e -
H ,'M-Iz-c.drnl\'.;.m
A ol

P e+ od

T
Al L

e~

| e i

-
a
1 .
. - .
 —— B et = PR
e S T =
i = e b e e R e SE—
I —
"<

Quick answers to common problems

PostgreSQL Cookbook

Over 90 hands-on recipes to effectively manage, administer, and
design solutions using PostgreSQL

Chitij Chauhan [[leE=natne

PUBLISHING

www.it-ebooks.info

http://www.it-ebooks.info/

PostgreSQL Cookbook

Over 90 hands-on recipes to effectively manage,
administer, and design solutions using PostgreSQL

Chitij Chauhan

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

PostgreSQL Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1240115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-533-8

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Chitij Chauhan

Reviewers
Naoya Hashimoto

Sergio Martinez-Losa Del Rincén

Danny Sauer

Commissioning Editor
Akram Hussain

Acquisition Editor
Nikhil Karkal

Content Development Editor
Sumeet Sawant

Technical Editor
Ruchi Desai

Copy Editors
Dipti Kapadia

Vikrant Phadke

Project Coordinator
Purav Motiwalla

Proofreaders
Maria Gould

Paul Hindle
Linda Morris

Stephen Silk

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Chitij Chauhan currently works as a senior database administrator at an IT-based MNC
in Chandigarh. He has over 10 years of work experience in the field of database and system
administration, with specialization in MySQL clustering, PostgreSQL, Greenplum, Informix
DB2, SQL Server 2008, Sybase, and Oracle. He is a leading expert in the area of database
security, with expertise in database security products such as IBM InfoSphere Guardium,
Oracle Database Vault, and Imperva.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Naoya Hashimoto has been working on system design and integration with open source
software for years. Recently, his career and interest have shifted toward cloud engineering on
both public and hybrid clouds, such as AWS, as well as toward orchestration tools, such as
Chef or CloudFormation. He has reviewed the books Icinga Network Monitoring and Building a
Home Security System with BeagleBone, both by Packt Publishing. Moreover, currently he is a
technical reviewer of the book Building Networks and Servers Using Beaglebone, which is also
by Packt Publishing.

Thanks to the author and the project coordinator, Purav, who gave me this
opportunity to review the book. | am very impressed with their work and this
project because it gives us a chance to learn about the latest technology of
PostgreSQL 9.x.

Sergio Martinez-Losa Del Rincon is a computer engineer who loves programming
languages since the time he was in high school, where he learned about programming and
computer interactions. He is always learning and discovers something new to learn everyday.

He likes all kind of programming languages, but he focuses his efforts on mobile development
with native languages, such as Objective-C (iPhone), Java (Android), and Xamarin (C#). He builds
Google Glass applications as well as mobile applications for iPhone and Android devices at work.
He also develops games for mobile devices with cocos2d-x and cocos2d. He likes cross-platform
applications as well. He has reviewed Learning Xamarin Studio, Packt Publishing.

He loves challenging problems, and he is always keen to work with new technologies. More
information about his experience and details can be found at www.linkedin.com/in/
sergiomtzlosa.

www.it-ebooks.info

www.linkedin.com/in/sergiomtzlosa
www.linkedin.com/in/sergiomtzlosa
http://www.it-ebooks.info/

Danny Sauer has been a professional Unix geek of various stripes for roughly 20 years,
most recently in the flavor of security engineer. His experience with open source databases
extends through most of that time period, both as DBA and as a user. He currently lives
with his wife in an old house in a small town outside of a small city, which provides plenty
of opportunity to restore antique houses, cars, and computers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content
» Ondemand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Managing Databases and the PostgreSQL Server 7
Introduction 8
Creating databases 8
Creating schemas 10
Creating users 11
Creating groups 13
Destroying databases 14
Creating and dropping tablespaces 15
Moving objects between tablespaces 17
Initializing a database cluster 18
Starting the server 19
Stopping the server 20
Displaying the server status 22
Reloading the server configuration files 23
Terminating connections 24
Chapter 2: Controlling Security 27
Introduction 27
Securing database objects 28
Controlling access via firewalls 29
Controlling access via configuration files 31
Testing remote connectivity 34
Auditing database changes 34
Enabling SSL in PostgreSQL 38
Testing SSL encryption 42
Encrypting confidential data 42
Cracking PostgreSQL passwords 48

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 3: Backup and Recovery 51
Introduction 51
A logical backup of a single PostgreSQL database 52
A logical backup of all PostgreSQL databases 56
A logical backup of specific objects 60
File system level backup 62
Taking a base backup 63
Hot physical backup and continuous archiving 64
Point-in-time recovery 66
Restoring databases and specific database objects 69

Chapter 4: Routine Maintenance Tasks 71
Introduction 71
Controlling automatic database maintenance 72
Preventing auto freeze and page corruption 74
Preventing transaction ID wraparound failures 75
Updating planner statistics 77
Dealing with bloating tables and indexes 78
Monitoring data and index pages 82
Routine reindexing 85
Maintaining log files 87

Chapter 5: Monitoring the System Using Unix Utilities 89
Introduction 89
Monitoring CPU usage 90
Monitoring paging and swapping 91
Finding the worst user on the system 94
Monitoring system load 95
Identifying CPU bottlenecks 96
Identifying disk 1/0 bottlenecks 99
Monitoring system performance 101
Examining historical CPU load 103
Examining historical memory load 104
Monitoring disk space usage 106
Monitoring network status 107

Chapter 6: Monitoring Database Activity and

Investigating Performance Issues 109
Introduction 110
Checking active sessions 110
Finding out what queries users are currently running 111
Getting the execution plan for a statement 112
Logging slow statements 115

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Collecting statistics 116
Monitoring database load 117
Finding blocking sessions 118
Table access statistics 120
Finding unused indexes 122
Forcing a query to use an index 124
Determining disk usage 126
Chapter 7: High Availability and Replication 129
Introduction 129
Setting up hot streaming replication 130
Replication using Slony-l 134
Replication using Londiste 139
Replication using Bucardo 148
Replication using DRBD 152
Setting up the Postgres-XC cluster 162
Chapter 8: Connection Pooling 171
Introduction 171
Installing pgpool 172
Configuring pgpool and testing the setup 173
Starting and stopping pgpool 181
Setting up pgbhouncer 183
Connection pooling using pghouncer 184
Managing pghouncer 187
Chapter 9: Table Partitioning 191
Introduction 191
Implementing partitioning 192
Managing partitions 196
Partitioning and constraint exclusion 199
Alternate partitioning methods 202
Installing PL/Proxy 204
Partitioning with PL/Proxy 205
Chapter 10: Accessing PostgreSQL from Perl 211
Introduction 211
Making a connection to a PostgreSQL database using Perl 212
Creating tables using Perl 215
Inserting records using Perl 217
Accessing table data using Perl 219
Updating records using Perl 221
Deleting records using Perl 224

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 11: Accessing PostgreSQL from Python

229

Introduction

Making connections to a PostgreSQL database using Python
Creating tables using Python

Inserting records using Python

Accessing table data using Python

Updating records using Python

Deleting records using Python

Chapter 12: Data Migration from Other Databases and
Upgrading the PostgreSQL Cluster

229
230
231
233
235
237
240

243

Introduction

Using pg_dump to upgrade data

Using the pg_upgrade utility for a version upgrade

Replicating data from other databases to PostgreSQL using GoldenGate

Index

243
244
246
249

265

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

PostgreSQL is a database server that is available on a wide range of platforms and is one of
the most popular open source databases deployed in production environments worldwide.

It is also one of the most advanced databases, with a wide range of features that challenge
even many proprietary databases. This book offers you an insight into the various features
and implementations of these features in PostgreSQL. It is intended to be a practical guide
for database administrators and developers alike, with solutions related to data migration,
table partitioning, high availability and replication, database performance, and using Perl
and Python languages for integration with PostgreSQL.

What this book covers

Chapter 1, Managing Databases and the PostgreSQL Server, helps you to create databases
and understand the concept of schemas, roles, users, groups, and tablespaces in the
PostgreSQL server.

Chapter 2, Controlling Security, lets you see and understand the security controls and levels of
security that are present in PostgreSQL. After this chapter, you should be able to understand
and configure the security controls that exist in the PostgreSQL server. You should also be
able to use SSL connections in PostgreSQL in order to encrypt data.

Chapter 3, Backup and Recovery, shows the different backup and recovery scenarios
that can be implemented in PostgreSQL. After this chapter, you should be familiar with
logical and physical backup methods and restoring databases or database objects in a
recovery-based scenario.

Chapter 4, Routine Maintenance Tasks, gives information about the regular maintenance
tasks that are carried out to achieve optimal performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 5, Monitoring the System Using Unix Utilities, covers different Unix/Linux commands
useful to troubleshoot CPU, memory, and |/O-related issues. After reading this chapter, you
should be able to successfully troubleshoot CPU, memory, and disk contention issues using
various Unix commands.

Chapter 6, Monitoring Database Activity and Investigating Performance Issues, teaches you
different aspects related to improving PostgreSQL performance. After reading this chapter, you
should be able to resolve lock conflicts, find slow-running SQL statements, collect statistics,
examine index usage, and investigate and troubleshoot various PostgreSQL database issues
in a real-time environment.

Chapter 7, High Availability and Replication, demonstrates the high availability and replication
concepts in PostgreSQL. After reading this chapter, you will be able to implement high
availability and replication options using different techniques including streaming replication,
Slony replication, replication using Bucardo, and replication using Longdiste. Eventually, you
will be able to implement a full-fledged, active/passive, highly available PostgreSQL cluster
using open source tools such as DRBD, Pacemaker, and Corosync.

Chapter 8, Connection Pooling, covers connection pooling methods such as pgpool and
pgbouncer. They help reduce database overhead when there are a large number of concurrent
connections. After reading this chapter, you should be able to configure the pgpool and
pgbouncer methods.

Chapter 9, Table Partitioning, explains the different partitioning methods and implementing
logical segregation of table data into partitions. You will also get familiar with horizontal
partitioning implementation using PL/Proxy.

Chapter 10, Accessing PostgreSQL from Perl, makes you familiar with creating database
connections, accessing data, and performing DML operations on the PostgreSQL database
using Perl programming.

Chapter 11, Accessing PostgreSQL from Python, shows you how to create database
connections, access data, and carry out DML operations on the PostgreSQL database
using Python programming.

Chapter 12, Data Migration from Other Databases and Upgrading the PostgreSQL Cluster,
covers the different mechanisms available to initiate minor and major version upgrades of
PostgreSQL. You will also become familiar with the Oracle GoldenGate tool used to replicate
data from other databases to PostgreSQL.

What you need for this book

You'll need the following software:

» VMware Workstation Version 7 or higher / VirtualBox
» PostgreSQL 9.3 installer

—21

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

» Win32 OpenSSL v1.0.1

» pgAdminv1.18.1

» PostgreSQL v.9.3

» Oracle Solaris Version 10

» CentOS Linux Version 6 or higher

Who this book is for

This book is for system administrators, database administrators, architects, developers,
and anyone with an interest in planning, managing, and designing database solutions using
PostgreSQL. This book is ideal for you if you have some prior experience with any relational
database or with the SQL language.

This book contains the following sections:

Getting ready

This section tells us what to expect in the recipe, and describes how to set up any software or
any preliminary settings needed for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and explanations of their meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The first
method relies on using the CREATE DATABASE SQL statement."

A block of code is set as follows:

SELECT name, setting, unit , (source = 'default') as is_default
FROM pg settings WHERE context = 'sighup'

AND (name like '%delay' or name like '%timeout')

AND setting != '0';

Any command-line input or output is written as follows:
pg ctl -D /var/lib/pgsql/data reload

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "In the New Inbound Rule
Wizard dialog box, click on the Protocol and Ports option, then click on the radio buttons,
as shown in the following screenshot, and finally click on the Next button."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

—a1

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visithttp://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub . com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

(s |-

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases
and the PostgreSQL
Server

In this chapter, we will cover the following recipes:

» Creating databases

» Creating schemas

» Creating users

» Creating groups

» Destroying databases

» Creating and dropping tablespaces

» Moving objects between tablespaces
» Initializing a database cluster

» Starting the server

» Stopping the server

» Displaying the server status

» Reloading the server configuration files

» Terminating connections

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

Introduction

PostgreSQL is an open source, object-oriented relational database management system
that was originally developed at the Berkeley Computer Science Department of the University
of California.

PostgreSQL is an advanced database server available on a wide range of platforms, ranging
from Unix-based operating systems such as Oracle Solaris, IBM AlX, and HP-UX; Windows;
and Mac 0S X to Red Hat Linux and other Linux-based platforms.

We start with showing how to create databases in PostgreSQL. During the course of this
chapter, we will cover schemas, users, groups, and tablespaces, and show how to create
these entities. We will also show how to start and stop the PostgreSQL server services.

Creating databases

A database is a systematic and organized collection of data which can be easily accessed,
managed, and updated. It provides an efficient way of retrieving stored information.
PostgreSQL is a powerful open source database. It is portable because it written in ANSI

C. As a result, it is available for different platforms and is reliable. It is also ACID (short for
Atomicity, Consistency, Isolation, Durability) compliant, supports transactions, is scalable
as it supports multi version concurrency control (MVCC) and table partitioning, is secure

as it employs host based access control and supports SSL, and provides high availability and
replication by implementing features such as streaming replication and its support for point in
time recovery.

Getting ready

Before you start creating databases, you would need to install PostgreSQL on your computer.
For Red Hat or CentOS Linux environments, you can download the correct rom for the
PostgreSQL 9.3 version from yum.postgresgl.org.

Here is the link you can use to install PostgreSQL on CentOS:

http://www.postgresonline.com/journal/archives/329-An-almost-idiots-
guide-to-install-PostgreSQL-9.3, -PostGIS-2.1-and-pgRouting-with-Yum.
html

The following are the links you can use to install PostgreSQL on an Ubuntu platform:

» http://technobytz.com/install-postgresgl-9-3-ubuntu.html

» http://www.cloudservers.com/installing-and-configuring-
postgresgl-9-3-on-hosted-1linux-cloud-vps-server/

—e1]

www.it-ebooks.info

yum.postgresql.org
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://technobytz.com/install-postgresql-9-3-ubuntu.html
http://www.cloudservers.com/installing-and-configuring-postgresql-9-3-on-hosted-linux-cloud-vps-server/
http://www.cloudservers.com/installing-and-configuring-postgresql-9-3-on-hosted-linux-cloud-vps-server/
http://www.it-ebooks.info/

Chapter 1

Alternatively, you may download the graphical PostgreSQL installer available from the
EnterpriseDB website, at http://www.enterprisedb.com/products-services-
training/pgdownload.

For details on how to install PostgreSQL using the graphical PostgreSQL installer from the
EnterpriseDB website, you can refer to the following link for further instructions:

http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%200£%20
Contents.htm

Once you have downloaded and installed PostgreSQL, you will need to define the data
directory, which is the storage location for all of the data files for the database. You will then
need to initialize the data directory. Initialization of the data directory is covered under the
recipe titled Initializing a database cluster. After this, you are ready to create the database.

To connect to a database using the psql utility, you can use the following command:
psqgl -h localhost -d postgres -p 5432

Here, we are basically connecting to the postgres database, which is resident on the
localhost, that is the same server on which PostgreSQL was installed, and the connection
is taking place on port 5432.

In the following code, we are creating a user, hr. Basically, this user is being created because
in the next section, it is being used as the owner of the hrdb database:

CREATE USER hr with PASSWORD 'hr';

More details regarding creating users will be covered in the Creating users recipe.

How to do it...

PostgreSQL provides two methods to create a new database:

» The first method relies on using the CREATE DATABASE SQL statement:
CREATE DATABASE hrdb WITH ENCODING='UTF8' OWNER=hr
CONNECTION LIMIT=25;

» The second method requires using the createdb command-line executable:
createdb -h localhost -p 5432 -U postgres testdbl

A database is a named collection of objects such as tables, functions, and so on.
In order to create a database, the user must be either a superuser or must have
the special CREATEDB privilege.

www.it-ebooks.info

http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20Contents.htm
http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20Contents.htm
http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

The createdb command-line executable connects to the postgres database when
triggered, and then issues the CREATE DATABASE command.

You can view the list of existing databases by querying the pg_database catalog table,
as shown in the following screenshot:

postgres=# SELECT datname from pg_database WHERE datistemplate = false;
datname

postgres

testdbil
hrdb
(3 rous)

Alternatively, you may use \ 1 switch of psgl to view the list of existing databases.

Creating schemas

Schemas are among the most important objects within a database. A schema is a named
collection of tables. A schema may also contain views, indexes, sequences, data types,
operators, and functions. Schemas help organize database objects into logical groups,
which helps make these objects more manageable.

How to do it...

You can use the CREATE SCHEMA statement to create a new schema in PostgreSQL:

CREATE SCHEMA employee;
Alternatively, it is also possible to create a schema for a particular user:
CREATE SCHEMA university AUTHORIZATION bob;

Here, a schema called university is created and is owned by bob.

A schema is a logical entity that helps organize objects and data in the database.
By default, if you don't create any schemas, any new objects will be created in the public schema.

In order to create a schema, the user must either be a superuser or must have the CREATE
privilege for the current database.

Once a schema is created, it can be used to create new objects such as tables and views
within that schema.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There's more...

You may use the \dn switch of psql to list all of the schemas in a database as shown in the
following screenshot:

postgres=# \dn
List of schemas
Name | Ouwner

postgres

hr
public | postgres
(3 rous)

To identify the schema in which you are currently working, you can use the following command:

SELECT current schema() ;

While searching for objects in the database, you can define the search schemas preferences
for where those searches should start. You can use the search_path parameter for this,
as follows:

ALTER DATABASE hrd SET search path TO hr,hrms, public, pg catalog;

Creating users

A user is a login role that is allowed to log in to the PostgreSQL server. The login roles section
is where you define accounts for individual users for the PostgreSQL system. Each database
user should have an individual account to log in to the PostgreSQL system. Each user has an
internal system identifier in PostgreSQL, which is known as a sysid. The user's system ID is
used to associate objects in a database with their owner. Users may also have global rights
assigned to them when they are created. These rights determine whether a user is allowed to
create or drop databases and whether the existing user is a superuser or not.

How to do it...

PostgreSQL provides two methods by which database users are created:

» The first method requires using the CREATE USER SQL statement to create a
new user in the database. You can create a new user with the CREATE USER SQL
statement, like this:

CREATE user agovil WITH PASSWORD 'Khe@rtOum';

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server
Here, we created the agovil user and provided a password for the user to log in with.

» The second method requires executing the createuser script from the
command line.

We may also use the createdb script to create a user called nchabbra on the same
host (port 5432), and the -S option specifies that the created user will not have the
superuser privileges:

$ createuser -h localhost -p 5432 -S nchabbra

The CREATE USER SQL statement requires one mandatory parameter which is the name of
the new user. Other parameters, which are optional, however, are passwords for the user or
group, the system ID, and a set of privileges that may be explicitly allocated.

The createuser script can be invoked without arguments. In that case, it will prompt us
to provide the username and the set of rights and will attempt to make a local connection
to PostgreSQL. It can also be invoked with options and the username to be created on the
command line, and you will need to give the user access to a database explicitly if he/she is
not the owner of the database.

We can use the \du switch of psqgl to display the list of existing users, inclusive of roles in the
PostgreSQL server, as shown in this screenshot:

postgres-# \du
List of roles
Role name Attributes Member of

agovil {dba_community

dba_community Cannot login {}

hr Cannot login {}

manager Superuser {}

nchabbra {dba_community
}

nchabra

postgres Superuser, Create role, Create DB, Replication {}

salesuser {3}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Alternatively you may obtain the list of users by querying the pg user catalog table using the
SQL statement, as shown in the following screenshot:

postgres=# SELECT u.usename AS "User name”,u.usesysid AS "User ID",CASE WHEN u.u
sesuper AND u.usecreatedb THEN CAST('superuser, create database’ AS pg_catalog.t
ext) WHEN u.usesuper THEN CAST(superuser’' AS pg_catalog.text) WHEN u.usecreated
b THEN CAST(create database’ AS pg_catalog.text) ELSE CAST(' AS pg_catalog.tex
t) END AS "Attributes™ FROM pg_catalog.pg_user u ORDER BY 1;

User name | User ID Attributes

|
+
agovil |
manager 16400 | superuser
nchabbra 16403 |
nchabra 16402 |
postgres 10 |
salesuser 16398 |
(6 rows)

Creating groups

A group in the PostgreSQL server is similar to the groups that exist in Unix and Linux. A group
in PostgreSQL serves to simplify the assignment of rights. It simply requires a name and may
be created empty. Once it is created, users who are intended to share common access rights
are added into the group together, and are thus associated by their membership within that
group. Grants on the database objects are then given to the group instead of each individual
group member.

How to do it...

Groups in the PostgreSQL server can be created by using the CREATE GROUP SQL statement.
The following command will create a group. However, no users are currently a part of this group:

superuser, create database

hrdb=# CREATE GROUP dept;

In order to assign members/users to the group, we can use the ALTER GROUP statement
as follows:

hrdb=# ALTER GROUP dept ADD USER agovil,nchabbra;

It is also possible to create a group and assign users upon its creation, as shown in the
following CREATE GROUP statement:

hrdb=# CREATE GROUP admins WITH user agovil,nchabbra;

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

A group is a system-wide database object that can be assigned privileges and have users
added to it as members. A group is a role that cannot be used to log in to any database.

It is also possible to grant membership in a group to another group, thereby allowing the
member role use of privileges assigned to the group it is a member of.

Database groups are global across a database cluster installation.

There's more...

To list all of the available groups in the PostgreSQL server instance, you need to query the
pg_group catalog table, as shown in the following screenshot:

hrdb=# SELECT = FROM pg_group;
groname grosysid grolist

dba_community 16404 {16399,16403}
san 16418 {16399,16417}
sales 16419 {1}

data 16420

dept 16421 {16399,16403}
(6 rous)

Destroying databases

Every major RDBMS vendor offers the ability to drop databases just as it allows you to create
databases. However, one should exercise caution when dealing with situations like dropping
databases. Once a database is dropped, all of the information residing in it is lost forever. It
is only for a valid business purpose that we should drop databases. In normal circumstances,
a database is only dropped when it gets decommissioned and is no longer required for
business operations.

How to do it...

There are two methods to drop a database in the PostgreSQL server instance:

» You can use the DROP DATABASE statement to drop a database from PostgreSQL,
as follows:

hrdb=# DROP DATABASE hrdb;

Sz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

» You can use the dropdb command line-utility, which is a wrapper around the DROP
DATABASE command:

$ dropdb hrdb;

The DROP DATABASE statement permanently deletes catalog entries and the data directory.
Only the owner of the database can issue the DROP DATABASE statement.

Also, it is not possible to drop a database to which you are connected. In order to delete the
database, the database owner will have to make a connection to another database of which
he is an owner.

There's more...

One situation that demands attention is when a user tries to drop a database that has active
connections. The user will get an error when trying to drop such a database.

In order to drop a database that has active connections to it, you will have to follow these steps:

1. Identify all of the active sessions on the database. To identify all of the active
sessions on the database, you need to query the pg_stat_activity catalog
table as follows:

SELECT * from pg_stat_activity where datname='testdbl';

2. Terminate all of the active connections to the database. To terminate all of the active
connections, you will need to use the pg terminate backend function as follows:
SELECT pg terminate backend(pid) FROM pg stat activity WHERE
datname = 'testdbl';

3. Once all of the connections are terminated, you may proceed with dropping the
database using the DROP DATABASE statement.

Creating and dropping tablespaces

PostgreSQL stores data files consisting of database objects such as tables and indices on the
disk. The tablespace is defined as the location of these objects on the disk. A tablespace is
used to map a logical name to a physical location on the disk.

Getting ready

A tablespace is a location on the disk where PostgreSQL stores data files containing database
objects, for example indexes, tables, and so on.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

Before you create the tablespace, the directory location must be physically created and the
directory must be empty:

mkdir -p /var/lib/pgsql/data/dbs

How to do it...

To create a tablespace in PostgreSQL, you need to use the CREATE TABLESPACE statement.
The following command creates a data_tbs tablespace, which is owned by the agovil user:

CREATE TABLESPACE data tbs OWNER agovil LOCATION
' /var/lib/pgsqgl/data/dbs";

Similarly, a tablespace in PostgreSQL can be dropped using the DROP TABLESPACE
statement, as follows:

DROP TABLESPACE data tbs;

A tablespace allows you to control the disk layout of PostgreSQL. The owner of the tablespace,
by default, would be the user who executed the CREATE TABLESPACE statement. This
statement also gives you the option of assigning the ownership of the tablespace to a new
user. This option is the part of the OWNER clause in the CREATE TABLESPACE statement.

The name of the tablespace should not begin with a pg_ prefix because this is reserved for
the system tablespaces.

Before deleting a tablespace, ensure that it is empty, which means there should be no
database objects inside it. If the user tries to delete the tablespace when it is not empty,
the command will fail.

There are two options that will aid in deleting the tablespace when it is not empty:

» You may drop the database
» You may alter the database to move it to a different tablespace

After any of the preceding actions have been completed, then the corresponding tablespace
may be dropped.

By default, two tablespaces exist in PostgreSQL:

» pg default: This is used to store user data
» pg global: This is used to store global data

6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

You may query the pg_tablespace catalog table to get the list of existing tablespaces in
PostgreSQL, as shown in the following screenshot:

postgres=H# select x from pg_tablespace;
spcname | spcowner | spcacl | spcoptions

pg_default

I
pg_global I
demo I
(3 rous)

Moving objects between tablespaces

A tablespace can contain both permanent and temporary objects. You will need to define and
create a secondary tablespace to serve as the target destination of objects that might get
moved from the primary tablespace. Moving objects between tablespaces is a mechanism of
copying bulk data in which copying happens sequentially, block by block. Moving a table to
another tablespace locks it for the duration of the move.

Getting ready

Here, we will first create a new tablespace, hrms, using the following command:
mkdir -p /var/lib/pgsql/data/hrms

Then we set the default tablespace for the testdbl database to hrms using the
following statement:

CREATE TABLESPACE HRMS OWNER agovil LOCATION
' /var/lib/pgsgl/data/hrms';

We will also create a table, insert some records into it, and create a corresponding index for it.
This is being done because the table and its index will be used in the How to do it... section of
this recipe:

CREATE TABLE EMPLOYEES (id integer PRIMARY KEY , name varchar(40));
INSERT INTO EMPLOYEES VALUES (1, 'Mike Johansson') ;

INSERT INTO EMPLOYEES VALUES (2, 'Rajat Arora');

CREATE INDEX emp idx on employees (name) ;

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

How to do it...

Moving a complete database to a different tablespace involves three steps:

1. You will change the tablespace for the given database so that new objects for the
associated database are created in the new tablespace:

ALTER DATABASE testdbl SET default tablespace='hrms';

2. You will have to then move all of the existing tables in the corresponding database to
the new tablespace:

ALTER TABLE employee SET TABLESPACE hrms;

3. You will also have to move any existing indexes to the new tablespace:
ALTER INDEX emp_ idx SET TABLESPACE hrms;

You will have to query the pg_tables catalog table to find out which tables from the current
database need to be moved to a different tablespace.

Similarly for the indexes, you will have to query the pg_indexes catalog table to find out
which indexes need to be moved to a different tablespace.

Initializing a database cluster

In terms of a filesystem, a database cluster is a collection of databases that are managed by a
single server instance, and it is the framework upon which PostgreSQL databases are created.

How to do it...

The initdb command is used to initialize or create the database cluster. The -D switch of
the initdb command is used to specify the filesystem location for the database cluster.

To create the database cluster, use the initdb command:
$ initdb -D /var/lib/pgsql/data

Another way of initializing the database cluster is by calling the initdb command via the
pg_ctl utility:

$ pg ctl -D /var/lib/pgsql/data initdb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

A database cluster is a collection of databases that are managed by a single server instance.

When the initdb command is triggered, the directories in which the database data will
reside are created, shared catalog tables are generated, and the templatel and postgres
databases are created, out of which the default database is postgres. The initdb
command initializes the database cluster default locale and the character set encoding.

You can referto http://www.postgresql.org/docs/9.3/static/creating-
cluster.html for more information on initializing a database cluster.

Starting the server

Before anyone can access the database, the database server must be started. Then you
will be able to start all of the instances of the postgres database in the cluster using the
different commands with options as mentioned in this recipe.

Getting ready

The term "server" refers to the database and the associated backend processes. The term
"service" refers to the operating system wrapper through which the server gets invoked. In
normal circumstances, the PostgreSQL server will usually start automatically when the system
boots up. However, there will be situations where you may have to start the server manually
for different reasons.

How to do it...

There are a couple of methods through which the PostgreSQL server can be started on Unix or
Linux platforms:

» The first method relies on passing the start argument to the pg_ct1 utility to get
the postmaster backend process started, which effectively means starting the
PostgreSQL server.

» The next method relies on using the service commands, which, if supported by the
operating system, can be used as a wrapper to the installed PostgreSQL script.

» The last method involves invoking the installed PostgreSQL script directly using its
complete path.

On most Unix distributions and Red Hat-based Linux distributions, the pg _ct1 utility can be
used as follows:

pg ctl -D /var/lib/pgsqgl/data start

[}

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/creating-cluster.html
http://www.postgresql.org/docs/9.3/static/creating-cluster.html
http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

If you are using the service command, the service can be started like this:

service postgresqgl<version> start
For PostgreSQL version 9.3, the service command to start the PostgreSQL server is as follows:
service postgresqgl-9.3 start

You may also start the server by manually invoking the installed PostgreSQL script using its
complete path:

/etc/rc.d/init.d/postgresql-9.3 start

On Windows-based systems, the PostgreSQL service can be started using the
following command:

NET START postgresql-9.3

The start argument of the pg_ct1 utility will first start PostgreSQL's postmaster backend
process using the path of the data directory.

The database system will then start up successfully, report the last time the database system
was shut down, and provide various debugging statements before returning the postgres
user to the shell prompt.

There's more...

In Ubuntu and Debian Linux distributions, the pg_ctlcluster wrapper can be used with the
start argument to start the postmaster server for a particular cluster. A cluster is a group of
one or more PostgreSQL database servers that may coexist on a single host.

Stopping the server

Sometimes in emergency situations, you might have to bring down the PostgreSQL server's
services. There are certain situations in which you may need to stop the database services.
For instance, during an operating system migration, you might need to stop the running
services, take a filesystem backup, and then proceed with OS migration.

How to do it...

There are a couple of ways by which the PostgreSQL server can be stopped.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

On Unix distributions and Red Hat-based Linux distributions, we can use the stop argument
of the pg_ct1 utility to stop the postmaster:

pg ctl -D /var/lib/pgsql/data stop -m fast
Using the service command, the PostgreSQL server can be stopped like this:
service postgresql stop

You may also stop the server by manually invoking the installed PostgreSQL script using its
complete path:

/etc/rc.d/init.d/postgresql stop
On Windows-based systems, you may stop the postmaster service in this manner:

NET STOP postgresql-9.3

The pg_ct1 utility checks for the running postmaster process, and if the stop argument of
the pg_ctl utility is invoked, then the server is shut down.

By default, the PostgreSQL server will wait for clients to first cancel their connections before
shutting down.

However, with the use of a fast shutdown, there is no wait time involved as all of the user
transactions will be aborted and all connections will be disconnected.

There may be situations where one needs to stop the PostgreSQL server in an emergency
situation, and for this, PostgreSQL provides the immediate shutdown mode.

In case of immediate shutdown, a process will receive a harsher signal and will not be able to
respond to the server anymore.

The consequence of this type of shutdown is that PostgreSQL is not able to finish its disk 1/0,
and therefore has to do a crash recovery the next time it is started.

The immediate shutdown mode can be invoked like this:

pg ctl -D /var/lib/pgsql/data stop -m immediate

s

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

Another way to shut down the server would be to send the signal directly using the kill
command. The PID of the postgres process can be found using the ps command or from
the postmaster.pidfile in the data directory. In order to initiate a fast shutdown, you can
issue the following command:

$ kill -INT head -1 /usr/local/pgsql/data/postmaster.pid

Displaying the server status

Many a times, there will be situations where end users complain that the database performance
is sluggish and they are not able to log in to the database. In such situations, it is often helpful
to take a quick glance through the status of the PostgreSQL backend postmaster process and
confirm whether the PostgreSQL server services are up and running.

How to do it...

There are a couple of ways by which the status of the PostgreSQL server can be checked.

On Unix and on Red Hat-based Linux distributions, the status argument of the pg_ct1 utility
can be used to check the status of a running postmaster backend:

pg ctl -D /var/lib/pgsql/data status

On Unix-based and Linux-based platforms supporting the service command, the status of a
postgresqgl process can be checked as follows:

service postgresql status

You may also check the server status by manually invoking the installed PostgreSQL script
using its complete path:

/etc/rc.d/init.d/postgresql status

The status mode of the pg_ct1 utility checks whether the postmaster process is running in
the specified data directory.

If the server is running, then the process ID and the command-line options that were used to
invoke it are displayed.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Reloading the server configuration files

Changes made to certain PostgreSQL configuration parameters come into effect when the
server configuration files, such as postgresql . conf, are reloaded. Reloading the server
configuration files becomes necessary in such cases.

How to do it...

Some of the configuration parameters in PostgreSQL can be changed on the fly. However,
changes to other configurations can only be reflected once the server configuration files
are reloaded.

On most Unix-based and Linux-based platforms, the command to reload the server
configuration file is as follows:

pg ctl -D /var/lib/pgsql/data reload

It is also possible to reload the configuration file while being connected to a PostgreSQL
session. However, this can be done by the superuser only:

postgres=# select pg reload conf();

On Red Hat and other Linux-based systems that support the service command, the
postgresqgl command to reload the configuration file is as follows:

service postgresql reload

To ensure that changes made to the parameters in the configuration file take effect, a reload
of the configuration file is needed. Reloading the configuration files requires sending the
sighup signal to the postmaster process, which in turn will forward it to the other connected
backend sessions.

There are some configuration parameters whose changed values can only be reflected by
a server reload. These configuration parameters have a value known as sighup for the
attribute context in the pg_settings catalog table:

SELECT name, setting, unit , (source = 'default') as is_default FROM
pg_settings WHERE context = 'sighup'

AND (name like '%delay' or name like '%timeout')

AND setting != '0';

s

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Databases and the PostgreSQL Server

Output for the preceding query is as shown below:

setting i is_default

authentication_timeout
autovacuum_vacuum_cost_delay
bguriter_delay
checkpoint_timeout
max_standby_archive_delay
max_standby_streaming_delay
wal_receiver_timeout
wal_sender_timeout
wal_writer_delay

(9 rows)

Terminating connections

Every major RDBMS, including PostgreSQL, allows simultaneous and concurrent database
connections in order for users to run transactions. Due to such concurrent processing of
databases, it may be during peak transaction hours that database performance becomes
slow or that there are some blocking sessions. In order to deal with such situations, we might
have to terminate some specific sessions or sessions coming from a particular user so that we
can get database performance back to normal.

How to do it...

PostgreSQL provides the pg_terminate backend function to Kill a specific session. Even
though the pg_terminate backend function acts on a single connection at a time, we can
embed pg terminate backend by wrapping it around the SELECT query to kill multiple
connections, based on the filter criteria specified in the WHERE clause.

t
t
t
t
t
t
t
t
t

To terminate all of the connections from a particular database, we can use the
pg_terminate backend function as follows:

SELECT pg terminate backend(pid) FROM pg stat activity
WHERE datname = 'testdbl';

To terminate all of the connections for a particular user, we can use pg_terminate
backend like this:

SELECT pg terminate backend(pid) FROM pg stat activity
WHERE usename = 'agovil';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The pg_terminate backend function requires the pid column or process ID as input.
The value of pid can be obtained from the pg _stat activity catalog table. Once
pidis passed as input to the pg terminate backend function, all running queries will
automatically be canceled and it will terminate a specific connection corresponding to the
process ID as found in the pg_stat_activity table.

Terminating backends is also useful to free memory from idle postgres processes that was
not released for whatever reason and was hogging system resources.

There's more...

If the requirement is to cancel running queries and not to terminate existing sessions, then
we can use the pg_cancel backend function to cancel all active queries on a connection.
However, with the pg_cancel backend function, we can only kill runaway queries issued in
a database or by a specific user. It does not have the ability to terminate connections.

To cancel all of the running queries issued against a database, we can use the pg_cancel
backend function as follows:

SELECT pg cancel backend(pid) FROM pg stat activity
WHERE datname = 'testdbl';

To cancel all of the running queries issued by a specific user, we can use the pg_cancel _
backend function like this:

SELECT pg cancel backend(pid) FROM pg stat activity
WHERE usename = 'agovil';

In versions before PostgreSQL 9.2, the procpid column has to be passed as input to the
pg_terminate backend and pg_cancel backend functions to terminate running
sessions and cancel queries. The pid column replaced the procpid column from
PostgreSQL version 9.2 onwards.

You may refer to https://blog.sleeplessbeastie.eu/2014/07/23/how-to-
terminate-postgresqgl-sessions/ and http://www.devopsderek.com/
blog/2012/11/13/1ist-and-disconnect-postgresql-db-sessions/ for
more information regarding terminating backend connections.

www.it-ebooks.info

https://blog.sleeplessbeastie.eu/2014/07/23/how-to-terminate-postgresql-sessions/
https://blog.sleeplessbeastie.eu/2014/07/23/how-to-terminate-postgresql-sessions/
http://www.devopsderek.com/blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/
http://www.devopsderek.com/blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

In this chapter, we will cover the following recipes:

» Securing database objects

» Controlling access via firewalls

» Controlling access via configuration files
» Testing remote connectivity

» Auditing database changes

» Enabling SSL in PostgreSQL

» Testing SSL encryption

» Encrypting confidential data

» Cracking PostgreSQL passwords

Introduction

Databases are used to store data in an organized manner. All relevant organization-related
data is maintained in databases. Since all company-related information is stored in databases,
it becomes imperative that controls be placed on data access and only authorized persons

be allowed to access relevant data. It is in this context that database security is of utmost
importance because it is important to ensure that the information stored in databases is
protected against malicious attempts to view and modify data by hackers or people with
malicious intent.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

Database security deals with the information security measures that are undertaken

to protect databases in order to ensure confidentiality, integrity, and availability of data.
Databases need to be protected against various risks and threats, such as misuse by
authorized database users, malicious attempts made by hackers to steal information or
damage data, design flaws and software bugs in databases that lead to various security
vulnerabilities that are exploited by hackers, data corruption that might be caused by wrong
input and mistakes by humans, the possibility of data being sabotaged, and the administrator
tendency of keeping a default schema password which might lead to unauthorized access to
data by people with malicious intent.

Securing database objects

It is important to ensure that the authenticated users get access only to the data they are
authorized to access. However, the pertinent question of how to keep authenticated users
away from accessing unauthorized data remains. In PostgreSQL, this is implemented by
maintaining a strong access control policy. The access control list governs which users are
allowed to select, update, and modify objects within the database. A set of restrictions and
controls are placed on every database object which determine who is allowed to access that
object. Access control rights on database objects are maintained through the usage of the
GRANT and REVOKE commands.

How to do it...

A database user usually has no access rights on any database objects apart from the ones
that they own. As per business requirements, access to appropriate database objects is
granted to other users by the owner of these objects. However, if the requirement comes to
revoke a right after a user has been granted access to the object, then the REVOKE command
can be issued.

We will discuss two cases here:

» Revoking all the permissions on a table from a specific user. Here, we show the usage
of the REVOKE command:

REVOKE ALL on testusers from nchhabra;

» Revoking specific permissions on a table from a user, as shown here:

REVOKE insert,update,delete,truncate on testusers from agovil;

Normally, all users have a set of rights, which include SELECT, UPDATE, DELETE, INSERT,
TRUNCATE, and TRIGGER, on all the newly created tables through the PUBLIC role.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In order to ensure that a particular user is no longer able to access the table, the rights

to that table must be revoked from both the PUBLIC role and the user. In the first step of
the preceding section, we revoke all the permissions on the testusers table from the
nchhabra user. In this case, the ncchabra user is in a way restricted from performing any
operation on the testusers table.

In the second scenario of the preceding section, we explicitly revoke the insert, update, delete,
and truncate operations on the testusers table from the PostgreSQL user, agovil, thereby
permitting the user to perform read-only operations on the table via the SELECT table clause.

Controlling access via firewalls

The most basic way to protect network services on a server is through a firewall. A firewall can
be in the form of both hardware and software. A firewall allows you to configure which clients
are allowed to pass packets through the firewall to specific applications.

The server firewall is the front door of the system on the network. It can block attempts
to access individual services on the server before the packets even pass to the server
applications. This acts as the first line of defense in protecting PostgreSQL databases
from attack and intrusion.

How to do it...

The following are a series of steps that are required to configure database port access
through the firewall on Red Hat Linux and other Red Hat based distributions:

1. For the network machines to be able to access the PostgreSQL server, you must
manually configure the firewall rules to allow access to the PostgreSQL server port.
By default, PostgreSQL listens to the TCP port 5432. So, you need to enable port
5432 on the firewall. In Linux environments, you can enable port 5432 by modifying
iptables' rules. For this, you need to open the file containing firewall rules. This file
can be found at vim/etc/sysconfig/iptables.

2. Once you have opened the file, you need to add the following rule to enable access to
port 5432:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 5432
-j ACCEPT

3. After this, you need to save the changes and reload the configuration file that
contains the firewall rules in order to ensure that the new changes made come
into effect, using the following command:

service iptables restart

s

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

The next series of steps are required to configure database port access through the firewall
on Windows 7. To enable port 5432 on Windows, you need to follow the sequence of steps

given here:

1. Open Windows Firewall by navigating to Start | Control Panel | Systems And
Security | Windows Firewall.

2. Inthe left-hand side pane, click on Advanced settings. If you're prompted for an
administrator password or confirmation, type the password or provide confirmation.

3. Inthe Windows Firewall with Advanced Security dialog box, click on Inbound Rules
in the left pane and then click on New Rule in the right pane.

4. Inthe New Inbound Rule Wizard dialog box, click on the Protocol and Ports option,
then click on the radio buttons, as shown in the following screenshot, and finally click
on the Next button.

5. Inthe next screen, select the default settings for all the options, enter the port

number 5432 in the Specific local ports: text field, and then keep clicking on the
Next button until you get to the Finish button. Enter a name for the rule and then
click on Finish.

File Action View Help

= 2E = HE

| S Manitaring Specify the protocols and ports to which this rule applies.
Steps:
@ Rule Type Does this rule apply to TCP or UDP?
& Protocol and Ports @ TCP
@ Action uDpP
@ Profile

0 Windows Firewall with Advance = —
23 Inbound Rules @ MNew Inbound Rule Wizard i

&% Outbound Rules
:;, Connection Security Rules

Protocol and Poris

@ MName
Dioes this rule apply to all local ports or specific local ports?

All local ports
@ Specific local ports: 5432
Example: 80. 443, 5000-5010

Leam mare about protocol and ports

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Servers that host production databases have firewall policies which either allow or block a
port or an IP address.

By default, firewall blocks everything. In order to enable access to applications, you need
to configure rules in the firewall access control policy in order to allow the application to
be accessed.

You will need to enable access on port 5432, which is the default port for PostgreSQL,
in order to access the PostgreSQL server.

Controlling access via configuration files

Once the firewall is configured to allow access to the PostgreSQL server, you need to configure
the PostgreSQL server to allow remote connections. This is implemented by making the
necessary changes in the postgresql.conf and pg_hba. conf configuration files.

The postgresqgl . conf file contains a single entry that controls on which network interfaces
PostgreSQL listens for connections.

The pg_hba. conf file is used to define which clients can connect to which database and
using which login role.

How to do it...

1. You need to configure the 1isten addresses configuration parameter in order to
enable the remote network clients to make a connection to the PostgreSQL server:

listen addresses = '*!

2. Here, you use an asterisk as the value of the listen addresses configuration
parameter. This configuration parameter enables all network ports.

3. The next step will be to make changes in the pg_hba . conf configuration file.
These changes define access rules in order to allow remote connections access
to the PostgreSQL server.

4. Openthe pg hba.conf file under the data directory or under the directory defined
by the $PGDATA environment variable and define the necessary access control rules:

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION
host hrdb all 192.168.12.10/32 md5
host all all 192.168.54.1/32 reject
host all all 192.168.1.0/24 trust
host hrd all 192.168.1.10/24 crypt

Es

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

5. The first entry in the pg_hba. conf file signifies that any user from the host
192.168.12.10 is allowed to connect to the hrdb database if the user's
password is supplied correctly.

6. The second entry in the pg_hba . conf file shows a host record that will reject all the
users from the host 192.168.54.1 for any requested database.

7. The third entry in the pg_hba . conf file shows a host record that allows any machine
on the 192.168.1.0 subnet to connect and access any database without specifying
any password. Basically, with the trust method, we are relying on host-based
authentication with the use of this method.

8. The final entry in the pg_hba. conf file states that any user with an IP address
192.168.1.10 and with a valid password is allowed to connect to the hrdb database.
However, here the password will be encrypted during authentication because of the
term crypt, which is specified as the authentication method.

Client authentication is controlled by the pg_hba . conf configuration file. Entries in the
pg_hba. conf file govern the authentication and authorization permissions for a host.

Entries in the pg_hba . conf file will be read for authentication whenever a connection
request is received. Initially, the pg hba . conf file is used to determine whether a client
making a database connection request has the CONNECT privilege on a database object or
not. Once it has been determined that a user is allowed to access the database, the next step
is to ensure that all the conditions are met for the client to authenticate successfully.

Even if the user is authenticated and has permissions to connect to a database, any of the
table-level permissions will still apply to the database. You can check the permissions on the
database using the \ z switch, as shown in the screenshot below:

hrdb=# “=
Access privileges
ficcess privileges

Schema Column access privileges

public arudDxt - postgres
DApostgres
postgres

postgres wdDxt postgres
Dxt/postgres

nchabbra=pr- postgres

+ o+

public

o+
- ==

1
1
+
[]
1
[]
1
1
1
[]
1
[]
1
[]
1

i T
i T

(2 rous)

During the initialization of a database connection, entries in the pg_hba . conf file are read
from top to bottom. The moment a matching entry is found, PostgreSQL will stop the search
and it will allow or reject a connection based on the mentioned rules for the found entry. The
connection will fail completely if a matching entry is not located in the pg_hba . conf file.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

There's more...

An authentication method type known as ident is defined in the pg_hba . conf configuration
file. The ident authentication method works by obtaining the client's operating system
username and using it as the allowed database username.

If the ident authentication method is used for a host entry in the pg_hba . conf file,

then an ident map or a named mapping need to be specified. This option is defined in the
pg_ident.conf configuration file, and it is used to map the identifying username, that is
the client operating system username with an existing PostgreSQL database user.

The key aspect here is to obtain the client's operating system username so that it can be
mapped to an existing database PostgreSQL database user.

Similar to the pg_hba. conf file, the pg _ident.conf file is also located in the data directory
or in the path specified by the PGDATA environment variable.

First, the ident term must be set as the authentication method in the pg_hba . conf file, as
follows:

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION
host hrdb all 192.168.12.10/32 ident hruser

Here, in the pga_hba. conf file, any user using the IP address 192.168.12.10 can connect
to the hrdb database using an hruser mapname, which is basically a mapping of the UNIX
usernames and the corresponding PostgreSQL database username. These entries are defined
inthe pg_ident.conf file, as follows:

MAPNAME Ident-USERNAME PG-USERNAME
hruser govil amit agovil
hruser kumar neeraj agovil

The hruser identmap is now configured in the pg ident . conf file. The entries in the pg__
ident . conf file allow either of the UNIX system users, govil amit and kumar_ neeraj,
to connect to the hrdb database using the PostgreSQL system user account agovil.

For more information on the entries in the pg_hba . conf file, you can refer to http: //www.
postgresqgl.org/docs/9.3/static/auth-pg-hba-conf.html.

s

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html
http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html
http://www.it-ebooks.info/

Controlling Security

Testing remote connectivity

After configuring the network environment in PostgreSQL, it is usually a good idea to test it out.

How to do it...

You can use the psgl program to test connections to the PostgreSQL server from a
remote client:

D:\Postgresqgl Project\bin>psql -h 192.168.12.10 hrdb agovil

Password for user agovil:

psqgl (9.3.4)

WARNING: Console code page (437) differs from Windows code page (1252)
8-bit characters might not work correctly. See psqgl reference
page "Notes for Windows users" for details.

Type "help" for help.

Hrdb=>

After enabling client authentication between the PostgreSQL server and the client application,
as well as after configuring access control rules in the host's pg hba . conf configuration file,
it is a good idea to test for remote connectivity.

This will help you to find out whether the access control rules are configured correctly in the
pg_hba. conf file and whether the clients face any connection errors despite being allowed
access based on the host configuration file's rules.

