you will surely want to inspect the log
stream at some point. Therefore, it really makes sense to work through this chapter to adjust
things to your needs.

Defining log destination and rotation
Let us go through the postgresql.conf file and see what can be done:

#---
ERROR REPORTING AND LOGGING
#--

- Where to Log -

#log_destination = 'stderr'
 # Valid values are combinations of
 # stderr, csvlog, syslog, and eventlog,
 # depending on platform. csvlog
 # requires logging_collector to be on.

This is used when logging to stderr:
#logging_collector = off
 # Enable capturing of stderr and csvlog
 # into log files. Required to be on for
 # csvlogs.
 # (change requires restart)

The first configuration option defines how the log is processed. By default, it will go to
stderr (on Unix). On Windows, the default is eventlog, which is the Windows onboard
tool to handle logging. Alternatively, you can choose to go with csvlog or syslog.

In case you want to make PostgreSQL log files, you should go for stderr and turn the
logging collector on. PostgreSQL will then create log files.

Log Files and System Statistics Chapter 5

[149]

The logical question now is: what will the names of those log files be and where will those
files be stored? postgresql.conf has the answer:

These are only used if logging_collector is on:
#log_directory = 'pg_log'
 # directory where log files are written,
 # can be absolute or relative to PGDATA
#log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
 # log file name pattern,
 # can include strftime() escapes

log_directory will tell the system where to store the log. If you are using an absolute
path, you can explicitly configure where logs will go. If you prefer the logs to be in the
PostgreSQL data directly, simply go for a relative path. The advantage is that the data
directory will be self-contained and you can move it without having to worry.

In the next step, you can define the filename PostgreSQL is supposed to use. PostgreSQL is
very flexible and allows you to use all the shortcuts provided by strftime. To give you an
impression of how powerful this feature is, a quick count on my platform reveals that
strftime provides 43 (!) placeholders to create the filename. Everything people usually
need is certainly possible.

Once the filename has been defined, it makes sense to briefly think about cleanup. The
following settings will be available:

#log_truncate_on_rotation = off
#log_rotation_age = 1d
#log_rotation_size = 10MB

By default, PostgreSQL will keep producing log files in case files are older than 1 day or
larger than 10 MB. log_truncate_on_rotation specifies if you want to append to a log
file or not. Sometimes a log_filenames is defined in a way that it becomes cyclic. The
log_truncate_on_rotation parameter defines whether to overwrite or to append to the
file that already exists. Given the default log file, this will of course not happen.

One way to handle auto-rotation is to use something like postgresql_%a.log along with
log_truncate_on_rotation = on. %a means that the day of the week will be used
inside the log file. The advantage here is that the day of the week tends to repeat itself every
7 days. Therefore, the log will be kept for a week and recycled. If you are aiming for weekly
rotation, a 10 MB file size might not be enough. Consider turning the maximum file size off.

Log Files and System Statistics Chapter 5

[150]

Configuring syslog
Some people prefer to use syslog to collect log files. PostgreSQL offers the following
configuration parameters:

These are relevant when logging to syslog:
#syslog_facility = 'LOCAL0'
#syslog_ident = 'postgres'
#syslog_sequence_numbers = on
#syslog_split_messages = on

syslog is pretty popular among sys admins. Fortunately, it is easy to configure. Basically,
you set a facility and an identifier. If log_destination is set to syslog, this is already
everything there is to do.

Logging slow queries
The log can also be used to track down individual slow queries. Back in the old days, this
was pretty much the only way to spot performance problems.

How does it work? postgresql.conf has a variable called
log_min_duration_statement. If this is set to a value greater than zero, every query
exceeding our chosen setting will make it to the log:

log_min_duration_statement = -1

Most people see the slow query log as the ultimate source of wisdom. However, I would
like to add a word of caution. There are many slow queries, and they just happen to eat up a
lot of CPU: index creation, data exports, analytics, and so on.

Those long-running queries are totally expected and are in many cases not the root of all
evil. It happens frequently that many shorter queries are to blame. Here is an example:

1,000 queries x 500 milliseconds is worse than 2 queries x 5 seconds. The slow query log can
be misleading in some cases.

Still, it does not mean that it is pointless—it just means that it is a source of information and
not the source of information.

Log Files and System Statistics Chapter 5

[151]

Defining what and how to log
After taking a look at some basic settings, it is time to decide what to log. By default, only
errors will be logged. However, this might not be enough. In this section, you will learn
what can be logged and what a log line will look like.

By default, PostgreSQL does not log information about checkpoints. The following setting is
there to change exactly that:

#log_checkpoints = off

The same applies to connections; whenever a connection is established or properly
destroyed, PostgreSQL can create log entries:

#log_connections = off
#log_disconnections = off

In most cases, it does not make sense to log connections, as extensive logging significantly
slows down the systems. Analytical systems won't suffer much. However, OLTP might be
seriously impacted.

If you want to see how long statements take, consider switching the following setting to on:

#log_duration = off

Let us move on to one of the most important settings. So far, we have not defined the layout
of the messages yet. And so far, the log files contain errors in the following form:

test=# SELECT 1 / 0;
ERROR: division by zero

The log will state ERROR along with the error message. Before PostgreSQL 10.0, there wasn't
a timestamp, username, and so on. You had to change the value instantly to make any sense
of the logs. In PostgreSQL 10.0, the default value has changed to something much more
reasonable: to change that, take a look at log_line_prefix:

#log_line_prefix = '%m [%p] '
special values:
%a = application name
%u = user name
%d = database name
%r = remote host and port
%h = remote host
%p = process ID
%t = timestamp without milliseconds
%m = timestamp with milliseconds

Log Files and System Statistics Chapter 5

[152]

%n = timestamp with milliseconds (as a Unix epoch)
%i = command tag
%e = SQL state
%c = session ID
%l = session line number
%s = session start timestamp
%v = virtual transaction ID
%x = transaction ID (0 if none)
%q = stop here in non-session processes
%% = '%'

log_line_prefix is pretty flexible and allows you to configure the log line to exactly
match your needs. In general, it is a good idea to log a timestamp. Otherwise, it is close to
impossible to see when something bad has happened. Personally, I also like to know the
username, the transaction ID, and the database. However, it is up to you to decide on what
you really need.

Sometimes slowness is caused by bad locking behavior. In general, locking related issues
can be hard to track down. log_lock_waits can help to detect such issues. If a lock is held
longer than deadlock_timeout then a line will be sent to the log, provided the following
configuration variable is turned on:

#log_lock_waits = off

Finally, it is time to tell PostgreSQL what to actually log. So far, only errors, slow queries,
and the like have been sent to the log. log_statement has two possible settings:

#log_statement = 'none'
none, ddl, mod, all

none means that only errors will be logged. ddl means that errors as well as DDLs (CREATE
TABLE, ALTER TABLE, and so on) will be logged. mod will already include data changes
and all will send every statement to the log.

All can lead to a lot of logging information, which can slow down your
system. To give you an impression of how much impact there can be, I
have compiled a blog post. It can be found at: https:/ ​/​www. ​cybertec-
postgresql. ​com/ ​en/ ​logging- ​the-​hidden- ​speedbrakes/ ​.​

http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/
http://www.cybertec.at/2014/03/logging-the-hidden-speedbrakes/

Log Files and System Statistics Chapter 5

[153]

If you want to inspect replication in more detail, consider turning the following setting to
on:

#log_replication_commands = off

It will send replication-related commands to the log. For more information, visit the
following website:

https:/​/​www.​postgresql. ​org/ ​docs/ ​current/ ​static/ ​protocol- ​replication. ​html

It can happen quite frequently that performance problems are caused by temporary file I/O.
To see which queries cause the problem, the following setting can be used:

#log_temp_files = -1
log temporary files equal or larger
than the specified size in kilobytes;
-1 disables, 0 logs all temp files

While pg_stat_statements contains aggregated information, log_temp_files will
point to specific queries causing issues. It usually makes sense to set this one to a reasonably
low value. The correct value depends on your workload, but maybe 4 MB is already a good
start.

By default, PostgreSQL will write log files in the time zone where the server is located.
However, if you are running a system that is spread all over the world, it can make sense to
adjust the time zone in a way that you can go and compare log entries:

log_timezone = 'Europe/Vienna'

Keep in mind that on the SQL side, you will still see the time in your local time zone.
However, if this variable is set, log entries will be in a different time zone.

Summary
This chapter was all about system statistics. You learned how to extract information from
PostgreSQL and how to use system statistics in a beneficial way. The most important views
were discussed in detail.

Chapter 6, Optimizing Queries for Good Performance, is all about query optimization. You will
learn to inspect queries and how they are. optimized.

https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/protocol-replication.html

6
Optimizing Queries for Good

Performance
In Chapters 5, Log Files, System Statistics, you learned how to read system statistics and
how to make use of what PostgreSQL provides. Armed with this knowledge, this chapter is
all about good query performance. You will learn more about the following topics:

Optimizer internals
Execution plans
Partitioning data
Enabling and disabling optimizer settings
Parameters for good query performance

At the end of the chapter, I hope that you will be able to write better and faster queries. And
if your queries still happen to be bad, you should be able to understand why this is the case.
You will also be able to use the new techniques to partition data.

Learning what the optimizer does
Before even attempting to think about query performance, it makes sense to familiarize
yourself with what the query optimizer does. Having a deeper understanding of what is
going on under the hood makes a lot of sense because it helps you to see what the database
is really up to and what it is doing.

Optimizing Queries for Good Performance Chapter 6

[155]

Optimizations by example
To demonstrate how the optimizer works, I have compiled an example, one which I have
used over the years in PostgreSQL training. Suppose there are three tables:

CREATE TABLE a (aid int, ...); -- 100 million rows
CREATE TABLE b (bid int, ...); -- 200 million rows
CREATE TABLE c (cid int, ...); -- 300 million rows

Let us assume further that those tables contain millions, or maybe hundreds of millions, of
rows. In addition to that, there are indexes:

CREATE INDEX idx_a ON a (aid);
CREATE INDEX idx_b ON b (bid);
CREATE INDEX idx_c ON c (cid);
CREATE VIEW v AS SELECT * FROM a, b
WHERE aid = bid;

Finally, there is a view joining the first two tables together.

Let us suppose now the end user wants to run the following query. What will the optimizer
do with this query? What choices are there?

SELECT *
FROM v, c
WHERE v.aid = c.cid
 AND cid = 4;

Before looking at the real optimization process, I want to focus on some options the planner
has.

Evaluating join options
The planner has a couple of options here and I want to use the chance to show what can go
wrong if trivial approaches are used.

Suppose the planner just steams ahead and calculates the output of the view. What is the
best way to join 100 million with 200 million rows?

In this section, a couple of (not all) join options will be discussed to show what PostgreSQL
is able to do.

Optimizing Queries for Good Performance Chapter 6

[156]

Nested loops
One way to join two tables is to use a nested loop. The principle is simple. Here is some
pseudo code:

for x in table1:
 for y in table2:
 if x.field == y.field
 issue row
 else
 keep doing

Nested loops are often used if one of the sides is very small and contains only a limited set
of data. In our example, a nested loop would lead to 100 million x 200 million iterations
through the code. This is clearly not an option because runtime would simply explode.

A nested loop is generally O(n2), so it is only efficient if one side of the join is very small. In
my example, this is not the case, so a nested loop can be ruled out to calculate the view.

Hash joins
The second option is a hash join. The following strategy could be applied to solve our little
problem:

← Hash join
 ← Sequentialscan table 1
 ← Sequentialscan table 2

Both sides can be hashed and the hash keys could be compared, leaving us with the result
of the join. The trouble here is that all the values have to be hashed and put somewhere.

Merge joins
Finally, there is a merge join. The idea here is to use sorted lists to join the results. If both
sides of the join are sorted, the system can just take rows from the top and see if they match
and return them. The main requirement here is that the lists are sorted. Here is a sample
plan:

← Merge join
 ← Sort table 1
 ← Sequential scan table 1
 ← Sort table 2
 ← Sequential scan table 2

Optimizing Queries for Good Performance Chapter 6

[157]

To join, data has to be provided in sorted order. In many cases, PostgreSQL will just sort the
data. However, there are other options to provide the join with sorted data. One way is to
consult an index, as shown in the next example:

← Merge join
 ← Sort table 1
 ← Sequential scan table 1
 ← Sort table 2
 ← Sequential scan table 2

One side of the join or both sides can use sorted data coming from lower levels of the plan.
If the table is accessed directly, an index is the obvious choice to do that but only if the
returned result set is significantly smaller than the entire table. Otherwise, we encounter
almost double the overhead because first we have to read the entire index, then the entire
table. If the result set is a large portion of the table, a sequential scan is more efficient,
especially if it is being accessed in primary key order.

The beauty of a merge join is that it can handle a lot of data. The downside is that data has
to be sorted or taken from an index at some point.

Sorting is O(n * log(n)). Therefore, sorting 300 million rows to perform the join is not
attractive either.

Note that since the introduction of PostgreSQL 10.0, all join options described here are also
available in a parallel version. The optimizer will therefore not just consider those standard
join options, but also evaluate whether it makes sense to do parallel queries or not.

Applying transformations
Obviously, doing the obvious thing (joining the view first) makes no sense at all. A nested
loop would send execution times through the roof. A hash join has to hash millions of rows
and a nested loop has to sort 300 million rows. All three options are clearly unsuitable here.
The way out is to apply logical transformations to make the query fast. In this section, you
will learn what the planner does to speed up the query. A couple of steps will be
performed.

Inlining the view
The first transformation done by the optimizer is to inline views. Here is what happens:

SELECT *
FROM
(

Optimizing Queries for Good Performance Chapter 6

[158]

 SELECT *
 FROM a, b
 WHERE aid = bid
) AS v, c
WHERE v.aid = c.cid
 AND cid = 4;

The view is inlined and transformed to a subselect. What does this one buy us? Actually,
nothing. All it does is to open the door for further optimization, which will really be a game
changer for this query.

Flattening subselects
The next thing is to flatten subselects. By getting rid of subselects, a couple more options to
optimize the query will appear.

Here is what the query will look like after flattening the subselects:

SELECT * FROM a, b, c WHERE a.aid = c.cid AND aid = bid AND cid = 4;

It is now a normal join. Note we would have done that on our own but the planner will take
care of those transformations for us anyway. The door is open for a key optimization.

Applying equality constraints
The following process creates equality constraints. The idea is to detect additional
constraints, join options, and filters. Let us take a deep breath and take a look at the query:
If aid = cid and aid = bid, we know that bid = cid. If cid = 4 and all the others are
equal. We know that aid and bid have to be 4 as well, which leads us to the following query:

SELECT *
FROM a, b, c
WHERE a.aid = c.cid
 AND aid = bid
 AND cid = 4
 AND bid = cid
 AND aid = 4
 AND bid = 4

The importance of this optimization cannot be stressed enough. What the planner did here
was to open the door for two additional indexes, which were not clearly visible in the
original query.

Optimizing Queries for Good Performance Chapter 6

[159]

By being able to use indexes on all three columns, there is no need to calculate this
expensive horror view anymore. PostgreSQL has the option to just retrieve a couple of rows
from the index and use whatever join option makes sense.

Exhaustive searching
Now that those formal transformations have been done, PostgreSQL will perform an
exhaustive search. It will try out all possible plans and come up with the cheapest solution
to your query. PostgreSQL knows which indexes are possible and just uses the cost model
to determine how to do things in the best way possible.

During an exhaustive search, PostgreSQL will also try to determine the best join order. In
the original query, the join order was fixed to A → B and A → C. However, using those
equality constraints, we could join B → C and join A later. All options are open to the
planner.

Trying it all out
Now that all those optimizations have been discussed, it is time to see which plan
PostgreSQL might create for us:

test=# explain SELECT * FROM v, c WHERE v.aid = c.cid AND cid = 4;
 QUERY PLAN
--
 Nested Loop (cost=1.71..17.78 rows=1 width=12)
 -> Nested Loop (cost=1.14..9.18 rows=1 width=8)
 -> Index Only Scan using idx_a on a
 (cost=0.57..4.58 rows=1 width=4)
 Index Cond: (aid = 4)
 -> Index Only Scan using idx_b on b
 (cost=0.57..4.59 rows=1 width=4)
 Index Cond: (bid = 4)
 -> Index Only Scan using idx_c on c
 (cost=0.57..8.59 rows=1 width=4)
 Index Cond: (cid = 4)
(8 rows)

As you can see, PostgreSQL will use three indexes. It is also interesting to see that
PostgreSQL decides to go for a nested loop to join the data. This makes perfect sense
because there is virtually no data coming back from the index scans. Therefore, using a loop
to join things is perfectly feasible and highly efficient.

Optimizing Queries for Good Performance Chapter 6

[160]

Making the process fail
So far, you have seen what PostgreSQL can do for you and how the optimizer helps to
speed up queries. PostgreSQL is pretty smart but it needs smart users. There are some cases
in which the end user cripples the entire optimization process by doing stupid things. Let
us drop the view:

test=# DROP VIEW v;
DROP VIEW

Now, the view is recreated. Note that OFFSET 0 has been added to the end of the view:

test=# CREATE VIEW v AS SELECT *
FROM a, b
WHERE aid = bid
OFFSET 0;
CREATE VIEW

While this view is logically equivalent to the example shown previously, the optimizer has
to treat things differently. Every OFFSET other than 0 will change the result and therefore
the view has to be calculated. The entire optimization process is crippled by adding things
such as OFFSET.

The PostgreSQL community did not dare to optimize this case of having
an OFFSET 0 in a view. People are simply not supposed to do that. I am
using this just as an example to show that some operations can cripple
performance and that developers should be aware of the underlying
optimization process. However, if you are smart and if you happen to
know how PostgreSQL works, this trick can be used as optimization.

Here is the new plan:

test=# EXPLAIN SELECT * FROM v, c WHERE v.aid = c.cid AND cid = 4;
 QUERY PLAN
--
 Nested Loop (cost=120.71..7949879.40 rows=1 width=12)
 -> Subquery Scan on v
 (cost=120.13..7949874.80 rows=1 width=8)
 Filter: (v.aid = 4)
 -> Merge Join (cost=120.13..6699874.80
 rows=100000000 width=8)
 Merge Cond: (a.aid = b.bid)
 -> Index Only Scan using idx_a on a
 (cost=0.57..2596776.57 rows=100000000
 width=4)
 -> Index Only Scan using idx_b on b

Optimizing Queries for Good Performance Chapter 6

[161]

 (cost=0.57..5193532.33 rows=199999984
 width=4)
 -> Index Only Scan using idx_c on c
 (cost=0.57..4.59 rows=1 width=4)
 Index Cond: (cid = 4)
(9 rows)

Just take a look at the costs predicted by the planner. Costs have skyrocketed from a two-
digit number to a staggering one. Clearly, this query is going to provide you with bad
performance.

There are more ways to cripple performance and it makes sense to keep the optimization
process in mind.

Constant folding
However, there are many more optimizations in PostgreSQL which happen behind the
scenes and which contribute to overall good performance. One of those features is called
constant folding. The idea is to turn expressions into constants, as shown in the following
example:

test=# explain SELECT * FROM a WHERE aid = 3 + 1;
 QUERY PLAN
--
 Index Only Scan using idx_a on a
 (cost=0.57..4.58 rows=1 width=4)
 Index Cond: (aid = 4)
(2 rows)

As you can see, PostgreSQL will try to look for 4. As aid is indexed, PostgreSQL will go for
an index scan. Note that our table has just one column, so PostgreSQL even figured that all
the data it needs can be found in the index.

What happens if the expression is on the left-hand side?:

test=# explain SELECT * FROM a WHERE aid - 1 = 3;
 QUERY PLAN
--
 Seq Scan on a (cost=0.00..1942478.48 rows=500000 width=4)
 Filter: ((aid - 1) = 3)
(2 rows)

Optimizing Queries for Good Performance Chapter 6

[162]

In this case, the index lookup code will fail and PostgreSQL has to go for a sequential scan.
Keep in mind that this is a single-core plan. If the size of the table is large or if your
PostgreSQL configuration is different, you might see a multi-core plan. For the sake of
simplicity, this chapter only contains single-core plans, to make reading easier.

Understanding function inlining
As already outlined in this section, there are many optimizations which help to speed up
queries. One of them is called function inlining. PostgreSQL is able to inline immutable
SQL functions. The main idea is to reduce the number of function calls which have to be
made, in order to speed things up.

Here is an example of a function:

test=# CREATE OR REPLACE FUNCTION ld(int)
RETURNS numeric AS
$$
 SELECT log(2, $1);
$$
LANGUAGE 'sql' IMMUTABLE;
CREATE FUNCTION

The function will calculate the logarithmus dualis of the input value:

test=# SELECT ld(1024);
 ld

 10.0000000000000000
(1 row)

To demonstrate how things work, I will recreate the table with less content to speed up the
index creation:

test=# TRUNCATE a;
TRUNCATE TABLE

Then data can be added again and the index can be applied:

test=# INSERT INTO a SELECT * FROM generate_series(1, 10000);
INSERT 0 10000
test=# CREATE INDEX idx_ld ON a (ld(aid));
CREATE INDEX

Optimizing Queries for Good Performance Chapter 6

[163]

As expected, the index created on the function will be used just like any other index.
However, take a closer look at the indexing condition:

test=# EXPLAIN SELECT * FROM a WHERE ld(aid) = 10;
 QUERY PLAN
--
 Index Scan using idx_ld on a (cost=0.29..8.30 rows=1 width=4)
 Index Cond: (log('2'::numeric, (aid)::numeric) = '10'::numeric)
(2 rows)

The important observation here is that the indexing condition actually looks for the log
function instead of the ld function. The optimizer has completely gotten rid of the function
call.

Logically, this opens the door for the following query:

test=# EXPLAIN SELECT * FROM a WHERE log(2, aid) = 10;
 QUERY PLAN

 Index Scan using idx_ld on a (cost=0.29..8.30 rows=1 width=4)
 Index Cond: (log('2'::numeric, (aid)::numeric) = '10'::numeric)
(2 rows)

Join pruning
PostgreSQL provides an optimization called join pruning. The idea is to remove joins if
they are not needed by the query. This can come in handy if queries are generated by some
middleware or some ORM. If a join can be removed, it naturally speeds things up
dramatically and leads to less overhead.

The question now is: how does join pruning work? Here is an example:

CREATE TABLE x (id int, PRIMARY KEY (id));
CREATE TABLE y (id int, PRIMARY KEY (id));

First of all, two tables are created. Make sure that both sides of the join conditions are
actually unique. Those constraints will be important in a minute.

Now, we can write a simple query:

test=# EXPLAIN SELECT *
FROM x LEFT JOIN y ON (x.id = y.id)
WHERE x.id = 3;
 QUERY PLAN

Optimizing Queries for Good Performance Chapter 6

[164]

 Nested Loop Left Join (cost=0.31..16.36 rows=1 width=8)
 Join Filter: (x.id = y.id)
 -> Index Only Scan using x_pkey on x
 (cost=0.15..8.17 rows=1 width=4)
 Index Cond: (id = 3)
 -> Index Only Scan using y_pkey on y
 (cost=0.15..8.17 rows=1 width=4)
 Index Cond: (id = 3)
(6 rows)

As you can see, PostgreSQL will join those tables directly. So far, there are no surprises.
However, the following query is slightly modified. Instead of selecting all the columns, it
only selects those columns on the left-hand side of the join:

test=# EXPLAIN SELECT x.*
 FROM x LEFT JOIN y ON (x.id = y.id)
 WHERE x.id = 3;
 QUERY PLAN

 Index Only Scan using x_pkey on x (cost=0.15..8.17 rows=1 width=4)
 Index Cond: (id = 3)
(2 rows)

PostgreSQL will go for a direct inside scan and skip the join completely. There are two
reasons why this is actually possible and logically correct:

No columns are selected from the right-hand side of the join; thus, looking those
columns up does not buy us anything
The right-hand side is unique, which means that joining cannot increase the
number of rows due to duplicates on the right-hand side

If joins can be pruned automatically, it might happen that queries are a magnitude faster.
The beauty here is that the speedup can be achieved by just removing columns which might
not be needed by the application anyway.

Speedup set operations
Set operations allow the results of multiple queries to be combined into a single result set.
Set operators include UNION, INTERSECT, and EXCEPT. PostgreSQL implements all of them
and offers many important optimizations to speed them up.

Optimizing Queries for Good Performance Chapter 6

[165]

The planner is able to push restrictions down into the set operation, opening the door for
fancy indexing and speedups in general. Let us take a look at the following query, which
shows how this works:

test=# EXPLAIN SELECT *
FROM
(
 SELECT aid AS xid
 FROM a
 UNION ALL
 SELECT bid FROM b
) AS y
WHERE xid = 3;
 QUERY PLAN
--
 Append (cost=0.29..12.89 rows=2 width=4)
 -> Index Only Scan using idx_a on a
 (cost=0.29..8.30 rows=1 width=4)
 Index Cond: (aid = 3)
 -> Index Only Scan using idx_b on b
 (cost=0.57..4.59 rows=1 width=4)
 Index Cond: (bid = 3)
(5 rows)

What you see here is that two relations are added to each other. The trouble is, the only
restriction is outside the subselect. However, PostgreSQL figures that the filter can be
pushed further down the plan. xid = 3 is therefore attached to aid and bid, opening the
option to use indexes on both tables. By avoiding the sequential scan on both tables, the
query will run a lot faster.

Note that there is a distinction between the UNION clause and the UNION ALL clause. The
UNION ALL clause will just blindly append the data and deliver the results of both tables.

The UNION clause is different: it will filter out duplicates. The following plan shows how
that works:

test=# EXPLAIN SELECT *
 FROM
 (
 SELECT aid AS xid
 FROM a
 UNION SELECT bid
 FROM b
) AS y
WHERE xid = 3;
 QUERY PLAN

Optimizing Queries for Good Performance Chapter 6

[166]

--
 Unique (cost=12.92..12.93 rows=2 width=4)
 -> Sort (cost=12.92..12.93 rows=2 width=4)
 Sort Key: a.aid
 -> Append (cost=0.29..12.91 rows=2 width=4)
 -> Index Only Scan using idx_a on a
 (cost=0.29..8.30 rows=1 width=4)
 Index Cond: (aid = 3)
 -> Index Only Scan using idx_b on b
 (cost=0.57..4.59 rows=1 width=4)
 Index Cond: (bid = 3)
(8 rows)

PostgreSQL has to add a Sort node on top of the Append node to ensure that duplicates
can be filtered later on.

Many people who are not fully aware of the difference between the UNION
clause and the UNION ALL clause complain about bad performance
because they are unaware that PostgreSQL has to filter out duplicates,
which is especially painful in the case of large datasets.

Understanding execution plans
After digging into some important optimizations implemented into PostgreSQL, I want to
shift your attention a bit more to execution plans. You have already seen some plans in this
book. However, in order to make full use of plans, it is important to develop a systematic
approach to reading this information. Reading plans systematically is exactly within the
scope of this section.

Approaching plans systematically
The first thing you have to know is that an EXPLAIN clause can do quite a lot for you and, I
would highly recommend making full use of those features.

As many readers might already know, an EXPLAIN ANALYZE clause will execute the query
and return the plan, including real runtime information. Here is an example:

test=# EXPLAIN ANALYZE SELECT *
FROM
(
 SELECT *
 FROM b

Optimizing Queries for Good Performance Chapter 6

[167]

 LIMIT 1000000
) AS b
ORDER BY cos(bid);
 QUERY PLAN
--
 Sort (cost=146173.12..148673.12 rows=1000000)
 (actual time=837.049..1031.587 rows=1000000)
 Sort Key: (cos((b.bid)::double precision))
 Sort Method: external merge Disk: 25408kB
 -> Subquery Scan on b
 (cost=0.00..29424.78 rows=1000000 width=12)
 (actual time=0.011..352.717 rows=1000000)
 -> Limit (cost=0.00..14424.78 rows=1000000)
 (actual time=0.008..169.784 rows=1000000)
 -> Seq Scan on b b_1 (cost=0.00..2884955.84
 rows=199999984 width=4)
 (actual time=0.008..85.710 rows=1000000)
 Planning time: 0.064 ms
 Execution time: 1159.919 ms
(8 rows)

The plan looks a bit scary, but don't panic; we will go through it step by step. When reading
a plan, make sure that you read it from the inside to the outside. In our example, execution
starts with a sequential scan on b. There are actually two blocks of information here: the
cost block and the actual time block. While the cost block contains estimations, the actual
time block is hard evidence. It shows the real execution time. In this example, the sequential
scan has taken 85.7 milliseconds.

Note that the costs shown on your system might not be identical. A small difference in the
optimizer statistics can cause differences. The important thing here is really the way the
plan has to be read.

Data is then passed on to the Limit node, which ensures that there is not too much data.
Note that each stage of execution will also show us the number of rows involved. As you
can see, PostgreSQL will only fetch 1 million rows from the table in the first place; the
Limit node ensures that this will actually happen. However, there is a price tag: at this
stage, the runtime has jumped to 169 milliseconds already. Finally, the data is sorted, which
takes a lot of time. The most important thing when looking at the plan is to figure out where
time is actually lost. The best way to do that is to take a look at the actual time block and try
to figure out where time jumps. In this example, the sequential scan takes some time, but it
cannot be sped up significantly. Instead, we see that time skyrockets as sorting starts.

Optimizing Queries for Good Performance Chapter 6

[168]

Of course, sorting can be sped up, but more on that later in this chapter.

Making EXPLAIN more verbose
In PostgreSQL, the output of an EXPLAIN clause can be beefed up a little to provide you
with more information. To extract as much as possible out of a plan, consider turning the
following options on:

test=# EXPLAIN (analyze, verbose, costs, timing, buffers)
 SELECT * FROM a ORDER BY random();
 QUERY PLAN

 Sort (cost=834.39..859.39 rows=10000 width=12)
 (actual time=6.089..7.199 rows=10000 loops=1)
 Output: aid, (random())
 Sort Key: (random())
 Sort Method: quicksort Memory: 853kB
 Buffers: shared hit=45
 -> Seq Scan on public.a
 (cost=0.00..170.00 rows=10000 width=12)
 (actual time=0.012..2.625 rows=10000 loops=1)
 Output: aid, random()
 Buffers: shared hit=45
 Planning time: 0.054 ms
 Execution time: 7.992 ms
(10 rows)

analyze true will actually execute the query as shown previously. verbose true will add
some more information to the plan (such as column information and so on). costs true will
show information about costs. timing true is equally important, as it will provide us with
good runtime data so that we can see where in the plan time gets lost. Finally, there is
buffers true, which can be very enlightening. In my example, it reveals that we needed to
access 45 buffers to execute the query.

Spotting problems
Given all the information shown in Chapter 5, Log Files and System Statistics, it is already
possible to spot a couple of potential performance problems which are very important in
real life.

Optimizing Queries for Good Performance Chapter 6

[169]

Spotting changes in runtime
When looking at a plan, there are always two questions which you have got to ask yourself:

Is the runtime shown by the EXPLAIN ANALYZE clause justified for the given
query?
If the query is slow, where does the runtime jump?

In my case, the sequential scan is rated at 2.625 milliseconds. The sort is done after 7.199
milliseconds, so the sort takes roughly 4.5 milliseconds to complete and is therefore
responsible for most of the runtime needed by the query.

Looking for jumps in the execution time of the query will reveal what is really going on.
Depending on which type of operation will burn too much time, you have to act
accordingly. General advice is not possible here because there are simply too many things
which can cause issues.

Inspecting estimates
However, there is something that should always be done: making sure that estimates and
real numbers are reasonably close together. In some cases, the optimizer will make poor
decisions because the estimates are way off for some reason. It can happen that estimates
are off because the system statistics are not up to date. Running an ANALYZE clause is
therefore definitely a good thing to start with. However, optimizer stats are mostly taken
care of by the autovacuum daemon, so it is definitely worth considering other options
causing bad estimates. Take a look at the following example:

test=# CREATE TABLE t_estimate AS
 SELECT * FROM generate_series(1, 10000) AS id;
SELECT 10000

After loading 10,000 rows, optimizer statistics are created:

test=# ANALYZE t_estimate;
ANALYZE

Let us take a look at the estimates now:

test=# EXPLAIN ANALYZE SELECT * FROM t_estimate WHERE cos(id) < 4;
 QUERY PLAN

 Seq Scan on t_estimate (cost=0.00..220.00 rows=3333 width=4)
 (actual time=0.010..4.006 rows=10000 loops=1)
 Filter: (cos((id)::double precision) < '4'::double precision)

Optimizing Queries for Good Performance Chapter 6

[170]

 Planning time: 0.064 ms
 Execution time: 4.701 ms
(4 rows)

In many cases, PostgreSQL might not be able to process the WHERE clause properly because
it only has statistics on columns, not on expressions. What we see here is a nasty
underestimation of the data returned from the WHERE clause.

Of course, it can also happen that the amount of data is overestimated:

test=# EXPLAIN ANALYZE
SELECT *
FROM t_estimate
WHERE cos(id) > 4;
 QUERY PLAN

 Seq Scan on t_estimate (cost=0.00..220.00 rows=3333 width=4)
 (actual time=3.802..3.802 rows=0 loops=1)
 Filter: (cos((id)::double precision) > '4'::double precision)
 Rows Removed by Filter: 10000
 Planning time: 0.037 ms
 Execution time: 3.813 ms
(5 rows)

If something like that happens deep inside the plan, the process might very well create a
bad plan. Therefore, making sure that estimates are within a certain range makes perfect
sense.

Fortunately, there is a way to get around this problem:

test=# CREATE INDEX idx_cosine ON t_estimate (cos(id));
CREATE INDEX

Creating an index will make PostgreSQL track statistics of the expression:

test=# ANALYZE t_estimate;
ANALYZE

Apart from the fact that this plan will ensure significantly better performance, it will also fix
statistics, even if the index is not used:

test=# EXPLAIN ANALYZE SELECT * FROM t_estimate WHERE cos(id) > 4;
 QUERY PLAN

 Index Scan using idx_cosine on t_estimate
 (cost=0.29..8.30 rows=1 width=4)
 (actual time=0.002..0.002 rows=0 loops=1)

Optimizing Queries for Good Performance Chapter 6

[171]

 Index Cond: (cos((id)::double precision) > '4'::double precision)
 Planning time: 0.095 ms
 Execution time: 0.011 ms
(4 rows)

However, there is more to wrong estimates than meets the eye. One problem which is often
underestimated is called cross-column correlation. Consider a simple example involving
two columns:

20% of people like to ski
20% of people are from Africa

If we want to count the number of skiers in Africa, mathematics says that the result will be
0.2 x 0.2 = 4% of the overall population. However, there is no snow in Africa and income is
low. Therefore, the real result will surely be lower. The observation Africa and the
observation skiing are not statistically independent. In many cases, the fact that PostgreSQL
keeps column statistics which do not span more than one column can lead to bad results.

Of course, the planner does a lot to prevent these things from happening as often as
possible. Still, it can be an issue.

Starting with PostgreSQL 10.0, we have multivariate statistics in PostgreSQL, which has put
an end to cross-column correlation once and for all.

Inspecting buffer usage
However, the plan itself is not the only thing which can cause issues. In many cases,
dangerous things are hidden on some other level. Memory and caching can lead to
undesired behavior, which is often hard to understand for end users who are not trained to
see the problem described in this section.

Here is an example:

test=# CREATE TABLE t_random AS
 SELECT * FROM generate_series(1, 10000000) AS id ORDER BY random();
SELECT 10000000
test=# ANALYZE t_random ;
ANALYZE

I have generated a simple table containing 10 million rows and created optimizer statistics.

Optimizing Queries for Good Performance Chapter 6

[172]

In the next step, a simple query retrieving only a handful of rows is executed:

test=# EXPLAIN (analyze true, buffers true, costs true, timing true)
 SELECT * FROM t_random WHERE id < 1000;
 QUERY PLAN

 Seq Scan on t_random (cost=0.00..169248.60 rows=1000 width=4)
 (actual time=1.068..685.410 rows=999 loops=1)
 Filter: (id < 1000)
 Rows Removed by Filter: 9999001
 Buffers: shared hit=2112 read=42136
 Planning time: 0.035 ms
 Execution time: 685.551 ms
(6 rows)

Before inspecting the data, make sure that you have executed the query twice. Of course, it
makes sense to use an index here. However, I want to point out something else. In my
query, PostgreSQL has found 2,112 buffers inside the cache and 421,136 buffers had to be
taken from the operating system. Now, there are two things which can happen. If you are
lucky, the operating system lands a couple of cache hits and the query is fast. If the
filesystem cache is not lucky, those blocks have to be taken from disk. This might look
obvious; however, it can lead to wild swings in execution time. A query which runs entirely
in cache can be 100 times faster than a query which has to slowly collect random blocks
from disk.

Let me try to outline the problem using a simple example. Suppose we have a phone system
storing 10 billion rows (which is not uncommon at large phone carriers). Data flows in at a
rapid rate and users want to query this data. If you have 10 billion rows, the data will only
partially fit into memory and therefore a lot of stuff will naturally end up coming from disk.

We can run a simple query now:

SELECT * FROM data WHERE phone_number = '+12345678';

Even if you are on the phone, your data will be spread all over the place. If you end a phone
call just to start the next call, thousands of people will do the same, so the odds that two of
your calls will end up in the very same 8,000 block is naturally close to zero. Just imagine
for the time being that there are 100,000 calls going on at the same time. On disk, data will
be randomly distributed. If your phone number shows up often, it means that for each row,
at least one block has to be fetched from disk (assuming a very low cache hit rate). Suppose
5,000 rows will be returned. Assuming you have to go to disk 5,000 times, it leads to
something like 5,000 x 5 milliseconds = 25 seconds of execution time. Note that the
execution time of this query might vary between milliseconds and, say, 30 seconds,
depending on how much has been cached by the operating system or by PostgreSQL.

Optimizing Queries for Good Performance Chapter 6

[173]

Keep in mind that every server restart will naturally clean out the PostgreSQL and
filesystem caches, which can lead to real trouble after a node failure.

Fixing high buffer usage
The question is now: how can the situation be improved? One way to do that is to run a
CLUSTER clause:

test=# \h CLUSTER
Command: CLUSTER
Description: cluster a table according to an index
Syntax:
CLUSTER [VERBOSE] table_name
[USING index_name] CLUSTER [VERBOSE]

The CLUSTER clause will rewrite the table in the same order as a (b-tree) index. If you are
running an analytical workload, this can make sense. However, in an OLTP system, the
CLUSTER clause might not be feasible because a table lock is required while the table is
rewritten.

Understanding and fixing joins
Joins are important; everybody needs them on a regular basis. Consequently, joins are also
relevant to maintaining or achieving good performance. To ensure that you can write good
joins, I have decided to include a section about joining in this book.

Getting joins right
Before we dive into optimizing joins, it is important to take a look at some of the most
common problems arising with joins and which of them should ring alarm bells for you.

Here is an example:

test=# CREATE TABLE a (aid int);
CREATE TABLE
test=# CREATE TABLE b (bid int);
CREATE TABLE
test=# INSERT INTO a VALUES (1), (2), (3);
INSERT 0 3
test=# INSERT INTO b VALUES (2), (3), (4);
INSERT 0 3

Optimizing Queries for Good Performance Chapter 6

[174]

In the next example, you will see a simple outer join:

test=# SELECT * FROM a LEFT JOIN b ON (aid = bid);
 aid | bid
-----+-----
 1 |
 2 | 2
 3 | 3
(3 rows)

You can see that PostgreSQL will take all rows from the left-hand side and only list the ones
fitting the join.

The next example might come as a surprise to many people:

test=# SELECT * FROM a LEFT JOIN b ON (aid = bid AND bid = 2);
 aid | bid
-----+-----
 1 |
 2 | 2
 3 |
(3 rows)

No, the number of rows does not decrease--it will stay constant. Most people assume that
there will only be one row in the join, but this is not true, and will lead to some hidden
issues.

Consider the following query:

test=# SELECT avg(aid), avg(bid) FROM a LEFT JOIN b
ON (aid = bid AND bid = 2);
 avg | avg
--------------------+--------------------
 2.0000000000000000 | 2.0000000000000000
(1 row)

Most people assume that the average is calculated based on a single row. However, as
stated earlier, this is not the case and therefore queries like that are often considered to be a
performance problem because, for some reason, PostgreSQL does not index the table on the
left-hand side of the join. Of course, we are not looking at a performance problem here--we
are definitely looking at a semantic issue. It happens on a regular basis that people writing
outer joins don't mean what they order PostgreSQL to do. So, my personal advice is to
always question the semantic correctness of an outer join before attacking the performance
problem reported by the client.

Optimizing Queries for Good Performance Chapter 6

[175]

I cannot stress enough how important this kind of work is to ensure that your queries are
correct and do exactly what is needed.

Processing outer joins
After verifying that your queries are actually correct from a business point of view. It makes
sense to check what the optimizer can do to speed up your outer joins. The most important
thing is that PostgreSQL can, in many cases, reorder inner joins to speed things up
dramatically. However, in the case of outer joins, this is not always possible. Only a handful
of reordering operations are actually allowed:

(A leftjoin B on (Pab)) innerjoin C on (Pac) = (A innerjoin C on
(Pac)) leftjoin B on (Pab)

Pac is a predicate referencing A and C, and so on (in this case, clearly Pac cannot reference
B, or the transformation is nonsensical):

(A leftjoin B on (Pab)) leftjoin C on (Pac) = (A leftjoin C on
(Pac)) leftjoin B on (Pab)

(A leftjoin B on (Pab)) leftjoin C on (Pbc) = (A leftjoin (B
leftjoin C on (Pbc)) on (Pab)

The last rule only holds if predicate Pbc must fail for all null B rows (that is, Pbc is strict for
at least one column of B). If Pbc is not strict, the first form might produce some rows with
non-null C columns where the second form would make those entries null.

While some joins can be reordered, a typical type of query cannot benefit from join
reordering:

SELECT ...
 FROM a LEFT JOIN b ON (aid = bid)
 LEFT JOIN c ON (bid = cid)
 LEFT JOIN d ON (cid = did)
...

The way to approach this is to check whether all outer joins are really necessary. In many
cases, it happens that people write outer joins without actually needing them. Often, the
business case does not even contain the necessity to use outer joins.

Optimizing Queries for Good Performance Chapter 6

[176]

Understanding the join_collapse_limit variable
During the planning process, PostgreSQL tries to check all possible join orders. In many
cases, this can be pretty expensive because there can be many permutations, which
naturally slows down the planning process.

The join_collapse_limit variable is here to give the developer a tool to actually work
around these problems and define, in a more straightforward way, how a query should be
processed.

To show what this setting is all about, I have compiled a little example:

SELECT * FROM tab1, tab2, tab3
WHERE tab1.id = tab2.id
 AND tab2.ref = tab3.id;
SELECT * FROM tab1 CROSS JOIN tab2
CROSS JOIN tab3
WHERE tab1.id = tab2.id
 AND tab2.ref = tab3.id;
SELECT * FROM tab1 JOIN (tab2 JOIN tab3
 ON (tab2.ref = tab3.id))
 ON (tab1.id = tab2.id);

Basically, these three queries are identical and treated by the planner in the same way. The
first query consists of implicit joins. The last one consists only of explicit joins. Internally,
the planner will inspect those requests and order joins accordingly to ensure the best
runtime possible. The question now is: how many explicit joins will PostgreSQL plan
implicitly? This is exactly what you can tell the planner by setting the
join_collapse_limit variable. The default value is reasonably good for normal queries.
However, if your query contains a very high number of joins, playing around with this
setting can reduce planning time considerably. Reducing planning time can be essential to
maintain good throughput.

To see how the join_collapse_limit variable changes the plan, I have written a simple
query:

test=# EXPLAIN WITH x AS
(
 SELECT *
 FROM generate_series(1, 1000) AS id
)
SELECT *
FROM x AS a
 JOIN x AS b ON (a.id = b.id)
 JOIN x AS c ON (b.id = c.id)

Optimizing Queries for Good Performance Chapter 6

[177]

 JOIN x AS d ON (c.id = d.id)
 JOIN x AS e ON (d.id = e.id)
 JOIN x AS f ON (e.id = f.id);

Try running the query with different settings and see how the plan changes. Unfortunately,
the plan is too long to copy here so I cannot include the actual changes in this section.

Enabling and disabling optimizer settings
So far, the most important optimizations performed by the planner have been discussed in
more or less detail. PostgreSQL has become very smart over the years. Still, it can happen
that something goes south and users have to convince the planner to do the right thing.

To modify plans, PostgreSQL offers a couple of runtime variables, which will have a
significant impact on planning. The idea is to give the end user the chance to make certain
types of nodes in the plan more expensive than others. What does that mean in practice?
Here is a simple plan:

test=# explain SELECT *
 FROM generate_series(1, 100) AS a,
 generate_series(1, 100) AS b
 WHERE a = b;
 QUERY PLAN

 Merge Join (cost=119.66..199.66 rows=5000 width=8)
 Merge Cond: (a.a = b.b)
 -> Sort (cost=59.83..62.33 rows=1000 width=4)
 Sort Key: a.a
 -> Function Scan on generate_series a
 (cost=0.00..10.00 rows=1000 width=4)
 -> Sort (cost=59.83..62.33 rows=1000 width=4)
 Sort Key: b.b
 -> Function Scan on generate_series b
 (cost=0.00..10.00 rows=1000 width=4)
(8 rows)

The plan shows that PostgreSQL reads the data from the function and sorts both results.
Then, a merge join is performed.

Optimizing Queries for Good Performance Chapter 6

[178]

However, what if a merge join is not the fastest way to run the query? In PostgreSQL, there
is no way to put planner hints into comments as you could do in Oracle. Instead, you can
ensure that certain operations are simply considered to be expensive. The SET
enable_mergejoin TO off command will simply make merging too expensive:

test=# SET enable_mergejoin TO off;
SET
test=# explain SELECT *
 FROM generate_series(1, 100) AS a,
 generate_series(1, 100) AS b
 WHERE a = b;
 QUERY PLAN

 Hash Join (cost=22.50..210.00 rows=5000 width=8)
 Hash Cond: (a.a = b.b)
 -> Function Scan on generate_series a
 (cost=0.00..10.00 rows=1000 width=4)
 -> Hash (cost=10.00..10.00 rows=1000 width=4)
 -> Function Scan on generate_series b
 (cost=0.00..10.00 rows=1000 width=4)
(5 rows)

Because merging is too expensive, PostgreSQL decided to try a hash join. As you can see,
the costs are a bit higher but the plan is still taken as merging is not desired anymore.

What happens if hash joins are turned off as well?:

test=# SET enable_hashjoin TO off;
SET
test=# explain SELECT *
 FROM generate_series(1, 100) AS a,
 generate_series(1, 100) AS b
 WHERE a = b;
 QUERY PLAN

 Nested Loop (cost=0.01..22510.01 rows=5000 width=8)
 Join Filter: (a.a = b.b)
 -> Function Scan on generate_series a
 (cost=0.00..10.00 rows=1000 width=4)
 -> Function Scan on generate_series b
 (cost=0.00..10.00 rows=1000 width=4)
(4 rows)

Optimizing Queries for Good Performance Chapter 6

[179]

PostgreSQL will again try something else and come up with a nested loop. The costs of a
nested loop are already staggering, but the planner starts to run out of options.

