
www.it-ebooks.info

http://www.it-ebooks.info/


PostgreSQL Cookbook

Over 90 hands-on recipes to effectively manage, 
administer, and design solutions using PostgreSQL

Chitij Chauhan

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


PostgreSQL Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1240115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-533-8

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/


Credits

Author
Chitij Chauhan

Reviewers
Naoya Hashimoto

Sergio Martínez-Losa Del Rincón

Danny Sauer

Commissioning Editor
Akram Hussain

Acquisition Editor
Nikhil Karkal

Content Development Editor
Sumeet Sawant

Technical Editor
Ruchi Desai

Copy Editors
Dipti Kapadia

Vikrant Phadke

Project Coordinator
Purav Motiwalla

Proofreaders
Maria Gould

Paul Hindle

Linda Morris

Stephen Silk

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

Chitij Chauhan currently works as a senior database administrator at an IT-based MNC 
in Chandigarh. He has over 10 years of work experience in the field of database and system 
administration, with specialization in MySQL clustering, PostgreSQL, Greenplum, Informix 
DB2, SQL Server 2008, Sybase, and Oracle. He is a leading expert in the area of database 
security, with expertise in database security products such as IBM InfoSphere Guardium, 
Oracle Database Vault, and Imperva.

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Naoya Hashimoto has been working on system design and integration with open source 
software for years. Recently, his career and interest have shifted toward cloud engineering on 
both public and hybrid clouds, such as AWS, as well as toward orchestration tools, such as 
Chef or CloudFormation. He has reviewed the books Icinga Network Monitoring and Building a 
Home Security System with BeagleBone, both by Packt Publishing. Moreover, currently he is a 
technical reviewer of the book Building Networks and Servers Using Beaglebone, which is also 
by Packt Publishing.

Thanks to the author and the project coordinator, Purav, who gave me this 
opportunity to review the book. I am very impressed with their work and this 
project because it gives us a chance to learn about the latest technology of 
PostgreSQL 9.x.

Sergio Martínez-Losa Del Rincón is a computer engineer who loves programming 
languages since the time he was in high school, where he learned about programming and 
computer interactions. He is always learning and discovers something new to learn everyday.

He likes all kind of programming languages, but he focuses his efforts on mobile development 
with native languages, such as Objective-C (iPhone), Java (Android), and Xamarin (C#). He builds 
Google Glass applications as well as mobile applications for iPhone and Android devices at work. 
He also develops games for mobile devices with cocos2d-x and cocos2d. He likes cross-platform 
applications as well. He has reviewed Learning Xamarin Studio, Packt Publishing.

He loves challenging problems, and he is always keen to work with new technologies. More 
information about his experience and details can be found at www.linkedin.com/in/
sergiomtzlosa.

www.it-ebooks.info

www.linkedin.com/in/sergiomtzlosa
www.linkedin.com/in/sergiomtzlosa
http://www.it-ebooks.info/


Danny Sauer has been a professional Unix geek of various stripes for roughly 20 years, 
most recently in the flavor of security engineer. His experience with open source databases 
extends through most of that time period, both as DBA and as a user. He currently lives  
with his wife in an old house in a small town outside of a small city, which provides plenty  
of opportunity to restore antique houses, cars, and computers.

www.it-ebooks.info

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents
Preface	 1
Chapter 1: Managing Databases and the PostgreSQL Server	 7

Introduction	 8
Creating databases	 8
Creating schemas	 10
Creating users	 11
Creating groups	 13
Destroying databases	 14
Creating and dropping tablespaces	 15
Moving objects between tablespaces	 17
Initializing a database cluster	 18
Starting the server	 19
Stopping the server	 20
Displaying the server status	 22
Reloading the server configuration files	 23
Terminating connections	 24

Chapter 2: Controlling Security	 27
Introduction	 27
Securing database objects	 28
Controlling access via firewalls	 29
Controlling access via configuration files	 31
Testing remote connectivity	 34
Auditing database changes	 34
Enabling SSL in PostgreSQL	 38
Testing SSL encryption	 42
Encrypting confidential data	 42
Cracking PostgreSQL passwords	 48

www.it-ebooks.info

http://www.it-ebooks.info/


ii

Table of Contents

Chapter 3: Backup and Recovery	 51
Introduction	 51
A logical backup of a single PostgreSQL database	 52
A logical backup of all PostgreSQL databases	 56
A logical backup of specific objects	 60
File system level backup	 62
Taking a base backup	 63
Hot physical backup and continuous archiving	 64
Point-in-time recovery	 66
Restoring databases and specific database objects	 69

Chapter 4: Routine Maintenance Tasks	 71
Introduction	 71
Controlling automatic database maintenance	 72
Preventing auto freeze and page corruption	 74
Preventing transaction ID wraparound failures	 75
Updating planner statistics	 77
Dealing with bloating tables and indexes	 78
Monitoring data and index pages	 82
Routine reindexing	 85
Maintaining log files	 87

Chapter 5: Monitoring the System Using Unix Utilities	 89
Introduction	 89
Monitoring CPU usage	 90
Monitoring paging and swapping	 91
Finding the worst user on the system	 94
Monitoring system load 	 95
Identifying CPU bottlenecks	 96
Identifying disk I/O bottlenecks	 99
Monitoring system performance	 101
Examining historical CPU load	 103
Examining historical memory load	 104
Monitoring disk space usage	 106
Monitoring network status	 107

Chapter 6: Monitoring Database Activity and  
Investigating Performance Issues	 109

Introduction	 110
Checking active sessions	 110
Finding out what queries users are currently running	 111
Getting the execution plan for a statement	 112
Logging slow statements	 115

www.it-ebooks.info

http://www.it-ebooks.info/


iii

Table of Contents

Collecting statistics	 116
Monitoring database load	 117
Finding blocking sessions	 118
Table access statistics 	 120
Finding unused indexes	 122
Forcing a query to use an index	 124
Determining disk usage	 126

Chapter 7: High Availability and Replication	 129
Introduction	 129
Setting up hot streaming replication	 130
Replication using Slony-I	 134
Replication using Londiste	 139
Replication using Bucardo	 148
Replication using DRBD	 152
Setting up the Postgres-XC cluster	 162

Chapter 8: Connection Pooling	 171
Introduction	 171
Installing pgpool	 172
Configuring pgpool and testing the setup	 173
Starting and stopping pgpool	 181
Setting up pgbouncer	 183
Connection pooling using pgbouncer	 184
Managing pgbouncer	 187

Chapter 9: Table Partitioning	 191
Introduction	 191
Implementing partitioning	 192
Managing partitions	 196
Partitioning and constraint exclusion	 199
Alternate partitioning methods	 202
Installing PL/Proxy	 204
Partitioning with PL/Proxy	 205

Chapter 10: Accessing PostgreSQL from Perl	 211
Introduction	 211
Making a connection to a PostgreSQL database using Perl	 212
Creating tables using Perl	 215
Inserting records using Perl	 217
Accessing table data using Perl	 219
Updating records using Perl	 221
Deleting records using Perl	 224

www.it-ebooks.info

http://www.it-ebooks.info/


iv

Table of Contents

Chapter 11: Accessing PostgreSQL from Python	 229
Introduction	 229
Making connections to a PostgreSQL database using Python	 230
Creating tables using Python	 231
Inserting records using Python	 233
Accessing table data using Python	 235
Updating records using Python	 237
Deleting records using Python	 240

Chapter 12: Data Migration from Other Databases and  
Upgrading the PostgreSQL Cluster	 243

Introduction	 243
Using pg_dump to upgrade data	 244
Using the pg_upgrade utility for a version upgrade	 246
Replicating data from other databases to PostgreSQL using GoldenGate	 249

Index	 265

www.it-ebooks.info

http://www.it-ebooks.info/


Preface
PostgreSQL is a database server that is available on a wide range of platforms and is one of 
the most popular open source databases deployed in production environments worldwide.

It is also one of the most advanced databases, with a wide range of features that challenge 
even many proprietary databases. This book offers you an insight into the various features 
and implementations of these features in PostgreSQL. It is intended to be a practical guide  
for database administrators and developers alike, with solutions related to data migration, 
table partitioning, high availability and replication, database performance, and using Perl  
and Python languages for integration with PostgreSQL.

What this book covers
Chapter 1, Managing Databases and the PostgreSQL Server, helps you to create databases 
and understand the concept of schemas, roles, users, groups, and tablespaces in the 
PostgreSQL server.

Chapter 2, Controlling Security, lets you see and understand the security controls and levels of 
security that are present in PostgreSQL. After this chapter, you should be able to understand 
and configure the security controls that exist in the PostgreSQL server. You should also be 
able to use SSL connections in PostgreSQL in order to encrypt data.

Chapter 3, Backup and Recovery, shows the different backup and recovery scenarios  
that can be implemented in PostgreSQL. After this chapter, you should be familiar with  
logical and physical backup methods and restoring databases or database objects in a 
recovery-based scenario.

Chapter 4, Routine Maintenance Tasks, gives information about the regular maintenance 
tasks that are carried out to achieve optimal performance.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

2

Chapter 5, Monitoring the System Using Unix Utilities, covers different Unix/Linux commands 
useful to troubleshoot CPU, memory, and I/O-related issues. After reading this chapter, you 
should be able to successfully troubleshoot CPU, memory, and disk contention issues using 
various Unix commands.

Chapter 6, Monitoring Database Activity and Investigating Performance Issues, teaches you 
different aspects related to improving PostgreSQL performance. After reading this chapter, you 
should be able to resolve lock conflicts, find slow-running SQL statements, collect statistics, 
examine index usage, and investigate and troubleshoot various PostgreSQL database issues 
in a real-time environment.

Chapter 7, High Availability and Replication, demonstrates the high availability and replication 
concepts in PostgreSQL. After reading this chapter, you will be able to implement high 
availability and replication options using different techniques including streaming replication, 
Slony replication, replication using Bucardo, and replication using Longdiste. Eventually, you 
will be able to implement a full-fledged, active/passive, highly available PostgreSQL cluster 
using open source tools such as DRBD, Pacemaker, and Corosync.

Chapter 8, Connection Pooling, covers connection pooling methods such as pgpool and 
pgbouncer. They help reduce database overhead when there are a large number of concurrent 
connections. After reading this chapter, you should be able to configure the pgpool and 
pgbouncer methods.

Chapter 9, Table Partitioning, explains the different partitioning methods and implementing 
logical segregation of table data into partitions. You will also get familiar with horizontal 
partitioning implementation using PL/Proxy.

Chapter 10, Accessing PostgreSQL from Perl, makes you familiar with creating database 
connections, accessing data, and performing DML operations on the PostgreSQL database 
using Perl programming.

Chapter 11, Accessing PostgreSQL from Python, shows you how to create database 
connections, access data, and carry out DML operations on the PostgreSQL database  
using Python programming.

Chapter 12, Data Migration from Other Databases and Upgrading the PostgreSQL Cluster, 
covers the different mechanisms available to initiate minor and major version upgrades of 
PostgreSQL. You will also become familiar with the Oracle GoldenGate tool used to replicate 
data from other databases to PostgreSQL.

What you need for this book
You'll need the following software:

ff VMware Workstation Version 7 or higher / VirtualBox

ff PostgreSQL 9.3 installer

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

3

ff Win32 OpenSSL v1.0.1

ff pgAdmin v1.18.1

ff PostgreSQL v.9.3

ff Oracle Solaris Version 10

ff CentOS Linux Version 6 or higher

Who this book is for
This book is for system administrators, database administrators, architects, developers, 
and anyone with an interest in planning, managing, and designing database solutions using 
PostgreSQL. This book is ideal for you if you have some prior experience with any relational 
database or with the SQL language.

Sections
This book contains the following sections:

Getting ready
This section tells us what to expect in the recipe, and describes how to set up any software or 
any preliminary settings needed for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and explanations of their meanings.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The first 
method relies on using the CREATE DATABASE SQL statement."

A block of code is set as follows:

SELECT name, setting, unit ,(source = 'default') as is_default 
FROM pg_settings WHERE context = 'sighup' 
AND (name like '%delay' or name like '%timeout') 
AND setting != '0';

Any command-line input or output is written as follows:

pg_ctl -D /var/lib/pgsql/data reload

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "In the New Inbound Rule 
Wizard dialog box, click on the Protocol and Ports option, then click on the radio buttons,  
as shown in the following screenshot, and finally click on the Next button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/


Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


1
Managing Databases 
and the PostgreSQL 

Server

In this chapter, we will cover the following recipes:

ff Creating databases

ff Creating schemas

ff Creating users

ff Creating groups

ff Destroying databases

ff Creating and dropping tablespaces

ff Moving objects between tablespaces

ff Initializing a database cluster

ff Starting the server

ff Stopping the server

ff Displaying the server status

ff Reloading the server configuration files

ff Terminating connections

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

8

Introduction
PostgreSQL is an open source, object-oriented relational database management system  
that was originally developed at the Berkeley Computer Science Department of the University 
of California.

PostgreSQL is an advanced database server available on a wide range of platforms, ranging 
from Unix-based operating systems such as Oracle Solaris, IBM AIX, and HP-UX; Windows;  
and Mac OS X to Red Hat Linux and other Linux-based platforms.

We start with showing how to create databases in PostgreSQL. During the course of this 
chapter, we will cover schemas, users, groups, and tablespaces, and show how to create  
these entities. We will also show how to start and stop the PostgreSQL server services.

Creating databases
A database is a systematic and organized collection of data which can be easily accessed, 
managed, and updated. It provides an efficient way of retrieving stored information. 
PostgreSQL is a powerful open source database. It is portable because it written in ANSI 
C. As a result, it is available for different platforms and is reliable. It is also ACID (short for 
Atomicity, Consistency, Isolation, Durability) compliant, supports transactions, is scalable 
as it supports multi version concurrency control (MVCC) and table partitioning, is secure 
as it employs host based access control and supports SSL, and provides high availability and 
replication by implementing features such as streaming replication and its support for point in 
time recovery.

Getting ready
Before you start creating databases, you would need to install PostgreSQL on your computer. 
For Red Hat or CentOS Linux environments, you can download the correct rpm for the 
PostgreSQL 9.3 version from yum.postgresql.org.

Here is the link you can use to install PostgreSQL on CentOS:

http://www.postgresonline.com/journal/archives/329-An-almost-idiots-
guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.
html

The following are the links you can use to install PostgreSQL on an Ubuntu platform:

ff http://technobytz.com/install-postgresql-9-3-ubuntu.html

ff http://www.cloudservers.com/installing-and-configuring-
postgresql-9-3-on-hosted-linux-cloud-vps-server/

www.it-ebooks.info

yum.postgresql.org
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://www.postgresonline.com/journal/archives/329-An-almost-idiots-guide-to-install-PostgreSQL-9.3,-PostGIS-2.1-and-pgRouting-with-Yum.html
http://technobytz.com/install-postgresql-9-3-ubuntu.html
http://www.cloudservers.com/installing-and-configuring-postgresql-9-3-on-hosted-linux-cloud-vps-server/ 
http://www.cloudservers.com/installing-and-configuring-postgresql-9-3-on-hosted-linux-cloud-vps-server/ 
http://www.it-ebooks.info/


Chapter 1

9

Alternatively, you may download the graphical PostgreSQL installer available from the 
EnterpriseDB website, at http://www.enterprisedb.com/products-services-
training/pgdownload.