Auditing database changes

Database security remains a concern for any database application. For the purpose of audit, it
is important to identify which data has been changed, who has made this change, and when
and how this change was implemented in the production environment.

A change log trigger can be used as a mechanism to identify what changes have been made
to data in the PostgreSQL database and to answer all the pertinent questions from the
auditing perspective.

S E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

1.

First, create a schema, and then the other objects that are required to track changes
will be stored in this schema. You can create the schema as follows:

CREATE SCHEMA logging;

The next step will be to create a table to store some history in order to track changes,
as follows:

CREATE TABLE logging.t history (
id serial,
tstamp timestamp DEFAULT now (),
schemaname text,
tabname text,
operation text,
who text DEFAULT current_user,
new val json,
old val json

)i

The point of using this table is to keep track of all the changes made to the table. We
want to know which operation is taking place. The next important issue is when a new
row is added, it will be visible by the trigger procedure. The same is true for deletion
and changes.

Next, create a function that logs the changes, including the old changes, and values

into the t_history table. The function is defined in such a manner that it tracks all
DML operations—including inserts, updates, and deletes—and depending on the type
of DML operations, it logs data—including changes—into the t _history table:

CREATE FUNCTION change trigger()
RETURNS trigger AS $$
BEGIN
IF TG_OP = 'INSERT' THEN
INSERT INTO logging.t_ history (
tabname,
schemaname,
operation,
new_val
)
VALUES (
TG_RELNAME,
TG_TABLE SCHEMA,
TG OP,
row_to_ json (NEW)

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

RETURN NEW;
ELSIF TG_OP = 'UPDATE' THEN
INSERT INTO logging.t_ history (
tabname,
schemaname,
operation,
new_val,
old val
)
VALUES (
TG_RELNAME,
TG_TABLE_SCHEMA,
TG _OP,
row_to_json (NEW) ,
row_to_ json (OLD)
) ;
RETURN NEW;
ELSIF TG_OP = 'DELETE' THEN
INSERT INTO logging.t_ history (
tabname,
schemaname,
operation,
old val
)
VALUES (
TG_RELNAME,
TG_TABLE_SCHEMA,
TG _OP,
row_to_ json (OLD)
) ;
RETURN OLD;
END IF;
END;
$$ LANGUAGE 'plpgsql' SECURITY DEFINER;

4. Now, create a table with some data in it and use this table to make changes:
CREATE TABLE t_trig (id int,name text);

5. The next step is to create a change log trigger that will be executed before any DML
event occurs on the t _trig table, created in the earlier step:

CREATE TRIGGER t BEFORE INSERT OR UPDATE OR DELETE ON
t trig FOR EACH ROW EXECUTE PROCEDURE change trigger();

NEQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

6. Now, make changes in the t _trig table and test the trigger execution, as follows:

INSERT INTO t_trig VALUES (1, 'hans');
UPDATE t_trig SET id = 10 * id, name ='paul';

7. Next, check whether your history tables contain changes made to the underlying
tables using the query, as shown in the screenshot below:

postgres=# select tabname, operation.old_wval ,new_val from logging.t_history ;
tabname operation 1| old_val H new_va

INSERT
UPDATE

]
i
+
]
i
]
i

t_trig
(2 rows?

A generic trigger function can be used to record changes into a history table. It will record the
old and new records, tables affected, users who made the change, type of DML operation,
and a timestamp for each change.

It is important to ensure that the log, which is preserved to keep a track of the changes,

cannot be changed by an authorized person. This can be ensured by marking the trigger
function as SECURITY DEFINER. This will ensure that the function itself is not executed
by the user who makes the change but by the user who has written the function.

This sort of a trigger-based mechanism cannot be used to track the following activities from
an auditing perspective:

» It cannot audit the SELECT statements
» It cannot audit system tables
» It cannot audit DDL operations such as the ALTER TABLE statement

There's more...

There is another way to collect data changes made to PostgreSQL. These changes also
includes changes made to DDL statements. We can collect the changes that are made
to a PostgreSQL system from the server's logfile.

In order to collect data changes from the server log, you need to modify the 1og_statement
configuration parameter and set its value to either mod or all in the postgresql.conf
configuration file.

Once this is done, you need to reload the configuration as follows:

pg ctl -D /var/lib/pgsql/data reload

Eis

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

Enabling SSL in PostgreSQL

By default, the PostgreSQL server is configured to accept remote client connections using

a standard TCP connection. The issue with these type of network connections is that the
data is sent in clear text over the network and is clearly susceptible to sniffing. Anyone using
a network sniffer can easily intercept the data sent in clear text, and in this way, the data
confidentiality can be compromised.

Now, the pertinent question is what data in PostgreSQL will be susceptible to sniffing. The SQL
statement sent by the psql utility to the server and the result set generated by the PostgreSQL
server are some of the things that are susceptible to sniffing. Getting an interceptor to see the
result set of the query means enabling the network sniffer to see your table data.

To deal with this situation, PostgreSQL supports Secure Sockets Layer (SSL) encrypted TCP
sessions. SSl-based TCP encrypted sessions use an encryption key to encrypt data before it
is sent out on the network. The PostgreSQL server and the client machine pass an encryption
key that is used to encrypt data.

How to do it...

In order to deal with this, you need to enable SSL support in PostgreSQL. This can be done by
modifying the value of the ss1 configuration parameter in the postgresqgl . conf file:

ssl = on

When the PostgreSQL server is restarted, it will recognize the change in the configuration
and enable SSL connections. The PostgreSQL server will now listen for both normal TCP
connections, as well as secure SSL-based TCP connections on the same port.

However, once SSL is enabled, the PostgreSQL server will make sure that the encryption keys
or certificate files are available in the PostgreSQL data directory, otherwise it will not start until
it finds them.

Now that SSL support is enabled in PostgreSQL, to support an SSL session, the PostgreSQL
server must have access to both an encryption key and a certificate. The SSL protocol uses
the encryption key to encrypt network data, while the remote client uses the certificate
supplied by the server to validate that the encryption key came from a trusted source.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The encryption key is generated from a certificate signed by an organization that the client
trusts. These two methods can be used to obtain a certificate:

» You can purchase a certificate from a certification authority such as Verisign or Thawte

» In other situations, you can create a self-signed certificate, indicating that the
encryption came from your end

Here we are going to create a self-signed certificate and encryption keys using an open
source tool know as OpenSSL. For Windows, you need to download the latest version
of the Win320penSSL package.

The following steps are required to create the encryption key and self-signed certificate files:

1. Create a passphrase protected encryption key.
2. Remove the key passphrase.
3. Create the self-signed certificate.

The first step is to create the encryption key used by PostgreSQL for encrypting SSL sessions.
This is done using the req OpenSSL option:

C:sweygwinsOpenSSL—Win32%bin>openss]l reg —new —text —out server.reqg
Loading “screen’ into random state — done
Generating a 1824 bit RSA private key

EE T Y

&Plting new private key to ’privkey.pem’
Enter PEM pass phrase:
Jerifying — Enter PEM pass phrase:

You are about to be asked to enter information that will he incorporated
into your certificate request.

What you are about to enter is wvhat is called a Distinguizhed Name or a DH.
There are guite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter *.’, the field will be left blank.

Country Hame (2 letter code? [AUI:IHN

State or Province Mame (full name) [Some—State]l:CHANDIGARH
Locality Mame (eg. city)> []1:CHANDIGARH

Organization Name {eg, company? [Internet Widgits Pty Ltdl:
Organizational Unit Mame (eg, section)> [1:

Common Mame {e.g. server FQDN or YOUR name> [1:

Email Address [l:chitij24fhushmail.com

Please enter the following ‘extra’ attributes
to be sent with your certificate reguest

A challenge password []1:

An optional company name []:

C:cyguin~0pen38L—Win32x\hin>

s

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

The preceding step creates a file called privkey.pem, which contains the encryption key and
the server. req file, which contains a basic certificate:

C:wcyguin Open88L-WYin3d2+bin>dir server.req privkey.pem
Uolume in drive C has no label.
Uolume Serial Mumber iz 52124294

Directory of C:ncyguinsOpenSSL-—Win32wbin
A6 16,2014 12:56 PH 2,164 server.reg

Directory of C:ncyguinsOpenSSL-—Win32wbin

A6 16,2014 12:56 PH 1,841 privkey.pem
2 File<s> 3,285 hytes
A Dir<{s> 3.397.812.224 hytes free

As mentioned earlier, the file that contains the privkey.pem encryption key is protected by
a passphrase. You can remove this passphrase from the encryption key using another SSL
option, as follows:

C:scyguin~0penSSL-Win32«bin>opensz]l r=za —in privkey.pem —out server.key
Enter pass phrasze for privkey.pem:
writing REA key

C:cyguwin~0pen35L—Win32~bin>dir server.key
Uolume in drive C has no labhel.
Uoplume Serial Mumber iz 5212-4294

Directory of C:scyguwin“OpenSSL-Win3d2-hbin

A6-16-2014 B1:=-12 PH 887 server.key
1 File<s) 887 hutes
B Dirisd 3,398,886 .656 hytes free

When the previously mentioned openssl command is executed, OpenSSL asks for
the passphrase for the encryption key. It then creates a new encryption key, called
server.key, which does not require the pass phrase to be entered.

Now that you have an encryption key without a pass phrase and a basic certificate, the next
step is to convert the certificate to a standard X.509 format and self sign it using
the encryption key:

C:\cygwin\OpenSSL-Win32\bin>openssl req -x509 -in server.req
-text -key server.key -out server.crt

Loading 'screen' into random state - done

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The certificate is created in the text mode using the standard X.509 format and is saved in the
server.crt file. As the certificate was created in the text mode, let's take a look at it:

D 0
)
0 g
g o 8 = hid
0 R 0
) ' OR () ' O | . [
H 0
0 Bef o 1 0 y, b
ot A A:29 206
I [} () I O R ' D
0
1
H 0 D
P g
0
Ae A6 g g 5 :
A:ie 69 : B:9a:6
: A al : ; 8 =78
e - alf A 4 A
o ;
38:18 7
Q-hO 8-l A .
] e:87:07:6 g .
5 A 4:e :
: i
! T :
0 ; A1 AOE
Ol 0
AY
" .) . g . n-Q
A9 0
: . 0 . - : n- g
: 3 : 61 :H ; i
5' B 0
N T
0 H 0
A -G 300 -0 - -
Bazh : : : : :
A3 :6 A9 A:de 88 :64:0
e ; A 4 H: A
2d:9 T, : 5
9 ; q-98 " ; g A
9:fB:61:96 5 6:8 8:99:30 95 :9 §
T H: HEE g . 96 :de ab 5
:
:
: .

CADCCH fin I B f BA4it MAG DQEREGUA (MG 0
Wb A f 0 OAhE RJR D A 011 0 OALE 1. IRA
DELWMBEGN Az ¥ q 72 18c yBQ R ¥ 0
Q I Aallo yNEBodXHNo 5 ih28 Q)) ¥

N DISWiCRyD AkGA BhMCS ARB B 0 !
hJ
ARE BAcMCEKNI Q B ffH Bilo 5
AZD QEJAR {
e DQERAGQUARN4GHNADCBiQKBgQDhE) B2 fle
0 h ; 0 6 B0 : -

The next step will be to copy the server.key and server. crt files to the PostgreSQL data
directory and then restart the PostgreSQL server service.

For more information on SSL in PostgreSQL, you can refer to www.postgresqgl .org/
docs/9.3/static/ssl-tcp.html.

@]

www.it-ebooks.info

www.postgresql.org/docs/9.3/static/ssl-tcp.html
www.postgresql.org/docs/9.3/static/ssl-tcp.html
http://www.it-ebooks.info/

Controlling Security

Testing SSL encryption

Usually, communication between the client application, such as psql, and the database
server, that is PostgreSQL, is sent over the network as clear text and is susceptible to
sniffing. To prevent any sort of eavesdropping or sniffing, ensure that the communication
between the psql client and the database server is encrypted. We set up SSL and enabled
encryption in the previous recipe. Once the certificate and encryption key files are moved to
the data directory, the next step is to check the SSL encryption. It is now time to test the SSL
encryption that we set up in the previous recipe.

How to do it...

After the PostgreSQL server is restarted, the next step is to use the psql application in order to
test the SSL connection, as shown here:

D:“Postgresgl_Projectshinrpsql —h 18.168.192.16 hrdbh postgres

Password for user postgres:

psgl (9.3.4>

WARNING: Console code page (437> differs from Windows code page <1252
8-bhit characters might not work correctly. See psgl reference
page “"Notes for Windows users' for details.

88L connection Ccipher: DHE-REA-AES256—5HA,., bits: 2562

Type "help' for help.
hrdb=H

The psql application attempts to connect to the PostgreSQL server in the SSL mode first and
then tries to connect in the plain text mode if the SSL mode fails. While making the connection
to the psql client, you can see the banner information containing keywords such as SSL
connection and some cipher text. This can be seen from the screenshot in the earlier section.

Encrypting confidential data

It is important to protect confidential information stored in databases, such as credit

card information, information about financial transactions, and personal information of

an employee. Usual database mechanisms, such as maintaining access control lists to
implement tight security controls on confidential information, to ensure that such sensitive
information does not fall into the hands of malicious users is not enough. What is important
is to ensure that the confidential data be kept in a format that is not understandable to
unauthorized users. For authorized users, however, the information must be converted back
to its original format so that it is understandable. This is where encryption comes into the
picture. Encryption is the process of converting data into a format that renders the data
unreadable or intangible to unauthorized users.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Encryption translates the data into cipher text or secret mode, which can only be decoded
and converted into its original form with the help of a key that is kept by authorized personnel
only. For this reason, encryption is considered to be one of the most effective ways to achieve
data security.

There are two categories of encryption: one is the symmetric system, and the other is the
asymmetric system. Symmetric encryption uses an identical key to both encrypt and decrypt
the data. Symmetric key algorithms are much faster computationally than asymmetric
algorithms, as the encryption process is less complicated and takes less time. Asymmetric
encryption uses two related keys (public and private) for data encryption and decryption and
eliminates the security risk of sharing keys. The private key is never exposed. A message that
is encrypted using the public key can only be decrypted by applying the same algorithm and
using a matching private key. Likewise, a message that is encrypted using the private key can
only be decrypted using the matching public key.

How to do it...

PostgreSQL has various levels of encryption to choose from. PostgreSQL provides the
pgcrypto module, which provides cryptographic functions for PostgreSQL.

In the following section, we are going to create a table and use the Advanced Encryption
Standard (AES) to encrypt the table data and then decrypt the data via the encrypt and
decrypt functions:

testdbl=# create extension pgcrypto;
testdbl=# create table demo (pw bytea) ;

testdbl=# insert into demo (pw) values (encrypt('champion', 'key',
'aes'));

testdbl=# select * from demo;
pw

\xdf5fa25e36fd16c9e4688bcf46bfllc3
(1 row)

testdbl=# select decrypt (pw, 'key', 'aes') FROM demo;
decrypt

\x6368616d70696f6e
(1 row)

testdbl=# select convert from(decrypt (pw, 'key', 'aes'), 'utf-8') FROM
demo;

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

convert from

champion

(1 row)

The pgcrypto module is a module in PostgreSQL which provides encryption in the form of
database functions. It is client independent. The pgcrypto module provides support for raw
encryption, Pretty Good Privacy (PGP) compatible encryption, and hashing.

PostgreSQL provides supports for both symmetric and asymmetric encryption. For stronger
encryption, you can use a PGP-based encryption approach where you have a public and a
private key pair, in which case, the public key is used to encrypt the data and the private
key is used to decrypt the data.

We are now going to demonstrate the use of a public and private key pair to encrypt and
decrypt the data. We are going to use the following four functions for the demonstration,
along with an explanation of the usage of these functions:

>

pgp_pub_encrypt: This is the function you will use to encrypt your data using your
public key.

pgp_pub_decrypt: This is the function you will use to decrypt your data using your
private key.

dearmor: The dearmor function is used to unwrap binary data into its native format,
that is, the PGP ASCIl armor format, which makes it suitable to be passed to the encrypt.

pgp_key id: The pgp key id function is used to extract the key ID of a public or
secret key. This function tells you the key that was used to encrypt a given message,
so that from the collection of available keys, you can use the right key to decrypt the
given message.

The following are a series of steps that are used to demonstrate the usage of public and
private key pairs to encrypt and decrypt data using the previously described functions:

1.

First, create the table in which you are going to store data:

CREATE TABLE testuserscards (
card id SERIAL PRIMARY KEY,
username varchar (100),
cc bytea

)

Next, insert records in the table and encrypt the data:

INSERT INTO testuserscards (username, cc)
SELECT robotccs.username, pgp pub encrypt (robotccs.cc, keys.
pubkey) As cc

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

FROM (VALUES ('robby', '41111111111111111"'),
('artoo', '41111111111111112')) As robotccs (username, cc)
CROSS JOIN (SELECT dearmor ('

Version: GnuPG v1.4.1 (GNU/Linux)

mQGiBELIIgoRBAClonBpxKYgDvrgCaUWPY34947X30gxGOfCNOp6Eqgrx+2PUhm4n
vFvmczpMT4 iDcOmUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMEDkYke
5aVvcPPc8uPD1ItpszGmHOrMOVITIt/1i9QEXetpyNWhk4jj5gnohYhLeZwCgk0odo
RFAANi4viFPivvtAp2ffjU8D/R3x/UJCvkzi71i9rQHGO313xxmQu5BugljANBULj
8IE7LRPI/Qhg2hYy3sTJIwImDi7VkS+fuvNVk0Od6MTWplAXYU96bnl2JaD21R9sK1
Fzcc+0iZI1wYA1lPczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt
J+0KA/9iRQ87FzxdYTkh2drrv69FZHc3FrsjwInPcBg/voAVXHOMR1 1gyCg7HpW/
T9naeOERksa+Rj4R57IF114e501iGJo90maKZcsCsXrREJCycrlEtMgXfSPy+bi5s
0yDZE/Qm1dwul3+0XOsRvkoNYjO8Mzo9K8wU12hMgNOa2bu6a7QjRWxnYW1lhbCAy
MDQ4 IDx0ZXNOMJjAOOEBleGFtcGx1Lm9yZz6IXgQTEQIAHgUCQsgiCgIbAwWYLCQgH
AWIDFQIDAXYCAQIeAQIXgAAKCRBIGC1W/gZo29PDAKCG724enIxRoglj+aeCp/ug
oré6mbwCePuKy?2/1kD1FvnhkZ/R5fpm+pdm25Ag0EQsgiIThAIAJI3Gb2Ehtz1taQ9
AhPY4Avad2BsgD3S5X/R11CmMOKBE/04D29dxn3f8QfxDsexYVvNIZjoJPBggZz7iMX
MhoWyw8ZF5Zs1mLIjFGVorePrm94N3MNPWM7x9M3 6bHUjx0VvCZKFIhcGY1g+htE/
QweaJzNVeA5z4gZmik4 1FbQyQSyHa3bOkTZu++/U6ghP+iDp5UDBjMTkVyqITUVN
gC+MR+da/I60irBVhue7younh4ovF+CrVDQJC06HZ16CAJIyA81SmRE1+dmKbb]jZ
LF6rhz0norPjISJvkIgqvdtM4VPBKISwpgwCzpEqjuiKrAVujRT68zvBvI4avVgbll
k5QdJscAAWUH/jVIhOHbWAO1FTe+NvohfrA8vPcDOrtU3Y+siigrabotnxJd2NuC
bxghJYGENtnx0KDjFbCRKIVeTFok4UnuVYhXdH/c610/rCTNdeW2D6pmR4GEBozR
Pw/ARf+jONawGLyUj 7ugl3iquwMSE7VyNuF3ycL20xXjgOWMjkH8c+zfHHpjaZ0R
QsetMqg/iNBWraayKzZnWUd+eQgNzE+NUo7wljAu70Dpy+8aleipxzK+O0HfUSLTiF
Z10e4Um0P213Xtx8nEgj4vSeoEkl2qunfGW00ZMMTCWabg0ZgxPzMfMeIcm6525A
Yn2gL+X/gBJTInAl7/hgPz2D1Yd7d5/RAWaISQQYEQIACQUCQsgi IgIbDAAKCRBI
6ClW/qZo25ZSAJ98WTrt12HiX8Z2gZq95v1+9cHt ZPQCEZDoWQPybkNescLmXC7g5
1kNTmEU=

=8QM5

') As pubkey) As keys;

You might then see the records in the table:

SELECT username, cc FROM testuserscards;

Now, you can use pgp_keyid to verify which public key you used to encrypt
your data:

SELECT pgp_key id(dearmor ('

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

Version: GnuPG v1.4.1 (GNU/Linux)

mQGiBELIIgoRBAClonBpxKYgDvrgCaUWPY34947X30gxGOfCNOp6Eqgrx+2PUhm4n
vFvmczpMT4 iDcOmUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMEDkYke
5aVvcPPc8uPD1ItpszGmHOrMOVITIt/1i9QEXetpyNWhk4jj5gnohYhLeZwCgkOodo
RFAANi4viFPivvtAp2ffjU8D/R3x/UJCvkzi71i9rQHGO313xxmQu5BugljANBULj
8IE7LRPI/Qhg2hYy3sTJIwImDi7VkS+fuvNVk0Od6MTWplAXYU96bnl2JaD21R9sK1
Fzcc+0iZI1wYA1lPczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt
J+0KA/9iRQ87FzxdYTkh2drrv69FZHc3FrsjwInPcBg/voAVXHOMR1 1gyCg7HpW/
T9naeOERksa+Rj4R57IF114e501iGJo90maKZcsCsXrREJCycrlEtMgXfSPy+bi5s
0yDZE/Qm1dwul3+0XOsRvkoNYjO8Mzo9K8wU12hMgNOa2bu6a7QjRWxnYW1lhbCAy
MDQ4 IDx0ZXNOMJjAOOEBleGFtcGx1Lm9yZz6IXgQTEQIAHgUCQsgiCgIbAwWYLCQgH
AWIDFQIDAXYCAQIeAQIXgAAKCRBIGC1W/gZo29PDAKCG724enIxRoglj+aeCp/ug
oré6mbwCePuKy?2/1kD1FvnhkZ/R5fpm+pdm25Ag0EQsgiIThAIAJI3Gb2Ehtz1taQ9
AhPY4Avad2BsgD3S5X/R11CmMOKBE/04D29dxn3f8QfxDsexYVvNIZjoJPBggZz7iMX
MhoWyw8ZF5Zs1mLIjFGVorePrm94N3MNPWM7x9M36bHUjx0vCZKFIhcGY1g+htE/
QweadzNVeA5z4gZmik4 1FbQyQSyHa3bOkTZu++/U6ghP+iDp5UDBjMTkVygITUVN
gC+MR+da/I60irBVhue7younh4ovF+CrVDQJC06HZ16CAJIyA81SmRE1+dmKbb]jZ
LF6rhz0norPjISJvkIgqvdtM4VPBKISwpgwCzpEqjuiKrAVujRT68zvBvI4avVgbll
k5QdJscAAWUH/jVIhOHbWAO1FTe+NvohfrA8vPcDOrtU3Y+siigrabotnxJd2NuC
bxghJYGENtnx0KDjFbCRKIVeTFok4UnuVYhXdH/c610/rCTNdeW2D6pmR4GEBozR
Pw/ARf+jONawGLyUj 7ugl3iquwMSE7VyNuF3ycL20xXjgOWMjkH8c+zfHHpjaZ0oR
QsetMqg/iNBWraayKzZnWUd+eQgNzE+NUo7wljAu70Dpy+8aleipxzK+O0HfUSLTiF
Z10e4Um0P213Xtx8nEgj4vSeoEkl2qunfGW00ZMMTCWabg0ZgxPzMfMeIcm6525A
Yn2gL+X/gBJTInAl7/hgPz2D1Yd7d5/RAWaISQQYEQIACQUCQsgi IgIbDAAKCRBI
6ClW/qZo25ZSAJ98WTrt12HiX8ZgZq95v1+9cHt ZPQCEZDoWQPybkNescLmXC7g5
1kNTmEU=

=8QM5

The output of this query shows that the following public key was encrypting data:
pgp_key id

2C226E1FFE5CC7D4
(1 row)

The next step is to verify whether the public key that you got was used to encrypt the
data in the table:

hrdb=# SELECT username, pgp key id(cc) As keyweused FROM
testuserscards;

username | keyweused

__________ oo m e
robby | 2C226E1FFE5CC7D4
artoo | 2C226E1FFE5CC7D4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Finally, decrypt the data using the private key that matches the public key you used to
encrypt the data with:

SELECT username, pgp_pub decrypt(cc, keys.privkey) As ccdecrypt
FROM testuserscards

CROSS JOIN

(SELECT dearmor('----- BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v1.4.1 (GNU/Linux)

1Q0G7BELIIgoRBAClonBpxKYgDvrgCaUWPY34 94 7X30gxGOfCNOp6Eqrx+2PUhm4n
vFvmczpMT41iDcOmUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke
5aVvcPPc8uPD1ItpszGmHOrMOVITIt/1i9QEXetpyNWhk4jj5gnohYhLeZwCgkodo
RFAANi4vEFPivvtAp2f£fjU8D/R3x/UJCvkzi719rQHGO313xxmQu5BugljANBUL]
8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+EuvNVk0d6MTWplAXYU96bn12JaD21R9sK1
Fzcc+01iZI1wYA1lPczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt
J+0KA/91RQ87FzxdYTkh2drrv69FZHc3FrsjwInPcBg/voAvXHOMR11gyCg7HpW/
T9naeOERksa+Rj4R57IF114e501iGJo90Q0maKZcsCsXrREJCycrl1EtMgXfSPy+bi5s
0yDZE/Qmldwul3+0XOsRvkoNYjO8Mzo9K8wU12hMgNOa2bu6awAAN2F+iNBE1£JS
8azqO/kEiIfpqué/DQGOI0VsZ2FtYWwgMjAOOCA8AGVZzdDIWNDhAZXhhbXBsZS5v
cmc+1FOEEXECAB4FAKLI IgoCGWMGCwk IBWMCAXUCAWMWAGECHgECF4AACgkQSONN
VvemaNvTwwCYkpcdmpl3aHCQdGomz7dFohDgjgCgiThZt 2xTEi6GhBBl1vuhk+£55
n3+dAj0EQsgiThATAJI3Gb2Ehtz1taQ9AhPY4Avad2BsgD3S5X/R11CmOKBE/ 04D
29dxn3f8QfxDsexYVvNIZjoJPBggZ7iMXMhoWyw8ZF5Zs1mLIjFGVorePrm94N3MN
PWM7x9M3 6bHU]x0vCZKFThcGY1g+htE/QweadzNVeA5z4gZmik4 1FbQyQSyHa3b0
kTZu++/U6ghP+1Dp5UDBjMTkVygqITUVNgC+MR+da/I60irBVhue7younh4ovF+Cr
VDQJCO06HZ16CATIYyA81SmRfi+dmKbbj ZLF6rhz0norPjISJvkIgvdtM4VPBKI5wp
gwCzpEQjuiKrAVujRT682zvBvJI4avVgbl1k5QddscAAwWUH/jVIhOHbWAOIFTe+Nvoh
frA8vPcDOrtU3Y+siigrabotnxJd2NuCbxghJYGENtnx0KDjFbCRKJIVeTFok4Unu
VYhXdH/c6i0/rCTNdeW2D6pmR4GfBozRPw/ARf+jONawGLyUj 7uql3iquwMSE7Vy
NuF3ycL20xXjgOWMjkH8c+zfHHpjaZ0RQsetMg/iNBWraayKZnWUd+eQgNzE+NUo
7wljAu70oDpy+8aleipxzK+O0HfUSLTiFZ10e4Um0P213Xtx8nEgj4vSeoEkl2qun
£GWO0ZMMTCWabg0ZgxPzMfMeIcm6525AYn2gL+X/gqBJTInAl7/hgPz2D1Yd7d5 /R
AWYAAVQKFPXbRaxbdArwRVXMzSD3qj /+VwwhwEDt 8 zmBGnl1BfwVdkjQQrDUMmV1S
EwyISQQYEQIACQUCQsgi IgIbDAAKCRBI6C1W/qZo25ZSAJ4sgUEHTVSG/x3p3fcM
3b5R86gKEACggYKSWPWCs0YVRHOWQZYOpnHELH8=

=3Dgk

————— END PGP PRIVATE KEY BLOCK-----') As privkey) As keys;
username | ccdecrypt

__________ oo e mmmm

robby | 41111111111111111

artoo | 41111111111111112

(2 rows)

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Security

There's more...

Instead of explicitly specifying the private/public key pair, you can also use a tool called GPG
to generate the public and secret keys and export it and use it in PostgreSQL.

GPG is available both for Linux and Windows platforms.
You can use the following sequence of steps to generate the gpg keys and export them:

1. First, generate the keys:

gpg --gen-key

2. Next, see the list of keys that you generated:

gpg --list-secret-keys

sec 1024D/D9ABCD1E 2014-06-17
uid aaaac
ssb 1024g/EOB81D3A 2014-06-17

3. Finally, export both the secret and public keys:
gpg -a --export EOB81D3A > public.key

gpg -a --export-secret-keys DI9ABCD1E > secret.key

Cracking PostgreSQL passwords

Many databases including open source databases as well as proprietary ones, come with
default user accounts, and such schemas also have default passwords. These passwords

are well known in today's context, and it is important that a database administrator keep
nondefault passwords for these user accounts. However, administrators usually prefer to keep
simple passwords or sometimes allow default passwords to be kept. This is something that
needs to be avoided in a production environment because compromising here would lead

to a big security loophole and something that can be exploited by hackers. For this reason,
organizations have started implementing a strong password policy.

A common norm in password policies is to keep a combination of alphanumeric characters
coupled with a few special characters to enforce a strong password. It is important to keep
a password length of at least up to eight characters. In the following recipe, we are going
to see how weak passwords can be cracked and how important it is to enforce a strong
password policy.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

Here, we are presenting a scenario where we will demonstrate how weak passwords can be
easily cracked. For the purpose of demonstration, we will create two users: one user whose
password contains only digits, and one user whose password contains only alphabets.
Perform the following steps to create the users:

1. First, create a user and specify a password for the user:

create user xyz with password '123';
create user john with password 'good';

2. Next, get the encrypted passwords of users from the pg_shadow catalog table:
select usename as useraccount,passwd as "password"
from pg shadow
where length (passwd)>1 order by usename;

useraccount | password

_____________ o o oo e
john | mdsbec8abeddc3el513db64cl84a6bEf85c9
XYz | md5adf47922f0bdb6b9a520ed2d43622d14
(2 rows)

3. The next step will be to use an MD5 password decrypter tool. You can use tools
such as Cain and Abel, MD Crack, and so on. However, in our case, we will be using

a website called www.md5online.org, and we will use its online MD5 decrypter
facility, as shown here:

MD5 Decrypter

@]

www.it-ebooks.info

www.md5online.org
http://www.it-ebooks.info/

Controlling Security

In the above screenshot, we entered the MD5 hash for the user john and found his actual
password. The convention that we see here is that the password is displayed first, followed
by the name of the user. For instance, we get goodjohn, where the password is good for
the user john.

MDb Decrypter

Similarly, in the preceding screenshot, we entered the md5 hash for the user xyz and found
his actual password. The convention that we see here as well, is just as in the earlier case,
where the password is displayed first, followed by the name of the user. For instance, we get
123xyz, where the password is 123 for the user xyz.

In the preceding scenario, you can see that any password less than six characters in length
is vulnerable to being quickly cracked. Therefore, it is important to enforce a strong password
policy and to educate users with the effectiveness of a strong password.

The length of the password plays a key role in enforcing a strong password. The longer the
length of the password, the more is the time it requires to break it. The cracking of passwords
is based on two approaches:

» Brute force: This method requires you to try every possible approach needed to be
undertaken in order to crack a password. There are well-known password crackers,
such as Cain and Abel, LophtCrack, Hydra, and so on, that can use the brute force
approach to crack a password. This method is suitable only for testing short passwords.

» Dictionary attack: This method involves the usage of a dictionary list in order to
crack a password. Here, every dictionary word is taken in sequence, converted into
a hash, and then matched with the system hash. If both the hashes match, then the
password is cracked, else move to the next word in the dictionary and so on.

SNED

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

In this chapter, we will cover the following recipes:

>

v

A logical backup of a single PostgreSQL database
A logical backup of all PostgreSQL databases

A logical backup of specific objects

File system level backup

Taking a base backup

Hot physical backup and continuous archiving
Point-in-time recovery

Restoring databases and specific database objects

Introduction

Backup and recovery usually refers to protecting the database against the loss of data and
enables the restoration of data in the event of a data loss. A backup, in simple terms, is a
copy of your database data.

Backups are divided into two components:

>

Logical backups: A logical backup refers to the dump file that is created by the
pg_dump utility and which might be used to restore the database in the case of
a data loss or an accidental deletion of a database object, such as a table. The
pg_dump utility is a PostgreSQL specific utility that can be run on the command
line, which makes a connection to the database and initiates the logical backup.

Physical backups: A physical backup refers to the OS level backup of a database
directory and its associated files.

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

It is essential to have a planning strategy in order to implement backups. This is desirable
from the point of view of a recovery scenario, and in the event of such a situation arising,
the type of backups that we initiate will influence the type of recovery that is possible.

A logical backup of a single PostgreSQL

database

The pg_dump utility is used to back up a PostgreSQL database. It does make consistent
backups even if the database is being used by other transactions. Dumps can be created
in script or in archive file formats. Script dumps are usually plain text files that contain the
SQL commands required to reconstruct the database to the state it was in at the time it
was saved. Script dumps can also be used to reconstruct the database on other machines
and architectures.

Getting ready

Please note that the dump keyword is evenly used here as a synonym for backup.

The pg_dump utility is considered to be a logical backup because it makes a copy of the data
in the database by dumping out the contents of each table.

The basic syntax to take a logical backup of a single database is mentioned here:
pg _dump -U username -W -F t database name > [Backup Location Path]
The usage of the options used with the pg_dump command is explained here:

» U switch: The -U switch specifies the database user initiating the connection. As
pg_dump is a command-line utility, we need to specify the username via which the
pg_dump utility can make a database connection.

» W switch: This option is not mandatory. This option forces pg_dump to prompt for
the password before connecting to the PostgreSQL database server. After you press
Enter, pg_dump will prompt for the password of the database user from which the
connection is initiated.

» F switch: The -F switch specifies the output file format that will be used.
We specified the t option with the - F switch because the output file will be
implemented as a tar format archive file.

There are plenty of other options available with the pg_dump command; however, for our
purpose, we are going to the use the preceding options.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Here, in our situation, we have a database named dvdrental for which we need to generate
a logical dump.

There are two ways in which a logical dump can be initiated in PostgreSQL:

» The first approach is to use the command-line utility pg_dump to make a logical
dump of a database. Here, we use the pg_dump utility to back up the dvdrental
database in an output file named dvdrental . tar, which is saved in the abcd
subdirectory of the home directory:
pg dump -U postgres -W -F t dvdrental >
/home/abcd/dvdrental.tar

» The second option is to use the pgAdmin GUI tool to back up an individual
database. Here, we will show you how to backup the dvdrental database
using the pgAdmin tool:

1. First, launch the pgAdmin GUI tool.

2. Click on the Databases menu under Object browser in the left pane of the
window, select the dvdrental database, and right-click on it.

3. Then, select the Backup... option, as shown in the following screenshot:

L——_I[:] Databases ()

(] dbdemo
[
-3 W Refresh
r-|_] postgre)
(3% sample Mew Object r
. |g¢ testhrd Disconnect database
[, Tablespace Delete/Drop...
----- Group Role .
-8 Login Roles Search ohjects...

CREATE Script

Reports]
Maintenance...

Backup...

Restore...

Properties...

-

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

4. Once the Backup... option is selected, a dialog box will open, as shown
in the next screenshot, and you will have to enter the name of the logical
dump that will contain the command necessary to restore the database or
a specific table in the event of a failure. Here, we name the logical dump as
dvdrental .tar and store it in the pgbackup directory under the C drive.

=

(@ =
Filename C:\pgbadkup\dvdrental. tar —
Faormat [Tar -]

Compress Ratio

Encoding [i]

Rolename [postgres -]

File Options IDump Options #1 | Dump Options #2' Ohjects I Messages I

[oacun] [_cons]

5. Click on the Backup button to generate a logical dump of the
dvdrental database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

6. On the click of the Backup button, the creation of the logical dump will start,
and the backup-related messages that are generated can be seen in the
next screenshot:

(B =
C:/Program Files/PostareSQL/9. 2/bin'pg_dump.exe —host localhost —port 5432 4 =
pg_dump: reading schemas B
pa_dump: reading user-defined tables
pa_dump; reading extensions
pa_dump: reading user-defined functions
pa_dump: reading user-defined types
pa_dump: reading procedural languages
pa_dump: reading user-defined agaregate functions
pg_dump: reading user-defined operators
pa_dump: reading user-defined operator dasses
pg_dump: reading user-defined operator families
pa_dump: reading user-defined text search parsers
pa_dump; reading user-defined text search templates
pa_dump: reading user-defined text search dictionaries
pg_dump; reading user-defined text search configurations
pa_dump: reading user-defined foreign-data wrappers
pa_dump; reading user-defined foreign servers
pa_dump: reading default privileges
pa_dump; reading user-defined collations
pa_dump: reading user-defined conversions
pg_dump; reading type casts
pa_dump: reading table inheritance information
pa_dump; reading rewrite rules
pa_dump: finding extension members -

1 | i | 3

File Options I Dump Options #1 | Dump Options #2 I Objects Messages
(o) o)

The pg_dump command runs by executing SQL statements against the database to unload
data. While the pg_dump command is running, it acquires locks on the tables that are being
dumped. This is done in order to ensure that DDL operations are restricted against the tables
while the dump is running in order to ensure data consistency.

Dumps created by pg _dump are internally consistent; that is, the dump represents a snapshot
of the database at the time pg_dump begins running. The pg_dump utility does not block any
other database operations while it is executing. In this case, the only exceptions are those
operations that require an exclusive lock to operate.

Any system user might run pg_dump by default, but the user with which you connect to
PostgreSQL must have SELECT rights for every database object being dumped.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

Since pg_dump also provides standard connection options to specify a host connection,
it can also be used to perform remote backups from any host that is allowed to make a
remote connection, as defined in the pg_hba . conf file:

pg dump -u postgres -h 192.168.16.54 -F c -f
dvdrental.sql.tar.gz dvdrental

Here, in the preceding scenario, we connect to the dvdrental database located at the
host with the IP address 192.168.16.54 and initiate a remote backup for the dvdrental
database. The dvdrental.sqgl.tar.gz dump file is generated at the current location
from where the pg_dump command is executed.

You can refer to the following links for more detailed information on the pg dump utility:

» http://www.postgresqgl.org/docs/9.3/static/app-pgdump.html

» http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_
better backup with postgresql using pg dump/

» http://www.postgresonline.com/special feature.php?sf
name=postgresql83 pg dumprestore cheatsheet

A logical backup of all PostgreSQL

databases

To backup all databases, you can run the individual pg_dump command for each database
sequentially or in parallel if you want to speed up the backup process:

» First, from the psql client, use the \1 command to list all the available databases in
your cluster.

» Second, back up each individual database using the pg_dump command, as
described in the previous recipe.

The other approach is to use the pg dumpall tool to back up all the databases in
one single go.

How to do it...

You can use the pg_dump command to back up each database in the server; however,
pg_dump does not dump information about the role definition and tablespaces. To dump
the global information, use the following command:

pg_dumpall -g

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/app-pgdump.html
http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_better_backup_with_postgresql_using_pg_dump/
http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_better_backup_with_postgresql_using_pg_dump/
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_pg_dumprestore_cheatsheet
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_pg_dumprestore_cheatsheet
http://www.it-ebooks.info/

Chapter 3

To back up all the databases in one go, you can use the pg_dumpall utility, as follows,
in Windows:

pg dumpall -U postgres > c:\pgbackup\all.sql

Similarly, to back up all the databases in one go in Linux, use the pg_dumpall command,
as follows:

pg dumpall -U postgres > /home/pgbackup/all.sql

The pg_dumpall command exports all the databases, one after another, into a single script
file that prevents you from performing a parallel restore. If you are going to back up all the
databases this way, the restore process will take a lot more time.

The processing time of dumping all databases takes longer than the time required to dump
each database individually, so we don't know which dump of each database relates to a
specific point-in-time.

For this reason, you should use the pg dump command to dump each individual database
and then use the -g switch of the pg_dumpall command to keep a backup of all the user
and group data.

The pg_dumpall command generally requires the user executing the script to be a
PostgreSQL superuser. This is because the pg_dumpall command requires access to the
PostgreSQL system catalogs, as it dumps global objects as well as the database objects.

Sometimes, you want to back up only the database object definitions, so that you can restore
the schema only. This is useful for comparing what is stored in the database against the
definitions in a data or object modeling tool.

It is also useful to make sure that you can recreate objects in exactly the correct schema,
tablespace, and database with the correct ownership and permissions.

To back up all object definitions in all the databases, including roles, tablespaces, databases,
schemas, tables, indexes, triggers, functions, constraints, views, ownership, and privileges,
you can use the following command in Windows:

pg dumpall --schema-only > c:\pgdump\definitiononly.sql
If you want to back up the role definition only, use the following command:

pg dumpall --roles-only > c:\pgdump\myroles.sql

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

If you want to back up tablespace definitions, use the following command:

pg dumpall --tablespaces-only > c:\pgdump\mytablespaces.sql

You can also use the pgAdmin tool to backup all the databases on the server, including the
roles, users, groups, and tablespaces. This option can be selected by launching the pgAdmin
tool, expanding the Servers menu option in the left pane, right clicking on the PostgreSQL 9.3
option, and then selecting the Backup server... option, as shown in the following screenshot:

H’.pg.ﬁdmnn 1[I

3 Server Groups

[j Servers

il

==

0 E=

File Edit Plugins

(1)

Groug

4, Legn

View Teols Help

o BEE /&

Properties Stabstics 0

Praperty

Riefresh |
MNew Object v
Disconnect server
Stop Senvice
F Fie
Reload configuration
Add named restore point Hice.te Fils
Delete/Drop... § Revocation Ly
fon?
Reports 3
Backup globals... fatabaze
Backup server... I
jd?

Properties... prment?
TR=—verwu su-rq!

After the Backup server... option is clicked on, a dialog box will open, as shown in the next
screenshot, and it will ask you to name the logical dump file that will contain the definition
of all the objects and databases that are being backed up. Here, all.sql is the name of
the logical dump file that can be used later on to restore data and object definitions in all
the databases in the event of data loss due to hardware or disk issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[IH] Backup server localhost

Filename

Raolename

D:\backup'all.sql E]

[

Mote: The backup format will be PLAIM.

[|Force double quotes on identifiers

Verbose messages

Options | Messages

Cois) (oo

)

Once you click on the Backup button, as shown in the previous screenshot, a logical backup
of all the databases will start. This is equivalent to issuing the pg_dumpall command, and
the effect of this can be seen in the next screenshot, which opens when you click on the

Backup Button:

| E@ Backup server localhost

===

4

L

Options Messages
) [

D: fPostgresgl_Project/bin‘pg_dumpall.exe —host localhost —port 5432
pg_dumpall:
pa_dumpall:
pa_dumpall:
pg_dumpall:
pg_dumpall:
pag_dumpall:
pg_dumpall:
pg_dumpall:
pag_dumpall:
pa_dumpall:
pg_dumpall:
pag_dumpall:
pa_dumpall:
pg_dumpall:
pag_dumpall:
pa_dumpall:

executing SET search_path = pg_catalog

executing SELECT oid, rolname, rolsuper, rolinherit, rolcre
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pag_catalog.pg_st
executing SELECT provider, label FROM pag_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pag_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pa_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pa_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pg_catalog.pg_st
executing SELECT provider, label FROM pa_catalog.pg_st

I

www.it-ebooks.info

s

http://www.it-ebooks.info/

Backup and Recovery

A logical backup of specific objects

Sometimes, there are situations where you wish to back up only specific database objects,
such as tables. The pg_dump utility provides options to back up specific database objects,
such as tables.

How to do it...

If you wish to back up some specific tables in a certain schema, you can use the pg_dump
command, as follows:

pg dump -h localhost -p 5432 -U agovil -F ¢ -b -v -f
"C:\pgbak\testdb test.backup" -t case.test postgres

In the previous command, we are backing up a table called test, which resides in the case
schema in the PostgreSQL database.

There are many situations that require you to back up certain tables only. Some of these
situations are mentioned here:

» You wish to back up all the tables that are part of a particular tablespace. In this
situation, it is possible for a tablespace to contain objects from more than one
database; hence, you have to identify the databases from which those tables
need to be dumped.

The following procedure allows you to dump all the tables that reside on one
tablespace and one database only:

1. Create afile named table tablespace dump.sgl, which contains
the following SQL command that extracts the list of tables in a tablespace.

SELECT 'pg dump' UNION ALL

SELECT '-t ' || spcname || '.' || relname FROM pg class t
JOIN pg tablespace ts

ON reltablespace = ts.old AND spcname = :TSNAME

JOIN pg namespace n ON n.oid = t.relnamespace

WHERE relkind = 'r'

UNION ALL

SELECT '-F ¢ > dumpfile'; -- dumpfile is the name of the

output file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

2. Execute the following to build the pg_dump script:

psql -t -v TSNAME="'my tablespace'" -f
table tablespace dump.sqgl > myts

3. From the database server, dump the tables in the tablespace, including the
data and definitions:

chmod 700 myts
./myts

Another situation is where there are multiple schemas that have similarly named
important tables. In this situation, you wish to back up the tables having the same
names from different schemas.

The following scenario is where you can back up named tables from different
schemas. You can use the following query, which generates a pg_dump command
to back up any table that is not present in public, or pg catalog that has the rent
keyword as a suffix as a part of the table name:

SELECT 'pg dump ' || ' -h localhost -p 5432 -U postgres -F ¢ -b
-v -f "/pgbak/dvdrental keytbls.backup" ' ||
array to_ string(ARRAY (SELECT '-t ' || table schema || '.' ||

table name FROM information_schema.tables
WHERE table name LIKE '3% rent' AND table schema NOT IN
('pg_catalog', 'public')), ' ') || 'dvdrental’;

Another situation is where you want to back up recently changed tables in
the database.

We are going to utilize vacuum statistics for this. The vacuum statistics uses the
assumption that the vacuum process will try to go around the database and vacuum
tables where enough data has changed since the last vacuum run. This mechanism
will only work if autovacuum has been enabled. The following query will generate a
pg_dump command to back up all the tables in the dvdrental database that has
been autoanalyzed in the past one day:

SELECT 'pg dump ' || ' -h localhost -p 5432 -U postgres -F ¢ -b
-v -f "C:/pgbak/dvdrental changed keytbls.backup" ' ||
array to_string (ARRAY (SELECT '-t ' || schemaname || '.' ||

relname

FROM pg stat user tables

WHERE last autoanalyze > (CURRENT TIMESTAMP - (INTERVAL 'l
day'))) , ' ') || 'dvdrental';

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

File system level backup

Another possible option to backup is to utilize the operating system commands and make a
file system backup of the files that PostgreSQL uses to store the data in the database.

How to do it...

The easiest way to do this is to make an archive of the PostgreSQL data directory or the
directory defined by the SPGDATA environment variable, as follows:

tar -cvf backup.tar /home/abcd/psgl/data

Here, we have created an archive file named backup. tar that contains a backup of the
data directory.

The primary benefit of making a file system backup is that this procedure is simple and
straightforward. You need to simply back up the data directory with any of the available
Unix backup utilities, such as tar, which creates an archive file that can be further used
for restoration if the database crashes.

There are, however, a couple of restrictions that use the preceding method to make an archive
of the data directory:

» The database must be shut down completely in order to get a useful backup.
A file system backup is meaningful only when the database is in a consistent state.
For this reason, you need to shut down the database, and as a result, all the data
files will be in sync and in a consistent state and that is when the file system backup
should be taken.

» With a file system backup, it is not feasible to back up specific databases or individual
tables. The entire data directory must be backed up for a complete restoration of the
file system. This is due to the reason that many files are associated with a specific
database and it becomes difficult to correlate which files belong to which database.

There's more...

Here, we will talk about how to take backups for PostgreSQL using an LVM (short for logical
volume manager) snapshot. This involves taking a frozen snapshot of the volume containing
the database, then making a copy of the database directory from the snapshot to a backup
device, and finally releasing the frozen snapshot. This will work even when the database
server is running. Before you proceed to take the snapshot, you must perform a CHECKPOINT
command in PostgreSQL via which you can ensure that the backup will be consistent until the
time of the CHECKPOINT.

&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Before we begin, we assume that we have a formatted and active XFS file system. We also
assume that VG_POSTGRES/RV_DATA is our primary data volume.