What happens if nested loops are turned off as well?:

test=# SET enable_nestloop TO off;
SET
test=# explain SELECT *
 FROM generate_series(1, 100) AS a,
 generate_series(1, 100) AS b
 WHERE a = b;
 QUERY PLAN

 Nested Loop (cost=10000000000.00..10000022510.00
 rows=5000 width=8)
 Join Filter: (a.a = b.b)
 -> Function Scan on generate_series a
 (cost=0.00..10.00 rows=1000 width=4)
 -> Function Scan on generate_series b
 (cost=0.00..10.00 rows=1000 width=4)
(4 rows)

PostgreSQL will still perform a nested loop. The important part here is that off does not
really mean off--it just means treat as a very expensive thing. This is important because
otherwise, the query could not be performed.

Which settings are there to influence the planner? The following switches are available:

enable_bitmapscan = on
enable_hashagg = on
enable_hashjoin = on
enable_indexscan = on
enable_indexonlyscan = on
enable_material = on
enable_mergejoin = on
enable_nestloop = on
enable_seqscan = on
enable_sort = on
enable_tidscan = on

Optimizing Queries for Good Performance Chapter 6

[180]

While those settings can definitely be beneficial, I want to point out that those tweaks
should be handled with care. Only use them to speed up individual queries and do not turn
off things globally. Things can turn against you fairly quickly and destroy performance.
Therefore, it really makes sense to think twice before changing these parameters.

Understanding genetic query optimization
The result of the planning process is key to achieving superior performance. As shown in
this chapter, planning is far from trivial and involves various complex calculations. The
more tables are touched by a query, the more complicated planning will become. The more
tables there are, the more choices the planner will have. Logically, planning time will
increase. At some point, planning will take so long that performing the classical exhaustive
search is not feasible anymore. On top of that, the errors made during planning are so great
anyway that finding the theoretically best plan does not necessarily lead to the best plan in
terms of runtime.

Genetic query optimization (GEQO) can come to the rescue. What is GEQO? The idea is
actually stolen from nature and resembles the natural process of evolution.

PostgreSQL will approach the problem just like a traveling salesman problem and encode
the possible joins as integer strings. For example, 4-1-3-2 means first join 4 and 1, then 3, and
then 2. The numbers represent the relation's IDs.

At the beginning, the genetic optimizer will generate a random set of plans. Those plans are
then inspected. The bad ones are discarded and new ones are generated based on the genes
of the good ones. This way, potentially even better plans are generated. The process can be
repeated as often as desired. At the end of the day, we are left with a plan which is expected
to be a lot better than just using a random plan. GEQO can be turned on and off by
adjusting the geqo variable:

test=# SHOW geqo;
 geqo

 on
(1 row)

test=# SET geqo TO off;
SET

Optimizing Queries for Good Performance Chapter 6

[181]

By default, the geqo variable kicks in if a statement exceeds a certain level of complexity,
which is controlled by the following variable:

test=# SHOW geqo_threshold ;
 geqo_threshold

 12
(1 row)

If your queries are so large that you start to reach this threshold, it certainly makes sense to
play with this setting to see how plans are changed by the planner if you change those
variables.

As a general rule, however, I would say that you should try to avoid GEQO as long as you
can and try to fix things first by trying to somehow fix the join order using the
join_collapse_limit variable. Note that every query is different, so it certainly helps to
experiment and gain more experience by learning how the planner behaves under different
circumstances.

If you want to see what a really crazy join is, consider checking out a talk I
gave in Madrid
at: http://de.slideshare.net/hansjurgenschonig/postgresql-
joining-1-million-tables.

Partitioning data
Given default 8 k blocks, PostgreSQL can store up to 32 TB of data inside a single table. If
you compile PostgreSQL with 32 k blocks, you can even put up to 128 TB into a single table.
However, large tables like that are not necessarily too convenient anymore and it can make
sense to partition tables to make processing easier and, in some cases, a bit faster. Starting
with PostgreSQL 10.0, we have improved partitioning, which will offer end users
significantly easier handling of data partitioning.

In this chapter, the old means of partitioning as well as the new features available as of
PostgreSQL 10.0 will be covered.

http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables
http://de.slideshare.net/hansjurgenschonig/postgresql-joining-1-million-tables

Optimizing Queries for Good Performance Chapter 6

[182]

Creating partitions
First, I want to focus your attention on the old method to partition data.

Before digging deeper into the advantages of partitioning, I want to show how partitions
can be created. The entire thing starts with a parent table:

test=# CREATE TABLE t_data (id serial, t date, payload text);
CREATE TABLE

In this example, the parent table has three columns. The date column will be used for
partitioning but more on that a bit later.

Now that the parent table is in place, the child tables can be created. This is how it works:

test=# CREATE TABLE t_data_2016 () INHERITS (t_data);
CREATE TABLE
test=# \d t_data_2016
 Table "public.t_data_2016"
 Column | Type | Modifiers
---------+---------+---
 id | integer | not null default
 nextval('t_data_id_seq'::regclass)
 t | date |
 payload | text |
Inherits: t_data

The table is called t_data_2016 and inherits from t_data. () means that no extra
columns are added to the child table. As you can see, inheritance means that all columns
from the parents are available in the child table. Also note that the id column will inherit the
sequence from the parent so that all children can share the very same numbering.

Let's create more tables:

test=# CREATE TABLE t_data_2015 () INHERITS (t_data);
CREATE TABLE
test=# CREATE TABLE t_data_2014 () INHERITS (t_data);
CREATE TABLE

So far, all the tables are identical and just inherit from the parent. However, there is more:
child tables can actually have more columns than parents. Adding more fields is simple:

test=# CREATE TABLE t_data_2013 (special text) INHERITS (t_data);
CREATE TABLE

Optimizing Queries for Good Performance Chapter 6

[183]

In this case, a special column has been added. It has no impact on the parent, but just
enriches the children and makes them capable of holding more data.

After creating a handful of tables, a row can be added:

test=# INSERT INTO t_data_2015 (t, payload)
 VALUES ('2015-05-04', 'some data');
INSERT 0 1

The most important thing now is that the parent table can be used to find all the data in the
child tables:

test=# SELECT * FROM t_data;
 id | t | payload
----+------------+-----------
 1 | 2015-05-04 | some data
(1 row)

Querying the parent allows you to gain access to everything below the parent in a simple
and efficient manner.

To understand how PostgreSQL does partitioning, it makes sense to take a look at the plan:

test=# EXPLAIN SELECT * FROM t_data;
 QUERY PLAN

 Append (cost=0.00..84.10 rows=4411 width=40)
 -> Seq Scan on t_data (cost=0.00..0.00 rows=1 width=40)
 -> Seq Scan on t_data_2016
 (cost=0.00..22.00 rows=1200 width=40)
 -> Seq Scan on t_data_2015
 (cost=0.00..22.00 rows=1200 width=40)
 -> Seq Scan on t_data_2014
 (cost=0.00..22.00 rows=1200 width=40)
 -> Seq Scan on t_data_2013
 (cost=0.00..18.10 rows=810 width=40)
(6 rows)

Actually, the process is quite simple. PostgreSQL will simply unify all tables and show us
all the content from all the tables inside and below the partition we are looking at. Note that
all tables are independent and are just connected logically through the system catalog.

Optimizing Queries for Good Performance Chapter 6

[184]

Applying table constraints
What happens if filters are applied?

test=# EXPLAIN SELECT * FROM t_data WHERE t = '2016-01-04';
 QUERY PLAN

 Append (cost=0.00..95.12 rows=23 width=40)
 -> Seq Scan on t_data (cost=0.00..0.00 rows=1 width=40)
 Filter: (t = '2016-01-04'::date)
 -> Seq Scan on t_data_2016 (cost=0.00..25.00 rows=6 width=40)
 Filter: (t = '2016-01-04'::date)
 -> Seq Scan on t_data_2015 (cost=0.00..25.00 rows=6 width=40)
 Filter: (t = '2016-01-04'::date)
 -> Seq Scan on t_data_2014 (cost=0.00..25.00 rows=6 width=40)
 Filter: (t = '2016-01-04'::date)
 -> Seq Scan on t_data_2013 (cost=0.00..20.12 rows=4 width=40)
 Filter: (t = '2016-01-04'::date)
(11 rows)

PostgreSQL will apply the filter to all the partitions in the structure. It does not know that
the table name is somehow related to the content of the tables. To the database, names are
just names and have nothing to do with what you are looking for. This makes sense, of
course, as there is no mathematical justification for doing anything else.

The point now is: how can we teach the database that the 2016 table only contains 2016 data,
the 2015 table only contains 2015 data, and so on? Table constraints are here to do exactly
that. They teach PostgreSQL about the content of those tables and therefore allow the
planner to make smarter decisions than before. The feature is called constraint exclusion
and helps dramatically to speed up queries in many cases.

The following listing shows how table constraints can be created:

test=# ALTER TABLE t_data_2013
 ADD CHECK (t < '2014-01-01');
ALTER TABLE
test=# ALTER TABLE t_data_2014
 ADD CHECK (t >= '2014-01-01' AND t < '2015-01-01');
ALTER TABLE
test=# ALTER TABLE t_data_2015
 ADD CHECK (t >= '2015-01-01' AND t < '2016-01-01');
ALTER TABLE
test=# ALTER TABLE t_data_2016
 ADD CHECK (t >= '2016-01-01' AND t < '2017-01-01');
ALTER TABLE

Optimizing Queries for Good Performance Chapter 6

[185]

For each table, a CHECK constraint can be added.

PostgreSQL will only create the constraint if all the data in those tables is
perfectly correct and if every single row satisfies the constraint. In contrast
to MySQL, constraints in PostgreSQL are taken seriously and honored
under any circumstances.

In PostgreSQL, those constraints can overlap--this is not forbidden and can make sense in
some cases. However, it is usually better to have non-overlapping constraints because
PostgreSQL has the option to prune more tables.

Here is what happens after adding those table constraints:

test=# EXPLAIN SELECT * FROM t_data WHERE t = '2016-01-04';
 QUERY PLAN

 Append (cost=0.00..25.00 rows=7 width=40)
 -> Seq Scan on t_data (cost=0.00..0.00 rows=1 width=40)
 Filter: (t = '2016-01-04'::date)
 -> Seq Scan on t_data_2016 (cost=0.00..25.00 rows=6 width=40)
 Filter: (t = '2016-01-04'::date)
(5 rows)

The planner will be able to remove many of the tables from the query and only keep those
which potentially contain the data. The query can greatly benefit from a shorter and more
efficient plan. In particular, if those tables are really large, removing them can boost speed
considerably.

Modifying inherited structures
Once in a while, data structures have to be modified. The ALTER TABLE clause is here to do
exactly that. The question is: how can partitioned tables be modified?

Basically, all you have to do is tackle the parent table and add or remove columns.
PostgreSQL will automatically propagate those changes through to the child tables and
ensure that changes are made to all the relations, as follows:

test=# ALTER TABLE t_data ADD COLUMN x int;
ALTER TABLE
test=# \d t_data_2016
 Table "public.t_data_2016"
 Column | Type | Modifiers
---------+---------+---
 id | integer | not null default

Optimizing Queries for Good Performance Chapter 6

[186]

 nextval('t_data_id_seq'::regclass)
 t | date |
 payload | text |
 x | integer |
Check constraints:
 "t_data_2016_t_check"
 CHECK (t >= '2016-01-01'::date AND t < '2017-01-01'::date)
Inherits: t_data

As you can see, the column is added to the parent and automatically added to the child
table here.

Note that this works for columns, and so on. Indexes are a totally different story. In an
inherited structure, every table has to be indexed separately. If you add an index to the
parent table, it will only be present on the parent-it won't be deployed on those child tables.
Indexing all those columns in all those tables is your task and PostgreSQL is not going to
make those decisions for you. Of course, this can be seen as a feature or as a limitation. On
the upside, you could say that PostgreSQL gives you all the flexibility to index things
separately and therefore potentially more efficiently. However, people might also argue
that deploying all those indexes one by one is a lot more work.

Moving tables in and out of partitioned structures
Suppose you have an inherited structure. Data is partitioned by date and you want to
provide the most recent years to the end user. At some point, you might want to remove
some data from the scope of the user without actually touching it. You might want to put
data into some sort of archive or something.

PostgreSQL provides a simple means to achieve exactly that. First, a new parent can be
created:

test=# CREATE TABLE t_history (LIKE t_data);
CREATE TABLE

The LIKE keyword allows you to create a table which has exactly the same layout as the
t_data table. If you have forgotten which columns the t_data table actually has, this
might come in handy as it saves you a lot of work. It is also possible to include indexes,
constraints, and defaults.

Optimizing Queries for Good Performance Chapter 6

[187]

Then, the table can be moved away from the old parent table and put below the new one.
Here is how it works:

test=# ALTER TABLE t_data_2013 NO INHERIT t_data;
ALTER TABLE
test=# ALTER TABLE t_data_2013 INHERIT t_history;
ALTER TABLE

The entire process can of course be done in a single transaction to assure that the operation
stays atomic.

Cleaning up data
One advantage of partitioned tables is the ability to clean data up quickly. Suppose that we
want to delete an entire year. If data is partitioned accordingly, a simple DROP TABLE clause
can do the job:

test=# DROP TABLE t_data_2014;
DROP TABLE

As you can see, dropping a child table is easy. But what about the parent table? There are
depending objects and therefore PostgreSQL naturally errors out to make sure that nothing
unexpected happens:

test=# DROP TABLE t_data;
ERROR: cannot drop table t_data because other objects depend on it
DETAIL: default for table t_data_2013 column id depends on
 sequence t_data_id_seq
table t_data_2016 depends on table t_data
table t_data_2015 depends on table t_data
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The DROP TABLE clause will warn us that there are depending objects and refuses to drop
those tables. The CASCADE clause is needed to force PostgreSQL to actually remove those
objects, along with the parent table:

test=# DROP TABLE t_data CASCADE;
NOTICE: drop cascades to 3 other objects
DETAIL: drop cascades to default for table t_data_2013 column id drop
cascades to table t_data_2016
drop cascades to table t_data_2015
DROP TABLE

Optimizing Queries for Good Performance Chapter 6

[188]

Understanding PostgreSQL 10.0 partitioning
For many years, the PostgreSQL community has been working on built-in partitioning.
Finally, PostgreSQL 10.0 offers the first implementation of in-core partitioning, which will
be covered in this chapter. For now, the partitioning functionality is still pretty basic.
However, a lot of infrastructure for future improvements is already in place.

To show you how partitioning works, I have compiled a simple example featuring range
partitioning:

CREATE TABLE data (
 payload integer
) PARTITION BY RANGE (payload);

CREATE TABLE negatives PARTITION
 OF data FOR VALUES FROM (MINVALUE) TO (0);
CREATE TABLE positives PARTITION
 OF data FOR VALUES FROM (0) TO (MAXVALUE);

In this example, one partition will hold all negative values while the other one will take care
of positive values. While creating the parent table, you can simply specify which way you
want to partition data.

In PostgreSQL 10.0, there is range partitioning and list partitioning.
Support for hash partitioning and the like might be available as soon as
PostgreSQL 11.0.

Once the parent table has been created, it is already time to create the partitions. To do that,
the PARTITION OF clause has been added. At this point, there are still some limitations. The
most important one is that a tuple (= a row) cannot move from one partition to the other, for
example:

UPDATE data SET payload = -10 WHERE id = 5

If there were rows satisfying this condition, PostgreSQL would simply error out and refuse
to change the value. However, in case of a good design, it is a bad idea to change the
partitioning key anyway. Also, keep in mind that you have to think about indexing each
partition.

Optimizing Queries for Good Performance Chapter 6

[189]

Adjusting parameters for good query
performance
Writing good queries is the first step to reaching good performance. Without a good query,
you will most likely suffer from bad performance. Writing good and intelligent code will
therefore give you the greatest edge possible. Once your queries have been optimized from
a logical and semantical point of view, good memory settings can provide you with a final
nice speedup. In this section, you will learn what more memory can do for you and how
PostgreSQL can use it for your benefit. Again, this section assumes that we are using single-
core queries to make the plans more readable. To ensure that there is always just one core at
work, use the following command:

test=# SET max_parallel_workers_per_gather TO 0;
SET

Here is a simple example demonstrating what memory parameters can do for you:

test=# CREATE TABLE t_test (id serial, name text);
CREATE TABLE
test=# INSERT INTO t_test (name)
 SELECT 'hans' FROM generate_series(1, 100000);
INSERT 0 100000
test=# INSERT INTO t_test (name)
 SELECT 'paul' FROM generate_series(1, 100000);
INSERT 0 100000

1 million rows containing hans will be added to the table. Then 1 million rows containing
paul are loaded. Altogether, there will be 2 million unique IDs but just two different names.

Let us run a simple query now, using PostgreSQL's default memory settings:

test=# SELECT name, count(*) FROM t_test GROUP BY 1;
 name | count
-------+--------
 hans | 100000
 paul | 100000

(2 rows)

Optimizing Queries for Good Performance Chapter 6

[190]

Two rows will be returned, which should not come as a surprise. The important thing here
is not the result, but what PostgreSQL is doing behind the scenes:

test=# EXPLAIN ANALYZE SELECT name, count(*)
 FROM t_test
 GROUP BY 1;
 QUERY PLAN

 HashAggregate (cost=4082.00..4082.01 rows=1 width=13)
 (actual time=51.448..51.448 rows=2 loops=1)
 Group Key: name
 -> Seq Scan on t_test
 (cost=0.00..3082.00 rows=200000 width=5)
 (actual time=0.007..14.150 rows=200000 loops=1)
 Planning time: 0.032 ms
 Execution time: 51.471 ms
(5 rows)

PostgreSQL figured out that the number of groups is actually very small. Therefore, it
creates a hash and adds one hash entry per group and starts to count. Due to the low
number of groups, the hash is really small and PostgreSQL can quickly do the count by
incrementing the numbers for each group.

What happens if we group by ID and not by name? The number of groups will skyrocket:

test=# EXPLAIN ANALYZE SELECT id, count(*) FROM t_test GROUP BY 1;
 QUERY PLAN

 GroupAggregate (cost=23428.64..26928.64 rows=200000 width=12)
 (actual time=97.128..154.205 rows=200000 loops=1)
 Group Key: id
 -> Sort (cost=23428.64..23928.64 rows=200000 width=4)
 (actual time=97.120..113.017 rows=200000 loops=1)
 Sort Key: id
 Sort Method: external sort Disk: 2736kB
 -> Seq Scan on t_test
 (cost=0.00..3082.00 rows=200000 width=4)
 (actual time=0.017..19.469 rows=200000 loops=1)
 Planning time: 0.128 ms
 Execution time: 160.589 ms
(8 rows)

Optimizing Queries for Good Performance Chapter 6

[191]

PostgreSQL figures that the number of groups is now a lot larger and quickly changes its
strategy. The problem is that a hash containing so many entries does not fit into memory:

test=# SHOW work_mem ;
 work_mem

 4MB
(1 row)

The work_mem variable governs the size of the hash used by the GROUP BY clause. As there
are too many entries, PostgreSQL has to find a strategy which does not require holding the
entire dataset in memory. The solution is to sort the data by ID and group it. Once the data
is sorted, PostgreSQL can move down the list and form one group after the other. If the first
type of value is counted, the partial result is read and can be emitted. Then, the next group
can be processed. Once the value in the sorted list changes when moving down, it will
never show up again; thus, the system knows that a partial result is ready.

To speed up the query, a higher value for the work_mem variable can be set on the fly (and,
of course, globally):

test=# SET work_mem TO '1 GB';
SET

The plan will now again feature a fast and efficient hash aggregate:

test=# EXPLAIN ANALYZE SELECT id, count(*) FROM t_test GROUP BY 1;
 QUERY PLAN

 HashAggregate (cost=4082.00..6082.00 rows=200000 width=12)
 (actual time=76.967..118.926 rows=200000 loops=1)
 Group Key: id
 -> Seq Scan on t_test
 (cost=0.00..3082.00 rows=200000 width=4)
 (actual time=0.008..13.570 rows=200000 loops=1)
 Planning time: 0.073 ms
 Execution time: 126.456 ms
(5 rows)

PostgreSQL knows (or at least assumes) that data will fit into memory and switch to the
faster plan. As you can see, the execution time is lower. The query won't be as fast as in the
GROUP BY name case because many more hash values have to be calculated but, you will be
able to see a nice and reliable benefit in the vast majority of all cases.

Optimizing Queries for Good Performance Chapter 6

[192]

Speeding up sorting
The work_mem variable does not only speed up grouping. It can also have a very nice
impact on simple things such as sorting, which is an essential mechanism mastered by
every database system in the world.

The following query shows a simple operation using the default setting of 4 MB:

test=# SET work_mem TO default;
SET
test=# EXPLAIN ANALYZE SELECT * FROM t_test ORDER BY name, id;
 QUERY PLAN

 Sort (cost=24111.14..24611.14 rows=200000 width=9)
 (actual time=219.298..235.008 rows=200000 loops=1)
 Sort Key: name, id
 Sort Method: external sort Disk: 3712kB
 -> Seq Scan on t_test
 (cost=0.00..3082.00 rows=200000 width=9)
 (actual time=0.006..13.807 rows=200000 loops=1)
 Planning time: 0.064 ms
 Execution time: 241.375 ms
(6 rows)

PostgreSQL needs 13.8 milliseconds to read the data and over 200 milliseconds to sort the
data. Due to the low amount of memory available, sorting has to be performed using
temporary files. The external sort Disk method needs only small amounts of RAM, but has
to send intermediate data to a comparatively slow storage device, which of course leads to
poor throughput.

Increasing the work_mem variable setting will make PostgreSQL use more memory for
sorting:

test=# SET work_mem TO '1 GB';
SET
test=# EXPLAIN ANALYZE SELECT * FROM t_test ORDER BY name, id;
 QUERY PLAN

 Sort (cost=20691.64..21191.64 rows=200000 width=9)
 (actual time=36.481..47.899 rows=200000 loops=1)
 Sort Key: name, id
 Sort Method: quicksort Memory: 15520kB
 -> Seq Scan on t_test
 (cost=0.00..3082.00 rows=200000 width=9)
 (actual time=0.010..14.232 rows=200000 loops=1)
 Planning time: 0.037 ms

Optimizing Queries for Good Performance Chapter 6

[193]

 Execution time: 55.520 ms
(6 rows)

As there is enough memory now, the database will do all the sorting in memory and
therefore speed up the process dramatically. The sort takes just 33 milliseconds now, which
is a seven-time improvement compared to the query we had previously. More memory will
lead to faster sorting and will speed up the system.

Up til now, you have already seen two mechanisms to sort data: external sort Disk and
quicksort Memory. In addition to those two mechanisms, there is also a third algorithm,
which is top-N heapsort Memory. It can be used to provide you with only the top N rows:

test=# EXPLAIN ANALYZE SELECT * FROM t_test ORDER BY name, id LIMIT 10;
 QUERY PLAN

 Limit (cost=7403.93..7403.95 rows=10 width=9)
 (actual time=31.837..31.838 rows=10 loops=1)
 -> Sort (cost=7403.93..7903.93 rows=200000 width=9)
 (actual time=31.836..31.837 rows=10 loops=1)
 Sort Key: name, id
 Sort Method: top-N heapsort Memory: 25kB
 -> Seq Scan on t_test
 (cost=0.00..3082.00 rows=200000 width=9)
 (actual time=0.011..13.645 rows=200000 loops=1)
 Planning time: 0.053 ms
 Execution time: 31.856 ms
(7 rows)

The algorithm is lightning fast and the entire query will be done in just over 30
milliseconds. The sorting part is now only 18 milliseconds and is therefore almost as fast as
reading the data in the first place.

Note that the work_mem variable is allocated per operation. It can theoretically happen that
a query needs the work_mem variable more than once. It is not a global setting--it is really
per operation. Therefore, you have to set it in a careful way.

There is one thing you should keep in mind: many books claim that setting the work_mem
variable too high on an OLTP system might cause your server to run out of memory. Yes, if
1,000 people sort 100 MB at the same time, this can result in memory failures. However, do
you expect the disk to be able to handle that? I doubt it. The solution can only be: stop
doing stupid things. Sorting 100 MB 1,000 times concurrently is not what should happen in
an OLTP system anyway. Consider deploying proper indexes, writing better queries, or
simply rethinking your requirements. Under any circumstances, sorting so much data so
often concurrently is a bad idea-stop it before those things stop your application.

Optimizing Queries for Good Performance Chapter 6

[194]

Speeding up administrative tasks
There are more operations which actually have to do some sorting or memory allocation of
some kind. The administrative ones such as the CREATE INDEX clause do not rely on the
work_mem variable, but use the maintenance_work_mem variable instead. Here is how it
works:

test=# SET maintenance_work_mem TO '1 MB';
SET
test=# timing
Timing is on.
test=# CREATE INDEX idx_id ON t_test (id);
CREATE INDEX
Time: 104.268 ms

As you can see, creating an index on 2 million rows takes around 100 milliseconds, which is
really slow. Therefore, the maintenance_work_mem variable can be used to speed up
sorting, which is essentially what the CREATE INDEX clause does:

test=# SET maintenance_work_mem TO '1 GB';
SET
test=# CREATE INDEX idx_id2 ON t_test (id);
CREATE INDEX
Time: 46.774 ms

The speed has now doubled just because sorting has been improved so much.

There are more administrative jobs that can benefit from more memory. The most
prominent ones are the VACUUM clause (to clean out indexes) and ALTER TABLE clause. The
rules for the maintenance_work_mem variable are the same as for the work_mem variable.
The setting is per operation and only the required memory is allocated on the fly.

Summary
In this chapter, a number of query optimizations have been discussed. You have learned
about the optimizer and about various internal optimizations, such as constant folding,
view inlining, joins, and a lot more. All those optimizations contribute to good performance
and help to speed things up considerably.

After this introduction to optimizations, Chapter 7, Writing Stored Procedures, will be about
stored procedures. You will see the options PostgreSQL has to handle user-defined code.

7
Writing Stored Procedures

In Chapter 6, Optimizing Queries for Good Performance, you learned a lot about the optimizer
as well as optimizations going on in the system. This chapter is going to be about stored
procedures and how to use them efficiently and easily. You will learn what a stored
procedure is made of, which languages are available, and how you can speed things up
nicely. On top of that, you will be introduced to some of the more advanced features of
PL/pgSQL.

The following topics will be covered:

Deciding on the right language
How stored procedures are executed
Advanced features of PL/pgSQL
Packaging up extensions
Optimizing for good performance
Configuring function parameters

At the end of the chapter, you will be able to write good and efficient procedures.

Understanding stored procedure languages
When it comes to stored procedures, PostgreSQL differs quite significantly from other
database systems. Most database engines force you to use a certain programming language
to write server-side code. Microsoft SQL Server offers Transact-SQL, while Oracle
encourages you to use PL/SQL. PostgreSQL does not force you to use a certain language,
but allows you to decide on what you know best and what you like best.

Writing Stored Procedures Chapter 7

[196]

The reason PostgreSQL is so flexible is actually quite interesting in a historical sense too.
Many years ago, one of the most well-known PostgreSQL developers, Jan Wieck, who had
written countless patches back in its early days, came up with the idea of using TCL as the
server-side programming language. The trouble was simple--nobody wanted to use TCL
and nobody wanted to have this stuff in the database engine. The solution to the problem
was to make the language interface so flexible that basically any language can be integrated
with PostgreSQL easily. Then, the CREATE LANGUAGE clause was born:

test=# \h CREATE LANGUAGE
Command: CREATE LANGUAGE
Description: Define a new procedural language
Syntax:
CREATE [OR REPLACE] [PROCEDURAL] LANGUAGE name
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL]
 LANGUAGE name HANDLER call_handler
 [INLINE inline_handler] [VALIDATOR valfunction]

Nowadays, many different languages can be used to write stored procedures. The flexibility
added to PostgreSQL back in the early days has really paid off, and so you can choose from
a rich set of programming languages.

How exactly does PostgreSQL handle languages? If you take a look at the syntax of the
CREATE LANGUAGE clause, you will see a couple of keywords:

HANDLER: This function is actually the glue between PostgreSQL and any external
language you want to use. It is in charge of mapping PostgreSQL data structures
to whatever is needed by the language and helps to pass the code around.
VALIDATOR: This is the policeman of the infrastructure. If it is available, it will be
in charge of delivering tasty syntax errors to the end user. Many languages are
able to parse the code before actually executing it. PostgreSQL can use that and
tell you whether a function is correct or not when you create it. Unfortunately,
not all languages can do this, so in some cases, you will still be left with problems
showing up at runtime.
INLINE: If it is present, PostgreSQL will be able to run anonymous code blocks
utilizing this handler function.

Writing Stored Procedures Chapter 7

[197]

The anatomy of a stored procedure
Before actually digging into a specific language, I want to talk a bit about the anatomy of a
typical stored procedure. For demo purposes, I have written a function that just adds up
two numbers:

test=# CREATE OR REPLACE FUNCTION mysum(int, int)
RETURNS int AS
'
 SELECT $1 + $2;
' LANGUAGE 'sql';
CREATE FUNCTION

The first thing you can see is that the procedure is written in SQL. PostgreSQL has to know
which language we are using, so we have to specify that in the definition. Note that the
code of the function is passed to PostgreSQL as a string ('). That is somewhat noteworthy
because it allows a function to become a black box to the execution machinery. In other
database engines, the code of the function is not a string, but is directly attached to the
statement. This simple abstraction layer is what gives the PostgreSQL function manager all
its power.

Inside the string, you can basically use all that the programming language of your choice
has to offer. In my example, I am simply adding up two numbers passed to the function.
For this example, two integer variables are in use. The important part here is that
PostgreSQL provides you with function overloading. In other words, the mysum(int,
int) function is not the same as the mysum(int8, int8) function. PostgreSQL sees these
things as two distinct functions. Function overloading is a nice feature; however, you have
to be very careful not to accidentally deploy too many functions if your parameter list
happens to change from time to time. Always make sure that functions that are not needed
anymore are really deleted.

The CREATE OR REPLACE FUNCTION clause will not change the
parameter list. You can, therefore, use it only if the signature does not
change. It will either error out or simply deploy a new function.

Writing Stored Procedures Chapter 7

[198]

Let's run the function:

test=# SELECT mysum(10, 20);
 mysum

 30
(1 row)

The result is not really surprising.

Introducing dollar quoting
Passing code to PostgreSQL as a string is very flexible. However, using single quotes can be
an issue. In many programming languages, single quotes show up frequently. To be able to
use quotes, people have to escape them when passing the string to PostgreSQL. For many
years, this has been the standard procedure. Fortunately, those old times have passed by
and new means to pass the code to PostgreSQL are available:

test=# CREATE OR REPLACE FUNCTION mysum(int, int)
RETURNS int AS
$$
 SELECT $1 + $2;
$$ LANGUAGE 'sql';
CREATE FUNCTION

The solution to the problem of quoting strings is called dollar quoting. Instead of using
quotes to start and end strings, you can simply use $$. Currently, I am only aware of two
languages that have assigned a meaning to $$. In Perl as well as in bash scripts, $$
represents the process ID. To overcome even this little obstacle, you can use $ almost
anything $ to start and end the string. The following example shows how that works:

test=# CREATE OR REPLACE FUNCTION mysum(int, int) RETURNS int AS
$body$
 SELECT $1 + $2;
$body$ LANGUAGE 'sql';
CREATE FUNCTION

All this flexibility allows you to really overcome the problem of quoting once and for all. As
long as the start string and the end string match, there won't be any problems left.

Writing Stored Procedures Chapter 7

[199]

Making use of anonymous code blocks
So far, you have learned to write the most simplistic stored procedures possible, and you
have learned to execute code. However, there is more to code execution than just full-blown
stored procedures. In addition to full-blown procedures, PostgreSQL allows the use of
anonymous code blocks. The idea is to run code that is needed only once. This kind of code
execution is especially useful to deal with administrative tasks. Anonymous code blocks
don't take parameters and are not permanently stored in the database as they don't have a
name anyway.

Here is a simple example:

test=# DO
$$
 BEGIN
 RAISE NOTICE 'current time: %', now();
 END;
$$ LANGUAGE 'plpgsql';
NOTICE: current time: 2016-12-12 15:25:50.678922+01
CONTEXT: PL/pgSQL function inline_code_block line 3 at RAISE
DO

In this example, the code only issues a message and quits. Again, the code block has to
know which language it uses. The string is again passed to PostgreSQL using simple dollar
quoting.

Using functions and transactions
As you know, everything that PostgreSQL exposes in userland is a transaction. The same, of
course, applies if you are writing stored procedures. The procedure is always part of the
transaction you are in. It is not autonomous--it is just like an operator or any other
operation.

Writing Stored Procedures Chapter 7

[200]

Here is an example:

test=# SELECT now(), mysum(id, id) FROM generate_series(1, 3) AS id;

 now | mysum
-------------------------------+-------
 2017-10-12 15:54:32.287027+01 | 2
 2017-10-12 15:54:32.287027+01 | 4
 2017-10-12 15:54:32.287027+01 | 6
(3 rows)

All three function calls happen in the same transaction. This is important to understand
because it implies that you cannot do too much transactional flow control inside a function.
Suppose the second function call commits. What happens in such a case anyway? It cannot
work.

However, Oracle has a mechanism that allows for autonomous transactions. The idea is that
even if a transaction rolls back, some parts might still be needed and should be kept. The
classic example is as follows:

Start a function to look up secret data1.
Add a log line to the document that somebody has modified this important secret2.
data
Commit the log line but roll back the change3.
You still want to know that somebody attempted to change data4.

To solve problems like this one, autonomous transactions can be used. The idea is to be able
to commit a transaction inside the main transaction independently. In this case, the entry in
the log table will prevail while the change will be rolled back.

As of PostgreSQL 10.0, autonomous transactions are not happening. However, I have
already seen patches floating around that implement this feature. We will see when these
features make it to the core.

To give you an impression of how things will most likely work, here is a code snippet based
on the first patches:

...
AS
$$
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 FOR i IN 0..9 LOOP
 START TRANSACTION;

Writing Stored Procedures Chapter 7

[201]

 INSERT INTO test1 VALUES (i);
 IF i % 2 = 0 THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 END LOOP;
 RETURN 42;
END;
$$;
...

The point in this example is that we can decide on the fly whether to commit or to roll back
the autonomous transaction.

Understanding various stored procedure
languages
As already stated previously in this chapter, PostgreSQL gives you the power to write
stored procedures in various languages. The following options are available and shipped
along with the PostgreSQL core:

SQL
PL/pgSQL
PL/Perl and PL/PerlU
PL/Python
PL/Tcl and PL/TclU

SQL is the obvious choice to write stored procedures, and it should be used whenever
possible as it gives the most freedom to the optimizer. However, if you want to write
slightly more complex code, PL/pgSQL might be the language of your choice. It offers flow
control and a lot more. In this chapter, some of the more advanced and less known features
of PL/pgSQL will be shown (this chapter is not meant to be a complete tutorial on
PL/pgSQL).

Then, the core contains code to run stored procedures in Perl. Basically, the logic is the same
here. Code will be passed as a string and executed by Perl. Remember that PostgreSQL does
not speak Perl--it merely has the code to pass things on to the external programming
language.

Writing Stored Procedures Chapter 7

[202]

Maybe you have noticed that Perl and TCL are available in two flavors: trusted (PL/Perl and
PL/TCL) and untrusted (PL/PerlU and PL/TCLU). The difference between a trusted and an
untrusted language is actually an important one. In PostgreSQL, a language is loaded
directly into the database connection. Therefore, the language is able to do quite a lot of
nasty stuff. To get rid of security problems, the concept of trusted languages has been
invented. The idea is that a trusted language is restricted to the very core of the language. It
is not possible to do the following:

Include libraries
Open network sockets
Perform system calls of any kind (opening files and so on)

Perl offers something called taint mode, which is used to implement this feature in
PostgreSQL. Perl will automatically restrict itself to trusted mode and error out if a security
violation is about to happen. In untrusted mode, everything is possible, and therefore, only
the superuser is allowed to run untrusted code.

If you want to run trusted as well as untrusted code, you have to activate both languages:
plperl and plperlu (respectively, pltcl and pltclu).

Python is currently only available as an untrusted language; therefore, administrators have
to be very careful when it comes to security in general, as a stored procedure running in
untrusted mode can bypass all security mechanisms enforced by PostgreSQL. Just keep in
mind that Python is running as part of your database connection and is in no way
responsible for security.

Introducing PL/pgSQL
Let's get started with the most awaited topic, and I am sure you will love to know more
about it.

In this section, you will be introduced to some of the more advanced features of PL/pgSQL,
which are important for writing proper and highly efficient code. Note that this is not a
beginner's introduction to programming or PL/pgSQL in general.

Writing Stored Procedures Chapter 7

[203]

Handling quoting
One of the most important things in database programming is quoting. If you are not using
proper quoting, you will surely get into trouble with SQL injection and open, unacceptable
security holes.

What is SQL injection? Consider the following example:

CREATE FUNCTION broken(text) RETURNS void AS
$$
DECLARE
 v_sql text;
BEGIN
 v_sql := 'SELECT schemaname
 FROM pg_tables
 WHERE tablename = ''' || $1 || '''';
 RAISE NOTICE 'v_sql: %', v_sql;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';

In this example, the SQL code is simply pasted together without ever worrying about
security. All I am doing here is using the || operator to concatenate strings. This works fine
if people run normal queries:

SELECT broken('t_test');

However, we have to be prepared for bad people all the time. Consider the following
example:

SELECT broken('''; DROP TABLE t_test; ');

Running the function with this parameter will give us a nice little problem:

NOTICE: v_sql: SELECT schemaname FROM pg_tables
WHERE tablename = ''; DROP TABLE t_test; '
CONTEXT: PL/pgSQL function broken(text) line 6 at RAISE
 broken

(1 row)

Dropping a table when you just want to do a lookup is not a desirable thing to do. It is
definitely not acceptable to make the security of your application depend on the parameters
passed to your statements.

Writing Stored Procedures Chapter 7

[204]

To avoid SQL injection, PostgreSQL offers various functions; these should be used at all
times to ensure that your security stays intact:

test=# SELECT quote_literal(E'o''reilly'), quote_ident(E'o''reilly');
 quote_literal | quote_ident
----------------+-------------
 'o''reilly' | "o'reilly" (1 row)

The quote_literal function will escape a string in such a way that nothing bad can
happen anymore. It will add all the quotes around the string and escape problematic
characters inside the string. Therefore, there is no longer any need to start and end the
string manually.

The second function shown here is quote_ident. It can be used to quote object names
properly. Note that double quotes are used, which is exactly what is needed to handle table
names and the like:

test=# CREATE TABLE "Some stupid name" ("ID" int);
CREATE TABLE
test=# \d "Some stupid name" Table "public.Some stupid name"
 Column | Type | Modifiers
---------+---------+-----------
 ID | integer |

Normally, all table names in PostgreSQL are lowercase. However, if double quotes are
used, object names can contain capitalized letters. In general, it is not a good idea to do this
kind of trickery as you have to use double quotes all the time in this case, which can be a bit
inconvenient.

After a basic introduction to quoting, it is important to take a look at how NULL values are
handled:

test=# SELECT quote_literal(NULL);
quote_literal

(1 row)

If you call the quote_literal function on a NULL value, it will simply return NULL. There
is no need to take care of quoting in this case too.

Writing Stored Procedures Chapter 7

[205]

PostgreSQL provides even more functions to explicitly take care of a NULL value:

test=# SELECT quote_nullable(123), quote_nullable(NULL);
 quote_nullable | quote_nullable
-----------------+----------------
 '123' | NULL (1 row)

It is not only possible to quote strings and object names. It is also possible to use PL/pgSQL
onboard means to format and prepare entire queries. The beauty here is that you can use
the format function to add parameters to a statement. Here is how it works:

CREATE FUNCTION simple_format() RETURNS text AS
$$
DECLARE
 v_string text;
 v_result text;
BEGIN
 v_string := format('SELECT schemaname|| '' .'' || tablename
 FROM pg_tables
 WHERE %I = $1
 AND %I = $2', 'schemaname', 'tablename');
 EXECUTE v_string USING 'public', 't_test' INTO v_result;
 RAISE NOTICE 'result: %', v_result;
 RETURN v_string;
END;
$$ LANGUAGE 'plpgsql';

The names of the fields are passed to the format function. Finally, the USING clause of the
EXECUTE statement is here to add the parameters to the query, which is then executed.
Again, the beauty here is that no SQL injection can happen.

Here is what happens:

test=# SELECT simple_format ();
NOTICE: result: public .t_test
 simple_format

 SELECT schemaname|| ' .' || tablename +
 FROM pg_tables +
 WHERE schemaname = $1+
 AND tablename = $2
(1 row)

As you can see, the debug message correctly displays the table, including the schema, and
correctly returns the query.

Writing Stored Procedures Chapter 7

[206]

Managing scopes
After dealing with quoting and basic security (SQL injection) in general, I want to shift your
focus to another important topic: scopes.

Just like most popular programming languages I am aware of, PL/pgSQL uses variables
depending on their context. Variables are defined in the DECLARE statement of a function.
However, PL/pgSQL allows you to nest a DECLARE statement:

CREATE FUNCTION scope_test () RETURNS int AS
$$
DECLARE
 i int := 0;
BEGIN
 RAISE NOTICE 'i1: %', i;
 DECLARE
 i int;
 BEGIN
 RAISE NOTICE 'i2: %', i;
 END;
 RETURN i;
END;
$$ LANGUAGE 'plpgsql';

In the DECLARE statement, a variable i is defined and a value is assigned to it. Then, i is
displayed. The output will, of course, be 0. Then, a second DECLARE statement starts. It
contains an additional incarnation of i, which is not assigned a value. Therefore, the value
will be NULL. Note that PostgreSQL will now display the inner i. Here is what happens:

test=# SELECT scope_test();
NOTICE: i1: 0
NOTICE: i2: <NULL>
 scope_test

 0
(1 row)

As expected, the debug messages will show 0 and NULL.

PostgreSQL allows you to do all kinds of trickery. However, it is strongly
recommended to keep your code simple and easy to read.

Writing Stored Procedures Chapter 7

[207]

Understanding advanced error handling
In every programming language, in every program, and in every module, error handling is
an important thing. Everything is expected to go wrong once in a while, and therefore it is
vital and of key importance to handle errors properly and professionally. In PL/pgSQL, you
can use EXCEPTION blocks to handle errors. The idea is that if the BEGIN block does
something wrong, the EXCEPTION block will take care of it and handle the problem
correctly. Just like many other languages, such as Java, you can react on different types of
errors and catch them separately.

In the following example, the code might run into a division by zero problem. The goal is to
catch this error and react accordingly:

CREATE FUNCTION error_test1(int, int) RETURNS int AS
$$
BEGIN
 RAISE NOTICE 'debug message: % / %', $1, $2;
 BEGIN
 RETURN $1 / $2;
 EXCEPTION
 WHEN division_by_zero THEN
 RAISE NOTICE 'division by zero detected: %', sqlerrm;
 WHEN others THEN
 RAISE NOTICE 'some other error: %', sqlerrm;
 END;
 RAISE NOTICE 'all errors handled';
 RETURN 0;
END;
$$ LANGUAGE 'plpgsql';

The BEGIN block can clearly throw an error. However, the EXCEPTION block catches the
error we are looking at and also takes care of all other potential problems that can
unexpectedly pop up.

Technically, this is more or less the same as a savepoint, and therefore the error does not
cause the entire transaction to fail completely. Only the block causing the error will be
subject to a mini rollback.

Writing Stored Procedures Chapter 7

[208]

By inspecting the sqlerrm variable, you can also have direct access to the error message
itself. Let us run the code:

test=# SELECT error_test1(9, 0);
NOTICE: debug message: 9 / 0
NOTICE: division by zero detected: division by zero
NOTICE: all errors handled
 error_test1

 0
(1 row)

PostgreSQL catches the exception and shows the message in the EXCEPTION block.
PostgreSQL is already kind enough to tell us in which line the error has happened, which
makes it a lot easier to debug and fix the code if it is broken.

In some cases, it can also make sense to raise your own exception. As you might expect, this
is easy to do:

RAISE unique_violation
USING MESSAGE = 'Duplicate user ID: ' || user_id;

On top of what you have already seen, PostgreSQL offers many predefined error codes and
exceptions. The following page contains a complete list of those error messages:
https://www.postgresql.org/docs/10/static/errcodes-appendix.html.

Making use of GET DIAGNOSTICS
Many of you who have used Oracle in the past might be familiar with the GET
DIAGNOSTICS clause. The idea behind the GET DIAGNOSTICS clause is to allow users to see
what is going on in the system. While the syntax might appear a bit strange to people who
are used to modern code, it is still a valuable tool you can use to make your applications
better.

From my point of view, there are two main tasks that the GET DIAGNOSTICS clause can be
used for:

Inspecting the row count
Fetching context information and getting a backtrace

Inspecting the row count is definitely something you will need during everyday
programming. Extracting context information will be useful if you want to debug
applications.

https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html
https://www.postgresql.org/docs/10/static/errcodes-appendix.html

Writing Stored Procedures Chapter 7

[209]

The following example shows how the GET DIAGNOSTICS clause can be used inside your
code:

CREATE FUNCTION get_diag() RETURNS int AS
$$
DECLARE
 rc int;
 _sqlstate text;
 _message text;
 _context text;
BEGIN
 EXECUTE 'SELECT * FROM generate_series(1, 10)';
 GET DIAGNOSTICS rc = ROW_COUNT;
 RAISE NOTICE 'row count: %', rc;
 SELECT rc / 0;
EXCEPTION
 WHEN OTHERS THEN
 GET STACKED DIAGNOSTICS
 _sqlstate = returned_sqlstate,
 _message = message_text,
 _context = pg_exception_context;
 RAISE NOTICE 'sqlstate: %, message: %, context: [%]',
 _sqlstate,
 _message,
 replace(_context, E'n', ' <- ');
 RETURN rc;
END;
$$ LANGUAGE 'plpgsql';

The first thing after declaring those variables is to execute a SQL statement and ask the GET
DIAGNOSTICS clause for a row count, which is then displayed in a debug message. Then,
the function forces PL/pgSQL to error out. Once this happens, I use the GET DIAGNOSTICS
clause to extract information from the server to display it.

Here is what happens:

test=# SELECT get_diag();
NOTICE: row count: 10
CONTEXT: PL/pgSQL function get_diag() line 12 at RAISE
NOTICE: sqlstate: 22012,
message: division by zero,
context: [SQL statement "SELECT rc / 0"
<- PL/pgSQL function get_diag() line 14 at
SQL statement]
CONTEXT: PL/pgSQL function get_diag() line 22 at RAISE
 get_diag

Writing Stored Procedures Chapter 7

[210]

 10
(1 row)

As you can see, the GET DIAGNOSTICS clause gives us quite detailed information about
what is going on in the system.

Using cursors to fetch data in chunks
If you execute SQL, the database will calculate the result and send it to your application.
Once the entire result set has been sent to the client, the application can continue to do its
job. The problem is just this: what happens if the result set is so large that it does not fit into
the memory anymore? What if the database returns 10 billion rows? The client application
usually cannot handle so much data at once, and actually, it should'nt. The solution to the
problem is a cursor. The idea behind a cursor is that data is generated only when it is
needed (when FETCH is called). Therefore, the application can already start to consume data
while it is actually being generated by the database. On top of that, the memory required to
perform an operation is a lot lower.