For details on how to install PostgreSQL using the graphical PostgreSQL installer from the 
EnterpriseDB website, you can refer to the following link for further instructions:

http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20
Contents.htm

Once you have downloaded and installed PostgreSQL, you will need to define the data 
directory, which is the storage location for all of the data files for the database. You will then 
need to initialize the data directory. Initialization of the data directory is covered under the 
recipe titled Initializing a database cluster. After this, you are ready to create the database.

To connect to a database using the psql utility, you can use the following command:

psql  -h localhost  -d postgres –p 5432

Here, we are basically connecting to the postgres database, which is resident on the 
localhost, that is the same server on which PostgreSQL was installed, and the connection  
is taking place on port 5432.

In the following code, we are creating a user, hr. Basically, this user is being created because 
in the next section, it is being used as the owner of the hrdb database:

CREATE USER hr with PASSWORD 'hr';

More details regarding creating users will be covered in the Creating users recipe.

How to do it...
PostgreSQL provides two methods to create a new database:

ff The first method relies on using the CREATE DATABASE SQL statement:
CREATE DATABASE hrdb WITH ENCODING='UTF8' OWNER=hr  
CONNECTION LIMIT=25;

ff The second method requires using the createdb command-line executable:
createdb –h localhost –p 5432 –U postgres testdb1

How it works...
A database is a named collection of objects such as tables, functions, and so on.  
In order to create a database, the user must be either a superuser or must have  
the special CREATEDB privilege.

www.it-ebooks.info

http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20Contents.htm
http://www.enterprisedb.com/docs/en/9.3/pginstguide/Table%20of%20Contents.htm
http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

10

The createdb command-line executable connects to the postgres database when 
triggered, and then issues the CREATE DATABASE command.

You can view the list of existing databases by querying the pg_database catalog table,  
as shown in the following screenshot:

Alternatively, you may use \l switch of psql to view the list of existing databases.

Creating schemas
Schemas are among the most important objects within a database. A schema is a named 
collection of tables. A schema may also contain views, indexes, sequences, data types, 
operators, and functions. Schemas help organize database objects into logical groups,  
which helps make these objects more manageable.

How to do it...
You can use the CREATE SCHEMA statement to create a new schema in PostgreSQL:

CREATE SCHEMA employee;

Alternatively, it is also possible to create a schema for a particular user:

CREATE SCHEMA university AUTHORIZATION bob;

Here, a schema called university is created and is owned by bob.

How it works...
A schema is a logical entity that helps organize objects and data in the database.

By default, if you don't create any schemas, any new objects will be created in the public schema.

In order to create a schema, the user must either be a superuser or must have the CREATE 
privilege for the current database.

Once a schema is created, it can be used to create new objects such as tables and views 
within that schema.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

11

There's more...
You may use the \dn switch of psql to list all of the schemas in a database as shown in the 
following screenshot:

To identify the schema in which you are currently working, you can use the following command:

SELECT current_schema();

While searching for objects in the database, you can define the search schemas preferences 
for where those searches should start. You can use the search_path parameter for this,  
as follows:

ALTER DATABASE hrd SET search_path TO hr,hrms, public, pg_catalog;

Creating users
A user is a login role that is allowed to log in to the PostgreSQL server. The login roles section 
is where you define accounts for individual users for the PostgreSQL system. Each database 
user should have an individual account to log in to the PostgreSQL system. Each user has an 
internal system identifier in PostgreSQL, which is known as a sysid. The user's system ID is 
used to associate objects in a database with their owner. Users may also have global rights 
assigned to them when they are created. These rights determine whether a user is allowed to 
create or drop databases and whether the existing user is a superuser or not.

How to do it...
PostgreSQL provides two methods by which database users are created:

ff The first method requires using the CREATE USER SQL statement to create a 
new user in the database. You can create a new user with the CREATE USER SQL 
statement, like this:
CREATE user agovil WITH PASSWORD 'Kh@rt0um';

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

12

Here, we created the agovil user and provided a password for the user to log in with.

ff The second method requires executing the createuser script from the  
command line.

We may also use the createdb script to create a user called nchabbra on the same 
host (port 5432), and the –S option specifies that the created user will not have the 
superuser privileges:
$ createuser -h localhost -p 5432 -S nchabbra

How it works...
The CREATE USER SQL statement requires one mandatory parameter which is the name of 
the new user. Other parameters, which are optional, however, are passwords for the user or 
group, the system ID, and a set of privileges that may be explicitly allocated.

The createuser script can be invoked without arguments. In that case, it will prompt us 
to provide the username and the set of rights and will attempt to make a local connection 
to PostgreSQL. It can also be invoked with options and the username to be created on the 
command line, and you will need to give the user access to a database explicitly if he/she is 
not the owner of the database.

There's more...
We can use the \du switch of psql to display the list of existing users, inclusive of roles in the 
PostgreSQL server, as shown in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

13

Alternatively you may obtain the list of users by querying the pg_user catalog table using the 
SQL statement, as shown in the following screenshot:

Creating groups
A group in the PostgreSQL server is similar to the groups that exist in Unix and Linux. A group 
in PostgreSQL serves to simplify the assignment of rights. It simply requires a name and may 
be created empty. Once it is created, users who are intended to share common access rights 
are added into the group together, and are thus associated by their membership within that 
group. Grants on the database objects are then given to the group instead of each individual 
group member.

How to do it...
Groups in the PostgreSQL server can be created by using the CREATE GROUP SQL statement. 
The following command will create a group. However, no users are currently a part of this group:

hrdb=# CREATE GROUP dept;

In order to assign members/users to the group, we can use the ALTER GROUP statement  
as follows:

hrdb=# ALTER GROUP dept ADD USER agovil,nchabbra;

It is also possible to create a group and assign users upon its creation, as shown in the 
following CREATE GROUP statement:

hrdb=# CREATE GROUP admins WITH user agovil,nchabbra;

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

14

How it works...
A group is a system-wide database object that can be assigned privileges and have users 
added to it as members. A group is a role that cannot be used to log in to any database.

It is also possible to grant membership in a group to another group, thereby allowing the 
member role use of privileges assigned to the group it is a member of.

Database groups are global across a database cluster installation.

There's more...
To list all of the available groups in the PostgreSQL server instance, you need to query the  
pg_group catalog table, as shown in the following screenshot:

Destroying databases
Every major RDBMS vendor offers the ability to drop databases just as it allows you to create 
databases. However, one should exercise caution when dealing with situations like dropping 
databases. Once a database is dropped, all of the information residing in it is lost forever. It  
is only for a valid business purpose that we should drop databases. In normal circumstances, 
a database is only dropped when it gets decommissioned and is no longer required for 
business operations.

How to do it...
There are two methods to drop a database in the PostgreSQL server instance:

ff You can use the DROP DATABASE statement to drop a database from PostgreSQL,  
as follows:
hrdb=# DROP DATABASE hrdb;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

15

ff You can use the dropdb command line-utility, which is a wrapper around the DROP 
DATABASE command:
$ dropdb hrdb;

How it works...
The DROP DATABASE statement permanently deletes catalog entries and the data directory. 
Only the owner of the database can issue the DROP DATABASE statement.

Also, it is not possible to drop a database to which you are connected. In order to delete the 
database, the database owner will have to make a connection to another database of which 
he is an owner.

There's more...
One situation that demands attention is when a user tries to drop a database that has active 
connections. The user will get an error when trying to drop such a database.

In order to drop a database that has active connections to it, you will have to follow these steps:

1.	 Identify all of the active sessions on the database. To identify all of the active 
sessions on the database, you need to query the pg_stat_activity catalog  
table as follows:
SELECT * from  pg_stat_activity where datname='testdb1';

2.	 Terminate all of the active connections to the database. To terminate all of the active 
connections, you will need to use the pg_terminate_backend function as follows:
SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE 
datname = 'testdb1';

3.	 Once all of the connections are terminated, you may proceed with dropping the 
database using the DROP DATABASE statement.

Creating and dropping tablespaces
PostgreSQL stores data files consisting of database objects such as tables and indices on the 
disk. The tablespace is defined as the location of these objects on the disk. A tablespace is 
used to map a logical name to a physical location on the disk.

Getting ready
A tablespace is a location on the disk where PostgreSQL stores data files containing database 
objects, for example indexes, tables, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

16

Before you create the tablespace, the directory location must be physically created and the 
directory must be empty:

mkdir –p /var/lib/pgsql/data/dbs

How to do it...
To create a tablespace in PostgreSQL, you need to use the CREATE TABLESPACE statement.

The following command creates a data_tbs tablespace, which is owned by the agovil user:

CREATE TABLESPACE data_tbs OWNER agovil LOCATION  
'/var/lib/pgsql/data/dbs';

Similarly, a tablespace in PostgreSQL can be dropped using the DROP TABLESPACE 
statement, as follows:

DROP TABLESPACE data_tbs;

How it works...
A tablespace allows you to control the disk layout of PostgreSQL. The owner of the tablespace, 
by default, would be the user who executed the CREATE TABLESPACE statement. This 
statement also gives you the option of assigning the ownership of the tablespace to a new 
user. This option is the part of the OWNER clause in the CREATE TABLESPACE statement.

The name of the tablespace should not begin with a pg_ prefix because this is reserved for 
the system tablespaces.

Before deleting a tablespace, ensure that it is empty, which means there should be no 
database objects inside it. If the user tries to delete the tablespace when it is not empty,  
the command will fail.

There are two options that will aid in deleting the tablespace when it is not empty:

ff You may drop the database

ff You may alter the database to move it to a different tablespace

After any of the preceding actions have been completed, then the corresponding tablespace 
may be dropped.

There's more...
By default, two tablespaces exist in PostgreSQL:

ff pg_default: This is used to store user data

ff pg_global: This is used to store global data

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

17

You may query the pg_tablespace catalog table to get the list of existing tablespaces in 
PostgreSQL, as shown in the following screenshot:

Moving objects between tablespaces
A tablespace can contain both permanent and temporary objects. You will need to define and 
create a secondary tablespace to serve as the target destination of objects that might get 
moved from the primary tablespace. Moving objects between tablespaces is a mechanism of 
copying bulk data in which copying happens sequentially, block by block. Moving a table to 
another tablespace locks it for the duration of the move.

Getting ready
Here, we will first create a new tablespace, hrms, using the following command:

mkdir –p  /var/lib/pgsql/data/hrms

Then we set the default tablespace for the testdb1 database to hrms using the  
following statement:

CREATE TABLESPACE HRMS OWNER agovil LOCATION  
'/var/lib/pgsql/data/hrms';

We will also create a table, insert some records into it, and create a corresponding index for it. 
This is being done because the table and its index will be used in the How to do it… section of 
this recipe:

CREATE TABLE EMPLOYEES(id integer PRIMARY KEY , name varchar(40));
INSERT INTO EMPLOYEES VALUES (1, 'Mike Johansson');
INSERT INTO EMPLOYEES VALUES(2, 'Rajat Arora');
CREATE INDEX emp_idx on  employees(name);

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

18

How to do it...
Moving a complete database to a different tablespace involves three steps:

1.	 You will change the tablespace for the given database so that new objects for the 
associated database are created in the new tablespace:
ALTER DATABASE testdb1 SET default_tablespace='hrms';

2.	 You will have to then move all of the existing tables in the corresponding database to 
the new tablespace:
ALTER TABLE employee SET TABLESPACE hrms;

3.	 You will also have to move any existing indexes to the new tablespace:
ALTER INDEX emp_idx SET TABLESPACE hrms;

How it works...
You will have to query the pg_tables catalog table to find out which tables from the current 
database need to be moved to a different tablespace.

Similarly for the indexes, you will have to query the pg_indexes catalog table to find out 
which indexes need to be moved to a different tablespace.

Initializing a database cluster
In terms of a filesystem, a database cluster is a collection of databases that are managed by a 
single server instance, and it is the framework upon which PostgreSQL databases are created.

How to do it...
The initdb command is used to initialize or create the database cluster. The –D switch of 
the initdb command is used to specify the filesystem location for the database cluster.

To create the database cluster, use the initdb command:

$ initdb -D /var/lib/pgsql/data

Another way of initializing the database cluster is by calling the initdb command via the 
pg_ctl utility:

$ pg_ctl -D /var/lib/pgsql/data initdb

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

19

How it works...
A database cluster is a collection of databases that are managed by a single server instance.

When the initdb command is triggered, the directories in which the database data will 
reside are created, shared catalog tables are generated, and the template1 and postgres 
databases are created, out of which the default database is postgres. The initdb 
command initializes the database cluster default locale and the character set encoding.

You can refer to http://www.postgresql.org/docs/9.3/static/creating-
cluster.html for more information on initializing a database cluster.

Starting the server
Before anyone can access the database, the database server must be started. Then you 
will be able to start all of the instances of the postgres database in the cluster using the 
different commands with options as mentioned in this recipe.

Getting ready
The term "server" refers to the database and the associated backend processes. The term 
"service" refers to the operating system wrapper through which the server gets invoked. In 
normal circumstances, the PostgreSQL server will usually start automatically when the system 
boots up. However, there will be situations where you may have to start the server manually 
for different reasons.

How to do it...
There are a couple of methods through which the PostgreSQL server can be started on Unix or 
Linux platforms:

ff The first method relies on passing the start argument to the pg_ctl utility to get 
the postmaster backend process started, which effectively means starting the 
PostgreSQL server.

ff The next method relies on using the service commands, which, if supported by the 
operating system, can be used as a wrapper to the installed PostgreSQL script.

ff The last method involves invoking the installed PostgreSQL script directly using its 
complete path.

On most Unix distributions and Red Hat-based Linux distributions, the pg_ctl utility can be 
used as follows:

pg_ctl -D /var/lib/pgsql/data start

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/creating-cluster.html
http://www.postgresql.org/docs/9.3/static/creating-cluster.html
http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

20

If you are using the service command, the service can be started like this:

service postgresql<version> start

For PostgreSQL version 9.3, the service command to start the PostgreSQL server is as follows:

service postgresql-9.3 start

You may also start the server by manually invoking the installed PostgreSQL script using its 
complete path:

/etc/rc.d/init.d/postgresql-9.3 start

On Windows-based systems, the PostgreSQL service can be started using the  
following command:

NET START postgresql-9.3

How it works...
The start argument of the pg_ctl utility will first start PostgreSQL's postmaster backend 
process using the path of the data directory.

