Quick answers to common problems

PostgreSQL 9
Administration Cookbook

Solve real-world PostgreSQL problems with over 100 simple yet
incredibly effective recipes

community experience distliled

Simon Riggs Hannu Krosing []Ope” source

PUBLISHING

PostgreSQL 9
Administration Cookbook

Solve real-world PostgreSQL problems with over 100
simple, yet incredibly effective recipes

Simon Riggs

Hannu Krosing

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[PUBLISHING]

PostgreSQL 9 Administration Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 1191010

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849510-28-8
www . packtpub. com

Cover Image by John M. Quick (john.m.quick@gmail . com)

[PUBLISHING]

PUBLISHING

Credits

Authors
Simon Riggs

Hannu Krosing

Reviewers
Gabriele Bartolini

Dimitri Fontaine

Acquisition Editor
Sarah Cullington

Development Editor
Eleanor Duffy

Technical Editor
Azharuddin Sheikh

Copy Editor
Neha Shetty

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Ashwin Shetty

Project Coordinator
Zainab Bagasrawala

Proofreader
Clyde Jenkins

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

About the Authors

Simon Riggs is a major developer and one of the few committers on the PostgreSQL
database project, as well as CTO of 2ndQuadrant, providing 24x7 support and services
to PostgreSQL users worldwide.

Simon works actively as a database architect and support troubleshooter, skills which drive
and shape his contributions to the development of operational features for PostgreSQL.
Feature credits include Point in Time Recovery, Warm Standby replication, Hot Standby,
Asynchronous Commit, Partitioning and many other performance and tuning features. His
designs and solutions can be found throughout the PostgreSQL code and documentation.

Simon has also previously worked with Oracle, Teradata, and DB2 and holds multiple
certifications. His previous experience covers management and senior technical roles in
the banking, telecommunications and software industries. Simon's early research work
has been published by the Royal Society.

Hannu Krosing is a principal consultant at 2ndQuadrant and a Technical Advisor at
Ambient Sound Investments. As the original database architect at Skype Technologies,
Hannu was responsible for designing the Skytools suite of replication and scalability
technologies. Hannu has more than 12 years experience working with and contributing
to the PostgreSQL project.

[PUBLISHING]

About the Reviewers

Gabriele Bartolini is a long time open-source programmer, writing Linux/Unix
applications in C and C++ for over 10 years, specializing in search engines and web
analytics with large databases.

Gabriele has a degree in Statistics from the University of Florence. His areas of expertise
are data mining and data warehousing, having worked on web traffic analysis in Australia
and Italy.

Gabriele is a consultant with 2ndQuadrant and an active member of the international
PostgreSQL community.

Gabriele currently lives in Prato, a small but vibrant city located in the northern part of
Tuscany, Italy. His second home is Melbourne, Australia, where he has studied at Monash
University and worked in the ICT sector.

His hobbies include "calcio" (football or soccer, depending on which part of the world you
come from) and playing his Fender Stratocaster electric guitar.

Thanks to my family, in particular Cathy who encourages me by saying there
is always something new to learn.

[PUBLISHING]

Dimitri Fontaine is part of the PostgreSQL community and has been contributing
to open source for more than 10 years. He is the lead developer of enterprise ready
solutions such as pgloader (ETL), PostgreSQL prefix indexing (telephony routing),
pg_staging (development environment maintenance from production backups),
preprepare (allow easy usage of prepare statements behind a connection pooler),
and some backports of recent PostgreSQL features

He also contributed to Skytools and the Londiste replication system and, authored a PHP
layer for the PGQ event handler, allowing for robust asynchronous processing and code
reuse.

Dimitri's passion is system architecture & design, with the goals of reduced maintenance
time and very high availability

Professional experience, community involvement, and PostgreSQL expertise have led
Dimitri to now work as a principal consultant at 2ndQuadrant, France.

[PUBLISHING]

Table of Contents

Preface 1
Chapter 1. First Steps 7
Introduction 7
Introducing PostgreSQL 9 8
Getting PostgreSQL 10
Connecting to PostgreSQL server 11
Enabling access for network/remote users 14
Using graphical administration tools 15
Using psql query and scripting tool 20
Changing your password securely 24
Avoiding hardcoding your password 25
Using a connection service file 26
Troubleshooting a failed connection 27
Chapter 2: Exploring the Database 31
Introduction 31
What version is the server? 32
What is the server uptime? 33
Locate the database server files 34
Locate the database server message log 36
List databases on this database server? 40
How many tables in a database? 43
How much disk space does a database use? 45
How much disk space does a table use? 46
Which are my biggest tables? 47
How many rows in a table? 48
Quick estimate of the number of rows in a table 49
Understanding object dependencies 53

[PUBLISHING]

Table of Contents

Chapter 3: Configuration 57
Introduction 57
Reading the Fine Manual (RTFM) 58
Planning a new database 59
Changing parameters in your programs 60
What are the current configuration settings? 62
Which parameters are at non-default settings? 63
Updating the parameter file 65
Setting parameters for particular groups of users 66
Basic server configuration checklist 67
Adding an external module to PostgreSQL 68
Running server in power saving mode 70

Chapter 4: Server Control 73
Introduction 73
Starting the database server manually 74
Stopping the server safely and quickly 75
Stopping the server in an emergency 76
Reloading the server configuration files 76
Restarting the server quickly 78
Preventing new connections 80
Restricting users to just one session each 81
Pushing users off the system 83
Deciding on a design for multi-tenancy 84
Using multiple schemas 85
Giving users their own private database 88
Running multiple servers on one system 89
Set up a Connection Pool 91

Chapter 5: Tables & Data 95
Introduction 95
Choosing good names for database objects 96
Handling objects with quoted names 97
Enforcing same name, same column definition 929
Identifying and removing duplicates 103
Preventing duplicate rows 106
Finding a unique key for a set of data 112
Generating test data 114
Randomly sampling data 117
Loading data from a spreadsheet 119
Loading data from flat files 122

[PUBLISHING]

Table of Contents

Chapter 6: Security 125
Introduction 125
Revoking user access to a table 126
Granting user access to a table 128
Creating a new user 130
Temporarily preventing a user from connecting 131
Removing a user without dropping their data 133
Checking all users have a secure password 134
Giving limited superuser powers to specific users 136
Auditing DDL changes 139
Auditing data changes 140
Integrating with LDAP 144
Connecting using SSL 145
Encrypting sensitive data 147

Chapter 7: Database Administration 153
Introduction 153
Writing a script that either all succeeds or all fails 154
Writing a psql script that exits on first error 156
Performing actions on many tables 158
Adding/Removing the columns of a table 163
Changing datatype of a column 165
Adding/Removing schemas 168
Moving objects between schemas 170
Adding/Removing tablespaces 171
Moving objects between tablespaces 174
Accessing objects in other PostgreSQL databases 177
Making views updateable 182

Chapter 8: Monitoring and Diagnosis 189
Introduction 189
Is the user connected? 193
What are they running? 194
Are they active or blocked? 196
Who is blocking them? 198
Killing a specific session 199
Resolving an in-doubt prepared transaction 201
Is anybody using a specific table? 201
When did anybody last use it? 203
How much disk space is used by temporary data? 205
Why are my queries slowing down? 208

[PUBLISHING]

Table of Contents

Investigating and reporting a bug 210
Producing a daily summary of logfile errors 212
Chapter 9: Regular Maintenance 215
Introduction 215
Controlling automatic database maintenance 216
Avoiding auto freezing and page corruptions 221
Avoiding transaction wraparound 222
Removing old prepared transactions 225
Actions for heavy users of temporary tables 227
Identifying and fixing bloated tables and indexes 229
Maintaining indexes 233
Finding the unused indexes 236
Carefully removing unwanted indexes 238
Planning maintenance 239
Chapter 10: Performance & Concurrency 241
Introduction 241
Finding slow SQL statements 242
Collecting regular statistics from pg_stat* views 245
Finding what makes SQL slow 246
Reducing the number of rows returned 250
Simplifying complex SQL 251
Speeding up queries without rewriting them 257
Why is my query not using an index? 260
How do | force a query to use an index 261
Using optimistic locking 263
Reporting performance problems 265
Chapter 11: Backup & Recovery 267
Introduction 267
Understanding and controlling crash recovery 268
Planning backups 270
Hot logical backup of one database 272
Hot logical backup of all databases 274
Hot logical backup of all tables in a tablespace 276
Backup of database object definitions 277
Standalone hot physical database backup 278
Hot physical backup & Continuous Archiving 280
Recovery of all databases 283
Recovery to a point in time 286
Recovery of a dropped/damaged table 288
Recovery of a dropped/damaged tablespace 291

[PUBLISHING]

Table of Contents

Recovery of a dropped/damaged database 292
Improving performance of backup/restore 294
Incremental/Differential backup and restore 296
Chapter 12: Replication & Upgrades 299
Introduction 299
Understanding replication concepts 300
Replication best practices 304
File-based log-shipping replication 305
Setting up streaming log replication 308
Managing log shipping replication 313
Managing Hot Standby 316
Selective replication using Londiste 321
Selective replication using Slony 2.0 325
Load balancing with pgpool-ll 3.0 329
Upgrading (minor) 332
Major upgrades in-place 333
Major upgrades online using replication tools 335
Index 337
v}

[PUBLISHING]

IIIIIIIIII

Preface

PostgreSQL is an advanced SQL database server, available on a wide range of platforms
and is fast becoming one of the world's most popular server databases with an enviable
reputation for performance, stability, and an enormous range of advanced features.
PostgreSQL is one of the oldest open source projects, completely free to use, and developed
by a very diverse worldwide community. Most of all, it just works!

One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have a
very permissive license to install, use, and distribute PostgreSQL without paying anyone any
fees or royalties. On top of that, PostgreSQL is well-known as a database that stays up for long
periods, and requires little or no maintenance in many cases. Overall, PostgreSQL provides a
very low total cost of ownership.

PostgreSQL Administration Cookbook offers the information you need to manage your live
production databases on PostgreSQL. The book contains insights direct from the main author
of the PostgreSQL replication and recovery features, and the database architect of the most
successful startup using PostgreSQL, Skype. This hands-on guide will assist developers
working on live databases, supporting web or enterprise software applications using Java,
Python, Ruby, .Net from any development framework. It's easy to manage your database when
you've got PostgreSQL 9 Administration Cookbook at hand.

This practical guide gives you quick answers to common questions and problems, building
on the author's experience as trainers, users, and core developers of the PostgreSQL
database server.

Each technical aspect is broken down into short recipes that demonstrate solutions with
working code, and then explain why and how that works. The book is intended to be a desk
reference for both new users and technical experts.

The book covers all the latest features available in PostgreSQL 9. Soon you will be running a
smooth database with ease!

PUBLISHING

Preface

What this book covers

Chapter 1, First Steps, covers topics such as an introduction to PostgreSQL 9, downloading
and installing PostgreSQL 9, connecting to a PostgreSQL server, enabling server access to
network/remote users, using graphical administration tools, using psql query and scripting
tools, changing your password securely, avoiding hardcoding your password, using a
connection service file, and troubleshooting a failed connection.

Chapter 2, Exploring the Database, helps you identify the version of the database server you are
using and also the server uptime. It helps you locate the database server files, database server
message log, and database's system identifier. It lets you list a database on the database server,
contains recipes that let you know the number of tables in your database, how much disk space
is used by the database and tables, which are the biggest tables, how many rows a table has,
how to estimate rows in a table, and how to understand object dependencies.

Chapter 3, Configuration, covers topics such as reading the fine manual (RTFM), planning

a new database, changing parameters in your programs, the current configuration settings,
parameters that are at non-default settings, updating the parameter file, setting parameters
for particular groups of users, basic server configuration checklist, adding an external module
into the PostgreSQL server, and running the server in power saving mode.

Chapter 4, Server Control, provides information about starting the database server manually,
stopping the server quickly and safely, stopping the server in an emergency, reloading the
server configuration files, restarting the server quickly, preventing new connections, restricting
users to just one session each, and pushing users off the system. It contains recipes that
help you decide on a design for multi-tenancy, how to use multiple schemas, giving users their
own private database, running multiple database servers on one system, and setting up a
connection pool.

Chapter 5, Tables & Data, guides you through the process of choosing good names for
database objects, handling objects with quoted names, enforcing same name, same definition
for columns, identifying and removing duplicate rows, preventing duplicate rows, finding a
unique key for a set of data, generating test data, randomly sampling data, loading data from
a spreadsheet, and loading data from flat files.

Chapter 6, Security, provides recipes on revoking user access to a table, granting user access
to a table, creating a new user, temporarily preventing a user from connecting, removing a
user without dropping their data, checking whether all users have a secure password, giving
limited superuser powers to specific users, auditing DDL changes, auditing data changes,
integrating with LDAP, connecting using SSL, and encrypting sensitive data.

Chapter 7, Database Administration, provides recipes on useful topics such as writing a
script wherein either all succeed or all fail, writing a psql script that exits on the first error,
performing actions on many tables, adding/removing columns on tables, changing the data
type of a column, adding/removing schemas, moving objects between schemas, adding/
removing tablespaces, moving objects between tablespaces, accessing objects in other
PostgreSQL databases, and making views updateable.

—21

PUBLISHING

Preface

Chapter 8, Monitoring and Diagnosis, provides recipes that answer questions such as is

the user connected?, what are they running?, are they active or blocked?, who is blocking
them?, is anybody using a specific table?, when did anybody last use it?, how much disk
space is used by temporary data?, and why are my queries slowing down? It also helps you in
investigating and reporting a bug, producing a daily summary report of logfile errors, killing a
specific session, and resolving an in-doubt prepared transaction.

Chapter 9, Regular Maintenance, provides useful recipes on controlling automatic database
maintenance, avoiding auto freezing and page corruptions, avoiding transaction wraparound,
removing old prepared transactions, actions for heavy users of temporary tables, identifying
and fixing bloated tables and indexes, maintaining indexes, finding unused indexes, carefully
removing unwanted indexes, and planning maintenance.

Chapter 10, Performance & Concurrency, covers topics such as finding slow SQL statements,
collecting regular statistics from pg_stat* views, finding what makes SQL slow, reducing the
number of rows returned, simplifying complex SQL, speeding up queries without rewriting
them, why is my query not using an index?, how do | force a query to use an index?, using
optimistic locking, and reporting performance problems.

Chapter 11, Backup & Recovery, most people admit that backups are essential, though they
also devote only a very small amount of time to thinking about the topic. So, this chapter
provides useful information about backup and recovery of your PostgreSQL database through
recipes on understanding and controlling crash recovery, planning backups, hot logical
backup of one database, hot logical backup of all databases, hot logical backup of all tables
in a tablespace, backup of database object definitions, standalone hot physical database
backup, hot physical backup & continuous archiving. It also includes topics such as recovery
of all databases, recovery to a point in time, recovery of a dropped/damaged table, recovery
of a dropped/damaged database, recovery of a dropped/damaged tablespace, improving
performance of backup/recovery, and incremental/differential backup and restore.

Chapter 12, Replication & Upgrades, replication isn't magic, though it can be pretty cool. It's
even cooler when it works, and that's what this chapter is all about. This chapter covers topics
such as replication concepts, replication best practices, setting up file-based log shipping
replication, setting up streaming log replication, managing log shipping replication, managing
Hot Standby, selective replication using Londiste 3.0, selective replication using Slony 2.0,
load balancing with pgpool Il 3.0, upgrading to a new minor release (for example, 9.0.0 to
9.0.1), in-place major upgrades (for example, 8.4 to 9.0, or 9.0 to 9.1), and major upgrades
online using replication tools.

What you need for this book
We need the following software for this book:

» PostgreSQL 9.0 Server Software

» psql client utility (part of 9.0)

» pgAdmin3 1.12

[PUBLISHING]

Preface

Who this book is for

This book is for system administrators, database administrators, architects, developers, and
anyone with an interest in planning for or running live production databases. This book is most
suited to those who have some technical experience.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "In PostgreSQL 9.0, the utility pg_Standby is no
longer required, as many of its features are now performed directly by the server."

A block of code is set as follows:

CREATE USER repuser
SUPERUSER
LOGIN
CONNECTION LIMIT 1
ENCRYPTED PASSWORD 'changeme';

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

SELECT *
FROM mytable
WHERE (coll, col2, .. ,colN) IN
(SELECT coll, col2, .. ,colN
FROM mytable
GROUP BY
coll, col2, .. ,colN
HAVING count (*) > 1);

Any command-line input or output is written as follows:

$ postgres --single -D /full/path/to/datadir postgres

New terms and important words are shown in bold. Words that you see on the screen,

in menus or dialog boxes for example, appear in the text like this: " The Query tool has a
good looking visual explain feature as well as a Graphical Query Builder, as shown in the
following screenshot".

Warnings or important notes appear in a box like this.

PUBLISHING

Preface

[Q Tips and tricks appear like this.]

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book

purchased from your account at http://www.PacktPub. com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any

list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

PUBLISHING

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

PUBLISHING

First Steps

In this chapter, we will cover the following:

>

Introducing PostgreSQL 9

Getting PostgreSQL

Connecting to PostgreSQL

Enabling server access to network/remote users
Using graphical administration tools

Using psql query and scripting tools

Changing your password securely

Avoiding hardcoding your password

Using a connection service file

Troubleshooting a failed connection

Introduction

PostgreSQL is a feature-rich general purpose database management system. It's a complex
piece of software, but every journey begins with the first step.

We start with your first connection. Many people fall at the first hurdle, so we try not to skip
too swiftly past that. We move on quickly to enabling remote users, and from there to access
through GUI administration tools.

We also introduce the psql query tool, which is the tool used for loading our sample database,
as well as many other examples in the book.

For additional help, we include a few useful recipes that you may need for reference.

[PUBLISHING]

Connections

Introducing PostgreSQL 9

PostgreSQL is an advanced SQL database server, available on a wide range of platforms.

One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have a
very permissive license to install, use, and distribute PostgreSQL without paying anyone fees
or royalties. On top of that, PostgreSQL is well-known as a database that stays up for long
periods, and requires little or no maintenance in many cases. Overall, PostgreSQL provides a
very low total cost of ownership.

PostgreSQL is also noted for its huge range of advanced features, developed over the course
of more than 20 years continuous development and enhancement. Originally developed by
the Database Research group at the University of California, Berkeley, PostgreSQL is now
developed and maintained by a huge army of developers and contributors. Many of those
contributors have full-time jobs related to PostgreSQL, working as designers, developers,
database administrators, and trainers. Some, but not many, of those contributors work for
companies that specialize in services for PostgreSQL, such as Hannu and me. No single
company owns PostgreSQL, nor are you required, or even encouraged, to register your usage.

PostgreSQL has the following main features:

» Excellent SQL Standards compliance up to SQL 2008

» Client-server architecture

» Highly concurrent design where readers and writers don't block each other
» Highly configurable and extensible for many types of application

» Excellent scalability and performance with extensive tuning features

What makes PostgreSQL different?

The PostgreSQL project focuses on the following objectives:

» Robust, high-quality software with maintainable, well-commented code

» Low maintenance administration for both embedded and enterprise use

» Standards-compliant SQL, interoperability, and compatibility

» Performance, security, and high availability
What surprises many people is that PostgreSQL's feature set is more comparable with Oracle
or SQL Server than it is with MySQL. The only connection between MySQL and PostgreSQL is

that those two projects are open source; apart from that, the features and philosophies are
almost totally different.

—e1]

[PUBLISHING]

Chapter 1

One of the key features of Oracle since Oracle 7 has been "snapshot isolation", where
readers don't block writers, and writers don't block readers. You may be surprised to learn
that PostgreSQL was the first database to be designed with this feature, and offers a full and
complete implementation. PostgreSQL names this Multi-Version Concurrency Control (MVCC),
and we will discuss this in more detail later in this book.

PostgreSQL is a general-purpose database management system. You define the database that
you would like to manage with it. PostgreSQL offers you many ways to work. You can use a
"normalized database model", you can utilize extensions such as arrays and record subtypes,
or you can use a fully dynamic schema using an extension named hstore. PostgreSQL also
allows you to create your own server-side functions in one of a dozen different languages.

PostgreSQL is highly extensible, so you can add your own datatypes, operators, index types,
and functional languages. For example, you can override different parts of the system using
plugins to alter the execution of commands or add a new optimizer.

All of these features offer a huge range of implementation options to software architects.
There are many ways out of trouble when building applications and maintaining them over
long periods of time. Regrettably, we simply don't have space in this book for all of the cool
features for developers—this book is about administration, maintenance, and backup.

In the early days, when PostgreSQL was still a research database, the focus was solely on cool
new features. Over the last 15 years, enormous amounts of code have been rewritten and
improved, giving us one of the most stable, large, software servers available for operational use.

You may also read that PostgreSQL was, or is, slower than My Favorite DBMS, whichever

one that is. It's been a personal mission of mine over the last six years to improve server
performance and the team have been successful in making the server highly performant and
very scalable. That gives PostgreSQL enormous headroom for growth.

Who is using PostgreSQL? Prominent users include Apple, BASF, Genentech, IMDB.com,
Skype, NTT, Yahoo, and The National Weather Service. PostgreSQL receives well in excess of
1 million downloads per year, according to data submitted to the European Commission, who
concluded "...PostgreSQL, is considered by many database users to be a credible alternative...

We need to mention one last thing. When PostgreSQL was first developed, it was named
Postgres, and so many aspects of the project still refer to the word "postgres". For example,
the default database is named postgres, and the software is frequently installed using the
postgres userid. As a result, people shorten the name PostgreSQL to simply Postgres, and in
many cases people use the two names interchangeably.

PostgreSQL is pronounced as "post-grez-g-I". Postgres is pronounced as "post-grez".

Some people get confused, and refer to "Postgre", which is hard to say, and likely to confuse
people. Two names are enough, so please don't use a third name!

[PUBLISHING]

Connections

Getting PostgreSQL

PostgreSQL is 100% open source software.

PostgreSQL is freely available to use, alter, or redistribute in any way you choose. PostgreSQL's
license is an approved open source license very similar to the BSD (Berkeley Distribution
Software) license, though only just different enough that it is now known as TPL (The
PostgreSQL License).

How to do it...

PostgreSQL is already in use by many different application packages, and so you may already
find it installed on your servers. Many Linux distributions include PostgreSQL as part of the
basic installation, or include it with the installation disk.

One thing to be wary of is that the version of PostgreSQL included may not be the latest
release. It will typically be the latest major release that was available when that operating
system release was published. There is usually no good reason to stick at that level—there is
no increased stability implied there and later production versions are just as well-supported by
the various Linux distributions.

If you don't yet have a copy, or you don't have the latest version, you can download the
source code or download binary packages for a wide variety of operating systems from
the following URL:

http://www.postgresqgl.org/download/

Installation details vary significantly from platform-to-platform and there aren't any special
tricks or recipes to mention. Please, just follow the installation guide, and away you go. We've
consciously avoided describing the installation processes here to make sure we don't garble
or override the information published to assist you.

If you would like to receive e-mail updates of the latest news, then you can subscribe to
the PostgreSQL announce mailing list, which contains updates from all the vendors that
support PostgreSQL. You'll get a few e-mails each month about new releases of core
PostgreSQL and related software, conferences, and user group information. It's worth
keeping in touch with developments.

For more information about the PostgreSQL announce mailing list,

visit the following URL:
v

http://archives.postgresql .org/pgsgl -announce/

[PUBLISHING]

Chapter 1

Many people ask questions, such as "How can this be free?", "Are you sure | don't have to pay
someone?", or "Who gives this stuff away for nothing?"

Open source applications such as PostgreSQL work on a community basis, where many
contributors perform tasks that make the whole process work. For many of those people, their
involvement is professional, rather a hobby, and they can do this because there is generally a
great value for both contributors and their employers alike.

You might not believe it. You don't have to because It Just Works.

There's more...

Remember that PostgreSQL is more than just the core software. There is a huge range of
websites offering add-ons, extensions, and tools for PostgreSQL. You'll also find an army
of bloggers describing useful tricks and discoveries that will help you in your work.

And, there is a range of professional companies able to offer you help when you need it.

Connecting to PostgreSQL server

How do we access PostgreSQL?

Connecting to the database is most people's first experience of PostgreSQL, so we want to
make it a good one. So, let's do it, and fix any problems we have along the way. Remember
that a connection needs to be made securely, so there may be some hoops for us to jump

through to ensure that the data we wish to access is secure.

Before we can execute commands against the database, we need to connect to the database
server, giving us a session.

Sessions are designed to be long-lived, so you connect once, perform many requests, and
then eventually disconnect. There is a small overhead during connection. That may become
noticeable if you connect/disconnect repeatedly, so you may wish to investigate the use of
connection pools. Connection pools allow pre-connected sessions to be served quickly to you
when you wish to reconnect.

Getting ready

First, catch your database. If you don't know where it is, we'll probably have difficulty accessing
it. There may be more than one, and you'll need to know the right database
to access, and have the authority to connect to it.

s

[PUBLISHING]

Connections

How to do it...

You need to specify the following five parameters to connect to PostgreSQL:

» host or host address

» port

» database name

» user

» password (or other means of authentication, if any)

To connect, there must be a PostgreSQL server running on host, listening on port number
port. On that server, a database named dbname and user must also exist. The host must
explicitly allow connections from your client—this is explained in the next recipe, and you must
also pass authentication using the method the server specifies. For example, specifying a
password won't work if the server has requested a different form of authentication.

Almost all PostgreSQL interfaces use the libpq interface library. When using libpg, most
of the connection parameter handling is identical, so we can just discuss that once.

If you don't specify the preceding parameters, we look for values set through environment
variables, which are as follows:

» PGHOST or PGHOSTADDR

» PGPORT (or set to 5432 if this is not set)

» PGDATABASE

» PGUSER

» PGPASSWORD (though this one is definitely not recommended)

If you specify the first four parameters somehow, but not the password, then we look
for a password file, discussed in a later recipe.

Some PostgreSQL interfaces use the client-server protocol directly, so the way defaults are
handled may differ. The information we need to supply won't vary significantly, so please
check the exact syntax for that interface.

The PostgreSQL server is a client-server database. The system it runs on is known as the
host. We can access the PostgreSQL server remotely through the network. However, we must
specify the host, which is a hostname, or a hostaddr, which is an IP address. We can specify
a host of "localhost" if we wish to make a TCP/IP connection to the same system. It is often
better to use a Unix socket connection, which is attempted if the host begins with a slash (/)
and the name is presumed to be a directory name (default is /tmp).

Sk

[PUBLISHING]

Chapter 1

On any system, there can be more than one database server. Each database server listens on
exactly one "well-known" network port, which cannot be shared between servers on the same
system. The default port number for PostgreSQL is 5432, which has been registered with IANA,
and is uniquely assigned to PostgreSQL. (You can see it used in the /etc/services file on
most *nix servers). The port number can be used to uniquely identify a specific database server
if many exist.

A database server is also sometimes known as a "database cluster", because the PostgreSQL
server allows you to define one or more databases on each server. Each connection request
must identify exactly one database identified by its dbname. When you connect, you will only
be able to see database objects created within that database.

A database user is used to identify the connection. By default, there is no limit on the number
of connections for a particular user, though there is a later recipe to restrict that. In more
recent versions of PostgreSQL, users are referred to as login roles, though many clues remind
us of the earlier naming, and it still makes sense in many ways. A login role is a role that has
been assigned the CONNECT privilege.

Each connection will typically be authenticated in some way. This is defined at the server,
so is not optional at connection time if the administrator has configured the server to
require authentication.

Once you've connected, each connection can have one active transaction at a time and one
fully active statement at any time.

The server will have a defined limit on the number of connections it can serve, so a

connection request can be refused if the server is oversubscribed.

Inspecting your connection information

If you want to confirm you've connected to the right place and in the right way, you can execute
some or all of the following commands:

SELECT inet server_ port () ;
This shows the port on which the server is listening.
SELECT current database () ;
Shows the current database.
SELECT current_user;
This shows the current userid.
SELECT inet server_addr () ;
Shows the IP address of the server that accepted the connection.

A user's password is not accessible using general SQL for obvious reasons.

[}

[PUBLISHING]

Connections

You may also need the following;:

SELECT version() ;

There are many other snippets of information required to understand connections. Some of
those are mentioned in this chapter, although others are discussed in the chapter on Security.
For further details, please consult the PostgreSQL server documentation.

Enabling access for network/remote users

PostgreSQL comes in a variety of distributions. In many of these, you will find that remote
access is initially disabled as a security measure.

How to do it...

» Add/edit the following line in your postgresqgl . conft:
listen addresses = '*!'
» Add the following line as the first line of pg_hba . conf, to allow access to all
databases for all users with an encrypted password:
TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 0.0.0.0/0 md5

The listen addresses parameter specifies on which IP addresses to listen. This allows
you to have more than one network card (NICs) per system. In most cases, we want to accept
connections on all NICs, so we use "*", meaning "all IP addresses".

The pg_hba. conf contains a set of host-based authentication rules. Each rule is considered
in sequence until one rule fires, or the attempt is specifically rejected with a reject method.

The preceding rule means a remote connection that specifies any user, or any database, on
any IP address will be asked to authenticate using an md5 encrypted password.

Type = host means a remote connection.

Database = all means "for all databases". Other names match exactly, except when
prefixed with a plus (+) symbol, in which case we mean a "group role" rather than a single
user. You can also specify a comma-separated list of users, or use the @ symbol to include
a file with a list of users. You can also specify "sameuser", so that the rule matches when we
specify the same name for the username and database name.

Sz

[PUBLISHING]

Chapter 1

User = all means "for all users." Other names match exactly, except when prefixed with a plus
(+) symbol, in which case we mean a "group role" rather than a single user. You can also specify
a comma-separated list of users or use the @ symbol to include a file with a list of users.

CIDR-ADDRESS consists of two parts: IP-address/sub-net mask. The subnet mask is specified
as the number of leading bits of the IP-address that make up the mask. Thus /0 means O

bits of the IP address, so that all IP addresses will be matched For example, 192.168.0.0/24
would mean match the first 24 bits, so any IP address of the form 192.168.0.x would match.
You can also use "samenet" or "samehost".

Don't use the setting "password", as
i this allows a password in plain text.

Method = trust effectively means "no authentication". Other authentication methods
include GSSAPI, SSPI, LDAP, RADIUS, and PAM. PostgreSQL connections can also be made
using SSL, in which case client SSL certificates provide authentication.

There's more...

In earlier versions of PostgreSQL access through the network was enabled by adding the -i
command line switch when you started the server. This is still a valid option, though now it
means the following:

listen addresses = '*!

So, if you're reading some notes about how to set things up, and this is mentioned, then be
warned that those notes are probably long out of date. Not necessarily wrong, though worth
looking further to see if anything else has changed.

See also

Look at installer- and/or operating system-specific documentation to find the standard
location of files.

Using graphical administration tools

Graphical administration tools are often requested by system administrators.
PostgreSQL has a range of tool options. The two most popular options are as follows:

» pgAdmin3
» phpPgAdmin

[PUBLISHING]

Connections

We're going to describe pgAdmin3 in more detail here, because it is installed by default
with the PostgreSQL Windows installer. That most likely makes it the most popular interface,
even if many people choose to use server software running on Linux or variants.

How to do it...

pgAdmin3 is a client application that sends and receives SQL to PostgreSQL, displaying the
results for you to browse. One pgAdmin client can access many PostgreSQL servers, and a
PostgreSQL server can be accessed by many pgAdmin clients.

pgAdmin3 is usually named just pgAdmin. The 3 at the end has a long history, but isn't that
important. It is not the release level. Current release level is 1.12 at time of writing.

When you start pgAdmin, you will be prompted to register a new server, as shown in the
following screenshot:

-

B New Server Registration

Properties |

Name |

! Host } |
2345

|
|
|
ssL | |
|
|
|

1: Maintenance DB)l postares i)
:Password] |

Store password
Restore env?

DE restriction

Service | |

Connect now

Colour Il i

Group | Servers w |

o (o]

As shown in the preceding screenshot, note the five basic connection parameters, as well as
other information.

6]

[PUBLISHING]

Chapter 1

The port number prompted is 2345, though this is deliberately not the default PostgreSQL
port of 5432, presumably to force you to think about what setting should be used.

You should uncheck the Store password box.

If you have many database servers, you can group them together. Personally, | would avoid
giving each server a colour, as green, yellow, and red are usually taken to mean status,
which could easily be misinterpreted. Just give each server a sensible name.

You will then get access to the main browser screen, with the object tree view on the left,
and properties on the top-right, as shown in the following screenshot:

R pgAdmin Il

Eile Edit Plugins View Tools Help

Properties| Statistics |Dependendes Dependents

I Server Groups

E= Statistic Value
= g Servers (4)
=[] PostgresqL 2.0 (localhost: 5433) IR 2
= l_} Databases (1) Xact Committed 5327
@ Xact Rolled Back 13
Tablespaces (2) Blocks Read 616
Group Roles (0) Blocks Hit 151130
&4 Login Roles (1) Tuples Returned 1599535

pgAdmin easily displays much of the data that is available from PostgreSQL. The information
is context sensitive, allowing you to browse around and see everything quickly and easily. The
information is not dynamically updated; this will only occur when you click to refresh, so keep
function key F5 in mind when using the application.

You'll also find pgAdmin provides a TIP of the Day, though | would turn those off. Keep the
Guru Hints option on, though luckily no chirpy paperclips offering suggestions.

pgAdmin also provides an Object Report generator and a Grant Wizard. These are useful for
DBAs for review and immediate maintenance.

[}

[PUBLISHING]

Connections

pgAdmin Query tool allows you to have multiple active sessions. The Query tool has a
good-looking Visual Explain feature, as well as a Graphical Query Builder, as shown
in the following screenshot:

......

File Edit Query Favourites Macros View Help
SqLy. ~ ~ G

E < ‘ODEHE g& O |6 p b R m %,’8 [;||:||30stgres on postgres @localhost: 5

I; SQL Editor | Graphical Query Builder | Scratch pad b4

| b | Delete Delete Al
SELECT count(*)

FROM demc dl JOIN demo d2 ON dl.col2 = d2.coll
WHERE dl.coll = 'demo';

Qutput pane x
| Data Output | Explain | Messages | Histary |
L] ~
Qutpy
Dats] ﬁ}
Hash Join Aggregate
dema Hash
A4
< | >
OK. Unix | Ln 3 Col 1Ch &5 7 rows. 63 ms

pgAdmin provides a wide range of features, many of which are provided by other tools as
well. That gives us the opportunity to choose which of those tools we like or dislike, and for
many reasons, it is best to use the right tool for the right job, and that is always a matter of
expertise, experience, and personal taste.

pgAdmin submits SQL to the PostgreSQL server, and displays the results quickly and easily.
As a browser, it is fantastic. For performing small DBA tasks, it is ideal. As you might guess
from these comments, | don't recommend pgAdmin for every task.

Scripting is an important technique for DBAs: you keep a copy of the task executed, and you can
edit and resubmit if problems occur. It's also easy to put all the tasks in a script into a single
transaction, which isn't possible using current GUI tools. pgAdmin provides pgScript, which only
works with pgAdmin, so is much less easily ported. For scripting, | strongly recommend the psql
utility, which has many additional features you'll grow to appreciate over time.

]

[PACKT

PUBLISHING

Chapter 1

Although | use psql as a scripting tool, | also find it convenient as a query tool. Some people
may find this strange, and assume it is a choice for experts only. Two great features of psql are
the online help for SQL and "tab completion", that allows you to build up SQL quickly without
having to remember the syntax. See the recipe on Using psql and scripting tool for more.

pgAdmin also provides pgAgent, a task scheduler. Again, more portable schedulers are
available, and you may wish to use those instead. Schedulers aren't covered in this book.

Also, a quick warning: when you create an object in pgAdmin, and if you use capitals anywhere
in the object name, the object will be created with a mixed case name. If | ask for a table
named MyTable, then the only way to access that table is by referring to it in double quotes

as "MyTable". See the recipe about Handling objects with quoted names.

ERE] rables (5) |
[MyTABLE
[My Table
[F3 MyTable
[my table
[mytable

b,

phpPgAdmin is available at the following URL:
http://phppgadmin. sourceforge.net/

There is an online demonstration of the software, so you can try it out yourself, and see if it
does the job you want done. The following screenshot shows phpPgAdmin 4 displayed on a
Windows Internet Explorer browser. Version 5 is available and works with PostgreSQL 9.

ﬂ: phpPgAdmin - Windows Internet Explorer

@ (& A | o kattare,com

File Edit View Favorites Tools Help

{I Favorites 1;2. phpPgAdmin

] -
S @ PostgreSQL 8.3 0 PostgreSQL 8.3.3 running on localhost: 5483 —You are loggg
& ademo - _
= @ Schemas @phpPg.ﬁ.dmin: @ PostgreSQL 8.3 phppgadmin :
B
- information_schema =
) e pg_catalog Databases Ac
3] e pg_toast_temp_1 Name Superuser? Create DB? Can create role? Inheri
B epublic phppgadmin Mo Yes Yes
= [If::"ﬂTabIes Change password

m-- [cache
m-- [cities

[PUBLISHING]

Connections

One of the big contrasts with pgAdmin is that phpPgAdmin is browser-based, so it may be
easier to provide secure access to administrators this way.

phpPgAdmin provides the familiar left-hand tree view of the database, and also provides a
simple SQL query tool. Those are the basics for which you should be looking. Many additional
features in pgAdmin3 aren't available, though if you follow my advice you will be doing much of
your work using scripts, so this may not be a problem.

You may also be interested in commercial tools of various kinds for PostgreSQL. A full listing
is given in the PostgreSQL software catalogue at the following URL:

http://www.postgresql.org/download/products/1

The following tools cover general administration, though other products not listed here
specialize in development, data modeling, or model administration:
» Navicat
(http://pgsgl.navicat.com/)
» EMS SQLManager
(http://www.sglmanager.net/products/studio/postgresqgl)
» Lightning Admin

(http://www.amsoftwaredesign.com/)

Using psql query and scripting tool

psql is the query tool supplied as part of the core distribution of PostgreSQL, so it is available
and works similarly in all environments. This makes it an ideal choice for developing portable
applications and techniques.

psql provides features for use as both an interactive query tool and as a scripting tool.

Getting ready

From here on, we will assume that "psql" is a sufficient command to allow you access to the
PostgreSQL server. That assumes that all of your connection parameters are defaults, which
may not be true.

Written out in full, the connection parameters would be as follows:

psql -h hostname -p 5432 -d dbname -U username -W

=]

[PUBLISHING]

Chapter 1

How to do it...

The easiest command is the one that executes a single SQL command and prints the output as:

$ psgl -c "SELECT current time"
timetz

18:48:32.484+01

(1 row)

The -c command is non-interactive. If we want to execute multiple commands, we can write
those commands in a text file, and then execute them using the -£ option. The following
command loads a very small and simple set of examples:

$ psql -f examples.sql
which produces the following output when successful:

SET

SET

SET

SET

SET

SET

CREATE SCHEMA
SET

SET

SET

DROP TABLE
CREATE TABLE
DROP TABLE
CREATE TABLE

The script examples.sql is very similar to a dump file produced by PostgreSQL backup
tools, so this type of file, and the output it produces, are very common. PostgreSQL produces
the name of the command as a "command tag" when it executes successfully, which is what
produces the preceding output.

psql can also be used in interactive mode, which is the default, so requires no option:

$ psql
postgres=#

The first interactive command you'll need is the following:
postgres=# help

You can then type in SQL or other commands.

PUBLISHING

Connections

The last interactive command you'll need is:
postgres=# \quit

Unfortunately, you cannot type "quit" on its own, nor can you type "\exit" or other options.
Sorry, just "\quit" or "\q" for short.

psql allows you to enter the following two types of command:

» psql "meta-commands”
» SQL

A meta-command is a command for psql client, whereas SQL is sent to the database server.

An example of a meta-command is "\q", that tells the client to disconnect. All lines that begin
with "\" (backslash) as the non-blank first character are presumed to be meta-commands of

some kind.

If it isn't a meta-command, then it's SQL. We keep reading SQL until we find a semicolon, so
we can spread SQL across many lines and format it any way we find convenient.

The help command is the only exception. We provide this for people who are completely lost,
which is a good thought, so let's start there ourselves:

There are two types of help, which are as follows:

» \? provides help on psqgl meta-commands
» \h provides help on specific SQL commands

For example:

postgres=# \h DELETE
Command : DELETE
Description: delete rows of a table
Syntax:
DELETE FROM [ONLY] table [[AS] alias]
[USING usinglist]
[WHERE condition | WHERE CURRENT OF cursor name]
[RETURNING * | output expression [AS output name] [,]]

| find this a great way to discover or remember options and syntax.

You'll also like the ability to scroll back through the previous command history.

=

[PUBLISHING]

Chapter 1

You'll get a lot of benefit from tab completion, which will fill in the next part of syntax just by
pressing the Tab key. This also works for object names, so you can type in just the first few
letters, and then press Tab; all of the options will be displayed, so you can type in just enough
letters to make the object name unique and then hit Tab to get the rest.

One-line comments are double-dash as follows:
-- This is a single-line comment
And multiline comments are like C and Java:

/*
* Multi-line comment

*/

You'll probably agree that psql looks a little daunting at first, with strange backslash
commands. | do hope you'll take a few moments to understand the interface, and to keep
digging for more. psql is one of the most surprising parts of PostgreSQL, and the tool is
incredibly useful for database administration tasks when used alongside other tools.

There's more...

psql works across releases, though you may see a message like the following if you do so:

(=] 5QL Shell (psql)

Server [localhost]:

Databasze [postgres]:

Port [54331: 5432

Uzername [postgres]:

Active code page: 1252

Paszsword for user postgres:

psgl (9.8.8, server §.3.52

LARMING: psgl version 9.0, server version 8.3.
Some psgl features might not work.

Type "help'" for help.

postgres=H# _

psql on Windows can be a little problematic. I'd recommend you use a terminal emulator
to connect to your server, and access psql from there.

Check out some other useful features of psql, which are as follows:

» Information functions
» Output formatting

PUBLISHING

Connections

» Execution timing by using the \timing command
» Input/Output and editing commands

» Automatic startup files: .psglrc

» Substitutable parameters ("variables")

» Access to the OS command line

Changing your password securely

If you are using password authentication, then you may wish to change your password
from time to time.

How to do it...

The most basic method is to use psql. The \password command will prompt you for
a new password, and then again to confirm. Connect to psql, and type the following:

\password
Enter new password.

This causes psql to send an SQL statement to the PostgreSQL server containing an already
encrypted password string. An example of the SQL statement sent is as follows:

ALTER USER postgres PASSWORD ' md53175bceld3201d16594cebfod7eb3fod’;

Whatever you do, don't use "postgres" as your password. This will make you vulnerable to idle
hackers, so make it a little more difficult than that, please.

Make sure you don't forget it either. It could prove difficult to maintain your database if you
can't get access to it later.

As changing the password is just an SQL statement, any interface can do this. Other tools
also allow this, such as:

» pgAdmin3
» phpPgAdmin

If you don't use one of the main password changes routes, you can still do this yourself using
SQL from any interface. Note that you need to encrypt your password, because if you do
submit a password in plaintext, like the following:

ALTER USER myuser PASSWORD 'secret'

=

[PUBLISHING]

Chapter 1

then it will be shipped to the server in plaintext, though luckily will still be stored in an
encrypted form.

PostgreSQL doesn't enforce a password change cycle, so you may wish to use more
advanced authentication mechanisms, such as GSSAPI, SSPI, LDAP, RADIUS, and so on.

Avoiding hardcoding your password

We all agree that hardcoding your password is a bad idea. This recipe shows us how to keep
the password in a secure password file.

Getting ready

Not all database users need passwords; some databases use other means of authentication.
Don't do this step unless you know you will be using password authentication, and you know
your password.

First, remove the hardcoded password from where you'd set it previously. Completely remove
the password = xxxx text from the connection string in a program. Otherwise, when you test
the password file, the hardcoded setting will override the details you are just about to place in
the file. Having the password hardcoded and in the password file is not any better.

Using PGPASSWORD is not recommended either, so remove that also.

If you think someone may have seen the password, then change your password before
placing it in the secure password file.

How to do it...

A password file contains the usual five fields that we need to connect, so that we can use file
permissions to make the password more secure:

host :port :dbname:user:password
such as myhost :5432:postgres:sriggs:moresecure

The password file is located using an environment variable named PGPASSFILE. If
PGPASSFILE is not set, then a default filename and location is searched, which:

» On *nix systems, check for ~/ .pgpass.

» On Windows systems, check $APPDATA% \postgresgl\pgpass.conf, where
$APPDATA% is the Application Data subdirectory in the path. (For me, that would
be C:\)

=]

[PUBLISHING]

Connections

Don't forget: Set the file permissions on the file, so that security is maintained.
The file permissions are not enforced on Windows, though the default location
is secure. On *nix systems, you must issue the following:
s

chmod 0600 ~/.pgpass

If you forget to do this, the PostgreSQL client will ignore the . pgpass file
silently. So don't forget!

Many people name the password file as . pgpass, whether or not they are on Windows, so
don't get confused if they do this.

The password file can contain multiple lines. Each line is matched against the requested
host :port :dbname : user combination until we find a line that matches, and then we use
that password.

Each item can be a literal value or * a wildcard that matches anything. There is no support
for partial matching. With appropriate permissions, a user could potentially connect to any
database. Using the wildcard in the dbname and port fields makes sense, though is less
useful in other fields.

Here are a few examples:

» myhost:5432:*:sriggs:moresecurepw
» myhost:5432:perf:hannu:okpw

» myhost:*:perf:gabriele:maggioresicurezza

There's more...

This looks like a good improvement if you have a small number of database servers. If you
have many different database servers, you may want to think about using a connection
service file instead, or perhaps even storing details on an LDAP server.

Using a connection service file

When the number of connection options gets too much, you may want to think about using
a connection service file.

The connection service file allows you to give a single name to a set of connection parameters.
This can be accessed centrally to avoid the need for individual users to know the host and
port of the database, and is more resistant to future change.

=]

PUBLISHING

Chapter 1

How to do it...

First, create a file named pg_service.conf with the following contents:

[dbservicell]
host=postgresl
port=5432
dbname=postgres

You can then either copy it into place at /etc/pg _service.conf or another agreed central
location. You can then set the environment variable PGSYSCONFDIR to that directory location.

Now, you can then specify a connection string like the following:
service=dbservicel user=sriggs

The service can also be set using an environment variable named PGSERVICE.

This applies to libpg connections only, so does not apply to JDBC.

The connection service file can also be used to specify the user, though that would mean that
the username would be shared.

pg_service.conf and .pgpass can work together, or you can use just onr or the other,
as you choose. Note that the pg_service. conf file is shared, and so is not a suitable place
for passwords.

Troubleshooting a failed connection

This section is all about what you should do when things go wrong.

Bear in mind that 90% of problems are just misunderstandings, and you'll be on track again
fairly quickly.

How to do it...

» Check whether the database name and username are accurate: You may be
requesting a service on one system when the database you require is on another
system. Recheck your credentials. Check especially that you haven't mixed things
up so that you are using the database name as the username and/or the username
as the database name. If you receive "too many connections", then you may need to
disconnect another session before you can connect, or wait for the administrator to
re-enable the connections.

e

PUBLISHING

Connections

>

Check for explicit rejections: If you receive the following error message:
pg_hba.conf rejects connection for host ..

then your connection attempt has been explicitly rejected by the database
administrator for that server. You will not be able to connect from the current
client system using those credentials. There is little point attempting to contact
the administrator, as you are violating an explicit security policy in what you are
attempting to do.

Check for implicit rejections: If the error message you receive is:
no pg_hba.conf entry for ..

then there is no explicit rule that matches your credentials. This is likely an oversight
on the part of the administrator, and is common in very complex networks. Please
contact the administrator, and request a ruling on whether your connection should be
allowed (hopefully) or explicitly rejected in the future.

Check whether the connection works with psql: If you're trying to connect to PostgreSQL
from anything other than the psql command-line utility, switch to that now. If you can
make psql connect successfully, yet cannot make your main connection work correctly,
then the problem may be in the local interface you are using.

Check whether the server is up: If a server is shut down, then you cannot connect. The
typical problem here is simply mixing up to which server you are connecting. You need
to specify the hostname and port, so it's possible you are mixing up those details.

Check whether the server is up and accepting new connections: A server that is
shutting down will not accept new connections, apart from superusers. Also, a
standby server may not have the hot standby parameter enabled, preventing you
from connecting.

Check whether the server is listening correctly.

Check the port on which the server is actually listening: Confirm that the incoming
request is arriving on interface listed in the 1isten addresses parameter, or
whether it is set to * for remote connections, or localhost for local connections.

Check whether the database name and username exist: It's possible the database or
user no longer exists.

Check the connection request: Check whether the connection request was
successful, yet was somehow dropped after connection. You can confirm this by
looking at the server log when the following parameters are enabled:

log connections = on
log disconnections = on
Check for other disconnection reasons: If you are connecting to a standby server, it is

possible that you have been disconnected because of hot standby conflicts. See the
section on Replication and Upgrades.

=]

[PUBLISHING]

Chapter 1

There's more...

Client authentication and security are the rapidly changing areas between releases. You will
also find differences between maintenance-release levels.

The PostgreSQL documents can be viewed at the following URL:

http://www.postgresql.org/docs/current/interactive/
client-authentication.html

Always check which release levels you are using before consulting the manual or asking for
support. Many problems are caused simply by confusing the capabilities between release levels.

s

[PUBLISHING]

IIIIIIIIII

Exploring the
Database

This chapter contains the following recipes:

» What version is the server?

» What is the server uptime?

» Locate the database server files

» Locate the database server message log
» Locate the database's system identifier
» List databases on this database server

» How many tables in a database?

» How much disk space does a database use?
» How much disk space does a table use?
» Which are my biggest tables?

» How many rows in a table?

» Fast estimate of rows in a table

» Understanding object dependencies

Introduction

To understand PostgreSQL you need to see it in use. An empty database is like a ghost town
without houses.

For now, we're going to assume that you've got a database already. There are already a
1000 books on how to design your own database from nothing. So here we aim to help the
people who already have access to a PostgreSQL database yet are still learning to use the
PostgreSQL database management system.

[PUBLISHING]

Exploring the Database

The best way to start is by asking some simple questions to orientate yourself, and begin the
process of understanding. Incidentally, these are also questions you'll need to answer if you
ask someone else for help.

What version is the server?

If you experience problems, then you'll need to double-check which version of the server you
have. This will help you report a fault or to consult the correct version of the manual.

How to do it...

Connect to the database, and then issue the following;:
postgres # SELECT version() ;
You'll get a response with something like the following:

PostgreSQL 9.0 on x86_ 64-unknown-linux-gnu,
compiled by GCC gcc (Ubuntu 4.3.3-5ubuntu4) 4.3.3, 64-bit

That's probably too much information all at once!

PostgreSQL server version's format is Major.Minor.Maintenance

In some other software products, the Major release number is all you need to know, but with
PostgreSQL the feature set and compatibility relates to the Major.Minor release level. What
that means is that 8.4 contains more additional features and compatibility changes than 8.3.
There is also a separate version of the manual, so if something doesn't work exactly the way
you think it should, you must consult the correct version of the manual.

Maintenance software releases are identified by the full three-part numbering scheme.
8.4.0 was the initial release of 8.4, and 8.4.1 is a later maintenance release.

The release support policy for PostgreSQL is available at the following URL:
http://wiki.postgresqgl.org/wiki/PostgreSQL Release Support Policy
This explains that each release will be supported for a period of 5 years.

All releases up to and including 8.1 will be de-supported as of November 2010. So by the
time you're reading this only PostgreSQL 8.2 or higher will be supported. Those early versions
are still robust, though many performance and enterprise features will be missing from those
releases. Later de-support dates are as follows:

=

[PUBLISHING]

Chapter 2

Version

Last supported date

PostgreSQL 8.2
PostgreSQL 8.3
PostgreSQL 8.4
PostgreSQL 9.0

December 2011
February 2013

July 2014

Aug 2015 (approximately)

There's more...

Some other ways of checking the version number are as follows:

bash # psqgl --version

psql (PostgreSQL) 9.0

However, be wary that this shows the client software version number that might differ from
the server software version number. You check the server version directly using the following:

bash # cat $PGDATADIRECTORY/PG VERSION

Although neither of these show the maintenance release number.

Why is the database version important?

PostgreSQL has internal version numbers for the data file format, the
database catalog layout, and the crash recovery format. Each of these
. ischecked as the server runs, to ensure that the data isn't corrupted.
% PostgreSQL doesn't change these internal formats for a single release, they
L only change across releases.

From a user perspective, each release differs in terms of the way the server
behaves. If you know your application well, then it should be possible to

assess the differences just by reading the release notes for each version. In

L many cases, a retest of the application is the safest thing to do. -

What is the server uptime?

Or: How long is it since the server started?

How to do it...

Issue the following SQL from any interface:

postgres=# SELECT date_ trunc('second',
current timestamp - pg postmaster start time()) as uptime;

uptime

00:38:15

PUBLISHING

Exploring the Database

Postgres stores the server start time, so we can access it directly as follows:

postgres=# SELECT pg postmaster_ start_time();
pPg_postmaster start time

2009-11-26 09:39:23.354208+00

then we can do some SQL to get the uptime as follows:

postgres=# SELECT current_timestamp - pg_postmaster_start_time();
?column?

00:35:30.22868

and then do some formatting, such as:

postgres=# SELECT date trunc('second',
current timestamp - pg postmaster start time()) as uptime;

uptime

00:38:15

This is just simple stuff. Further monitoring and statistics are covered in later chapters.

Locate the database server files

Database server files are initially stored in a location referred to as the data directory.
Additional data files may also be stored in tablespaces, if any exist.

Getting ready

You'll need to get an operating system access to the database system, which is what
we call the platform on which the database runs.

How to do it...

On Debian or Ubuntu systems, the default data directory location is as follows:

» /var/lib/postgresqgl/R.r/main

S E

[PUBLISHING]

Chapter 2

Here, R. r is the major and minor release number of the database server software, such as
9.0. The configuration files are located in:

» /etc/postgresqgl/R.rNn/main/

In both cases, main is just the name of a database server. Other names are also possible. For
the sake of simplicity, the rest of the book assumes that you have only a single installation.

On Red Hat RHEL, CentOS, or Fedora the default data directory location is as follows:
» /var/lib/pgsqgl/data/
This also contains, by default, the configuration files (* . conf).

Again, data is just the default location. You can create additional data directories by using
the initdb utility.

On Windows and 0S X, the default data directory location is as follows:

» C:\ProgramFiles\PostgreSQL\R.r\data

Even though the Debian/Ubuntu and Red Hat file layouts are different, they both follow
the Linux Filesystem Hierarchy Standard (FHS), so neither layout is wrong.

The Red Hat layout is simpler and easier to understand. The Debian/Ubuntu layout is more
complex, though it has different and more adventurous goals. The Debian/Ubuntu layout is
similar to the Optimal Flexible Architecture (OFA) of other database systems. The goals are
to provide a file layout that will allow you to have multiple PostgreSQL database servers on
one system, and to allow many versions of the software to exist at once in the filesystem.

The layout for the Windows and OS X installers is different again. Multiple database clusters
are possible, but are also more complex than on Debian/Ubuntu.

| recommend that you follow the Debian/Ubuntu layout, on whichever platform you are using.
It doesn't really have a name, so | call it the PostgreSQL Flexible Architecture (PFA). If you
do this, you'll need to lay things out yourself, but it does pay off in the long run. PFA uses the
following environment variables to name parts of the file layout:

» export PGROOT=/var/lib/pgsql/

» export PGRELEASE=9.0

» export PGSERVERNAME=mamba

» export PGDATADIR=$PGROOT/$PGRELEASE/$PGSERVERNAME

» example, PGDATADIR is /var/lib/pgsql/9.0/mamba

[PUBLISHING]

Exploring the Database

There's more...

Once you've located the data directory, you can look for the files that comprise the PostgreSQL
database server. The layout is as follows:

Subdirectory Purpose

base Main data directory. Beneath this directory each database has its own
directory within which are the files for each database table or index.

global Database server catalog tables that are shared across all databases.

pg_clog Transaction status files.

pg_multixact Row-level lock status files

pg_subtrans Subtransaction status files

pg_tblspc Links to external tablespaces

pg_twophase "2-phase commit", or Prepared transaction status

pg_xlog Transaction log (or Write Ahead Log - WAL)

None of the aforementioned directories contain user-modifiable files, nor should any of the files
be manually deleted, to save space or for any reason. Don't touch it, because you'll break it,
and you may not be able to fix it. It's not even sensible to copy files in those directories without
carefully following the procedures described in the Backup chapter. Keep Off the Grass!

We'll talk about table spaces again elsewhere in the Cookbook. We'll also discuss a
performance enhancement, which is to put the transaction log on its own set of disk drives
(that's covered in the Performance chapter).

The only things you are allowed to touch are Configuration files, which are all * . conf files, or
Server message log files. Server message log files may or may not be in the data directory.

Locate the database server message log

The database server log is the record of all messages recorded by the database server. This is
the first place to look if you have server problems, and a good place to check regularly.

It will have messages in it that look something like the following;:

2010-01-19 21:23:52 GMT LOG: database system was not properly shut
down; automatic recovery in progress

2010-01-19 21:23:52 GMT LOG: record with zero length at 0/49AF90
2010-01-19 21:23:52 GMT LOG: redo is not required

2010-01-19 21:23:52 GMT LOG: autovacuum launcher started

NEQ

PUBLISHING

Chapter 2

2010-01-19 21:23:52 GMT LOG: database system is ready to accept
connections

We'll explain some more about it once we've located the files.

Getting ready

You'll need to get operating system access to the database system, which is what we call
the platform on which the database runs.

How to do it...

The server log can be in a few different places, so first let's list all of those, so that
we can locate the log, or decide where we want it to be placed:

» Server log may be in a directory beneath the data directory
» Server log may be in a directory elsewhere on the file system
» Server log may be redirected to syslog

» There may be no server log at all - time to add one soon

If not redirected to syslog, the server log consists of one or more files. You can change
the name of these files, so it may not always be the same on every system.

On Debian or Ubuntu systems the default server log location is as follows:
» /var/log/postgresqgl

The current server log file is named postgresgl-N.n-main.log, where N.n is the major
and minor release number of the server, for example 9.0. Older log files are numbered as
postgresgl-8.3-main.log.1, the higher the number, the older the file.

On Red Hat, RHEL, CentOS, or Fedora the default server log location is a subdirectory
of the data directory as follows:

» /var/lib/pgsqgl/data/pg_log

On Windows systems the messages are sent to the Windows Eventlog by default.

Eis

[PUBLISHING]

Exploring the Database

The server log is just a file that records messages from the server. Each message has a
severity level, the most typical one being LOG, though there are others, as shown in the
following table:

PostgreSQL Meaning Syslog Severity Windows eventlog
Severity

DEBUG 1 Internal diagnostics DEBUG INFORMATION
through

DEBUG 5

INFO Command output for user INFO INFORMATION
NOTICE Helpful information NOTICE INFORMATION
WARNING Warns of likely problems NOTICE WARNING
ERROR Current command aborted WARNING ERROR

LOG For sysadmins INFO INFORMATION
FATAL Event that disconnects one session only ERR ERROR

PANIC Event that crashes server CRIT ERROR

Watch for FATALs and PANICs. They shouldn't happen in most cases during normal server
operation, apart from certain cases related to Replication, so check out that chapter also.

You can adjust the number of messages that appear in the log by changing the log_min
messages server parameter. You can also change the amount of information that is displayed
for each event by changing the 1og error verbosity. If the messages are sentto a
standard log file, then each line in the log will have a prefix of useful information that can also
be controlled by the system administrator, named 1log line prefix. Locate the database's
system identifier???

Each database server has a system identifier assigned when the database is initialized
(created). The server identifier remains the same if the server is backed up, cloned, and so on.

Many actions on the server are keyed to the system identifier, and you may be asked
to provide this information when you report a fault.

Getting ready

Connect as the postgres OS user, or another user with execute privileges on the server software.

NED

[PUBLISHING]

Chapter 2

How to do it...

pg_controldata <data-directory> | grep "system identifier"
Database system identifier: 5558338346489861223

Don't use -D in front of the data directory name. This is the only
i PostgreSQL server application where you don't need to do that.

pg_controldata is a PostgreSQL server application that shows the contents of a server's
control file. The control file is located within the data directory of a server, and is created at
database initialization time. Some of the information within it is updated regularly, or when
certain major events occur.

The full output of pg _controldata looks like the following. (The bold values are ones
that may change over time as the server runs):

pg_control version number: 851

Catalog version number: 200911051

Database system identifier: 5408338346412861210
Database cluster state: in production
pg_control last modified: Thu 26 Nov 2009 09:39:23
GMT

Latest checkpoint location: 0/53D8EO0

Prior checkpoint location: 0/53D840

Latest checkpoint's REDO location: 0/53D8EO0

Latest checkpoint's TimeLineID: 1

Latest checkpoint's NextXID: 0/649

Latest checkpoint's NextOID: 11565

Latest checkpoint's NextMultiXactId: 1

Latest checkpoint's NextMultiOffset 0

Latest checkpoint's oldestXID: 641

Latest checkpoint's oldestXID's DB: 1

Time of latest checkpoint: Thu 26 Nov 2009 09:15:02 GMT
Minimum recovery ending location: 0/0

Maximum data alignment: 8

Database block size: 8192

Blocks per segment of large relation: 131072

WAL block size: 8192

Bytes per WAL segment: 16777216

Maximum length of identifiers: 64

Maximum columns in an index: 32

s

PUBLISHING

Exploring the Database

Maximum size of a TOAST chunk:
Date/time type storage:

Float4 argument passing:
Float8 argument passing:

1996

64-bit integers
by value

by wvalue

There's more...

Never, ever edit the PostgreSQL control file. If you do, the server probably won't start correctly, or
you may mask other errors. If you do, people will be able to tell, so fess up as soon as possible!!!

List databases on this database server?

When we connect to PostgreSQL, we always connect to just one specific database on any
database server. If there are many databases on a single server, it can get confusing, so
sometimes you just want to find out which databases are part of the database server.

It's also confusing because we can use the word database in two different but related contexts.
Initially, we start off by thinking that PostgreSQL is a "database" in which we put data, referring
to the whole database server just as the word "database". In PostgreSQL, a database server

is potentially split into multiple individual databases, so as you get more used to working with
PostgreSQL, you'll start to separate the two concepts.

Also note that in some other RDBMS, such as SQLServer, the term "database" is more similar
to a "schema" in PostgreSQL.

How to do it...

If you have access to psqgl you can type the following command:

bash $ psgl -1
List of databases

Name | Owner | Encoding | Collation | Ctype | Access
privileges
——————————— e T et et T
postgres | sriggs | UTFS8 | en GB.UTF-8 | en GB.UTF-8 |
template0 | sriggs | UTF8 | en GB.UTF-8 | en GB.UTF-8 | =c/sriggs
+
| | | | |

sriggs=CTc/sriggs

templatel | sriggs | UTF8 | en GB.UTF-8 | en GB.UTF-8 | =c/sriggs

+

sriggs=CTc/sriggs
(3 rows)

=)

PUBLISHING

Chapter 2

You can also get the same information when running psqgl by just typing \1

The information at which we just looked is stored in a PostgreSQL catalog table named
pg_database. We can issue an SQL query directly against that table from any connection
to get a simpler result as follows:

postgres=# select datname from pg database;
datname

templatel
templateO
postgres
(3 rows)

PostgreSQL starts with 3 databases, namely, templateO, templatel, and postgres.
The main user database is postgres.

You can create your own databases as well, using the following:
CREATE DATABASE my_ database;

or you can do that from the command line using;:
bash $ createdb my database

After you've created your databases, make sure you secure them properly as discussed
in the Security chapter.

When you create another database it actually takes a copy of an existing database.
Once created, there is no further link between the two databases.

TemplateO and templatel are known as template databases. Templatel can be changed to
allow you to create a localized template for any new databases that you create. TemplateO
exists so that when you alter Template1 you still have a pristine copy on which to fall back.

You can drop the database named postgres. But don't, OK? Similarly, don't touch templateO.
Templatel exists to be modified, so feel free to change that.