When it comes to PL/pgSQL, cursors also play a major role. Whenever you loop over a
result set, PostgreSQL will internally use a cursor automatically. The advantage is that the
memory consumption of your applications will be reduced dramatically and there is hardly
a chance of ever running out of memory due to processing large amounts of data. There are
various ways to use cursors. Here is the most simplistic one:

CREATE OR REPLACE FUNCTION c(int)
 RETURNS setof text AS
$$
DECLARE
 v_rec record;
BEGIN
 FOR v_rec IN SELECT tablename
 FROM pg_tables
 LIMIT $1
 LOOP
 RETURN NEXT v_rec.tablename;
 END LOOP;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';

Writing Stored Procedures Chapter 7

[211]

This code is interesting for two reasons. First of all, it is a Set Returning Function (SRF). It
produces an entire column and not just a single row. The way to achieve this is to use the
set of variable instead of just the datatype. The RETURN NEXT clause will build up the result
set until we have reached the end. The RETURN clause will tell PostgreSQL that we want to
leave the function and that the result is done.

The second important issue is that looping over the cursor will automatically create an
internal cursor. In other words, there is no need to be afraid that you could potentially run
out of memory. PostgreSQL will optimize the query in a way that it tries to produce the first
10% of the data (defined by the cursor_tuple_fraction variable) as fast as possible.
Here is what the query will return:

test=# SELECT * FROM c(3);
 c

 t_test
 pg_statistic
 pg_type
(3 rows)

In this example, there will simply be a list of random tables. If the result differs on your
side, this is somewhat expected.

What you have just seen is, in my opinion, the most frequent and most common way to use
implicit cursors in PL/pgSQL. The following example shows an older mechanism that many
people from Oracle might know:

CREATE OR REPLACE FUNCTION d(int)
 RETURNS setof text AS
$$
DECLARE
 v_cur refcursor;
 v_data text;
BEGIN
 OPEN v_cur FOR
 SELECT tablename
 FROM pg_tables
 LIMIT $1;
 WHILE true LOOP
 FETCH v_cur INTO v_data;
 IF FOUND THEN
 RETURN NEXT v_data;
 ELSE
 RETURN;
 END IF;
 END LOOP;

Writing Stored Procedures Chapter 7

[212]

END;
$$ LANGUAGE 'plpgsql';

In this example, the cursor is explicitly declared and opened. Inside, the loop data is then
explicitly fetched and returned to the caller. Basically, the query does exactly the same
thing-it is merely a matter of taste which syntax developers actually prefer.

Do you still have the feeling that you don't know enough about cursors yet? There is more;
here is a third option to do exactly the same thing:

CREATE OR REPLACE FUNCTION e(int)
 RETURNS setof text AS
$$
DECLARE
 v_cur CURSOR (param1 int) FOR
 SELECT tablename
 FROM pg_tables
 LIMIT param1;
 v_data text;
BEGIN
 OPEN v_cur ($1);
 WHILE true LOOP
 FETCH v_cur INTO v_data;
 IF FOUND THEN
 RETURN NEXT v_data;
 ELSE
 RETURN;
 END IF;
 END LOOP;
END;
$$ LANGUAGE 'plpgsql';

In this case, the cursor is fed with an integer parameter, which comes directly from the
function call ($1).

Sometimes, a cursor is not used up by the stored procedure itself but returned for later use.
In this case, you can return a simple use refcursor as the return value:

CREATE OR REPLACE FUNCTION cursor_test(c refcursor)
 RETURNS refcursor AS
$$
BEGIN
 OPEN c FOR SELECT *
 FROM generate_series(1, 10) AS id;

Writing Stored Procedures Chapter 7

[213]

 RETURN c;
END;
$$ LANGUAGE plpgsql;

The logic here is quite simple. The name of the cursor is passed to the function. Then, the
cursor is opened and returned. The beauty here is that the query behind the cursor can be
created on the fly and compiled dynamically.

The application can fetch from the cursor just like from any other application. Here is how it
works. Note that it works only when a transaction block is used:

test=# BEGIN;
BEGIN
test=# SELECT cursor_test('mytest');
 cursor_test

 mytest
(1 row)
 test=# FETCH NEXT FROM mytest;
 id

 1
(1 row)
test=# FETCH NEXT FROM mytest;
 id

 2
(1 row)

Actually, in this section, you learned that cursors will only produce data as it is consumed.
This holds true for most queries. However, I have added a little catch to this example;
whenever an SRF is used, the entire result has to be materialized. It is not created on the fly,
but at once. The reason is that SQL must be able to rescan a relation, which is easily possible
in the case of a normal table. However, for functions, the situation is different. Therefore, an
SRF is always calculated and materialized, making the cursor in this example totally
useless. In other words, be careful when writing functions--in some cases, danger is hidden
in nifty details.

Writing Stored Procedures Chapter 7

[214]

Utilizing composite types
In most other database systems, stored procedures are only used with primitive datatypes
such as integer, numeric, varchar, and so on. However, PostgreSQL is very different. You
can basically use all datatypes available to you. This includes primitive as well as composite
and custom types. There are simply no restrictions as far as datatypes are concerned. To
unleash the full power of PostgreSQL, composite types are highly important and are often
used by extensions which can be found on the internet.

The following example shows how a composite type can be passed to a function and how it
can be used internally. Finally, the composite type will be returned again:

CREATE TYPE my_cool_type AS (s text, t text);

CREATE FUNCTION f(my_cool_type)
 RETURNS my_cool_type AS
$$
DECLARE
 v_row my_cool_type;
BEGIN
 RAISE NOTICE 'schema: (%) / table: (%)'
 , $1.s, $1.t;
 SELECT schemaname, tablename
 INTO v_row
 FROM pg_tables
 WHERE tablename = trim($1.t)
 AND schemaname = trim($1.s)
 LIMIT 1;
 RETURN v_row;
END;
$$ LANGUAGE 'plpgsql';

The main issue here is that you can simply use $1.field_name to access the composite
type. Returning the type is not hard either. You just have to assemble the composite type
variable on the fly and return it just like any other datatype. You can even use arrays or
even more complex structures easily.

The following listing shows what PostgreSQL will return:

test=# SELECT (f).s, (f).t
 FROM f ('("public", "t_test")'::my_cool_type);
NOTICE: schema: (public) / table: (t_test)
 s | t
--------+--------
 public | t_test
(1 row)

Writing Stored Procedures Chapter 7

[215]

Writing triggers in PL/pgSQL
Server-side code is especially popular if you want to react to certain events happening in
the database. A trigger allows you to call a function if an INSERT, UPDATE, DELETE, or
TRUNCATE clause happens on a table. The function called by the trigger can then modify the
data changed in your table or simply perform some necessary operation.

In PostgreSQL, triggers have become ever more powerful over the years and provide a rich
set of features:

test=# \h CREATE TRIGGER
Command: CREATE TRIGGER
Description: Define a new trigger
Syntax:
CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF }
{ event [OR ...] }
ON table_name
[FROM referenced_table_name]
[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE |
INITIALLY DEFERRED]]
[REFERENCING { { OLD | NEW } TABLE
[AS] transition_relation_name } [...]]
[FOR [EACH] { ROW | STATEMENT }]
[WHEN (condition)]
EXECUTE PROCEDURE function_name (arguments)

Here, event can be one of the following:

INSERT
 UPDATE [OF column_name [, ...]]
 DELETE
 TRUNCATE

The first thing to observe is that a trigger is always fired for a table or a view and calls a
function. A trigger has a name and can happen before or after an event. The beauty of
PostgreSQL is that you can have as many triggers on a single table as you want. While this
does not come as a surprise to hardcore PostgreSQL users, I want to point out that this is
not possible in many expensive commercial database engines still in use around the world.

Writing Stored Procedures Chapter 7

[216]

If there is more than one trigger on the same table, the following rule was introduced many
years ago in PostgreSQL 7.3: triggers are fired in alphabetical order. First, all those before
triggers happen in alphabetical order. Then, PostgreSQL performs the row operation the
trigger has been fired for and continues executing the after triggers in alphabetical order. In
other words, the execution order of triggers is absolutely deterministic and the number of
triggers is basically unlimited.

Triggers can modify data before or after the actual modification has happened. In general,
this is a good way to verify data and to error out if some custom restrictions are violated.
The following example shows a trigger that is fired in the INSERT clause and which changes
data added to the table:

CREATE TABLE t_sensor (
 id serial,
 ts timestamp,
 temperature numeric
);

Our table just stores a couple of values. The goal now is to call a function as soon as a row is
inserted:

CREATE OR REPLACE FUNCTION trig_func()
RETURNS trigger AS
$$
 BEGIN
 IF NEW.temperature < -273
 THEN
 NEW.temperature := 0;
 END IF;

 RETURN NEW;
 END;
$$ LANGUAGE 'plpgsql';

As stated previously, the trigger will always call a function, which allows you to nicely
abstract code. The important thing here is that the trigger function has to return a trigger.
To access the row you are about to insert, you can access the NEW variable.

Writing Stored Procedures Chapter 7

[217]

INSERT and UPDATE triggers always provide a NEW variable. UPDATE and
DELETE will offer a variable called OLD. Those variables contain the row
you are about to modify.

In my example, the code checks whether the temperature is too low. If it is, the value is not
okay; it is dynamically adjusted. To ensure that the modified row can be used, NEW is simply
returned. If there is a second trigger called after this one, the next function call will already
see the modified row.

In the next step, the trigger can be created:

CREATE TRIGGER sensor_trig
 BEFORE INSERT ON t_sensor
 FOR EACH ROW
 EXECUTE PROCEDURE trig_func();

Here is what the trigger will do:

test=# INSERT INTO t_sensor (ts, temperature)
 VALUES ('2017-05-04 14:43', -300) RETURNING *;
 id | ts | temperature
-----+---------------------+-------------
 1 | 2017-05-04 14:43:00 | 0
(1 row)

INSERT 0 1

As you can see, the value has been adjusted correctly. The content of the table shows 0 for
the temperature.

If you are using triggers, you should be aware of the fact that a trigger knows a lot about
itself. It can access a couple of variables that allow you to write more sophisticated code and
to achieve better abstraction.

Let us drop the trigger first:

test=# DROP TRIGGER sensor_trig ON t_sensor;
DROP TRIGGER

Writing Stored Procedures Chapter 7

[218]

Then, a new function can be added:

CREATE OR REPLACE FUNCTION trig_demo()
 RETURNS trigger AS
$$
BEGIN
 RAISE NOTICE 'TG_NAME: %', TG_NAME;
 RAISE NOTICE 'TG_RELNAME: %', TG_RELNAME;
 RAISE NOTICE 'TG_TABLE_SCHEMA: %', TG_TABLE_SCHEMA;
 RAISE NOTICE 'TG_TABLE_NAME: %', TG_TABLE_NAME;
 RAISE NOTICE 'TG_WHEN: %', TG_WHEN;
 RAISE NOTICE 'TG_LEVEL: %', TG_LEVEL;
 RAISE NOTICE 'TG_OP: %', TG_OP;
 RAISE NOTICE 'TG_NARGS: %', TG_NARGS;
-- RAISE NOTICE 'TG_ARGV: %', TG_NAME;
 RETURN NEW;
END;
$$ LANGUAGE 'plpgsql';

All those variables used here are predefined and are available by default. All our code does
is display them so that we can see the content:

test=# INSERT INTO t_sensor (ts, temperature)
test-# VALUES ('2017-05-04 14:43', -300) RETURNING *;

NOTICE: TG_NAME: demo_trigger
NOTICE: TG_RELNAME: t_sensor
NOTICE: TG_TABLE_SCHEMA: public
NOTICE: TG_TABLE_NAME: t_sensor
NOTICE: TG_WHEN: BEFORE
NOTICE: TG_LEVEL: ROW
NOTICE: TG_OP: INSERT
NOTICE: TG_NARGS: 0

 id | ts | temperature
-----+---------------------+-------------
 2 | 2017-05-04 14:43:00 | -300
(1 row)

INSERT 0 1

Writing Stored Procedures Chapter 7

[219]

What you see here is that the trigger knows its name, the table it has been fired for, and a lot
more. If you want to apply similar actions on various tables, those variables help you to
avoid duplicate code by just writing a single function, which can then be used for all tables
you are interested in.

So far, you have seen simple row-level triggers, which are fired once per statement.
However, with the introduction of PostgreSQL 10.0, there are a couple of new features.
Statement-level triggers have been around for a while already. However, it was not possible
to access the data changed by the trigger. This has been fixed in PostgreSQL 10.0. It is now
possible to make use of transition tables, which contain all the changes made.

The following listing contains a complete example showing how a transition table can be
used:

CREATE OR REPLACE FUNCTION transition_trigger()
 RETURNS TRIGGER AS $$
 DECLARE
 v_record record;
 BEGIN
 IF (TG_OP = 'INSERT') THEN
 RAISE NOTICE 'new data: ';
 FOR v_record IN SELECT * FROM new_table
 LOOP
 RAISE NOTICE '%', v_record;
 END LOOP;
 ELSE
 RAISE NOTICE 'old data: ';
 FOR v_record IN SELECT * FROM old_table
 LOOP
 RAISE NOTICE '%', v_record;
 END LOOP;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER transition_test_trigger_ins
 AFTER INSERT ON t_sensor
 REFERENCING NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE PROCEDURE transition_trigger();

CREATE TRIGGER transition_test_trigger_del
 AFTER DELETE ON t_sensor
 REFERENCING OLD TABLE AS old_table
 FOR EACH STATEMENT EXECUTE PROCEDURE transition_trigger();

Writing Stored Procedures Chapter 7

[220]

In this case, we need two trigger definitions because we cannot just squeeze everything into
just one definition. Inside the trigger function, the transition table is easy to use: it can be
accessed just like a normal table.

Let us test the code of the trigger:

INSERT INTO t_sensor
 SELECT *, now(), random() * 20
 FROM generate_series(1, 5);

DELETE FROM t_sensor;

In my example, the code will simply issue a NOTICE for each entry in the transition table:

NOTICE: new data:
NOTICE: (1,"2017-10-04 15:47:14.129151",10.4552665632218)
NOTICE: (2,"2017-10-04 15:47:14.129151",12.8670312650502)
NOTICE: (3,"2017-10-04 15:47:14.129151",14.3934494629502)
NOTICE: (4,"2017-10-04 15:47:14.129151",4.35718866065145)
NOTICE: (5,"2017-10-04 15:47:14.129151",10.9121138229966)
INSERT 0 5

NOTICE: old data:
NOTICE: (1,"2017-10-04 15:47:14.129151",10.4552665632218)
NOTICE: (2,"2017-10-04 15:47:14.129151",12.8670312650502)
NOTICE: (3,"2017-10-04 15:47:14.129151",14.3934494629502)
NOTICE: (4,"2017-10-04 15:47:14.129151",4.35718866065145)
NOTICE: (5,"2017-10-04 15:47:14.129151",10.9121138229966)
DELETE 5

Keep in mind that it is not necessarily a good idea to use transition tables for billions of
rows. PostgreSQL really is scalable but at some point it is necessary to see that there are
performance implications as well.

Introducing PL/Perl
There is a lot more to say about PL/pgSQL. However, as I've only got 40 pages to cover this
topic, it is time to move on to the next procedural language. PL/Perl has been adopted by
many people as the ideal language to do string crunching. As you might know, Perl is
famous for its string manipulation capabilities and is therefore still fairly popular after all
these years.

Writing Stored Procedures Chapter 7

[221]

To enable PL/Perl, you have two choices:

test=# create extension plperl;
CREATE EXTENSION

test=# create extension plperlu;
CREATE EXTENSION

You can deploy trusted or untrusted Perl. If you want both, you have to enable both
languages.

To show you how PL/Perl works, I have implemented a function that simply parses an
email address and returns true or false. Here is how it works:

test=# CREATE OR REPLACE FUNCTION verify_email(text)
RETURNS boolean AS
$$
if ($_[0] =~ /^[a-z0-9.]+@[a-z0-9.-]+$/)
{
 return true;
}
return false;
$$ LANGUAGE 'plperl'; CREATE FUNCTION

A text parameter is passed to the function. Inside the function, all those input parameters
can be accessed using $_. In this example, the regular expression is executed and the
function returns.

The function can be called just like any other procedure written in any other language:

test=# SELECT verify_email('hs@cybertec.at');
 verify_email
 t
(1 row)

test=# SELECT verify_email('totally wrong');

 verify_email
 f
(1 row)

Keep in mind that you cannot load packages and so on if you are inside a trusted function.
For example, if you want to use the w command to find words, Perl will internally load
utf8.pm, which is, of course, not allowed.

Writing Stored Procedures Chapter 7

[222]

Using PL/Perl for datatype abstraction
As stated in this chapter, functions in PostgreSQL are pretty universal and can be used in
many different contexts. If you want to use functions to improve data quality, you can use a
CREATE DOMAIN clause:

test=# \h CREATE DOMAIN
Command: CREATE DOMAIN
Description: Define a new domain
Syntax:
CREATE DOMAIN name [AS] data_type
[COLLATE collation]
[DEFAULT expression] [constraint [...]]

Here, constraint is as follows:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

In this example, the PL/Perl function will be used to create a domain called email, which in
turn can be used as a datatype.

The following listing shows how the domain can be created:

test=# CREATE DOMAIN email AS text
CHECK (verify_email(VALUE) = true);
CREATE DOMAIN

As mentioned previously, the domain functions just like a normal datatype:

test=# CREATE TABLE t_email (id serial, data email);
CREATE TABLE

The Perl function ensures that nothing violating our checks can be inserted into the
database, as the following example demonstrates successfully:

test=# INSERT INTO t_email (data)
 VALUES ('somewhere@example.com');
INSERT 0 1
test=# INSERT INTO t_email (data)
 VALUES ('somewhere_wrong_example.com');
ERROR: value for domain email violates check constraint
"email_check"

Perl might be a good option to do string crunching but, as always, you have to decide
whether you want this code in the database directly or not.

Writing Stored Procedures Chapter 7

[223]

Deciding between PL/Perl and PL/PerlU
So far, the Perl code has not opened any security-related problems because all I did was
regular expressions. The question now is: what if somebody tries to do something nasty
inside the Perl function? As stated already, PL/Perl will simply error out:

test=# CREATE OR REPLACE FUNCTION test_security()
RETURNS boolean AS
$$
use strict;
my $fp = open("/etc/password", "r");

return false;
$$ LANGUAGE 'plperl';
ERROR: 'open' trapped by operation mask at line
CONTEXT: compilation of PL/Perl function "test_security"

PL/Perl will complain as soon as you try to create the function. An error will be displayed
instantly.

If you really want to run untrusted code in Perl, you have to use PL/PerlU:

test=# CREATE OR REPLACE FUNCTION first_line()
RETURNS text AS
$$
open(my $fh, '<:encoding(UTF-8)', "/etc/passwd")
 or elog(NOTICE, "Could not open file '$filename' $!");

my $row = <$fh>;
close($fh);

return $row;
$$ LANGUAGE 'plperlu';
CREATE FUNCTION

Basically, the procedure is the same. It returns a string. However, it is allowed to do
everything. The only difference is that the function is marked as plperlu.

The result is somewhat unsurprising:

test=# SELECT first_line();
 first_line

 root:x:0:0:root:/root:/bin/bash+

(1 row)

Writing Stored Procedures Chapter 7

[224]

Making use of the SPI interface
Once in a while, your Perl procedure has to do database work. Remember, the function is
part of the database connection. Therefore, it is pointless to actually create a database
connection. To talk to the database, the PostgreSQL server infrastructure provides the SPI
interface, which is a C interface to talk to database internals. All procedural languages that
help you to run server-side code use this interface to expose functionality to you. PL/Perl
does the same, and in this section, you will learn how to use the Perl wrapper around the
SPI interface.

The most important thing you might want to do is simply run SQL and retrieve the number
of rows fetched. The spi_exec_query function is here to do exactly that. The first
parameter passed to the function is the query. The second parameter has the number of
rows you actually want to retrieve. For simplicity reasons, I decided to fetch all of them:

test=# CREATE OR REPLACE FUNCTION spi_sample(int)
RETURNS void AS
$$
my $rv = spi_exec_query(" SELECT *
 FROM generate_series(1, $_[0])", $_[0]
);
elog(NOTICE, "rows fetched: " . $rv->{processed});
elog(NOTICE, "status: " . $rv->{status});

return;
$$ LANGUAGE 'plperl';

SPI will nicely execute the query and display the number of rows. The important thing here
is that all stored procedure languages provide a means to send log messages. In the case of
PL/Perl, this function is called elog and takes two parameters. The first one defines the
importance of the message (INFO, NOTICE, WARNING, ERROR, and so on) and the second
parameter contains the actual message.

The following message shows what the query returns:

test=# SELECT spi_sample(9);
NOTICE: rows fetched: 9
NOTICE: status: SPI_OK_SELECT
 spi_sample

(1 row)

Writing Stored Procedures Chapter 7

[225]

Using SPI for set returning functions
In many cases, you don't just want to execute some SQL and forget about it. In most cases, a
procedure will loop over the result and do something with it. The following example will
show how you can loop over the output of a query. On top of that, I decided to beef up the
example a bit and make the function return a composite datatype. Working with composite
types in Perl is very easy because you can simply stuff the data into a hash and return it.

The return_next function will gradually build up the result set until the function is
terminated with a simple return statement.

The example in this listing generates a table consisting of random values:

CREATE TYPE random_type AS (a float8, b float8);

CREATE OR REPLACE FUNCTION spi_srf_perl(int)
 RETURNS setof random_type AS
$$
my $rv = spi_query("SELECT random() AS a,
 random() AS b
 FROM generate_series(1, $_[0])");
while (defined (my $row = spi_fetchrow($rv)))
{
 elog(NOTICE, "data: " .
 $row->{a} . " / " . $row->{b});
 return_next({a => $row->{a},
 b => $row->{b}});
}
return;
$$ LANGUAGE 'plperl';

CREATE FUNCTION

First, the spi_query function is executed and a loop using the spi_fetchrow function is
started. Inside the loop, the composite type will be assembled and stuffed into the result set.

As expected, the function will return a set of random values:

test=# SELECT * FROM spi_srf_perl(3);
NOTICE: data: 0.154673356097192 / 0.278830723837018
CONTEXT: PL/Perl function "spi_srf_perl"
NOTICE: data: 0.615888888947666 / 0.632620786316693
CONTEXT: PL/Perl function "spi_srf_perl"
NOTICE: data: 0.910436692181975 / 0.753427186980844
CONTEXT: PL/Perl function "spi_srf_perl"
 a_col | b_col
--------------------+-------------------

Writing Stored Procedures Chapter 7

[226]

 0.154673356097192 | 0.278830723837018
 0.615888888947666 | 0.632620786316693
 0.910436692181975 | 0.753427186980844
(3 rows)

Keep in mind that set returning functions have to be materialized so that the entire result
set will be stored in-memory.

Escaping in PL/Perl and support functions
So far, we have only used integers, so SQL injection or special table names were not an
issue. Basically, the following functions are available:

quote_literal: It returns a string quote as string literal
quote_nullable: It quotes a string
quote_ident: It quotes SQL identifiers (object names and so on)
decode_bytea: It decodes a PostgreSQL byte array field
encode_bytea: It encodes data and turns it into a byte array
encode_literal_array: It encodes an array of literals
encode_typed_literal: It converts a Perl variable to the value of the datatype
passed as a second argument and returns a string representation of this value
encode_array_constructor: It returns the contents of the referenced array as a
string in array constructor format
looks_like_number: It returns true if a string looks like a number
is_array_ref: It returns true if something is an array reference

These functions are always available and can be called directly without having to include
any library.

Sharing data across function calls
Sometimes, it is necessary to share data across calls. The infrastructure has means to
actually do that. In Perl, a hash can be used to store whatever data is needed:

CREATE FUNCTION perl_shared(text) RETURNS int AS
$$
if (!defined $_SHARED{$_[0]})
{
 $_SHARED{$_[0]} = 0;
}

Writing Stored Procedures Chapter 7

[227]

else
{
 $_SHARED{$_[0]}++;
}
return $_SHARED{$_[0]};
$$ LANGUAGE 'plperl';

The $_SHARED variable will be initialized with 0 as soon as we figure out that the key
passed to the function is not there yet. For every other call, 1 is added to the counter,
leaving us with the following output:

test=# SELECT perl_shared('some_key') FROM generate_series(1, 3);
 perl_shared

 0
 1
 2
(3 rows)

In case of a more complex statement, the developer usually does not know in which order
the functions will be called. It is important to keep that in mind. In most cases, you cannot
rely on an execution order.

Writing triggers in Perl
Every stored procedure language shipped with the core of PostgreSQL allows you to write
triggers in that language. The same, of course, applies to Perl. As the length of this chapter
is limited, I have decided not to include an example of a trigger written in Perl, but instead
point you to the official PostgreSQL documentation:
https://www.postgresql.org/docs/10/static/plperl-triggers.html.

Basically, writing a trigger in Perl does not differ from writing one in PL/pgSQL. All
predefined variables are in place, and as far as return values are concerned, the rules apply
in every stored procedure language.

Introducing PL/Python
If you don't happen to be a Perl expert, PL/Python might be the right thing for you. Python
has been part of the PostgreSQL infrastructure for a long time and is therefore a solid, well-
tested implementation.

https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html
https://www.postgresql.org/docs/10/static/plperl-triggers.html

Writing Stored Procedures Chapter 7

[228]

When it comes to PL/Python, there is one thing you have to keep in mind: PL/Python is
only available as an untrusted language. From a security point of view, it is important to
keep that in mind at all times.

To enable PL/Python, you can run the following line from your command line. test is the
name of the database you want to use with PL/Python:

createlang plpythonu test

Once the language is enabled, it is already possible to write code.

Alternatively, you can use a CREATE LANGUAGE clause, of course. Also keep in mind that in
order to use server-side languages, PostgreSQL packages containing those languages are
needed (postgresql-plpython-$(VERSIONNUMBER) and so on).

Writing simple PL/Python code
In this section, you will learn to write simple Python procedures. The example discussed
here is quite simple: if you are visiting a client by car in Austria, you can deduct 42 euro
cents per kilometer as expenses in order to reduce your income tax. So, what the function
does is to take the number of kilometers and return the amount of money we can deduct
from our tax bill. Here is how it works:

CREATE OR REPLACE FUNCTION calculate_deduction(km float)
 RETURNS numeric AS
$$
if km <= 0:
 elog(ERROR, 'invalid number of kilometers')
else:

 return km * 0.42

$$ LANGUAGE 'plpythonu';

The function ensures that only positive values are accepted. Finally, the result is calculated
and returned. As you can see, the way a Python function is passed to PostgreSQL does not
really differ from Perl or PL/pgSQL.

Writing Stored Procedures Chapter 7

[229]

Using the SPI interface
As with all procedural languages, PL/Python gives you access to the SPI interface. The
following example shows how numbers can be added up:

CREATE FUNCTION add_numbers(rows_desired integer)
 RETURNS integer AS
$$
mysum = 0

cursor = plpy.cursor("SELECT * FROM
 generate_series(1, %d) AS id" % (rows_desired))

while True:
 rows = cursor.fetch(rows_desired)
 if not rows:
 break

 for row in rows:
 mysum += row['id']
return mysum
$$ LANGUAGE 'plpythonu';

When you try this example out, make sure that the call to cursor is actually a single line.
Python is all about indentation, so it does make a difference if your code consists of one or
of two lines.

Once the cursor has been created, we can loop over it and add up those numbers. The
columns inside those rows can easily be referenced using column names.

Calling the function will return the desired result:

test=# SELECT add_numbers(10);
 add_numbers

 55
(1 row)

If you want to inspect the result set of an SQL statement, PL/Python offers various functions
to retrieve more information from the result. Again, those functions are wrappers around
what SPI offers on the C level.

Writing Stored Procedures Chapter 7

[230]

The following function inspects a result more closely:

CREATE OR REPLACE FUNCTION result_diag(rows_desired integer)
 RETURNS integer AS
$$
rv = plpy.execute("SELECT *
 FROM generate_series(1, %d) AS id" % (rows_desired))
plpy.notice(rv.nrows())
plpy.notice(rv.status())
plpy.notice(rv.colnames())
plpy.notice(rv.coltypes())
plpy.notice(rv.coltypmods())
plpy.notice(rv. str ())

return 0
$$ LANGUAGE 'plpythonu';

The nrows() function will display the number of rows. The status() function tells us
whether everything worked out fine. The colnames() function returns a list of columns.
The coltypes() function returns the object IDs of the datatypes in the result set. 23 is the
internal number of integers:

test=# SELECT typname FROM pg_type WHERE oid = 23;
 typname

 int4
(1 row)

Then comes typmod. Consider something like varchar(20): the configuration part if the
type is what typmod is all about.

Finally, there is a function to return the entire thing as a string for debugging purposes.
Calling the function will return the following result:

test=# SELECT result_diag(3);
NOTICE: 3
NOTICE: 5
NOTICE: ['id']
NOTICE: [23]
NOTICE: [-1]
NOTICE: <PLyResult status=5 nrows=3 rows=[{'id': 1},
 {'id': 2}, {'id': 3}]>
result_diag

 0
(1 row)

Writing Stored Procedures Chapter 7

[231]

There are many more functions in the SPI interface that help you to execute SQL.

Handling errors
Once in a while, you might have to catch an error. Of course, this is also possible in Python.
The following example shows how this works:

CREATE OR REPLACE FUNCTION trial_error()
 RETURNS text AS
$$
try:
 rv = plpy.execute("SELECT surely_a_syntax_error")
except plpy.SPIError:
 return "we caught the error" else:
else:
 return "all fine"
$$ LANGUAGE 'plpythonu';

You can use a normal try/except block and access plpy to treat the error you want to catch.
The function can then return normally without destroying your transaction:

test=# SELECT trial_error();
 trial_error

 we caught the error
(1 row)

Remember, PL/Python has full access to the internals of PostgreSQL. Therefore, it can also
expose all kinds of errors to your procedure. Here is an example:

except spiexceptions.DivisionByZero:
 return "found a division by zero"
except spiexceptions.UniqueViolation:
 return "found a unique violation"
except plpy.SPIError, e:
 return "other error, SQLSTATE %s" % e.sqlstate

Catching errors in Python is really easy and can help prevent your functions from failing.

Writing Stored Procedures Chapter 7

[232]

Improving stored procedure performance
So far, you have seen how to write basic stored procedures as well as triggers in various
languages. Of course, there are many more languages supported. Some of the most
prominent ones are PL/R (R is a powerful statistics package) and PL/v8 (which is based on
the Google JavaScript engine). However, those languages are beyond the scope of this
chapter (regardless of their usefulness).

In this section, we will focus on improving the performance of a stored procedure. There are
a few ways in which we can speed up processing:

Reducing the number of calls
Using cached plans
Giving hints to the optimizer

In this chapter, all three main areas will be discussed.

Reducing the number of function calls
In many cases, performance is bad because functions are called way too often. I cannot
stress this point too much: calling things too often is the main reason for bad performance.
When you create a function, you can choose from three types of functions: volatile, stable,
and immutable. Here is an example:

test=# SELECT random(), random();
 random | random
--------------------+-------------------
 0.276252629235387 | 0.710661871358752
(1 row)

test=# SELECT now(), now();
 now | now
--------------------------------+--------------------------
 2016-12-16 12:57:17.135751+01 | 2016-12-16 12:57:17.135751+01
(1 row)

test=# SELECT pi();
 pi

 3.14159265358979
(1 row)

Writing Stored Procedures Chapter 7

[233]

A volatile function means that the function cannot be optimized away. It has to be executed
over and over again. A volatile function can also be the reason why a certain index is not
used. By default, every function is considered to be volatile. A stable function will always
return the same data within the same transaction. It can be optimized and calls can be
removed. The now() function is a good example of a stable function; within the same
transaction, it returns the same data.

Immutable functions are the gold standard because they allow for most optimizations,
which is because they always return the same result given the same input. As a first step to
optimizing functions, always make sure that they are marked correctly by adding volatile,
stable, or immutable to the end of the definition.

Using cached plans
In PostgreSQL, a query is executed using four stages:

Parser: It checks the syntax
Rewrite system: It take cares of rules and so on
Optimizer/planner: It optimizes the query
Executor: It executes the plan provided by the planner

If the query is short, the first three steps are relatively time-consuming compared to the real
execution time. Therefore, it can make sense to cache execution plans. PL/pgSQL basically
does all the plan caching for you automatically behind the scenes. You don't have to care.
PL/Perl and PL/Python will give you the choice. The SPI interface provides functions to
handle and run prepared queries, so the programmer has the choice whether a query
should be prepared or not. In the case of long queries, it can actually make sense to use
unprepared queries--short queries should usually always be prepared to reduce the internal
overhead.

Assigning costs to functions
From the optimizer point of view, a function is basically just like an operator. PostgreSQL
will also treat the costs the same way as if it was a standard operator. The problem is just
this: adding two numbers is usually cheaper than intersecting coastlines using some
PostGIS-provided function. The thing is that the optimizer does not know whether a
function is cheap or expensive.

Writing Stored Procedures Chapter 7

[234]

Fortunately, we can tell the optimizer to make functions cheaper or more expensive:

test=# \h CREATE FUNCTION
Command: CREATE FUNCTION
Description: Define a new function
Syntax:
CREATE [OR REPLACE] FUNCTION
...
| COST execution_cost
| ROWS result_rows
...

The COST parameter indicates how much more expensive than a standard operator your
operator really is. It is a multiplier for cpu_operator_cost and not a static value. In
general, the default value is 100 unless the function has been written in C.

The second parameter is the ROWS parameter. By default, PostgreSQL assumes that a set
returning function will return 1,000 rows because the system has no way to figure out
precisely how many rows there will be. The ROWS parameter allows developers to tell
PostgreSQL about the expected number of rows.

Using stored procedures
In PostgreSQL, stored procedures can be used for pretty much everything. In this chapter,
you have already learned about the CREATE DOMAIN clause and so on, but it is also possible
to create your own operators, type casts, and even collations.

In this section, you will see how a simple type cast can be created and how it can be used to
your advantage. To define the type cast, consider taking a look at the CREATE CAST clause:

test=# \h CREATE CAST
Command: CREATE CAST
Description: Define a new cast
Syntax:
CREATE CAST (source_type AS target_type)
WITH FUNCTION function_name (argument_type [, ...])
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type) WITHOUT FUNCTION
[AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type) WITH INOUT
[AS ASSIGNMENT | AS IMPLICIT]

Writing Stored Procedures Chapter 7

[235]

Using this stuff is very simple. You simply tell PostgreSQL which procedure it is supposed
to call to cast whatever type to your desired datatype.

In standard PostgreSQL, you cannot cast an IP address to a boolean. Therefore, it makes a
good example. First, the stored procedure has to be defined:

CREATE FUNCTION inet_to_boolean(inet)
RETURNS boolean AS
$$
 BEGIN
 RETURN true;
 END;
$$ LANGUAGE 'plpgsql';

For simplicity reasons, it returns true. However, you can use any code (of course) in any
language to do the actual transformation.

In the next step, it is already possible to define the type cast:

CREATE CAST (inet AS boolean)
WITH FUNCTION inet_to_boolean(inet) AS IMPLICIT;

The first thing is to tell PostgreSQL that we want to cast inet to boolean. Then, the function
is listed and we tell PostgreSQL that we prefer an implicit cast.

It is simply a straightforward process and we can test the cast:

test=# SELECT '192.168.0.34'::inet::boolean;
 bool

 t
(1 row)

Basically, the same logic can also be applied to define collations. Again, a stored procedure
can be used to perform whatever has to be done:

test=# \h CREATE COLLATION
Command: CREATE COLLATION
Description: Define a new collation
Syntax:
CREATE COLLATION name (
[LOCALE = locale,]
[LC_COLLATE = lc_collate,] [LC_CTYPE = lc_ctype]
)
CREATE COLLATION name FROM existing_collation

Writing Stored Procedures Chapter 7

[236]

Summary
In this chapter, you learned how to write stored procedures. After a theoretical
introduction, our attention was focused on some selected features of PL/pgSQL. In addition
to that, you learned how to use PL/Perl and PL/Python, which are simply two important
languages provided by PostgreSQL. Of course, there are many more languages available.
However, due to the limitations of the scope (and length) of this book, those could not be
covered in detail. If you want to know more, check out the following website:
https://wiki.postgresql.org/wiki/PL_Matrix.

In Chapter 8, Managing PostgreSQL Security, you will learn about PostgreSQL security. You
will learn how to manage users and permissions in general. On top of that, you will also
learn about network security.

https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix
https://wiki.postgresql.org/wiki/PL_Matrix

8
Managing PostgreSQL Security

Chapter 7, Writing Stored Procedures, was all about stored procedures and writing server-
side code. After introducing you to many important topics, it is now time to shift our focus
to PostgreSQL security. You will learn how to secure a server and configure permissions.

The following topics will be covered:

Configuring network access
Managing authentication
Handling users and roles
Configuring database security
Managing schemas, tables, and columns
Row-level security

At the end of the chapter, you will be able to write good and efficient procedures.

Managing network security
Before moving on to real-world, practical examples, I want to briefly shift your attention to
the various layers of security we will be dealing with. When dealing with security, it makes
sense to keep those levels in mind in order to approach security-related issues in an
organized way.

Managing PostgreSQL Security Chapter 8

[238]

Here is my mental model:

Bind addresses: listen_addresses in the postgresql.conf file
Host-based access control: The pg_hba.conf file
Instance-level permissions: Users, roles, database creation, login, and replication
Database-level permissions: Connecting, creating schemas, and so on
Schema-level permissions: Using schemas and creating objects inside a schema
Table-level permissions: Selecting, inserting, updating, and so on
Column-level permissions: Allowing or restricting access to columns
Row-level security: Restricting access to rows

In order to read a value, PostgreSQL has to ensure that you have sufficient permissions on
every level. The entire chain of permissions has to be correct.

Understanding bind addresses and connections
When you configure a PostgreSQL server, one of the first things you have to do is define
remote access. By default, PostgreSQL does not accept remote connections. The important
thing here is that PostgreSQL does not even reject the connection because it simply does not
listen on the port. If you try to connect, the error message will actually come from the
operating system because PostgreSQL does not care at all.

Assuming that there is a database server using the default configuration on
192.168.0.123, the following will happen:

iMac:~ hs$ telnet 192.168.0.123 5432
Trying 192.168.0.123...
telnet: connect to address 192.168.0.123: Connection refused
telnet: Unable to connect to remote host

Telnet tries to create a connection on port 5432 and is instantly rejected by the remote box.
From the outside, it looks as if PostgreSQL is not running at all.

The key to success can be found in the postgresql.conf file:

- Connection Settings -

#listen_addresses = 'localhost'
 # what IP address(es) to listen on;
 # comma-separated list of addresses;
 # defaults to 'localhost'; use '*' for all
 # (change requires restart)

Managing PostgreSQL Security Chapter 8

[239]

The listen_addresses setting will tell PostgreSQL which addresses to listen on.
Technically speaking, those addresses are bind addresses. What does that actually mean?
Suppose you have four network cards in your machine. You can listen on, say, three of
those IP addresses. PostgreSQL takes requests to those three cards into account and does
not listen on the fourth one. The port is simply closed.

You have to put your server's IP address into listen_addresses and not
the IPs of the clients.

If you put an * in, PostgreSQL will listen to every IP assigned to your machine.

Keep in mind that changing listen_addresses requires a PostgreSQL
service restart. It cannot be changed on the fly without a restart.

However, there are more settings related to connection management that are highly
important to understand:

#port = 5432
 # (change requires restart)
max_connections = 100
 # (change requires restart)
Note: Increasing max_connections costs ~400 bytes of
shared memory per
connection slot, plus lock space
(see max_locks_per_transaction).
#superuser_reserved_connections = 3
 # (change requires restart)
#unix_socket_directories = '/tmp'
 # comma-separated list of directories
 # (change requires restart)
#unix_socket_group = ''
 # (change requires restart)
#unix_socket_permissions = 0777
 # begin with 0 to use octal notation
 # (change requires restart)

Managing PostgreSQL Security Chapter 8

[240]

First of all, PostgreSQL listens to a single TCP port (the default value is 5432). Keep in mind
that PostgreSQL will listen on a single port only. Whenever a request comes in, the
postmaster will fork and create a new process to handle the connection. By default, up to
100 normal connections are allowed. On top of that, three additional connections are
reserved for superusers. This means that you can either have 97 connections plus 3
superusers or 100 superuser connections. Note that those connection-related settings will
also need a restart. The reason for this is that a static amount of memory is allocated to
shared memory, which cannot be changed on the fly.

Inspecting connections and performance
When I am consulting, many people ask whether raising the connection limit will have an
impact on performance in general. The answer is: not much (there is always some overhead
due to context switches and all that). It basically makes little difference how many
connections there are. However, what does make a difference is the number of open
snapshots. The more open snapshots there are (not connections), the more the overhead on
the database side. In other words, you can increase max_connections cheaply.

If you are interested in some real-world data, consider taking a look at one of my older blog
posts: https://www.cybertec-postgresql.com/max_connections-performance-impacts/.

Living in a world without TCP
In some cases, you might not want to use a network. It often happens that a database will
only talk to a local application anyway. Maybe your PostgreSQL database has been shipped
along with your application, or maybe you just don't want the risk of using a network: in
this case, Unix sockets are what you need. Unix sockets are a network-free means of
communication. Your application can connect through a Unix socket locally without
exposing anything to the outside world.

What you need, however, is a directory. By default, PostgreSQL will use the /tmp directory.
However, if more than one database server is running per machine, each one will need a
separate data directory to live in.

Apart from security, there are various reasons why not using a network might be a good
idea. One of these reasons is performance. Using Unix sockets is a lot faster than going
through the loopback device (127.0.0.1). If that sounds surprising to you, don't worry--it
does to many people. However, the overhead of a real network connection should not be
underestimated if you are only running very small queries.

https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/
https://www.cybertec-postgresql.com/max_connections-performance-impacts/

Managing PostgreSQL Security Chapter 8

[241]

To show you what this really means, I have included a simple benchmark.

I have created a script.sql file. This is a simple script that just creates a random number
and selects it. It is the most simplistic statement possible. There is nothing simpler than just
fetching a number.

So, let's run this simple benchmark on a normal laptop. To do so, I have written a small
thing called script.sql. It will be used by the benchmark:

[hs@linuxpc ~]$ cat /tmp/script.sql
SELECT 1

Then, you can simply run pgbench to execute the SQL over and over again. The -f option
allows passing the name of the SQL to the script. -c 10 means that we want 10 concurrent
connections to be active for 5 seconds (-T 5). The benchmark is running as the postgres
user and is supposed to use the postgres database, which should be there by default. Note
that the following examples will work on RHEL derivatives. Debian-based systems will use
different paths:

[hs@linuxpc ~]$ pgbench -f /tmp/script.sql
 -c 10 -T 5
 -U postgres postgres 2>
/dev/null transaction type: /tmp/script.sql
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
duration: 5 s
number of transactions actually processed: 871407
latency average = 0.057 ms
tps = 174278.158426 (including connections establishing)
tps = 174377.935625 (excluding connections establishing)

As you can see, no hostname is passed to pgbench, so the tool connects locally to the Unix
socket and runs the script as fast as possible. On this four-core Intel box, the system was
able to achieve around 174,000 transactions per second.

What happens if -h localhost is added:

[hs@linuxpc ~]$ pgbench -f /tmp/script.sql
 -h localhost -c 10 -T 5
 -U postgres postgres 2>
/dev/null transaction type: /tmp/script.sql
scaling factor: 1
query mode: simple
number of clients: 10

Managing PostgreSQL Security Chapter 8

[242]

number of threads: 1
duration: 5 s
number of transactions actually processed: 535251
latency average = 0.093 ms
tps = 107000.872598 (including connections establishing)
tps = 107046.943632 (excluding connections establishing)

The throughput will drop like a stone to 107000 transactions per second. The difference is
clearly related to networking overhead.

By using the -j option (the number of threads assigned to pgbench), you
can squeeze some more transactions out of your systems. However, it does
not change the overall picture of the benchmark in my situation. In other
tests, it does because pgbench can be a real bottleneck if you don't provide
enough CPU power.

As you can see, networking can not only be a security issue, but also a performance issue.

Managing pg_hba.conf
After configuring bind addresses, we can move on to the next level. The pg_hba.conf file
will tell PostgreSQL how to authenticate people coming over the network. In general,
pg_hba.conf file entries have the following layout:

local DATABASE USER METHOD [OPTIONS]
host DATABASE USER ADDRESS METHOD [OPTIONS]
hostssl DATABASE USER ADDRESS METHOD [OPTIONS]
hostnossl DATABASE USER ADDRESS METHOD [OPTIONS]

There are four types of rules that can be put into the pg_hba.conf file:

local: This can be used to configure local Unix socket connections.
host: This can be used for SSL and non-SSL connections.
hostssl: These are only valid for SSL connections. To make use of this option,
SSL must be compiled into the server, which is the case if you are using
prepackaged versions of PostgreSQL. In addition to that, ssl = on has to be set
in the postgresql.conf file when the server is started.
hostnossl: This works for non-SSL connections.

A list of rules can be put into the pg_hba.conf file. Here is an example:

Managing PostgreSQL Security Chapter 8

[243]

You can see three simple rules. The local record says that all users from local Unix sockets
for all databases are to be trusted. The trust method means that no password has to be sent
to the server and people can log in directly. The other two rules say that the same applies to
connections from localhost 127.0.0.1 and ::1/128, which is an IPv6 address.

As connecting without a password is certainly not the best of all choices for remote access,
PostgreSQL provides various authentication methods that can be used to configure
pg_hba.conf file flexibly. Here is the list of possible authentication methods:

local DATABASE USER METHOD [OPTIONS]
host DATABASE USER ADDRESS METHOD [OPTIONS]
hostssl DATABASE USER ADDRESS METHOD [OPTIONS]
hostnossl DATABASE USER ADDRESS METHOD [OPTIONS]

trust: This allows authentication without providing a password. The desired user
has to be available on the PostgreSQL side.
reject: The connection will be rejected.
md5 and password: The connections can be created using a password. md5
means that the password is sent over the wire encrypted. In the case of
passwords, the credentials are sent in plain text, which should not be done on a
modern system anymore. md5 is not considered safe anymore. You should use
scram-sha-256 instead in PostgreSQL 10 and beyond.
s,cram-sha-256: This setting is the successor of md5 and uses a far more secure
hash than the previous version.
GSS and SSPI: This uses GSSAPI or SSPI authentication. This is only possible for
TCP/IP connections. The idea here is to allow for single sign-on.
ident: This obtains the operating system username of the client by contacting the
ident server of the client and checking whether it matches the requested database
username.
peer: Suppose you are logged in as abc on Unix. If peer is enabled, you can only
log in to PostgreSQL as abc. If you try to change the username, you will be
rejected. The beauty is that abc won't need a password in order to authenticate.
The idea here is that only the database administrator can log in to the database on
a Unix system and not somebody else who just has the password or a Unix
account on the same machine. This only works for local connections.

Managing PostgreSQL Security Chapter 8

[244]

PAM: It uses the pluggable authentication module (PAM). This is especially
important if you want to use a means of authentication that is not provided by
PostgreSQL out of the box. To use PAM, create a file called
/etc/pam.d/postgresql on your Linux system and put the desired PAM
modules you are planning to use into the config file. Using PAM, you can even
authenticate against less common components. However, it can also be used to
connect to Active Directory and so on.
LDAP: This configuration allows you to authenticate using lightweight directory
access protocol (LDAP). Note that PostgreSQL will only ask LDAP for
authentication; if a user is present only on the LDAP but not on the PostgreSQL
side, you cannot log in. Also note that PostgreSQL has to know where your
LDAP server is. All of this information has to be stored in the pg_hba.conf, file
as outlined in the official documentation:
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP.
RADIUS: The remote authentication dial-in user service (RADIUS) is a means
to do single sign-on. Again, parameters are passed using configuration options.
cert: This authentication method uses SSL client certificates to perform
authentication, and therefore it is possible only if SSL is used. The advantage here
is that no password has to be sent. The CN attribute of the certificate will be
compared to the requested database username, and if they match, the login will
be allowed. A map can be used to allow for user mapping.