The database system will then start up successfully, report the last time the database system 
was shut down, and provide various debugging statements before returning the postgres 
user to the shell prompt.

There's more...
In Ubuntu and Debian Linux distributions, the pg_ctlcluster wrapper can be used with the 
start argument to start the postmaster server for a particular cluster. A cluster is a group of 
one or more PostgreSQL database servers that may coexist on a single host.

Stopping the server
Sometimes in emergency situations, you might have to bring down the PostgreSQL server's 
services. There are certain situations in which you may need to stop the database services. 
For instance, during an operating system migration, you might need to stop the running 
services, take a filesystem backup, and then proceed with OS migration.

How to do it...
There are a couple of ways by which the PostgreSQL server can be stopped.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

21

On Unix distributions and Red Hat-based Linux distributions, we can use the stop argument 
of the pg_ctl utility to stop the postmaster:

pg_ctl -D /var/lib/pgsql/data stop -m fast

Using the service command, the PostgreSQL server can be stopped like this:

service postgresql stop

You may also stop the server by manually invoking the installed PostgreSQL script using its 
complete path:

/etc/rc.d/init.d/postgresql stop

On Windows-based systems, you may stop the postmaster service in this manner:

NET STOP postgresql-9.3

How it works...
The pg_ctl utility checks for the running postmaster process, and if the stop argument of 
the pg_ctl utility is invoked, then the server is shut down.

By default, the PostgreSQL server will wait for clients to first cancel their connections before 
shutting down.

However, with the use of a fast shutdown, there is no wait time involved as all of the user 
transactions will be aborted and all connections will be disconnected.

There's more...
There may be situations where one needs to stop the PostgreSQL server in an emergency 
situation, and for this, PostgreSQL provides the immediate shutdown mode.

In case of immediate shutdown, a process will receive a harsher signal and will not be able to 
respond to the server anymore.

The consequence of this type of shutdown is that PostgreSQL is not able to finish its disk I/O, 
and therefore has to do a crash recovery the next time it is started.

The immediate shutdown mode can be invoked like this:

pg_ctl -D /var/lib/pgsql/data stop -m immediate

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

22

Another way to shut down the server would be to send the signal directly using the kill 
command. The PID of the postgres process can be found using the ps command or from 
the postmaster.pid file in the data directory. In order to initiate a fast shutdown, you can 
issue the following command:

$ kill -INT head -1 /usr/local/pgsql/data/postmaster.pid

Displaying the server status
Many a times, there will be situations where end users complain that the database performance 
is sluggish and they are not able to log in to the database. In such situations, it is often helpful 
to take a quick glance through the status of the PostgreSQL backend postmaster process and 
confirm whether the PostgreSQL server services are up and running.

How to do it...
There are a couple of ways by which the status of the PostgreSQL server can be checked.

On Unix and on Red Hat-based Linux distributions, the status argument of the pg_ctl utility 
can be used to check the status of a running postmaster backend:

pg_ctl -D /var/lib/pgsql/data status

On Unix-based and Linux-based platforms supporting the service command, the status of a 
postgresql process can be checked as follows:

service postgresql status

You may also check the server status by manually invoking the installed PostgreSQL script 
using its complete path:

/etc/rc.d/init.d/postgresql status

How it works...
The status mode of the pg_ctl utility checks whether the postmaster process is running in 
the specified data directory.

If the server is running, then the process ID and the command-line options that were used to 
invoke it are displayed.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

23

Reloading the server configuration files
Changes made to certain PostgreSQL configuration parameters come into effect when the 
server configuration files, such as postgresql.conf, are reloaded. Reloading the server 
configuration files becomes necessary in such cases.

How to do it...
Some of the configuration parameters in PostgreSQL can be changed on the fly. However, 
changes to other configurations can only be reflected once the server configuration files  
are reloaded.

On most Unix-based and Linux-based platforms, the command to reload the server 
configuration file is as follows:

pg_ctl -D /var/lib/pgsql/data reload

It is also possible to reload the configuration file while being connected to a PostgreSQL 
session. However, this can be done by the superuser only:

postgres=# select pg_reload_conf();

On Red Hat and other Linux-based systems that support the service command, the 
postgresql command to reload the configuration file is as follows:

service postgresql reload

How it works...
To ensure that changes made to the parameters in the configuration file take effect, a reload 
of the configuration file is needed. Reloading the configuration files requires sending the 
sighup signal to the postmaster process, which in turn will forward it to the other connected 
backend sessions.

There are some configuration parameters whose changed values can only be reflected by 
a server reload. These configuration parameters have a value known as sighup for the 
attribute context in the pg_settings catalog table:

SELECT name, setting, unit ,(source = 'default') as is_default FROM    
pg_settings WHERE context = 'sighup' 
AND (name like '%delay' or name like '%timeout') 
AND setting != '0';

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Databases and the PostgreSQL Server

24

Output for the preceding query is as shown below:

Terminating connections
Every major RDBMS, including PostgreSQL, allows simultaneous and concurrent database 
connections in order for users to run transactions. Due to such concurrent processing of 
databases, it may be during peak transaction hours that database performance becomes 
slow or that there are some blocking sessions. In order to deal with such situations, we might 
have to terminate some specific sessions or sessions coming from a particular user so that we 
can get database performance back to normal.

How to do it...
PostgreSQL provides the pg_terminate_backend function to kill a specific session. Even 
though the pg_terminate_backend function acts on a single connection at a time, we can 
embed pg_terminate_backend by wrapping it around the SELECT query to kill multiple 
connections, based on the filter criteria specified in the WHERE clause.

To terminate all of the connections from a particular database, we can use the  
pg_terminate_backend function as follows:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity  
WHERE datname = 'testdb1';

To terminate all of the connections for a particular user, we can use pg_terminate_
backend like this:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity  
WHERE usename = 'agovil';

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

25

How it works...
The pg_terminate_backend function requires the pid column or process ID as input. 
The value of pid can be obtained from the pg_stat_activity catalog table. Once 
pid is passed as input to the pg_terminate_backend function, all running queries will 
automatically be canceled and it will terminate a specific connection corresponding to the 
process ID as found in the pg_stat_activity table.

Terminating backends is also useful to free memory from idle postgres processes that was 
not released for whatever reason and was hogging system resources.

There's more...
If the requirement is to cancel running queries and not to terminate existing sessions, then 
we can use the pg_cancel_backend function to cancel all active queries on a connection. 
However, with the pg_cancel_backend function, we can only kill runaway queries issued in 
a database or by a specific user. It does not have the ability to terminate connections.

To cancel all of the running queries issued against a database, we can use the pg_cancel_
backend function as follows:

SELECT pg_cancel_backend(pid) FROM pg_stat_activity  
WHERE datname = 'testdb1';

To cancel all of the running queries issued by a specific user, we can use the pg_cancel_
backend function like this:

SELECT pg_cancel_backend(pid) FROM pg_stat_activity  
WHERE usename = 'agovil';

In versions before PostgreSQL 9.2, the procpid column has to be passed as input to the  
pg_terminate_backend and pg_cancel_backend functions to terminate running 
sessions and cancel queries. The pid column replaced the procpid column from 
PostgreSQL version 9.2 onwards.

You may refer to https://blog.sleeplessbeastie.eu/2014/07/23/how-to-
terminate-postgresql-sessions/ and http://www.devopsderek.com/
blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/ for  
more information regarding terminating backend connections.

www.it-ebooks.info

https://blog.sleeplessbeastie.eu/2014/07/23/how-to-terminate-postgresql-sessions/
https://blog.sleeplessbeastie.eu/2014/07/23/how-to-terminate-postgresql-sessions/
http://www.devopsderek.com/blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/
http://www.devopsderek.com/blog/2012/11/13/list-and-disconnect-postgresql-db-sessions/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


2
Controlling Security

In this chapter, we will cover the following recipes:

ff Securing database objects

ff Controlling access via firewalls

ff Controlling access via configuration files

ff Testing remote connectivity

ff Auditing database changes

ff Enabling SSL in PostgreSQL

ff Testing SSL encryption

ff Encrypting confidential data

ff Cracking PostgreSQL passwords

Introduction
Databases are used to store data in an organized manner. All relevant organization-related 
data is maintained in databases. Since all company-related information is stored in databases, 
it becomes imperative that controls be placed on data access and only authorized persons 
be allowed to access relevant data. It is in this context that database security is of utmost 
importance because it is important to ensure that the information stored in databases is 
protected against malicious attempts to view and modify data by hackers or people with 
malicious intent.

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

28

Database security deals with the information security measures that are undertaken 
to protect databases in order to ensure confidentiality, integrity, and availability of data. 
Databases need to be protected against various risks and threats, such as misuse by 
authorized database users, malicious attempts made by hackers to steal information or 
damage data, design flaws and software bugs in databases that lead to various security 
vulnerabilities that are exploited by hackers, data corruption that might be caused by wrong 
input and mistakes by humans, the possibility of data being sabotaged, and the administrator 
tendency of keeping a default schema password which might lead to unauthorized access to 
data by people with malicious intent.

Securing database objects
It is important to ensure that the authenticated users get access only to the data they are 
authorized to access. However, the pertinent question of how to keep authenticated users 
away from accessing unauthorized data remains. In PostgreSQL, this is implemented by 
maintaining a strong access control policy. The access control list governs which users are 
allowed to select, update, and modify objects within the database. A set of restrictions and 
controls are placed on every database object which determine who is allowed to access that 
object. Access control rights on database objects are maintained through the usage of the 
GRANT and REVOKE commands.

How to do it...
A database user usually has no access rights on any database objects apart from the ones 
that they own. As per business requirements, access to appropriate database objects is 
granted to other users by the owner of these objects. However, if the requirement comes to 
revoke a right after a user has been granted access to the object, then the REVOKE command 
can be issued.

We will discuss two cases here:

ff Revoking all the permissions on a table from a specific user. Here, we show the usage 
of the REVOKE command:
REVOKE ALL on testusers from nchhabra;

ff Revoking specific permissions on a table from a user, as shown here:
REVOKE insert,update,delete,truncate on testusers from agovil;

How it works...
Normally, all users have a set of rights, which include SELECT, UPDATE, DELETE, INSERT, 
TRUNCATE, and TRIGGER, on all the newly created tables through the PUBLIC role.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

29

In order to ensure that a particular user is no longer able to access the table, the rights 
to that table must be revoked from both the PUBLIC role and the user. In the first step of 
the preceding section, we revoke all the permissions on the testusers table from the 
nchhabra user. In this case, the ncchabra user is in a way restricted from performing any 
operation on the testusers table.

In the second scenario of the preceding section, we explicitly revoke the insert, update, delete, 
and truncate operations on the testusers table from the PostgreSQL user, agovil, thereby 
permitting the user to perform read-only operations on the table via the SELECT table clause.

Controlling access via firewalls
The most basic way to protect network services on a server is through a firewall. A firewall can 
be in the form of both hardware and software. A firewall allows you to configure which clients 
are allowed to pass packets through the firewall to specific applications.

The server firewall is the front door of the system on the network. It can block attempts 
to access individual services on the server before the packets even pass to the server 
applications. This acts as the first line of defense in protecting PostgreSQL databases  
from attack and intrusion.

How to do it...
The following are a series of steps that are required to configure database port access 
through the firewall on Red Hat Linux and other Red Hat based distributions:

1.	 For the network machines to be able to access the PostgreSQL server, you must 
manually configure the firewall rules to allow access to the PostgreSQL server port. 
By default, PostgreSQL listens to the TCP port 5432. So, you need to enable port 
5432 on the firewall. In Linux environments, you can enable port 5432 by modifying 
iptables' rules. For this, you need to open the file containing firewall rules. This file 
can be found at vim/etc/sysconfig/iptables.

2.	 Once you have opened the file, you need to add the following rule to enable access to 
port 5432:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 5432  
-j ACCEPT

3.	 After this, you need to save the changes and reload the configuration file that 
contains the firewall rules in order to ensure that the new changes made come  
into effect, using the following command:
service iptables restart

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

30

The next series of steps are required to configure database port access through the firewall  
on Windows 7. To enable port 5432 on Windows, you need to follow the sequence of steps 
given here:

1.	 Open Windows Firewall by navigating to Start | Control Panel | Systems And 
Security | Windows Firewall.

2.	 In the left-hand side pane, click on Advanced settings. If you're prompted for an 
administrator password or confirmation, type the password or provide confirmation.

3.	 In the Windows Firewall with Advanced Security dialog box, click on Inbound Rules 
in the left pane and then click on New Rule in the right pane.

4.	 In the New Inbound Rule Wizard dialog box, click on the Protocol and Ports option, 
then click on the radio buttons, as shown in the following screenshot, and finally click 
on the Next button.

5.	 In the next screen, select the default settings for all the options, enter the port 
number 5432 in the Specific local ports: text field, and then keep clicking on the 
Next button until you get to the Finish button. Enter a name for the rule and then 
click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

31

How it works...
Servers that host production databases have firewall policies which either allow or block a 
port or an IP address.

By default, firewall blocks everything. In order to enable access to applications, you need  
to configure rules in the firewall access control policy in order to allow the application to  
be accessed.

You will need to enable access on port 5432, which is the default port for PostgreSQL,  
in order to access the PostgreSQL server.

Controlling access via configuration files
Once the firewall is configured to allow access to the PostgreSQL server, you need to configure 
the PostgreSQL server to allow remote connections. This is implemented by making the 
necessary changes in the postgresql.conf and pg_hba.conf configuration files.

The postgresql.conf file contains a single entry that controls on which network interfaces 
PostgreSQL listens for connections.

The pg_hba.conf file is used to define which clients can connect to which database and 
using which login role.

How to do it...
1.	 You need to configure the listen_addresses configuration parameter in order to 

enable the remote network clients to make a connection to the PostgreSQL server:
listen_addresses = '*'

2.	 Here, you use an asterisk as the value of the listen_addresses configuration 
parameter. This configuration parameter enables all network ports.

3.	 The next step will be to make changes in the pg_hba.conf configuration file.  
These changes define access rules in order to allow remote connections access  
to the PostgreSQL server.

4.	 Open the pg_hba.conf file under the data directory or under the directory defined 
by the $PGDATA environment variable and define the necessary access control rules:
# TYPE     DATABASE    USER   CIDR-ADDRESS        METHOD    OPTION

  host     hrdb        all    192.168.12.10/32    md5

  host     all         all    192.168.54.1/32     reject

  host     all         all    192.168.1.0/24      trust

  host     hrd         all    192.168.1.10/24     crypt

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

32

5.	 The first entry in the pg_hba.conf file signifies that any user from the host 
192.168.12.10 is allowed to connect to the hrdb database if the user's  
password is supplied correctly.

6.	 The second entry in the pg_hba.conf file shows a host record that will reject all the 
users from the host 192.168.54.1 for any requested database.