The information at which we just looked is stored in a PostgreSQL catalog table named
pg_database. We can look at this directly to get some more information. In some ways
the output is less useful as well, as we need to look up some of the codes in other tables:

@l

[PUBLISHING]

Exploring the Database

postgres=# \x
postgres=# select * from pg database;
[RECORD 1] -#-==-mmmmmmmmmmmmmmmmmm oo

datname | templatel

datdba | 10

encoding | 6

datcollate | en GB.UTF-8

datctype | en GB.UTF-8

datistemplate | t

datallowconn | t

datconnlimit | -1

datlastsysoid | 11620

datfrozenxid | 644

dattablespace | 1663

datacl | {=c/sriggs,sriggs=CTc/sriggs}
-[RECORD 2 J-4-----------mmmmm oo o oo — -
datname | template0

datdba | 10

encoding | 6

datcollate | en GB.UTF-8

datctype | en GB.UTF-8

datistemplate | t

datallowconn | £

datconnlimit | -1

datlastsysoid | 11620

datfrozenxid | 644

dattablespace | 1663

datacl | {=c/sriggs,sriggs=CTc/sriggs}
-[RECORD 3 J-4---------mmmmmmm oo oo oo - -
datname | postgres

datdba | 10

encoding | 6

datcollate | en GB.UTF-8

datctype | en GB.UTF-8

datistemplate | £

datallowconn | t

datconnlimit | -1

datlastsysoid | 11620

datfrozenxid | 644

dattablespace | 1663

datacl |

First of all, look at the use of the \x command. That makes the output in psgl appear
as one column per line, rather than one row per line.

=

PUBLISHING

Chapter 2

This output raises many questions, | know. We've discussed templates already. Other
interesting things are that we can turn connections on and off for a database, and we
can set connection limits for them as well.

Also, you can see that each database has a default tablespace. So, data tables get created
inside one specific database, and the data files for that table get placed in one tablespace.

We can also see that each database has a collation sequence, which is the way various
language features are defined. More on that in other sections.

How many tables in a database?

The number of tables in a relational database is a good measure of the complexity
of a database, so it is a simple way to get to know any database.

How to do it...

From any interface, type in the following SQL command:

SELECT count (*) FROM information_ schema.tables
WHERE table_schema NOT IN ('information_schema',
'pg_catalog') ;

You can also look at the list of tables directly and judge whether that is a small or large number.
In psql, you can see your own tables using the following:

postgreseebony:~/8.3/main$ psgl -c "\d"
List of relations

Schema | Name | Type | Owner

———————— B et R e
public | accounts | table | postgres
public | branches | table | postgres

[PUBLISHING]

Exploring the Database

or in pgadmin3 you can see the tables in the tree view on the right-hand side as shown

in the following screenshot:.

pgAdmin I11
File Edit Plugins View Tools Help

I Object browser b4
E Server Groups
= @ Servers (2)
= [1 PostgreSQL 9.0 (localhost: 5433)
=[] Databases (1)
| postares
» Catalogs (2)
chemas (1)
= € public
% Functions (1)
% Sequences (4)
=3 Tables (8)
[categories
[cust_hist
A
[inventory
[orderlines
[orders
[products
[reorder
% Trigger Functions {0}
Views {0)
% Replication (0)
Tablespaces (2)
/i Group Roles (0)
£+ Login Roles (1)
i PostgreS0L Database Server 8.3 (localhost: 5432)

O %R BEHE - PP

Properties |Stah'stics Dependencies | Dependents

EBX

Property Value L
Mame customers
()] 16410
Owner postgres
Tablespace pag_default
ACL
Of type
Primary key customerid
Rows (estimated) 20000
Fill factor
Rows (counted) not counted
Inherits tables Mo B
Inherited tables count 0
Has CIDs? Mo A
£ |
SQL pane o
-- Table: customers A
—-- DROF TABLE customers;
CREATE TABIE customers)
{
customerid serial NOT NULL,
firstname character varying(50) NOT NULL,
lastname character varying(50) NOT WNULL,
addressl character varying(50) NOT NULL,
address? character varying(s0),
city character varying(30) NOT NULL,

atate rhararter warrinaltSng

|

Retrieving Table details... Done.

0.00 secs

PostgreSQL stores information about the database in "catalog tables", which describe every

aspect of the way the database has been defined. There is a main set of catalog tables

stored in a schema, named pg_catalog. There is a second set of catalog objects named the

Information Schema, which are the SQL standard way of accessing information in a relational
database. We want to exclude both of those schemas from our query, otherwise we'll get too
much information. We excluded those in the preceding query using the NOT IN phrase in the

WHERE clause.

Note that this query only shows you the number of rows in one of the databases on the

PostgreSQL server. You can only see the tables in the database to which you are currently
connected, so you would need to run the same query on each database in turn.

=

PUBLISHING

Chapter 2

There's more...

As | said, the number of tables in a relational database is a good measure of the complexity.
Complexity of what? Well, a complex database might be designed to be deliberately flexible
in order to cover a variety of business situations, or a complex business process might have
a limited portion of its details covered in the database. So, a large number of tables might
reveal a complex business process or maybe just a complex piece of software.

The most distinct major tables I've ever seen in a database is 20,000, not counting partitions,
views, or work tables. That clearly rates as a very complex system.

Number of distinct tables = Complexity rating

("entities")

20,000 Incredibly complex. You're either counting wrong
or you have a big team to manage this

2,000 Complex business database, not many seen

200 Typical modern business database

20 Simple business database

2 Database with a single clear purpose, tightly
designed for performance or some other goal

0 You haven't loaded any data yet...

Of course, you can't always easily tell which tables are entities, so we need to just count the
tables. Some databases use a lot of partitions, or similar tables, so the numbers can grow
beyond that dramatically. I've seen databases with up to 200,000 tables (of any kind). That's
not recommended though, as the database catalog tables then begin to be non-trivially large.

How much disk space does a database use?

For planning or space monitoring, we often need to know how big the database is.

How to do it...

We can do this in the following two ways:

» Look at the size of the files that make up the database server
» Run an SQL request to confirm database size
If you look at the size of the actual files, you'll need to make sure that you include the data

directory and all subdirectories, as well as all other directories that contain tablespaces.
That can be tricky, and it is also difficult to break out all the different pieces.

=]

[PUBLISHING]

Exploring the Database
The easiest way is to just ask the database a simple query, such as the following;:
SELECT pg _database_size (current database()) ;

However, this is limited to only the current database. If you want to find out the size
of all databases together, then you'll need a query such as the following;:

SELECT sum(pg_database size(datname)) from pg database;

The database server knows which tables it has loaded. It also knows how to calculate the size
of each table, so the pg_database_ size () function just goes and looks at the filesizes.

How much disk space does a table use?

How big is a table? What is the total of all the parts of a table?

How to do it...

We can find out the size of a table using the following query:

postgres=# select pg relation size('accounts');
pg_relation_size

(1 row)

We can also find out the total size of a table including indexes and other related space
using the following query:

postgres=# select pg total relation size('accounts');
pg_total relation size

(1 row)
or we can also use a psqgl command as follows:

postgres=# \dt+ accounts

List of relations Schema | Name
| Type | Owner | Size | Description ------------ R T
———————— +--------4---------4---------—-4---------------- public
pgbench _accounts | table | sriggs | 13 MB |

(1 row)

=)

PUBLISHING

Chapter 2

In PostgreSQL, a table is made up of many "relations". The main relation is the data table. In
addition, there are a variety of additional data files. Each index created on a table is also a
relation. Long data values are placed in a secondary table named a TOAST table, so in most
cases, each table also has a TOAST table and a TOAST index.

Each relation consists of multiple data files. The main data files are broken up into 1 GB
pieces. The first file has no suffix, others have a numbered suffix (such as .2). There are
also files marked .vmand . £sm, which represent the Visibility Map and FreeSpaceMap
respectively. Those are used as part of maintenance operations. They stay fairly small,
even for very large tables.

There's more...

TOAST stands for The Outsized Attribute Storage Technique. As the name implies, it's a
mechanism for storing long column values. PostgreSQL allows many data types to store
values up to 1 GB in size. PostgreSQL transparently stores large data items in many
smaller pieces, so the same data type can be used for data from 1 byte to 1 GB.

Which are my biggest tables?

We've looked at how to get the size of a specific table, so now it's time to widen the problem to
related areas. Rather than an absolute value for a specific table, let's look at the relative sizes.

How to do it...

The following basic query will tell us the "Top 10 Biggest Tables":

SELECT table name
,Pg _relation size(table name) as size
FROM information schema.tables
WHERE table schema NOT IN ('information schema',
'pg_catalog')
ORDER BY size DESC
LIMIT 10;

Tables are shown in descending order of size, with at most 10 rows displayed. In this case,
we look at all tables in all schemas, apart from tables in the information schema orin
pg_catalog. These latter two schemas are the locations where Postgres keeps its own
internal data.

@1

[PUBLISHING]

Exploring the Database

How many rows in a table?

Counting is one of the easiest SQL statements, so it is also many people's first experience
of a Postgres query.

How to do it...

From any interface the SQL command is, as follows:

SELECT count (*) FROM table;
which returns a single integer value as the result.
In psql this looks like the following:

postgres=# select count (*) from orders;
count

345
(1 row)

The SQL count (*) function will scan every row in the table using a technique named a
Sequential Scan. We access every data block in the table one after the other, reading the
number of rows in each block. If the table is on disk, then this will cause a beneficial disk
access pattern, and the statement will be fairly fast.

Some people think that the count SQL statement is a good test of the performance of a
database management system (DBMS). Some DBMS have specific tuning features for the
count SQL statement, though Postgres does not optimizes this SQL. The PostgreSQL project
has talked about this many times, but few people think we should try to optimize this. Yes,
the "count" function is frequently used within applications, but the count function without
any WHERE clause is not that useful. So, we have not yet chosen to optimize this form of

SQL specifically.

The reason we scan every block of the table is because of a major feature of Postgres named
MVCC, which stands for Multi-Version Concurrency Control. MVCC allows us to run the count
SQL statement at the same time that we are inserting, updating, or deleting data from the table.
That's a very cool feature, and we go into a lot of trouble in Postgres to provide that to you.

MVCC requires us to record information on each row of a table, stating when that change
was made. If the changes were made after the SQL statement begins to execute, then we
just ignore those changes. This means that we need to make "visibility checks" on each row
in the table to allow us to work out the result to the count SQL statement.

=

[PUBLISHING]

Chapter 2

If you think a little deeper about this, you'll see that the result of the count SQL statement is
just the value at a moment in time. Depending on what happens to the table, that value could
change a little, or a lot, while the count SQL statement is executing. So, once you've executed
this, all you really know is that at some point in the past there were "X" rows in the table.

Quick estimate of the number of rows

in a table

We don't always want an exactly accurate count of rows, especially on a large table, since that
may take a long time to execute. Administrators often need to estimate how big a table is so
that they can estimate how long other operations may take.

How to do it...

We can get a quick estimate of the number of rows in a table by using roughly the same
calculation that the Postgres optimizer uses:

SELECT (CASE WHEN reltuples > 0 THEN
pg_relation size('mytable')/(8192*relpages/reltuples)
ELSE 0
END) : :bigint AS estimated row_count

FROM pg class

WHERE oid = 'mytable'::regclass;

which gives:

estimated count

293
(1 row)

which returns a row count very quickly, no matter how large the table that we are examining is.

We saw the pg_relation size () function earlier, so we know it brings back an accurate
value for the current size of the table.

When we vacuum a table in Postgres, we record two pieces of information in the pg_class
catalog entry for the table. These two items are the number of data blocks in the table
(relpages) and the number of rows in the table (reltuples). Some people think they can use
the value of relpages in pg_class as an estimate, but if you use that it could be severely out of
date. You will also be fooled if you use information in another table named pg stat user
tables, which is discussed more in the chapter Performance.

@]

[PUBLISHING]

Exploring the Database

The Postgres optimizer uses the relpages and the reltuples values to calculate the average
rows per block, also known as the average tuple density.

If we assume that the average tuple density remains constant over time, then we can
calculate the number of rows by using the following formula:

Row Estimate = Number of Data Blocks * Rows per Block

We put in a little code to handle the case that the reltuples or relpages fields are zero.
The Postgres optimizer actually works a little harder than we do in that case, so our estimate
isn't a very good one.

There's more...

The good thing about the aforementioned recipe is that it returns a value in about the same
time no matter how big the table is. The bad thing about it is that pg_relation size()
requests a lock on the table, and so if any other user has an AccessExclusiveLock on the
table, then the table size estimate will wait for the lock to be released before returning a value.

Err... so what is an AccessExclusiveLock? When an SQL maintenance action, such as changing
the datatype of a column, PostgreSQL will lock out all other actions on that table. The typical
case for me is where | issue some form of SQL maintenance action, such as an ALTER TABLE,
and then the statement takes much longer than | thought it would. At that point, | think, "Oh,
was that table bigger than | thought? How long will | be waiting?". Yes, it's better to calculate
that beforehand, but hindsight doesn't get you out of the hole you are in right now. So we need
a way to calculate the size of a table without needing the lock.

So my solution is to look at the operating system files that Postgres uses to store data,
and figure out how large they are.

Now, this can get somewhat difficult. If the table is locked, it's probably doing something to
the table, and so trying to look at the files might well be fruitless, or might give wrong answers.
Anyway, here goes:

First, get some details on the table from pg_class

SELECT reltablespace, relfilenode FROM pg_ class
WHERE oid = 'orders'::regclass;

Second, confirm the databaseid in which the table resides

SELECT oid as databaseid FROM pg_database
WHERE datname = current_ database() ;

Together reltablespace, databaseid, and relfilenode are the three things we need
to locate the underlying data files within the data directory.

If tablespaceid is zero, then the files will be

$PGDATADIR/base/{databaseid}/{relfilenode}*

SNED

[PUBLISHING]

Chapter 2
The bigger the table, the more files you'll see.
If reltablespace is not zero then the files will be in:

$PGDATADIR/pg tblspc/{reltablespace}/
{databaseid}/{relfilenode}*

Each file should be 1GB in size, apart from the last file.
The preceding discussion glossed over a few other points, as follows:

» Postgres uses the terms data blocks and pages to refer to the same concept.
Postgres also does that with the terms tuple and row.

» Adatablock is 8192 bytes in size, by default, though you can change that if you
re-compile the server yourself, and create a new database.

Function 1

You may want to create an SQL function for this calculation, so you won't need to re-type
it constantly.

CREATE OR REPLACE FUNCTION estimated row_count (text)
RETURNS bigint
LANGUAGE sql
AS s$$
SELECT (CASE WHEN reltuples > 0 THEN
pg relation size($1)/(8192*relpages/reltuples)
ELSE 0
END) : :bigint
FROM pg class
WHERE oid = $1::regclass;
S5

Function 2
CREATE OR REPLACE FUNCTION
pg_relation_size_nolock (tablename regclass)
RETURNS BIGINT
LANGUAGE plpgsqgl

AS $S

DECLARE
classoutput RECORD;
tsid INTEGER;
rid INTEGER;
dbid INTEGER;
filepath TEXT;

PUBLISHING

Exploring the Database

filename TEXT;
datadir TEXT;
i INTEGER := 0O;
tablesize BIGINT;
BEGIN

-- get data directory

EXECUTE 'SHOW data directory' INTO datadir;

-- get relfilenode and reltablespace
SELECT

reltablespace as tsid

,relfilenode as rid

INTO classoutput

FROM pg class

WHERE oid = tablename
AND relkind = 'r';

-- Throw an error if we can't find the tablename specified
IF NOT FOUND THEN

RAISE EXCEPTION 'tablename % not found', tablename;
END IF;
tsid := classoutput.tsid;
rid := classoutput.rid;

-- get the database object identifier (oid)

SELECT oid INTO dbid
FROM pg database
WHERE datname = current database();

-- Use some internals knowledge to set the filepath

IF tsid = 0 THEN

filepath := datadir || '/base/' || dbid || '/' || rid;
ELSE
filepath := datadir || '/pg_tblspc/'
Il tsid [[/¢
|| dbid [[*/*
|| rid;
END IF;

=

PUBLISHING

Chapter 2

-- Look for the first file. Report if missing

SELECT (pg stat file(filepath)) .size
INTO tablesize;

-- Sum the sizes of additional files, if any

WHILE FOUND LOOP

i := 1 + 1;
filename := filepath || '.' || 1i;
-- pg_stat file returns ERROR if it cannot see file
-- so we must trap the error and exit loop
BEGIN
SELECT tablesize + (pg stat file(filename)) .size
INTO tablesize;
EXCEPTION
WHEN OTHERS THEN
EXIT;
END;

END LOOP;

RETURN tablesize;
END;
S

which can also work on Windows with a few minor changes, left as an exercise for the reader.

Understanding object dependencies

In most databases, there will be dependencies between objects in the database. Sometimes,
we need to understand those dependencies to figure out how to perform certain actions. Let's
look at this in detail.

Getting ready

We'll use the following simple database to understand the issues and to investigate them.
There are two tables, as follows:

CREATE TABLE orders (
orderid integer PRIMARY KEY

)i

PUBLISHING

-

Exploring the Database

CREATE TABLE orderlines (
orderid integer

,lineid smallint

, PRIMARY KEY (orderid, lineid)
)i

Now we add a link between them, to enforce what is known as "Referential Integrity"
as follows:

ALTER TABLE orderlines ADD FOREIGN KEY (orderid)
REFERENCES orders (orderid) ;

If we try to DROP the "referenced" table, we get the following message:

DROP TABLE orders;
ERROR: cannot drop table orders because other objects depend on it

DETAIL: constraint orderlines orderid fkey on table orderlines depends
on table orders

HINT: Use DROP ... CASCADE to drop the dependent objects too.

Be very careful! If you follow the hint, you could accidentally remove all the objects that have
any dependency on the orders table. You might think that would be a great idea, but to me it
seems lazy and foolish. It might work, but we need to make sure it will work.

So we need to know what dependencies there are on the orders table, and then review
them. Then we can decide whether it is OK to issue the CASCADE version of the command,
or whether we should reconcile the situation manually.

How to do it...

You can use the following command from psql to display full information about a table,
the constraints that are defined upon it, and the constraints that reference it.

\d+ orders
You can also get the specific details of the constraints by using the following query:

SELECT * FROM pg constraint
WHERE confrelid = 'orders'::regclass;

Unfortunately, that's not the end of the story, so read the There's More section also.

When we create a Foreign Key, we add a constraint to the catalog table known as pg
constraint. So the query shows us how to find out all of the constraints that depend
upon the orders table.

=

PUBLISHING

Chapter 2

The syntax:
WHERE confrelid = 'orders'::regclass;

introduces the concept of object identifier types. They are just a short-hand trick for converting
from the name of an object through to the object identifier number for that object. The best
way to understand this is if you think of that syntax as meaning the same thing as a function
named relname2relid ().

There's more...

With Postgres, there's always a little more when you look beneath the surface. In this case,
there's a lot more, and it's important.

The aforementioned queries only covered constraints between tables. We didn't discuss
dependencies with other kinds of objects. Two important types of objects that might have
dependencies to tables are Views and Functions.

If you issue the following:
DROP TABLE orders;

the dependency on any of the views will prevent the table from being dropped. Thus, you
can then remove those views, and then drop the table.

The story with function dependencies is not as useful. Relationships between functions and
tables are not recorded in the catalog, nor is dependency information between functions
and functions. This is partly due to the fact that most function languages allow dynamic
query execution, so you wouldn't be able to tell which tables or functions that a function
would access until it executes. That's only partly the reason why most functions clearly
reference other tables and functions, so it ought to be possible to identify and store those
dependencies. However, right now, we don't do that. So make a note that you need to record
the dependency information for your functions manually, so that you'll know when and if it's
OK to remove or alter a table or other objects the functions depend upon.

s

[PUBLISHING]

IIIIIIIIII

Configuration

In this chapter, we will cover the following:

» Reading the Fine Manual (RTFM)

» Planning a new database

» Changing parameters in your programs

» The current configuration settings

» Parameters that are at non-default settings

» Updating the parameter file

» Setting parameters for particular groups of users
» Basic server configuration checklist

» Adding an external module into PostgreSQL server

» Running server in power saving mode

Introduction

| get asked many questions about parameter settings in PostgreSQL.

Everybody's busy and most people want the five minute tour of how things work. That's exactly
what a Cookbook does, so we'll do our best.

Some people believe that there are some magic parameter settings that will improve their
performance, spending hours combing the pages of books to glean insights. Others already
feel comfortable because they found some website somewhere that "explains everything",
and they "know" they have their database configured OK.

For the most part, the settings are easy to understand. Finding the best setting can be
difficult, and the optimal setting may change over time in some cases. This section is
mostly about knowing how, when, and where to change parameter settings.

[PUBLISHING]

Configuration

Reading the Fine Manual (RTFM)

RTFM is often used rudely, meaning "don't bother me, I'm busy", or is used as a stronger form
of abuse. The strange thing is that asking you to read the manual is most often very good
advice. Don't flame them back, take the advice. The most important point to remember is
that you should refer to a manual whose release version matches the server on which you
are operating

The PostgreSQL manual is very well written, and is comprehensive in its coverage of specific
topics. One of its main failings is that the "documents" aren't organized in a way that helps
somebody who is trying to learn PostgreSQL. They are organized from the perspective of
people checking specific technical points, so that they can decide whether their difficulty

is user error or not. It sometimes answers "What?", but seldom "Why?', or 'How?"

I've helped write sections of the PostgreSQL documents as well, so I'm not embarrassed to
steer you towards reading them. There are still many things to read here that are useful.

How to do it...

The main documents for each release are available at the following website:
http://www.postgresql .org/docs/manuals/
The most frequently accessed parts of the documents are as follows:

» SQL Command Reference, Client, and Server tools reference (http://www.

postgresqgl.org/docs/9.0/interactive/reference.html)

» Configuration (http://www.postgresql.org/docs/9.0/interactive/
runtime-config.html)

» Functions (http://www.postgresqgl.org/docs/9.0/interactive/

functions.html)

You can also grab yourself a PDF version of the manual, which can allow easier searching in
some cases. Don't print it! The documents are more than 2000 pages of Ad-size sheets.

The PostgreSQL documents are written in SGML, which is similar to, but not quite XML. These
files are then processed to generate HTML or PDFs, and so on.

There's more...

There's a Wiki site on postgresql . org that is worth a look at as well. More information
is also available at http://wiki.postgresqgl.org

NED

PUBLISHING

Chapter 3

Planning a new database

Planning a new database can be a daunting task. It's easy to get overwhelmed by it, so here
we present some planning ideas. It's also easy to charge headlong at the task as well, thinking
that the parts you know are all the things you'll ever need to consider.

Getting ready

You are ready. Don't wait to be told what to do. If you haven't been told what the requirements
are, then write down what you think they are, clearly labeling them as "Assumptions" rather
than "Requirements"—we mustn't confuse the two things.

Iterate until you get some agreement, and then build a prototype.

How to do it...

Write a document that covers the following items:

» Database design: Plan your database design.
o Calculate the initial database sizing

» Transaction analysis: How will we access the database?
o Look at the most frequent access paths
o What are the requirements for response times?

» Hardware configuration

o Initial performance thoughts—will all data fit into RAM?

» Localization plan

o Decide server encoding, locale, and time zone

» Access and security plan
o Identify client systems and specify required drivers
o Create roles according to a plan for access control

o Specify pg_hba.conf

» Maintenance plan: Who will keep it working? How?
» Availability plan: Consider the Availability requirements
o checkpoint timeout

o Plan your backup mechanism, and test them

s

[PUBLISHING]

Configuration

» High-availability plan
o Decide what form of replication you'll need, if any

One of the most important reasons for planning your database ahead of time is that
retrofitting some things is difficult. This is especially true of server encoding and locale,
which can cause much downtime and exertion if we need to change them later. Security
is also much more difficult to set up after the system is live.

There's more...

Planning always helps. You may know what you're doing, but others may not. Tell everybody
what you're going to do before you do it, to avoid wasting time. If you're not sure yet, then build
a prototype to help decide—approach the administration framework as if it were a development
task. Make a list of things you don't know yet, and work through them, one by one.

This is deliberately a very short recipe. Everybody has their own way of doing things, and it's
very important not to be too prescriptive about how to do things. If you already have a plan,
great. If you don't, think about what you need to do, make a checklist, and then do it.

Changing parameters in your programs

PostgreSQL allows you to set some parameter settings for each session or for each transaction.

How to do it...

You can change the value of a setting during your session, such as the following;:
SET work mem = '16MB';

This value will then be used for every future transaction. You can also change it only
for the duration of the "current transaction"

SET LOCAL work_mem = '1l6MB';
The setting will last until or if you issue the following:

RESET work mem;
or

RESET ALL;

&)

[PUBLISHING]

Chapter 3

SET and RESET are SQL commands that can be issued from any interface. They apply only to
PostgreSQL server parameters, by which we mean parameters that affect the server, but not
necessarily the whole server. There may be other parameters, such as JDBC driver parameters,
that cannot be set in this way. Refer to the Connections chapter for help with those.

When you change the value of a setting during your session, such as:
SET work mem = '16MB';
then this will show up in the catalog view pg_settings as follows:

postgres=# SELECT name, setting, reset val, source

FROM pg settings WHERE source = 'session';
name | setting | reset val | source
—————————— e R
work_mem | 16384 | 1024 | session

until you issue:
RESET work mem;
after which the setting returns to the reset_val, and the source returns to default.

name | setting | reset val | source

You can change the value of a setting during your transaction as well, as follows:
SET LOCAL work_mem = '1l6MB';
then this will show up in the catalog view pg_settings as follows:

postgres=# SELECT name, setting, reset val

FROM pg settings WHERE source = 'session';
name | setting | reset val | source
—————————— e R
work_mem | 1024 | 1024 | session

Huh? What happened to my parameter setting? SET LOCAL takes effect only for the transaction
in which it was executed, which, in our case, was just the SET LOCAL command. We need to
execute it inside a transaction block to be able to see the setting take hold as follows:

BEGIN;
SET LOCAL work_mem = '1l6MB';

PUBLISHING

Configuration
then this will show up in the catalog view pg_settings as follows:

postgres=# SELECT name, setting, reset val, source
FROM pg settings WHERE source = 'session';
setting | reset val | source

work_mem | 16384 | 1024 | session

You should also note that the value of source is "session" rather than "transaction", as you
might have been expecting.

What are the current configuration settings?

At some point it will occur to you to ask, "What are the current configuration settings?"

How to do it...

Your first thought is probably "look in postgresqgl . conf". That works, but only as long as
there is only one parameter file. If there are two, then maybe you're reading the wrong file!

(How do you know?). So the cautious and accurate way is not to trust a text file, but to trust
the server itself.

Also, we learned in the recipe When to set parameters that each parameter has a scope that
determines when it can be set. Some parameters can be set through postgresqgl.conf,
but others can be changed afterwards also. So the current value of configuration settings
may have been subsequently changed.

We can use the sSHOW command, such as the following;:

postgres=# SHOW work mem;

work mem

1MB

(1 row)
though remember that it reports the current setting at the time when it is run, and that
can be changed in many places.

Another way of finding current settings is to access a PostgreSQL catalog view named
pg_settings.

postgres=# \x

Expanded display is on.

postgres=# SELECT * FROM pg settings WHERE name = 'work mem';

[RECORD 1] =mmmmmmmmm oo mm oo o e e e e

name | work_mem

&

[PUBLISHING]

Chapter 3

setting | 1024
unit | kB
category | Resource Usage / Memory

short desc Sets the maximum memory to be used for query workspaces.
extra desc | This much memory can be used by each internal sort

operation and hash table before switching to temporary disk files.

context | user
vartype | integer
source | default
min val | 64

max_val | 2147483647
enumvals |

boot_val | 1024
reset_val | 1024
sourcefile |

sourceline |

So, you can use the SHOW command to retrieve the value for a setting, or you can access
the full detail via the catalog table.

Each parameter setting is cached within each session so that we have fast access
to the parameter settings. That allows us to access the parameter settings with ease.

Remember that the values displayed are not necessarily settings for the server as a whole;
many of those parameters will be specific to the current session. That's different in many
other databases and is also very useful.

Which parameters are at non-default

settings?

Often, we need to check which parameters have been changed already or whether
our changes have correctly taken effect.

How to do it...

postgres=# SELECT name, source, setting
FROM pg settings

WHERE source != 'default
AND source != 'override'
ORDER by 2, 1;
name [ooeent. source....... | . .setting
___________________________ S m o o o e e e

(&5}

PUBLISHING

Configuration

application_name | client | psql
log_timezone | command line | GB
TimeZone | command line | GB
timezone abbreviations | command line | Default
archive command | configuration file | (disabled)
archive mode | configuration file | off
archive timeout | configuration file | s
bgwriter delay | configuration file | 10
checkpoint timeout | configuration file | 30
log_checkpoints | configuration file | on
log_destination | configuration file | stderr
log_filename | configuration file | log%yY
logging collector | configuration file | on
log_line prefix | configuration file | %t [%p]
log_min_ messages | configuration file | log
max_prepared transactions | configuration file | s
max_standby delay | configuration file | 90

port | configuration file | 5443
max_stack depth | environment variable | 2048
work mem | session | 204800

(29 rows)

('Override' is excluded just for display purposes.)

You can see from pg_settings which values have non-default values, and what
the source of the current value is.

The sHOW command doesn't tell you whether a parameter is set at a non-default value. It just

tells you the value, which isn't much help if you're trying to understand what is set and why.

If the source is a configuration file, then the two columns sourcefile and sourceline
are also set. These can be useful in understanding where the configuration came from.

There's more...

The setting column of pg settings shows the current value, though you can also

look at boot val and reset val; boot-val, which show the value assigned when the
PostgreSQL database cluster was initialized ("initdb"), while reset val shows the value that
the parameter will return to if you issue the RESET command.

Who set that?

max_stack_depth is an exception because pg_settings says it is set by the
environment variable, though it is actually set by ulimit -s on Linux/Unix systems.
max_stack_depth only needs to be set directly on Windows.

=

PUBLISHING

Chapter 3

The timezone settings are also picked up from the OS environment, so you shouldn't need
to set those directly. pg_settings shows this as a "command-line" setting.

Updating the parameter file

The parameter file is the main location for defining parameter values for the PostgreSQL
server. All of the parameters can be set in the parameter file, which is known as the
postgresql.conf.

There are also two other parameter files, pg _hba.conf and pg _ident.conf. Both of these
relate to connections and security, so we cover them in the appropriate chapters that follow.

Getting ready

First, locate the postgresqgl . conf as described earlier.

How to do it...

All of the parameters can be set in the parameter file, which is known as the postgresql.
conf. Some of the parameters take effect only when the server is first started. A typical
example might be shared buffers, which defines the size of the shared memory cache.

Many of the parameters can be changed while the server is still running. After changing
the required parameters, we issue a reload operation to the server, forcing PostgreSQL
to re-read the postgresqgl . conf.

pg_ctl -D data reload

The postgresqgl . conf is a normal text file that can be simply edited. Most of the
parameters are listed in the file, so you can just search for them, and then overtype
the desired value.

If you set the same parameter twice in different parts of the file, the last setting is the one
that applies. This can cause lots of confusion if you add settings to the bottom of the file, so
you are advised against doing that.

Best practice is to either leave the file as it is and edit the values, or to start with a blank file
and just include the values that you wish to change. | personally prefer a file with only the non-
default values. That makes it easier to see what's happening.

Whichever method you use, you are strongly advised to keep all of the previous versions of your
. conf files. You can do this by copying, or you can use a version control system, such as SVN.

]

[PUBLISHING]

Configuration

There's more...

postgresqgl . conf also supports an include directive. This allows the postgresql.conf file
to reference other files, which can then reference other files, and so on. That might help you
organise your parameter settings better, if you don't make it too complicated.

Setting parameters for particular groups

of users

PostgreSQL supports a variety of ways of defining parameter settings for various user groups.

How to do it...

For all users in database saas:

ALTER DATABASE saas
SET configuration parameter = valuel;

For a user named simon connected to any database, use the following:

ALTER ROLE saas
SET configuration parameter = value2;

or set a parameter for a user only when connected to a specific database, as follows:

ALTER ROLE simon
IN DATABASE saas
SET configuration parameter = value3;

The user won't know that these have been executed specifically for him. These are default
settings, and in most cases can be overridden if the user requires non-default values.

You can set parameters for each of the following:

» Database
» User (named "Roles" by PostgreSQL)
» Database / User combination

Each of the parameter defaults is overridden by the one below it.
In the preceding three SQL statements if:

» user hannu connects to database saas, then valuel will apply

(&)

[PUBLISHING]

Chapter 3

» user simon connects to a database other than saas, then value2 will apply
» user simon connects to database saas, then value3 will apply

PostgreSQL implements this in exactly the same way as if the user had manually issued
the equivalent SET statements immediately after connecting.

Basic server configuration checklist

PostgreSQL arrives configured for use on a shared system, though many people want to run
dedicated database systems. The PostgreSQL project wishes to ensure that PostgreSQL will
play nicely with other server software, and should not assume it has access to the full server
resources. If you, as the system administrator, know that there is no other important server
software running on this system, then you can crank up the values much higher.

Getting ready

Before we start, we need to know two sets of information:
First, we need to know the size of the physical RAM that will be dedicated to PostgreSQL.
Second, we need to know something about the types of applications for which PostgreSQL

will be used.

How to do it...

If your database is larger than 32MB, then you'll probably benefit from increasing
shared buffers. You can increase this to much larger values, though remember

that on Linux systems this memory can be swapped out if not in use, so it's better to be
conservative. A new value can be set in your postgresql . conf and incremented slowly
to ensure you get benefits from each change.

If you increase shared buffers, and you're running on a non-Windows server, you will
almost certainly need to increase the value of the OS parameter SHMMAX (and on some
platforms others as well).

On Linux/Mac 0S/FreeBSD, you will need to either edit the /etc/sysctl.conf file or use
sysctl -w with the following values:

» Linux: kernel.shmmax=value
» Mac 0S: kern.sysv.shmmax=value

» FreeBSD kern.ipc.shmmax=value

http://www.postgresql.org/docs/8.4/static/kernel-resources.
html#SYSVIPC

&7}

[PUBLISHING]

Configuration
For example on Linux, add the following line to /etc/sysctl.conft:
kernel . shmmax=value

Don't worry about setting effective cache size. Itis much less important a parameter
than you might think; no need for too much fuss selecting the value.

If you're doing heavy write activity, then you may want to set wal buffers to a much higher
value than the default.

If you're doing heavy write activity and/or large data loads, you then may want to set
checkpoint segments higher than the default.

If your database has many large queries, you may wish to set work mem to a value higher
than the default.

Make sure autovacuum is turned on, unless you have a very good reason to turn it off. Most
people don't. Please see later chapters for more information on autovacuum.

To simplify some of this, | recommend that you refer to the following URL:
http://pgfoundry.org/projects/pgtune/

Leave the settings at that for now. Don't fuss too much about getting the exact settings right.
You can change most of them later, so you can take an iterative approach to improving things.

Get the basics right, and keep it simple and solid. Then buy Greg Smith's book
on PostgreSQL performance

Especially, don't touch fsync parameter. It's keeping you safe.

Adding an external module to PostgreSQL

Another one of PostgreSQL's strengths is its extensibility. Extensibility was one of the original
design goals, stretching back to the late 1980s. Now, in PostgreSQL 9.0, there are many
additional modules that plug into the core PostgreSQL server.

There are many kinds of additional module offerings, such as the following;:

» additional functions
» additional datatypes
» additional operators

» additional indexes

PUBLISHING

Chapter 3

Note that many tools and client interfaces work with PostgreSQL without any special
installation. Here, we are discussing modules that extend and alter the behavior of
the server beyond its normal range of SQL standard syntax, functions, and behaviors.

Getting ready

First, you'll need to select an appropriate module to install.

There isn't yet an automated package management system for PostgreSQL, so modules
are located in a range of places, such as the following:

» Contrib— PostgreSQL "core" includes many functions. There is also an official section
for add-in modules, known as "contrib" modules. These are documented at the
following URL:

0 http://www.postgresqgl.org/docs/9.0/static/
contrib.html

» pgFoundry— an open source development website created specifically to allow
PostgreSQL modules and tools to be shared. PgFoundry uses the same software
as SourceForge.net. Take a look at the following URL:

o http://pgFoundry.org/

» Separate projects— large external projects, such as PostGIS, offer extensive
and complex PostgreSQL modules. Take a look at the following URL:

0 http://www.postgis.org/

How to do it...

In some cases, modules can be added during installation if you're using a stand-alone
installer application, for example, OneClick installer.

In other cases, you'll be able to install from a package, such as with the Oracle compatibility
module http://www.postgres.cz/index.php/Oracle functionality

First, we get

http://pgfoundry.org/frs/download.php/2420/orafce-3.0.1-1.pg82.rhel5.
i386.rpm

then install using commands, such as the following:

rpm -ivh orafce-3.0.1-1.pg90.rhel5.i386.rpm
sudo apt-get install postgresqgl-8.4-orafce

PUBLISHING

Configuration

In many cases useful modules may not have full packaging. In these cases you may need
to install the module manually. This isn't very hard and is a useful exercise to help you
understand what happens.

Each module will have different installation requirements. There are generally two aspects
to installing a module. They are as follows:

» Installing the SQL objects for the module

» Installing the dynamic load libraries for the module

Most of the more useful modules require you to handle both of the aforementioned aspects.
There are a couple of examples, such as AutoExplain, that only has dynamic load libraries.

» Build the libraries
Follow instructions for that module

» Install the library where the server can find it:

shared preload libraries = '$libdir/modlib'’
Create the database objects

psgl -d dbname -f SHAREDIR/contrib/module.sql

PostgreSQL can dynamically load libraries in the following three ways:

» By using the explicit LOAD command in a session

» Byusing shared preload libraries parameter in postgresgl.conf
at server start

» Atsession start, using local preload libraries parameter for a specific
user, as set using ALTER ROLE

PostgreSQL functions and objects can reference code in these libraries, allowing extensions
to be bound tightly into the running server process. The tight binding makes this method
suitable for use even in very high-performance applications, and there's no significant
difference between additional supplied features and native ones.

Running server in power saving mode

Power consumption is a hot topic. Everybody is looking for ways to do their bit
for the environment. The same is true for PostgreSQL users.

[PUBLISHING]

Chapter 3

Getting ready

If your PostgreSQL server is only used very sporadically, or has periods of total inactivity, then
you may be able to benefit from some of the advice given here. That could be a laptop, or it
could be a somewhat inactive virtual server.

How to do it...

PostgreSQL is a server-based database, so it mostly does nothing at all if there are no active
clients. To minimize server activity, set the following parameters in the postgresql . conf file:
» autovacuum = off
» wal writer delay =10000
» bgwriter delay =10000
These settings are not optimal for many uses and should only be used when it is known that

the server will be quiet. They should be reset to previous values when the server becomes
busy again.

There are a couple of processes that stay active continually, on the expectation that they will
be needed should clients become active. These processes are as follows:

» Writer process (also known as the "Background writer")

» WAL writer process

» Archiver, which will be active if WAL archiving is enabled.

» WAL receiver process, which will be active if streaming replication is in use.

» Autovacuum process
The Background writer process wakes up by default every 200ms to do its work.

The maximum setting is 10s, which isn't very long, though the Background writer
can be disabled by the setting, bgwriter lru maxpages = 0.

The WAL writer process wakes up by default every 200ms. The maximum setting is also 10s.
This cannot be disabled. If there is no write activity, then no work will be performed, other
than the wakeup and check.

The Archiver process will wake up every 15s and check whether any new WAL files have been
written. This will cause some activity against the filesystem directory. That time cannot be
changed by a parameter.

7}

[PUBLISHING]

Configuration

The WAL receiver process will wake up every 100ms to check if new replication data has arrived.
If no new data has arrived, it will sleep again. That time cannot be changed by a parameter.

Autovacuum will wake up every 60s by default. This can be changed by altering the
setting of autovacuum_naptime. Autovacuum can be disabled completely by setting
autovacuum = of f.

So, if you are using Streaming Replication, then the server will wake up every 100ms. If not,
then you can reduce the wakeup time to every 10s rather than every 200ms, which is the
default setting.

[PUBLISHING]

Server Control

In this chapter, we will cover the following:

Starting the database server manually
Stopping the server quickly and safely
Stopping the server in an emergency
Reloading the server configuration files
Restarting the server quickly

Preventing new connections

Restricting users to just one session each
Pushing users off the system

Deciding on a design for multi-tenancy
Using multiple schemas

Giving users their own private database
Running multiple database servers on one system

Setting up a connection pool

Introduction

PostgreSQL consists of a set of server processes, the group leader of which is named the
postmaster. Starting the server is the act of creating these processes, and stopping the server
means to terminate those processes.

Each postmaster listens for client connection requests on one defined port number. Multiple
concurrently running postmasters cannot share that port number. The port number is often
used to identify a particular postmaster uniquely, and so also the database server that it leads.

PUBLISHING

Server Control

When we start a database server, we refer to one data directory, which contains the heart

and soul, or at least the data for our database. Subsidiary tablespaces may contain some data
outside of the main data directory, so the data directory is just the main central location, and not
the only place where data for that database server is held. Each running server has one data
directory, and one data directory can have at the most one running server (or "instance").

To perform any action for a database server, we must know the data directory for that server.
The basic actions we can perform on the database server are starting and stopping. We

can also perform a restart, though that is just a stop, followed by a start. In addition, we can
reload the server, meaning to reread the server's configuration files.

We should also mention a few other points:

The default port number for PostgreSQL is 5432. That has been registered with Internet
Assigned Numbers Authority (IANA), and so should already be reserved for PostgreSQL's use
in most places. Because each PostgreSQL server requires a distinct port number, the normal
convention is to use subsequent numbers for any additional server, for example, 5433,

5434, and so on. Subsequent port numbers might not be as easily recognized by the network
infrastructure, which might in some cases make life more difficult for you in larger enterprises,
especially more security-conscious ones.

The database server is also sometimes referred to as a database cluster. | don't recommend
the term for normal usage because it makes people think about multiple nodes, not just one
database server on one system.

Starting the database server manually

Typically, the PostgreSQL server will start automatically when the system boots. You may
have opted to stop and start the server manually, or you may need to start up/shut down
for various operational reasons.

Getting ready

First, we need to understand the difference between the service and the server. The word
server refers to the database server and its processes. The word service refers to the
operating system wrapper by which the server gets called. The server works in essentially the
same way on every platform, whereas each operating system and distribution has its own
concept of a service.

How to do it...

On all platforms, there is a specific command to start the server, which is as follows:

7

[PUBLISHING]

Chapter 4

UBUNTU/DEBIAN pg ctlcluster 9.0 main reload

RED HAT/FEDORA pg ctl -D /var/lib/pgsql/data start
SOLARIS pg ctl -D /var/lib/pgsqgl/data start
MAC OS pg ctl -D /var/lib/pgsql/data start
FREEBSD pg ctl -D /var/lib/pgsqgl/data start

although on some platforms, the service can be started in various ways such as:

RED HAT/FEDORA service postgresql start
WINDOWS net start postgres

On Ubuntu/Debian, the pg ctlcluster wrapper is a convenient utility that allows multiple
servers to coexist more easily, which is especially good when you have servers with different
versions. Very useful.

Stopping the server safely and quickly

Let's do it!

How to do it...

You can issue a database server stop using fast mode as follows:
pg ctl -D datadir -m fast stop

You must use -m fast if you wish to shut down as soon as possible. Normal shutdown means
"wait for all users to finish before we exit". That can take a very long time, though all the while
new connections are refused.

On other systems, this command might be as follows:

DEBIAN/UBUNTU pg ctlcluster 9.0 main stop --force

When you do a fast stop, all users have their transactions aborted and all connections are
disconnected. It's not very polite to users, but it still treats the server and its data with care,
which is good.

PostgreSQL is similar to other database systems, in that it does do a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

(7]

PUBLISHING

Server Control

One difference between PostgreSQL and some other RDBMS such as Oracle, DB2, or
SQLServer is that the transaction rollback is very fast. On those other systems, if you shut
down the server in a mode that rolls back transactions, then this can cause the shutdown to
take a while, possibly a very long time. This difference is for internal reasons, and isn't in any
way unsafe.

The Debian/Ubuntu - - force option is rather nice, because it first attempts a fast
shutdown, and then if that fails, it performs an immediate shutdown, and then after
that Kills the postmaster.

Stopping the server in an emergency

If nothing else is working, we may need to stop the server quickly.

"Break glass in case of emergency."

How to do it...

The basic command to perform an emergency restart on the server is the following:
pg_ctl -D datadir stop -m immediate

We must use an immediate stop mode.

When you do an immediate stop, all users have their transactions aborted, and all
connections are disconnected. There is no clean shutdown, nor politeness of any kind.

An immediate mode stop is similar to a database crash. Some cached files will need to be
rebuilt, and the database itself needs to undergo crash recovery when it comes back up.

Note that for DBAs with Oracle experience, immediate mode is the same thing as a
shutdown abort. PostgreSQL immediate mode stop is not the same thing as shutdown
immediate on Oracle.

Reloading the server configuration files

Some PostgreSQL configuration parameters can only be changed by "reloading" the whole
configuration file.

How to do it...

On all platforms, there is a specific command to reload the server, which is as follows:

7@

[PUBLISHING]

Chapter 4

UBUNTU/DEBIAN pg ctlcluster 9.0 main reload
RED HAT/FEDORA service postgresql reload

pg ctl -D /var/lib/pgsql/data reload
SOLARIS pg ctl -D /var/lib/pgsql/data reload
MAC OS pg ctl -D /var/lib/pgsql/data reload
FREEBSD pg ctl -D /var/lib/pgsql/data reload

You can also reload the configuration files while still connected to PostgreSQL. This can be
done from the command line as follows, if you are a superuser:

postgres=# select pg reload conf();

pg reload conf

which is also often executed from an admin tool, such as pgAdmin3

If you do this, you should realize that it's possible to implement a new authentication rule
that is violated by the current session. It won't force you to disconnect, but when you do
disconnect, you may not be able to reconnect.

To reload the configuration files, we send the SIGHUP signal to the postmaster, which then
passes that on to all connected backends. That's why some people call reloading the server
"sigh-up-ing".

If you look at the catalog table pg _settings, you'll see that there is a column named
context. Each setting has a time and a place where it can be changed. Some parameters
can only be reset by a server reload, and so the value of context for those parameters will be a
"sighup". Here are a few of the ones you'll want to change sometimes during server operation
(there are others!):

postgres=# SELECT name, setting, unit
, (source = 'default') as is default
FROM pg settings

WHERE context = 'sighup'
AND (name like '%delay' or name like '%timeout')
AND setting != '0';

(77}

PUBLISHING

Server Control

name | setting | unit | is default
—————————————————————————————— T
authentication timeout | 60 | s | t
autovacuum vacuum cost delay | 20 | ms | t
bgwriter delay | 10 | ms | £
checkpoint timeout | 32 | s | £
deadlock timeout | 1000 | ms | t
max_standby delay | 30 | | t
wal_ sender delay | 200 | ms | t
wal writer delay | 200 | ms | t

(8 rows)

There's more...

As reloading the configuration file is achieved by sending the SIGHUP signal, we can reload
the configuration file just for a single backend using the ki1l command. As you might expect,
you can get some strange results from doing this, so don't try this at home.

First, find out the pid of the backend using pg_stat_activity.
Then, from the OS prompt, issue the following:

kill -SIGHUP pid

Or we can do both at once, as in the following command:

kill -SIGHUP \
“"psql -t -c "select procpid from pg stat activity limit 1"~

though that is only useful with a sensible WHERE clause.

Restarting the server quickly

Some of the database server parameters require you to stop and start the server again fully.
Doing this as quickly as possible can be very important in some cases. The best time to do
this is usually a quiet time, with lots of planning, testing, and forethought. Sometimes, not
everything goes according to plan.

How to do it...

The basic command to restart the server is the following:

pg ctl -D datadir restart -m fast

@

PUBLISHING

Chapter 4

A restart is just a stop followed by a start, so it sounds very simple. In many cases, it will be
simple, but there are times when you'll need to restart the server while it is fairly busy. That's
when we need to start pulling some tricks to make that restart happen faster.

First, the stop performed needs to be a fast stop. If we do a default or "smart" stop, then the
server will just wait for everyone to finish. If we do an immediate stop, then the server will
crash, and we will need to crash recover the data, which will be slower overall.

The running database server has a cache full of data blocks, many of them dirty. PostgreSQL
is similar to other database systems, in that it does a shutdown checkpoint before it

closes. This means that the startup that follows will be quick and clean. The more work the
checkpoint has to do, the longer it will take to shut down.

The actual shutdown will happen much faster if we issue a normal checkpoint first, as the
shutdown checkpoint will have much less work to do. So, flush all dirty shared_buffers to
disk with the following command issued by a database superuser:

psgl -c "CHECKPOINT"

The next consideration is that once we restart, the database cache will be empty again and
will need to refresh itself. The larger the database cache, the longer it takes for the cache to
get warm again, and 30 to 60 minutes is not uncommon before returning to full speed. So
what was a simple restart can actually have a large business impact if handled badly.

I've written a utility named pg_cacheutils to record the contents of the database cache prior
to shutdown. This can then be used to prime or warm the cache again immediately after restart.

psqgl -c "select pg cache save('mycache')"

Then, you can issue a database server stop using immediate mode, so that we stop quickly
and start up again cleanly as follows:.

pg_ctl -D datadir -m immediate restart
One we're up, we can connect and warm the cache again as follows:
psqgl -c "select pg cache warm('mycache')"

It's not magic, so it will still take some time to be at full speed.

pg_cache save () will save the set of disk blocks in a table named mycache. That allows
you to have several sets of caches for various purposes if you need them. If you don't supply
a name, it will just use saved_cache.

(7]

[PUBLISHING]

Server Control

pg_cache warm() will read the saved cache information and perform a prefetch operation
on each block. This will bring the information back into cache using OS prefetch, if available.
Any non-existent blocks will be ignored.

http://projects.2ndQuadrant.com/pg cacheutils/

Preventing new connections

In certain emergencies, you may need to lock down the server completely, or just prevent
specific users from accessing the database. It's hard to foresee all the situations in which
you might need to do this, so we present a range of options.

How to do it...

Connections can be prevented in a number of ways as follows:

» Pause/Resume the session pool. See recipe on controlling connection pools

» Stop the server! See the earlier recipe, but it is not recommended.

» Restrict connections to zero for a specific database by setting the connection limit
to zero.
ALTER DATABASE foo db CONNECTION LIMIT O;
This will limit normal users from connecting to that database, though it will still allow
superuser connections.

» Restrict connections to zero for a specific user by setting the connection limit to zero.
(See also later recipe.)
ALTER USER foo CONNECTION LIMIT O0;

This will limit normal users from connecting to that database, though it will still
allow connection if the user is a superuser, so luckily you cannot shut yourself
out accidentally.

» Change host-based authentication (HBA) file to refuse all incoming connections, and
then reload the server:

o Create a new file named pg_hba lockdown.conf, and add the following
two lines to the file. This puts rules in place that will completely lock down
the server, including superusers. Please have no doubt that this is a serious
and drastic action.

TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all reject
host all all 0.0.0.0/0 reject

(&)

[PUBLISHING]

Chapter 4

If you still want superuser access, then try something like the following:

TYPE DATABASE USER CIDR-ADDRESS METHOD
local all postgres ident
local all all reject
host all all 0.0.0.0/0 reject

which will prevent connection to the database by any user except the postgres
operating system userid connecting locally to the postgres database. Be
careful not to confuse the second and third columns: the second column is the
database and the third column is the username. It's worth keeping the header
line just for that reason. The method "ident" should be replaced by other
authentication methods if a more complex configuration is in use.

o Copy the existing pg_hba.conf to pg_hba access.conf, so thatit can
be replaced again later, if required.

o Copypg hba lockdown.conf to pg hba.conf
o Reload the server following the recipe earlier in this chapter.

The pg_hba. conf is where we specify the host-based authentication rules. We do not specify
the authentications themselves, but just specify which authentication mechanisms will be
used. This is the top-level set of rules for PostgreSQL authentication. The rules are specified

in a file, and applied by the postmaster process when connections are attempted. To prevent
denial of service attacks, the HBA rules never involve database access, so we do not know
whether a user is a superuser or not. As a result, you can lock out all users. But note that you
can always re-enable access by editing the file and reloading.

Restricting users to just one session each

If resources need to be closely controlled, you may wish to restrict users so that they can only
connect at most once to the server. The same technique can be used to prevent connections
entirely for that user.

How to do it...

We can restrict users to just one connection by using the following command:

postgres=# ALTER ROLE fred CONNECTION LIMIT 1;
ALTER ROLE

s

[PUBLISHING]

Server Control

This will then cause any additional connections to receive the error message:

FATAL: too many connections for role "fred".

You can eliminate this restriction by setting the value to -1.

It's possible to set the limit to zero or any positive integer. You can set this to a number other
than max_connections, though it is up to you to make sense of that if you do.

Setting the value to zero will completely restrict normal connections. Note that even if you set
connection limit to zero for superusers, they will still be able to connect.

The connection limit is applied during session connection. Raising this limit would never affect
any connected users. Lowering the limit doesn't have any effect either, unless they try to
disconnect and reconnect.

So if you lower the limit, you should immediately check to see whether there are more
sessions connected than the new limit you just set, otherwise there may be some surprises
if there is a crash.

postgres=> SELECT rolconnlimit
FROM pg roles
WHERE rolname = 'fred';

rolconnlimit

(1 row)

postgres=> SELECT count (*)
FROM pg stat activity
WHERE usename = 'fred';

(1 row)
If you have more connected sessions than the new limit, you can ask them politely to
disconnect, or apply the recipe Pushing users off the system.

Users can't raise or lower their own connection limit, in case you were worried they might be
able to override this somehow.

[

PUBLISHING

Chapter 4

Pushing users off the system

Sometimes we may need to remove groups of users from the database server for various
operational reasons. Here's how.

How to do it...

You can terminate a user's session with the pg_terminate backend () function included
with PostgreSQL. That function takes the pid, or the process ID, of the user's session on the
server. This is known as the backend, and is a different system process from the program that
runs the client.

To find out the pid of a user, we can look at the view pg_stat_activity. We can use that
in a query like the following;:

SELECT pg_terminate backend (procpid)
FROM pg_stat_activity
WHERE ...

There's a couple of things to note if you run that query, which are as follows:

» If the WHERE clause matches no sessions, then you won't get anything back from the
query. Similarly, if it matches multiple rows, you will also get a fairly useless result.

» If you are not careful enough to include your own session in the query, then you will
disconnect yourself! What's even funnier is that you'll disconnect yourself halfway
through disconnecting the other users, as the query will run pg_terminate
backend () in the order that sessions are returned from the outer query.

So as a more useful query, | suggest a safer query that gives a useful response in all cases,
which is as follows:

postgres=# SELECT count (pg_terminate backend (procpid))
FROM pg stat activity
WHERE usename NOT IN
(SELECT usename
FROM pg_ user
WHERE usesuper) ;
count

assuming that superusers are performing administrative tasks.

&)

[PUBLISHING]

Server Control

Other good filters might be:

» WHERE application name = 'myappname'
» WHERE waiting
» WHERE current query = '<IDLE> in transaction'

» WHERE current query = '<IDLE>'

pg_terminate backend () sends a signal directly to the operating system process
for that session.

It's possible that the session may have closed by the time pg terminate backend() is
named. As pid numbers are assigned by the operating system, it might be possible that a
session with that pid number closed, and then a new session started with that exact same
number gets cancelled instead. So, be careful.

It's also possible that new sessions could start after we get the list of active sessions. There's
no way to prevent that other than by following the recipe Preventing new connections.

Deciding on a design for multi-tenancy

There are many reasons why we might want to split up groups of tables or applications:
security, resource control, convenience. Whatever the reason, we often need to separate
groups of tables (I avoid saying the word "database" just to avoid various confusions).

This topic is frequently referred to as multi-tenancy, though that is not a fully accepted
term as yet.

The purpose of this recipe is to discuss the options and lead into other more detailed recipes.

How to do it...

If you want to run multiple physical databases on one server, then you have four main options,
which are as follows:

1. Run multiple sets of tables in different schemas in one database of a
PostgreSQL instance

2. Run multiple databases in the same PostgreSQL instance
Run multiple PostgreSQL instances on the same virtual/physical system

4. Run separate PostgreSQL instances in separate virtual machines on the same
physical server

=

[PUBLISHING]

Chapter 4

Option 1 is covered in the recipe Using multiple schemas.
%“ Option 2 is covered in the recipe Giving users their own private database.
Option 3 is covered in the recipe Running multiple servers on one system.

Which is best? Well, it's certainly a topic many people ask, and something on which many
views exist. The answer lies in looking at the specific requirements, which are as follows:

» If our goal is the separation of physical resources, then options 3 or 4 work best.
Separate database servers can be easily assigned different disks, individual memory
allocations can be assigned, and we may take the servers up or down without
impacting the other.

» If our goal is security, then Option 2 may be sufficient.

» If our goal is merely the separation of tables for administrative clarity, then options 1
or 2 may also be useful.

Option 2 allows complete separation for security purposes. That does also prevent someone
with privileges on both groups of tables from performing a join between those tables. So, if
there is a possibility of future cross-analytics, it might be worth considering option 1, though it
might also be argued that such analytics should be carried out on a separate data warehouse,
not by co-locating production systems.

Option 3 has one simple difficulty in many of the PostgreSQL distributions. The default
installation uses a single location for the database, making it a little harder to configure
that option. Ubuntu/Debian handles that aspect particularly well, making it more attractive
in that environment.

Option 4 can be arranged using virtualization technology, though outside of the scope
of this book.

I've seen people who use PostgreSQL with thousands of databases, though it would be my
opinion that the majority of people use just one database, such as postgres (or at least only
a few). I've also seen people with a great many schemas.

One thing you will find is that almost all of the admin GUI tools become significantly less useful
with 100s or 1000s of items to display. In most cases, admin tools use a tree-view, which
doesn't cope gracefully with large numbers of items.

Using multiple schemas

We can separate groups of tables into their own "namespaces", referred to as "schemas" by
PostgreSQL. In many ways they can be thought of as being similar to directories, though that
is not a precise description.

&1

PUBLISHING

Server Control

Getting ready

Make sure you've read the recipe Deciding on a design for multi-tenancy, so that you're
certain this is the route you wish to take. Other options exist, and it is possible that they may
be preferable in some cases.

How to do it...

Schemas can be created easily by using the following:

CREATE SCHEMA finance;
CREATE SCHEMA sales;

We can then create objects directly within those schemas by using "fully qualified" names,
for example:

CREATE TABLE finance.month end snapshot (....)

The default schema into which an object is created is known as the current schema. We can
find out which is our current schema by using the following query:

postgres=# select current schema;
current schema

When we access database objects, we use the user-settable parameter search pathto
identify which schemas to search. The current schema is the first schema in the search
path—there is no separate parameter for the current schema.

So, if we want to have only a specific user look at certain sets of tables, we can modify
his/her search path. The parameter can be set for each user, so that the value will
be set when he/she connects. The SQL for this would be something like the following:

ALTER ROLE fiona SET search path = 'finance';
ALTER ROLE sally SET search path = 'sales';

Note that the "public" schema is not mentioned on the search path, and so would not be
searched. All tables created by fiona would go into the finance schema by default, whereas
all tables created by sally would go into the sales schema by default.

The users for finance and sales would be able to see that the other schema existed, though
we would be able to grant/revoke privileges such that they could neither create objects nor
read data in the others' schema.

~[ee]

[PUBLISHING]

Chapter 4

REVOKE ALL ON SCHEMA finance FROM public;

GRANT ALL ON SCHEMA finance TO fiona;
REVOKE ALL ON SCHEMA sales FROM public;

GRANT ALL ON SCHEMA sales TO sally;

An alternate technique would be to allow one user to create privileges on only one schema,
but usage rights on all other schemas. We would set up that arrangement like the following:

REVOKE ALL ON SCHEMA finance FROM public;
GRANT USAGE ON SCHEMA finance TO public;

GRANT CREATE ON SCHEMA finance TO fiona;
REVOKE ALL ON SCHEMA sales FROM public;

GRANT USAGE ON SCHEMA sales TO sally;
GRANT CREATE ON SCHEMA sales TO sally;

Note that you need to grant the privileges for usage on the schema, as well as specific rights on
the objects in the schema. So, you will also need to issue specific grants for objects, such as:

GRANT SELECT ON month end snapshot TO public;
or set default privileges so that they are picked up when objects are created using:

ALTER DEFAULT PRIVILEGES FOR USER fiona IN SCHEMA finance
GRANT SELECT ON TABLES TO PUBLIC;

Earlier, | said that schemas work like directories, a little at least.

The PostgreSQL concept of search path is similar to the concept of a PATH environment
variable.

The PostgreSQL concept of the current schema is similar to the concept of the current working
directory. There is no "cd" command to change directory. The current working directory is
changed by altering search path.

A few other differences exist, for example, PostgreSQL schemas are not arranged in a
hierarchy, as are filesystem directories.

Many people create a user of the same name as the schema to make this work in a similar
way to other RDBMS, such as Oracle.

Note that both the finance and sales schemas exist within the same PostgreSQL database,
and run on the same database server. They use a common buffer pool, and there are many
global settings that tie the two schema fairly closely together.

7}

PUBLISHING

Server Control

Giving users their own private database

Separating data and users is a key part of administration. There will always be a need to give
users a private, secure, or simply risk-free area ("sandpit") to use the database. Here's how.

Getting ready

Make sure you've read the recipe Deciding on a design for multi-tenancy, so that you're
certain this is the route you wish to take. Other options exist, and it is possible they may be
preferable in some cases.

How to do it...

We can create a database for a specific user with some ease. From the command line,
as a superuser, these actions would be as follows:

postgres=# create user fred;

CREATE ROLE

postgres=# create database fred owner = fred;
CREATE DATABASE

As the database owner:

Users have login privilege, so can connect to any database by default. There is a command
named ALTER DEFAULT PRIVILEGES though, that does not currently apply to databases,
tablespaces, or languages. ALTER DEFAULT PRIVILEGES also currently applies only to roles
(that is, users) that already exist.

So, we need to revoke privilege to connect to our new database from everybody except the
designated user. There isn't a REVOKE ... FROM PUBLIC EXCEPT command, SO we need to
revoke everything, and then just re-grant everything we need all in one transaction, such as
the following;:

postgres=# BEGIN;

BEGIN

postgres=# REVOKE connect ON DATABASE fred FROM public;
REVOKE

postgres=# GRANT connect ON DATABASE fred TO fred;

GRANT

postgres=# COMMIT;

COMMIT

postgres=# create user bob;

CREATE ROLE

(e

PUBLISHING

Chapter 4

Then, try to connect as bob to the £red database

os $ psgl -U bob fred
psgl: FATAL: permission denied for database "fred"
DETAIL: User does not have CONNECT privilege.

which is exactly what we wanted.

If you didn't catch it before, PostgreSQL allows transactional DDL in most places, so the
REVOKE and GRANT in the preceding either both work or neither actions take place. So

user fred never at any point loses the ability to connect to the database. Note that CREATE
DATABASE cannot be performed as part of a transaction, though nothing serious happens
as a result.

Note that superusers can still connect to the new database, and there is no way to prevent
them from doing so.

No other users can see tables created in the new database, nor can they find out the names
of any of the objects.

The new database can be seen to exist by other users, and they can also see the name of the
user who owns the database.

See the Security section for more details on these issues.

Running multiple servers on one system

Running multiple PostgreSQL servers on one physical system is possible if this is more
convenient for your needs.

Getting ready

Make sure you've read the recipe Deciding on a design for multi-tenancy, so that you're
certain this is the route you wish to take. Other options exist, and it is possible they may be
preferable in some cases.

]

[PUBLISHING]

Server Control

How to do it...

Core PostgreSQL easily allows multiple servers running on the same system. There are a few
wrinkles of which to be aware.

Some installer versions create a PostgreSQL data directory named "data". It then gets a
little difficult to have more than one data directory without different directory structures and
names.

The Debian/Ubuntu layout is specifically designed to allow multiple servers, potentially
running with different software release levels.

To create an additional data directory, run the following:
sudo pg createcluster 9.0 database2
which can then be started using the following:
sudo pg createcluster 9.0 database2

which will create an additional database cluster at version 9.0, named "database2", with files
stored in /var/lib/postgresqgl/9.0/database?2.

With Red Hat systems, you will need to run initdb directly, selecting your directories
carefully. Something like the following:

initdb -D /var/lib/pgsqgl/database2
then, modify the port parameter in the postgresql . conf, and then start using:
pg ctl -D /var/lib/pgsgl/database2 start

which will create an additional database cluster at the default server version with files stored
in /var/lib/pgsqgl/database2.

You can set up the server with chkconfig also.