A root user has to perform the following steps in order to create and use an LVM snapshot:
1. First, issue the CHECKPOINT command as the superuser on the PostgreSQL
database, as follows:
postgres=# CHECKPOINT ;
2. The rest of the commands mentioned here need to be executed by the root user. In

this step, we will create a snapshot, as follows:
lvcreate -1 100%FREE -s -n snap VG _POSTGRES/RV_DATA

3. Create the directory on which you wish to mount the snapshot, as follows:
mkdir /mnt/pg snap

4. The next step will be to mount the snapshot as an XFS file system, as follows:
mount -t xfs -o nouuid /dev/VG POSTGRES/snap /mnt/pg snap

5. Enter the snapshot directory, as shown here:
cd /mnt/pg_snap/

6. Next, back up the snapshot using the following command:
tar -czvf /backup/ pgsql.$(date +"%m-%d%-%Y).tar.gz /mnt/pg snap/

7. Once the snapshot backup has been moved to a different server, the next step will be
to unmount it and delete it from the source server as the root user:

umount /mnt/pg snap

lvremove VG POSTGRES/snap

An alternative approach is to initiate a consistent use of a snapshot of the data directory. This
involves taking a frozen snapshot of the volume that contains the database, making a copy of
the database directory from the snapshot to a backup device, and then releasing the frozen
snapshot. This will work even when the database server is running. Before you proceed to
take the snapshot, you must perform a CHECKPOINT command in PostgreSQL via which you
can ensure that the backup would be consistent until the time of the CHECKPOINT.

Taking a base backup

The pg_basebackup tool takes base backups of a running PostgreSQL database server.
These backups are initiated without affecting other PostgreSQL database clients and can be
used for both point-in-time recovery, as well as the start point for log shipping or to stream
replication standby servers.

(&5}

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

How to do it...

You can use the pg_basebackup command in the following manner:

$ pg basebackup -h 192.168.10.14 -D /home/abcd/pgsgl/data

Here, we take a base backup of the server located at 192.168.10.14 and store it in the
/home/abcd/pgsqgl/data local directory.

The pg_basebackup tool makes a binary copy of the database cluster files while ensuring
that the system is put in and out of the backup mode automatically. Note that backups

are always made up of the entire database cluster. It is not possible to back up individual
databases or databases with the pg_basebackup tool.

The pg_basebackup utility initiates a backup that is made over a regular PostgreSQL
database connection and utilizes the replication protocol for this purpose. The connection
must be made either as a superuser or a user having a REPLICATION privilege. The server
must also be configured with enough max_wal senders to leave at least one session
available for backup.

Hot physical backup and continuous

archiving

In this recipe, we are going to talk about taking a hot physical backup with continuous
archiving in place. A hot physical backup is an online backup that is taken while the
transactions are running against the database. Even though we have the relevant online
physical backup through which we can restore the database, it can restore data only until the
time of backup. Any subsequent transactions that may have been recorded in the database
after the backup got completed will be missed out. In order to be able to restore the database
up to its current state, we will need to apply the archives generated after the backup got
completed. For this reason, we need to have continuous archiving enabled.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

There are a series of steps that need to be carried out in order to have a hot physical backup
and continuous archiving in place:

1.

The first step is to enable a continuous write-ahead log (WAL) archiving. This can
be done by making the following parameter changes in the postgresql.conf
configuration file, which resides in the data directory, that is the directory defined
by the $PGDATA environment variable:

wal level = hot standby

archive mode = on

archive command = 'test ! -£
/home/abcd/pgsql/backup_in progress || (test ! -f
/home/abcd/pgsgl/archive/%f && cp %p
/home/abcd/pgsgl/archive/%f) '

Once these changes have been implemented, you need to bounce the PostgreSQL
server for the changes made to the above mentioned parameters to come into effect:
pg_ctl -d $PGDATA stop

pg ctl -d $PGDATA start

The next step will be to create the archive directory, as follows:
mkdir -p /home/abcd/pgsql/archive/
touch /home/abcd/pgsql/backup in progress

Once this is done, the next step will be to start the backup process using the
following command:

psqgl -c "select pg start backup('hot backup');"

Next, perform a file system backup of the PostgreSQL data directory, as follows:
tar -cvf /home/abcd/pgsqgl/backup.tar /home/abcd/pgsqgl/data

When the file system backup is completed, the next step will be to connect to the
database and stop the backup process using the following command:

psql -c "select pg stop backup();"

Now that the backup has been completed, the next step will be to go the archive
location and confirm the archives that were generated. These archives, along with
the base backup, will help you recover data to the last checkpoint or any point-in-time
after the base backup happened and to the point where you have the archive logs:

cd /home/abcd/pgsql/archive
[postgres@localhost archivel$ 1ls -ltrh
total 49M

]

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

~rW--=---=-- 1l postgres postgres 16M Jun 30 23:53
000000010000000000000009

~rW--=--=-=-- 1l postgres postgres 16M Jun 30 23:53
000000010000000000000008

-rw------- 1l postgres postgres 294 Jun 30 23:54
00000001000000000000000A.00000024 .backup

-rw------- 1l postgres postgres 16M Jun 30 23:54
00000001000000000000000A

A physical backup or base backup takes a copy of all the files in the database or the data
directory; however, this alone is not sufficient as a backup and there are other steps that
need to be performed as well. A simple file system backup of the database, while the server
is running, produces a time-inconsistent copy of the database files. However, in the current
context, production databases need to be available 24/7, and to take backups, it is not
possible to bring down the database every time and then take a file system backup. Such a
strategy is not feasible. Moreover, the backup process should ensure that all the changes
made from the time the backup starts until the time it ends are tracked and recorded. These
changes are tracked and recorded in WAL logs, and once the changes recorded in WAL logs
are archived, the WAL logs can be used later.

Now that it has become a business need to take online backups for production databases,
you need to ensure that the backups that are taken online are consistent. To make the
backup consistent, you need to add to it all the changes that took place from the start to the
finish of the backup process. That's why we have steps 4 and 6 to bracket our backup step.

The changes that are made are put into the archive directory as a set of archived transaction
log/WAL files. In step 3, we have created the archive directory. Enabling the archive mode,
as mentioned in step 1, requires a database restart and this was done in step 2. In step 3,
you can also see that we have created a file named backup in progress. The presence of
this file enables or disables the archiving process.

Point-in-time recovery

Many a times, DBAs will encounter situations where they might need to restore the database
from an existing backup. This might be due to a business requirement or a critical table might
have been dropped, or else the hard disk on which the database was mounted crashed and
became corrupt. For whatever reason, you might have to go for a database recovery scenario.
In this recipe, we are going to discuss the steps required to recover the database in the event
of a failure and how to use the archive logs to do a point-in-time recovery.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

There are a series of steps that need to be carried out if you need to recover a database from
the backup:

1.

First, check the status of the database server. If the server is running, then stop the
server, using the following command:

pg ctl -d $PGDATA stop

Next, copy the existing data directory and any existing tablespaces to a temporary
location, if anything is required from the existing structure later on. In case there is
a space crunch, you should at least consider keeping a copy of the content of the
pg_xlog subdirectory. This is essential because pg x1log might contain logs that
were not archived before the system went down:

mv $PGDATA /tmp

Next, restore the database files from your file system backup, which was taken
earlier. Please ensure that the restoration is done with the right ownership and right
permissions. If you are using tablespaces, you must confirm whether the symbolic
links in the pg_tblspc directory are correctly restored:

tar -xvf /home/abcd/pgsql/backup.tar

Remove any existing files from the pg_x1log directory, as these appear to have

come from the file system backup and are most probably obsolete, rather than being
current. If pg_x1og/ was not archived earlier, then you need to recreate it with proper
permissions, being careful to ensure that you re-establish it as a symbolic link, if it was
set up in that manner before:

rm -rf /home/abcd/pgsql/data/pg xlog/*

If there were any unarchived WAL segment files that

were saved in step 2, then you need to copy them to

the pg_xlog/ location.

The next step will be to configure the recovery . conf file in the data directory.

You can copy the recovery.conf.sample file from the share directory, which is
located under the installation directory of postgres, and once you have copied the
recovery.conf .sample file to the data directory, you will need to rename it as the
recovery.conf file:

cp /home/abcd/pgsql/share/recovery.conf.sample $PGDATA
cd $PGDATA

mv recovery.conf.sample recovery.conf

&7}

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

6. The only parameter that needs to be configured in the recovery. conf file is the
restore command parameter. This parameter tells PostgreSQL how to retrieve
archived WAL file segments:

restore command = 'cp /home/abcd/pgsql/archive/%f %p'

7. Once this is done, you are ready to start the server. The server launches into the
recovery mode and will proceed through the archived WAL files it needs. Once the
recovery is complete, the server will rename recovery.conf t0 recovery.done,
and with this, the database stands recovered and you are ready to launch normal
operations against the database:

pg_ctl -D $PGDATA start
The following is an excerpt from the log:

LOG: starting archive recovery
LOG: archive recovery complete
LOG: database system is ready to accept connections

LOG: autovacuum launcher started

You can also see that the recovery. conf file is now renamed to recovery . done once the
recovery is completed:

[postgres@localhost datal$ 1ls -1ltrh |tail -7

-rw-r--r-- 1 postgres postgres 4.7K Jul 4 04:13 recovery.done
-rW---=---- 1 postgres postgres 78 Jul 4 04:14 postmaster.pid
-rw------- 1 postgres postgres 59 Jul 4 04:15 postmaster.opts
drwx------ 2 postgres postgres 4.0K Jul 4 04:15 pg notify
drwx------ 2 postgres postgres 4.0K Jul 4 04:15 global
drwx------ 3 postgres postgres 4.0K Jul 4 04:15 pg xlog
drwx------ 2 postgres postgres 4.0K Jul 4 04:24 pg stat tmp

A point-in-time recovery works in this way.

First, you need to restore the data directory from the backup file. The database at this stage
is in an inconsistent state because it is restored at the time of backup. It still needs to account
for any changes made by transactions that were persistent during the backup. For this, you
need to apply archives. Setting the restore_command value in step 6, in the How to do it...
section, ensures that the changes recorded in the archived WAL segments are applied to the
database. Once the server is started, it launches into recovery mode in order to restore all

the data properly. After a few minutes, the database will be successfully restored to the last
checkpoint that the archived logs recorded.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There's more...

If the business requirement is to restore the database to a previous point-in-time, then we will
need to specify the required stop point in the recovery. conf configuration file. The stop
point, also referred to as the recovery target, can be specified in terms of data and time, a
name restoration point, or by the completion of a specific transaction ID.

The parameters that can control a point-in-time recovery in the recovery. conf file are
recovery target time and recovery target xid. Either of these options might
be configured to lead a previous point-in-time recovery.

Restoring databases and specific database

objects

In this recipe, we are going to talk about how to restore a single database, all databases, and
specific objects, such as tables.

How to do it...

Here, we are going to talk about three scenarios: what needs to be followed when you need
to restore all the databases on the server, a specific database, or a specific table only. We will
cover these scenarios in a series of steps, shown as follows:

1. Restoring all databases: In the A logical backup of all PostgreSQL databases recipe,
we created a logical dump for all the databases on a server. The dump file, all.
sql, will be used here to restore all the databases on the server, assuming that the
database files are corrupted and the server has crashed. The command to restore all
the databases is given here:

psqgl -U postgres -f c:\pgbackup\all.sql
2. Restoring a single database: In the A logical backup of a single PostgreSQL database

recipe, we created a backup using the pg_dump tool and the dump was named
dvdrental.tar

Now, we are going to restore the dvdrental database by assuming that it has
already been dropped, as follows:
pg restore --dbname=dvdrental --create --verbose

/home/abcd/dvdrental. tar

The - -create option of the pg_restore command first creates an empty database
before restoring all the objects from the dvdrental.tar dump file.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Backup and Recovery

3. Restoring a single table: We can also restore individual objects such as tables.
Here, we are going to drop a table named store and then recover the table using the
logical dump that was used to restore the dvdrental database in the previous step:

1. First, drop the store table:
dvdrental#drop table store cascade;
2. Inthe next step, we are going to extract the table definition from the

available dump and then dump the table, its definition, as well as the data of
the dropped table in a new file:

pPg _restore -t store dvdrental.tar > droppedtable.sql
Here, the droppedtable. sql file contains the table definitions, along with

data that is necessary to restore the store table that was dropped in the
earlier step.

3. The final step will be to use the newly created file that contains the table
definition and data to restore the table into the dvdrental database:

psqgl -f droppedtable.sqgl dvdrental

The pg_restore utility enables you to restore databases that have been backed up by either
pg_dump or pg_dumpall. Itis a utility for restoring PostgreSQL databases from an archive
created by pg_dump in one of the non-plain-text formats.

The pg_restore utility will issue the commands necessary to restore the database to the
state it was in at the time of being saved. The archive files allow pg_restore to be selective
about what is restored.

To speed up the restore process, it is possible to perform parallel restore operations in
PostgreSQL. The -3 switch is used to specify the number of threads required for restoration.
Each thread restores a separate table simultaneously, which speeds up the restore process.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance
Tasks

In this chapter, we will cover the following recipes:

» Controlling automatic database maintenance
» Preventing auto freeze and page corruption

» Preventing transaction ID wraparound failures
» Updating planner statistics

» Dealing with bloating tables and indexes

» Monitoring data and index pages

» Routine reindexing

» Maintaining log files

Introduction

It is important to carry out regular maintenance operations at scheduled intervals for a
PostgreSQL database to achieve optimal performance. Heavy database transactions can
leave behind a significant amount of data, which can lead to a drop in database performance.
Thus, a database administrator needs to carry out maintenance operations in order to

clean up the database and improve database performance. In this chapter, we are going to
discuss how to deal with bloating tables and indexes, transaction ID wraparound failures, and
maintenance tasks, such as vacuuming.

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance Tasks

Controlling automatic database

maintenance

PostgreSQL has a feature known as autovacuum, which although optional, is enabled by
default in the major PostgreSQL release versions, starting with PostgreSQL 9.0 onwards. The
job of the autovacuum daemon is to automate the execution of the VACUUM and ANALYZE
commands and to perform these maintenance tasks.

How to do it...

Even though autovacuum is enabled by default in PostgreSQL, you need to ensure that
autovacuum is switched on. Enabling the autovacuum daemon requires you to configure
and enable the following parameters in the postgresql . conf configuration file:

autovacuum = on
track counts = on

As the name suggests, the autovacuum parameter controls whether the server should
launch the autovacuum daemon.

The track counts parameter enables statistics collection on database activity. Usually,
this parameter is enabled by default because most of the checks that autovacuum performs
require the usage of a statistics collection, and unless the statistics collection facility is
enabled, autovacuum cannot be used.

The prior mentioned setting of autovacuum enablement happens on a global level, as it is
defined in the postgresql . conf configuration file. It is also possible to enable autovacuum
at the table level, as follows:

ALTER TABLE hrms SET (
autovacuum enabled = TRUE, toast.autovacuum enabled = TRUE

)i

Here we enabled autovacuum for TOAST tables as well. Usually, long data values are placed

in a secondary table known as the TOAST table. Hence, for each actual table, there will be a

corresponding toast table that contains long data values, and thereby a corresponding toast
index will be defined as well.

Initially, autovacuum checks for tables that are eligible candidates for vacuuming. It does
this by checking for tables that have a large number of inserted, updated, or deleted rows;
that is, fragmented rows. Once autovacuum has figured out the fragmented tables, all the
autovacuum workers are assigned the task of vacuuming the fragmented tables.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Having earlier discussed the job that autovacuum performs, let's now discuss the autovacuum
process itself. The autovacuum daemon basically consists of multiple processes. There is a
persistent daemon process known as the autovacuum launcher, whose job is to start the
autovacuum worker for all the databases residing on the PostgreSQL server. The autovacuum
launcher will attempt to start one worker within each database after the value specified, in
seconds, in the autovacuum_naptime parameter has elapsed; the launcher will distribute
the work accordingly to each worker. The job of the worker process is to find fragmented
tables in its database and execute the VACUUM or ANALYZE commands as and when

needed automatically.

For more information on automatic vacuuming, visit http: //www.postgresqgl .org/
docs/9.3/static/runtime-config-autovacuum.html.

There's more...

There are a good number of tunable autovacuum related parameters that control the behavior
of the autovacuum feature. Some of these parameters are discussed as follows:

» log autovacuum min duration: This parameter helps to monitor autovacuuming
activity. This parameter specifies that each action that is executed by autovacuum
is logged if it executed for at least the time specified in milliseconds in this parameter.

» autovacuum max_ workers: This parameter states the maximum number of worker
processes that might be executing at any particular time. The autovacuum launcher
process is an exception to this; hence, it is not included or counted in the list of
vacuum max workers.

» autovacuum vacuum_threshold: This parameter specifies the number of
updated and deleted rows to initiate VACUUM in the associated table.

» autovacuum_analyze threshold: This parameter specifies the number of
updated and deleted rows to initiate ANALYZE in the associated table.

» autovacuum vacuum_scale factor: The value of this parameter specifies
the fraction of the table size that needs to be added to autovacuum vacuum
threshold when deciding whether to trigger a vACUUM.

» autovacuum analyze scale factor: The value of this parameter specifies
the fraction of the table size that needs to be added to autovacuum vacuum
threshold when deciding whether to trigger an ANALYZE.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/9.3/static/runtime-config-autovacuum.html
http://www.it-ebooks.info/

Routine Maintenance Tasks

» autovacuum_ freeze max_age: The value of this parameter specifies the
maximum value that the table's pg class.relfrozenxid field can attain before
the VACUUM operation is forced to prevent a transaction ID (XID) wraparound within
the table. This parameter puts a limit on how far autovacuum will let you go before it
starts to kick in and goes around exhaustively vacuum freezing the old XIDs in your
tables with old rows. It is a not a good idea to hit the threshold set by the value of this
parameter because it can generate a lot of I/0 umpteen times, causing performance
issues, and freeze autovacuums are not cancellable.

» autovacuum vacuum_cost_ delay: This parameter defines the cost delay value
that is to be used in the VACUUM operations.

Preventing auto freeze and page corruption

In an OLTP environment, we usually expect and normally see that there are lots of DML
operations on tables. Because of frequent DML operations on tables, we can see rows that
have been deleted or have become obsolete due to an update operation; however, they
haven't been physically removed from their tables. Such rows are referred to as dead rows.

It is also quite possible that a row version might become old enough for it to become a
candidate for being frozen. Such rows are referred to as frozen rows.

Vacuuming deals with both dead rows, by reclaiming space from dead rows, and old row
versions, by freezing them so that they are preserved until they are deleted.

How to do it...

Freezing occurs when the XID, that is the transaction identifier, on a row becomes more than
the vacuum freeze min age transactions older than the next current value. To ensure
that all old transaction identifiers have been replaced by FrozenXID, a table scan is performed.
The vacuum freeze table age parameter controls when a scan on the whole table is
performed. Setting the value of the vacuum freeze table age parameter to zero forces
VACUUM to always scan all the pages. Scanning all the pages block by block for the entire
database while VACUUM is being run is also an effective way to confirm the absence of page
corruptions. This can be initiated on the database level as follows:

SET vacuum_freeze table age = 0;
VACUUM;

This can be initiated at a table level as follows:
VACUUM demo;

Here, demo is the name of the table being vacuumed.

7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Vacuuming deals with performing the following functions:

» Reclaiming or reusing disk space occupied by dead rows

» To keep the statistics collection up to date, which is used by the PostgreSQL
query planner

» To protect against the loss of old transaction data due to transaction ID wraparound
issues, which is discussed in the next recipe

If any page corruptions are detected, then you can use the pageinspect utility to examine the
contents of the database pages at a low level, which is useful from a debugging perspective. It
can also be used to examine index pages.

There are two situations where there might be huge 1/0 generation during freezing while
VACUUM is being run:
» When there are many rows with the same transaction identifier during freeze time

» When a table scan is being performed and you encounter a large number of rows that
need freezing

Preventing transaction ID wraparound

failures

For MVCC, PostgreSQL uses a transaction ID which is 32 bits long.

It is not feasible to have a larger transaction ID because that will increase the size of each row
by a significant amount. A 32-bit value can take over four billion transactions; however, it can
handle a range of about two billion transactions before rolling over to zero. When this range

is exceeded, past transactions will now appear to be from the future. That is, their outputs
become invisible; this will result in a catastrophic data loss, and the database will fail to
operate in a sane manner.

To prevent data loss, old rows must be assigned a transaction ID (XID), FrozenXID (frozen
transaction ID), sometime before they reach the two billion transactions mark. Once these
rows are assigned a FrozenXID, they will appear to be in the past to all normal transactions
regardless of the wraparound issues; so, such rows will be good until they are deleted, no
matter how long that is. This reassignment of XID is handled by VACUUM.

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance Tasks

How to do it...

In the previous recipe, you saw the usage of the VACUUM command at the database level as
well as at the table level. As an alternative to using the VACUUM command, you can also use
the vacuumdb utility to clean the PostgreSQL database. Like VACUUM, the vacuumdb utility
will also generate statistics to be used by the query optimizer. The vacuumdb utility is just a
wrapper around the VACUUM command. We can use the vacuumdb utility to clean the hrdb
database, as follows:

$ vacuumdb hrdb

You can also use the pgAdmin tool to vacuum a database. To vacuum a database in pgAdmin,
under Object browser in the left-hand side pane, right-click on the specific database under
the Databases menu, and click on Maintenance..., as shown in the following screenshot:

ng.&dmin]]]

 Eile Edit Plugins XMiew Teols Help
Y R
-5 ”ﬁ 55 & | &2

Properties
B Server Groups
B@ Servers (1) Property
=[] PostgreSQL 2.3 (ocalhost:5432) Name
)| | Databases (3) o
B o
"] pos Refresh
(38 tes _
; Tablesp Mew Object 2
Group R Disconnect database
&2 LognR Delete/Drop...
Search objects...
CREATE Script
Reports 3
Maintenance...
! Backup...
Restore...
Properties...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This will open a dialog box where you need to select the VACUUM radio button and then click
on OK in order to vacuum a database, as shown here:

|

LY
\\.‘Q‘

Maintenance operation

@ VACUUM AMALYZE REINDEX CLUSTER
VACUUM options
FULL FREEZE AMALYZE

| Verboze messages

Options | Messages

| Help | | oK | | Cancel |
—

Updating planner statistics

In order to generate a good plan for the queries, the PostgreSQL query planner relies on
available statistical information about the contents of the tables. It is, therefore, essential to
ensure that the statistics are accurate and up to date. If the statistics are stale, then it will
result in a poor plan being generated for the queries, which will end up further degrading
database performance.

How to do it...

There are two ways in which statistics can be gathered:

» You can run the ANALYZE command to generate statistics on tables.

» The ANALYZE command can be invoked as an optional step while using VACUUM. If
autovacuum is enabled, it will automatically invoke the ANALYZE command when the
contents of a table have changed substantially.

Details about the autovacuum daemon and the vACUUM command have already been covered
in the first two recipes, so we are now going to focus on the ANALYZE command here:

ANALYZE demo;

In the preceding case, we used the ANALYZE command to generate statistics on the table
named demo and stored the results in the pg_statistic system catalog table.

Statistics collection is fine-grained and can even be done at the column level.

(77}

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance Tasks

The statistics that are collected by the ANALYZE command include some of the most common
values in each column along with a histogram that depicts the approximate data distribution
in each column.

For larger tables, instead of examining each row, ANALYZE takes a random sample of table
contents. The benefit of using this approach is that by using the random sampling method,
even larger tables can be analyzed in a short span of time.

The amount of statistics collected by ANALYZE can be controlled by adjusting the value of the
default statistics_ target configuration parameter.

The ANALYZE command acquires a read-only lock on the target table. This way, it can be run
in parallel with any other activity on the target table.

Dealing with bloating tables and indexes

It is common to find a database where vacuuming has been turned off for either a table or for
the entire database. The reason for turning off vacuuming is that vacuuming creates too much
disk 1/0. This might help temporarily, but in the longer run, it is not recommended that you turn
off vacuuming or abandon it. On the other hand, if vacuuming is performed too frequently, the
system's performance can become slow because vacuuming creates a lot 1/0 traffic.

If the database has been maintained without vacuuming or if the data is badly structured, we
might experience bloating tables and indexes. The problem with bloating tables and indexes is
that they occupy more storage space than required, which often causes performance issues
when these are used by queries. In this recipe, we are going to see how to detect bloating
tables and indexes and what the best time is to run a VACUUM command. If there are lots of
dead rows in a table, the bloat percentage is higher.

How to do it...

Here, we are going to see when a table become bloated and how to deal with it:

1. First, we are going to activate the pgstattuple module, which is used to detect a
table bloat, as follows:

hrdb=# create schema stats;
hrdb=# create extension pgstattuple with schema stats;

2. Next, we are going to create a table and add some rows into it:

hrdb=# CREATE TABLE num_test AS SELECT *
FROM generate series (1, 10000);

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Now, we are going to use the pgstattuple function, provided by the pgstattuple
extension, to examine row-level statistics for the num_test table:

hrdb=# SELECT * FROM

stats.pgstattuple('num test');

-[RECORD 1]------ b
table_len | 368640
tuple_ count | 10000
tuple len | 280000
tuple percent | 75.95
dead_tuple count | o
dead_tuple len | o
dead_tuple percent | 0
free_space | 7380
free percent | 2

At this point, we don't see
num_test table:

hrdb=# DELETE FROM num_test WHERE generate_series

any dead rows, so we will delete some data from the

o
]

2

0;

Now we will reuse the pgstattuple module to examine the table bloat in the

num_test table:
hrdb=# SELECT * FROM

stats.pgstattuple('num test');

-[RECORD 1 J------ +-------
table len | 368640
tuple count | 5000
tuple len | 140000
tuple percent | 37.98
dead_tuple count | 5000
dead_tuple len | 140000
dead_tuple percent | 37.98
free_space | 7380
free percent | 2

In this output, you can see that the percentage of dead rows is approximately 38

percent. So, we are now going to vacuum the table in order to remove the table bloat.
Also, observe that the percentage of free storage space is around 2 percent, as seen
inthe free percent column

hrdb=# VACUUM num test;

Now that the table has been vacuumed, we will reexamine the row-level statistics for
the num_test table:

hrdb=# SELECT * FROM stats.pgstattuple('num test');

-[RECORD 1]------ fommmm oo
table_len | 368640
tuple_ count | 5000

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance Tasks

tuple len | 140000
tuple percent | 37.98
dead_tuple count | o
dead_tuple len | o
dead_tuple percent | 0

free space | 167380
free percent | 45.4

In the preceding output, you can see that the dead tuple percent column value
is zero, which means there are no dead rows. Also, the storage space has increased;
we can now see that the free storage space is around 45 percent, which shows that
more storage space has become available after vacuuming. Before vacuuming,

the free space percent was around 2 percent. Thus, with vacuuming, we have
successfully managed to remove the bloat that existed in the tables.

Now that we have spoken about bloating tables, let's move toward bloating indexes. The
following query can help identify whether there are any bloating indexes for a particular table:

hrdb=# SELECT relname, pg_table_size(oid) as index size,
100- (stats.pgstatindex (relname)) .avg leaf density AS bloat ratio
FROM pg class WHERE relname ~ 'casedemo' AND relkind = 'i';

relname | index size |
bloat ratio

casedemo_inventory id idx | 507904 |
34.11

casedemo_rental date inventory id customer_ id idx | 630784 |
26.14

casedemo_pkey | 376832 |
10.25

(3 rows)

In the preceding output, you can see the index bloat ratio for all of the indexes belonging to
the casedemo table.

PostgreSQL has a feature known as MVCC, that is Multi Version Concurrency Control that allows
you to read data at the same time as writers make changes. Due to the MVCC feature being
implemented, we often encounter situations where the UPDATE command can cause tables and
indexes to grow in size because they leave behind dead row versions. Similarly, the DELETE and
INSERT operations take up space that must be reclaimed by vacuuming. Also, some deletion
patterns can cause large chunks of the index to be filled with empty entries, which creates

a bloating-index scenario. To overcome the problem of a bloating index, you need to rebuild
indexes. Rebuilding indexes is covered in the Routine reindexing recipe further on in the chapter.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Thus, it is important to examine the dead_tuple len and dead tuple percent columns
from the pgstattuple package for a given table, and if both of these columns have high
values, then it it best to VACUUM these tables at a time when the transaction activity on the
database is low so as not to impact database performance.

If you want to identify the estimated amount of bloat in your tables and indexes, you can
use the following query. This query is based on the check postgres script available at
http://bucardo.org/wiki/Check postgres

SELECT
current database(), schemaname, tablename, /*reltuples::bigint,
relpages:?bigint, otta, */
ROUND (CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages/otta::numeric
END,1) AS tbloat,
CASE WHEN relpages < otta THEN 0 ELSE bs* (sml.relpages-otta) ::bigint
END AS wastedbytes,
iname, /*ituples::bigint, ipages::bigint, iotta,*/
ROUND (CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/
iotta::numeric END,1) AS ibloat,
CASE WHEN ipages < iotta THEN 0 ELSE bs* (ipages-iotta) END AS
wastedibytes
FROM (
SELECT
schemaname, tablename, cc.reltuples, cc.relpages, bs,
CEIL((cc.reltuples* ((datahdr+ma-
(CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr$%ma
END)) +nullhdr2+4))/(bs-20::float)) AS otta,
COALESCE (c2.relname, '?') AS iname, COALESCE (c2.reltuples,0) AS
ituples, COALESCE (c2.relpages,0) AS ipages,
COALESCE (CEIL((c2.reltuples* (datahdr-12))/(bs-20::float)),0) AS

iotta -- very rough approximation, assumes all cols
FROM (
SELECT

ma, bs, schemaname, tablename,

(datawidth+ (hdr+ma- (case when hdr%ma=0 THEN ma ELSE hdr%ma
END))) : :numeric AS datahdr,

(maxfracsum* (nullhdr+ma- (case when nullhdr%ma=0 THEN ma ELSE
nullhdr%$ma END))) AS nullhdr2

FROM (
SELECT
schemaname, tablename, hdr, ma, bs,
SUM((1-null_frac)*avg_width) AS datawidth,
MAX (null_frac) AS maxfracsum,

www.it-ebooks.info

http://bucardo.org/wiki/Check_postgres
http://www.it-ebooks.info/

Routine Maintenance Tasks

hdr+ (
SELECT l+count (*)/8
FROM pg stats s2
WHERE null frac<>0 AND s2.schemaname = s.schemaname AND
s2.tablename = s.tablename
) AS nullhdr
FROM pg stats s, (
SELECT
(SELECT current setting('block size')::numeric) AS bs,
CASE WHEN substring(v,12,3) IN ('8.0','8.1','8.2') THEN 27
ELSE 23 END AS hdr,
CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma
FROM (SELECT version() AS v) AS foo
) AS constants
GROUP BY 1,2,3,4,5
) AS foo
) AS rs
JOIN pg class cc ON cc.relname = rs.tablename

JOIN pg namespace nn ON cc.relnamespace = nn.oid AND nn.nspname =
rs.schemaname AND nn.nspname <> 'information schema'

LEFT JOIN pg index i ON indrelid = cc.oid

LEFT JOIN pg class c2 ON c2.oid = i.indexrelid
) AS sml
ORDER BY wastedbytes DESC;

Monitoring data and index pages

In the earlier recipes, you saw that frequent updates to data result in dead rows across
both tables and indexes. These dead rows consume storage space; hence, it is important to
monitor tables and indexes in order to identify the amount of bloat present in these objects.

Apart from bloating, there are other aspects of a table and index that need to be monitored.
For instance, if there are any unused indexes, then they should be identified and removed.
Hence, you need to monitor for unused indexes too.

How to do it...

A DBA usually requires some statistical information about the tables that is stored in the
PostgreSQL database, as follows:
» Information on the total count of the number of rows in the table and table length

» Information on the number of dead rows and the dead row percentage on a
given table

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

» Information on the amount and percentage of free space available in the table

» Information regarding the number of update, insert, and delete operations on
the table

» Information regarding the last time the table was vacuumed, manually or by the
autovacuum daemon, and the last time the table was analyzed for statistics collection

The preceding statistical information can be obtained from the pgstattuple module, which
provides row-level statistics for a given table and the pg stat all tables view, which
shows statistics about accesses to that specific table.

In the following output, from the pgstattuple module, you can see the number of rows,
row length, number of dead rows, and the percentage and amount of free space available:

hrdb=# SELECT * FROM stats.pgstattuple('casedemo') ;

-[RECORD 1]------ +--------
table len | 1228800
tuple_count | 16044
tuple len | 1152240
tuple percent | 93.77
dead_tuple count | o

dead tuple len | o
dead_tuple percent | 0

free space | 8184
free_percent | 0.67

You can also use the pg _stat_all tables table to pull up some interesting details,
such as the number of rows updated, deleted, and inserted as well as the timestamp of
the last time this table was autovacuumed, the timestamp of the last time the table was
autoanalyzed, and so on:

hrdb=# SELECT schemaname,relname,n tup ins,n tup upd,n_tup del,
n live tup,n_dead tup,last autovacuum,last_ analyze
from pg_stat_all_tables where relname='casedemo';

last _autovacuum

<[RECORD 1] ---dmmmmmmmmmmmmmmmmmmomememe o
schemaname | public
relname | casedemo
n_tup_ins | 16044
n_tup upd | o
n _tup del | o
n_live_tup | 16044
n dead_tup | o
|
|

last_analyze 2014-07-13 20:21:11.636+05:30

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance Tasks
Statistical information regarding indexes includes the following:

» Information regarding the space occupied by the indexes and whether there are any
bloated indexes.

» Information regarding the number of times the index was used by the query planner.
» Information regarding the number of rows read by the index.
» Information regarding the number of rows fetched by the index.

» Information regarding the leaf fragmentation in the index. Leaf fragmentation occurs
when rows are deleted, thus creating partially or completely empty blocks in the index
binary tree. Because of row deletion, these leaf-level index pages have free space;
as a result, the index uses more data pages to store data on disk and in memory,
thereby affecting the performance of scan operations even when data pages are
cached due to extra pages that need to be processed.

Statistics about indexes can be retrieved from the pg stat user indexes and pg index
tables. You can use these two tables to find the unused indexes:

SELECT
relid::regclass AS table,
indexrelid: :regclass AS index,
pPg_size pretty(pg relation size(indexrelid::regclass))

AS index_size,
idx tup_ read,
idx_tup_fetch,
idx scan

FROM pg stat user indexes

JOIN pg_index USING (indexrelid)
WHERE idx scan = 0
AND indisunique IS FALSE;

In the preceding query output, the idx_tup_ read, idx_tup fetch,and idx_scan
columns indicate the usage of the index:

» 1dx tup read: This column indicates the number of rows that have been read
using the index

» 1idx tup fetch: This column indicates the number of rows that have been fetched
using the index

» 1idx scan: This column indicates the number of times the index was used by the
query planner

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Routine reindexing

In some scenarios, it is worth rebuilding indexes periodically with the REINDEX command.
Indexes can become an issue in database applications that involve a high proportion of
repeated inserts and deletes, and this might cause indexes to become bloated. The potential
for bloat is not indefinite; that is, at worst there will be one key per page, but it might still be
worthwhile to schedule periodic reindexing for indexes that have such usage patterns. With
the help of the REINDEX command, index pages that have become completely empty are
reclaimed for reuse.

How to do it...

Indexes can be rebuilt at various levels, as follows:

» You can recreate the index at the individual index level, whereby a single index can
be rebuilt. You can recreate a single index, as given here:

REINDEX INDEX customer pkey;
» You can recreate the indexes at the table level, whereby all of the indexes for a given
table are rebuilt:

Here, in the following code, we are rebuiliding all of the indexes for a table customer:

REINDEX TABLE CUSTOMER;

» You can recreate the indexes at the system level, whereby you can recreate all of the
indexes on system catalogs within the current database. Here, we are rebuilding all of
the indexes on the system catalog for the hrdb database:

REINDEX SYSTEM hrdb;

» You can recreate the indexes at the database level, whereby you recreate all of the
indexes within the current database, which is hrdb in the code:

REINDEX DATABASE hrdb;

The REINDEX command is used to rebuild an index using the data stored in the index's table,
thereby replacing the old copy of the index.

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Routine Maintenance Tasks

REINDEX is used in the following situations:

>

REINDEX is to be used when an index becomes corrupted and does not contain any
valid data. Indexes can become corrupted due to software bugs or hardware failures.
REINDEX provides a recovery method.

REINDEX is to be used when an index becomes bloated, that is, when it contains
many empty pages. REINDEX reduces the space consumption of the index by writing
a new version of the index without dead pages.

REINDEX needs to be used when a storage parameter for an index has been altered
and you wish to ensure that the changes come into effect.

REINDEX locks out write operations on the index's parent table but does not block
read operations on the table. REINDEX also acquires an exclusive lock on the specific
index being processed, which will block reads that attempt to use the index.

There's more...

There is an option through which the REINDEX command can rebuild an index without locking
out write operations on the index's parent table. For this, you can use the CREATE INDEX
CONCURRENTLY command, which will build the index without taking any locks that prevent
concurrent inserts, updates, and deletes on the table. So, instead of rebuilding the index, you
have to perform the following three steps:

1.

First, create an index identical to the one you wish to rebuild using the CREATE
INDEX CONCURRENTLY option.

Next, drop the old index.

The final step is to rename the new index to the same name as the one that the old
index had.

The following code demonstrates the preceding steps:

CREATE INDEX CONCURRENTLY card index ON creditcard (cardno) ;
BEGIN;

DROP INDEX credit_card_idx;

ALTER INDEX card_index RENAME TO credit_card_idx;

COMMIT;

~[ee]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Maintaining log files

The information stored in log files can prove invaluable when diagnosing or troubleshooting
problems. With the help of the information stored in the log files, you can identify the sources
of the problems in the underlying database. For this very reason, it is important to preserve
log files rather than discarding them. However, the information in the log files tends to be
voluminous, so it important that a rotation policy be implemented in order to preserve certain
log files and to discard log files that are no longer required. Log files need to be rotated so that
new log files are started and old ones are removed after a reasonable period of time.

How to do it...

There are various mechanisms through which logging information is maintained and
preserved in log files. These are discussed as follows:

>

One way to deal with this is to send the server's stderr output to some kind of log
rotation program. PostgreSQL has a built-in log rotation facility, which can be used
by setting the 1ogging collector configuration parameter in the postgresgl.
conf file:

logging collector=true

Another approach is to use an external log rotation program that you might be using
with some other server software. For instance, the Apache distribution includes a

tool known as rotatelogs that can be used with PostgreSQL. This can be done by
piping the stderr output of the server to the desired external program. If you are using
the pg_ctl command to start the PostgreSQL server, then the stderr is already
redirected to the output, so you just need a pipe command, as shown here:

pg_ctl start | rotatelogs /var/log/pgsql log 86400
The third approach to managing the log file output is to send the log output to

the syslog and letting syslog deal with file rotation. To do this, you need to set
the 1log_destination parameter to syslog in the postgresql . conf file.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System
Using Unix Utilities

In this chapter, we will cover the following recipes:

» Monitoring CPU usage

» Monitoring paging and swapping

» Finding the worst user on the system
» Monitoring system load

» ldentifying CPU bottlenecks

» ldentifying disk I/0 bottlenecks

» Monitoring system performance

» Examining historical CPU load

» Examining historical memory load

» Monitoring disk space usage

» Monitoring network status

Introduction

In order to be able to solve performance problems, we should be able to effectively use
operating system utilities. We should also be able to use the right operating system tools and
commands to identify performance problems that may be due to CPU, memory or disk 1/0
issues. Many times, a DBA's duties often overlap with certain system administration related
functions, and it is important for a DBA to be effective in using the related operating system
utilities in order to correctly identify where the underlying issue on the server could be. In this
chapter, we are going to discuss various Unix/Linux-related operating system utilities that can
help the DBA in performance analysis and troubleshooting issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

Monitoring CPU usage

In this recipe, we are going to use the sar command to monitor CPU usage on the system.

Getting ready

The commands used in this recipe have been performed on an Oracle Solaris machine.
Hence, the command output may vary on different Unix- and Linux-related systems.

How to do it...

We can use the sar command with the -u switch to monitor CPU utilization:

bash-3.2$ sar -u 10 8

SunOS usstlz-pinfsi09 5.10 Generic 150400-04 sun4u 08/06/2014
23:32:17 %usr %sys %$wio %idle
23:32:27 80 14 3 3
23:32:37 70 14 12 4
23:32:47 72 13 21 4
23:32:57 76 14 6 3
23:33:07 73 10 13 4
23:33:17 71 8 17 4
23:33:27 67 9 20 4
23:33:37 69 10 17 4
Average 73 11 13 4

In the preceding command, with the -u switch, two values are passed as the input. The first
value, which is 10, displays the number of seconds between sar readings, and the second
value, which is 8, indicates the number of times you want sar to run.

The sar command provides a quick snapshot of how much of the CPU is bogged down or
utilized. The sar output reports values in the following columns:

» %usr: This indicates the percentage of CPU running in user mode

» %sys: This indicates the percentage of CPU running in system mode

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

» %wio: This indicates the percentage of CPU running idle, with a process waiting for
block I/0

» %idle: This indicates the percentage of CPU that is idle

Often, a low percentage of idle time points to a CPU-intensive job or an underpowered CPU.
You could use the ps or prstat command in Solaris to find a CPU-intensive job.

The following are general indicators of performance problems:

» If you see an abnormally high value in the $usr column, this would mean that
applications are not tuned properly or are overutilizing the CPU

» If you see a high value in the $sys column, it probably indicates a bottleneck that
could be due to swapping or paging and needs to be investigated further

Monitoring paging and swapping

In this recipe, we are going to use the sar and vmstat commands with options to monitor
paging and swapping operations.

Getting ready

It is necessary to monitor the amount of paging and swapping happening on the operating
system. Paging occurs when a part of the operating system process gets transferred from the
physical memory to the disk or is read back from the physical memory to the disk. Swapping
occurs when an entire process gets transferred to the disk from the physical memory or is
read back to the physical memory from the disk. Depending on the system, either paging or
swapping could be an issue. If paging occurs normally and you see a trend of heavy swapping,
then the issue could be related to insufficient memory, or sometimes the issue could be
related to disk as well. If the system is heavily paging and not swapping, the issue could be
related to either the CPU or the memory. The commands in this section are performed in an
Oracle Solaris environment.

How to do it...

We could use the vmstat and sar commands with options in the following manner to
monitor the paging and swapping operations:

1. The vmstat command can be used with the - S switch to monitor swapping and
paging operations, as follows:

bash$ vmstat -S

kthr memory page disk
faults cpu

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

rbw swap free si so pi po fr de sr s0 s2 s3 s4
in sy cs us sy id

6 14 0 453537392 170151696 0 O 2444 186 183 00 1 1 1 1
77696 687853 72596 13 4 83

In the aforementioned commands, the si and so columns represent swap-in and
swap-out operations, respectively.

Similarly, pi and po represent page-in and page-out operations, respectively.
However, the sar command provides more in-depth analysis of paging and
swapping operations when used with options.

We can also use the sar command with the -p switch to report paging operations,
as follows:

bash-3.2$ sar -p 5 4

SunOS usmtnz-sinfsil7 5.10 Generic 150400-04 sun4u 08/08/2014

05:45:18 atch/s pgin/s ppgin/s pflt/s vElt/s slock/s

05:45:23 4391.18 0.80 2.20 12019.44 30956.92 0.60
05:45:28 2172.26 1.80 2.40 5417.76 15499.80 0.20
05:45:33 2765.60 0.20 0.20 9893.20 20556.60 0.00
05:45:38 2194.80 2.00 2.00 7494.80 19018.60 0.00
Average 2879.85 1.20 1.70 8703.00 21500.25 0.20

The preceding output reports the following columns:

o atch/s: These are the page faults per second that are satisfied by
reclaiming a page currently in memory.

o pgin/s: The number of times per second that the filesystem receives page
in requests.

o ppgin/s: These are the pages paged in per second.
o pflt/s: Thisis the number of page faults from protection errors.

o vflt/s: This is the number that addresses translation page faults per
second. This happens when a valid process table entry does not exist for a
given virtual address.

o slock/s: These are the faults per second caused by software lock requests
requiring physical I/0.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Similarly, we can use the sar command with the -w switch to report swapping
activities and identify if there are any swap related issues:

bash-3.2$ sar -w 5 4

SunOS usmtnz-sinfsil7 5.10 Generic_ 150400-04 sun4u 08/08/2014
06:20:55 swpin/s bswin/s swpot/s bswot/s pswch/s
06:21:00 0.00 0.0 0.00 0.0 53143
06:21:05 0.00 0.0 0.00 0.0 60949
06:21:10 0.00 0.0 0.00 0.0 55149
06:21:15 0.00 0.0 0.00 0.0 64075
Average 0.00 0.0 0.00 0.0 58349

The aforementioned output reports the following columns:

[m]

[m]

swpin/s: This indicates the number of LWP transfers in the memory
per second

bswin/s: This indicates the number of blocks transferred for swap-ins
per second

swpot/s: This reports the average number of processes that are swapped
out of the memory per second

bswot /s: This reports the number of blocks that are transferred for
swap-outs per second

pswch/s: This indicates the number of kernel thread switches per second

If the si and so columns of the vimstat -S output have nonzero values, then this serves as
a good indicator of a possible performance issue related to swapping. This must be further
investigated using the more detailed analysis provided by the sar command with the -p and
-w switches respectively.

For paging, the key is to look for an inordinate amount of page faults of any kind. This would
indicate a high degree of paging. The concern is not with paging but with swapping because
as paging increases, it would be followed by swapping. We can look at the values in the
atch/s, pflt/s,vElt/s, and slock/s columns of the sar -p command output to review
the number of page faults of any type and see the paging statistics to observe whether the
paging activity remains steady or increases during a specific timeframe.

55}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

For the output of the sar -w command, the key column to observe is the swpot /s column.
This column indicates the average number of processes that are swapped out of the memory
per second. If the value in this column is greater than 1, it is an indicator of memory deficiency,
and to correct this you would have to increase the memory.

Finding the worst user on the system

In this recipe, we are going to use the top command to find the worst performing user on the
system at a given point in time.

Getting ready

The top command is a Linux-based utility that also works on Unix-based systems.
The commands in this section have been performed on a CentOS Linux machine.

How to do it...

The usage of the top command is shown as follows:

bash-3.2$top

Cpu states: 0.0% idle, 82.0% user, 18.7% kernel, 0.8% wait, 0.5% swap
Memory: 795M real, 12M free, 318M swap, 1586M free swap

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
23624 postgres -25 2 208M 4980K cpu 1:20 22.47% 94.43% postgres
15811 root -15 4 2372K 716K sleep 22:19 0.61% 3.81% java

20435 admin 33 0 207M 2340K sleep 2:47 0.23% 1.14% postgres
20440 admin 33 0 93M 2300K sleep 2:28 0.23% 1.14% postgres
23698 root 33 0 2052K 1584K cpu 0:00 0.23% 0.95% top

23621 admin 27 2 5080K 3420K sleep 0:17 1.59% 0.38% postgres
23544 root 27 2 2288K 1500K sleep 0:01 0.06% 0.38% br2.l.adm
15855 root 21 4 6160K 2416K sleep 2:05 0.04% 0.19% proctool

897 root 34 0 8140K 1620K sleep 55:46 0.00% 0.00% Xsun

20855 admin -9 2 7856K 2748K sleep 7:14 0.67% 0.00% PSRUN
208534 admin -8 2 208M 4664K sleep 4:21 0.52% 0.00% postgres
755 admin 23 0 3844K 1756K sleep 2:56 0.00% 0.00% postgres

2788 root 28 0 1512K 736K sleep 1:03 0.00% 0.00% 1lpNet

18598 root 14 10 2232K 1136K sleep 0:56 0.00% 0.00% xlock

1l root 33 0 412K 100K sleep 0:55 0.00% 0.00% ini

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The first two lines in the preceding output give general system information, whereas the rest
of the display is arranged in order of decreasing current CPU usage.

The top command provides statistics on CPU activity. It displays a list of CPU-intensive tasks
on the system and also provides an interface for manipulating processes.

In the preceding output, we can see the top user to be postgres with a process ID of 23624.
We can see the CPU consumption of this user to be 94 .43%, which is too high and needs

to be investigated, or the corresponding operating system process needs to be killed if it is
causing performance issues on the system.

Monitoring system load

In this recipe, we are going to use the upt ime command to monitor overall system load.

How to do it...

The upt ime command gives us the following information:

» Current system time

» How long the system has been running

» Number of currently logged-on users in the system

» System load average for the past 1, 5, and 15 minutes

The upt ime command can be used as follows:

bash-3.2$ uptime

11:44pm wup 20 day(s), 20 hr(s), 10 users, load average: 27.80,
30.46, 33.77

In the preceding output, we can see that the current system time is 11 : 44pm (GMT) and the
system has been up and running for the last 20 days and 20 hours without requiring a reboot.
The output also tells us that there are ten concurrently logged-on users in the system. Finally,
we get the load average during the past 1, 5, and 15 minutes as 27.80, 30.46,and 33.77,
respectively.