7.	 The third entry in the pg_hba.conf file shows a host record that allows any machine 
on the 192.168.1.0 subnet to connect and access any database without specifying 
any password. Basically, with the trust method, we are relying on host-based 
authentication with the use of this method.

8.	 The final entry in the pg_hba.conf file states that any user with an IP address 
192.168.1.10 and with a valid password is allowed to connect to the hrdb database. 
However, here the password will be encrypted during authentication because of the 
term crypt, which is specified as the authentication method.

How it works...
Client authentication is controlled by the pg_hba.conf configuration file. Entries in the  
pg_hba.conf file govern the authentication and authorization permissions for a host.

Entries in the pg_hba.conf file will be read for authentication whenever a connection 
request is received. Initially, the pg_hba.conf file is used to determine whether a client 
making a database connection request has the CONNECT privilege on a database object or 
not. Once it has been determined that a user is allowed to access the database, the next step 
is to ensure that all the conditions are met for the client to authenticate successfully.

Even if the user is authenticated and has permissions to connect to a database, any of the 
table-level permissions will still apply to the database. You can check the permissions on the 
database using the \z switch, as shown in the screenshot below:

During the initialization of a database connection, entries in the pg_hba.conf file are read 
from top to bottom. The moment a matching entry is found, PostgreSQL will stop the search 
and it will allow or reject a connection based on the mentioned rules for the found entry. The 
connection will fail completely if a matching entry is not located in the pg_hba.conf file.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

33

There's more…
An authentication method type known as ident is defined in the pg_hba.conf configuration 
file. The ident authentication method works by obtaining the client's operating system 
username and using it as the allowed database username.

If the ident authentication method is used for a host entry in the pg_hba.conf file,  
then an ident map or a named mapping need to be specified. This option is defined in the 
pg_ident.conf configuration file, and it is used to map the identifying username, that is  
the client operating system username with an existing PostgreSQL database user.

The key aspect here is to obtain the client's operating system username so that it can be 
mapped to an existing database PostgreSQL database user.

Similar to the pg_hba.conf file, the pg_ident.conf file is also located in the data directory 
or in the path specified by the PGDATA environment variable.

First, the ident term must be set as the authentication method in the pg_hba.conf file, as 
follows:

# TYPE     DATABASE    USER      CIDR-ADDRESS          METHOD      OPTION

  host     hrdb         all      192.168.12.10/32      ident       hruser

Here, in the pga_hba.conf file, any user using the IP address 192.168.12.10 can connect 
to the hrdb database using an hruser mapname, which is basically a mapping of the UNIX 
usernames and the corresponding PostgreSQL database username. These entries are defined 
in the pg_ident.conf file, as follows:

   # MAPNAME     Ident-USERNAME    PG-USERNAME

      hruser      govil_amit        agovil

      hruser      kumar_neeraj      agovil

The hruser identmap is now configured in the pg_ident.conf file. The entries in the pg_
ident.conf file allow either of the UNIX system users, govil_amit and kumar_neeraj,  
to connect to the hrdb database using the PostgreSQL system user account agovil.

For more information on the entries in the pg_hba.conf file, you can refer to http://www.
postgresql.org/docs/9.3/static/auth-pg-hba-conf.html.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html
http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html
http://www.it-ebooks.info/


Controlling Security

34

Testing remote connectivity
After configuring the network environment in PostgreSQL, it is usually a good idea to test it out.

How to do it...
You can use the psql program to test connections to the PostgreSQL server from a  
remote client:

D:\Postgresql_Project\bin>psql -h 192.168.12.10 hrdb agovil

Password for user agovil:

psql (9.3.4)

WARNING: Console code page (437) differs from Windows code page (1252)

         8-bit characters might not work correctly. See psql reference

         page "Notes for Windows users" for details.

Type "help" for help.

Hrdb=>

How it works...
After enabling client authentication between the PostgreSQL server and the client application, 
as well as after configuring access control rules in the host's pg_hba.conf configuration file, 
it is a good idea to test for remote connectivity.

This will help you to find out whether the access control rules are configured correctly in the 
pg_hba.conf file and whether the clients face any connection errors despite being allowed 
access based on the host configuration file's rules.

Auditing database changes
Database security remains a concern for any database application. For the purpose of audit, it 
is important to identify which data has been changed, who has made this change, and when 
and how this change was implemented in the production environment.

A change log trigger can be used as a mechanism to identify what changes have been made 
to data in the PostgreSQL database and to answer all the pertinent questions from the 
auditing perspective.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

35

How to do it...
1.	 First, create a schema, and then the other objects that are required to track changes 

will be stored in this schema. You can create the schema as follows:
CREATE SCHEMA logging;

2.	 The next step will be to create a table to store some history in order to track changes, 
as follows:
CREATE TABLE logging.t_history (
  id serial,
  tstamp timestamp DEFAULT now(),
  schemaname text,
  tabname text,
  operation text,
  who text DEFAULT current_user,
  new_val json,
  old_val json
);

The point of using this table is to keep track of all the changes made to the table. We 
want to know which operation is taking place. The next important issue is when a new 
row is added, it will be visible by the trigger procedure. The same is true for deletion 
and changes.

3.	 Next, create a function that logs the changes, including the old changes, and values 
into the t_history table. The function is defined in such a manner that it tracks all 
DML operations—including inserts, updates, and deletes—and depending on the type 
of DML operations, it logs data—including changes—into the t_history table:
CREATE FUNCTION change_trigger()
RETURNS trigger AS $$
BEGIN 
  IF TG_OP = 'INSERT' THEN 
    INSERT INTO logging.t_history (
      tabname,
      schemaname,
      operation,
      new_val
    )
    VALUES (
      TG_RELNAME,
      TG_TABLE_SCHEMA,
      TG_OP,
      row_to_json(NEW)
    ); 

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

36

  RETURN NEW; 
  ELSIF TG_OP = 'UPDATE' THEN 
    INSERT INTO logging.t_history (
      tabname,
      schemaname,
      operation,
      new_val,
      old_val
    )
    VALUES (
      TG_RELNAME,
      TG_TABLE_SCHEMA,
      TG_OP,
      row_to_json(NEW),
      row_to_json(OLD)
    ); 
  RETURN NEW; 
  ELSIF TG_OP = 'DELETE' THEN 
    INSERT INTO logging.t_history (
      tabname,
      schemaname,
      operation,
      old_val
    )
    VALUES (
      TG_RELNAME,
      TG_TABLE_SCHEMA,
      TG_OP,
      row_to_json(OLD)
    );
  RETURN OLD;
  END IF;
END;
$$ LANGUAGE 'plpgsql' SECURITY DEFINER; 

4.	 Now, create a table with some data in it and use this table to make changes:
CREATE TABLE t_trig (id int,name text);

5.	 The next step is to create a change log trigger that will be executed before any DML 
event occurs on the t_trig table, created in the earlier step:
CREATE TRIGGER t BEFORE INSERT OR UPDATE OR DELETE ON  
t_trig  FOR EACH ROW EXECUTE PROCEDURE change_trigger();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

37

6.	 Now, make changes in the t_trig table and test the trigger execution, as follows:
INSERT INTO t_trig VALUES (1, 'hans');
UPDATE t_trig SET id = 10 * id, name ='paul'; 

7.	 Next, check whether your history tables contain changes made to the underlying 
tables using the query, as shown in the screenshot below:

How it works...
A generic trigger function can be used to record changes into a history table. It will record the 
old and new records, tables affected, users who made the change, type of DML operation, 
and a timestamp for each change.

It is important to ensure that the log, which is preserved to keep a track of the changes, 
cannot be changed by an authorized person. This can be ensured by marking the trigger 
function as SECURITY DEFINER. This will ensure that the function itself is not executed  
by the user who makes the change but by the user who has written the function.

This sort of a trigger-based mechanism cannot be used to track the following activities from 
an auditing perspective:

ff It cannot audit the SELECT statements

ff It cannot audit system tables

ff It cannot audit DDL operations such as the ALTER TABLE statement

There's more...
There is another way to collect data changes made to PostgreSQL. These changes also 
includes changes made to DDL statements. We can collect the changes that are made  
to a PostgreSQL system from the server's logfile.

In order to collect data changes from the server log, you need to modify the log_statement 
configuration parameter and set its value to either mod or all in the postgresql.conf 
configuration file.

Once this is done, you need to reload the configuration as follows:

pg_ctl -D /var/lib/pgsql/data reload

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

38

Enabling SSL in PostgreSQL
By default, the PostgreSQL server is configured to accept remote client connections using 
a standard TCP connection. The issue with these type of network connections is that the 
data is sent in clear text over the network and is clearly susceptible to sniffing. Anyone using 
a network sniffer can easily intercept the data sent in clear text, and in this way, the data 
confidentiality can be compromised.

Now, the pertinent question is what data in PostgreSQL will be susceptible to sniffing. The SQL 
statement sent by the psql utility to the server and the result set generated by the PostgreSQL 
server are some of the things that are susceptible to sniffing. Getting an interceptor to see the 
result set of the query means enabling the network sniffer to see your table data.

To deal with this situation, PostgreSQL supports Secure Sockets Layer (SSL) encrypted TCP 
sessions. SSL-based TCP encrypted sessions use an encryption key to encrypt data before it 
is sent out on the network. The PostgreSQL server and the client machine pass an encryption 
key that is used to encrypt data.

How to do it...
In order to deal with this, you need to enable SSL support in PostgreSQL. This can be done by 
modifying the value of the ssl configuration parameter in the postgresql.conf file:

ssl = on

When the PostgreSQL server is restarted, it will recognize the change in the configuration 
and enable SSL connections. The PostgreSQL server will now listen for both normal TCP 
connections, as well as secure SSL-based TCP connections on the same port.

However, once SSL is enabled, the PostgreSQL server will make sure that the encryption keys 
or certificate files are available in the PostgreSQL data directory, otherwise it will not start until 
it finds them.

How it works...
Now that SSL support is enabled in PostgreSQL, to support an SSL session, the PostgreSQL 
server must have access to both an encryption key and a certificate. The SSL protocol uses 
the encryption key to encrypt network data, while the remote client uses the certificate 
supplied by the server to validate that the encryption key came from a trusted source.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

39

The encryption key is generated from a certificate signed by an organization that the client 
trusts. These two methods can be used to obtain a certificate:

ff You can purchase a certificate from a certification authority such as Verisign or Thawte

ff In other situations, you can create a self-signed certificate, indicating that the 
encryption came from your end

There's more...
Here we are going to create a self-signed certificate and encryption keys using an open  
source tool know as OpenSSL. For Windows, you need to download the latest version  
of the Win32OpenSSL package.

The following steps are required to create the encryption key and self-signed certificate files:

1.	 Create a passphrase protected encryption key.

2.	 Remove the key passphrase.

3.	 Create the self-signed certificate.

The first step is to create the encryption key used by PostgreSQL for encrypting SSL sessions. 
This is done using the req OpenSSL option:

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

40

The preceding step creates a file called privkey.pem, which contains the encryption key and 
the server.req file, which contains a basic certificate:

As mentioned earlier, the file that contains the privkey.pem encryption key is protected by 
a passphrase. You can remove this passphrase from the encryption key using another SSL 
option, as follows:

When the previously mentioned openssl command is executed, OpenSSL asks for  
the passphrase for the encryption key. It then creates a new encryption key, called  
server.key, which does not require the pass phrase to be entered.

Now that you have an encryption key without a pass phrase and a basic certificate, the next 
step is to convert the certificate to a standard X.509 format and self sign it using  
the encryption key:

C:\cygwin\OpenSSL-Win32\bin>openssl req -x509 -in server.req  
-text -key server.key -out server.crt

Loading 'screen' into random state – done

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

41

The certificate is created in the text mode using the standard X.509 format and is saved in the 
server.crt file. As the certificate was created in the text mode, let's take a look at it:

The next step will be to copy the server.key and server.crt files to the PostgreSQL data 
directory and then restart the PostgreSQL server service.

For more information on SSL in PostgreSQL, you can refer to www.postgresql.org/
docs/9.3/static/ssl-tcp.html.

www.it-ebooks.info

www.postgresql.org/docs/9.3/static/ssl-tcp.html
www.postgresql.org/docs/9.3/static/ssl-tcp.html
http://www.it-ebooks.info/


Controlling Security

42

Testing SSL encryption
Usually, communication between the client application, such as psql, and the database 
server, that is PostgreSQL, is sent over the network as clear text and is susceptible to 
sniffing. To prevent any sort of eavesdropping or sniffing, ensure that the communication 
between the psql client and the database server is encrypted. We set up SSL and enabled 
encryption in the previous recipe. Once the certificate and encryption key files are moved to 
the data directory, the next step is to check the SSL encryption. It is now time to test the SSL 
encryption that we set up in the previous recipe.

How to do it...
After the PostgreSQL server is restarted, the next step is to use the psql application in order to 
test the SSL connection, as shown here:

How it works...
The psql application attempts to connect to the PostgreSQL server in the SSL mode first and 
then tries to connect in the plain text mode if the SSL mode fails. While making the connection 
to the psql client, you can see the banner information containing keywords such as SSL 
connection and some cipher text. This can be seen from the screenshot in the earlier section.

Encrypting confidential data
It is important to protect confidential information stored in databases, such as credit 
card information, information about financial transactions, and personal information of 
an employee. Usual database mechanisms, such as maintaining access control lists to 
implement tight security controls on confidential information, to ensure that such sensitive 
information does not fall into the hands of malicious users is not enough. What is important 
is to ensure that the confidential data be kept in a format that is not understandable to 
unauthorized users. For authorized users, however, the information must be converted back 
to its original format so that it is understandable. This is where encryption comes into the 
picture. Encryption is the process of converting data into a format that renders the data 
unreadable or intangible to unauthorized users.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

43

Encryption translates the data into cipher text or secret mode, which can only be decoded  
and converted into its original form with the help of a key that is kept by authorized personnel 
only. For this reason, encryption is considered to be one of the most effective ways to achieve 
data security.

There are two categories of encryption: one is the symmetric system, and the other is the 
asymmetric system. Symmetric encryption uses an identical key to both encrypt and decrypt 
the data. Symmetric key algorithms are much faster computationally than asymmetric 
algorithms, as the encryption process is less complicated and takes less time. Asymmetric 
encryption uses two related keys (public and private) for data encryption and decryption and 
eliminates the security risk of sharing keys. The private key is never exposed. A message that 
is encrypted using the public key can only be decrypted by applying the same algorithm and 
using a matching private key. Likewise, a message that is encrypted using the private key can 
only be decrypted using the matching public key.

How to do it...
PostgreSQL has various levels of encryption to choose from. PostgreSQL provides the 
pgcrypto module, which provides cryptographic functions for PostgreSQL.