PostgreSQL servers are controlled using pg_ct1l. Everything else is a wrapper of some
kind around it. The only constraints on running multiple versions of PostgreSQL come
from file locations and naming conventions. Everything else is straightforward. Having
said that, the Debian/Ubuntu design is currently the only one that makes it actually easy
to run multiple servers.

5]

[PUBLISHING]

Chapter 4

Set up a Connection Pool

A Connection Pool is the term used for a collection of already connected sessions that can be
used to reduce the overhead of connection and reconnection.

There are various ways that connection pools can be provided, depending upon the software
stack in use. Probably the best option is to look at "server side" connection pool software,
because that works for all connection types, not just within a single software stack.

Here we're going to look at pgbouncer, which is designed as a very lightweight connection
pool. The name comes from the idea that the pool can be paused/resumed to allow the
server to be restarted or bounced.

Getting ready

First of all, decide where you're going to store the pgbouncer parameter files, log files,
and pid files.

pgbouncer can manage more than one database server's connections at same time, though
that probably isn't wise. If you keep pgbouncer files associated with the database server, then
it should be easy to manage.

How to do it...

Carry out the following steps to configure pgbouncer:

1. Create a pgbouncer.ini file
; pgbouncer configuration example
[databases]
postgres = port=5432 dbname=postgres
[pgbouncer]
listen port = 6543
listen addr = 127.0.0.1
admin users = postgres
;jstats users = monitoring userid
auth type = trust
; put these files somewhere sensible
auth file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
; required for 9.0
ignore_startup_parameters = application_name

PUBLISHING

Server Control

server_ reset query = DISCARD ALL;
; default values

pool mode = session
default pool size = 20

log pooler errors = 0

2. Create a users. txt file. This must exist, and must contain at least the minimum
users mentioned in admin_users and stats_users. For example:

"pOStgreS" n

pgbouncer also supports md5 authentication. To use that effectively, you need to
copy the encrypted passwords from the database server.

You may wish to create the users. txt file by directly copying the details from the
server. That can be done using the following psql script:

postgres=> \o users.txt

postgres=> \t

postgres=> SELECT <»>||rolname||>» «>||rolpassword||>»»>
postgres-> FROM pg authid;

postgres=> \g
3. Launch pgbouncer:
pgbouncer -d pgbouncer.ini
4. Test the connection—it should respond reload:
psgl -p 6543 -U postgres pgbouncer -c "reload"

Also, check that pgbouncens max client conn parameter does not exceed
max_connections parameter on PostgreSQL.

pgbouncer is a great piece of software. It's feature set is very carefully defined to ensure

that it is simple, robust, and very fast. pgbouncer is not multi-threaded, so it runs in a single
process, and thus on a single CPU. It is very efficient, though very large data transfers will tie
up more time and reduce concurrency, so make those data dumps using a direct connection.

pgbouncer doesn't support SSL connections. If it did, then all of the encryption/decryption
would need to take place in the single process, which would make that solution perform
poorly. If you need secure communications, then you should use stunnel.

pgbouncer provides connection pooling. If you set:
pool mode = transaction

then pgbouncer will also provide connection concentration. This allows hundreds or thousands
of incoming connections to be managed while only a few server connections are made.

[

PUBLISHING

Chapter 4

As new connections/transactions/statements arrive, the pool will increase in size up to the
defined user maximums. Those connections will stay around for at most server_idle_timeout
before the pool releases those connections.

pgbouncer also releases sessions every server lifetime. This allows the server to free
backends in rotation to avoid issues with very long-lived session connections.

There's more...

It's possible to connect to pgbouncer itself to issue commands. This can be done interactively
as if you were entering psq|l, or it can be done using single commands or scripts.

To shut down the server, we can just type SHUTDOWN, or enter a single command as follows:

psql -p 6543 pgbouncer -c "SHUTDOWN"

You can also use the command RELOAD to make the server reload (that means reread) the

parameter files.

If you are using pool mode = transaction Or pool mode = statement, then you can use
the PAUSE command. This allows the current transaction to complete before holding further
work on that session. This allows you to perform DDL more easily or restart the server.

pbouncer also allows you to use SUSPEND mode. This waits for all server-side buffers to flush.

PAUSE or SUSPEND should eventually be followed by RESUME when the work is done.

In addition to the pgbouncer control commands, there are also a selection of SHOW commands:

Show command

Result set

SHOW STATS
SHOW SERVERS
SHOW CLIENTS
SHOW POOLS
SHOW LISTS
SHOW USERS
SHOW DATABASES
SHOW CONFIG
SHOW FDS
SHOW SOCKETS
SHOW VERSION

Traffic stats. Total and avg requests, query duration, bytes sent/received.
One row per connection to database server
One row per connection from client

One user per pool of users

Gives a good summary of resource totals
Lists uses in user. txt

Lists databases in pgbouncer. ini

Lists configuration parameters

Show file descriptors

Show file sockets

pgbouncer version

PUBLISHING

IIIIIIIIII

Tables & Data

In this chapter, we will cover the following:

» Choosing good names for database objects

» Handling objects with quoted names

» Enforcing same name, same definition for columns
» ldentifying and removing duplicate rows

» Preventing duplicate rows

» Finding a unique key for a set of data

» Generating test data

» Randomly sampling data

» Loading data from a spreadsheet

» Loading data from flat files

Introduction

This chapter covers a range of general recipes for your tables and working with the data they
contain. Many of the recipes contain general advice, though with specific PostgreSQL examples.

Some system administrators I've met work only on the external aspects of the database
server. What's actually in the database is someone else's problem.

Look after your data, and your database will look after you. Keep your data clean, and your
queries will run faster, cause less application errors, and you'll gain many friends in the
business. Getting called in the middle of the night to fix data problems just isn't cool.

[PUBLISHING]

Tables & Data

Choosing good names for database objects

The easiest way to help other people understand a database is to make sure that all the
objects have a meaningful name.

What makes a meaningful name?

How to do it...

» The name follows the existing standards and practices in place. Inventing new
standards isn't helpful; enforcing existing ones is.

» The name clearly describes the role or table contents.
» For major tables use short, powerful names.

» For lookup tables, name them after the table to which they are linked, such as
account_status.

» For associative or linked tables, use all of the names of the major tables to which
they relate, such as customer_account.

» Make sure that the name is clearly distinct from other similar names.
» Use consistent abbreviations.

» Use underscores. Case is not preserved by default, so using camelCase names, such
as customerAccount, as used in Java will just leave them unreadable. See recipe on
handling objects with quoted names..

» Use consistent plurals, or not.

» Use suffixes to identify the content type/domain of object. PostgreSQL already uses
suffixes for automatically generated objects.

» Think ahead. Don't pick names that refer to the current role or location of an object.
So don't name a table "London" because it exists on a server in London. That server
might get moved to L.A.

» Think ahead. Don't pick names that imply that this is the only one of its kind, such as
a table named TEST, or a table named BACKUP_DATA.

» Avoid using acronyms in place of long table names. For example, money_allocation_
decision is much better than MAD. This is especially important when PostgreSQL
translates the names to lower case, so the fact that it is an acronym may not be clear.

» The tablename is commonly used as the root for other objects that are created,
so don't add the suffix "table" or similar ideas.

5]

[PUBLISHING]

Chapter 5

There's More

The standard names for indexes in PostgreSQL are:
{tablename} {columnname (s)} {suffix}
where the suffix is one of the following;:

» pkey for a Primary Key constraint
» key for a Unique constraint
» excl for an Exclusion constraint

» idx for any other kind of index
Standard suffix for sequences is
» seq for all sequences

Tables can have multiple triggers fired on each event. Triggers are executed in alphabetical
order, so trigger names should have some kind of action name to differentiate them and to
allow the order to be specified. It might seem a good idea to put INSERT, UPDATE, Or DELETE
in the trigger name, though that can get confusing if you have triggers that work on both
UPDATE and DELETE, and may end up as a mess.

A useful naming convention for triggers is:
{tablename}_{actionname}_{after | before}__trig

If you do find yourself with strange and/or irregular object names, it will be a good idea to use
the RENAME subcommands to get things tidy again. Examples are:

ALTER INDEX badly named_ index RENAME TO tablename_status_idx;

Handling objects with quoted names

PostgreSQL object names can contain spaces and mixed case characters if we enclose the
tablenames in double quotes. This can cause some difficulties, so this recipe is designed to
help you if you get stuck with this kind of problem.

Case sensitivity issues can often be a problem for people more used to working with other
database systems, such as MySQL, or for people who are facing the challenge of migrating
code away from MySQL.

o7}

[PUBLISHING]

Tables & Data

Getting ready

First, let's create a table that uses a quoted name with mixed case, such as the following:

CREATE TABLE "MyCust"
AS
SELECT * FROM cust;

How to do it...

If we try to access these tables without the proper case we get the following error:

postgres=# SELECT count (*) FROM mycust;
ERROR: relation "mycust" does not exist
LINE 1: SELECT * FROM mycust;

So we write it in the correct case:

postgres=# SELECT count (*) FROM MyCust;
ERROR: relation "mycust" does not exist
LINE 1: SELECT * FROM mycust;

which still fails, and in fact gives the same error.

If you want to access a table that was created with quoted names, then you must use quoted
names, such as the following:

postgres=# SELECT count (*) FROM "MyCust";
count

The usage rule is that if you create your tables using quoted names, then you need to write
your SQL using quoted names. Alternatively, if your SQL uses quoted names, then you will
probably have to create the tables using quoted names as well.

PostgreSQL folds all names to lowercase when used within an SQL statement, which
means that:

SELECT * FROM mycust;
is exactly the same as:

SELECT * FROM MYCUST;

5]

[PACKT

PUBLISHING

Chapter 5

and is also exactly the same as
SELECT * FROM MyCust;
though is not the same thing as

SELECT * FROM "MyCust";

There's more...

If you are extracting values from a table that is being used to create object names, then you
may need to use a handy function named quote_ident (). This function puts double quotes
around a value if PostgreSQL would require that for an object name, such as

postgres=# select quote_ ident ('MyCust');
quote_ident
"MyCust "
(1 row)
postgres=# select quote_ ident ('mycust');
quote_ident
mycust
(1 row)

quote ident () may be especially useful if you are creating a table based on a variable
name in a PL/pgSQL function, such as.

EXECUTE 'CREATE TEMP TABLE ' || quote ident (tablename) ||
' (coll INTEGER) ;'

Enforcing same name, same column

definition

Sensibly designed databases have smooth, easy to understand definitions. This allows all
users to understand the meaning of data in each table. It is an important way of removing
data quality issues.

Getting ready

If you want to run the queries in this recipe as a test, then use the following examples.
Alternatively, you can just check for problems in your own database:

s

[PUBLISHING]

Tables & Data

CREATE SCHEMA S1;
CREATE SCHEMA S2;
CREATE TABLE S1.X
(coll INTEGER
,col2 TEXT) ;
CREATE TABLE S2.X
(coll INTEGER
,col3 NUMERIC) ;

How to do it...

Columns

We can identify columns that are defined in different ways in different tables using a query
against the catalog. We use an Information Schema query, as follows:

SELECT

table schema
,table name
,column_name

,data_type
| |coalesce (' ' || text (character maximum length), '')
| |coalesce (' ' || text(numeric precision), '')
| |coalesce (', || text (numeric_scale), '')

as data_ type
FROM information schema.columns
WHERE column name IN

(SELECT
column_name
FROM
(SELECT
column_name
,data_type

,character maximum length
,numeric precision

,numeric_ scale

FROM information schema.columns
WHERE table schema = 'public'
GROUP BY

column_name

,data_type

,character maximum length
,numeric precision

,numeric_ scale
) derived

PUBLISHING

Chapter 5
GROUP BY column_name

HAVING count (*) > 1

)

AND table schema NOT IN ('information schema',

'pg_catalog')
ORDER BY column_name
gives output, such as the following:
table schema | table name | column name | data_type
—————————————— e e LR T L T P
s2 | % | coll | integer 32,0
sl | % | coll | smallint 16,0
(2 rows)
Tables

Comparing two tables is more complex, as there are so many ways that a table might be

similar and yet a little different. The following query looks for all tables of the same name (and
hence in different schemas) that have different definitions:

SELECT

table schema
,table name
,column_name
,data_type
FROM information schema.columns
WHERE table name IN
(SELECT

table name

FROM

(SELECT

table schema
,table name

,string agg(' '||column name||' '||data_type)
FROM information schema.columns
GROUP BY

table schema
,table name
) def
GROUP BY
table name
HAVING
count (*) > 1
)
ORDER BY

PUBLISHING

Tables & Data

table name
,table_ schema
,column_name;

This has output, such as the following:

table schema | table name | column _name | data_ type

—————————————— et et
sl | % | coll | smallint
sl | % | col2 | text
s2 | % | coll | integer
s2 | % | col3 | numeric
(4 rows)

The definitions of tables are held within PostgreSQL, and can be accessed using the
Information Schema catalog views.

There might be valid reasons why the definitions differ. We've excluded PostgreSQL's own
internal tables, because there are similar names between the two catalogs: PostgreSQL's
implementation of the SQL Standard Information Schema and PostgreSQL's own internal
pg_catalog schema.

Those queries are fairly complex. In fact, there is even more complexity we could add to those
queries to compare all sorts of other things like DEFAULT values or constraints. The basic idea
can be extended in various directions from.

We can compare the definitions of any two tables using the following function:

CREATE OR REPLACE FUNCTION diff table definition
(t1_schemaname text
,tl_tablename text
,£2_schemaname text
,t2_tablename text)
RETURNS TABLE
(t1_column name text
,tl _data_ type text
,£2_column_name text
,t2_data_ type text

)

LANGUAGE SQL

as

102

PUBLISHING

Chapter 5

$$
SELECT
tl.column_ name
,tl.data_type
,£2.column_name
,t2.data_type
FROM
(SELECT column _name, data type
FROM information schema.columns
WHERE table schema = $1
AND table name = $2
) t1
FULL OUTER JOIN
(SELECT column _name, data type
FROM information schema.columns
WHERE table schema = $3
AND table name = $4
) t2
ON (tl.column name = t2.column name)
WHERE tl.column name IS NULL OR t2.column name IS NULL

$S;

Identifying and removing duplicates

Relational databases work on the idea that items of data can be uniquely identified. However
hard we try, there will always be bad data arriving from somewhere. Following is how to
diagnose that, and clean up the mess.

Getting ready

Let's start by looking at our example table cust

postgres=# SELECT * FROM cust;

customerid | firstname | lastname | age
———————————— e e
1 | pPhilip | Marlowe | 38
2 | Richard | Hannay | 42
3 | Holly | Martins | 25
4 | Harry | Palmer | 36
4 | Mark | Hall | 47
(5 rows)

that has a duplicate value in customerid.

PUBLISHING

Tables & Data

Before you delete duplicate data, remember that sometimes it isn't the data that is wrong, it
is your understanding of it. In those cases, it may be that you haven't properly normalized your
database model, and that you need to include additional tables to account for the shape of
the data. You might also find that duplicate rows are caused by having decided to exclude a
column somewhere earlier in a data load process. Check twice, delete once.

How to do it...

First, identify the duplicates using a query, such as the following:

SELECT *

FROM cust

WHERE customerid IN
(SELECT customerid
FROM cust
GROUP BY customerid
HAVING count (*) > 1);

The results can be used to identify the bad data manually, and resolve the problem by carrying
out the following steps:

» Merge the two rows to give the best picture of the data, if required. This might use
values from one row to update the row you decide to keep, such as:
UPDATE cust
SET age = 47
WHERE customerid = 4
AND lastname = 'Palmer';

» DELETE the remaining undesirable rows:
DELETE FROM cust

WHERE customerid = 4
AND lastname = 'Hall';

In some cases, the data rows might be completely identical, as in the table new _cust,
which looks like the following:

postgres=# SELECT * FROM new_cust;

customerid
1
2
3
4
4
(5 rows)
104

[PUBLISHING]

Chapter 5

In the preceding case, we can't tell the data apart at all, so we can remove duplicate rows
without any manual process. SQL is a set-based language, so picking just one row out of a set
is slightly harder than most people want it to be. Use a query block like the following to delete
all the exactly duplicate rows, leaving just one row from each set of duplicates:

BEGIN;
LOCK TABLE new_cust IN ROW EXCLUSIVE MODE;
DELETE FROM new_cust
WHERE ctid NOT IN
(SELECT min (ctid)
FROM new_cust
WHERE customer id IN (4) --specify exact duplicate ids

GROUP BY customerid) ;
COMMIT;

and then follow that with
VACUUM new_cust;

to clean up the table after the deletions.

The first query works by grouping together the rows on the unique column and counting rows.
Anything with more than one row must be caused by duplicate values. If we're looking for
duplicates of more than one column (or even all columns) then we have to use an SQL of

the following form:

SELECT *
FROM mytable
WHERE (coll, col2, .. ,colN) IN
(SELECT coll, col2, .. ,colN
FROM mytable
GROUP BY coll, col2, .. ,colN

HAVING count (*) > 1);
with (col1, col2,, colN) as the list of columns of the key.

Note that this type of query will need to sort the complete table on all of the key columns. That
will require sort space equal to the size of the table, so you'd better think first before running
that SQL on very large tables. You'll probably benefit from a large work mem setting for this
query, probably 128 MB or more.

The DELETE query that we showed only works with PostgreSQL, because it uses the ctid
value which is the internal identifier of each row in the table. If you wanted to run that query
against more than one column, as we did earlier in the chapter, you'd need to extend the
query like the following:

[PUBLISHING]

Tables & Data

DELETE FROM mytable
WHERE ctid NOT IN
(SELECT min(ctid)
FROM has duplicates
-- need WHERE clause to filter only exact duplicates

GROUP BY coll, col2, .., colN);

The preceding query works by grouping together all the rows with similar values and then
finding the row with the lowest ctid value. Lowest will mean nearer to the start of the table,
so duplicates will be removed from the far end of the table. When we run VACUUM, we may
find that the table gets smaller, because we have removed rows from the far end.

The BEGIN and COMMIT commands wrap the LOCK and DELETE commands into a
single transaction. The LOCK command applies a sufficiently high level of lock against
the table to prevent UPDATES and DELETES from being executed against the table while
we remove duplicates.

There's more...

Locking the table against changes for long periods may not be possible while we remove
duplicate rows. That gives some fairly hard problems with large tables. In that case, we need
to do things slightly differently:

» ldentify the rows to be deleted, and save them into a side table
» Build an index on the main table to speed access to rows

» Write a program that reads the rows from the side table in a loop, performing a series
of smaller transactions.

» Start a new transaction
» Read a set of rows from the side table that match

» Select for update those rows from the main table, relying on the index to make those
accesses happen quickly

» Delete the appropriate rows
» Commit, and then loop again

The aforementioned program can't be written as a database function, as we can't have
multiple transactions in a function. We need multiple transactions to ensure we hold locks on
each row for the shortest possible duration.

Preventing duplicate rows

Preventing duplicate rows is one of the most important aspects of data quality for any
database. PostgreSQL offers some useful features in this area, extending beyond most
relational databases.

106

PUBLISHING

Chapter 5

Getting ready

Identify the set of columns that you wish to make unique. Does this apply to all rows, or just a
subset of rows?

Let's start with our example table:

postgres=# SELECT * FROM newcust;
customerid

(4 rows)

How to do it...

To prevent duplicate rows, we need to create a unique index that the database server can use
to enforce uniqueness of a particular set of columns.

We can do this in the following three similar ways for basic data types:

1. Create a Primary Key constraint on the set of columns. We are allowed only one
of these per table. The values of the data rows must not be NULL, as we force the
columns to be NOT NULL if they aren't already.

ALTER TABLE newcust ADD PRIMARY KEY (customerid) ;
which creates a new index named newcust_pkey

2. Create a UNIQUE constraint on the set of columns. We can use these instead of/as

well as, a PRIMARY KEY. There is no limit on the number of these per table. NULLs
are allowed in the columns.

ALTER TABLE newcust ADD UNIQUE (customerid) ;

which creates a new index named newcust customerid key

3. Create a UNIQUE INDEX on the set of columns.
CREATE UNIQUE INDEX ON newcust (customerid) ;
which creates a new index named newcust customerid idx
All of these techniques exclude duplicates, just with slightly different syntaxes. All of them create

an index, though only the first two create a formal "constraint". Each of those techniques can be
used when we have a primary key or unique constraint that uses multiple columns.

PUBLISHING

Tables & Data

The last method is important, because it allows you to specify a WHERE clause on the
index. This can be useful if you know that the column values are unique only in certain
circumstances. The resulting index is then known as a partial index.

If our data looked like the following;:

postgres=# select * from partial unique;
customerid | status | close_ date

2010-03-22
(4 rows)

then we could put a partial index on the table to enforce uniqueness of customerids only
for status = 'OPEN', for example:

CREATE UNIQUE INDEX ON partial unique (customerid)
WHERE status = 'OPEN';

If your uniqueness constraint needs to be enforced across more complex datatypes, then
there is a more advanced syntax you may need to use. A few examples will help here.

Let's start with the simplest example: Create a table of boxes and put sample data in it. This
may be the first time you've seen PostgreSQL's datatype syntax, so bear with me.

postgres=# CREATE TABLE boxes (name text, position box) ;
CREATE TABLE
postgres=# INSERT INTO boxes VALUES
('First', box ' ((0,0), (1,1))");
INSERT 0 1
postgres=# INSERT INTO boxes VALUES
('Second', box '((2,0), (2,1))"');
INSERT 0 1
postgres=# SELECT * FROM boxes;
name | position

We can see two boxes that neither touch nor overlap, based upon their (x, y) coordinates.

To enforce uniqueness here, we want to create a constraint that will throw out any attempt to
add a position that overlaps with any existing box. The overlap operator for the box datatype
is defined to be &&, so we use the following syntax to add the constraint:

108

PUBLISHING

Chapter 5

postgres=# ALTER TABLE boxes ADD EXCLUDE USING gist
(position WITH &&) ;
NOTICE: ALTER TABLE / ADD EXCLUDE will create implicit index "boxes
position exclusion" for table "boxes"
ALTER TABLE

which creates a new index named boxes position excl.

We can use the same syntax even with the basic datatypes. So a fourth way of performing our
first example would be as follows:

ALTER TABLE newcust ADD EXCLUDE (customerid WITH =) ;

which creates a new index named newcust_customerid excl.

Uniqueness is always enforced by an index.

Each index is defined with a datatype operator. When a new row is inserted or the set of
column values are updated, we use the operator to search for existing values that conflict
with the new data.

So, to enforce uniqueness, we need an index and a search operator defined on the datatypes
of the columns. When we define normal UNIQUE constraints, we simply assume we mean the
equality operator ("=") for the datatype. The EXCLUDE syntax offers a richer syntax to allow us
to express the same problem with different datatypes and operators.

There's more...

Unique constraints can be marked as "deferrable". However, there are a number of restrictions
on this that make this feature not very usable in PostgreSQL 9.0. The restrictions are as
follows:

» You must define a constraint as DEFERRABLE on the CREATE TABLE. You cannot
define this on a CREATE TABLE AS SELECT, nor can these be added later with an
ALTER TABLE command.

» You cannot mix deferrable unique constraints with Foreign Keys. You will get an
error message if you try to add a Foreign Key that refers to a unique constraint
that is deferrable.

It's likely that those restrictions will be lifted in later releases.

PUBLISHING

Tables & Data

Duplicate indexes

Note that PostgreSQL allows you to have multiple indexes with exactly the same definition.

This is useful in some contexts, but can also be annoying if you accidentally create multiple
indexes. You can also have constraints defined using each of the aforementioned different
ways. Each of these ways enforce essentially the same constraint. Take care.

Uniqueness without indexes

It's possible to have uniqueness in a set of columns without creating an index. That might
be useful if all we want is to ensure uniqueness rather than allow index lookups.

To do that, you can:

» Use a serial datatype

» Manually alter the default to be the nextval () of a sequence

Each of these will provide a unique value for use as a row's key. The uniqueness is not enforced,
nor will there be a unique constraint defined. So, there is still a possibility that someone might
reset the sequence to an earlier value, which would eventually cause duplicate values.

You might also wish to have mostly unique data, such as using the timeofday () function
to provide ascending times to microsecond resolution.

Real World Example: IP address range allocation

The problem is assigning ranges of IP addresses while at the same time ensuring that we
don't allocate (or potentially allocate) the same addresses to different people or purposes.
This is easy to do if we keep track of each individual IP address, though much harder to do if
we want to deal solely with ranges of IP addresses.

Initially, you may think of designing the database as follows:

CREATE TABLE iprange
(iprange start inet
,iprange stop inet

,owner text);

INSERT INTO iprange VALUES

('192.168.0.1','192.168.0.16"', 'Simon');
INSERT INTO iprange VALUES

('192.168.0.17','192.168.0.24"', 'Greg');
INSERT INTO iprange VALUES

('192.168.0.32','192.168.0.64"', 'Hannu');

However, you realize that there is no way to create a unique constraint that enforces the
constraint. You could create an after trigger that checks existing values, but it's going to
be messy.

PUBLISHING

Chapter 5

Download and install the ip4r datatype module for PostgreSQL, so we can get access to a good
datatype for solving this type of problem. Download the ip4r module from the following website:

http://pgfoundry.org/projects/ipdr/

and then create a table like the following, and populate it with the same data in a slightly
different form:

CREATE TABLE iprange2
(iprange ip4r

,owner text);

INSERT INTO iprange2 VALUES

('192.168.0.1-192.168.0.16"', 'Simon') ;
INSERT INTO iprange2 VALUES

('192.168.0.17-192.168.0.24"', 'Greg');
INSERT INTO iprange2 VALUES

('192.168.0.32-192.168.0.64"', 'Hannu');

You can now create a unique exclusion constraint on the table using the following command:

ALTER TABLE iprange2
ADD EXCLUDE USING GIST (iprange WITH &&) ;

Real World Example: Range of time

In many databases there will be historical data tables with data that has a START DATE
and an END_DATE, or similar. Another external module for PostgreSQL supports this, with
a datatype named a "period".

A period is a pair of TIMESTAMPTZ values that allow you to define the start and end
timestamptz (date/time). Take a look at the following website:

http://temporal .projects.postgresqgl.org/

Real World Example: Prefix ranges

Another common problem is assigning credit card numbers or telephone numbers. For
example, with credit card numbers, we may need to perform additional checking for certain
financial institutions.

The prefix range datatype has been specifically designed to address this class of problem.
Again, this is available as a PostgreSQL plugin at the following URL:

http://github.com/dimitri/prefix

[PUBLISHING]

Tables & Data

Finding a unique key for a set of data

Sometimes it can be difficult to find a unique set of key columns that describe the data.

Getting ready

Let's start with a small table, where the answer is fairly obvious.

postgres=# select * from ord;

orderid | customerid | amt
_________ o
10677 | 2 | 5.50
5019 | 3 | 277.44
9748 | 3 | 77.17
(3 rows)

How to do it...

First of all, there's no need to do this through a brute-force approach. Checking all of the
permutations of columns to see which is unique might take you a long time.

Let's start by using PostgreSQL's own optimizer statistics. Run the following command on
our table to get a fresh sample of statistics:

postgres=# analyze ord;
ANALYZE

This runs quickly, so not long to wait.
Now we can examine the relevant columns of the statistics.

postgres=# SELECT attname, n_distinct
FROM pg stats

WHERE schemaname = 'public'
AND tablename = 'ord';
attname | n distinct
____________ e
orderid | -1
customerid | -0.666667
amt | -1

(3 rows)

The preceding example was chosen because we have two potential answers. If the value of
n_distinct is -1, then the column is thought to be unique within the sample of rows examined.

112

[PUBLISHING]

Chapter 5

We would then need to use our judgment to decide whether one or both of those columns are
unique by chance, or as part of the design of the database that created them.

It's possible that there is no single column that uniquely identifies the rows. Multiple column
keys are fairly common. If none of the columns were unique, then we would start to look for
unique keys that are combinations of the most unique columns. The following query shows
a frequency distribution for the table: a value occurs twice in one case, and another value
occurs only once.

postgres=# SELECT count as num of values, count (*)
FROM (SELECT customerid, count (*)
FROM ord
GROUP BY customerid) s
GROUP BY count
ORDER BY count (*) ;

num_of values | count
_______________ fommmooo
2 | 1
1| 1

(2 rows)
and we can change the query to include multiple columns, like the following:

SELECT count as num of values, count (*)

FROM (SELECT columnl, column2.... columnN
,count (*)
FROM ord
GROUP BY columnl, column2.... columnN
) s

GROUP BY count
ORDER BY count (*) ;

This query will result in just one row, once we find a set of columns that is unique. As we
get closer to finding the key, we will see that the distribution gets tighter and tighter.

Finding a unique key is possible for a program, though in most cases, a human can do this
much faster by looking at things like column names, foreign keys, or business understanding
to reduce the number of searches required by the brute-force approach.

ANALYZE works by taking a sample of the table data, and then performing a statistical
analysis of the results. The n_distinct value is the estimate of the "number of distinct
values" for the column.

[PUBLISHING]

Tables & Data

Generating test data

DBAs frequently need to generate test data for a variety of reasons, whether it's to set up
a test database or just to generate a test case for an SQL performance issue.

How to do it...

To create a table of test data we need the following:

» Some rows
» Some columns

» Some order

Rows

To generate a lot of rows of data, we use something named a "set returning function".
You can write your own, though PostgreSQL includes a couple of very useful ones.

You can generate a sequence of rows using a query, like the following:

postgres=# SELECT * FROM generate series(1,5);
generate series

(5 rows)
or you can generate a list of dates, like the following:

postgres=# SELECT date (generate series(now(), now() + 'l week',K '1
day'));
date

2010-03-30
2010-03-31
2010-04-01
2010-04-02
2010-04-03
2010-04-04
2010-04-05
2010-04-06
(8 rows)

114

PUBLISHING

Chapter 5

Either of those functions can be used to generate both rows and reasonable Primary Key
values for them.

Columns

Now, we want to generate a value for each column in the test table. We can break that down
into a series of functions, using the following examples as a guide:

Random integer

(random () * (2*10™9)) : : integer
Random bigint

(random () * (9*10718)) : :bigint
Random numeric data

(random () *100.) : :numeric (4,2) ;
Random length string, up to a maximum length

repeat ('1', (random() *40) : : integer)
Random length substring

substr ('abcdefghijklmnopgrstuvwxyz',1l, (random()*26) ::integer)
Random string from a list of strings

(ARRAY ['one', 'two', 'three']) [1+random () *3]

ORDER
We can put both together to generate our table:
postgres=# SELECT generate_ series(1,10) as key

, (random () *100.) : :numeric (4, 2)
,repeat ('1', (random() *25) : :integer) ;

key | numeric | repeat
_____ o m o m oo el ___
1 | 83.05 | 1111
2 | 5.28 | 11111111111111
3 | 41.85 | 1111111111111111111111
4 | 41.70 | 11111111111111111
5 | 53.31 | 1
6 | 10.09 | 1111111111111111
7 | 68.08 | 111
8 | 19.42 | 1111111111111111
9 | 87.03 | 11111111111111111111
10 | 70.64 | 111111111111111
(10 rows)

PUBLISHING

Tables & Data

or even using a random ordering

postgres=# SELECT generate_ series(1,10) as key
, (random () *100.) : :numeric (4, 2)
,repeat ('1', (random() *25) : : integer)
ORDER BY random() ;

key | numeric | repeat
_____ o m o m oo el ______
6 | 70.31 | 11111111111111111111111
4 | 2.37 | 111111111111111111
1| 76.99 | 11111111111111
8 | 35.90 | 1111111111111
3 | 59.21 | 111111111
2| 88.86 | 11111111
7 | 67.32 | 111111
9 | 15.66 | 111111
5 | 79.90 | 11111
10 | 25.09 | 1
(10 rows)

Set returning functions literally return a set of rows. That allows them to be used in either the
FROM clause, as if they were a table, or in the SELECT clause. The generate series()
set of functions return either dates or integers, depending upon the datatypes of the input
parameters you use.

The : : operator is used to cast between datatypes.

The "random string from a list of strings" example uses PostgreSQL arrays. You can create an
array using the ARRAY constructor syntax, and then use an integer to reference one element
in the array. In our case, we used a random subscript.

There are also some commercial tools to generate application-specific test data for
PostgreSQL. Both of the tools listed here are under $250 per copy. Not too much money,
so OK to mention in an open source software book!

http://www.sglmanager.net/products/postgresqgl /datagenerator
http://www.datanamic.com/datagenerator/index.html

Key features for any data generator would be as follows:

PUBLISHING

Chapter 5

» Ability to generate data in the right format for custom data types

» Ability to add data to multiple tables, while respecting Foreign Key constraints
between tables

» Ability to add data in non-uniform distributions

The tools and tricks shown here are cool and clever, though there are some problems hiding
here as well. Real data has so many strange things in it that it can be very hard to simulate. One
of the most difficult things is generating data that follows realistic distributions. For example, if
we had to generate data for people's heights, then we'd want to generate data to follow a normal
distribution. If we were generating customer bank balances we'd want to use a Zipf distribution,
or for number of reported insurance claims, perhaps a Poisson distribution (or perhaps not).
Replicating the real quirks in data can take some time.

You can use existing data to generate test databases using sampling. That's the subject
of our next recipe.

Randomly sampling data

DBAs may be asked to set up a test server, and populate it with test data. Often, that server
will be old hardware, possibly with smaller disk sizes. So, the subject of data sampling raises
its head.

The purpose of sampling is to reduce the size of the data set and improve the speed of later
analysis. Some statisticians are so used to the idea of sampling that they may not even
question whether its use is valid, or cause further complications.

How to do it...

First, you should realize that there isn't a simple tool to slice off a sample of your database.
It would be neat if there were, but there isn't. You'll need to read all of this to understand why.

We first need to consider some SQL to derive a sample. Random sampling is actually very
simple, because we can use the SQL function random () within the WHERE clause. For example:

postgres=# SELECT count (*) FROM mybigtable;
count

(1 row)
postgres=# SELECT count (*) FROM mybigtable
WHERE random() < 0.01;
count

[PUBLISHING]

Tables & Data

95
(1 row)

postgres=# SELECT count (*) FROM mybigtable
WHERE random() < 0.01;

The clause WHERE random () < 0.01 will generate a random number between 0.0 and 1.0
for each row, and then see if the number is less than 0.01. In other words, this WHERE clause
will generate a 1% random sample of rows in the table. You can use a similar clause to vary
the percentage to be anything you choose. Easy.

Now we need to get the sampled data out of the database, which is tricky for a few reasons.
First, there is no option to specify a WHERE clause for pg_dump. Second, if you create a view
that contains the WHERE clause, pg_dump only dumps the view definition, not the view itself.

You can use pg_dump to dump all databases apart from a set of tables, so you can produce a
sampled dump like the following;:

pg_dump --exclude-table=MyBigTable > db.dmp
pg_dump --table=MyBigTable -schema-only > mybigtable.schema
psgl -c¢ '\copy (SELECT * FROM MyBigTable

WHERE random() < 0.01) to mybigtable.dat'

and then reload onto a separate database using

psgl -f db.dmp
psgl -f mybigtable.schema
psgl -c¢ '\copy mybigtable from mybigtable.dat'

Overall, my advice is to avoid sampling if you can. Otherwise, at least minimize it to a few very
large tables. This avoids both the mathematical issues surrounding sample design, and the
difficulty of extracting the data.

The extract mechanism shows off the capabilities of the PostgreSQL command-line tools,
psqgl and pg_dump, as pg_dump allows you to include or exclude files and to dump the
whole table, or just its schema, whereas Psql allows you to dump out the result of an
arbitrary query to a file.

| haven't discussed how random the random () function is. This isn't the right place for such
details; if you prefer another mechanism, you can find an external random number generator,
and call out to it from SQL using a C language function.

118

PUBLISHING

Chapter 5

The sampling method shown earlier is a simple random sampling technique that has an
"equal probability of selection" (EPS) design.

EPS samples are considered useful because the variance of the sample attributes is similar
to the variance of the original data set. Though, bear in mind that this is only useful if you are
considering variances.

Simple random sampling can make the eventual sample biased towards more frequently
occurring data. For example, if you have 1% sample of data on which some kinds of data
occur only 0.001% of the time, you may end up with a data set that doesn't have any of that
outlying data.

What you might wish to do is to pre-cluster your data, and take different samples from
each group, to ensure that you have a sampled data set that includes many more outlying
attributes. A simple method might be to:

» Include 1% of all normal data
» Include 25% of outlying data

Note that if you do this, then it is no longer an "EPS" sample design.

There are no doubt statisticians who will be in apoplexy after reading this. You're welcome to
use the facilities of the SQL language to create a more accurate sample. Please, just make
sure that you know what you're doing and/or check out some good statistical literature,
websites, or textbooks.

Loading data from a spreadsheet

Spreadsheets are the most obvious starting place for most data stores. Studies within a
range of businesses consistently show that more than 50% of smaller data stores are held in
spreadsheets or small desktop databases. Loading data from these sources is a frequent and
important task for many DBAs.

Getting ready

Spreadsheets combine data, presentation, and programs all in one file. That's perfect for power
users wanting to work quickly. Like other relational databases, PostgreSQL is mainly concerned
with the lowest level of data, so extracting just the data can present some challenges.

[PUBLISHING]

Tables & Data

We can easily handle spreadsheet data if that spreadsheet's layout follows a very specific
form, as follows:

» Each spreadsheet column becomes one column in one table.
» Each row of the spreadsheet becomes one row in one table.
» Datais only in one worksheet of the spreadsheet.

» Optionally, the first row is a list of column descriptions/titles.

This is a very simple layout and more often there will be other things in the spreadsheet,
such as titles, comments, constants for use in formulas, summary lines, macros, images,
and so on. If you're in this position, the best thing to do is to create a new worksheet within
the spreadsheet in the pristine form described earlier, and then set up cross-worksheet
references to bring in the data. An example of a cross-worksheet reference would be
"=Sheet2.A1". You'll need a separate worksheet for each set of data that will become one
table on PostgreSQL. You can load multiple worksheets into one table though.

Some spreadsheet users will say that this is all unnecessary, and is evidence of the problems
of databases. The real spreadsheet gurus do actually advocate this type of layout: data in one
worksheet, calculation and presentation in other worksheets. So it is actually best practice to
design spreadsheets in this way; however, we must work with the world the way it is.

How to do it...

If your spreadsheet data is neatly laid out in a single worksheet as shown in the following
screenshot, then you can do File | Save As and then select CSV as the file type to be saved.

| Chapter5_Sample_Spreadsheet.csv - OpenOffice.org Calc

File Edit View Insert Format Tools Data Window Help

8 | ¢ [b |

This will export the current worksheet into a file like the following:

"Key" , "Value"
1[ngn
2[ngn

We can then load it into an existing PostgreSQL table, using the psgl command

postgres=# \COPY sample FROM sample.csv CSV HEADER
postgres=# SELECT * FROM sample;
key | value

120

[PUBLISHING]

Chapter 5

Or from the command line this would be, as follows:

psgl -c '\COPY sample FROM sample.csv CSV HEADER'

Note that the file can include a full file path if the data is in a different directory.
The psgl \COPY command transfers data from the client system where you run
the command through to the database server, so the file is on the client.

If you are submitting SQL through another type of connection, then you would use the
following SQL statement:

COPY sample FROM '/mydatafiledirectory/sample.csv' CSV HEADER;

Note that the preceding SQL statement runs on the database server, and can only be
executed by a superuser. So you would need to transfer the data yourself to the server, and
then load. The COPY statement shown in the preceding SQL statement uses an absolute path
to identify data files, which is required.

The COPY (or \coPY) command does not create the table for you; that must be done
beforehand. Note also that the HEADER option does nothing but ignore the first line of the input
file, so the names of the columns from the . csv file don't need to match the Postgres table.

If it hasn't occurred to you yet, this is also a problem. If you say HEADER and the file does not
have a header line, then all it does is ignore the first data row. Unfortunately, there's no way for
PostgreSQL to tell whether the first line of the file is truly headers or not. Be careful.

There isn't a standard tool to load data directly from the spreadsheet to the database. It's
fairly simple to write a spreadsheet macro to automate the aforementioned tasks, but not a
topic for this book.

The \COPY command executes a COPY SQL statement, so the two methods described earlier
are very similar. There's more to be said about COPY, so we'll cover that in the next recipe.

There are many data extract and loading tools available out there, some cheap, some
expensive. Remember that the hardest part of loading data from any spreadsheet is
separating out the data from all the other things they contain. I've not yet seen a tool
that can help with that.

[PUBLISHING]

Tables & Data

Loading data from flat files

Loading data into your database is one of the most important tasks. You need to do this
accurately and quickly. Here's how.

Getting ready
You'll need a copy of pgloader that is available at the following website:

http://pgloader.projects.postgresql.org/

How to do it...

PostgreSQL includes a command named COPY that provides the basic data load/unload
mechanism. COPY doesn't do enough when loading data, so let's skip the basic command
and go straight to pgloader.

To load data we need to understand our requirements, so let's break this down into a
step-by-step process, as follows:

» Identify data files and where they are located. Make sure pgloader is installed at the
location of the files.

» Identify the table into which we are loading, and ensure that we have permissions to
load, and check the available space.

» Work out the file type (fixed, text, or CSV), and check the encoding.

» Specify the mapping between columns in the file and columns on the table being
loaded. Make sure you know which columns in the file are not needed—pgloader
allows you to include only the columns you want. Identify any columns in the table for
which we don't have data. Do we need them to have a DEFAULT value on the table,
or does pgloader need to generate values for those columns through functions or
constants?

» Specify any transformations that need to take place. The most common issue is date
formats, though possibly there may be other issues.

» Write the pgloader script and test it using —-dry-run. Then, try loading just a few
records using —-count.

» Consider whether you need a log file to record whether the load has succeeded or
failed, and whether that needs automating. Also, consider what will happen to rejected
rows, and where you want the rejected log file to be placed, in case it overflows.

» Lastly, consider what settings we need for performance options. This is definitely
last, as fiddling with things earlier can lead to confusion when you're still making
the load work correctly.

122

[PUBLISHING]

Chapter 5

Yes, | always recommend that you use a script to execute pgloader. It makes it much easier to
iterate towards something that works. Loads never work first time, except in the movies.

Let's look at a typical example: cookbook pgloader.conft

[pgsql]

host = 192.168.0.5
base = pgloader
user = dim

log file = /tmp/pgloader.log
log_min_messages = DEBUG
client _min messages = WARNING
lc_messages =C

client encoding = 'utf-8'

copy_every = 10000

null =

empty string = "\ "

max parallel sections = 4

[1load]

table = load_example
filename = simple/simple.data
format = CsVv

datestyle = dmy

field sep = |

trailing sep = True

columns = a:l, b:3, c:2
reject_log = /tmp/simple.rej.log
reject _data = /tmp/simple.rej

section threads = 4
We can use the load script like the following:

pgloader --summary --vacuum --config cookbook pgloader.conf

pgloader copes gracefully with errors. copy loads all rows in a single transaction, so only a
single error is enough to abort the load. pgloader breaks down an input file into reasonably
sized chunks, and loads them piece-by-piece. If some rows cause errors, then pgloader will
iteratively check them so that it can skip those bad rows.

PUBLISHING

Tables & Data

pgloader is written in Python, and allows connection to PostgreSQL through the standard
Python client interface. Yes, pgloader is less efficient than loading data files using a COPY
command, but running a COPY has many more restrictions: the file has to already be in the
right place on the server, has to be in the right format, and must be unlikely to throw errors on
load. pgloader has additional overhead, but it also has the ability to load data using multiple
parallel threads, so it can be faster to use as well. pgloader's ability to call out to reformat
functions written in Python is often essential in most cases; straight COPY is just too simple.

pgloader also allows loading from fixed-width files, which COPY cannot.

If you need to reload the table from fresh completely, then specify - -truncate on the
command line of pgloader.

After loading, if we had load errors, then there will be some junk loaded into the PostgreSQL
tables. Not junk you can see, or that gives any semantic errors, but think of it more like
fragmentation. You should think about whether you need to run with - -vacuum as an
additional option, though this will make the load take possibly much longer.

We need to be careful to avoid loading data twice. The only easy way of doing that is to make
sure there is at least one unique index defined on every table that you load. The load should
then fail very quickly.

String handling can often be difficult, because of the presence of formatting or non-printable
characters. The default setting for PostgreSQL is to have a parameter named standard
conforming strings set off, which means that backslashes will be assumed to be escape
characters. Put another way, by default the string "\n' means linefeed, that can cause data to
appear truncated. You'll need to turn standard_conforming_ strings = on, or you'll need
to specify an escape character in the load-parameter file.

If you are re-loading data that has been unloaded from PostgreSQL, then you may want to

use the pg restore utility instead.. The pg_restore utility has an option to reload data in
parallel, -j number_of_threads, though this is only possible if the dump was produced using the
custom pg_ dump format. Refer to the recipes in the Backup chapter for more details. This
can be useful for reloading dumps, though it lacks almost all of the other pgloader features
discussed here.

You may wish to send an e-mail to Dimitri Fontaine, the current author and maintainer
of most of pgloader. He always loves to receive e-mails from users.

124

[PUBLISHING]

Security

In this chapter, we will cover the following:

» Revoking user access to a table

» Granting user access to a table

» Creating a new user

» Temporarily preventing a user from connecting

» Removing a user without dropping their data

» Checking whether all users have a secure password
» Giving limited superuser powers to specific users
» Auditing DDL changes

» Auditing data changes

» Integrating with LDAP

» Connecting using SSL

» Encrypting sensitive data

Introduction

Databases are mostly used for keeping data, which has several restrictions on how it is used.
Some records or tables can only be seen by certain users, and even for those tables which

are visible to everyone, there can be restrictions on who can use the data, insert new data or
change the existing data. All this is managed by a privilege system, where users are granted
different privileges for different tables or other database objects, such as schemas or functions.

[PUBLISHING]

Security

It is a good practice to not "grant" these roles directly to users, but to use an intermediate
ROLE for collecting a set of privileges. Then, this role is granted to users who fit this role. For
example, a role "clerk" may have rights to both insert data and update existing data in table
user_ account, but may have rights only to insert data in audit_log table.

Another aspect of database security is making sure that only the right people can access the
database, and that one can't see what other users are doing (unless you are administrator or
auditor,) that users can or cannot grant forward the roles granted to them.

Part of security is also making sure that database servers are in physically secure locations,
and that procedures to access these servers are secure. However, this is not a general
guide to securing your database, server machine, or network, which is too large a topic to
be covered here.

If you are serious about security, then read some of the available books and articles on
security, or hire a security consultant. Database security is just a small piece in the overall
security puzzle.

Typical user role

The minimal production database setup contains at least two types of users, namely,
administrators and end-users, where administrators can do everything (are superusers),
and end-users can only do very little, usually just modify the data in a few tables, and read
from a few more.

It is not a good idea to let ordinary users create or change database object definitions,
meaning that they should not have the CREATE privilege on any schema, including PUBLIC.

There can be other roles for end-users, such as analysts, who can only select from a single
table or view, or execute a few functions.

Alternatively, there can also be a manager role, which can grant and revoke roles for other
users, but is not supposed to do anything else.

Revoking user access to a table

This recipe answers the question "How do | make sure that the user X cannot access
the table Y?"

Getting ready

The current user must either be a superuser, the owner of the table, or must have a GRANT
option for the table.

Also, you can't revoke rights from a user who is a superuser.

126

[PUBLISHING]

Chapter 6

How to do it...

To revoke all rights to table mysecrettable from user userwhoshouldnotseeit, one
must run the following SQL command:

REVOKE ALL ON mysecrettable FROM userwhoshoudnotseeit;

However, because the table is usually also accessible to all users through role PUBLIC, the
following must also be run:

REVOKE ALL ON mysecrettable FROM PUBLIC;

By default all users have a set of rights (SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, and TRIGGER) to all newly created tables through the special role PUBLIC.

To make sure that some user no longer can access a table, the right(s) to that table must be
revoked from both PUBLIC and that specific user.

There's more...

GRANT option and CASCADE

REVOKE ... SCHEMA

Best practices

For production systems, it is usually a good idea to include GRANT and REVOKE statements in
the database creation script always, so you can be sure that only the right set of users has
access to the table. If it is done manually, it is easy to forget. Also, this way, we are sure that
the same roles are used on development and testing environments, so there are no surprises
at deployment time.

Sample extract from database creation script is as follows:

CREATE TABLE tablel(

)i

REVOKE ALL ON tablel FROM GROUP PUBLIC;
GRANT SELECT ON tablel TO GROUP webreaders;

GRANT SELECT, INSERT, UPDATE, DELETE ON tablel TO editors;
GRANT ALL ON tablel TO admins;

PACKT

PUBLISHING

Security

Default search path
It is always a good practice to use a fully qualified name when revoking or granting rights, as
you may otherwise inadvertently be working with the wrong table.

To see effective database path, run the following:

pguser=# show search path ;
search path

"Suser",public
(1 row)

To see which table would be affected if you omit the schema name, run the following in psql:

pguser=# \d x
Table "public.x"
Column | Type | Modifiers

The table name public.x in the response contains the full name including the schema.

Granting user access to a table

A user needs to have access to a table in order to perform any action on it. Although the default
behavior of PostgreSQL database is to give full access to all users through role PUBLIC, a
security-conscious database setup revokes rights from PUBLIC after table creation.

Getting ready

Make sure that you have appropriate "roles" defined, and that privileges are "revoked"
from role PUBLIC.

How to do it...

Grant access to schema containing the table to:

GRANT ALL ON someschema TO somerole;

GRANT SELECT, INSERT, UPDATE, DELETE ON someschema.sometable TO
somegroup;

GRANT somerole TO someuser, otheruser;

128

PUBLISHING

Chapter 6

This sequence of commands first grants full access in schema to a role, gives viewing
(SELECT) and modifying (INSERT, UPDATE, DELETE) rights to the role, and then grants
membership in this role to two database users.

There's more...

There is no requirement in PostgreSQL to have some privileges in order to have others. That
is, you may well have "write-only" tables, where you are allowed to insert but you can't select.
This can be used for implementing a mail queue like functionality, where several users post

messages to one user, but can't see what other users have posted.

Alternatively, you can write a record, but you can't change or delete it. This is useful for
auditing log type tables, where all changes are recorded, and with which are not tampered.

Access to schema is also needed
In order to access any table, the user first needs access to the schema containing the table:

GRANT USAGE ON SCHEMA someschema TO someuser;

Granting access to a table through a group role

It is often desirable to give groups of users similar permissions to a group of database objects.
To do this, you first assign all the permissions to a proxy role (also known as a permission
group), and then assign the group to selected users, as follows:

CREATE GROUP webreaders;

GRANT SELECT ON pages TO webreaders;
GRANT INSERT ON viewlog TO webreaders;
GRANT webreaders TO tim, bob;

Now, both tim and bob have the SELECT privilege on table pages, and INSERT on table
viewlog. You can also add privileges to the group role after assigning it to users. So after:

GRANT INSERT, UPDATE, DELETE ON comments TO webreaders;
both bob and tim have all these privileges on table comments.

Granting access to all objects in schema

Before Version 9.0 of PostgreSQL, there was no easy way to manipulate privileges to more
than one object at a time, except listing them all in the GRANT or REVOKE command.

PUBLISHING

Security

Version 9.0 added a capability to GRANT or REVOKE privileges on all objects of a certain
kind in a specific schema:

GRANT SELECT ON ALL TABLES IN SCHEMA staging TO bob;

You still need to grant the privileges on the schema itself in a separate grant statement.

Creating a new user

In this recipe we show two ways of creating a new database user, one from the command line,
and one using SQL commands.

Getting ready

To create new users, you must either be a superuser or have the createrole
or createuser privilege.

How to do it...

From command line, you run the creatuser command, and answer a few questions:

pguser@hvost:~$ createuser bob

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) y
Shall the new role be allowed to create more new roles? (y/n) n
pguser@hvost:~$ createuser tim

Shall the new role be a superuser? (y/n) y

The program createuser is just a shallow wrapper around executing SQL against the
database cluster. It connects to database "postgres", asks a question, and then executes SQL
commands for user creation. To create the same users through SQL, you run CREATE USER
SQL command as follows:

CREATE ROLE bob WITH NOSUPERUSER INHERIT NOCREATEROLE CREATEDB LOGIN;
CREATE ROLE tim WITH SUPERUSER;

130

PUBLISHING

Chapter 6

There's more...

Checking roles of a user
pguser=# \du tim
List of roles
Role name | Attributes | Member of

tim | Superuser | {}
Create role
: Create DB
pguser=# \du bob
List of roles
Role name | Attributes | Member of

bob | Create DB | {}

CREATE USER and CREATE GROUP
Starting from Version 8.x, the commands CREATE USER and CREATE GROUP are actually
variations of CREATE ROLE.

CREATE USER U; is equivalent to CREATE ROLE U LOGIN; and CREATE GROUP g; is equivalent
to CREATE ROLE g NOLOGIN;

Temporarily preventing a user from

connecting

Sometimes you need to temporarily revoke user's connection rights without actually deleting
the user or changing the user's password.

This recipe presents ways to do this.

Getting ready

To modify other users, you must either be a superuser or have the CREATEROLE privilege (in
the latter case only non-superuser roles can be altered).

How to do it...

To temporarily prevent the user from logging in, run the following:

pguser=# alter user bob nologin;
ALTER ROLE

PUBLISHING

Security

To let the user connect again, run the following:

pguser=# alter user bob login;
ALTER ROLE

This sets a flag in the system catalog telling PostgreSQL not to let the user to log in. It does
not kick out already connected users.

Limiting number of concurrent connections by a user
The same result can be achieved by setting connection 1imit for that user to o:

pguser=# alter user bob connection limit O0;
ALTER ROLE

To allow bob 10 concurrent connections, run the following:

pguser=# alter user bob connection limit 10;
ALTER ROLE

To allow an unlimited number of connections by this user, run the following;:

pguser=# alter user bob connection limit -1;
ALTER ROLE

Forcing NOLOGIN users to disconnect
In order to make sure that all users whose login privilege has been revoked are disconnected
right away, run the following SQL statement as a superuser:

SELECT pg_terminate_ backend (procpid)
FROM from pg stat activity a
JOIN pg roles r ON a.usename = r.rolname AND not rolcanlogin;

On older versions of postgresql, where pg_terminate backend () function does not
exist, you can get the same effect from shell by running the following as user postgres on
the database server:

postgres@hvost:~$ psqgl -t -c "\
select 'kill ' || procpid from pg stat activity a \
join pg roles r on a.usename = r.rolname and not rolcanlogin;"\

| bash

This incantation constructs proper ki1l commands from a query, and then feeds them
to the shell for execution.

132

PUBLISHING

Chapter 6

Removing a user without dropping their data

When trying to drop a user who owns some tables or other database objects, you get the
following error and the user is not dropped:

testdb=# drop user bob;

ERROR: role "bob" cannot be dropped because some objects depend on it
DETAIL: owner of table bobstable

owner of sequence bobstable id seg

This recipe presents solutions to this problem.

Getting ready

To modify users, you must either be a superuser or have the CREATEROLE privilege.

How to do it...

The easiest solution to this problem is to not drop the user at all, but just use the trick from a
previous recipe to disallow the user from connecting:

pguser=# alter user bob nologin;
ALTER ROLE

This has the added benefit of having the original owner of the table available later, if needed,
for auditing or debugging purposes ("why is this table here? Who created it?")

This turns the user into a role with no login.

You can assign the rights of the "deleted” user to a new user
Use the following code:

pguser=# grant bob bobs_ replacement;

GRANT

Assigning ownerships to other users

If you really need to get rid of a user, you have to assign all ownerships to another user, then
run the following query, which is a PostgreSQL extension to SQL standard:

REASSIGN OWNED BY bob TO bobs replacement;

[PUBLISHING]

Security

It does exactly what its says—assigns ownership of all database objects currently owned by
role bob to role bobs_replacement ;

However, you need to have privileges on both the old and new role to do that and you need to
do it in all databases where bob owns any objects, as the REASSIGN OWNED works only on the
current database.

Reassigning ownership in older databases

REASSIGN OWNED was added to PostgreSQL in Version 8.2. If you need to change ownership
in older databases, then this can be done with Unix command-line utilities magic.

First extract the ownership assignments from schema dump:

dbuser:~$ pg dump -s mydatabase | grep -1 "alter.*owner to bob"
ALTER FUNCTION public.somefunction() OWNER TO bob;

ALTER TABLE public.directory OWNER TO bob;

ALTER TABLE public.directory seq OWNER TO bob;

ALTER TABLE public.document_ id seq OWNER TO bob;

ALTER TABLE public.documents OWNER TO bob;

Then just replace Bob in this output with new users name and feed the commands back
to database:

dbuser:~$ pg dump -s mydb | grep -i "owner to bob" > tmp.sql
dbuser:~$ sed -e 's/TO bob/TO bobs replacement/' < tmp.sqgl | psql
mydb

Of course it is a good idea to look at the changed data first.

dbuser:~$ pg dump -s mydb | grep -i "owner to bob" > tmp.sql
dbuser:~$ sed -e 's/TO bob/TO bobs replacement/' < tmp.sgl >tmp2.sql
dbuser:~$ less tmp2.sqgl

dbuser:~$ psgl mydb < tmp2.sgl

Again, this works on one database at a time, so you have to repeat it in all databases that
have objects owned by the role you want to delete.

Checking all users have a secure password

PostgreSQL has no built-in facilities to make sure that you are using strong passwords.

The best you can do is to make sure that all users' passwords are encrypted, and that your
pg_hba file does not allow logins with a plain password. That is, always use MD5 as login
method for users.

PUBLISHING

Chapter 6

For client applications connecting from trusted private networks, either real or virtual
(VPN), you may use host based access. That is, if you know that the machine on which the
application is running is also not used by some non-trusted individuals. For remote access
over public networks, it may be a better idea to use SSL client certificates.

Getting ready

To see which users have unencrypted passwords, use the following query:

test2=# select usename,passwd from pg shadow where passwd not like
'md5%' or length(passwd) <> 35;

usename | passwd
__________ mm e
tim | weakpassword
asterisk | md5chicken

(2 rows)

To see users with encrypted passwords, use the following:

test2=# select usename,passwd from pg shadow where passwd like 'md5%'’

and length (passwd) = 35;

usename | passwd

__________ o e
bob2 | md518c£038878cd04£fa207e7£5602013a36
(1 row)

How to do it...

Having the passwords encrypted in the database is just half of the equation.

The bigger problem is making sure that the users actually use passwords that are hard to
guess. That is passwords like "password', 'secret’, or 'test' are out, and also, most common
words are not good passwords.

If you don't trust your users to select strong passwords, you can write a wrapper application
that checks the password strength and have them use that when changing passwords. There
exists a contrib module for doing so for a limited set of cases (password sent from client to
server in plaintext). Visit the following website for more information:

http://developer.postgresql.org/pgdocs/postgres/passwordcheck.html

PUBLISHING

http://developer.postgresql.org/pgdocs/postgres/passwordcheck.html
http://developer.postgresql.org/pgdocs/postgres/passwordcheck.html

Security

Giving limited superuser powers to specific

users

First, the superuser role has some privileges, which can also be granted to non-superuser
roles separately.

To give the role Bob the ability to create new databases, run the following:
ALTER ROLE BOB WITH CREATEDB;
To give the role bob the ability to create new users, run the following:

ALTER ROLE BOB WITH CREATEUSER;

However, it is also possible to give ordinary users more fine-grained and controlled access to
some action reserved for superusers by using SECURITY DEFINER functions. The same trick
can also be used for passing on partial privileges between different users.

Getting ready

First, you must have access to the database as a superuser in order to delegate some powers.
Here, we assume the use of the default superuser named postgres.

We will demonstrate two cases of making some superuser-only functionality available to select
an ordinary user.

The database must have support for embedded language PL/pgSQL installed. Starting from
PostgreSQL 9.0 the recommended default behavior is to have pl/pgSQL installed in newly
created database, but this can be changed by package creators or site administrators. If it is
not, run the following as PostgreSQL superuser:

test2=# CREATE LANGUAGE plpgsql;
CREATE LANGUAGE

How to do it...

One thing that a superuser can do, and ordinary users cannot, is telling postgres to copy table
data from file:

pguser@hvost:~$ psgl -U postgres
test2

test2=# create table lines(line text);
CREATE TABLE
test2=# copy lines from '/home/bob/names.txt';

136

[PUBLISHING]

Chapter 6

COPY 37
test2=# SET SESSION AUTHORIZATION bob;
SET

test2=> copy lines from '/home/bob/names.txt';
ERROR: must be superuser to COPY to or from a file

HINT: Anyone can COPY to stdout or from stdin. psqgl's \copy command
also works for anyone.

To let user Bob copy directly from file, the superuser can write a special wrapper function
for Bob, as follows:

create or replace function copy from(tablename text, filepath text)
returns void

security definer
as

$s

declare

begin

execute 'copy ' || tablename || ' from ''' || filepath || '''';

end;

$$ language plpgsql;

It is usually a good idea to restrict usage of such a function to the intended user only:

revoke all on function copy from(text, text) from public;
grant execute on function copy from(text, text) to bob;

You may also want to check that Bob imports files only from his home directory.

When a function defined with security definer is called, then postgres changes the
sessions rights to those of the user who defined the function while that function is executed.

So when Bob executes function copy_from(tablename, filepath), he is effectively promoted
to superuser for the time the function is running.

This behavior is similar to setuid in unix systems, where you can have a program to be run
by anybody (with execute access) as the owner of that program. It also carries similar risks.

There's more...

There are other operations that are reserved for PostgreSQL superusers, such as setting
some parameters.

PUBLISHING

Security

Writing a debugging_info function for developers
Several of the parameters controlling logging are reserved to be used by only superusers.

If you want to let some of your developers set logging on, and if you can write a function for
them to do just that:

create or replace function debugging info on()
returns void
security definer
as
$S
begin
set client min messages to 'DEBUGL';
set log min messages to 'DEBUGL';
set log error verbosity to 'VERBOSE';
set log min duration statement to 0;
end;
$$ language plpgsql;
revoke all on function debugging info on() from public;
grant execute on function debugging info on() to bob;

You may also want to have a function to return to the default logging state by assigning
DEFAULT to all the variables:

create or replace function debugging info reset ()
returns void
security definer
as
$3
begin
set client min messages to DEFAULT;
set log min messages to DEFAULT;
set log error verbosity to DEFAULT;
set log min duration statement to DEFAULT;
end;
$$ language plpgsql;

No need to fiddle with GRANTs and REVOKEs here, as setting it back to default does not pose
a security risk. Instead of SET xxx to DEFAULT, you can also use a shorter version of the
same command, namely, RESET xxX.

Alternatively, you may just end your session, as the parameters are valid only for the
current session.

138

PUBLISHING

Chapter 6

Auditing DDL changes

This recipe shows how one can collect DDL (Data Definition Language) from database logs in
order to audit changes to the database structure.

Getting ready

Edit your postgresql . conf file, and set the following;:

log statement = 'ddl'

Setting it to 'mod' or 'all' is also ok for this. Don't forget to reload the configuration:

/etc/init-d/postgresqgl reload

How to do it...

Now find all occurrences of CREATE, ALTER, and DROP commands in the log.

postgres@hvost:~$ egrep -i "create|alter|drop" \ /var/log/postgresql/
postgresqgl-8.4-main.log

If log rotation is in effect, you may need to grep all logs also.

In case the log is too old, and you have not saved the older logs in some other place, you are
out of luck.

The default settings in postgresqgl . conf file for log rotation are as follows:
log filename = 'postgresqgl-%Y-%m-%d_%$H%M%$S.log'
log_rotation_age = 1d

log_rotation_ size = 10MB

Make sure to check those if you think you may need logs that are older than seven days.

The "Getting ready" part instructs postgreSQL to log all DDL commands in PostgreSQL's
main log.

The How to do it... part extracts just the DDL queries from the logfile.

[PUBLISHING]

Security

There's more...

Was the change committed

It is possible to have some statements recorded in the log file, but not visible in the database
structure. Most DDL commands in PostgreSQL can be ROLLBACKed, so what is in the log, is
just a list of commands executed by postgresql, not what was actually committed. The log file
is not transactional, and also keeps commands that were rolled back.

Who made the change
To be able to know the database user who made the DDL changes, you have to make sure
that this info is logged as well.

In order to do so, you may have to change the 1log line prefix parameter to include
the %u format string.

A recommended minimal 1log_line prefix format string for auditing DDL is "%t %u %d',
which tells postgresql to log timestamp, database user, and database name at the start of
every log line.

Can't | find out this information from the database

If you don't have logging enabled, or don't have all the logs, then you can get only very limited
information on who changed the database schema and when from system tables, and even
that is not reliable.