[55]-

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

The basic purpose of running the upt ime command is to take a quick look at the current

CPU load on the system. This provides a peek at the current system performance. System

load refers to the average number or processes that are either in a runnable or uninterruptable
state. A process enters the runnable state when it starts to utilize the CPU resources or is
waiting to acquire them. It enters the uninterruptable state when it spends time waiting for an
1/0 operation. Load average is categorized over the three time intervals, that is, the 1-, 5-, and
15-minute periods. Load averages are not categorized for the number of CPUs on the system.
So for a system with a single CPU, a load average of 1 indicates 100 percent busy time period
with zero idle time, whereas for a system with 5 CPUs a load average of 1 would indicate an
idle time of 80 percent and a busy time period of only 20 percent.

Identifying CPU bottlenecks

In this recipe, we are going to use the mpstat command to identify CPU bottlenecks.

Getting ready

The commands in this section have been performed on a Solaris server.

How to do it...

The mpstat command is used to report per processor statistics in a tabular format.

The usage of the mpstat command is shown as follows:

bash-3.2$ mpstat 1 1

CPU minf mjf xcal intr ithr c¢sw icsw migr smtx srw syscl usr sys wt
idl

0 672 0 2457 681 12 539 17 57 119 0 4303 18 10 0
73

1 90 0 1551 368 22 344 6 37 104 0 3775 17 4 0
79

2 68 0 1026 274 14 217 4 24 83 0 2393 11 3 0
86

3 50 0 568 218 9 128 3 17 56 0 1319 7 2 0
92

4 27 0 907 340 12 233 3 22 72 0 2034 9 2 0
88

www.it-ebooks.info

http://www.it-ebooks.info/

74

83

89

94

77

10
71

11
93

12
94

13
78

14
72

15
94

16
90

17
89

18
87

19
71

20
88

21
90

22
88

23
72

24
74

25
90

75

69

29

10

63

72

17

10

60

72

16

20

16

19

66

23

14

19

66

66

20

1777

1395

888

344

1275

1875

438

351

1207

1859

434

638

621

785

1584

826

543

772

1591

1820

672

426

421

394

177

288

324

183

175

267

323

184

197

215

214

293

207

190

210

294

305

210

25

15

17

28

10

17

29

10

12

12

14

24

14

12

14

24

27

11

370

337

273

80

268

330

94

79

245

331

94

127

141

151

288

142

115

147

293

311

135

33

27

23

13

22

30

17

13

21

30

17

16

16

18

26

17

15

18

26

27

18

111

96

74

44

90

110

50

44

87

109

50

57

59

63

96

64

54

62

96

100

62

4820

2948

1873

1007

4337

5514

1048

1047

4243

5347

1031

1810

2062

2384

5681

2172

1896

2347

5398

4941

1783

22

14

20

25

19

24

11

25

10

11

25

22

Chapter 5

4

0

www.it-ebooks.info

o7}

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

26 16
89
27 20
85
28 66
74
29 20
90
30 17
89
31 22
85
32 637
70
33 98
77
34 74
85
35 54
90
36 17
90
37 69
75
38 61
82
39 12
91
40 9
94
41 59
77
42 70
71
43 16
93
44 10
94
45 57
78

0

645

821

1698

641

633

798

2183

1998

1217

661

925

2146

1856

1006

402

1490

2486

541

438

1436

192

213

305

194

190

215

507

383

273

216

311

302

910

848

168

288

329

180

169

264

12

15

28

13

11

15

21

24

14

117

23

665

661

16

26

10

16

116

152

308

121

118

161

672

431

265

168

144

312

254

138

82

285

356

99

83

257

17

15

17

27

17

15

17

61

39

25

18

18

28

22

15

12

21

29

16

13

20

59

62

98

59

57

61

114

94

73

51

49

86

71

40

32

73

91

39

34

69

2184

3016

5106

1731

2164

3044

4939

4076

2589

1624

1610

4624

2734

1099

986

4233

5326

1052

1051

4137

10

13

23

13

20

19

13

22

13

20

25

19

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the preceding output of the mpstat command, each row of the table represents the
activity of one processor. The first table shows a summary of activity since the last boot time.
The important value from a DBA's perspective is the value in the smtx column. The smtx
measurement indicates the number of times the CPU failed to obtain the mutual exclusion
lock (mutex). Mutex stalls waste CPU time and degrade multiprocessor scaling.

A general rule of thumb is that if the value in the smtx column is greater than 200, then itis a
symptom and indication of CPU bottleneck issues, which need to be investigated.

Identifying disk 1/0 bottlenecks

In this recipe, we are going to use the iostat command to identify disk-related bottlenecks.

Getting ready

The commands in this section have been performed on a Solaris server.

How to do it...

There are various switches available with the iostat command. The following are the most
important switches used along with iostat:

» -d: This switch reports the number of kilobytes transferred per second for specific
disks, the number of transfers per second, and the average service time in
milliseconds. The following is the usage of the iostat -d command:

bash-3.2%iostat -d 5 5

sdo sd2 sd3 sd4

Kps tps serv Kps tps serv Kps tps serv Kps tps serv

1 0 53 57 5 145 19 1 89 0 0 14

140 14 16 0 0 785 31 21

8 1 15 0 0 814 36 18

11 1 82 0 26 818 36 19
1

0
0
0
0 0 0 0 22 856 37 20

0 0 0
0 0 0
0 0 0
0 0 0

s

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

» -D: This switch lists the reads per second, writes per second, and percentage of
disk utilization:

bash-3.2$ iostat -D 5 5

sdo sd2 sd3 sd4
rps wps util rps wps util rps wps util rps wps util

0 0 0.3 4 0 6.2 1 1 1.8 0 0 0.0
0 0 0.0 0 35 90.6 237 0 97.8 0 0 0.0
0 0 0.0 0 34 84.7 218 0 98.2 0 0 0.0
0 0 0.0 0 34 88.3 230 O 98.2 0 0 0.0
0 2 4.4 0 37 91.3 225 0 97.7 0 0 0.0

» -x: This switch will report extended disk statistics for all disks:
bash-3.2$ iostat -x

extended device statistics

device r/s w/s kr/s kw/s wait actv sve t %w %b
£do 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sdo 0.0 0.0 0.4 0.4 0.0 0.0 49.5 0 0
sd2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd3 0.0 4.6 0.0 257.6 0.0 0.1 26.4 0 12
sd4 69.3 3.6 996.9 180.5 0.0 7.6 102.4 0 100
nfsl0 0.0 0.0 0.4 0.0 0.0 0.0 24.5 0 0
nfsl4 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0 0
nfslée 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0 0

The iostat command reports statistics about disk input and output operations to produce
measurements of throughput, utilization, queue lengths, transaction rate, and service time.
The first line of the iostat output shows everything since booting the system, whereas each
subsequent line shows only the prior interval specified.

If we observe the preceding output of the iostat -d command in the How to do it...
section, we can clearly see that the sd3 disk drive is heavily overloaded. The values in the
kps (short for kilobytes transferred per second), tps (short for the number of transfers per
second), and serv (short for average service time in milliseconds) columns for the sd3

disk drive are consistently high over the specified interval. This leads us to a conclusion that
moving information from sd3 to any other drive might be a good idea if this information is
representative of disk I/0 on a consistent basis. This would reduce the load on sd3.

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Also, if you observe the output of the iostat -Dcommand in the How to do it... section, you
can conclude that sd3 has high read activity, which is indicated by the high values in the rps
(short for reads per second) column. Similarly, we can see that the sd2 disk drive has a high
write activity, which is indicated by the high values in the wps (short for writes per second)
column. Both of the disk drives, sd2 and sd3, are at the peak level of utilization, which can
be seen from the high percentage in the util (short for utilization) column. The high values
in the util column are an indication of I/0 problems, which should be investigated by the
system administrator.

Similarly, if we take a look at the preceding output of the iostat -x command in the How to
do it... section, we can easily come to the conclusion that the sd4 disk drive is experiencing
1/0 problems as seen from the $b column, which indicates the percentage of time the

disk is busy. For sd4, the disk utilization is at 100 percent, which would need a system
administrator's immediate attention.

Monitoring system performance

Many times, there are situations when the application users start complaining about the
database performance being slow, and as a DBA, you need to determine whether there are
system resource bottlenecks on the PostgreSQL server. Running the vmstat command can
help us to quickly locate and identify any bottlenecks on the server.

Getting ready

The commands in this section have been performed on a CentOS Linux machine.

How to do it...

The vmstat command is used to report real-time performance statistics about processes,
memory, paging, disk I/0, and CPU consumption. The following is the usage of the vmstat
command:

$ vmstat

procs -------- memory-------- --swap-- --io-- -system- ---cpu---

r b swpd free buff cache si so bi bo in cs us sy id wa

14 0 52340 25272 3068 1662704 0 O 63 76 9 31 151 84 0

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

In the preceding output, the first line divides the columns on the second line into six different
categories, which are discussed as follows:
» The first category is the process (procs) and it contains the following columns:
o r: This column indicates the total number of processes waiting for runtime

o b: This column reports the total number of processes in uninterruptible sleep

» The second category is memory and it contains the following columns:
o swpd: This column indicates the total amount of virtual memory in use
o free: This column reports the amount of idle memory available for use
o buff: This column indicates the amount of memory used for buffers
o cache: This column indicates the amount of memory used as page cache

» The third category is swap, which contains the following columns:
o si: This column reports the amount of memory swapped in from the disk
o so: This column indicates the amount of memory swapped out from the disk

» The fourth category is I/0 (io) and it contains the following columns:
o bi: This column indicates the blocks that are read in from a block device
o bo: This column reports the blocks that are written out to a block device

» The fifth category is system, which contains the following columns:
o in: This column reports the number of interrupts per second

o cs: This column reports the number of context switches per second

» The final category is the CPU (cpu) and it contains the following columns:

o us: This column reports the percentage of the time the CPU ran
user-level code

o sy: This column reports the percentage of the time the CPU ran
system-level code

o id: This column reports the percentage of time the CPU was idle
o wa: This column reports the amount of time spent waiting for 1/0 to complete

The following are the general rules of thumb used while interpreting the vmstat
command output.

» If the value in the wa column is high, it is an indication that the storage system is
probably overloaded and that action needs to be taken to address that issue

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

» If the value in the b column is greater than zero consistently, then it is an indication
that the system does not have enough processing power to service the currently
running and scheduled jobs

» If the values in the so and si columns are greater than zero when monitored for a
period of time, then it is an indication and symptom of a memory bottleneck

Examining historical CPU load

In this recipe, we are going to show how to use the sar command in combination with various
switches to analyze historical CPU load at some time in the past.

Getting ready

The commands used in this recipe have been performed on an Ubuntu Linux machine.

How to do it...

The sar command when used with the -u switch is used to display CPU statistics. When used
this way, the sar command will report the current day's activities.

If we are looking to analyze the CPU statistics from some time in the past, we would need to
use the -f switch in conjunction with the -u switch of the sar command. The - £ option is
followed by the files that sar uses to report statistics for different days of the month. These
files are usually located in the /var/log/sa directory and they usually have a naming
convention of sadd, where dd represents the numeric day of the month, whose values

are in the range 01 to 31.

The following is the usage of the sar command to view CPU statistics for the eighth day of
the month:

$ sar -u -f /var/log/sa/sa08

03:50:10 PM CPU %user %nice %system %iowait %idle

04:00:10 PM all 0.42 0.00 0.24 0.00 96.41
04:10:10 PM all 0.22 0.00 1.96 0.00 95.53
04:20:10 PM all 0.22 0.00 1.22 0.01 99.55
04:30:10 PM all 0.22 0.00 0.24 2.11 99.54
04:40:10 PM all 0.24 0.00 0.23 0.00 92.54
Average: all 0.19 0.00 0.19 0.07 99.55

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

Generally the rules of thumb are that if the $id1le value is low, it serves as an indication that
either the CPUs are underpowered or the application load is high. Similarly, if we see nonzero
values in the iowait time column, it serves as a reminder that the 1/0 subsystem could be a
potential bottleneck.

If we observe the preceding output of the sar command, we can see that the $idle timeis
high, which clearly indicates that the CPU is probably not overburdened, and we do not see
many nonzero values in the $iowait column, which tells us that there is not much contention
for disk 1/0 either.

There's more...

When the sysstat package is installed, a few cron jobs are scheduled to create files used
by the sar utility to report historical server statistics. We can observe these cron jobs by
taking a look at the /etc/cron.d/sysstat file.

Examining historical memory load

In this recipe, we are going to see how to analyze the memory load for a previous day of
the month.

Getting ready

The commands used in this recipe have been performed on an Ubuntu Linux machine. The
command output may vary in other Linux- and Unix-based operating systems.

How to do it...

When it comes to analyzing memory statistics, we need to check out both paging statistics
and swapping statistics.

We can use the sar command in conjunction with the -B switch to report paging statistics
along with the - £ switch to report statistics for different days of the month. As mentioned in the
previous recipe, the files that the sar command uses to report statistics for different days of the
month are located in the /var/log/sa directory, and they have a naming convention of sadd,
where dd represent the numeric date of the month, with values ranging from 01 to 31.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

For instance, to report the paging statistics for the fifth day of the month, we can use the sar
command as follows:

$ sar -B -f /var/log/sa/sa05

06:10:05 AM pgpgin/s pgpgout/s fault/s majflt/s

06:20:05 AM 0.02 18.17 19.37 0.00
06:30:05 AM 4.49 26.68 76.15 0.05
06:40:05 AM 4512.43 419.24 380.14 0.65
06:50:06 AM 4850.03 1055.79 4364.73 0.51
07:00:06 PM 4172.68 1096.96 6650.51 0.16

Similarly, to report the swapping statistics for different days of the month, we can use the sar
command in conjunction with the -w switch and the - £ switch.

For instance, to report on the swapping statistics for the fifth day of the month, we can use
the sar command as follows:

$ sar -W -f /var/log/sa/sa05

06:10:05 AM pswpin/s pswpout/s
06:20:05 AM 0.00 0.00

06:30:05 AM 0.02 0.00
06:40:05 AM 1.15 1.45
06:50:06 AM 0.94 2.99
07:00:06 PM 0.67 6.95

In the preceding output of the sar -B -f /var/log/sa/sa05 command, we can
clearly see that at about 6.40 AM, there was a substantial increase in paging from the disk
(pgpgin/s), pages paged out to disk (pgpgout/s), and page faults per second (fault/s).

Similarly, when swapping statistics are being reported with the sar -w -f /var/log/sa/
sa05 command, we can clearly see that the swapping started at about 06.40 AM, which
can be seen from the values in the pswpin/s column and the pswpout /s column. If we
see high values in the pswpin/s (pages swapped into the memory per second) column and
the pgpgout /s (pages swapped out per second) column, it means that the current memory
is inadequate and needs to be either increased or, for certain application components,
optimally resized.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

Monitoring disk space usage

In this recipe, we are going to show the commands that are used to monitor disk space.

Getting ready

The commands in this section have been performed on a Solaris server.

How to do it...

We can use the af command with various switches to monitor disk space. To make the output
more understandable, we often use the -h switch with the df command:

bash-3.2%$ df -h

Filesystem size used avail
capacity Mounted on

132G 80G 50G

62% /

/devices 0K 0K 0K
0% /devices

ctfs 0K 0K 0K
0% /system/contract

proc 0K 0K 0K
0% /proc

mnttab 0K 0K 0K
0% /etc/mnttab

swap 418G 488K 418G
1% /etc/svec/volatile

swap 418G 38M 418G
1% / tmp

swap 418G 152K 418G
1% /var/run

/dev/dsk/c20t60000970000192602156533030374242d0s0 236G 240M 234G
1% /peterdata/cm _new

/dev/dsk/c20t60000970000192602156533032353441d0s0 30G 30M 29G
1% /peterdata/native

/dev/dsk/c20t60000970000192602156533033313441d0s0 236G 60G 174G
26% /peterdata/db_new

/dev/dsk/c20t60000970000195701036533032454646d0s0 30G 6.9G 22G
24% /peterdata/native

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

/dev/dsk/c20t60000970000195701036533032444137d0s0 236G 224G 12G
95% /peterdata/db

/dev/dsk/c20t60000970000192602156533032333232d0s2 709G 316G 386G
45% /peterdata/cm

usmtnnas4106-epmnfs.emrsn.org:/peterblap 2156 276G 239G 36G 87%
/peterblap

usmtnnas4106-epmnfs.emrsn.org:/peterdata data 2156 98G 53G 45G
54% /peterdata/data

usmtnnas4106-epmnfs.emrsn.org:/peterdata uc4appmgr 9.8G 3.6G 6.3G
37% /peterdata/uc4/

If we observe the preceding output, we can see that the /peterdata/db mount point is
nearing its full capacity (it has reached a capacity of 95%) and only another 12 GB of free disk
space is available on the device. This is an indication that the administrator needs to either
clean up some old files on the existing mount point to release more free space, or allocate
additional space to the given mount point before it reaches its full capacity.

Monitoring network status

In this recipe, we are going to show how to monitor the status of network interfaces.

Getting ready

The commands used in this recipe have been performed on a CentOS Linux machine.
The command output may vary in other Linux- and Unix-based operating systems.

How to do it...

We are going to use the netstat command with the -i switch to display the status of the
network interfaces that are configured on the system. Here is a screenshot that shows the
usage of the netstat command:

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring the System Using Unix Utilities

In the preceding output of the netstat -i command, we can determine the number of
packets a system transmits and receives on each network interface. The Ipkts column
determines the input packet count and the Okpts column determines the output packet
count. If the input packet count remains steady over a period of time, it means that the
machine is not receiving network packets at all, and the outcome suggests that it is possibly
a hardware failure on the network interface. If the output packet count remains steady over a
period of time, then it could possibly mean problems that may be caused due to an incorrect
address entry in the host's or the ethers database.

108

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring
Database Activity
and Investigating

Performance Issues

In this chapter, we will cover the following recipes:

Checking active sessions

Finding out what queries users are currently running
Getting the execution plan for a statement

Logging slow statements

Collecting statistics

Monitoring database load

Finding blocking sessions

Table access statistics

Finding unused indexes

Forcing a query to use an index

v v v v v v v v v v v

Determining disk usage

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

Introduction

Monitoring databases and troubleshooting performance issues is one of the major duties of
a database administrator. Ensuring a healthy database with optimal performance is what a
DBA is employed for. Database monitoring should be done regularly in a proactive manner to
resolve any known issues before they reach a critical state and lead to performance issues.
Troubleshooting performance issues is a reactive approach because it is only after an issue is
reported that the DBA starts troubleshooting it. If proactive alerts are set in a timely manner,
a DBA can ensure that the database is in a healthy state, and this can lead to a reduction in
performance issues.

We have used the dvdrental sample database for all of the code in this chapter. The
dvdrental sample is available in the code bundle. Details about the installation and
working of the dvdrental database are also in the code bundle.

Checking active sessions

In this recipe, we are going to learn how to check for active sessions in a database.

Getting ready

We are going to query the pg_stat_activity table to check for active sessions in a
database. The query used in this recipe works in PostgreSQL version 9.2 onwards.

How to do it...

We can use the following SQL query to find the active sessions in the hrdb database:

SELECT pid , usename, application name, client addr,
client hostname, query, state from pg stat activity
where datname='dvdrental';

We use the preceding query to find all of the client connections made to the hrdb database.
Here is an explanation of the columns in the pg_stat_activity table to find information
regarding active sessions in the hrdb database:

» The pid column: The value in this column indicates the process ID of the currently
connected user to the database, the hrdb database in our case.

» The datname column: The value in this column indicates the name of the database
to which the user is currently connected.

110

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

» The application name column: The value in this column provides the application
name that is being used by the user currently connected to the database.

» The client addr column: The value in this column gives the IP address of the user
that is currently connected to the database.

» The client hostname column: The value in this column gives the hostname of the
connected client.

» The query column: The value in this column provides the full text of the SQL query
that is being executed by the client.

» The preceding output also includes the state column, which indicates the status
of the pid column of the currently connected user. The state column can have the
following possible values:

o active: This value indicates that the user session is currently executing a
query at the backend.

o idle: This value indicates that the backend is waiting for a new
client command.

o idle in transaction: This value indicates that the backend process is
currently involved in a transaction but it is not executing a query.

o fastpath function call: This value indicates that the backend process
is executing a fast-path function.

o disabled: This value is reported if the value of the track activities
configuration parameter is disabled for the currently connected backend. If
the value of the state column is disabled, it means that information is
not being collected on the currently executing command for each session.

There's more...

If you are using a PostgreSQL version earlier than 9.2, then you can use the following query to
find the active sessions in a PostgreSQL database:

SELECT datname , procpid, usename,application name,client_ addr,
client hostname, current query FROM pg stat activity;

Finding out what queries users are currently

running

In this recipe, we are going to show the most recent, or currently executing, queries executed
by users in a PostgreSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

Getting ready

Before finding out what queries the users are issuing against the database, the first thing
we need to do is to enable the track_activities configuration parameter in the
postgresqgl . conf configuration file, as follows:

track activities = on

Once this parameter is enabled, we would need to reload the configuration file to ensure that
the changes made come into effect:

pg ctl -D $PGDATA reload

How to do it...

We can use the following query to view the text of the query that is being executed by the user
currently connected to the database:

SELECT datname, pid, usename, query start, state, query
FROM pg stat activity

This query can also be used in the SQL editor of the pgAdmin tool.

PostgreSQL will collect data about all of the running queries whenever the track activities
configuration parameter is enabled. We can see the most recent query executed by a user in a
specific PostgreSQL database by referring to the SQL statement retrieved from the query column
inthe pg stat activity table. The query start column indicates the time on the server
that the client executed the query.

Getting the execution plan for a statement

In this recipe, we are going to see how to get the execution plan for a SQL statement.

Getting ready

The EXPLAIN command is used to get the execution plan for a SQL statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

Every query that is triggered in PostgreSQL has an execution plan. The EXPLAIN command
can be run in any of the three given modes:

>

Generic Mode: In this mode, we just need to specify the EXPLAIN command followed
by the SQL statement. The PostgreSQL planner will display the execution plan that

it generated for the specified SQL statement. The execution plan will show the scan
method used to access the table referenced in the query. Other details included
could be the estimated execution cost of the SQL statement, which is the planner's
estimation of how long it will take to execute the SQL statement. The EXPLAIN
command can be invoked as follows:

dvdrental=# EXPLAIN select * from payment where amount > 4.99;
QUERY PLAN
Seq Scan on payment (cost=0.00..290.45 rows=3616 width=26)
Filter: (amount > 4.99)
(2 rows)

Analyze Mode: The SQL statement can also be executed in analyze mode. This
provides the actual runtime statistics such as the total time it took to execute the
query and the actual number of rows returned. With the help of this option we can
determine whether the PostgreSQL planner's estimates are close to the actual
numbers or not. We can run the EXPLAIN ANALYZE mode as follows:

dvdrental=# EXPLAIN ANALYZE select * from payment where amount >
4.99;
QUERY PLAN

Seqg Scan on payment (cost=0.00..290.45 rows=3616 width=26)
(actual time=0.024.
.7.117 rows=3618 loops=1)

Filter: (amount > 4.99)

Rows Removed by Filter: 10978
Total runtime: 7.457 ms
(4 rows)

Downloading the example code

1 You can download the example code files for all Packt
N books you have purchased from your account at
Q http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
L files e-mailed directly to you. -

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

» Verbose Mode: The benefit of running the EXPLAIN command in verbose mode is
that the EXPLAIN plan output will also display the columns that are passed by the
query. This information can be valuable when the underlying query is complicated.
We can run the EXPLAIN command in verbose mode as follows:
dvdrental=# EXPLAIN VERBOSE select * from payment where amount >
4.99;

QUERY PLAN

Seq Scan on public.payment (cost=0.00..290.45 rows=3616
width=26)

Output: payment id, customer id, staff id, rental id, amount,
payment date

Filter: (payment.amount > 4.99)
(3 rows)

The output of the EXPLAIN command is organized in a series of plan nodes. It is analyzed
with a bottom-to-top approach. At the bottom, there are nodes that look at tables, scan them,
or look at things through an index. Each line in the EXPLAIN command output is a plan node.

There are several numeric measurements that are associated with a node. For instance, if we
look at the output of the EXPLAIN ANALYZE command, we can see the following details:

» Seqg Scan: The first thing that we observe is that the plan has one node, which is
Sequential Scan node.

» cost=0.00..290.45: The first cost is the start-up cost of this node. The value
here determines how much work is estimated to be done before the node produces
its first row of output. Here, the value is zero because a Seq Scan node instantly
produces rows. The second estimated cost is the cost of running the entire node
until it completes.

» rows=3616: The number of rows to output if the node runs to completion.
» width=26: This value provides an estimate of the average number of bytes each row
output for the node will contain.

The points that were just discussed are related to the estimated values. The actual figures tell
the response time details for the query. The actual time consists of the actual start-up cost
and the cost of running the entire node. The rows column displays the actual number of rows
returned by the query.

If the difference between estimated rows and actual rows is hugg, it is an indication that the
query optimizer has made a bad decision based on the current execution plan.

114

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

For more detailed information, refer to http://www.postgresql .org/docs/9.2/
static/sqgl-explain.html, which describes execution plans in PostgreSQL.

Logging slow statements

In this recipe, we are going to cover how to log slow queries in the PostgreSQL server.

Getting ready

We would need to make changes to some of the configuration parameters in the
postgresql . conf file that enable logging, and then restart the PostgreSQL server in
order to ensure that the changes made to those configuration parameters come into effect.

How to do it...

Here is the sequence of steps that needs to be followed in order to log slow-running
SQL statements:

1. The following parameters would need to be set in the postgresql . conf file:

logging collector = on
log directory = 'pg log'
log_min_duration_ statement = 100

2. Once these parameters are set in the postgresql . conf file, we would need to
restart the PostgreSQL server as follows:

pg _ctl -D $PGDATA restart

Here is the explanation of the sequence of steps done in the preceding section:

» Setting log min duration_ statement to 100, as seen in the preceding section,
means that any SQL statements that run for 200 milliseconds or longer will be logged
in the PostgreSQL server. This is a useful parameter to enable because it can help in
tracking down unoptimized queries in client applications.

» Setting the logging collector parameter enables the logging collector, a
background process whose function is to capture log messages sent to stderr and
redirect them to logfiles. Setting this parameter is useful because log messages
captured this way may contain more information than syslog.

» Setting the 1og_directory parameter would determine the directory in which the
log files will be created.

www.it-ebooks.info

http://www.postgresql.org/docs/9.2/static/sql-explain.html
http://www.postgresql.org/docs/9.2/static/sql-explain.html
http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

Collecting statistics

In this recipe, we are going to cover the parameters that need to be enabled in order to
collect statistics.

Getting ready

The PostgreSQL server comes with set of predefined statistics access functions and a set

of predefined statistics views. These views use the predefined statistics functions to collect
statistics in PostgreSQL. By default, only a small number of statistics are collected. In the next
section, we will cover the configuration parameters that control the collection of statistics.

How to do it...

This is the sequence of steps that needs to be followed in order to enable statistics collection
in PostgreSQL:

1. The following configuration parameters would need to be set in the
postgresql.conf file:
track activities = on
track counts = on
track functions = all
track _io timing = on

2. Once these configuration parameters have been set, we would need to reload the
configuration file in order to ensure that parameter changes come into effect:
pg _ctl -D $PGDATA reload

Here is the explanation for the steps done in the preceding section.

» Setting track_activities enables monitoring of the command currently being
executed by the server process, along with the time the command began execution.

» Setting the track counts configuration parameter enables collection of statistics
on database activity, which includes statistics collection for table and index accesses.

» Setting the value of the track_functions configuration parameter to all enables
tracking of user-defined functions, which includes tracking procedural language
functions along with SQL and C language functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

» Setting the track io_ timing configuration parameter enables the timing
of database 1/0 calls. Enabling this parameter may cause some performance
overhead because when this parameter is enabled, PostgreSQL repeatedly probes
the operating system for the current time. /0 timing is captured in the pg_stat
database view. Major pieces of information that are captured are the number of
disk blocks and the time spent on reading and writing the database blocks for the
given PostgreSQL database.

For more details on this topic, please referto http://www.postgresql.org/docs/9.3/
static/monitoring-stats.html

and http://www.postgresql.org/docs/9.3/static/runtime-config-
statistics.html#GUC-TRACK-ACTIVITIES

Monitoring database load

In this recipe, we are going to use queries that can be used to monitor the database load.

Getting ready

We can use the pg_stat_database view to monitor the current database load.

How to do it...

In order to identify the existing database load, we would need to know the following:

» information such as the number of active database connections
» number of commits and rollbacks issued
» total blocks read and the percentage of buffer hits for a given database

We can use the following query to identify the existing database load for the dvdrental
database:

dvdrental=# SELECT numbackends as CONN, xact_commit as TX COMM,
xact_rollback as

TX_RLBCK, blks_read + blks_hit as READ_TOTAL,

blks hit * 100 / (blks_read + blks hit)

as BUFFER FROM pg_stat_database WHERE datname = 'dvdrental';

conn | tx comm | tx_rlbck | read total | buffer

www.it-ebooks.info

 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
http://www.postgresql.org/docs/9.3/static/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

The following columns are retrieved by the preceding query:

» numbackends: This column represents the total number of active connections
» xact_commit: This column represents the total number of commits

» xact_rollback: This column represents the total number of rollbacks

» Dblks read: This column represents the total blocks read

» Dblks hit: This column represents the total number of buffer hits

Here is the sequence of steps that are required in order to determine the current database load:
1. First, we would need to reset the statistics by using the pg_stat_ reset () function,

like this:

dvdrental=# SELECT pg_stat_reset () ;
pg_stat reset

2. The next step would be to wait for a period of time to ensure that sufficient statistics
have been collected.

3. The final step would be to invoke the statistics query on the pg_stat database
view, as shown in the previous section.

Finding blocking sessions

In this recipe, we are going to see the queries that can help us to find out which user sessions
are getting blocked and who is blocking them.

Getting ready

To run these queries, you will need to use the superuser account.

How to do it...

We can use the following query to find information regarding the blocking and blocked sessions:

SELECT bl.pid AS blocked pid,
a.usename AS blocked user,
ka.query AS blocking statement,
now() - ka.query start AS blocking duration,

118

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

kl.pid AS blocking pid,
ka.usename AS blocking user,
a.query AS blocked statement,
now() - a.query start AS blocked duration
FROM pg catalog.pg locks bl
JOIN pg catalog.pg stat activity a ON a.pid = bl.pid
JOIN pg catalog.pg locks kl ON kl.transactionid =
bl.transactionid AND kl.pid != bl.pid
JOIN pg catalog.pg stat activity ka ON ka.pid = kl.pid
WHERE NOT bl.granted;

The aforementioned query works in PostgreSQL version 9.2 and subsequent versions.

The query in the preceding section finds the process ID, the username, and the queries

that are being run by the blocked and the blocking sessions. Here, we are using the JOIN
condition on the pid column of the pg_locks and pg_stat_activity tables twice: once
for the blocking sessions and then for the blocked sessions. We are also doing a join of the
pg_lock table to itself, on the transactionid column, and the filter condition here is that
the pid (process ID) column should be unique to each other when the same table pg_locks
is joined to itself.

If you are using a version of PostgreSQL older than PostgreSQL version 9.2, then you may use
this query to identify blocking sessions:

SELECT bl.pid AS blocked pid,

a.usename AS blocked user,

ka.current query AS blocking statement,

now () - ka.query start AS blocking duration,

kl.pid AS blocking pid,

ka.usename AS blocking user,

a.current query AS blocked statement,

now() - a.query start AS blocked duration
FROM pg catalog.pg locks bl
JOIN pg catalog.pg stat activity a ON a.procpid = bl.pid
JOIN pg catalog.pg locks kl ON kl.transactionid = bl.transactionid
AND kl.pid != bl.pid
JOIN pg catalog.pg stat activity ka ON ka.procpid = kl.pid
WHERE NOT bl.granted;

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

Table access statistics

In this recipe, we are going to see the details of how the tables are being accessed.

Getting ready

Statistical values about user tables are available in the pg stat user tables view. This
table can be used to get details such as the estimated number of live and dead rows and the
timestamps for the time when the table was last vacuumed or autovacuumed. Similarly, we
can use the pg stat user tables to find details about table's access.

How to do it...

We can use the following query to determine whether the tables are being accessed by
sequential or index scans:

dvdrental=# SELECT schemaname,relname,seq scan,idx scan,cast (idx_scan
AS numeric) / (idx scan + seq scan) AS i1dx_scan pct
FROM pg_stat_user_tables WHERE (idx_scan + seqg_scan) >0
ORDER BY idx_scan_pct;
schemaname | relname | seq_scan | idx _scan |
idx_scan_pct

———————————— e et e
public | category | 2 | 0 |
0.00000000000000000000

public | actor | 3| 0 |
0.00000000000000000000

public | customer | 7 | 0 |
0.00000000000000000000

public | country | 2| 0 |
0.00000000000000000000

public | film category | 3| 0 |
0.00000000000000000000

public | payment | 7 | 0 |
0.00000000000000000000

public | inventory | 4 | 0 |
0.00000000000000000000

public | language | 2| 0 |
0.00000000000000000000

public | store | 4 | 0 |
0.00000000000000000000

public | £ilm_actor | 4 | 0 |
0.00000000000000000000

public | city | 4 | 0 |

0.00000000000000000000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

public | rental | 7 | 0 |
0.00000000000000000000

public | staff | 5 | 0 |
0.00000000000000000000

public | f£ilm | 8 | 0 |
0.00000000000000000000

public | address | 4 | 4 |
0.50000000000000000000

(15 rows)

In the preceding output, we can see that for a majority of tables starting from the category
table until the £i1m table, access is done by sequential scans because all of the data fits into a
single data page. For the table address, we can see that for some of the queries, access is done
by sequential scans, and for some statements, PostgreSQL is using indexes to look up values.

Another interesting aspect is to find out how many rows were processed by these scans.
We can use the following query to get this information:

dvdrental=# SELECT relname,seq_tup_read,idx tup_ fetch, cast(
idx tup fetch AS numeric) / (idx tup fetch + seq tup_ read)

AS idx tup pct FROM pg stat user tables WHERE (idx tup fetch +
seq tup read) >0 ORDER BY idx_ tup pct;

relname | seq tup read | idx tup fetch | idx_tup pct
——————————————— T TR
category | 32 | 0 |
0.00000000000000000000
actor | 600 | 0 |
0.00000000000000000000
customer | 4193 | 0 |
0.00000000000000000000
country | 218 | 0 |
0.00000000000000000000
film category | 3000 | 0 |
0.00000000000000000000
payment | 102172 | 0 |
0.000000000000000000000000
inventory | 18324 | 0 |
0.000000000000000000000000
language | 12 | 0 |
0.00000000000000000000
store | 8 | 0 |
0.00000000000000000000
film actor | 21848 | 0 |

0.000000000000000000000000

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

city | 2400 | 0 |
0.00000000000000000000

rental | 112308 | 0 |
0.000000000000000000000000

staff | 10 | 0 |
0.00000000000000000000

film | 8000 | 0 |
0.00000000000000000000

address | 2412 | 4 |
0.00165562913907284768

(15 rows)

In the preceding output, we can see that for all of the tables, most of the rows were
processed by sequential scan. Only for the addresses table, four rows were accessed
using an index lookup.

Finding unused indexes

It becomes necessary to check for unused indexes because indexes end up consuming a
significant chunk of disk space, and if not monitored closely, they can consume unnecessary
CPU cycles, more so in the case of them becoming fragmented.

Getting ready

In order to be able to find unused indexes in PostgreSQL, we need to ensure that the

track activities and track counts configuration parameters are enabled in the
postgresqgl . conf file. It is only when statistics are collected that we will be able to identify
the unused indexes.

How to do it...

We can use the following query to identify unused indexes in PostgreSQL:

SELECT
relid: :regclass AS table,
indexrelid: :regclass AS index,
P9 _size pretty(pg relation size(indexrelid::regclass))
AS index size,
idx tup read,
idx tup_ fetch,
idx scan
FROM pg stat user indexes
JOIN pg index USING (indexrelid)
WHERE idx scan = 0

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

AND indisunique IS FALSE;

table | index | index size | idx_tup read | idx_

tup_fetch | idx_scan

———————————— e el et T TR
_________ o e

film | £ilm fulltext idx | 88 kB | 0 |
0 | 0

actor | idx_actor_last name | 16 kB | 0 |
0 | 0

customer | idx_fk address_id | 32 kB | 0 |
0 | 0

address | idx fk city id | 32 kB | 0 |
0 | 0

city | idx_fk country id | 32 kB | 0 |
0 | 0

payment | idx_fk customer id | 336 kB | 0 |
0 | 0

film actor | idx_fk film id | 136 kB | 0 |
0 | 0

rental | idx_fk inventory id | 368 kB | 0 |
0 | 0

film | idx_fk language_ id | 40 kB | 0 |
0 | 0

payment | idx_fk rental id | 336 kB | 0 |
0 | 0

payment | idx fk _staff id | 336 kB | 0 |
0 | 0

customer | idx fk _store id | 32 kB | 0 |
0 | 0

customer | idx_last name | 32 kB | 0 |
0 | 0

inventory | idx_store id film id | 120 kB | 0 |
0 | 0

film | idx_title | 56 kB | 0 |
0 | 0

(15 rows)

If we take a look at the preceding output, we can conclude that wherever the entry for
idx_scan is zero, it clearly means that either the given index has never been used or
most likely not used since the time pg_stat reset () function was run, which basically
resets all of the statistics counters for the current database to zero. In the preceding
section, we are doing a join on the pg_stat user indexes and pg index tables,

on the indexrelid column.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

In the preceding query output, the idx_tup_ read, idx_tup fetch,and idx_scan
columns indicate the usage of the index:

» The idx_tup_ read column indicates how many rows have been read using
the index

» The idx tup fetch column indicates the number of rows that have been fetched
using the index

» The idx scan column indicates the number of times the index was used by the
query planner

There's more...

Just as with unused indexes, we also need to find out whether there are any duplicate indexes
because duplicate indexes also consume unnecessary space. Quite often, there are instances
of indexes defined on a column of a table with a unique key and the same column is also
defined as the primary key. This situation would result in a duplicate index since the primary
key itself is unique, and in that situation, there is no need to define an additional index on the
same column as a unique index. We can use the following query to identify duplicate indexes
in PostgreSQL:

SELECT pg_size pretty(sum(pg relation size (idx))::bigint) AS size,
(array agg(idx)) [1] AS idx1l, (array agg(idx)) [2] AS idx2,
(array agg(idx)) [3] AS idx3, (array_agg(idx)) [4] AS idx4

FROM (SELECT indexrelid::regclass AS idx, (indrelid::text ||E'\n']|

indclass::text ||E'\n'|| indkey::text ||E'\n']|
coalesce (indexprs: :text,'') | |E'\n' || coalesce (indpred::text,''))
AS KEY

FROM pg_index) sub
GROUP BY KEY HAVING count (*)>1
ORDER BY sum(pg relation size(idx)) DESC;

Once the duplicate indexes have been identified, they can then be dropped to reclaim lost space.

You can referto https://gist.github.com/jberkus/6blbcaf7724dfc2a54£3 and
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.
html, which contain more information related to unused indexes.

Forcing a query to use an index

In this recipe, we show different methods that can be used to force the database to use
an index.

124

www.it-ebooks.info

https://gist.github.com/jberkus/6b1bcaf7724dfc2a54f3
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.html
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.html
http://www.it-ebooks.info/

Chapter 6

Getting ready

Usually, it is the job of the PostgreSQL optimizer to determine whether a sequential scan or an
index lookup is going to be more efficient when the table is being accessed by a query to fetch
results. However, if we decide that it is worth gambling on an index, then we must confirm

our results by testing the query execution in the development environment before moving the
results over to production.

How to do it...

There are two ways by which we can force the database to use an index:

>

The first is by setting enable segscan to false. This can be demonstrated by a
scenario given as follows:

dvdrental=# create table test_no_index(id int) ;

CREATE TABLE

dvdrental=# set enable segscan to false;

SET

dvdrental=# explain select * from test_no_index where id > 12;
QUERY PLAN

Seq Scan on test no index (cost=10000000000.00..10000000040.00
rows=800 width=
4)
Filter: (id > 12)
(2 rows)

o Next, we create an index on the given table so as to give the optimizer one or
more access paths:

dvdrental=# create index new_idx test_no_index on test_no_
index (id) ;
CREATE INDEX

o If we now check the execution plan for the query, we will see that instead of
a sequential scan, the query plan uses an index lookup to access the table
to fetch the query result:
dvdrental=# explain select * from test no index where id >
12; o

QUERY PLAN

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

Bitmap Heap Scan on test no index (cost=10.35..30.35
rows=800 width=4)
Recheck Cond: (id > 12)

-> Bitmap Index Scan on new idx test no index
(cost=0.00..10.15 rows=800 wi

dth=0)
Index Cond: (id > 12)
(4 rows)

» Another way is to set the value of the random page cost configuration parameter
to a lower or equivalent value to seq_page cost. By doing this, PostgreSQL will
prefer index scans for some of the SQL queries. This can be done as follows:

dvdrental=# set random page_cost = 2;
SET

In the preceding section, setting enable segscan to false will disable sequential scans
and force the optimizer to try and use a different plan. In our scenario, we disabled sequential
scans and created an index, new_idx test no_ index, onthe test no index table. By
doing this, we are providing the optimizer with another access path for the test _no_index
table.

Similarly, lowering the value of the random_page cost configuration parameter will cause
the system to prefer index scans. By default, the value of randon_page cost is 4, which
is higher than the default value of the seq_page cost configuration parameter, which is 1,
therefore causing a preference for sequential scans over index scans. Lowering the value of
random_page_ cost might help some queries whereby the optimizer might prefer to use
an index lookup.

Determining disk usage

In this recipe, we are going to display the amount of disk usage for a specific database and its
associated tables and indexes.

How to do it...

We can use the following SQL query to find the total size of an existing database, the
dvdrental database in this case:

dvdrental=# SELECT pg size pretty(pg database size('dvdrental')) As
fulldbsize;
fulldbsize

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In this query output, we can see that the total size of the dvdrental database is

approximately 14 MB.

Similarly, to display the size of the existing tables and their associated indexes in the
dvdrental database, we can use the following SQL query:

SELECT relname as "Table",

pg_size pretty(pg relation size(relid)) As " Table Size",

pg _size pretty(pg total relation size(relid) -

pg_relation size(relid)) as "Index Size"
FROM pg catalog.pg statio user tables ORDER BY

pg_total relation size(relid) DESC;

Table | Table Size
_____________________ o e
rental | 1200 kB
payment | 864 kB
film | 432 kB
film actor | 240 kB
inventory | 200 kB
customer | 72 kB
keytbl | 40 kB
address | 64 kB
city | 40 kB
film category | 48 kB
actor | 16 kB
encdata | 24 kB
store | 8192 bytes
staff | 8192 bytes
category | 8192 bytes
country | 8192 bytes
language | 8192 bytes
test | 0 bytes
test no_ index | 0 bytes
table with no index | 0 bytes

(20 rows)

Index Size
1272 kB
1368 kB
256 kB

296 kB

264 kB

152 kB

144 kB

88 kB

88 kB

64 kB

56 kB

32 kB

32 kB

24 kB

16 kB

16 kB

16 kB

8192 bytes
8192 bytes
8192 bytes

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Database Activity and Investigating Performance Issues

If we examine the preceding output, we can see the names of the tables along with the
respective table and index sizes. In the preceding query, we used two functions, pg_relation
size() andpg total relation size().Thepg relation size () function reports the
table size in kilobytes and the pg_total relation_ size () function reports the total size of
the table used on the disk inclusive of the space used by TOAST data and indexes. So in order

to get the correct index sizes for all of the indexes for a specific table, we subtracted the value

of pg relation size() frompg total relation size () usingthe relid columnasa
parameter in both of the functions.

If you need more information on determining disk usage, you can refer to http://wiki.
postgresqgl.org/wiki/Disk Usage and https://wiki.postgresql.org/wiki/
Index Maintenance

There's more...

In this section, we will provide some links you can refer to to get advice on dealing with
performance issues related to PostgreSQL.

You can check out the performance mailing listat http://archives.postgresql.org/
pgsql-performance/.

You can also refer to some of the PostgreSQL Wiki links that explain what to include in your
performance problem report and some useful troubleshooting information, at http://
wiki.postgresql.org/wiki/Guide to reporting problems and http://wiki.
postgresqgl.org/wiki/Performance Optimization.

If you have purchased Premium support from vendors such as 2ndQuadrant and
EnterpriseDB, you can log tickets with their support team concerning PostgreSQL issues.

128

www.it-ebooks.info

http://wiki.postgresql.org/wiki/Disk_Usage
http://wiki.postgresql.org/wiki/Disk_Usage
https://wiki.postgresql.org/wiki/Index_Maintenance
https://wiki.postgresql.org/wiki/Index_Maintenance
 http://archives.postgresql.org/pgsql-performance/
 http://archives.postgresql.org/pgsql-performance/
 http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
 http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
 http://wiki.postgresql.org/wiki/Performance_Optimization
 http://wiki.postgresql.org/wiki/Performance_Optimization
http://www.it-ebooks.info/

High Availability and
Replication

In this chapter, we will cover the following recipes:

» Setting up hot streaming replication
» Replication using Slony-I

» Replication using Londiste

» Replication using Bucardo

» Replication using DRBD

» Setting up the Postgres-XC cluster

Introduction

The important components for any production database is to achieve fault tolerance, 24/7
availability, and redundancy. It is for this purpose that we have different high availability and
replication solutions available for PostgreSQL.

From a business perspective, it is important to ensure 24/7 data availability in the event of
a disaster situation or a database crash due to disk or hardware failure. In such situations, it
becomes critical to ensure that a duplicate copy of the data is available on a different server
or a different database, so that seamless failover can be achieved even when the primary
server/database is unavailable.

In this chapter, we will talk about various high availability and replication solutions, including
some popular third-party replication tools such as Slony-I, Londiste, and Bucardo. We will also
discuss block-level replication using DRBD, and finally, set up a PostgreSQL extensible cluster,
that is, Postgres-XC.

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

Setting up hot streaming replication

In this recipe, we are going to set up a master-slave streaming replication.

Getting ready

For this exercise, you will need two Linux machines, each with the latest version of PostgreSQL
installed. We will be using the following IP addresses for the master and slave servers:

» Master IP address: 192.168.0.4
» Slave IP address: 192.168.0.5

Before you start with the master-slave streaming setup, it is important that the SSH
connectivity between the master and slave is setup.

How to do it...

Perform the following sequence of steps to set up a master-slave streaming replication:

1. First, we are going to create a user on the master, which will be used by the slave
server to connect to the PostgreSQL database on the master server:

psql -c "CREATE USER repuser REPLICATION LOGIN ENCRYPTED
PASSWORD 'charlie';"

2. Next, we will allow the replication user that was created in the previous step to allow
access to the master PostgreSQL server.
This is done by making the necessary changes as mentioned in the pg_hba . conf file:
Vi pg hba.conf

host replication repuser 192.168.0.5/32 md5

3. Inthe next step, we are going to configure parameters in the postgresqgl . conf file.
These parameters need to be set in order to get the streaming replication working:

Vi /var/lib/pgsql/9.3/data/postgresql.conf

listen addresses = '*!'
wal_level = hot_standby
max_wal_senders = 3

wal keep segments = 8
archive mode = on

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

archive command = 'cp %p /var/lib/pgsqgl/archive/%$f && scp %p
postgres@192.168.0.5:/var/lib/pgsqgl/archive/%f"

checkpoint segments = 8

Once the parameter changes have been made in the postgresql . conf file in the
previous step, the next step will be to restart the PostgreSQL server on the master
server, in order to let the changes take effect:

pg ctl -D /var/lib/pgsql/9.3/data restart

Before the slave can replicate the master, we will need to give it the initial database
to build off. For this purpose, we will make a base backup by copying the primary
server's data directory to the standby. The rsync command needs to be run as a root
user:

psql -U postgres -h 192.168.0.4 -c "SELECT pg start
backup('label', true)"

rsync -a /var/lib/pgsql/9.3/data/ 192.168.0.5:/var/lib/pgsql/9.3/
data/ --exclude postmaster.pid

psqgl -U postgres -h 192.168.0.4 -c "SELECT pg stop backup()"

Once the data directory, mentioned in the previous step, is populated, the next step is
to enable the following parameter in the postgresqgl . conf file on the slave server:
hot standby = on

The next step will be to copy the recovery.conf . sample file in the $PGDATA
location on the slave server and then configure the following parameters:

cp /usr/pgsql-9.3/share/recovery.conf.sample
/var/lib/pgsql/9.3/data/recovery.conf

standby mode = on

primary conninfo = 'host=192.168.0.4 port=5432 user=repuser
password=charlie'

trigger file = '/tmp/trigger.replicationi

restore_command = 'cp /var/lib/pgsgl/archive/$f "$p"'

The next step will be to start the slave server:

service postgresql-9.3 start

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

9. Now that the above mentioned replication steps are set up, we will test for
replication. On the master server, log in and issue the following SQL commands:

psqgl -h 192.168.0.4 -d postgres -U postgres -W

postgres=# create database test;
postgres=# \c test;

test=# create table testtable (testint int, testchar varchar (40)
)i

CREATE TABLE
test=# insert into testtable values (1, 'What A Sight.');
INSERT 0 1

10. On the slave server, we will now check whether the newly created database and the
corresponding table, created in the previous step, are replicated:

psgl -h 192.168.0.5 -d test -U postgres -W

test=# select * from testtable;
testint | testchar

_________ o o o e el
1 | Wwhat A Sight.

(1 row)

The following is the explanation for the steps performed in the preceding section.