In the following section, we are going to create a table and use the Advanced Encryption 
Standard (AES) to encrypt the table data and then decrypt the data via the encrypt and 
decrypt functions:

testdb1=# create extension pgcrypto;

testdb1=# create table demo(pw bytea);

testdb1=# insert into demo(pw) values ( encrypt( 'champion', 'key', 
'aes') );

testdb1=# select * from demo;
               pw
------------------------------------
\xdf5fa25e36fd16c9e4688bcf46bf11c3
(1 row)

testdb1=# select decrypt(pw, 'key', 'aes') FROM demo;
    decrypt
--------------------
\x6368616d70696f6e
(1 row)

testdb1=# select convert_from(decrypt(pw, 'key', 'aes'), 'utf-8') FROM 
demo;

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

44

 convert_from
--------------
 champion
(1 row)

How it works...
The pgcrypto module is a module in PostgreSQL which provides encryption in the form of 
database functions. It is client independent. The pgcrypto module provides support for raw 
encryption, Pretty Good Privacy (PGP) compatible encryption, and hashing.

PostgreSQL provides supports for both symmetric and asymmetric encryption. For stronger 
encryption, you can use a PGP-based encryption approach where you have a public and a 
private key pair, in which case, the public key is used to encrypt the data and the private  
key is used to decrypt the data.

We are now going to demonstrate the use of a public and private key pair to encrypt and 
decrypt the data. We are going to use the following four functions for the demonstration,  
along with an explanation of the usage of these functions:

ff pgp_pub_encrypt: This is the function you will use to encrypt your data using your 
public key.

ff pgp_pub_decrypt: This is the function you will use to decrypt your data using your 
private key.

ff dearmor: The dearmor function is used to unwrap binary data into its native format, 
that is, the PGP ASCII armor format, which makes it suitable to be passed to the encrypt.

ff pgp_key_id: The pgp_key_id function is used to extract the key ID of a public or 
secret key. This function tells you the key that was used to encrypt a given message, 
so that from the collection of available keys, you can use the right key to decrypt the 
given message.

The following are a series of steps that are used to demonstrate the usage of public and 
private key pairs to encrypt and decrypt data using the previously described functions:

1.	 First, create the table in which you are going to store data:
CREATE TABLE testuserscards(
  card_id SERIAL PRIMARY KEY,
  username varchar(100),
  cc bytea
);

2.	 Next, insert records in the table and encrypt the data:
INSERT INTO testuserscards(username, cc)
SELECT robotccs.username, pgp_pub_encrypt(robotccs.cc, keys.
pubkey) As cc

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

45

FROM (VALUES ('robby', '41111111111111111'),
    ('artoo', '41111111111111112') ) As robotccs(username, cc)
     CROSS JOIN (SELECT dearmor('
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.1 (GNU/Linux)

mQGiBELIIgoRBAC1onBpxKYgDvrgCaUWPY34947X3ogxGOfCN0p6Eqrx+2PUhm4n
vFvmczpMT4iDc0mUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke
5aVvcPPc8uPDlItpszGmH0rM0V9TIt/i9QEXetpyNWhk4jj5qnohYhLeZwCgkOdO
RFAdNi4vfFPivvtAp2ffjU8D/R3x/UJCvkzi7i9rQHGo313xxmQu5BuqIjANBUij
8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+fuvNVk0d6MTWplAXYU96bn12JaD21R9sKl
Fzcc+0iZI1wYA1PczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt
J+oKA/9iRQ87FzxdYTkh2drrv69FZHc3Frsjw9nPcBq/voAvXH0MRilqyCg7HpW/
T9naeOERksa+Rj4R57IF1l4e5oiiGJo9QmaKZcsCsXrREJCycrlEtMqXfSPy+bi5
0yDZE/Qm1dwu13+OXOsRvkoNYjO8Mzo9K8wU12hMqN0a2bu6a7QjRWxnYW1hbCAy
MDQ4IDx0ZXN0MjA0OEBleGFtcGxlLm9yZz6IXgQTEQIAHgUCQsgiCgIbAwYLCQgH
AwIDFQIDAxYCAQIeAQIXgAAKCRBI6c1W/qZo29PDAKCG724enIxRog1j+aeCp/uq
or6mbwCePuKy2/1kD1FvnhkZ/R5fpm+pdm25Ag0EQsgiIhAIAJI3Gb2Ehtz1taQ9
AhPY4Avad2BsqD3S5X/R11Cm0KBE/04D29dxn3f8QfxDsexYvNIZjoJPBqqZ7iMX
MhoWyw8ZF5Zs1mLIjFGVorePrm94N3MNPWM7x9M36bHUjx0vCZKFIhcGY1g+htE/
QweaJzNVeA5z4qZmik41FbQyQSyHa3bOkTZu++/U6ghP+iDp5UDBjMTkVyqITUVN
gC+MR+da/I60irBVhue7younh4ovF+CrVDQJC06HZl6CAJJyA81SmRfi+dmKbbjZ
LF6rhz0norPjISJvkIqvdtM4VPBKI5wpgwCzpEqjuiKrAVujRT68zvBvJ4aVqb11
k5QdJscAAwUH/jVJh0HbWAoiFTe+NvohfrA8vPcD0rtU3Y+siiqrabotnxJd2NuC
bxghJYGfNtnx0KDjFbCRKJVeTFok4UnuVYhXdH/c6i0/rCTNdeW2D6pmR4GfBozR
Pw/ARf+jONawGLyUj7uq13iquwMSE7VyNuF3ycL2OxXjgOWMjkH8c+zfHHpjaZ0R
QsetMq/iNBWraayKZnWUd+eQqNzE+NUo7w1jAu7oDpy+8a1eipxzK+O0HfU5LTiF
Z1Oe4Um0P2l3Xtx8nEgj4vSeoEkl2qunfGW00ZMMTCWabg0ZgxPzMfMeIcm6525A
Yn2qL+X/qBJTInAl7/hgPz2D1Yd7d5/RdWaISQQYEQIACQUCQsgiIgIbDAAKCRBI
6c1W/qZo25ZSAJ98WTrtl2HiX8ZqZq95v1+9cHtZPQCfZDoWQPybkNescLmXC7q5
1kNTmEU=
=8QM5
-----END PGP PUBLIC KEY BLOCK-----
') As pubkey) As keys;

3.	 You might then see the records in the table:
SELECT username, cc FROM testuserscards;

4.	 Now, you can use pgp_keyid to verify which public key you used to encrypt  
your data:
SELECT pgp_key_id(dearmor('
-----BEGIN PGP PUBLIC KEY BLOCK-----

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

46

Version: GnuPG v1.4.1 (GNU/Linux)

mQGiBELIIgoRBAC1onBpxKYgDvrgCaUWPY34947X3ogxGOfCN0p6Eqrx+2PUhm4n
vFvmczpMT4iDc0mUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke
5aVvcPPc8uPDlItpszGmH0rM0V9TIt/i9QEXetpyNWhk4jj5qnohYhLeZwCgkOdO
RFAdNi4vfFPivvtAp2ffjU8D/R3x/UJCvkzi7i9rQHGo313xxmQu5BuqIjANBUij
8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+fuvNVk0d6MTWplAXYU96bn12JaD21R9sKl
Fzcc+0iZI1wYA1PczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt
J+oKA/9iRQ87FzxdYTkh2drrv69FZHc3Frsjw9nPcBq/voAvXH0MRilqyCg7HpW/
T9naeOERksa+Rj4R57IF1l4e5oiiGJo9QmaKZcsCsXrREJCycrlEtMqXfSPy+bi5
0yDZE/Qm1dwu13+OXOsRvkoNYjO8Mzo9K8wU12hMqN0a2bu6a7QjRWxnYW1hbCAy
MDQ4IDx0ZXN0MjA0OEBleGFtcGxlLm9yZz6IXgQTEQIAHgUCQsgiCgIbAwYLCQgH
AwIDFQIDAxYCAQIeAQIXgAAKCRBI6c1W/qZo29PDAKCG724enIxRog1j+aeCp/uq
or6mbwCePuKy2/1kD1FvnhkZ/R5fpm+pdm25Ag0EQsgiIhAIAJI3Gb2Ehtz1taQ9
AhPY4Avad2BsqD3S5X/R11Cm0KBE/04D29dxn3f8QfxDsexYvNIZjoJPBqqZ7iMX
MhoWyw8ZF5Zs1mLIjFGVorePrm94N3MNPWM7x9M36bHUjx0vCZKFIhcGY1g+htE/
QweaJzNVeA5z4qZmik41FbQyQSyHa3bOkTZu++/U6ghP+iDp5UDBjMTkVyqITUVN
gC+MR+da/I60irBVhue7younh4ovF+CrVDQJC06HZl6CAJJyA81SmRfi+dmKbbjZ
LF6rhz0norPjISJvkIqvdtM4VPBKI5wpgwCzpEqjuiKrAVujRT68zvBvJ4aVqb11
k5QdJscAAwUH/jVJh0HbWAoiFTe+NvohfrA8vPcD0rtU3Y+siiqrabotnxJd2NuC
bxghJYGfNtnx0KDjFbCRKJVeTFok4UnuVYhXdH/c6i0/rCTNdeW2D6pmR4GfBozR
Pw/ARf+jONawGLyUj7uq13iquwMSE7VyNuF3ycL2OxXjgOWMjkH8c+zfHHpjaZ0R
QsetMq/iNBWraayKZnWUd+eQqNzE+NUo7w1jAu7oDpy+8a1eipxzK+O0HfU5LTiF
Z1Oe4Um0P2l3Xtx8nEgj4vSeoEkl2qunfGW00ZMMTCWabg0ZgxPzMfMeIcm6525A
Yn2qL+X/qBJTInAl7/hgPz2D1Yd7d5/RdWaISQQYEQIACQUCQsgiIgIbDAAKCRBI
6c1W/qZo25ZSAJ98WTrtl2HiX8ZqZq95v1+9cHtZPQCfZDoWQPybkNescLmXC7q5
1kNTmEU=
=8QM5
-----END PGP PUBLIC KEY BLOCK-----'));

The output of this query shows that the following public key was encrypting data:
    pgp_key_id
------------------
 2C226E1FFE5CC7D4
(1 row)

5.	 The next step is to verify whether the public key that you got was used to encrypt the 
data in the table:
hrdb=# SELECT username, pgp_key_id(cc) As keyweused FROM 
testuserscards;

 username |    keyweused
----------+------------------
 robby    | 2C226E1FFE5CC7D4
 artoo    | 2C226E1FFE5CC7D4

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

47

6.	 Finally, decrypt the data using the private key that matches the public key you used to 
encrypt the data with:
SELECT username, pgp_pub_decrypt(cc, keys.privkey) As ccdecrypt
FROM testuserscards 
    CROSS JOIN
    (SELECT dearmor('-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v1.4.1 (GNU/Linux)

lQG7BELIIgoRBAC1onBpxKYgDvrgCaUWPY34947X3ogxGOfCN0p6Eqrx+2PUhm4n
vFvmczpMT4iDc0mUO+iwnwsEkXQI1eC99g8c0jnZAvzJZ5miAHL8hukMAMfDkYke
5aVvcPPc8uPDlItpszGmH0rM0V9TIt/i9QEXetpyNWhk4jj5qnohYhLeZwCgkOdO
RFAdNi4vfFPivvtAp2ffjU8D/R3x/UJCvkzi7i9rQHGo313xxmQu5BuqIjANBUij
8IE7LRPI/Qhg2hYy3sTJwImDi7VkS+fuvNVk0d6MTWplAXYU96bn12JaD21R9sKl
Fzcc+0iZI1wYA1PczisUkoTISE+dQFUsoGHfpDLhoBuesXQrhBavI8t8VPd+nkdt
J+oKA/9iRQ87FzxdYTkh2drrv69FZHc3Frsjw9nPcBq/voAvXH0MRilqyCg7HpW/
T9naeOERksa+Rj4R57IF1l4e5oiiGJo9QmaKZcsCsXrREJCycrlEtMqXfSPy+bi5
0yDZE/Qm1dwu13+OXOsRvkoNYjO8Mzo9K8wU12hMqN0a2bu6awAAn2F+iNBElfJS
8azqO/kEiIfpqu6/DQG0I0VsZ2FtYWwgMjA0OCA8dGVzdDIwNDhAZXhhbXBsZS5v
cmc+iF0EExECAB4FAkLIIgoCGwMGCwkIBwMCAxUCAwMWAgECHgECF4AACgkQSOnN
Vv6maNvTwwCYkpcJmpl3aHCQdGomz7dFohDgjgCgiThZt2xTEi6GhBB1vuhk+f55
n3+dAj0EQsgiIhAIAJI3Gb2Ehtz1taQ9AhPY4Avad2BsqD3S5X/R11Cm0KBE/04D
29dxn3f8QfxDsexYvNIZjoJPBqqZ7iMXMhoWyw8ZF5Zs1mLIjFGVorePrm94N3MN
PWM7x9M36bHUjx0vCZKFIhcGY1g+htE/QweaJzNVeA5z4qZmik41FbQyQSyHa3bO
kTZu++/U6ghP+iDp5UDBjMTkVyqITUVNgC+MR+da/I60irBVhue7younh4ovF+Cr
VDQJC06HZl6CAJJyA81SmRfi+dmKbbjZLF6rhz0norPjISJvkIqvdtM4VPBKI5wp
gwCzpEqjuiKrAVujRT68zvBvJ4aVqb11k5QdJscAAwUH/jVJh0HbWAoiFTe+Nvoh
frA8vPcD0rtU3Y+siiqrabotnxJd2NuCbxghJYGfNtnx0KDjFbCRKJVeTFok4Unu
VYhXdH/c6i0/rCTNdeW2D6pmR4GfBozRPw/ARf+jONawGLyUj7uq13iquwMSE7Vy
NuF3ycL2OxXjgOWMjkH8c+zfHHpjaZ0RQsetMq/iNBWraayKZnWUd+eQqNzE+NUo
7w1jAu7oDpy+8a1eipxzK+O0HfU5LTiFZ1Oe4Um0P2l3Xtx8nEgj4vSeoEkl2qun
fGW00ZMMTCWabg0ZgxPzMfMeIcm6525AYn2qL+X/qBJTInAl7/hgPz2D1Yd7d5/R
dWYAAVQKFPXbRaxbdArwRVXMzSD3qj/+VwwhwEDt8zmBGnlBfwVdkjQQrDUMmV1S
EwyISQQYEQIACQUCQsgiIgIbDAAKCRBI6c1W/qZo25ZSAJ4sgUfHTVsG/x3p3fcM
3b5R86qKEACggYKSwPWCs0YVRHOWqZY0pnHtLH8=
=3Dgk
-----END PGP PRIVATE KEY BLOCK-----') As privkey) As keys;

 username |     ccdecrypt
----------+-------------------
 robby    | 41111111111111111
 artoo    | 41111111111111112
(2 rows)

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Security

48

There's more...
Instead of explicitly specifying the private/public key pair, you can also use a tool called GPG 
to generate the public and secret keys and export it and use it in PostgreSQL.