What you can can get is the "owner" of the database object (table, sequence, function, and so
on) but this may have been changed by "ALTER TABLE ... SET OWNER to yyyy".

You may be able to guess the approximate time of object creation or of the latest modification
by looking up the transaction id in xmin system column in pg class and pg_attrib system
tables. And then, try to find close xmin from some table which has automatic insert date
logging, maybe having DEFAULT CURRENT TIMESTAMP defined for some column.

Auditing data changes

This recipe provides different ways to collect changes to data contained in the tables for
auditing purposes.

Getting ready

Determine the following:

» Do you need to audit all changes or only some?
» What information about the changes do you need to collect: just the fact of change?
140

[PUBLISHING]

Chapter 6

New value of a field or tuple, is old value also needed here?

Is it enough to record the user doing the change, or is the IP address and other
connection information also needed?

How secure (tamper-proof) must the auditing info be? For example, does it need to be
kept separately, away from the database being audited?

Based on answers to the aforementioned questions, you can start selecting the right auditing
method from the ones presented next.

How to do it...

Collecting data changes from server log

>

>

>

Set log statement = 'mod' orto 'all' inthe server log
Collect all INSERT, UPDATE, DELETE, and TRUNCATE commands from log

Alternatively, just set up a way to store the logs on either the database server or copy
them to another host

Collecting changes using triggers

>

Write trigger function to collect new (and if needed also old) values from tuples and
save them to auditing table(s)

Add such triggers to tables for which changes need to be tracked

Sample (modified from "A PL/pgSQL Trigger Procedure For Auditing" sample in
postgreSQL manual)
CREATE TABLE emp (
empname text NOT NULL,
salary integer
)
CREATE TABLE emp audit (

operation text NOT NULL,
stamp timestamp NOT NULL,
userid text NOT NULL,
empname text NOT NULL,

salary integer
)i
CREATE OR REPLACE FUNCTION process_emp_audit () RETURNS TRIGGER AS
Semp audits

BEGIN
IF (TG _OP = 'DELETE') THEN
INSERT INTO emp audit SELECT 'DEL', now(), user,
OLD. *;
ELSIF (TG OP = 'UPDATE') THEN

PUBLISHING

Security

-- save old and new values

INSERT INTO emp audit SELECT 'OLD', now(), user,
OLD. *;
INSERT INTO emp audit SELECT 'NEW', now(), user,
NEW. *;
ELSIF (TG OP = 'INSERT') THEN
INSERT INTO emp audit SELECT 'INS', now(), user,
NEW. *;
ELSEIF (TG _OP = 'TRUNCATE') THEN
INSERT INTO emp audit SELECT 'TRUNCATE', now(), user,
oS
END IF;
RETURN NULL; -- result is ignored bacause this is an AFTER
trigger
END;

Semp audit$ LANGUAGE plpgsql;
CREATE TRIGGER emp audit
AFTER INSERT OR UPDATE OR DELETE ON emp
FOR EACH ROW EXECUTE PROCEDURE process_emp audit();
CREATE TRIGGER emp audit truncate
AFTER TRUNCATE ON emp
FOR EACH STATEMENT EXECUTE PROCEDURE process emp_ audit () ;

Collecting changes using triggers and saving them to another
database using dblink or plproxy
For security-critical systems, having the audit logs on the same machine with the rest of the

data may not be enough. In that case, you may need to implement remote-change logging
functionality. One way to do it is using pl/proxy to send change logs to a remote database.

The following is a sample how to log to the preceding example to a remote database auditdb:

>

>

142

Create the emp _audit log table in the remote auditing database
Create a function 1og_emp_audit () in the remote database as follows:

CREATE FUNCTION log emp_ audit (

operation text, userid text, empname text, salary integer
) RETURNS VOID AS
$s

INSERT INTO emp_audit VALUES ($1, now(), $2, $3, $4)

$$ LANGUAGE SQL;

Create a proxy function for log _emp_audit () in the local audited database
(You need to have the pl/proxy language installed in the database for this)

CREATE OR REPLACE FUNCTION log emp audit (
operation text, userid text, empname text, salary integer

PUBLISHING

Chapter 6

) RETURNS VOID AS $$S
CONNECT 'dbname=auditdb';
$$ LANGUAGE plproxy;

Create trigger functions that use the proxy function to save the data to an external
database:

CREATE OR REPLACE FUNCTION do_emp audit () RETURNS TRIGGER AS
$s

BEGIN
IF (TG _OP = 'DELETE') THEN
PERFORM log emp audit ('DEL', user, OLD.empname, OLD.
salary) ;
ELSIF (TG OP = 'UPDATE') THEN
-- save old and new values
PERFORM log emp audit ('OLD', user, OLD.empname, OLD.
salary) ;
PERFORM log emp audit ('NEW', user, NEW.empname, NEW.
salary) ;
ELSIF (TG OP = 'INSERT') THEN
PERFORM log emp audit ('INS', user, NEW.empname, NEW.
salary) ;
END IF;
RETURN NULL; -- result is ignored since this is an AFTER
trigger
END;

$$ LANGUAGE plpgsqgl;

Add the triggers to the emp table:

CREATE TRIGGER emp remote audit
AFTER INSERT OR UPDATE OR DELETE ON emp
FOR EACH ROW EXECUTE PROCEDURE do_emp_audit () ;

Ensure that the audit database is secure. This includes checking that the only thing the
audit_ logger user can dois call the log _emp audit () function.

More info on pl/proxy can be found at the following website:

http://plproxy.projects.postgresqgl.org/doc/tutorial .html

PUBLISHING

Security

Integrating with LDAP

This recipe shows how to set up your PostgreSQL system so that it uses LDAP (lightweight
Directory Access Protocol) for authentication.

Getting ready

Ensure that the usernames in database and your LDAP server match, as this method works
for user authentication checks for users already defined in the database.

How to do it...

In PostgreSQL's authentication file, pg_hba.conf, define some of address ranges to use
LDAP as an authentication method, and configure the LDAP server for this addess range.

host all all 10.10.0.1/16 ldap \
ldapserver=1ldap.our.net ldapprefix="cn=" ldapsuffix=", dc=our,
dc=net"

This setup makes postgresql server check passwords from the configured LDAP server.

User rights are not queried from LDAP server, but have to be defined inside the database,
using ALTER USER, GRANT, and REVOKE commands.

Setting up the client to use LDAP

If you are using the pg_service. conf file for defining your database access parameters,
you may define some of those to be queried from LDAP server, by including line similar to the
following in your pg_service.conf file:

ldap://ldap.mycompany.com/dc=mycompany, dc=com?uniqueMember?one? (cn=my
database)

For server setup, visit the following website:
http://www.postgresql.org/docs/8.4/static/auth-methods. html#AUTH-LDAP
For client setup, visit the following website:

http://www.postgresql.org/docs/8.4/static/libpg-1dap.html

[PUBLISHING]

http://www.postgresql.org/docs/8.4/static/auth-methods.html
http://www.postgresql.org/docs/8.4/static/auth-methods.html
http://www.postgresql.org/docs/8.4/static/libpq-ldap.html
http://www.postgresql.org/docs/8.4/static/libpq-ldap.html

Chapter 6

Connecting using SSL

Here we demonstrate how to enable PostgreSQL to use SSL for protecting database connections
by encrypting all data passed over that connection. Using SSL makes it much harder to sniff

the database traffic including usernames, passwords, and sensitive data that are passed
between client and database by someone listening to a network somewhere between them. An
alternative to using SSL is running the connection over a VPN (Virtual private Network).

Using SSL makes the data transfer on the encrypted connection a little slower, so you may not
want to use it if you are sure your network is safe. The performance impact can be quite large
if you are doing lots of short connections, as setting up a SSL connection is quite CPU-heavy.
In this case, you may want to run a local spooling solution, such as PgBouncer, to which

you connect without encryption, and make the SSL-protected connection using stunnel as
described in PgBouncer FAQ at the following website:

http://pgbouncer.projects.postgresqgl.org/doc/fag.html

Getting ready

Get or generate an SSL server key and certificate pair for the server, and store these into the
data directory of current database instance as files server.key and server.crt.

It may already be done for you on some platforms. For example, on Ubuntu, postgres is set up
to support SSL connections by default.

How to do it...

Set ssl = on in postgresqgl . conf, and restart the database.

If ss1 = on is set, then postgresql listens to both plain and SSL connections on the same port
(5432 by default), and determines the type of connection from the first byte of a new connection.

Then, it proceeds to set up an SSL connection, if an incoming request asks for it.

You can leave the choice of whether or not to use SSL to the client, or you can force SSL
usage from the server's side.

To let the client choose, use lines such as the following:

host database user IP-address IP-mask auth-method

[PUBLISHING]

http://pgbouncer.projects.postgresql.org/doc/faq.html
http://pgbouncer.projects.postgresql.org/doc/faq.html

Security
To let in only clients using SSL, use hostss1 instead of host.

The following fragment of pg_hba . conf enables non-SSL connections from local subnet
(192.168.1.0/24), but requires SSL for access from everybody accessing the database from
other networks.

host all all 192.168.54.1/32 md5
hostssl all all 0.0.0.0/0 md5

Getting SSL key and certificate

For web servers, you usually get your SSL certificate from a recognized Certificate Authority
(CA), as most browsers complain if the certificate is not issued by a known CA, and make
the user jump through hoops if it wants to connect to a server with a certificate issued by an
unknown CA.

For your database, it is usually sufficient to generate the certificate yourself using openssI.
The following commands generate a self-signed certificate for your server:

openssl genrsa 1024 > server.key
openssl req -new -x509 -key server.key -out server.crt

Read more on x509 keys and certificates in openSSL's
HowTo pages at the following website:

http://www.openssl.org/docs/HOWTO/

Setting up a client to use SSL

Client behavior is controlled by an environment variable, PGSSLMODE, that can have
the following values, as defined in the official PostgreSQL documents:

SSL mode Eavesdropping MITM Statement
protection protection
disabled No No | don't care about security, and | don't want to pay
the overhead of encryption.
allow Maybe No | don't care about security, but | will pay the
overhead of encryption if the server insists on it.
prefer Maybe No | don't care about encryption, but | wish to pay the

overhead of encryption if the server supports it.

require Yes No | want my data to be encrypted, and | accept the
overhead. | trust that the network will make sure |
always connect to the server that | want.

verify-ca Yes Depends on | want my data encrypted, and | accept the
CA-policy overhead. | want to be sure that | connectto a
server that | trust.

146

PUBLISHING

http://www.openssl.org/docs/HOWTO/

Chapter 6

SSL mode Eavesdropping MITM Statement
protection protection
verify-full Yes Yes | want my data encrypted, and | accept the

overhead. | want to be sure that | connectto a
server | trust, and that it's the one | specify.

The MITM in the preceding table means Man-In-The-Middle attack, that is, someone posing as
your server, but actually just observing and forwarding the traffic.

Checking server authenticity

The last two SSL modes allow you to be reasonably sure that you are actually talking to your
server, by checking the SSL certificate presented by the server.

To understand more about SSL in general, and OpenSSL library used by PostgreSQL in
particular, visit http://www.openssl.org, or get a good book about SSL.

There was also a nice presentacion named "Encrypted PostgreSQL" explaining these issues
at pgcon2009. The slides are available at the following website:

http://www.pgcon.org/2009/schedule/events/120.en.html

Encrypting sensitive data

This recipe shows how to encrypt data using the pgerypto package.

Getting ready

Make sure you (or your database server) are in a country where encryption is not illegal—it still
is in some countries.

Make sure pgcrypto is installed on your database host. On Ubuntu, it comes in package
postgresql-contrib.

Install it into the database in which you want to use it:
psgl mydb < /usr/share/postgresqgl/8.4/contrib/pgcrypto.sql
You also need to have GPG keys set up:

pguser@laptop:~$ gpg --gen-key

Answer some questions here, select key type "DSA and Elgamal", and enter an empty password.

[PUBLISHING]

http://www.openssl.org/
http://www.pgcon.org/2009/schedule/events/120.en.html
http://www.pgcon.org/2009/schedule/events/120.en.html

Security

Now export the keys:

pguser@laptop:~$ gpg -a --export "PostgreSQL User (test key for PG
Cookbook) <pguser@somewhere.net>" > public.key

pguser@laptop:~$ gpg -a --export-secret-keys " PostgreSQL User (test
key for PG Cookbook) <pguser@somewhere.net>" > secret.key

Make sure only you and postgres database users have access to the secret key.

pguser@laptop:~$ sudo chgrp postgres secret.key
pguser@laptop:~$ chmod 440 secret.key
pguser@laptop:~$ 1ls -1 *.key

-rw-r--r-- 1 pguser pguser 1718 2010-03-26 13:53 public.key
-r--r----- 1 pguser postgres 1818 2010-03-26 13:54 secret.key
How to do it...
Encrypting

To ensure that the secret keys are never visible in database logs, write a wrapper function
for getting the keys from the file. You need to do it in a trusted embedded language, such
as pl/pythonu, as only trusted languages can access file system. You need to be postgresql
superuser in order to create functions in trusted languages.

create or replace function get my public key() returns text as $$
return open ('/home/pguser/public.key') .read ()

$S

language plpythonu;

revoke all on function get my public key() from public;

create or replace function get my secret key() returns text as $$
return open ('/home/pguser/secret.key') .read ()

59

language plpythonu;

revoke all on function get my secret key() from public;

If you don't want other database users to actually see the keys, you also need to write wrapper
functions for encryption and decryption, and then give access to these wrapper functions to
end users.

The encryption function is as follows:

create or replace function encrypt using my public key(
cleartext text,
ciphertext out bytea

)

AS s$3

DECLARE

148

PUBLISHING

Chapter 6

pubkey bin bytea;
BEGIN

-- text version of public key needs to be passed through function
dearmor () to get to raw key

pubkey bin := dearmor(get my public key());
ciphertext := pgp pub encrypt (cleartext, pubkey bin);
END;
$$ language plpgsgl security definer;
revoke all on function encrypt using my public key(text) from public;
grant execute on function encrypt using my public key(text) to bob;

And the decryption function is as follows:

create or replace function decrypt using my secret key(
ciphertext bytea,
cleartext out text

)

AS $$

DECLARE
secret _key bin bytea;

BEGIN

-- text version of secret key needs to be passed through function
dearmor () to get to raw binary key

secret _key bin := dearmor (get my secret key());

cleartext := pgp pub decrypt (ciphertext, secret key bin);
END;

$$ language plpgsgl security definer;
revoke all on function decrypt using my secret key(bytea) from public;
grant execute on function decrypt using my secret key(bytea) to bob;

And now, test the encryption:
test2=# select encrypt using my public key('X marks the spot!');

returns a byte result that looks something like the following:

encrypt_using my public key | \301\301N\003\22
30\215\2125\203\252;\020\007\376-2z\233\211H. ..

To see that it actually works both ways:

test2=# select decrypt using my secret key(encrypt using my public
key ('X marks the spot!'));

decrypt using my secret key

X marks the spot!
(1 row)

Yes, we got back our initial string.

PUBLISHING

Security

What we have done here is:

» hidden the keys from non-superuser database users

» provided wrappers for authorized users to still use the encryption and decryption
functionality

To ensure that your sensitive data is not stolen while in transit between client and database,
make sure you connect to PostgreSQL server using an SSL-encrypted connection, or connect
from localhost.

You also have to trust your server administrators and other users with superuser privileges
to be sure your encrypted data is safe.

There's more...

For really sensitive data

For some data, you don't want to risk having the decryption password on the same machine
as the encrypted data.

In those cases, you either use public/private key cryptography and do only the encryption
part on the database server. This also means that you only have the encryption key on
the database host, and not the key needed for decryption. Alternatively, you can deploy a
separate, extra secure encryption server in your server infrastructure that provides just the
encrypting/decrypting functionality as a remote call.

For really, really really, sensitive data

For even more sensitive data, you may never want the data to leave the client computer
unencrypted. Hence, you need to encrypt the data before sending it to the database. In that
case, PostgreSQL receives already encrypted data, and never sees the unencrypted version.
This also means that the only useful indexes you can have are for use in "WHERE encrypted
column = encrypted_data" and for ensuring uniqueness. Even the "WHERE =" can be used
only if the encryption algorithm always produces the same ciphertext for the same plaintext,
which weakens the strength of encryption.

Two versions of pg_crypto

Pgcrypto is usually compiled to use openssl library (http://www.openssl.orqg). If for some
reason, you don't have openssl| or just don't want to use it, it is possible to compile a version of
pg_crypto without it, with a smaller number of supported encryption algorithms, and slightly
reduced performance.

150

[PUBLISHING]

http://www.openssl.org/

Chapter 6

See also

PgCrypto page in postgreSQL online documentation at the following website:
http://www.postgresql.org/docs/9.0/static/pgcrypto.html
The OpenSSL web page at the following website:
http://www.openssl.org/

The GNU Privacy Handbook at the following website:

http://www.gnupg.org/gph/en/manual . html

[PACKT

PUBLISHING

http://www.postgresql.org/docs/9.0/static/pgcrypto.html
http://www.postgresql.org/docs/9.0/static/pgcrypto.html
http://www.openssl.org/
http://www.openssl.org/
http://www.gnupg.org/gph/en/manual.html
http://www.gnupg.org/gph/en/manual.html

IIIIIIIIII

Database
Administration

In this chapter, we will cover the following:

» Writing a script that either all succeeds or all fails
» Writing a psql script that exits on first error

» Performing actions on many tables

» Adding/removing columns on tables

» Changing data type of a column

» Adding/removing schemas

» Moving objects between schemas

» Adding/removing tablespaces

» Moving objects between tablespaces

» Accessing objects in other PostgreSQL databases

» Making views updateable

Introduction

The Tables & Data chapter spent time looking at the contents of tables and various
complexities. Now, we turn our attention to larger administration tasks that we will need to
perform from time-to-time such as creating, moving things around, storing things neatly, and
removing them when they're no longer required.

[PUBLISHING]

Database Administration

The most sensible way to perform major administrative tasks is to write a script to do what
you think is required. If you're unsure, you can always run the script on a system test server,
and then run it again on the production server once you're happy. Manically typing commands
against production database servers isn't wise. Worse, using an admin tool can lead to
serious issues, if that tool doesn't show you the SQL you're about to execute. If you haven't
dropped your first live table yet, don't worry; you will. Perhaps you might want to read the
chapter on Backups first, eh? Back it up using scripts.

Scripts are great because you can automate common tasks. No need to sit there with a
mouse, working your way through a hundred changes.

If you're drawn to the discussion about Command line vs. GUI, then my thoughts and reasons
are completely orthogonal to that. | want to encourage you to avoid errors and save time by
repetitive and automatic execution of small administration programs or scripts. If it were safe or
easy to do the equivalent of mouse movements in a script, then that would be an option; but it's
definitely not. The only viable way to write a repeatable script is by writing text SQL commands.

Which scripting tool is a more interesting debate. We talk about psql here because, if you've
got PostgreSQL, then you've got psql. So, we're on solid ground to provide examples that way.

On to the recipes! First, we start by looking at some scripting techniques that are valuable
with PostgreSQL. This will make you more accurate, more repeatable, and free up time for
other cool things.

Writing a script that either all succeeds

or all fails

Database administration often involves applying a coordinated set of changes to the
database. One of PostgreSQL's great strengths is the transaction system, where almost all
actions can be executed inside a transaction. This allows us to build a script that will either all
succeed or all fail, which can be critically important on a production system.

Transactions definitely apply to DDL (Data Definition Language), which refers to the set of
SQL commands used to define, modify, and delete database objects. The term DDL goes back
many years, though it persists because that subset is a useful short name for the commands
that most administrators need to execute: CREATE, ALTER, DROP, and so on.

How to do it...

The basic way to ensure that we get all commands successful or none at all is to literally wrap
your script into a transaction like the following:

BEGIN;
command 1;
command 2;

[PUBLISHING]

Chapter 7

command 3;
COMMIT;

Writing a transaction control command involves editing the script, which you may not want
or even have access to do. There are also other ways.

From psql, you can do this more simply just by using the command line options -1 or
--single -transaction as follows:

bash $ psgl -1 -f myscript.sql
bash $ psgl --single-transaction -f myscript.sqgl

The -1 is short, though | recommend using --single-transaction, as it's much clearer
which option is being selected.

The whole script will fail if at any point, one of the commands gives an error or higher message.
Almost all of the SQL for defining objects (DDL) allows a way to avoid throwing errors.

Typically, commands that begin with the keyword DROP have an option IF EXISTS. This
allows you to execute the DROP, whether or not the object already exists; so by the end
of the command that object will not exist.

DROP VIEW IF EXISTS cust view;

Also, commands that begin with the keyword CREATE, mostly have the optional suffix OR
REPLACE. This allows the CREATE to overwrite the definition if one already exists, or add the
new object if it didn't exist yet, such as the following:

CREATE OR REPLACE VIEW cust view AS
SELECT * FROM cust;

If both DROP IF EXISTS and CREATE OR REPLACE options exist, then you might think you
would just use CREATE OR REPLACE. If you change the output definition of a function or a
view, then using OR REPLACE is not sufficient. In that case, you must use DROP and recreate,
as follows:

postgres=# CREATE OR REPLACE VIEW cust_view AS

SELECT col as titlel FROM cust;

CREATE VIEW

postgres=# CREATE OR REPLACE VIEW cust view

AS SELECT col as title2 FROM cust;

ERROR: cannot change name of view column "titlel" to "title2"

Note also that CREATE INDEX does not have an OR REPLACE option. If you run it twice, you'll
get two indexes on your table, unless you specifically name the index. There is a DROP INDEX
IF EXISTS, but it may take a long time to drop and recreate an index.

PUBLISHING

Database Administration

Please note the return messages in the following few commands:

postgres=# BEGIN;

BEGIN

postgres=# BEGIN;

WARNING: there is already a transaction in progress
BEGIN

postgres=# COMMIT;

COMMIT

postgres=# COMMIT;

WARNING: there is no transaction in progress

COMMIT

PostgreSQL takes the first or outermost BEGIN but also the first, which in this case is the
innermost COMMIT. So, if you have used transaction-control commands in your script, then
wrapping them again in a higher level script or command can cause problems.

Warning : PostgreSQL accepts, but does not act on nested transactional control
% commands. The commands after the first commit will be assumed to be
T~ transactions in their own right and will persist, should the script fail. Be careful.

There's more...

The following commands cannot be included in a script that uses transactions in the way
described:

» CREATE DATABASE / DROP DATABASE

» CREATE TABLESPACE / DROP TABLESPACE

» CREATE INDEX CONCURRENTLY

» VACUUM

None of those actions need to be run manually on a regular basis within complex programs,
so shouldn't be a problem for you.

Writing a psql script that exits on first error

The default mode for the psql script tool is to continue processing when it finds an error.
That sounds dumb, though it exists for historical compatibility only. There are some easy and
mostly permanent ways around that, so let's look at them.

156

PUBLISHING

Chapter 7

Getting ready

Let's start with a trivial script, with a command we know will fail as follows:

$ SEDITOR test.sqgl
mistakel;
mistake2;
mistake3;

Execute the following script using psql to see what the results look like:

$ psgl -f test.sqgl

psgl:test.sgl:1: ERROR: syntax error at or near "mistakel"
LINE 1: mistakel;

psgl:test.sgl:2: ERROR: syntax error at or near "mistake2"
LINE 1: mistake2;

psgl:test.sgl:3: ERROR: syntax error at or near "mistake3"
LINE 1: mistake3;

A

How to do it...

To exit the script on first error, we can do the following:

$ psgl -f test.sgl -v ON_ERROR STOP=on
psgl:test.sgl:1: ERROR: syntax error at or near "mistakel"

LINE 1: mistakel;

A

Or, edit the file test . sql with an initial line, like the following:

$ SEDITOR test.sqgl
\set ON_ERROR STOP
mistakel;
mistake2;
mistake3;

Note that this will not work because we have missed the crucial ON:

$ psgl -f test.sgl -v ON_ERROR_STOP

[PACKT

PUBLISHING

Database Administration

ON_ERROR_STOP is a psql special variable that controls the behavior of psql as it executes
in script mode. When this variable is set, an SQL error will generate an OS return code 3,
whereas other OS-related errors will return code 1.

There's more...

You can place some psql commands in a profile that will get executed when you run psql. Adding
ON_ERROR_STOP into your profile will ensure that this setting is applied to all psql sessions:

$ SEDITOR ~/.psqglrc
\set ON_ERROR STOP

You can forcibly override this, and request psql to execute without a profile by using -X, which
is probably the safest thing to do for batch execution of scripts.

Performing actions on many tables

As a database administrator, you will often need to apply multiple commands as part of the
same overall task. That is one of the following:

» Many different actions on multiple tables

» Same action, multiple tables

» Same action, multiple tables, in parallel

» Different actions, one on each table, in parallel
The first is the general case where you need to make a set of coordinated changes. The

solution is "write a script" as we've already discussed. We can also call this static scripting,
because you write the script manually, and then execute it.

The second type of task can be achieved very simply with dynamic scripts, where we write a
script that writes a script. That technique is the main topic of this recipe.

Performing actions in parallel sounds really cool, and it would be useful if it was easy. In some
ways it is, though trying to run multiple tasks concurrently and trap and understand all the
errors is much harder. And if you're thinking it won't matter if you don't check for errors, think
again. If you run tasks in parallel, then you cannot run them inside the same transaction; so
you definitely need error checking.

Don't worry; running parallel is usually much easier than that, and we'll explain how after
a few basics.

158

[PUBLISHING]

Chapter 7

Getting ready

Let's just create a basic schema to run some examples on the following:

postgres=# create schema test;

CREATE SCHEMA

postgres=# create table test.a (coll INTEGER) ;
CREATE TABLE

postgres=# create table test.b (coll INTEGER) ;
CREATE TABLE

postgres=# create table test.c (coll INTEGER) ;
CREATE TABLE

How to do it...

Our task is to run an SQL statement using this form, with X as the tablename, against each of
our three test tables:

ALTER TABLE X
ADD COLUMN last update timestamp TIMESTAMP WITH TIME ZONE;

Our starting point is a script that lists the tables we want to perform tasks against, something
like the following:

postgres=# SELECT relname
FROM pg class c
JOIN pg_namespace n

ON c.relnamespace = n.oid
WHERE n.nspname = 'test';
relname
a
b
c
(3 rows)

We then use the preceding SQL to generate the text for an SQL script, substituting the schema
name and tablename into the SQL text. We then output to a script file named multi.sqgl
as follows:

postgres=# \t on
postgres=# \o multi.sqgl
postgres=# SELECT 'ALTER TABLE '|| n.nspname
[| *." || c.relname ||
' ADD COLUMN last update timestamp TIMESTAMP WITH TIME ZONE;'
FROM pg class c

PUBLISHING

Database Administration

JOIN pg namespace n
ON c.relnamespace = n.oid
WHERE n.nspname = 'test';

Once we've generated the script, we can just check if it all looks correct:

postgres=# \! cat multi.sql
ALTER TABLE test.a ADD COLUMN last update timestamp TIMESTAMP WITH
TIME ZONE;

ALTER TABLE test.b ADD COLUMN last update timestamp TIMESTAMP WITH
TIME ZONE;

ALTER TABLE test.c ADD COLUMN last update timestamp TIMESTAMP WITH
TIME ZONE;

and then run the script and watch the results (success!).

postgres=# \i multi.sqgl
ALTER TABLE
ALTER TABLE
ALTER TABLE

Overall, this is just an example of dynamic scripting, and has been used by DBAs for many
decades, even before PostgreSQL was born.

It can go wrong in various ways, especially if you generate SQL text with syntax errors. Just fix
that, and carry on.

The \t command means "tuples only", so \ t on will ensure there are no headers, command
tags, or row counts following results.

The \o command redirects output to a file.
\ ! runs operating system commands, so \ ! cat will show the file contents on *nix systems.

The \ i command redirects input from a file, or in simpler terms, will execute the named
file. Running the script in this way will probably ignore earlier recipes, so | still recommend
following those earlier guidelines.

Dynamic scripting might also be named a quick-and-dirty approach. The previous scripts didn't
filter out views and other objects in the test schema, so you'd need to add that yourself, or not,
as required.

160

PUBLISHING

Chapter 7

There is another way of doing this, as well.

DO 3%

DECLARE c¢ record;

BEGIN
FOR ¢ IN SELECT t.*, n.nspname
FROM pg class ¢ JOIN pg namespace n
ON c.relnamespace = n.oid

WHERE n.nspname = 'test' /* ; not needed */
LOOP
EXECUTE 'ALTER TABLE '|| quote_ident (n.nspname) ||

"." || quote_ident (c.relname) ||
' ADD COLUMN last update timestamp ' ||
'TIMESTAMP WITH TIME ZONE;'
END LOOP;
END $$;

Using this is not my preference because it executes the SQL directly and doesn't allow you
to keep the script afterwards.

Earlier | said I'd explain how to run multiple tasks in parallel. Some practical approaches are
possible, with a little discussion.

Making tasks run in parallel can be thought of as subdividing the main task so that we run x2,
x4, x8, and such other subscripts, rather than one large script.

First, you should note that error checking gets worse the more parallel tasks you spawn,
whereas performance improves most for the first few subdivisions. Also, we're often
constrained by CPU, RAM, or I/0 resources for intensive tasks. That means that splitting a
main task into two to four parallel subtasks isn't practical without some kind of tool to help us
manage this.

There are two approaches here, depending on the two types of the task, as follows:

» Task consists of many smaller tasks, all roughly the same size

» Task consists of many smaller tasks, where the execution times vary according to the
size/complexity of the database object

If we have lots of smaller tasks, then we can just run out scripts multiple times using a simple
round-robin split of tasks, so that each subscript runs half of the subtasks.

» Script 1: Add WHERE c. oid % 2

0
» Script 2: A WHERE c. 0id %2 =1

[PUBLISHING]

Database Administration

The task we were performing as an example was to add a column onto many tables. In the
previous example, we were adding the column with no specified default; so the new column
will have a NULL value, and, as a result, with ALTER TABLE it will run very quickly, even on
large tables. If we change the ALTER TABLE statement so that we specify a default, then the
SQL will need to re-write the whole table. So, the run time will vary according to table size
(approximately, though also by number and type of indexes).

Now that our subtasks vary in runtime according to size, we need to be more careful splitting
up the subtasks, so that we end up with multiple scripts that will run for about the same time.

If we already know that we have just a few big tables, it's easy to just split those out manually
into their own scripts.

If the database has many large tables, then we can sort SQL statements by size and then
distribute them using round-robin distribution into multiple subscripts that will have approximately
similar runtime. The following two SQL statements are an example of this technique:

\t on
\o script0.sqgl
SELECT sgl FROM (

SELECT 'ALTER TABLE '|| n.nspname || '.' || c.relname ||
' ADD COLUMN last update timestamp TIMESTAMP WITH TIME ZONE DEFAULT
now () ;' as sqgl

,row_number () OVER (ORDER BY pg relation size(c.oid))
FROM pg class c

JOIN pg_namespace n

ON c.relnamespace = n.oid

WHERE n.nspname = 'test'

ORDER BY 2 DESC) as s

WHERE row_number % 2 = 0;

\o scriptl.sqgl

SELECT sgl FROM (

SELECT 'ALTER TABLE '|| n.nspname || '.' || c.relname ||
' ADD COLUMN last update timestamp TIMESTAMP WITH TIME ZONE DEFAULT
now () ;' as sqgl

,row_number () OVER (ORDER BY pg relation size(c.oid))
FROM pg class c

JOIN pg_namespace n

ON c.relnamespace = n.oid

WHERE n.nspname = 'test'

ORDER BY 2 DESC) as s

WHERE row_number % 2 = 1;

Then, execute the jobs in parallel, like the following:

$ psqgql -f scriptO.sql &
$ psql -f scriptl.sql &

PUBLISHING

Chapter 7

Note how we use the window function row_number () to sort the data by size, then we split
the data into pieces using the following:

WHERE row_number % N = 1i;
N is the total number of scripts we're producing, and i is the number of the current script. The

numbering starts at zero because we are using modulo arithmetic to distribute the subtasks.

Using pg_batch to run tasks in parallel
There is a tool for running tasks in parallel, available at the following URL:

http://reorg.projects.postgresqgl.org/pg batch.html

pg_batch runs tasks in the order it finds them, and splits them up blindly across multiple
parallel sessions. That means that you'll need to write a script to pre-order the items that
need to be executed, so that the tasks are distributed evenly across sessions, so you'll end up
writing something that looks exactly like the preceding scripts anyway.

Adding/Removing the columns of a table

As designs change, we may want to add or remove columns from our data tables. These are
common operations in development, though they need more careful planning on a running
production database server, as these operations take full locks and may run for long periods.

How to do it...

You can add a new column to a table using the following:

ALTER TABLE mytable
ADD COLUMN last update timestamp TIMESTAMP WITHOUT TIME ZONE;

Or drop the same column using the following command:

ALTER TABLE mytable
DROP COLUMN last update timestamp;

You can combine multiple operations when using ALTER TABLE, which then applies
the changes in sequence. This allows you to do a useful trick, which is to add a column
unconditionally, using IF EXISTS, such as the following:

ALTER TABLE mytable
DROP COLUMN IF EXISTS last update timestamp,
ADD COLUMN last update timestamp TIMESTAMP WITHOUT TIME ZONE;

Note that this will have almost the same effect as:

UPDATE mytable SET last update timestamp = NULL;

PUBLISHING

Database Administration

Though the ALTER TABLE runs much faster. That's very cool if you want to do an update,
though not much fun if you want to keep the column data already there.

ALTER TABLE, to add or drop a column, takes a full table lock (at AccessExclusivelLock level);
so that it can prevent all other actions on the table. So, we want it to be as fast as possible.

DROP COLUMN doesn't actually remove the column from each row of the table, it just marks
the column as dropped. This makes DROP COLUMN a very fast operation.

ADD COLUMN is also very fast if we are adding a nullable column with a null default value. If
we use a NOT NULL constraint, or we specify an explicit default value, then we need to rewrite
every row of the table, which can be quite slow.

ALTER TABLE allows us to execute many column operations at once, as shown in the main
recipe. ALTER TABLE is optimized, so that we include all column operations into a single pass
of the table, greatly improving speed for complex sets of changes, for example:

ALTER TABLE mytable
ADD COLUMN last update userid INTEGER,
ADD COLUMN last update_ comment TEXT;

If we rewrite the table, then the dropped columns are removed. If not, they may stay there
for some time. Subsequent INSERT and UPDATE operations will insert a null value for the
dropped column(s). Updates will reduce the size of stored rows if they were not already null.
So in theory, you just have to wait, and the database will eventually reclaim the space. In
practice, this only works if all of the rows in the table are updated within a given period of
time. Many tables contain historical data, and so space would not be reclaimed at all without
additional actions.

The PostgreSQL manual recommends changing the data type of a column to the same type,
which forces rewriting every row. | don't recommend this because it will completely lock the
table for a long period, at least on larger databases. My recommendation is to not drop the
column at all, if you can avoid it, when you're in production. Just keep a track of the changes
you would make if you get time, if ever. If you're looking at alternatives, then VACUUM will not
rewrite the table, though a vACUUM FULL will. Though be careful there also, because that also
holds a full table lock.

Indexes that depend upon a dropped column are automatically dropped as well. All other
objects that depend upon the column(s) will cause the ALTER TABLE to be rejected. You can
override that, and drop everything in sight by using the CASCADE option, as follows:

ALTER TABLE x
DROP COLUMN last update timestamp
CASCADE;

[PUBLISHING]

Chapter 7

Changing datatype of a column

Changing column datatypes is not an everyday task, thankfully. But when we do have to do it,
we need to know all the details so that we can perform the conversion on a production system
without error.

Getting ready

Let's start with a simple example table as follows:

postgres=# select * from birthday;
name | dob

simon | 690926

(1 row)
It is created using the following:

CREATE TABLE birthday
(name TEXT

, dob INTEGER) ;

How to do it...

Let's say we want to change the dob column to another data type. Let's try with a simple
example first, which is as follows:

postgres=# ALTER TABLE birthday
postgres-# ALTER COLUMN dob SET DATA TYPE text;
ALTER TABLE

This works fine. Let's just put that back to integer, so that we can try moving to something
more complex, such as a date datatype, like the following;:

postgres=# ALTER TABLE birthday
postgres-# ALTER COLUMN dob SET DATA TYPE integer;
ERROR: column "dob" cannot be cast to type integer

Oh! What went wrong? Let's try using an explicit conversion with the USING clause as follows:

postgres=# ALTER TABLE birthday
ALTER COLUMN dob SET DATA TYPE integer
USING dob::integer;

ALTER TABLE

PUBLISHING

Database Administration
It works as expected. Now let's try moving to a DATE type:

postgres=# ALTER TABLE birthday

ALTER COLUMN dob SET DATA TYPE date

USING date(to_date(dob::text, 'YYMMDD') -
(case when dob/10000 < 15 then interval '0'
else interval '100 years' end);

It then gives what we were hoping to see:

postgres=# select * from birthday;
name | dob

simon | 26/09/1969
(1 row)

With PostgreSQL you can also set or drop default expressions, whether or not the NOT NULL
constraints are applied.

ALTER TABLE foo
ALTER COLUMN col DROP DEFAULT expression;

ALTER TABLE foo
ALTER COLUMN col SET DEFAULT 'expression';

ALTER TABLE foo
ALTER COLUMN col SET NOT NULL;

ALTER TABLE foo
ALTER COLUMN col DROP NOT NULL;

Moving from the integer to the date type used a complex USING expression. Let's break
that down step-by-step so that we can see why, as follows:

postgres=# ALTER TABLE birthday

ALTER COLUMN dob SET DATA TYPE date

USING date(to_date(dob::text, 'YYMMDD') -
(case when dob/10000 <=15 then interval '0'
else interval '100 years' end);

First, we can't move directly from integer to date, we need to first convert to text and then
onto date. dob: : text means "cast to text".

Once we have text, we use to_date () function to move into a date.

166

PUBLISHING

Chapter 7

That's not enough. Our starting data was 690926, which we presume is a date in the form
'YYMMDD'. When PostgreSQL converts to a date, it assumes that two-digit year 69 is in the
current century. So, it outputs 2069 rather than 1969. So, the case statement is added to
reduce any year more than 15 to be a date in the previous century, by explicitly subtracting an
interval of 100 years.

| recommend very strongly that you test this conversion by performing a SELECT first.
Converting datatypes, especially to/from dates always causes some problems, so don't try to
do this quickly. Always take a backup of the data first.

The USING clause can also be used to handle complex expressions involving other columns.
This could be used for data transformations, which might be useful for DBAs in some
circumstances, such as migrating to a new database design on a production database server.
Let's put everything together into an example, look at a full working example. For example, if
you wished to transform the following table:

postgres=# select * from cust;
customerid | firstname | lastname | age

———————————— R e et e
1 | philip | Marlowe | 38
2 | Richard | Hannay | 42
3 | Holly | Martins | 25
4 | Harry | Palmer | 36

(4 rows)
Into a table design like the following:

postgres=# select * from cust;

customerid | custname | age
____________ oo e
1 | Philip Marlowe | 38
2 | Richard Hannay | 42
3 | Holly Martins | 25
4 | Harry Palmer | 36

(4 rows)

You might decide to do it using the following four simple steps.

ALTER TABLE cust ADD COLUMN custname text not null default '';
UPDATE cust SET custname = firstname || ' ' || lastname;
ALTER TABLE cust DROP COLUMN firstname;

ALTER TABLE cust DROP COLUMN lastname;

PUBLISHING

Database Administration

You can also use the SQL commands directly or make them use a tool like pgAdmin3. Following
those steps could cause problems, as the changes aren't within a transaction that other users
can see the changes when they are only half finished. So, it would be better to do this in a single
transaction, using BEGIN and COMMIT. Also, those four changes require us to make two passes
of the table. However, we can perform the whole transformation in one pass of the table by
using multiple clauses on the ALTER TABLE command. So instead, do the following:

BEGIN;
ALTER TABLE cust
ALTER COLUMN firstname SET DATA TYPE text
USING firstname || ' ' || lastname,

ALTER COLUMN firstname SET NOT NULL,
DROP COLUMN lastname;

ALTER TABLE cust RENAME firstname TO custname;
COMMIT;

This is a great example of why | personally prefer to use scripts to make such changes on
large production databases rather than making the changes directly using a GUI.

Adding/Removing schemas

Separating groups of objects is a good way of improving administration efficiency. We need to
know how to create new schemas and remove schemas that are no longer required.

How to do it...

To add a new schema, issue the following command:
CREATE SCHEMA sharedschema;

If you want that schema to be owned by a particular user, then you can add the
following option:

CREATE SCHEMA sharedschema AUTHORIZATION scarlett;

Or, if you want to create a new schema which has the same name as an existing user, so that
the user becomes the owner, then try the following;:

CREATE SCHEMA AUTHORIZATION scarlett;

In many database systems, the schema name is the same as the owning user. PostgreSQL
allows schemas owned by one user to have objects owned by another user within them. That
can be especially confusing when you have a schema of the same name as the owning user.
To avoid this you should have two types of schema: schemas named the same as the owning
user should be limited to just objects owned by that user. Other general schemas can have
shared ownership.

168

PUBLISHING

Chapter 7

There are no additional options on the CREATE SCHEMA command.
To remove a schema named str, we can issue the following command:
DROP SCHEMA str;

Note that there isn't a CREATE OR REPLACE SCHEMA command, so when you want to create a
schema whether or not it already exists you can do the following:

DROP SCHEMA IF EXISTS newschema;
CREATE SCHEMA newschema;

The DROP SCHEMA won't work unless the schema is empty and unless you use the nuclear
option:

DROP SCHEMA IF EXISTS newschema CASCADE;

The nuclear option Kills all known germs, and all of your database objects also.

In the SQL Standard, you can also create a schema and the objects it contains all in one SQL
statement. PostgreSQL accepts this syntax if you need it, as follows:

CREATE SCHEMA foo
CREATE TABLE account

(id INTEGER NOT NULL PRIMARY KEY
,balance NUMERIC(50,2))

CREATE VIEW accountsample AS

SELECT *

FROM account
WHERE random() < 0.1;

Though mostly, | find it limiting. This syntax exists to allow creating more than one object
at the same time. That can be achieved more easily by using PostgreSQL's ability to allow
transactional DDL, which is discussed in an earlier recipe.

Schema-level privileges
Privileges can be for objects in a schema using the GRANT command, as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA sharedschema TO PUBLIC;

Though this will only affect tables that already exist, tables created in the future will inherit
privileges defined by the ALTER DEFAULT PRIVILEGES command, for example:

ALTER DEFAULT PRIVILEGES IN SCHEMA sharedschema
GRANT SELECT ON TABLES TO PUBLIC;

PUBLISHING

Database Administration

Moving objects between schemas

Once you've created schemas for administration purposes, you'll want to move existing objects
to keep things tidy.

How to do it...

To move one table from its current schema to a new schema, use the following;:

ALTER TABLE cust
SET SCHEMA anotherschema;

If you want to move all objects, you might consider just renaming the schema itself using the
following query:

ALTER SCHEMA existingschema RENAME TO anotherschema;
This only works if another schema with that name does not already exist.

Otherwise, you'll need to run ALTER TABLE for each table you would like to move. You can use
the recipe for performing the same action on many tables to achieve that.

Views, sequences, functions, aggregates, and domains can also be moved by ALTER
commands with SET SCHEMA options.

When you move a table to a new schema, all of the indexes, triggers, and rules defined on
those tables will also be moved to the new schema. If you've used a SERIAL data type, and
an implicit sequence has been created, then that also moves to the new schema. Schemas
are a purely an administrative concept, and do not affect the location of the table's data files.
Tablespaces don't work this way, as we will see in later recipes.

Databases, users/roles, languages, conversions don't exist in a schema. Schemas exist in
a particular database. = Schemas don't exist within schemas; they are not arranged in a tree
or hierarchy.

There's more...

Text search objects exist in a specific schema though there are no commands to move them
to a new schema. Similarly, operator(s), operator class(es), and operator family(s) exist in

a schema, though there are no commands to move them to new schemas. Also casts don't
exist in a schema, though the data types and functions they reference don't. These things
are not typically something we want to move around anyway; this is just a note in case you're
wondering how things work.

170

[PUBLISHING]

Chapter 7

Adding/Removing tablespaces

Tablespaces allow us to store PostgreSQL data across different devices. We might want to
do that for performance, administrative ease, or your database might just have run out of
disk space.

Getting ready

Before we can create a useful tablespace, we need to prepare the underlying devices in
production-ready form.

Think carefully about the speed, volume, and robustness of the disks you are about to use.
Make sure they are configured correctly. Those decisions will affect your life for the next few
months and years.

Disk performance is a subtle issue that most people think can be decided in a few seconds.
We recommend you read the Performance section of this book, as well as additional books on
this topic.

Once you've done all that, then you can create a directory for our tablespace.
The directory must:
» Beempty
» Be owned by the PostgreSQL owning userid
» Be specified with an absolute path name
On Linux/Unix systems, you shouldn't use a mount point directly. Create a subdirectory and

use that instead. That simplifies ownership and avoids some filesystem-specific issues, such
as having lost+found directories.

It also needs to follow sensible naming conventions, so we clearly identify which tablespace
goes with which server. Do not be tempted to use something simple, such as data, because
it will make later administration more difficult. Be especially careful that test or development
servers do not and cannot get confused with production systems.

How to do it...

Once you've created your directory, adding the tablespace is simple, as follows:

CREATE TABLESPACE new_tablespace
LOCATION '/usr/local/pgsgl/new tablespace';

And, the command to remove the tablespace is also simple, which is:

DROP TABLESPACE new_tablespace;

[PUBLISHING]

Database Administration

A tablespace can only be dropped when it is empty, so how do you know when a tablespace
is empty?

Tablespaces can contain both permanent and temporary objects.

Permanent data objects are tables, indexes, and toast objects. We don't need to worry too
much about toast objects, because they are created and always live in the same tablespace
as their main table, plus, you cannot manipulate their privileges or ownership.

Indexes can exist in separate tablespaces, as a performance option, though that requires
explicit specification on the CREATE INDEX statement. The default is to create indexes in the
same tablespace as the table to which they belong.

Temporary objects may also exist in a tablespace. These exist when users have explicitly
created temporary tables or there may be implicitly created data files when large queries
overflow their work_mem settings. These files are created according to the setting of the
temp_ tablespaces parameter. That might cause an issue, because you can't tell for certain
what the setting of temp tablespaces is for each user. The users can change their setting
of temp_ tablespaces away from the default value specified in the postgresgl.conf.

We can identify the tablespace of each user object using the following query:

SELECT spcname
,relname
,CASE WHEN relistemp THEN 'temp ' ELSE '' END ||
CASE
WHEN relkind = 'r' THEN 'table!'
WHEN relkind = 'v' THEN 'view'
WHEN relkind = 'S' THEN 'sequence'
WHEN relkind = 'c' THEN 'type'
ELSE 'index' END as objtype
FROM pg_class c join pg tablespace ts
ON (CASE WHEN c.reltablespace = 0 THEN
(SELECT dattablespace FROM pg database
WHERE datname = current database())
ELSE c.reltablespace END) = ts.oid
WHERE relname NOT LIKE 'pg toast%'
AND relnamespace NOT IN (SELECT oid FROM pg namespace WHERE

nspname IN ('pg catalog', 'information schema'))

7

spcname | relname | objtype
__________________ o e
new_tablespace | % | table
new_tablespace | v | table
new_tablespace | z | temp table
new_tablespace | v val idx | index

172

PUBLISHING

Chapter 7

You may also want to look at columns spcowner, relowner, relacl, and spcacl to
determine who owns what, and what they're allowed to do. The relacl and spcacl
columns refer to the "access control list" that details the privileges available on those
objects. The spcowner and relowner columns record the owners of the tablespace
and tables/indexes, respectively.

A tablespace is just a directory where we store PostgreSQL data files. We use symbolic links
from the data directory to the tablespace.

We exclude toast tables because they are always in the same tablespace as their parent
tables, though remember toast tables are always in a separate schema. You can exclude toast
tables using the relkind column, but that would still include the indexes on the toast tables.
Toast tables and toast indexes both start with pg_toast, so we can exclude those easily from
our queries.

The preceding query needs to be complex, because pg_class entry for an object will show
reltablespace = 0 when an object is created in the database's default tablespace. So, if
you directly join pg_class and pg_tablespace, you end up losing rows.

Note that we can see a temporary object exists and which tablespace in which it is created,
even though we cannot refer to a temp object in another user's session.

Some further notes on best practices follows.

A tablespace can contain objects from multiple databases, so it's possible to be in a position
where there are no objects visible in the current database. The tablespace just refuses to go
away, giving the following error:

ERROR: tablespace "old tablespace" is not empty

You are strongly advised to make a separate tablespace for each database, to avoid
confusion. This can be especially confusing if you have the same schema names and table
names in the separate databases.

How to avoid this? If you just created a new tablespace directory, you might want to
create subdirectories within that for each database that needs space, and then make the
subdirectories into tablespaces instead.

You may also wish to consider giving each tablespace a specific owner, using the following query:
ALTER TABLESPACE new_tablespace OWNER TO eliza;

if that helps smooth administration.

[PUBLISHING]

Database Administration

You may also wish to set default tablespaces for a user, so that tables are automatically
created there by issuing the following query:

ALTER USER eliza SET default tablespace = 'new_tablespace';

Putting pg_xlog on a separate device

You may seek advice about putting the pg_x1log directory onto a separate device for
performance reasons. This sounds very similar to tablespaces, though there is no explicit
command to do this once you have a running database. Please look for the recipe in the
Performance chapter.

Tablespace-level tuning

As each tablespace has different |/O characteristics, we may wish to alter the planner cost
parameters for each tablespace. These can be set with the following command:

ALTER TABLESPACE new_tablespace SET
(seq_page _cost = 0.05, random page cost = 0.1);

Settings are roughly appropriate for an SSD drive, which assumes that the drive is faster than
an HDD by x10 for random reads, and x20 for sequential reads.

The values given need more discussion than we have time for here.

Moving objects between tablespaces

Moving data around between tablespaces may sometimes be required.

Getting ready

First, create your tablespaces. Once the old and new tablespaces exist, we can issue the
commands to move them.

How to do it...

Tablespaces can contain both permanent and temporary objects.

Permanent data objects are tables, indexes, and toast objects. We don't need to worry too
much about toast objects, because they are created and always live in the same tablespace
as their main table. So if you alter the tablespace of a table, it's toast objects will move also.

ALTER TABLE mytable SET TABLESPACE new_ tablespace;

[PUBLISHING]

Chapter 7

Indexes can exist in separate tablespaces, and moving a table leaves the indexes where they
are. Don't forget to run ALTER INDEX commands as well, one for each index, as follows:

ALTER INDEX mytable_ val_idx SET TABLESPACE new_tablespace;

Temporary objects cannot be explicitly moved, so we take that to mean you want to "ensure
they are created somewhere else in the future". To do that you need to:

» Edittemp tablespaces
» Reload the server to allow new configuration settings to take effect

There is no single command to do this that will work for all users.

If you want to move a table and its indexes all in one pass, you can issue all the commands in
a single transaction as follows:

BEGIN;

ALTER TABLE mytable SET TABLESPACE new_ tablespace;

ALTER INDEX mytable_vall_idx SET TABLESPACE new_tablespace;
ALTER INDEX mytable_val2_idx SET TABLESPACE new_tablespace;
COMMIT;

Moving tablespaces means bulk-copying data. Copying happens sequentially block-by-block,
and that performs well, but there's no way to avoid the fact that the bigger the table, the
longer it will take.

Performance will be optimized if archiving or streaming replication is not active, as ho WAL will
be written in that case.

You should be aware that the table is fully locked (AccessExclusivelLock) while the copy takes
place, so this can cause an effective outage for your application. Be very careful.

If you want to ensure that objects are created in the right place next time you create one, then
you can use the following:

SET default_tablespace = 'new_tablespace';

You can run this automatically for all users that connect to a database using
the following query:

ALTER DATABASE mydb SET default tablespace = 'new_tablespace';
Take care that you do not run the next command by mistake though:

ALTER DATABASE mydb SET TABLESPACE new_ tablespace;

PUBLISHING

Database Administration

As this literally moves all objects that do not have an explicitly defined tablespace into new
tablespace. For a large database, this will take a very long time, and your database will be
completely locked while it runs. Not cool, if you do it by accident.

If you just discovered that indexes don't get moved when you move a table, then you may want
to check to see if any indexes are in different tablespaces from their parent tables. Run the
following to check:

SELECT i.relname as indexname
,tsi.spcname
,t.relname as tablename
,tst.spcname

FROM (((pg_class t /* tables */
JOIN pg tablespace tst
ON t.reltablespace = tst.oid)

JOIN pg index pgi
ON pgi.indrelid = t.oid)
JOIN pg class 1 /* indexes */
ON pgi.indexrelid = i.oid)
JOIN pg tablespace tsi
ON i.reltablespace = tsi.oid
WHERE i.relname NOT LIKE 'pg toast%'
AND i.reltablespace != t.reltablespace

If we have one table with an index in a separate tablespace, we might see this as psql definition:

postgres=# \d y
Table "public.y"
Column | Type | Modifiers

val | text |
Indexes:

"y_val_idx" btree (val), tablespace "new_tablespace"
Tablespace: "new_tablespace2"

Running the query presented previously, gives the following;:

relname | spcname | relname | spcname
——————————— e e e i
y _val idx | new_tablespace | v | new_tablespace2
(1 row)
176

PUBLISHING

Chapter 7

Accessing objects in other PostgreSQL

databases

Sometimes we want to access data in other PostgreSQL databases. Reasons might be
as follows:

» You have more than one database server, and you need to extract data from one and
load it into the other, such as reference data.

» You want to access data that is in a different database on the same database server
which had been split up for administrative purposes.

» You want to perform some changes that you do not wish to rollback in the event of an
error or transaction abort—known as function side-effects or autonomous transactions.

You might also be considering this because you are exploring scale out, sharding or
load-balancing approaches. If so, please read the last part of this recipe See Also,
and then skip to the chapter on Replication.

Getting ready

Install dblink, which is a contrib module for PostgreSQL.

Next, we create some access definitions. This can be done in various ways, but these
commands are SQL Standard (SQL/MED), so it seems useful to follow them:

postgres=# CREATE FOREIGN DATA WRAPPER postgresqgl
VALIDATOR postgresqgl fdw validator;

CREATE FOREIGN DATA WRAPPER

postgres=# CREATE SERVER otherdb

FOREIGN DATA WRAPPER postgresqgl

OPTIONS (host 'foo', dbname 'otherdb', port '5432');
CREATE SERVER

postgres=# CREATE USER MAPPING FOR PUBLIC

SERVER otherdb;

CREATE USER MAPPING

You need only create one FOREIGN DATA WRAPPER, though you need to create one SERVER
for each PostgreSQL destination database to which you may wish to connect to. This is just
the connection definition, not the connection itself.

Creating a public user mapping with no options seems strange, though it will mean that we
use the libpqg default behavior. This will mean that we will connect the remote database using
the value of PGUSER, or if not set, use the operating system user.

[PUBLISHING]

Database Administration

How to do it...

Connect using an unnamed connection as follows:

SELECT dblink connect ('otherdb') ;
dblink connect

OK
(1 row)

Disconnect from the unnamed connection by running the following:

SELECT dblink disconnect() ;
dblink connect

OK
(1 row)

EXECUTE COMMAND

To execute the following command:

postgres=# INSERT INTO audit log VALUES (current user, now()) ;
INSERT 0 1

Run it on the unnamed remote connection as follows:

postgres=# SELECT dblink exec ('INSERT INTO audit log VALUES'| |
' (current user, now())', true);

dblink exec

INSERT 0 1
(1 row)

Notice that the remote command returns the command tag and number of rows processed as
the return value of the function. The second option means "fail on error". If you look closely,
there's also a subtle error—when the INSERT was executed locally, we use this server's value
of current _user, though when we execute remotely, we use the remote server's value of
current_user, which might differ, depending upon the user mapping defined previously.

EXECUTE QUERY

To execute the following query:

SELECT generate series(1,3)

178

PUBLISHING

Chapter 7

on the unnamed remote connection as follows:

SELECT *

FROM dblink ('SELECT generate_ series(1,3)"')
AS link(coll integer) ;

coll

Note that we need to specify the output columns and column types. If dblink () is unable to
determine the result specification of the query, it will execute when we parse the query, so we
must explicitly define the output that we expect when the query executes.

dblink establishes a persistent connection with the other database. The dblink functions
track the details of that connection, so you don't need to worry about doing so yourself. You
should be aware that this is an external "resource", and so the generic programming problem
of "resource leaks" becomes possible; if you forget about your connection and forget to
disconnect it, you may experience problems later. The remote connections will be terminated
should your session disconnect.

Note that the remote connection persists even across transaction failures and other errors, so
there is no need to reconnect.

dblink () executes the remote query, and will assemble the result set in memory before the
local reply begins to be sent. That means that very large queries might fail through lack of
memory, and everybody else will notice also. This isn't a problem; this is simply not designed
to handle bulk data flows. Look at the recipe about data loading instead, if that's what you
want to do.

Running slightly larger queries can be achieved using cursors. These allow us to bring the
answer set back in smaller chunks. Conceptually, we need to open the cursor, loop while
fetching rows until we are done, and then close the cursor. Some example code for that is
as follows:

postgres=# SELECT dblink open('example',
'SELECT generate_series(1,3)', true);
dblink open
OK
(1 row)

[PUBLISHING]

Database Administration

postgres=# SELECT *

FROM dblink fetch('example', 10, true)
AS link (coll integer);

Notice that we didn't need to define the cursor when we opened it, though we do need to
define the results from the cursor when we fetch from it, just as we did with a normal query.
Fetch 10 rows at a time.

postgres=# SELECT *

FROM dblink fetch('example', 10, true)
AS link (coll integer);

(0 rows)
postgres=# SELECT dblink close('example') ;
dblink close
OK
(1 row)

dblink also allows you to use more than one connection. Using just one connection is
generally not good for modular programming. For more complex situations, it's a good
practice to assume that the connection you want is not the same one that another part of
the program might need. dblink allows named connections, so you don't need to hope that
the default connection is still the right one. There is also a function named dblink get
connections () that will allow you to see what connections you have active.

There's more...

Remote data sources look like they can be treated as tables, though in practice this doesn't
work in all the ways you might hope and expect.

There is no federated query optimizer. If we join a local and a remote table, then data from the
remote database is simply pulled through, even if it would have been quicker to send through
data, and then pull back matching rows.

The local WHERE clause is not sent to the remote database, so a query like the following would
perform poorly:

180

PUBLISHING

Chapter 7

SELECT *
FROM dblink ('otherdb',

'SELECT * FROM bigtable') AS link (..)
WHERE filtercolumn > 100;

We would need to explicitly add the WHERE clause onto the remote query, like the following:

SELECT *
FROM dblink ('otherdb',
'SELECT * FROM bigtable' ||

' WHERE filtercolumn > 100') AS link (..);

which means that, in general, setting up views of remote data isn't very helpful, as it
encourages users to think that the table location doesn't matter, whereas from a performance
perspective, it definitely does. This isn't really any different from other federated or remote
access database products.

There are also a few performance considerations that you may wish to consider. The first is
that when the remote query executes, the current session waits for it to complete. You can
also execute queries without waiting for them to return using the following functions:

» dblink send query()
» dblink is busy ()
» dblink get result ()

If you are concerned about the overhead of connection time, then you may want to consider
using a session pool. This will reserve a number of database connections that will allow

you to reduce apparent connection time. Look at the connection-pool recipes in the Server
Control chapter.

Another, sometimes easier way of accessing other databases is with a tool named PL/Proxy.
PL/Proxy allows you to create a local database function that is a proxy for a remote database
function. PL/Proxy only works for functions, and some people regard that as a restriction, and
that is why | explained dblink for the main part of this recipe.

Creating a local proxy function is simple:

CREATE FUNCTION my task (VOID)
RETURNS SETOF text AS $$
CONNECT 'dbname=myremoteserver';
SELECT my task();
$$ LANGUAGE plproxy;

PUBLISHING

Database Administration

You need a local function, but you don't need to call a remote function; you can use SQL
statements directly. The following example shows a parameterized function:

CREATE FUNCTION get cust_ email (p_username text)
RETURNS SETOF text AS $$

CONNECT 'dbname=myremoteserver';

SELECT email FROM users WHERE username = p_username;
$$ LANGUAGE plproxy;

PL/Proxy is specifically designed to allow more complex architectures for sharding and load
balancing. The RUN ON command allows us to specify the remote database dynamically on
which we will run the SQL statement. So the preceding example becomes like the following:

CREATE FUNCTION get cust_email (p_username text)
RETURNS SETOF text AS $$

CLUSTER 'mycluster';

RUN ON hashtext (p_username) ;

SELECT email FROM users WHERE username = p_username;
$$ LANGUAGE plproxy;

You'll likely need to read the chapter on Replication also before you begin designing
application architectures using these concepts.

Making views updateable

PostgreSQL supports the SQL Standard command CREATE VIEW, though the views it creates
are not automatically updateable. This could change in later releases, but at 9.0, that difficulty
still exists for the administrator to overcome. We discuss those issues here.

Getting ready

First, you need to consider that only simple views can be made to receive inserts, updates,
and deletes easily. The SQL Standard differentiates between views that are "simple
updateable" and more complex views that could not be expected to be updateable.

So before we proceed, we need to check the understanding of what is a simply updateable
view and what is not. Starting from the cust table as follows:

postgres=# SELECT * FROM cust;

customerid | firstname | lastname | age

———————————— e e
1 | philip | Marlowe | 38
2 | Richard | Hannay | 42
3 | Holly | Martins | 25
4 | Harry | Palmer | 36
4 | Mark | Hall | 47

(5 rows)

182

PUBLISHING

Chapter 7
We create a very simple view on top of it like the following:

CREATE VIEW cust view AS
SELECT customerid

, firstname
, lastname
,age

FROM cust;

Each row in our view corresponds to one row in a single-source table and each column is
referred to directly without a function call. So we expect to be able to make inserts, updates,
and deletes pass through our view into the base table.

The following examples are all views where inserts, updates, and deletes cannot easily be
made to flow to the base table.

If we had views that look like the following:

CREATE VIEW cust_avg AS
SELECT avg (age)
FROM cust;

CREATE VIEW cust_above_ avg age AS
SELECT customerid

,substr (firstname, 1, 20) as fname
,substr (lastname, 1, 20) as lname
,age -
(SELECT avg (age) : :integer
FROM cust) as years_above avg
FROM cust
WHERE age >
(SELECT avg (age)
FROM cust) ;

CREATE VIEW potential spammers AS
SELECT customerid

FROM cust

ORDER BY spam_score(firstname, lastname) DESC
LIMIT 100;

So, before we proceed to the steps to allow any/all of inserts, updates, or deletes to flow from
views to base tables, we need to be clear about whether that makes sense conceptually.

How to do it...

PostgreSQL provides a facility to create query rewrite rules. These are in some ways similar
to Oracle's instead-of triggers; though no other database has an exactly similar concept to
PostgreSQL rules.

PUBLISHING

Database Administration

Let's start from a very simple view that might exist purely for administrative purposes, as follows:

CREATE VIEW cust view AS
SELECT customerid

, firstname
, lastname
,age

FROM cust;

At first, if we try to INSERT into our view, we get the following error:

postgres=# INSERT INTO cust_ view

postgres-# VALUES (5, 'simon', 'riggs', 133);

ERROR: cannot insert into a view

HINT: You need an unconditional ON INSERT DO INSTEAD rule.

So let's try one of those as follows:

CREATE RULE cust_view_insert AS

ON insert TO cust_view

DO INSTEAD

INSERT INTO cust

VALUES (new.customerid, new.firstname, new.lastname, new.age) ;

And now retry our INSERT as follows:

postgres=# INSERT INTO cust_ view
postgres-# VALUES (5, 'simon', 'riggs', 133);
INSERT 0 1

This now works. Let's add rules for UPDATE and DELETE also, by running the following query:

CREATE RULE cust_view update AS
ON update TO cust_view
DO INSTEAD
UPDATE cust SET

firstname = new.firstname
,lastname = new.lastname

,age = new.age
WHERE customerid = old.customerid;
CREATE RULE cust_view_delete AS
ON delete TO cust_view
DO INSTEAD
DELETE FROM cust
WHERE customerid = old.customerid;

184

PUBLISHING

Chapter 7

We've just scratched the surface of what you can achieve with rules, though personally | find
them too complex for widespread use.