In the initial step of the preceding section, we create a user called repuser, which will be

used by the slave server to make a connection to the primary server. In the second step of the
preceding section, we make the necessary changes in the pg_hba . conf file to allow the master
server to be accessed by the slave server using the repuser user ID that was created in step

1. We then make the necessary parameter changes on the master in step 3 of the preceding
section to configure a streaming replication. The following is a description of these parameters:

» listen addresses: This parameter is used to provide the IP address associated
with the interface that you want to have PostgreSQL listen to. A value of * indicates
all available IP addresses.

» wal level: This parameter determines the level of WAL logging done. Specify
hot_standby for streaming replication.

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

wal keep segments: This parameter specifies the number of 16 MB WAL files to
be retained in the pg x1log directory. The rule of thumb is that more such files might
be required to handle a large checkpoint.

archive mode: Setting this parameter enables completed WAL segments to be sent
to the archive storage.

archive command: This parameter is basically a shell command that is executed
whenever a WAL segment is completed. In our case, we are basically copying the file
to the local machine and then using the secure copy command to send it across to
the slave.

max_wal senders: This parameter specifies the total number of concurrent
connections allowed from the slave servers.

checkpoint segments: This parameter specifies the maximum number of logfile
segments between automatic WAL checkpoints. Once the necessary configuration
changes have been made on the master server, we then restart the PostgreSQL
server on the master in order to let the new configuration changes take effect. This

is done in step 4 of the preceding section. In step 5 of the preceding section, we are
basically building the slave by copying the primary server's data directory to the slave.

Now, with the data directory available on the slave, the next step is to configure it. We will

now make the necessary parameter replication related parameter changes on the slave in
the postgresqgl . conf directory on the slave server. We set the following parameters on
the slave:

>

hot_standby: This parameter determines whether you can connect and run queries
when the server is in the archive recovery or standby mode. In the next step, we

are configuring the recovery. conf file. This is required to be set up so that the
slave can start receiving logs from the master. The parameters explained next are
configured in the recovery. conf file on the slave.

standby mode: This parameter, when enabled, causes PostgreSQL to work as a
standby in a replication configuration.

primary conninfo: This parameter specifies the connection information used

by the slave to connect to the master. For our scenario, our master server is set as
192.168.0.4 on port 5432 and we are using the repuser userid with the password
charlie to make a connection to the master. Remember that repuser was the
userid which was created in the initial step of the preceding section for this purpose,
that is, connecting to the master from the slave.

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

» trigger file:When a slave is configured as a standby, it will continue to restore
the XLOG records from the master. The trigger file parameter specifies what is
used to trigger a slave, in order to switch over its duties from standby and take over
as master or primary server. At this stage, the slave is fully configured now and we
can start the slave server; then, the replication process begins. This is shown in step
8 of the preceding section. In steps 9 and 10 of the preceding section, we are simply
testing our replication. We first begin by creating a test database, then we log in
to the test database and create a table by the name testtable, and then we
begin inserting some records into the testtable table. Now, our purpose is to see
whether these changes are replicated across the slave. To test this, we log in to the
slave on the test database and then query the records from the testtable table,
as seen in step 10 of the preceding section. The final result that we see is that all the
records that are changed/inserted on the primary server are visible on the slave. This
completes our streaming replication's setup and configuration.

You can refer to the following links for more detailed information on streaming replication:

» https://www.digitalocean.com/community/tutorials/how-to-set-up-
master-slave-replication-on-postgresqgl-on-an-ubuntu-12-04-vps

» http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-
postgresgl-streaming-replication-in-10-mins/

Replication using Slony-I

Here, we are going to set up replication using Slony-I. We will be setting up the replication of
table data between two databases on the same server.

Getting ready

The steps performed in this recipe are carried out on a CentOS Version 6 machine. It is also
important to remove the directives related to hot streaming replication prior to setting up
replication using Slony-I.

We will first need to install Slony-I. The following steps need to be performed in order to
install Slony-I:

1. First,gotohttp://slony.info/downloads/2.2/source/and download the
given software.

www.it-ebooks.info

https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps
https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps
http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-postgresql-streaming-replication-in-10-mins/
http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-postgresql-streaming-replication-in-10-mins/
http://slony.info/downloads/2.2/source/
http://www.it-ebooks.info/

Chapter 7

Once you have downloaded the Slony-I software, the next step is to unzip the . tar
file and then go the newly created directory. Before doing this, please ensure that you
have the postgresqgl -devel package for the corresponding PostgreSQL version
installed before you install Slony-I:

tar xvfj slonyl-2.2.3.tar.bz2

cd slonyl-2.2.3

In the next step, we are going to configure, compile, and build the software:
./configure --with-pgconfigdir=/usr/pgsql-9.3/bin/

make

make install

How to do it...

You need to perform the following sequence of steps, in order to replicate data between two
tables using Slony-l replication:

1.

First, start the PostgreSQL server if you have not already started it:
pg_ctl -D $PGDATA start

In the next step, we will be creating two databases, test1 and test2, which will be
used as the source and target databases respectively:

createdb testl
createdb test2

In the next step, we will create the t _test table on the source database, test1, and
insert some records into it:

psgl -d testl

testl=# create table t_ test (id numeric primary key, name
varchar) ;

testl=# insert into t_test wvalues(1,'A'),(2,'B'), (3,'C');

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

4. We will now set up the target database by copying the table definitions from the
test1 source database:
pg dump -s -p 5432 -h localhost testl | psgl -h localhost -p 5432
test2

5. We will now connect to the target database, test2, and verify that there is no data in
the tables of the test2 database:

psgl -d test2

test2=# select * from t_test;

6. We will now set up a slonik script for the master-slave, that is source/target, setup.
In this scenario, since we are replicating between two different databases on the
same server, the only different connection string option will be the database name:

cd /usr/pgsql-9.3/bin

vi init_master.slonik

#!/bin/sh

cluster name = mycluster;

node 1 admin conninfo = 'dbname=testl host=localhost
port=5432 user=postgres password=postgres';

node 2 admin conninfo = 'dbname=test2 host=localhost
port=5432 user=postgres password=postgres';

init cluster (id=1);

create set (id=1l, origin=1);

set add table(set id=1, origin=1, id=1, fully qualified
name = 'public.t test');

store node (id=2, event node = 1);

store path (server=1l, client=2, conninfo='dbname=testl
host=localhost port=5432 user=postgres password=postgres');

store path (server=2, client=1, conninfo='dbname=test2
host=localhost port=5432 user=postgres password=postgres');

store listen (origin=1, provider = 1, receiver = 2);

store listen (origin=2, provider = 2, receiver = 1);

136

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

12.

Chapter 7

We will now create a slonik script for subscription to the slave, that is, target:
cd /usr/pgsql-9.3/bin
vi init_slave.slonik

#!/bin/sh

cluster name = mycluster;

node 1 admin conninfo = 'dbname=testl host=localhost
port=5432 user=postgres password=postgres';

node 2 admin conninfo = 'dbname=test2 host=localhost
port=5432 user=postgres password=postgres';

subscribe set (id = 1, provider = 1, receiver = 2, forward
= no);

We will now run the init master.slonik script created in step 6 and run this on
the master, as follows:

cd /usr/pgsql-9.3/bin

slonik init master.slonik

We will now run the init_slave.slonik script created in step 7 and run this on
the slave, that is, target:

cd /usr/pgsql-9.3/bin

slonik init_slave.slonik

In the next step, we will start the master s1on daemon:

nohup slon mycluster "dbname=testl host=1localhost port=5432
user=postgres password=postgres" &

In the next step, we will start the slave s1on daemon:

nohup slon mycluster "dbname=test2 host=localhost port=5432
user=postgres password=postgres" &

Next, we will connect to the master, that is, the test1 source database, and insert
some records in the t_test table:

psgl -d testl

testl=# insert into t_test values (5,'E');

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

13. We will now test for the replication by logging on to the slave, that is, the test2 target

database, and see whether the inserted records in the t test table are visible:
psgl -d test2

test2=# select * from t_test;
id | name

We will now discuss the steps performed in the preceding section:

>

138

In step 1, we first start the PostgreSQL server if it is not already started. In step 2,
we create two databases, namely test1 and test2, that will serve as our source
(master) and target (slave) databases.

In step 3, we log in to the test1 source database, create a t _test table, and insert
some records into the table.

In step 4, we set up the target database, test2, by copying the table definitions
present in the source database and loading them into test2 using the pg_dump utility.

In step 5, we log in to the target database, test2, and verify that there are no
records present in the t_test table because in step 4, we only extracted the table
definitions into the test2 database from the test1 database.

In step 6, we set up a slonik script for the master-slave replication setup. In the
init master.slonik file, we first define the cluster name as mycluster. We
then define the nodes in the cluster. Each node will have a number associated with a
connection string, which contains database connection information. The node entry is
defined both for the source and target databases. The store path commands are
necessary, so that each node knows how to communicate with the other.

In step 7, we set up a slonik script for the subscription of the slave, that is, the
test?2 target database. Once again, the script contains information such as the
cluster name and the node entries that are designated a unique number related
to connection string information. It also contains a subscriber set.

In step 8, we run the init master.slonik file on the master. Similarly, in step 9,
werunthe init slave.slonik file on the slave.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

» Instep 10, we start the master slon daemon. In step 11, we start the slave
slon daemon.

» The subsequent steps, 12 and 13, are used to test for replication. For this purpose,
in step 12 of the preceding section, we first log in to the test1 source database
and insert some records into the t _test table. To check whether the newly inserted
records have been replicated in the target database, test2, we log in to the test2
database in step 13. The result set obtained from the output of the query confirms
that the changed/inserted records on the t _test table in the test1 database are
successfully replicated across the target database, test2.

For more information on Slony-I replication, goto http://slony.info/documentation/
tutorial.html.

There's more...

If you are using Slony-I for replication between two different servers, in addition to the
steps mentioned in the How to do it... section, you will also have to enable authentication
information in the pg_hba . conf file existing on both the source and target servers. For
example, let's assume that the source server's IP is 192.168.16.44 and the target server's
IPis 192.168.16.56 and we are using a user named super to replicate the data.

If this is the situation, then in the source server's pg_hba . conf file, we will have to enter the
information, as follows:

host postgres super 192.168.16.44/32 md5

Similarly, in the target server's pg_hba . conf file, we will have to enter the authentication
information, as follows:

host postgres super 192.168.16.56/32 md5

Also, in the shell scripts that were used for Slony-I, wherever the connection information
for the host is localhost that entry will need to be replaced by the source and target
server's IP addresses.

Replication using Londiste

In this recipe, we are going to show you how to replicate data using Londiste.

www.it-ebooks.info

http://slony.info/documentation/tutorial.html
http://slony.info/documentation/tutorial.html
http://www.it-ebooks.info/

High Availability and Replication

Getting ready

For this setup, we are using the same host CentOS Linux machine to replicate data between
two databases. This can also be set up using two separate Linux machines running on
VMware, VirtualBox, or any other virtualization software. It is assumed that the latest version
of PostgreSQL, version 9.3, is installed. We used CentOS Version 6 as the Linux operating
system for this exercise.

To set up Londiste replication on the Linux machine, perform the following steps:

1.

Gotohttp://pgfoundry.org/projects/skytools/ and download the latest
version of Skytools 3.2, that is, tarball skytools-3.2.tar.gz.

Extract the tarball file, as follows:
tar -xvzf skytools-3.2.tar.gz

Go to the new location and build and compile the software:
cd skytools-3.2

./configure --prefix=/var/lib/pgsql/9.3/Sky -with-pgconfig=/usr/
pgsql-9.3/bin/pg config

make

make install

Also, set the PYTHONPATH environment variable, as shown here. Alternatively, you
can also set it in the .bash profile script:

export PYTHONPATH=/opt/PostgreSQL/9.2/Sky/lib64/python2.6/site-
packages/

How to do it...

1.

140

We are going to perform the following sequence of steps to set up replication
between two different databases using Londiste. First, create the two databases
between which replication has to occur:

createdb nodel
createdb node2

Populate the nodel database with data using the pgbench utility:
pgbench -i -s 2 -F 80 nodel

www.it-ebooks.info

http://pgfoundry.org/projects/skytools/
http://www.it-ebooks.info/

Chapter 7

Add any primary key and foreign keys to the tables in the nodel database that are
needed for replication. Create the following . sql file and add the following lines to it:
Vi /tmp/prepare pgbenchdb for londiste.sql -- add primary key to
history table

ALTER TABLE pgbench history ADD COLUMN hid SERIAL PRIMARY KEY;

-- add foreign keys

ALTER TABLE pgbench tellers ADD CONSTRAINT pgbench tellers
branches fk FOREIGN KEY (bid) REFERENCES pgbench branches;
ALTER TABLE pgbench accounts ADD CONSTRAINT pgbench accounts_
branches fk FOREIGN KEY (bid) REFERENCES pgbench branches;
ALTER TABLE pgbench history ADD CONSTRAINT pgbench history
branches fk FOREIGN KEY (bid) REFERENCES pgbench branches;
ALTER TABLE pgbench history ADD CONSTRAINT pgbench history
tellers fk FOREIGN KEY (tid) REFERENCES pgbench tellers;

ALTER TABLE pgbench history ADD CONSTRAINT pgbench history
accounts_ fk FOREIGN KEY (aid) REFERENCES pgbench accounts;

We will now load the . sql file created in the previous step and load it into
the database:

psql nodel -f /tmp/prepare pgbenchdb for londiste.sql

We will now populate the node2 database with table definitions from the tables in
the nodel database:

pg dump -s -t 'pgbench*' nodel > /tmp/tables.sql
peql -f /tmp/tables.sql node2

Now starts the process of replication. We will first create the londiste.ini
configuration file with the following parameters in order to set up the root node
for the source database, node1l:

Vi londiste.ini

[londiste3]

job name = first table

db = dbname=nodel

queue name = replication queue

logfile = /home/postgres/log/londiste.log
pidfile = /home/postgres/pid/londiste.pid

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

7. Inthe next step, we are going to use the londiste.ini configuration file created in
the previous step to set up the root node for the nodel database, as shown here:

[postgres@localhost bin]$./londiste3 londiste3.ini create-root
nodel dbname=nodel

2014-12-09 18:54:34,723 2335 WARNING No host= in public connect
string, bad idea

2014-12-09 18:54:35,210 2335 INFO plpgsqgl is installed
2014-12-09 18:54:35,217 2335 INFO pgqg is installed

2014-12-09 18:54:35,225 2335 INFO pgg.get batch cursor is
installed

2014-12-09 18:54:35,227 2335 INFO pgq ext is installed
2014-12-09 18:54:35,228 2335 INFO pgq node is installed
2014-12-09 18:54:35,230 2335 INFO londiste is installed

2014-12-09 18:54:35,232 2335 INFO londiste.global add table is
installed

2014-12-09 18:54:35,281 2335 INFO Initializing node
2014-12-09 18:54:35,285 2335 INFO Location registered

2014-12-09 18:54:35,447 2335 INFO Node "nodel" initialized for
queue "replication queue" with type "root"

2014-12-09 18:54:35,465 2335 INFO Don

8. We will now run the worker daemon for the root node:
[postgres@localhost bin]$./londiste3 londiste3.ini worker

2014-12-09 18:55:17,008 2342 INFO Consumer uptodate =1

9. Inthe next step, we will create a slave.ini configuration file in order to make a leaf
node for the node?2 target database:

Vi slave.ini

[londiste3]

job name = first table slave

db = dbname=node2

queue name = replication queue

logfile = /home/postgres/log/londiste slave.log
pidfile

/home/postgres/pid/londiste_slave.pid

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10.

11.

We will now initialize the node in the target database:

./londiste3 slave.ini create-leaf node2 dbname=node2 -
provider=dbname=nodel

2014-12-09 18:57:22,769 2408 WARNING No host= in public connect
string, bad idea

2014-12-09 18:57:22,778 2408 INFO plpgsgl is installed
2014-12-09 18:57:22,778 2408 INFO Installing pgq

2014-12-09 18:57:22,778 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq.sql

2014-12-09 18:57:23,211 2408 INFO pgg.get batch cursor is
installed

2014-12-09 18:57:23,212 2408 INFO Installing pgq ext

2014-12-09 18:57:23,213 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq ext.sql

2014-12-09 18:57:23,454 2408 INFO Installing pgq node

2014-12-09 18:57:23,455 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq node.sql

2014-12-09 18:57:23,729 2408 INFO Installing londiste

2014-12-09 18:57:23,730 2408 INFO Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/londiste.sql

2014-12-09 18:57:24,391 2408 INFO londiste.global add table is
installed

2014-12-09 18:57:24,575 2408 INFO Initializing node

2014-12-09 18:57:24,705 2408 INFO Location registered
2014-12-09 18:57:24,715 2408 INFO Location registered
2014-12-09 18:57:24,744 2408 INFO Subscriber registered: node2
2014-12-09 18:57:24,748 2408 INFO Location registered
2014-12-09 18:57:24,750 2408 INFO Location registered

2014-12-09 18:57:24,757 2408 INFO Node "node2" initialized for
queue "replication queue" with type "leaf"

2014-12-09 18:57:24,761 2408 INFO Done

We will now launch the worker daemon for the target database, that is, node2:
[postgres@localhost binl]$./londiste3 slave.ini worker

2014-12-09 18:58:53,411 2423 INFO Consumer uptodate =1

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication
12.

13.

14.

15.

16.

17.

We will now create the configuration file, that is pggd. ini, for the ticker daemon:
vi pgqgd.ini

[pgqd]

logfile = /home/postgres/log/pgqd.log

pidfile = /home/postgres/pid/pgqd.pid

Using the configuration file created in the previous step, we will launch the
ticker daemon:

[postgres@localhost binl$./pgqd pgqgd.ini

2014-12-09 19:05:56.843 2542 LOG Starting pgqd 3.2
2014-12-09 19:05:56.844 2542 LOG auto-detecting dbs
2014-12-09 19:05:57.257 2542 LOG nodel: pgq version ok: 3.2
2014-12-09 19:05:58.130 2542 LOG node2: pgq version ok: 3.2

We will now add all the tables to the replication on the root node:

[postgres@localhost binl]$./londiste3 londiste3.ini add-table
--all

2014-12-09 19:07:26,064 2614 INFO Table added: public.pgbench
accounts

2014-12-09 19:07:26,161 2614 INFO Table added: public.pgbench
branches

2014-12-09 19:07:26,238 2614 INFO Table added: public.pgbench
history

2014-12-09 19:07:26,287 2614 INFO Table added: public.pgbench
tellers

Similarly, add all the tables to the replication on the leaf node:
[postgres@localhost bin]$./londiste3 slave.ini add-table -all

We will now generate some traffic on the node1 source database:
pgbench -T 10 -c 5 nodel

We will now use the compare utility available with the 1londiste3 command
to check the tables in both the nodes; that is, both the source database (node1l)
and destination database (node2) have the same amount of data:

[postgres@localhost bin]$./londiste3 slave.ini compare

2014-12-09 19:26:16,421 2982 INFO Checking if nodel can be used
for copy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

2014-12-09
using it

2014-12-09
node nodel

2014-12-09
2014-12-09
2014-12-09
2014-12-09
2014-12-09

19:

19
as

19
19:
19:
19:
19:

26:16,424

:26:16,425

provider

:26:16,441

26
26
26
26

:16,446
116,447
:18,975
:19,401

checksum=167607238449

2014-12-09 19:26:19,706
checksum=167607238449

2014-12-09 19:26:19,715

for copy
2014-12-09

using it
2014-12-09
node nodel

2014-12-09
2014-12-09
2014-12-09
2014-12-09
2014-12-09

19:

19:
as

19:
19:
19:
19:
19:

26:19,716

26:19,716
provider

26:19,730
26:19,734
26:19,734
26:22,772
26:22,804

checksum=-3078609798

2014-12-09 19:26:22,812
checksum=-3078609798

2014-12-09 19:26:22,866

for copy
2014-12-09

using it
2014-12-09
node nodel

2014-12-09
2014-12-09
2014-12-09
2014-12-09
2014-12-09

19:

19
as

19
19
19
19
19:

26:22,877

:26:22,878

provider

:26:22,919
:26:22,931
:26:22,932
:26:25,963

26:26,008

checksum=9467587272

2982

2982

2982
2982
2982
2982
2982

2982

2982

2982

2982

2982
2982
2982
2982
2982

2982

2982

2982

2982

2982
2982
2982
2982
2982

INFO

INFO

INFO
INFO
INFO
INFO
INFO

INFO

INFO

INFO

INFO

INFO
INFO
INFO
INFO
INFO

INFO

INFO

INFO

INFO

INFO
INFO
INFO
INFO
INFO

Node nodel seems good source,

public.pgbench accounts: Using

Provider: nodel (root)

Locking public.pgbench accounts
Syncing public.pgbench accounts
Counting public.pgbench accounts

srcdb: 200000 rows,

dstdb: 200000 rows,

Checking if nodel can be used

Node nodel seems good source,

public.pgbench branches: Using

Provider: nodel (root)

Locking public.pgbench branches
Syncing public.pgbench branches
Counting public.pgbench branches

srcdb: 2 rows,

dstdb: 2 rows,

Checking if nodel can be used

Node nodel seems good source,

public.pgbench history: Using

Provider: nodel (root)

Locking public.pgbench history
Syncing public.pgbench history
Counting public.pgbench history

srcdb: 715 rows,

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

2014-12-09 19:26:26,020 2982 INFO dstdb: 715 rows,
checksum=9467587272

2014-12-09 19:26:26,056 2982 INFO Checking if nodel can be used
for copy

2014-12-09 19:26:26,063 2982 INFO Node nodel seems good source,
using it

2014-12-09 19:26:26,064 2982 INFO public.pgbench tellers: Using
node nodel as provider

2014-12-09 19:26:26,100 2982 INFO Provider: nodel (root)
2014-12-09 19:26:26,108 2982 INFO Locking public.pgbench tellers
2014-12-09 19:26:26,109 2982 INFO Syncing public.pgbench tellers
2014-12-09 19:26:29,144 2982 INFO Counting public.pgbench tellers

2014-12-09 19:26:29,176 2982 INFO srcdb: 20 rows,
checksum=4814381032

2014-12-09 19:26:29,182 2982 INFO dstdb: 20 rows,
checksum=4814381032

The following is an explanation of the steps performed in the preceding section:

» Initially, in step 1, we create two databases, that is nodel and node2, that are used
as the source and target databases, respectively, from a replication perspective.

» Instep 2, we populate the nodel database using the pgbench utility.

» Instep 3 of the preceding section, we add and define the respective primary key
and foreign key relationships on different tables and put these DDL commands
ina .sql file.

» Instep 4, we execute these DDL commands stated in step 3 on the node1 database;
thus, in this way, we force the primary key and foreign key definitions on the tables in
the pgbench schema in the nodel database.

» Instep 5, we extract the table definitions from the tables in the pgbench schema in
the nodel database and load these definitions in the node2 database. We will now
discuss steps 6 to 8 of the preceding section.

» Instep 6, we create the configuration file, which is then used in step 7 to create the
root node for the node1 source database.

» Instep 8, we will launch the worker daemon for the root node. Regarding the entries
mentioned in the configuration file in step 6, we first define a job that must have a
name, so that distinguished processes can be easily identified. Then, we define a
connect string with information to connect to the source database, that is node1,
and then we define the name of the replication queue involved. Finally, we define the
location of the 1og and pid files.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We will now discuss steps 9 to 11 of the preceding section. In step 9, we define the
configuration file, which is then used in step 10 to create the leaf node for the target
database, that is node2.

In step 11, we launch the worker daemon for the leaf node. The entries in the
configuration file in step 9 contain the job_name connect string in order to connect
to the target database, that is node2, the name of the replication queue involved,
and the location of 1og and pid involved. The key part in step 11 is played by the
slave, that is the target database—to find the master or provider, that is source
database nodel.

We will now talk about steps 12 and 13 of the preceding section. In step 12, we
define the ticker configuration, with the help of which we launch the ticker
process mentioned in step 13. Once the ticker daemon has started successfully,
we have all the components and processes setup and needed for replication;
however, we have not yet defined what the system needs to replicate.

In step 14 and 15, we define the tables to the replication that is set on both the
source and target databases, that is nodel and node2, respectively.

Finally, we will talk about steps 16 and 17 of the preceding section. Here, at this
stage, we are testing the replication that was set up between the node1 source
database and the node2 target database.

In step 16, we generate some traffic on the nodel source database by running
pgbench with five parallel database connections and generating traffic for 10 seconds.

In step 17, we check whether the tables on both the source and target databases
have the same data. For this purpose, we use the compare command on the
provider and subscriber nodes and then count and checksum the rows on both
sides. A partial output from the preceding section tells you that the data has been
successfully replicated between all the tables that are part of the replication set up
between the node1 source database and the node2 destination database, as the
count and checksum of rows for all the tables on the source and target destination
databases are matching:

2014-12-09 19:26:18,975 2982 INFO Counting public.pgbench accounts

2014-12-09 19:26:19,401 2982 INFO srcdb: 200000 rows,
checksum=167607238449

2014-12-09 19:26:19,706 2982 INFO dstdb: 200000 rows,
checksum=167607238449

2014-12-09 19:26:22,772 2982 INFO Counting public.pgbench branches

2014-12-09 19:26:22,804 2982 INFO srcdb: 2 rows,
checksum=-3078609798

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

2014-12-09 19:26:22,812 2982 INFO dstdb: 2 rows,
checksum=-3078609798

2014-12-09 19:26:25,963 2982 INFO Counting public.pgbench history

2014-12-09 19:26:26,008 2982 INFO srcdb: 715 rows,
checksum=9467587272

2014-12-09 19:26:26,020 2982 INFO dstdb: 715 rows,
checksum=9467587272

2014-12-09 19:26:29,144 2982 INFO Counting public.pgbench tellers

2014-12-09 19:26:29,176 2982 INFO srcdb: 20 rows,
checksum=4814381032

2014-12-09 19:26:29,182 2982 INFO dstdb: 20 rows,
checksum=4814381032

Check out the following links for more information on Londiste replication:
https://wiki.postgresqgl.org/wiki/Londiste Tutorial (Skytools 2)

http://manojadinesh.blogspot.in/2012/11/skytools-londiste-
replication.html

Replication using Bucardo

In this recipe, we are going to show you the replication between two databases using Bucardo.

Getting ready

This exercise is carried out on a Red Hat Linux machine.

Install the EPEL package for your Red Hat platform from https://fedoraproject.org/
wiki/EPEL.

Then, install these RPMs with the following yum command:
yum install perl-DBI perl-DBD-Pg perl-DBIx-Safe

If it is not already installed, download the PostgreSQL repository from http://yum.pgrpms.
org/repopackages . php.

148

www.it-ebooks.info

https://wiki.postgresql.org/wiki/Londiste_Tutorial_(Skytools_2)
http://manojadinesh.blogspot.in/2012/11/skytools-londiste-replication.html
http://manojadinesh.blogspot.in/2012/11/skytools-londiste-replication.html
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
http://yum.pgrpms.org/repopackages.php
http://yum.pgrpms.org/repopackages.php
http://www.it-ebooks.info/

Chapter 7

After this, install the following package; this is required because Bucardo is written in Perl:
yum install postgresqgl93-plperl

» To install Bucardo, download the latest version of Bucardo, which is Bucardo Version
5.2.0, from http://bucardo.org/wiki/Bucardo.

» Extract from the tarball file, go to the newly downloaded location, and compile and
build the software:

tar xvfz Bucardo-5.2.0.tar.gz
cd Bucardo-5.2.0

perl Makefile.PL

make

make install

How to do it...

The following is the complete sequence of steps that are used to configure replication
between two databases using Bucardo:

1. The first step is to install bucardo; that is, create the main bucardo database
containing the information that the Bucardo daemon will need:

[postgres@localhost ~]$ bucardo install --batch --quiet
2. Create the bucardo superuser. In the next step, we create the source and target

databases, that is, gammal and gamma2 respectively, between which the replication
needs to be set up:

[postgres@localhost ~]$ psqgl -gc 'create database gammal'

psqgl -d gammal-gc 'create table tl (id serial primary key, email
text) '

[postgres@localhost ~]$ psqgl -gc 'create database gamma2 template
gammal'

www.it-ebooks.info

http://bucardo.org/wiki/Bucardo
http://www.it-ebooks.info/

High Availability and Replication
3.

150

In the next step, we inform Bucardo about the databases that will be involved in
the replication:

postgres@localhost ~]$ bucardo add db dbl dbname=gammal
Added database "dbl"

[postgres@localhost ~]$ bucardo add db db2 dbname=gammaZ2
Added database "db2"

Next, we create a herd myherd and include those tables from the source databases
that will be part of the replication setup:

[postgres@localhost ~]$ bucardo add herd myherd tl

Created relgroup "myherd"
Added the following tables or sequences:
public.tl (DB: dbl)

The following tables or sequences are now part of the relgroup
"myherd":

public.tl

In the next step, we create a source sync:

[postgres@localhost ~]$ bucardo add sync beta herd=myherd
dbs=dbl:source

Added sync "beta™"

Created a new dbgroup named "beta®

Then, we create a target sync:

[postgres@localhost ~]$ bucardo add sync charlie herd=myherd
dbs=dbl:source,db2:target

Added sync "charlie"

Created a new dbgroup named "charlie"

At this stage, we have the replication procedure set up, so the next step is to start the
Bucardo service:

[postgres@localhost ~]$ bucardo start
Checking for existing processes
Removing file "pid/fullstopbucardo"

Starting Bucardo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The next step is to test the replication setup. For this purpose, we are going to insert
some records in the t1 table on the gamma1l source database:

psgl -d gammal

gammal=# insert into tl values (1, 'wallsingh@gmail.com') ;
INSERT 0 1
gammal=# insert into tl values (2, 'neha.verma@gmail.com') ;
INSERT 0 1

Now that we have inserted some records in the source database in the previous step,
we need to check whether these changes have been replicated in the gamma?2 target
database:

psgl -d gamma2

gamma2=# select * from tl;
id | email
e
1 | wallsinghegmail.com
2 | neha.verma@gmail.com
(2 rows)

The following is a description of the steps mentioned in the preceding section:

>

In step 1 of the preceding section, we first create the bucardo database that will
contain information about the bucardo daemon and will also create a superuser by
the name bucardo.

In step 2, we create our source and target databases for replication, that is, gamma1
and gamma?2, respectively. We also create the t1 table on the gammal database that
will be used for replication.

In step 3, we tell Bucardo about the source and target databases, that is, gammal
and gamma?2, respectively that will be involved in the replication.

In step 4, we create a herd by the name myherd and include the t1 table from the
gammal source database that will be part of the the replication setup. Any changes
made to this table should be replicated from the source to the target databases.

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

» Insteps 5 and 6 of the preceding section, we basically create a source and a target
sync, which will replicate the t1 table in the myherd herd and replicate it from the
source database db1, that is gamma1l, to the target database db2, that is gamma?2.
With the replication set up configured, we then start the Bucardo service in step 7 of
the preceding section.

» We test the replication setup in steps 8 and 9 of the preceding section. In step 8,
we insert some records in the t1 table on the gammal database and in step 9, we
login to the gamma2 database and check whether the newly inserted records in the
t1 table on the gammal database are replicated across the gamma2 database. The
result set of the SELECT query from the t1 table in the gamma2 database confirms
that the inserted records in the gammal database have been successfully replicated
in the gamma2 database.

You can refer to the following links for information on Bucardo replication:

» http://blog.pscs.co.uk/postgresgl-replication-and-bucardo/

» http://blog.endpoint.com/2014/06/bucardo-5-multimaster-
postgres-released.html

Replication using DRBD

In this recipe, we are going to cover block-level replication using DRBD for PostgreSQL.

Getting ready

A working Linux machine is required for this setup. This setup requires network interfaces and
a cluster IP. These steps are carried out in a CentOS Version 6 machine. Having covered the
PostgreSQL setup in the previous chapters, it is assumed that the necessary packages and
prerequisites are already installed.

We will be using the following setup in our hierarchy:

» Nodel.example.org uses the LAN's IP address 10.0.0.181 and uses 172.16.0.1
for crossovers

» Node2.example.org uses the LAN's IP address 10.0.0.182 and the IP address
172.16.0.2 for crossovers

» dbip.example.org uses the cluster IP address 10.0.0.180

152

www.it-ebooks.info

http://blog.pscs.co.uk/postgresql-replication-and-bucardo/
http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html
http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html
http://www.it-ebooks.info/

How to do it...

Perform the following sequence of steps for block-level replication using DRBD:

1.

Chapter 7

First, temporarily disable SELINUX, set SELINUX to disabled, and then save

the file:

vi /etc/selinux/config

SELINUX=disabled

In this step, change the hostname and gateway for both the nodes, that is,

network interfaces:

vi /etc/sysconfig/network

For node 1

NETWORKING=yes

NETWORKING IPV6=no
HOSTNAME=nodel.example.org
GATEWAY=10.0.0.2

#For node 2

NETWORKING=yes

NETWORKING IPV6=no
HOSTNAME=node2.example.org
GATEWAY=10.0.0.2

In this step, we need to configure the network interfaces for the first node,

that is, node1:

o We first configure the first nodel database:
vi /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=ethO
BOOTPROTO=static
IPADDR=10.0.0.181

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=a2:4e:7f:64:61:24

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

o We then configure the crossover/DRBD interface for node1l:
vi /etc/sysconfig/network-scripts/ifcfg-ethl
DEVICE=ethl
BOOTPROTO=static
IPADDR=172.16.0.1
NETMASK=255.255.255.0
ONBOOT=yes
HWADDR=ee:df:ff:4a:5f£:68

4. In this step, we configure the network interfaces for the second node, that is, node2:
vi /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
BOOTPROTO=static
IPADDR=10.0.0.182
NETMASK=255.255.255.0
ONBOOT=yes
HWADDR=22:42:bl:5a:42:6f

o We then configure the crossover/DRBD interface for node2:
vi /etc/sysconfig/network-scripts/ifcfg-ethl
DEVICE=ethl
BOOTPROTO=static
IPADDR=172.16.0.2
NETMASK=255.255.255.0
ONBOOT=yes
HWADDR=6a:48:d2:70:26:5e

5. In this step, we will configure DNS:
vi /etc/resolv.conf
search example.org

nameserver 10.0.0.2

o Also, configure a basic hosthame resolution:
vi /etc/hosts

127.0.0.1 localhost.localdomain localhost
10.0.0.181 nodel.example.org nodel
10.0.0.182 node2.example.org node2
10.0.0.180 dbip.example.org node2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

6. Inthis step, we will check the network connectivity between the nodes:

[m]

First, we will ping node2 from nodel, first through the LAN interface and
then through the crossover IP:

root@nodel ~]# ping -c 2 node2
PING node2 (10.0.0.182) 56(84) bytes of data.

64 bytes from node2 (10.0.0.182): icmp seqg=1 ttl=64
time=0.089 ms

64 bytes from node2 (10.0.0.182): icmp seg=2 ttl=64
time=0.082 ms

--- node2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
999ms

rtt min/avg/max/mdev = 0.082/0.085/0.089/0.009 ms
[root@nodel ~]1# ping -c¢ 2 172.16.0.2

PING 172.16.0.2 (172.16.0.2) 56(84) bytes of data.

64 bytes from 172.16.0.2: icmp seqg=1 ttl=64 time=0.083 ms
64 bytes from 172.16.0.2: icmp seqg=2 ttl=64 time=0.083 ms
--- 172.16.0.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
999ms

rtt min/avg/max/mdev = 0.083/0.083/0.083/0.000 ms

Now, we will ping nodel from node?2, first via the LAN interfaces and then
through the crossover IP:

[root@node2 ~]# ping -c 2 nodel
PING nodel (10.0.0.181) 56(84) bytes of data.

64 bytes from nodel (10.0.0.181): icmp seqg=1 ttl=64
time=0.068 ms

64 bytes from nodel (10.0.0.181): icmp seqg=2 ttl=64
time=0.063 ms

--- nodel ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
999ms

rtt min/avg/max/mdev = 0.063/0.065/0.068/0.008 ms

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

156

[m]

Next, we will ping node1 through the crossover interface:

[root@node2 ~]1# ping -c¢ 2 172.16.0.1

PING 172.16.0.1 (172.16.0.1) 56(84) bytes of data.

64 bytes from 172.16.0.1: icmp seqg=1l ttl=64 time=1.36 ms
64 bytes from 172.16.0.1: icmp seqg=2 ttl=64 time=0.075 ms
--- 172.16.0.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time
1001ms

rtt min/avg/max/mdev = 0.075/0.722/1.369/0.647 ms

Install the necessary packages:
yum install -y drbd83 kmod-drbd83

In this step, configure DRBD on both the nodes:
vi /etc/drbd.conf

global

{

usage-count no;

}

common

{

syncer { rate 100M; }
protocol C;

}

resource postgres {
startup {

}

wfc-timeout O0;
degr-wfc-timeout
120;

disk { on-io-error detach; }

on

on

nodel.example.org {

device /dev/drbdo;
disk /dev/sda5;
address 172.16.0.1:7791;

meta-disk internal;

node2.example.org {

device /dev/drbdo;
disk /dev/sda5;
address 172.16.0.2:7791;

meta-disk internal;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10.

11.

12.

13.

Once the drbd. conf file is set up for both the nodes, we then write metadata on the
postgres resource. Execute the following step on both the nodes:

[root@nodel ~]# drbdadm create-md postgres
Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created.

root@node2 ~]# drbdadm create-md postgres
Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created.

In this step, we will bring up the resource. Execute the following command on both
the nodes:

drbdadm up postgres

In this step, we can make the initial sync between the nodes. This step can be
performed on the primary node, and we set node1l as the primary node:

drbdadm -- --overwrite-data-of-peer primary postgres

To monitor the progress of the sync and the status of the DRBD resource, take a look
atthe /proc/drbd file:

[root@nodel ~]# cat /proc/drbd
version: 8.3.8 (api:88/proto:86-94)

GIT-hash: d78846e52224£d00562£f7c225bcc25b2d422321d build by
mockbuild@builderl0.centos.org, 2014-10-04 14:04:09

0: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C
r____

ns:48128 nr:0 dw:0 dr:48128 al:0 bm:2 lo:0 pe:0 ua:0 ap:0 ep:1
wo:b 00s:8340188

[>e ittt] sync'ed: 0.6% (8144/8188)M delay probe: 7
finish: 0:11:29 speed: 12,032 (12,032) K/sec

Once the sync process is complete, we can take a look at both the statuses of the
postgres resource on both the nodes:

[root@nodel ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

14.

15.

16.

158

GIT-hash: d78846e52224£fd00562f7c225bcc25b2d422321d build by
mockbuild@builderl0.centos.org, 2014-10-04 14:04:09

0: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r----

ns:8388316 nr:0 dw:0 dr:8388316 al:0 bm:512 1lo0:0 pe:0 ua:0 ap:0
ep:1 wo:b oos:0

[root@node2 ~]# cat /proc/drbd
version: 8.3.8 (api:88/proto:86-94)

GIT-hash: d78846e52224£fd00562f7c225bcc25b2d422321d build by
mockbuild@builderl0.centos.org, 2014-10-04 14:04:09

0: cs:Connected ro:Secondary/Primary ds:UpToDate/UpToDate C r----
ns:0 nr:8388316 dw:8388316 dr:0 al:0 bm:512 1lo0:0 pe:0 ua:0 ap:0
ep:1 wo:b oos:0

In this step, we are going to initiate DRBD services. On both the nodes, issue the
following command:

/etc/init.d/drbd start

In order to initialize the data directory and set up using DRBD, we will have to format
and mount the DRBD device. Then, we initialize the data directory:

o Issue the following commands on node1l:
mkfs.ext4 /dev/drbd0

mount -t ext4 /dev/drbd0 /var/lib/pgsql/9.3

chown postgres.postgres /var/lib/pgsql/9.3

o Next, log in as the postgres user on nodel and initialize the database:
su - postgres
initdb /var/lib/pgsql/9.3/data
exit
In this step, we enable trusted authentication, and we will configure the parameters
required to set up PostgreSQL in the postgresql . conf file.
o Onnodel, execute the following steps:

echo "host all all 10.0.0.181/32 trust" >> /var/lib/
pgsql/9.3/data/pg hba.conf

echo "host all all 10.0.0.182/32 trust" >> /var/lib/
pgsql/9.3/data/pg hba.conf

echo "host all all 10.0.0.180/32 trust" >> /var/lib/
pgsql/9.3/data/pg hba.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

17.

18.

19.

o Then, we configure the necessary parameters in the postgresql . conf file.

vi /var/lib/pgsql/9.3/data/postgresql.conf
listen addresses = '*!
Once the previously mentioned parameters have been changed in the postgresqgl.

conf file, the next step will be to start PostgreSQL. Execute the following command
on nodel:

service postgresqgl-9.3 start

We will then create an admin user to manage PostgreSQL. On node1, execute

the following command and when prompted for a password, you can choose any.
However, for the sake of clarity of this exercise, we will use the admin keyword itself
as the password:

su - postgres

createuser --superuser admin --pwprompt

In this step, we will create a database and populate it with data. On node1, execute
the following steps and then access the database:

su - postgres

createdb test

pgbench -test

pgbench -i test

psql -U admin -d test

test=# select * from pgbench tellers;

tid | bid | tbalance | filler

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

8 | 1| 0 |
ol 1 0 |
10 | 1| 0 |

(10 registros)

20. In this step, we will test the block-level replication and see whether PostgreSQL works
on node2. On nodel, execute the following commands:
o We will first stop PostgreSQL on node1:

service postgresql-9.3 stop

o Then, we will unmount the DRBD device on nodel:
umount /dev/drbd0

o Now, we will set up nodel as the secondary node:
drbdadm secondary postgres

o Next, we will configure node2 as the primary node:
drbdadm primary postgres

a Inthis step, mount the DRBD device:
mount -t ext3 /dev/drbd0 /var/lib/pgsql/9.3

a Then, we start the postgresqgl service on node2:

service postgresql-9.3 start

o Now, we will see whether we are able to access the test database
on node2:

psql -u admin -d test

test=# select * from pgbench tellers;

tid | bid | tbalance | filler

————— e e L EEE LR
1l 1 0|
21 1 0|
3 1 0|
41 1 0|
51 1] 0|
6| 1] 0|
7 1] 0|
8 | 1] 0|
s 1] 0|
10 | 1| 0 |
(10 registros)

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In the initial steps, from steps 1 to 6, we configure the nodes, that is nodel and node2, set
up the network connectivity, and configure DNS. In step 6, we do the network connectivity
test between nodel and node2 on the LAN interface as well on the crossover interface. We
receive successful echo response messages after doing the ping request tests. This shows
that the network connectivity is successfully configured.

In step 8, we set up the drbd. conf file on both the nodes. Here is an extract from the
drbd. conf file:

global {
usage-count no;
common {
syncer { rate 100M; }
protocol C;
resource postgres {
startup {
wfc-timeout O;
degr-wfc-timeout
120;
disk { on-io-error detach; }
on nodel.example.org {

device /dev/drbdo;
disk /dev/sdb;
address 172.16.0.1:7791;

meta-disk internal;

on node2.example.org {

device /dev/drbdo;
disk /dev/sdb;
address 172.16.0.2:7791;

meta-disk internal;

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

Basically, using the previously mentioned configuration, we are setting up a postgres
resource and configuring a DRBD interface, /dev/drbdo, which is set up on two nodes,
nodel and node2. This is basically what causes the block-level replication to be successful.
In step 11 of the preceding section, you can see that we have initially set up nodel as

the primary node and node?2 serves as the secondary node at this stage. Then, we set up
PostgreSQL on node1 from step 15 onwards. From step 20 onwards, we perform failover
testing. We first reset node1 as the secondary node, unmount the filesystem, and then set up
node?2 as the primary node; then, mount the file system and bring up the PostgreSQL server.
After this, we are testing for record visibility in node2. The database test that was created in
step 19 of the preceding section is accessible in node2 and so are the tables in the pgbench
schema in step 20. Thus, DRBD provides block-level replication, and if one of the nodes is
not available, we can then configure and continue to run PostgreSQL on the secondary node,
where it is going to take the role of the primary server.

Setting up the Postgres-XC cluster

In this recipe, we are going to set up a Postgres-XC cluster.

Getting ready

Here, we need to install and set up Postgres-XC. These steps are carried out on a CentOS
Version 6 Linux machine.

Perform the following set of steps:

1. First,goto http://sourceforge.net/projects/postgres-xc/ in order to
download the Postgres-XC software.

2. Inthis step, extract from the tarball file and go to the newly created directory:
tar -zxvf pgxc-v1l.0.4.tar.gz
cd pgxc-v1.0.4

3. Before you build and compile the software, the next step will be to install the following
prerequisite packages:
yum -y install readline*
yum -y install bison*

yum -y install flex*

162

www.it-ebooks.info

http://sourceforge.net/projects/postgres-xc/
http://www.it-ebooks.info/

Chapter 7

Now, we are going to build and compile the software. We will also define a location to
be used as the prefix:

mkdir -p /opt/Postgres-xc

chown -R postgres:postgres /opt/Postgres-xc/
./configure --prefix=/opt/Postgres-xc/

make

make install

How to do it...

Now, with the installation completed, we need to configure the Postgres-XC setup.

Perform the following steps:

1.

We will now set up GTM (short for global transaction manager). For this purpose, we
will first create a directory for GTM, set permissions, and then initialize the GTM:

mkdir -p /usr/local/pgsqgl/data gtm

chmod -R 700 /usr/local/pgsql/data_gtm
/opt/Postgres-xc/bin/initgtm -Z gtm -D /usr/local/pgsqgl/data gtm
We will now configure the parameters in the gtm. conf file, which was created as a
part of the previous step where GTM was initialized, and start the GTM:

nodename = 'GTM_ Node'
listen addresses = '*!'
port = 7777

Once these parameters have been changed, we can then set up the GTM:

/opt/Postgres-xc/bin/gtm ctl -Z gtm start -D /opt/Postgres-xc/
data_gtm

Server Started

With the GTM set up and started, we will now set up the coordinator node. For this
purpose, we will first create a directory for the coordinator, assign permissions, and
then initialize the coordinator:

mkdir -p /opt/Postgres-xc/data coordl
chmod -R 700 /opt/Postgres-xc/data coordl

/opt/Postgres-xc/bin/pg ctl -D /opt/Postgres-xc/data coordl/ -o
' --nodename coordl' initdb

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

4. Inthe next step, we will configure the necessary parameters in the postgresql.
conf file. This will be set up in such a way that the coordinator is used as a node to
connect to the GTM. Also, once the necessary parameters have been configured, we

will start the coordinator:

listen addresses = '*!'
port = 2345

gtm _host = 'localhost'
gtm_port = 7777

pgxc_node _name = 'coordl'

pooler port = 2344
min_pool_size = 1
max_pool_size = 100
persistent datanode_
connections = on
max_coordinators = 16
max_datanodes = 16

Once these parameters have been changed, we can start the coordinator, as follows:

/opt/Postgres-xc/bin/pg ctl start -D /opt/Postgres-xc/data_ coordl/

-Z coordinator -1 /tmp/coord

5. We will now set up the first data node. For this purpose, we are going to create a
directory, assign the respective permissions to it, and then initialize it:
mkdir -p /opt/Postgres-xc/data nodel

chmod -R 700 /opt/Postgres-xc/data nodel

/opt/Postgres-xc/bin/pg ctl -D /opt/Postgres-xc/data nodel/ -o
' --nodename datanodel' initdb

6. Inthe next step, we will configure the necessary parameters for the first data
node and then start the data node. These parameter changes are made in the
postgresql.conf file:

vi postgresqgl.conf

listen addresses = '*!'

port = 1234

gtm _host = 'localhost'
gtm_port = 7777

pgxc_node name = 'datanodel'

164

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Once these changes have been made, we can launch the first data node:
/opt/Postgres-xc/bin/pg ctl start -D /opt/Postgres-xc/data nodel
-z datanode -1 /tmp/datanodel log

In this step, we will set up the second data node. For this purpose, we will configure
the directory for the second data node, assign permissions, and then initialize it:
mkdir -p /opt/Postgres-xc/data node2/

chmod -R 700 /opt/Postgres-xc/data node2/
/opt/Postgres-xc/bin/pg ctl -D /opt/Postgres-xc/data node2/ -o

'--nodename datanode2' initdb

In this step, we will configure the respective parameters for the second data node,
and once we are done, we will start the second data node:

vi postgresqgl.conf

listen addresses = '*!'

port = 1233

gtm _host = 'localhost'
gtm_port = 7777

pgxc_node name = 'datanode2'

Once these necessary parameter changes have been made, we will start the second
data node:

/opt/Postgres-xc/bin/pg ctl start -D /opt/Postgres-xc/data node2
-2 datanode -1 /tmp/datanode2 log

In this step, we are going to register the first and second data nodes on the
coordinator node:

cd /opt/Postgres-xc/bin/

psql -p 2345

postgres=# CREATE NODE datanodel WITH (TYPE = DATANODE , HOST =
LOCALHOST , PORT = 1234);

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

CREATE NODE

postgres=# CREATE NODE datanode2 WITH (TYPE = DATANODE , HOST =
LOCALHOST , PORT = 1233);
CREATE NODE

10. Now, with the Postgres-XC architecture setup complete, we will start distributing the
data by replication:

psqgl -p 2345

postgres=# CREATE TABLE DIST (T INT) DISTRIBUTE BY REPLICATION TO
NODE datanodel, datanode2;
CREATE TABLE

postgres=#INSERT INTO DIST SELECT * FROM generate series (1, 100);
INSERT 0 100

postgres=# EXPLAIN ANALYZE SELECT * FROM DIST;

QUERY PLAN

Data Node Scan on " REMOTE FQS QUERY " (cost=0.00..0.00 rows=0
width=0) (act
ual time=0.880..1.010 rows=100 loops=1)
Node/s: datanodel
Total runtime: 1.076 ms
(3 rows)

We will now log in to datanodel and datanode2, to see whether these records
have been replicated on the DIST table:

psqgl -p 1234

postgres=# select count (*) from DIST;
count

166

www.it-ebooks.info

http://www.it-ebooks.info/

11.