GPG is available both for Linux and Windows platforms.

You can use the following sequence of steps to generate the gpg keys and export them:

1.	 First, generate the keys:
gpg --gen-key

2.	 Next, see the list of keys that you generated:
gpg --list-secret-keys 

sec   1024D/D9ABCD1E 2014-06-17

uid                  aaaac

ssb   1024g/E0B81D3A 2014-06-17

3.	 Finally, export both the secret and public keys:
gpg -a --export E0B81D3A > public.key

gpg -a --export-secret-keys D9ABCD1E > secret.key

Cracking PostgreSQL passwords
Many databases including open source databases as well as proprietary ones, come with 
default user accounts, and such schemas also have default passwords. These passwords 
are well known in today's context, and it is important that a database administrator keep 
nondefault passwords for these user accounts. However, administrators usually prefer to keep 
simple passwords or sometimes allow default passwords to be kept. This is something that 
needs to be avoided in a production environment because compromising here would lead 
to a big security loophole and something that can be exploited by hackers. For this reason, 
organizations have started implementing a strong password policy.

A common norm in password policies is to keep a combination of alphanumeric characters 
coupled with a few special characters to enforce a strong password. It is important to keep  
a password length of at least up to eight characters. In the following recipe, we are going 
to see how weak passwords can be cracked and how important it is to enforce a strong 
password policy.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

49

How to do it...
Here, we are presenting a scenario where we will demonstrate how weak passwords can be 
easily cracked. For the purpose of demonstration, we will create two users: one user whose 
password contains only digits, and one user whose password contains only alphabets. 
Perform the following steps to create the users:

1.	 First, create a user and specify a password for the user:
create user xyz with password '123';
create user john with password 'good';

2.	 Next, get the encrypted passwords of users from the pg_shadow catalog table:
select usename as useraccount,passwd as "password"
from pg_shadow
where length(passwd)>1 order by usename;

 useraccount |              password
-------------+-------------------------------------
 john        | md5bec8abeddc3e1513db64c184a6bf85c9
 xyz         | md5adf47922f0bdb6b9a520ed2d43622d14
(2 rows)

3.	 The next step will be to use an MD5 password decrypter tool. You can use tools 
such as Cain and Abel, MD Crack, and so on. However, in our case, we will be using 
a website called www.md5online.org, and we will use its online MD5 decrypter 
facility, as shown here:

www.it-ebooks.info

www.md5online.org
http://www.it-ebooks.info/


Controlling Security

50

In the above screenshot, we entered the MD5 hash for the user john and found his actual 
password. The convention that we see here is that the password is displayed first, followed  
by the name of the user. For instance, we get goodjohn, where the password is good for  
the user john.

Similarly, in the preceding screenshot, we entered the md5 hash for the user xyz and found 
his actual password. The convention that we see here as well, is just as in the earlier case, 
where the password is displayed first, followed by the name of the user. For instance, we get 
123xyz, where the password is 123 for the user xyz.

How it works...
In the preceding scenario, you can see that any password less than six characters in length 
is vulnerable to being quickly cracked. Therefore, it is important to enforce a strong password 
policy and to educate users with the effectiveness of a strong password.

The length of the password plays a key role in enforcing a strong password. The longer the 
length of the password, the more is the time it requires to break it. The cracking of passwords 
is based on two approaches:

ff Brute force: This method requires you to try every possible approach needed to be 
undertaken in order to crack a password. There are well-known password crackers, 
such as Cain and Abel, LophtCrack, Hydra, and so on, that can use the brute force 
approach to crack a password. This method is suitable only for testing short passwords.

ff Dictionary attack: This method involves the usage of a dictionary list in order to 
crack a password. Here, every dictionary word is taken in sequence, converted into 
a hash, and then matched with the system hash. If both the hashes match, then the 
password is cracked, else move to the next word in the dictionary and so on.

www.it-ebooks.info

http://www.it-ebooks.info/


3
Backup and Recovery

In this chapter, we will cover the following recipes:

ff A logical backup of a single PostgreSQL database

ff A logical backup of all PostgreSQL databases

ff A logical backup of specific objects

ff File system level backup

ff Taking a base backup

ff Hot physical backup and continuous archiving

ff Point-in-time recovery

ff Restoring databases and specific database objects

Introduction
Backup and recovery usually refers to protecting the database against the loss of data and 
enables the restoration of data in the event of a data loss. A backup, in simple terms, is a 
copy of your database data.

Backups are divided into two components:

ff Logical backups: A logical backup refers to the dump file that is created by the  
pg_dump utility and which might be used to restore the database in the case of  
a data loss or an accidental deletion of a database object, such as a table. The  
pg_dump utility is a PostgreSQL specific utility that can be run on the command  
line, which makes a connection to the database and initiates the logical backup.

ff Physical backups: A physical backup refers to the OS level backup of a database 
directory and its associated files.

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

52

It is essential to have a planning strategy in order to implement backups. This is desirable 
from the point of view of a recovery scenario, and in the event of such a situation arising,  
the type of backups that we initiate will influence the type of recovery that is possible.

A logical backup of a single PostgreSQL 
database

The pg_dump utility is used to back up a PostgreSQL database. It does make consistent 
backups even if the database is being used by other transactions. Dumps can be created  
in script or in archive file formats. Script dumps are usually plain text files that contain the  
SQL commands required to reconstruct the database to the state it was in at the time it  
was saved. Script dumps can also be used to reconstruct the database on other machines 
and architectures.

Getting ready
Please note that the dump keyword is evenly used here as a synonym for backup.

The pg_dump utility is considered to be a logical backup because it makes a copy of the data 
in the database by dumping out the contents of each table.

The basic syntax to take a logical backup of a single database is mentioned here:

pg_dump -U username -W -F t database_name > [Backup Location Path]

The usage of the options used with the pg_dump command is explained here:

ff U switch: The -U switch specifies the database user initiating the connection. As 
pg_dump is a command-line utility, we need to specify the username via which the 
pg_dump utility can make a database connection.

ff W switch: This option is not mandatory. This option forces pg_dump to prompt for 
the password before connecting to the PostgreSQL database server. After you press 
Enter, pg_dump will prompt for the password of the database user from which the 
connection is initiated.

ff F switch: The -F switch specifies the output file format that will be used.  
We specified the t option with the -F switch because the output file will be 
implemented as a tar format archive file.

There are plenty of other options available with the pg_dump command; however, for our 
purpose, we are going to the use the preceding options.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

53

How to do it...
Here, in our situation, we have a database named dvdrental for which we need to generate 
a logical dump.

There are two ways in which a logical dump can be initiated in PostgreSQL:

ff The first approach is to use the command-line utility pg_dump to make a logical 
dump of a database. Here, we use the pg_dump utility to back up the dvdrental 
database in an output file named dvdrental.tar, which is saved in the abcd 
subdirectory of the home directory:
pg_dump -U postgres -W -F t dvdrental >  
/home/abcd/dvdrental.tar

ff The second option is to use the pgAdmin GUI tool to back up an individual  
database. Here, we will show you how to backup the dvdrental database  
using the pgAdmin tool:

1.	 First, launch the pgAdmin GUI tool.

2.	 Click on the Databases menu under Object browser in the left pane of the 
window, select the dvdrental database, and right-click on it.

3.	 Then, select the Backup… option, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

54

4.	 Once the Backup… option is selected, a dialog box will open, as shown 
in the next screenshot, and you will have to enter the name of the logical 
dump that will contain the command necessary to restore the database or 
a specific table in the event of a failure. Here, we name the logical dump as 
dvdrental.tar and store it in the pgbackup directory under the C drive.

5.	 Click on the Backup button to generate a logical dump of the  
dvdrental database.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

55

6.	 On the click of the Backup button, the creation of the logical dump will start, 
and the backup-related messages that are generated can be seen in the 
next screenshot:

How it works...
The pg_dump command runs by executing SQL statements against the database to unload 
data. While the pg_dump command is running, it acquires locks on the tables that are being 
dumped. This is done in order to ensure that DDL operations are restricted against the tables 
while the dump is running in order to ensure data consistency.

Dumps created by pg_dump are internally consistent; that is, the dump represents a snapshot 
of the database at the time pg_dump begins running. The pg_dump utility does not block any 
other database operations while it is executing. In this case, the only exceptions are those 
operations that require an exclusive lock to operate.

Any system user might run pg_dump by default, but the user with which you connect to 
PostgreSQL must have SELECT rights for every database object being dumped.

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

56

Since pg_dump also provides standard connection options to specify a host connection,  
it can also be used to perform remote backups from any host that is allowed to make a 
remote connection, as defined in the pg_hba.conf file:

pg_dump -u postgres -h 192.168.16.54   -F c -f  
dvdrental.sql.tar.gz dvdrental

Here, in the preceding scenario, we connect to the dvdrental database located at the 
host with the IP address 192.168.16.54 and initiate a remote backup for the dvdrental 
database. The dvdrental.sql.tar.gz dump file is generated at the current location  
from where the pg_dump command is executed.

You can refer to the following links for more detailed information on the pg_dump utility:

ff http://www.postgresql.org/docs/9.3/static/app-pgdump.html

ff http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_
better_backup_with_postgresql_using_pg_dump/

ff http://www.postgresonline.com/special_feature.php?sf_
name=postgresql83_pg_dumprestore_cheatsheet

A logical backup of all PostgreSQL 
databases

To backup all databases, you can run the individual pg_dump command for each database 
sequentially or in parallel if you want to speed up the backup process:

ff First, from the psql client, use the \l command to list all the available databases in 
your cluster.

ff Second, back up each individual database using the pg_dump command, as 
described in the previous recipe.

The other approach is to use the pg_dumpall tool to back up all the databases in  
one single go.

How to do it...
You can use the pg_dump command to back up each database in the server; however,  
pg_dump does not dump information about the role definition and tablespaces. To dump  
the global information, use the following command:

pg_dumpall -g

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/app-pgdump.html
http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_better_backup_with_postgresql_using_pg_dump/
http://www.commandprompt.com/blogs/joshua_drake/2010/07/a_better_backup_with_postgresql_using_pg_dump/
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_pg_dumprestore_cheatsheet
http://www.postgresonline.com/special_feature.php?sf_name=postgresql83_pg_dumprestore_cheatsheet
http://www.it-ebooks.info/


Chapter 3

57

To back up all the databases in one go, you can use the pg_dumpall utility, as follows,  
in Windows:

pg_dumpall -U postgres > c:\pgbackup\all.sql

Similarly, to back up all the databases in one go in Linux, use the pg_dumpall command,  
as follows:

pg_dumpall -U postgres >   /home/pgbackup/all.sql

How it works...
The pg_dumpall command exports all the databases, one after another, into a single script 
file that prevents you from performing a parallel restore. If you are going to back up all the 
databases this way, the restore process will take a lot more time.

The processing time of dumping all databases takes longer than the time required to dump 
each database individually, so we don't know which dump of each database relates to a 
specific point-in-time.

For this reason, you should use the pg_dump command to dump each individual database 
and then use the -g switch of the pg_dumpall command to keep a backup of all the user 
and group data.

The pg_dumpall command generally requires the user executing the script to be a 
PostgreSQL superuser. This is because the pg_dumpall command requires access to the 
PostgreSQL system catalogs, as it dumps global objects as well as the database objects.

There's more...
Sometimes, you want to back up only the database object definitions, so that you can restore 
the schema only. This is useful for comparing what is stored in the database against the 
definitions in a data or object modeling tool.

It is also useful to make sure that you can recreate objects in exactly the correct schema, 
tablespace, and database with the correct ownership and permissions.

To back up all object definitions in all the databases, including roles, tablespaces, databases, 
schemas, tables, indexes, triggers, functions, constraints, views, ownership, and privileges, 
you can use the following command in Windows:

pg_dumpall --schema-only > c:\pgdump\definitiononly.sql

If you want to back up the role definition only, use the following command:

pg_dumpall --roles-only > c:\pgdump\myroles.sql

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

58

If you want to back up tablespace definitions, use the following command:

pg_dumpall --tablespaces-only > c:\pgdump\mytablespaces.sql

You can also use the pgAdmin tool to backup all the databases on the server, including the 
roles, users, groups, and tablespaces. This option can be selected by launching the pgAdmin 
tool, expanding the Servers menu option in the left pane, right clicking on the PostgreSQL 9.3 
option, and then selecting the Backup server… option, as shown in the following screenshot:

After the Backup server… option is clicked on, a dialog box will open, as shown in the next 
screenshot, and it will ask you to name the logical dump file that will contain the definition  
of all the objects and databases that are being backed up. Here, all.sql is the name of  
the logical dump file that can be used later on to restore data and object definitions in all  
the databases in the event of data loss due to hardware or disk issues.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

59

Once you click on the Backup button, as shown in the previous screenshot, a logical backup 
of all the databases will start. This is equivalent to issuing the pg_dumpall command, and 
the effect of this can be seen in the next screenshot, which opens when you click on the 
Backup Button:

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

60

A logical backup of specific objects
Sometimes, there are situations where you wish to back up only specific database objects, 
such as tables. The pg_dump utility provides options to back up specific database objects, 
such as tables.

How to do it...
If you wish to back up some specific tables in a certain schema, you can use the pg_dump 
command, as follows:

pg_dump -h localhost -p 5432 -U agovil -F c -b -v -f  
"C:\pgbak\testdb_test.backup" -t case.test postgres

In the previous command, we are backing up a table called test, which resides in the case 
schema in the PostgreSQL database.

How it works...
There are many situations that require you to back up certain tables only. Some of these 
situations are mentioned here:

ff You wish to back up all the tables that are part of a particular tablespace. In this 
situation, it is possible for a tablespace to contain objects from more than one 
database; hence, you have to identify the databases from which those tables  
need to be dumped.

The following procedure allows you to dump all the tables that reside on one 
tablespace and one database only:

1.	 Create a file named table_tablespace_dump.sql, which contains  
the following SQL command that extracts the list of tables in a tablespace.
SELECT 'pg_dump' UNION ALL
SELECT '-t ' || spcname || '.' || relname FROM pg_class t 
JOIN pg_tablespace ts
ON reltablespace = ts.oid AND spcname = :TSNAME
JOIN pg_namespace n ON n.oid = t.relnamespace
WHERE relkind = 'r'
UNION ALL
SELECT '-F c > dumpfile'; -- dumpfile is the name of the  
output file

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

61

2.	 Execute the following to build the pg_dump script:
psql -t -v TSNAME="'my_tablespace'" -f   
table_tablespace_dump.sql >  myts

3.	 From the database server, dump the tables in the tablespace, including the 
data and definitions:
chmod 700 myts

./myts

ff Another situation is where there are multiple schemas that have similarly named 
important tables. In this situation, you wish to back up the tables having the same 
names from different schemas.