You can do a lot of things with rules though, you need to make sure that everything you do
makes sense and has a practical purpose. There are some other important things that |
should mention about rules before you dive in and start using them everywhere.

Rules are applied by PostgreSQL after the SQL has been received by the server and parsed for
syntax errors, but before the planner tries to optimize the SQL statement.

In the rules in the preceding recipe, we reference the values of the old or the new row, just as
we do within trigger functions. Similarly, there are only new values in an INSERT and only old
values in a DELETE.

One of the big downsides of using rules is that you cannot bulk load data into the table using
the copy command. We cannot transform a stream of inserts into a single COPY command,
nor can we do a COPY against the view. Bulk loading requires direct access to the table.

If we have a view like the following:

CREATE VIEW cust minor AS
SELECT customerid

,firstname
, lastname
,age
FROM cust
WHERE age < 18;

then we have some more difficulties. If we wish to update this view, then you might read the
manual, and see we can use a conditional rule by adding a WHERE clause to match the WHERE
clause in the view as follows:

CREATE RULE cust minor update AS
ON wupdate TO cust minor
WHERE new.age < 18
DO INSTEAD
UPDATE cust SET
firstname = new.firstname
,lastname = new.lastname
,age = new.age
WHERE customerid = old.customerid;

PUBLISHING

Database Administration

This fails however, so we need to add two rules, one as an unconditional rule that does
nothing (literally) and needs to exist for internal reasons, and one that does the work we want.

CREATE RULE cust minor_ update dummy AS
ON update TO cust_minor
DO INSTEAD NOTHING;
CREATE RULE cust minor_ update conditional AS
ON update TO cust_minor
WHERE new.age < 18
DO INSTEAD
UPDATE cust SET
firstname = new.firstname
,lastname = new.lastname
,age = new.age
WHERE customerid = old.customerid;

It should be noted that some, or even perhaps many, DBAs find rules to be a serious
annoyance. Here's one more reason why. Let's try doing our main example a different way
using triggers. We'd like to make this view updateable as follows:

CREATE VIEW cust view AS
SELECT customerid

, firstname
, lastname
,age

FROM cust;

We can't create triggers on views, so let's try to create a table instead as follows:

CREATE TABLE cust_view AS SELECT * FROM cust WHERE 1 = 0;

186

PUBLISHING

Chapter 7

We emulate the view by first creating a select rule on the dummy table, and then try to create
triggers on the table for the INSERT, UPDATE, and DELETE actions. The rule only works if the
table is completely empty, and if the rule is named RETURN.

postgres # CREATE RULE " RETURN" AS
ON SELECT TO cust_view
DO INSTEAD
SELECT * FROM cust;
CREATE RULE
postgres # CREATE TRIGGER cust_view modify after trig
AFTER INSERT OR UPDATE OR DELETE ON cust
FOR EACH ROW
EXECUTE PROCEDURE cust_view modify_ trig proc() ;
ERROR: ‘'"cust_view" is not a table

Huh? So what is it if it's not a table?

postgres # DROP TABLE cust view;

ERROR: '"cust view" is not a table
HINT: Use DROP VIEW to remove a view

postgres # DROP VIEW cust view;
DROP VIEW

Wow! That works! Yes, we created a table, then added a rule to it, and it turned the table into
a view. So, now we realize that we can't put triggers on a view, and we can't put a SELECT rule
on a table without it becoming a view. So, this route won't work at all. It is probably best just
to accept that if you want to load data into a table, then you have to refer to the table directly,
rather than use a view. PostgreSQL 9.1 will support INSTEAD OF triggers on views, providing a
full solution to updateable views that follows the SQL Standard.

PUBLISHING

IIIIIIIIII

Monitoring and
Diagnosis

In this chapter, we will cover the following:

» Is the user connected?

» What are they running?

» Are they active or blocked?

» Who is blocking them?

» Killing a specific session

» Resolving an in-doubt prepared transaction
» Is anybody using a specific table?

» When did anybody last use it?

» How much disk space is used by temporary data?
» Why are my queries slowing down?

» Investigating and reporting a bug

» Producing a daily summary of logfile errors

Introduction

In this chapter, you find recipes for some common monitoring and diagnosis actions you want
to do inside your database. They are meant to answer specific questions that you often face
when using PostgreSQL.

[PUBLISHING]

Monitoring and Diagnosis

Monitoring is important

Databases are not isolated entities. They live on computer hardware using CPUs, RAM, and
disk subsystems. Users access the database using networks. Depending on the setup, the
databases themselves may need network resources to function, either by performing some
authentication checks when users log in, or using disks that are mounted over the network
(not generally recommended), or doing remote function calls to other databases.

This means that monitoring only the database is not enough. As a minimum, one should also
monitor everything directly involved in using the database, such as the following:
» Isthe database host available? Does it accept connections?

» How much of the network bandwidth is in use? Have there been network
interruptions and dropped connections?

» Is there enough RAM available for most common tasks? How much is left?

» Is there enough disk space available? When will it run out of disk space?

» Is the disk subsystem keeping up? How much more load can it take?

» Can the CPU keep up with load? How much of spare idle cycles do the CPUs have?

» Are other network services the database access depends on (if any) available? For
example, if you use Kerberos for authentication you have to monitor it as well.

» How many context switches are happening when the database is running?

And, for most of these things, you are interested in history, that is, how things have evolved?
Was everything mostly the same yesterday? Last week? When did the disk usage start
changing rapidly?

For any larger installation, you probably already have something in place for monitoring the
health of your hosts and network.

The two aspects of monitoring are collecting historical data to see how things have evolved
and getting alerts when things go seriously wrong. RRDtool (Round Robin Database Tool)
based tools, such as Cacti or Munin, are quite popular for collecting the historical information
on all aspects of the servers, and presenting this information in an easy-to-follow graphical
form. Seeing several statistics on the same timescale can really help when trying to figure out
why the system is behaving the way it is.

Another aspect of monitoring is getting alerts when something goes really wrong and needs
(immediate) attention.

For alerting, one of the most widely-used tools is the Nagios.

And then, of course, there is SNMP (Simple Network Management Protocol), which is
supported by a wide array of commercial monitoring solutions. Basic support for monitoring
PostgreSQL through SNMP is found in pgsnmpd, available at the following URL:

http://pgsnmpd.projects.postgresqgl.org/

190

[PUBLISHING]

Chapter 8

Providing PostgreSQL information to monitoring tools

The historical monitoring information is best to use when all of it is available from the same
place and at the same timescale. Most monitoring systems have a plugin architecture, so
adding new kinds of data inputs to them means installing a plugin. Sometimes, you may need
to write or develop this plugin, but writing a plugin for something, such as Cacti is easy; you
just have to write a script that outputs monitored values in simple text format.

Some useful things to get into graphs are number of connections, disk usage, number of
queries, number of WAL files, most numbers from pg_stat user_ tables and pg stat

user indexes, and so on.

lul-dbpoolerS _ CPU usage (v2)
loa

80

[=1:]

% CPU(s) time

3 i i i i i
Thu 12: @8 Fri @@: 88 Fri 12:@0 Sat ©0:00

lul-dbpoolers _ Disk I/0 -

.

cciss/cOdd

5.0 k
4.0 k
3.0 k
2.0k
1.0 k

I/0 operations/sec

1]
Thu 12: 88 Fri @@: 88 Fri 12:@0 Sat ©0:00

lul-dbpoolerS _pgh: ebouncer./TOTAL traffic

bps

Thu 12; 00 Fri @@: 88 Fri 12:@0 Sat ©0:00

lul-dbpoolerS _pgh: ebouncer./TOTAL pool

Thu 12: 00

Fri @o:e0 Fri 12:080 Sat @0: 00

connections

lul-dbpoolers -

s

Postgres Connections

4.0 k
3.0 k
2.8 k

1.0k
.

Fri 12:@@ Sat 00:00

Thu 12:00 Fri 00:00

The preceding Cacti screenshot includes data for CPU, disk and network usage, pgbouncer
connection pooler, and number of postgresql client connections. As you can see, they are

nicely correlated.

One Swiss Army knife script, which can be used from both Cacti and Nagios, is check

postgres, available at http://bucardo.org/check postgres/check postgres.
pl.html. It has ready-made reporting actions for a large array of things worth monitoring in
PostgreSQL. Another similar effort for Nagios is available at the following URL:

http://pgfoundry.org/projects/nagiosplugins/

For Munin, there are some PostgreSQL plugins available at the Munin plugin repository at the
following URL:

http://exchange.munin-monitoring.org/plugins/search?keyword=postgres

ACKT

[PUBLISHING

Monitoring and Diagnosis

Where to find more information about generic
monitoring tools

Setting up the tools themselves is a larger topic, and outside the scope of this book. In fact,
each of these tools have more than one book written about them. The basic setup information
and the tools themselves can be found at the following URLSs:

» RRDtool (http://www.mrtg.org/rrdtool/)

» Cacti (http://www.cacti.net/)

» Munin (http://munin-monitoring.org/)

» Nagios (http://www.nagios.org/)

Realtime view using pgAdmin

You can also use pgAdmin to get a quick view of what is going on in the database. To do this,
connect to the database, and then select menu item Tools | Server Status. This will open a
window similar to the following screenshot, showing locks and running transactions:

Database Relation Mo_de Start
13765 rep3_master 24597 hannu 9/31526 RowExclusi... Yes 2010-09-29 ... UPDATE pgbench_branches SET bk
13765 hannu 9/31526 ShareLock No 2010-09-29 ... UPDATE pgbench_branches SET bk
13765 rep3_master 24953 hannu 9/31526 Accessshar... Yes 2010-09-29 ... UPDATE pgbench_branches SET ha
13765 rep3_master 24593 hannu 9/31526 RowExclusi... Yes 2010-09-29 ... UPDATE pgbench_branches SET bt
13765 rep3_master 24671 hannu 9/31526 AccessShar... Yes 2010-09-29 ... UPDATE pgbench_branches SET bk
13765 hannu 9/31526 ExclusivelLock Yes 2010-09-29 ... UPDATE pgbench_branches SET bk
13765 rep3_master 24583 hannu 9/31526 RowExclusi... Yes 2010-09-29 ... UPDATE pgbench_branches SET bk
13766 rep3_master 24586 hannu 11/1192 AccessShar... Yes 2010-09-29 ... UPDATE pgbench_tellers SET thala
13766 rep3_master 24671 hannu 1171192 AccessShar... Yes 2010-09-29 ... UPDATE pgbench_tellers SET tbala
13766 rep3_master 24583 hannu 11/1192 RowExclusi... Yes 2010-09-29 ... UPDATE pgbench_tellers SET tbala
13766 rep3_master 24586 hannu 11/1192 RowExclusi... Yes 2010-09-29 ... UPDATE pgbench_tellers SET tbala
13766 hannu 11/1192 Exclusivelock Yes 2010-09-29 ... UPDATE pabench tellers SET thala *
() >

User Client Client start
SRR

— S
hannu 127.0.0.1:33785 2010-09-29 10:39:34.... <IDLE>

hannu local pipe 2010-09-29 00:48:59.... <IDLE>

londiste_ticker 127.0.0.1:52144 2010-09-29 13:28:25.... <IDLE>

londiste_replicator 127.0.0.1:52161 2010-09-29 13:29:12.... <IDLE>

londiste_replicator 127.0.0.1:52168 2010-09-29 13:29:31.... <IDLE>

londiste_replicator 127.0.0.1:52294 2010-09-29 13:31:12.... <IDLE>

londiste_replicator 127.0.0.1:52520 2010-09-29 13:33:12.... <IDLE>

londiste_ticker 127.0.0.1:34233 2010-09-29 13:39:34.... <IDLE>

hannu local pipe 2010-09-29 13:42:02.... 2010-09-29... 2010-09-29 ... UPDATE pgbench_branches SET bbalance = bbalance +

hannu local pipe 2010-09-29 13:42:02.... 2010-09-29... 2010-09-29 ... UPDATE pgbench_tellers SET thalance = thalance + 269

hannu local pipe . 2010-09-29... 2010-09-29 ... UPDATE pgbench_tellers SET tbalance = tbalance + -342

hannu local pipe . 2010-09-29 ... 2010-09-29 ... UPDATE pgbench_branches SET bbalance = bbalance + ¢

hannu local pipe 2010-09-29 13:42:02.... 2010-09-29... 2010-09-29 ... END;

hannu local pipe 2010-09-29 13:42:02.... 2010-09-29... 2010-09-29 ... UPDATE pgbench_branches SET bbalance = bbalance + ! .
Jreses et 2 1 2 a HIPRATE mabnnh ballnrs £ET thalanen — thalansn 278
Done

192

PACKT

PUBLISHING

Chapter 8

Is the user connected?

Here we show how to learn if a certain database user is currently connected to database.

Getting ready

Make sure that you are logged in as a superuser.

How to do it...

Issue the following query to see if the user bob is connected:
SELECT datname FROM pg stat activity WHERE usename = 'bob';

If this query returns any rows, then database user bob is connected to database. The returned
value is the name of the database to which the user is connected.

PostgreSQL system view pg_stat_activity keeps a track of all running PostgreSQL
backends, including what queries are running, who is connected and when they were
connected, and when the current transaction and current query were started.

There is more information in the pg_stat_activity view than just username. For example,
lets hel the user who asks.

What if | want to know "is that computer connected?”

Often, several different processes may connect as the same database user. In that case, you
actually want to know if there is a connection from a specific connection.

You still can get this information from pg_stat _activity view, as it includes the connected
client's IP addresses and ports. The port is only needed in case you have more than one
connection from the same client computer and need to do further digging to see which
process there connects to which database. Run the following:

SELECT datname,usename,client addr,client port FROM pg stat activity ;

The client addr and client port help you look up the exact computer, and even the
process on that computer that has connected to this database.

[PUBLISHING]

Monitoring and Diagnosis

What are they running?

Here we show how to check what query is currently running.

Getting ready

Make sure that you are logged in as a superuser or as the same database user you want
to check.

Make sure that the parameter track activities = onis set.

This can be done either in the postgresqgl . conf file or by the superuser using the following
SQL statement:

SET track_activities = on

How to do it...

To see what all connected users are running now, just run the following:
SELECT datname,usename, current query FROM pg stat activity ;

On systems with a lot of users, you may notice that the majority of backends are running
a weird query <IDLE>. This denotes the state, where no query is actually running, and
PostgreSQL is waiting for new commands from the user.

To see information for only active queries, exclude the idle ones by running the following:

SELECT datname,usename,current_query
FROM pg stat_activity
WHERE current_query != '<IDLE>' ;

When track activities = onis set, then PostgreSQL collects data about all running
queries. Users with sufficient right can then view this data using system view pg _stat__
activities

The view pg_stat_activities uses a system function named pg stat get activity
(procpid int) that you can use directly to watch for activity of a specific backend by supplying the
process ID as an argument. Giving NULL as argument returns information for all backends.

[PUBLISHING]

Chapter 8

There's more...

Sometimes you don't care about getting all queries currently running, but are just interested in
seeing some of these. Or you may not like to connect to database just to see what is running.

How to catch queries which only run for a few milliseconds

As most queries on modern OLTP (Online Transaction Processing) systems take only a
few milliseconds to run, it is often hard to catch those when simply probing the pg stat
activity table.

To see them actually executing you'd have to slow them down. We don't want to do that!

In PostgreSQL 9.0, there is a contrib module called pg_stat_statements that captures query
execution statistics in real time. See the documentation at the following URL:

http://www.postgresqgl.org/docs/9.0/interactive/pgstatstatements.html

In both cases, you can script the queries and use select pg sleep(5) to getthe <wait>
happen automatically. You can get subsecond waits by using floating numbers, such as pg
sleep (0.5) for a half second delay.

To collect the queries you just forced to be logged you can start tail -£ /var/log/
postgresqgl/postgresgl-9.0-main.log > account queries.log in one window,
then run the preceding lock trick in another and then just use Ctrl-C to kill the tail - £ process.

Now you have a much smaller log in account_queries.log.

How to watch longest queries

Another thing of interest for which you may want to look is long-running queries. To get a list of
running queries ordered by how long they have been executing, use the following:

select
current timestamp - query start as runtime,
datname,
usename,
current query
from pg stat_activity
where current query != '<IDLE>'
order by 1 desc;

This will return currently running queries ordered by how long they have been running, with
the longest ones in front (the first field: order by 1 desc). On busy systems, you may want to
limit the set of queries returned to only the first few ones (add LIMIT 10 to the end), or only
to queries which have been running over a certain time (for queries which have been running
over one minute add 'current timestamp - query start 1'min to the WHERE clause).

PUBLISHING

Monitoring and Diagnosis

Watching queries from ps

If you want, you can also make the queries being run show up in process titles, by setting
the following;:

update process title = on

Although ps or top output is not the best place for watching the database queries; it may
make sense in some circumstances.

See also

The page in PostgreSQL's online documentation, which covers related settings, is available at
the following URL:

http://www.postgresql.org/docs/9.0/interactive/runtime-config-
statistics.html

Are they active or blocked?

Here we show how to find out if a query is actually running, or is it waiting for some other query.

Getting ready

Again, log in as a superuser.

How to do it...

Run the following query:

SELECT datname,usename,current query
FROM pg stat activity
WHERE waiting = true;

You get a list of queries which are waiting on other backends.

The system view pg_stat_activity has a boolean field waiting, which selects pg
terminate backend(procpid) from pg stat activity, where current query =
<IDLE> in transaction, and current timestamp - query start > 'l min'; indicates
that a certain backend is waiting on a system lock.

The preceding query uses it to filter out only queries which are waiting.

196

PUBLISHING

Chapter 8

There's more...

Some more explanations about the preceding may be appropriate here.

No need for "= true”

As the column waiting is already boolean, you can safely omit the = true part from the query
and simply write the following:

SELECT datname,usename,current query
FROM pg stat activity
WHERE waiting;

This catches only queries waiting on locks

The pg_stat_activity.waiting field shows only if the query is waiting on a PostgreSQL
internal lock.

Although this is the main cause of waiting when using pure SQL, it is possible to write something
in any of the PostgreSQL's embedded languages, which can wait on other system resources,
such as waiting for an http response, a file write to complete, or just waiting on timer.

An example:

Write a simple function in PL/PythonU (the U version means untrusted; that is, only
superusers can create functions in this language):

create or replace function wait (seconds float)
returns void as $$

import time;

time.sleep (seconds)

$s

language plpythonu;

When you run the following function:

db=# select wait (10) ;
<it "stops" for 10 seconds herex
wait

it will show up with as not waiting in the pg_stat_activity view, even though the query
is in fact "blocked" on timer.

PUBLISHING

Monitoring and Diagnosis

Who is blocking them?

Once you have found out that some query is blocked, you need to know who or what is
blocking them.

Getting ready

Same as others, just use any superuser account to run the queries.

How to do it...

Run the following query:

SELECT
w.current_query as waiting query,
w.procpid as w_pid,
.usename as w_user,
.current_query as locking query,
.procpid as 1 pid,
.usename as 1 _user,

= B - =

.schemaname || '.' || t.relname as tablename

from pg stat_activity w

join pg locks 11 on w.procpid = 1ll.pid and not 1ll.granted
join pg locks 12 on ll.relation = 1l2.relation and 1l2.granted
join pg stat_activity 1 on 12.pid = l.procpid

join pg stat _user tables t on ll.relation = t.relid

where w.waiting;

It returns process ID, user, and current query about both blocked and blocking backends, and
also the schema and table name of the table that causes the blocking.

This query first selects all waiting queries (where w.waiting), then gets the locks on which
this query is waiting (join pg locks 11 onw.procpid =11.pid and not11.granted),
then looks up the lock which is granted on the same table (join pg locks 12 on
ll.relation=12.relation and 12.granted), and finally looks up a row in pg_stat__
activity corresponding to the granted lock. It also resolves the relation identifier (relid) of
the table to its full name using system view pg_stat user tables.

198

PUBLISHING

Chapter 8

Killing a specific session

Sometimes the only way to let the system as a whole continue is by terminating some
offending database sessions.

Getting ready

Again, this is a superuser-only capability, so log in as a superuser.

How to do it...

Once you have figured out the backend you need to kill, use the function named

pg_terminate backend (processid) to actually Kill it.

When a backend executes the pg terminate backend (processid) function, it sends
a signal SIGQUIT to the backend given as an argument, after checking that the process
identified by the argument processid actually is a PostgreSQL backend.

The backend receiving this signal stops whatever it is doing, and terminates it in a
controlled way.

The client using that backend loses the connection to database. Depending on how it is
written, it may silently reconnect or it may show an error to the user.

Killing the session may not always be what you really want, so consider other options as well.

Try to cancel the query first
You may want to try a milder version pg_cancel backend (processid) first.

The difference between these two is that pg _cancel backend () just cancels the current
query, whereas pg_terminate backend () really Kills the backend.

If the backend won't terminate

If pg terminate backend (processid)won't kill the backend, and you really need to
reset the database state to make it continue processing requests, then you have yet another
option—sending SIGKILL to the offending backend.

[PUBLISHING]

Monitoring and Diagnosis

This can be done only from the command line, as root or user postgres on the same host the
database is running by executing the following:

kill -9 <backendpid>

which kills that backend immediately without giving it a chance to clean up, therefore forcing
the postmaster to also kill all other backends and to restart the whole cluster.

Therefore, it actually does not matter which of the PostgreSQL backends you Kill.

But beware that in case you have set the parameter synchronous _commit to of £, you may
end up losing some supposedly committed transactions if you kill -9 a backend.

So kill -9 is the last resort thing to be done, only if nothing else helps, and not on a
regular basis.

Use statement timeout to clean up queries which take too long

Often you know that you don't have any use for queries running more than x times. Maybe
your web frontend just refuses to wait for more than 10 seconds for a query to complete and
returns some default answer to users if it takes longer, abandoning the query.

In such a case, it is a good idea to set statement timeout =15 sec eitherin
postgresqgl.conf Or as a per user or per database setting, so that queries running
too long don't consume precious resources and make others' queries fail as well.

The queries terminated by statement timeout show up in log as follows:

hannu=# set statement timeout = '3 s';

SET

hannu=# select wait (10);

ERROR: canceling statement due to statement timeout

They used to show up as a more confusing "query canceled due to user request" on the older
version of PostgreSQL.

Killing "Idle in transaction” queries

Sometimes, people start a transaction, run some queries, and then just leave without ending
the transaction. This can leave some system resources in a state where some housekeeping
processes can't be run or they may even have done something more serious, such as locking
a table, thereby causing immediate denial of service for other users needing that table.

You can use the following query to kill all backends that have an open transaction but have
been doing nothing for the last 10 minutes:

select pg terminate backend (procpid)
from pg_stat_activity
where current query = '<IDLE> in transaction'
and current timestamp - query start > '10 min';

200

PUBLISHING

Chapter 8

You can even schedule this to be running every minute while you are trying to find the
specific PHP frontend, which keeps leaving open transactions behind, or you have a lazy
administration leaving psql connection open, or a flaky network that drops clients without the
server noticing it.

You can also kill the backend from command line

Another possibility to terminate a backend is by using a Unix/Linux command named ki1l N,
which sends the signal to process N on the system where it is running. You have to be either
the root user or the user running the database backends (usually postgres) to be able to send
signals to processes.

Resolving an in-doubt prepared transaction

When using 2PC (two phase commit), you may end up in a situation where you kind of have
something locked, but cannot find a backend that holds the locks.

For example:

db=# select t.schemaname || '.' || t.relname as tablename,
db-# 1.pid, l.granted
db-# from pg locks 1 join pg stat user_ tables t

db-# on l.relation = t.relid;
tablename | pid | granted
___________ oo
db.x | | t
db.x | 27289 | £
(2 rows)

has a lock on table db . x, which has no process associated with it.

Getting ready

Look at the recipe on Removing old prepared transactions in Chapter 9 Regular Maintenance

Is anybody using a specific table?

This one helps you when you are in doubt if some obscure table is used any more, or is it just
leftover from old times that just takes up space.

Getting ready

Make sure that you are a superuser, or at least have full rights on the table in question.

201

[PUBLISHING]

Monitoring and Diagnosis

How to do it...

To see if a table is currently in active use, that is, if anyone is using it while you watch, run
the following:

create temp table tmp stat user tables as select * from pg stat user
tables;

Then wait a little, and see what is changed.

select * from pg stat user tables n
join tmp stat user tables t
on n.relid=t.relid

and (n.seq scan,n.idx scan,n.n _tup ins,n.n tup upd,n.n tup del) <>
(t.seq scan,t.idx scan,t.n tup ins,t.n tup upd,t.n tup del);

The table pg_stat user tables is a view that shows current statistics for table usage.
To see if a table is used, you check for changes in its usage counts.

The previous query selects all tables where any of the usage counts for selector data
manipulation have changed.

There's more...

The quick and dirty way

If you are sure that you have no use for the cumulative statistics gathered by PostgreSQL, you
can just reset all table statistics by doing

select pg stat reset()

This sets all statistics to O, and you can detect table use by just looking for tables where any
usage count is not O

Of course, you can make a backup copy of statistics table first, as follows:

create table backup stat user tables as
select current timestamp as snaptime, *
from pg stat user tables;

Collecting daily usage statistics
It is often useful to have historical usage statistics of tables available when trying to solve

performance problems or just understanding the usage patterns.

202

PUBLISHING

Chapter 8

For this purpose, you can collect the usage data in a regular manner daily or even more often
using either cron or a PostgreSQL-specific scheduler like pg_agent.

The following query adds a timestamped snapshot of current usage statistics to the table
created earlier:

insert into backup stat user_ tables
select current timestamp as snaptime, *
from pg stat user tables;

When did anybody last use it?

Once you find out that a table is not used currently, the next question is "when was it last used?"

Getting ready

Get access to the database as a superuser or to the database host computer as user postgres.

How to do it...

PostgreSQL does not have any built-in last-used information about tables, so you have to use
other means to figure it out.

If you have set up a cronjob to collect usage statistics, as described in the previous chapter,
then it is relatively easy to find out the last change date using an SQL query.

Else, you have basically two possibilities, neither of which gives you absolutely reliable answers.

You can either look at actual timestamps of the files in which the data is stored, or you can
use the xmin and xmax system columns to find out the latest transaction ID that has changed
the table data.

Looking at file dates
To find out the file name(s) in which the table data is stored, you have to do the following:

Here is a sample PL/PythonU function that lists main file statistics for files used to store a
table. You need to have PL/PythonU installed in your database for this to work. If you don't
have it, use the following:

CREATE LANGUAGE plpythonu;

to install the language in the database. This assumes you have the support for PL/PythonU
available on the database host.

203

[PUBLISHING]

Monitoring and Diagnosis
First, we create a return type for the function, and then the function itself as follows:

CREATE TYPE fileinfo AS (
filename text,
filesize bigint,
ctime abstime,
mtime abstime,
atime abstime
)i
CREATE OR REPLACE FUNCTION table file info(schemaname text, tablename
text)
RETURNS SETOF fileinfo
AS $3
import datetime, glob, os
db info = plpy.execute("""
select datname as database name,
current setting('data directory') || '/base/' || db.oid as
data directory
from pg database db
where datname = current database()
)
#return db_info([0] ['data_directory']
table info plan = plpy.prepare ("""
select nspname as schemaname,
relname as tablename,
relfilenode as filename
from pg class c
join pg namespace ns on c.relnamespace=ns.oid
where nspname = $1

and relname = $2;
nen o [rtext', 'text'l)
table info = plpy.execute(table info plan, [schemaname, tablename])
filemask = '%s/%s*' % (db_info[0] ['data_directory'], table info[0]
["filename'])
res = []

for filename in glob.glob(filemask) :
fstat = os.stat (filename)
res.append ((
filename,
fstat.st_size,
datetime.datetime.fromtimestamp (fstat.st ctime) .isoformat (),
datetime.datetime.fromtimestamp (fstat.st_mtime) .isoformat (),
datetime.datetime.fromtimestamp (fstat.st atime) .isoformat ()
))
return res
$$ LANGUAGE plpythonu;

204

PUBLISHING

Chapter 8

Now, you can see the latest modification and access times for a table using the following query:

select
max (mtime) as latest _mod,
max (atime) as latest read
from table file info(<schemaname>, <tablenames) ;

The function table file info (schemaname, tablename) returns creation, modification,
and access times for files used by PostgreSQL to store the table data.

The last query uses this data to get the latest time any of these files were modified or read by
PostgreSQL. This is not a very reliable way to get information about the latest use of any table,
but it gives you a rough upper-limit estimate about when it was last modified or read.

If you have shell access to the database host, then you can carry out the preceding steps by
hand, say in case you can't or don't want to install PL/PythonU for some reason.

You can also get the information using built-in functions pg_1s_dir (dirname text) and
pg_stat file(filename text). For example, the following query:

select pg_ls_dir, (select modification from pg _stat_file(pg_ls_dir))
as modtime from pg 1ls dir('.');

lists all files and directories in PostgreSQL data directory.

There's more...

There may be last-use information in future version of PostgreSQL
There has been some discussion recently about adding last-used data to the information
PostgreSQL keeps about tables, so it is entirely possible that answering the question "When
did anybody last use this table?" will be much easier in the next version of PostgreSQL.

How much disk space is used by temporary

data?

In addition to ordinary stable tables, you can also create temporary tables.

Also, PostgreSQL may use temporary files for query processing if it can't fit all the needed data
to memory.

So, how do you find out how much data is used by temporary tables and files?

205

[PUBLISHING]

Monitoring and Diagnosis

Getting ready

Same as previous—you can do this using any untrusted embedded language, or directly on
the database host. You have to use an untrusted language, because trusted ones run in a
sandbox, which prohibits them from accessing the host file system directly.

How to do it...

First, check if your database defines special tablespaces for temporary files as follows:

select current setting('temp tablespaces') ;

When temp_tablespaces has one or more tablespaces

If it does, then your task is easy, because all temporary files, both for temporary table and
those used for query processing, are inside the directories for these tablespaces—just look
up the corresponding directories from pg tablespaces as follows:

select spcname, spclocation from pg tablespace;
Then, a simple du command shows you the space used by temporary files.
A sample session is as follows:

db=# select current setting('temp tablespaces');
current_setting
templ, temp2
(1 row)
db=#
db=# select spcname,spclocation from pg tablespace where spcname in
('templ', 'temp2');

spcname | spclocation
_________ R
templ | /test/pg tmpl
temp2 | /test/pg tmp2
(2 rows)
db=# \q

user@host:~$

sudo du -s /test/pg tmpl /test/pg tmp2
102136 /test/pg tmpl

35144 /test/pg tmp2

Because the amount of temporary disk space used can vary a lot on an active system, you
may want to repeat the last du -s command several times to get a better picture of how the
disk usage changes.

206

PUBLISHING

Chapter 8

When temp_tablespaces is empty

If the temp tablespaces setting is empty, then the temporary tables are stored in the
same directory as ordinary tables, and temp files used for query processing are stored in the
pgsql_ tmp directory inside the main database directory.

Look up the clusters home directory as follows:
select current setting('data directory') || '/base/pgsgl tmp'
The size of this directory gives the total size of current temporary files for query processing.

The total size of temporary files used by this database can be found by running the following
query:

select sum(pg_total relation size(relid))
from pg stat all tables
where schemaname like 'pg %$temp%';

Because all the temporary tables and other temporary on-disk data are stored in files, you use
PostgreSQL's internal tables to find the location of these files, and then determine the total
size of these files.

While the preceding information about temporary tables is correct, it is not the wholes story.

Finding out if temporary file is in use any more

Because temporary files are not carefully preserved as ordinary tables (this is actually one of
the benefits of temporary tables, as less bookkeeping makes them faster) it may sometimes
happen that a system crash can leave around some temporary files, which can, in worst
cases, take up a significant amount of disk space.

As a rule, you can clean up such files by shutting down the PostgreSQL server, and then
deleting all files from the pgsgl_temp directory.

Logging temporary file usage
If youset log temp files = 0 or a larger value, then the creation of all temporary files that
are larger than this value in kilobytes are logged to standard PostgreSQL log.

207

PUBLISHING

Monitoring and Diagnosis

Why are my queries slowing down?

Queries that used to run in tens of milliseconds suddenly take several seconds.
A summary query for a report that used to run in a few seconds takes half an hour to complete.

Here are some ways to find out what is slowing them down.

Getting ready

Any questions of type "why is this different today than it was last week?", are much easier to
answer if you have some kind of historic data collecting set up.

Things such as Cacti or Munin for monitoring general server characteristics (CPU and RAM
usage, disk I/0, network traffic, load average) are very useful to see what has changed
recently, and to try to correlate this with observed performance of some database operations.

Also, collecting historic statistics data from pg_stat_* tables, be that daily, hourly, or even
every five minutes if you have enough disk space, is also very useful for detecting possible
causes for sudden changes or gradual degradation in performance.

If you have both these statistics gatherings going on, then even better. If you have none, then
the question is actually "Why is this query slow?".

But don't despair, because there are some things you can do to try to restore performance.

How to do it...

First, analyze your database as follows:

db_01=# analyse;
ANALYZE

Time: 6231.313 ms
db 01=#

This is the first thing to try, as it is usually cheap and is meant to be run quite often anyway.

If this restores the query performance, or at least improves current performance considerably,
then it means that autovacuum is not doing its job well, and the next thing to do is to check
why it is so.

208

[PUBLISHING]

Chapter 8

Analyze updates statistics about data size and data distribution in all tables. If a table size
has changed significantly without its statistics being updated, then PostgreSQL's statistics-
based optimizer can choose a bad plan. Running the ANALYZE command manually, updates
the statistics for all tables.

There's more...

There are a few other common problems.

Do the queries return significantly more data than earlier?
If you initially tested your queries on almost empty tables, it is entirely possible that you are
querying much more data than you need.

As an example, if you select all users items, and then show the first 10, then this runs very
fast when user has 10 or even 50 items, but not so well when he/she has 50,000.

Check that you don't ask for more data than you need; use the LIMIT clause to return less
data to your application (and to at least give the optimizer a chance to select a plan which
processes less data when selecting and may also have lower startup cost).

Do the queries also run slowly when run alone?
If you can, then try to run the same slow query when the database has no or very little other
queries running concurrently.

If it runs well in this situation, then it may be that the database host is just overloaded (CPU,
memory, or disk I/0) and a plan that worked well under light load, is not so good any more. It
may even be that it is not a very good query plan with which to begin, and you were fooled by
modern computers being really fast.
db=# select count(*) from t;

count

1000000
(1 row)
Time: 329.743 ms

As you can see, scanning one million rows takes just 0.3 seconds on a laptop, a few years old,
if these rows are already cached.

But, if you have a few of such queries running in parallel, and also other queries competing for
memory, this query can slow down an order of magnitude or two.

See chapter, Performance & Concurrency for general performance-tuning advice.

209

[PUBLISHING]

Monitoring and Diagnosis

Is the second run of same query also slow?

This test is related to the previous one, and it checks if the slowdown may be caused by some
of the needed data not fitting in memory, or being pushed out of memory by other queries.

If the second run of the query is fast, then you probably have developed a problem of not
enough memory.

Again, see chapter Performance & Concurrency.

Table and index bloat

Something that can develop over time if some maintenance processes can't be run properly is
table bloat. That is, due to the way MVCC works, your table will contain a lot of old versions of
rows, in case these old versions can't be removed in a timely manner.

There are several ways this can develop, but all involve lots of updates or deletes, and inserts
while the autovacuum is prevented from doing its job of getting rid of old tuples. And it is
possible that even after the old versions are deleted, the table stays at its now acquired large
size, thanks to visible rows being located at the end of table and preventing PostgreSQL

from shrinking the file. There have been cases where a one-row table was grown to several
gigabytes in size.

If you suspect some table may contain bloat, then run the following;:

select pg relation size(relid) as tablesize, schemaname,relname,n live
tup

from pg stat user tables

where relname = <tablenames>;

And see if the relation of tablesizeton live tup makes sense.

For example, if the table size is tens of megabytes, and there are only a small number of rows,
then you have bloat.

» Is anybody using a specific table/Collecting daily usage statistics shows one way
to collect info on table changes

» The whole Chapter, Performance & Concurrency

Investigating and reporting a bug

When you find out that PostgreSQL is not doing what it should, then it's time to investigate.

PUBLISHING

Chapter 8

Getting ready

It is a good idea to make a full copy of your PostgreSQL installation before you start
investigating. This will help you restart several times and be sure that you are in fact
investigating the results of the bug and not chasing your own tail by looking at changes
introduced by your last investigation and debugging attempt.

How to do it...

Try to make a minimal repeatable test scenario which exhibits this bug. Sometimes the bug
disappears while doing it, but mostly it is needed for making it easier for the one who tries to
fix it. It is almost impossible to fix a bug that you can't observe and repeat at will.

If it is about query processing, then usually you can provide minimal dump file (result of
running pg_dump) of your database together with an SQL script that exhibits the error.

If you have corrupt data, then you may want to make (a subset of) the corrupted data files
available to people who have knowledge and time to look at it. Sometimes, you can find such
people on the PostgreSQL hackers list, and sometimes you have to hire someone or even

fix it yourself. The more preparatory work you do yourself and the better you formulate your
questions, the higher is the chance you have of finding help quickly.

If you suspect a data corruption bug and feel adventurous, then you can read about the data
formats at http://www.postgresqgl.org/docs/9.0/static/storage.html, and
investigate your data tables using the pageinspect package from contrib.

And always include at least the PostgreSQL version you are using and the operating system on
which you are using it.

For a full guide, see the end of this chapter.

If everything works really well, then it goes like the following:

» A user submits a well-researched bug report to the PostgreSQL hackers list

» Some discussions follow on the list and the user may be asked to provide some
additional information

» Somebody finds out what is wrong, and proposes a fix
» The fix is discussed on the hackers list

» The bug is fixed, there is a patch for current version and, the fix will be included in
the next version

» Sometimes the fix is backported to older versions

[PUBLISHING]

Monitoring and Diagnosis

Unfortunately, this can go wrong at each step, due to various reasons, such as nobody feeling
that this is his/her area of expertise, the right people not having time and hoping for someone
else to deal with it, and these other people may just not be reading the list at the right
moment.

If this happens, follow up your question in a day or two to try to understand why there was
no reaction.

The official PostgreSQL bug/problem reporting guides
If you follow the following URLs, you have a high chance of getting your questions answered:

http://wiki.postgresqgl.org/wiki/Guide to reporting problems

http://wiki.postgresqgl.org/wiki/SlowQueryQuestions

Producing a daily summary of logfile errors

PostgreSQL can generate gigabytes of logs per day. Lots of data is good in case you want
to investigate some specific event, but it is not what you will use for daily monitoring of
database health.

Getting ready

Make sure that your PostgreSQL is set up to rotate the log files daily.
A default setup will do exactly the following;:
log_rotation_age = 1d
Then get a PostgreSQL log processing program. Here, we describe how to do it using pgFouine.

For most Linux systems, you should be able to use your default package manager to install
pgFouine.

Configure your PostgreSQL to produce logfiles in a format that pgFouine understands.
Select logging to syslog. Use a modern version of syslogd for high-traffic databases.

How to do it...

Set up a cron job to run a few minutes after the default log rotation time. You can find the time
by looking at timestamps of already rotated log files; they all have similar times.

[PUBLISHING]

Chapter 8
Run the following:

pgfouine.php -file /var/log/postgressgl/postgresgl-9.0-main.log.1l
-reports n-mostfrequenterrors > errors.html

You can also set it up to e-mail the generated error report to the DBA at that time.

PgFouine condenses and ranks error messages for easy viewing, and produces a nicely
formatted report in HTML. From that report, you can find out the most frequent errors.

As a rule, it is a good practice not to tolerate errors in database logs if you can avoid it. Once
the errors start showing up in the log and report, you should find the cause of the errors and
fix them.

While it is tempting to leave the errors there, as they do no harm and consider them just a
small nuisance, it is often true, that simple errors are indication of other problems in the
application, which if not found and understood may lead to all kinds of larger problems, such
as security breaches or eventual data corruption at the logical level.

Writing your own log processor

If you have only a small number of errors in your log files, then it may be sufficient to just run
each logfile through grep to find errors:

user@dbhost: $ egrep "FATAL|ERROR" postgresgl-9.0-main.log

See also

» Home page for pgFouine is at the following website:
http://pgfouine.projects.postgresql.org/
» You can get much more information on setting up pgFouine at the following URL:
http://pgfouine.projects.postgresqgl.org/tutorial .html
» Another similar tool is PQA (Practical Query Analysis), available at the following URL:
http://pga.projects.postgresql.org/
PQA is written in Ruby, so if you are good at using Ruby, you may prefer this one.

In PostgreSQL 9.0, there is also a contrib module pg stat statements that captures query
execution statistics in real time. See the documentation at the following URL:

http://www.postgresqgl.org/docs/9.0/interactive/pgstatstatements.html

213

PUBLISHING

IIIIIIIIII

Regular Maintenance

In this chapter, we will cover the following:

» Controlling automatic database maintenance

» Avoiding auto freezing and page corruptions

» Avoiding transaction wraparound

» Removing old prepared transactions

» Actions for heavy users of temporary tables

» ldentifying and fixing bloated tables and indexes
» Maintaining indexes

» Finding unused indexes

» Carefully removing unwanted indexes

» Planning maintenance

Introduction

PostgreSQL prefers regular maintenance, and there is a recipe discussing
planning maintenance.

We recognize that you're here for a reason and are looking for a quick solution to your needs.
You're probably thinking fix me first and I'll plan later. So off we go.

PostgreSQL provides a utility command named VACUUM, which is a jokey name for a garbage
collector that sweeps up all the bad things and fixes them, or at least most of them. That's the
single most important thing you need to remember to do—I say single thing because closely
connected to that is the ANALYZE command, that collects optimizer statistics. It's possible to
run VACUUM and ANALYZE as a single joint command VACUUM ANALYZE, plus those actions
are automatically executed for you when appropriate by autovacuum, a special background
process that forms part of the PostgreSQL server.

[PUBLISHING]

Regular Maintenance

VACUUM performs a range of clean up activities, some of them too complex to describe
without a whole sideline into internals. VACUUM has been heavily optimized over a 10-year
period to take the minimum required lock levels on tables, and execute in the most efficient
manner possible, skipping all unnecessary work, and using L2 cache CPU optimizations when
work is required.

Many experienced PostgreSQL DBAs will prefer to execute their own VACUUMSs, though
autovacuum now provides a fine degree of control, and that can save you much time by
enabling and controlling it. Using both manual and automatic vacuuming gives you both
control and a safety net.

Controlling automatic database

maintenance

Autovacuum is enabled by default in PostgreSQL 9.0, and mostly does a great job of maintaining
your PostgreSQL database. | say mostly because it doesn't know everything you do about the
database, such as when would be the best time to perform maintenance actions.

Getting ready

Exercising control requires some thinking about what you actually want:

» Which are the best times of day to do things? When are system resources
more available?
» Which days are quiet, and are which not?

» Which tables are critical to the application, and which are not?

How to do it...

The first thing to do is to make sure autovacuum is switched on. You must have both the
following parameters enabled in your postgresql . conf:

» autovacuum = on

» track counts=on

PostgreSQL controls autovacuum with 35 individually tunable parameters. That provides a
wide range of options, though can be a little daunting.

The following parameters can be set in postgresqgl . cont:

» autovacuum
» autovacuum analyze scale factor

» autovacuum analyze threshold

216

[PUBLISHING]

Chapter 9

>

autovacuum_freeze_ max age
autovacuum max workers
autovacuum naptime
autovacuum_vacuum_ cost delay
autovacuum vacuum_cost limit
autovacuum vacuum_scale factor
autovacuum_vacuum_threshold

log autovacuum min duration

Individual tables can be controlled by "storage parameters", which are set using the following;:

ALTER TABLE mytable SET (storage parameter = value) ;

The storage parameters that relate to maintenance are as follows:

>

autovacuum_enabled
autovacuum_vacuum cost delay
autovacuum vacuum_cost limit
autovacuum_ vacuum_scale factor
autovacuum_ vacuum_threshold
autovacuum_ freeze min age
autovacuum_ freeze max age
autovacuum_ freeze table age
autovacuum_analyze scale_ factor

autovacuum_analyze threshold

and "toast" tables can be controlled with the following parameters:

toast.autovacuum enabled
toast.autovacuum vacuum cost delay
toast.autovacuum_vacuum cost limit
toast.autovacuum vacuum scale factor
toast.autovacuum vacuum_ threshold
toast.autovacuum_ freeze min age
toast.autovacuum freeze max age
toast.autovacuum freeze table age
toast.autovacuum analyze scale factor

toast.autovacuum_analyze threshold

PUBLISHING

Regular Maintenance

If autovacuum is set, then autovacuum will wake up every autovacuum_naptime seconds, and
decide whether to run VACUUM and/or ANALYZE commands.

There will never be more than autovacuum_max_workers maintenance processes running

at any one time. As these autovacuum slaves perform 1/0, they accumulate cost points,

until they hit the autovacuum_vacuum_cost_limit, after which they sleep for autovacuum_
vacuum_cost_delay. This is designed to throttle the resource utilization of autovacuum to
prevent it from using all available disk performance, which it should never do. So, increasing
autovacuum_vacuum_cost_delay will slow down each VACUUM to reduce the impact on

user activity. Autovacuum will run an ANALYZE command when there have been at least
autovacuum_analyze_threshold changes, and a fraction of the table defined by autovacuum_
analyze_scale_factor has been inserted, updated, or deleted.

Autovacuum will run a VACUUM command when there have been at least autovacuum_vacuum_
threshold changes, and a fraction of the table defined by autovacuum_vacuum_scale_factor has
been updated or deleted.

If you set log_autovacuum_min_duration, then any autovacuum that runs for longer than this
value will be logged to the server log, like the following:

2010-04-29 01:33:55 BST (13130) LOG: automatic vacuum of table
"postgres.public.pgbench accounts": index scans: 1

pages: 0 removed, 3279 remain

tuples: 100000 removed, 100000 remain

system usage: CPU 0.19s/0.36u sec elapsed 19.01 sec
2010-04-29 01:33:59 BST (13130) LOG: automatic analyze of table
"postgres.public.pgbench accounts"

system usage: CPU 0.06s/0.18u sec elapsed 3.66 sec

Most of the preceding global parameters can also be set at the table level. For example, if you
think that you don't want a table to be autovacuumed, then you can set:

ALTER TABLE big table SET (autovacuum enabled = off);

It's also possible to set parameters for toast tables. The toast table is the location where
oversize column values get placed, which the documents refer to as "supplementary storage
tables". If there are no oversize values, then the toast table will occupy little space. Tables with
very wide values often have large toast tables. Toast (stands for the oversize attribute storage
technique) is optimized for UPDATE. If you have a heavily updated table, the toast table is
untouched, so it may makes sense to turn off autovacuuming of the toast table as follows:

ALTER TABLE pgbench accounts
SET (autovacuum vacuum cost delay = 20
,toast.autovacuum enabled = off);

PUBLISHING

Chapter 9

which will turn off autovacuuming of the "toast" table.

Note that autovacuuming of the toast table is performed completely separately from the main
table, even though you can't ask for an explicit include/exclude of the toast table yourself
when running VACUUM.

Use the following query to display the reloptions for tables and their toast tables:

postgres=# SELECT n.nspname, c.relname,
pg_catalog.array to string(c.reloptions || array(
select 'toast.' ||
x from pg catalog.unnest (tc.reloptions) x),', ')
as relopts
FROM pg catalog.pg class c
LEFT JOIN
pg_catalog.pg class tc ON (c.reltoastrelid = tc.oid) JOIN
pg _namespace n ON c.relnamespace = n.oid

WHERE c.relkind = 'r'

AND nspname NOT IN ('pg catalog',6 'information schema') ;

nspname | relname | relopts

_________ o o g

public | pgbench accounts | fillfactor=100,
autovacuum enabled=on,
autovacuum vacuum cost_delay=20

public | pgbench tellers | fillfactor=100

public | pgbench branches | fillfactor=100

public | pgbench history |

public | text archive | toast.autovacuum enabled=off

VACUUM allows inserts, updates, and deletes while it runs, though it prevents actions such as
ALTER TABLE and CREATE INDEX. Autovacuum can detect if a user requests a conflicting
lock on the table while it runs, and will cancel itself if it is getting in the user's way.

Note that VACUUM does not shrink a table when it runs, unless there is a large run of space

at the end of a table, and nobody is accessing the table when we try to shrink it. To properly
shrink a table, you need VACUUM FULL. That locks up the whole table for a long time, and
should be avoided, if possible. VACUUM FULL will literally rewrite every row of the table, and
completely rebuild all indexes. That process is faster in 9.0 than it used to be, though it's still a
long time for larger tables.

PUBLISHING

Regular Maintenance

There's more...

postgresqgl . conf also allows "include directives", which look like the following;:

include 'autovacuum.conf'

These specify another file that will be read at that point, just as if those parameters had been
included in the main file.

This can be used to maintain multiple sets of files for autovacuum configuration. Let's say
we have a website that is busy, mainly during the daytime, with some occasional night time
use. We decide to have two profiles, one for daytime, when we want only less aggressive
autovacuuming, and another at night, where we allow more aggressive vacuuming.

We add the following lines to postgresql . conf:

» autovacuum = on
» autovacuum max workers =3

» include 'autovacuum.conf'
and remove all other autovacuum parameters.
We then create one file named autovacuum. conf . day, containing the following parameters:

» autovacuum analyze scale factor=0.1
» autovacuum analyze threshold =50

» autovacuum vacuum cost delay =30

» autovacuum vacuum_ cost limit =-1

» autovacuum vacuum_ scale factor=0.2

» autovacuum vacuum_ threshold =50
and another file named autovacuum. conf .night, that contains the following parameters:

» autovacuum analyze scale factor =0.05
» autovacuum analyze threshold =50

» autovacuum vacuum cost delay =10

» autovacuum vacuum_ cost limit =-1

» autovacuum vacuum_ scale factor=0.1

» autovacuum vacuum_ threshold =50

To swap profiles, we would simply do the following actions:

220

PUBLISHING

Chapter 9

$ 1ln -sf autovacuum.conf.night autovacuum.conf

$ pg ctl -D datadir reload # server reload command
(customized depending upon your platform).

This then allows us to switch profiles twice per day without needing to edit the configuration
files. You can also tell easily which is the active profile simply by looking at the full details of
the linked file (using Is -1). The exact details of the schedule are up to you; night/day was just
an example, which is unlikely to suit everybody.

See also

autovacuum_freeze max_age is explained in the recipe Avoiding auto freezing, as are the
more complex table-level parameters.

Avoiding auto freezing and page corruptions

There are some aspects of VACUUM that are complex to explain why they exist, though have
some occasional negative behaviors. Let's look more deeply at those and find some solutions.

Getting ready

PostgreSQL performs regular sweeps to clean out old transaction identifiers, which is known
as "freezing". It does this to defer transaction wraparound, which is discussed in more detail
in the next recipe.

There are two routes that a row can take in PostgreSQL: the row version dies and needs to be
removed by VACUUM, or a row version gets old enough to need to be frozen, also performed by
the VACUUM process.

Why do we care? Say we load a table with 100 million rows. Everything is fine. When those
rows have been there long enough to begin being frozen, the next VACUUM on that table
will re-write all of these rows to freeze their transaction identifiers. Put that another way,
autovacuum will wake up and start using lots of I/0 to perform the freezing.

How to do it...

The most obvious way to forestall that exact problem is to explicitly VACUUM a table after a
major load. Of course that doesn't remove the problem entirely, and you might not have time
for that.

Many people's knee-jerk reaction is to turn off autovacuum, because it keeps waking up
at the most inconvenient times. My way is described in the recipe, Controlling automatic
database maintenance.

221

[PUBLISHING]

Regular Maintenance

Freezing takes place when a transaction identifier on a row becomes more than vacuum_
freeze_min_age transactions older than the current next value. Normal VACUUMSs will perform
a small amount of freezing as you go, and in most cases, you won't notice at all. As explained
in the earlier example, large transactions leave many rows with the same transaction
identifiers, so those might cause problems at freezing time.

VACUUM is normally optimized to look only at chunks of a table that require cleaning. When
a table reaches vacuum_freeze_table_age, we ignore that optimization, and scan the whole
table. While it does so, it's fairly likely to see rows that need freezing, which need to be re-
written. So that is what causes the great increase in 1/0.

If you fiddle with those parameters to try to forestall heavy VACUUMSs, then you'll find that the
autovacuum_freeze max_age parameter controls when the table will be scanned by a
forced VACUUM. To put that another way, you can't turn off the need to freeze rows, but you
can get to choose when this happens. My advice is to control autovacuum as described in
previous recipe, or perform explicit VACUUMSs at a time of your choosing.

VACUUM is also an efficient way to confirm the absence of page corruptions, so it is worth
scanning the whole database from time-to-time, every block. To do this, you can run the
following script on each of your databases:

SET vacuum_freeze table age = 0;
VACUUM;

You can do this table-by-table as well; there's nothing special about whole database VACUUMs
anymore—in earlier versions of PostgreSQL this was important, so you may read in random
places on the web that this is a good idea.

If you've never had a corrupt block, then you may only need to scan maybe every

two-to-three months. If you start to get corrupt blocks, then you may want to increase

the scan rate to confirm everything is OK. Corrupt blocks are usually hardware-induced,
though they show up as database errors. It's possible but rare that the corruption was instead
from a PostgreSQL bug.

There's no easy way to fix page corruptions at present. There are ways to investigate and
extract data from corrupt blocks, for example, using the contrib/pageinspect utility | wrote.

Avoiding transaction wraparound

To many users, "transaction wraparound" sounds like a disease from space. Mentioning
"transaction wraparound" usually earns the speaker points for technical merit. Let's take a
look at it, and how to avoid it.

222

[PUBLISHING]

Chapter 9

Getting ready

First: have you seen the following message?

WARNING: database "postgres" must be vacuumed within XXX transactions.

HINT: To avoid a database shutdown, execute a database-wide VACUUM in that database.
You might also need to commit or roll back old prepared transactions.

Or even worse, the following message:

ERROR: database is not accepting commands to avoid wraparound data loss in database
"templateQ"

HINT: Stop the postmaster and use a standalone backend to vacuum that database.
You might also need to commit or roll back old prepared transactions.

If not, then you don't need to do anything apart from normal planned maintenance. Those
messages are reported to users, and they are also written to the server log.

How to do it...

If you have a support provider, now is a good time to call. Don't panic, but technical bravado
can land you in worse situations than in which you already are. Let's continue to describe how
to get out of this.

If you've received the WARNING, then follow both hints. First, let's do the suggested
VACUUM on the appropriate database; it might not be "postgres", so replace the
appropriate database name.

Either run the following:

$ vacuumdb postgres

or use the following:

psgl -c "VACUUM" postgres

or use your admin tool to initiate a VACUUM on the appropriate database.

Next, find and follow the recipe, Removing old prepared transactions.

223

[PUBLISHING]

Regular Maintenance

PostgreSQL uses internal transaction identifiers that are four bytes long, so we only have
2731 transaction ids (about two billion). PostgreSQL wraps around and starts again from the
beginning when that wraps around, allocating new identifiers in a circular manner. The reason
we do this is that moving to an eight-byte identifier has various other negative effects and
costs that we would rather not pay, so we keep the four-byte transaction identifier, which also
has costs.

PostgreSQL is designed to continue using ids even after the system wraps. Properly
maintained, everything will keep working forever and you'll never notice what happens
on the inside. To allow that to happen we need to run regular VACUUMs.

There's more...

If you received the aforementioned ERROR, and the database is no longer accepting
commands you're probably wondering what the phrase use a standalone backend to
vacuum that database means.

A "standalone backend" means running the database server from just a single executable
process. This is the equivalent of *nix run-level 1, also known as single user mode. We restrict
access to the database to just a single user.

The command to do this is the following, noting that the --single must be the very first
command on the command line:

$ postgres --single -D /full/path/to/datadir postgres
which then returns the following command line prompt:

PostgreSQL stand-alone backend 9.0

backend>
and you can then run the VACUUM from there, as follows:

PostgreSQL stand-alone backend 9.0
backend> VACUUM;

backend>

when you're finished, type <CTRL>-D (or whatever you have set EOF to be for your terminal
window) once or twice if you also used the -5 option.

You should also check for old prepared transactions as described in Removing old prepared
transactions.

224

[PUBLISHING]

Chapter 9

See also

The recipe, Avoiding auto freezing, may also be relevant, or at least be an interesting read in a
related area.

Removing old prepared transactions

You may have been routed here from other recipes, so you might not even know what
prepared transactions are, let alone what an old one looks like.

The good news is that prepared transactions don't just happen, they happen in certain
specific situations. If you don't know what I'm talking about, it's OK, you won't need to, and
better still, you probably don't have any either.

Prepared transactions are part of the "two-phase commit" feature, also known as 2PC. A
transaction commits in two stages rather than one, allowing multiple databases to have
synchronized commits. It's typical use is to combine multiple "resource managers" using
the XA protocol, usually provided by a Transaction Manager (TM), as used by the Java
Transaction API (JTA) and others. If none of that meant anything to you, then you probably
don't have any prepared transactions.

Getting ready

First, check the setting of max_prepared_transactions. If this is zero, then you don't
have any. If you still have no idea what I'm talking about, then set the parameter to zero.

SHOW max prepared transactions;

If your setting is more than zero, then look to see if you have any. As an example, you may find
something like the following:

postgres=# SELECT * FROM pg prepared xacts;
-[RECORD 1 J---------------"--"-----——--—-—-—-—--
transaction | 121083

gid | prepl

prepared | 2010-03-28 15:47:57.637868+01
owner | postgres

database | postgres

where the gid ("global identifier") will usually have been automatically generated.

225

[PUBLISHING]

Regular Maintenance

How to do it...

Removing a prepared transaction is also referred to as "resolving in-doubt transactions". The
transaction is literally stuck between committing and aborting. The database or transaction
manager crashed, leaving the transaction mid-way through the two-phase commit process.

If you have a connection pool of 100 active connections and something crashes, you'll
probably find 1 to 20 transactions stuck in the prepared state, depending upon how long your
average transaction is.

To resolve the transaction, we need to decide whether we want that change, or not. The best
way is to check what happened externally to PostgreSQL. That should help you decide.

If you do need further help, look at the There's more section.
If you wish to commit the changes, then:

COMMIT PREPARED 'prepl';
or if you want to rollback the changes then:

ROLLBACK PREPARED 'prepl';

Prepared transactions are persistent across crashes, so you can't just do a fast restart to
get rid of them. They have both an internal transaction identifier and an external "global
identifier". Either of those can be used to locate locked resources, and decide how to resolve
the transactions.

There's more...

If you're not sure what the prepared transaction actually did, you can go and look, though it is
time consuming. The pg locks view shows locks are held by prepared transactions. You can
get a full report of what is being locked using the following query:

postgres=# SELECT 1l.locktype, x.database, 1l.relation, 1l.page,
1l.tuple,l.classid, 1l.objid, 1l.objsubid,
1l .mode, x.transaction, x.gid, x.prepared,

X.owner
FROM pg locks 1 JOIN pg prepared xacts x
ON l.virtualtransaction = '-1/' ||

X.transaction: :text;

226

[PUBLISHING]

Chapter 9

The documents mention that you can join pg_locks to pg_prepared xacts, though they
don't mention that if you join directly on the transaction id, all it tells you is that there is a
transaction lock, unless there are some row-level locks. The table locks are listed as being
held by a virtual transaction. A simpler query is the following;:

postgres=# SELECT DISTINCT x.database, l.relation
FROM pg locks 1 JOIN pg prepared xacts x

ON l.virtualtransaction = '-1/' ||
X.transaction::text
WHERE 1.locktype != 'transactionid';
database | relation
__________ b
postgres | 16390
postgres | 16401
(2 rows)

This tells you which relations in which databases have been touched by the remaining
prepared transactions. We can't tell the names because we'd need to connect to those
databases to check.

You can then fully scan each of those tables, looking for changes like the following;:
SELECT * FROM table WHERE xmin = 121083;

which will show you all the rows in that table inserted by transaction 121083, taken from the
transaction column of pg_prepared_xacts.

Actions for heavy users of temporary tables

If you are a heavy user of temporary tables in your applications, then there are some
additional actions you may need to perform.

How to do it...

There are four main things to check, which are as follows:

1. Make sure you run VACUUM on system tables, or enable autovacuum to do this for you.
2. Monitor running queries to see how many and how large temporary files are active.

3. Tune memory parameters. Think about increasing the temp_buffers parameter,
though be careful not to overallocate memory by doing so.

4. Separate temp table I/0. In a query intensive system, you may find that read/write to
temporary files exceeds reads/writes on permanent data tables and indexes. In this
case, you should create new tablespace(s) on separate disks, and ensure that the
temp_tablespaces parameter is configured to use the additional tablespace(s).

227

[PUBLISHING]

Regular Maintenance

In PostgreSQL 9.0, when we create a temporary table, we insert entries into the catalog tables
pg_class and pg_attribute. These catalog tables and their indexes begin to grow and to bloat,

an issue covered in later recipes. To control that growth, you can either VACUUM those tables
manually, or set autovacuum = on in postgreql . conf. You cannot run ALTER TABLE against
system tables, so it is not possible to set specific autovacuum settings for any of these tables.

If you VACUUM the system catalog tables manually, make sure you get all of the system tables.
You can get the full list of tables to VACUUM using the following query:

postgres=# SELECT relname, pg relation size (oid)
FROM pg class

WHERE relkind in ('i','r') and relnamespace = 11
ORDER BY 2 DESC;

relname | pg_relation size
_________________________________ oo e e e oo
pPg_proc | 450560
pg_depend | 344064
pg_attribute | 286720
pg_depend depender index | 204800
pg_depend reference index | 204800
pPg_proc_proname_args nsp index | 180224
pg_description | 172032
pg_attribute relid attnam index | 114688
pg_operator | 106496
pg_statistic | 106496
pg_description o ¢ o index | 98304
pg_attribute relid attnum index | 81920
pg_proc_oid index | 73728
pg_rewrite | 73728
pg_class | 57344
pg_type | 57344
pg_class relname nsp index | 40960

... (partial listing)

The preceding values are for a newly created database. These tables can get very large if
not properly maintained, with values of 11 GB of for one index being witnessed at one
unlucky installation.

228

PUBLISHING

Chapter 9

Identifying and fixing bloated tables

and indexes

PostgreSQL implements MVCC (Multi-Version Concurrency Control), that allows users
to read data at the same time as writers make changes. This is an important feature for
concurrency in database applications, as it can allow the following:

» Better performance because of fewer locks
» Greatly reduced deadlocking

» Simplified application design and management

MVCC is a core part of PostgreSQL and cannot be turned off, nor would you really want it to
be. The internals of MVCC have some implications for the DBA that need to be understood.
The price for these benefits is that SQL UPDATE command can cause tables and indexes to
grow in size because they leave behind dead row versions. DELETEs and aborted INSERTs
take up space that must be reclaimed by garbage collection. VACUUM is the mechanism by
which we reclaim space, though there is also another internals feature named HOT, which
does much of this work automatically for us.

Knowing this, many people become worried by and spend much time trying to rid themselves
of dead row versions. Many users will be familiar with tools to perform tasks, such as
defragmentation, shrinking, reorganization, and table optimization. These things are
necessary, though you should not be unduly worried by the need for vacuuming in PostgreSQL.
Many users execute VACUUM far too frequently, while at the same time complaining about the
cost of doing so.

This recipe is all about understanding when you need to run VACUUM by estimating the
amount of bloat in tables and indexes.

How to do it...

The best way to understand things is to look at things the same way that autovacuum does. Use
the following query, derived by Greg Smith for his PostgreSQL 9.0 High Performance book, also
by Packt. The calculations are derived directly from the autovacuum documentation.