Rules can simply be listed one after the other. The important thing here is that the order
does make a difference, as shown in the following example:

host all all 192.168.1.0/24 scram-sha-256
host all all 192.168.1.54/32 reject

When PostgreSQL walks through the pg_hba.conf file, it will use the first rule that
matches. So, if our request is coming from 192.168.1.54, the first rule will always match
before we make it to the second one. This means that 192.168.1.54 will be able to log in if
the password and user are correct; therefore, the second rule is pointless.

If you want to exclude the IP, make sure that those two rules are swapped.

Handling SSL
PostgreSQL allows you to encrypt the transfer between the server and the client. Encryption
is highly beneficial, especially if you are communicating over long distances. SSL offers a
simple and secure way to ensure that nobody is able to listen to your communication.

https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP
https://www.postgresql.org/docs/10/static/auth-methods.html#AUTH-LDAP

Managing PostgreSQL Security Chapter 8

[245]

In this section, you will learn to set up SSL.

The first thing to do is to set the ssl parameter to on in the postgresql.conf file on server
start. In the next step, you can put SSL certificates into the $PGDATA directory. If you don't
want the certificates to be in some other directory, change the following parameters:

#ssl_cert_file = 'server.crt' # (change requires restart)
#ssl_key_file = 'server.key' # (change requires restart)
#ssl_ca_file = '' # (change requires restart)
#ssl_crl_file = '' # (change requires restart)

If you want to use self-signed certificates, perform the following steps:

openssl req -new -text -out server.req

Answer the questions asked by OpenSSL. Make sure you enter the local hostname as
common name. You can leave the password empty. This call will generate a key that is
passphrase protected; it will not accept a passphrase that is less than four characters long.

To remove the passphrase (as you must if you want automatic startup of the server), run the
following commands:

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now, do this to turn the certificate into
a self-signed certificate and to copy the key and certificate to where the server will look for
them:

openssl req -x509 -in server.req -text
 -key server.key -out server.crt

At the end, make sure that the files have the right set of permissions:

chmod og-rwx server.key

Once the proper rules have been put into the pg_hba.conf file, you can use SSL to connect
to your server. To verify that you are indeed using SSL, consider checking out the
pg_stat_ssl function. It will tell you every connection and whether it uses SSL or not, and
it will provide some important information about encryption:

test=# \d pg_stat_sslView "pg_catalog.pg_stat_ssl"

Column | Type | Modifiers
-------------+----------+-----------
pid | integer |

Managing PostgreSQL Security Chapter 8

[246]

ssl | boolean |
version | text |
cipher | text |
bits | integer |
compression | boolean |
clientdn | text |

If the ssl field for a process contains true, PostgreSQL does what you would expect it to do:

postgres=# select * from pg_stat_ssl;
-[RECORD 1]

pid | 20075
ssl | t
version | TLSv1.2
cipher | ECDHE-RSA-AES256-GCM-SHA384
bits | 256
compression | f
clientdn |

Handling instance-level security
So far, we have configured bind addresses and we have told PostgreSQL which means of
authentication to use for which IP ranges. Up to now, the configuration was purely
network-related.

In the next step, we can shift our attention to permissions at the instance level. The most
important thing to know is that users in PostgreSQL exist at the instance level. If you create
a user, it is not just visible inside one database—it can be seen by all the databases. A user
might have permissions to access just a single database, but basically users are created at
the instance level.

To those of you who are new to PostgreSQL, there is one more thing you should keep in
mindusers and roles are the same thing. CREATE ROLE and CREATE USER clauses have
different default values (literally, the only difference is that roles do not get the LOGIN
attribute by default), but at the end of the day, users and roles are the same. Therefore,
CREATE ROLE and CREATE USER clauses support the very same syntax:

test=# \h CREATE USER
Command: CREATE USER
Description: define a new database role
Syntax:
CREATE USER name [[WITH] option [...]]
 where option can be:

Managing PostgreSQL Security Chapter 8

[247]

 SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| BYPASSRLS | NOBYPASSRLS
| CONNECTION LIMIT connlimit
| [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
| VALID UNTIL 'timestamp'
| IN ROLE role_name [, ...]
| IN GROUP role_name [, ...]
| ROLE role_name [, ...]
| ADMIN role_name [, ...]
| USER role_name [, ...]
| SYSID uid

Let's discuss those syntax elements one by one. The first thing you see is that a user can be a
super user or a normal user. If somebody is marked as a SUPERUSER , there are no longer
any restrictions that a normal user has to face. A SUPERUSER can drop objects (databases
and so on) as they wish.

The next important thing is that it takes permissions on the instance level to create a new
database. Note than when somebody creates a database, this user will automatically be the
owner of the database. The rule is this: the creator is always automatically the owner of an
object (unless specified otherwise, as can be done with the CREATE DATABASE clause). The
beauty is that object owners can also drop an object again.

The CREATEROLE/NOCREATEROLE clause defines whether somebody is
allowed to create new users/roles or not.

The next important thing is the INHERIT/NOINHERIT clause. If the INHERIT clause is set
(which is the default value), a user can inherit permissions from some other user. Using
inherited permissions allows using roles as a good way to abstract permissions. For
example, you can create the role of bookkeeper and make many other roles inherit from
bookkeeper. The idea is that you only have to tell PostgreSQL once what a bookkeeper is
allowed to do, even if you have many people working in accounting.

Managing PostgreSQL Security Chapter 8

[248]

The LOGIN/NOLOGIN clause defines whether a role is allowed to log in to the instance. Note
that the LOGIN clause is not enough to actually connect to a database. To do that, more
permissions are needed. At this point, we are trying to make it into the instance, which is
basically the gate to all the databases inside the instance. Let's get back to our example: the
bookkeeper might be marked as NOLOGIN because you want people to log in with their real
name. All your accountants (say, Joe and Jane) might be marked as the LOGIN clause but
can inherit all the permissions from the bookkeeper role. A structure like this makes it easy
to assure that all bookkeepers will have the same permissions while ensuring their
individual activity is operated and logged under their separate identities.

If you are planning to run PostgreSQL with streaming replication, you can do all the
transaction log streaming as a superuser. However, doing that is not recommended from a
security point of view. To assure that you don't have to be a superuser to stream xlog,
PostgreSQL allows you to give replication rights to a normal user, which can then be used
to do streaming. It is common practice to create a special user just for the purpose of
managing streaming.

As you will see later in this chapter, PostgreSQL provides a feature called row-level
security. The idea is that you can exclude rows from the scope of a user. If a user is
explicitly supposed to bypass RLS, set this value to BYPASSRLS. The default value is
NOBYPASSRLS.

Sometimes, it makes sense to restrict the number of connections allowed for a user.
CONNECTION LIMIT allows you to do exactly that. Note that overall, there can never be
more connections than defined in the postgresql.conf file (max_connections).
However, you can always restrict certain users to a lower value.

By default, PostgreSQL will store passwords in the system table encrypted, which is a good
default behavior. However, suppose you are doing a training course. 10 students are
attending and everybody is connected to your box. You can be 100% certain that one of
those people will forget his or her password once in a while. As your setup is not security
critical, you might decide to store the password in plain text so that you can easily look it
up and give it to a student. This feature might also come in handy if you are testing
software.

Often, you already know that somebody will leave your organization fairly soon. The
VALID UNTIL clause allows you to automatically lock out a specific user if his or her
account has expired.

Managing PostgreSQL Security Chapter 8

[249]

The IN ROLE clause lists one or more existing roles to which the new role will be
immediately added as a new member. It helps to avoid additional manual steps. An
alternative to IN ROLE is IN GROUP.

ROLE clause will define roles that are automatically added as members of the new role.

ADMIN clause is the same as the ROLE clause but adds the WITH ADMIN OPTION.

Finally, you can use the SYSID clause to set a specific ID for the user (similar to what some
Unix administrators do for usernames at the operating system level).

Creating and modifying users
After this theoretical introduction, it is time to actually create users and see how things can
be used in a practical example:

test=# CREATE ROLE bookkeeper NOLOGIN;
CREATE ROLE
test=# CREATE ROLE joe LOGIN;
CREATE ROLE
test=# GRANT bookkeeper TO joe;
GRANT ROLE

The first thing done here is that a role called bookkeeper is created. Note that we don't
want people to log in as bookkeeper, so the role is marked as NOLOGIN.

Note also that NOLOGIN is the default value if you use the CREATE ROLE
clause. If you prefer the CREATE USER clause, the default setting is LOGIN.

Then, the joe role is created and marked as LOGIN. Finally, the bookkeeper role is
assigned to the joe role so that he can do everything a bookkeeper is actually allowed to
do.

Once the users are in place, we can test what we have so far:

[hs@zenbook ~]$ psql test -U bookkeeper
psql: FATAL: role "bookkeeper" is not permitted to log in

Managing PostgreSQL Security Chapter 8

[250]

As expected, the bookkeeper role is not allowed to log in to the system. What happens if
the joe role tries?

 [hs@zenbook ~]$ psql test -U joe
 ...
 test=>

This will actually work as expected. However, note that Command Prompt has changed.
This is just a way for PostgreSQL to show you that you are not logged in as a superuser.

Once a user has been created, it might be necessary to modify it. One thing you might want
to change is the password. In PostgreSQL, users are allowed to change their own
passwords. Here is how it works:

test=> ALTER ROLE joe PASSWORD 'abc';
ALTER ROLE
test=> SELECT current_user;
 current_user

 joe
(1 row)

The ALTER ROLE clause (or ALTER USER) will allow you to change most settings which can
be set during user creation. However, there is even more to managing users. In many cases,
you want to assign special parameters to a user. The ALTER USER clause gives you the
means to do that:

ALTER ROLE { role_specification | ALL }
 [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL }
 [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL }
 [IN DATABASE database_name] RESET configuration_parameter
ALTER ROLE { role_specification | ALL }
 [IN DATABASE database_name] RESET ALL

The syntax is fairly simple and pretty straightforward. To show you why this is really
useful, I have added a real-world example. Let's suppose that Joe happens to live on the
island of Mauritius. When he logs in, he wants to be in his own time zone, even if his
database server is located in Europe:

test=> ALTER ROLE joe SET TimeZone = 'UTC-4';
ALTER ROLE
test=> SELECT now();

Managing PostgreSQL Security Chapter 8

[251]

 now

2017-01-09 20:36:48.571584+01
(1 row)

test=> q
[hs@zenbook ~]$ psql test -U joe
...
test=> SELECT now();
 now

2017-01-09 23:36:53.357845+04
(1 row)

The ALTER ROLE clause will modify the user. As soon as joe reconnects, the time zone will
already be set for him.

The time zone is not changed immediately. You should either reconnect or
use a SET ... TO DEFAULT clause.

The important thing here is that this is also possible for some memory parameters, such as
work_mem and so on, which have already been covered earlier in this book.

Defining database-level security
After configuring users at the instance level, it is possible to dig deeper and see what can be
done at the database level. The first major question that arises is: we explicitly allowed Joe
to log in to the database instance, but who or what allowed Joe to actually connect to one of
the databases? Maybe you don't want Joe to access all the databases in your system.
Restricting access to certain databases is exactly what you can achieve on this level.

For databases, the following permissions can be set using a GRANT clause:

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...]
 | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

Managing PostgreSQL Security Chapter 8

[252]

There are two major permissions on the database level that deserve close attention:

CREATE: It allows somebody to create a schema inside the database. Note that a
CREATE clause does not allow for the creation of tables; it is about schemas. In
PostgreSQL, a table resides inside a schema, so you have to get to the schema
level first to be able to create a table.
CONNECT: It allows somebody to connect to a database.

The question now is: nobody has explicitly assigned CONNECT permissions to the joe role,
so where do those permissions actually come from? The answer is this: there is a thing
called public, which is similar to the Unix world. If the world is allowed to do something, so
is Joe, who is part of the general public.

The main thing is that public is not a role in the sense that it can be dropped and renamed.
You can simply see it as the equivalent for everybody on the system.

So, to ensure that not everybody can connect to any database at any time, CONNECT may
have to be revoked from the general public. To do so, you can connect as superuser and fix
the problem:

[hs@zenbook ~]$ psql test -U postgres
...
test=# REVOKE ALL ON DATABASE test FROM public;
REVOKE
test=# \q
[hs@zenbook ~]$ psql test -U joe
psql: FATAL: permission denied for database "test"
DETAIL: User does not have CONNECT privilege.

As you can see, the joe role is not allowed to connect anymore. At this point, only
superusers have access to test.

In general, it is a good idea to revoke permissions from the postgres, database even before
other databases are created. The idea behind this concept is that those permissions won't be
in all those newly created databases anymore. If somebody needs access to a certain
database, rights have to be explicitly granted. Rights are not automatically there anymore.

Managing PostgreSQL Security Chapter 8

[253]

If you want to allow the joe role to connect to the test database, try the following line as
superuser:

[hs@zenbook ~]$ psql test -U postgres
...
test=# GRANT CONNECT ON DATABASE test TO bookkeeper;
GRANT
test=# \q
[hs@zenbook ~]$ psql test -U joe
...
test=>

Basically, there are two choices here:

You can allow the joe role directly so that only the joe role will be able to
connect.
Alternatively, you can grant permissions to the bookkeeper role. Remember, the
joe role will inherit all the permissions from the bookkeeper role, so if you want
all accountants to be able to connect to the database, assigning permissions to the
bookkeeper role seems like an attractive idea.

If you grant permissions to the bookkeeper role, it is not risky because the role is not
allowed to log in to the instance in the first place, so it purely serves as a source of
permissions.

Adjusting schema-level permissions
Once you are done configuring the database level, it makes sense to take a look at the
schema level.

Before actually taking a look at the schema, I want to run a small test:

test=> CREATE DATABASE test;
ERROR: permission denied to create database test=>
CREATE USER xy;
ERROR: permission denied to create role test=>
CREATE SCHEMA sales;
ERROR: permission denied for database test

As you can see, Joe is having a bad day and basically nothing but connecting to the
database is allowed.

Managing PostgreSQL Security Chapter 8

[254]

However, there is a small exception, and it comes as a surprise to many people:

test=> CREATE TABLE t_broken (id int);
CREATE TABLE
test=> \d
 List of relations
Schema | Name | Type | Owner
--------+----------+--------+-------
 public | t_broken | table | joe
(1 rows)

By default, public is allowed to work with the public schema, which is always around. If
you are seriously interested in securing your database, make sure that this problem is taken
care of. Otherwise, normal users will potentially spam your public schema with all kinds of
tables and your entire setup might suffer. Also keep in mind that if somebody is allowed to
create an object, this person is also its owner. Ownership means that there are automatically
all permissions available to the creator (this includes the destruction of the object).

To take away those permissions from public, run the following line as superuser:

test=# REVOKE ALL ON SCHEMA public FROM public;
REVOKE

From now on, nobody can put things into your public schema without permissions
anymore:

[hs@zenbook ~]$ psql test -U joe
...
test=> CREATE TABLE t_data (id int);
ERROR: no schema has been selected to create in
LINE 1: CREATE TABLE t_data (id int);

As you can see, the command will fail. The important thing here is the error message you
will get; PostgreSQL does not know where to put these tables. By default, it will try to put
the table into one of the following schemas:

test=> SHOW search_path ;
 search_path

 "$user", public
(1 row)

As there is no schema called joe, it is not an option and PostgreSQL will try the public
schema. As there are no permissions, it will complain that it does not know where to put
the table.

Managing PostgreSQL Security Chapter 8

[255]

If the table is explicitly prefixed, the situation will change instantly:

test=> CREATE TABLE public.t_data (id int);
ERROR: permission denied for schema public
LINE 1: CREATE TABLE public.t_data (id int);

In this case, you will get the error message you expect. PostgreSQL denies access to the
public schema.

The next logical question now is: which permissions can be set at the schema level to give
some more power to the joe role:

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

CREATE means that somebody can put objects into a schema. USAGE means that somebody
is allowed to enter the schema. Note that entering the schema does not mean that
something inside the schema can actually be used—those permissions have not been
defined yet. Basically, this just means the user can see the system catalog for this schema.

To allow the joe role to access the table it has created previously, the following line will be
necessary (executed as superuser):

test=# GRANT USAGE ON SCHEMA public TO bookkeeper;
GRANT

The joe role is now able to read its table as expected:

[hs@zenbook ~]$ psql test -U joe
test=> SELECT count(*) FROM t_broken;
 count

 0
(1 row)

The joe role is also able to add and modify rows because it happens to be the owner of the
table. However, although it can do quite a lot of things already, the joe role is not yet
almighty. Consider the following statement:

test=> ALTER TABLE t_broken RENAME TO t_useful;
ERROR: permission denied for schema public

Managing PostgreSQL Security Chapter 8

[256]

Let's take a closer look at the actual error message. As you can see, the message complains
about permissions on the schema, not about permissions on the table itself (remember, the
joe role owns the table). To fix the problem, it has to be tackled on the schema and not on
the table level. Run the following line as superuser:

test=# GRANT CREATE ON SCHEMA public TO bookkeeper;
GRANT

The joe role can now change the name of its table to a more useful name:

[hs@zenbook ~]$ psql test -U joe
test=> ALTER TABLE t_broken RENAME TO t_useful;
ALTER TABLE

Keep in mind that this is necessary if DDLs are used. In my daily work as a PostgreSQL
support service provider, I have seen a couple of issues where this turned out to be a
problem.

Working with tables
After taking care of bind addresses, network authentication, users, databases, and schemas,
you have finally made it to the table level. The following snippet shows which permissions
can be set for a table:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE
 | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

Let me explain those permissions one by one:

SELECT: Allows you to read a table.
INSERT: Allows you to add rows to the table (this also includes copy and so
on—it is not only about the INSERT clause). Note that if you are allowed to insert,
you are not automatically allowed to read. SELECT and INSERT clauses are
needed to be able to read the data you have inserted.
UPDATE: Modifies the content of a table.
DELETE: Is used to remove rows from a table.

Managing PostgreSQL Security Chapter 8

[257]

TRUNCATE: Allows you to use the TRUNCATE clause. Note that the DELETE and
TRUNCATE clauses are two separate permissions because the TRUNCATE clause
will lock the table, which is not done by the DELETE clause (not even if there is no
WHERE condition).
REFERENCES: Allows the creation of foreign keys. It is necessary to have this
privilege on both the referencing and referenced columns, otherwise the creation
of the key won't work.
TRIGGER: Allows for the creation of triggers.

The nice thing about the GRANT clause is that you can set permissions on
all tables in a schema at the same time.

This greatly simplifies the process of adjusting permissions. It is also possible to use the
WITH GRANT OPTION clause. The idea is to ensure that normal users can pass on
permissions to others, which has the advantage of being able to reduce the workload of
administrators quite a bit. Just imagine a system that provides access to hundreds of
users—it can start to be a lot of work to manage all those people, and therefore
administrators can appoint people managing a subset of the data themselves.

Handling column-level security
In some cases, not everybody is allowed to see all the data. Just imagine a bank. Some
people might see the entire information about a bank account, while others might be limited
to only a subset of the data. In a real-world situation, somebody might not be allowed to
read the balance column or somebody might not see the interest rates of people's loans.

Another example would be that people are allowed to see people's profiles but not their
pictures or some other private information. The question now is: how can column-level
security be used?

To demonstrate that, I will add a column to the existing table belonging to the joe role:

test=> ALTER TABLE t_useful ADD COLUMN name text;
ALTER TABLE

Managing PostgreSQL Security Chapter 8

[258]

The table now consists of two columns. The goal of the example is to ensure that a user can
see only one of those columns:

test=> \d t_useful
 Table "public.t_useful"
 Column | Type | Modifiers
--------+---------+-----------
 id | integer |
 name | text |

As a superuser, let's create a user and give it access to the schema containing our table:

test=# CREATE ROLE paul LOGIN;
CREATE ROLE
test=# GRANT CONNECT ON DATABASE test TO paul;
GRANT
test=# GRANT USAGE ON SCHEMA public TO paul;
GRANT

Do not forget to give CONNECT rights to the new guy because earlier in the chapter, CONNECT
was revoked from the public. Explicit granting is therefore absolutely necessary to ensure
that we can even get to the table.

The SELECT permissions can be given to the paul role:

test=# GRANT SELECT (id) ON t_useful TO paul;
GRANT

Basically, this is already enough. It is already possible to connect to the database as user
paul and read the column:

[hs@zenbook ~]$ psql test -U paul
...
test=> SELECT id FROM t_useful;
id

(0 rows)

If you are using column-level permissions, there is an important thing to keep in mind: you
should stop using SELECT * as it does not work anymore:

test=> SELECT * FROM t_useful;
ERROR: permission denied for relation t_useful

* still means all columns, but as there is no way to access all columns, things will error out
instantly.

Managing PostgreSQL Security Chapter 8

[259]

Configuring default privileges
So far, a lot of stuff has already been configured. The trouble naturally arising now is: what
happens if new tables are added to the system? It can be quite painful and risky to process
these tables one by one and to set proper permissions. Wouldn't it be nice if those things
would just happen automatically? This is exactly what the ALTER DEFAULT PRIVILEGES
clause does. The idea is to give users an option to make PostgreSQL automatically set the
desired permissions as soon as an object comes into existence. It cannot happen anymore
that somebody simply forgets to set those rights.

The following listing shows the first part of the syntax specification:

test=# \h ALTER DEFAULT PRIVILEGES
Command: ALTER DEFAULT PRIVILEGES
Description: define default access privileges
Syntax:
ALTER DEFAULT PRIVILEGES
[FOR { ROLE | USER } target_role [, ...]] [IN SCHEMA schema_name [,
...]] abbreviated_grant_or_revoke
where abbreviated_grant_or_revoke is one of: GRANT { { SELECT | INSERT |
UPDATE | DELETE
| TRUNCATE
| REFERENCES | TRIGGER }
[, ...] | ALL [PRIVILEGES] } ON TABLES
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]
...

Basically, the syntax works similar to the GRANT clause and is therefore easy and intuitive to
use. To show you how it works, I compiled a simple example. The idea is that if the joe role
creates a table, the paul role will automatically be able to use it:

test=# ALTER DEFAULT PRIVILEGES FOR ROLE joe
 IN SCHEMA public GRANT ALL ON TABLES TO paul;
ALTER DEFAULT PRIVILEGES

Let me connect as the joe role now and create a table:

[hs@zenbook ~]$ psql test -U joe
...
test=> CREATE TABLE t_user (id serial, name text, passwd text);
CREATE TABLE

Managing PostgreSQL Security Chapter 8

[260]

Connecting as the paul role will prove that the table has been assigned to the proper set of
permissions:

[hs@zenbook ~]$ psql test -U paul
...
test=> SELECT * FROM t_user;
 id | name | passwd
----+------+--------
(0 rows)

Digging into row-level security - RLS
Up to this point, a table has always been shown as a whole. When the table contained 1
million rows, it was possible to retrieve 1 million rows from it. If somebody had the rights
to read a table, it was all about the entire table. In many cases, this is not enough. Often, it is
desirable that a user is not allowed to see all the rows.

Consider the following real-world example: an accountant is doing accounting work for
many people. The table containing tax rates should really be visible to everybody as
everybody has to pay the same rates. However, when it comes to the actual transactions, the
accountant might want to ensure that everybody is only allowed to see his or her own
transactions. Person A should not be allowed to see person B's data. In addition to that, it
might also make sense that the boss of a division is allowed to see all the data in his part of
the company.

Row-level security has been designed to do exactly this and enables you to build multi-
tenant systems in a fast and simple way. The way to configure those permissions is to come
up with policies. The CREATE POLICY command is here to provide you with a means to
write those rules:

test=# \h CREATE POLICY
Command: CREATE POLICY
Description: define a new row level security policy for a table
Syntax:
CREATE POLICY name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
 [TO { role_name | PUBLIC |
 CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Managing PostgreSQL Security Chapter 8

[261]

To show you how a policy can be written, I will first log in as superuser and create a table
containing a couple of entries:

test=# CREATE TABLE t_person (gender text, name text);
CREATE TABLE
test=# INSERT INTO t_person
 VALUES ('male', 'joe'),
 ('male', 'paul'),
 ('female', 'sarah'),
 (NULL, 'R2- D2');
INSERT 0 4

Then access is granted to the joe role:

test=# GRANT ALL ON t_person TO joe;
GRANT

So far, everything is pretty normal and the joe role will be able to actually read the entire
table as there is no RLS in place. But what happens if row-level security is enabled for the
table:

test=# ALTER TABLE t_person ENABLE ROW LEVEL SECURITY;
ALTER TABLE

There is a deny all default policy in place, so the joe role will actually get an empty table:

test=> SELECT * FROM t_person;
 gender | name
--------+------
(0 rows)

Actually, the default policy makes a lot of sense as users are forced to explicitly set
permissions.

Now that the table is under row-level security control, policies can be written (as
superuser):

test=# CREATE POLICY joe_pol_1
 ON t_person
 FOR SELECT TO joe
 USING (gender = 'male');
CREATE POLICY

Managing PostgreSQL Security Chapter 8

[262]

Logging in as the joe role and selecting all the data will return just two rows:

test=> SELECT * FROM t_person;
 gender | name
---------+------
 male | joe
 male | paul
(2 rows)

Let's inspect the policy I have just created in a more detailed way. The first thing you see is
that a policy actually has a name. It is also connected to a table and allows for certain
operations (in this case, the SELECT clause). Then comes the USING clause. It basically
defines what the joe role will be allowed to see. The USING clause is therefore a mandatory
filter attached to every query to only select the rows our user is supposed to see.

There is also one important side node: if there is more than just a single policy, PostgreSQL
will use an OR condition; in short, more policies will make you see more data by default. In
PostgreSQL 9.6, this was always the case. However, with the introduction of PostgreSQL
10.0, the user can choose whether conditions should be OR and AND connected:

PERMISSIVE | RESTRICTIVE

By default, PostgreSQL is PERMISSIVE so OR connections are at work. If you decide to use
RESTRICTIVE, then those clauses will be connected with AND.

Now suppose that, for some reason, it has been decided that the joe role is also allowed to
see robots. There are two choices to achieve our goal. The first option is to simply use the
ALTER POLICY clause to change the existing policy:

test=> \h ALTER POLICY
Command: ALTER POLICY
Description: change the definition of a row level security policy
Syntax:
ALTER POLICY name ON table_name RENAME TO new_name
 ALTER POLICY name ON table_name
[TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER } [, ...]] [
USING (using_expression)]
[WITH CHECK (check_expression)]

Managing PostgreSQL Security Chapter 8

[263]

The second option is to create a second policy, as shown in the next example:

test=# CREATE POLICY joe_pol_2
 ON t_person
 FOR SELECT TO joe
 USING (gender IS NULL);
CREATE POLICY

The beauty is that those policies are simply connected using an OR condition as stated
before, unless RESTRICTIVE is used. Therefore, PostgreSQL will now return three rows
instead of two:

test=> SELECT * FROM t_person;
 gender | name
---------+-------
 male | joe
 male | paul
 | R2-D2
(3 rows)

The R2-D2 role is now also included in the result as it matches the second policy.

To show you how PostgreSQL runs the query, I have decided to include an execution plan
of the query:

test=> explain SELECT * FROM t_person;
 QUERY PLAN
--
 Seq Scan on t_person (cost=0.00..21.00 rows=9 width=64)
 Filter: ((gender IS NULL) OR (gender = 'male'::text))
(2 rows)

As you can see, both the USING clauses have been added as mandatory filters to the query.
You might have noticed in the syntax definition that there are two types of clauses:

USING: This clause filters rows that already exist. This is relevant to SELECT and
UPDATE clauses, and so on.
CHECK: This clause filters new rows that are about to be created, so they are
relevant to INSERT and UPDATE clauses, and so on.

Here is what happens if we try to insert a row:

test=> INSERT INTO t_person VALUES ('male', 'kaarel');
ERROR: new row violates row-level security policy for table "t_person"

Managing PostgreSQL Security Chapter 8

[264]

As there is no policy for the INSERT clause, the statement will naturally error out. Here is
the policy to allow insertions:

test=# CREATE POLICY joe_pol_3
 ON t_person
 FOR INSERT TO joe
 WITH CHECK (gender IN ('male', 'female'));
CREATE POLICY

The joe role is allowed to add males and females to the table, which is shown in the next
listing:

test=> INSERT INTO t_person VALUES ('female', 'maria');
INSERT 0 1

However, there is also a catch; consider the following example:

test=> INSERT INTO t_person VALUES ('female', 'maria') RETURNING *;
ERROR: new row violates row-level security policy for table "t_person"

Remember, there is only a policy to select males. The trouble here is that the statement will
return a woman, which is not allowed because the joe role is under a male-only policy.

Only for men will the RETURNING * clause actually work:

test=> INSERT INTO t_person VALUES ('male', 'max') RETURNING *;
 gender | name
---------+------
 male | max
(1 row)
INSERT 0 1

If you don't want this behavior, you have to write a policy that actually contains a proper
USING clause.

Inspecting permissions
When all permissions are set, it is sometimes necessary to know who has which
permissions. It is vital for administrators to find out who is allowed to do what.
Unfortunately, this process is not so easy and requires a bit of knowledge. Usually, I am a
big fan of command-line usage. However, in the case of the permission system, it can really
make sense to use a graphical user interface to do things.

Managing PostgreSQL Security Chapter 8

[265]

Before I show you how to read PostgreSQL permissions, I will assign rights to the joe role
so that we can inspect them in the next step:

test=# GRANT ALL ON t_person TO joe;
GRANT

Retrieving information about permissions can be done using the z command in psql:

test=# \x
Expanded display is on.
test=# \z t_person
Access privileges
-[RECORD 1]-----+--

Schema | public
Name | t_person
Type | table
Access privileges | postgres=arwdDxt/postgres
+
 | joe=arwdDxt/postgres
Column privileges |
Policies | joe_pol_1 (r):
+ | (u): (gender = 'male'::text)
+ | to: joe
+ | joe_pol_2 (r):
+ | (u): (gender IS NULL)
+ | to: joe
+ | joe_pol_3 (a):
+ | (c): (gender = ANY (ARRAY['male'::text,
'female'::text]))
+ | to: joe

This will return all those policies along with information about access privileges.
Unfortunately, those shortcuts are hard to read and I have a feeling that they are not widely
understood by administrators. In our example, the joe role has gotten arwdDxt from
Postgres. What do those codes actually mean:

a: Appends for the INSERT clause
r: Reads for the SELECT clause
w: Writes for the UPDATE clause
d: Deletes for the DELETE clause
D: Is used for the TRUNCATE clause (when this was introduced, t was already
taken)

Managing PostgreSQL Security Chapter 8

[266]

x: Is used for references
t: Is used for triggers

If you don't know those codes, there is also a second way to make things more readable.
Consider the following function call:

test=# SELECT * FROM aclexplode('{joe=arwdDxt/postgres}');
 grantor | grantee | privilege_type | is_grantable
---------+----------+----------------+--------------
 10 | 18481 | INSERT | f
 10 | 18481 | SELECT | f
 10 | 18481 | UPDATE | f
 10 | 18481 | DELETE | f
 10 | 18481 | TRUNCATE | f
 10 | 18481 | REFERENCES | f
 10 | 18481 | TRIGGER | f
(7 rows)

As you can see, the set of permissions is returned as a simple table, which makes life really
easy.

Reassigning objects and dropping users
After assigning permissions and restricting access, it can happen that users will be dropped
from the system. Unsurprisingly, the commands to do that are the DROP ROLE and DROP
USER commands:

test=# \h DROP ROLE
Command: DROP ROLE
Description: remove a database role
Syntax:
DROP ROLE [IF EXISTS] name [, ...]

Let's give it a try:

test=# DROP ROLE joe;
ERROR: role "joe" cannot be dropped because some objects depend on it
DETAIL: target of policy joe_pol_3 on table t_person
target of policy joe_pol_2 on table t_person
target of policy joe_pol_1 on table t_person
privileges for table t_person
owner of table t_user
owner of sequence t_user_id_seq
owner of default privileges on new relations belonging to role joe in

Managing PostgreSQL Security Chapter 8

[267]

schema public
owner of table t_useful

PostgreSQL will issue error messages because a user can only be removed if everything has
been taken away from him. This makes sense for this reason: just suppose somebody owns
a table. What should PostgreSQL do with that table? Somebody has to own them.

To reassign tables from one user to the next, consider taking a look at the REASSIGN clause:

test=# \h REASSIGN
Command: REASSIGN OWNED
Description: change the ownership of database objects owned by a database
role
Syntax:
REASSIGN OWNED BY { old_role | CURRENT_USER | SESSION_USER } [, ...]
 TO { new_role | CURRENT_USER | SESSION_USER }

The syntax is again quite simple and helps to simplify the process of handing over. Here is
an example:

test=# REASSIGN OWNED BY joe TO postgres;
REASSIGN OWNED

So, let's try to drop the joe role again:

test=# DROP ROLE joe;
ERROR: role "joe" cannot be dropped because some objects depend on it
DETAIL: target of policy joe_pol_3 on table t_person target of policy
joe_pol_2 on table t_person
target of policy joe_pol_1 on table t_person privileges for table t_person
owner of default privileges on new relations belonging to role joe in
schema public

As you can see, the list of problems has been reduced significantly. What we can do now is
resolve all of those problems one after the other and drop the role. There is no shortcut I am
aware of. The only way to make that more efficient is to make sure that as few permissions
as possible are assigned to real people. Try to abstract as much as you can into roles, which
in turn can be used by many people. If individual permissions are not assigned to real
people, things tend to be easier in general.

Managing PostgreSQL Security Chapter 8

[268]

Summary
Database security is a wide field, and a 30-page chapter can hardly cover all the aspects of
PostgreSQL security. Many things, such as SELinux, security definer/invoker, and so on,
were left untouched. However, in this chapter, you learned the most common things you
will face as a PostgreSQL developer and DBA. You learned how to avoid the basic pitfalls
and how to make your systems more secure.

In Chapter 9, Handling Backup and Recovery, you will learn about PostgreSQL streaming
replication and incremental backups. The chapter will also cover failover scenarios.

9
Handling Backup and Recovery

In Chapter 8, Managing PostgreSQL Security, I tried to teach you all you need to know about
securing PostgreSQL in the most simplistic and most beneficial way possible. The topics of
this chapter will be backup and recovery. Performing backups should be a regular task and
every administrator is supposed to keep an eye on this vital stuff. Fortunately, PostgreSQL
provides an easy means to create backups.

Therefore, in this chapter, we will cover the following topics:

Running pg_dump
Partially dumping data
Restoring backups
Making use of parallelism
Saving global data

At the end of the chapter, you will be able to set up proper backup mechanisms.

Performing simple dumps
If you are running a PostgreSQL setup, there are basically two major methods to perform
backups:

Logical dumps (extract an SQL script representing your data)
Transaction log shipping

Handling Backup and Recovery Chapter 9

[270]

The idea behind transaction log shipping is to archive binary changes made to the database.
Most people claim that transaction log shipping is the only real way to do backups.
However, in my opinion, this is not necessarily true.

Many people rely on pg_dump to simply extract a textual representation of the data.
pg_dump is also the oldest method of creating a backup and has been around since the very
early days of the project (transaction log shipping was added much later). Every
PostgreSQL administrator will become familiar with pg_dump sooner or later, so it is
important to know how it really works and what it does.

Running pg_dump
The first thing we want to do is to create a simple textual dump:

[hs@linuxpc ~]$ pg_dump test > /tmp/dump.sql

This is the most simplistic backup you can imagine. pg_dump logs in to the local database
instance, connects to a database test, and starts to extract all the data, which will be sent to
stdout and redirected to the file. The beauty is that standard output gives you all the
flexibility of a Unix system. You can easily compress the data using a pipe or do whatever
you want.

In some cases, you might want to run pg_dump as a different user. All PostgreSQL client
programs support a consistent set of command-line parameters to pass user information. If
you just want to set the user, use the -U flag:

[hs@linuxpc ~]$ pg_dump -U whatever_powerful_user test > /tmp/dump.sql

The following set of parameters can be found in all PostgreSQL client programs:

...
Connection options:
 -d, --dbname=DBNAME database to dump
 -h, --host=HOSTNAME database server host or
 socket directory
 -p, --port=PORT database server port number
 -U, --username=NAME connect as specified database user
 -w, --no-password never prompt for password
 -W, --password force password prompt (should
 happen automatically)
 --role=ROLENAME do SET ROLE before dump
...

Handling Backup and Recovery Chapter 9

[271]

Just pass the information you want to pg_dump, and if you have enough permissions,
PostgreSQL will fetch the data. The important thing here is to see how the program really
works. Basically, pg_dump connects to the database and opens a large repeatable read
transaction that simply reads all the data. Remember, repeatable read ensures that
PostgreSQL creates a consistent snapshot of the data, which does not change throughout the
transactions. In other words, a dump is always consistent—no foreign keys will be violated.
The output is a snapshot of data as it was when the dump started. Consistency is a key
factor here. It also implies that changes made to the data while the dump is running won't
make it to the backup anymore.

A dump simply reads everything—therefore, there are no separate
permissions to be able to dump something. As long as you can read it, you
can back it up.

Also note that the backup is by default in a textual format. This means that you can safely
extract data from say, Solaris, and move it to some other CPU architecture. In the case of
binary copies, that is clearly not possible as the on-disk format depends on your CPU
architecture.

Passing passwords and connection information
If you take a close look at the connection parameters shown in the previous section, you will
notice that there is no way to pass a password to pg_dump. You can enforce a password
prompt, but you cannot pass the parameter to pg_dump using a command-line option. The
reason for that is simple: the password might show up in the process table and be visible to
other people. Therefore, this is not supported. The question now is: if pg_hba.conf on the
server enforces a password, how can the client program provide it?

There are various means of doing that:

Making use of environment variables
Making use of .pgpass
Using service files

In this section, you will learn about all three methods.

Handling Backup and Recovery Chapter 9

[272]

Using environment variables
One way to pass all kinds of parameters is to use environment variables. If information is
not explicitly passed to pg_dump, it will look for the missing information in predefined
environment variables. A list of all potential settings can be found here:
https://www.postgresql.org/docs/10/static/libpq-envars.html.

The following overview shows some environment variables commonly needed for backups:

PGHOST: It tells the system which host to connect to
PGPORT: It defines the TCP port to be used
PGUSER: It tells a client program about the desired user
PGPASSWORD: It contains the password to be used
PGDATABASE: It is the name of the database to connect to

The advantage of these environments is that the password won't show up in the process
table. However, there is more. Consider the following example:

psql -U ... -h ... -p ... -d ...

Suppose you are a system administrator: do you really want to type a long line like that a
couple of times every day? If you are working with the very same host again and again, just
set those environment variables and connect with plain SQL:

[hs@linuxpc ~]$ export PGHOST=localhost
[hs@linuxpc ~]$ export PGUSER=hs
[hs@linuxpc ~]$ export PGPASSWORD=abc
[hs@linuxpc ~]$ export PGPORT=5432
[hs@linuxpc ~]$ export PGDATABASE=test
[hs@linuxpc ~]$ psql
psql (10.1)
Type "help" for help.

As you can see, there are no command-line parameters anymore. Just type psql and you
are in.

All applications based on the standard PostgreSQLC-language client
library (libpq) will understand these environment variables, so you
cannot only use them for psql and pg_dump, but for many other
applications.

https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html
https://www.postgresql.org/docs/10/static/libpq-envars.html

Handling Backup and Recovery Chapter 9

[273]

Making use of .pgpass
A very common way to store login information is via the use of .pgpass files. The idea is
simple: put a file called .pgpass into your home directory and put your login information
there. The format is simple:

hostname:port:database:username:password

An example would be:

192.168.0.45:5432:mydb:xy:abc

PostgreSQL offers some nice additional functionality: most fields can contain *. Here is an
example:

::*:xy:abc

This means that on every host, on every port, for every database, the user called xy will use
abc as the password. To make PostgreSQL use the .pgpass file, make sure that the right
file permissions are in place:

chmod 0600 ~/.pgpass

.pgpass can also be used on a Windows system. In this case, the file can be found in the
%APPDATA%\postgresql\pgpass.conf path.

Using service files
However, there is not just the .pgpass file. You can also make use of service files. Here is
how it works. If you want to connect to the very same servers over and over again, you can
create a .pg_service.conf file. It will hold all the connection information you need.

Here is an example of a .pg_service.conf file:

Mac:~ hs$ cat .pg_service.conf
a sample service
[hansservice]
host=localhost
port=5432
dbname=test
user=hs
password=abc

[paulservice]
host=192.168.0.45

Handling Backup and Recovery Chapter 9

[274]

port=5432
dbname=xyz
user=paul
password=cde

To connect to one of the services, just set the environment and connect:

iMac:~ hs$ export PGSERVICE=hansservice

A connection can now be established without passing parameters to psql:

iMac:~ hs$ psql
psql (10.1)
Type "help" for help.
test=#

Alternatively, you can use:

psql service=hansservice

Extracting subsets of data
Up to now, you have seen how to dump an entire database. However, this is not what you
might wish for. In many cases, you might just want to extract a subset of tables or schemas.
pg_dump can do that and provides a number of switches:

-a: It dumps only the data and does not dump the data structure
-s: It dumps only the data structure but skips the data
-n: It dumps only a certain schema
-N: It dumps everything but excludes certain schemas
-t: It dumps only certain tables
-T: It dumps everything but certain tables (this can make sense if you want to
exclude logging tables and so on)

Partial dumps can be very useful to speed things up considerably.

Handling Backup and Recovery Chapter 9

[275]

Handling various formats
So far, you have seen that pg_dump can be used to create text files. The problem is that a text
file can only be replayed completely. If you have saved an entire database, you can only
replay the entire thing. In many cases, this is not what you want. Therefore, PostgreSQL has
additional formats that also offer more functionality.

At this point, four formats are supported:

-F, --format=c|d|t|p output file format (custom, directory, tar, plain
text (default))

You have already seen plain, which is just normal text. On top of that, you can use a custom
format. The idea behind a custom format is to have a compressed dump, including a table
of contents. Here are two ways to create a custom format dump:

[hs@linuxpc ~]$ pg_dump -Fc test > /tmp/dump.fc
[hs@linuxpc ~]$ pg_dump -Fc test -f /tmp/dump.fc

In addition to the table of contents, the compressed dump has one more advantage: it is a
lot smaller. The rule of thumb is that a custom format dump is around 90% smaller than the
database instance you are about to back up. Of course, this highly depends on the number
of indexes and all that, but for many database applications, this rough estimation will hold
true.

Once you have created the backup, you can inspect the backup file:

[hs@linuxpc ~]$ pg_restore --list /tmp/dump.fc
;
; Archive created at 2017-11-04 15:44:56 CET
; dbname: test
; TOC Entries: 18
; Compression: -1
; Dump Version: 1.12-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 10.1
; Dumped by pg_dump version: 10.1
;
; Selected TOC Entries:
;
3103; 1262 16384 DATABASE - test hs
3; 2615 2200 SCHEMA - public hs
3104; 0 0 COMMENT - SCHEMA public hs
1; 3079 13350 EXTENSION - plpgsql

Handling Backup and Recovery Chapter 9

[276]

3105; 0 0 COMMENT - EXTENSION plpgsql
187; 1259 16391 TABLE public t_test hs
...

pg_restore --list will return the table of contents of the backup.

Using a custom format is a good idea as the backup will shrink in size. However, there is
more; the -Fd command will create a backup in a directory format. Instead of a single file,
you will now get a directory containing a couple of files:

[hs@linuxpc ~]$ mkdir /tmp/backup
[hs@linuxpc ~]$ pg_dump -Fd test -f /tmp/backup/
[hs@linuxpc ~]$ cd /tmp/backup/
[hs@linuxpc backup]$ ls -lh total 86M
-rw-rw-r--. 1 hs hs 85M Jan 4 15:54 3095.dat.gz
-rw-rw-r--. 1 hs hs 107 Jan 4 15:54 3096.dat.gz
-rw-rw-r--. 1 hs hs 740K Jan 4 15:54 3097.dat.gz
-rw-rw-r--. 1 hs hs 39 Jan 4 15:54 3098.dat.gz
-rw-rw-r--. 1 hs hs 4.3K Jan 4 15:54 toc.dat

One advantage of the directory format is that you can use more than one core to perform
the backup. In the case of a plain or custom format, only one process will be used by
pg_dump. The directory format changes that rule. The following example shows how you
can tell pg_dump to use four cores (jobs):

[hs@linuxpc backup]$ rm -rf *
[hs@linuxpc backup]$ pg_dump -Fd test -f /tmp/backup/ -j 4

Note that the more objects you have in your database, the more potential speedup there will
be.

Replaying backups
Having a backup is pointless unless you have tried to actually replay it. Fortunately, it is
easy to do. If you have created a plain text backup, you can simply take the SQL file and
execute it:

psql your_db < your_file.sql
A plain text backup is simply a text file containing everything. You can
always simply replay a text file.

Handling Backup and Recovery Chapter 9

[277]

If you have decided on a custom format or directory format, you can use pg_restore to
replay the backup. pg_restore allows you to do all kinds of fancy things such as replaying
just part of a database and so on. In most cases, however, you will simply replay the entire
database. In my example, I will create an empty database and just replay a custom format
dump:

[hs@linuxpc backup]$ createdb new_db
[hs@linuxpc backup]$ pg_restore -d new_db -j 4 /tmp/dump.fc

Note that pg_restore will add data to an existing database. If your database is not empty,
pg_restore might error out but continue.

Again, -j is used to throw up more than one process. In my example, four cores are used to
replay the data (this works only if you are going to replay more than one table).

If you are using a directory format, you can simply pass the name of the
directory instead of the file.

As far as performance is concerned, dumps are a good solution if you are working with
small or medium amounts of data. There are two major downsides:

You will get a snapshot, so everything since the last snapshot will be lost
Rebuilding a dump from scratch is comparatively slow compared to binary
copies because all the indexes have to be rebuilt

We will take a look at binary backups in Chapter 10, Making Sense of Backups and Replication.

Handling global data
In the previous sections, you have learned about pg_dump and pg_restore, which are two
vital programs when it comes to creating backups. The thing is, pg_dump creates database
dumps—it works on the database level. If you want to back up an entire instance, you have
to use pg_dumpall or dump all the databases separately. Before we dig into that, it makes
sense to see how pg_dumpall works:

pg_dumpall > /tmp/all.sql

Handling Backup and Recovery Chapter 9

[278]

pg_dumpall will connect to one database after the other and send stuff to standard out,
where you can process it with Unix. pg_dumpall can be used just like pg_dump. However,
it has some downsides. It does not support a custom or directory format and therefore does
not offer multicore support-you will be stuck with one thread.

However, there is more to pg_dumpall. Keep in mind that users live on the instance level.
If you create a normal database dump, you will get all the permissions, but you won't get all
the CREATE USER statements. Those globals are not included in a normal dump—they
will only be extracted by pg_dumpall.