Chapter 7

psgl -p 1233

postgres=# select count (*) from DIST;
count

Now, we will test for distribution by hash:
Log in to the coordinator node:
psqgl -p 2345

CREATE TABLE t_ test (id int4) DISTRIBUTE BY HASH (id);

INSERT INTO t test SELECT * FROM generate series(1l, 1000);

We will now log in to datanodel and datanode2 and see how many records are
replicated there:

psqgl -p 1233

postgres=# select count(*) from t test;
count

psgl -p 1234

postgres=# select count(*) from t test;
count

www.it-ebooks.info

http://www.it-ebooks.info/

High Availability and Replication

In the entire Postgres-XC architecture, we have used the following setup. We are using a GTM,
a coordinator, and two data nodes. We will discuss the functionality for each one of them:

» GTM: GTM is used to provide a consistent view of the data. A consistent view is
basically provided through a cluster-wide snapshot. GTM is also responsible for
creating global transaction IDs, which are necessary because transactions need
to be coordinated cluster wide.

» Coordinator: This serves as an entry point for applications and is used by the
application to connect to the coordinator. A coordinator is responsible for SQL
analysis, the creation of a global SQL execution plan, and global SQL execution.

» Data node: A data node is used to hold data for a PostgreSQL cluster. One or more
data nodes hold all or a part of the data inside the cluster.

We will now discuss the various steps performed in the preceding section:

» Here, we will discuss steps 1 and 2 of the preceding section. This setup is all about
GTM configuration. We initially configure a directory for GTM, set permissions,
initialize the directory, and then start GTM later.

» Steps 3 and 4 of the preceding section are all about the coordinator node's
configuration. We initially configure a directory for the coordinator, set permissions,
initialize the directory, and then start the coordinator.

» Next, we will discuss steps 5 and 6 of the preceding section. This setup is all about
the first data node's configuration. We initially configure a directory for datanodel,
set permissions, initialize the directory, and then start the first data node.

» Steps 7 and 8 of the preceding section discuss the second data node's configuration.
We initially configure a directory for datanode?2, set permissions, initialize the
directory, and then start the second data node.

» Instep 9, we first log in to the coordinator node, and then we register the datanodel
and datanode2 nodes with the coordinator node.

168

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In steps 10 and 11, we basically test the Postgres-XC cluster. In step 10, we log

in to the coordinator node, create a DIST table, and then distribute this table by
replication to datanodel and datanode2. We then generate a series and insert
about 100 records in the DIST table. Distribution by replication to the data nodes
means that the data should be replicated in both the nodes for the DIST table. We
then log in to the datanodel node and then count the number of records from the
DIST table; the count is 100. The same observation is obtained for the DIST table
when we log in to the datanode2 node. This is effectively demonstrated in step

10 of the preceding section; thus, all the records of the DIST table are replicated
across both the data nodes. In step 11, we log in to the coordinator node and create
a t_test table; then, we distribute the table by hash and insert 1000 records into
the table. We then log in to the first data node, and we can see 508 records here.
We then log in to the second data node, and we can see 492 records inthe t_test
table in the datanode2 node. What we see is an even distribution and splitting of
the storage of records of the t _test table between data nodes 1 and 2.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

In this chapter, we will cover the following recipes:

» Installing pgpool

» Configuring pgpool and testing the setup
» Starting and stopping pgpool

» Setting up pgbouncer

» Connection pooling using pgbouncer

» Managing pgbouncer

Introduction

The pgpool-ll utility is basically a middleware solution that works as an interface between a
PostgreSQL server and a PostgreSQL client application. The pgpool-ll utility serves as a proxy
between PostgreSQL's backend and frontend protocols and relays a connection between the
two. The pgpool-ll utility caches connections to PostgreSQL servers and reuses them whenever
a new connection with the same properties comes in, thereby reducing connection negotiation
overhead such as authentication and encryption, and improving overall throughput.

In fact, the pgpool-ll utility offers a lot more features than just connection pooling. It offers
load balancing and replication modes along with the parallel query feature.

The pgbouncer utility is a lightweight connection pooler for PostgreSQL. Applications connect
to the pgbouncer port just as they would connect to a PostgreSQL database on the database

port. Using the pgbouncer utility, we can lower the connection overload impact on PostgreSQL
server. The pgbouncer utility provides connection pooling by reusing existing connections.

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

The difference between pgbouncer and pgpool-ll is that pgbouncer is lightweight and is
dedicated to the purpose of connection pooling, whereas pgpool-ll offers more features such
as replication, load balancing, and the parallel query feature in addition to connection pooling.

In this chapter, we will be referring to pgpool-1l as pgpool for the purpose of simplicity.

Installing pgpool

Here is the recipe to install pgpool and configure it.

Getting ready

Installing pgpool from source requires gec 2.9 or higher and GNU make. Since the pgpool
links with the libpq library, the libpq library and its development headers must also be
installed prior to installing pgpool. Also, the OpenSSL library must be present in order

to enable OpenSSL support in pgpool.

If you are building from source, then follow these steps:

1. Download the latest tarball of pgpool from the following website:

http://www.pgpool .net/mediawiki/index.php/Downloads

2. The next step would be to extract the pgpool tarball and enter the source directory:
tar -xzf pgpool-II-3.4.0.tar.gz
cd pgpool-II-3.4.0

3. Build, compile, and install the pgpool software:
./configure -prefix=/usr/local --sysconfdir=/etc/pgpool/
make

make install

How to do it...

To install pgpool in a Debian or Ubuntu-based distribution, we can execute this command:
apt-get install pgpool2

On Red Hat, Fedora, CentOS, or any other RHEL-based Linux distributions use the following
command. It should be noted that the package name used is what is existing now for pgpool,
that is, the 93 keyword used at the end relates to a minor release of PostgreSQL. It may
change later as updates are released:

yum install pgpool-II-93

172

www.it-ebooks.info

http://www.pgpool.net/mediawiki/index.php/Downloads
http://www.it-ebooks.info/

Chapter 8

The following steps are applicable to when you use the operating system package manager
such as yum to install pgpool, and when you are downloading and compiling from source.
Basically, in the following steps, we are creating a directory for pgpool where it can maintain
the activity logs and its service lock files:

1. In this step, we will create the location where pgpool can maintain activity logs:
mkdir /var/log/pgpool
chown -R postgres:postgres /var/log/pgpool
2. The next step will be to create a directory where pgpool can store its service
lock files:
mkdir /var/run/pgpool

chown -R postgres:postgres /var/run/pgpool

If you are using an operating-system-specific package manager to install pgpool, then the
respective configuration files and logfiles required are automatically created. However, if you are
proceeding with a full source-based pgpool installation, then there are some additional steps
required. The first step is to run the configure script and then build and compile pgpool. After
pgpool is installed, you will be required to create the directories where pgpool can maintain
activity logs and service lock files. All of these steps need to be performed manually as can be
seen in steps 1, 2, and 3, respectively, in the Getting ready section.

Configuring pgpool and testing the setup

In this recipe, we are going to configure pgpool and show how to make connections.

Getting ready

Before running pgpool, if you are downloading the source tarball, then the pgpool software
needs to be built and compiled. These steps are shown in the first recipe of this chapter.

Also, we will be testing for replication using pgpool. For this purpose, we are setting up two
data directories on the same server. They will act as two nodes.

Assuming that the default data directory, /var/1ib/pgsql/9.3/data, which will serve as
node O, has already been set up, we will now set up another data directory that will serve as
node 1:

initdb -D /var/lib/pgsql/9.3/datal

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

Once the data directory has been set up, the next step is to change the port number for the
new data directory. This is being done because two data directories cannot have the same
port number. Since port number 5432 has already been used for the initial data directory, we
will set the port number as 5433 in the postgresql . conf file for the new data directory and
then start the server using this setup:

cd /var/lib/pgsql/9.3/datal

vi postgresqgl.conf

port=5433
Once the file is saved, then start the new server:

pg ctl -D /var/lib/pgsql/9.3/datal start

How to do it...

We are going to follow this sequence of steps to configure pgpool and run the setup:

1. After pgpool is installed as shown in the first recipe of the chapter, the next step
would be to copy the configuration files from the sample directory with the default
settings. They will be later edited according to our requirements:

cd /etc/pgpool-II-93
cp pgpool.conf.sample /etc/pgpool.conf
cp pcp.conf.sample /etc/pcp.conf

2. The next step is to define a username and password in the pcp . conf file, which is an
authentication file for pgpool. Basically, to use PCP commands, user authentication
is required. This mechanism is different from PostgreSQL's user authentication.
Passwords are encrypted in the MD5 hash format. To obtain the MD5 hash for a user,
we have to use the pg mds5 utility as shown in the following command. Once the MD5
hash is generated, it can be used to store the MD5 password in the pcp . conf file:
pg md5 postgres
©8248653851e28c69d0506508£fb27£c5
vi /etc/pcp.conf

postgres:e8a48653851e28c69d0506508fb27£fc5

3. Now we edit the pgpool . conf configuration file to configure our pgpool settings:

listen addresses = 'localhost'
port = 9999

socket_dir = '/tmp'

pcp_port = 9898

pcp_socket dir = '/tmp'

backend hostname0 = 'localhost'

174

www.it-ebooks.info

http://www.it-ebooks.info/

backend port0 = 5432
backend weight0 = 1

backend data directory0 = '/var/lig/pgsgl/9.3/data’

backend flag0 = 'ALLOW TO FAILOVER'
backend hostnamel = 'localhost'
backend portl = 5433

backend weightl = 1

backend data_directoryl = '/var/lib/pgsgl/9.3/datal’

backend flagl = 'ALLOW TO FAILOVER'
enable pool hba = off

pool passwd = 'pool passwd'
authentication timeout = 60

ssl = off

num init children = 32

max_pool = 4

child life time = 300
child max connections = 0
connection life time = 0
client idle limit = 0

connection_cache on
'ABORT; DISCARD ALL'

replication mode = on

reset query list

master slave mode = off

replicate select = off

insert lock = on

load balance mode = on

ignore leading white space = on

white function list = "'

black function list = 'nextval,setval'

Chapter 8

Once the preceding parameters have been configured and saved in the pgpool.
conf file, the next step is to launch pgpool and start accepting connections to the

PostgreSQL cluster using pgpool:

pgpool -f /etc/pgpool.conf -F /etc/pcp.conf

psgl -p 9999 postgres postgres

Now that pgpool has been started, we should see a handful of processes:

-bash-4.1$ ps ax |grep pool

28778 ? Ss 0:00 pgpool -f /etc/pgpool.conf -F /etc/pcp.
conf

28779 ? S 0:00 pgpool: wait for connection request
28780 ? S 0:00 pgpool: wait for connection request

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

28781 ? S 0:00 pgpool: wait for connection request
28782 ? S 0:00 pgpool: wait for connection request
28783 ? S 0:00 pgpool: wait for connection request
28784 ? S 0:00 pgpool: wait for connection request
28785 ? S 0:00 pgpool: wait for connection request
28786 ? S 0:00 pgpool: wait for connection request
28787 ? S 0:00 pgpool: wait for connection request
28788 ? S 0:00 pgpool: wait for connection request
28789 ? S 0:00 pgpool: wait for connection request
28790 ? S 0:00 pgpool: wait for connection request
28811 ? S 0:00 pgpool: PCP: wait for connection
request

28812 ? S 0:00 pgpool: worker process

28849 pts/2 S+ 0:00 grep pool

6. Before we connect to pgpool and start executing queries, we should check the status
of the nodes participating in the cluster. For this purpose we will use a tool called
pcp_node_info. Since we are using the same server for setup, node O and
node 1 are more specifically data directories located at /var/1lib/pgsgl/9.3/
data and /var/lib/pgsqgl/9.3/datal:

-bash-4.1$ pcp node info 5 localhost 9898 postgres postgres 0
localhost 5432 1 0.500000
-bash-4.1$ pcp node info 5 localhost 9898 postgres postgres 1
localhost 5433 1 0.500000

7. Now that both nodes are participating in the cluster, the next step is to connect to
pgpool, create a table, and insert some records into that table:

psgl -p 9999

postgres=# create table emp(age int);
CREATE TABLE

postgres=# insert into emp values (1);
INSERT 0 1

postgres=# insert into emp values (2);
INSERT 0 1

postgres=# insert into emp values (3);
INSERT 0 1

postgres=# insert into emp values (4);
INSERT 0 1

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

postgres=#
INSERT 0 1
postgres=#
INSERT 0 1
postgres=#

insert into emp values
insert into emp values

\dt
List of relations
| Name | Type |

public | emp | table | postgres

(1 row)

postgres=# select * from emp;
age

Now we will test for replication by connecting to ports 5432 and 5433, and see the
table and the corresponding records that were inserted into it while being connected

to pgpool:
psqgl -p 5433

postgres=# \dt
List of relations
| Name | Type |

public | emp | table | postgres

(1 row)

postgres=# select * from emp;
age

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

(2 VO T O I

(6 rows)

-bash-4.1$ psqgl -p 5432

postgres=# \dt
List of relations

Schema | Name | Type | Owner
———————— e
public | emp | table | postgres
(1 row)

postgres=# select * from emp;
age

Let's now discuss some of the parameters that were configured in the earlier section:

» listen addresses:We configure listen addresses to * because we want to
listen to all IP addresses and not a particular IP address.

» port: This defines the pgpool port that the system will listen to when accepting
database connections.

» backend hostname0: This refers to the hostname of the first database in our setup.
Similarly, we set up backend_hostnamel for the second node.

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

» backend port0: This is the TCP port of the system, that is, the system identified by
the backend hostname0 value on which the database is hosted. Similarly, we set
backend port1 for the the second node.

» backend weightoO: This is the weight assigned to the node identified by the
hostname obtained from backend hostname0. Basically in pgpool, weights are
assigned to individual nodes. More requests will be dispatched to the node with a
higher weight value. Similarly, we set up backend weight1 for the second node.

» backend data directory0: This represents the data directory, that is, PGDATA
for the host identified by the backend hostname0 value. Similarly, we set up the
backend data_directoryl value for the second node.

» connection_cache: To enable the connection pool mode, we need to turn on
connection_cache

» max_pool: This value determines the maximum size of the pool per child.
The number of connections from pgpool to the backends may reach a limit
at num_init_children*max_pool.

In our case, we configured max pool to 4 and num init children to 32, both being
the default value. So when multiplied, the total number of connections from pgpool to the
backend may reach a limit of 128. Remember that the max_pool * num_init_children value
should always be less than the max connections parameter value.

The other parameters that were discussed in the preceding steps are as follows:
» replication mode: This parameter turns replication explicitly on. By default, it is
set to of f.

» load balance_ on: Enabling this parameter ensures that pgpool splits the load to
all of the hosts or nodes attached to the system.

» master slave mode: This parameter enables the master/slave mode. This
parameter must be set to of £ when the replication mode is set to on.

The other parameters take default values, and you may refer to the following pgpool links
follows for more information regarding them:

http://www.pgpool.net/docs/latest/pgpool-en.html#fconfig

http://www.pgpool.net/pgpool-web/contrib docs/simple sr setting 3.1/
pgpool . conf

Finally, once the parameters are configured, it is time to launch pgpool and make connections
on the pgpool port 9999.

Once pgpool is launched, we can see that some processes in the background have already
started, as seen in step 5 of the preceding section.

www.it-ebooks.info

http://www.pgpool.net/docs/latest/pgpool-en.html#config
http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/pgpool.conf
http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/pgpool.conf
http://www.it-ebooks.info/

Connection Pooling

Before we make connections using pgpool, we are basically utilizing a tool called pcp _node
info to check the status of the nodes, as seen in step 6 of the preceding section.

The pcp_node info command has the following syntax:

pcp_node info <timeout> <hostname> <port> <username> <passwords>
<nodeids>.

Here is the excerpt from step 6 of the preceding section:

-bash-4.1$ pcp node info 5 localhost 9898 postgres postgres 0

localhost 5432 1 0.500000

-bash-4.1$ pcp node info 5 localhost 9898 postgres postgres 1

localhost 5433 1 0.500000

As per step 6 of the preceding section, we are specifying the connection timeout value to be

5 .The hostname refers to the localhost, followed by port number 5432 and the username/
password combination, which is set to the postgres user along with password as postgres.
The final parameter is nodeid, which is set to 0 for the first node. Node O in our case refers
to the /var/1lib/pgsqgl/9.3/data data directory. Similarly, we use pcp_node info to
specify the port 5433 and the nodeid value as 1 for the /var/lib/pgsqgl/9.3/datal
data directory.

Whenever the pcp _node info command is triggered, the system will respond with the
following output: the hostname, port number, status, and weight of the node.

Among all of these values, the third column, which refers to the status of the node, is the most
important. If the value of the status column is 1, it means that the node is up but connections
are yet to be made. If the value of the status column is 2, it means that the node is up and
connections are pooled. If the value of the status column is 3, it means that the node is down
and some action needs to be taken.

In our scenario, the value of the status column is 1 for both the nodes, which means we are
good to go and we can start making connections to pgpool. If the value of the status column
is 3, then you need to enable the node using the pcp_attach node tool. The pcp_attach
node command has the same syntax as the pcp _node info command and can be used as
shown in the following line, assuming that the value of the status column of a node is 3. Let
us assume this value for the status column of node 1:

pcp_attach node 5 1localhost 5433 postgres postgres 1

In step 7 of the preceding section, we are connecting to pgpool on port 9999, creating a table
named emp and inserting some records into it.

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In step 8, we are testing for replication. We can clearly see that the emp table and the
corresponding records are available there when making connections to port 5433 and port
5432. This confirms successful replication using pgpool.

Refer to the following web links for more details on pgpool:
» http://www.pgpool .net/mediawiki/index.php/

Relationship between max pool, num init
A children, and max connections
» http://www.pgpool .net/docs/latest/pgpool-en.
html#fconnection pool mode

Starting and stopping pgpool

In this recipe, we are going to show the commands that can be used to start and stop pgpool.

Getting ready

Before pgpool can be started, we need to configure the pgpool settings in the pgpool . conf
configuration. This is covered in the previous recipe.

How to do it...

The pgpool utility can be started in two ways:

» By starting the pgpool service at the command line as the root user:

service pgpool start

» By executing the pgpool command on the terminal:

pgpool
Similarly, pgpool can be stopped in two ways:

» By stopping the pgpool service at the command line as the root user:

service pgpool stop

» By executing the pgpool command with the stop option:

pgpool stop

www.it-ebooks.info

http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/docs/latest/pgpool-en.html#connection_pool_mode
http://www.pgpool.net/docs/latest/pgpool-en.html#connection_pool_mode
http://www.it-ebooks.info/

Connection Pooling

Starting and stopping pgpool is relatively simple, as was seen in the preceding section.
However, pgpool comes with a lot of options, and the following is the most commonly
used syntax to start pgpool:

pgpool [-c] [-f config file] [-a hba file] [-F pcp config file]
These options are discussed as follows:

» -c:The -c switch is used to clear the query cache

» -f config_file: This option specifies the pgpool . conf configuration file, and pgpool
obtains its configuration from this file when starting itself

» -a hba_file: This option specifies the authentication file that is used when
starting pgpool

» -F pcp_config_file: This option specifies the password file, pcp . conf, to be used
when starting pgpool

For the full syntax of pgpool, refer to the following web link:
S

http://www.pgpool.net/docs/latest/pgpool-en.html#start

To stop pgpool, the same options that were used earlier to start pgpool can be used.
However, along with these switches, we can also specify the mode that needs to be
used while stopping pgpool.

There are two modes in which pgpool can be stopped:

» Smart mode: This option is specified using the -m s (smart) option. In this mode, we
first wait for the clients to disconnect and then shut down pgpool.

» Fast mode: This mode can be set by specifying the -m £ (fast) option. In this mode,
pgpool does not wait for clients to disconnect and shuts down pgpool immediately.

The complete syntax of the pgpool stop command is as follows:

pgpool [-f config file] [-F pcp _config file]l [-m {s([mart]|£flast]|]}]
stop

Usually, if there are any clients connected, pgpool waits for them to disconnect and will then
terminate itself. However, if you want to shutdown pgpool forcibly without waiting for clients to
disconnect, you can use the following command:

pgpool -m fast stop

182

www.it-ebooks.info

http://www.pgpool.net/docs/latest/pgpool-en.html#start
http://www.it-ebooks.info/

Chapter 8

Setting up pgbouncer

In this recipe, we are going to show the steps that are required to install pgbouncer.

Getting ready

We can either do a full source-based installation or use the operating-system-specific package
manager to install pgbouncer.

How to do it...

On an Ubuntu or Debian-based system, we need to execute the following command to
install pgbouncer:

apt-get install pgbouncer.

On CentOS, Fedora, or Red Hat-based Linux distributions we can execute the following command:
yum install pgbouncer

If you are doing a full source-based installation, then the sequence of commands is as follows:

1. Download the archive installation file from the following link:

http://pgfoundry.org/projects/pgbouncer

2. Extract the downloaded archive and enter the source directory:
tar -xzf pgbouncer-1.5.4.tar.gz

cd pgbouncer-1.5.4

3. The next step is to build and proceed with the software installation:
./configure -prefix=/usr/local

make & make install

4. Now create a configuration directory to hold a pgbouncer configuration file. This file
can be used later on to make parameter changes:

mkdir /etc/pgbouncer

chown -R postgres:postgres /etc/pgbouncer

www.it-ebooks.info

http://pgfoundry.org/projects/pgbouncer
http://www.it-ebooks.info/

Connection Pooling

If you are using an operating-system-specific package manager to install pgbouncer, then the
respective configuration files and logfiles required by pgbouncer are automatically created.
However, if you are proceeding with a full source-based pgbouncer installation, then there are
some additional steps required. You will be required to create the directories where pgbouncer
can maintain activity logs and service lock files. You will also be required to create the
configuration directory where the configuration file for pgbouncer will be stored. All of these
steps need to be performed manually as shown in steps 2, 3, and 4 in the prior section.

Connection pooling using pgbouncer

In this recipe, we are going to implement pgbouncer and benchmark the results for database
connections made to the database via pgbouncer against normal database connections.

Getting ready

Before we configure and implement connection pooling, the pgbouncer utility must be
installed. Installing pgbouncer is covered in the previous recipe.

How to do it...

1. First, we are going to tweak some of the configuration settings in the pgbouncer.
ini configuration file, as follows. The first two entries are for the databases that will
be passed through pgbouncer. Next, we configure the 1isten addr parameter to
*, which means that it is going to listen to all IP addresses. Finally, we set the last
two parameters, which are auth_file, the location of the authentication file and
auth type, which indicates the type of authentication used. We use plain as
the authentication type, which indicates that the we are using the password-based
mechanism here for authentication:

vi /etc/pgbouncer/pgbouncer.ini

postgres = host=localhost dbname=postgres
pgtest = host=localhost dbname=pgtest
listen addr = *

auth file = /etc/pgbouncer/userlist.txt
auth type = md5

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The next step is to create a user list that contains the users who will be allowed

to access the databases through pgbouncer. The format of the entries in the user

list would be supplied as username followed by the user's password as shown in

the following command, where the first entry is for the username, whose value is
author, and the second entry is for the password, whose value is password. Since
we have set the authentication type as MD5, we have to use the MD5 password entry
in the user list. Had we set the authentication type as plain, then the actual password
would have been supplied in the user list:

postgres=# CREATE role author LOGIN PASSWORD 'author' SUPERUSER;
CREATE ROLE

postgres=# select rolname ,rolpassword from pg authid where
rolname="'author';

rolname | rolpassword

author | md5d50afb6ec7b2501164b80a0480596ded
(1 row)

The MD5 password obtained can then be defined in the userlist file for the
corresponding user:

vi /etc/pgbouncer/userlist.txt

"author" "md5d50afb6ec7b2501164b80a0480596ded"

Once we have configured the pgbouncer. ini configuration file and created the
userlist file, the next step would be to start the pgbouncer service:

service pgbouncer start

Once the pgbouncer service is up and running, the next step will be to make
connections to it. By default, the pgbouncer service runs on port 6432, so any
connections made to the pgbouncer service need to be made on port 6432:

psqgl -h localhost -p 6432 -d postgres -U author -W

Now that we have made connections using pgbouncer, the next logical step is

to find out whether there are any performance improvements using pgbouncer.
For this purpose, we are going to create a temporary database—the one that was
initially defined in the pgbouncer. ini file—and insert records into it, and then
benchmark connections made against this database:

createdb pgtest
pgbench -i -s 10 pgtest

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

6. Then we benchmark the results against the pgtest database:
-bash-3.2$ pgbench -t 1000 -c 20 -C -S pgtest
starting vacuum...end.
transaction type: SELECT only
scaling factor: 10
query mode: simple
number of clients: 20
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 20000/20000
tps = 217.374571 (including connections establishing)
tps = 1235.875488 (excluding connections establishing)

7. The final step would be to benchmark the results against the pgtest database on
pgbouncer port 6432:

-bash-3.2$ pgbench -t 1000 -c 20 -C -S pgtest -p 6432 -U author
Password:

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps 2033.768075 (including connections establishing)

tps 53124.095230 (excluding connections establishing)

Here we can see a couple of things. Initially, we have to configure the pgbouncer. ini
configuration file along with the userlist file, which will be used for accessing databases
via pgbouncer. The effectiveness of pgbouncer can be seen in steps 6 and 7 in the preceding
section. We can see that the throughput increases to 2033.768 transactions per second
when pgbouncer is used, whereas when pgbouncer is not used, the throughput decreases to
a mere 217.37 transactions per second. In effect, using pgbouncer increases throughput by
approximately 10 times.

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

There's more...

In the How it works... section, we configured a couple of parameters in the pgbouncer.ini
configuration file. However, there are many more parameters that can be configured, and

if not configured, they will take the default settings. Refer to the following link to get more
details on pghbouncer parameters:

http://pgbouncer.projects.pgfoundry.org/doc/config.html

Managing pgbouncer

The pgbouncer utility provides an administrative console to view pool status and client
connections. In this recipe, we are going to view information regarding pgbouncer connections
(client connections), view pool status, and obtain connection pooling statistics.

Getting ready

Before we issue any commands, we first need to connect to the pgbouncer's administrative
console. For this purpose, we need to set the admin_users parameter in the pgbouncer.
ini configuration file:

vi /etc/pgbouncer/pgbouncer.ini

admin users = author

Once the preceding changes are saved in the pgbouncer. ini configuration file, the
pgbouncer service needs to be restarted in order to ensure that the parameter changes
come into effect:

service pgbouncer restart

Once this is done, we can make connections to the pgbouncer administration console with the
following command:

psqgl -p 6432 -U author pgbouncer

www.it-ebooks.info

http://pgbouncer.projects.pgfoundry.org/doc/config.html
http://www.it-ebooks.info/

Connection Pooling

How to do it...

With the help of the pgbouncer administration console, we can get information regarding the
clients, servers, and pool health:

1. To getinformation regarding the clients, issue the SHOW CLIENTS command, as
shown in the following screenshot, on the pgbouncer admin interface:

pgbouncer=# show clients;

type | wuser | database | state | addr | port | local addr | local_port | connect_time | request_time | ptr I link
...... A m e m e m e m e m e s m e dm e m i mmm mm mmn e m e hnm mm o mm e dhm e m e e e m e mmmmm e e e +

C | author | pgbouncer | active | unix | 6432 | unix I 6432 | 2014-11-21 18:05:43 | 2014-11-21 Bx9elcase |

[4 | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9e1d8d0 | 0x9ef0518
C | author | pgtest | active | unix | 6432 | unix] 6432 | 2014-11-21 18:06:42 | 2014-11-21 Bx9eld448 | 0x9e00098
[| author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:06:42 | 2014-11-21 0x9e1d9b8 | OxJed06es
C | author | pgtest | active | unix | 6432 | unix] 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9%eldaad | Ox9%e087de
C | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9e1d7e8 | Bx9dfffas
C | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9elcd@8 | Bx9e00430
C | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9e1db88 | Bx9dfTE68
[4 | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:06:42 | 2014-11-21 0x9e1d530 | 0x9e00178
C | author | pgtest | active | unix | 6432 | unix I 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9e1d61l8 | Ox9e08260
[4 | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:06:42 | 2014-11-21 0x9e1dc70 | 0x9e00348
C | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9eld700 | Ox9%9¢089a8
C | author | pgtest | active | unix | 6432 | unix | 6432 | 2014-11-21 18:86:42 | 2014-11-21 0x9e1d190 | 0x9e008bB

2. To get information regarding server connections, issue the SHOW SERVERS command,
as shown in the following screenshot, on the pgbouncer administrative console:

pgbouncer—# show servers

type | user | database | state | addr | port | local addr | local port | connect_time | reguest_time | ptr | link
777777 T T ST + + LT TPTRPTRRRRS
s | auther | pgtest | active | 127.0.8.1 | 5432 | 127.0.8.1 | 56002 | 2014-11 | 2014-11-21 18 | ©x9e0B518 | Bx9eld8de
5 | author | pgtest | active | 127.0.8.1 | 5432 | 127.0.0.1 | 55997 | 20814-11 | 2014-11-21 18: | ©x9e00098 | Bx9eld448
s | auther | pgtest | active | 127.0.8.1 | 5432 | 127.0.8.1 | 56004 | 2014-11 | 2014-11-21 18: | ©x9e0B6eB | Bx9eldIbd
S | author | pgtest | active | 127.6.0.1 | 5432 | 127.0.0.1 | 56005 | 2014-11 | 2014-11-21 18: | 8x0e007d8 | Bx9eldaad
5 | author | pgtest | active | 127.8.8.1 | 5432 | 127.6.0.1 | 55996 | 2014-11 | 2014-11-21 18: | @x9dfffa8 | Bx9eld7es
S | author | pgtest | active | 127.6.6.1 | 5432 | 127.0.6.1 | 56001 | 2014-11 | 2014-11-21 18: | 8x0e00438 | Bx9elcdes
s | author | pgtest | active | 127.8.8.1 | 5432 | 127.0.8.1 | 55088 | 2014-11 | 2014-11-21 18: | 8x9dff868 | Bx9eldbss
S | author | pgtest | active | 127.0.0.1 | 5432 | 127.0.0.1 | 55998 | 2014-11 | 2014-11-21 18: | ©x%9e00178 | 0x9eld530
5 | author | pgtest | active | 127.8.8.1 | 5432 | 127.0.08.1 | 55099 | 2014-11 | 2014-11-21 18: | 8x9e80260 | Bx9eld618
s | author | pgtest | active | 127.8.08.1 | 5432 | 127.0.08.1 | 56000 | 2014-11 | 2014-11-21 18: | 8x9e80348 | Bx9eldc70
S | author | pgtest | active | 127.8.8.1 | 5432 | 127.0.0.1 | 56007 | 20814-11 | 2014-11-21 18: | ©x9e089al | Bx9eld7e0

3. Similarly, you can issue the SHOW POOLS and SHOW STATS commands to get
information regarding pool status and pool statistics respectively, as shown in
the following screenshot:

pgbouncer=# show pools;

database | user | €l _active | ¢l waiting | sv_active | sv_idle | sv used | sv_tested | sv_login | maxwait

——————————— e e T e e e e e T
pgbouncer | pgbouncer | 1] e | e | e | e | e | e | e
pgtest | author | 20 | 1] 20 | 8| 6| 8| 9| 85
{2 rows)

pgbouncer=# show stats;
database | total requests | total received | total_sent | total query time | avg regq | avg recv | avg sent | avg query

.......... e
pgbouncer | 1] 8| 0| 8| 8 | e | 8| 8
pgtest | B131 | 442818 | 536895 | 16433811 | 8 | 8| 8| 8

(2 rows)

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

As we saw in the preceding section, we can get information regarding the clients, servers, and
pool health and statistics. When you issue the SHOW CLIENTS command on the pgbouncer
administrative console, pgbouncer provides you with a list of clients that have been either
using a PostgreSQL connection or waiting for it. Some of the important columns displayed in
the output of the SHOW CLIENTS command are discussed here:

» user: The value in this column displays the user that is connected to the database.

» database: The value in this column displays the database name to which the client
is connected.

» state: The value here displays the session state of the currently connected user. The
client connection can be in active, used, waiting, or idle state.

» connect_time: The value in this column indicates the time at which pgbouncer
initiated the client connection to PostgreSQL.

» request_time: This column's value shows the timestamp of the latest client request.

» port: The value in this column indicates the port to which the client is connected.
We have the SHOW SERVERS command, which is used to display information about every
connection that is being used to fulfill client requests. The SHOW SERVERS output contains
similar columns, which were discussed for SHOW CLIENTS. The only difference is for the
type column. If the value for the type column is S, it means that it is a server entry. If the
value for the type column is C, it means that it is a client entry. Some of the other important
columns for the SHOW SERVERS output are discussed as follows:

» user: The value in this column displays the user that is connected to the database.

» database: The value in this column displays the name of the database to which the
connection is attached.

» state: The value here displays the state of the pgbouncer server connection. The
server state could be active, used, or idle.

» connect_time: The value in this column indicates the time at which the connection
was made.

» request_ time: This column's value shows the timestamp for when the most recent
request was issued.

» port: The value in this column indicates the port number of the PostgreSQL server.

www.it-ebooks.info

http://www.it-ebooks.info/

Connection Pooling

The SHOW POOLS command displays a row for every database for which pgbouncer acts as a
proxy. Some of the important columns in the SHOW POOLS output are as follows:

» cl active: The value in this column displays the number of clients that are
currently active and assigned a server connection.

» cl waiting: The value in this column displays the number of clients waiting for a
server connection.

» sl active: The value in this column displays the number of server connections that
are assigned to pgbouncer clients.

» sl idle: The value here displays the number of idle server connections, including
the ones that are not in use.

» sl used: The value in this column displays the number of used server connections.
In effect, these connections are actually idle but they have not been marked by
pgbouncer for reuse yet.

The sHOW STATS command displays the relevant connection pool statistics related
to pgbouncer for the databases for which pgbouncer is acting as a proxy. Some of the
important columns in the SHOW STATS output are as follows:

» total requests: The value in this column displays the total number of SQL
requests pooled by pgbouncer

» total received: The value in this column displays the total volume of network
traffic (measured in bytes) that has been received by pgbouncer

» total sent: This column's value displays the total volume of network traffic
(measured in bytes) that has been sent by pgbouncer

» total query time:The value in this column displays the amount of time in
microseconds that pgbouncer spent communicating with a client in this pool

190

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

In this chapter, we will cover the following recipes:

Implementing partitioning
Managing partitions

Partition and constraint exclusion
Alternate partitioning methods
Installing PL/Proxy

Partitioning with PL/Proxy

Introduction

Partitioning is defined as splitting up a large table into smaller chunks. PostgreSQL supports
basic table partitioning. Partitioning is entirely transparent to the applications if it is
implemented correctly. Partitioning has a lot of benefits, which are discussed, as follows:

>

>

The query performance can be improved significantly for certain types of queries.

Partitioning can lead to an improved update performance. Whenever queries update
a big chunk of a single partition, performance can be improved by performing a
sequential scan for that partition, instead of using random reads and writes that are
dispersed across the entire table.

Bulk loads and deletes can be accomplished by adding or removing partitions if
the requirement is incorporated in the partition design. The ALTER TABLE NO
INHERIT and DROP TABLE operations perform faster than a bulk operation. Also,
these commands avoid the VACUUM overhead caused by a bulk delete.

Infrequently used data can be shipped to cheaper and slower media.

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

Implementing partitioning

Here, we are going to cover table partitioning and show the steps that need to be performed
in order to partition a table.

Getting ready

Exposure to database design and normalization is the only requirement.

How to do it...

The following series of steps need to be carried out in order to set up table partitioning:

1.

192

First, create a master table with all the fields. A master table is the table that will
be used as a base to partition data into other tables, that is, partitions. An index is
optional for a master table; however, since there are performance benefits of using
an index, we will create an index from a performance perspective here:
CREATE TABLE country log (

created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),

country code char(2),

content text
)i

CREATE INDEX country code_idx ON country log USING btree
(country code) ;

The next step is to create child tables that will inherit from the master table:

CREATE TABLE country log ru (CHECK (country code = 'ru'))
INHERITS (country log);
CREATE TABLE country log sa (CHECK (country code = 'sa'))

INHERITS (country log);

Next, create an index for each child table:

CREATE INDEX country code_ru_idx ON country log ru USING btree
(country code) ;

CREATE INDEX country code sa idx ON country log sa USING btree
(country code) ;

Then, create a trigger function with the help of which data will be redirected to the
appropriate partition table, as follows:
CREATE OR REPLACE FUNCTION country insert trig() RETURNS TRIGGER
AS $S B B
BEGIN

IF (NEW.country code = 'ru') THEN

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

INSERT INTO country log ru VALUES (NEW.¥*);
ELSIF (NEW.country code = 'sa') THEN

INSERT INTO country log sa VALUES (NEW.¥*);
ELSE

RAISE EXCEPTION 'Country unknown';
END IF;

RETURN NULL;
END;
$$ LANGUAGE plpgsqgl;

Now, create a trigger and attach the trigger function to the master table:

CREATE TRIGGER country insert
BEFORE INSERT ON country log
FOR EACH ROW EXECUTE PROCEDURE country_insert_trig();

Next, insert data into the master table, as shown here:

postgres=# INSERT INTO country log (country code, content) VALUES
('ru', 'content-ru');

postgres=# INSERT INTO country log (country code, content) VALUES
('sa', 'content-sa');

The final step is to select the data from both the master and child tables to confirm
the partitioning of data in the child tables, as follows:

postgres=# SELECT * from country log;

created_at | country code | content
_______________________________ o o e e
2014-11-30 12:10:06.123189-08 | ru | content-ru
2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

postgres=# select * from country log ru;
created_at | country code | content

2014-11-30 12:10:06.123189-08 | ru | content-ru
(1 row)

postgres=# select * from country log sa;
created_at | country code | content

2014-11-30 12:10:14.22666-08 | sa | content-sa
(1 row)

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

The following is a detailed explanation of the steps carried out in the preceding section:

>

PostgreSQL basically supports partitioning via table inheritance. Hence, partitioning
is set up in such a way that every child table inherits from the parent table. For this
purpose, we create two child tables, that is, country log ruand country log
sa, in step 2 of the previous section. These child tables inherit from the parent or
the master table, country log, using the INHERITS keyword against the master
table for the CREATE TABLE DDL statement for both the child tables. This was the
initial setup.

The next step, from our scenario, is to build partitioning in such a way that the logs by
country are stored in a country-specific table. The case that we used in the previous
section was to ensure that all the logs for Russia go in the country log rutable
and all the logs for South Africa go in the country log sa table. To achieve

this objective, we define a country insert trig trigger function, which helps
partition the data into a country-specific table whenever an INSERT statement is
triggered on the country log master table. The moment the INSERT statement
gets triggered on country log master table, the country log trigger gets fired
upon which it calls country insert trig().The country insert trig()
trigger function checks the inserted records, and if it finds records for Russia
(checked by the NEW. country code = 'ru' condition)in the country log
table, then it inserts the said record in the country log_ ru child table. If the
inserted record in the country log master table is for South Africa (NEW.
country code = 'sa'), then it logs the same record in the country log sa
child table. The trigger function partitions the data in this way. The following section
of code, in the country insert trig() trigger function, uses the logic defined in
the IF condition to partition the data into the child tables:

IF (NEW.country code = 'ru') THEN
INSERT INTO country log ru VALUES (NEW.¥*);
ELSIF (NEW.country code = 'sa') THEN
INSERT INTO country log sa VALUES (NEW.¥*);
ELSE
RAISE EXCEPTION 'Country unknown';
END IF;

Finally, once the data has been partitioned into the child tables, the final step is to
verify the same by comparing the records from the child tables and the master table,
as shown in step 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Initially, two records were inserted in the country log master table. This can be confirmed
by running the SELECT query against the country log table. Here, we can see two log
records in the country log table, one for Russia, identified by the country code ru, and one
for South Africa, identified by the country code sa:

postgres=# SELECT * from country log;

created at | country code | content
_______________________________ o o e
2014-11-30 12:10:06.123189-08 | ru | content-ru
2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

The next step is to run the SELECT queries against the respective child tables,
country log ruand country log sa:

postgres=# select * from country_log_ru;
created_at | country code | content

2014-11-30 12:10:06.123189-08 | ru | content-ru
(1 row)

postgres=# select * from country log sa;
created at | country code | content

2014-11-30 12:10:14.22666-08 | sa | content-sa
(1 row)

From the preceding output, you can see that there is only one record in each child table
country log ruand country log_sa. In effect, the country insert trig() trigger
function has partitioned the log data in country-specific tables. Entries for the country code
column with the ru value, that is, for Russia, go into the country log_rutable, and entries
for the country code column with the value sa, that is, South Africa, go into the country
log_sa child table.

You can refer to the following links for more detailed explanation on how to
implement partitioning:

» https://blog.engineyard.com/2013/scaling-postgresqgl-
performance-table-partitioning

» http://www.postgresqgl.org/docs/9.3/static/ddl-partitioning.html

www.it-ebooks.info

https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.it-ebooks.info/

Table Partitioning

Managing partitions

Here, we are going to show you how the partitioning scheme remains intact when an existing
partition is dropped or a new partition is added.

Getting ready

Please refer to the first recipe, Implementing partitioning, before you read the steps outlined
in this recipe.

How to do it...

There are two scenarios here. One scenario shows what happens when you delete an existing
partition, and another shows what happens when a new partition is added. Let's discuss both
the cases.

» Inthe first scenario, we will drop an existing partition table. Here, the country
code_sa table will be dropped, as follows:

1. Before dropping the country log sa child table, see the records in the
country log master table:

postgres=# SELECT * from country log;

created_at | country code | content
_______________________________ oo o e
2014-11-30 12:10:06.123189-08 | ru | content-ru
2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

2. Next, drop the country log sa child table, as shown here:
postgres=# drop table country log sa;
DROP TABLE

3. Again, as a final step, recheck the data in the master table, country log,
once country log_ sa is dropped:

postgres=# select * from country log;
created_at | country code | content

2014-11-30 14:41:40.742878-08 | ru | content-ru

196

www.it-ebooks.info

http://www.it-ebooks.info/

>

Chapter 9

In the second scenario, we will add a partition. Let's add a new partition, country
log default. The idea of creating this partition is that if there are tables for which
the trigger function does not define any country codes, those records should go into a
default table partition, as follows:

1. Before we create the child table, let's see the existing records in the
country log master table:

postgres=# select * from country log;
created at | country code | content

2014-11-30 14:41:40.742878-08 | ru | content-ru

2. Next, create a country log sa child table and create an index on the
child table, as shown here:
postgres=# CREATE TABLE country log default () INHERITS
(country log) ; S
CREATE TABLE
postgres=# CREATE INDEX country code default idx ON
country log default USING btree_(cougtry_codg);
CREATE INDEX;

3. Modify your existing trigger function in order to define a condition to insert
log records for those countries whose country codes are not explicitly defined
in order to go into a country code specific log table:

CREATE OR REPLACE FUNCTION country insert trig() RETURNS
TRIGGER AS 3
BEGIN
IF (NEW.country code = 'ru') THEN
INSERT INTO country log ru VALUES (NEW.*);
ELSIF (NEW.country_code = 'sa') THEN
INSERT INTO country log sa VALUES (NEW.¥*);

ELSE
INSERT INTO country log default VALUES (NEW.*);
END IF;

RETURN NULL;
END;
$$ LANGUAGE plpgsql;

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

4. Now, insert records into the master table:

postgres=# INSERT INTO country log (country code, content)

VALUES ('dk', 'content-dk');

INSERT 0 O

postgres=# INSERT INTO country log (country code, content)
VALUES ('us', 'content-us');

INSERT 0 O

5. Let's check the newly created records in the country log master table and
see if these records have been partitioned into the country log default
child table:

postgres=# select * from country log;
created at | country code | content

2014-11-30 14:41:40.742878-08 | | content-ru
2014-11-30 15:10:28.921124-08 | dk | content-dk
2014-11-30 15:10:42.97714-08 | | content-us

postgres=# select * from country log default;

created at | country code | content
_______________________________ o o e
2014-11-30 15:10:28.921124-08 | dk | content-dk
2014-11-30 15:10:42.97714-08 | us | content-us

(2 rows)

First, let's discuss the first scenario where we drop the child partition table,
country log sa. Here's the code snippet that was shown in the previous section:

postgres=# SELECT * from country log;

created at | country code | content
_______________________________ o o e
2014-11-30 12:10:06.123189-08 | ru | content-ru
2014-11-30 12:10:14.22666-08 | sa | content-sa

(2 rows)

postgres=# drop table country log sa;
DROP TABLE

postgres=# select * from country log;
created at | country code | content

2014-11-30 14:41:40.742878-08 | ru | content-ru

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

If you refer to the sequence of events in the preceding output, you can clearly see that once
the child table, country log_sa, got dropped, its corresponding entry from the country
log master table also got removed. This technique really helps if there are a large number
of records to be pruned from the master table once the corresponding child table is dropped.
This procedure is automatic and does not require DBA intervention. This way, the partition
structure and data can be easily managed and handled if any existing partition is dropped.

Similarly, data can be easily managed when a new partition is added. If you refer to step 2

of the second scenario in the How to do it... section, you can see that we create a new child
table, country log default, which inherits from the country log master table. Once
the existing trigger function, country insert trig(), is modified to include the condition-
based insert for partitioning the data into the newly created partition, country log
default, an INSERT statement is triggered on the country log master table, and if the
prevalent condition to insert records into the country log default child table is fulfilled,
then the records are inserted into the country log_default child table. This can be seen
from steps 2 to 5 of the second scenario in the How to do it... section when we add a partition.

For a more detailed explanation on partitioning, go to http://www.postgresql .org/
docs/9.3/static/ddl-partitioning.html.

Partitioning and constraint exclusion

In this recipe, we are going to talk about constraint exclusion and how it helps to
improve performance.

Getting ready

Familiarity with table partitioning is required for this recipe.

How to do it...

Constraint exclusion can be enabled with the following command:

SET constraint exclusion = ON ;

Now, let's discuss constraint exclusion.