The following scenario is where you can back up named tables from different 
schemas. You can use the following query, which generates a pg_dump command 
to back up any table that is not present in public, or pg_catalog that has the rent 
keyword as a suffix as a part of the table name:
SELECT 'pg_dump ' || ' -h localhost -p 5432 -U postgres -F c -b
  -v -f "/pgbak/dvdrental_keytbls.backup" ' ||
  array_to_string(ARRAY(SELECT '-t ' || table_schema || '.' ||
  table_name FROM information_schema.tables
WHERE table_name LIKE '%_rent' AND table_schema NOT IN
('pg_catalog','public' ) ), ' ') || 'dvdrental';

ff Another situation is where you want to back up recently changed tables in  
the database.

We are going to utilize vacuum statistics for this. The vacuum statistics uses the 
assumption that the vacuum process will try to go around the database and vacuum 
tables where enough data has changed since the last vacuum run. This mechanism 
will only work if autovacuum has been enabled. The following query will generate a 
pg_dump command to back up all the tables in the dvdrental database that has 
been autoanalyzed in the past one day:
SELECT 'pg_dump ' || ' -h localhost -p 5432 -U postgres -F c -b
  -v -f "C:/pgbak/dvdrental_changed_keytbls.backup" ' ||
  array_to_string(ARRAY(SELECT '-t ' || schemaname || '.' || 
relname
FROM pg_  stat_user_tables
WHERE last_autoanalyze > ( CURRENT_TIMESTAMP - (INTERVAL '1
  day') ) ) , ' ') || 'dvdrental';

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

62

File system level backup
Another possible option to backup is to utilize the operating system commands and make a 
file system backup of the files that PostgreSQL uses to store the data in the database.

How to do it...
The easiest way to do this is to make an archive of the PostgreSQL data directory or the 
directory defined by the $PGDATA environment variable, as follows:

tar -cvf backup.tar /home/abcd/psql/data

Here, we have created an archive file named backup.tar that contains a backup of the  
data directory.

How it works...
The primary benefit of making a file system backup is that this procedure is simple and 
straightforward. You need to simply back up the data directory with any of the available  
Unix backup utilities, such as tar, which creates an archive file that can be further used  
for restoration if the database crashes.

There are, however, a couple of restrictions that use the preceding method to make an archive 
of the data directory:

ff The database must be shut down completely in order to get a useful backup.  
A file system backup is meaningful only when the database is in a consistent state. 
For this reason, you need to shut down the database, and as a result, all the data 
files will be in sync and in a consistent state and that is when the file system backup 
should be taken.

ff With a file system backup, it is not feasible to back up specific databases or individual 
tables. The entire data directory must be backed up for a complete restoration of the 
file system. This is due to the reason that many files are associated with a specific 
database and it becomes difficult to correlate which files belong to which database.

There's more...
Here, we will talk about how to take backups for PostgreSQL using an LVM (short for logical 
volume manager) snapshot. This involves taking a frozen snapshot of the volume containing 
the database, then making a copy of the database directory from the snapshot to a backup 
device, and finally releasing the frozen snapshot. This will work even when the database 
server is running. Before you proceed to take the snapshot, you must perform a CHECKPOINT 
command in PostgreSQL via which you can ensure that the backup will be consistent until the 
time of the CHECKPOINT.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

63

Before we begin, we assume that we have a formatted and active XFS file system. We also 
assume that VG_POSTGRES/RV_DATA is our primary data volume.

A root user has to perform the following steps in order to create and use an LVM snapshot:

1.	 First, issue the CHECKPOINT command as the superuser on the PostgreSQL 
database, as follows:
postgres=# CHECKPOINT  ;

2.	 The rest of the commands mentioned here need to be executed by the root user. In 
this step, we will create a snapshot, as follows:
lvcreate -l 100%FREE -s -n snap VG_POSTGRES/RV_DATA

3.	 Create the directory on which you wish to mount the snapshot, as follows:
mkdir /mnt/pg_snap

4.	 The next step will be to mount the snapshot as an XFS file system, as follows:
mount -t xfs -o nouuid /dev/VG_POSTGRES/snap /mnt/pg_snap

5.	 Enter the snapshot directory, as shown here:
cd /mnt/pg_snap/

6.	 Next, back up the snapshot using the following command:
tar –czvf /backup/ pgsql.$(date +"%m-%d%-%Y).tar.gz  /mnt/pg_snap/

7.	 Once the snapshot backup has been moved to a different server, the next step will be 
to unmount it and delete it from the source server as the root user:
umount /mnt/pg_snap

lvremove VG_POSTGRES/snap

An alternative approach is to initiate a consistent use of a snapshot of the data directory. This 
involves taking a frozen snapshot of the volume that contains the database, making a copy of 
the database directory from the snapshot to a backup device, and then releasing the frozen 
snapshot. This will work even when the database server is running. Before you proceed to 
take the snapshot, you must perform a CHECKPOINT command in PostgreSQL via which you 
can ensure that the backup would be consistent until the time of the CHECKPOINT.

Taking a base backup
The pg_basebackup tool takes base backups of a running PostgreSQL database server. 
These backups are initiated without affecting other PostgreSQL database clients and can be 
used for both point-in-time recovery, as well as the start point for log shipping or to stream 
replication standby servers.

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

64

How to do it...
You can use the pg_basebackup command in the following manner:

$ pg_basebackup -h 192.168.10.14 -D /home/abcd/pgsql/data

Here, we take a base backup of the server located at 192.168.10.14 and store it in the  
/home/abcd/pgsql/data local directory.

How it works...
The pg_basebackup tool makes a binary copy of the database cluster files while ensuring 
that the system is put in and out of the backup mode automatically. Note that backups 
are always made up of the entire database cluster. It is not possible to back up individual 
databases or databases with the pg_basebackup tool.

The pg_basebackup utility initiates a backup that is made over a regular PostgreSQL 
database connection and utilizes the replication protocol for this purpose. The connection 
must be made either as a superuser or a user having a REPLICATION privilege. The server 
must also be configured with enough max_wal_senders to leave at least one session 
available for backup.

Hot physical backup and continuous 
archiving

In this recipe, we are going to talk about taking a hot physical backup with continuous 
archiving in place. A hot physical backup is an online backup that is taken while the 
transactions are running against the database. Even though we have the relevant online 
physical backup through which we can restore the database, it can restore data only until the 
time of backup. Any subsequent transactions that may have been recorded in the database 
after the backup got completed will be missed out. In order to be able to restore the database 
up to its current state, we will need to apply the archives generated after the backup got 
completed. For this reason, we need to have continuous archiving enabled.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

65

How to do it...
There are a series of steps that need to be carried out in order to have a hot physical backup 
and continuous archiving in place:

1.	 The first step is to enable a continuous write-ahead log (WAL) archiving. This can 
be done by making the following parameter changes in the postgresql.conf 
configuration file, which resides in the data directory, that is the directory defined  
by the $PGDATA environment variable:
wal_level = hot_standby
archive_mode = on
archive_command = 'test ! -f  
/home/abcd/pgsql/backup_in_progress || (test ! -f   
/home/abcd/pgsql/archive/%f && cp %p  
/home/abcd/pgsql/archive/%f)'

2.	 Once these changes have been implemented, you need to bounce the PostgreSQL 
server for the changes made to the above mentioned parameters to come into effect:
pg_ctl -d $PGDATA stop

pg_ctl -d $PGDATA start

3.	 The next step will be to create the archive directory, as follows:
mkdir –p /home/abcd/pgsql/archive/

touch /home/abcd/pgsql/backup_in_progress

4.	 Once this is done, the next step will be to start the backup process using the  
following command:
psql -c "select pg_start_backup('hot_backup');"

5.	 Next, perform a file system backup of the PostgreSQL data directory, as follows:
tar -cvf /home/abcd/pgsql/backup.tar /home/abcd/pgsql/data

6.	 When the file system backup is completed, the next step will be to connect to the 
database and stop the backup process using the following command:
psql -c "select pg_stop_backup();"

7.	 Now that the backup has been completed, the next step will be to go the archive 
location and confirm the archives that were generated. These archives, along with 
the base backup, will help you recover data to the last checkpoint or any point-in-time 
after the base backup happened and to the point where you have the archive logs:
cd /home/abcd/pgsql/archive

[postgres@localhost archive]$ ls -ltrh

total 49M

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

66

-rw------- 1 postgres postgres 16M Jun 30 23:53  
000000010000000000000009

-rw------- 1 postgres postgres 16M Jun 30 23:53  
000000010000000000000008

-rw------- 1 postgres postgres 294 Jun 30 23:54  
00000001000000000000000A.00000024.backup

-rw------- 1 postgres postgres 16M Jun 30 23:54  
00000001000000000000000A

How it works...
A physical backup or base backup takes a copy of all the files in the database or the data 
directory; however, this alone is not sufficient as a backup and there are other steps that 
need to be performed as well. A simple file system backup of the database, while the server 
is running, produces a time-inconsistent copy of the database files. However, in the current 
context, production databases need to be available 24/7, and to take backups, it is not 
possible to bring down the database every time and then take a file system backup. Such a 
strategy is not feasible. Moreover, the backup process should ensure that all the changes 
made from the time the backup starts until the time it ends are tracked and recorded. These 
changes are tracked and recorded in WAL logs, and once the changes recorded in WAL logs 
are archived, the WAL logs can be used later.

Now that it has become a business need to take online backups for production databases, 
you need to ensure that the backups that are taken online are consistent. To make the 
backup consistent, you need to add to it all the changes that took place from the start to the 
finish of the backup process. That's why we have steps 4 and 6 to bracket our backup step.

The changes that are made are put into the archive directory as a set of archived transaction 
log/WAL files. In step 3, we have created the archive directory. Enabling the archive mode, 
as mentioned in step 1, requires a database restart and this was done in step 2. In step 3, 
you can also see that we have created a file named backup_in_progress. The presence of 
this file enables or disables the archiving process.

Point-in-time recovery
Many a times, DBAs will encounter situations where they might need to restore the database 
from an existing backup. This might be due to a business requirement or a critical table might 
have been dropped, or else the hard disk on which the database was mounted crashed and 
became corrupt. For whatever reason, you might have to go for a database recovery scenario. 
In this recipe, we are going to discuss the steps required to recover the database in the event 
of a failure and how to use the archive logs to do a point-in-time recovery.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

67

How to do it...
There are a series of steps that need to be carried out if you need to recover a database from 
the backup:

1.	 First, check the status of the database server. If the server is running, then stop the 
server, using the following command:
pg_ctl -d $PGDATA stop

2.	 Next, copy the existing data directory and any existing tablespaces to a temporary 
location, if anything is required from the existing structure later on. In case there is  
a space crunch, you should at least consider keeping a copy of the content of the 
pg_xlog subdirectory. This is essential because pg_xlog might contain logs that 
were not archived before the system went down:
mv $PGDATA /tmp

3.	 Next, restore the database files from your file system backup, which was taken 
earlier. Please ensure that the restoration is done with the right ownership and right 
permissions. If you are using tablespaces, you must confirm whether the symbolic 
links in the pg_tblspc directory are correctly restored:
tar  -xvf /home/abcd/pgsql/backup.tar

4.	 Remove any existing files from the pg_xlog directory, as these appear to have 
come from the file system backup and are most probably obsolete, rather than being 
current. If pg_xlog/ was not archived earlier, then you need to recreate it with proper 
permissions, being careful to ensure that you re-establish it as a symbolic link, if it was 
set up in that manner before:
rm -rf  /home/abcd/pgsql/data/pg_xlog/*

If there were any unarchived WAL segment files that 
were saved in step 2, then you need to copy them to 
the pg_xlog/ location.

5.	 The next step will be to configure the recovery.conf file in the data directory. 
You can copy the recovery.conf.sample file from the share directory, which is 
located under the installation directory of postgres, and once you have copied the 
recovery.conf.sample file to the data directory, you will need to rename it as the 
recovery.conf file:
cp /home/abcd/pgsql/share/recovery.conf.sample $PGDATA

cd $PGDATA

mv recovery.conf.sample recovery.conf

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

68

6.	 The only parameter that needs to be configured in the recovery.conf file is the 
restore_command parameter. This parameter tells PostgreSQL how to retrieve 
archived WAL file segments:
restore_command = 'cp /home/abcd/pgsql/archive/%f %p'

7.	 Once this is done, you are ready to start the server. The server launches into the 
recovery mode and will proceed through the archived WAL files it needs. Once the 
recovery is complete, the server will rename recovery.conf to recovery.done, 
and with this, the database stands recovered and you are ready to launch normal 
operations against the database:
pg_ctl -D $PGDATA start

The following is an excerpt from the log:

LOG:  starting archive recovery

LOG:  archive recovery complete

LOG:  database system is ready to accept connections

LOG:  autovacuum launcher started

You can also see that the recovery.conf file is now renamed to recovery.done once the 
recovery is completed:

[postgres@localhost data]$ ls -ltrh |tail -7

-rw-r--r-- 1 postgres postgres 4.7K Jul  4 04:13 recovery.done

-rw------- 1 postgres postgres   78 Jul  4 04:14 postmaster.pid

-rw------- 1 postgres postgres   59 Jul  4 04:15 postmaster.opts

drwx------ 2 postgres postgres 4.0K Jul  4 04:15 pg_notify

drwx------ 2 postgres postgres 4.0K Jul  4 04:15 global

drwx------ 3 postgres postgres 4.0K Jul  4 04:15 pg_xlog

drwx------ 2 postgres postgres 4.0K Jul  4 04:24 pg_stat_tmp

How it works...
A point-in-time recovery works in this way.

First, you need to restore the data directory from the backup file. The database at this stage 
is in an inconsistent state because it is restored at the time of backup. It still needs to account 
for any changes made by transactions that were persistent during the backup. For this, you 
need to apply archives. Setting the restore_command value in step 6, in the How to do it… 
section, ensures that the changes recorded in the archived WAL segments are applied to the 
database. Once the server is started, it launches into recovery mode in order to restore all 
the data properly. After a few minutes, the database will be successfully restored to the last 
checkpoint that the archived logs recorded.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

69

There's more...
If the business requirement is to restore the database to a previous point-in-time, then we will 
need to specify the required stop point in the recovery.conf configuration file. The stop 
point, also referred to as the recovery target, can be specified in terms of data and time, a 
name restoration point, or by the completion of a specific transaction ID.

The parameters that can control a point-in-time recovery in the recovery.conf file are 
recovery_target_time and recovery_target_xid. Either of these options might  
be configured to lead a previous point-in-time recovery.

Restoring databases and specific database 
objects

In this recipe, we are going to talk about how to restore a single database, all databases, and 
specific objects, such as tables.