If you only want the globals, you can run pg_dumpall using the -g option:

pg_dumpall -g > /tmp/globals.sql

In most cases, you might want to run pg_dumpall -g along with custom or directory
format dumps to extract your instances. A simple backup script might look like this:

#!/bin/sh
BACKUP_DIR=/tmp/
pg_dumpall -g > $BACKUP_DIR/globals.sql
for x in $(psql -c "SELECT datname FROM pg_database
WHERE datname NOT IN ('postgres', 'template0', 'template1')" postgres -A -
t)
do
pg_dump -Fc $x > $BACKUP_DIR/$x.fc done

It will first dump the globals and then loop through the list of databases to extract them one
by one in a custom format.

Summary
In this chapter, you have learned about creating backups and dumps in general. So far,
binary backups have not been covered, but you are already able to extract textual backups
from the server to save and replay your data in the most simplistic way possible.

In Chapter 10, Making Sense of Backups and Replication, will be about transaction log
shipping, streaming replication, and binary backups. You will learn how to use PostgreSQL
onboard tools to replicate instances.

10
Making Sense of Backups and

Replication
In Chapter 9, Handling Backup and Recovery, you learned a lot about backup and recovery,
which is essential for administration. So far, only logical backups have been covered; I am
about to change that in this chapter.

This chapter is all about PostgreSQL's transaction log and what you can do with it to
improve your setup and to make things more secure.

The following things will be covered:

What the transaction log does and why it is needed
Performing point-in-time recovery
Setting up streaming replication
Replication conflicts
Monitoring replication
Synchronous versus asynchronous replication
Understanding timelines
Logical replication

At the end of the chapter, you will be able to set up transaction log archiving and
replication. Keep this in mind: this chapter can never be a comprehensive guide to
replication; it is only a short introduction. Full coverage of replication would require
around 500 pages. Just for a comparison, PostgreSQL Replication by Packt Publishing alone is
close to 400 pages.

This chapter will cover the most essential things in a more compact form.

Making Sense of Backups and Replication Chapter 10

[280]

Understanding the transaction log
Every modern database system provides functionality to make sure that the system can
survive a crash in case something goes wrong or somebody pulls the plug. This is true for
filesystems and database systems alike.

PostgreSQL also provides a means to ensure that a crash cannot harm the data's integrity or
the data itself. It is guaranteed that if the power cuts out, the system will always be able to
come back up again and do its job.

The means to provide this kind of security is provided by the Write Ahead Log (WAL) or
xlog. The idea is to not write into the data file directly, but instead write to the log first.
Why is that important? Imagine you are writing some data:

INSERT INTO data ... VALUES ('12345678');

Suppose data was written directly to the data file. If the operation fails somewhere in the
middle, the data file would be corrupted. It might contain half-written rows, columns
without index pointers, missing commit information, and so on. As hardware does not
really guarantee atomic writes of large chunks of data, a way has to be found to make this
more robust. By writing to the log instead of writing to the file directly, the problem can be
solved.

In PostgreSQL, the transaction log consists of records.

A single write can consist of various records, which all have a checksum and are chained
together. A single transaction might contain B-tree, index, storage manager, commit
records, and a lot more. Each type of object has its own WAL entries and ensures that the
object can survive a crash. If there is a crash, PostgreSQL will start up and repair the data
files based on the transaction log to ensure that no permanent corruption is allowed to
happen.

Making Sense of Backups and Replication Chapter 10

[281]

Looking at the transaction log
In PostgreSQL, the WAL can usually be found in the pg_wal directory in the data directory
(unless specified otherwise on initdb). In older versions of PostgreSQL, the WAL directory
was called pg_xlog, but with the introduction of PostgreSQL 10.0, the directory has been
renamed. The reason for that is that more often than not, people would delete the content of
the pg_xlog directory, which of course led to serious issues and potential database
corruption. The community has therefore taken the unprecedented step of renaming a
directory inside a PostgreSQL instance. The hope is to make the name scary enough that
nobody dares to delete the content again.

The following listing shows what the pg_wal directory looks like:

[postgres@zenbook pg_xlog]$ pwd
/var/lib/pgsql/10/data/pg_xlog
[postgres@zenbook pg_xlog]$ ls -l
total 688132
-rw-------. 1 postgres postgres 16777216 Jan 19 07:58
0000000100000000000000CD
-rw-------. 1 postgres postgres 16777216 Jan 13 17:04
0000000100000000000000CE
-rw-------. 1 postgres postgres 16777216 Jan 13 17:04
0000000100000000000000CF
-rw-------. 1 postgres postgres 16777216 Jan 13 17:04
0000000100000000000000D0
-rw-------. 1 postgres postgres 16777216 Jan 13 17:04
0000000100000000000000D1
-rw-------. 1 postgres postgres 16777216 Jan 13 17:04
0000000100000000000000D2

What you can see is that the transaction log is always a 16 MB file that consists of 24 digits.
The numbering is hexadecimal. As you can see, CF is followed by D0. The files are always a
fixed size.

Making Sense of Backups and Replication Chapter 10

[282]

One thing to notice is that in PostgreSQL, the number of transaction log
files is not related to the size of a transaction. You can have a very small
set of transaction log files and still run a multi-TB transaction easily.

Understanding checkpoints
As I have mentioned earlier, every change is written to the WAL in binary format (it does
not contain SQL). The problem is this: the database server cannot keep writing to the WAL
forever as it will consume more and more space over time. So, at some point, the transaction
log has to be recycled. This is done by a checkpoint, which happens automatically in the
background. The idea is the following: when data is written, it first goes to the transaction
log, and then a dirty buffer is put into shared buffers. Those dirty buffers have to go to disk
and are written out to the data files by the background writer or during a checkpoint. As
soon as all dirty buffers up to that point have been written, the transaction log can be
deleted.

Please never ever delete transaction log files manually. In the event of a
crash, your database server will not be able to start up again, and the
amount of disk space needed will be reclaimed anyway as new
transactions come in. Never touch the transaction log manually.
PostgreSQL takes care of things on its own, and doing things in there is
really harmful.

Optimizing the transaction log
Checkpoints happen automatically and are triggered by the server. However, there are
configuration settings that decide when a checkpoint is initiated. The following parameters
in the postgresql.conf file are in charge of handling checkpoints:

#checkpoint_timeout = 5min # range 30s-1d
#max_wal_size = 1GB
#min_wal_size = 80MB

Making Sense of Backups and Replication Chapter 10

[283]

There are two reasons to initiate a checkpoint: we can run out of time or we can run out of
space. The maximum time between two checkpoints is defined by the
checkpoint_timeout variables. The amount of space provided to store transaction logs
will vary between the min_wal_size and max_wal_size variable. PostgreSQL will
automatically trigger checkpoints in a way that the amount of space really needed will be
between those two numbers.

The max_wal_size variable is a soft limit and PostgreSQL may (under
heavy load) temporarily need a bit more space. In other words, if your
transaction log is on a separate disk, it makes sense to make sure that there
is actually a bit more space available to store the WAL.

How can somebody tune the transaction log in PostgreSQL 9.6 and 10.0? In 9.6, some
changes have been made to the background writer and checkpointing machinery. In older
versions, there were some use cases where smaller checkpoint distances could actually
make sense from a performance point of view. In 9.6 and beyond, this has pretty much
changed and wider checkpoint distances are basically always highly favorable because
many optimizations can be applied at the database and OS-level to speed things up. The
most noteworthy optimization is that blocks are sorted before they are written out, which
greatly reduces random I/O on mechanical disks.

But there is more. Large checkpoint distances will actually decrease the amount of WAL
created. Yes, that is right—larger checkpoint distances will lead to less WAL.

The reason for that is simple. Whenever a block is touched after a checkpoint for the first
time, it has to be sent to the WAL completely. If the block is changed more often, only the
changes make it to the log. Larger distances basically cause fewer full-page writes, which in
turn reduces the amount of WAL created in the first place. The difference can be quite
substantial, as can be seen in one of my blog posts: https://www.postgresql-
support.com/checkpoint-distance-and-amount-of-wal/.

But there is more. PostgreSQL also allows us to configure whether checkpoints should be
short and intense or whether they should be spread out over a longer period. The default
value is 0.5, which means that the checkpoint should be done in a way that the process has
finished halfway between the current and the next checkpoint:

#checkpoint_completion_target = 0.5

https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/
https://www.postgresql-support.com/checkpoint-distance-and-amount-of-wal/

Making Sense of Backups and Replication Chapter 10

[284]

Increasing this value basically means that the checkpoint is stretched out and less intensive.
In many cases, a higher value has proven beneficial for flattening out I/O spikes caused by
intense checkpointing.

Transaction log archiving and recovery
After this brief introduction to the transaction log in general, it is time to focus our attention
on the process of transaction log archiving. As you have seen, the transaction log contains a
sequence of binary changes made to the storage system. So, why not use it to replicate
database instances and do a lot of other cool stuff?

Configuring for archiving
The first thing we want to achieve in this chapter is to create a configuration to perform
standard Point-In-Time Recovery (PITR). There are a couple of advantages of PITR over
ordinary dumps:

You will lose less data because you can restore to a certain point in time and not
just to the fixed backup point
Restoring will be faster because indexes don't have to be created from scratch.
They are just copied over and are ready to use

Configuring for PITR is easy. Just a handful of changes have to be made in the
postgresql.conf file:

wal_level = replica # used to be "hot_standby" in older versions
max_wal_senders = 10 # at least 2, better at least 2

The wal_level variable says that the server is supposed to produce enough transaction
logs to allow for PITR. If the wal_level variable is set to minimal (which is the default
value up to PostgreSQL 9.6), the transaction log will only contain enough information to
recover a single node setup—it is not rich enough to handle replication. In PostgreSQL 10.0,
the default value is already correct and there is no longer a need to change most settings.

Making Sense of Backups and Replication Chapter 10

[285]

The max_wal_senders variable will allow us to stream WAL from the server. It will allow
you to use pg_basebackup to create an initial backup instead of traditional file-based
copying. The advantage here is that pg_basebackup is a lot easier to use. Again, the default
value in 10.0 has been changed in a way so that for 90% of all setups, no changes are
needed.

The idea behind WAL streaming is that the transaction log created is copied to a safe place
for storage. Basically, there are two means of transporting the WAL:

Using pg_receivewal (up to 9.6 known as pg_receivexlog)
Using filesystem as a means to archive

In this section, you will see how to set up the second option. During normal operations,
PostgreSQL keeps writing to those WAL files. When archive_mode = on in the
postgresql.conf file, PostgreSQL will call the archive_command variable for every
single file.

A configuration might look like this—first, a directory storing those transaction log files can
be created:

mkdir /archive
chown postgres.postgres archive

The following entries can be changed in the postgresql.conf file:

archive_mode = on
archive_command = 'cp %p /archive/%f'

A restart will enable archiving, but let us configure the pg_hba.conf file first to reduce
downtime to an absolute minimum.

Note that you can put any command into the archive_command variable. Many people use
rsync, scp and others to transport their WAL files to a safe location. If your script returns
0, PostgreSQL will assume that the file has been archived. If anything else is returned,
PostgreSQL will try to archive the file again. This is necessary because the database engine
has to ensure that no files are lost. To perform the recovery process, not a single file is
allowed to go missing.

Making Sense of Backups and Replication Chapter 10

[286]

Configuring the pg_hba.conf file
Now that the postgresql.conf file has been configured successfully, it is necessary to
configure the pg_hba.conf file for streaming. Note that this is only necessary if you are
planning to use pg_basebackup, which is the state-of-the-art tool to create base backups.

Basically, the options you have in the pg_hba.conf file are the same you have already seen
in Chapter 8, Managing PostgreSQL Security. There is just one major issue to keep in mind:

Allow replication connections from localhost, by a user with the
replication privilege.

local replication postgres trust
host replication postgres 127.0.0.1/32 trust
host replication postgres ::1/128 trust

You can define standard pg_hba.conf file rules. The important thing is that the second
column says replication. Normal rules are not enough—it is really important to add
explicit replication permissions. Also keep in mind that you don't have to do this as a
superuser. You can create a specific user who is only allowed to do login and replication.

Again, PostgreSQL 10 and later versions are already configured the way we have outlined
in this section. Local replication works out-of-the-box—remote IPs have to be added to
pg_hba.conf.

Now that the pg_hba.conf file has been configured correctly, PostgreSQL can be restarted.

Creating base backups
After teaching PostgreSQL to archive those WAL files, it is time to create a first backup. The
idea is to have a backup and to replay WAL files based on that backup to reach any point in
time.

Making Sense of Backups and Replication Chapter 10

[287]

To create an initial backup, you can turn to pg_basebackup, which is a command-line tool
used to perform backups. Let us call pg_basebackup and see how it works:

pg_basebackup -D /some_target_dir
 -h localhost
 --checkpoint=fast
 --xlog-method=stream

As you can see, I am using four parameters here:

-D: Where do you want the base backup to live? PostgreSQL requires an empty
directory. At the end of the backup you will see a copy of the server's data
directory there (destination).
-h: Indicates the IP address or the name of the master (source). This is the server
you want to backup.
--checkpoint=fast: Usually, pg_basebackup waits for the master to
checkpoint. The reason is that the replay process has to start somewhere. A
checkpoint ensures that data has been written up to a certain point and so
PostgreSQL can safely jump in there and start the replay process. Basically, it can
also be done without the --checkpoint=fast parameter. However, it might
take a while before pg_basebackup starts to copy data in this case. Checkpoints
can be up to one hour apart, which can delay your backups unnecessarily.
--wal-method=stream: By default, pg_basebackup connects to the master
server and starts copying files over. Now, keep in mind that those files are
modified while they are copied. The data reaching the backup is therefore
inconsistent. This inconsistency can be repaired during the recovery process
using the WAL. The backup itself, however, is not consistent. By adding the --
wal- method=stream parameter it is possible to create a self-contained backup;
it can be started directly without replaying the transaction log (this is nice if you
just want to clone an instance and not use PITR). Fortunately -wal-
method=stream is actually already the default in PostgreSQL 10.0. However, in
9.6 or earlier it is recommended to use the predecessor, named -xlog-
method=stream.

Making Sense of Backups and Replication Chapter 10

[288]

Reducing the bandwidth of a backup
When pg_basebackup starts, it tries to finish its work as quickly as possible. If you have a
good network connection, pg_basebackup is definitely able to fetch hundreds of
megabytes a second from the remote server. If your server has a weak I/O system, it could
mean that pg_basebackup could suck up all the resources easily and end users might
experience bad performance because their I/O requests are simply too slow.

To control the maximum transfer rate, pg_basebackup offers the following:

-r, --max-rate=RATE maximum transfer rate to transfer data directory (in
kB/s, or use suffix "k" or "M")

When you create a base backup, make sure that the disk system on the master can actually
stand the load. Adjusting your transfer rate can therefore make a lot of sense.

Mapping tablespaces
pg_basebackup can be called directly if you are using an identical filesystem layout on the
target system. If this is not the case, pg_basebackup allows mapping the master's
filesystem layout to the desired layout:

-T, --tablespace-mapping=OLDDIR=NEWDIR
 relocate tablespace in OLDDIR to NEWDIR

If your system is small, it could be a good idea to keep everything in one
tablespace.

This holds true if I/O is not the problem (maybe because you are only managing a few
gigabytes of data).

Using different formats
pg_basebackup can create various formats. By default, it will put data in an empty
directory. Essentially, it will connect to the source server and create a .tar over a network
connection and put the data into the desired directory.

Making Sense of Backups and Replication Chapter 10

[289]

The trouble with this approach is that pg_basebackup will create many files, which is not
suitable if you want to move the backup to an external backup solution (maybe Tivoli
storage manager or some other solution):

-F, --format=p|t output format (plain (default), tar)

To create a single file, you can use the -F=t option. By default, it will create a file called
base.tar, which can then be managed more easily. The downside, of course, is that you
have to inflate the file again before performing PITR.

Testing transaction log archiving
Before we dig into the actual replay process, it makes sense to actually check archiving to
make sure it is working perfectly and as expected:

[hs@zenbook archive]$ ls -l
total 212996
-rw------- 1 hs hs 16777216 Jan 30 09:04 000000010000000000000001
-rw------- 1 hs hs 16777216 Jan 30 09:04 000000010000000000000002
-rw------- 1 hs hs 302 Jan 30 09:04
000000010000000000000002.00000028.backup
-rw------- 1 hs hs 16777216 Jan 30 09:20 000000010000000000000003
-rw------- 1 hs hs 16777216 Jan 30 09:20 000000010000000000000004
-rw------- 1 hs hs 16777216 Jan 30 09:20 000000010000000000000005
-rw------- 1 hs hs 16777216 Jan 30 09:20 000000010000000000000006
...

As soon as there is serious activity in the database, WAL files should be sent to the archive.

In addition to just checking for files, the following view can be useful:

test=# \d pg_stat_archiver

View "pg_catalog.pg_stat_archiver"

 Column | Type | Modifiers
--------------------+--------------------------+-----------
 archived_count | bigint |
 last_archived_wal | text |
 last_archived_time | timestamp with time zone |
 failed_count | bigint |
 last_failed_wal | text |
 last_failed_time | timestamp with time zone |
 stats_reset | timestamp with time zone |

Making Sense of Backups and Replication Chapter 10

[290]

The pg_stat_archiver system view is very useful for figuring out if and when archiving
has stalled for whatever reason. It will tell you about the number of files already archived
(archived_count). You can also see which file was the last one and when it happened.
Finally, the pg_stat_archiver system view can tell you when archiving has gone wrong,
which is vital information. Unfortunately, the error code or the error message is not shown
in the table, but as archive_command can be an arbitrary command, it is easy to log.

There is one more thing to see in the archive. As described already, it is important to see
that those files are actually archived. But there is more: when the pg_basebackup
command-line tool is called, you will see a .backup file in the stream of WAL files. It is
small and contains only some information about the base backup itself—it is purely
informative and is not needed by the replay process. However, it gives you some vital clues.
When you start to replay the transaction log later on, you can delete all WAL files that are
older than the .backup file. In this case, our backup file is called
000000010000000000000002.00000028.backup. This means that the replay process
starts somewhere within file ...0002 (at position ...28). It also means that we can delete
all files older than ...0002. Older WAL files won't be needed for recovery anymore. Keep
in mind that you can keep more than just one backup around, so I am only referring to the
current backup.

Now that archiving works, we can turn our attention to the replay process.

Replaying the transaction log
Let us sum up the process so far. We have adjusted the postgresql.conf file (wal_level,
max_wal_senders, archive_mode, and archive_command) and we have allowed for the
pg_basebackup command in the pg_hba.conf file. Then, the database was restarted and a
base backup was successfully produced.

Keep in mind that base backups can happen only while the database is fully
operational—only a brief restart to change the max_wal_sender and wal_level variables
is needed. The backup can happen only while the database is fully active.

Now the system is working properly, we might face a crash from which we want to recover.
Therefore, we can perform PITR to restore as much data as possible. The first thing we've
got to do is take the base backup and put it at the desired location.

Making Sense of Backups and Replication Chapter 10

[291]

It can be a good idea to save the old database cluster. Even if it is broken,
your PostgreSQL support company might need it to track down the reason
for the crash. You can still delete it later on, once you've got everything up
and running again.

Given the preceding filesystem layout, you might want to do something like this:

cd /some_target_dir cp -Rv * /data

I am assuming that your new database server will be located in the /data directory. Make
sure that the directory is empty before you copy the base backup over.

In the next step, a file called recovery.conf can be created. It will contain all the
information concerning the replay process such as the position of the WAL archive, the time
you want to reach, and all that.

In PostgreSQL 10.0, the recovery.conf file will most likely not exist
anymore. Settings are expected to be moved to the postgresql.conf file.
At the time of writing, it is not totally clear what will happen precisely.

Here is a sample recovery.conf file:

restore_command = 'cp /archive/%f %p'
recovery_target_time = '2019-04-05 15:43:12'

After putting the recovery.conf file into the $PGDATA directory, you can simply start up
your server. The output might look like this:

server starting
LOG: database system was interrupted; last known up
 at 2017-01-30 09:04:07 CET
LOG: starting point-in-time recovery to 2019-04-05 15:43:12+02
LOG: restored log file "000000010000000000000002" from archive
LOG: redo starts at 0/2000028
LOG: consistent recovery state reached at 0/20000F8
LOG: restored log file "000000010000000000000003" from archive
LOG: restored log file "000000010000000000000004" from archive
LOG: restored log file "000000010000000000000005" from archive
...
LOG: restored log file "00000001000000000000000E" from archive
cp: cannot stat '/archive/00000001000000000000000F':
 No such file or directory
LOG: redo done at 0/E7BF710
LOG: last completed transaction was at log time
 2017-01-30 09:20:47.249497+01

Making Sense of Backups and Replication Chapter 10

[292]

LOG: restored log file "00000001000000000000000E" from archive
cp: cannot stat '/archive/00000002.history': No such file or directory
LOG: selected new timeline ID: 2
cp: cannot stat '/archive/00000001.history': No such file or directory
LOG: archive recovery complete
LOG: MultiXact member wraparound protections are now enabled
LOG: database system is ready to accept connections
LOG: autovacuum launcher started

When the server is started, there are a couple of messages to look for to ensure that your
recovery works perfectly: the first one is consistent recovery state reached. This
message means that PostgreSQL could replay enough of the transaction log to bring the
database back to a state that makes it usable.

Then, PostgreSQL will copy one file after the other and replay them. However, remember
we have told the recovery.conf file to bring us all the way up to 2019. This text is written
in 2017 so there is clearly not enough WAL to reach 2019. Therefore, PostgreSQL will error
out and tell us about the last completed transaction.

Of course, this is just a showcase, and in real-world examples you will most likely use a
date in the past, which you can use to safely recover. However, I wanted to show that it is
perfectly feasible to use a date in the future—just be prepared to accept the fact that errors
will happen.

After the recovery has finished, the recovery.conf file will be renamed recovery.done
so that you can see what you have done during recovery. All the processes of your database
server will be up and running and you will have a ready-to-use database instance.

Finding the right timestamp
So far, I have silently assumed that you know the timestamp you want to recover to, or that
you simply want to replay the whole transaction log to reduce data loss. However, what if
you don't want to replay everything? What if you don't know which point in time to
recover to? In everyday life, this is actually a very common scenario. One of your
developers loses some data in the morning and you are supposed to make things fine again.
The trouble is this: at what time in the morning? Once recovery has ended, it cannot be
restarted easily. Once recovery is completed, the system will be promoted, and once it has
been promoted, you cannot continue to replay WAL.

However, what you can do is pause recovery without promotion, check what is inside the
database, and continue.

Making Sense of Backups and Replication Chapter 10

[293]

Doing that is easy. The first thing you have to make sure of is that the hot_standby
variable is set to on in the postgresql.conf file. This will make sure that the database is
readable while it is still in recovery mode. Then you have to adapt the recovery.conf file
before starting the replay process:

recovery_target_action = 'pause'

There are various recovery_target_action settings. If you use pause, PostgreSQL will
pause at the desired time and let you check what has already been replayed. You can adjust
the time you want, restart, and try again. Alternatively, you can set the value to promote or
shutdown.

There is a second way to pause transaction log replay. Basically, it can also be used when
performing PITR. However, in most cases, it is used with streaming replication. Here is
what can be done during WAL replay:

postgres=# \x
Expanded display is on.
postgres=# \df *pause*
List of functions
-[RECORD 1]-------+-------------------------
Schema | pg_catalog
Name | pg_is_wal_replay_paused
Result data type | boolean
Argument data types |
Type | normal
-[RECORD 2]-------+-------------------------
Schema | pg_catalog
Name | pg_wal_replay_pause
Result data type | void
Argument data types |
Type | normal

postgres=# \df *resume*
List of functions
-[RECORD 1]-------+----------------------
Schema | pg_catalog
Name | pg_wal_replay_resume
Result data type | void
Argument data types |
Type | normal

You can call the SELECT pg_wal_replay_pause(); command to halt WAL replay until
you call the SELECT pg_wal_replay_resume(); command.

Making Sense of Backups and Replication Chapter 10

[294]

The idea is to figure out how much WAL has already been replayed and to continue as
necessary. However, keep this in mind: once a server has been promoted, you cannot just
continue to replay WAL without further precautions.

As you have seen already, it can be pretty tricky to figure out how far you have to recover.
Therefore, PostgreSQL provides some help. Consider the following real-world example: at
midnight, you are running a nightly process that ends at some point that is usually not
known. The goal is to recover exactly to the end of the nightly process. The trouble is this:
how do you know when the process has ended? In most cases, this is hard to figure out. So
why not add a marker to the transaction log:

postgres=# SELECT pg_create_restore_point('my_daily_process_ended');
 pg_create_restore_point

 1F/E574A7B8
(1 row)

If your process calls this SQL statement as soon as it ends, it will be possible to use this label
in the transaction log to recover exactly to this point in time by adding the following
directive to the recovery.conf file:

recovery_target_name = 'my_daily_process_ended'

Use this setting instead of recovery_target_time and the replay process will beam you
exactly to the end of the nightly process.

Of course, you can also replay up to a certain transaction ID. However, in real life, this has
proven to be difficult as the exact transaction ID is rarely ever known to the administrator,
and therefore, there is not much practical value here.

Cleaning up the transaction log archive
So far, data is being written to the archive all the time and no attention has been paid to
cleaning out the archive again to free up some space in the filesystem. PostgreSQL cannot
do this job for you because it has no idea whether you want to use the archive again.
Therefore, you are in charge of cleaning up the transaction log. Of course, you can also use a
backup tool—however, it is important to know that PostgreSQL has no chance of doing the
cleanup for you.

Suppose we want to clean up an old transaction log that is not needed anymore. Maybe you
want to keep several base backups around and clean out all transaction logs that won't be
needed anymore to restore one of those backups.

Making Sense of Backups and Replication Chapter 10

[295]

In this case, the pg_archivecleanup command-line tool is exactly what you need. You can
simply pass the archive directory and the name of the backup file to the
pg_archivecleanup command, and it will make sure that files are removed from disk.
Using this tool makes life easier for you because you don't have to figure out which
transaction log files to keep on your own. Here is how it works:

[hs@pgnode01 ~]$ pg_archivecleanup --help
pg_archivecleanup removes older WAL files from PostgreSQL archives.

Usage:
 pg_archivecleanup [OPTION]... ARCHIVELOCATION OLDESTKEPTWALFILE

Options:
 -d generate debug output (verbose mode)
 -n dry run, show the names of the files that
 would be removed
 -V, --version output version information, then exit
 -x EXT clean up files if they have this extension
 -?, --help show this help, then exit

For use as archive_cleanup_command in recovery.conf when standby_mode = on:
 archive_cleanup_command = 'pg_archivecleanup
 [OPTION]... ARCHIVELOCATION %r'
e.g.
 archive_cleanup_command = 'pg_archivecleanup
 /mnt/server/archiverdir %r'

Or for use as a standalone archive cleaner:
e.g.
 pg_archivecleanup /mnt/server/archiverdir
 000000010000000000000010.00000020.backup

The tool can be used easily. It is available on all platforms.

Setting up asynchronous replication
After taking a look at transaction log archiving and PITR, we can focus our attention on one
of the most widely used features in the PostgreSQL world today: streaming replication. The
idea behind streaming replication is simple. After an initial base backup, the secondary can
connect to the master and fetch a transaction log in real time and apply it. Transaction log
replay is not a single operation anymore, but rather a continuous process that is supposed
to keep running as long as the cluster exists.

Making Sense of Backups and Replication Chapter 10

[296]

Performing a basic setup
In this section, you will learn how to set up asynchronous replication quickly and easily.
The goal is to set up a system consisting of two nodes.

Basically, most of the work has already been done for WAL archiving. However, to make it
easy for you I will explain the entire process of setting up streaming, because we cannot
assume that WAL shipping is really already set up as needed.

The first thing to do is to go to the postgresql.conf file and adjust the following
parameters (note that some of them are already default in PostgreSQL 10.0):

wal_level = replica
max_wal_senders = 5 # or whatever value >= 2
hot_standby = on # already a sophistication

Just like previously, the wal_level variable has to be adjusted to ensure that PostgreSQL
produces enough transaction logs to sustain a slave. Then we have to configure the
max_wal_senders variable. When a slave is up and running or when a base backup is
created, a WAL sender process will talk to a WAL receiver process on the client side. The
max_wal_senders setting allows PostgreSQL to create enough processes to serve those
clients.

Theoretically, it is enough to have just one WAL sender process. However,
it is pretty inconvenient. A base backup that uses the --wal-
method=stream parameter will already need two WAL sender processes.
If you want to run a slave and perform a base backup at the same time,
there are already three processes in use. So, make sure that you allow
PostgreSQL to create enough processes to prevent pointless restarts.

Then comes the hot_standby variable. Basically, a master ignores the hot_standby
variable and does not take it into consideration. All it does is make the slave readable
during WAL replay. So why do we care? Keep in mind: the pg_basebackup command will
clone the entire server, including its configuration. This means that if you have already set
the value on the master, the slaves will automatically get it when the data directory is
cloned.

After setting the postgresql.conf file, we can turn our attention to the pg_hba.conf file:
just allow the slave to perform replication by adding rules. Basically, those rules are the
same as you have already seen for PITR.

Then, restart the database server as has been done for PITR already.

Making Sense of Backups and Replication Chapter 10

[297]

Then, the pg_basebackup command can be called on the slave. Before you do that, make
sure that the /target directory is empty. If you are using RPM packages, ensure that you
shut down a potentially running instance and empty the directory (for example,
/var/lib/pgsql/data):

pg_basebackup -D /target
 -h master.example.com
 --checkpoint=fast
 --xlog-method=stream -R

Just replace the /target directory with your desired destination directory and replace
master.example.com with the IP or DNS name of your master. The --checkpoint=fast
parameter will trigger an instant checkpoint. Then there is the --wal-method=stream
parameter: it will open two streams. One will copy the data; the other one will fetch the
WAL, which is created while the backup is running.

Finally, there is the -R flag:

-R, --write-recovery-conf
write recovery.conf after backup

The -R flag is a really good feature. The pg_basebackup command has the ability to
automatically create the slave configuration. It will add various entries to the
recovery.conf file:

standby_mode = on primary_conninfo = ' ...'

The first setting says that PostgreSQL should keep replaying WAL all the time—if the
whole transaction log has been replayed, it should wait for a new WAL to arrive. The
second setting will tell PostgreSQL where the master is. It is a normal database connection.

Slaves can also connect to other slaves to stream transaction logs. It is
possible to cascade replication by simply creating base backups from a
slave. So, master really means source server in this context.

After running the pg_basebackup command, the services can be already started. The first
thing you should check is whether the master shows a WAL sender process:

[hs@linuxpc ~]$ ps ax | grep sender
17873 ? Ss 0:00 postgres: wal sender process
 ah ::1(57596) streaming 1F/E9000060

Making Sense of Backups and Replication Chapter 10

[298]

If there is one, the slave will also carry a WAL receiver process:

17872 ? Ss 0:00 postgres: wal receiver process
 streaming 1F/E9000060

If those processes are there, you are already on the right track and replication is working as
expected. Both sides are now talking to each other and WAL flows from the master to the
slave.

Improving security
So far, you have seen that data is streamed as a superuser. However, it is not a good idea to
allow super access from a remote side. Fortunately, PostgreSQL allows you to create a user
that is only allowed to consume the transaction log stream but cannot do anything else.

Creating a user just for streaming is easy:

test=# CREATE USER repl LOGIN REPLICATION;
CREATE ROLE

By assigning replication to the user, it is possible to use it just for streaming—everything
else is forbidden.

It is highly recommended to not use your superuser account to set up streaming. Simply
change the recovery.conf file to the newly created user. Not exposing superuser accounts
will dramatically improve security (just like giving the replication user a password).

Halting and resuming replication
Once streaming replication has been set up, it works flawlessly without too much
administrator intervention. However, in some cases it might make sense to halt replication
and to resume it at some later point. Why would anybody want to do that?

Consider the following use case: you are in charge of a master/slave setup, which is running
some rubbish CMS or some dubious forum software. Suppose you want to update your
application from awful CMS 1.0 to dreadful CMS 2.0. Some changes will be executed in
your database, which will instantly be replicated to the slave database. What if the upgrade
process does something wrong? The error will instantly be replicated to both nodes due to
streaming.

Making Sense of Backups and Replication Chapter 10

[299]

To avoid instant replication you can halt replication and resume as needed. In the case of
our CMS update we could simply do the following things:

Halt replication1.
Perform the app update on the master2.
Check if your application still works. If yes, resume replication. If not, failover to3.
the replica, which still has the old data

With this mechanism you can protect your data, because you can fall back to the data as it
was before the problem. You will learn later in this chapter how to promote a slave to
become the new master server.

The main question now is: how can you halt replication? Here is how it works. Execute the
following line on the standby:

test=# SELECT pg_wal_replay_pause();

This line will halt replication. Note that the transaction log will still flow from the master to
the slave—only the replay process is halted. Your data is still protected as it is persisted on
the slave. In case of a server crash, no data will be lost.

Keep in mind that replay has to be halted on the slave. Otherwise, an error will be thrown
by PostgreSQL:

ERROR: recovery is not in progress
HINT: Recovery control functions can only be executed during recovery.

Once replication is to be resumed, the following line will be needed on the slave:

SELECT pg_wal_replay_resume();

PostgreSQL will start to replay WAL again.

Checking replication to ensure availability
One of the core jobs of every administrator is to ensure that replication stays up and
running all the time. If replication is down, it is possible that data could be lost if the master
crashes. Therefore, keeping an eye on replication is absolutely necessary.

Making Sense of Backups and Replication Chapter 10

[300]

Fortunately, PostgreSQL provides system views, which allow you to take a deep look at
what is going on. One of those views is pg_stat_replication:

test=# \d pg_stat_replication
 View "pg_catalog.pg_stat_replication"

 Column | Type | Modifiers
-------------------+--------------------------+-----------
 pid | integer |
 usesysid | oid |
 usename | name |
 application_name | text |
 client_addr | inet |
 client_hostname | text |
 client_port | integer |
 backend_start | timestamp with time zone |
 backend_xmin | xid |
 state | text |
 sent_lsn | pg_lsn |
 write_lsn | pg_lsn |
 flush_lsn | pg_lsn |
 replay_lsn | pg_lsn |
 write_lag | interval |
 flush_lag | interval |
 replay_lag | interval |
 sync_priority | integer |
 sync_state | text |

The pg_stat_replication view will contain information on the sender. I don't want to
use the word master here because slaves can be connected to some other slave. It is possible
to build a tree of servers. In the case of a tree of servers, the master will only have
information about the slaves it is directly connected to.

The first thing you will see in this view is the process ID of the WAL sender process. It helps
you to identify the process in case something goes wrong (which is usually not the case).
Then you will see the username the slave uses to connect to its sending server. The
client_* fields will indicate where the slaves are. You will be able to extract network
information from those fields. The backend_start field shows when the slaves started to
stream from your server.

Then there is this magical backend_xmin field. Suppose you are running a master/slave
setup. It is possible to tell the slave to report back its transaction ID to the master. The idea
behind that is to delay cleanup on the master so that data is not taken from a transaction
running on the slave.

Making Sense of Backups and Replication Chapter 10

[301]

The state field informs you about the state of the server. If your system is fine, the field
will contain streaming. Otherwise, closer inspection is needed.

The next four fields are really important. The sent_lsn field, formerly
the sent_location field, indicates how much WAL has already reached the other side
(accepted by the WAL receiver). You can use it to figure out how much data has already
made it to the slave. Then there is the write_lsn field, formerly
the write_location field. Once the WAL has been accepted, it is passed on to the OS. The
write_lsn field will tell us the WAL position that has safely made it to the OS already. The
flush_lsn field, formerly the flush_location field, will know how much WAL the
database has already flushed to disk.

Finally, there is the replay_lsn, formerly replay_location field. The fact that the WAL
has made it to the disk on the standby does not mean that PostgreSQL has already replayed
(made visible to the end user) yet. Suppose replication is paused. Data will still flow to the
standby. However, it will be applied later. The replay_lsn field will tell you how much
data is already visible.

In PostgreSQL 10, more fields have been added to pg_stat_replication: the *_lag
fields indicate the delay of the slave and offer a convenient way to see how far a slave is
behind. Note that the fields are at intervals so you can see the time difference directly.

Finally, PostgreSQL tells us whether replication is synchronous or asynchronous.

If you are still on PostgreSQL 9.6 you might find it useful to calculate the difference
between the sending and the receiving server in bytes. The *_lag fields don't for 9.6 yet so
having the difference in bytes can be very beneficial. Here is how it works:

SELECT client_addr, pg_current_wal_location() - sent_location AS diff FROM
pg_stat_replication;

When running this on the master, the pg_current_wal_location() function returns the
current transaction log position. PostgreSQL 9.6 has a special datatype for transaction log
positions called pg_lsn. It features a couple of operators, which are used here to subtract
the slave's WAL position from the master's WAL position. The view outlined here therefore
returns the difference between two servers in bytes (replication delay).

Note that this statement only works in PostgreSQL 10. The function used to be called
pg_current_xlog_location() in older releases.

Making Sense of Backups and Replication Chapter 10

[302]

While the pg_stat_replication system view contains information on the sending side,
the pg_stat_wal_receiver system view will provide you with similar information on the
receiving side:

test=# \d pg_stat_wal_receiver
 View "pg_catalog.pg_stat_wal_receiver"
Column | Type |Modifiers
----------------------+-------------------------+---------
pid | integer |
status | text |
receive_start_lsn | pg_lsn |
receive_start_tli | integer |
received_lsn | pg_lsn |
received_tli | integer |
last_msg_send_time | timestamp with time zone|
last_msg_receipt_time | timestamp with time zone|
latest_end_lsn | pg_lsn |
latest_end_time | timestamp with time zone|
slot_name | text |
conninfo | text |

After the process ID of the WAL receiver process, PostgreSQL will provide you with the status of the process.
Then the receive_start_lsn field will tell you about the transaction log position the WAL receiver
started at, while the receive_start_tli field will inform us about the timeline used when the WAL
receiver was started.
The received_lsn field contains information about the WAL position, which was already
received and flushed to disk. Then we've got some information about the time as well as
information about slots and connections.

In general, many people find it easier to read the pg_stat_replication system view than
the pg_stat_wal_receiver view and most tools are built around the
pg_stat_replication view.

Performing failovers and understanding timelines
Once a master/slave setup has been created, it usually works flawlessly for a very long time.
However, everything can fail, and therefore it is important to understand how a failed
server can be replaced with a backup system.

Making Sense of Backups and Replication Chapter 10

[303]

PostgreSQL makes failovers and promotion easy. Basically, all you have to do is use the
pg_ctl parameter to tell a replica to promote itself:

pg_ctl -D data_dir promote

The server will disconnect itself from the master and perform the promotion instantly.
Remember, the slave might already support thousands of read-only connections while
being promoted. One nice feature of PostgreSQL is that all open connections will be turned
into read/write connections during promotion—there is not even a need to reconnect.

When promoting a server, PostgreSQL will increment the timeline: if you set up a brand
new server, it will be in timeline one. If a slave is cloned from that server, it will be in the
same timeline as its master. So, both boxes will be in timeline one. If the slave is promoted
to an independent master, it will move on to timeline two.

Timelines are especially important to PITR. Suppose you have created a base backup
around midnight. At 12:00 AM, the slave is promoted. At 3:00 PM, something crashes and
you want to recover to 2:00 PM. You will replay the transaction log created after the base
backup and follow the WAL stream of your desired server, as those two nodes started to
diverge at 12.00 AM.

The timeline change will also be visible in the name of the transaction log files. Here is an
example of a WAL file in timeline one:

0000000100000000000000F5

If the timeline switches to 2 the new filename would be as follows:

0000000200000000000000F5

As you can see, WAL files from different timelines could theoretically exist in the same
archive directory.

Managing conflicts
So far, you have learned a lot about replication. In the next step, it is important to take a
look at replication conflicts. The main question that arises is this: how can a conflict ever
happen in the first place?

Making Sense of Backups and Replication Chapter 10

[304]

Consider the following example:

Master Slave

BEGIN;

SELECT ... FROM tab WHERE ...

... running ...

DROP TABLE
tab;

... conflict happens ...

... transaction is allowed to continue for 30 seconds

...

... conflict is resolved or ends before timeout ...

The problem here is that the master does not know that there is a transaction happening on
the slave. Therefore, the DROP TABLE command does not block until the reading transaction
is gone. If those two transactions happened on the same node, this would of course be the
case. However, we are looking at two servers here. The DROP TABLE command will execute
normally, and a request to kill those data files on disk will reach the slave through the
transaction log. The slave is not in trouble: if the table is removed from disk, the SELECT
clause has to die—if the slave waits for the SELECT clause to complete before applying the
WAL, it might fall hopelessly behind.

The ideal solution is a compromise that can be controlled using a configuration variable:

max_standby_streaming_delay = 30s
max delay before canceling queries
when reading streaming WAL;

The idea is to wait for 30 seconds before resolving the conflict by killing the query on the
slave. Depending on your application, you might want to change this variable to a more or
less aggressive setting. Note that 30 seconds is for the entire replication stream and not for a
single query. It might be that a single query is killed a lot earlier because some other query
has already waited for some time.

Making Sense of Backups and Replication Chapter 10

[305]

While the DROP TABLE command is clearly a conflict, there are some operations that are less
obvious. Here is an example:

BEGIN;
...
DELETE FROM tab WHERE id < 10000;
COMMIT;
...
VACUUM tab;

Let us assume again that there is a long-running SELECT clause happening on the slave. The
DELETE clause is clearly not the problem here as it only flags the row as deleted—it does not
actually remove it. Nor is the commit a problem, because it simply marks the transaction as
done. Physically, the row is still there.

The problem starts when an operation such as vacuum kicks in. It will destroy the row on
disk. Of course, those changes will make it to the WAL and eventually reach the slave,
which is now in trouble.

To prevent typical problems caused by standard OLTP workloads, the PostgreSQL
development team has introduced a config variable:

hot_standby_feedback = off
 # send info from standby to prevent
 # query conflicts

If this setting is on, the slave will periodically send the oldest transaction ID to the master.
The vacuum will then know that there is an older transaction going on somewhere in the
system and defer the cleanup age to a later point when it is safe to clean out those rows. In
fact, the hot_standby_feedback parameter causes the same effect as a long transaction on
the master.

As you can see, the hot_standby_feedback parameter is off by default. Why is that the
case? Well, there is a good reason for that: if it is off, a slave does not have a real impact on
the master. Transaction log streaming does not consume a lot of CPU power, making
streaming replication cheap and efficient. However, if a slave (which might not even be
under your control) keeps transactions open for too long, your master might suffer from
table bloat due to late cleanup. In a default setup this is less desirable than reduced
conflicts.

Making Sense of Backups and Replication Chapter 10

[306]

Having hot_standby_feedback = on will usually avoid 99% of all OLTP-related
conflicts, which is especially important if your transactions take longer than just a couple of
milliseconds.

Making replication more reliable
In this chapter, you have already seen that setting up replication is easy and does not
require a lot of effort. However, there are always some corner cases which can cause
operational challenges. One of those corner cases is all about transaction log retention.

Consider the following scenario:

A base backup is fetched1.
After the backup, nothing happens for one hour2.
The slave is started3.

Keep in mind that the master does not care too much about the existence of the slave.
Therefore, the transaction log needed for the slave to start up might not exist on the master
anymore as it might have been removed by checkpoints already. The problem is that a re-
sync is needed to be able to fire up the slave. In the case of a multi-TB database, this is
clearly a problem.

A potential solution to the problem is to use the wal_keep_segments setting:

wal_keep_segments = 0 # in logfile segments, 16MB each; 0 disables

By default, PostgreSQL keeps enough transaction logs around to survive an unexpected
crash, but not much more. With the wal_keep_segments setting, you can tell the server to
preserve more data so that a slave can catch up even if it falls behind.

It is important to keep in mind that servers not only fall behind because they are too slow or
too busy—in many cases, a delay happens because the network is too slow. Suppose you
are creating an index on a 1 TB table: PostgreSQL will sort the data, and when the index is
actually built it is also sent to the transaction log. Just imagine what happens when
hundreds of megabytes of WAL is sent over a wire that can maybe only handle 1 gigabyte
or so. The loss of many gigabytes of data might be the consequence within seconds.
Therefore, adjusting the wal_keep_segments setting should not focus on the typical delay
but on the highest delay tolerable to the administrator (maybe some margin of safety).

Making Sense of Backups and Replication Chapter 10

[307]

Investing in a reasonably high setting for the wal_keep_segments setting makes a lot of
sense, and I recommend ensuring that there is always enough data around.

An alternative solution to the problem of running out of transaction logs is replication slots,
which will be covered later in this chapter.

Upgrading to synchronous replication
So far, asynchronous replication has been covered in reasonable detail. However,
asynchronous replication means that a commit on the slave is allowed to happen after the
commit on the master. If a master crashes, data that has not made it to the slave yet might
be lost even if replication is occurring.

Synchronous replication is here to solve the problem: if PostgreSQL replicates
synchronously, a commit has to be flushed to disk by at least one replica in order to go
through on the master. Therefore, synchronous replication basically reduces the odds of
data loss quite substantially.

In PostgreSQL, configuring synchronous replication is easy. Basically, just two things have
to be done:

Adjust the synchronous_standby_names setting in the postgresql.conf file
on the master
Add an application_name setting to the primary_conninfo parameter in the
recovery.conf file in the replica

Let us get started with the postgresql.conf file on the master:

synchronous_standby_names = ''
 # standby servers that provide sync rep
 # number of sync standbys and comma-separated
 # list of application_name
 # from standby(s); '*' = all

Making Sense of Backups and Replication Chapter 10

[308]

If you put in '*', all nodes will be considered as synchronous candidates. However, in real-
life scenarios it is more likely that only a couple of nodes will be listed. Here is an example:

synchronous_standby_names = 'slave1, slave2, slave3'

Now we have to change the recovery.conf file and add application_name:

primary_conninfo = '... application_name=slave2'

The replica will now connect to the master as slave2. The master will check its config and
figure that slave2 is the first one in the list that makes a viable slave. PostgreSQL will
therefore ensure that a commit on the master will only be successful if the slave confirms
that the transaction is there.

Let us assume now that slave2 goes down for some reason: PostgreSQL will try to turn
one of the other two nodes into a synchronous standby. The problem is this: what if there is
no other server? In this case, PostgreSQL will wait on commit forever if a transaction is
supposed to be synchronous. Yes, this is true: PostgreSQL will not continue to commit
unless there are at least two viable nodes available. Remember, you have asked PostgreSQL
to store data on at least two nodes—if you cannot provide enough hosts at any given point
in time, it is your fault. In reality, this means that synchronous replication is best achieved
with at least three nodes: one master and two slaves, as there is always a chance that one
host is lost.

Talking about host failures, there is an important thing to note at this point: if a
synchronous partner dies while a commit is going in, PostgreSQL will wait for it to return.
Alternatively, the synchronous commit can happen with some other potential synchronous
partner. The end user might not even notice that the synchronous partners change.

In some cases, storing data on just two nodes might not be enough: maybe you want to
improve safety even more and store data on even more nodes. To achieve that, you can
make use of the following syntax (in PostgreSQL 9.6 or higher):

synchronous_standby_names =
 '4(slave1, slave2, slave3, slave4, slave5, slave6)'

In this case, data is supposed to end up on four out of six nodes before the commit is
confirmed by the master.

Of course, this comes with a price tag—keep in mind that speed will go down if you add
more and more synchronous replicas. There is no such thing as a free lunch. PostgreSQL
provides a couple of ways to keep the performance overhead under control, which we'll
discuss in the following section.