CREATE OR REPLACE VIEW av_needed AS
SELECT *,
n dead tup > av_threshold AS "av _needed",
CASE WHEN reltuples > 0
THEN round(100.0 * n dead tup / (reltuples))

ELSE O

END AS pct dead
FROM
(SELECT

229

[PUBLISHING]

Regular Maintenance

N.nspname, C.relname,
pg_stat get tuples inserted(C.oid) AS n tup ins,
pg _stat get tuples updated(C.oid) AS n_tup upd,
pg _stat get tuples deleted(C.oid) AS n_tup del,
pg_stat get tuples hot updated(C.oid)::real /
pg_stat get tuples updated(C.oid) AS HOT update ratio,
pg _stat get live tuples(C.oid) AS n live tup,
pg_stat get dead tuples(C.oid) AS n _dead tup,
C.reltuples AS reltuples, round (
current setting('autovacuum vacuum_ threshold')::integer

+current setting('autovacuum vacuum scale factor')::numeric
* C.reltuples)

AS av_threshold, date trunc('minute', greatest(pg stat get last

vacuum_time(C.oid),pg stat get last autovacuum time(C.oid))) AS lasE_
vacuum, date trunc('minute', greatest(pg stat get last analyze time(C.
oid) ,pg stat get last analyze time(C.oid))) AS last analyze

FROM pg class C LEFT JOIN
pg_index I ON C.oid = I.indrelid
LEFT JOIN pg namespace N ON (N.oid = C.relnamespace)

WHERE C.relkind IN ('r', 't'")
AND N.nspname NOT IN ('pg catalog', 'information schema') AND
N.nspname !~ '“pg_toast'
) AS av

ORDER BY av_needed DESC,n _dead tup DESC;
which we can then use to look at individual tables as follows:

postgres=# \x
postgres=# SELECT * FROM av_needed

2010-04-29 01:33:00+01
2010-04-28 15:21:00+01

last vacuum
last _analyze

WHERE relation = 'public.pgbench accounts';
-[RECORD 1]J----#-------—-=——————————————
nspname | public
relname | pgbench accounts
n _tup ins | 100001
n_tup upd | 117201
n_tup del | 1
hot update ratio | 0.123454578032611
n live tup | 100000
n_dead_tup | o
reltuples | 100000
av_threshold | 20050
|
|
av_needed | £
pct_dead | o
230

PUBLISHING

Chapter 9

We can compare the number of dead row versions, shown as n_dead_tup against the
required threshold, av_threshold.

The above query doesn't take into account table-specific autovacuum thresholds. It could
do if you really need that, though the main purpose of the query is to give us information
to understand what is happening, and then set the parameters accordingly, not the other
way around.

Notice that the table query shows insert, updates and deletes, so you can understand your
workload better. There is also something named the HOT update ratio. This shows the
fraction of updates that take advantage of the HOT feature, which allows a table to self-
vacuum as the table changes. If that ratio is high, then you may avoid VACUUMs altogether,
or at least for long periods. If the ratio is low, then you will need to execute VACUUMs or
autovacuums more frequently. Note that the ratio never reaches 1.0, so if you have better
than 0.95, then that is very good, and you need not think about it further.

HOT updates take place when the UPDATE statement does not change any of the column
values that are indexed by any index. If you change even one column that is indexed by just
one index then it will be a non-HOT update, and there will be a performance hit. So careful
selection of indexes can improve update performance and reduce the need for maintenance.
Also, if HOT updates do occur, though not often enough for your liking, you might try to
decrease the fillfactor storage parameter for the table. Remember that this will only be
important on your most active tables. Seldom-touched tables don't need much tuning.

So, to recap: non-HOT updates cause indexes to bloat. The following query is useful in
investigating index size, and how that changes over time. It runs fairly quickly, and can
be used to monitor whether your indexes are changing in size over time.

SELECT
nspname, relname,
round (100 * pg relation size(indexrelid) /
pg _relation size(indrelid)) / 100
AS index ratio,
P9 _size pretty(pg relation size(indexrelid))
AS index size,
pg size pretty(pg relation size (indrelid))
AS table size
FROM pg index I
LEFT JOIN pg class C ON (C.oid = I.indexrelid)
LEFT JOIN pg namespace N ON (N.oid = C.relnamespace)
WHERE
nspname NOT IN ('pg catalog', 'information schema', 'pg toast') AND
C.relkind='1i' AND
pg_relation size(indrelid) > 0;

231

[PUBLISHING]

Regular Maintenance

Another route is to use the contrib/pgstattuple module, supplied with PostgreSQL. This
provides overkill statistics about what's happening in your tables and indexes, which it derives
by scanning the whole table or index, and literally counting everything. It's very good, and | am
not dismissing it. Just use carefully: if you have time to scan the table, you may as well have
VACUUMed the whole table anyway.

Scan tables using pgstattuple () as follows:

test=> SELECT * FROM pgstattuple('pg catalog.pg proc') ;

-[RECORD 1]------ b
table len | 458752
tuple_ count | 1470
tuple len | 438896
tuple percent | 95.67
dead_tuple count | 11
dead_tuple len | 3157
dead_tuple percent | 0.69
free_space | 8932
free percent | 1.95

and scan indexes using pgstatindex () as follows:

postgres=> SELECT * FROM pgstatindex('pg cast oid index') ;
-[RECORD 1]------ +------

version

tree level

index_ size
root_block no
internal pages
leaf pages

empty pages
deleted pages
avg_leaf_density
leaf fragmentation

You may want this as a Nagios plugin.

Look at check_postgres_bloat as part of the check_postgres plugins. That provides some
flexible options to assess bloat. Unfortunately, its not that well documented, though if you've
read this, it should make sense. You'll need to play with it to get the thresholding correct
anyway, so that shouldn't be a problem.

232

PUBLISHING

Chapter 9

Note also that the only way to know for certain the exact bloat of a table or index is to scan the
whole relation. Anything else is just an estimate, and might lead to you running maintenance
either too early or too late.

Maintaining indexes

Indexes can become a problem in many database applications that involve a high proportion
of inserts/deletes. Just as tables can become bloated, so do indexes.

In the last recipe we saw that non-HOT updates can cause bloated indexes. Non-primary
key indexes are also prone to some bloat from normal inserts, as is common in most
relational databases.

Autovacuum does not detect bloated indexes, nor does it do anything to rebuild indexes.
So we need to look at ways to maintain indexes.

Getting ready

PostgreSQL supports commands that will rebuild indexes for you. The client utility reindexdb
allows you to execute the REINDEX command in a convenient way from the operating system:

$ reindexdb

This executes the SQL REINDEX command on every table in the default database. If you want
to reindex all databases, then use the following;:

$ reindexdb -a

That's what the manual says anyway. My experience is that most indexes don't need
rebuilding, and even if they do, REINDEX puts a full table lock (AccessExclusivelLock) on the
table while it runs. That locks up your database for possibly hours, and | advise that you think
about not doing that.

Try this recipe instead.
First, let's create a test table with two indexes: a primary key and an additional index as follows:

» DROP TABLE IF EXISTS test;

» CREATE TABLE test

> (id INTEGER PRIMARY KEY

» ,category TEXT

, value TEXT) ;

» CREATE INDEX ON test (category) ;

233

[PUBLISHING]

Regular Maintenance

Now, let's look at the internal identifier of the tables, the oid, and the current file number,
or relfilenodes as shown next:

SELECT oid, relname, relfilenode

FROM pg class

WHERE oid in (SELECT indexrelid
FROM pg index

WHERE indrelid = 'test'::regclass);
oid | relname | relfilenode
_______ o o g
16639 | test_ pkey | 16639
16641 | test category idx | 16641

(2 rows)

How to do it...

PostgreSQL supports a command known as CREATE INDEX CONCURRENTLY, that builds an
index without taking a full table lock. PostgreSQL also supports the ability to have two indexes,
with different names, that have exactly the same definition. So, the trick is to build another
index identical to the one you wish to rebuild, drop the old index, and then rename the new
index to the same name as the old index had. Et voila, fresh index, no locking. Let's see that in
slow motion:

CREATE INDEX CONCURRENTLY new index

ON test (category) ; B

BEGIN;

DROP INDEX test_category idx;

ALTER INDEX new_index RENAME TO test_category idx;
COMMIT;

and if we check our internal identifiers again, we get the following:

SELECT oid, relname, relfilenode

FROM pg class

WHERE oid in (SELECT indexrelid
FROM pg index

WHERE indrelid = 'test'::regclass);
oid | relname | relfilenode
_______ o o g
16639 | test_ pkey | 16639
16642 | test category idx | 16642

(2 rows)

So, we can see that test _category idx is now a completely new index.

PUBLISHING

Chapter 9

That seems pretty good, yet it doesn't work on primary keys. Why not? Because you can't add
a primary index to a table concurrently, in PostgreSQL 9.0 at least.

So we have another trick, slightly more complex than the last. First, we create another index
with the same definition as the primary key as follows:

» CREATE UNIQUE INDEX new_pkey ON test (id);
and check internal identifiers again as follows:

SELECT oid, relname, relfilenode

FROM pg class

WHERE oid in (SELECT indexrelid
FROM pg index

WHERE indrelid = 'test'::regclass);
oid | relname | relfilenode
_______ o e e
16639 | test_pkey | 16639
16642 | test category idx | 16642
16643 | new pkey | 16643
(3 rows)

Now we're going to swap the two indexes over, so that all the primary key constraints stay
active and so do all of the foreign keys that depend upon them. So, we need to swap the
relfilenode values as follws:

BEGIN;

LOCK TABLE test;

UPDATE pg class SET relfilenode = 16643 WHERE oid = 16639;
UPDATE pg class SET relfilenode = 16639 WHERE oid = 16643;
DROP INDEX new_ pkey;

COMMIT;

which we confirm has succeeded using the following:

SELECT oid, relname, relfilenode

FROM pg class

WHERE oid in (SELECT indexrelid
FROM pg index

WHERE indrelid = 'test'::regclass);
oid | relname | relfilenode
_______ o e e
16639 | test_pkey | 16643
16642 | test category idx | 16642
16643 | new pkey | 16639
(3 rows)

235

PUBLISHING

Regular Maintenance

Yes, that's right. We just updated the core internal catalog tables of PostgreSQL. So make a
mistake here, and you're in a big world of hurt. Make sure your backups are nicely polished
before doing this.

CREATE INDEX CONCURRENTLY allows inserts, updates, and deletes while the index is being
created. It cannot be executed inside another transaction, and only one per table can be
created at any time.

Swapping the indexes is easy and doesn't use any trickery.

Swapping the primary keys used some internals knowledge. The indexes themselves don't know
which numbers they are, so you can swap them over without problems—as long as you swap
the correct two indexes, and they really do have identical definitions. Be especially careful about
creating the indexes in the same tablespace, as the above will fail if they're different.

There's more...

If you are fairly new to database systems, you might think rebuilding indexes for performance
is something that only PostgreSQL needs to do. Other DBMS require this also, just maybe
don't say so.

Indexes are designed for performance, and in all databases, deleting index entries causes
contention and loss of performance. PostgreSQL does not remove index entries for a row
when that row is deleted, so an index can fill with dead entries. PostgreSQL does attempt to
remove dead entries when a block becomes full, though that doesn't stop small numbers of
dead entries accumulating in many data blocks.

See also

I'm writing this just as PostgreSQL 9.0 is coming out. Its likely that in later versions, we will get
a simple REINDEX CONCURRENTLY command that can be used more easily.

Finding the unused indexes

Selecting the correct set of indexes for a workload is known to be a hard problem. It usually
involves trial and error by developers and DBAs to get a good mix of indexes.

Tools exist to identify slow queries and many SELECT statements can be improved by the
addition of an index.

What many people forget is to check whether the mix of indexes remains valuable over time,
which is something for the DBA to investigate and optimize.

236

[PUBLISHING]

Chapter 9

How to do it...

PostgreSQL keeps track of each access against an index. We can view that information and
use it to see if an index is unused as follows:

postgres=# SELECT schemaname, relname, indexrelname, idx scan FROM pg
stat user indexes ORDER BY idx scan;

schemaname | indexrelname | idx scan

____________ o e e
public | pgbench accounts bid idx | 0
public | pgbench branches pkey | 14575
public | pgbench tellers pkey | 15350
public | pgbench accounts pkey | 114400
(4 rows)

As we can see in the preceding code, there is one index that is totally unused, alongside
others that have some usage. You now need to decide whether "unused" means you should
remove the index. That is a more complex question, and we first need to explain how it works.

The PostgreSQL statistics accumulate various useful information. These statistics can be
reset to zero using an administrator function. Also, as the data accumulates over time, we
usually find that objects that have been there longer have higher apparent usage. So if we see
a low number for idx_scan, then it might be that the index was newly created (as was the
case in my preceding demonstration), or it might be that the index is only used by a part of the
application that runs only at certain times of day, week, month, and so on.

Another important consideration is that the index may be a unique constraint index that exists
specifically to safeguard against duplicate inserts. An INSERT does not show up as an idx
scan, whereas an UPDATE or DELETE might, because they have to locate the row first. So, a
table that only has INSERTs against it will appear to have unused indexes.

Also, some indexes that show usage might be showing usage that was historical, and there is
no further usage. Or, it might be the case that some queries use an index where they could
just as easily and almost as cheaply use an alternative index. Those things are for you to
explore and understand before you take action.

See also

You may decide from this that you want to remove an index. If only there was a way to try
removing an index and then put it back again quickly if you cause problems! Rebuilding an
index might take hours on a big table, so these decisions can be a little scary. No worries,
just follow the next recipe, Carefully removing unwanted indexes.

237

[PUBLISHING]

Regular Maintenance

Carefully removing unwanted indexes

Carefully removing? You mean press "enter" gently after typing DROP INDEX? err, no.

The thinking is that it takes a long time to build an index, and a short time to drop one. What
we want is a way of removing the index that if we discover that removing it was a mistake, we
can put the index back again quickly.

How to do it...

First, create the following function:

CREATE OR REPLACE FUNCTION trial_drop_index(iname TEXT)
RETURNS VOID

LANGUAGE SQL AS S$3

UPDATE pg_index

SET indisvalid = false

WHERE indexrelid = $1::regclass;

$Si

then, run it to do a trial of dropping the index.

If you experience performance issues after dropping the index, then use the following function
to "undrop" the index:

CREATE OR REPLACE FUNCTION trial undrop index(iname TEXT)
RETURNS VOID

LANGUAGE SQL AS s$3

UPDATE pg_index

SET indisvalid = true

WHERE indexrelid = $1::regclass;

$Si

This recipe also uses some inside knowledge. When we create an index using CREATE INDEX
CONCURRENTLY, it is a two-stage process. The first phase builds the index, and then marks

it invalid. Inserts, updates, and deletes now begin maintaining the index, but we do a further
pass over the table to see if we missed anything before we declare the index valid. User
queries don't use the index until it says valid.

Once the index is built and the flag is valid, then if we set the flag to invalid, the index will still
be maintained, just not used by queries. This allows us to turn the index off quickly, though
with the option to turn it back on again if we realize we actually do need the index after all.
This makes it practical to test whether dropping the index will alter the performance of any of
your most important queries.

238

[PUBLISHING]

Chapter 9

Planning maintenance

In these busy times many people believe "if it ain't broke, don't fix it". | believe that also,
though it isn't an excuse for not taking action to maintain your database servers and be sure
that nothing will break.

Database maintenance is about making your database run smoothly.

Monitoring systems are not a substitute for good planning. They alert you to unplanned
situations that need attention. The more unplanned things you respond to, the greater
the chance that you will need to respond to multiple emergencies at once. And when
that happens, something will break. Ultimately that is your fault. If you wish to take your
responsibilities seriously you should plan ahead.

How to do it...

» Let's break a rule: If you don't have a backup, take one now. | mean now, go on, off
you go. Then let's talk some more about planning maintenance. If you already do,
well done. It's hard to keep your job as a DBA if you lose data because of missing
backups, especially today when everybody's grandmother knows to keep her photos
backed up.

» First, plan your time: Make a regular date on which to perform certain actions.
Don't allow yourself to be a puppet of your monitoring system, running up and down
every time the lights change. If you keep being dragged off on other assignments
then you'll need to make it clear that you need to get a good handle on the database
maintenance to make sure it doesn't bite you.

» Don't be scared: It's easy to worry about what you don't know and either overreact
or underreact to the situation. Your database probably doesn't need to be inspected
daily, but never is definitely a bad place also.

Build a regular cycle of activity around the following tasks:

» Capacity planning: Observing long term trends in system performance and keeping
track of growth of database volumes. Plan in to the schedule any new data feeds,
new projects that increase rates of change. Best done monthly, so you monitor what
has happened and what will happen.

» Backups, recovery testing, and emergency planning: Organize regular reviews
of written plans, test scripts, check tape rotation, confirm that you still have the
password to the off-site backups, and so on. Some sysadmins run a test recovery
every night so they always know that a successful recovery is possible.

239

[PUBLISHING]

Regular Maintenance

>

Vacuum and index maintenance: To reduce bloat, including collecting optimizer
statistics through ANALYZE.

Consider VACUUM again, with the need to manage the less frequent freezing
process. This is listed as a separate task so that you don't ignore this and have it bite
you later.

Server log file analysis: How many times has the server restarted? Are you sure you
know about each incident?

Security and intrusion detection: Has your database already been hacked? What did
they do?

Understanding usage patterns: If you don't know much about what your database is
used for then I'll wager it is not very well tuned or maintained.

Long term performance analysis: It's a common occurrence for me to get asked to
come and tune a system which is slow. Often what happens is that a database server
can get slower over a very long period. Nobody ever noticed any particular day when
it got slow, it just got slower over time. Keeping records of response times over time
can help confirm whether or not everything is as good now as it was months or years
previously. This activity is where you might reconsider current index choices.

Many of these activities are mentioned in this chapter or throughout the rest of the cookbook.
Some are not because they aren't so much technical tasks but more just planning and
understanding of your environment.

You might also find time to consider the following things:

>

240

Data quality: Are the contents of the database accurate and meaningful? Could the
data be enhanced?

Business intelligence: Is the data being used for everything that can bring value to
the organization?

[PUBLISHING]

10

Performance &
Concurrency

In this chapter, we will cover the following:

» Finding slow SQL statements

» Collecting regular statistics from pg_stat* views
» Finding what makes SQL slow

» Reducing the number of rows returned

» Simplifying complex SQL

» Speeding up queries without rewriting them

» Why queries do not use an index

» How do force a query to use an index

» Using optimistic locking

» Reporting performance problems

Introduction

Performance and concurrency are two problems that are often tightly coupled—when
concurrency grows, performance usually degrades, in some cases a lot. And, if you take care
of performance problems, you can achieve better concurrency.

In this chapter, we show you how to find slow queries, and also how to find queries that make
other queries slow.

[PUBLISHING]

Performance & Concurrency

Performance tuning is unfortunately still not an exact science, so you may also encounter a
performance problem not found by any of the given methods.

And, we show how to get help in the final chapter, Reporting Performance Problems, in case
none of the other recipes here work.

Finding slow SQL statements

There are two main kinds of slowness which can manifest themselves in a database.

The first kind is a single query that can be too slow to be really useable, such as a customer
information query in a CRM running for minutes, a password check query running in tens

of seconds, or a daily data-aggregation query running for more than a day. These can be found
by logging queries that take over a certain amount of time, either at the client end,

or in the database.

The second kind is a query that is run frequently (say a few thousand times a second), and which
used to run in single digit milliseconds, but now is running in several tens or even hundreds of
milliseconds, and is slowing down the system. This kind of slowness is much harder to find.

Here, we will show several ways to find the statements that are either slow, or although not
being slow by themselves, cause the database as a whole to slow down.

Getting ready

Connect to the database as the user whose statements you want to investigate, or as a
superuser to investigate all users' queries.

Get access to PostgreSQL log files. They are usually located together with other log files, for
example, on Debian/Ubuntu Linux, they are in directory /var/log/postgresqgl/.

You should also set up logging of queries taking over x seconds, or if you are not swamped with
thousands of small and fast queries, you can also up logging all queries at least for some period
of time, so you can get an overview of full database activity, and not just individual slow queries.

How to do it...

The easiest way for finding single, slow queries is to set up PostgreSQL to log them all. So, if
you decide to monitor a query taking over 10 seconds, then set up logging queries over 10
seconds by defining the following:

log_min_duration_statement = 10000;
Remember that the duration is in milliseconds.

After doing this, and reloading PostgreSQL conf, all slow queries are logged.

242

[PUBLISHING]

Chapter 10

You also want to make sure that Log_duration is set to on, so that you can actually see the
duration.

Another possibility to spot long queries is to look them up in system view pg_stat__
activity by repeatedly running the following:

select now()-query start as running for, current query from pg_stat
activity order by 1 desc limit 5;

This query looks up top five currently running queries ordered by how long they have been
running. You don't usually get the real run time this way, but spotting something here hints you
that they may need optimizing.

Finding queries that make the server slow

Sometimes, a single query execution is not slow in itself, but the aggregate effect of running
hundreds or even thousands of such queries per second has a net effect of making the server
slow.

These queries do not show up in logs with slow query logging turned on, but there are other
ways they can be found, which are as follows:

» Watch pg_stat_activity:

do this by repeatedly running select now () -query start as running for, current
query frompg_stat activity. If the same query keeps coming up often, but the running
for time remains slow, then there is a good chance that this is the query that consumes a lot
of resources, and is at least partly responsible for general slow performance,

You can gather such statistics semi-automatically by running the following shell command
(on one line)

while psqgl -qt -c "select current query, now()-query start as running for
from pg stat _activity" >>query stats.txt ; do sleep 1; domne

This issues the select query at one second intervals and collects the output in file
query stats.txt

after running it for a few seconds, you can stop it by pressing Control-C and then look
at the sorted output

sort query stats.txt | less

243

PUBLISHING

Performance & Concurrency

to find the repeating queries.

» Watch pg_stat user tablesandpg statio user_ tables:

» Another way to discover such queries is looking at suspicious behaviors in pg_stat*
tables. Specific things to watch for as are follows:

o Inthepg stat user tables, fast growth of seq _tup read means that
there are lots of sequential scans occurring. The ratio of seq_tup read/
seq_scan shows how many tuples each segscan reads.

o Inthepg statio user tables, watch the fields heap blks hit and
idx blks_read, which give you a fairly good idea on how much of your
data is found in PostgreSQL shared buffers (heap blks hit), and how
much had to be fetched from disk (idx_blks_ read). If you continuously
see large numbers of blocks being read from disk, you may want to tune
those queries, or if you determine that the disk reads were justified, you can
make the configured shared buffers value bigger.

Once a suspect is found, make the query slow, so that it is logged

Once you have found out the query that you suspect is slowing you down, you can force
the queries appear in slow query log by locking the any table involved in this query for a
period slightly longer than configured by 1log min duration_ statement in
postgresql.conf file.

A sample psql session from logging all queries accessing mysuspecttable is as follows:

mydb=# begin;

BEGIN

mydb=# lock table mysuspecttable;
LOCK TABLE

select pg_sleep(12);

hannu=# rollback;

ROLLBACK

This also works when you have not found a single suspect query, but have found a table
which is accessed in a suspicious manner, and you want to find out what queries use this table.

Finding slow queries run as prepared statements

If the slow query is not run as is, but is first prepared and then executed, then you need to
be able to connect the PREPARE statement creating the prepared query plan with the actual
invocation of the query using EXECUTE.

This can be done by configuring PostgreSQL to log all queries, and setting the configuration
file parameter log line prefix so that it includes either process ID (' %p') or session
ID (' %c'). This will help you to trace back matching PREPARE statements if you see a

slow EXECUTE.

[PUBLISHING]

Chapter 10

See also

There is more information on tools for query analysis at the end of the Chapter, Monitoring
and Diagnosis

Collecting regular statistics from pg_stat*

views

This recipe describes how to collect the statistics needed to understand what is going on in
the database system on a regular basis, so that they can be used for further optimizing the
queries which are slow or which are becoming slow as the database changes.

The code to do is in file pg_statlogs.tar.gz

Getting ready

Find the package pg statlogs.tar.gz.
Set up a directory as shown next for running the scripts:

mkdir /opt/pg statlogs
cd /opt/pg statlogs
tar xzvf pg statlogs.tgz

Set up a schema for collecting the snapshots of statistics data and generating deltas from
it as follows:

psql mydatabase <./pg statlogs prepare.sql

How to do it...

Run the following from command line:
psql mydatabase <./pg statlogs collect.sql
to collect the changes in pg_stat* tables since the last invocation.

You should probably set up a cron job to run on a regular basis, so that you have good
coverage of what happens at what time of day and week. Running it at interval of 5 to 15
minutes should usually give you enough temporal resolution to understand what is going on
with your tables.

245

PUBLISHING

Performance & Concurrency

The scripts make static copies of tables pg_stat user tables,pg _statio user tables,
pg_stat user indexes,and pg statio user indexes ateach run, then they compare
the current copies with the ones saved at the last run, and save the timestamped deltas to log
tables stat _user tables delta logand stat user indexes delta_ log, which can
then be analyzed later to learn about access and I/0 patterns.

The latest set of deltas are also kept in tables stat _user tables deltaand stat
user indexes delta which can be used for external monitoring systems, such as cacti, to
get a graphical representation of it.

There's more...

These scripts just collect data indefinitely. This should not cause performance problems, as
the large log tables are without indexes, and thus inserts into these are fast, but if you are low
on disk space and have many tables, you may want to introduce a rotation scheme for these
tables which throws away older data.

There is a script doing this in the downloaded package. Running the following:
psql mydatabase <./pg statlogs rotate.sql

each Sunday keeps four weeks of data.

Another statistics collection package

There is also a package available at at http://pgstatspack.projects.postgresql.org/ for similar
data collecting.

Finding what makes SQL slow

A SQL statement can be slow for a lot of reasons. Following, we give a shortlist of these
and at least one way for recognizing each of these.

Too much data is processed

Run the query with explain analyse to see how much data is processed for completing
the query as follows:

mydb=# explain analyse select count (*) from t;
QUERY PLAN
Aggregate (cost=4427.27..4427.28 rows=1 width=0) \
(actual time=32.953..32.954 rows=1 loops=1)
-> Seqg Scan on t (cost=0.00..4425.01 rows=901 width=0) \

_{zié] (actual time=30.350..31.646 rows=901
oops=1)

Total runtime: 33.028 ms
(3 rows)

[PUBLISHING]

Chapter 10

and also see how many rows are processed, and how many blocks of data accessed by
comparing the output of the following query before and after the query is run on idle
system (the pg_stat* views are global, and collect info from all parallel queries):

select
s.relid, s.schemaname, s.relname,
seq_scan, seq_tup read,
idx scan, idx tup_fetch,
heap_blks_read, heap_blks_hit,
idx_blks_read,idx blks_hit,
toast_blks_read, toast_blks_hit
from pg stat user_ tables s
join pg statio user tables sio on s.relid = sio.relid
where s.schemaname = 'public' and s.relname = 't'
For example, if you want to get the three latest rows in a one million-row table, then run
the following;:

SELECT * FROM EVENTS ORDER BY ID DESC LIMIT 3;

You can either read through just three rows using an index on the serial id column, or you
could be doing a sequential scan of all rows followed by a sort, as shown in the following code
snippet, depending on whether you have a usable index on the field on which you want to get
top three rows:

mydb=# create table events(id serial);

NOTICE: CREATE TABLE will create implicit sequence "events id seq"

for serial column "events.id"

CREATE TABLE

mydb=# insert into events select generate series(1,1000000) ;

INSERT 0 1000000

mydb=# explain analyse SELECT * FROM EVENTS ORDER BY ID DESC LIMIT 3;
QUERY PLAN

Limit (cost=25500.67..25500.68 rows=3 width=4) \
(actual time=3143.493..3143.502 rows=3 loops=1)
-> Sort (cost=25500.67..27853.87 rows=941280 width=4)
(actual time=3143.488..3143.490 rows=3 loops=1)
Sort Key: id
Sort Method: top-N heapsort Memory: 17kB
-> Seqg Scan on events
(cost=0.00..13334.80 rows=941280 width=4)
(actual time=0.105..1534.418 rows=1000000
loops=1)
Total runtime: 3143.584 ms
(6 rows)

247

PUBLISHING

Performance & Concurrency

mydb=# create index events_id ndx on events(id) ;

CREATE INDEX

mydb=# explain analyse SELECT * FROM EVENTS ORDER BY ID DESC LIMIT 3;
QUERY PLAN

Limit (cost=0.00..0.08 rows=3 width=4) (actual time=0.295..0.311
rows=3 loops=1)

-> 1Index Scan Backward using events_id ndx on events
(cost=0.00..27717.34 rows=1000000 width=4) (actual time=0.289..0.295
rows=3 loops=1)

Total runtime: 0.364 ms
(3 rows)

This produces 10,000 times difference in query run time, even when all the data is in memory.

Too little of the data fits in the memory

If not enough of the data fits in shared buffers, lots of re-reading of the same data happens.
This manifests as a big change in any of the fields heap blks read, idx blks read,
toast_blks readinthe pg_stat* view before and after the query is run.

It is somewhat normal to have a big difference before and after the first run of the query, as
some data may just not be accessed recently, but if you run the query immediately the second
time and any of the *_blks read fields still changes a lot, you have this problem for sure.

If your shared buffers is tuned properly, and you can't rewrite the query to do less block
1/0, you probably have to get a beefier computer.

The query returns too much data

Sometimes lazy programmers write a query that returns a lot more rows than needed. This
usually goes unnoticed when the data volumes are small, but can quickly become problematic
once more data appears in the database. For example, you have a picture database and an
application showing a list of pictures. If you are showing only 10 pictures at a time, you should
not request more than 10 from the database (or maybe 11 if you want to display the next link).
For thousands of pictures it makes sense to have a separate count (*) query for determining
the total number of pictures, and not select all pictures and count them in client. For high
performance websites, you would want to replace even the count query with a separately
maintained count in some table to further reduce work done at display time.

See also the recipe Reducing the number of rows returned.

248

[PUBLISHING]

Chapter 10

Locking problems

Thanks to its MVCC design, PostgreSQL does not suffer from most locking problems, such as
writers locking out readers or readers locking out writers, but it still has to take locks when
more than one process wants to update the same row. And, it has to hold the write lock until
the current writer's transaction finishes.

So, if you have a database design where many queries update the same record, you can have
a locking problem.

The easiest way to find out if you do is to see if there are many backends waiting on locks by
running the following:

SELECT * FROM pg locks WHERE not granted;
If it comes up empty, or with only one or two rows, then you probably don't have this problem.
To see which queries are waiting on which other queries, run the following;:

select
al.current query as blocking query,
a2.current query as waiting query,
t.schemaname ||'.'||t.relname as locked table
from pg stat_activity al
join pg locks pl on al.procpid = pl.pid and pl.granted
join pg locks p2 on pl.relation = p2.relation and not p2.granted
join pg stat_activity a2 on a2.procpid = p2.pid
join pg stat_all tables t on pl.relation = t.relid;

blocking query | waiting query | locked table
_______________________ o oo e e
<IDLE> in transaction | select * from t; | public.t
<IDLE> in transaction | select count(*) from t; | public.t
(2 rows)

Here, the <IDLE> in transaction is an open-console connection, which has issued just the
following commands:

BEGIN;
LOCK t;

and is waiting for further input.

Not enough CPU power or disk 1/0 capacity for the current load

These are usually caused by suboptimal query plans, but sometimes you just have not a
powerful enough computer.

Here, top is your friend for quick checks, and from the command line, run the following:

user@host:~$ top

249

PUBLISHING

Performance & Concurrency

First, watch the CPU idle reading in the top. If this is in low single-digits for most of the time,
you probably have problems with CPU power.

If you have a high load average with still lots of CPU idle left, you are probably out of disk
bandwidth. In this case, you should also have lots of postgres processes in status D.

Reducing the number of rows returned

Although often the problem is producing many rows in the first place, it is made worse by
returning all the unneeded rows to the client. This is especially true if client and server
are not on the same host.

Here are some ways to reduce the traffic between the client and server.

A full text search returns 10,000 documents, but only first the 20
are displayed to user

In this case, order the documents by ranking on the server, and return only the top 20
actually displayed

SELECT title, ts_rank cd(body tsv, query, 20) AS text rank
FROM articles, plainto tsquery('spicy potatoes') AS query
WHERE body tsv @@ query
ORDER BY rank DESC
LIMIT 20

7

If you need the next 20, don't just query with limit 40 and throw away the first 20, but use
"OFFSET 20 LIMIT 20" to return just the next 20.

To have some stability, so that the documents with same rank still come out in the same order
when using OFFSET 20, add a unique field (like id column of table articles) to ORDER BY in
both queries.

SELECT title, ts_rank cd(body tsv, query, 20) AS text rank
FROM articles, plainto tsquery('spicy potatoes') AS query
WHERE body tsv @@ query
ORDER BY rank DESC, articles.id
OFFSET 20 LIMIT 20

An application requests all products for a branch office to run
a complex calculation over them

Try to do as much data analysis as possible inside the database.

250

[PUBLISHING]

Chapter 10
So, instead of doing

SELECT * FROM ACCOUNTS WHERE BRANCH ID = 7;
And counting and summing the rows in the client, do instead

SELECT count (*), sum(balance) FROM ACCOUNTS WHERE BRANCH ID = 7;

With little research into the SQL language supported by PostgreSQL, you can do an amazingly
large portion of your computation using plain SQL.

And if SQL is not enough, you can use PL/pgSQL or any other of PostgreSQL's supported
embedded procedural languages for even more flexibility.

Application runs a huge number of small lookup queries

This can easily happen with modern ORM's (Object relational Mappers) and other toolkits, which
do a lot of work for the programmer, but at the same time hide a lot of what is happening.

For example, if you define an HTML report over a query in a templating language, and then
define a lookup function for resolving an ID inside the template, you may end up with a form
that does a separate small lookup for each row displayed, even when most of the values
looked up are the same. This does usually not pose a big problem for the database, as queries
of the form "SELECT name FROM departments WHERE id = 7" are really fast when the row
for id=7 is in shared buffers, but doing this query thousands of times still takes seconds, due
to network latencies, process scheduling for each request, and other factors.

The two solutions are as follows:

» Make sure that the value is cached by your ORM
» Do the lookup inside the query that gets the main data, so it can be displayed directly

How exactly to do these depends on the toolkit, but they are both worth investigating, as they
really can make a difference in speed and resource usage.

Simplifying complex SQL

There are two types of complexity which you can encounter in SQL queries.

First, the complexity can be directly visible in the query, having hundreds or even thousands
of rows of SQL code in a single query code. This can cause both maintenance headaches and
slow execution times as well.

The complexity can also be hidden in subviews, so that the SQL code of the query seems
simple, but it uses other views and/or functions to do part of the work, which can in turn still
use others. This is much better for maintenance, but still can cause performance problems.

251

[PUBLISHING]

Performance & Concurrency

Both types of queries can be either written manually by programmers or data analysts,
or they can emerge as a result of a query generator.

Getting ready

First, verify that you really do have a complex query.

A query which simply returns lots of database field is not complex by itself. In order to be
complex, the query has to join lots of tables in complex ways.

The easiest way to find out if the query itself is complex is to look at the output of EXPLAIN.
If it has lots of rows, the query is complex, not just having lot of text.

How to do it...

Simplifying a query usually means restructuring it, so that parts of it can be defined separately
and then used by other parts.

We illustrate the possibilities with rewriting the following query in several ways (full code is in
file shop_database.tar.gz). Itis a so-called "pivot" or "cross-tab" query, getting quarterly
profit for non-local sales from all shops, as shown next:

SELECT shop.sp name AS shop_name,
gl_nloc_profit.profit as gl_profit,
g2_nloc_profit.profit as g2_profit,
g3_nloc profit.profit as g3 _profit,
g4_nloc_profit.profit as g4_profit,
year nloc_profit.profit as year profit

FROM (SELECT * FROM salespoint ORDER BY sp name) AS shop
LEFT JOIN (
SELECT
spoint_id,
sum(sale price) - sum(cost) AS profit,
count (*) AS nr of sales
FROM sale s
JOIN item_in_wh iw ON s.item in wh_id=iw.id
JOIN item i ON iw.item id = i.id
JOIN salespoint sp ON s.spoint_id = sp.id
JOIN location sploc ON sp.loc_id = sploc.id
JOIN warehouse wh ON iw.whouse_id = wh.id
JOIN location whloc ON wh.loc_id = whloc.id
WHERE sale_time >= '2009-01-01'
AND sale time < '2009-04-01'
AND sploc.id != whloc.id
GROUP BY 1

252

PUBLISHING

Chapter 10

) AS gl nloc profit
ON shop.id = Q1 NLOC PROFIT.spoint id
LEFT JOIN (
< similar subquery for 2nd quarter >
) AS g2 nloc profit
ON shop.id = g2 nloc_ profit.spoint id
LEFT JOIN (
< similar subquery for 3rd quarter >
) AS g3 nloc_ profit
ON shop.id = g3 nloc profit.spoint id
LEFT JOIN (
< similar subquery for 4th quarter >
) AS g4 nloc_ profit
ON shop.id = g4 nloc profit.spoint id
LEFT JOIN (
< similar subquery for full year >
) AS year nloc_ profit
ON shop.id = year nloc profit.spoint id
ORDER BY 1

1

Moving part of the query into a view

As the preceding query has an almost identical repeating part for finding the sales for a
period, it makes sense to move it into a separate view, and then use that view in the main
reporting query as follows:

CREATE VIEW non local quarterly profit AS
SELECT
spoint id,
extract ('quarter' from sale time) as sale quarter,
sum(sale price) - sum(cost) AS profit,
count (*) AS nr of sales
FROM sale s
JOIN item in wh iw ON s.item in wh id=iw.id
JOIN item i ON iw.item id = 1i.id
JOIN salespoint sp ON s.spoint id = sp.id
JOIN location sploc ON sp.loc_id = sploc.id
JOIN warehouse wh ON iw.whouse id = wh.id
JOIN location whloc ON wh.loc_id = whloc.id
WHERE sale time >= '2009-01-01"'
AND sale time < '2010-01-01'
AND sploc.id != whloc.id
GROUP BY 1,2;
SELECT shop.sp name AS shop_ name,

253

PUBLISHING

Performance & Concurrency

gl nloc profit.profit as gl profit,
g2 _nloc profit.profit as g2 profit,
g3 nloc profit.profit as g3 profit,
g4 _nloc profit.profit as g4 profit,
year nloc profit.profit as year profit
FROM (SELECT * FROM salespoint ORDER BY sp name) AS shop
LEFT JOIN non local quarterly profit AS gl nloc profit
ON shop.id = Q1 NLOC PROFIT.spoint id
AND gl nloc_profit.sale quarter = 1
LEFT JOIN non local quarterly profit AS g2 nloc profit
ON shop.id = Q2 NLOC PROFIT.spoint id
AND g2 nloc profit.sale quarter = 2
LEFT JOIN non local quarterly profit AS g3 nloc profit
ON shop.id = Q3 NLOC PROFIT.spoint id
AND g3 nloc profit.sale quarter = 3
LEFT JOIN non local quarterly profit AS g4 nloc profit
ON shop.id = Q4 NLOC PROFIT.spoint id
AND g4 nloc profit.sale quarter = 4
LEFT JOIN (
SELECT spoint id, sum(profit) AS profit
FROM non local quarterly profit GROUP BY 1
) AS year nloc_ profit
ON shop.id = year nloc profit.spoint id
ORDER BY 1;

Moving the subquery into a view made the query not only shorter, but also easier
to understand and maintain.

Using the WITH statement instead of a separate view

Starting with PostgreSQL version 8.4, one can also use the new WITH statement for defining
the view in-line, like the following:

WITH nlgp AS (
SELECT
spoint id,
extract ('quarter' from sale time) as sale quarter,
sum(sale price) - sum(cost) AS profit,
count (*) AS nr of sales
FROM sale s
JOIN item in wh iw ON s.item in wh id=iw.id
JOIN item i ON iw.item id = 1i.id
JOIN salespoint sp ON s.spoint id = sp.id
JOIN location sploc ON sp.loc_id = sploc.id
JOIN warehouse wh ON iw.whouse id = wh.id
JOIN location whloc ON wh.loc_id = whloc.id

PUBLISHING

Chapter 10

WHERE sale time >= '2009-01-01"'
AND sale time < '2010-01-01'
AND sploc.id != whloc.id
GROUP BY 1,2
)
SELECT shop.sp name AS shop_ name,
gl nloc profit.profit as gl profit,
g2 _nloc profit.profit as g2 profit,
g3 nloc profit.profit as g3 profit,
g4 _nloc profit.profit as g4 profit,
year nloc profit.profit as year profit
FROM (SELECT * FROM salespoint ORDER BY sp name) AS shop
LEFT JOIN nlgp AS gl nloc profit
ON shop.id = Q1 NLOC PROFIT.spoint id
AND gl nloc_profit.sale quarter = 1
LEFT JOIN nlgp AS g2 nloc_ profit
ON shop.id = Q2 NLOC PROFIT.spoint id
AND g2 nloc profit.sale quarter = 2
LEFT JOIN nlgp AS g3 nloc_ profit
ON shop.id = Q3 NLOC PROFIT.spoint id
AND g3 nloc _profit.sale quarter = 3
LEFT JOIN nlgp AS g4 nloc_ profit
ON shop.id = Q4 NLOC PROFIT.spoint id
AND g4 nloc profit.sale quarter = 4
LEFT JOIN (
SELECT spoint id, sum(profit) AS profit
FROM nlgp GROUP BY 1
) AS year nloc_ profit
ON shop.id = year nloc profit.spoint id
ORDER BY 1

1

Using temporary tables for parts of the query

PostgreSQL itself can choose to materialize parts of the query during the query optimization
phase, but sometimes it fails to make the best choice for the query plan either due to
insufficient statistics, or as it can happen for large query plans, where genetic query
optimization (GEQO) is used, it may have just overlooked some possible query plans.

If you think that materializing (preparing separately) some parts of the query is a good
idea, you can do it using a temporary table, simply by running CREATE TEMPORARY TABLE
mytemptable0l AS <the part of the query you want to materialize>, and then using
mytemptable01 in the main query instead of the part materialized. You can even create
indexes on the temp table for PostgreSQL to use in the main query.

255

PUBLISHING

Performance & Concurrency

BEGIN;
CREATE TEMPORARY TABLE nlgp temp ON COMMIT DROP
AS
SELECT
spoint id,
extract ('quarter' from sale time) as sale quarter,
sum(sale price) - sum(cost) AS profit,
count (*) AS nr of sales
FROM sale s
JOIN item in wh iw ON s.item in wh id=iw.id
JOIN item i ON iw.item id = 1i.id
JOIN salespoint sp ON s.spoint id = sp.id
JOIN location sploc ON sp.loc_id = sploc.id
JOIN warehouse wh ON iw.whouse id = wh.id
JOIN location whloc ON wh.loc_id = whloc.id
WHERE sale time >= '2009-01-01"'
AND sale time < '2010-01-01'
AND sploc.id != whloc.id
GROUP BY 1,2

You can create indexes on the table and analyze the temp table here:

SELECT shop.sp name AS shop_ name,
gl NLP.profit as gl profit,
g2 NLP.profit as g2 profit,
g3 _NLP.profit as g3 profit,
g4 NLP.profit as g4 profit,
year NLP.profit as year profit
FROM (SELECT * FROM salespoint ORDER BY sp name) AS shop
LEFT JOIN nlgp temp AS gl NLP
ON shop.id = Q1 NLP.spoint id AND gl NLP.sale quarter = 1
LEFT JOIN nlgp temp AS g2 NLP
ON shop.id = Q2 NLP.spoint id AND g2 NLP.sale quarter = 2
LEFT JOIN nlgp temp AS g3 NLP
ON shop.id = Q3 NLP.spoint id AND g3 NLP.sale quarter = 3
LEFT JOIN nlgp temp AS g4 NLP
ON shop.id = Q4 NLP.spoint id AND g4 NLP.sale quarter = 4
LEFT JOIN (
select spoint id, sum(profit) AS profit FROM nlgp temp GROUP
BY 1
) AS year NLP
ON shop.id = year NLP.spoint id
ORDER BY 1

COMMIT; -- here the temp table goes away

256

PUBLISHING

Chapter 10

Use materialized views (long-living temp tables)

If the part you put in the temporary table is large, does not change very often, and/

or is hard to compute, then you may be able to do it less often for each query by using

a technique named materialized views. Materialized views are views that are prepared
before they are used and are either fully regenerated as underlying data changes or in
some cases can update only those rows that depend on the changed data. As of version
9.0, there is no explicit support for materialized views in PostgreSQL; that is, you can't just
"CREATE MATERIALIZED VIEW AS ...", but there are several sample implementations for
achieving exactly the same functionality. Visit http://wiki.postgresqgl.org/wiki/
Materialized Views for more discussion and examples.

Using set-returning functions for some parts of queries

Another possibility to achieve functionality similar to temp tables and/or materialized views is
using a set -returning function for some part of the query.

For example, it is easy to have a materialized view freshness check inside a function.

There are also samples of materialized views and set -returning function usage in shop__
database.tar.gz.

Speeding up queries without rewriting them

Often, you either can't or don't want to rewrite the query. In that case, you often can still speed
up the query by the following techniques:

Providing better information to the optimizer

If EXPLAIN ANALYSE reveals that postgreSQL's estimates differ a lot from actual query
execution statistics, you need to tell PostgreSQL to collect more fine-grained statistics.

The current default statistics target can be shown by:
show default statistics target ;

you can set it to a higher value either in the postgresql . conf file, or if you want to do it
only for a single database, you can use ALTER DATABASE as follows:

alter database mydb set default statistics target = 200;

Usually, you don't want to set it too high for all tables and fields, as it slows down the ANALYSE
command, so PostgreSQL gives you a more fine-grained way of doing it on a field-by-field basis.

alter table mytable alter col with bad stats set statistics 500;

The new statistics values take effect at the next time ANALYSE is run on the table, so it makes
sense to run ANALYSE after changing these values.

257

PUBLISHING

Performance & Concurrency

If you setthe default statistics_target for a database, then it takes effect the next
time anyone connects to the database. So, you should either reconnect, or set it for current

session with direct set default statistics_ target = 300 before ANALYSE if you want
the new value to be used.

Adding a multi-column index tuned specifically for that query
If you have a query that for example selects rows from table t1 on column a, and sorts on
column b, then creating the following index enables PostgreSQL to do it all in one index scan:

CREATE INDEX tl a b ndx ON tl(a,b);

Adding a special conditional index
If you SELECT on some condition (and especially if this condition only selects a small number
of rows), you can use a conditional index on that expression like the following:

CREATE INDEX tl proc_ndx ON t1(il)
WHERE needs_processing = TRUE;

It is used in a query like the following for finding rows that need some processing to be done:

SELECT id, ... WHERE needs_processing;

Cluster tables on specific indexes

Index access may still not be very efficient if the values accessed by the index are distributed
randomly all over the table. If you know that some fields are likely to be accessed together,
then cluster the table on an index defined on those fields. For a multi-column index shown
above you can use the following command:

CLUSTER tl1 a b ndx ON tl1

Clustering a table on index rewrites the whole table in index order, which can lock the table

for a long time, so don't do it on a busy system. Also, CLUSTER is an one-time command, and
new rows do not get inserted in cluster order, so to keep the performance gains, you may need
to cluster the table every now and then.

Once a table is clustered on an index, you don't need to specify the index name in subsequent
cluster commands, and can simply say:

CLUSTER t1;

It still takes time to rewrite the whole table, though it is probably a little faster once most
of the table is in index order.

258

[PUBLISHING]

Chapter 10

Use table partitioning and constraint exclusion

If you have a huge table, and a query select only a subset of that table, then you can partition
that table and use constraint exclusion so that PostgreSQL knows which partitions it needs to
access for a specific query.

Table partitioning is still not directly supported in PostgreSQL 9.0, but PostgreSQL has
the basic capabilities in place to define it yourself. Unfortunately, it needs much longer
explanation then we have space here. You can check out the official documentation on
partitioning at the following URL:

http://www.postgresql.org/docs/9.0/interactive/ddl-partitioning.html

There is a full chapter on table partitioning in another Packt book "High
Performance PostgreSQL 9.0" which goes well beyond what is covered
s :
by the standard PostgreSQL documentation.

In case of many updates set fillfactor on table

If you often update only some table and can arrange so that you don't change any indexed
fields, then setting fil1factor to a lower value than the default of 100 for that a table
enables PostgreSQL to use HOT updates, which can be an order of magnitude faster than
ordinary updates. HOT updates not only avoid creating new index entries but also can perform
a fast mini-vacuum inside the page to make room for new rows.

ALTER TABLE tl SET (fillfactor = 70);
Tells PostgreSQL to fill only 70% of each page in table t1 when doing inserts, so that 30% is
left for use by in-page (HOT) updates.

Rewriting the schema—a more radical approach

In some occasions, it may make sense to rewrite the database schema, and provide an old
view for unchanged queries using views, triggers, rules, and functions.

One such case occurs when refactoring the database, and you want old queries to keep
running while changes are made.

Another is an external application that is unusable with the provided schema, but can be
made to perform OK with a different distribution of data between tables.

259

PUBLISHING

Performance & Concurrency

Why is my query not using an index?

This recipe explains what to do if you think your query should use an index, but it does not.

There can be several reasons for this, but most often it is that the optimizer believes that it is
cheaper and faster to use a query plan that does not use an index.

How to do it...

Force index usage, and compare plan costs of using it with an index and without, using the
following:

mydb=# create table itable(id int primary key);

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index

"itable pkey" for table "itable"

CREATE TABLE

mydb=# insert into itable select generate series(1,10000) ;

INSERT 0 10000

mydb=# analyse;

ANALYZE

mydb=# explain analyse select count (*) from itable where id > 500;
QUERY PLAN

Aggregate (cost=188.75..188.76 rows=1 width=0)
(actual time=37.958..37.959 rows=1 loops=1)
-> Seq Scan on itable (cost=0.00..165.00 rows=9500 width=0)
(actual time=0.290..18.792 rows=9500
loops=1)
Filter: (id > 500)
Total runtime: 38.027 ms
(4 rows)
mydb=# set enable segscan to false;
SET
mydb=# explain analyse select count (*) from itable where id > 500;
QUERY PLAN

Aggregate (cost=323.25..323.26 rows=1 width=0)
(actual time=44.467..44.469 rows=1 loops=1)
-> Index Scan using itable pkey on itable
(cost=0.00..299.50 rows=9500 width=0)
(actual time=0.100..23.240 rows=9500 loops=1)
Index Cond: (id > 500)
Total runtime: 44.556 ms

(4 rows)

260

PUBLISHING

Chapter 10

As you see, PostgreSQL estimates (rightly) that this query is better-served by performing a
sequential scan.

How do | force a query to use an index

Here, we show how to force the database to use an index. In fact, it is not possible to tell
PostgreSQL to use an index, but you can trick it into using one by telling the optimizer that all
other options are prohibitively expensive.

Getting ready

First, you have to make sure that it is worth it to use the index. This is best done on a
development or testing system, but if done carefully, can also be done on the production
server. Sometimes it is very hard to generate a load similar to a live system in a test
environment, and then your best option may be carefully testing on live.

As the PostgreSQL optimizer does not take into account the parallel load caused by other
backends, it may make sense to lie to PostgreSQL about some statistics in order to make it
use indexes.

How to do it...

set enable_seqscan to false
If you do:

set enable segscan to false;

you tell PostgreSQL that it is really very expensive to do sequential scans. It still does a
segscan (instead of failing) if it is the only way to do the query:

mydb=# create table table with no index(id int);

CREATE TABLE

mydb=# set enable segscan to false;

SET

mydb=# explain select * from table with no_index where id > 10;
QUERY PLAN

Seq Scan on table with no index (cost=10000000000.00..10000000040.00
rows=800 width=4)

Filter: (id > 10)
(2 rows)

but it is very likely that it selects some other way of doing the query as cheaper:

mydb=# create index table_with no_index now_has_one on table_with no_
index (id) ;
CREATE INDEX

261

[PUBLISHING]

Performance & Concurrency

mydb=# explain select * from table with no_index where id > 10;
QUERY PLAN

Bitmap Heap Scan on table with no index (cost=10.45..30.45 rows=800
width=4)
Recheck Cond: (id > 10)
-> Bitmap Index Scan on table with no index now has one
(cost=0.00..10.25 rows=800 width=0)
Index Cond: (id > 10)
(4 rows)

Once you enable segscans again, it will use a sequential scan instead of the more costly
(in this case) bitmap index scan as follows:

mydb=# set enable segscan to true;

SET

mydb=# explain select * from table with no_index where id > 10;
QUERY PLAN

Seq Scan on table with no index
(cost=0.00..40.00 rows=800 width=4)
Filter: (id > 10)
(2 rows)

Lower random_page_cost

For a softer nudge towards using indexes, set random page cost to a lower value, maybe
even make it equal to seq_page_ cost. This makes PostgreSQL prefer index scans on more
occasions, but does still not produce entirely unreasonable plans, at least for cases where
data is mostly cached in shared buffers or systems disk cache.

Default values for these parameters are as follows:

random page cost = 4;
seq_page cost = 1;

Try setting:
set random page cost = 2;

and see if it helps; if not, set it to 1.

262

PUBLISHING

Chapter 10

Using optimistic locking

If you are doing lots of transactions which look like the following:

BEGIN;

SELECT * FROM ACCOUNTS WHERE HOLDER_NAME ='BOB' FOR UPDATE;
<do some calculations here>

UPDATE ACCOUNTS SET BALANCE = 42.00 WHERE HOLDER_NAME ='BOB' ;
COMMIT;

Then you may gain some performance by moving from explicit locking (SELECT ... FOR
UPDATE) to optimistic locking.

Optimistic locking assumes that others don't update the same record, and checks this at
update time, instead of locking the record for the time it takes to process the information on
the client side.

How to do it...

Rewrite your application so that the preceding transaction is transformed into something like
the following;:

BEGIN;
SELECT A.*, (A.*::text) AS OLDACCINFO
FROM ACCOUNTS A WHERE HOLDER_NAME ='BOB' ;
<do some calculations here>
UPDATE ACCOUNTS SET BALANCE = 42.00
WHERE HOLDER_NAME ='BOB'
AND (A.*::text) = <OLDACCINFO from select aboves;
COMMIT;

Then, check that the UPDATE did update one row in your application code. If it did not, then
the account for bob was modified between SELECT and UPDATE, and you probably need to
re-run your whole transaction.

Instead of locking Bob's row for the time the data from select is processed in the client, it
queries the old state of Bob's account record in variable OLDACCINFO, and then uses this
value to check that the record has not changed.

You can also save all fields individually, and then check them all in UPDATE query, or if you
can have an automatic last_change field, then you can use this. Or, if you actually care only
about a few fields changing, such as BALANCE and can ignore others, say E_MAIL, then you
can only check the relevant fields in UPDATE.

263

PUBLISHING

Performance & Concurrency

There's more...

Move the whole computation into the database function

If you can pass all the needed information into the database for processing as a database
function, it will run even faster, as you save several roundtrips to database. If you use a PL/
pgSQL function, you also benefit from automatically saving query plans on first call in a
session, and using saved plans in subsequent calls.

So the preceding transaction is replaced by a function in the database as follows:

CREATE OR REPLACE FUNCTION consume balance (
i username text, i amount numeric(10,2), max credit numeric(10,2),
OUT success boolean, OUT remaining balance numeric(10,2)) AS

$$
BEGIN
UPDATE accounts SET balance = balance - i amount
WHERE username = 1 username
AND balance - i amount > - max_credit

RETURNING balance
INTO remaining balance;
IF NOT FOUND THEN
success := FALSE;
SELECT balance
FROM accounts
WHERE username = 1 username
INTO remaining balance;
ELSE
successgs := TRUE;
END IF;
END;
$$ LANGUAGE plpgsdgl;

and you call it simply by running:
SELECT * FROM consume balance ('bob', 7, 0);

from your client, returning the success variable telling you if there was high enough balance in
Bob's account, and the number telling the balance Bob has left after this operation.

PUBLISHING

Chapter 10

Reporting performance problems

If you need to get some advice on your performance problems, then the right place to do so is
the performance mailing list at the following URL:

http://archives.postgresqgl.org/pgsqgl-performance/

You may want to first check that it is not a well known problem by searching the mailing
list archives.

A very good description of what to include in your performance problem report is available at
the following URL:

http://wiki.postgresqgl.org/wiki/Guide to reporting problems
More performance related information can be found at the following URL:
http://wiki.postgresqgl.org/wiki/Performance Optimization

Another good reference for all performance related information is the "High Performance
PostgreSQL 9.0" book, also by Packt.

265

[PUBLISHING]

IIIIIIIIII

11

Backup & Recovery

In this chapter, we will cover the following:

>

Understanding and controlling crash recovery
Planning backups

Hot logical backup of one database

Hot logical backup of all databases

Hot logical backup of all tables in a tablespace
Backup of database object definitions
Standalone hot physical database backup
Hot physical backup & Continuous Archiving
Recovery of all databases

Recovery to a point in time

Recovery of a dropped/damaged table
Recovery of a dropped/damaged database
Recovery of a dropped/damaged tablespace
Improving performance of backup/recovery

Incremental/Differential backup and restore

Introduction

Most people admit that backups are essential, though they also devote only a very small
amount of time to thinking about the topic.

The first recipe is about understanding and controlling crash recovery. We need to understand
what happens if the database server crashes, so we can understand when we might need
to recover.

[PUBLISHING]

Backup and Recovery

The next recipe is all about planning. That's really the best place to start before you go
charging ahead to do backups.

The physical backup mechanisms here were initially written by me (Simon Riggs) for
PostgreSQL in release 8.0 in 2004, and have been supported by him ever since then,

now with increasing help from the community as its popularity grows. 2ndQuadrant has also
been providing database recovery services since 2004 and regrettably many people have
needed them as a result of missing or damaged backups.

Understanding and controlling crash

recovery

Crash recovery is the PostgreSQL subsystem that saves us if the server should crash, or fail as
a part of a system crash.

It's good to understand a little about it, and to do what we can to control it in our favor.

How to do it...

If PostgreSQL crashes there will be a message in the server log with severity-level PANIC.
PostgreSQL will immediately restart and attempt to recover using the transaction log or Write
Ahead Log (WAL).

The WAL consists of a series of files written to the pg_x1og subdirectory of the PostgreSQL
data directory. Each change made to the database is recorded first in WAL, hence the name
"write-ahead" log. When a transaction commits, the default and safe behavior is to force the
WAL records to disk. If PostgreSQL should crash, the WAL will be replayed, which returns the
database to the point of the last committed transaction, and thus ensures the durability of
any database changes.

Note that the database changes themselves aren't written to disk at transaction commit. Those
changes are written to disk sometime later by the "background writer" on a well-tuned server.

Crash recovery replays the WAL, though from what point does it start to recover? Recovery
starts from points in the WAL known as "checkpoints". The duration of crash recovery depends
upon the number of changes in the transaction log since the last checkpoint. A checkpoint is
a known safe starting point for recovery, since at that time we write all currently outstanding
database changes to disk. A checkpoint can become a performance bottleneck on busy
database servers because of the number of writes required. There are a number of ways of
tuning that, though please also understand the effect on crash recovery that those tuning
options may cause. Two parameters control the amount of WAL that can be written before
the next checkpoint. The first is checkpoint_segments, which controls the number of 16 MB
files that will be written before a checkpoint is triggered. The second is time-based, known as
checkpoint_timeout, and is the number of seconds until the next checkpoint. A checkpoint is
called whenever either of those two limits is reached.

268

[PUBLISHING]

Chapter 11

It's tempting to banish checkpoints as much as possible by setting the following parameters:

checkpoint_segments = 1000
checkpoint_timeout = 3600

though if you do you might give some thought to how long the recovery will be if you do and
whether you want that.

Also, you should make sure that the pg_x1og directory is mounted on disks with enough disk
space for at least 3 x 16 MB x checkpoint_segments. Put another way, you need at least 32
GB of disk space for checkpoint segments =1000. If wal_keep_segments > O then the
server can also use up to 16MB x (wal_keep_segments + checkpoint_segments).

Recovery continues until the end of the transaction log. We are writing this continually,

so there is no defined end point; it is literally the last correct record. Each WAL record is
individually CRC checked, so we know whether a record is complete and valid before trying to
process it. Each record contains a pointer to the previous record, so we can tell that the record
forms a valid link in the chain of actions recorded in WAL. As a result of that, recovery always
ends with some kind of error reading the next WAL record. That is normal.

Recovery performance can be very fast, though it does depend upon the actions being
recovered. The best way to test recovery performance is to setup a standby replication server,
described in the chapter on Replication.

It's possible for a problem to be caused replaying the transaction log, and for the database
server to fail to start.

Some people's response to this is to use a utility named pg_resetxlog, which removes the
current transaction log files and tidies up after that surgery has taken place.

pg_resetxlog destroys data changes and that means data loss. If you do decide to run that
utility, make sure you take a backup of the pg x1log directory first. My advice is to seek
immediate assistance rather than do this. You don't know for certain that doing this will fix a
problem, though once you've done it, you will have difficulty going backwards.

269

[PUBLISHING]

Backup and Recovery

Planning backups

This section is all about thinking ahead and planning. If you're reading this section before you
take a backup, well done.

The key thing to understand is that you should plan your recovery, not your backup. The type
of backup you take influences the type of recovery that is possible, so you must give some
thought to what you are trying to achieve beforehand.

If you want to plan your recovery, then you need to consider the different types of failures that
can occur. What type of recovery do you wish to perform?

You need to consider the following main aspects:

» Full/Partial database?
» Everything or just object definitions only?
» Point In Time Recovery
» Restore performance
We need to look at the characteristics of the utilities to understand what our backup and

recovery options are. It's often beneficial to have multiple types of backup to cover the
different types of failure possible.

Your main backup options are

» logical backup—using pg dump
» physical backup—file system backup
pg_dump comes in two main flavors: pg_dump and pg_dumpall. pg dump has a -F option

to produce backups in various file formats. The file format is very important when it comes to
restoring from backup, so you need to pay close attention to that.

The following table shows the features available, depending upon the backup technique
selected. The details of these techniques are covered in the remaining recipes in this chapter.

270

[PUBLISHING]

Chapter 11

Table of Backup/Recovery options:

SQL dump to an SQL dump to a Filesystem backup
archive file script file using pg_start_
pg_dump -F ¢ pg_dump -F p backup
or pg_dumpall
Backup type Logical Logical Physical
Recover to point in time? No No Yes
Backup all databases? One at atime Yes (pg_dumpall) Yes
All databases backed upat No No Yes
same time?
Selective backup? Yes Yes No (Note 3)
Incremental backup? No No Possible (Note 4)
Selective restore? Yes Possible (Note 1) No (Note 5)
DROP TABLE recovery Yes Yes Possible (Note 6)

DROP TABLESPACE recovery
Compressed backup files?

Possible (Note 2)
Yes

Possible (Note 6)
Yes

Possible (Note 6)
Yes

Backup is multiple files? No No Yes
Parallel backup possible? No No Yes
Parallel restore possible? Yes No Yes
Restore to later release? Yes Yes No
Standalone backup? Yes Yes Yes (Note 7)
Allows DDL during backup No No Yes

How to do it...

1.

N

N o o s

If you've generated a script with pg_dump or pg_dumpall and need to restore just
a single object, then you're going to need to go deep. You will need to write a Perl
script (or similar) to read the file and extract out the parts you want. It's messy and
time-consuming, but probably faster than restoring the whole thing to a second
server, and then extracting just the parts you need with another pg_dump.

See recipe Recovery of a dropped/damaged tablespace.

Selective backup with physical backup is possible, though will cause later problems
when you try to restore. See note 6.

See Incremental/Differential backup.

Selective restore with physical backup isn't possible with currently supplied utilities.
See recipe for Recovery of a dropped/damaged tablespace.

See recipe for Standalone hot physical backup.

271

[PUBLISHING]

Backup and Recovery

To backup all databases, you may be told you need to use the pg_dumpall utility. | have four
reasons why you shouldn't do that, which are as follows:

» If you use pg_dumpall, then the only output produced is into a script file. Script files
can't use the parallel restore feature of pg restore, so by taking your backup in
this way you will be forcing the restore to be slower than it needs to be.

» pg dumpall produces dumps of each database, one after another. This means that:

o pg dumpall is slower than running multiple pg dump tasks in parallel, one
against each database.

o The dumps of individual databases are not consistent to a particular point in
time. If you start the dump at 04:00 and it ends at 07:00 then we're not sure
exactly when the dump relates to—sometime between 0400 and 07:00.

» Options for pg_dumpall are similar in many ways to pg_dump, though not all of
them exist, so some things aren't possible. In summary, pg dumpall is slower to
backup, slow to restore, and gives you less control over the dump. | suggest you don't
use it for those reasons. If you have multiple databases, then | suggest you take your
backup by doing either

» Dump global information for the database server using pg_dumpall -g. Then dump
all databases in parallel using a separate pg_dump for each database, taking care to
check for errors if they occur. Use the physical database backup technique instead.

Hot logical backup of one database

Logical backup makes a copy of the data in the database by dumping out the contents
of each table.

How to do it...