Constraint exclusion is basically a query optimization technique that helps to improve the
performance of partitioned tables.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.it-ebooks.info/

Table Partitioning
Let's just analyze the query plan for the following query:

postgres=# EXPLAIN ANALYZE SELECT * FROM country log WHERE
country code = 'ru';
QUERY PLAN

Result (cost=0.00..38.29 rows=16 width=52) (actual
time=26.442..27.298 rows=1 loops=1)

-> Append (cost=0.00..38.29 rows=16 width=52) (actual
time=26.437..27.289 rows=1 loops=1)

-> Seq Scan on country log (cost=0.00..0.00 rows=1
width=52) (actual time=0.002..0.002 rows=0 loops=1)

Filter: (country code = 'ru'::bpchar)

-> Bitmap Heap Scan on country log ru country log
(cost=4.29..12.76 rows=5 width=52) (actual time=26.431..26.433 rows=1
loops=1)

Recheck Cond: (country code = 'ru'::bpchar)

-> Bitmap Index Scan on country code ru idx
(cost=0.00..4.29 rows=5 width=0) (actual time=26.413..26.413 rows=1
loops=1)

Index Cond: (country code = 'ru'::bpchar)

-> Bitmap Heap Scan on country log au country log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.822..0.822 rows=0
loops=1)

Recheck Cond: (country code = 'ru'::bpchar)

-> Bitmap Index Scan on country code au idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.817..0.817 rows=0
loops=1)

Index Cond: (country code = 'ru'::bpchar)

-> Bitmap Heap Scan on country log default country log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.023..0.023 rows=0
loops=1)

Recheck Cond: (country code = 'ru'::bpchar)

-> Bitmap Index Scan on country code default idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.013..0.013 rows=0
loops=1)

Index Cond: (country code = 'ru'::bpchar)
Total runtime: 27.442 ms
(17 rows)

If you analyze the preceding query plan for the preceding SELECT query, you will find that the
query scans each of the partitions of the country 1log table. This behavior is suboptimal
from a query-performance perspective.

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

To deal with this scenario, we can enable constraint exclusion. By doing so, the query

planner will examine the contents of each partition; however, the planner will try to prove that
scanning is not required for the partitions that do not meet the query's criteria defined in the
WHERE clause. When the planner can prove this, it excludes such partitions from the query
plan. This can be seen in the query plan generated for the query after the constraint exclusion
is enabled, as shown here:

postgres=# SET constraint exclusion = ON;
SET

postgres=# EXPLAIN ANALYZE SELECT * FROM country log WHERE
country code = 'ru';
QUERY PLAN

Result (cost=0.00..25.52 rows=11 width=52) (actual time=0.036..0.147
rows=1 loops=1)

-> Append (cost=0.00..25.52 rows=11] width=52) (actual
time=0.031..0.138 rows=1 loops=1)

-> Seq Scan on country log (cost=0.00..0.00 rows=1
width=52) (actual time=0.003..0.003 rows=0 loops=1)

Filter: (country code = 'ru'::bpchar)

-> Bitmap Heap Scan on country log ru country log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.025..0.027 rows=1
loops=1)

Recheck Cond: (country code = 'ru'::bpchar)

-> Bitmap Index Scan on country code ru idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.017..0.017 rows=1
loops=1)

Index Cond: (country code = 'ru'::bpchar)

-> Bitmap Heap Scan on country log default country log
(cost=4.29..12.76 rows=5 width=52) (actual time=0.102..0.102 rows=0
loops=1)

Recheck Cond: (country code = 'ru'::bpchar)

-> Bitmap Index Scan on country code default idx
(cost=0.00..4.29 rows=5 width=0) (actual time=0.096..0.096 rows=0

loops=1)

Index Cond: (country code = 'ru'::bpchar)
Total runtime: 0.230 ms
(13 rows)

We can see an improved performance in the query plan, as this one shows a total runtime
of 0.230 milliseconds, whereas the preceding query plan shows a total runtime of 27.442
milliseconds. Thus, you can see the performance benefits by enabling constraint exclusion.

201

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

Alternate partitioning methods

In this recipe, we are going to talk about another mechanism that can be used to
redirect INSERTS into the appropriate partitions. Here, we are going to talk about
using the rule-based approach instead of the trigger-based approach, in order to
redirect INSERTS into the appropriate partitions.

Getting ready

Familiarity with table partitioning is required for this recipe.

How to do it...

What we are going to do now is to use a rule-based approach. To do this, perform the
following steps:

1. To avoid any conflicts with the previously used trigger-based approach, proceed by
dropping the existing trigger function, using the following command:

postgres=# drop function country insert trig() cascade;

2. The next step will be to subsequently create rules for each of the child tables, so that
whenever a new record is inserted in the master table (country 1log), the rules
get invoked to redirect the INSERT commands to the appropriate partition table,
as shown here:

CREATE RULE country code check ru AS
ON INSERT TO country log WHERE
(NEW.country code = 'ru')
DO INSTEAD
INSERT INTO country log ru VALUES (NEW.¥*);

CREATE RULE country code check sa AS
ON INSERT TO country log WHERE
(NEW.country code = 'sa')
DO INSTEAD
INSERT INTO country log sa VALUES (NEW.¥*);

CREATE RULE country code check default AS

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

ON INSERT TO country log WHERE

(NEW.country code != 'ru' OR NEW.country code != 'sa')
DO INSTEAD

INSERT INTO country log default VALUES (NEW.*);

3. Next, insert the record into the master table, that is, country log:
INSERT INTO country log (country code, content) VALUES ('ca',

'content-ca') ;

4. Finally, use the SELECT query against the respective partition table to check whether
the INSERT commands used in the previous step are redirected to the appropriate
partition table using the rule-based approach, as follows:

postgres=# select * from country log default;

created_at | country code | content
_______________________________ o o e e
2014-11-30 15:10:28.921124-08 | dk | content-dk
2014-11-30 15:10:42.97714-08 | us | content-us
2014-12-01 14:36:27.746601-08 | ca | content-ca
(3 rows)

What we are basically doing here is to create rules for all the partitions. The condition
defined in the rules is the same as the one defined in the trigger function, country
insert trig(). Let's show the trigger function's code from which the conditions
defined for the rules were derived:

CREATE OR REPLACE FUNCTION country insert trig() RETURNS TRIGGER AS $$
BEGIN
IF (NEW.country code = 'ru') THEN
INSERT INTO country log ru VALUES (NEW.¥*);
ELSIF (NEW.country code = 'sa') THEN
INSERT INTO country log sa VALUES (NEW.¥*);

ELSE
INSERT INTO country log default VALUES (NEW.*);
END IF;

RETURN NULL;

END;
$$ LANGUAGE plpgsqgl;

203

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

If you take a look at the preceding trigger function, it is clear that when the inserted data into
the country log master table has the values for the country code column as ru or sa,
then the corresponding inserted row will either go to the country log ru of country
log_sa table, depending on what the inserted country code entry is. If the value for

the country code column inserted is anything else other than these two values, then the
corresponding row entry is directed to the country log default table. Based on these
conditions, we define the rules for all the child tables, as follows:

CREATE RULE country code check ru AS
ON INSERT TO country log WHERE
(NEW.country code = 'ru')
DO INSTEAD
INSERT INTO country log ru VALUES (NEW.¥*);

CREATE RULE country code check sa AS
ON INSERT TO country log WHERE
(NEW.country code = 'sa')
DO INSTEAD
INSERT INTO country log sa VALUES (NEW.¥*);

CREATE RULE country code check default AS
ON INSERT TO country log WHERE

(NEW.country code != 'ru' OR NEW.country code != 'sa')
DO INSTEAD

INSERT INTO country log default VALUES (NEW.*);

Once the rules are defined for the child tables, the next step is to remove the previously used
trigger function in order to avoid any conflict with the trigger- and rule-based approaches.
Finally, we add the data to the master table, and we can see in step 4 of the How to do

it... section, that based on the rule-based approach, the corresponding entry goes to the
country log default partition.

Installing PL/Proxy

PL/Proxy is a database partitioning system that is implemented as a PL language. PL/Proxy
makes it straightforward to split large independent tables among multiple nodes in a way
that almost allows unbounded scalability. PL/Proxy scaling works on both read and write
workloads. The main idea is that the proxy function will be set up with the same signature as
the remote function to be called, so only the destination information needs to be specified
inside the proxy function's body.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Getting Ready

Here, we are going to show the steps required to install PL/Proxy.

How to do it...

Perform the following steps to install PL/Proxy:

1. Gotohttp://pgfoundry.org/projects/plproxy/ and download the latest
tarball of PL/Proxy.

2. Once the latest version of PL/Proxy is downloaded, the next step is to unpack the
tar archive:

tar xvfz plproxy-2.5.tar.gz

3. Once the tar archive has been unpacked, the next step is to enter the newly created
directory and start the compilation process:

cd plproxy-2.5

make && make install

Installing PL/Proxy is an easy task. Here, we download the source code from the website
provided in step 1 of the preceding section. The latest version of PL/Proxy at this stage is
2.5. We need to download the tarball file containing version 2.5 of PL/Proxy, and once it is
downloaded, we need to compile and build it. This completes the installation of PL/Proxy.

You can also install PL/Proxy from binary packages, if prebuilt packages are available for your
operating system.

Partitioning with PL/Proxy

In this recipe, we are going to cover horizontal partitioning with PL/Proxy.

Getting ready

PL/Proxy needs to be installed on the host machine. Refer to the previous recipe for more
details on how to install PL/Proxy.

205

www.it-ebooks.info

http://pgfoundry.org/projects/plproxy/
http://pgfoundry.org/projects/plproxy/
http://www.it-ebooks.info/

Table Partitioning

How to do it...

Perform the following sequence of steps to perform horizontal partitioning using PL/Proxy:

1.

206

Create three new databases, that is one proxy database named nodes and two
partitioned databases named nodes 0000 and nodes 0001, respectively:

postgres=# create database nodes;

postgres=# create database nodes 0000;

postgres=# create database nodes 0001;

Once you've created these databases, the next step is to create a plproxy extension:
psgl -d nodes

nodes=# create extension plproxy;

The next step is to create the plproxy schema in the proxy database's nodes:

nodes=# create schema plproxy;

Next, execute the following file, plproxy--2.5.0.sgl, on the proxy database nodes:
cd /usr/pgsql-9.3/share/extension
psgl -f plproxy--2.5.0.sgql nodes

CREATE FUNCTION
CREATE LANGUAGE
CREATE FUNCTION
CREATE FOREIGN DATA WRAPPER

Then, configure PL/Proxy using the configuration functions on the proxy
database nodes:

psqgl -d nodes

CREATE OR REPLACE FUNCTION plproxy.get cluster version
(cluster name text) RETURNS int AS $$

BEGIN
IF cluster name = 'nodes' THEN
RETURN 1;
END IF;
END;

$$ LANGUAGE plpgsdl;

CREATE OR REPLACE FUNCTION plproxy.get cluster partitions
(cluster name text) RETURNS SETOF text AS $$

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

BEGIN
IF cluster name = 'nodes' THEN
RETURN NEXT 'host=127.0.0.1 dbname=nodes_ 0000"';
RETURN NEXT 'host=127.0.0.1 dbname=nodes 0001"';
RETURN;
END IF;

RAISE EXCEPTION 'no such cluster: %', cluster name;
END ;
$$ LANGUAGE plpgsgl SECURITY DEFINER;

CREATE OR REPLACE FUNCTION plproxy.get cluster config
(cluster name text, out key text, out val text)
RETURNS SETOF record AS $$
BEGIN

RETURN;
END;
$$ LANGUAGE plpgsqgl;

Next, log in to the partitioned databases and create the users table in both of these:
psql -d nodes 0000

nodes_0000=# CREATE TABLE users (username text PRIMARY KEY) ;

psql -d nodes 0001

nodes_0001=# CREATE TABLE users (username text PRIMARY KEY) ;

Now, create the following function, insert user (), which will be used to insert
usernames in the users table:

psgl -d nodes_ 0000

CREATE OR REPLACE FUNCTION insert user (i username text) RETURNS
text AS $S

BEGIN
PERFORM 1 FROM users WHERE username = i_username;
IF NOT FOUND THEN
INSERT INTO users (username) VALUES (i username) ;
RETURN 'user created';
ELSE
RETURN 'user already exists';
END IF;
END;

207

www.it-ebooks.info

http://www.it-ebooks.info/

Table Partitioning

$$ LANGUAGE plpgsql SECURITY DEFINER;

psql -d nodes 0001

CREATE OR REPLACE FUNCTION insert user (i username text) RETURNS
text AS $3
BEGIN
PERFORM 1 FROM users WHERE username = i_username;
IF NOT FOUND THEN
INSERT INTO users (username) VALUES (i username) ;
RETURN 'user created';
ELSE
RETURN 'user already exists';
END IF;
END ;
$$ LANGUAGE plpgsgl SECURITY DEFINER;

8. Next, create a proxy function called insert_user () on the proxy database nodes:
psgl -d nodes

CREATE OR REPLACE FUNCTION insert user (i username text) RETURNS
TEXT AS $S

CLUSTER 'nodes'; RUN ON hashtext (i username) ;
$$ LANGUAGE plproxy;

9. Check the pg hba. conf file; you will need to set the authentication to trust,
as shown here, and then restart the postgresqgl service:
host all all 127.0.0.1/32

trust

10. The next step will be to fill the partitions by executing the following query on the proxy
database nodes:

nodes=#SELECT insert user ('user number '||generate series::text)
FROM generate series(1,10000) ;

11. Once the data is inserted, verify the corresponding records in the partitioned
databases, nodes 0000 and nodes_ 0001, as follows:

nodes 0000=# select count(*) from users;
count

nodes 0001=# select count(*) from users;

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The following is an explanation of the preceding code output:

4

Initially, we create three databases—one as a proxy database named nodes and two
other databases named nodes_ 0000 and nodes_0001—across which the data will
be partitioned.

Once the preceding step is performed, the next step will be to create the
plproxy extension.

As can be seen in step 5 of the preceding section, we are configuring PL/Proxy
using the configuration functions on the proxy database nodes. The plproxy.get
cluster partitions () function is invoked when a query needs to be forwarded
to a remote database, and it is used by PL/Proxy to obtain the connection string to
be used for each partition. We also use the plproxy.get cluster version()
function, which is called upon each request, and it is used to determine whether the
output from a cached result from plproxy.get cluster partitions can be
reused. We also use the the plproxy.get cluster config() function, which
enables us to configure the behavior of PL/Proxy.

Once we are done with defining the configuration functions on the proxy database
nodes, the next step is to create the table users in both the partitioned databases,
across which the data will be partitioned.

Then, we created an insert_user () function that will be used to insert
usernames into the users table. The insert _user () function will be defined
on both the partitioned databases, nodes 0000 and nodes 0001. This is
shown in step 7 of the preceding section.

In the next step, we create a proxy function, insert user (), inside the proxy
database nodes. The proxy function will be used to send the INSERT result to the
appropriate partition. This is shown in step 8 of the preceding section.

Finally, we will be filling the partitions with random data by executing the insert
user () proxy function in the proxy database named nodes. This is seen in step 10
of the preceding section.

There's more

For more details on how to use PL/Proxy in order to proxy queries across a set of remote
databases, check out http://plproxy.projects.pgfoundry.org/doc/tutorial.

html.

209

www.it-ebooks.info

http://plproxy.projects.pgfoundry.org/doc/tutorial.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Accessing PostgreSQL
from Perl

In this chapter, we will cover the following recipes:

» Making a connection to a PostgreSQL database using Perl
» Creating tables using Perl

» Inserting records using Perl

» Accessing data using Perl

» Updating records using Perl

» Deleting records using Perl

Introduction

Perl is a general-purpose, high-level, interpreted, and dynamic programming language.
Generally, communicating with PostgreSQL involves a lot of string manipulation, and this is
where Perl excels as a language. In Perl, database interfaces are implemented by Perl DBI
modules. A DBI module presents a database-independent interface to Perl applications. On the
other hand, the database driver module handles the details of accessing different databases.

There are three ways to access PostgreSQL from Perl, stated as follows:

» Low-level access, which is done by the Perl mapping of the 1ibpg C interface
» High-level access, with the help of a database-independent layer

» Access by embedding a Perl interpreter

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

Making a connection to a PostgreSQL

database using Perl

Here, we are going to make connections to a PostgreSQL database using Perl.

Getting ready

The following instructions are performed on a CentOS Linux machine, and it is assumed that
the Perl language is already installed.

A PostgreSQL database can be accessed by using the Perl DBI module, which is a database
access module for the Perl programming language. The Perl DBI module defines a set of
methods, variables, and conventions that provide a standard database interface.

The DBI module, by itself, does not have the ability to communicate with PostgreSQL. For
the DBI module to communicate with PostgreSQL, it is necessary to install the appropriate
backend module, which in this case is DBD::Pg.

On Red Hat, CentOS, Scientific Linux, as well as other Red Hat based Linux distributions, the
package that provides this module is per1-DBD-Pg and it can be installed as follows:

yum install perl-DBD-Pg

On Debian-based systems, the package that provides this module is 1ibdbd-pg-perl, and
it can be installed as follows on Ubuntu- or Debian-based distributions:

apt-get install libdbd-pg-perl

Before we start using the Perl PostgreSQL interface, we will need to enter the following
authentication and access control mechanism entry in the pg_hba . conf file:

IPv4 local connections:

host all all 127.0.0.1/32 md5
Once these changes are done, we will need to restart the PostgreSQL server:

$ pg ctl -D $PGDATA restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

How to do it...

We can use the following Perl code to make a connection to an existing PostgreSQL database,
that is, the dvdrental database, which resides on the same machine and uses port 5432.

1. First, the following Perl code can be saved in a file called connect .pl:
#!/usr/bin/perl

use DBI;
use strict;
my Sdriver = "Pg";
my S$database = "dvdrental";
my $dsn = "DBI:Sdriver:dbname=$database;host=127.0.0.1;port=5432";
my Suserid = "postgres";
my Spassword = "postgres';

my $dbh = DBI->connect ($dsn, $userid, $password, { RaiseError => 1
|3

or die $DBI::errstr;

print "CONNECTION TO THE DVDRENTAL DATABASE MADE SUCCESSFULLY\n";

2. The next step will be to change permissions, as follows:
chmod 755 connect.pl

3. The Perl program can then be executed at the command line, as follows:
bash-3.2$ perl connect.pl
CONNECTION MADE TO THE DVDRENTAL DATABASE MADE SUCCESSFULLY

As can be seen from the preceding output, while the program is being executed, the
output message indicates that the connection to the dvdrental database has been
made successfully.

The connection to the database is made using the connect function. It returns a connection
handle that is needed when calls are made to the DBl module. The connect function
requires the following argument:

connect ($data_source, "userid", "password", \%attr);

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

The first argument to the connect function is the data source name, which is a single entity
that comprises of the database name and the host name or IP address and optionally, a port
number. The data source also comprises of the prefix Pg, which is the PostgreSQL database

driver for the DBI module.

The second argument is userid or the username by which a connection to the PostgreSQL
database is made.

The third argument is the password, which is the password of the user who initiates the
database connection. If an empty string is provided for the password, Perl will then look
for a password value in the environment variables, DBI USER and DBI PASS, which could
possibly cause the code to fail while it is being executed. So, we need to exercise caution in
such scenarios.

The final argument is optional, and it refers to any attributes that might be used.

In the preceding code, in the How to do it... section, we used the connect function,
as follows:

my $dbh = DBI->connect ($dsn, S$Suserid, S$password, { RaiseError => 1 })
The first argument used here is the dsn variable, which was initially defined, as follows:
my $dsn = "DBI:S$driver:dbname=$database;host=127.0.0.1;port=5432";

Here, we can see that the dsn value is a single entity, which comprises of a driver, the pg
driver; dbname, which is defined in the variable database and its value is dvdrental; and
further consists of the hostname and port number being explicitly defined here.

The second argument is the userid variable, which uses the value postgres defined
previously in the code.

The third argument is the password variable, whose value is postgres.

The final argument used is the RaiseError attribute, which causes the DBI module to call
the HandleError condition or to die if the HandleError condition is not defined when a
database error is detected.

If you need more information on the connect function, you can use the
following links for a more detailed explanation:

% » http://oreilly.com/catalog/perldbi/chapter/
T ch04 .html

» http://search.cpan.org/~rudy/DBD-Pg-1.32/Pg.pm

214

www.it-ebooks.info

http://oreilly.com/catalog/perldbi/chapter/ch04.html
http://oreilly.com/catalog/perldbi/chapter/ch04.html
http://search.cpan.org/~rudy/DBD-Pg-1.32/Pg.pm
http://www.it-ebooks.info/

Chapter 10

Creating tables using Perl

In this recipe, we are going to show you how to create tables in the PostgreSQL database
using Perl.

Getting ready

We will be the using the gg operator, and the parameter passed to the operator will contain
the CREATE TABLE SQL statement. The gg operator is used to return a double-quoted
string. Before creating the table, we must first use the connect function to connect to the
PostgreSQL database.

How to do it...

We can use the following code to create a table by the name EMPLOYEES. This table will be
stored in the dvdrental database because the connection made by the PostgreSQL adapter
is to the dvdrental database. The following code is saved in a file called createtable.pl,
which will be executed later:

#!/usr/bin/perl

use DBI;
use strict;

my S$driver = "Pg";

my S$database = "dvdrental";

my $dsn = "DBI:S$driver:dbname=$database;host=127.0.0.1;port=5432";
my Suserid = "postgres";

my Spassword = "postgres";

my $dbh = DBI->connect ($dsn, $userid, $password, { RaiseError => 1 })
or die $DBI::errstr;
print "Dvdrental database opened \n";

my $stmt = ggq(CREATE TABLE EMPLOYEES

(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (60) ,
SALARY REAL) ;) ;

my S$rv = $dbh->do($stmt) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

print "EMPLOYEES table created successfully\n\n";
$dbh->disconnect () ;
bash-3.2$ perl createtable.pl

Dvdrental database opened
EMPLOYEES table created successfully

In the preceding output, you can see that when the file containing the preceding code is
executed, a connection to the dvdrental database is made and an EMPLOYEES table is
created. This can be seen from the command-line console message, EMPLOYEES table
created successfully.

From the point of view of table creation, it is the following part of the preceding code that
needs an explanation:

my $Srv = $dbh->do ($stmt) ;

Here, we are using the handler returned by the connect function in conjunction with the do
function to execute the CREATE TABLE statement passed in the $stmt variable, as follows:

my $stmt = gg(CREATE TABLE EMPLOYEES

(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (60) ,
SALARY REAL) ;) ;

The do () method is a fusion of prepare () and execute (). It can only be used for
non-SELECT statements, where you don't need the statement handle to access the
results of the query. do () returns the number of affected rows.

The disconnect () method, in the preceding section, is used to terminate the existing
database session and disconnect from the database.

For more details on tables in Perl, check out http://www.postgresqgl.
i org/docs/9.3/interactive/plperl-builtins.html.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/interactive/plperl-builtins.html
http://www.postgresql.org/docs/9.3/interactive/plperl-builtins.html
http://www.it-ebooks.info/

Chapter 10

Inserting records using Perl

In this recipe, we are going to insert new records in the EMPLOYEES table in the
dvdrental database.

Getting ready

Before inserting records in the table, we first need to use the connect function, in order to
connect to the database. The connect function was discussed in the first recipe of the chapter.

How to do it...

We are going to use the following code to insert new records in the EMPLOYEES table:

#!/usr/bin/perl

use DBI;
use strict;

my $driver = "Pg";

my S$database = "dvdrental";

my $dsn = "DBI:S$driver:dbname=$database;host=127.0.0.1;port=5432";
my Suserid = "postgres";

my Spassword = "postgres";

my $irows = 0;

my $dbh = DBI->connect ($dsn, $userid, $password, { RaiseError => 1 })
or die S$DBI::errstr;

print "Opened database successfully\n";

my $stmt = gg(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS, SALARY)

VALUES (5, 'SandeepSingh', 37, 'Saharanpur', 90000.00));
my $rv = $dbh->do ($stmt) ;

Sirows = $Srv + Sirows;

$stmt = gg (INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (6, 'AmitGovil', 37, 'Aligarh', 85000.00));

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

Srv = $dbh->do ($stmt) ;

Sirows = Srv + Sirows;

$stmt = gg (INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (7, 'NeerajKumar', 38, 'Rohtak', 90000.00));
Srv = $dbh->do($stmt) ;

Sirows = Srv + Sirows;

$stmt = gg(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (8, 'SandeepSharma', 36, 'Gurgaon ', 75000.00););
Srv = $dbh->do($stmt) ;

Sirows = Srv + Sirows;

print "Number of rows inserted : $irows\n";
print "New Records created successfully\n";
$dbh->disconnect () ;

The preceding code is saved in a file called insert .pl, and we get the following command-
line output once the new records are inserted successfully:

bash-3.2$ perl insert.pl

Opened database successfully

New Records created successfully

For an explanation of the preceding code, we are taking an excerpt of the code that will
demonstrate how the records are getting inserted into the EMPLOYEES table:

my $stmt = gg(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (5, 'SandeepSingh', 37, 'Saharanpur', 90000.00));
my $Srv = $dbh->do ($stmt) ;

If you take a look at the preceding code, you can see that first, we used the INSERT statement,
defined records, and passed the INSERT SQL statement to a variable. After this is done, we
used the do () function to return the result of the INSERT statement into the table. The same
steps are performed sequentially for the other INSERT statements used in the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In the preceding section, we are also using the irows variable to track the number of rows
that were inserted into the table. Every time we insert a record into the table, we set the
condition as shown in the following line of code. Initially, the value of the irows variable is
set to zero, and whenever we insert a record into the EMPLOYEES table, the value of the rv
variable is set to 1. So, as per the following condition, every time there is a change or a record
is inserted, the irows variable's value will increment by 1 and so on, until all the records are
inserted and eventually it stops at 4 to indicate that four records were inserted in total:

Sirows = $Srv + Sirows;

Accessing table data using Perl

In this recipe, we are going to see how to access the table data from a PostgreSQL database
using Perl.

Getting ready

A database connection is mandatory before we can select data. Hence, for this reason, the
connect () function is the first one that should be invoked to make a database connection
before accessing data.

How to do it...

We can use the following code to access data from the EMPLOYEES table present in the
dvdrental database. The following code is saved in a file called select.pl, which will
be later executed from the command line:

#!/usr/bin/perl

use DBI;
use strict;

my S$driver = "Pg";

my S$database = "dvdrental;";

my $dsn = "DBI:S$driver:dbname=$database;host=127.0.0.1;port=5432";
my Suserid = "postgres";

my S$password = "postgres";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = gg(SELECT id, name, address, salary from EMPLOYEES;) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

my $sth = $dbh->prepare($stmt) or die "Cannot prepare: "

serrstr () ;

my $Srv = $sth-sexecute()

while (my @row = $sth->fetchrow array()) ({
print "ID = ". Srowl[0] "\n";
print "NAME = ". S$row([1l] ."\n";
print "ADDRESS = ". Srow[2] ."\n";
print "SALARY = ". Srow[3] ."\n\n";

}

$sth->finish () ;

print "select Operation done successfully\n";

$dbh->disconnect () ;

or die "Cannot execute:

The following is the output of the preceding code:

bash-3.2$ perl select.pl

Opened database successfully

ID =
NAME

ADDRESS
SALARY

ID =
NAME

ADDRESS
SALARY

ID =
NAME

ADDRESS
SALARY

ID =
NAME

ADDRESS
SALARY

SandeepSingh
= Saharanpur

= 90000

AmitGovil
= Aligarh
= 85000

NeerajKumar
= Rohtak
= 90000

SandeepSharma
= Gurgaon

= 75000

select Operation done successfully

220

$dbh-

$sth->errstr () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The following is the subpart of the code that mainly deals with selecting records from a table:

my S$stmt = gg(SELECT id, name, address, salary from EMPLOYEES;) ;

my S$sth = Sdbh->prepare($stmt) or die "Cannot prepare: " . $dbh-
serrstr() ;

my $rv = $sth->execute() or die "Cannot prepare: " . $dbh-serrstr();

while (my @row = $sth->fetchrow array()) ({

print "ID = ". Srow[0] . "\n";

print "NAME = ". S$row([l] ."\n";
print "ADDRESS = ". Srow[2] ."\n";
print "SALARY = ". Srow[3] ."\n\n";

}

$sth->finish() ;

In the preceding code, the first thing that we do is write down our SELECT query and pass it to
the $stmt variable.

The next step is to use the prepare () function in order to prepare the SQL statement,
which can be executed at a later time by the database engine and returns a reference to the
statement handle object.

The next step is to use the execute () function in order to execute the prepared statement.

Finally, in order to fetch the results of the SELECT command, we use the fetchrow_array ()
function. The fetchrow_array () function gets the next row and returns it as a list of field
values. We use the while loop to iterate through each of the field values in a given row across
the array named row and then move on to the next row. The same sequence of events are
repeated until we have iterated through the last field value in the final row returned.

Updating records using Perl

Here, we are going to see how to update existing records in a table in the PostgreSQL
database using Perl.

221

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

Getting ready

In this recipe, first we are going to show the number of existing records in the table. Then,
we are going to update some records, see the number of records updated, and then see the
changed records being made visible in the table when the table records are accessed again.

How to do it...

In this section we will update the existing records of the EMPLOYEES table.

1. First, we check the existing records in the EMPLOYEES table, as follows:

dvdrental=# select * from EMPLOYEES;

5 | SandeepSingh |
6 | AmitGovil |
7 | NeerajKumar

8 | |

SandeepSharma

37 | Saharanpur
37 | Aligarh
38 | Rohtak
36 | Gurgaon

2. Next, we use the following Perl code to update some of the existing records in the
EMPLOYEES table and save the following code in a file called update.pl:

#!/usr/bin/perl

use DBI;
use strict;

my Sdriver = "Pg";
my S$database

"dvdrental";

my $dsn = "DBI:S$Sdriver:dbname=$database;host=127.0.0.1;port=5432";
my Suserid = "postgres";

my S$Spassword = "postgres';

my $dbh = DBI->connect ($dsn,

3]

or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = gqg(UPDATE EMPLOYEES set SALARY

222

Suserid, S$password, { RaiseError => 1

55000.00 where ID=5;);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

my $Srv = $dbh->do ($stmt) ;

print "Number of rows updated : $rv\n";

$stmt = gg(SELECT id, name, address, salary from EMPLOYEES;) ;

my $sth = $dbh->prepare($stmt) or die "Check again: " . $dbh-
serrstr () ;
Srv = $sth-sexecute() or die "Cannot execute: " . S$sth-serrstr();
while (my @row = $sth->fetchrow array()) ({

print "ID = ". Srow[0] . "\n";

print "NAME = ". S$row([1l] ."\n";

print "ADDRESS = ". Srow[2] ."\n";

print "SALARY = ". Srow[3] ."\n\n";

}

$sth->finish () ;

print "Operation Completed successfully\n";
$dbh->disconnect () ;

In the preceding code, we use the UPDATE statement to set the SALARY value to
55000, where the value of the ID column is 5.

Next, we are going to see the updated records and see the changed records being
made visible in the EMPLOYEES table, as shown in the following code output:

bash-3.2$ perl update.pl
Opened database successfully
Number of rows updated : 1
ID = 6

NAME = AmitGovil

ADDRESS = Aligarh

SALARY = 85000

ID = 7

NAME = NeerajKumar
ADDRESS = Rohtak

223

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

SALARY = 90000

ID = 8

NAME = SandeepSharma
ADDRESS = Gurgaon
SALARY = 75000

ID = 5

NAME = SandeepSingh
ADDRESS = Saharanpur
SALARY = 55000

Operation Completed successfully

The following is an excerpt of the code that was used to update existing records using Perl into
the EMPLOYEES table:

my S$Sstmt = gq(UPDATE EMPLOYEES set SALARY = 55000.00 where ID=5;);
my Srv = $dbh->do($stmt) ;
print "Number of rows updated : $Srv\n";

The first initial requirement is to connect to the database using the connect () function,
which was explained in the first recipe of the chapter.

Once the connection to the dvdrental database is made, we use the UPDATE statement
and pass the UPDATE SQL statement in a $stmt variable. After this is done, the next step
is to use the do () function to return the result of the UPDATE statement contained in the
$stmt variable. We also use a variable called $rv, which is used to track the number of
records updated, if any. Once this is done, the next step is to fetch the records from the
table in order to validate the changes done as part of using the UPDATE statement.

Deleting records using Perl

In this recipe, we are going to show you how to delete records in a table using Perl.

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Getting ready

In this recipe, we will first display the number of existing records in the table. Then, we
will delete some records, see the number of records deleted, and then see the number
of available records present in the table after deletion.

How to do it...

In this section we will delete the existing records of the EMPLOYEES table.

1.

2.

First, we are going to check the existing records in the EMPLOYEES table,
as shown here:

dvdrental=# select * from EMPLOYEES;

id | name | age | address | salary
e e e e R et
6 | AmitGovil | 37 | Aligarh | 85000
7 | NeerajKumar | 38 | Rohtak | 90000
8 | SandeepSharma | 36 | Gurgaon | 75000
5 | SandeepSingh | 37 | Saharanpur | 55000

(4 rows)

Next, we are going to use the following Perl code to delete some records from the
EMPLOYEES table and save the code in a file called delete.pl, which we are
going to execute from the command line:

#!/usr/bin/perl

use DBI;
use strict;

my Sdriver = "Pg";

my S$database = "dvdrental";

my $dsn = "DBI:Sdriver:dbname=$database;host=127.0.0.1;port=5432";
my Suserid = "postgres";

my S$Spassword = "postgres';

my $dbh = DBI->connect ($dsn, $userid, $password, { RaiseError => 1
3

or die $DBI::errstr;

225

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Perl

226

print "Opened database successfully\n";
my $stmt = gq(DELETE from EMPLOYEES where ID=6;) ;
my $Srv = $dbh->do ($stmt) ;

print "Number of rows deleted : $rv\n";

$stmt = gg(SELECT id, name, address, salary from EMPLOYEES;) ;

my $sth = $dbh->prepare($stmt) or die "Cannot prepare: " . $dbh-
serrstr () ;
Srv = $sth-sexecute() or die "Cannot execute: " . S$sth-serrstr();
while (my @row = $sth->fetchrow array()) ({

print "ID = ". Srow[0] . "\n";

print "NAME = ". S$row([1l] ."\n";

print "ADDRESS = ". Srow[2] ."\n";

print "SALARY = ". Srow[3] ."\n\n";

}

$sth->finish () ;

print "Operation done successfully\n";
$dbh->disconnect () ;

Here, in the preceding code, the DELETE statement that we issue is used to delete a
record from the table where the value of the ID column is 6.

Next we check the command-line output of the preceding code:
bash-3.2$ perl delete.pl

Opened database successfully

Total number of rows deleted : 1

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak

SALARY = 90000

ID = 8
NAME = SandeepSharma
ADDRESS = Gurgaon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

SALARY = 75000

ID = 5

NAME = SandeepSingh
ADDRESS = Saharanpur
SALARY = 55000

Operation done successfully

The following is an excerpt from the code that was used to delete records from the
EMPLOYEES table:

my $stmt = gq(DELETE from EMPLOYEES where ID=6;) ;
my $Srv = $dbh->do ($stmt) ;
print "Number of rows deleted : S$rv\n";

The first initial requirement is to connect to the database using the connect () function,
which was explained in the first recipe of the chapter.

Once the connection to the dvdrental database is made, we use the DELETE statement
and pass the DELETE SQL statement in a $stmt variable. After this is done, the next step is
to use the do () function in order to return the result of the DELETE statement contained in
the $stmt variable. We also use a variable called $rv, which is used to track the number of
rows deleted from the table. Once this is done, the next step is to fetch the records from the
table to see the list of available records in the EMPLOYEES table.

227

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Accessing PostgreSQL
from Python

In this chapter, we will cover the following recipes:

» Making connections to a PostgreSQL database using Python
» Creating tables using Python

» Inserting records using Python

» Accessing data using Python

» Updating records using Python

» Deleting records using Python

Introduction

Python is a general purpose, dynamic object oriented and a high level programming language.
Python is an open source, well designed, robust and portable programming language. Python
has an easy to learn syntax and with its advanced programming features it is widely used by
developers and administrators worldwide. Python provides an easy way for database access
via the DB API which provides a minimal standard for working with databases using Python
syntax and semantics.

The steps involved in using the Python API are given as follows:

» Importing the APl module
» Establishing a database session
» Executing SQL statements

» Closing the database session

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Python

Making connections to a PostgreSQL

database using Python

Here, in this recipe, we are going to make connections to a PostgreSQL database using
Python language.

Getting ready

The following instructions are performed on a CentOS Linux machine and it is assumed that
python language is already installed.

PostgreSQL database can be accessed using psycopg2 module which is a database adapter
for Python language. This can be installed, as follows, on a CentOS machine:

sudo yum install python-psycopg2

How to do it...

We can use the following Python code to make connections to an existing PostgreSQL
database, that is the dvdrental database which resides on the same machine and
uses port 5432.

The following Python code can be saved in a file called connect . py:

#!/usr/bin/python
import psycopg?2

conn = psycopg2.connect (database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

print "Opened DVD Rental Database Successfully Using Python"
The preceding Python code can then be executed at the command line, as follows:
-bash-3.2$ python connect.py
The following is the output of the preceding code:
Opened DVD Rental Database Successfully Using Python

As can be seen from the preceding output, while the program is being executed the
output message indicates that the connection to the database dvdrental has been
made successfully.

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The connection to the database is made using the connect function which returns a
connection object. The connect function, used here in the preceding code, consists
of the following parameters:

connect ("db", "userid", "password", host,port) ;

The first argument to the connect function, is the database to which the connection is to be
made to.

The second argument is the userid or the username by which a connection to the
PostgreSQL database is made.

The third argument is the password which is the password of the user who initiates the
database connection.

The fourth argument refers to the hostname or the IP address of the server hosting
the database.

The next argument refers to the port number of the database on which the client can initiate
the database connection.

In the preceding code, in the How to do it... section, we used the connect function, as follows:

conn = psycopg?2.connect (database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

Here, we are connecting to the dvdrental database using the postgres user and password
postgres. The machine to which we are connecting is the localhost and the database server
listens on port 5432 for connections.

If you need more information on the connect function you can use the following links for a
more detailed explanation:

» http://blogs.wrox.com/article/using-the-python-database-apis/

» http://initd.org/psycopg/docs/module.html#psycopg?2.connect

Creating tables using Python

Here, in this recipe, we are going to show how to create tables in the PostgreSQL database
using Python language.

231

www.it-ebooks.info

http://blogs.wrox.com/article/using-the-python-database-apis/
http://initd.org/psycopg/docs/module.html#psycopg2.connect
http://www.it-ebooks.info/

Accessing PostgreSQL from Python

Getting ready

Before creating a table, we first need to make a connection to the PostgreSQL database using
the connect function, and once the database is opened then we can use DDL statements to
create the table.

How to do it...

We can use the following code to create a table by the name EMPLOYEES. This table will be
stored in the dvdrental database because the connection made by the PostgreSQL adapter
is to the dvdrental database. The following code is saved in a file called createtable.py
which will be executed later:

#!/usr/bin/python
import psycopg?2

conn = psycopg2.connect (database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

print "Opened DVD Rental Database Successfully"

cur = conn.cursor ()

cur.execute ('''CREATE TABLE EMPLOYEES
(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (50) ,
SALARY REAL);"''")

print "Table created successfully"

conn.commit ()
conn.close ()

In the following output, we can see that when the createtable. py file, which contains
the preceding code is executed, a connection to the dvdrental database is made and the
EMPLOYEES table is created. This can be seen from the command line console message
Table created successfully:

bash-3.2$ python createtable.py

Opened DVD Rental Database Successfully

Table created successfully

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

From the point of view of table creation, it is the following part of the preceding code that
needs explanation:

cur = conn.cursor ()

cur.execute ('''CREATE TABLE EMPLOYEES
(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (50) ,
SALARY REAL);''")

print "Table created successfully"
conn.commit ()
conn.close ()

First we create a cursor object by invoking the connection object's cursor () function. Once
this is done, we use the cursor object's execute () function to execute the CREATE TABLE
DDL statement to create a table. Then, we call the connection object's commit function to
save the changes and finally we call the connection object's close () function to close the
database connection.

Inserting records using Python

In this recipe we are going to insert new records in the EMPLOYEES table in the
dvdrental database.

Getting ready

Before inserting records in the table, we first need to use the connect function to connect to
the database first. The connect function was discussed in the first recipe of the chapter.

How to do it...

We are going to use the following code to insert new records in the EMPLOYEES table:

#!/usr/bin/python
import psycopg?2

conn = psycopg2.connect (database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

233

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Python

print "Opened database successfully"
cur = conn.cursor ()

cur.execute ("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
VALUES (1, 'SandeepSingh', 39, 'Saharanpur', 90000.00)");

cur.execute ("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
VALUES (2, 'NeerajKumar', 42, 'Rohtak', 90000.00)");

cur.execute ("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
VALUES (3, 'AmitGovil', 37, 'Aligarh', 88000.00)");

cur.execute ("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
VALUES (4, 'SandeepSharma', 36, 'Haridwar ', 75000.00)");

conn.commit ()
print "Records created successfully in EMPLOYEES Table";
conn.close ()

The preceding code is saved in a file called insert .py and the following is the command line
output that we get once the new records are inserted successfully:

bash-3.2$ python insert.py

Opened database successfully

Records created successfully in Employees Table

For the explanation of the preceding code, we are taking an excerpt of the code that will
demonstrate how the records are getting inserted into the EMPLOYEES table.

cur = conn.cursor ()

cur.execute ("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
VALUES (1, 'SandeepSingh', 39, 'Saharanpur', 90000.00)");

If we see the preceding code first, then we can see that once the connection is made to the
database, we use the underlying connection object's cursor () function which creates the
cursor object which we are going to utilize in executing the respective SQL statements. Here,
in the preceding code, we can see that the cursor object is stored in the cur variable and
then we call the cursor object's execute () function to execute the INSERT statements and
so for other SQL statements. Eventually we call the commit () to ensure that the changes
made / records inserted are saved in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Accessing table data using Python

In this recipe, we are going to see how to access table data from a PostgreSQL database
using Python.

Getting ready

Database connection is mandatory before we can select data. Henceforth for this reason
the connect () function is the first one that should be invoked to first make a database
connection before accessing data.

How to do it...

We can use the following code to access data from the EMPLOYEES table present in the
dvdrental database. The following code is saved in a file called select .py, which will
be later executed from the command line:

#!/usr/bin/python
import psycopg?2
conn = psycopg2.connect (database="dvdrental", user="postgres",

password="postgres", host="127.0.0.1", port="5432")
print "Opened database successfully"

cur = conn.cursor ()
cur.execute ("SELECT id, name, address, salary from EMPLOYEES")

rows = cur.fetchall ()
for row in rows:

print "ID = ", row[O0]

print "NAME = ", row[1l]

print "ADDRESS = ", row[2]
print "SALARY = ", row[3], "\n"

print "Select Operation done successfully";
conn.close ()

The following is the output of the preceding code:

bash-3.2$ python select.py
Opened database successfully

ID = 1

235

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Python

NAME = SandeepSingh
ADDRESS = Saharanpur
SALARY = 90000.0

ID = 2

NAME = NeerajKumar
ADDRESS = Rohtak
SALARY = 90000.0

ID = 3

NAME = AmitGovil
ADDRESS = Aligarh
SALARY = 88000.0

ID = 4

NAME = SandeepSharma
ADDRESS = Haridwar
SALARY = 75000.0

Select Operation done successfully

The following is the sub part of the code that mainly deals with selecting records from a table:

cur.execute ("SELECT id, name, address, salary from EMPLOYEES")
rows = cur.fetchall ()
for row in rows:

print "ID = ", row[O0]

print "NAME = ", rowl[1l]

print "ADDRESS = ", row[2]
print "SALARY = ", row[3], "\n"

print "Select Operation done successfully";
conn.close ()

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

In the preceding code, we first call the cursor object's execute () function to execute the
SELECT statement. However, here the situation is that a given table may consist of multiple
records and our objective is to fetch those multiple rows by integrating through each row, that
is one record at a time. To achieve the target of fetching multiple rows from a table we use

the cursor object's fetchall () function which returns all the rows of a resultset, thereby
returning a list of rows from a table. To iterate through each row we use the for loop to iterate
through the rows of a table printing each row of the table on the console during each iteration.

You may refer to the following web link for more information:

https://wiki.postgresqgl.org/wiki/Psycopg2 Tutorial

Updating records using Python

Here, in this recipe we are to update existing records in a table in the PostgreSQL database
using Python language.

Getting ready

In this recipe, first we are going to show the number of existing records in the table, then
we are going to update some records, see the number of records updated and then see the
changed records being made visible in the table when the table records are accessed again.

How to do it...

First we check the existing records in the EMPLOYEES table.

dvdrental=# select * from employees;

id | name | age | address | salary
B e +----- o m e m e - R
1 | SandeepSingh | 39 | Saharanpur | 90000
2 | NeerajKumar | 42 | Rohtak | 90000
3 | AmitGovil | 37 | Aligarh | 88000
4 | sandeepSharma | 36 | Haridwar | 75000

237

www.it-ebooks.info

https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
http://www.it-ebooks.info/

Accessing PostgreSQL from Python

Next we use the following Python code to update some of the existing records in the
EMPLOYEES table and save the following code in a file called update.py:

#!/usr/bin/python
import psycopg?2

conn = psycopg2.connect (database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")
print "Opened database successfully"

cur = conn.cursor ()

cur.execute ("UPDATE EMPLOYEES SET SALARY = 105000.00 WHERE ID=1")
conn.commit ()
print "Total number of rows updated :", cur.rowcount

cur.execute ("SELECT id, name, address, salary FROM EMPLOYEES")
rows = cur.fetchall ()
for row in rows:

print "ID = ", row[O0]

print "NAME = ", row[1l]

print "ADDRESS = ", row[2]
print "SALARY = ", row[3], "\n"

print "Update Operation done successfully";
conn.close ()

In the preceding code, we are using the UPDATE statement to set the salary to 55000
where the value of id column is 1. Next we are going to see the updated records and see the
changed records being visible in the EMPLOYEES table, as shown in the following code output:

--bash-3.2$ python update.py
Opened database successfully
Total number of rows updated : 1

ID = 2

NAME = NeerajKumar
ADDRESS = Rohtak
SALARY = 90000.0
ID = 3

NAME = AmitGovil
ADDRESS = Aligarh

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

SALARY = 88000.0

ID = 4

NAME = SandeepSharma
ADDRESS = Haridwar
SALARY = 75000.0

ID = 1

NAME = SandeepSingh
ADDRESS = Saharanpur
SALARY = 105000.0

Update Operation done successfully

The following is an excerpt of the code that was used to update existing records using Python
language into EMPLOYEES table:

cur = conn.cursor ()

cur.execute ("UPDATE EMPLOYEES set SALARY = 105000.00 where ID=1")
conn.commit ()
print "Total number of rows updated :", cur.rowcount

If we take a look at the preceding code, we are familiar with the connection object's

cursor () function and subsequently with the cursor object 's execute () function and
these have been discussed in the previous recipes. However, for updating records in a table
the first change that happens here is that the UPDATE statement is used as a part of the
execute () function to update an underlying record in the table. However, we need to make
sure that the changes that we made in the table are visible across the database. Henceforth,
we use the connection object's commit () function to save the changes that were made

by the UPDATE statement. Once this is done, the changes that were made by the UPDATE
statement are visible to anyone who selects the data from the table. We also use the cursor
object's rowcount read only attribute to find out the number of records that were modified by
the last executed statement. The rowcount attribute could be used either with the UPDATE,
DELETE or INSERT statements.

239

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Python

Deleting records using Python

Here in this recipe we are going to show how to delete records in a table using Python language.

Getting ready

In this recipe, first we are going to show the number of existing records in the table, then
we are going to delete some records, see the number of records deleted and then see the
available number of records present in the table after deletion.

How to do it...

The following are the steps to delete records in a table:

1. First we are going to check the existing records in the EMPLOYEES table.

dvdrental=# select * from employees;

id | name | age | address | salary
T N +----- e P Fommmmm -
1 | SandeepSingh | 39 | Saharanpur | 90000
2 | NeerajKumar | 42 | Rohtak | 90000
3 | AmitGovil | 37 | Aligarh | 88000
4 | sandeepSharma | 36 | Haridwar | 75000

2. Next we are going to use the following Python code to delete some records from the
EMPLOYEES table and save the code in a file called delete.py, which we are going
to execute from the command line:

#!/usr/bin/python
import psycopg2

conn = psycopg2.connect (database="dvdrental", user="postgres",
password="postgres", host="127.0.0.1", port="5432")

240

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

print "Opened database successfully"
cur = conn.cursor ()

cur.execute ("DELETE from EMPLOYEES where ID=2;")
conn.commit ()
print "Total number of rows deleted :", cur.rowcount

cur.execute ("SELECT id, name, address, salary from EMPLOYEES")
rows = cur.fetchall ()
for row in rows:

print "ID = ", row[O0]

print "NAME = ", rowl[1l]

print "ADDRESS = ", rowl[2]
print "SALARY = ", row[3], "\n"

print "DELETE Operation done successfully";
conn.close ()

Here, the preceding DELETE statement that we are issuing, is used to delete a record
from the table where the value of ID column is 2.