Making Sense of Backups and Replication Chapter 10

[309]

In PostgreSQL 10, even more functionality has been added:

[FIRST] num_sync (standby_name [, ...])
ANY num_sync (standby_name [, ...])
standby_name [, ...]

The ANY and FIRST keywords have been introduced. FIRST allows you to set the priorities
of your servers, while ANY gives PostgreSQL a bit more flexibility when it commits a
synchronous transaction.

Adjusting durability
In this chapter, you have seen that data is either replicated synchronously or
asynchronously. However, this is not a global thing. To ensure good performance,
PostgreSQL allows you to configure things in a very flexible way. It is possible to replicate
everything synchronously or asynchronously, but in many cases you might want to do
things in a more fine-grained way. This is exactly when the synchronous_commit setting
is needed.

Assuming that synchronous replication has been configured (the application_name
setting in the recovery.conf file as well as the synchronous_standby_names setting in
the postgresql.conf file), the synchronous_commit setting will offer the following
options:

off: This is basically asynchronous replication. WAL won't be flushed to disk on
the master instantly and the master won't wait for the slave to write everything to
disk. If the master fails, some data might be lost (up to three times
wal_writer_delay).
local: The transaction log is flushed to disk on commit on the master. However,
the master does not wait on the slave (asynchronous replication).
remote_write: The remote_write setting already makes PostgreSQL replicate
synchronously. However, only the master saves data to disk. For the slave, it is
enough to send the data to the operating system. The idea is to not wait for the
second disk flush to speed things up. It is very unlikely that both storage systems
crash at exactly the same time. Therefore, the risk of data loss is close to zero.
on: In this case, a transaction is okay if the master and the slave(s) have
successfully flushed the transaction to disk. The application will not receive a
commit unless data is safely stored on two servers (or more, depending on the
configuration).

Making Sense of Backups and Replication Chapter 10

[310]

remote_apply: While on ensures that data is safely stored on two nodes, it does
not guarantee that you can simply load balance right away. The fact that data is
flushed on the disk does not ensure that the user can already see the data. For
example, if there is a conflict, a slave will halt transaction replay—however, a
transaction log is still sent to the slave during a conflict and flushed to disk. In
short, it can happen that data is flushed on the slave even if it is not visible to the
end user yet. The remote_apply option fixes this problem. It ensures that data
must be visible on the replica so that the next read request can be safely executed
on the slave, which can already see the changes made to the master and expose
them to the end user. The remote_apply option is, of course, the slowest way to
replicate data because it requires the slave to already expose the data to the end
user.

In PostgreSQL, the synchronous_commit parameter is not a global value. It can be
adjusted on various levels, just like many other settings. You might want to do something
like this:

test=# ALTER DATABASE test SET synchronous_commit TO off;
ALTER DATABASE

Sometimes, only a single database should replicate in a certain way. It is also possible to just
synchronously replicate if you are connected as a specific user. Last but not least, it is also
possible to tell a single transaction how to commit. By adjusting the synchronous_commit
parameter on the fly it is even possible to control things on a per-transaction level.

For example, consider the following two scenarios:

Writing to a log table where you might want to use asynchronous commit
because you want to be quick
Storing a credit card payment where you want to be safe so a synchronous
transaction might be the desired thing

As you can see, the very same database might have different requirements depending on
which data is modified. Therefore, changing data at the transaction level is very useful and
helps to improve speed.

Making Sense of Backups and Replication Chapter 10

[311]

Making use of replication slots
After that introduction to synchronous replication and dynamically adjustable durability, I
want to focus your attention on a feature called the replication slot.

What is the purpose of a replication slot? Let us consider the following example: there is a
master and a slave. On the master, a large transaction is executed and the network
connection is not fast enough to ship all the data in time. At some point, the master removes
its transaction log (checkpoint). If the slave is too far behind, a re-sync is needed. As you
have already seen, the wal_keep_segments setting can be used to reduce the risk of failing
replication. The question is this: what is the best value for the wal_keep_segments setting?
Sure, more is better, but how much is best?

Replication slots will solve this problem for you: if you are using a replication slot, a master
can only recycle the transaction log once it has been consumed by all replicas. The
advantage here is that a slave can never fall behind so much that a re-sync is needed.

The trouble is, suppose you shut down a replica without telling the master about it. The
master would keep a transaction log forever and the disk on the primary server would
eventually fill up, causing unnecessary downtime.

To reduce the risk for the master, replication slots should only be used in conjunction with
proper monitoring and alerting. It is simply necessary to keep an eye on open replication
slots that could potentially cause issues, or might not be in use anymore.

In PostgreSQL there are two types of replication slot:

Physical replication slots
Logical replication slots

Physical replication slots can be used for standard streaming replication. They will make
sure that data is not recycled too early. Logical replication slots do the same thing.
However, they are used for logical decoding. The idea behind logical decoding is to give
users a chance to attach to the transaction log and decode it with a plugin. A logical
transaction slot is therefore some sort of tail -f for database instances. It allows the user to
extract changes made to the database—and therefore to the transaction log—in any format
and for any purpose. In many cases, a logical replication slot is used for logical replication.

Making Sense of Backups and Replication Chapter 10

[312]

Handling physical replication slots
To make use of replication slots, changes have to be made to the postgresql.conf file:

wal_level = logical
max_replication_slots = 5 # or whatever number is needed

With physical slots, logical is not yet necessary—replica is enough. However, for logical
slots, we need a higher wal_level setting. Then the max_replication_slots setting has
to be changed if you are on PostgreSQL 9.6 or below. PostgreSQL 10 already has the
improved default setting. Basically, just put in a number that serves your purpose. My
recommendation is to add some spare slots so that you can easily attach more consumers
without restarting the server along the way.

After a restart, the slot can be created:

test=# \x
Expanded display is on.

test=# \df *create*physical*slot*
List of functions

-[RECORD 1]-------+--

Schema | pg_catalog
Name | pg_create_physical_replication_slot
Result data type | record
Argument data types | slot_name name, immediately_reserve
 boolean DEFAULT false, temporary
 boolean DEFAULT false, OUT slot_name
 name, OUT lsn pg_lsn
Type | normal

Making Sense of Backups and Replication Chapter 10

[313]

The pg_create_physical_replication_slot function is here to help you create the
slot. It can be called with one of two parameters: if only a slot name is passed, the slot will
be active when it is used for the first time. If true is passed as the second parameter, the
slot will immediately start to conserve the transaction log:

test=# SELECT * FROM pg_create_physical_replication_slot('some_slot_name',
true);
 slot_name | lsn
-----------------+---------------
 some_slot_name | 0/EF8AD1D8

(1 row)

To see which slots are active on the master, consider running the following SQL statement:

test=# \x
Expanded display is on.
test=# SELECT * FROM pg_replication_slots;
-[RECORD 1]------------------+---------------
slot_name | some_slot_name
plugin |
slot_type | physical
datoid |
database |
active | f
active_pid | xmin
 |
catalog_xmin |
restart_lsn |
0/EF8AD1D8 confirmed_flush_lsn |

The view will tell us a lot about the slot. It contains information about the type of slot in use,
the transaction log positions, and more.

To make use of the slot, all you have to do is to add it to the recovery.conf file:

primary_slot_name = 'some_slot_name'

Making Sense of Backups and Replication Chapter 10

[314]

Once streaming is restarted, the slot will be used directly and protect replication. If you
don't want your slot anymore, you can drop it easily:

test=# \df *drop*slot*
List of functions
-[RECORD 1]-------+-------------------------
Schema | pg_catalog
Name | pg_drop_replication_slot
Result data type | void
Argument data types | name
Type | normal

When a slot is dropped, there is no distinction between a logical and a physical slot
anymore. Just pass the name of the slot to the function and execute it.

Nobody is allowed to use the slot when it is dropped. Otherwise,
PostgreSQL will error out (for good reason).

Handling logical replication slots
Logical replication slots are essential to logical replication. Due to space limitations in this
chapter it is unfortunately not possible to cover all aspects of logical replication. However, I
want to outline some of the basic concepts that are essential for logical decoding and
therefore also for logical replication.

If you want to create a replication slot, here is how it works. The function needed here takes
two parameters: the first one will define the name of the replication slot, while the second
one carries the plugin used to decode the transaction log. It will determine the format
PostgreSQL is going to use to return the data:

test=# SELECT * FROM pg_create_logical_replication_slot('logical_slot',
'test_decoding');
 slot_name | lsn
---------------+---------------
 logical_slot | 0/EF8AD4B0

(1 row)

Making Sense of Backups and Replication Chapter 10

[315]

You can check for the existence of the slot using the same command as earlier. To show you
what a slot really does, a small test can be created:

test=# CREATE TABLE t_demo (id int, name text, payload text);
CREATE TABLE
test=#BEGIN;
BEGIN
test=# INSERT INTO t_demo
VALUES (1, 'hans', 'some data');
INSERT 0 1
test=# INSERT INTO t_demo VALUES (2, 'paul', 'some more data');
INSERT 0 1
test=# COMMIT;
COMMIT
test=# INSERT INTO t_demo VALUES (3, 'joe', 'less data');
INSERT 0 1

Note that two transactions were executed. The changes made to those transactions can now
be extracted from the slot:

test=# SELECT pg_logical_slot_get_changes('logical_slot', NULL, NULL);
 pg_logical_slot_get_changes

 (0/EF8AF5B0,606546,"BEGIN 606546")
 (0/EF8CCCA0,606546,"COMMIT 606546")
 (0/EF8CCCD8,606547,"BEGIN 606547")
 (0/EF8CCCD8,606547,"table public.t_demo: INSERT: id[integer]:1
 name[text]:'hans' payload[text]:'some data'")
 (0/EF8CCD60,606547,"table public.t_demo: INSERT: id[integer]:2
 name[text]:'paul' payload[text]:'some more data'")
 (0/EF8CCDE0,606547,"COMMIT 606547")
 (0/EF8CCE18,606548,"BEGIN 606548")
 (0/EF8CCE18,606548,"table public.t_demo: INSERT: id[integer]:3
 name[text]:'joe' payload[text]:'less data'")
 (0/EF8CCE98,606548,"COMMIT 606548")
(9 rows)

Making Sense of Backups and Replication Chapter 10

[316]

The format used here depends on the output plugin we have chosen previously. There are
various output plugins for PostgreSQL, such as wal2json.

Note that if default values are used, the logical stream will contain real values and not just
functions. The logical stream has the data that ended up in the underlying tables.

Also keep in mind that the slot does not return data anymore once it is consumed:

test=# SELECT pg_logical_slot_get_changes('logical_slot', NULL, NULL);

 pg_logical_slot_get_changes

(0 rows)

The result set on the second call is therefore empty. If you want to fetch data repeatedly,
PostgreSQL offers the pg_logical_slot_peek_changes function. It works just like the
pg_logical_slot_get_changes function but assures that data will still be available in
the slot.

Using plain SQL is, of course, not the only way to consume a transaction log. There is also a
command-line tool called pg_recvlogical. It can be compared to doing tail -f on an
entire database instance and receives the flow of data in real time.

Let us start the pg_recvlogical command:

[hs@zenbook ~]$ pg_recvlogical -S logical_slot -P test_decoding
 -d test -U postgres --start -f -

In this case, the tool connects to the test database and consumes data from the
logical_slot. -f means that the stream will be sent to stdout. Let us kill some data:

test=# DELETE FROM t_demo WHERE id < random()*10;
DELETE 3

The changes will make it into the transaction log. However, by default the database only
cares about what the table will look like after the deletion. It knows which blocks have to be
touched and all that—it does not know what it was like previously:

BEGIN 606549
table public.t_demo: DELETE: (no-tuple-data)
table public.t_demo: DELETE: (no-tuple-data)
table public.t_demo: DELETE: (no-tuple-data)
COMMIT 606549

Making Sense of Backups and Replication Chapter 10

[317]

Therefore, the output is pretty pointless. To fix that, the following line comes to the rescue:

test=# ALTER TABLE t_demo REPLICA IDENTITY FULL;
ALTER TABLE

If the table is repopulated with data and deleted again, the transaction log stream looks like
this:

BEGIN 606558
table public.t_demo: DELETE: id[integer]:1 name[text]:'hans'
 payload[text]:'some data'
table public.t_demo: DELETE: id[integer]:2 name[text]:'paul'
 payload[text]:'some more data'
table public.t_demo: DELETE: id[integer]:3 name[text]:'joe'
 payload[text]:'less data'
COMMIT 606558

Now all the changes are in.

Use cases of logical slots
There are various use cases of replication slots. The most simplistic use case is the one
shown here. Data can be fetched from the server in the desired format and used to audit,
debug, or simply monitor a database instance.

The next logical step of course is to take this stream of changes and use it for replication.
Solutions such as Bi-Directional Replication (BDR) are totally based on logical decoding
because changes at the binary level would not work with multi-master replication.

Finally, there is the need to upgrade without downtime. Remember, the binary transaction
log stream cannot be used to replicate between different versions of PostgreSQL. Therefore,
future versions of PostgreSQL will support a tool called pglogical, which helps to
upgrade without downtime.

Making Sense of Backups and Replication Chapter 10

[318]

Making use of CREATE PUBLICATION and
CREATE SUBSCRIPTION
For version 10.0, the PostgreSQL community created two new commands: CREATE
PUBLICATION and CREATE SUBSCRIPTION. These can be used for logical replication. So
far, binary replication and transaction log replication has been fully covered. However,
sometimes you might not want to replicate an entire database instance—replicating a table
or two might be enough. This is exactly when logical replication is the right thing to use.

Before getting started, the first thing to do is to change wal_level to logical in
postgresql.conf and restart:

wal_level = logical

Then you can create a simple table:

test=# CREATE TABLE t_test (a int, b int);
CREATE TABLE

The same table layout has to exist in the second database as well to make this work.
PostgreSQL will not automatically create those tables for you:

test=# CREATE DATABASE repl;
CREATE DATABASE

After creating the database, the identical table can be added:

repl=# CREATE TABLE t_test (a int, b int);
CREATE TABLE

The goal here is to publish the content of the t_test table in the test database to
somewhere else. In my case, it will simply be replicated into a database on the same
instance. To publish those changes, PostgreSQL offers the CREATE PUBLICATION
command:

test=# \h CREATE PUBLICATION
 Command: CREATE PUBLICATION
 Description: define a new publication
 Syntax:
 CREATE PUBLICATION name
 [FOR TABLE [ONLY] table_name [*] [, ...]
 | FOR ALL TABLES]
 [WITH (publication_parameter [= value] [, ...])]

Making Sense of Backups and Replication Chapter 10

[319]

The syntax is actually pretty easy. All we need is a name and a list of all tables the system is
supposed to replicate:

test=# CREATE PUBLICATION pub1 FOR TABLE t_test;
CREATE PUBLICATION

In the next step, the subscription can be created. The syntax is again pretty simple and
really straightforward:

test=# \h CREATE SUBSCRIPTION
Command: CREATE SUBSCRIPTION
Description: define a new subscription
Syntax:
 CREATE SUBSCRIPTION subscription_name
 CONNECTION 'conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

Basically, creating a subscription directly is absolutely no problem. However, if we play this
game inside the same instance (from the test database to the repl database, in my case) it is
necessary to create the replication slot in use manually. Otherwise, CREATE SUBSCRIPTION
will never finish:

test=# SELECT pg_create_logical_replication_slot('sub1', 'pgoutput');
 pg_create_logical_replication_slot

(sub1,0/27E2B2D0)
(1 row)

In this case, the name of the slot created on the master database is called sub1. Then,
connect to the target database and run the following command:

repl=# CREATE SUBSCRIPTION sub1
 CONNECTION 'host=localhost dbname=test user=postgres'
 PUBLICATION pub1
 WITH (create_slot = false);
CREATE SUBSCRIPTION

Of course, you have to adjust your database connect parameters. Then, PostgreSQL will
sync the data and you are done. Note that create_slot = false is only used because
the test is running inside the same database server instance. If you happen to use different
databases, there is no need for manually creating the slot and no need for create_slot =
false.

Making Sense of Backups and Replication Chapter 10

[320]

Summary
In this chapter, you have learned about the most important features of PostgreSQL
replication, such as streaming replication and replication conflicts. You have learned about
PITR as well as replication slots. Note that a book on replication is never complete unless it
spans around 400 pages or so, but you have learned the most important things every
administrator should know.

Chapter 11, Deciding on Useful Extensions, will be about useful extensions to PostgreSQL.
You will learn about extensions that have been widely adopted by the industry and that
provide even more functionality.

11
Deciding on Useful Extensions

In Chapter 10, Making Sense of Backups and Replication, of this book, our attention was
focused on replication, transaction log shipping, and logical decoding. After this mostly
administration-related stuff, the goal is to aim at a broader topic. In the PostgreSQL world,
many things are done through extensions. The advantage of extensions is that functionality
can be added without bloating the PostgreSQL core. People can choose from sometimes-
competing extensions and find what is best for them. The philosophy is to keep the core
slim, relatively easy to maintain, and ready for the future.

In this chapter, some of the most widespread extensions for PostgreSQL are discussed.
However, before digging deeper into the issue, I want to state that this chapter only features
a list of extensions that I personally find useful. There are so many modules out there these
days that it is impossible to cover them all in a reasonable way. Stuff is published every day
and it is sometimes even hard for a professional to be aware of everything out there. New
stuff is published as we speak, and it might be a good idea to take a look at PGXN
(https://pgxn.org/), which contains a large variety of extensions for PostgreSQL.

The following main topics will be covered in this chapter:

How extensions work
A selection of contrib modules
A quick look at GIS-related modules
Other useful extensions

Note that only the most important extensions will be covered.

https://pgxn.org/

Deciding on Useful Extensions Chapter 11

[322]

Understanding how extensions work
Before digging into the extensions available out there, it is a good idea to take a look at how
extensions work in the first place. Understanding the inner workings of the extension
machinery can be quite beneficial.

Let's take a look at the syntax first:

test=# \h CREATE EXTENSION
Command: CREATE EXTENSION
Description: Install an extension
Syntax:
CREATE EXTENSION [IF NOT EXISTS] extension_name
[WITH] [SCHEMA schema_name]
[VERSION version]
[FROM old_version]
[CASCADE]

When you want to deploy an extension, simply call the CREATE EXTENSION command. It
will check for the extension and load it into your database. Note that the extension will be
loaded into a database and not into the entire database instance.

If you are loading an extension, you can decide on the schema you want to use. Many
extensions can be relocated so the user has the choice of which schema to use. Then, it is
possible to decide on a specific version of the extension. Often, you don't want to deploy the
latest version of an extension because your client is running outdated software. In such
cases, it might be handy to be able to deploy any version available on the system.

The FROM old_version clause requires some more attention. Back in the old days,
PostgreSQL did not support extensions, so a lot of unpackaged code is still around. This
option causes the CREATE EXTENSION clause to run an alternative installation script that
absorbs the existing objects into the extension, instead of creating new objects. Be careful
that the SCHEMA clause specifies the schema containing these preexisting objects. Use it only
when you have old modules around.

Finally, there is the CASCADE clause. Some extensions depend on other extensions. The
CASCADE option will automatically deploy those software packages too. Here is an example:

test=# CREATE EXTENSION earthdistance;
ERROR: required extension "cube" is not installed
HINT: Use CREATE EXTENSION ... CASCADE to install required extensions too.

Deciding on Useful Extensions Chapter 11

[323]

The earthdistance module implements great circle distance calculations. As you might
know, the shortest distance between two points on earth is not in a straight line; instead, a
pilot has to adjust his course constantly to find the fastest route to fly from one point to the
other. The thing is, the earthdistance extension depends on the cube extension, which
allows you to perform operations on a sphere.

To automatically deploy the dependency, the CASCADE clause can be used as just described:

test=# CREATE EXTENSION earthdistance CASCADE;
NOTICE: installing required extension "cube" CREATE EXTENSION

In this case, both extensions will be deployed.

Checking for available extensions
PostgreSQL offers various views to figure out which extensions are there on the system and
which ones are actually deployed. One of those views is pg_available_extensions:

test=# \d pg_available_extensions
View "pg_catalog.pg_available_extensions"
 Column | Type | Modifiers

-------------------+------+-----------
 name | name |
 default_version | text |
 installed_version | text |
 comment | text |

It contains a list of all extensions available, including their names, their default version, and
the version currently installed. To make it easier for the end user, there is also a description
available, telling us more about the extension.

The following listing contains two lines taken from pg_available_extensions:

test=# \x
Expanded display is on.
test=# SELECT * FROM pg_available_extensions LIMIT 2;

-[RECORD 1]-----+---------------------------------------
name | earthdistance
default_version | 1.1
installed_version | 1.1
comment | calculate great-circle distances on the surface of the
Earth

Deciding on Useful Extensions Chapter 11

[324]

-[RECORD 2]-----+---
name | plpgsql
default_version | 1.0
installed_version | 1.0
comment | PL/pgSQL procedural language

As you can see, the earthdistance and plpgsql extensions are both enabled in my
database. The plpgsql extension is there by default and earthdistance has been added
just before along with cube. The beauty of this view is that you can quickly get an overview
of what is installed and what can be installed.

However, in some cases, extensions are available in more than just one version. To find out
more about versioning, consider checking out the following view:

test=# \d pg_available_extension_versions
View "pg_catalog.pg_available_extension_versions"
 Column | Type | Modifiers
--------------+---------+-----------
 name | name |
 version | text |
 installed | boolean |
 superuser | boolean |
 relocatable | boolean |
 schema | name |
 requires | name[] |
 comment | text |

Some more detailed information is available here, as shown in the next listing:

test=# SELECT * FROM pg_available_extension_versions LIMIT 1;
-[RECORD 1]---
name | earthdistance
version | 1.1
installed | t
superuser | t
relocatable | t
schema |
requires | {cube}
comment | calculate great-circle distances on the surface of the Earth

PostgreSQL will also tell you whether the extension can be relocated, which schema it has
been deployed in, and what other extensions are needed. Then, there is the comment
describing the extension, which has already been shown previously.

Deciding on Useful Extensions Chapter 11

[325]

The main question now is: where does PostgreSQL find all this information about
extensions on the system? Assuming that you have deployed PostgreSQL 10 from the
official PostgreSQL RPM repository, the /usr/pgsql-10/share/extension directory
will contain a couple of files:

...
-bash-4.3$ ls -l citext*
-rw-r--r-- 1 root root 1028 Oct 26 13:28 citext--1.0--1.1.sql
-rw-r--r-- 1 root root 2748 Oct 26 13:28 citext--1.1--1.2.sql
-rw-r--r-- 1 root root 307 Oct 26 13:28 citext--1.2--1.3.sql
-rw-r--r-- 1 root root 12991 Oct 26 13:28 citext--1.3.sql
-rw-r--r-- 1 root root 158 Oct 26 13:28 citext.control
-rw-r--r-- 1 root root 9781 Oct 26 13:28 citext-unpackaged--1.0.sql
...

The default version of the citext (case-insensitive text) extension is 1.4, so there is a file
called citext--1.3.sql. In addition to that, there are files used to move from one version
to the next (1.0 → 1.1, 1.1 → 1.2, and so on).

Then, there is the .control file:

-bash-4.3$ cat citext.control
citext extension
comment = 'data type for case-insensitive character strings'
default_version = '1.4'
module_pathname = '$libdir/citext' relocatable = true

It contains all the metadata related to this extension; the first entry contains the comment.
Note that this content is what will be shown in the system views just discussed. When you
access those views, PostgreSQL will go to this directory and read all the .control files.
Then, there is the default version and the path to the binaries. If you are installing a typical
extension from RPM, the directory is going to be $libdir, which is inside your PostgreSQL
binary directory. However, if you have written your own commercial extension, it might
very well reside somewhere else.

The last setting will tell PostgreSQL whether the extension can reside in any schema or
whether it has to be in a fixed, predefined schema.

Deciding on Useful Extensions Chapter 11

[326]

Finally, there is the unpackaged file. Here is an extract:

...
ALTER EXTENSION citext ADD type citext;
ALTER EXTENSION citext ADD function citextin(cstring); ALTER EXTENSION
citext ADD function citextout(citext); ALTER EXTENSION citext ADD function
citextrecv(internal);
...

The unpackaged file will turn existing code into an extension. It is therefore important to
consolidate existing things in your database.

Making use of contrib modules
After this theoretical introduction to extensions, it is time to take a look at some of the most
important extensions. In this section, you will learn about modules provided to you as part
of the PostgreSQL contrib module. When you install PostgreSQL, I recommend that you
always install those contrib modules as they contain vital extensions that can really make
your life easier.

In the coming section, you will be guided through some of the ones I find most interesting.

Using the adminpack
The idea behind the adminpack module is to give administrators a way to access the file
system without SSH access. The package contains a couple of functions to make that
possible.

To load the module into the database, run the following command:

test=# CREATE EXTENSION adminpack;
CREATE EXTENSION

One of the most interesting features of the adminpack module is the ability to inspect log
files. The pg_logdir_ls function checks out the log directory and returns a list of log files:

test=# SELECT * FROM pg_catalog.pg_logdir_ls() AS (a timestamp, b text);
ERROR: the log_filename parameter must equal 'postgresql-%Y-%m-
%d_%H%M%S.log'

Deciding on Useful Extensions Chapter 11

[327]

The important thing here is that the log_filename parameter has to be adjusted to the
adminspack module's needs. If you happen to run RPMs downloaded from the
PostgreSQL repositories, the log_filename parameter is defined as postgresql-%a,
which has to be changed in this case to avoid the error.

After the change, a list of log filenames is returned:

test=# SELECT * FROM pg_catalog.pg_logdir_ls() AS (a timestamp, b text);
 a | b
---------------------+---
2017-03-03 16:32:58 | pg_log/postgresql-2017-03-03_163258.log

(1 row)

It is also possible to determine the size of a file on disk. Here is an example:

test=# SELECT b, pg_catalog.pg_file_length(b) FROM
pg_catalog.pg_logdir_ls() AS (a timestamp, b text);
 b | pg_file_length
---+----------------
pg_log/postgresql-2017-03-03_163258.log | 1525

(1 row)

In addition to those features, there are some more functions provided by the module:

test=# SELECT proname FROM pg_proc WHERE proname ~ 'pg_file_.*';
 proname

 pg_file_write
 pg_file_rename
 pg_file_unlink
 pg_file_read
 pg_file_length
(5 rows)

You can read, write, rename, or simply delete files.

Note that these functions can, of course, only be called by superusers.

Deciding on Useful Extensions Chapter 11

[328]

Applying bloom filters
Since PostgreSQL 9.6, it has been possible to add index types on the fly using extensions.
The new CREATE ACCESS METHOD command as well as some additional features has made
it possible to create fully functional and transaction logged index types on the fly.

The bloom extension provides PostgreSQL users with bloom filters, which are pre-filters
that help to efficiently reduce the amount of data as soon as possible. The idea behind a
bloom filter is to calculate a bit mask and to compare the bit mask to the query. The bloom
filter might produce some false positives, but still reduces the amount of data dramatically.

It is especially useful when a table consists of hundreds of columns and millions of rows. It
is not possible to index hundreds of columns with b-trees, so a bloom filter is a good
alternative because it allows for indexing everything at once.

To show you how things work, I have installed the extension:

test=# CREATE EXTENSION bloom;
CREATE EXTENSION

In the next step, a table containing various columns is created:

test=# CREATE TABLE t_bloom
(
 id serial,
 col1 int4 DEFAULT random() * 1000,
 col2 int4 DEFAULT random() * 1000,
 col3 int4 DEFAULT random() * 1000,
 col4 int4 DEFAULT random() * 1000,
 col5 int4 DEFAULT random() * 1000,
 col6 int4 DEFAULT random() * 1000,
 col7 int4 DEFAULT random() * 1000,
 col8 int4 DEFAULT random() * 1000,
 col9 int4 DEFAULT random() * 1000
);
CREATE TABLE

To make it easier, those columns have a default value so that data can easily be added using
a simple SELECT clause:

test=# INSERT INTO t_bloom (id)
 SELECT * FROM generate_series(1, 1000000);
INSERT 0 1000000

Deciding on Useful Extensions Chapter 11

[329]

The query adds 1 million rows to the table. Now, the table can be indexed:

test=# CREATE INDEX idx_bloom ON t_bloom
 USING bloom(col1, col2, col3, col4, col5, col6, col7, col8, col9);
CREATE INDEX

Not that the index contains nine columns at a time. In contrast to a b-tree, the order of those
columns does not really make a difference. Note that the table I just created is around 65 MB
without indexes.

The index adds another 15 MB to the storage footprint:

test=# \di+ idx_bloom
 List of relations
 Schema | Name | Type | Owner | Table | Size | Description
--------+-----------+-------+-------+---------+-------+-------------
 public | idx_bloom | index | hs | t_bloom | 15 MB |
(1 row)

The beauty of the bloom filter is that it is possible to look for any combination of columns:

test=# explain SELECT count(*)
 FROM t_bloom
 WHERE col4 = 454 AND col3 = 354 AND col9 = 423;
 QUERY PLAN

 Aggregate (cost=20352.02..20352.03 rows=1 width=8)
 -> Bitmap Heap Scan on t_bloom
 (cost=20348.00..20352.02 rows=1 width=0)
 Recheck Cond: ((col3 = 354) AND (col4 = 454) AND (col9 = 423))
 -> Bitmap Index Scan on idx_bloom
 (cost=0.00..20348.00 rows=1 width=0)
 Index Cond: ((col3 = 354) AND (col4 = 454)
 AND (col9 = 423))
(5 rows)

What you have seen so far feels exceptional. A natural question that might arise is: why not
always use a bloom filter? The reason is simple—the database has to read the entire bloom
filter in order to use it. In the case of, say, a b-tree, this is not necessary.

In the future, more index types will most likely be added to ensure that even more use cases
can be covered with PostgreSQL.

If you want to read more about bloom filters, consider reading our blog:
https://www.cybertec-postgresql.com/en/trying-out-postgres-bloom-indexes/.

https://www.cybertec-postgresql.com/en/trying-out-postgres-bloom-indexes/

Deciding on Useful Extensions Chapter 11

[330]

Deploying btree_gist and btree_gin
After this brief section about indexes, there are more indexing-related features that can be
added. In PostgreSQL, there is the concept of operator classes, which has already been
discussed in one of the earlier chapters. The contrib module offers two extensions (namely,
btree_gist and btree_gin) to add b-tree functionality to GiST and GIN indexes.

Why is that so useful? GiST indexes offer various features that are not supported by b-trees.
One of those features is the ability to perform a K-Nearest Neighbor (KNN) search.

Why is that relevant? Imagine somebody is looking for data that was added yesterday
around noon. So, when is that? In some cases, it might be hard to come up with boundaries,
for example, if somebody is looking for a product that costs around 70 euros. KNN might
come to the rescue. Here is an example:

test=# CREATE TABLE t_test (id int);
CREATE TABLE

In the next step, some simple data is added:

test=# INSERT INTO t_test SELECT * FROM generate_series(1, 100000);
INSERT 0 100000

Now, the extension can be added:

test=# CREATE EXTENSION btree_gist;
CREATE EXTENSION

Adding a GiST index to the column is easy. Just use the USING gist clause. Note that
adding a GiST index on an integer column works only if the extension is present.
Otherwise, PostgreSQL will report that there is no suitable operator class:

test=# CREATE INDEX idx_id ON t_test USING gist(id);
CREATE INDEX

Once the index has been deployed, it is possible to order by distance already:

test=# SELECT *
 FROM t_test
 ORDER BY id <-> 100
 LIMIT 6;

 id

 100
 101

Deciding on Useful Extensions Chapter 11

[331]

 99
 102
 98
 97
(6 rows)

As you can see, the first row is an exact match. The next matches are already less precise
and are getting worse. The query will always return a fixed number of rows.

The important thing is the execution plan:

test=# explain SELECT *
 FROM t_test
 ORDER BY id <-> 100
 LIMIT 6;
 QUERY PLAN

 Limit (cost=0.28..0.64 rows=6 width=8)
 -> Index Only Scan using idx_id on t_test
 (cost=0.28..5968.28 rows=100000 width=8)
 Order By: (id <-> 100)
(3 rows)

As you can see, PostgreSQL goes straight for an index scan, which speeds up the query
significantly.

In future versions of PostgreSQL, b-trees will most likely also support KNN search. A patch
to add this feature has already been added to the development mailing list. Maybe it will
eventually make it to the core. Having KNN as a b-tree feature could eventually lead to
fewer GiST indexes on standard datatypes.

Dblink - considering phasing out
The desire to use database links has been around for many years already. However, around
the turn of the century, PostgreSQL foreign data wrappers were not even on the horizon
and a traditional database link implementation was definitely not in sight either. Around
this time, a PostgreSQL developer from California (Joe Conway) pioneered work on
database connectivity by introducing the concept of dblink into PostgreSQL. While dblink
served people well over the years, it is no longer state of the art.

Deciding on Useful Extensions Chapter 11

[332]

Therefore, it is recommended to move away from dblink to the more modern SQL/MED
implementation (which is a specification that defines the way external data can be
integrated in a relational database). The postgres_fdw extension has been built on top of
SQL/MED and offers more than just database connectivity as it allows you to connect to
basically any data source.

Fetching files with file_fdw
In some cases, it can make sense to read a file from a disk and expose it to PostgreSQL as a
table. This is exactly what you can achieve with file_fdw extension. The idea is to have a
module that allows you to read data from a disk and query it using SQL.

Installing the module works as expected:

CREATE EXTENSION file_fdw;

In the next step, we create a virtual server:

CREATE SERVER file_server
 FOREIGN DATA WRAPPER file_fdw;

The file_server is based on the file_fdw extension foreign data wrapper, which tells
PostgreSQL how to access the file.

To expose a file as a table, the following command can be used:

CREATE FOREIGN TABLE t_passwd
(
 username text,
 passwd text,
 uid int,
 gid int,
 gecos text,
 dir text,
 shell text
) SERVER file_server
OPTIONS (format 'text', filename '/etc/passwd', header 'false', delimiter
':');

Deciding on Useful Extensions Chapter 11

[333]

In my example, the /etc/passwd file will be exposed. All fields have to be listed and data
types have to be mapped accordingly. All the additional important information is passed to
the module using options. In this example, PostgreSQL has to know the type of file (text),
the name, and the path of the file, as well as the delimiter. It is also possible to tell
PostgreSQL whether there is a header. If the setting is true, the first line will be skipped and
not important. Skipping headers is especially important if you happen to load a CSV file.

Once the table has been created, it is already possible to read data:

SELECT * FROM t_passwd;

Unsurprisingly, PostgreSQL returns the content of /etc/passwd:

test=# \x
Expanded display is on.
test=# SELECT * FROM t_passwd LIMIT 1;

-[RECORD 1]-------
username | root
passwd | x
uid | 0
gid | 0
gecos | root
dir | /root
shell | /bin/bash

When looking at the execution plan, you will see that PostgreSQL uses a foreign scan to
fetch the data from the file:

test=# explain (verbose true, analyze true) SELECT * FROM t_passwd;

 QUERY PLAN
--
 Foreign Scan on public.t_passwd (cost=0.00..2.80 rows=18 width=168)
 (actual time=0.022..0.072 rows=61 loops=1)
 Output: username, passwd, uid, gid, gecos, dir, shell
 Foreign File: /etc/passwd
 Foreign File Size: 3484
 Planning time: 0.058 ms
 Execution time: 0.138 ms
(6 rows)

The execution plan also tells us about the file size and so on. Since we're talking about the
planner, there is a side note that is worth mentioning. PostgreSQL will even fetch statistics
for the file. The planner checks the file size and assigns the same costs to the file as it would
to a normal PostgreSQL table of the same size.

Deciding on Useful Extensions Chapter 11

[334]

Inspecting storage using pageinspect
If you are facing storage corruption or some other storage-related problem that might be
related to bad blocks in a table, the pageinspect extension might be the module you are
looking for:

test=# CREATE EXTENSION pageinspect;
CREATE EXTENSION

The idea behind pageinspect is to provide you with a module that allows you to inspect a
table on the binary level.

When using the module, the most important thing to do is to fetch a block:

test=# SELECT * FROM get_raw_page('pg_class', 0);
...

The function will return a single block. In the preceding example, it is the first block in the
pg_class parameter, which is a system table (of course, you can use any other table you
want).

In the next step, you can extract the page header:

test=# \x
Expanded display is on.

test=# SELECT * FROM page_header(get_raw_page('pg_class', 0));
-[RECORD 1]---------
lsn | 1/35CAE5B8
checksum | 0
flags | 1
lower | 240
upper | 1288
special | 8192
pagesize | 8192
version | 4
prune_xid | 606562

It already contains a lot of information about the page. If you want to know even more, you
can call the heap_page_items function, which dissects the page and returns one row per
tuple:

test=# SELECT * FROM heap_page_items(get_raw_page('pg_clas', 0))
 LIMIT 1;

Deciding on Useful Extensions Chapter 11

[335]

-[RECORD 1]---
lp | 1
lp_off | 49
lp_flags | 2
lp_len | 0
t_xmin |
t_xmax |
t_field3 |
t_ctid |
t_infomask2 |
t_infomask |
t_hoff |
t_bits |
t_oid |
t_data | ...

You can also split the data into various tuples:

test=# SELECT tuple_data_split('pg_class'::regclass,
 t_data, t_infomask, t_infomask2, t_bits)
 FROM heap_page_items(get_raw_page('pg_class', 0))
 LIMIT 2;
-[RECORD 1]----+---------------------------------
tuple_data_split |
-[RECORD 2]----+---------------------------------
tuple_data_split |
{"\\x6100
00","\\x98080000","
\\x50ac0c00","\\x00000000","\\x01400000","\\x00000000","\\x4eac0c00","\\x00
000000","\\xbb010000","\\x0050c347","\\x00000000","\\x00000000","\\x01","\\
x00","\\x70","\\x72","\\x0100","\\x0000","\\x00","\\x00","\\x00","\\x00","\
\x00","\\x00","\\x00","\\x01","\\x64","\\xc3400900","\\x01000000",NULL,NULL
}

To read the data, you have to familiarize yourself with the on-disk format of PostgreSQL.
Otherwise, the data might appear to be pretty obscure.

pageinspect provides functions for all access methods (tables, indexes, and so on) and
allows for dissecting storage in detail.

Deciding on Useful Extensions Chapter 11

[336]

Investigating caching with pg_buffercache
After this brief introduction to the pageinspect extension, I want to focus your attention
on the pg_buffercache extension, which allows you to take a deep look at the content of
your I/O cache:

test=# CREATE EXTENSION pg_buffercache;
CREATE EXTENSION

The pg_buffercache extension provides you with a view containing a couple of fields:

test=# \d pg_buffercache
View "public.pg_buffercache"
 Column | Type | Modifiers
-----------------+----------+-----------
 bufferid | integer |
 relfilenode | oid |
 reltablespace |oid |
 reldatabase |oid |
 relforknumber |smallint |
 relblocknumber |bigint |
 isdirty |boolean |
 usagecount |smallint |
 pinning_backends|integer |

The bufferid field is just a number; it identifies the buffer. Then comes the relfilenode
field, which points to the file on disk. If you want to look up which table a file belongs to,
you can check out the pg_class module, which also contains a field, relfilenode. Then,
there are the reldatabase and the reltablespace fields. Note that all fields are defined
as oid type, so to extract data in a more useful way, it is necessary to join system tables
together.

The relforknumber field tells us which part of the table is cached. It could be the heap, the
free space map, or some other component such as the visibility map. In the future, there will
surely be more types of relation forks.

The next, relblocknumber, tells us which block is cached. Finally, there is the isdirty
flag, which indicates that a block has been modified, the usage counter, and the number of
backends pinning the block.

Deciding on Useful Extensions Chapter 11

[337]

If you want to make sense of the pg_buffercache extension, it is important to add
additional information. Suppose you want to figure out which database uses the cache the
most. The following query might help:

test=# SELECT datname,
 count(*),
 count(*) FILTER (WHERE isdirty = true) AS dirty
 FROM pg_buffercache AS b, pg_database AS d
 WHERE d.oid = b.reldatabase
 GROUP BY ROLLUP (1);
 datname | count | dirty
-----------+-------+-------
 abc | 132 | 1
 postgres | 30 | 0
 test | 11975 | 53
 | 12137 | 54
 (4 rows)

In this case, the pg_database extension has to be joined. As you can see, the oid is the join
criteria, which might not be obvious to people who are new to PostgreSQL.

Sometimes, you might want to know which blocks in the database you are connected to are
cached:

test=# SELECT relname,
 relkind,
 count(*),
 count(*) FILTER (WHERE isdirty = true) AS dirty
 FROM pg_buffercache AS b, pg_database AS d, pg_class AS c
 WHERE d.oid = b.reldatabase
 AND c.relfilenode = b.relfilenode
 AND datname = 'test'
 GROUP BY 1, 2
 ORDER BY 3 DESC
 LIMIT 7;
 relname | relkind| count| dirty
---------------------------+--------+-------+-------
 t_bloom | r | 8338 | 0
 idx_bloom | i | 1962 | 0
 idx_id | i | 549 | 0
 t_test | r | 445 | 0
 pg_statistic | r | 90 | 0
 pg_depend | r | 60 | 0
 pg_depend_reference_index | i | 34 | 0
(7 rows)

Deciding on Useful Extensions Chapter 11

[338]

In this case, I filtered the current database and joined with the pg_class module, which
contains the list of objects. The relkind column is especially noteworthy: r refers to table
(relation) and I refers to index. It will tell you which object you are looking at.

Encrypting data with pgcrypto
One of the most powerful modules in the entire contrib module section is pgcrypto. It
was originally written by one of the Skype sysadmins and offers countless functions to
encrypt and decrypt data.

It offers functions for symmetric as well as asymmetric encryption. Due to the large number
of functions, it is definitely recommended to check out the documentation page:
https://www.postgresql.org/docs/current/static/pgcrypto.html.

Due to the limited scope of this chapter, it is impossible to dig into all the details of the
pgcrypto module.

Prewarming caches with pg_prewarm
When PostgreSQL operates normally, it tries to cache important data. The
shared_buffers variable is important as it defines the size of the cache managed by
PostgreSQL. The problem now is this: if you restart the database server, all the cache
managed by PostgreSQL will be lost. Maybe the operating system will still have some data
to reduce the impact on disk wait, but in many cases, this won't be enough. The solution to
the problem is called the pg_prewarm extension:

test=# CREATE EXTENSION pg_prewarm;
CREATE EXTENSION

The extension deploys a function that allows us to explicitly prewarm the cache whenever it
is needed:

test=# \x
Expanded display is on.
test=# \df *prewa*
List of functions
-[RECORD 1]-------+--
--
Schema | public
Name | pg_prewarm
Result data type | bigint
Argument data types | regclass, mode text DEFAULT 'buffer'::text,

https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html
https://www.postgresql.org/docs/current/static/pgcrypto.html

Deciding on Useful Extensions Chapter 11

[339]

 fork text DEFAULT 'main'::text,
 first_block bigint DEFAULT NULL::bigint,
 last_block bigint DEFAULT NULL::bigint
Type | normal

The easiest and most common way to call the pg_prewarm extension is to ask it to cache an
entire object:

test=# SELECT pg_prewarm('t_test');
 pg_prewarm

 443
(1 row)

Note that if the table is so large that it does not fit into the cache, only parts of the table will
stay in cache, which is fine in most cases.

The function returns the number of 8 K blocks processed by the function call.

If you don't want to cache all blocks of an object, you can also select a specific range inside
the table. In the next example, you can see that blocks 10 to 30 are cached in the main fork:

test=# SELECT pg_prewarm('t_test', 'buffer', 'main', 10, 30);
 pg_prewarm

 21
(1 row)

As you can see, 21 blocks were cached.

Inspecting performance with pg_stat_statements
pg_stat_statements is the most important module available in the contrib modules. It
should always be enabled and is there to provide you with superior performance data.
Without the pg_stat_statements module, it is really hard to track down performance
problems.

Due to its importance, pg_stat_statements has already been discussed earlier in this
book.

Deciding on Useful Extensions Chapter 11

[340]

Inspecting storage with pgstattuple
Sometimes, it can happen that tables in PostgreSQL grow out of proportion. The technical
term for a table that has grown too much is table bloat. The question arising now is: which
tables have bloated and how much bloat is there? The pgstattuple extension will help to
answer those questions:

test=# CREATE EXTENSION pgstattuple;
CREATE EXTENSION

The module again deploys a couple of functions. In the case of the pgstattuple extension,
those functions return a row consisting of a composite type. Therefore, the function has to
be called in the FROM clause to ensure a readable result:

test=# \x
Expanded display is on.

test=# SELECT * FROM pgstattuple('t_test');
-[RECORD 1]
--------------------+--------------
 table_len | 3629056
 tuple_count | 100000
 tuple_len | 2800000
 tuple_percent | 77.16
 dead_tuple_count | 0
 dead_tuple_len | 0
 dead_tuple_percent | 0
 free_space | 16652
 free_percent | 0.46

In my example, the table I used for testing seems to be in a pretty good state; the table is 3.6
MB in size and does not contain any dead rows. Free space is also limited. If you are
suffering from table bloat, the number of dead rows and the amount of free space has
grown out of proportion. Some free space and a handful of dead rows are
normal—however, if the table has grown so much that it mostly consists of dead rows and
free space, decisive action is needed to bring the situation under control again.

The pgstattuple extension also provides a function to inspect indexes:

test=# CREATE INDEX idx_id ON t_test (id);
CREATE INDEX

The pgstattindex function returns a lot of information about the index you want to
inspect:

test=# SELECT * FROM pgstatindex('idx_id');

Deciding on Useful Extensions Chapter 11

[341]

-[RECORD 1]
----------------------+---------------
version | 2
tree_level | 1
index_size | 2260992
root_block_no | 3
internal_pages | 1
leaf_pages | 274
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 89.83
leaf_fragmentation | 0

Our index is pretty dense (89%). This is a good sign. The default FILLFACTOR setting for an
index is 90%, so a value close to 90% indicates that the index is very good.

Sometimes, you don't want to check a simple table, but check all of them or just all tables in
a schema. How can this be achieved? Normally, the list of objects you want to process is in
the FROM clause. However, in my example, the function is already in the FROM clause, so
how can we make PostgreSQL loop over a list of tables? The answer is a LATERAL join. Here
is an example.

Note that the following example only works if you do not have partitioned tables:

test=# SELECT * FROM pgstatindex('idx_id');
-[RECORD 1]------+--------
version | 2
tree_level | 1
index_size | 2260992
root_block_no | 3
internal_pages | 1
leaf_pages | 274
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 89.83
leaf_fragmentation | 0

The first part of the FROM clause finds the table we are looking for. Each of the tables
returned is then sent to the LATERAL join. A LATERAL join can be seen as a for each
statement.

Keep in mind that pgstattuple has to read the entire object. If your database is large, it
can take quite a long time to process. Therefore, it can be a good idea to store the results of
the query you have just seen so that you can inspect it thoroughly without having to rerun
the query again and again.

Deciding on Useful Extensions Chapter 11

[342]

Fuzzy searches with pg_trgm
pg_trgm is a module that allows you to perform fuzzy searching. The module has already
been discussed in Chapter 3, Making Use of Indexes.

Connecting to remote servers using
postgres_fdw
Data is not always in one location only. More often than not, data is spread all over the
infrastructure and it can be that data residing in various places which has to be integrated.

The solution to the problem is a foreign data wrapper, as defined by the SQL/MED
standard.