The command to do this is simple and as follows:

pg dump -F c > dumpfile
or

pg dump -F c¢ -f dumpfile

272

[PUBLISHING]

Chapter 11

You can also do this through pgAdmin3 as shown in the following screenshot:

' pgAdmin Il FEX
File Edit Pugins View Tools Help

Obiect browser X || Pronerties |Stah'ch'cs: Dapandansias || Depandants
g Servers (3) Property Value
-0 Pestcre5QL Database Server 8.3 (localh)

=-|=| Databases (1) Mame postgres
= (7 - o 11511
20
Tablespac Refresh Cwner postares
Jobs (1)) ACL
Group Rol New Object ' Tablespace pa_default
L Login Role Delete/Drop Default tablespace pa_default
i PestcreSQL Dy CREATE script il Encoding WIN1252
! i Standby (Jocal Reports Default schema public
I

i Maintenaice. .

=/ Backup Database postgres |:| @

Filename | t_tables | B

Properties... Format

(&) cOMPRESS () TAR (C)PLAIN

Rectnre

Blobs PLAIM options -

[Jwith oIDs
[Ninsert commands
[pisable $ quoting

Verbose messages

Options | Messages
< | Help oK] [Cancel]__

Retrieving Database details... Done, T 15 secs

pg_dump produces a single output file. The output file can use the split(1) command to
separate the file into multiple pieces, if required.

pg_dump into custom format is lightly compressed by default. Compression can be removed
or made more aggressive.

pg_dump runs by executing SQL statements against the database to unload data. When
PostgreSQL runs an SQL statement we take a "snapshot" of currently running transactions,
which freezes our viewpoint of the database. We can't (yet) share that snapshot across
multiple sessions, so we cannot run an exactly consistent pg_dump in parallel in one
database, nor across many databases.

The time of the snapshot is the only time we can recover to—we can't recover to a time either
before or after that time. Note that the snapshot time is the start of the backup, not the end.

273

PUBLISHING

Backup and Recovery

When pg_dump runs, it holds the very lowest kind of lock on the tables being dumped. Those are
designed to prevent DDL from running against the tables while the dump takes place. If a dump
is run at the point that other DDL are already running, then the dump will sit and wait. If you want
to limit the waiting time you can do that by setting the —-1ock-wait-timeout option.

pg_dump allows you to make a selective backup of tables. The -t option also allows you to
specify views and sequences. There's no way to dump other object types individually using
pg_dump. You can use some supplied functions to extract individual snippets of information
available at the following website:

http://www.postgresql.org/docs/9.0/static/functions-info.
html#FUNCTIONS-INFO-CATALOG-TABLE

pg_dump works against earlier releases of PostgreSQL, so it can be used to migrate data
between releases.

pg_dump doesn't generally handle included modules very well. pg_dump isn't aware of
additional tables that have been installed as part of an additional package, such as PostGIS
or Slony, so it will dump those objects as well. That can cause difficulties if you then try

to restore from the backup, as the additional tables may have been created as part of the
software installation process in an empty server.

There's more...

What time was the pg_dump taken? The snapshot for a pg dump is taken at the beginning of
a run. The file modification time will tell you when the dump finished. The dump is consistent
at the time of the snapshot, so you may want to know that time. If you are making a script
dump, you can do a dump verbose as follows:

pg_dump -v

which then adds the time to the top of the script. Custom dumps store the start time as well
and that can be accessed using the following:

pg_restore --schema-only -v dumpfile | head | grep Started
-- Started on 2010-06-03 09:05:46 BST

Note that pg dump does not dump the roles (such as users/groups) and tablespaces. Those two
things are only dumped by pg dumpall; see the next recipes for more detailed descriptions.

Hot logical backup of all databases

If you have more than one database in your PostgreSQL server, you may want to backup all
databases together.

274

[PUBLISHING]

Chapter 11

How to do it...

My recommendation is that you do exactly what you did for one database on each database in
your cluster.

You can run those individual dumps in parallel if you want to speed things up.
Once complete, dump the global information also, using the following:

pg dumpall -g

To backup all databases, you may be told you need to use the pg_dumpall utility. | have four
reasons why you shouldn't do that which are as follows:

» If you use pg_dumpall, then the only output produced is into a script file. Script files
can't use the parallel restore feature of pg_restore, so by taking your backup in
this way, you will be forcing the restore to be slower than it needs to be.

» pg dumpall produces dumps of each database one after another. This means that
o pg_ dumpall is slower than running multiple pg dump tasks in parallel, one
against each database.

» The dumps of individual databases are not consistent to a particular point in time. If
you start the dump at 04:00 and it ends at 07:00 then we're not sure exactly when
the dump relates to—sometime between 0400 and 07:00.

» Options for pg_dumpall are similar in many ways to pg_dump, though not all of
them exist, so some things aren't possible.

Also, look at Hot physical backup options.

275

PACKT

PUBLISHING

Backup and Recovery

Hot logical backup of all tables

in a tablespace

Sometimes we may wish to make a dump of tables and data in a tablespace. Unfortunately,
there isn't a simple command to do this, so we need to write some reusable scripts.

How to do it...

It is possible for a tablespace to contain objects from more than one database, so run the
following query to see which databases from which you need to dump:

SELECT datname

FROM pg database

WHERE oid IN (
SELECT pg tablespace databases (ts.oid)
FROM pg tablespace ts
WHERE spcname = 'mytablespacename') ;

The following procedure allows you to dump all tables that reside on one tablespace and
within one database only.

Create a file named onets. sql that contains the following SQL, which extracts the list of
tables in a tablespace:

SELECT 'pg dump'

UNION ALL

SELECT '-t ' || spcname || '.' || relname

FROM pg class t JOIN pg tablespace ts

ON reltablespace = ts.old AND spcname = :TSNAME

JOIN pg namespace n ON n.oid = t.relnamespace

WHERE relkind = 'r'

UNION ALL

SELECT '-F ¢ > dumpfile'; -- dumpfile is the name of the output file

Execute the query to build the pg_dump script:
psgl -t -v TSNAME="'mytablespace'" -f onets.sqgl > get my ts

From the recovered database server, dump the tables in the tablespace, including data and
definitions. The output file is named "dumpfile", from last line in the first step.

chmod 755 get my ts
./get_my ts

276

PUBLISHING

Chapter 11

pg_dump allows you to specify more than one table on the command line, so it's possible to
generate a list of tables directly from the database.

We use the named parameter in psql to create a parameterized script, which we then execute
to create a dump.

Backup of database object definitions

Sometimes it's useful to get a dump of the object definitions that make up a database.
This is useful for comparing what's in the database against the definitions in a data or
object-modeling tool. It's also useful to make sure you can recreate objects in exactly the
correct schema, tablespace, and database with the correct ownership and permissions.

How to do it...

The basic command to dump the definitions only is to use the following:
pg _dumpall --schema-only > myscriptdump.sql

Which includes all objects, including roles, tablespaces, databases, schemas, tables, indexes,
triggers, constraints, views, functions, ownership, and privileges.

If you want to dump PostgreSQL role definitions, you can use the following:

pg dumpall --roles-only > myroles.sql

If you want to dump PostgreSQL tablespace definitions, you can use the following:
pg dumpall --tablespaces-only > mytablespaces.sql

Or if you want to dump both roles and tablespaces, then you can use the following:
pg dumpall --globals-only > myglobals.sql

The output is a human-readable script file that can be re-executed to re-create each
of the databases.

There's more...

In PostgreSQL, the word "schema" is also used to describe a set of related database objects
similar to a directory, also known as a "namespace". Be careful that you don't confuse what

is happening here. The —-—schema-only option makes a backup of the "database schema" -
the definitions of all objects in the database (and in all namespaces). To make a backup of the
data and definitions in just one namespace, use the -s option. Or, to make a backup of only
the definitions, in just one namespace, use both -s and --schema-only together.

277

[PUBLISHING]

Backup and Recovery

Standalone hot physical database backup

Hot physical backup is an important capability for databases.

Physical backup allows us to get a completely consistent view of all database changes at
once. Physical backup also allows us to backup even while DDL changes are being executed
on the database. Apart from resource constraints, there is no additional overhead or locking
with this approach.

Physical backup procedures are slightly more complex than logical backup procedures.
So, let's start with a simple procedure to produce a standalone backup.

How to do it...

The following steps assume that a number of environment variables have been set:

1. S$PGDATA is the path to the PostgreSQL data directory, ending with /
2. S$BACKUPNAME is the filename of a backup file
3. All required PostgreSQL connection parameters have been set

The initial procedure is steps 1 onwards. If
e running subsequent backups, start at step 6.

4. Create a new archive directory, if not already present, as follows:

cd S$SPGDATA
mkdir -p ../ standalone

5. Setan archive command.In postgresqgl.conf you will need to add the following
lines and restart the server, or just confirm they are present:
archive_mode = on
archive command = 'test ! ../standalone/archiving active ||
cp -i %p ../standalone/archive/%f'
6. Start archiving as follows:
mkdir ../standalone/archive
touch ../standalone/archiving active
7. Start the backup as follows:
psgl -c "select pg start backup ('standalone')"

8. Base backup—copy the data files (excluding the pg_xlog directory) as follows:

tar -cv --exclude=$PGDATA/pg xlog \
-f ../standalone/$BACKUPNAME $PGDATA

278

[PUBLISHING]

Chapter 11

9. Stop the backup as follows:

psgl -c "select pg stop backup(), current timestamp"

10. Stop archiving as follows:

rm ../standalone/archiving active

11. Move the files to the archive subdirectory, ready for recovery as follows:

mv ../standalone/archive/ archive/

12. Add the archived files to the standalone backup as follows:

tar -rzf ../standalone/$BACKUPNAME archive/

13. Write a recovery. conf with which to recover. Note that the archive directory
mentioned here must match the location files to which are copied in step 8.

echo "restore command = 'cp archive/%f %p'" > recovery.conf

14. Add the recovery. conf to the archive as follows:

tar -rf ../standalone/$BACKUPNAME recovery.conf
echo "recovery end command = 'rm -R archive' " >> recovery.conf

15. Store $BACKUPNAME somewhere safe. A safe place is definitely not on the same
server.

The procedure ends with a file named $BACKUPNAME in the standalone directory. So, you
need to remember to copy it somewhere safe. The file contains everything that you need to
recover, including a recovery parameter file.

The backup produced by the preceding procedure allows you to restore only to a single point
in time. That point is the time of the pg_stop backup () function.

Physical backup takes a copy of all files in the database (step 8, the "base backup"). That
alone is not sufficient as a backup, and you need the other steps as well. A simple copy of the
database produces a time-inconsistent copy of the database files. To make the backup time-
consistent, we need to add to it all the changes that took place from the start to the end of the
backup. That's why we have steps 7 and 9 to bracket our backup step.

The changes made are put into the standalone/archive directory as a set of archived
transaction log/write-ahead log (WAL) files. Step 6 creates the archive directory. Steps 1,

2, 3, and 5 set the parameters that copy the files to the archive. Changing archive mode
requires us to restart the database server, so there is a trick to avoid that. These parameters
are conditional upon the existence of a file named archiving active, whose presence
enables or disables the archiving process. Note this choice of parameters is configurable, so
PostgreSQL doesn't always need to work this way.

279

[PUBLISHING]

Backup and Recovery

Steps 6 and 10 enable and disable archiving, so that we only store copies of the WAL files
created during the period of the backup. So, steps 1 to 5 are setup, and steps 6 to 10 are
where the backup happens. Steps 11 onwards are gift wrapping, so that the backup script
ends with everything in one neat file.

Step 11 moves the archived files under the data directory, a more convenient location from
which to restore. Step 12 appends the WAL files to the backup file, so it is just one file.

Steps 3-14 add a recovery. conf file with its parameters setup so that there are no manual
steps when we recover from this backup. This isn't explained here; look at the recipe on
Recovery of all databases.

The key to understanding this is that we need both the base backup and the appropriate
archived WAL files to allow us to recover. Without both of those things, we have nothing. Most of
the steps are designed to ensure that we really will have the appropriate WAL files in all cases.

It's common to use continuous archiving when using the physical backup technique, because
that allows you to recover to any point in time, should you need that.

Hot physical backup & Continuous Archiving

This recipe describes how to set up a hot physical backup with a continuous archiving
mechanism. The purpose of the continuous archiving is to allow us to recover to any point
in time from the time of the backup to the time onwards.

Getting ready

This recipe builds upon the previous recipe to take a Standalone hot physical backup.
You should read that first before following this recipe.

You need to decide a few things, which are as follows:

» Where will you store the WAL files (known as the "archive")?

» How will you send WAL files to the archive?

» Where will you store your base backups?

» How will you take my base backups?

» How many backups will you keep? What is your policy for maintaining the archive?

These are hard questions to answer immediately. So, we give a practical example as a way of
explaining how this works, and then let the user decide how they would like it to operate.

280

[PUBLISHING]

Chapter 11

How to do it...

The rest of this recipe assumes the following answers to the key questions:

» Archive is a directory on a remote server named SOTHERNODE
» We send WAL files to the archive using scp
» Base backups are also stored on SOTHERNODE
» Base backups are made using rsync
» We'll keep two backups, overwriting alternate backups as we take new ones and
backups are taken weekly on Sundays
The following steps assume that a number of environment variables have been set:

» S$PGDATA is the path to the PostgreSQL data directory, ending with /
» SOTHERNODE is the name of the remote server

» S$BACKUPNAME is either b1/ or b2/, and we alternate this each time we take a
backup. Two backups is the minimum; you may wish to use more copies.

» All required PostgreSQL connection parameters have been set
The procedure is as follows:

1. Create the archive and backup directories on a backup server.

2. Setan archive command.In postgresqgl.conf, you will need to add the following
lines and restart the server, or just confirm they are present.

archive mode = on

archive command = 'scp %p SOTHERNODE:/archive/%f'
3. Start the backup as follows:

psgl -c "select pg start backup('my backup')"

4. Copy the data files (excluding the pg x1og directory) as follows:
rsync -cva --inplace --exclude=*pg xlog* \
${PGDATA}/ $OTHERNODE : $BACKUPNAME/$PGDATA
5. Stop the backup as follows:
psgl -c "select pg stop backup(), current timestamp"
6. It's also good practice to put a README . backup file into the data directory prior to
the backup, so that it forms part of the set of files that make up the base backup.

This should say something intelligent about the location of the archive, including any
identification numbers, names, and so on.

281

[PUBLISHING]

Backup and Recovery

Notice that we don't put a recovery. conf into the backup this time. That's because we're
assuming we want flexibility at the time of recovery, rather than a gift-wrapped solution. The
reason for that is we don't know when or where or how we will be recovering, nor do we need
to make a decision on that yet.

The key point here is that we must have both the base backup and the archive in order to
recover. Where you put them is completely up to you. You can use any file system backup
technology and/or file system backup management system to do this.

Many backup management systems have claimed that they have a PostgreSQL interface/
plugin, though this most often means they support logical backup. However, there's no need
for them to officially support PostgreSQL; there isn't any "Runs on PostgreSQL" badge or
certification required. If you can copy files, then you can run the preceding processes to keep
your database safe.

The preceding procedure uses a simple secure file copy, though it could also use rsync.

If the network or backup server goes down, then the command will begin to fail. When the
archive command fails, it will repeatedly retry until it succeeds. PostgreSQL does not
remove WAL files from pg_x1log until the WAL files have been successfully archived, so the
end result is that your pg_x1og directory fills up. It's a good idea to have an archive
command that reacts better to that condition, though that is left as an improvement for the
sysadmin. Typical action is to make that an emergency call out so we can resolve the problem
manually. Automatic resolution is difficult to get right as this condition is one for which it is
hard to test.

When continuously archiving, we will generate a considerable number of WAL files. If archive
timeout is set to 30 seconds, we will generate a minimum of 2*60*24 = 2880 files per

day, each 16 MB in size, so a total volume of 46 GB per day (minimum). With a reasonable
transaction rate, a database server might generate 100 GB of archive data per day, so you
should use that as a rough figure for calculations before you have better measurements. Of
course the rate could be much higher, with rates of 1 TB per day or higher being possible.
Clearly we would only want to store WAL files that are useful for backup, so when we decide

we no longer wish to keep a backup we will also want to remove files from the archive. In each
base backup you will find a file called backup_label. The earliest WAL file required by a physical
backup is the filename mentioned on the first line of the backup_label file. We can use a contrib
module called pg_archivecleanup to remove any WAL files earlier than the earliest file.

The size of the WAL archive is clearly something we would want to compress. Ordinary
compression is only reasonably effective. As is typically the case, a domain-specific
compression tool is usually better at compressing archives. pg_lesslog is available at the
following website to do this.

http://pgfoundry.org/frs/?group id=1000310

282

[PUBLISHING]

Chapter 11

Recovery of all databases

Recovery of a complete database server, including all of its databases, is an important
feature. This recipe covers how to do that in the simplest way possible.

Some complexities are discussed here, though most are covered in later recipes.

Getting ready

Find a suitable server on which to perform the restore.

Before you recover onto a live server, always take another backup. Whatever problem you
thought you had could be just about to get worse.

How to do it...

LOGICAL (from custom dump -F c):

» Restore of all databases means simply restoring each individual database from each
dump you took. Confirm you have the correct backup before you restore:

pg_restore --schema-only -v dumpfile | head | grep Started

» Reload globals from script file as follows:
psgl -f myglobals.sgl

» Reload all databases. Create the databases using parallel tasks to speed things
along. This can be executed remotely without needing to transfer dumpfile between
systems. Note that there is a separate dumpfile for each database.

pg_restore -d postgres -j 4 dumpfile
LOGICAL (from script dump created by pg_dump -F p):

As above, though with this command to execute the script. This can be executed remotely
without needing to transfer dumpfile between systems.

» Confirm you have the correct backup before you restore. If the following command
returns nothing, then the file is not timestamped, and you'll have to identify it in a
different way:

head myscriptdump.sql | grep Started

» Reload globals from script file as follows:
psgl -f myglobals.sgl

283

[PUBLISHING]

Backup and Recovery

>

Reload all scripts like the following:

psgl -f myscriptdump.sqgl

LOGICAL (from script dump created by pg_dumpall):

We need to follow the procedure, which is shown next.

>

Confirm you have the correct backup before you restore. If the following command
returns nothing, then the file is not timestamped, and you'll have to identify it in a
different way:

head myscriptdump.sql | grep Started

Find a suitable server, or create a new virtual server.
Reload script in full
psgl -f myscriptdump.sqgl

PHYSICAL:

>

>

If you used the Standalone hot physical database backup recipe then recovery is very
easy. Restore the backup file onto the target server.

Extract the backup file into the new data directory.
Confirm that you have the correct backup before you restore.

$ cat backup_ label

START WAL LOCATION: 0/12000020 (file 000000010000000000000012)
CHECKPOINT LOCATION: 0/12000058

START TIME: 2010-06-03 19:53:23 BST

LABEL: standalone

Check all file permissions and ownerships are correct and links are valid. That
should already be the case if you are using the postgres userid everywhere, which
is recommended.

Start the server

That procedure is so simple because in the Standalone recipe we gift wrapped everything
for you. That also helps us understand that we need both a base backup and the appropriate
WAL files.

If you used other techniques, then we need to step through the tasks to make sure we cover
everything required as follows:

>

>

284

Shutdown any server running in the data directory.

Restore the backup so that any files in the data directory that have matching names
are replaced with the version from the backup. (The manual says delete all files and
then restore backup—that might be a lot slower than running an rsync between your
backup and the destination without the —-update option). Remember that this step
can be performed in parallel to speed things up, though it is up to you to script that.

[PUBLISHING]

Chapter 11

» Check that all file permissions and ownerships are correct and links are valid. That
should already be the case if you are using the postgres userid everywhere,
which is recommended.

» Remove any files in pg_xlog/. If you've been following my recipes, you'll be able to
skip this step, because we never backed them up in the first place.

» Copy in any latest WAL files from a running server, if any.
» Addinarecovery.conf and set its file permissions correctly also.
» Start the server.

The only part that requires some thought and checking is which parameters you select for the
recovery.conf. There's only one that matters here, and that is the restore_command.

restore command tells us how to restore archived WAL files. It needs to be the command
that will be executed to bring back WAL files from the archive.

If you are forward-thinking, there'll be a README . backup file for you to read to find out how
to set the restore_command. If not, then presumably you've got the location of the WAL files
you've been saving written down somewhere.

Say, for example, that your files are being saved to a directory named /backups/pg/
servername/archive, owned by the postgres user.

On a remote server named backupl, we would then write this all on one line of the
recovery.conf as follows:

restore_command = 'scp backupl:/backups/pg/servername/archive/%$f %p'

PostgreSQL is designed to require very minimal information to perform a recovery. We try hard
to wrap all the details up for you.

» Logical recovery: Logical recovery executes SQL to re-create the database objects. If
performance is an issue, ook at the recipe on recovery performance.

» Physical recovery: Physical recovery re-applies data changes at the block level so
tends to be much faster than logical recovery. Physical recovery requires both a base
backup and a set of archived WAL files.

There is a file named backup label in the data directory of the base backup. This tells us to
retrieve a . backup file from the archive that contains the start and stop WAL locations of the

base backup. Recovery then starts to apply changes from the starting WAL location, and must
proceed as far as the stop address for the backup to be valid.

After recovery completes, the recovery . conf file is renamed to recovery.done to prevent
the server from re-entering recovery.

285

[PUBLISHING]

Backup and Recovery

The server log records each WAL file restored from the archive, so you can check progress and
rate of recovery. You can query the archive to find out the name of the latest archived WAL file
to allow you to calculate how many files to go.

The restore_command should return O if a file has been restored and non-zero for failure
cases. Recovery will proceed until there is no next WAL file, so there will eventually be an error
recorded in the logs.

If you have lost some of the WAL files, or they are damaged, then recovery will stop at that
point. No further changes after that will be applied, and you will likely lose those changes; that
would be the time to call your support vendor.

There's more...

You can start and stop the server once recovery has started without any problem. It will not
interfere with the recovery.

You can connect to the database server while it is recovering and run queries, if that is useful.
That is known as Hot Standby mode, and is discussed in a later chapter.

See also

Once recovery reaches the stop address you can stop the recovery at any point, as discussed
in Recovery to a point in time.

Recovery to a point in time

If your database suffers a problem at 15:22 p.m. and yet your backup was taken at 04:00
a.m. you're probably hoping there is a way to recover the changes made between those two
times. What you need is known as "point-in-time recovery".

Regrettably, if you've made a backup with pg_dump at 04:00 a.m. then you won't be able to
recover to any other time than 04:00. As a result, the term point-in-time recovery (PITR) has
become synonymous with the physical backup and restore technique in PostgreSQL.

Getting ready

If you have a backup made with pg_dump, then give up all hope of using that as a starting point
for a point in time recovery. It's a frequently asked question, but the answer is still "no"; the
reason it gets asked is exactly why I'm pleading with you to plan your backups ahead of time.

First, you need to decide what the point of time is that to which you would like to recover.
If the answer is "as late as possible", then you don't need to do a PITR at all, just recover
until end of logs.

286

[PUBLISHING]

Chapter 11

How to do it...

How do you decide to what point to recover? The point where we stop recovery is known as
the "recovery target". The most straightforward way is to do this based upon a timestamp.

In the recovery.conf, you can add (or uncomment) a line that says the following;:
recovery target time = '2010-06-01 16:59:14.27452+01"

or similar. Note that you need to be careful to specify the time zone of the target, so that it
matches the time zone of the server that wrote the log. That might differ from the time zone of
the current server, so check.

After that, you can check progress during a recovery by running queries in Hot Standby mode.

Recovery works by applying individual WAL records. These correspond to individual block
changes, so there are many WAL records to each transaction. The final part of any successful
transaction is a commit WAL record, though there are abort records as well. Each transaction
completion record has a timestamp on it that allows us to decide whether to stop at that point
or not.

You can also define a recovery target using a transaction id (xid), though finding out which xid
to use is somewhat difficult, and you may need to refer to external records if they exist.

The recovery target is specified in the recovery.conf and cannot change while the server
is running. If you want to change the recovery target, you can shutdown the server, edit the
recovery.conf, and then restart the server. Be careful though, if you change the recovery
target and recovery is already passed the point, it can lead to errors. If you define a recovery_
target_timestamp that has already passed, then recovery will stop almost immediately, though
this will be later than the correct stopping point. If you define a recovery_target_xid that has
already passed, then recovery will just continue to the end of logs. Restarting recovery from
the beginning using a fresh restore of the base backup is always safe.

Once a server completes recovery, it will assign a new "timeline". Once a server is fully
available, we can write new changes to the database. Those changes might differ from
changes we made in a previous "future history" of the database. So we differentiate between
alternate futures using different timelines. If we need to go back and run recovery again, we
can create a new server history using the original or subsequent timelines. The best way to
think about this is that it is exactly like a Sci-Fi novel—you can't change the past but you can
return to an earlier time and take a different action instead. But you'll need to be careful not
to confuse yourself.

287

[PUBLISHING]

Backup and Recovery

There's more...

pg_dump cannot be used as a base backup for a PITR. The reason is that a log replay
contains the physical changes to data blocks, not logical changes based upon Primary Keys.
If you reload a pg_dump the data will likely go back into different data blocks, so the changes
wouldn't correctly reference the data.

WAL doesn't contain enough information to reconstruct all SQL fully that produced those
changes. Later feature additions to PostgreSQL may add the required information to WAL.

See also

Planned in 9.1 is the ability to pause/resume/stop recovery, and to set recovery targets while
the server is up dynamically. This will allow you to use the Hot Standby facility to locate the
correct stopping point more easily.

You can trick Hot Standby into stopping recovery, which may help. See the recipe on managing
Hot Standby.

Recovery of a dropped/damaged table

You may drop or even damage a table in some way. Tables could be damaged for physical
reasons, such as disk corruption, or they could also be damaged by running poorly specified
UPDATEs/DELETES, which update too many rows or overwrite critical data.

It's a common request to recover from this situation from a backup.

How to do it...

The methods differ, depending upon the type of backup you have available. If you have
multiple types of backup, you have a choice.

LOGICAL (from custom dump -F c):

If you've taken a logical backup using pg_dump into a custom file, then you can simply extract
the table you want from the dumpfile like the following:

pg_restore -t mydroppedtable dumpfile | psqgl
or connect direct to the database using -d.

The preceding command tries to re-create the table and then load data into it. Note that pg
restore -t option does not dump out any of the indexes on the table selected. That means
we need a slightly more complex procedure than it would first appear, and the procedure
needs to vary depending upon whether we are repairing a damaged table or putting back a
dropped table.

288

[PUBLISHING]

Chapter 11

To repair a damaged table we want to replace the data in the table in a single transaction.
There isn't a specific option to do this, so we need to do the following:

>

Dump the table to a script file as follows:
pg_restore -t mydroppedtable dumpfile > mydroppedtable.sqgl

Edit a script named restore_mydroppedtable.sqgl with the following code:

BEGIN;

TRUNCATE mydroppedtable;
\1 mydroppedtable.sqgl
COMMIT;

Then, run it using the following;:
psgl -f restore mydroppedtable.sqgl

If you've dropped a table then you need to:
o Create a new database in which to work, name it restorework, as follows:

CREATE DATABASE restorework;
o Restore the complete schema to the new database as follows:
pg_restore --schema-only -d restorework dumpfile

Now, dump just the definitions of the dropped table into a new file, which will contain
CREATE TABLE, indexes, other constraints and grants. Note that this database has no
data in it, so specifying —--schema-only is optional, as follows:

pg_dump -t mydroppedtable --schema-only restorework >
mydroppedtable.sql

Now, recreate the table on the main database as follows:

psgl -f mydroppedtable.sqgl

Now, reload just the data into database maindb as follows
pg_restore -t mydroppedtable --data-only -d maindb dumpfile

If you've got a very large table, then the fourth step can be a problem, because it builds the
indexes as well. If you want you can manually edit the script into two pieces, one before the
load ("pre-load") and one after the load ("post-load"). There are some ideas for that at the end
of the recipe.

LOGICAL (from script dump):

The easy way to restore a single table from a script is as follows:

>

>

Find a suitable server, or create a new virtual server.
Reload the script in full, as follows:
psgl -f myscriptdump.sqgl

289

PUBLISHING

Backup and Recovery

» From the recovered database server, dump the table, its data, and all the definitions
of the dropped table into a new file as follows:

pg_dump -t mydroppedtable -F ¢ mydatabase > dumpfile
» Now, recreate the table into the original server and database, using parallel tasks

to speed things along. This can be executed remotely without needing to transfer
dumpfile between systems.

pg_restore -d mydatabase -j 2 dumpfile
The only way to extract a single table from a script dump without doing all of the preceding is
to write a custom Perl script to read and extract just the parts of the file you want. That can be
complicated, because you may need certain SET commands at the top of the file, the table,

and data in the middle of the file, and the indexes and constraints on the table are near the
end of the file. It's complex; the safe route is the one already mentioned.

PHYSICAL:
To recover a single table from a physical backup, we need to:

» Find a suitable server, or create a new virtual server.

» Recover the database server in full, as described in previous recipes on physical
recovery, including all databases and all tables. You may wish to stop at a useful point
in time, in which case you can look at the recipe on that topic later in the chapter.

» From the recovered database server, dump the table, its data, and all the definitions
of the dropped table into a new file as follows:

pg_dump -t mydroppedtable -F ¢ mydatabase > dumpfile
» Now, recreate the table into the original server and database using parallel tasks

to speed things along. This can be executed remotely without needing to transfer
dumpfile between systems as follows:

pg_restore -d mydatabase -j 2 dumpfile

At present, there's no way to restore a single table from a physical restore in just a single step.

Splitting a pg_dump into multiple sections, "pre" and "post" was proposed by me for an earlier
release of PostgreSQL, though | haven't had time to complete that yet. It's possible to do that
using an external utility also; the best script I've seen to split a dump file into two pieces is
available at the following website:

http://bucardo.org/wiki/split postgres dump

290

[PUBLISHING]

Chapter 11

It's extremely likely that we get changes to pg_dump in this area for PostgreSQL 9.1,
with a few developers interested in following up on my earlier ideas.

Recovery of a dropped/damaged tablespace

Recovering a complete tablespace is also sometimes required. It's actually a lot easier than
recovering a single table.

How to do it...

The methods differ depending upon the type of backup you have available. If you have
multiple types of backup, you have a choice.

LOGICAL (from custom dump -F c):

If you've taken a logical backup using pg_dump into a custom file, then you can simply extract
the tables you want from the dumpfile, like the following:

pg_restore -t mytabl -t mytab2 .. dumpfile | psql
or connect direct to the database using -d.

Of course, you may have difficulty remembering which exact tables were there. So, you may
need to proceed, like the following:
» Find a suitable server, or create a new virtual server.
» Reload the script in full, using four parallel tasks as follows:
pg_restore -d mydatabase -j 4 dumpfile

» Once the restore is complete, you can then dump the tables in the tablespace by
following the recipe Hot logical backup of all tables in a tablespace.

» Now, recreate the tables into the original server and database, using parallel tasks
to speed things along. This can be executed remotely without needing to transfer
dumpfile between systems as follows:

pg_restore -d mydatabase -j 2 dumpfile
LOGICAL (from script dump):
There's no easy way to extract the required tables from a script dump.
We need to follow the procedure which is as follows:

» Find a suitable server, or create a new virtual server.
» Reload the script in full
psgl -f myscriptdump.sqgl
291

[PUBLISHING]

Backup and Recovery

» Once the restore is complete, you can then dump the tables in the tablespace by
following the recipe Hot logical backup of all tables in a tablespace.

» Now, recreate the tables into the original server and database, using parallel tasks
to speed things along. This can be executed remotely without needing to transfer
dumpfile between systems like the following:

pg_restore -d mydatabase -j 2 dumpfile
PHYSICAL:
To recover a single tablespace from a physical backup, we need to:

» Find a suitable server, or create a new virtual server.

» Recover database server in full, as described in previous recipes on physical recovery,
including all databases and all tables. You may wish to stop at a useful point in time,
in which case you can look at the recipe on that topic later in the chapter.

» Once the restore is complete, you can then dump the tables in the tablespace by
following the recipe Hot logical backup of all tables in a tablespace.

» Now, recreate the tables into the original server and database, using parallel tasks
to speed things along. This can be executed remotely without needing to transfer
dumpfile between systems like the following:

pg_restore -d mydatabase -j 2 dumpfile

There's more...

When recovering from a custom backup file (-F c¢), you can also use the -1 option to list out
the contents of the archive. You can then edit that file to remove, comment out, or reorder the
actions. pg_restore can then reuse the list file as input, using the -L option.

Recovery of a dropped/damaged database

Recovering a complete database is also sometimes required. It's actually a lot easier than
recovering a single table. Many users choose to place all their tables in a single database; in
that case this recipe isn't relevant.

How to do it...

The methods differ depending upon the type of backup you have available. If you have
multiple types of backup, you have a choice.

LOGICAL (from custom dump -F c):

292

[PUBLISHING]

Chapter 11

Recreate the database into the original server using parallel tasks to speed things along.
This can be executed remotely without needing to transfer dumpfile between systems like
the following;:

pg_restore -d myfreshdb -j 4 dumpfile
LOGICAL (from script dump created by pg_dump):

Recreate the database into the original server. This can be executed remotely without needing
to transfer dumpfile between systems like the following;:

psgl -f myscriptdump.sgl myfreshdb
LOGICAL (from script dump created by pg_dumpall):
There's no easy way to extract the required tables from a script dump.
We need to follow the procedure, which is as follows:

» Find a suitable server, or create a new virtual server.

» Reload script in full, as follows:
psgl -f myscriptdump.sqgl

» Once the restore is complete, you can then dump the tables in the tablespace by
following the recipe Hot logical backup of one database.

» Now recreate the database as described for logical dumps earlier in this recipe.

PHYSICAL:
To recover a single database from a physical backup we need to:

» Find a suitable server, or create a new virtual server.

» Recover database server in full, as described in previous recipes on physical recovery
including all databases and all tables. You may wish to stop at a useful point in time,
in which case you can look at the recipe on that topic later in the chapter.

» Once the restore is complete, you can then dump the tables in the database by
following the recipe Hot logical backup of one database.

» Now, recreate the database as described for logical dumps, earlier in this recipe.

293

[PUBLISHING]

Backup and Recovery

Improving performance of backup/restore

Performance is often a concern in any medium or large database.

Backup performance is often a delicate issue, because the resource usage may need to be
limited to within certain boundaries. There may also be a restriction on the maximum run-time
for the backup, for example, if the backup runs each Sunday.

Again, restore performance may be more important than backup performance, even if backup
is the more obvious concern.

Getting ready

If performance is a concern or is likely to be one, then you should read the recipe about
planning first.

How to do it...

» Physical backup: Improving performance of a physical backup can be done by taking
the backup in parallel. That is, copying away the files using more than one task. The
more tasks you use, the more it will impact the current system. When backing up, you
can skip certain files. You won't need (in order) the following;:

o any files placed there by DBA that shouldn't actually be there
o anyfilesin pg xlog
o any old server log files in pg_log (even the current one)

Remember, it's safer not to try to exclude files at all, as if you miss something critical
you may get data loss. Also remember that your backup speed may be bottlenecked
by your disks or your network. Some larger systems have dedicated networks in place
purely for backups.

» Logical backup: As explained in a previous recipe, if you want to backup all
databases in a database server, then you should use multiple pg_dump tasks
running in parallel. If you want to speed up the dump speed of a pg_dump task, there
really isn't an easy way of doing that right now. If you're using compression, look at
the notes at the bottom of this recipe.

» Physical restore: Just as with physical backup, it's possible for us to put everything
back quicker if we use parallel restore.

» Logical restore: Whether you use psql or pg _restore, you can speed up the
program by assigning maintenance work mem = 128MB or more either in
postgresqgl.conf or on the user that will run the restore. If neither of those ways
is easily possible, you can specify the option using the PGOPTIONS environment
variable, as follows:

[PUBLISHING]

Chapter 11

O export PGOPTIONS ="-c work mem=128000"

This will then be used to set that option value for subsequent connections.

If you are running, archiving, or streaming replication, then transaction log writes may
become a problem. Set wal buffers between 2,000 and 10,000, and set checkpoint
segments to 1024, so it has room to breathe.

If you aren't running archiving or streaming replication, or you can turn it off during the
restore, then you'll be able to minimize the amount of transaction log writes. In that case,
you may wish to use the --single-transaction option, as that will also act to improve
performance.

If a pg_dump was made using -F (custom format), then we can restore in parallel as follows:
pg_restore -j NumJobs

You'll have to be careful about how you select what degree of parallelism to use. A good starting
point is the number of CPUs. Be very careful that you don't overflow available memory when
using parallel restore: each job will use up to maintenance work_ mem, SO the whole restore
could begin swapping when it hits larger indexes later in the restore. Plan out the size of
shared buffers and maintenance work mem according to the number of jobs specified.

Whatever you do, make sure you run ANALYZE afterwards on every object created. This will
happen automatically if autovacuum is enabled. It often helps to disable autovacuum completely
while running a large restore, so double-check that you have it switched on again following the
restore. The consequences of skipping this step will be extremely poor performance when you
start your application again, which can easily set everybody off in a panic.

Physical backup and restore is completely up to you. Copy those files away as fast as you like,
anyway you like. Put them back the same or a different way.

Logical backup and restore involves moving data into and out of the database. That's typically
going to be slower than physical backup and restore. Particularly with a restore, rebuilding
indexes and constraints takes time, even when run in parallel. Plan ahead, measure the
performance of your backup and restore techniques, so you have a chance when you need
your database back in a hurry.

Compressing backups is often considered as a way to reduce the size of the backup for storage.
Even mild compression can use large amounts of CPU. In some cases, this might offset network
transfer costs, so there isn't any hard rule as to whether compression is always good.

295

[PUBLISHING]

Backup and Recovery

Compression for WAL files from physical backups was discussed earlier: pg_lesslog, available
at the following website. http://pgfoundry.org/frs/?group id=1000310. Physica
backups can be compressed in various ways, depending upon the exact backup mechanism
used. By default, the custom dump format for logical backups will be compressed. Even when
compressed, the objects can be accessed individually if required.

Using - -compress with script dumps will result in a compressed text file, just as if you had
dumped the file, and then compressed it. Access to individual tables is not possible.

PostgreSQL utilities do have a compress/decompress option, though this isn't always that
efficient. Put another way:

pg_dump --compress=0
will typically be slower than:
pg_dump | gzip

Of course, feel free to use your favorite fast compression tool instead, which is likely to vary,
depending upon the type of data in use.

Using multiple processes is known as pipeline parallelism. If you're using physical backup,
then you can copy the data away in multiple streams, which also allows you to take advantage
of parallel compression/decompression.

If taking a backup is an expensive operation, then one way around that is to take the backup
from a replica instead that offloads the cost of the backup operation away from the master.
Look at the recipes in the chapter on Replication to see how to set up a replica.

Incremental/Differential backup and restore

If you have performance problems with backup of a large PostgreSQL database, then you may
ask about incremental or differential backup.

An incremental backup is a backup of all files that have changed since the last full backup. In
order to restore, you must restore the full backup and then each set of incremental changes.

A differential backup is a backup of all individual changes since the last full backup. Again,
restoration requires you to restore the full backup and then apply any changes since then.

296

[PUBLISHING]

Chapter 11

How to do it...

To perform a differential physical backup, you can use rsync to compare the existing files
against the previous full backup, and then overwrite just changed data blocks. It's a bad plan
to overwrite your last backup, so keep two or more copies. An example backup schedule would
be as follows:

Day of Week Backup Set 1 Backup Set 2

Sunday New full backup to Set 1 New full backup to Set 2
Monday Differential to Set 1 Differential to Set 2
Tuesday Differential to Set 1 Differential to Set 2
Wednesday Differential to Set 1 Differential to Set 2
Thursday Differential to Set 1 Differential to Set 2
Friday Differential to Set 1 Differential to Set 2
Saturday Differential to Set 1 Differential to Set 2

You should keep at least two full backup sets.

Many large databases have tables that are insert-only. In that case, it's easy to store away
parts of those tables. If the tables are partitioned by insertion/creation date or a similar field,
it makes doing that much simpler. Either way, you're still going to need a good way of recording
what data is where in your backup.

In the general case, there's no easy way to run a differential backup using pg_dump.

PostgreSQL doesn't explicitly keep track of last changed date or similar information for a file
or table. PostgreSQL tables are held as files, so you should be able to rely on the modification
time (mtime) of the files on the filesystem. If, for some reason, you don't trust that or that has
been disabled, then incremental backup is not for you.

pg_dump doesn't allow WHERE clauses to be specified, so even if you add your own columns
to track last_changed date you'll still need to perform that manually somehow.

297

[PUBLISHING]

Backup and Recovery

There's more...

http://en.wikipedia.org/wiki/Backup rotation scheme gjves further
useful information.

While thinking about incremental backup, you should note that replication techniques work
by continually applying changes onto a full backup. This could be considered a technique for
an incremental updated backup, also known as an "incremental forever" backup strategy. The
changes are applied ahead of time, so that you can restore easily and quickly. You should still
take a backup, but you can take the backup from the replication standby instead.

It's possible to write a utility that makes a differential backup of data blocks. You can read
each data block and check the block's Log Sequence Number (LSN) to see if it has changed
since a previous copy.

pg_rman is an interesting project, and you can get more information at the following website:
http://code.google.com/p/pg-rman/

pg_rman reads changed data blocks and compresses them, using detailed knowledge of

the internals of PostgreSQL data blocks. Any bugs that exist there could cause data loss in
your backups. Issues aren't resolved by the main PostgreSQL project, so | personally wouldn't
advise using this utility without a formal support contract. Various companies support this;
ask them.

pg_rman 1.1.2 will certainly produce smaller backups, though creating those backups is not
yet a parallel process. As a result, it can be much faster to use a full or incremental backup
with parallel streams.

pg_rman is certainly a project to watch in the future.

298

[PUBLISHING]

12

Replication &
Upgrades

In this chapter, we will cover the following:

» Replication concepts

» Replication best practices

» Setting up file-based log shipping replication

» Setting up streaming log replication

» Managing log shipping replication

» Managing Hot Standby

» Selective replication using Londiste 3.0

» Selective replication using Slony 2.0

» Load balancing with pgpool Il 3.0

» Upgrading to a new minor release (for example, 9.0.0 to 9.0.1)

» In-place major upgrades (for example, 8.4 t0 9.0, or 9.0 t0 9.1)

» Major upgrades online using replication tools

Introduction

Replication isn't magic, though it can be pretty cool. It's even cooler when it works, and that's
what this chapter is all about.

Replication requires understanding, effort, and patience. There are a significant number of
points to get right. My emphasis here is on providing simple approaches to get you started,
and some clear best practices on operational robustness.

[PUBLISHING]

Replication & Upgrades

PostgreSQL has included some form of native replication since Version 8.2, though that
support has steadily improved over time. External projects and tools have always been a
heavy part of the PostgreSQL landscape, with most of them being written and supported by
very strong PostgreSQL technical developers. Some people with a negative viewpoint have
observed that this weakens PostgreSQL or emphasizes shortcomings. My view would be that
PostgreSQL has been lucky enough to be supported by a huge range of replication tools,
together offering a wide set of supported use cases from which to build practical solutions.
That view extends throughout this chapter on replication, with around half of the recipes
mentioning tools that are not part of the core PostgreSQL project.

All of the tools mentioned in this chapter are maintained and actively enhanced by current
core PostgreSQL developers. The pace of change in this area is high, and it is likely that some
of the restrictions mentioned here could well be removed by the time you read this. Please
double-check the documentation for each tool or project.

Which is best? is a question that gets asked many times. The answer varies on the exact
circumstances. In many cases, people use one technique on one server and a different
technique to protect other servers. Even the developers of particular tools use the other tools
when it is appropriate. Use the right tools for the job. All of the tools and techniques listed

in this chapter have been recommended by me at some time, in relevant circumstances. If
something isn't mentioned here by me that does probably imply it is less favorable for various
reasons, and there are some tools and techniques that | would personally avoid altogether in
their present form or level of maturity.

Understanding replication concepts

Replication technology can be confusing. You might be forgiven for thinking that people have a
reason to keep it that way. My observation is that there are many techniques, each with their
own advocates, and the strengths and weaknesses are often hotly debated.

There are some simple underlying concepts that can help us to understand the various
options available. The terms used here are designed to avoid favoring any particular
technique, as well as using standard industry terms when available.

Database replication is the term we use to describe the technology for maintaining a copy
of a set of data on a remote system.

There are usually two main reasons for wanting to do this, and often those reasons
are combined:

» High availability: Reducing the chances of data unavailability by having multiple
systems each holding a full copy of the data.

300

[PUBLISHING]

Chapter 12

» Data movement: Allowing data to be used by additional applications or workloads
on additional hardware. Examples are Reference Data Management, where a
single central server might provide information to many other applications, and also
Business Intelligence/Reporting Systems.

Of course, both of those topics are complex areas, and there are many architectures and
possibilities for doing each of those.

What we will talk about here is data movement, where there is no transformation of the
data—we simply copy the data from one PostgreSQL database server to another. So, we are
specifically avoiding all discussion on ETL tools, EAI tools, inter-database migration, data
warehousing strategies, and so on. Those are valid topics in IT architecture, we just don't
cover them here.

Let's look at the basic architecture. Typically, the individual database servers are referred to
as nodes. The whole group of database servers involved in replication is known as a Cluster.
That is the common usage of the term, though be careful that the term Cluster is also used for
two other quite separate meanings elsewhere in PostgreSQL. First, cluster is sometimes used
to refer to the whole database instance, though | prefer the term "database server". Second,
there is a command named CLUSTER, which is designed to sort data into a specific order
within a table.

The first database server is also known as the Master, Primary, Provider, Sender, or the
Source server.

The second database server is also known as the Standby, Slave or Subscriber, or Receiver.
There can be multiple Standbys, if desired.

The replication systems described here are all Single Master, Multiple Standby systems. Multi-
Master architectures are discussed briefly later.

The designations Master and Standby are just roles that any node can take at some point.
To move the Master role to another node, we perform a procedure named Switchover. If the
Master dies, and does not recover, then the more severe role change is known as a Failover.
In many ways, they may be similar, but it helps to use different words for the two situations.

Software that manages the cluster, and in some cases automatically initiates the failover
process, is sometimes referred to as clusterware. Clusterware may also perform other
functions, such as load balancing.

The key aspect of replication is that data changes are captured on the Master, and then
transferred to the Standby nodes. In some cases, a Standby node may send data changes
onto later Standbys, a process known as relay.

301

[PUBLISHING]

Replication & Upgrades

After a transaction commits on the Master, the time taken to transfer data changes are sent
from Master to Standby is important, and is usually referred to as the latenecy, or replication
delay. Replication delay is best measured as a time (in seconds). Changes must then be
applied to the Standby, which takes an amount of time known as the apply delay. Data
changes are often sent in batches. Increasing batch size may increase transfer efficiency,
though will also increase replication delay, and also the apply delay of the data changes
towards the end of the batch. The total time a record takes from Master to Standby is the
replication delay plus the apply delay. Be careful to note that some authors describe those
times differently, and sometimes confuse the two, which is easy to do. In some cases,

you may see the apply delay expressed in terms of the total volume of changes currently
outstanding, expressed in bytes (usually MB). Please note that the throughput, or rate of data
transfer, measured in MBs, is interesting, but not the same thing as the latency or replication
delay, though may often be loosely related.

If data changes are acknowledged as sent from Master to Standby before transaction commit
is acknowledged, we refer to that as synchronous replication. If data changes are sent after a
transaction commits, we name that asynchronous replication. With synchronous replication,
the replication delay directly affects performance on the Master. With asynchronous
replication the Master may continue at full speed, though this opens up a possible risk that
the Standby may not be able to keep pace with the Master. All asynchronous replication must
be monitored to ensure that a significant lag does not develop, which is why we must be
careful to monitor the replication delay.

All forms of Single-Master replication are initialized in roughly the same way. First, you enable
change capture, and then make a full replica of the data set onto the Standby. After that, we
begin applying the changes. As a result, the replication delay immediately following the initial
copy task will be equal to the duration of the initial copy task. The Standby will then begin to
catch-up with the Master, and the replication delay will begin to get smaller. This is known

as the catch up period. If the Master is busy, it will continue to produce many new changes,
and that can lengthen the time it takes the Standby to catch up. Note that in some cases, the
catch-up period will be too long to be acceptable. Be sure to include this understanding in
your planning and monitoring. Replication tuning may often be different during the catch-up
period from the tuning you may need during normal running.

Replication will either copy all tables, or in some cases, we can copy a subset of tables, in
which case we call this selective replication. When using selective replication we can group
selected objects together into a replication set. If you choose selective replication, you should
note that the management overhead increases as the number of objects managed increases.
Additional administration time should be planned, especially if more than a few hundred
objects are being managed.

302

[PUBLISHING]

Chapter 12

There's more...

Multi-Master database architectures cause a number of problems that are difficult to resolve in
the general case. Jim Gray's classic paper on multi-Master database architectures, The Dangers
of Replication and a Solution, is considered the clearest explanation of the problems that can
occur with the multi-Master approach. To quote from the Summary of the paper directly:

Replicating the data at many nodes and letting anyone update the data
is problematic.

The main problem is also stated clearly:

Update anywhere-anytime-anyway transactional replication has unstable behavior
as the workload scales.

Visit the following URL:

http://books.google.co.uk/ The Dangers
of Replication and a Solution

s

My own personal experience of clustering solutions that provide multi-Master architectures
has not been rosy. Operational instability is not a good thing in a transactional database
system, and can be difficult to predict and tune. Usually, | find the people that are the
keenest to implement these architectures are the people that haven't ever tried them yet. The
difficulties are practical problems, and may one day be easily solvable, though my observation
is that this hasn't happened yet in production-quality software.

Single master replication architectures are both simple and robust. They also respond
well under heavy load without sensitivity to application design, and are well-suited to
general-purpose use cases.

Jim Gray's paper describes what is now known as sharding. Shared nothing scale-out can be
a viable option in some cases, though again is not a general panacea. Those options aren't
required by most people and so we skip covering the necessary details in this book. PL/Proxy
has been specifically designed to allow sharding of PostgreSQL. There is much that can and
will be written on these topics for which we do not have space here. Necessarily, this means
that we also neglect to mention a number of projects associated with PostgreSQL replication
and clustering. The main single Master replication solutions are covered here.

Visit the following URL for more information:

http://en.wikipedia.org/wiki/Replication_ (computer science)

303

[PUBLISHING]

Replication & Upgrades

Replication best practices

Some general best practices for running replication systems are described in this chapter.

How to do it...

» Use similar hardware and 0S on all systems: Replication allows nodes to switch
roles. If we switchover or failover to different hardware, we may get performance
issues and it will be hard to maintain a smoothly running application.

» Configure all systems identically, as far as possible: Use the same mount points,
same directory names, same users; keep everything possible the same. Don't be
tempted to make one system more important than the others in some way. It's just a
single point of failure and gets confusing.

» Give systems good names to reduce confusion: Never, ever call one of your systems
"Master" and the other one "Slave". When you do a switchover, you will get very
confused. Try to pick system names that have nothing whatsoever to do with their
role. Replication roles will inevitably change. System names should not. If one system
fails, and you add a new system, never reuse the name of the old system: pick
another one. It will be too confusing. Don't pick names that relate to something in the
business. Colors are a bad choice, because if you have two servers named yellow and
red, you then end up saying things like "there is a red alert on server yellow" which
can easily be confusing. Don't pick place names, otherwise you'll be confused trying
to remember that London is in Edinburgh and Paris is in Rome.

» Keep the system clocks synchronized: This helps you to keep sane when looking
at log files produced by multiple servers. You can either use ntp or manually resync
them on a regular basis.

» Use a single, unambiguous timezone: Use UTC (Coordinated Universal Time) or
similar. Don't pick a timezone that has Daylight Savings Time, especially in regions
that have complex DST rules. This just leads to (human) confusion with replication, as
servers are often in different countries, and timezone differences vary throughout the
year. Do this even if you start with all servers in one country, because over the lifetime
of the application, you may add new servers in different locations. Think ahead.

» Monitor each of the database servers: If you want high availability, then you'll need
to regularly check that your servers are operational. | speak to many people who
would like to regard replication as a one-shot deal. Think of it more as a marriage,
and plan for it to be a happy one.

» Monitor the replication delay between servers: All forms of replication are only
useful if the data is flowing correctly between the servers. Monitoring the time it
takes data to go from one server to another is essential to understanding whether
replication is working for you, or not. Replication can be bursty, so you'll need to
watch to make sure it keeps within sensible limits. You may be able to set tuning
parameters to keep things low, or you may need to look at other factors.

304

[PUBLISHING]

Chapter 12

The essential point is that your replication delay is directly related to the amount of data
you're likely to lose when running asynchronous replication. Be careful here, because it is the
replication delay, not the apply delay that affects data loss. A long apply delay may be more
acceptable as a result.

As described previously, your initial replication delay will be high and should reduce down to a
lower and more stable value over a period of time. For large databases this could take days,
so be careful to monitor during the catch-up period.

File-based log-shipping replication

Log shipping is a replication technique used by many database management systems. The
Master records database changes in its transaction log and then the log files are shipped
from the Master to the Standby, where the log is replayed.

File-based log shipping has been available since PostgreSQL 8.2, which is more than four years
before 9.0 was released. It's a simple, very low overhead, and trustworthy form of replication.

The technique is mostly superseded by streaming replication in 9.0, though is still useful as
part of a comprehensive backup strategy. It is also worth understanding how this works, as
this technique can also be used as the starting phase for a large streaming replication setup.
Look at the next recipes for some further details on that.

Getting ready

If you haven't read the recipes on Replication Concepts and Replication best practice at the
start of this chapter, please go and read them now. Replication is complex, and even if you
think "no problem, | know that", its worth just checking the basic concepts and names that
I'll be using here. Note that log shipping replication refers to the Master node as the primary
node, and the two terms are used interchangeably.

How to do it...

Follow these steps for initial configuration of file-based log shipping:

» Identify your archive location and ensure that it has sufficient space. This recipe
assumes that the archive is a directory on the Standby node, identified by the
$PGARCHIVE environment variable. This is set on both the Master and Standby
nodes, as the Master must write to the archive, and the Standby must read from it.
The Standby node is identified on the Master using $STANDBYNODE.

» Configure replication security. Perform a key exchange to allow the Master and the
server to run the rsync command in either direction. See a later step.

305

[PUBLISHING]

Replication & Upgrades

» Adjust Master parameters in postgresqgl . conf as follows:

wal level = 'archive'

archive mode = on

archive command = <scp %p S$STANDBYNODE:$PGARCHIVE/S$f>
archive_timeout = 30

» Adjust hot Standby parameters if required (see later recipe).

» Take a base backup, very similar to the process for taking a physical backup as
described in the Backup chapter.

o Start the backup by running the following;:
psgl -c "select pg start backup('base backup for log shipping')"

o Copy the data files (excluding the pg_x1og directory). Note that this requires
some security configuration to ensure that rsync can be executed without
needing to provide a password when it executes. If you skipped step 2, do
this now as follows:

rsync -cva --inplace --exclude=*pg xlog* \
${PGDATA}/ $STANDBYNODE: $PGDATA

o Stop the backup by running the following:
psgl -c "select pg stop backup(), current timestamp"

» Setthe recovery.conf parameters on the Standby server as follows:

standby mode = 'on'

restore_command = <cp $PGARCHIVE/%f %p>

archive cleanup command = <pg_archivecleanup $PGARCHIVE 3%r>
trigger file = </tmp/postgresql.trigger.5432>

» Start the Standby server.

» Carefully monitor replication delay until catch-up period is over. During the initial
catch-up period, the replication delay will be much higher than we would normally
expect it to be. You are advised to set hot _standby = of £ for the initial period only.

Use a script; don't do this by hand, even when testing or just exploring the capabilities. If you
make a mistake, you'll want to re-run things from the start again quickly, and doing things
manually is both laborious and an extra source of error.

Transaction log (WAL) files will be written on the Master. Setting wal level ensures that we
collect all changed data, and that WAL is never optimized away. WAL is sent from the Master
to the archive using archive command and from there the Standby reads WAL files using
restore command, and then replays the changes.

306

[PUBLISHING]

Chapter 12

Files are sent when a file becomes full, or archive timeout seconds have passed since
the transaction log was written by any user. If the server is writing no new transaction log data
for an extended period, then files will switch every checkpoint timeout seconds; this is
normal, and not a problem.

The preceding configuration assumes that the archive is on the Standby, so the restore
command shown is a simple copy command (cp). If the archive was on a third system, then we
would either need to mount the filesystem remotely, or use a network copy command.

The archive cleanup command ensures that the archive only holds the files the Standby
needs to restart if it should stop for any reason. Files older than the last file required are
deleted regularly to ensure that the archive does not overflow. Note that if the Standby is down
for any extended period, then the number of files in the archive will continue to accumulate
and eventually overflow. The number of files in the archive should also be monitored.

In the configuration shown, a contrib module named pg_archivecleanup is used to remove
files from the archive. This is a supplied module with PostgreSQL 9.0. pg_archivecleanup
is designed to work with one Standby node at a time. Note that pg_archivecleanup
requires two parameters: the archive directory and "%r", with a space between them.
PostgreSQL transforms %r into the cut-off filename.

If you wish to have multiple Standby nodes, then a shared archive would be a single point of
failure and should be avoided, so each Standby should maintain its own archive. We must
modify the archive command to be a script, rather than executing the command directly.
This allows us to handle archiving to multiple destinations:

archive command = 'myarchivescript %p %f'

and then we would write myarchivescript that looked somewhat like the following, though with
additional error checking to handle cases with down Standbys more cleanly:

scp $1 $STANDBYNODEL:$PGARCHIVE/$2
scp $1 $STANDBYNODE2 : $PGARCHIVE/$2
scp $1 $STANDBYNODE3:$PGARCHIVE/$2

The initial copy, or base backup, is performed using the rsync utility, which may require you
to have direct security authorization, for example, using SSH and key exchange. You may
also choose to perform the base backup a different way; if so, feel free to substitute your
preferred method.

There's more...

Monitoring file-based log shipping can be performed in a number of ways. You can look at the
current files on both Master and Standby as follows:

ps -ef | grep archiver on master
postgres: archiver process last was 000000010000000000000040

307

[PUBLISHING]

Replication & Upgrades

ps -ef | grep startup on standby
postgres: startup process waiting for 000000010000000000000041

Prior to PostgreSQL 9.0, it was difficult to measure the replication delay precisely and some
hackish methods needed to be used. Those aren't presented here.

Monitoring replication is covered in more detail in the recipe on Managing log shipping
replication later in this chapter.

Some of the tuning advice on compressing WAL files from the Backup chapter may apply here,
though in general WAL may not be around long enough to build up a large enough volume to
worry you. In that case, the compression might just slow you down instead.

If you have configuration instructions written for PostgreSQL 8.2 to 8.4, then they will work
almost exactly the same in PostgreSQL 9.0 onwards. The only difference is that you will also
need to specify wal level. Note that the procedures covered here are not the default
configuration, and do differ from earlier releases. In PostgreSQL 9.0, the utility pg_Standby
is no longer required, as many of its features are now performed directly by the server. If you
prefer to continue using pg_Standby with PostgreSQL 9.0, then you do not need to use the
archive cleanup command, Standby mode, Or trigger file parameters at all.

You may also be interested in an improved version of pg standby that is available as part
of the 2warm project.

Visit the following URL to know more about the 2warm toolset:
A http://projects.2ndQuadrant.com/2warm

Setting up streaming log replication

Log shipping is a replication technique used by many database management systems. The
Master records changes in its transaction log (WAL), and then the log data is shipped from the
Master to the Standby, where the log is replayed.

Streaming log replication is new in PostgreSQL 9.0 and by time of release will have been
through nearly three years of design, development, and beta-testing. The key feature in
PostgreSQL 9.0 is that the data is transferred directly from Master to Standby, giving us
integrated security and reduced replication delay.

There are two main ways to set up streaming replication: with or without an additional
archive. Set up without an external archive is presented here, as it is both the most simple
and efficient way. There is one downside that suggests the simple approach may not be
appropriate for larger databases, explained later in the recipe.

308

PUBLISHING

Chapter 12

Getting ready

If you haven't read the recipes on Replication concepts and Replication best practice at the
start of this chapter, please go and read them now. Note that streaming replication refers to
the Master node as the primary node, and the two terms are used interchangeably.

How to do it...

Carry out the following steps:

1.

Identify your Master and Standby nodes, and ensure that they have been configured
according to the best practice recipe.

Configure replication security. Create or confirm the existence of the replication user
on Master node

CREATE USER repuser
SUPERUSER
LOGIN
CONNECTION LIMIT 1
ENCRYPTED PASSWORD 'changeme';

Allow the replication user to authenticate. The following example allows access from
any ip address using encrypted password authentication; you may wish to consider
more restrictive options. Add the following line to the

host replication repuser 127.0.0.1/0 md5

Set logging options in postgresql.conf on both Master and Standby, so that you get
increased information regarding replication connection attempts and associated
failures.

log_connections = on

Set max_wal_senders on Master in postgresqgl.conf, or increment if the value is
already non-zero.

max wal senders = 1

wal mode = 'archive'
archive mode = on
archive command = 'cd .'

Adjust wal_keep_segments on Master in postgresql.conf. Set this to a value no higher
than the amount of freespace on the drive on which the pg_xlog directory is mounted,
divided by 16MB. If pg_xlog isn't mounted on a separate drive, then don't assume all
of the current freespace is available for transaction log files.

wal keep segments = 10000 # e.g. 160 GB

309

[PUBLISHING]

Replication & Upgrades

7. Adjust hot Standby parameters if required (see later recipe)

8. Take a base backup, very similar to the process for taking a physical backup as
described in the backup chapter.

a. Startthe backup
psgl -c "select pg start backup('base backup for streaming
repl) n

b. Copy the data files (excluding the pg_xlog directory)
rsync -cva --inplace --exclude=*pg xlog* \

${PGDATA}/ $STANDBYNODE : $PGDATA

c. Stop the backup

psgl -c "select pg stop backup(), current timestamp"

9. Setthe recovery.conf parameters on the Standby. Note that the primary
conninfo must not specify a database name, though can contain any other
PostgreSQL connection option. Note also that all options in recovery.conf are
enclosed in quotes, whereas postgresql.conf parameters need not be.

Standby mode = 'on'
primary conninfo = 'host=192.168.0.1 user=repuser'
trigger file = '/tmp/postgresqgl.trigger.5432"'

10. Start Standby server

11. Carefully monitor replication delay until the catchup period is over. During the initial
catchup period, the replication delay will be much higher than we would normally
expect it to be. You are advised to set hot_Standby = off for the initial period only.

Multiple Standby nodes can connect to a single Master. If you use multiple Standbys, be
sure to set max wal senders correctly. You may wish to set up an individual user for each
Standby node, though it may be sufficient just to set the application name parameterin
the primary conninfo.

Standby nodes cannot connect to other Standby nodes, only to the current Master. A Standby
that connects to a different Master will receive an error message.

The architecture for streaming replication is that on the Master, one WALSender process is
created for each Standby that connects for streaming replication. On the Standby node, a
WALReceiver process is created to work co-operatively with the Master. Data transfer has
been designed and measured to be very efficient—data is typically sent in 8192-byte chunks
without additional buffering at the network layer.

[PUBLISHING]

Chapter 12

Both the WALSender and WALReceiver will work continuously on any outstanding data to be
replicated until the queue is empty. If there is a quiet period, then the WALReceiver will sleep
for 100ms at a time, and the WALSender will sleep for wal sender delay. Typically, the
value of wal sender delay need not be altered, because it only affects behavior during
momentary quiet periods. The default value is a good balance between efficiency and data
protection. If the Master and Standby are connected by a low bandwidth network, and the
write rate on the Master is high, you may wish to lower this value to perhaps 20ms or 50ms.
Reducing this value will reduce the amount of data loss if the Master becomes permanently
unavailable, though will also marginally increase the cost of streaming the transaction log
data to the Standbys.

The Standby connects to the Master using native PostgreSQL libpg connections. That means
that all forms of authentication and security work for replication, just as they do for normal
connections. Note that for replication sessions the Standby is the "client" and the Master

is the "server", if any parameters need to be configured. Using standard PostgreSQL libpq
connections also means that normal network port numbers are used, so no additional firewall
rules are required. You should also note that if the connections use SSL, then encryption costs
will slightly increase the replication delay and CPU resources required.

There's more...

If the connection drops between Master and Standby, it will take some time for that to be
noticed across an indirect network. To ensure that a dropped connection is noticed as soon
as possible, you may wish to adjust the keepalive settings.

If you want a Standby to notice that the connection to the Master has dropped, you need
to set the keepalives inthe primary conninfo inthe recovery.conf on the Standby
as follows:

primary conninfo = '...keepalives idle= 60 ..'