Next we see the command line output of the preceding code:
bash-3.2$ python delete.py

Opened database successfully

Total number of rows deleted : 1

ID = 1

NAME = SandeepSingh
ADDRESS = Saharanpur
SALARY = 90000.0

ID = 3

NAME = AmitGovil
ADDRESS = Aligarh
SALARY = 88000.0

ID = 4

NAME = SandeepSharma
ADDRESS = Haridwar
SALARY = 75000.0

DELETE Operation done successfully

241

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing PostgreSQL from Python

The following is an excerpt from the code that was used to delete records from the
EMPLOYEES table:

cur = conn.cursor ()

cur.execute ("DELETE from EMPLOYEES where ID=2;")
conn.commit ()
print "Total number of rows deleted :", cur.rowcount

In the preceding code snippet, we use the cursor object's execute function to execute
the DELETE statement. We then use the connection object's commit method to commit
or save the changes made by the DELETE statement. Finally, we use the cursor object's
rowcount attribute to find the number of records that were deleted by the last executed
DELETE statement.

242

www.it-ebooks.info

http://www.it-ebooks.info/

12

Data Migration from
Other Databases
and Upgrading the
PostgreSQL Cluster

In this chapter, we will cover the following recipes:

» Using pg_dump to upgrade data
» Using the pg_upgrade utility for a version upgrade
» Replicating data from other databases to PostgreSQL using GoldenGate

Introduction

Often in the career of a database administrator, he/she is required to do major version
upgrades of the PostgreSQL server. Over a period of time new terminologies and features
get added to PostgreSQL and this results in a major version release. To implement the new
features of the new version, the existing PostgreSQL setup needs to be upgraded to the
new version. Database upgrades require proper planning, careful execution and planned
downtime. PostgreSQL offers two major ways to do a version upgrade.

» With the help of pg dump utility
» With the help of pg upgrade script

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

Also in this chapter we cover the Oracle GoldenGate tool. GoldenGate is a heterogeneous
replication software that can be used to replicate data between different databases.

In this chapter we are going to cover heterogeneous replication between Oracle and PostgreSQL.

Using pg_dump to upgrade data

Here, in this recipe, we are going to upgrade PostgreSQL cluster from version 9.2 to 9.3 and
we will utilize pg_dump utility for this purpose.

Getting ready

The only prerequisites here are that an existing PostgreSQL cluster must be set up and running.
The required version here is PostgreSQL version 9.2. These steps are carried out on a 64 bit
CentOS machine.

How to do it...

Below are the series of steps that need to be carried out for upgrading PostgreSQL from
version 9.2 to 9.3 using pg_dump:
1. Backup your database using the pg_dumpall command.
pg _dumpall > db.backup

2. The next step would be to shutdown to the current PostgreSQL server.
pg ctl -D /var/lib/pgsql/9.2/data stop

3. The next step would be to rename the old PostgreSQL installation directory.
mv /var/lib/pgsql /var/lib/pgsql.old
4. The next step would be to install the new version of PostgreSQL which is PostgreSQL

version 9.3. Prior to doing that, we will check for existing packages before installing the
new ones with the following command and then we will install the new version package:

rpm -ga |grep postgresql

wget http://yum.postgresql.org/9.3/redhat/rhel-6.4-x86 64/pgdg-
centos93-9.3-1.noarch.rpm

rpm -Uvh ./pgdg- centos93-9.3-1l.noarch.rpm

yum install postgresql93-server.x86 64 postgresql93-contrib.x86 64
postgresql93-1ibs.x86 64 postgresql93.x86 64 postgresqgl93-devel.
x86 64

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

5. The next step would be to initialize the PostgreSQL version 9.3 server.
/usr/pgsql-9.3/bin/initdb -D /var/lib/pgsql/9.3/data

6. Once the database cluster is initialized, then the next step is to restore the
configuration files from the previous version 9.2 data directory to the current
version 9.3 data directory location.

cd /var/lib/pgsql.old/9.2/data
cp pg hba.conf postgresgl.conf /var/lib/pgsql/9.3/data

7. The next step would be to start the PostgreSQL 9.3 database server.
pg ctl -D /var/lib/pgsql/9.3/data start

8. Finally, as a last step, restore your data from the backup that was created in step 1.
/usr/pgsql-9.3/bin/psql -d postgres -f db.backup

9. As a next step, we can either remove the old version data directory or else we can
continue working alongside both the server versions.

10. If we choose to remove the old version, as mentioned in step 9, we can then remove
the respective old version packages, as follows:
yum remove postgresql92-server-9.2.3-2PGDG.rhel6.x86 64
postgresqgl92-contrib-9.2.3-2PGDG.rhel6.x86 64 postgresql92-libs-
9.2.3-2PGDG.rhel6.x86 64 postgresql92-9.2.3-2PGDG.rhel6.x86 64
postgresql92-devel-9.2.3-2PGDG.rhel6.x86 64

Here, initially we take a dump of all the databases in the existing PostgreSQL 9.2 version
cluster. We then initiate a clean shutdown of current PostgreSQL server and rename the
existing PostgreSQL installation directory to avoid any conflicts with the new version of
PostgreSQL, that is version 9.3 that is being installed. Once the respective packages of

the new version are installed we then proceed with initializing a database directory for
PostgreSQL 9.3 server. To ensure that the desired configuration settings come into effect,

we will need to copy the configuration files from the old version's data directory to the new
version's data directory and then start the new version PostgreSQL server service using the
configuration settings that were defined for the existing environment in the old server. Once
the PostgreSQL server version 9.3 has been started we can connect to the databases on this
server. Eventually we restore all the tables and databases from the old PostgreSQL server 9.2
to the new PostgreSQL server version 9.3 by using the backup that was made in step 1 in the
preceding section.

You may refer to the following links for a more detailed explanation on upgrading a PostgreSQL
cluster using pg_dump:

http://www.postgresql.org/docs/9.3/static/upgrading.html

245

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/upgrading.html
http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

Using the pg_upgrade utility for a version

upgrade

Here, in this recipe, we are going to talk about upgrading a PostgreSQL cluster using pg_upgrade
utility. We will be covering a PostgreSQL version upgrade from version 9.2 to version 9.3.

Getting ready

The only prerequisites here, are that an existing PostgreSQL cluster must be set up and
running. The required version here is PostgreSQL version 9.2. These steps are carried
out on a 64 bit CentOS machine.

How to do it...

The following are the steps to upgrade a PostgreSQL cluster from version 9.2 to version 9.3
using the pg _upgrade utility:

1. Take a full backup of the data directory using a filesystem dump or use pg_dumpall
to backup data. Before taking a backup stop the running PostgreSQL server.
pg ctl -D $PGDATA stop

cd /var/lib/pgsql/9.2/

tar -cvf data.tar data

2. The next step would to be install the new version of PostgreSQL.

wget http://yum.postgresqgl.org/9.3/redhat/rhel-6.4-x86 64/pgdg-
centos93-9.3-1.noarch.rpm

rpm -ivh ./pgdg- centos93-9.3-1l.noarch.rpm

3. Asthe repository is now installed, the next step is to determine which packages need
to be installed. For this purpose, check the packages that are installed for the current
version and then get the list of packages that are needed to be installed for the new
PostgreSQL version 9.3.

rpm -ga | grep postgre | grep 92
postgresql92-server-9.2.3-2PGDG.rhel6.x86 64
postgresqgl92-contrib-9.2.3-2PGDG.rhel6.x86 64
postgresql92-1ibs-9.2.3-2PGDG.rhel6.x86 64
postgresql92-9.2.3-2PGDG.rhel6.x86 64

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

postgresqgl92-devel-9.2.3-2PGDG.rhel6.x86 64

yum list postgres* | grep 93
postgresql93.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresqgl93-contrib.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresqgl93-debuginfo.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresqgl93-devel.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresql93-docs.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresqgl93-jdbc.x86 64 9.3.1100-1PGDG.rhel6 pgdg93
postgresqgl93-jdbc-debuginfo.x86 64 9.3.1100-1PGDG.rhel6 pgdg93
postgresqgl93-1libs.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresqgl93-odbc.x86 64 09.02.0100-1PGDG.rhel6 pgdg93
postgresqgl93-odbc-debuginfo.x86 64 09.02.0100-1PGDG.rhel6 pgdg93
postgresql93-plperl.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresql93-plpython.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresql93-pltcl.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresql93-server.x86 64 9.3.4-1PGDG.rhel6 pgdg93
postgresql93-test.x86 64 9.3.4-1PGDG.rhel6 pgdg93

The packages that will be installed for the new version will match the packages that
are currently installed for the old version.

yum install postgresqgl93-server.x86 64 postgresql93-contrib.
x86 64 postgresqgl93-1libs.x86 64 postgresqgl93.x86 64 postgresqgl93-
devel.x86 64

Now that the new version of PostgreSQL is installed, the next step is to initialize the
data directory for the new PostgreSQL version 9.3 database.
/etc/init.d/postgresql-9.3 initdb

Once the data directory has been initialized for the new PostgreSQL version 9.3,
the next step is to run the pg_upgrade utility.

cd /usr/pgsql-9.3/bin

./pg_upgrade -v -b /usr/pgsql-9.2/bin/ -B /usr/pgsql-9.3/bin/ -4 /
var/lib/pgsql/9.2/data/ -D /var/lib/pgsql/9.3/data/

247

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

Once the upgrade completes , it will then generate two files analyze new
cluster.shand delete old cluster.shfiles respectively. These files are
basically used to generate optimizer statistics and delete the old PostgreSQL cluster
version's data files.

6. Post the upgrade step we would need to copy the configuration files and the
authentication files present in the old version to the new setup, as follows:

cd /var/lib/pgsql/9.2/data
cp -p pg hba.conf postgresql.conf /var/lib/pgsql/9.3/data/

7. The next step would be to start the PostgreSQL server version 9.3 service.

service postgresqgl-9.3 start

8. The next step would be to run the analyze new cluster.sh shell script that
was generated at the end of step 5. This script is used to collect minimal optimizer
statistics in order to get a working and a usable PostgreSQL system.

./analyze new cluster.sh

9. The next step would be to remove the old PostgreSQL directory by running the
following script:

./delete _old cluster.sh

10. Finally, as a last step, we will remove the old PostgreSQL version 9.2 installed packages.

yum remove postgresgl92

After installing the packages for the PostgreSQL server version 9.3, what we are doing here

is changing the location of data directory in the startup script, as shown in step 4. After this
is done, we initialize the data directory for the new PostgreSQL server. The difference in

steps here, and the previous recipe, is that here we are changing the location of the data
directory, the log path, and port number of the new PostgreSQL server version, whereas in
the earlier recipe we renamed the existing PostgreSQL server version data directory. Once the
data directory is initialized, we then we stop the current PostgreSQL server and then launch
the pg_upgrade script to upgrade the existing setup to the new version. The pg_upgrade
script requires specifying the path of old and new data directories and binaries. Once the
upgrade completes it generates two shell scripts analyze new cluster.shand delete
old cluster.sh to generate statistics and delete the old version PostgreSQL directory. To
preserve the existing configuration, we would need the pg_hba . conf and postgresql.
conf files from the old version's data directory to the new version's data directory, as shown
in step 6 in the preceding section and then we can start the upgraded PostgreSQL server.
Once the server has started, we can then proceed to generate statistics via the analyze
new_cluster. sh script and then remove the old version directory via the delete old
cluster. sh script, as shown in steps 8 and 9 respectively.

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

You can refer to the following web link for more information regarding the upgrade process:
http://www.postgresql.org/docs/9.3/static/pgupgrade.html

http://nol0p.github.io/postgresql/2014/03/29/upgrading-pg-ubuntu.html

Replicating data from other databases to

PostgreSQL using GoldenGate

In this recipe, we are going to cover heterogeneous replication using the Oracle GoldenGate
software. We are going to migrate table data from Oracle to PostgreSQL.

Getting ready

Since this recipe talks about replicating data from Oracle to PostgreSQL, it is important to
cover Oracle installation. Also, since GoldenGate is the primary tool used, we will also cover
the GoldenGate installation for both Oracle and PostgreSQL.

To install the Oracle 11g software on the Linux platform, you may refer to any of the following
web links:

» http://oracle-base.com/articles/l1lg/oracle-db-11gr2-
installation-on-oracle-linux-5.php
» http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-
linux-7/
To install GoldenGate for the Oracle database, refer to the following web link:
http://docs.oracle.com/cd/E35209 01/doc.1121/e35957.pdf

Here are the high level installation steps given for the ease of the reader. Please refer to the
preceding web link for more detailed information:
» Logintoedelivery.oracle.com.

» Select Oracle Fusion Middleware from the Select a Product Pack dropdown menu
and select the Linux x86-64 option from the Platform dropdown menu and click on
the Go button.

249

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/pgupgrade.html
http://no0p.github.io/postgresql/2014/03/29/upgrading-pg-ubuntu.html
http://oracle-base.com/articles/11g/oracle-db-11gr2-installation-on-oracle-linux-5.php
http://oracle-base.com/articles/11g/oracle-db-11gr2-installation-on-oracle-linux-5.php
http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-linux-7/
http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-linux-7/
http://docs.oracle.com/cd/E35209_01/doc.1121/e35957.pdf
edelivery.oracle.com
http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

>

>

Choose the option whose description says Oracle GoldenGate on Oracle v11.2.1
Media Pack for Linux x86-64, click on the Continue button and it will open a web
link. Then download the file with the name Oracle GoldenGate V11.2.1.0.3 for
Oracle 11g on Linux x86-64.

As a next step, extract the downloaded file and change the directory to the new
location and then launch the GoldenGate command-line interface using ggsci
command. Before launching the GoldenGate command-line interface set the
GoldenGate installation directory and library path in PATH and LD LIBRARY PATH
environment variables respectively.

To install GoldenGate for PostgreSQL, refer to the following web link:

https://docs.oracle.com/cd/E35209 01/doc.1121/e29642.pdf

Here are the high level installation steps given for the ease of the reader. Please refer to the
preceding web link for more detailed information and instructions:

>

>

Login to edelivery.oracle.com

Select Oracle Fusion Middleware from the Select a Product Pack dropdown menu
and select the Linux x86-64 option from the Platform dropdown menu and click on
the Go button.

Choose the option whose description says Oracle GoldenGate for Non Oracle
Database v11.2.1 Media Pack for Linux x86-64, click on the Continue button
and you will directed to a web link where you need to click on the Download button
against the file whose name says Oracle GoldenGate V11.2.1.0.2 for PostgreSQL
on Linux x86-64.

Once the file is downloaded, then extract the zip file and change the directory to the
newly created location and then launch the GoldenGate command-line interface
using the ggsci command. Before launching the GoldenGate command-line
interface set the GoldenGate installation directory and library path in PATH and

LD LIBRARY PATH environment variables respectively.

Here, in this section, we will first cover a brief overview of the procedure used for table data
replication from the source database, that is Oracle to target database, that is PostgreSQL.

1.

250

From the source database, that is Oracle here first, we will have to create various
subdirectories for GoldenGate and for various database definition files.

The next step is to create a parameter file which contains a port number for the
manager process for GoldenGate on the source database and then start the manager.

Similar to this on the target database, that is PostgreSQL, we will have to create
various subdirectories for GoldenGate and for various database definition files.

The next step is to create a parameter file which contains a port number for the
manager process for GoldenGate on the target database and then start the manager.

www.it-ebooks.info

https://docs.oracle.com/cd/E35209_01/doc.1121/e29642.pdf
http://www.it-ebooks.info/

Chapter 12

10.

The next step would be to create two tables with the same structure on both the
source, that is Oracle and target database, that is PostgreSQL.

Now that we have the tables created on both the source and target database, we will
log in to source database from the GoldenGate tool and capture the table definitions
for the tables that needs to be replicated.

Similar to the preceding step we will log in into the target database using the
GoldenGate command-line interface and capture the table definitions for the
table which was created in step 5.

In the next step, we start the extract process on the source. We first create a
parameter file for the extract process, which contains the information about the
remote host and consists of a trail file which is used to capture any changes made on
the table in the source database and transport these changes to the target database.
We then start the extract process and it will capture any changes on the table in the
source database, that is Oracle.

The next step, is to start the replicat process on the target database. For this we
set up a replicat parameter file. Once the replicat process is started, it will read
the changes from the trail file which was used in the previous step at the source to
capture changes made to the table in the source database. The replicat process
will read these changes and dump them into the target database, that is PostgreSQL.

Now that we have the extract process configured on the source database to capture
changes and the replicat process set up on the target database to read those
changes. We will now begin to add/change some records on the source. With the
extract process capturing these changes and recording them in the trail file and the
trail file being shipped to the server hosting the target database, the replicat
process residing on the target reads those changes from the trail file and applies
them to the target database.

We are assuming that a username nkumar with password nkumar has already been
setup on both Oracle and PostgreSQL. We will be using the tables created in nkumar
schema for replication between Oracle and PostgreSQL.

For instance, on Oracle, we can create the schema user nkumar, as follows, after
logging in as the sys user:

SQL > CREATE USER nkumar identified by nkumar ;
SQL> GRANT CREATE ANY TABLE to nkumar;

For creating nkumar user in PostgreSQL, you may refer to Chapter 1, Managing
Databases and the PostgreSQL Server for more details on how to create a user in
PostgreSQL and accordingly create this user in PostgreSQL.

251

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

How to do it...

The following are the complete sequence of steps required to migrate table data/changes
from Oracle to PostgreSQL using GoldenGate:

1.

252

First connect as the superuser SYS using the operating system authentication on the
machine hosting the Oracle database using the sqlplus utility. The utility uses OS
authentication by default, so the password is not required to be specified. At the time
of Oracle installation, it will usually ask the user to change the password, however if
no password is specified you can use the default password change on_ install.

sqlplus / as sysdba

Once logged in to the Oracle database make the following parameter changes:
SQL> alter system set log archive dest 1='LOCATION=/home/abcd/

oracle/oradata/arch’';

To make the above mentioned parameter changes come into effect, shutdown and
restart the Oracle database.

SQL> shutdown immediate

SQL> startup mount

Configure archiving on the Oracle database to ensure that changes made by
transactions are captured and logged in the archivelog files.

SQL> alter database archivelog;

SQL> alter database open;

The next step would be to enable minimum supplemental logging.
SQL> alter database add supplemental log data;
SQL> alter database force logging;

SQL> SELECT force logging, supplemental log data min FROM
v$édatabase;

FOR SUPPLEME

The next step would be to add the GoldenGate directory path to PATH and library path
to the LD LIBRARY PATH environment variables respectively.

export PATH=$ORACLE HOME/bin:$ORACLE_ HOME/OPatch:$HOME/ggs:$PATH
export LD LIBRARY PATH=$ORACLE HOME/lib:$HOME/ggs/lib

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

10.

The next step would be to launch the GoldenGate command-line interface for Oracle.
./ggsci

The next step would to be create various subdirectories for GoldenGate such as
directories for report files, database definition etc.

GGSCI> create subdirs

Creating subdirectories under current directory /home/abcd/oracle/
ggs

Parameter files /home/abcd/oracle/ggs/dirprm:
already exists

Report files /home/abcd/oracle/ggs/dirrpt:
created

Checkpoint files /home/abcd/oracle/ggs/dirchk:
created

Process status files /home/abcd/oracle/ggs/dirpcs:
created

SQL script files /home/abcd/oracle/ggs/dirsql:
created

Database definitions files /home/abcd/oracle/ggs/dirdef:
created

Extract data files /home/abcd/oracle/ggs/dirdat:
created

Temporary files /home/abcd/oracle/ggs/dirtmp:
created

Stdout files /home/abcd/oracle/ggs/dirout:
created

The next step is to create a parameter file for the manager which contains a port
number for the manager. Here, we enter port 7809 as the port number.

GGSCI > edit param mgr
GGSCI > view param mgr

PORT 7809

The next step would be to exit from the manager, start the manager and then verify if
it is running.

GGSCI > startw mgr
GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

253

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

11.

12.

13.

MANAGER RUNNING

GGSCI > info mgr

Manager is running (IP port 7809).

The next step would be to log in to the server hosting the PostgreSQL server and
make the GoldenGate configuration steps there. First add the GoldenGate directory
to LD LIBRARY PATH and PATH environment variables.

export LD LIBRARY PATH=/usr/pgsql/lib:/usr/pgsql/ggs/lib
export PATH=/usr/pgsql/bin:/usr/pgsql/ggs:S$PATH

GoldenGate uses an ODBC connection to connect to the postgres database.
The next step is to create the ODBC file. The ODBC driver is shipped along with
the installation on Linux/Unix, you just have to create just the configuration file.
If the ODBC driver is not available, you may refer to the following web link to
download the respective PostgreSQL driver:

http://www.uptimemadeeasy.com/linux/install-postgresqgl-odbc-
driver-on-linux/

view odbc.ini

[ODBC Data Sources]

GG_Postgres=DataDirect 6.1 PostgreSQL Wire Protocol
[ODBC]

IANAAppCodePage=106

InstallDir=/usr/pgsql/ggs

[GG_Postgres]

Driver=/usr/pgsqgl/ggs/lib/GGpsgl25.s0o
Description=DataDirect 6.1 PostgreSQL Wire Protocol
Database=test

HostName=dbtest

PortNumber=5432

LogonID=nkumar

Password=nkumar

The next step would be to export the ODBC environment variable, that is ODBCINI
which should point to the odbc . ini file that we have created in the previous step.
This variable can be set in the .profile file, as well.

export ODBCINI=/usr/pgsql/ggs/odbc.ini

www.it-ebooks.info

http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-driver-on-linux/
http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-driver-on-linux/
http://www.it-ebooks.info/

Chapter 12

14. Now that we have the ODBC setup completed, the next step would be to start with the
GoldenGate setup for PostgreSQL.

We will first launch the GoldenGate command-line interpreter for PostgreSQL.
./ggsci

15. We will now create various subdirectories for the GoldenGate report, definition files,
and so on.

GGSCI > create subdirs

Creating subdirectories under current directory /usr/pgsql/ggs

Parameter files /usr/pgsql/ggs/dirprm: already
exists

Report files /usr/pgsql/ggs/dirrpt: created
Checkpoint files /usr/pgsql/ggs/dirchk: created
Process status files /usr/pgsql/ggs/dirpcs: created
SQL script files /usr/pgsql/ggs/dirsql: created
Database definitions files /usr/pgsql/ggs/dirdef: created
Extract data files /usr/pgsql/ggs/dirdat: created
Temporary files /usr/pgsql/ggs/dirtmp: created
Stdout files /usr/pgsql/ggs/dirout: created

16. The next step would be to create the manager parameter file with port number.
Here we enter port number 7809 in the manager parameter file and then start
the manager.

GGSCI > edit param mgr

GGSCI > view param mgr

PORT 7809

255

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

17.

18.

19.

Once we created the parameter file we can start the manager and check its status.
GGSCI > start mgr

Manager started.

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING
GGSCI > info mgr

Manager is running (IP port 7809).

We will now create a table both in Oracle and PostgreSQL databases and replicate
the data between the two. Log in to the Oracle database and create the table.

sglplus nkumar

SQL> create table abcd(coll number,col2 wvarchar2(50));

Table created.

SQL> alter table abcd add primary key(coll);

Table altered.

The next step would be to log in to the PostgreSQL database and create a
similar table.

psgl -U nkumar -d test -h dbtest

test=> create table "public"."abcd" ("coll" integer NOT NULL,
"col2" varchar (20) ,CONSTRAINT "PK_Collll" PRIMARY KEY ("coll")):;

20. The next step would be log in to Oracle database using the GoldenGate command-line

256

interface, list the tables and capture and check their data types.
GGSCI > dblogin userid nkumar, password nkumar

Successfully logged into database.

GGSCI > list tables *

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

21.

NKUMAR . ABCD

Found 1 tables matching list criteria.

GGSCI > capture tabledef nkumar.abcd

Table definitions for NKUMAR.ABCD:

coLl NUMBER NOT NULL PK

COL2 VARCHAR (50)

In the next step we will check our ODBC connection to the PostgreSQL database and

use the GoldenGate CLI (command-line interface) for listing the tables and capturing
the table definitions.

GGSCI > dblogin sourcedb gg postgres userid nkumar

Password:

2014-11-04 17:56:35 INFO OGG-03036 Database character set
identified as UTF-8. Locale: en US.

2014-11-04 17:56:35 INFO OGG-03037 Session character set
identified as UTF-8.

Successfully logged into database.

GGSCI > list tables *
public.abecd

Found 1 table matching list criteria

GGSCI > capture tabledef "public"."abcd"
Table definitions for public.abcd:

coll NUMBER (10) NOT NULL PK

col2 VARCHAR (20)

257

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

22.

23.

258

In the next step we will start the GoldenGate extract process on the Oracle database.
First we will create the extract process that captures the changes for the ABCD table in
the Oracle database and copy these changes directly to the PostgreSQL machine. Every
process needs the configuration file, so we will create one for the extract process.

GGSCI > edit param epos

The parameters created are shown below when viewing the parameter file, as follows:

GGSCI > view param epos

EXTRACT epos

SETENV (NLS LANG="AMERICAN AMERICA.ZHS16GBK")

SETENV (ORACLE_HOME="/home/abcd/oracle/product/11.2.0/dbhome 1")
SETENV (ORACLE_ SID="orapd")

USERID nkumar, PASSWORD nkumar

RMTHOST dbtest, MGRPORT 7809

RMTTRAIL /usr/pgsql/ggs/dirdat/ep

TABLE nkumar.abcd;

The extract process is called epos and it connects as user nkumar using the
password nkumar to the Oracle database. Changes made on the Oracle table

abed will be extracted and this information will be put in a trail file in the PostgreSQL
machine. Now that the parameter file has been created, we can then add the extract
process and start it.

GGSCI > add extract epos, tranlog, begin now

EXTRACT added.

GGSCI > add exttrail /usr/pgsql/ggs/dirdat/ep, extract epos,
megabytes 5

EXTTRAIL added.

GGSCI > start epos

Sending START request to MANAGER

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

24,

25.

26.

EXTRACT EPOS starting

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt
MANAGER RUNNING
EXTRACT RUNNING EPOS 00:00:00 00:00:00

GGSCI > info extract epos

Since we are replicating the data in the heterogeneous environment, that is data
replication is happening from Oracle to PostgreSQL, the process doing the loading in
the PostgreSQL would need to provide more details about the data in the extract file.
This is done by creating a definition file using defgen utility.

GGSCI > view param defgen

DEFSFILE /home/abcd/oracle/ggs/dirdef/ABCD.def
USERID nkumar, password nkumar

TABLE NKUMAR.ABCD;

We can now exit from the GoldenGate CLI and call the defgen utility on the
command line to create the definition file and add the reference to the defgen
parameter file.

./defgen paramfile ./dirprm/defgen.prm

Definitions generated for 1 table in /home/abcd/oracle/ggs/dirdef/
ABCD.def

The next step would be to copy the defgen file to the machine where PostgreSQL
database is hosted.

cd /home/abcd /oracle/ggs/dirdef
scp dirdef/ABCD.def postgres@dbtest:/usr/pgsql/ggs/dirdef

259

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

27.

28.

260

The next step would be to start the PostgreSQL replicat process and we are going
to set up the parameter file for this and include the definition file that was copied
from the server hosting the Oracle database to the server hosting PostgreSQL.

GGSCI > edit param rpos

The parameters created when viewing the parameter file are as shown below:

GGSCI > view param rpos

REPLICAT rpos

SOURCEDEFS /usr/pgsql/ggs/dirdef/ABCD.def

SETENV (PGCLIENTENCODING = "UTF8")

SETENV (ODBCINI="/usr/pgsql/ggs/odbc.ini")

SETENV (NLS_LANG:“AMERICAN_AMERICA.AL32UTF8")

TARGETDB GG_Postgres, USERID nkumar, PASSWORD nkumar

DISCARDFILE /usr/pgsql/ggs/dirrpt/diskg.dsc, purge

MAP NKUMAR.ABCD, TARGET public.abcd, COLMAP (COLl=coll,COL2=col2);

In the next step we create the replicat process, start it and verify if it is running.

GGSCI > add replicat rpos, NODBCHECKPOINT, exttrail /usr/pgsql/
ggs/dirdat/ep

REPLICAT added.

GGSCI > start rpos

Sending START request to MANAGER
REPLICAT RPOS starting

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING

www.it-ebooks.info

http://www.it-ebooks.info/

29.

Chapter 12

REPLICAT RUNNING RPOS 00:00:00 00:00:00

GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt
MANAGER RUNNING
REPLICAT RUNNING RPOS 00:00:00 00:00:02

GGSCI > view report rpos

Now that the extract and replicat processes have been set up on Oracle and
PostgreSQL GoldenGate interfaces the next step is to test the configuration. We first
begin by logging into the Oracle database and inserting records into the ABCD table.

sglplus nkumar

SQL> insert into abcd values (101, 'Neeraj Kumar');

1 row created.

SQL> commit;

Commit complete.

SQL> select * from abcd;

101 | Neeraj Kumar

261

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

30. Now we will check if the corresponding changes / new records inserted into the

ABCD table in the Oracle database are visible in the corresponding ABCD table
in the PostgreSQL database.

psgl -U nkumar -d test

test=> select * from abcd;

coll | col2

______ o mmmmmmmmmmmem— o
101 | Neeraj Kumar

(1 row)

This setup completes the heterogeneous testing scenario for replicating data /changes from
Oracle to PostgreSQL.

For the steps mentioned in the preceding section, we are going to discuss the steps 1 to 27 of
the preceding section in chunks.

>

262

We will first talk about steps 1 to 6 of the preceding section: Initially we make

a superuser connection in Oracle with the sysdba privilege and make certain
configuration changes. We first enable a destination for holding the archived logs,

that is logs that contain information about transactional changes are kept here in the
location specified by the 1og_archive dest 1 initialization parameter, as seen in
step 2 of the previous section. We then shutdown the database in order to ensure the
changes made in step 2 come into effect. Once the database is restarted, we then
configure archiving in the database and enable supplemental logging, as seen in step
4 and 5 of the preceding section. In step 6 we configure and include the GoldenGate
directory path and library path in PATH and LD LIBRARY PATH environment variables.

We will now talk about steps 7 and 8 of the preceding section: After GoldenGate is
installed on the server hosting the Oracle database, we then launch the GoldenGate
CLI and then create various GoldenGate subdirectories for holding parameter files,
checkpoint files, database definition files, extract data files, and so on.

We will now talk about steps 9 and 10 of the preceding section: The GoldenGate
manager performs a number of functions like starting the GoldenGate process, trail
log file management, and reporting. The manager process needs to be configured
both on source and target systems and configuration is carried out with the help of
the parameter file, as shown in step 9. We configure the parameter PORT to define
the port on which the manager is running. Once the parameter file for the manager
is setup on the source machine, we then start the manager and verify if it is running.
This is shown in step 10 of the preceding section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

We will now talk about steps 11 to 15 of the preceding section: Once GoldenGate

is installed on the machine where the PostgreSQL server is hosted, we then

add the GoldenGate directory and library path to PATH and LD LIBRARY PATH
environment variables. GoldenGate basically uses an ODBC connection to connect
to the PostgreSQL database. For this purpose the we set up an ODBC configuration
file called odbc . ini which contains connection information to connect to the
PostgreSQL server. This is shown in step 12. In the next step, we export the ODBCINT
environment variable and include the path of the configuration file. Then from step 14
onwards we launch the GoldenGate command-line interface for PostgreSQL and then
we create various subdirectories for holding parameter files, database definition files,
and so on.

We will now talk about steps 16 and 17 of the preceding section: Similar to what
was performed in steps 9 and 10 on the source system for the manager process

in GoldenGate for Oracle, in a similar style we configure the parameter file for the
manager process in GoldenGate for the target system, that is PostgreSQL and then
start the manager and then verify it, as shown in step 17. The only parameter that
has been configured in step 16 is the PORT parameter which identified the port on
which the manager will listen to.

We will now talk about steps 18 and 19 in the preceding section: Here we are
creating two tables of the same names, having the same structure. One table will
be created in the Oracle database and one will be created in PostgreSQL. The
tables are created in this manner because the idea of this exercise is that any data
changes that happen on the table created in Oracle will be replicated/propagated in
PostgreSQL. This is the heterogeneous replication concept.

Here we will talk about steps 20 and 21 from the preceding section: Basically, in

step 20 what we are doing is logging in to the Oracle database using the GoldenGate
interface and we capture the table definition for the table that was created in step 18
of the preceding section. Similarly, in step 21, we are checking the ODBC connectivity
to the PostgreSQL database from the GoldenGate CLI and once the connection is
made we capture the table definitions for the table created in step 19.

Here we are going to talk about steps 22 and 23 from the preceding section: In step
22 we are creating a parameter file for the extract process on the machine hosting
the Oracle database since it is used as the source. The extract process happens

on the source database. The extract process parameter file contains information
regarding the Oracle environment, the target remote host, the manager port, the

trail file, and the table for which the changes needs to be captured. In step 23, we
start the extraction process on the source Oracle database and we add the trail file.
The extract process will extract any changes made to the Oracle table ABCD and
will put this information on the trail file which resides on the machine hosting the
PostgreSQL server.

263

www.it-ebooks.info

http://www.it-ebooks.info/

Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

>

264

Here we are going to talk about steps 24 and 25 from the preceding section: As

the replication is happening in a heterogeneous environment, that is from Oracle to
PostgreSQL in this scenario, it is important to get as much detail as possible about
the data in the extract file to make things clear for the process loading the data into
the PostgreSQL database. For this to happen, we need to create a definition file which
will be created on the GoldenGate interface of the Oracle database and will then be
shipped to the machine hosting the PostgreSQL server. In step 24, we are basically
creating a parameter file for the defgen utility. In step 25, we call the defgen utility
to create the definition file and we also add a reference to the parameter file created
in step 24 of the preceding section.

In step 26 of the preceding section, we copy the definition file created in step 25 from
the Oracle machine to the machine hosting the PostgreSQL server.

Here we are going to talk about steps 27 and 28 of the preceding section. Here we
start the replicat process. The replicat process basically reads the changes from
the trail file and distributes them to the PostgreSQL database. In step 27, basically

we configure the parameter file for the replicat process and in step 28, we start

the replicat process, add the trail file to the replicat process so that it can read
changes from the trail file and dump those changes to the PostgreSQL database.

Here we are going to talk about steps 29 and 30. Basically we are going to test

our configuration here. In step 29, we log in to the Oracle database, insert a

record in the ABCD table and save the changes. Now with GoldenGate extract and
replicat process running the newly inserted record in the Oracle table should be
replicated to the corresponding table in the PostgreSQL database. We confirm this
by logging in to the PostgreSQL database and then by selecting the records from the
ABCD table in step 30. We can see in step 30 that the records inserted in step 29

in the Oracle table are visible in the PostgreSQL database table ABCD. This confirms
the successful implementation of heterogeneous replication from the Oracle
database to the PostgreSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

-F switch 52
-U switch 52

A

access
controlling, via configuration files 31-33
controlling, via firewalls 29-31

ACID (Atomicity, Consistency, Isolation,

Durability) 8

active sessions
application_name column 111
client_addr column 111
client_hostname column 111
creating 110, 111
datname column 110
pid column 110
query column 111
state column 111

archive_command parameter 133

archive_mode parameter 133

asymmetric encryption 43

auto freeze
preventing 74, 75

autovacuum 72

autovacuum launcher 73

autovacuum, parameters
autovacuum_analyze_scale_factor 73
autovacuum_analyze_threshold 73
autovacuum_freeze_max_age 74
autovacuum_max_workers 73
autovacuum_vacuum_cost_delay 74
autovacuum_vacuum_scale_factor 73

Index

autovacuum_vacuum_threshold 73
log_autovacuum_min_duration 73

backend connections
terminating, URL 25
backend_data_directoryO parameter 179
backend_hostnameO parameter 178
backend_port0 parameter 179
backend_weightO parameter 179
base backup
taking 63, 64
bloating tables 78-81
blocking sessions
finding 118, 119
Bucardo
URL 152
used, for setting up replication 148-152
version 5.2.0, URL 149

C

checkpoint_segments parameter 133
check_postgres script

URL 81
confidential data

encrypting 42-48
configuration files

used, for controlling access 31-33
connect function

URL 214,231
connection

making to PostgreSQL database,

Perl used 212-214

www.it-ebooks.info

http://www.it-ebooks.info/

making to PostgreSQL database,
Python used 230, 231

pooling, pgbouncer used 184-187

terminating 24, 25
connection_cache parameter 179
constraint exclusion 199, 201
CPU

bottlenecks, identifying 96-99

usage, monitoring 90, 91

D

data
monitoring 82-84
upgrading, pg_dump used 244, 245
database
about 27, 28
changes, auditing 34-37
creating 8-10
destroying 14, 15
load, monitoring 117, 118
monitoring 110
objects, securing 28, 29
restoring 69, 70
database cluster
initializing 18, 19
initializing, URL 19
data node 168
data, replicating
from other databases to PostgreSQL,
GoldenGate used 249-264
dead rows 74
dearmor function 44
disk
usage, determining 126-128
disk 1/0 bottlenecks
identifying 99-101
disk space usage
monitoring 106, 107
disk usage
URL 128
DRBD
used, for setting up replication 152-162

266

EnterpriseDB
URL 9
EXPLAIN command
analyze mode 113
generic mode 113
verbose mode 114
explain plan
obtaining, for SQL statement 112-114

F

file system level backup 62, 63
firewalls

used, for controlling access 29-31
frozen rows 74
F switch 52

G

global transaction manager (GTM) 168
GoldenGate

about 244

used for Oracle database, URL 249

used, for replicating data from other

databases to PostgreSQL 249-264

groups

creating 13, 14

H

historical CPU load
examining 103, 104

historical memory load
examining 104, 105

hot physical backup 64-66

hot_standby parameter 133

hot streaming replication
archive_command parameter 133
archive_mode parameter 133
checkpoint_segments parameter 133
hot_standby parameter 133
listen_addresses parameter 132

www.it-ebooks.info

http://www.it-ebooks.info/

max_wal_senders parameter 133
primary_conninfo parameter 133
setting up 130-132

standby_mode parameter 133
trigger_file parameter 134
wal_keep_segments parameter 133
wal_level parameter 132

indexes 78-81
index pages 82-84
initdb command 18

L

leaf fragmentation 84
listen_addresses parameter 132, 178
load average 96
load_balance_on parameter 179
log_autovacuum_min_duration parameter 73
log files
maintaining 87
logical backup
about 51
of all PostgreSQL databases 56-59
of single PostgreSQL database 52-56
of specific objects 60, 61
Londiste
URL 148
used, for setting up replication 139-147
LVM (logical volume manager) 62

mailing list

performance, URL 128
master_slave_mode parameter 179
master-slave streaming replication

setting up 130-132
max_pool parameter 179
max_wal_senders parameter 133
mpstat command 96
multi version concurrency control (MVCC) 8
mutual exclusion lock (mutex) 99

network status
monitoring 107, 108

0

objects
moving, between tablespaces 17, 18
Oracle 11g software
used for reinstalling on Linux platform,
URL 249

P

paging
monitoring 91-94
partitioning
about 191
alternate methods 202-204
and constraint exclusion 199-201
implementing 192-195
managing 196-199
URL 195, 199
with PL/Proxy 205-209
passwords, PostgreSQL
brute force method 50
cracking 48-50
dictionary attack method 50
Perl
about 211
PostgreSQL, accessing from 211
used, for accessing table data 219-221
used, for creating tables 215, 216
used, for deleting records 225-227
used, for inserting tables 217, 218
used, for updating records 221-224
pgbouncer
managing 187-190
setting 183, 184
SHOW CLIENTS command 189
SHOW POOLS command 190
SHOW SERVERS command 189
SHOW STATS command 190
URL 187

261

www.it-ebooks.info

http://www.it-ebooks.info/

used, for connection pooling 184-186
pgbouncer utility 171
pg_dump
used, for upgrading data 244, 245
pgp_key_id function 44
pgpool
backend_data_directoryO parameter 179
backend_hostnameO parameter 178
backend_portO parameter 179
backend_weightO parameter 179
configuring 173-180
connection_cache parameter 179
installing 172, 173
listen_addresses parameter 178
load_balance_on parameter 179
master_slave_mode parameter 179
max_pool parameter 179
port parameter 178
replication_mode parameter 179
setup, testing 173-178
starting 181, 182
stopping 182
URL 172, 179, 181, 182
pgpool-ll utility 171
pgpool, stopping modes
fast mode 182
smart mode 182
pgp_pub_decrypt function 44
pgp_pub_encrypt function 44
pg_restore utility 70
pg_upgrade utility
used, for upgrading version 246-249
physical backups 51
planner statistics
updating 77,78
PL/Proxy
installing 204, 205
installing, steps 205
partitioning with 205-209
URL 209
point-in-time recovery 66-68
port parameter 178
PostgreSQL
about 8
cluster upgrading, URL 245

268

driver, URL 254
installing on CentOS, URL 8
installing on Ubuntu platform, URL 8
passwords, cracking 48-50
repository, URL 148
SSL, enabling 38-41
URL 115
wiki links 128
PostgreSQL database
all PostgreSQL database,
logical backup 56-59
single PostgreSQL database,
logical backup 52-56
Postgres-XC cluster
coordinator 168
data node 168
GTM 168
setting up 162-169
URL 162
Pretty Good Privacy (PGP) compatible
encryption 44
primary_conninfo parameter 133
Python
about 229
used, for accessing table data 235, 236
used, for creating tables 231-233
used, for deleting records 240-242
used, for inserting records 233, 234

used, for making connections to PostgreSQL

database 230, 231
used, for updating records 237-239

Q

queries
about 111, 112
forcing, to use index 124-126

records
deleting, Perl used 224-227
deleting, Python used 240-242
inserting, Perl used 217-219
updating, Perl used 221-224
updating, Python used 233-239

www.it-ebooks.info

http://www.it-ebooks.info/

REINDEX command 85
remote connectivity
testing 34
replication
setting up, Bucardo used 148-152
setting up, DRBD used 152-162
setting up, Londiste used 139-148
setting up, Slony-l used 134-139
replication_mode parameter 179
routine
reindexing 85, 86

S

sar command 90
sar output 90
schemas
creating 10
Secure Sockets Layer (SSL) 38
server
configuration files, reloading 23
starting 19, 20
status, displaying 22
stopping 20-22
server firewall 29
SHOW CLIENTS command
about 189
connect_time 189
database 189
port 189
request_time 189
state 189
user 189
SHOW POOLS command
cl_active 190
cl_waiting 190
sl_active 190
sl_idle 190
sl_used 190
SHOW SERVERS output
connect_time 189
database 189
port 189
request_time 189
state 189

user 189
SHOW STATS command
total_query_time 190
total_received 190
total_requests 190
total_sent 190
Skytools 3.2
URL 140
Slony-I
URL 134, 139
used, for setting up replication 134-139
slow statements
log_directory parameter 115
logging 115
logging_collector parameter 115
SSL
enabling, in PostgreSQL 38-41
encryption, testing 42
standby_mode parameter 133
statement
explain plan, getting 112-114
statistics
collecting 116, 117
streaming replication
URL 134
swapping
monitoring 91-94
symmetric encryption 43
sysid 11
system
load, monitoring 95, 96
performance. monitoring 101-103
worst user, finding 94, 95

T

table
accessing 120-122
creating, Perl used 215, 216
creating, Python used 231, 232
URL 216

table data
accessing, Perl used 219-221
accessing, Python used 235-237

269

www.it-ebooks.info

http://www.it-ebooks.info/

tablespaces
creating 15-17
dropping 15, 16
objects, moving between 17, 18
transaction ID wraparound failures
preventing 75-77
trigger_file parameter 134

U

\'}

version
upgrading, pg_upgrade utility used 246-249
vmstat command 101

w

wal_keep_segments parameter 133
wal_level parameter 132

unused indexes web link

finding 122-124 URL 237

URL 124 write-ahead log (WAL) 65
users W switch 52

creating 11-13
U switch 52

210

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying

PostgreSQL Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

[open source

community experience distilled

PUBLISHING

PostgreSQL Administration
Essentials
ISBN: 978-1-78398-898-3 Paperback: 142 pages

Discover efficient ways to administer, monitor, replicate,
and handle your PostgreSQL databases

1. Learn how to detect bottlenecks and make

sure your database systems offer superior
PostgreSQL Administration performance to your end users.
Essentials

2. Replicate your databases to achieve full
redundancy and create backups quickly
and easily.

3. Optimize PostgreSQL configuration parameters and
turn your database server into a high-performance
machine capable of fulfilling your needs.

PostgreSQL 9 High

Availability Cookbook
ISBN: 978-1-84951-696-9 Paperback: 398 pages

Over 100 recipes to design and implement a highly
available server with the advanced features of
PostgreSQL

) 1. Create a PostgreSQL cluster that stays online even
PostgreSQL 9 High when disaster strikes.
Availabili k k
ailab ty Cookboo 2. Avoid costly downtime and data loss that can ruin
; o oesaL your business.

3. Perform data replication and monitor your data
with hands-on industry-driven recipes and detailed
step-by-step explanations.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

PostGIS Cookbook

ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial data in a PostGIS
database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS and
WES using MapServer and GeoServer.

PostGIS Cookbook

2. Convert 2D and 3D vector data, raster data, and
routing data into usable forms.

3. Visualize data from the PostGIS database
using a desktop GIS program such as QGIS
and OpenJUMP.

PostgreSQL Replication

ISBN: 978-1-84951-672-3 Paperback: 250 pages

Understand basic replication concepts and efficiently
replicate PostgreSQL using high-end techniques

to protect your data and run your server without
interruptions

1. Explains the new replication features introduced
in PostgreSQL 9.

2. Contains easy to understand explanations and
lots of screenshots that simplify an advanced
topic like replication.

3. Teaches PostgreSQL administrators how to
maintain consistency between redundant

resources and to improve reliability,
fault-tolerance, and accessibility.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Managing Databases and the PostgreSQL Server
	Introduction
	Creating databases
	Creating schemas
	Creating users
	Creating groups
	Destroying databases
	Creating and dropping tablespaces
	Moving objects between tablespaces
	Initializing a database cluster
	Starting the server
	Stopping the server
	Displaying the server status
	Reloading the server configuration files
	Terminating connections

	Chapter 2: Controlling Security
	Introduction
	Securing database objects
	Controlling access via firewalls
	Controlling access via configuration files
	Testing remote connectivity
	Auditing database changes
	Enabling SSL in PostgreSQL
	Testing SSL encryption
	Encrypting confidential data
	Cracking PostgreSQL passwords

	Chapter 3: Backup and Recovery
	Introduction
	A logical backup of a single PostgreSQL database
	A logical backup of all PostgreSQL databases
	A Logical backup of specific objects
	File system level backup
	Taking a base backup
	Hot physical backup and continuous archiving
	Point-in-time recovery
	Restoring databases and specific database objects

	Chapter 4: Routine Maintenance Tasks
	Introduction
	Controlling automatic database maintenance
	Preventing auto freeze and page corruption
	Preventing transaction ID wraparound failures
	Updating planner statistics
	Dealing with bloating tables and indexes
	Monitoring data and index pages
	Routine reindexing
	Maintaining log files

	Chapter 5: Monitoring the System Using Unix Utilities
	Introduction
	Monitoring CPU usage
	Monitoring paging and swapping
	Finding the worst user on the system
	Monitoring system load
	Identifying CPU bottlenecks
	Identifying disk I/O bottlenecks
	Monitoring system performance
	Examining historical CPU load
	Examining historical memory load
	Monitoring disk space usage
	Monitoring network status

	Chapter 6: Monitoring Database Activity and Investigating Performance Issues
	Introduction
	Checking active sessions
	Finding out what queries users are currently running
	Getting the execution plan for a statement
	Logging slow statements
	Collecting statistics
	Monitoring database load
	Finding blocking sessions
	Table access statistics
	Finding unused indexes
	Forcing a query to use an index
	Determining disk usage

	Chapter 7: High Availability and Replication
	Introduction
	Setting up hot streaming replication
	Replication using Slony-I
	Replication using Londiste
	Replication using Bucardo
	Replication using DRBD
	Setting up the Postgres-XC cluster

	Chapter 8: Connection Pooling
	Introduction
	Installing pgpool
	Configuring pgpool and testing the setup
	Starting and stopping pgpool
	Setting up pgbouncer
	Connection pooling using pgbouncer
	Managing pgbouncer

	Chapter 9: Table Partitioning
	Introduction
	Implementing partitioning
	Managing partitions
	Partitioning and constraint exclusion
	Alternate partitioning methods
	Installing PL/Proxy
	Partitioning with PL/Proxy

	Chapter 10: Accessing PostgreSQL from Perl
	Introduction
	Making a connection to a PostgreSQL database using Perl
	Creating tables using Perl
	Inserting records using Perl
	Accessing table data using Perl
	Updating records using Perl
	Deleting records using Perl

	Chapter 11: Accessing PostgreSQL from Python
	Introduction
	Making connections to a PostgreSQL database using Python
	Creating tables using Python
	Inserting Records Using Python
	Accessing table data using Python
	Updating records using Python
	Deleting records using Python

	Chapter 12: Data Migration from Other Databases
and Upgrading PostgreSQL Cluster
	Introduction
	Using pg_dump to upgrade data
	Using the pg_upgrade utility for version upgrade
	Replicating data from other databases to PostgreSQL using GoldenGate

	Index