In this section, the postgres_fdw extension will be discussed. It is a module that allows
you to dynamically fetch data from a PostgreSQL data source. The first thing is to deploy
the foreign data wrapper:

test=# \h CREATE FOREIGN DATA WRAPPER
Command: CREATE FOREIGN DATA WRAPPER
Description: define a new foreign-data wrapper
Syntax:
CREATE FOREIGN DATA WRAPPER name
[HANDLER handler_function | NO HANDLER]
[VALIDATOR validator_function | NO VALIDATOR] [OPTIONS (option 'value'
[, ...])]

Fortunately, the CREATE FOREIGN DATA WRAPPER command is hidden inside an
extension; it can easily be installed using the normal process:

test=# CREATE EXTENSION postgres_fdw;
CREATE EXTENSION

In the next step, a virtual server has to be defined. It will point to the other host and tell
PostgreSQL where to get the data. At the end of the data, PostgreSQL has to build a
complete connect string—the server data is the first kind of thing PostgreSQL has to know.
User information will be added later on. The server will only contain host, port, and so on:

test=# \h CREATE SERVER
Command: CREATE SERVER
Description: define a new foreign server
Syntax:
CREATE SERVER server_name

Deciding on Useful Extensions Chapter 11

[343]

[TYPE 'server_type']
[VERSION 'server_version']
FOREIGN DATA WRAPPER fdw_name
[OPTIONS (option 'value' [, ...])]

To show you how this works, I created a second database on the same host and created a
server:

[hs@zenbook~]$ createdb customer
[hs@zenbook~]$ psql customer
customer=# CREATE TABLE t_customer (id int, name text);
CREATE TABLE
customer=# CREATE TABLE t_company (
 country text,
 name text,
 active text
);
CREATE TABLE

customer=# \d
List of relations
 Schema | Name | Type | Owner
-----------+------------+--------+-------
 public | t_company | table |
 hs public | t_customer | table | hs

(2 rows)

Now, the server should be added to the standard test database:

test=# CREATE SERVER customer_server
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host 'localhost', dbname 'customer', port '5432');
CREATE SERVER

Note that all the important information is stored as an OPTIONS clause. That is somewhat
important because it gives a lot of flexibility to users. There are many different foreign data
wrappers and each of them will need different options.

Once the server has been defined, it is time to map users. If you connect from one server to
the other, you might not have the same user in both locations. Therefore, foreign data
wrappers require people to define the actual user mapping:

test=# \h CREATE USER MAPPING
Command: CREATE USER MAPPING
Description: define a new mapping of a user to a foreign server
Syntax:

Deciding on Useful Extensions Chapter 11

[344]

CREATE USER MAPPING FOR { user_name | USER | CURRENT_USER | PUBLIC }
 SERVER server_name
 [OPTIONS (option 'value' [, ...])]

The syntax is pretty simple and it can be used easily:

test=# CREATE USER MAPPING
 FOR CURRENT_USER SERVER customer_server
 OPTIONS (user 'hs', password 'abc');
CREATE USER MAPPING

Again, all of the important information is hidden in the OPTIONS clause. Depending on the
type of foreign data wrapper, the list of options will again differ. Note that you have to use
proper user data here, working for your setup. In my case, I simply used local users.

Once the infrastructure is in place, you can create foreign tables. The syntax to create a
foreign table is pretty similar to how one would create a normal local table. All the columns
have to be listed, including their data types:

test=# CREATE FOREIGN TABLE f_customer (id int, name text)
 SERVER customer_server
 OPTIONS (schema_name 'public', table_name 't_customer');
CREATE FOREIGN TABLE

All columns are listed just like in the case of a normal CREATE TABLE clause. The special
thing is that the foreign table points to a table on a remote side. The name of the schema and
the name of the table have to be specified in the OPTIONS clause.

Once it has been created, the table can be used:

test=# SELECT * FROM f_customer ;
 id | name
-----+------
(0 rows)

To check what PostgreSQL does internally, it is a good idea to run the EXPLAIN clause with
the analyze parameter. It will reveal some information about what is really going on in the
server:

test=# EXPLAIN (analyze true, verbose true)
 SELECT * FROM f_customer ;
 QUERY PLAN

 Foreign Scan on public.f_customer
 (cost=100.00..150.95 rows=1365 width=36)
 (actual time=0.221..0.221 rows=0 loops=1)
 Output: id, name

Deciding on Useful Extensions Chapter 11

[345]

 Remote SQL: SELECT id, name FROM public.t_customer
 Planning time: 0.067 ms
 Execution time: 0.451 ms
(5 rows)

The important part here is Remote SQL. The foreign data wrapper will send a query to the
other side and fetch as little data as possible, since many restrictions as possible are
executed on the remote side to ensure that not much data has to be processed locally. Filter
conditions, joins, and even aggregates can be performed remotely (as of PostgreSQL 10.0).

While the CREATE FOREIGN TABLE clause is surely a nice thing to use, it can be quite
cumbersome to list all those columns over and over again.

The solution to the problem is called the IMPORT clause. It allows you to quickly and easily
import entire schemas into your local database and to create foreign tables:

test=# \h IMPORT
Command: IMPORT FOREIGN SCHEMA
Description: Import table definitions from a foreign server
Syntax:
IMPORT FOREIGN SCHEMA remote_schema
 [{ LIMIT TO | EXCEPT } (table_name [, ...])]
 FROM SERVER server_name
 INTO local_schema
 [OPTIONS (option 'value' [, ...])]

IMPORT allows you to link large sets of tables easily. It also reduces the odds of typos and
mistakes as all the information is directly fetched from the remote data source.

Here is how it works:

test=# IMPORT FOREIGN SCHEMA public
 FROM SERVER customer_server INTO public;
IMPORT FOREIGN SCHEMA

In this case, all tables previously created in the public schema are linked directly. As you
can see, all remote tables are now available:

test=# \det
List of foreign tables
 Schema | Table | Server
---------+------------+-----------------
 public | f_customer | customer_server
 public | t_company | customer_server
 public | t_customer | customer_server

(3 rows)

Deciding on Useful Extensions Chapter 11

[346]

Handling mistakes and typos
Creating foreign tables is not really hard—however, it sometimes happens that people make
mistakes, or maybe the passwords used simply change. To handle such issues, PostgreSQL
offers two commands.

ALTER SERVER allows you to modify a server:

test=# \h ALTER SERVER
Command: ALTER SERVER
Description: change the definition of a foreign server
Syntax:
ALTER SERVER name [VERSION 'new_version']
[OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])] ALTER SERVER
name OWNER TO { new_owner | CURRENT_USER | SESSION_USER } ALTER SERVER name
RENAME TO new_name

You can use this command to add and remove options for a specific server, which is a good
thing if you have forgotten something.

If you want to modify user information, you can alter the user mapping as well:

test=# \h ALTER USER MAPPING
Command: ALTER USER MAPPING
Description: change the definition of a user mapping
Syntax:
ALTER USER MAPPING FOR { user_name | USER | CURRENT_USER | SESSION_USER |
PUBLIC }
 SERVER server_name
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

The SQL/MED interface is regularly improved and features are added as we speak. In the
future, even more optimizations will make it to the core, making the SQL/MED interface a
good choice to improve scalability.

Other useful extensions
The extensions described so far are all part of the PostgreSQL contrib package, which is
shipped as part of the PostgreSQL source code. However, the packages you have seen are
not the only ones available in the PostgreSQL community. There are many more packages
that allow you to do all kinds of things.

Deciding on Useful Extensions Chapter 11

[347]

Unfortunately, this chapter is too short to dig into all the stuff that is currently out there.
The number of modules is growing day by day and it is impossible to cover them all.
Therefore, I only want to point out the ones I find the most important.

PostGIS (http://postgis.net/) is the Geographical Information Systems (GIS) database
interface in the open source world. It has been adopted around the globe and is one of the
de facto standards in the relational open source database world. It is a professional and
extremely powerful solution.

If you are looking for geospatial routing, pgRouting is what you might be looking for. It
offers various algorithms to find the best connections between locations and works on top
of PostgreSQL.

In this chapter, you have already learned about the postgres_fdw extension, which allows
you to connect to some other PostgreSQL databases. There are many more foreign data
wrappers around. One of the most famous and most professional ones is the oracle_fdw
extension. It allows you to integrate with Oracle and fetch data over the wire, as can be
done with the postgres_fdw extension.

In some cases, you might also be interested in testing the stability of your infrastructure
with pg_crash (https://github.com/cybertec-postgresql/pg_crash). The idea is to have
a module that constantly crashes your database. pg_crash is an excellent choice to test and
debug connection pools and the ability of an application to reconnect to a failing database.
pg_crash will periodically run amok and kill database sessions or corrupt memory. It is
ideal for long-term testing.

Summary
In this chapter, you learned about some of the most promising modules shipped with the
PostgreSQL standard distribution. These modules are pretty diverse and offer everything
from database connectivity to case-insensitive text and modules to inspect your server.

After dealing with extensions, I want to shift your attention to migration. You will learn
how you can move to PostgreSQL in the most simplistic way.

http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
http://postgis.net/
https://github.com/cybertec-postgresql/pg_crash

12
Troubleshooting PostgreSQL

 In Chapter 11, Deciding on Useful Extensions, you learned about some useful extensions that
are widely adopted and that can give your deployment a real boost. Following up, you will
now be introduced to PostgreSQL troubleshooting. The idea is to give you a systematic
approach to inspecting and fixing your system.

The following topics will be of interest:

Approaching an unknown database
Gaining a brief overview
Identifying the key bottlenecks
Handling storage corruption
Inspecting broken replicas

Keep in mind that many things can go wrong, so it is important to professionally monitor
the database.

Approaching an unknown database
If you happen to administer a large-scale system, you might not know what the system is
actually doing. Managing hundreds of systems implies that you won't know what is going
on with each of them.

The most important thing when it comes to troubleshooting boils down to a single
word: data. If there is not enough data, there is no way to fix things. Therefore, the first step
to troubleshooting is always to set up a monitoring tool such as pgwatch2
(https://www.cybertec-postgresql.com/en/products/pgwatch2/) that gives you some
insights into your database server.

http://www.cybertec.at/en/products/pgwatch2-next-generation-postgresql-monitoring-tool/

Troubleshooting PostgreSQL Chapter 12

[349]

Once the reporting has told you about a situation worth checking, it means it has been
proven useful to approach the system in an organized way.

Inspecting pg_stat_activity
The first thing I recommend is checking out pg_stat_statements. Answer the following
questions:

How many concurrent queries are currently executed on your system?
Do you see similar types of query showing up in the query column all the time?
Do you see queries that have been running for a long time?
Are there any locks that have not been granted?
Do you see connections from suspicious hosts?

The pg_stat_activity view should always be checked first because it will give you an
idea of what is happening on the system. Of course, graphical monitoring is supposed to
give you a first impression of the system. However, at the end of the day, it really boils
down to the queries actually running on the server. Therefore, a good overview of the
system provided by pg_stat_activity is more than vital for tracking down issues.

To make it easier for you, I have compiled a couple of queries that I find useful to spot
problems as quickly as possible.

Querying pg_stat_activity
The following query shows how many queries are currently executed on your database:

test=# SELECT datname,
 count(*) AS open,
 count(*) FILTER (WHERE state = 'active') AS active,
 count(*) FILTER (WHERE state = 'idle') AS idle,
 count(*) FILTER (WHERE state = 'idle in transaction')
 AS idle_in_trans
FROM pg_stat_activity
GROUP BY ROLLUP(1);
 datname | open | active | idle | idle_in_trans
----------+-------+--------+------+---------------
 postgres | 2 | 1 | 0 | 1
 | 2 | 1 | 0 | 1

(2 rows)

Troubleshooting PostgreSQL Chapter 12

[350]

To show as much information as possible on the same screen, partial aggregates are used.
You can see active, idle, and idle-in-transaction queries. If you see a high number of idle-in-
transaction queries, it is definitely important to dig deeper to figure out how long those
transactions have been kept open:

test=# SELECT pid, xact_start, now() - xact_start AS duration
 FROM pg_stat_activity
 WHERE state LIKE '%transaction%'
 ORDER BY 3 DESC;
 pid | xact_start | duration
--------+-------------------------------+-----------------
 19758 | 2017-11-26 20:27:08.168554+01 | 22:12:10.194363

(1 row)

The transaction in the listing has been open for more than 22 hours. The main question now
is: how can a transaction be open for that long? In most applications, a transaction that takes
so long is highly suspicious and potentially highly dangerous. Where does the danger come
from? As you have learned earlier in this book already, the VACUUM command can only
clean up dead rows if no transaction can see that anymore. Now, if a transaction stays open
for hours or even days, the VACUUM command cannot produce useful results, which will
lead to table bloat.

It is therefore highly recommended to ensure that long transactions are monitored or killed
in case they are too long. From version 9.6 onwards, PostgreSQL has a feature called
snapshot too old, which allows you to terminate long transactions if snapshots are around
for too long.

It is also a good idea to check whether there are any long-running queries going on:

test=# SELECT
 now() - query_start AS duration, datname, query
 FROM pg_stat_activity
 WHERE state = 'active'
 ORDER BY 1 DESC;
 duration | datname | query
------------------+---------+---------------------------
 00:00:38.814526 | dev | SELECT pg_sleep(10000);
 00:00:00 | test | SELECT now() - query_start AS duration,
datname, query FROM pg_stat_activity WHERE state = 'active' ORDER BY 1
DESC;
(2 rows)

Troubleshooting PostgreSQL Chapter 12

[351]

In this case, all active queries are taken and the statements calculate how long each query
has already been active. Often you see similar queries coming out on top, which can give
you some valuable clues about what is happening on your system.

Treating Hibernate statements
Many ORMs such as Hibernate generate insanely long SQL statements. The trouble is this:
pg_stat_activity will store only the first 1024 bytes of the query in the system view.
The rest is truncated. In case of a long query generated by an ORM such as Hibernate, the
query is cut off before the interesting parts (the FROM clause, among others) actually start.

The solution to the problem is to set a config parameter in the postgresql.conf file:

test=# SHOW track_activity_query_size;
 track_activity_query_size

 1024
(1 row)

test=# SHOW track_activity_query_size;

 track_activity_query_size

 1024
(1 row)

Increase this parameter to a reasonably high value (maybe 32,768) and restart PostgreSQL.
You will then be able to see much longer queries and be able to detect issues more easily.

Figuring out where queries come from
When inspecting pg_stat_activity, there are some fields that will tell you where a query
comes from:

client_addr | inet |
client_hostname | text |
client_port | integer |

Those fields will contain IP addresses and hostnames (if configured). But what happens if
all applications send their requests from the very same IP because all applications reside on
the same application server? It will be very hard for you to see which application generated
a certain query.

Troubleshooting PostgreSQL Chapter 12

[352]

The solution to the problem is to ask the developers to set an application_name variable:

test=# SHOW application_name ;
 application_name

 psql
(1 row)

test=# SET application_name TO 'some_name';
SET

test=# SHOW application_name ;

 application_name

 some_name
(1 row)

If people are cooperative, the application_name variable will show up in the system view
and make it a lot easier to see where a query comes from. The application_name variable
can also be set as part of the connect string.

Checking for slow queries
After inspecting pg_stat_activity, it makes sense to take a look at slow time-consuming
queries. Basically, there are two ways to approach the problem:

Look for individual slow queries in the log
Look for types of queries that take too much time

Finding single, slow queries is the classic approach to performance tuning. By setting the
log_min_duration_statement variable to a desired threshold, PostgreSQL will start to
write a log line for each query exceeding this threshold. By default, the slow-query log is
off:

test=# SHOW log_min_duration_statement;
 log_min_duration_statement

 -1
(1 row)

Troubleshooting PostgreSQL Chapter 12

[353]

However, setting this variable to a reasonably good value makes perfect sense. Depending
on your workload, the desired time might of course vary.

In many cases, the desired value might differ from database to database. Therefore, it is also
possible to use the variable in a more fine-grained way:

test=# ALTER DATABASE test SET log_min_duration_statement TO 10000;
ALTER DATABASE

Setting the parameter only for a certain database makes perfect sense if your databases face
different workloads.

When using the slow-query log, it is important to consider one important factor—many
smaller queries might cause more load than a handful of slow-running queries. Of course, it
always makes sense to be aware of individual slow queries, but sometimes those queries are
not the problem. Consider the following example: on your system, 1 million queries taking
500 milliseconds each are executed along with some analytical queries running for a couple
of milliseconds each. Clearly, the real problem will never show up in the slow-query log
while every data export, every index creation, and every bulk load (which cannot be
avoided in most cases anyway) will spam the log and point you in the wrong direction.

My personal recommendation, therefore, is to use a slow-query log but to use it carefully,
with caution. And most importantly, be aware of what you are really measuring.

The better approach in my opinion is to work more intensively with the
pg_stat_statements view. It will offer aggregated information and not just information
about single queries. The pg_stat_statements view has already been discussed earlier in
this book. However, the importance of the module cannot be stressed enough.

Inspecting individual queries
Sometimes, slow queries are identified but you still don't have a clue of what is really going
on. The next step is, of course, to inspect the execution plan of the query and see what
happens. Identifying those key operations in the plan that are responsible for bad runtime is
fairly simple. Try to use the following checklist:

Try to see where it is in the plan that time starts to skyrocket
Check for missing indexes (one of the main reasons for bad performance)
Use the EXPLAIN clause (buffers true, analyze true, and so on) to see if your
query uses too many buffers

Troubleshooting PostgreSQL Chapter 12

[354]

Turn on the track_io_timing parameter to figure out whether there is an I/O
problem or a CPU problem (explicitly check if there is random I/O going on)
Look for wrong estimates and try to fix them
Look for stored procedures that are executed too frequently
Try to figure out whether some of them can be marked as STABLE or IMMUTABLE,
provided this is possible

Note that pg_stat_statements does not account for parse time, so if your queries are
very long (query string), pg_stat_statements might be slightly misleading.

Digging deeper with perf
In most cases, working through this tiny checklist will help you to track down the majority
of problems in a pretty fast and efficient way. However, even the information extracted
from the database engine is sometimes not enough.

The perf tool is an analysis tool for Linux that allows you to directly see which C functions
cause problems on your system. Usually perf is not installed by default, so it is
recommended to install it. To use perf on your server, just log in to a root and run:

perf top

The screen will refresh itself every couple of seconds and you will have a chance to see what
is going on live. The next listing shows what a standard read-only benchmark might look
like:

Samples: 164K of event 'cycles:ppp', Event count (approx.): 109789128766
Overhead Shared Object Symbol
 3.10% postgres [.] AllocSetAlloc
 1.99% postgres [.] SearchCatCache
 1.51% postgres [.] base_yyparse
 1.42% postgres [.] hash_search_with_hash_value
 1.27% libc-2.22.so [.] vfprintf
 1.13% libc-2.22.so [.] _int_malloc
 0.87% postgres [.] palloc
 0.74% postgres [.] MemoryContextAllocZeroAligned
 0.66% libc-2.22.so [.] __strcmp_sse2_unaligned
 0.66% [kernel] [k] _raw_spin_lock_irqsave
 0.66% postgres [.] _bt_compare
 0.63% [kernel] [k] __fget_light
 0.62% libc-2.22.so [.] strlen

Troubleshooting PostgreSQL Chapter 12

[355]

You can see that no single function takes too much CPU time in our sample, which tells us
that the system is just fine.

However, this may not always be the case. There is a problem, one that is quite common,
called spinlock contention. What is that? Spinlocks
(https://en.wikipedia.org/wiki/Spinlock) are used by the PostgreSQL core to
synchronize things such as buffer access. A spinlock is a feature provided by modern CPUs
to avoid operating-system interaction for small operations (such as incrementing a number).
It is a good thing, but in some very special cases, spinlocks can go crazy. If you are facing
spinlock contention, the symptoms are as follows:

Really high CPU load
Incredibly low throughput (queries that usually take milliseconds suddenly take
seconds)
I/O is usually low because the CPU is busy trading locks

In many cases, spinlock contention happens suddenly. Your system is just fine, and all of a
sudden, load goes up and throughput drops like a stone. The perf top command will
reveal that most of the time is spent in a C function called s_lock. If this is the case, you
should try to do the following:

huge_pages = try # on, off, or try

Change huge_pages from try to off. It can be a good idea to turn off huge pages
altogether on the operating-system level. In general, it seems that some kernels are more
prone to producing these kinds of problems than others. The Red Hat 2.6.32 series seems to
be especially bad (note that I have used the word seems here).

The perf tool is also interesting if you are using PostGIS. If the top functions in the list are
all GIS- related (some underlying library), you know that the problem is most likely not
coming from bad PostgreSQL tuning but is simply related to expensive operations that take
time to complete.

Inspecting the log
If your system smells trouble, it makes sense to inspect the log to see what is going on. The
important point is this: not all log entries are created equal. PostgreSQL has a hierarchy of
log entries that range from DEBUG messages to PANIC.

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock

Troubleshooting PostgreSQL Chapter 12

[356]

For the administrator, the following three error levels are of great importance:

ERROR

FATAL

PANIC

ERROR is used for problems such as syntax errors, permission-related problems, and more.
Your log will always contain error messages. The critical factor is: how often does a certain
type of error show up? Producing millions of syntax errors is certainly not the ideal strategy
to run a database server.

FATAL is more scary than ERROR; you will see messages such as could not allocate
memory for shared memory name or unexpected walreceiver state. In other
words, those error messages are already really scary and will tell you that things are going
wrong.

Finally, there is PANIC. If you hit this kind of message, you know that something is really,
really wrong. Classic examples of PANIC are lock table corrupted or too many semaphores
created. It will result in a shutdown.

Checking for missing indexes
Once you are done with the first three steps, it is important to take a look at performance in
general. As I keep stating throughout this book, missing indexes are super responsible for
super bad performance. So, whenever you are facing a slow system, is it recommended that
you check for missing indexes and deploy whatever is needed.

Usually customers ask you to optimize the RAID level, tune the kernel, or some other fancy
stuff. In reality, those complicated requests often boil down to a handful of missing indexes.
By my judgment, it always makes sense to spend some extra time on just checking whether
all desired indexes are there. Checking for missing indexes is neither hard nor time-
consuming, so it should be done all the time regardless of the kind of performance problem
you are facing.

Troubleshooting PostgreSQL Chapter 12

[357]

Here is my favorite query to get an impression of where an index might be missing:

SELECT schemaname, relname, seq_scan, seq_tup_read,
 idx_scan, seq_tup_read / seq_scan AS avg
FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC
LIMIT 20;

Try to find large tables (high avg) that are scanned often. Those tables will typically come
on top.

Checking for memory and I/O
Once you are done finding missing indexes, you can inspect memory and I/O. To figure out
what is going on, it makes sense to activate track_io_timing. If it is on, PostgreSQL will
collect information about disk wait and present it to you.

Often the main question asked by a customer is: if we add more disks, is it going to be
faster? It is possible to guess what will happen, but in general, measuring is the better and
more useful strategy. Enabling track_io_timing will help you gather the data to really
figure it out.

PostgreSQL exposes disk wait in various ways. One way to inspect things is to take a look
at pg_stat_database:

test=# \d pg_stat_database
 View "pg_catalog.pg_stat_database"
Column | Type | Modifiers
----------------+--------------------------+-----------
datid | oid |
datname | name |
...
conflicts | bigint |
temp_files | bigint |
temp_bytes | bigint |
...
blk_read_time | double precision |
blk_write_time | double precision |

Note that there are two fields towards the end: blk_read_time and blk_write_time.
They will tell you about the amount of time PostgreSQL has spent waiting for the operating
system to respond. Note that we are not really measuring disk wait here but rather the time
the operating system needs to return data.

Troubleshooting PostgreSQL Chapter 12

[358]

If the operating system produces cache hits, this time will be fairly low. If the operating
system has to do really nasty random I/O, you will see that a single block can even take a
couple of milliseconds.

In many cases, high blk_read_time and blk_write_time happen when temp_files
and temp_bytes show high numbers. Also, in many cases, this points to a bad work_mem
or bad maintenance_work_mem setting. Remember this: if PostgreSQL cannot do things in
memory, it has to spill to the disk. The temp_files operation is the way to detect that.
Whenever there are temp_files, there is the chance of nasty disk wait.

While a global view on a per-database-level makes sense, it does not yield in-depth
information about the real source of trouble. Often, only a few queries are to blame for bad
performance. The way to spot those is to use pg_stat_statements:

test=# \d pg_stat_statements
 View "public.pg_stat_statements"
 Column | Type | Modifiers
----------------------+------------------+-----------
 ...
 query | text |
 calls | bigint |
 total_time | double precision |
 ...
 temp_blks_read | bigint |
 temp_blks_written | bigint |
 blk_read_time | double precision |
 blk_write_time | double precision |

You will be able to see, on a per-query-basis, whether there is disk wait or not. The
important part is the blk_ time in combination with total_time. The ratio is what
counts. In general, a query that shows more than 30% of disk wait can be seen as heavily
I/O-bound.

Once you are done checking the PostgreSQL system tables, it makes sense to inspect what
the vmstat command on Linux tells you. Alternatively, you can use the iostat command:

[hs@zenbook ~]$ vmstat 2
procs -----------memory---------- ---swap-- -----io---- -system-- ------
cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 0 367088 199488 96 2320388 0 2 83 96 106 156 16 6 78 0 0
 0 0 367088 198140 96 2320504 0 0 0 10 595 2624 3 1 96 0 0
 0 0 367088 191448 96 2320964 0 0 0 8 920 2957 8 2 90 0 0

Troubleshooting PostgreSQL Chapter 12

[359]

When doing database work, you should focus your attention on three fields: bi, bo, and wa.
The bi field tells you about the number of blocks read; 1,000 is the equivalent to 1
MB/second. The bo field is about blocks out. It tells us about the amount of data written to
the disk. In a way, bi and bo are the raw throughput. I would not consider a number to be
harmful. What is a problem is a high wa value. Low values for bi and bo fields, combined
with a high wa value, tell you about a potential disk bottleneck, which is most likely related
to a lot of random I/O taking place on your system. The higher the wa value, the slower
your queries, because you are waiting on the disk to respond.

Good raw throughput is a good thing; it can also point to a problem. If
high throughput is needed on an OLTP system, it can tell you that there is
not enough RAM to cache things or that indexes are missing and
PostgreSQL has to read too much data. Keep in mind that things are
interconnected and data should not be seen as isolated.

Understanding noteworthy error scenarios
After those basic guidelines to hunt down the most common issues, the upcoming sections
will discuss some of the most common error scenarios happening in the PostgreSQL world.

Facing clog corruption
PostgreSQL has a thing called the commit log (now called pg_xact; it is formally known as
pg_clog). It tracks the state of every transaction on the system and helps PostgreSQL
determine whether a row can be seen or not. In general, a transaction can be in four states:

#define TRANSACTION_STATUS_IN_PROGRESS 0x00
#define TRANSACTION_STATUS_COMMITTED 0x01
#define TRANSACTION_STATUS_ABORTED 0x02
#define TRANSACTION_STATUS_SUB_COMMITTED 0x03

The clog has a separate directory in the PostgreSQL database instance (pg_xact).

In the past, people have reported something called clog corruption, which can be caused by
faulty disks or bugs in PostgreSQL that have been fixed over the years. A corrupted commit
log is a pretty nasty thing to have, because all your data is there but PostgreSQL does not
know whether things are valid or not anymore. Corruption in this area is nothing short of a
total disaster.

Troubleshooting PostgreSQL Chapter 12

[360]

How does the administrator figure out that the commit log is broken? Here is what you
normally see:

ERROR: could not access status of transaction 118831

If PostgreSQL cannot access the status of a transaction, trouble is certain. The main question
is: how can this be fixed? To put it straight, there is no way to really fix the problem—you
can only try to rescue as much data as possible.

As stated already, the commit log keeps two bits per transaction. This means that we have
four transactions per byte, leaving us with 32,768 transactions per block. Once you have
figured out which block it is, you can fake the transaction log:

dd if=/dev/zero of=<data directory location>/pg_clog/0001
 bs=256K count=1

You can use dd to fake the transaction log and set the commit status to the desired value.
The core question is really: which transaction state should be used? The answer is that any
state is actually wrong because you really don't know how those transactions ended.

However, usually it is a good idea to just set them to committed in order to lose less data. It
really depends on your workload and your data when deciding what is less disruptive.

When you have to do that, you should fake as little clog as necessary. Remember, you are
essentially faking the commit status, which is not a nice thing to do to a database engine.

Once you are done faking the clog , you should try to create a backup as fast as you can and
recreate the database instance from scratch. The system you are working with is not too
trustworthy anymore so you should try to extract data as fast as you can. Keep this in mind:
the data you are about to extract could be contradictory and wrong, so make sure that some
quality checks are imposed on whatever you are able to rescue from your database server.

Understanding checkpoint messages
Checkpoints are essential to data integrity as well as performance. The further checkpoints
are apart, the better performance usually is. In PostgreSQL, the default configuration is
usually fairly conservative and checkpoints are therefore comparatively fast. If a lot of data
is changed in the database core at the same time, it can be that PostgreSQL tells us that it
considers checkpoints to be too frequent. The LOG file will show the following entries:

LOG: checkpoints are occurring too frequently (2 seconds apart)
LOG: checkpoints are occurring too frequently (3 seconds apart)

Troubleshooting PostgreSQL Chapter 12

[361]

During heavy writing due to dump/restore or due to some other large operation,
PostgreSQL might notice that the configuration parameters are too low. A message is sent
to the LOG file to tell us exactly that.

If you see this kind of message, it is strongly recommended for performance reasons to
increase checkpoint distances by increasing the max_wal_size parameter dramatically (in
older versions the setting was called checkpoint_segments). In recent versions of
PostgreSQL, the default configuration is already a lot better than it used to be. However,
writing data too frequently can still happen easily.

When you see a message about checkpoints, there is one thing you have to keep in mind.
Check pointing too frequently is not dangerous at all-it just happens to lead to bad
performance. Writing is simply a lot slower than it could be but your data is not in danger.
Increasing the distance between two checkpoints sufficiently will make the error go away
and speed up your database instance at the same time.

Managing corrupted data pages
PostgreSQL is a very stable database system. It protects data as much as possible and has
proven its worth over the years. However, PostgreSQL relies on hardware and a properly
working filesystem. If storage breaks, so will PostgreSQL—there is not much you can do
about it apart from adding replicas to make things more fail-safe.

Once in a while, it happens that the filesystem or the disk fails. But in many cases, the entire
thing will not go south; just a couple of blocks are corrupted for whatever reason. Recently,
we have seen that happening in virtual environments. Some virtual machines don't flush to
the disk by default, which means that PostgreSQL cannot rely on things being written to the
disk. This kind of behavior can lead to random problems which are hard to predict.

When a block cannot be read anymore, you might face an error message like the following
one:

"could not read block %u in file "%s": %m"

The query you are about to run will error out and stop working.

Troubleshooting PostgreSQL Chapter 12

[362]

Fortunately, PostgreSQL has a means of dealing with these things:

test=# SET zero_damaged_pages TO on;
SET
test=# SHOW zero_damaged_pages;
 zero_damaged_pages

 on
(1 row)

The zero_damaged_pages variable is a config variable that allows you to deal with
broken pages. Instead of throwing an error, PostgreSQL will take the block and simply fill it
with zeros.

Note that this will definitely lead to data loss. But remember, data was broken or lost before
anyway, so this is simply a way to deal with corruption caused by bad things happening in
your storage system.

I would advise everybody to handle the zero_damaged_pages variable with care—be
aware of what you are doing when you call it.

Careless connection management
In PostgreSQL, every database connection is a separate process. All those processes are
synchronized using shared memory (technically, in most cases it is mapped memory, but
for this example, that makes no difference). This shared memory contains the I/O cache, the
list of active database connections, locks, and more vital stuff which makes the system
function properly.

When a connection is closed, it will remove all relevant entries from shared memory and
leave the system in a sane state. However, what happens when a database connection
simply crashes for whatever reason?

The postmaster (the main process) will detect that one of the child processes is missing.
Then, all other connections will be terminated and a roll-forward process will be initialized.
Why is that necessary? When a process crashes it might very well happen that the shared
memory area is edited by the process. In other words, a crashing process might leave
shared memory in a corrupted state. Therefore, the postmaster reacts and kicks everybody
out before the corruption can spread in the system. All memory is cleaned and everybody
has to reconnect.

Troubleshooting PostgreSQL Chapter 12

[363]

From an end-user point of view, this feels like PostgreSQL has crashed and restarted, which
is not the case. As a process cannot react on its own crash (segmentation fault) or on some
other signals, cleaning out everything is absolutely essential to protect your data.

The same happens if you use the kill -9 command on a database connection. The
connection cannot catch the signal (-9 cannot be caught by definition), and therefore the
postmaster has to react again.

Fighting table bloat
Table bloat is one of the most important issues when dealing with PostgreSQL. When you
are facing bad performance, it is always a good idea to figure out whether there are objects
that need a lot more space than they are supposed to have.

How can you figure out where table bloat is happening? Check out the
pg_stat_user_tables view:

test=# \d pg_stat_user_tables
 View "pg_catalog.pg_stat_user_tables"
 Column | Type | Modifiers
-------------------+------------------+-----------
 relid | oid |
 schemaname | name |
 relname | name |
 ...
 n_live_tup | bigint |
 n_dead_tup | bigint |

The n_live_tup and n_dead_tup fields will give you an impression of what is going on.
You can also use pgstattuple as outlined in an earlier chapter.

What can you do if there is serious table bloat? The first option is to run the VACUUM FULL
command. The trouble is that the VACUUM FULL clause needs a table lock. On a large table,
this can be a real problem because users cannot write to the table while it is rewritten.

If you are using at least PostgreSQL 9.6, you can use a tool called pg_squeeze. It organizes
a table behind the scenes without
blocking: https://www.cybertec-postgresql.com/en/products/pg_squeeze/.

This is especially useful if you are reorganizing a very large table.

http://www.cybertec.at/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/
http://www.cybertec.at/introducing-pg_squeeze-a-postgresql-extension-to-auto-rebuild-bloated-tables/

Troubleshooting PostgreSQL Chapter 12

[364]

Summary
In this chapter, you learned to systematically approach a database system and detect the
most common issues people face with PostgreSQL. You learned about some important
system tables, as well as some other important factors that can determine whether you will
succeed or fail.

In the final chapter of this book, we will focus our attention on migrating to PostgreSQL. If
you are using Oracle or some other database system, you might be willing to check out
PostgreSQL. Chapter 13, Migrating to PostgreSQL, will tell you how to do that.

13
Migrating to PostgreSQL

In Chapter 12, Troubleshooting PostgreSQL,of this book, I showed you how to approach the
most common issues related to PostgreSQL troubleshooting. The important thing is to have
a systematic approach to tracking down problems, which is exactly what I have tried to
provide.

The final chapter of this book is about moving from other databases to PostgreSQL. Many
readers might still be suffering from the pain caused by commercial database license costs. I
want to give all those users out there a way out and show how data can be moved from
some proprietary system to PostgreSQL. Moving to PostgreSQL not only makes sense from
a financial point of view, but also makes sense if you are looking for more advanced
features and more flexibility. PostgreSQL has so much to offer and new features are being
added as we speak. The same applies to the number of tools available to migrate to
PostgreSQL. Things are getting better and better and developers are publishing more and
better tools all the time.

The following things will be covered in this chapter:

Migrating SQL statements to PostgreSQL
Moving from Oracle to PostgreSQL
Moving MySQL to PostgreSQL

At the end of the chapter, you should be able to move a basic database from some other
system to PostgreSQL.

Migrating to PostgreSQL Chapter 13

[366]

Migrating SQL statements to PostgreSQL
When moving from a database to PostgreSQL, it makes sense to take a look and figure out
which database engine provides which kind of functionality. Moving the data and the
structure itself is usually fairly easy. However, rewriting SQL might not be. Therefore, I
decided to include a section that explicitly focuses on various advanced features of SQL and
their availability in today's database engines.

Using lateral joins
In SQL, a lateral join can basically be seen as some sort of loop. It basically allows us to
parameterize a join and execute everything inside the LATERAL clause more than once. Here
is a simple example:

test=# SELECT *
 FROM generate_series(1, 4) AS x,
 LATERAL (SELECT array_agg(y)
 FROM generate_series(1, x) AS y
) AS z;
 x | array_agg
----+-----------
 1 | {1}
 2 | {1,2}
 3 | {1,2,3}
 4 | {1,2,3,4}
(4 rows)

The LATERAL clause will be called for each x. To the end user, it is basically some sort of
loop.

Supporting lateral
One important SQL feature is lateral join. The following list shows which engines support
lateral join and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 9.3

Migrating to PostgreSQL Chapter 13

[367]

SQLite: Not supported
Db2 LUW: Supported since version 9.1 (2005)
Oracle: Supported since 12c
Microsoft SQL Server: Supported since 2005 but using a different syntax

Using grouping sets
Grouping sets are very useful if you want to run more than one aggregate at the same time.
Using grouping sets can speed up aggregation because you don't have to process the data
more than once.

Here is an example:

test=# SELECT x % 2, array_agg(x)
 FROM generate_series(1, 4) AS x
 GROUP BY ROLLUP (1);
 ?column? | array_agg
----------+-----------
 0 | {2,4}
 1 | {1,3}
 | {2,4,1,3}
(3 rows)

PostgreSQL offers more than just the ROLLUP clause. The CUBE and GROUPING SETS clauses
are also supported.

Supporting grouping sets
Grouping sets are essential to generate more than just one aggregation in a single query.
The following list shows which engines support grouping sets and which don't:

MariaDB: Only ROLLUP clause is supported since 5.1 (incomplete support)
MySQL: Only ROLLUP clause is supported since 5.0 (incomplete support)
PostgreSQL: Supported since PostgreSQL 9.5
SQLite: Not supported
Db2 LUW: Supported since at least 1999
Oracle: Supported since 9iR1 (around 2000)
Microsoft SQL Server: Supported since 2008

Migrating to PostgreSQL Chapter 13

[368]

Using the WITH clause – common table
expressions
Common table expressions are a nice way to execute things inside an SQL statement only
once. PostgreSQL will execute all WITH clauses and allow you to use the results all over the
query.

Here is a simplified example:

test=# WITH x AS (SELECT avg(id)
 FROM generate_series(1, 10) AS id)
 SELECT *, y - (SELECT avg FROM x) AS diff
 FROM generate_series(1, 10) AS y
 WHERE y > (SELECT avg FROM x);
 y | diff
----+--------------------
 6 | 0.5000000000000000
 7 | 1.5000000000000000
 8 | 2.5000000000000000
 9 | 3.5000000000000000
 10 | 4.5000000000000000
(5 rows)

In this example, the WITH clause common table extension (CTE) calculates the average
value of the time series generated by the generate_series function. The resulting x can
be used just like a table all over the query. In my example, x is used twice.

Supporting the WITH clause
The following list shows which engines support the WITH clause and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 8.4
SQLite: Supported since 3.8.3
Db2 LUW: Supported since 8 (year 2000)
Oracle: Supported since 9iR2
Microsoft SQL Server: Supported since 2005

Migrating to PostgreSQL Chapter 13

[369]

Note that in PostgreSQL, a CTE can even support writes (INSERT, UPDATE,
and DELETE clauses). There is no other database I am aware of that can
actually do that.

Using the WITH RECURSIVE clause
The WITH clause comes in two forms:

Standard CTEs as shown in the previous section (using the WITH clause)
A method to run recursions in SQL

The simple form of a CTE has already been covered in the previous section. In the next
section, the recursive version will be covered.

Supporting the WITH RECURSIVE clause
The following list shows which engines support the WITH RECURSIVE clause and which
don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 8.4
SQLite: Supported since 3.8.3
Db2 LUW: Supported since 7 (2000)
Oracle: Supported since 11gR2 (in Oracle, it is usually more common to use the
CONNECT BY clause instead of the WITH RECURSIVE clause)
Microsoft SQL Server: Supported since 2005

Using the FILTER clause
When looking at the SQL standard itself, you will notice that the FILTER clause has already
been around with SQL (2003). However, not many systems actually support this highly
useful syntax element.

Migrating to PostgreSQL Chapter 13

[370]

Here is an example:

test=# SELECT count(*),
 count(*) FILTER (WHERE id < 5),
 count(*) FILTER (WHERE id > 2)
 FROM generate_series(1, 10) AS id;
 count | count | count
-------+-------+-------
 10 | 4 | 8
(1 row)

The FILTER clause is useful if a condition cannot be used inside a normal WHERE clause
because some other aggregate is in need of the data.

Before the introduction of the FILTER clause, the same could be achieved using a more
cumbersome syntax:

SELECT sum(CASE WHEN .. THEN 1 ELSE 0 END) AS whatever FROM some_table;

Supporting the FILTER clause
The following list shows which engines support the FILTER clause and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 9.4
SQLite: Not supported
Db2 LUW: Not supported
Oracle: Not supported
Microsoft SQL Server: Not supported

Using windowing functions
Windowing and analytics have already been discussed extensively in this book. Therefore,
we can jump straight to SQL compliance.

Migrating to PostgreSQL Chapter 13

[371]

Supporting windowing and analytics
The following list shows which engines support window functions and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 8.4
SQLite: Not supported
Db2 LUW: Supported since version 7
Oracle: Supported since version 8i
Microsoft SQL Server: Supported since 2005

Some other databases, such as Hive, Impala, Spark, and NuoDB, also
support analytics.

Using ordered sets – WITHIN GROUP clause
Ordered sets are fairly new to PostgreSQL. The difference between an ordered set and a
normal aggregate is that in the case of an ordered set, the way data is fed to the aggregate
does make a difference. Suppose you want to find a trend in your data—the order of data is
relevant.

Here is a simple example of calculating a median value:

test=# SELECT id % 2,
 percentile_disc(0.5) WITHIN GROUP (ORDER BY id)
 FROM generate_series(1, 123) AS id
 GROUP BY 1;
 ?column? | percentile_disc
----------+-----------------
 0 | 62
 1 | 61
(2 rows)

The median can be determined only if there is sorted input.

Migrating to PostgreSQL Chapter 13

[372]

Supporting the WITHIN GROUP clause
This list shows which engines support windows functions and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 9.4
SQLite: Not supported
Db2 LUW: Not supported
Oracle: Supported since version 9iR1
Microsoft SQL Server: Supported but the query has to be remodeled using the
windowing function

Using the TABLESAMPLE clause
Table sampling has long been the real strength of commercial database vendors. Traditional
database systems have provided sampling for many years. However, the monopoly has
been broken. Since PostgreSQL 9.5, we have also had a solution to the problem of sampling.

Here is how it works:

test=# CREATE TABLE t_test (id int);
CREATE TABLE
test=# INSERT INTO t_test
 SELECT * FROM generate_series(1, 1000000);
INSERT 0 1000000

First, a table containing 1 million rows is created. Then tests can be executed:

test=# SELECT count(*), avg(id)
 FROM t_test TABLESAMPLE BERNOULLI (1);
 count | avg
--------+---------------------
 9802 | 502453.220873291165
(1 row)
test=# SELECT count(*), avg(id)
 FROM t_test TABLESAMPLE BERNOULLI (1);
 count | avg
--------+---------------------
 10082 | 497514.321959928586
(1 row)

Migrating to PostgreSQL Chapter 13

[373]

In this example, the same test is executed twice. A 1% random sample is used in each case.
Both average values are pretty close to 5 million, so the result is pretty good from a
statistical point of view.

Supporting TABLESAMPLE clause
The following list shows which engines support the TABLESAMPLE clause and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Supported since PostgreSQL 9.5
SQLite: Not supported
Db2 LUW: Supported since version 8.2
Oracle: Supported since version 8
Microsoft SQL Server: Supported since 2005

Using limit/offset
Limiting a result in SQL is a somewhat sad story. To make it short, every database does
things somewhat differently. Although there is actually a SQL standard on limiting results,
not everybody fully supports the way things are supposed to be. The correct way to limit
data is to actually use the following syntax:

test=# SELECT * FROM t_test FETCH FIRST 3 ROWS ONLY;
 id

 1
 2
 3
(3 rows)

If you have never seen this syntax before, don't worry. You are definitely not alone.

Migrating to PostgreSQL Chapter 13

[374]

Supporting the FETCH FIRST clause
The following list shows which engines support the FETCH FIRST clause and which don't:

MariaDB: Supported since 5.1 (usually, limit/offset is used)
MySQL: Supported since 3.19.3 (usually, limit/offset is used)
PostgreSQL: Supported since PostgreSQL 8.4 (usually, limit/offset is used)
SQLite: Supported since version 2.1.0
Db2 LUW: Supported since version 7
Oracle: Supported since version 12c (uses subselects with the row_num function)
Microsoft SQL Server: Supported since 2012 (traditionally, top-N is used)

As you can see, limiting result sets is quite tricky, and when you are porting a commercial
database to PostgreSQL, you will most likely always be confronted with some proprietary
syntax.

Using OFFSET
The OFFSET clause is similar to the FETCH FIRST clause. It is easy to use but it has not been
widely adopted. It is not as bad as in the FETCH FIRST clause, but it still tends to be an
issue.

Supporting the OFFSET clause
The following list shows which engines support the OFFSET clause and which don't:

MariaDB: Supported since 5.1
MySQL: Supported since 4.0.6
PostgreSQL: Supported since PostgreSQL 6.5
SQLite: Supported since version 2.1.0
Db2 LUW: Supported since version 11.1
Oracle: Supported since version 12c
Microsoft SQL Server: Supported since 2012

Migrating to PostgreSQL Chapter 13

[375]

As you can see, limiting result sets is quite tricky and, when you are porting a commercial
database to PostgreSQL, you will most likely always be confronted with some proprietary
syntax.

Using temporal tables
Temporal tables are provided by some database engines to handle versioning.
Unfortunately, there is no such thing as out-of-the-box versioning in PostgreSQL. So, if you
are moving from Db2 or Oracle, there is some work ahead of you to port the desired
functionality to PostgreSQL. Basically, changing the code a bit on the PostgreSQL side is not
hard. However, it does need some manual intervention—it is not a straight copy-and-paste
thing anymore.

Supporting temporal tables
The following list shows which engines support temporal tables and which don't:

MariaDB: Not supported
MySQL: Not supported
PostgreSQL: Not supported
SQLite: Not supported
Db2 LUW: Supported since version 10.1
Oracle: Supported since version 12cR1
Microsoft SQL Server: Supported since 2016

Matching patterns in time series
The most recent SQL standard I am aware of (SQL 2016) provides a feature designed to find
matches in time series. So far, only Oracle has implemented this functionality into their
latest version of the product.

Migrating to PostgreSQL Chapter 13

[376]

At this point, no other database vendor has followed them and added similar functionality.
If you want to model this state-of-the-art technology in PostgreSQL, you have to work with
the windowing function and subselects. Matching time series patterns in Oracle is pretty
powerful; there is not just one type of query to achieve this in PostgreSQL.

Moving from Oracle to PostgreSQL
So far, you have seen how the most important advanced SQL features can be ported or used
in PostgreSQL. Given this introduction, it is time to take a look at migrating Oracle database
systems in particular.

These days, migrating from Oracle to PostgreSQL has become really popular due to Oracle's
new license and business policy. Around the world, people are moving away from Oracle
and adopting PostgreSQL. To help people make Oracle a thing of the past, I have included a
special section here.