If you want the Master to notice that a streaming Standby connection has dropped, you can
set the keepalive parameters in postgresqgl . conf on the Master, such as:

tcp keepalives idle = 60 # time before we send keepalives

That setting will then apply to all connections from users and replication. If you want to be very
specific, and just set that for replication, you must supply this as an option to be passed to the
Master, which is specified like the following:

primary conninfo = '...options="-c tcp_keepalives idle= 60" ..'

All of the preceding examples set the length of time the connection will be idle before we start
sending keepalives to be 60 seconds. The default is two hours, and is not recommended.
There are multiple keepalive parameters we can set; | have avoided showing those here

for clarity. A related option is connection timeout. Remember, you can hide all of this
complexity in a connection service file, so that primary conninfo only refers to a single
service name, as described in the First Steps chapter.

[PUBLISHING]

Replication & Upgrades

You may also wish to increase max_wal senders, so that it will be possible to reconnect
even before a dropped connection is noted; this allows a manual restart to re-establish
connections more easily. If you do this, then also increase the connection limit for the
replication user.

Data transfer may stop because the connection drops or the Standby server or the Standby
system is shutdown. If replication data transfer stops for any reason, it will attempt to restart
from the point of last transfer.

For streaming replication, the Master keeps a number of files that is at least wal keep
segments. If the Standby database server has been down for long enough, the Master will have
moved on and will no longer have the data for the last point of transfer. If that should occur, then
the Standby needs to be re-configured using the same procedure with which we started.

Note that the Standby database server will not be streaming during the initial base backup,
so if the base backup is long enough, we might end up with a situation where replication will
never start because the desired starting point is no longer available on the Master. This is the
error that you'll get:

FATAL: requested WAL segment 000000010000000000000002 has already
been removed

It's very annoying, and there's no way out of that. You need to start over. So, start with a very
high wal keep segments. If you still get that error, then we need to increase wal keep
segments and try again, possibly also using techniques to speed up the base backup,
discussed in the Backup chapter. If you can't set wal keep segments high enough, then we
must move to a configuration where the archive is on a third server with increased disk storage
capacity. The Master will need to have an archive command that places files on the archive
server, rather than the dummy command shown in the preceding procedure, in addition to
parameter settings to allow streaming to take place. The Standby will need to retrieve files from
the archive using restore command, as well as streaming using primary conninfo. Thus,
both Master and Standby have two modes for sending and receiving, and can switch between
them should failures occur. This is the typical configuration for large databases. Note that this
means that WAL data will be copied twice: once to the archive and once directly to the Standby.
Two copies are more expensive, but also more robust.

The reason for setting archive mode = on in the preceding procedure is that altering that
parameter requires a restart, so you may as well set it on just in case you need it later. All
we need to do is use a dummy archive command to ensure everything still works OK; by
dummy command, | mean a command that will do nothing and then return rc=0.

One thing that is a possibility is to set archive command only until the end of the catch

up period. After that you can reset it to the dummy value ("cd") and then continue just with
streaming replication. Data is only transferred from the Master to the Standby once that data
has been written (or more precisely, fsynced) to disk. So setting synchronous commit =
of £ will not improve the replication delay, even if that improves performance on the Master.
Once WAL data is received by the Standby, the WAL data is fsynced to disk on the Standby to
ensure that it is not lost if the Standby system restarts.

312

[PUBLISHING]

Chapter 12

Monitoring streaming replication is very important and noted previously. WALSender
processes don't show up in pg_stat_activity, though the details are there if you want to
access them. Use the following view:

CREATE OR REPLACE VIEW pg_stat_replication AS
SELECT

.procpid,

.usesysid,

.rolname AS usename,

.application_name,

.client_addr,

NN n n g n n

.client port,

S.backend start
FROM pg stat get activity(NULL) AS S, pg authid U
WHERE S.usesysid = U.oid AND S.datid = 0;

Managing log shipping replication

Whether you use file-based or streaming replication as the transport mechanism, managing a
log shipping replication cluster is in many ways very similar.

Getting ready

Discussion here assumes you have already set up file-based log shipping, streaming
replication, or both.

How to do it...

Monitoring

Monitoring of log shipping is essential. You'll find it best to enable Hot Standby mode, as the
information is both easier to obtain and more accurate if you do.

Repmgr and pgpool both provide replication monitoring facilities. Munin plugins are available
for graphing replication and apply delay.

You may wish to calculate the delays yourself. To do that, we request current values from Master
and Standby, and then compare the values. On the Master, execute the following query:

SELECT pg current xlog location();
On the Standby, execute the following query:

SELECT pg last xlog receive location();

[PUBLISHING]

Replication & Upgrades

You can then compare the results to understand the replication delay. You can calculate
the apply delay by comparing the preceding value from Master with the following;:

SELECT pg last xlog apply location();

The comparison can be a little fiddly, as you must use hex arithmetic to convert the two parts
of the file name. You can do this in Perl, Python, Java, C, and so on, or if you are brave you can
have a go at this in SQL, using a function to do the hex-to-decimal conversion as follows:

CREATE OR REPLACE FUNCTION hex2dec (text)
RETURNS bigint LANGUAGE SQL AS
$S

A

SELECT sum(digit * 16 (length($1) -pos)) ::bigint
FROM (SELECT case
when digit between '0' and '9' then ascii(digit) - 48
when digit between 'A' and 'F' then ascii(digit) - 55
end,
pos as i
FROM (SELECT substring(c from x for 1), x
FROM (values (upper($1))) as al(c),

generate_series(1,length($1l)) as t(x))
as u(digit, pos)
) as v(digit, pos);
S5

Switchover and Failover

Switchover is a controlled switch from Master to Standby. If performed correctly, there will be
no data loss. To be safe, simply shutdown the Master node cleanly, using either smart or fast
shutdown modes. Do not use immediate mode shutdown, because you will almost certainly
lose data that way.

Failover is a forced switch from the Master node to a Standby because of the loss of the Master.
So in that case, there is no action to perform on the Master; we presume it is not there anymore.

Next, we need to promote one of the Standby nodes to be the new Master. A Standby node
can be triggered into becoming a Master node by creating the trigger file specified in the
parameter trigger file. For example:

touch /tmp/postgresqgl.trigger.5432

The trigger file will be deleted again when the transition is complete. Note that the Standby will
only become the Master once it has fully caught up. If you haven't been monitoring replication,
this could take some time.

To move from a Standby to a Master, the database performs an immediate checkpoint, which
may take some time on database servers with large caches and high rate of changes being
replicated from the Master.

314

[PUBLISHING]

Chapter 12

Once the ex-Standby becomes a Master, it will begin to operate all normal functions, including
starting to archive files if configured. Be careful to check that you have all the correct settings
for when this node begins to operate as Master. It is likely that the settings will be different
from those on the original Master from which they were copied.

Note that | refer to this new server as "a Master" not "the Master". It is up to you to ensure that
the previous Master doesn't continue to operate, a situation known as a split-brain situation.
You must be careful to ensure that the previous Master stays down.

Management of complex failover situations is not provided with PostgreSQL, nor is automated
failover. Situations can be quite complex with multiple nodes, and clusterware is used in many
cases to manage this.

Switchback

Following switchover from one node to another, it is common to want to do a switchover back
to the old Master again, which | call switchback.

Once a Standby has become a Master, it cannot go back to being a Standby again. So with log
replication, there is no explicit switchback operation. This is a surprising situation for many
people, though it is quick to work around. Once you have performed a switchover, all you need
to do is the following:

» Reconfigure the old Master again, repeating same process as before
» Switchover from current to old Master

The important part here is that if we perform the first without deleting the files on the old
Master, this allows the rsync to go much faster. When no files are present on the destination,
rsync just performs a copy. When similar named files are present on the destination, then
rsync will compare the files, and send only changes. So, the rsync we perform on a switchback
operation performs much less data transfer than in the original copy. It is likely that this will
be enhanced in later releases of PostgreSQL. There are also ways to avoid this, as shown in
the repmgr utility, discussed next.

Note that the trigger file has nothing whatsoever to do with trigger-based replication. The
trigger file is a mechanism to allow us to specify that the Standby should change role to
become the Master. The trigger file name can be anything you like, though the preceding
recipe uses a suffix of 5432 to ensure that we only trigger one server if there are multiple
PostgreSQL servers operating on the same system.

The role of the recovery end command is to clean up at the end of the switchover or
failover process. You do not need to remove the trigger file explicitly, as was recommended in
previous releases.

[PUBLISHING]

Replication & Upgrades

See also

Clusterware may provide additional features, such as automated failover, monitoring, or ease
of management of replication.

Repmgr is an open source tool designed specifically for PostgreSQL replication. To get
additional information about repmgr visit the following URL:

http://projects.2ndQuadrant . com/repmgr/

Continuent Tungsten is a commercial clusterware product that also supports PostgreSQL,
and is available at the following URL:

http://www.continuent.com/

Managing Hot Standby

Hot Standby is the name for the PostgreSQL feature that allows us to connect to a Standby
database and execute read-only queries. Most importantly, Hot Standby allows us to run
queries while the Standby is being continuously updated through either file-based or
streaming replication.

Hot Standby allows you to offload larger queries or parts of your read-only workload onto
the Standby nodes. Should you need to failover to the Standby node, your queries will keep
executing during the failover process to avoid any interruption of service.

There are some complexities that need to be understood to manage Hot Standby successfully,
as in some cases user queries can conflict with the continuous application of changes from
the Master. If no new changes arrive, no conflicts will arise.

There are two main roles we need to consider with hot Standby. First, that the Standby node
provides a secondary node in case the primary node fails. Second, that we can run queries on
that node. In some cases, those two roles can come into conflict with each other, and we need
to decide ahead of time the importance we attach to each role.

In most cases, the role of Standby will take priority: queries are good, but its OK to cancel
them to ensure we have a viable Standby. If we have more than one hot Standby node, it may
be possible to have one node nominated as Standby and others dedicated to serving queries,
without regard for their need to act as Standbys.

Getting ready

Hot Standby is usable with the following;:

» File-based replication
» Streaming replication

316

[PUBLISHING]

Chapter 12

» While performing a point in time recovery
» When using a permanently frozen Standby

For the first two replication mechanisms, you will need to configure replication as described in
earlier recipes. In addition, you will need to configure the following parameters:

On the Master set:

wal level = 'hot Standby' in postgresqgl.conf
On the Standby set:
hot_Standby = on in postgresqgl.conf

Neither of those settings are the default, so you will need to make changes. You will need
to do a clean restart of the database server on both the Master and the Standby for these
changes to take effect.

You will need to allow a short delay between the restarts, as the new mode is not immediately
picked up on the Standby. The delay is usually the same duration as checkpoint timeout,
though may in some cases be longer. If you restart the Standby too quickly, it will still be
reading older transaction log data, and it will fail to start and give a log message saying "you
need to enable Hot Standby", so please be patient. You only need to configure this once, not
every time you restart.

Optional parameters on the Standby node are set in postgresql . conf as follows:

» max_ Standby archive delay
» max Standby streaming delay
» vacuum_defer cleanup_age

> trace recovery messages

A permanently frozen Standby can be created by specific settings in the recovery. conf file.
Neither restore command nor primary conninfo should be set, while Standby mode =
on. In this mode, the server will start, but always remain at the exact state of the database as
it was when the pg_stop_ backup () function completes.

Another point to note is that during the initial catch-up period, the replication delay will be
much higher than we would normally expect it to be. You are advised to set hot _Standby =
of f for the initial period immediately following creation of the Standby only. User connections
during that initial period may use system resources or cause conflicts that could extend the
catch-up delay. When the Standby is fully caught up with the primary, then we can set hot _
Standby = on, and restart.

[PUBLISHING]

Replication & Upgrades

How to do it...

Queries that run on the Standby node see a version of the database that is slightly behind the
primary node. We describe this as eventually consistent. How long is "eventually"? That time
is exactly the replication delay plus the apply delay, as discussed in the recipe on replication
concepts. You can set an upper limit on the acceptable apply delay by controlling two similar
parameters: max_Standby streaming delay and max_Standby archive delay.

To understand how to set these parameters, we must understand the forces that act to
increase the apply delay: query conflicts. There are four main types of conflicts that can occur
between the Master and queries on the Standby, which are as follows:

» Resources—CPU, I/0, and so on
» Locks—AccessExclusivelLocks

» Cleanup records

» Other special cases

Resource conflicts are the easiest to understand: if the server is busy applying changes from
the Master, then you will have fewer resources to use for queries. That means if there are no
changes arriving, then you'll get more query throughput. If there are predictable changes in
the write workload on the Master, then you may need to throttle back your query workload on
the Standby when that occurs.

Resource conflicts can slow down queries on the Standby, and can be thought of as soft
conflicts. Other forms of conflict are hard conflicts, causing queries on the Standby to be
canceled or disconnected.

Lock conflicts are also easy to understand: if you wish to run a command on the Master, such
as ALTER TABLE ... DROP COLUMN, then you must first lock the table to prevent all access.
The lock request is sent through to the Standby server as well, which will then cancel Standby
queries that are currently accessing that table after a configurable delay.

On high-availability systems, making DDL changes to tables that cause long periods of locking
on the Master can be difficult. You may want the tables on the Standby to stay available

for read during the period while the changes on the Master are being made. To do that,
temporarily set max_Standby streaming delay = -1 and max_Standby archive
delay = -1, and then reload the server. As soon as the first lock record is seen on the
Standby, all further changes will be held. Once the locks are released on the Master, you can
then reset the original parameter values on the Standby, which then will allow the changes to
be made there.

[PUBLISHING]

Chapter 12

Using max_Standby parameter settings of -1 may not be useful for normal running because
this is a very timid setting. No user query will ever be canceled if it conflicts with applying
changes, causing the apply process to wait indefinitely. As a result, the apply delay can
increase significantly over time, depending upon the frequency and duration of queries, and
the frequency of conflicts. To work out an appropriate setting for these parameters, we need to
understand more about the other types of conflict, though there is also a simple way to avoid
this problem entirely.

Cleanup records and other special cases also conflicts. The special cases are rare and/or
obvious, for example, if you drop a database on the Master, then queries running on Standby
will be canceled.

Cleanup records remove old tuple versions from the database, as part of the internal workings
of MVCC. The easiest way to understand this is to review what happens on the Master node.
When a VACUUM runs, it will only remove row versions that can no longer be seen by any
current query. To do this, the VACUUM asks for and receives feedback about which queries are
running, and then ensures that it doesn't remove expired row versions too early. When running
in Hot Standby mode, the Master doesn't receive visibility feedback about what queries are
running on the Standby nodes. As a result, it is possible that the tasks running on the Master
node will remove row versions that may be required on the Standby nodes. When those

row versions are removed they generate cleanup records in the transaction log that cause
conflicts with queries running on the Standby.

You can provide some protection against canceled queries by setting vacuum_defer
cleanup age to a value higher than O. That parameter is fairly hard to set accurately, though
| would suggest starting with a value of 1,000 and tune upwards. A vague and inaccurate
assumption would be to say that each 1,000 will be approximately 1 second of additional
delay. A vague and inaccurate assumption is probably helpful more often than it is wrong,
though it will often be wrong.

The repmgr project provides a mechanism to provide more accurate visibility feedback, and is
specifically designed to help Hot Standby in PostgreSQL 9.0. repmgr will reduce cancelations
caused by cleanup record conflicts by providing dynamic and accurate visibility feedback from
the Standby node to the Master.

If you want to completely freeze a Standby database, so that no further changes are applied,
then you can do this by stopping the server, modifying recovery.conf so that neither
restore command and primary conninfo are set, yet Standby mode = on, then
restarting the server. You can come back out of this mode, though, only if the archive contains
the required WAL files to catch up, otherwise you will need to re-configure the Standby from a
base backup again.

If cancelations do occur, they will throw either an error or fatal level errors. These will be
marked with SQLSTATE 40001 SERIALIZATION FAILURE. That could be trapped by an
application, and the SQL can be resubmitted.

[PUBLISHING]

Replication & Upgrades

If you attempt to run a non-read only query, then you will receive an error marked with
SQLSTATE 25006 READ ONLY TRANSACTION. That might be used to re-direct SQL to the
Master, where it can execute successfully.

On the Standby, node changes from the Master are read from the transaction log and

applied to the Standby database. Hot Standby works by emulating running transactions from
the Master, so that queries on the Standby have the visibility information they need to fully
respect MVCC. This makes Hot Standby mode particularly suitable for serving a large workload
of short/fast SELECT queries. If the workload is consistently short, then few conflicts will delay
the Standby, and the server will run smoothly.

When running longer selects in reporting mode, then you will probably need to play with
the configuration settings to suit you, or use a utility, such as the repmgr, to minimize query
conflicts from cleanup records.

Changes made by a transaction on the Master will not be visible until the commit is applied
onto the Standby. So, for example, we have a Master and a Standby with a replication delay of
four seconds between them. A long-running transaction may take one hour to make changes
on the Master. How long does it take before those changes are visible on the Standby? With
Hot Standby, the answer is four seconds after the commit on the Master. This is because the
changes made during the transaction on the Master have been streamed while the transaction
is still in progress, and in most cases already applied on the Standby when the commit record
arrives. Note that this is a very different situation for trigger-based replication, such as Slony
and Londiste, where the data does not start transferring until after a transaction commits on
the Master. So, with trigger-based replication, the data would likely only become visible many
minutes after the commit on the Master. Which means that with trigger-based replication the
effective apply delay also depends upon, transaction duration on the Master.

Hot Standby can also be used when running a Point-in-Time Recovery, so the WAL records
applied to the database need not be arriving immediately from a live database server. We
would just use file-based recovery in that case, not streaming replication.

Also note that a Standby node can be shutdown and restarted normally using the commands
already described in earlier chapters.

Repmgr project contains a component to minimize query conflicts available at the following URL:

http://projects.2ndQuadrant.com/repmgr/

320

[PUBLISHING]

Chapter 12

Selective replication using Londiste

Londiste is part of the Skytools suite of software, produced by and used by Skype for their
production transactional databases. Londiste is a replication system built on top of a generic
event-queuing system named PgQ (pronounced as pg-queue), a PostgreSQL extension module.

It's simple, easy, and robust.

One of the most important features is that Londiste achieves eventual consistency between
Master and Standby in a relaxed manner, ensuring that operations on the Master are lock-free.

Getting ready

If you haven't read the recipes on Replication Concepts and Replication best practice at the
start of this chapter, please go and read them now. Replication is complex, and even if you
think "no problem, | know that", it's worth just checking the basic concepts and names that I'll
be using here.

How to do it...

Carry out the following steps to configure Londiste replication:

1. Install the software and create directories: On Debian/Ubuntu the software installed
using the names without the . py suffix, so just pggadm and Londiste.

2. Configure clustname_ ticker.ini as follows:

[pggadm]

job_name = clustname_ticker

db = dbname=ticker

how often to run maintenance [seconds]
maint_delay = 600

how often to check for activity [seconds]
loop delay = 0.1

logfile = /var/log/londiste/%(job name)s.log
pidfile = /var/log/londiste/% (job name)s.pid

3. Configure clustname londiste.ini as follows:

[londiste]

job_name = clustname londiste

provider db = dbname=source port=6000 host=groucho
subscriber db = dbname=target port=6000 host=zeppo
P9gg_queue name = clustname_ gqueue

pgg lazy fetch = 500

logfile = /var/log/londiste/% (job name)s.log
pidfile = /var/run/londiste/%(job name)s.pid

321

PUBLISHING

Replication & Upgrades

% Test connection to provider and subscriber as mentioned in the clustname_
i

10.

11.

12.

13.

322

londiste. ini file for provider dband subscriber db.

Create the database infrastructure. Run all the following on Provider node:
pggadm.py clustname ticker.ini install

londiste.py clustname londiste.ini provider install
londiste.py clustname londiste.ini subscriber install
Start ticker daemon on Provider node by running the following;:

pggadm.py clustname ticker.ini ticker -d

Start Londiste daemon on Subscriber node as follows:

londiste.py clustname londiste.ini replay -d

Define a replication set on Provider node. For a replication set consisting of tables a,
b, and c use the following;:

londiste.py clustname londiste.ini provider add a b c

Copy the replicated objects to the subscriber node. The definitions need to be the
same, though indexes and Foreign Keys may differ. If you want to make changes on

the Subscriber side, produce a manual script of additional changes. On the Provider
node, run the following:

pg_dump --schema-only -t a -t b -t ¢ > clustname_schema.sqgl

On the Subscriber node, run the following:
psgl -f clustname schema.sqgl
If you have additional changes on the subscriber, add them now. An example might

be that the subscriber can have a completely different set of indexes to the provider,
allowing it to support different kinds of workloads:

psgl -f clustname_ subscriber changes.sql

Subscribe: on subscriber node, run the following:

londiste.py clustname londiste.ini subscriber add a b c

That's it, your done. Londiste will eventually catch up. If you really want to know
exactly when, then you can watch

londiste.py clustname londiste.ini subscriber tables

until all tables show as «OK». Or run the following on the provider:
SELECT * FROM pgqg.get consumer info() ;

PUBLISHING

Chapter 12

14. Then you should wait for all Foreign Keys to be re-added onto the subscriber tables by

monitoring using the following query run on the subscriber:

SELECT count (*) FROM londiste.subscriber pending fkeys;

That covers how to set up selective replication with Londiste.

If you want all tables in one replication set, you should set up scripts to perform the preceding
steps for all tables:

1.
2.

Follow steps 1 to 6, and 10 as described in the preceding sequence.
Define a replication set on Provider node as follows:

londiste.py clustname londiste.ini provider add tablel
londiste.py clustname londiste.ini provider add table2

londiste.py clustname londiste.ini provider add tableN

Copy the replicated objects to the subscriber node. On the Provider node, run the
following:

pg_dump --schema-only > clustname_ schema.sqgl

On the Subscriber node, run the following:

psgl -f clustname schema.sqgl

If you have additional changes on the subscriber, add them now by using the
following:

psgl -f clustname_subscriber changes.sql

Subscribe: on the subscriber node, run the following:

londiste.py clustname londiste.ini subscriber add tablel
londiste.py clustname londiste.ini subscriber add table2

londiste.py clustname londiste.ini subscriber add tableN

All related tables that form one replication set must use a single queue. There's no problem
in having multiple queues and multiple Londiste daemons connecting the same provider/
subscribers, though obviously that is a more complex configuration, and seldom necessary,
unless performance is a significant issue. Each provider database needs only one pggadm as
all that provides is the ticker.

When adding tables without explicit schema, Londiste assumes the schema public.
Londiste does not use a search path. If you want another schema, you'll need to fully qualify
tablenames like the following:

schemaname.tablename

PUBLISHING

323

Replication & Upgrades

Londiste uses an efficient copry command to move data across, and then carefully applies
changes, so that the set of tables all eventually match. You don't need to have all tables in a
single replication set listed on the same command line. The Foreign Keys are restored once
consistency is achieved.

Eventual consistency is probably the most important aspect of this system of replication.
Tables are copied separately, so that there is no need to lock all of the tables on the provider
using one big transaction, such as occurs during a pg_dump.

For Londiste, each row change creates one event row in the queue table using special
triggers. Triggers are placed automatically on each database table by the Londiste commands.
Londiste uses almost identical triggers to Slony, and so shares many of the characteristics of
that project; they are both offer trigger-based replication.

Changed rows are brought across to the subscriber in batches. The batches are defined on
the provider by the ticker as demanded by the subscriber, so if the ticker fails, then you will
get very large batches.

There are downsides to this form of replication. First, there is an overhead to triggers and
writing to queue tables, though this will vary from workload-to-workload, it is best to plan for
a 10 to 20% overhead. Second, queue tables take up space and RAM. Third, that you need to
take special administrative actions to add, change, or remove tables from the replication set.

The benefit of using Londiste is that it allows you to make a selective replica of your database.
Not all tables need to be copied.

There's more...

You can stop Londiste safely by using the following;:
londiste.py clustname londiste.ini --stop

or you can stop in an emergency using the following:
londiste.py clustname londiste.ini --kill

If you want to change the configuration while server is online, you can reload the configuration
using the following;:

londiste.py clustname londiste.ini --reload
Check status using the following command:

SELECT queue name, consumer name, lag, last seen
FROM pgqg.get consumer info() ;

The 1ag column helps monitor the replication delay.

324

[PUBLISHING]

Chapter 12

If replication drops or needs to be restarted, you can use the following command
on the subscriber:

londiste.py clustname londiste.ini repair tablel

http://skytools.projects.postgresql.org/doc/

Thanks to Marko Kreen and Dimitri Fontaine for additional advice, especially http://wiki.
postgresqgl.org/wiki/Londiste Tutorial, which was the starting point for most
people's first steps with Londiste.

Selective replication using Slony 2.0

Slony is one of the longest running and best known replication projects for PostgreSQL. It
provides advanced features, though as a result is considered complex by many users.

Slony is also known as Slony-l because there were once plans for a Slony-Il, though that
doesn't exist (at least so far). Slony-l was first released as 1.0, though there is now a Version
2.0. So when we talk about Slony 2.0, we mean Slony-I Version 2.0.

Getting ready

If you haven't read the recipes on Replication Concepts and Replication best practice at the
start of this chapter, please go and read them now. Replication is complex.

The first question to look at is whether to use Slony. Slony still has some advantages, even
alongside streaming replication, for specific-use cases. Some of its advantages are as follows:

» Slony can replicate data between different PostgreSQL major versions.
» Slony can replicate data between different hardware or operating systems.

» Slony can record changes into a file, so that those changes can be replicated in bulk
by some mechanism. This can be used to replicate by regular transfer of tapes, and is
also useful when network connection is not always available. This offers the capability
for periodic updates from remote or mobile users.

» Slony allows you to perform selective replication.

» Slony also allows a Master to replicate some tables to one Standby and other tables
to a different Standby. We name that fan-out. The reverse is also true: a Standby
can receive tables from multiple Masters. We can name that fan-in, or maybe
"roll-up" capability.

» Slony allows relay replication, so that the Master (or Origin) sends changes to a
Standby node (a Subscriber), which then sends it onwards (as a Provider) to other
Standbys (also Subscribers).

325

PUBLISHING

Replication & Upgrades

These last abilities mean that we can have very complex cluster configurations if we need
them. Such clusters are well beyond the scope of this book, regrettably.

Sounds very cool, and it definitely is. Please be very careful here: complexity is your enemy
when building robust and highly available solutions. If you definitely need some of the
preceding features, go with Slony. If you don't or you are unsure, use a simpler alternative:
streaming replication.

Next, consider which version of Slony to use. Version 1.2 is a very mature version of Slony with
many production installations. Many features have been enhanced in Version 2.0, and that

is now the recommended version for PostgreSQL 8.3 and above. Slony 2.0 offers somewhat
reduced locking and smoother, more efficient replication. Slony 2.0.5 has grown through many
of the teething problems in early releases, and is in use by many production systems.

How to do it...

As you might guess, Slony configuration is complex. There have been a few attempts to
simplify configuration, though there is no accepted standard there. Here, we choose to use a
project named Slonyl-ctl available at the following URL:

http://pgfoundry.org/projects/slonyl-ctl/
The benefits of using Slony1-ctl are that it allows:
» Management of even complex replication with cascading, several sets of replication,
several Masters, and so on
» Failover/switchover (even in cascading)
» Add/drop objects (table, sequence) to replication in 1 script, very easily
» Add/manage nodes and paths between nodes
» Add replication sets
» Upgrade Slony
Probably the key point is that all actions happen in two stages. Stage one is a create script,

stage two is an execution script. This gives the replication administrator the opportunity to edit
the scripts if necessary, or simply to stop and check things.

Scripts produced are autonomous: they don't need any Slony-ctl script or run-time component
to be executed. Some people just use these scripts to create the scripts and then deploy them
separately. The execution script also provides error handling as well.

Full replication process

This recipe will configure Slony replication from a single Master to a single Slave/Standby. Once
this process is mastered, you can think about further complexity. Carry out the following steps:

326

[PUBLISHING]

Chapter 12

1. Ensure that all tables that will be replicated have a Primary Key or Unique
index defined.

2. Install Slony on each node in the configuration.

Create a PostgreSQL user to perform replication. You need to create a PostgreSQL
user in each PostgreSQL cluster. This user is dedicated to the Slony replication
system, and must have a robust md5 password for login. Log in each server involved
in the replication, and execute the following command as postgresql Unix user:

createuser -s -W -E my_slony user
4. Update your PostgreSQL pg_hba . conf. On each server involved in the replication

system, adjust authorization to login so that my slony user is able to connect from
each servers to each others to the databases you want to replicate.

host my db my slony user192.168.1.111/32 md5
host my db my slony user192.168.1.112/32 md5
5. Provide password in .pgpass. Edit the the ~/ .pgpass file, and add lines for each
host, like the following;:
192.168.0.1:5432:my db:my slony user:my slony pass

6. Editetc/slony include.h in the marked places for the following entries:

o Edit the file, and adjust the path.
o Edit the Slony user
7. Edit etc/bases.h. This file holds the connection information for each database

involved in the replication. There can be a different database name for the same
replication or the same database name for different replication.

CLUSTER NODE BASE HOST PORT
my replica 1 my db 192.168.1.12 5432
my replica 2 my db 192.168.1.13 5432

8. Editetc/relations.h. Edit the tables that you wish to replicate as follows:

CLUSTER SET MASTER SLAVE
my replica 1 1 2

9. Optionally, edit etc/slon.cfg. Edit the file if you want to change the defaults. Slony
will be launch with this configuration file.
10. Use slony-ctl:

./01 _create_init.sh -c my replica
./create struct.sh -c my replica
./02_exec_init.sh -c¢ my_ replica

327

[PUBLISHING]

Replication & Upgrades

These last three steps are where the actual execution takes place. After all of these have
executed, the databases are fully replicated with slon daemons running.

» 01 create_ init.sh creates the bash scripts for later use. You can edit SSLON
TMP/my_replica.sh and add/remove tables, if needed. So selective replication is
a simple matter of editing those files.

» create_ struct.sh performs a dump from Master and a restore to the slave of the
database schema. This dumps the whole database schema.

» 02 exec_init.sh executes the scripts. This copies the data, so may take a while.

Maintaining replication
Slony doesn't replicate the following items:

» Table definition changes (DDL commands)

» Changes to users and roles

» Changes to large objects (BLOBS)

» Changes made by the TRUNCATE command (may change in future)

So, once you've set up Slony, you'll need to make any further changes to the replicated tables
onto each of the nodes in the configuration. Slony provides a tool named slonik which allows
you to perform EXECUTE SCRIPT, which executes a change script in a single transaction on
each node.

You can create new non-unique indexes of any kind onto tables onto the subscriber without a
problem. This can be used to tune the Standby for different workloads. Make sure you don't
put unique indexes on the subscriber side that don't exist on the Master, because this can
cause replication failures.

Non-replicated tables on the Standby can still be written to, allowing post-processing of
incoming changes or creation of materialized view-style tables.

When data changes are made, they are placed in log tables named s1_log 1 and sl
log_ 2 using database triggers on the origin. Slony will flip/flop between those two tables, so
it can perform truncate data on the non-current log table. That avoids the need for deletion
and vacuuming of the log tables. Triggers are also placed on replicated tables on the Standby
to prevent writes to tables.

For each node in the cluster, there will be one slon process which sends data and
configuration changes from the Master to the Standby. The slon daemon reads the log table
on the Origin/Provider, and then executes the SQL onto the Subscriber (Standby). Changes are
applied in batches, with batch size as a tunable parameter.

328

[PUBLISHING]

Chapter 12

With Slony 1.2, all replicated tables got locked with every EXECUTE SCRIPT call, even if they
were in different replication sets. With Slony 2.0, locking is more relaxed, though this means it
is possible to use too little locking and cause yourself errors.

There's more...

Slony support in available through pgAdmin and phppgadmin GUIs, though Slony management
is probably too complex to make sense to control it through that route. Opinions will no doubt
differ on that point.

See also

For more information visit the following URL:

http://slony.info

Load balancing with pgpool-ll 3.0

Pgpool-1l is middleware that can perform the following major functions:

» Connection pooling
» Load balancing
» Replication management

» Parallel query

The only aspect of pgpool we cover here is load-balancing mode, which is designed to work
with the other forms of replication discussed in this chapter. Pgpool is actively developed and
contains many new features for PostgreSQL 9.0. Load balancing mode allows an application
to connect to pgpool once, and then spread certain kinds of work across multiple nodes. As

a result, it is possible to use pgpool with an existing application with minimal changes. There
are other ways of load balancing across multiple servers, though those utilize features of non-
PostgreSQL related software, so aren't covered here.

Getting ready

Before we use pgpool, we need to understand how the load balancing works, and whether it
will act as we would like.

329

[PUBLISHING]

Replication & Upgrades

In load-balancing mode, pgpool makes intelligent routing decisions based upon the type of

SQL statement.
SQL Statement type Master Standby
Straightforward SELECT Load is split between Master and Standby, if possible
Other/Non-SELECT Sent to Master only Never sent to Standby

Straightforward SELECT statements are easily load balanced. Straightforward is
defined here as being a SELECT statement that:

» isissued as a top-level SELECT, so selects issued within functions do not get replicated

» is notissued as a part of an explicit/extended transaction

» doesn't use row-level locking: SELECT ... FOR SHARE/UPDATE

» doesn'tuse nextval () or setval () functions

» doesn't access volatile functions

» doesn't access system catalog tables

You can look for further details of pgpool at the following URL:
http://pgfoundry.org/projects/pgpool/
Other pgpool features are as follows:

» Standby servers can be added without restarting pgpool
» Pgpool can also be used to automate failover
» A query cache is available in all modes

How to do it...

If using Pgpool with streaming log replication, then Hot Standby must be enabled.

We setup pgpool, and then point the applications at the pgpool server, which responds to them
like a PostgreSQL server. Pgpool then connects to the Master and Standbys. You can use a
pool hba.conf file to control access, just as with the normal server's pg_hba . conf file.

You'll need the following settings in the pgpool . conf . sample-stream:

replication mode = false
Master slave = true

replicate select = false
load balance mode = true

These purely set up the load-balancing mode. In addition, pgpool supports the following
directives:

330

[PUBLISHING]

Chapter 12

» delay threshold specifies the accepted replication delay of the Standby against
the primary server in bytes. If the delay exceeds delay threshold then load
balancing is interrupted momentarily and all queries are sent to the Master. If you
don't want this, just set it to zero.

» log Standby delay provides an option to log the Standby delay, so you can review
it over time. If always, we log the delay every time health checking is performed. If
if over threshold is specified, then we compare against delay threshold
before logging.

» health check period defines the time between measurements of the Standby
delay. health check user specifies the username that will be used for health
check access.

There are additional parameters for automated failover and other features. You may want to
read the pgpool .conf . sample-stream file for more detail on those and the many other
parameters you can control.

Pgpool can be controlled using the command line, like the following:

pgpool -f pgpool.conf -a pool hba.conf
pgpool -m fast stop
pgpool -f pgpool.conf -a pool hba.conf reload

The replication delay can be requested dynamically by issuing the following;:
SHOW POOL_STATUS;

which is a dummy SQL command that is intercepted by pgpool and returns information about
the dynamic status. Other SHOW commands provide various other feedback.

Pgpool parses SQL statements to understand their type and contents. The parsing needs

to go quite deep to understand whether SELECT statements contain volatile function calls.
Pgpool doesn't know about user-defined functions, though you can explicitly include or exclude
functions using the new parameters white function_ list (toinclude)and black
function list (to exclude).

Pgpool implements the health checking feature in a separate worker process, so it can
continue to work without blocking incoming SQL.

Special thanks to Tatsuo Ishii for providing detailed feedback on my questions about the new
features of pgpool Il 3.0, which was released shortly before publication.

331

[PUBLISHING]

Replication & Upgrades

There's more...

Pgpool-1l is middleware that can perform the following major functions:

» Connection pooling
» Load balancing
» Replication management
» Parallel query
I've ignored some of the other features here, so | need to say a few words about my thoughts

on that. Connection pooling is also provided by pgbouncer. Replication management features
are probably superseded by other forms of replication covered here.

The parallel query features are regrettably out-classed by popular products, such as
Greenplum, which offers a free-to-use edition that performs very well, and is in production
use at a number of PostgreSQL user sites. Visit the following URL:

http://www.greenplum.com/products/single-node/

Upgrading (minor)

Minor release upgrades are released regularly by all software developers and PostgreSQL has
its share of corrections. When a minor release occurs, we bump the last number, usually by one.

So ,the first release of major release 9.0 is 9.0.0. The first set of bug fixes is 9.0.1, then 9.0.2,
and so on.

This recipe is about moving from minor release to minor release.

Getting ready

First, get hold of the new release, either by downloading the source or downloading
fresh binaries.

How to do it...

In most cases, PostgreSQL aims for minor releases to be trivial upgrades. We make great
efforts to keep the on-disk format the same for both data/index files and transaction log
(WAL) files. Some temporary files can sometimes change.

The upgrade process is as follows:

1. Read the release notes to see if there are any special actions that need to be taken
for this release.

332

[PUBLISHING]

Chapter 12

2. If you have professional support, speak to your support vendor to see if
additional safety checks over and above the upgrade instructions are required or
recommended, if any. Check also that the target release is fully supported by your
vendor on your hardware and OS and OS release level; it may not be, yet.

3. Apply any special actions or checks, for example if WAL format has changed, then
you may need to reconfigure log based replication following the upgrade. You may
need to scan tables, rebuild indexes or some other action. Not every release has such
actions, but watch closely for them, because if they exist, then they are important.

4. If you are using replication, test the upgrade by shutting down one of your Standby or
slave servers.

5. Follow the instructions for your OS distribution and binary packager to complete the
upgrade. These can vary considerably.

6. Startup the database server being used for a test, apply any post-upgrade special
actions, and check that things are working for you.

7. Follow steps 4 to 6 for other Standby servers.

Follow steps 4 to 6 for the Primary server.

Minor upgrades mostly affect the binary files, so it should be a simple matter of replacing
those files and restarting. But check.

Major upgrades in-place

New in PostgreSQL 9.0 is a utility named pg_upgrade, supplied as a contrib module. pg
upgrade allows you to migrate to new major versions of PostgreSQL, such as from 8.4 to 9.0,
or from 9.0 to 9.1.

In-place upgrades means upgrading your database without moving to a new system. That
does sounds good, though pg upgrade has a few things that you may wish to consider as
potential negatives, which are as follows:

» Database server must be shut down while upgrade takes place.

» Your system must be big enough to hold two copies of the database server: old and
new copies. If it's not, then you have to use the link option of pg_upgrade, or
use the recipe on upgrading using replication tools. If you use the link option on
pg_upgrade, then there is no pg_downgrade utility. The only option is a restore
from backup, and that means extended unavailability if that occurs.

» If you copy the database, then upgrade, time will be proportional to the size
of the database.

» pg upgrade only supports PostgreSQL 8.3+.

333

[PUBLISHING]

Replication & Upgrades

» pg upgrade (for 9.0) does not validate all of your additional add-in modules, so you
will need to set up a test server and confirm that these work ahead of performing the
main upgrade. (Sorry, no tricks yet to make that easy!)

Getting ready

Find out the size of your database (using an earlier recipe). If the database is large or you
have an important requirement for availability, you should consider doing the major upgrade
using replication tools instead. Check out the next recipe.

How to do it...

» Read the release notes for the new server version to which you are migrating. Pay
careful attention to the incompatibilities section; PostgreSQL does change from
release-to-release.

» Set up a test server with the old software release on it. Upgrade that system to the
new release to check there are no conflicts from software dependencies. Test your
application. Make sure you identify and test each add-in PostgreSQL module you
were using to confirm it still works at the new release level.

» Backup your server. Prepare for the worst; hope for the best.

» Write a test script that will confirm the database has been upgraded successfully.
Include some commands that will only work at the new release, so you know it really
is the new release, such as the following:

SELECT (string to_ array(version(), ' '))I[2] = '9.0.1"';
» Most importantly, work out who you will call if things go badly, and exactly how to
restore from that backup you just took.

» Install new versions of all required software on the production server, and create a
new database server.

» Don't disable security while doing the upgrade. Your security team will do backflips if
they hear about this. Keep your job.

» Shutdown the database servers.

» Runpg upgrade, and then run any required post-upgrade scripts. Make sure you
check to see whether any were required.

» Startup the new database server, and immediately run a server-wide ANALYZE.

» Run through your tests to check whether it worked or you need to start performing
the contingency plan.

» Ifallis OK, re-enable wide access to the database server. Restart applications.

» Don't delete your old server directory if you used the link method. The old data
directory still contains the data for the new database server. Confusing, so don't get
caught by this.

[PUBLISHING]

Chapter 12

pg_upgrade works easily because the data block format hasn't changed between some
releases. That won't always be the case; however, replication might not work across major
upgrades as well, though has done so for the last seven releases of PostgreSQL.

pg_upgrade works by creating a new set of database catalog tables, and then creating the
old objects again in the new tables. This works well for common cases.

There's more...

If you're upgrading more than one major release, then we hope it should be possible. We do
this by allowing a chain of upgrade steps that takes you through the versions one-by-one. It
will be more complex to do things that way, though its the same general procedure.

Whatever you do, carefully plan the tests that will tell you whether the upgrade was successful
and whether it will be safe to continue.

Major upgrades online using replication

tools

Upgrading between major releases is hard, and should be deferred until you have some good
reasons and sufficient time to get it right.

You can use replication tools to minimize the downtime required for an upgrade, so we refer to
the following recipe as online upgrade.

335

[PUBLISHING]

Replication & Upgrades

How to do it...

The following general points should be followed, allowing at least a month for the complete
process to ensure that everything is tested, and everybody understands the implications:
» Set up a new release of software on a new system

» Take a standalone backup from main system, and build a test server. Test
applications extensively against the new release on the test system. When
everything works and performs correctly, then:

o Setup a connection pooler to main database (may have already)

o Setup replication using Londiste or Slony to the new system, as described
previously

o Re-test application extensively against the new release on live data, then
when ready for final cut-over we can:

» Prepare a new connection pool config to point at the new system
» Pause the connection pool
» Switchover to the new system

» Point the connection pool to the new system, and reload

Slony and Londiste both work against multiple releases of PostgreSQL, so you can be sure
that cross-release replication works and works well. The preceding recipe allows for online
upgrade with zero data loss, because of the use of the clean switchover process. There's no
need for lengthy downtime during the upgrade, and there's much reduced risk in comparison
with an in-place upgrade. It works best with new hardware, and is a good way to upgrade the
hardware or change the disk layout at the same time. This is also very useful for changing
server encoding.

336

[PUBLISHING]

A

actions
performing, on many tables 158, 159
working 160-162
active query, running
verifying 194
alter.tablealter.table 50
ANALYZE command 215
Archiver process 71
auto freezing
avoiding 221, 222
automatic database maintenance
controlling 216
autovacuum
about 72, 216
enabling 216
working 218, 219

Background writer process 71
backup performance 294
backup/recovery options 271
backup/restore performance

improving 294
backups

planning 270, 271
basic server configuration checklist 67, 68
bloated tables and indexes

fixing 229-231

identifying 229-231
boxes_position_excl 109
BSD (Berkeley Distribution Software)

license 10

[PUBLISHING]

Index

bug
investigating 210-212
reporting 210-212

C

Cacti 190
causes, for slow SQL statement
excess data, processing 246-248
excess data, returning by query 248
less memory 248
locking problems 249
Cent0S
database server files, locating 35
database server message log, locating 37
change logs
saving, to another database 142, 143
checkpoint_segments 268
checkpoint_timeout 268
check_postgres_bloat 232
check_postgres plugins 232
column datatypes
changing 165-167
columns, of data table
adding/removing 163, 164
complex SQL
simplifying 251, 252
complex SQL, simplifying
materialized views, using 257
subquery, moving to view 253, 254
temporary tables, using for subquery 255,
256
WITH statement, using 254, 255
computer connectivity
verifying 193
connection information
inspecting 13

Connection Pool

about 91

setting up 91, 92
Contrib 69
crash recovery

about 268

controlling 268, 269
CREATE GROUP command 131
CREATE ROLE command 131
CREATE USER command 131
current configuration settings,

PostgreSQL 62, 63

D

data
loading, from flat files 122
loading, from spreadsheet 119-121
sampling 117, 118

database
recovering 292, 293

database connection, SSL used
about 145
client, setting up 146
server authenticity, checking 147
SSL key and certificate, getting 146
working 145

database object definitions backup
about 277
performing 277

databases
monitoring 190
viewing, pgAdmin used 192
listing 40, 41

database server
new connections, preventing 80, 81
restarting 78, 79
server configuration files, reloading 76-78
starting manually 74, 75
stopping 75, 76
stopping, in emergency 76
users, restricting to one session 81, 82
users, terminating 83
recovery 283, 284

database server files, PostgreSQL
locating 34, 35
locating, on CentOS 35
locating, on Debian or Ubuntu 34

338

locating, on Fedora 35
locating, on Red Hat RHEL 35
working 35
database server message log
locating 36
locating, on CentOS 37
locating, on Debian or Ubuntu systems 37
locating, on Fedora 37
locating, on Red Hat RHEL 37
locating, on Windows systems 37
working 38
database sessions
terminating 199
databases session, terminating
backend, terminating 199
backend, terminating from command line
201
idle in transaction queries, terminating 200
queries, cleaning up 200
query, canceling 199
data changes
auditing 140-143
collecting, from server log 141
collecting, triggers used 141, 142
data generator
features 116
data quality issues, removing
about 99
Information Schema query, using 100
table definitions, comparing 102, 103
tables, comparing 101
dblink
functions 181
installing 177
working 179, 180
dbname 13
DDL changes
auditing 139
DDL (Data Definition Language) 139
Debian or Ubuntu systems
database server files, locating 34
debugging_info function
writing 138
differential backup 296
differential physical backup
performing 297
working 297

[PUBLISHING]

disk space size, database
finding 45
disk space size, of table
finding 46
du command 206
duplicate rows
preventing 106-109
duplicates
identifying 103-106
removing 103-106

E

EMS SQLManager
URL 20
enable_seqscan
setting to false 261
external module
adding, to PostgreSQL 68-70

F

failed connection
troubleshooting 27, 28

Fedora
database server files, locating 35
database server message log, locating 37

G

generic monitoring tools
resources 192
genetic query optimization (GEQO) 255
GNU Privacy Handbook
URL 151
graphical administration tools
upgrading 15-17

H

hostaddr 12
hstore 9

IANA 13
incremental backup 296

indexes
maintaining 233-236
Information Schema 44

J

JDBC driver parameters 73

L

LDAP integration 144
LDAP (lightweight Directory Access Protocol)
144
libpq interface library 12
Lightning Admin
URL 20
Linux Filesystem Hierarchy Standard (FHS) 35
listen_addresses parameter 14
logfile errors, daily summary report
creating 212
logical backup
improving 294
logical backup, of all databases
about 274
performing 275
working 275
logical backup, of all tables in tablespace
about 276
performing 276
working 277
logical backup, of one database
about 272
performing 272
working 273
logical restore
improving 294
Log Sequence Number (LSN) 298

maintenance

planning 239
Major.Minor.Maintenance format 32
max_client_conn parameter 92
max_connections parameter 92
max_stack_depth 64
monitoring information

providing 191

339

[PUBLISHING]

multiple physical databases
running on server 84, 85
multiple schemas
using 85-87
working 87
multiple servers
running, on one system 89, 90
multi-tenancy 84
multi-tenancy design
deciding 84, 85
Multi-Version Concurrency Control (MVCC) 9
Munin 190
MVCC 48

Nagios
about 190
URL 192
names, for database objects
selecting 96
Navicat
URL 20
network port 13
network/remote access
enabling 14, 15
newcust_customerid_excl 109
newcust_customerid_idx 107
newcust_customerid_key 107
newcust_pkey 107
new database
planning 59, 60

0

objects
handling, with quoted names 97-99
accessing, in other PostgreSQL databases
177-180
moving, between schemas 170
moving, between tablespaces 174-176
old prepared transactions
removing 225, 226
OLTP (Online Transaction Processing) systems
195
OpenSSL web page
URL 151
Optimal Flexible Architecture (OFA) 35

optimistic locking
using 263
0S X
database server files, locating 35

P

page corruptions
avoiding 221, 222
parameter file
updating 65, 66
parameters
changing 60-62
checking, for non-default settings 63, 64
setting, for partuicular user groups 66, 67
parameters, for toast tables
toast.autovacuum_analyze_scale_factor 217
toast.autovacuum_analyze_threshold 217
toast.autovacuum_enabled 217
toast.autovacuum_freeze_max_age 217
toast.autovacuum_freeze_min_age 217
toast.autovacuum_freeze_table_age 217
toast.autovacuum_vacuum_cost_delay 217
toast.autovacuum_vacuum_cost_limit 217
toast.autovacuum_vacuum_scale_factor 217
toast.autovacuum_vacuum_threshold 217
parameters, postgresql.conf
autovacuum 216
autovacuum_analyze_scale_factor 216
autovacuum_analyze_threshold 216
autovacuum_freeze_max_age 217
autovacuum_max_workers 217
autovacuum_naptime 217
autovacuum_vacuum_cost_delay 217
autovacuum_vacuum_cost_limit 217
autovacuum_vacuum_scale_factor 217
autovacuum_vacuum_threshold 217
log_autovacuum_min_duration 217
partial index 108
password
changing 24
keeping, in secure password file 25, 26
performance tuning, PostgreSQL
complex SQL, simplifying 251, 252
database, forcing to use an index 261, 262
number of returned rows, reducing 250, 251
optimistic locking, using 263
performance problems, reporting 265

340

PUBLISHING

queries, speeding up 257
query, not using an index 260, 261
reasons for slow SQL statement, finding 246
regular optimizer statistics, collecting 245
slow SQL statements, finding 242
pgAdmin
about 16, 17
working 18, 19
pgAdmin3 16, 168
pg_batch 163
PgBouncer 145
pg_cache_save() 79
pg_cacheutils 79
pg_cache_warm() 80
pg_catalog 44
pg_catalog schema 102
pg_controldata 39
Pgcrypto 150
pgcerypto package 147
PgCrypto page
URL 151
pg_database_size() function
object dependencies 46
pg_dump 270
pg_dumpall 270
pg_dumpall utility 272
pgFoundry 69
pg_hba.conf 14, 65
pg_ident.conf 65
pgloader 122
pg_locks view 226
pg_ls_dir(dirname text) function 205
PGPASSFILE 25
pg_rman 298
pg_rman 1.1.2 298
pg_settings 62
PGSSLMODE 146
pg_stat_activity 78, 83, 193
pg_stat_activity.waiting field 197
pg_stat_file(filename text) function 205
pg_stat_get_activity function 194
pgstatindex() 232
pgstattuple() 232
pg_stat_user_indexes 191
pg_stat_user_tables 191, 202
pg_stop_backup() function 279
pg_terminate_backend() 84

pg_terminate_backend() function 83
pg_terminate_backend(processid) function
199
phpPgAdmin
about 20
URL 19
physical backup
improving 294
physical database backup
about 278
performing 278
working 279
physical database backup, with continuous
archiving
about 280
performing 281, 282
working 282
physical restore
improving 294
PL/Proxy 181
point in time recovery (PITR)
about 286
performing 287
working 287
PostGIS 274
postgres 41
postgres OS user
connecting 38
PostgreSQL
about 7,8, 31
accessing 11-13
actions, performing on many tables 158
backups 267
basic server configuration checklist 67, 68
benefits 8
biggest table size, finding 47
column datatypes, changing 165-167
connection information, inspecting 13
connection service file, using 26, 27
crash recovery 268
current configuration settings 62, 63
database object names, selecting 96
database server, starting manually 74, 75
database server files, locating 34, 35
database server message log, locating 36, 37
databases, listing 40, 41
data directory 74

3

[PUBLISHING]

data, loading from flat files 122

data, loading from spreadsheet 119-121

data quality issues, removing 99

disk space size, finding 45

disk space size of table, finding 46

downloading 10

duplicate indexes 110

duplicate rows, preventing 106-109

duplicates, identifying 103-106

duplicates, removing 103-106

enabling, SSL used 145

external module, adding 68-70

failed connection, troubleshooting 27, 28

features 8, 9

graphical administration tools,
upgrading 15-17

installing 10

integrating, with LDAP 144

manual, reading 58

monitoring information, providing 191

multiple schemas, using 85-87

release support policy 32

rights of deleted users, assigning to new
user 133

running, in power saving mode 70-72

schema-level privileges 169

schemas, adding/removing 168, 169

script, working 155

script, writing 154

security 125

sensitive data, encrypting 147-149

server uptime, monitoring 33

table columns, adding/removing 163, 164

table rows, counting 48

tablespaces, adding/removing 171, 172

test data, generating 114, 115

uniqueness without indexes 110

unique set of key columns, finding 112, 113

version, checking 32

version number, checking 33

views, making updateable 182, 184

working 11, 32

network/remote access, enabling 14, 15
new database, planning 59, 60

new user, creating 130

number of rows in table, estimating 49
number of tables 43, 44

PostgreSQL 9
introducing 8
postgresql.conf 62
postgresql-contrib 147
PostgreSQL documents

object dependencies 53
objectives 8
objects, accessing in other PostgreSQL
databases 177, 178
objects, moving between schemas 170
objects, moving between
tablespaces 174-176
objects, handling with quoted names 97-99
ownership, reassigning 134
ownerships, assigning to user 133
parameter file, updating 65, 66
parameters, changing 60-62
parameters, setting for particular user
groups 66, 67
password, changing securely 24
password, keeping in secure password
file 25, 26
performance tuning 242
private database, providing to users 88, 89
psql script, writing 156, 157
regular maintenance 215, 216

342

about 58

access and security plan 59
availability plan 59
database design 59
hardware configuration 59
high availability plan 60
localization plan 59
maintenance plan 59
transaction analysis 59

PostgreSQL Flexible Architecture (PFA) 35
PostgreSQL-LDAP inetgration

about 144
client, setting up 144
working 144

PostgreSQL manual

about 58
reference link 58
working 58

PQA (Practical Query Analysis) 213
private database

providing, to users 88, 89

[PUBLISHING]

production database
administrators 126
end-users 126
psql
about 20
using 20, 21
working 22, 23
psql script
working 158
writing 156, 157

Q

queries
blocking, causes 198
long-running queries, viewing 195
slowing down, causes 208, 210
status, verifying 196
viewing, from ps 196

queries, running for milliseconds
catching 195

queries, speeding up
better information, providing 257
constraint exclusion, using 259
fillfactor, setting on table 259
multi-column index, adding 258
schema, rewriting 259
special conditional index adding 258
table, clustering on specific indexes 258
table partitioning, using 259

quote_ident() 99

random() function 118

random_page_cost
lowering 262

recovery, of database server
logical recovery 283, 285
performing 283, 284
physical recovery 284, 285
working 285

Red Hat layout 35

Red Hat RHEL
database server files, locating 35
database server message log, locating 37

regular maintenance
about 216
actions, for heavy users of temporary
tables 227, 228
auto freeze, avoiding 221, 222
automatic database maintenance,
controlling 216, 217
bloated tables and indexes, fixing 229
bloated tables and indexes, identifying 229
indexes, maintaining 233-236
maintenance, planning 239
old prepared transactions, removing 225
page corruptions, avoiding 221, 222
transaction wraparound, avoiding 222, 223
unwanted indexes, removing 238
regular optimizer statistics
collecting 245
working 246
REINDEX CONCURRENTLY command 236
restore performance 294
rows, in table
counting 48
estimating 49
RRDtool (Round Robin Database Tool)
about 190
Cacti 190
Munin 190
RTFM 58
Ruby 213

S

schemas
adding/removing 168, 169
script
working 155, 156
writing 154
security
about 125
data changes, auditing 140
DDL changes, auditing 139
new database user, creating 130
superuser powers, limiting to specific
users 136, 137
user access, granting to table 128
user access, revoking to table 126, 127
user connection, preventing temporarily 131

[PUBLISHING]

343

user passwords, encrypting 134
user, removing without dropping data 133

sensitive data
encrypting 147-149

Separate projects 69

server configuration files
reloading 76-78

server uptime, PostgreSQL
monitoring 33

SET LOCAL command 61

SHOW command 62

SHOW commands 93

Slony 274

slow SQL statements
finding 242, 243
queries, finding 243
slow queries, making appearing in slow

query log 244
SNMP (Simple Network Management Proto-
col) 190

SQL function
creating 51, 53

SQL REINDEX command 233

storage parameters
autovacuum_analyze_scale_factor 217
autovacuum_analyze_threshold 217
autovacuum_enabled 217
autovacuum_freeze_max_age 217
autovacuum_freeze_min_age 217
autovacuum_freeze_table_age 217
autovacuum_vacuum_cost_delay 217
autovacuum_vacuum_cost_limit 217
autovacuum_vacuum_scale_factor 217
autovacuum_vacuum_threshold 217

superuser powers
limiting, to specific users 136, 137

Swiss knife script 191

syslog 37

T

table
recovering 288, 289, 290
tabledaily usage statistics, collecting 202
file dates, viewing 203, 205
status, verifying 201
tablespace
recovering 291, 292

—3u]

tablespaces
adding/removing 171, 173
pg_xlog directory, putting on separate device
174
tablespace-level tuning 174
working 173
temporary data
space consumption, measuring 205
temp_tablespaces settings 206, 207
temporary file usage
logging 207
temp_tablespaces parameter 227
test data
columns, generating 115, 116
generating 114, 115
rows, generating 114
timeofday() function 110
TOAST 47
TOAST index 47
TOAST table 47
TPL (The PostgreSQL License) 10
transaction wraparound
avoiding 222, 223
troubleshooting, failed connection
connection request, checking 28
database name and username, checking 27
disconnection reasons, checking 28
explicit rejections, checking 28
implicit rejections, checking 28
port, checking 28
psql connection, checking 28
server, checking 28

U

unique set of key columns
finding 112, 113
unwanted indexes
removing 238
user
removing 133
user access
granting, to all objects in schema 129, 130
granting, to table 128, 129
granting, to table through group role 129
revoking, to table 126, 127

[PUBLISHING]

user connection
NOLOGIN users, disconnecting 132
preventing temporarily 131
verifying 193

user passwords
encrypting 135

Vv

VACUUM command 215

versions, PostgreSQL
PostgreSQL 8.2 33
PostgreSQL 8.3 33
PostgreSQL 8.4 33
PostgreSQL 9.0 33

views
about 182
making updateable 182, 184
working 185

VPN (Virtual private Network) 145

w

WAL receiver process 72
WAL writer process 71
Windows
database server files, locating 35
Write Ahead Log (WAL) 268

[PUBLISHING]

open source

community experience distilled

PUBLISHING

Thank you for buying
PostgreSQL 9 Administration Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

open source

community experience distilled

PUBLISHING

MySQL Admin
Cookbook

MySQL Admin Cookbook

ISBN: 978-1-847197-96-2 Paperback: 376 pages

99 great recipes for mastering MySQL configuration and
administration

1. Set up MySQL to perform administrative tasks
such as efficiently managing data and database
schema, improving the performance of MySQL
servers, and managing user credentials

2. Deal with typical performance bottlenecks and
lock-contention problems

3. Restrict access sensibly and regain access to your
database in case of loss of administrative user
credentials

Mastering phpMyAdmin 3.3.x
for Effective MySQL Management

Mastering phpMyAdmin
3.3.x for Effective MySQL

Management
ISBN: 978-1-84951-354-8 Paperback: 412 pages

A complete guide to get started with phpMyAdmin 3.3
and master its features

1. The best introduction to phpMyAdmin available

2. Written by the project leader of phpMyAdmin, and
improved over several editions

3. A step-by-step tutorial for manipulating data with
phpMyAdmin

Please check www.PacktPub.com for information on our titles

PUBLISHING

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: First Steps
	Introduction
	Introducing PostgreSQL 9
	Getting PostgreSQL
	Connecting to PostgreSQL server
	Enabling access for network/remote users
	Using graphical administration tools
	Using psql query and scripting tool
	Changing your password securely
	Avoiding hardcoding your password
	Using a connection service file
	Troubleshooting a failed connection

	Chapter 2: Exploring the Database
	Introduction
	What version is the server?
	What is the server uptime?
	Locate the database server files
	Locate the database server message log
	List databases on this database server?
	How many tables in a database?
	How much disk space does a database use?
	How much disk space does a table use?
	Which are my biggest tables?
	How many rows in a table?
	Quick estimate of the number of rows
	in a table
	Understanding object dependencies

	Chapter 3: Configuration
	Introduction
	Reading the Fine Manual (RTFM)
	Planning a new database
	Changing parameters in your programs
	What are the current configuration settings?
	Which parameters are at non-default
	settings?
	Updating the parameter file
	Setting parameters for particular groups
	of users
	Basic server configuration checklist
	Adding an external module to PostgreSQL
	Running server in power saving mode

	Chapter 4: Server Control
	Introduction
	Starting the database server manually
	Stopping the server safely and quickly
	Stopping the server in an emergency
	Reloading the server configuration files
	Restarting the server quickly
	Preventing new connections
	Restricting users to just one session each
	Pushing users off the system
	Deciding on a design for multi-tenancy
	Using multiple schemas
	Giving users their own private database
	Running multiple servers on one system
	Set up a Connection Pool

	Chapter 5: Tables & Data
	Introduction
	Choosing good names for database objects
	Handling objects with quoted names
	Enforcing same name, same column
	definition
	Identifying and removing duplicates
	Preventing duplicate rows
	Finding a unique key for a set of data
	Generating test data
	Randomly sampling data
	Loading data from a spreadsheet
	Loading data from flat files

	Chapter 6: Security
	Introduction
	Revoking user access to a table
	Granting user access to a table
	Creating a new user
	Temporarily preventing a user from
	connecting
	Removing a user without dropping their data
	Checking all users have a secure password
	Giving limited superuser powers to specific
	users
	Auditing DDL changes
	Auditing data changes
	Integrating with LDAP
	Connecting using SSL
	Encrypting sensitive data

	Chapter 7: Database Administration
	Introduction
	Writing a script that either all succeeds
	or all fails
	Writing a psql script that exits on first error
	Performing actions on many tables
	Adding/Removing the columns of a table
	Changing datatype of a column
	Adding/Removing schemas
	Moving objects between schemas
	Adding/Removing tablespaces
	Moving objects between tablespaces
	Accessing objects in other PostgreSQL
	databases
	Making views updateable

	Chapter 8
: Monitoring and Diagnosis
	Introduction
	Is the user connected?
	What are they running?
	Are they active or blocked?
	Who is blocking them?
	Killing a specific session
	Resolving an in-doubt prepared transaction
	Is anybody using a specific table?
	When did anybody last use it?
	How much disk space is used by temporary
	data?
	Why are my queries slowing down?
	Investigating and reporting a bug
	Producing a daily summary of logfile errors

	Chapter 9: Regular Maintenance
	Introduction
	Controlling automatic database
	maintenance
	Avoiding auto freezing and page corruptions
	Avoiding transaction wraparound
	Removing old prepared transactions
	Actions for heavy users of temporary tables
	Identifying and fixing bloated tables
	and indexes
	Maintaining indexes
	Finding the unused indexes
	Carefully removing unwanted indexes
	Planning maintenance

	Chapter 10: Performance & Concurrency
	Introduction
	Finding slow SQL statements
	Collecting regular statistics from pg_stat*
	views
	Finding what makes SQL slow
	Reducing the number of rows returned
	Simplifying complex SQL
	Speeding up queries without rewriting them
	Why is my query not using an index?
	How do I force a query to use an index
	Using optimistic locking
	Reporting performance problems

	Chapter 11
: Backup & Recovery
	Introduction
	Understanding and controlling crash
	recovery
	Planning backups
	Hot logical backup of one database
	Hot logical backup of all databases
	Hot logical backup of all tables
	in a tablespace
	Backup of database object definitions
	Standalone hot physical database backup
	Hot physical backup & Continuous Archiving
	Recovery of all databases
	Recovery to a point in time
	Recovery of a dropped/damaged table
	Recovery of a dropped/damaged tablespace
	Recovery of a dropped/damaged database
	Improving performance of backup/restore
	Incremental/Differential backup and restore

	Chapter 12
: Replication & Upgrades
	Introduction
	Understanding replication concepts
	Replication best practices
	File-based log-shipping replication
	Setting up streaming log replication
	Managing log shipping replication
	Managing Hot Standby
	Selective replication using Londiste
	Selective replication using Slony 2.0
	Load balancing with pgpool-II 3.0
	Upgrading (minor)
	Major upgrades in-place
	Major upgrades online using replication
	tools

	Index