Using the oracle_fdw extension to move data
One of my preferred methods to move people from Oracle to PostgreSQL is Laurenz
Albe's oracle_fdw extension (https://github.com/laurenz/oracle_fdw). It is a
foreign-data wrapper (FDW) that allows you to represent a table in Oracle as a table in
PostgreSQL. The oracle_fdw extension is one of the most sophisticated FDWs and is rock
solid, well-documented, free, and open source.

Installing the oracle_fdw extension requires you to install the Oracle client library.
Fortunately, there are already RPM packages that can be used out of the box
(http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html). The
oracle_fdw extension needs the OCI driver to talk to Oracle. In addition to ready-made
Oracle client drivers, there is also an RPM package for the oracle_fdw extension itself,
which is provided by the community. If you are not using an RPM-based system, you might
have to compile things on your own, which is clearly possible but a bit more labor-
intensive.

Once the software has been installed, it can be enabled easily:

test=# CREATE EXTENSION oracle_fdw;

https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
https://github.com/laurenz/oracle_fdw
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html

Migrating to PostgreSQL Chapter 13

[377]

The CREATE EXTENSION clause loads the extension into your desired database. In the next
step, a server can be created and users can be mapped to their counterparts on the Oracle
side:

test=# CREATE SERVER oraserver FOREIGN DATA WRAPPER oracle_fdw
 OPTIONS (dbserver '//dbserver.example.com/ORADB');
test=# CREATE USER MAPPING FOR postgres SERVER oradb
 OPTIONS (user 'orauser', password 'orapass');

Then it is time to fetch some data. My preferred way is to use the IMPORT FOREIGN
SCHEMA clause to import the data definitions. The IMPORT FOREIGN SCHEMA clause will
create a foreign table for each table in a remote schema and expose the data on the Oracle
side, which can then be read easily.

The easiest way to make use of the schema import is to create separate schemas on
PostgreSQL, which just hold the database schema. Then data can be sucked into
PostgreSQL easily using the FDW. The last section of this book, about migrating from
MySQL, shows you an example of how this can be done with MySQL/MariaDB. Keep in
mind that the IMPORT FOREIGN SCHEMA clause is part of the SQL/MED standard and
therefore the process is the same as with MySQL/MariaDB. This applies to pretty much
every FDW that supports the IMPORT FOREIGN SCHEMA clause.

While the oracle_fdw extension does most of the work for you, it still makes sense to see
how datatypes are mapped. Oracle and PostgreSQL don't provide the exact same data
types, so some mapping is either done by the oracle_fdw extension or by you manually.
The following list gives you an overview of how types are mapped. The left column shows
the Oracle types and the right column presents the potential PostgreSQL counterparts:

Oracle types PostgreSQL types

CHAR char, varchar, and text

NCHAR char, varchar, and text

VARCHAR char, varchar, and text

VARCHAR2 char, varchar, and text

NVARCHAR2 char, varchar, and text

CLOB char, varchar, and text

LONG char, varchar, and text

RAW uuid and bytea

BLOB bytea

Migrating to PostgreSQL Chapter 13

[378]

BFILE bytea (read-only)

LONG RAW bytea

NUMBER numeric, float4, float8, char, varchar, and text

NUMBER(n,m) with m<=0 numeric, float4, float8, int2, int4, int8, boolean, char, varchar,
and text

FLOAT numeric, float4, float8, char, varchar, and text

BINARY_FLOAT numeric, float4, float8, char, varchar, and text

BINARY_DOUBLE numeric, float4, float8, char, varchar, and text

DATE date, timestamp, timestamptz, char, varchar, and text

TIMESTAMP date, timestamp, timestamptz, char, varchar, and text

TIMESTAMP WITH TIME
ZONE

date, timestamp, timestamptz, char, varchar, and text

TIMESTAMP WITH
LOCAL TIME ZONE

date, timestamp, timestamptz, char, varchar, and text

INTERVAL YEAR TO
MONTH

interval, char, varchar, and text

INTERVAL DAY TO
SECOND

interval, char, varchar, and text

MDSYS.SDO_GEOMETRY geometry

If you want to use geometries, make sure that PostGIS is installed on your database server.

The downside of the oracle_fdw extension is definitely that it cannot migrate procedures
out of the box. Stored procedures are a somewhat special thing and need some manual
intervention.

Using ora2pg to migrate from Oracle
People migrated from Oracle to PostgreSQL long before FDWs existed. High license costs
have plagued people for a long time, and so moving to PostgreSQL has been a natural thing
to do for many years.

The alternative to the oracle_fdw extension is something called ora2pg, which has been
around for many years and can be downloaded for free from
https://github.com/darold/ora2pg. Ora2pg has been written in Perl and has a long
tradition of new releases.

https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg
https://github.com/darold/ora2pg

Migrating to PostgreSQL Chapter 13

[379]

The features provided by ora2pg are stunning:

Migration of the full database schema, including tables, views, sequences, and
indexes (unique, primary, foreign key, and check constraints)
Migration of privileges for users and groups
Migration of partitioned tables
Ability to export predefined functions, triggers, procedures, packages, and
package bodies
Migration of full or partial data (using a WHERE clause)
Full support of Oracle BLOB objects as PostgreSQL bytea
Ability to export Oracle views as PostgreSQL tables
Ability to export Oracle user-defined types
Basic automatic conversion of PL/SQL code to PL/pgSQL code. Note that a fully
automated conversion of everything is not possible. However, a lot of stuff can be
transformed automatically
Ability to export Oracle tables as FDW tables
Ability to export materialized views
Ability to display detailed reports about Oracle database content
Assessment of the complexity of the migration process of an Oracle database
Migration cost assessment of PL/SQL code from a file
Ability to generate XML files to be used with Pentaho data integrator (Kettle)
Ability to export Oracle locator and spatial geometries into PostGIS
Ability to export database links as Oracle FDW
Ability to export synonyms as views
Ability to export a directory as an external table or a directory for the
external_file extension
Ability to dispatch a list of SQL orders over multiple PostgreSQL connections
Ability to perform a diff between Oracle and PostgreSQL databases for test
purposes

Using ora2pg looks hard at first glance. However, it is actually a lot easier than it seems.
The basic concept is as follows:

/usr/local/bin/ora2pg -c /some_path/new_ora2pg.conf

ora2pg needs a config file to run. The config file contains all the information needed to
handle the process. Basically, the default config file is already really nice and it is a good
start for most migrations. In ora2pg language, a migration is a project.

Migrating to PostgreSQL Chapter 13

[380]

The configuration will drive the entire project. When you run it, ora2pg will create a couple
of directories with all the data extracted from Oracle:

ora2pg --project_base /app/migration/ --init_project test_project
Creating project test_project.
/app/migration/test_project/
 schema/
 dblinks/
 directories/
 functions/
 grants/
 mviews/
 packages/
 partitions/
 procedures/
 sequences/
 synonyms/
 tables/
 tablespaces/
 triggers/
 types/
 views/
 sources/
 functions/
 mviews/
 packages/
 partitions/
 procedures/
 triggers/
 types/
 views/
 data/
 config/
 reports/

Generating generic configuration file
Creating script export_schema.sh to automate all exports.
Creating script import_all.sh to automate all imports.

As you can see, scripts are generated that can just be executed. The resulting data can then
be imported in PostgreSQL nicely. Be prepared to change procedures here and there. Not
everything can be migrated automatically, so manual intervention is expected.

Migrating to PostgreSQL Chapter 13

[381]

Common pitfalls
There are some very basic syntax elements that work in Oracle but might not work in
PostgreSQL. This section lists some of the most important things. Of course, this list is not
complete by far, but it should point you in the right direction.

In Oracle, you might find the following statement:

DELETE mytable;

In PostgreSQL, this statement is wrong as PostgreSQL requires you to use a FROM clause in
the DELETE statement. The good news is that this kind of statement is easy to fix.

The next thing you might find is:

SELECT sysdate FROM dual;

PostgreSQL has neither a sysdate function nor a dual function. The dual function part is
easy to fix as you can simply create a VIEW returning one line. In Oracle, the dual function
works like this:

SQL> desc dual
Name Null? Type
--- -------- -
DUMMY VARCHAR2(1)

SQL> select * from dual;

D
-
X

In PostgreSQL, the same can be achieved by creating the following VIEW:

CREATE VIEW dual AS SELECT 'X' AS dummy;

The sysdate function is also easy to fix. It can be replaced with the clock_timestamp()
function.

Another common problem is the lack of data types such as VARCHAR2, as well as the lack of
special functions only supported by Oracle. A good way to get around these issues is to
install the orafce extension, which provides most of the stuff typically needed. It certainly
makes sense to check out https://github.com/orafce/orafce to learn more about the
orafce extension. It has been around for many years and is a solid piece of software.

https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/orafce/orafce

Migrating to PostgreSQL Chapter 13

[382]

A recent study shows that the orafce extension helps to ensure that 73% of all Oracle SQL
can be executed on PostgreSQL without modifications if the orafce extension is around
(done by NTT).

One of the most common pitfalls is the way Oracle handles outer joins. Consider the
following example:

SELECT employee_id, manager_id
 FROM employees
 WHERE employees.manager_id(+) = employees.employee_id;

This kind of syntax is not provided by PostgreSQL and never will be. Therefore, the join has
to be rewritten as a proper outer join. The + is highly Oracle-specific and has to be removed.

Moving from MySQL or MariaDB to
PostgreSQL
In this chapter, you have already learned some valuable lessons about how to move from
databases such as Oracle to PostgreSQL. Migrating both MySQL and MariaDB database
systems to PostgreSQL is fairly easy. The reason for that is that Oracle might be expensive
and a bit cumbersome from time to time. The same applies to Informix. However, both
Informix and Oracle have one important thing in common: CHECK constraints are honored
properly and data types are properly handled. In general, you can safely assume that the
data in those commercial systems is somewhat correct and doesn't violate the most basic
rules of data integrity and common sense.

Our next candidate is different. Many things you know about commercial databases are not
true in MySQL. The term NOT NULL does not mean much to MySQL (unless you explicitly
use strict mode). In Oracle, Informix, Db2, and all other systems I am aware of, NOT NULL is
a law that is obeyed under all circumstances. MySQL does not take those constraints that
seriously by default (although, to be fair, this has been changed in recent versions. Strict
mode was not on by default up to very recently. However, many old databases still use the
old default settings). In case of migration, this causes some issues. What are you going to do
with data that is technically wrong? If your NOT NULL column suddenly reveals countless
NULL entries, how are you going to handle that? MySQL doesn't just insert NULL values in
NOT NULL columns. It will insert an empty string or zero based on the datatype. So, things
can be pretty nasty.

Migrating to PostgreSQL Chapter 13

[383]

Handling data in MySQL and MariaDB
As you might imagine, and as you might have noticed already, I am far from unbiased
when it comes to databases. However, I don't want to turn this into blind MySQL/MariaDB
bashing. My goal is really to show you why MySQL and MariaDB can be such a pain in the
long run. I am biased for a reason and I really want to point out why this is the case. All the
things you are going to see are deeply scary and have serious implications on the migration
process in general. I have pointed out already that MySQL is somewhat special, and this
section will try to prove my point.

Again, the following examples assume that you are using a version of MySQL/MariaDB
that does not have strict mode on, which was the case when this chapter was originally
written (as of PostgreSQL 9.6). As of PostgreSQL 10.0, strict mode is already on, so most of
what you are going to read here only applies to older versions of MySQL/MariaDB.

Let me get started by creating a simple table:

MariaDB [test]> CREATE TABLE data (
 id integer NOT NULL,
 data numeric(4, 2)
);
Query OK, 0 rows affected (0.02 sec)

MariaDB [test]> INSERT INTO data VALUES (1, 1234.5678);
Query OK, 1 row affected, 1 warning (0.01 sec)

So far, there is nothing special. I have created a table consisting of two columns. The first
column is explicitly marked as NOT NULL. The second column is supposed to contain a
numeric value, which is limited to four digits. Finally, I have added a simple row. Can you
see a potential landmine about to blow up? Most likely not. However, check the following
listing:

MariaDB [test]> SELECT * FROM data;
+----+-------+
| id | data |
+----+-------+
| 1 | 99.99 |
+----+-------+
1 row in set (0.00 sec)

If I remember correctly, I have added a four digit number, which should not have worked
in the first place. However, MariaDB has simply changed my data. Sure, a warning is
issued, but this is not supposed to happen as the content of the table does not reflect what I
have actually inserted.

Migrating to PostgreSQL Chapter 13

[384]

Let me try to do the same thing in PostgreSQL:

test=# CREATE TABLE data
(
 id integer NOT NULL,
 data numeric(4, 2)
);
CREATE TABLE
test=# INSERT INTO data VALUES (1, 1234.5678);
ERROR: numeric field overflow
DETAIL: A field with precision 4, scale 2 must round to an absolute value
less than 10^2.

The table is created just like earlier, but in stark contrast to MariaDB/MySQL, PostgreSQL
will error out because we are trying to insert a value into the table that is clearly not
allowed. What is the point in clearly defining what we want if the database engine just does
not care? Suppose you have won the lottery—you might have just lost a couple of million
because the system has decided what is good for you.

I have been fighting commercial databases all my life, but I have never seen similar things
in any of the expensive commercial systems (Oracle, Db2, Microsoft SQL Server, and so on).
They might have issues of their own but the data is just fine in general.

Changing column definitions
Let's see what happens if you want to modify the table definition:

MariaDB [test]> ALTER TABLE data MODIFY data numeric(3, 2);
Query OK, 1 row affected, 1 warning (0.06 sec)
Records: 1 Duplicates: 0 Warnings: 1

You should see a problem here:

MariaDB [test]> SELECT * FROM data;
+----+------+
| id | data |
+----+------+
| 1 | 9.99 |
+----+------+
1 row in set (0.00 sec)

As you can see, the data has been modified again. It should not have been there in the first
place and has been changed all over again. Remember, you might have lost money again, or
some other nice asset, because MySQL tried to be clever.

Migrating to PostgreSQL Chapter 13

[385]

This is what happens in PostgreSQL:

test=# INSERT INTO data VALUES (1, 34.5678);
INSERT 0 1
test=# SELECT * FROM data;
 id | data
-----+-------
 1 | 34.57
(1 row)

Let's change the column definition now:

test=# ALTER TABLE data ALTER COLUMN data
 TYPE numeric(3, 2);
ERROR: numeric field overflow
DETAIL: A field with precision 3, scale 2 must round to
an absolute value less than 10^1.

Again, PostgreSQL will error out and it won't allow you to do nasty things to your data.
The same is expected to happen in any important database. The rule is simple: PostgreSQL
and others won't allow you to destroy your data.

However, PostgreSQL allows you to do one thing:

test=# ALTER TABLE data
 ALTER COLUMN data
 TYPE numeric(3, 2)
 USING (data / 10);
ALTER TABLE

You can explicitly tell the system how to behave. In this case, I explicitly told PostgreSQL to
divide the content of the column by 10. Developers can explicitly provide the rules applied
to the data. PostgreSQL won't try to be smart, and it does so for good reason:

test=# SELECT * FROM data;
 id | data
-----+------
 1 | 3.46
(1 row)

The data is exactly as expected.

Migrating to PostgreSQL Chapter 13

[386]

Handling null values
I don't want to turn this into a why MariaDB is bad chapter, but I wanted to add a final
example here, which I consider to be of high importance:

MariaDB [test]> UPDATE data SET id = NULL WHERE id = 1;
Query OK, 1 row affected, 1 warning (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 1

Remember, the id column was explicitly marked as NOT NULL:

MariaDB [test]> SELECT * FROM data;
+----+------+
| id | data |
+----+------+
| 0 | 9.99 |
+----+------+
1 row in set (0.00 sec)

Obviously, MySQL and MariaDB think that null and zero are the same thing. Let me try to
explain the problem with a simple analogy: if you know your wallet is empty, it is not the
same as not knowing how much you have. As I am writing these lines, I don't know how much
money I have with me (null = unknown), but I am 100% sure that it is way more than zero (I
know with certainty that it is enough to refuel my beloved car on the way home from the
airport, which is hard to do if you have nothing in your pocket).

Here is more scary news:

MariaDB [test]> DESCRIBE data;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| data | decimal(3,2) | YES | | NULL | |
+-------+--------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

MariaDB does remember that the column is supposed to be NOT NULL. However, it simply
modifies your data again.

Migrating to PostgreSQL Chapter 13

[387]

Expecting problems
The main problem is that you might have trouble moving data to PostgreSQL. Just imagine
you want to move some data and there is a NOT NULL constraint on the PostgreSQL side.
We know MySQL does not care:

MariaDB [test]> SELECT
 CAST('2014-02-99 10:00:00' AS datetime) AS x,
 CAST('2014-02-09 10:00:00' AS datetime) AS y;
+------+---------------------+
| x | y |
+------+---------------------+
| NULL | 2014-02-09 10:00:00 |
+------+---------------------+
1 row in set, 1 warning (0.00 sec)

PostgreSQL will definitely reject February 99 (for a good reason), but it might not accept the
NULL value either if you have explicitly banned it (for a good reason). What you have to do
in this case is to somehow fix the data to make sure that it honors the rules of your data
models, which are in place for a reason. You should not take this lightly because you might
have to change data, which is actually wrong in the first place.

Migrating data and schema
After trying to explain why moving to PostgreSQL is a good idea, and after outlining some
of the most important issues, it is time for me to explain some of the possible options you
have to finally get rid of MySQL/MariaDB.

Using pg_chameleon
One way to move from MySQL/MariaDB to PostgreSQL is to use Federico Campoli's tool,
called pg_chameleon, which can be downloaded for free from GitHub:
https://github.com/the4thdoctor/pg_chameleon. It has been explicitly designed to
replicate data to PostgreSQL and does a lot of work, such as converting the schema for you.

https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon
https://github.com/the4thdoctor/pg_chameleon

Migrating to PostgreSQL Chapter 13

[388]

Basically, the tool performs the following four steps:

pg_chameleon reads the schema and data from MySQL and creates a schema in1.
PostgreSQL.
Stores MySQL's master connection information in PostgreSQL.2.
Creates primary keys and indices in PostgreSQL.3.
Replicates from MySQL/MariaDB to PostgreSQL.4.

The pg_chameleon tool provides basic support for DDLs such as CREATE, DROP, ALTER
TABLE, and DROP PRIMARY KEY. However, due to the nature of MySQL/MariaDB, it does
not support all DDLs. Instead, it covers the most important features.

However, there is more to pg_chameleon. I have stated extensively already that data is not
always the way it should be or is expected to be. The way pg_chameleon approaches the
problem is to discard rubbish data and store it in a table called
sch_chameleon.t_discarded_rows. Of course, this is not a perfect solution but, given
the fairly low-quality input, it is the only sensible solution that comes to my mind. The idea
is to let developers decide what to do with all the broken rows. There is really no way for
pg_chameleon to decide on how to handle something which has been broken by somebody
else.

Recently, a lot of development has taken place and a lot of work has gone into the tool.
Therefore, it is really recommended to check out the GitHub page and read through all the
documentation. Features and bug fixes are being added as we speak. Given the limited
scope of this chapter, full coverage is not possible here.

Stored procedures, triggers, and more need special treatment and can only
be handled manually. The pg_chameleon tool cannot process those things
automatically.

Using FDWs
If you want to move from MySQL/MariaDB to PostgreSQL there is more than one way to
succeed. The use of FDWs is an alternative to pg_chameleon and offers a way to quickly
fetch the schema as well as the data and import it into PostgreSQL. The ability to connect
MySQL and PostgreSQL has been around for quite a while and therefore FDWs are
definitely a field that can be exploited to your advantage.

Migrating to PostgreSQL Chapter 13

[389]

Basically, the mysql_fdw extension works just like any other FDW out there. Compared to
other, lesser-known FDWs, the mysql_fdw extension is actually quite powerful and offers
the following features:

Writing to MySQL/MariaDB
Connection pooling
The WHERE clause push down (which means that filters applied on a table can
actually be executed remotely for better performance)
Column push down (only the columns needed are fetched from the remote side;
older versions are used to fetch all the columns, which leads to more network
traffic)
Prepared statements on the remote side

The way to use the mysql_fdw extension is to make use of the IMPORT FOREIGN SCHEMA
statement, which allows for moving data over to PostgreSQL. Fortunately, this is fairly easy
to do on a Unix system.

The first thing you have to do is to download the code from GitHub:

git clone https://github.com/EnterpriseDB/mysql_fdw.git

Then run the following commands to compile the FDW. Note that the paths might differ on
your system. For this chapter, I have assumed that both MySQL and PostgreSQL are under
/usr/local directory, which might not be the case on your system:

$ export PATH=/usr/local/pgsql/bin/:$PATH
$ export PATH=/usr/local/mysql/bin/:$PATH
$ make USE_PGXS=1
$ make USE_PGXS=1 install

Once the code has been compiled, the FDW can be added to your database:

CREATE EXTENSION mysql_fdw;

The next step is to create the server you want to migrate:

CREATE SERVER migrate_me_server
 FOREIGN DATA WRAPPER mysql_fdw
 OPTIONS (host 'host.example.com', port '3306');

Migrating to PostgreSQL Chapter 13

[390]

Once the server has been created you can create the desired user mappings:

CREATE USER MAPPING FOR postgres
 SERVER migrate_me_server
 OPTIONS (username 'joe', password 'public');

Finally, it is time to do the real migration. The first thing to do is to import the schema. I
suggest creating a special schema for the linked tables first:

CREATE SCHEMA migration_schema;

When running the IMPORT FOREIGN SCHEMA statement, you can use this schema as the
target schema in which all the database links will be stored. The advantage is that you can
delete it conveniently after the migration.

Once you are done with the IMPORT FOREIGN SCHEMA statement, you can create real
tables. The easiest way to do that is to use the LIKE keyword provided by the CREATE
TABLE clause. It allows you to copy the structure of a table and create a real local
PostgreSQL table. Fortunately, this also works if the table you are cloning is just an FDW.
Here is an example:

CREATE TABLE t_customer
 (LIKE migration_schema.t_customer);

Then, you can process the data:

INSERT INTO t_customer
 SELECT * FROM migration_schema.t_customer

This is actually the point where you can correct the data, eliminate chunk rows, or do a bit
of processing of the data. Given the low-quality origin of the data, it can be useful to apply
constraints and so on after moving the data for the first time. It might be less painful.

Once the data has been imported, you are ready to deploy all the constraints, indexes, and
so on. At this point, you will actually start to see some nasty surprises because as I stated
previously, you can't expect the data to be rock-solid. In general, migration can be pretty
hard in the case of MySQL.

Migrating to PostgreSQL Chapter 13

[391]

Summary
In this chapter, you learned how to move to PostgreSQL. Migration is an important topic
and more and more people are adopting PostgreSQL as we speak.

PostgreSQL 10 has many new features such as built-in partitioning, the ability to create
more statistics (CREATE STATISTICS), and logical replication features. In future, we will
see many more developments in all areas of PostgreSQL, especially to allow users to scale
out more and to run queries even faster. We are yet to see what the future has in store for
us.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning PostgreSQL 10 - Second Edition
Salahaldin Juba, Andrey Volkov

ISBN: 978-1-78839-201-3

Understand the fundamentals of relational databases, relational algebra, and data
modeling
Install a PostgreSQL cluster, create a database, and implement your data model
Create tables and views, define indexes, and implement triggers, stored
procedures, and other schema objects
Use the Structured Query Language (SQL) to manipulate data in the database
Implement business logic on the server side with triggers and stored procedures
using PL/pgSQL
Make use of advanced data types supported by PostgreSQL 10: Arrays, hstore,
JSONB, and others
Develop OLAP database solutions using the most recent features of PostgreSQL
10
Connect your Python applications to a PostgreSQL database and work with the
data efficiently
Test your database code, find bottlenecks, improve performance, and enhance the
reliability of the database applications

https://www.packtpub.com/big-data-and-business-intelligence/learning-postgresql-10-second-edition

Other Books You May Enjoy

[393]

PostgreSQL Administration Cookbook, 9.5/9.6 Edition
Simon Riggs, Gianni Ciolli, Gabriele Bartolini

ISBN: 978-1-78588-318-7

Implement PostgreSQL features for performance and reliability
Harness the power of the latest PostgreSQL 9.6 features
Manage open source PostgreSQL versions 9.5 and 9.6 on various platforms
Discover advanced technical tips for experienced users
Explore best practices for planning and designing live databases
Select and implement robust backup and recovery techniques
Explore concise and clear guidance on replication and high availability
See the latest details on Logical Replication and Bi-Directional Replication

https://www.packtpub.com/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition

Other Books You May Enjoy

[394]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
administrative tasks
 speeding up 194
adminpack
 using 326
advisory locks
 utilizing 34, 35
aggregates
 efficiency, improving 121
 hypothetical aggregates, writing 123
 simple aggregates, creating 117, 120
 support, adding for parallel queries 121
 writing 117
analytics
 utilizing 102
asynchronous replication
 basic setup, performing 296
 checking, for availability 299, 302
 conflicts, managing 303
 failovers, performing 303
 halting 298
 reliability feature, adding 306
 replication 298
 security, improving 298
 setting up 295
 timelines 302
autovacuum 36

B
b-tree features
 about 61
 combined indexes 61
 data, adding while indexing 65
 functional indexes, adding 62
 space consumption, reducing 63
backups

 replaying 276
basic locking
 about 20, 21
 alternative solutions 24
 typical mistakes, avoiding 22, 23
Bi-Directional Replication (BDR) 317
bind addresses 238
bitmap scans
 using 53
block range indexes (BRIN) indexes
 extending 80
bloom filters
 applying 328
 reference 82, 329
btree_gin
 deploying 330
btree_gist
 deploying 330

C
checkpoints 282
cleanup
 managing 35, 36
clog corruption
 about 359
 facing 359
clustered tables
 used, for improving speed 56
column-level security
 handling 257
combined indexes 61
common table extension (CTE) 368
connections 238
constant folding 161
contrib modules
 adminpack, using 326

[396]

 bloom filters, applying 328
 btree_gin, deploying 330
 btree_gist, deploying 330
 Dblink 331
 files, fetching with file_fdw 332
 pageinspect, used for storage inspection 334
 pg_buffercache, used for caching investigation

336

 pg_prewarm variable, used for prewarming
caches 338

 pg_stat_statements, used for performance
inspection 339

 pg_trgm, used for fuzzy searches 342
 pgcrypto, used for data encryption 338
 pgstattuple, used for storage inspection 340
 postgres_fdw, used for remote servers

connection 342
 using 326
cost model 45
CREATE PUBLICATION
 using 318
CREATE SUBSCRIPTION
 using 318
Cybertec
 reference 111

D
data partitions
 creating 182, 183
 data, cleaning up 187
 inherited structures, modifying 185
 PostgreSQL 10.0 partitioning 188
 table constraints, applying 184
 tables, moving in and out 186
data
 partitioning 181
database administration functions
 about 6
 additional information, using in pg_stat_activity 6
database-level security
 defining 252
databases
 inspecting 130
 tables, inspecting 133
Dblink 331

deadlocks
 observing 31, 32, 34
default privileges
 configuring 259

E
execution plans
 about 166
 approaching 166
EXPLAIN
 making verbose 168
 using 46
explicit locking 22, 23
extensions
 about 346
 available extensions, checking 323, 325
 working 322

F
FDWs
 using 388, 390
file_fdw
 used, for fetching files 332
FILTER clause
 and grouping sets, combining 98
 supporting engines 370
FOR SHARE
 using 25, 26, 28
FOR UPDATE
 using 25, 26, 28
foreign-data wrapper (FDW) 376
format
 handling 275
Free Space Map (FSM) 36
Full-Text-Search (FTS)
 about 86
 exclusion operators, suing 91
 GIN indexes, defining 88
 search, debugging 89
 strings, comparing 87
 word statistics, gathering 90
function calls
 cached plans, using 233
 costs, assigning to functions 233

[397]

 count, reducing 232
 query execution stages 233
function inlining 162
functional indexes
 adding 62
fuzzy searching
 answers, achieving 82
 LIKE queries, speeding up 85
 pg_trgm, using 82
 regular expressions, handling 86

G
generalized inverted (GIN) indexes
 about 76
 extending 77
Generalized Search Tree (GiST) indexes
 about 73
 extending 75
 working 74
genetic query optimization 180, 181
Geographical Information Systems (GIS) 347
global data
 handling 277
grouping sets
 about 93
 applying 94
 combining, with FILTER clause 98
 performance, investigating 97
 sample data, loading 94
 supporting sets 367
 using 367

H
hash indexes 73
high temporary file usage
 reasons 131
hypothetical aggregates
 about 101
 writing 123

I
I/O
 checking for 357
ICU encodings 11

index only scans
 using 60
indexes
 using 54
instance-level security
 handling 246
 users, creating 249
 users, modifying 249
issues
 buffer usage, inspecting 171
 changes, spotting in runtime 169
 estimates, inspecting 169
 high buffer usage, fixing 173

J
join options evaluation
 hash joins 156
 merge joins 156
 nested loops 156
join pruning 163
join_collapse_limit variable 176
joins
 fixing 173
 join_collapse_limit variable 176
 obtaining 173
 outer joins, processing 175

K
K-Nearest Neighbor (KNN) 330

L
lateral joins
 supporting lateral joins 366
 using 366
lightweight directory access protocol (LDAP) 244
limit/offset
 FETCH FIRST clause 374
 using 374
log files
 creating 147
 postgresql.conf file, configuring 147
log
 inspecting 355
logical replication slots

[398]

 handling 314, 317
 use cases 317

M
MariaDB
 column definitions, changing 384, 385
 data migration, with pg_chameleon 387
 data, handling 383
 expecting problems 387
 FDWs, using 388
 migrating, to PostgreSQL 382
 null values, handling 386
 schema, migrating 387
memory
 checking for 357
missing indexes
 checking for 356
Multi-Version Concurrency Control (MVCC) 20
MySQL
 column definitions, changing 384, 385
 data migration, with pg_chameleon 388
 data, handling 383
 data, migrating 387
 expecting problems 387
 FDWs, using 388
 migrating, to PostgreSQL 382
 null values, handling 386

N
network security
 bind addresses and connections 238
 column-level security 257
 connections, inspecting 240
 database-level security, defining 251
 default privileges, configuring 259
 instance-level security, handling 246
 managing 237
 performance, inspecting 240
 pg_hba.conf file, managing 242
 schema-level permissions, adjusting 253
 tables, working with 256
 TCP, avoiding 240
noteworthy error scenarios
 about 359

 careless connection management 363
 checkpoint messages 360
 clog corruption, facing 359
 corrupted data pages, managing 361
 table bloat, fighting 363

O
objects
 reassigning 266
OFFSET clause
 supporting engines 374
onboard windowing functions
 dense_rank function 109
 first_value() function 114
 lag() function 111, 114
 last_value() function 114
 lead() function 111, 114
 nth_value() function 114
 ntile() function 110
 rank function 109
 row_number() function 116
Online-Transaction-Processing (OLTP) 30
operator classes
 about 65
 creating 71
 custom operator classes, testing 71
 hacking, up for b-tree 67
 new operators, creating 67
optimization
 by example 155
 constant folding 161
 equality constraints, applying 158
 exhaustive searching 159
 function inlining 162
 join options, evaluating 155
 join pruning 163
 process, making to fail 160
 set operations, speeding up 164
 transformations, applying 157
 trying 159
optimizer 154
optimizer settings
 disabling 177, 180
 enabling 177, 180
 genetic query optimization 180

[399]

ora2pg
 features 379
 reference 378
Oracle, migration to PostgreSQL
 about 376
 common pitfalls 381
 ora2pg, using 378, 380
 oracle_fdw extension, used for moving data 376,

378

orafce extension
 reference 381
ordered sets
 using 99
outer joins
 processing 175

P
pageinspect
 used, for storage inspection 334
parameters
 adjusting, for good query performance 189, 191
 administrative tasks, speeding up 194
 sorting, speed up 192
passwords and connection information
 passing 271
 passing, with .pgpass 273
 passing, with environment variables 272
 passing, with service files 273
permissions
 inspecting 264
pg_buffercache
 used, for caching investigation 336, 338
pg_chameleon
 reference 387
 using 387
pg_crash
 reference 347
pg_hba.conf file
 managing 242
 SSL, handling 244
pg_prewarm variable
 used, for prewarming caches 338
pg_squeeze
 reference 38, 363
pg_stat_activity

 Hibernate statements, treating 351
 inspecting 349
 queries origin, searching 351
 querying 349
pg_stat_statements
 used, for inspecting performance 339
pg_trgm
 used, for fuzzy searches 342
pgcrypto
 reference 338
 used, for data encryption 338
pgstattuple
 used, for inspecting storage 340
pgwatch2
 reference 348
physical replication slots
 handling 312
PL/Perl
 about 220
 data, sharing across function calls 226
 escaping 226
 PL/PerlU, selecting between 223
 SPI , used for set returning functions 225
 SPI interface, using 224
 support functions 226
 triggers, writing 227
 used, for datatype abstraction 222
PL/pgSQL
 advanced error handling 207
 composite types, utilizing 214
 cursors, used for data fetching in chunks 210
 GET DIAGNOSTICS, using 208
 quoting, handling 203
 scopes, managing 206
 triggers, writing 215, 218
PL/Python
 about 227
 code, writing 228
 errors, handling 231
 SPI interface, using 229
pluggable authentication module (PAM) 244
Point-In-Time-Recovery (PITR) 284
PostGIS
 reference 347
postgres_fdw

[400]

 mistakes and typos, handling 346
 used, for connecting remote servers 342, 345
PostgreSQL 10.0 partitioning 188
PostgreSQL 10.0
 database administration functions 6
 features 5
PostgreSQL consultant
 reference 22, 39
PostgreSQL cost model
 exploring 48
PostgreSQL index types
 about 72
 additional indexes, adding 80
 block range indexes (BRIN) indexes 79
 generalized inverted (GIN) indexes 76
 GiST indexes 73
 hash indexes 73
 SP-GiST indexes 78
PostgreSQL system views
 archiving 138
 background worker, tracking 137
 databases, inspecting 130
 indexes, exploring 136
 live traffic, checking 127
 pg_stat_statements, using 143
 pg_stat_user_tables 134
 SSL connections, checking 141
 streaming 138
 tracking 138
 transactions, inspecting 141
 vacuum progress, tracking 142
 working with 127
PostgreSQL transactions
 errors, handling 16
 SAVEPOINT, using 17
 transactional DDLs 18
 working with 14, 16
postgresql.conf file configuration
 about 148
 log destination and rotation, defining 148
 logging 151
 slow queries, logging 150
 syslog, configuring 150
PostgreSQL
 reference 117, 227

 SQL statements, migrating 366

Q
quorum COMMIT
 about 8
 CREATE STATISTICS, using 10
 data, partitioning 9
 parallelism, improving 11

R
remote authentication dial-in user service

(RADIUS) 244
replication slots
 about 311
 logical replication slots, handling 314
 physical replication slots, handling 312
 using 311
row-level security (RLS)
 exploring 260, 263, 264
runtime statistics
 gathering 126
 PostgreSQL system views, working with 127

S
schema-level permissions
 adjusting 255
SCRAM-SHA-256
 about 7
 logical replication 7
 support, for replication 7
Serializable Snapshot Isolation (SSI) 31
serizable
 reference 31
Set Returning Function (SRF) 211
simple aggregates
 creating 117, 120
simple dumps
 passwords and connection information, passing

271

 performing 269
 pg_dump logs, executing 270
 subsets of data, extracting 274
simple indexes
 deploying 50

[401]

simple queries 45
slow queries
 checking for 352
 individual queries, inspecting 353
 perf, using 354
snapshot too old feature 350
snapshot
 using 43
sorted output
 multiple index, using 52
 using 51
space consumption
 reducing 63
space partitioned GiST (SP-GiST) indexes 78
Spinlocks
 reference 355
SQL statements, migration to PostgreSQL
 about 366
 FILTER clause, using 369
 grouping sets, using 367
 lateral joins, using 366
 limit/offset, using 373
 OFFSET, using 374
 TABLESAMPLE clause, using 372
 temporal tables, using 375
 time series, matching patterns 375
 windowing functions, using 370
 WITH clause, using 368
 WITH RECURSIVE clause, using 369
 WITHIN GROUP clause, using 371
storage
 optimizing 35, 36
stored procedure languages
 about 195, 201
 anatomy 197
 anonymous code blocks, using 199
 dollar quoting 198
 functions and transactions, using 199
 performance, improving 232
 PL/Perl 220
 PL/pgSQL 202
 PL/Python 228
stored procedure performance
 function calls count, reducing 232
 improving 232

stored procedures
 using 234
synchronous replication
 durability, adjusting 309
 upgrading to 307

T
table bloat 340
tables
 clustering 59
TABLESAMPLE clause
 supporting engines 373
 using 372
temporal tables
 supporting tables 375
The Oversized Attribute Storage Technique

(TOAST) 135
transaction isolation levels 29, 30, 31
transaction log
 about 280
 archive, cleaning up 295
 archiving 284
 archiving, configuration 284
 base backups, creating 286
 checkpoints 282
 optimizing 282
 pg_hba.conf file, configuring 286
 recovery 284
 replaying 290
 right timestamp, finding 292
 viewing 281
transaction wraparound-related issues
 exploring 37, 38
transformations, applying
 subselects, flattening 158
 view, inlining 157

U
unknown database
 approaching 348
users
 dropping 266

V
VACUUM FULL 38
VACUUM
 about 36
 working 39, 41, 42

W
windowing functions
 data, ordering inside window 104
 data, partitioning 103
 onboard windowing functions, using 108

 sliding windows, using 105
 supporting windowing and analytics 371
 utilizing 102
 window clauses, abstracting 108
WITH clause
 supporting engines 368
 using 368
WITH RECURSIVE clause
 supporting engine 369
WITHIN GROUP clause
 supporting engines 372
Write Ahead Log (WAL) 280

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: PostgreSQL Overview

	What is new in PostgreSQL 10.0?
	Understanding new database administration functions
	Using additional information in pg_stat_activity

	Introducing SCRAM-SHA-256
	Improving support for replication
	Understanding logical replication

	Introducing quorum COMMIT
	Partitioning data
	Making use of CREATE STATISTICS
	Improving parallelism

	Introducing ICU encodings
	Summary

	Chapter 2: Understanding Transactions and Locking

	Working with PostgreSQL transactions
	Handling errors inside a transaction
	Making use of SAVEPOINT
	Transactional DDLs

	Understanding basic locking
	Avoiding typical mistakes and explicit locking
	Considering alternative solutions

	Making use of FOR SHARE and FOR UPDATE
	Understanding transaction isolation levels
	Considering SSI transactions

	Observing deadlocks and similar issues
	Utilizing advisory locks
	Optimizing storage and managing cleanup
	Configuring VACUUM and autovacuum
	Digging into transaction wraparound-related issues
	A word on VACUUM FULL

	Watching VACUUM at work
	Making use of snapshot too old

	Summary

	Chapter 3: Making Use of Indexes

	Understanding simple queries and the cost model
	Making use of EXPLAIN
	Digging into the PostgreSQL cost model
	Deploying simple indexes
	Making use of sorted output
	Using more than one index at a time

	Using bitmap scans effectively
	Using indexes in an intelligent way

	Improving speed using clustered tables
	Clustering tables
	Making use of index only scans

	Understanding additional b-tree features
	Combined indexes
	Adding functional indexes
	Reducing space consumption
	Adding data while indexing

	Introducing operator classes
	Hacking up an operator class for a b-tree
	Creating new operators
	Creating operator classes
	Testing custom operator classes

	Understanding PostgreSQL index types
	Hash indexes
	GiST indexes
	Understanding how GiST works
	Extending GiST

	GIN indexes
	Extending GIN

	SP-GiST indexes
	BRIN indexes
	Extending BRIN indexes

	Adding additional indexes

	Achieving better answers with fuzzy searching
	Taking advantage of pg_trgm
	Speeding up LIKE queries
	Handling regular expressions

	Understanding full-text search - FTS
	Comparing strings
	Defining GIN indexes
	Debugging your search
	Gathering word statistics
	Taking advantage of exclusion operators

	Summary

	Chapter 4: Handling Advanced SQL

	Introducing grouping sets
	Loading some sample data
	Applying grouping sets
	Investigating performance

	Combining grouping sets with the FILTER clause

	Making use of ordered sets
	Understanding hypothetical aggregates
	Utilizing windowing functions and analytics
	Partitioning data
	Ordering data inside a window
	Using sliding windows
	Abstracting window clauses
	Making use of onboard windowing functions
	The rank and dense_rank functions
	The ntile() function
	The lead() and lag() functions
	The first_value(), nth_value(), and last_value() functions
	The row_number() function

	Writing your own aggregates
	Creating simple aggregates
	Adding support for parallel queries
	Improving efficiency
	Writing hypothetical aggregates

	Summary

	Chapter 5: Log Files and System Statistics

	Gathering runtime statistics
	Working with PostgreSQL system views
	Checking live traffic
	Inspecting databases
	Inspecting tables

	Making sense of pg_stat_user_tables
	Digging into indexes
	Tracking the background worker
	Tracking, archiving, and streaming
	Checking SSL connections
	Inspecting transactions in real time
	Tracking vacuum progress
	Using pg_stat_statements

	Creating log files
	Configuring the postgresql.conf file
	Defining log destination and rotation
	Configuring syslog
	Logging slow queries
	Defining what and how to log

	Summary

	Chapter 6: Optimizing Queries for Good Performance

	Learning what the optimizer does
	Optimizations by example
	Evaluating join options
	Nested loops
	Hash joins
	Merge joins

	Applying transformations
	Inlining the view
	Flattening subselects

	Applying equality constraints
	Exhaustive searching
	Trying it all out
	Making the process fail
	Constant folding
	Understanding function inlining
	Join pruning
	Speedup set operations

	Understanding execution plans
	Approaching plans systematically
	Making EXPLAIN more verbose

	Spotting problems
	Spotting changes in runtime
	Inspecting estimates
	Inspecting buffer usage
	Fixing high buffer usage

	Understanding and fixing joins
	Getting joins right
	Processing outer joins
	Understanding the join_collapse_limit variable

	Enabling and disabling optimizer settings
	Understanding genetic query optimization

	Partitioning data
	Creating partitions
	Applying table constraints
	Modifying inherited structures
	Moving tables in and out of partitioned structures
	Cleaning up data
	Understanding PostgreSQL 10.0 partitioning

	Adjusting parameters for good query performance
	Speeding up sorting
	Speeding up administrative tasks

	Summary

	Chapter 7: Writing Stored Procedures

	Understanding stored procedure languages
	The anatomy of a stored procedure
	Introducing dollar quoting
	Making use of anonymous code blocks
	Using functions and transactions

	Understanding various stored procedure languages
	Introducing PL/pgSQL
	Handling quoting
	Managing scopes
	Understanding advanced error handling
	Making use of GET DIAGNOSTICS
	Using cursors to fetch data in chunks
	Utilizing composite types
	Writing triggers in PL/pgSQL

	Introducing PL/Perl
	Using PL/Perl for datatype abstraction
	Deciding between PL/Perl and PL/PerlU
	Making use of the SPI interface
	Using SPI for set returning functions
	Escaping in PL/Perl and support functions
	Sharing data across function calls
	Writing triggers in Perl

	Introducing PL/Python
	Writing simple PL/Python code
	Using the SPI interface
	Handling errors

	Improving stored procedure performance
	Reducing the number of function calls
	Using cached plans
	Assigning costs to functions

	Using stored procedures
	Summary

	Chapter 8: Managing PostgreSQL Security

	Managing network security
	Understanding bind addresses and connections
	Inspecting connections and performance
	Living in a world without TCP

	Managing pg_hba.conf
	Handling SSL

	Handling instance-level security
	Creating and modifying users

	Defining database-level security
	Adjusting schema-level permissions
	Working with tables
	Handling column-level security
	Configuring default privileges

	Digging into row-level security - RLS
	Inspecting permissions
	Reassigning objects and dropping users
	Summary

	Chapter 9: Handling Backup and Recovery

	Performing simple dumps
	Running pg_dump
	Passing passwords and connection information
	Using environment variables
	Making use of .pgpass
	Using service files

	Extracting subsets of data

	Handling various formats
	Replaying backups
	Handling global data
	Summary

	Chapter 10: Making Sense of Backups and Replication

	Understanding the transaction log
	Looking at the transaction log
	Understanding checkpoints
	Optimizing the transaction log

	Transaction log archiving and recovery
	Configuring for archiving
	Configuring the pg_hba.conf file
	Creating base backups
	Reducing the bandwidth of a backup
	Mapping tablespaces
	Using different formats
	Testing transaction log archiving

	Replaying the transaction log
	Finding the right timestamp

	Cleaning up the transaction log archive

	Setting up asynchronous replication
	Performing a basic setup
	Improving security

	Halting and resuming replication
	Checking replication to ensure availability
	Performing failovers and understanding timelines
	Managing conflicts
	Making replication more reliable

	Upgrading to synchronous replication
	Adjusting durability

	Making use of replication slots
	Handling physical replication slots
	Handling logical replication slots
	Use cases of logical slots

	Making use of CREATE PUBLICATION and CREATE SUBSCRIPTION
	Summary

	Chapter 11: Deciding on Useful Extensions

	Understanding how extensions work
	Checking for available extensions

	Making use of contrib modules
	Using the adminpack
	Applying bloom filters
	Deploying btree_gist and btree_gin
	Dblink - considering phasing out
	Fetching files with file_fdw
	Inspecting storage using pageinspect
	Investigating caching with pg_buffercache
	Encrypting data with pgcrypto
	Prewarming caches with pg_prewarm
	Inspecting performance with pg_stat_statements
	Inspecting storage with pgstattuple
	Fuzzy searches with pg_trgm
	Connecting to remote servers using postgres_fdw
	Handling mistakes and typos

	Other useful extensions
	Summary

	Chapter 12: Troubleshooting PostgreSQL

	Approaching an unknown database
	Inspecting pg_stat_activity
	Querying pg_stat_activity
	Treating Hibernate statements
	Figuring out where queries come from

	Checking for slow queries
	Inspecting individual queries
	Digging deeper with perf

	Inspecting the log
	Checking for missing indexes
	Checking for memory and I/O
	Understanding noteworthy error scenarios
	Facing clog corruption
	Understanding checkpoint messages
	Managing corrupted data pages
	Careless connection management
	Fighting table bloat

	Summary

	Chapter 13: Migrating to PostgreSQL

	Migrating SQL statements to PostgreSQL
	Using lateral joins
	Supporting lateral

	Using grouping sets
	Supporting grouping sets

	Using the WITH clause – common table expressions
	Supporting the WITH clause

	Using the WITH RECURSIVE clause
	Supporting the WITH RECURSIVE clause

	Using the FILTER clause
	Supporting the FILTER clause

	Using windowing functions
	Supporting windowing and analytics

	Using ordered sets – WITHIN GROUP clause
	Supporting the WITHIN GROUP clause

	Using the TABLESAMPLE clause
	Supporting TABLESAMPLE clause

	Using limit/offset
	Supporting the FETCH FIRST clause

	Using OFFSET
	Supporting the OFFSET clause

	Using temporal tables
	Supporting temporal tables

	Matching patterns in time series

	Moving from Oracle to PostgreSQL
	Using the oracle_fdw extension to move data
	Using ora2pg to migrate from Oracle
	Common pitfalls

	Moving from MySQL or MariaDB to PostgreSQL
	Handling data in MySQL and MariaDB
	Changing column definitions
	Handling null values
	Expecting problems

	Migrating data and schema
	Using pg_chameleon
	Using FDWs

	Summary

	Other Books You May Enjoy

	Index