How to do it...
Here, we are going to talk about three scenarios: what needs to be followed when you need 
to restore all the databases on the server, a specific database, or a specific table only. We will 
cover these scenarios in a series of steps, shown as follows:

1.	 Restoring all databases: In the A logical backup of all PostgreSQL databases recipe, 
we created a logical dump for all the databases on a server. The dump file, all.
sql, will be used here to restore all the databases on the server, assuming that the 
database files are corrupted and the server has crashed. The command to restore all 
the databases is given here:
psql -U postgres -f c:\pgbackup\all.sql

2.	 Restoring a single database: In the A logical backup of a single PostgreSQL database 
recipe, we created a backup using the pg_dump tool and the dump was named 
dvdrental.tar.

Now, we are going to restore the dvdrental database by assuming that it has 
already been dropped, as follows:
pg_restore --dbname=dvdrental --create --verbose  
/home/abcd/dvdrental.tar

The --create option of the pg_restore command first creates an empty database 
before restoring all the objects from the dvdrental.tar dump file.

www.it-ebooks.info

http://www.it-ebooks.info/


Backup and Recovery

70

3.	 Restoring a single table: We can also restore individual objects such as tables.  
Here, we are going to drop a table named store and then recover the table using the 
logical dump that was used to restore the dvdrental database in the previous step:

1.	 First, drop the store table:
dvdrental#drop table store cascade;

2.	 In the next step, we are going to extract the table definition from the 
available dump and then dump the table, its definition, as well as the data of 
the dropped table in a new file:
pg_restore -t store dvdrental.tar > droppedtable.sql

Here, the droppedtable.sql file contains the table definitions, along with 
data that is necessary to restore the store table that was dropped in the 
earlier step.

3.	 The final step will be to use the newly created file that contains the table 
definition and data to restore the table into the dvdrental database:
psql -f droppedtable.sql dvdrental

How it works...
The pg_restore utility enables you to restore databases that have been backed up by either 
pg_dump or pg_dumpall. It is a utility for restoring PostgreSQL databases from an archive 
created by pg_dump in one of the non-plain-text formats.

The pg_restore utility will issue the commands necessary to restore the database to the 
state it was in at the time of being saved. The archive files allow pg_restore to be selective 
about what is restored.

There's more...
To speed up the restore process, it is possible to perform parallel restore operations in 
PostgreSQL. The -j switch is used to specify the number of threads required for restoration. 
Each thread restores a separate table simultaneously, which speeds up the restore process.

www.it-ebooks.info

http://www.it-ebooks.info/


4
Routine Maintenance 

Tasks

In this chapter, we will cover the following recipes:

ff Controlling automatic database maintenance

ff Preventing auto freeze and page corruption

ff Preventing transaction ID wraparound failures

ff Updating planner statistics

ff Dealing with bloating tables and indexes

ff Monitoring data and index pages

ff Routine reindexing

ff Maintaining log files

Introduction
It is important to carry out regular maintenance operations at scheduled intervals for a 
PostgreSQL database to achieve optimal performance. Heavy database transactions can 
leave behind a significant amount of data, which can lead to a drop in database performance. 
Thus, a database administrator needs to carry out maintenance operations in order to 
clean up the database and improve database performance. In this chapter, we are going to 
discuss how to deal with bloating tables and indexes, transaction ID wraparound failures, and 
maintenance tasks, such as vacuuming.

www.it-ebooks.info

http://www.it-ebooks.info/


Routine Maintenance Tasks

72

Controlling automatic database 
maintenance

PostgreSQL has a feature known as autovacuum, which although optional, is enabled by 
default in the major PostgreSQL release versions, starting with PostgreSQL 9.0 onwards. The 
job of the autovacuum daemon is to automate the execution of the VACUUM and ANALYZE 
commands and to perform these maintenance tasks.

How to do it...
Even though autovacuum is enabled by default in PostgreSQL, you need to ensure that 
autovacuum is switched on. Enabling the autovacuum daemon requires you to configure  
and enable the following parameters in the postgresql.conf configuration file:

autovacuum = on
track_counts = on 

As the name suggests, the autovacuum parameter controls whether the server should 
launch the autovacuum daemon.

The track_counts parameter enables statistics collection on database activity. Usually, 
this parameter is enabled by default because most of the checks that autovacuum performs 
require the usage of a statistics collection, and unless the statistics collection facility is 
enabled, autovacuum cannot be used.

The prior mentioned setting of autovacuum enablement happens on a global level, as it is 
defined in the postgresql.conf configuration file. It is also possible to enable autovacuum 
at the table level, as follows:

ALTER TABLE hrms SET (
  autovacuum_enabled = TRUE, toast.autovacuum_enabled = TRUE
);

Here we enabled autovacuum for TOAST tables as well. Usually, long data values are placed 
in a secondary table known as the TOAST table. Hence, for each actual table, there will be a 
corresponding toast table that contains long data values, and thereby a corresponding toast 
index will be defined as well.

How it works...
Initially, autovacuum checks for tables that are eligible candidates for vacuuming. It does 
this by checking for tables that have a large number of inserted, updated, or deleted rows; 
that is, fragmented rows. Once autovacuum has figured out the fragmented tables, all the 
autovacuum workers are assigned the task of vacuuming the fragmented tables.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

73

Having earlier discussed the job that autovacuum performs, let's now discuss the autovacuum 
process itself. The autovacuum daemon basically consists of multiple processes. There is a 
persistent daemon process known as the autovacuum launcher, whose job is to start the 
autovacuum worker for all the databases residing on the PostgreSQL server. The autovacuum 
launcher will attempt to start one worker within each database after the value specified, in 
seconds, in the autovacuum_naptime parameter has elapsed; the launcher will distribute 
the work accordingly to each worker. The job of the worker process is to find fragmented 
tables in its database and execute the VACUUM or ANALYZE commands as and when  
needed automatically.

For more information on automatic vacuuming, visit http://www.postgresql.org/
docs/9.3/static/runtime-config-autovacuum.html.

There's more...
There are a good number of tunable autovacuum related parameters that control the behavior 
of the autovacuum feature. Some of these parameters are discussed as follows:

ff log_autovacuum_min_duration: This parameter helps to monitor autovacuuming 
activity. This parameter specifies that each action that is executed by autovacuum  
is logged if it executed for at least the time specified in milliseconds in this parameter.

ff autovacuum_max_workers: This parameter states the maximum number of worker 
processes that might be executing at any particular time. The autovacuum launcher 
process is an exception to this; hence, it is not included or counted in the list of 
vacuum max workers.

ff autovacuum_vacuum_threshold: This parameter specifies the number of 
updated and deleted rows to initiate VACUUM in the associated table.

ff autovacuum_analyze_threshold: This parameter specifies the number of 
updated and deleted rows to initiate ANALYZE in the associated table.

ff autovacuum_vacuum_scale_factor: The value of this parameter specifies 
the fraction of the table size that needs to be added to autovacuum_vacuum_
threshold when deciding whether to trigger a VACUUM.

ff autovacuum_analyze_scale_factor: The value of this parameter specifies 
the fraction of the table size that needs to be added to autovacuum_vacuum_
threshold when deciding whether to trigger an ANALYZE.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/9.3/static/runtime-config-autovacuum.html
http://www.it-ebooks.info/


Routine Maintenance Tasks

74

ff autovacuum_freeze_max_age: The value of this parameter specifies the 
maximum value that the table's pg_class.relfrozenxid field can attain before 
the VACUUM operation is forced to prevent a transaction ID (XID) wraparound within 
the table. This parameter puts a limit on how far autovacuum will let you go before it 
starts to kick in and goes around exhaustively vacuum freezing the old XIDs in your 
tables with old rows. It is a not a good idea to hit the threshold set by the value of this 
parameter because it can generate a lot of I/O umpteen times, causing performance 
issues, and freeze autovacuums are not cancellable.

ff autovacuum_vacuum_cost_delay: This parameter defines the cost delay value 
that is to be used in the VACUUM operations.

Preventing auto freeze and page corruption
In an OLTP environment, we usually expect and normally see that there are lots of DML 
operations on tables. Because of frequent DML operations on tables, we can see rows that 
have been deleted or have become obsolete due to an update operation; however, they 
haven't been physically removed from their tables. Such rows are referred to as dead rows.

It is also quite possible that a row version might become old enough for it to become a 
candidate for being frozen. Such rows are referred to as frozen rows.

Vacuuming deals with both dead rows, by reclaiming space from dead rows, and old row 
versions, by freezing them so that they are preserved until they are deleted.

How to do it...
Freezing occurs when the XID, that is the transaction identifier, on a row becomes more than 
the vacuum_freeze__min_age transactions older than the next current value. To ensure 
that all old transaction identifiers have been replaced by FrozenXID, a table scan is performed. 
The vacuum_freeze_table_age parameter controls when a scan on the whole table is 
performed. Setting the value of the vacuum_freeze_table_age parameter to zero forces 
VACUUM to always scan all the pages. Scanning all the pages block by block for the entire 
database while VACUUM is being run is also an effective way to confirm the absence of page 
corruptions. This can be initiated on the database level as follows:

SET vacuum_freeze_table_age = 0;
VACUUM;

This can be initiated at a table level as follows:

VACUUM demo;

Here, demo is the name of the table being vacuumed.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

75

How it works...
Vacuuming deals with performing the following functions:

ff Reclaiming or reusing disk space occupied by dead rows

ff To keep the statistics collection up to date, which is used by the PostgreSQL  
query planner

ff To protect against the loss of old transaction data due to transaction ID wraparound 
issues, which is discussed in the next recipe

If any page corruptions are detected, then you can use the pageinspect utility to examine the 
contents of the database pages at a low level, which is useful from a debugging perspective. It 
can also be used to examine index pages.

There are two situations where there might be huge I/O generation during freezing while 
VACUUM is being run:

ff When there are many rows with the same transaction identifier during freeze time

ff When a table scan is being performed and you encounter a large number of rows that 
need freezing

Preventing transaction ID wraparound 
failures

For MVCC, PostgreSQL uses a transaction ID which is 32 bits long.

It is not feasible to have a larger transaction ID because that will increase the size of each row 
by a significant amount. A 32-bit value can take over four billion transactions; however, it can 
handle a range of about two billion transactions before rolling over to zero. When this range 
is exceeded, past transactions will now appear to be from the future. That is, their outputs 
become invisible; this will result in a catastrophic data loss, and the database will fail to 
operate in a sane manner.

To prevent data loss, old rows must be assigned a transaction ID (XID), FrozenXID (frozen 
transaction ID), sometime before they reach the two billion transactions mark. Once these 
rows are assigned a FrozenXID, they will appear to be in the past to all normal transactions 
regardless of the wraparound issues; so, such rows will be good until they are deleted, no 
matter how long that is. This reassignment of XID is handled by VACUUM.

www.it-ebooks.info

http://www.it-ebooks.info/


Routine Maintenance Tasks

76

How to do it...
In the previous recipe, you saw the usage of the VACUUM command at the database level as 
well as at the table level. As an alternative to using the VACUUM command, you can also use 
the vacuumdb utility to clean the PostgreSQL database. Like VACUUM, the vacuumdb utility 
will also generate statistics to be used by the query optimizer. The vacuumdb utility is just a 
wrapper around the VACUUM command. We can use the vacuumdb utility to clean the hrdb 
database, as follows:

$ vacuumdb hrdb

You can also use the pgAdmin tool to vacuum a database. To vacuum a database in pgAdmin, 
under Object browser in the left-hand side pane, right-click on the specific database under 
the Databases menu, and click on Maintenance…, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

77

This will open a dialog box where you need to select the VACUUM radio button and then click 
on OK in order to vacuum a database, as shown here:

.

Updating planner statistics
In order to generate a good plan for the queries, the PostgreSQL query planner relies on 
available statistical information about the contents of the tables. It is, therefore, essential to 
ensure that the statistics are accurate and up to date. If the statistics are stale, then it will 
result in a poor plan being generated for the queries, which will end up further degrading 
database performance.

How to do it...
There are two ways in which statistics can be gathered:

ff You can run the ANALYZE command to generate statistics on tables.

ff The ANALYZE command can be invoked as an optional step while using VACUUM. If 
autovacuum is enabled, it will automatically invoke the ANALYZE command when the 
contents of a table have changed substantially.

Details about the autovacuum daemon and the VACUUM command have already been covered 
in the first two recipes, so we are now going to focus on the ANALYZE command here:

ANALYZE demo;

In the preceding case, we used the ANALYZE command to generate statistics on the table 
named demo and stored the results in the pg_statistic system catalog table.

Statistics collection is fine-grained and can even be done at the column level.

www.it-ebooks.info

http://www.it-ebooks.info/


Routine Maintenance Tasks

78

How it works...
The statistics that are collected by the ANALYZE command include some of the most common 
values in each column along with a histogram that depicts the approximate data distribution 
in each column.

For larger tables, instead of examining each row, ANALYZE takes a random sample of table 
contents. The benefit of using this approach is that by using the random sampling method, 
even larger tables can be analyzed in a short span of time.

The amount of statistics collected by ANALYZE can be controlled by adjusting the value of the 
default_statistics_target configuration parameter.

The ANALYZE command acquires a read-only lock on the target table. This way, it can be run 
in parallel with any other activity on the target table.

Dealing with bloating tables and indexes
It is common to find a database where vacuuming has been turned off for either a table or for 
the entire database. The reason for turning off vacuuming is that vacuuming creates too much 
disk I/O. This might help temporarily, but in the longer run, it is not recommended that you turn 
off vacuuming or abandon it. On the other hand, if vacuuming is performed too frequently, the 
system's performance can become slow because vacuuming creates a lot I/O traffic.

If the database has been maintained without vacuuming or if the data is badly structured, we 
might experience bloating tables and indexes. The problem with bloating tables and indexes is 
that they occupy more storage space than required, which often causes performance issues 
when these are used by queries. In this recipe, we are going to see how to detect bloating 
tables and indexes and what the best time is to run a VACUUM command. If there are lots of 
dead rows in a table, the bloat percentage is higher.

How to do it...
Here, we are going to see when a table become bloated and how to deal with it:

1.	 First, we are going to activate the pgstattuple module, which is used to detect a 
table bloat, as follows:
hrdb=# create schema stats;
hrdb=# create extension pgstattuple with schema stats;

2.	 Next, we are going to create a table and add some rows into it:
hrdb=# CREATE TABLE num_test AS SELECT * 
FROM generate_series(1, 10000);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

79

3.	 Now, we are going to use the pgstattuple function, provided by the pgstattuple 
extension, to examine row-level statistics for the num_test table:
hrdb=# SELECT * FROM stats.pgstattuple('num_test');
-[ RECORD 1 ]------+-------
table_len          | 368640
tuple_count        | 10000
tuple_len          | 280000
tuple_percent      | 75.95
dead_tuple_count   | 0
dead_tuple_len     | 0
dead_tuple_percent | 0
free_space         | 7380
free_percent       | 2

4.	 At this point, we don't see any dead rows, so we will delete some data from the  
num_test table:
hrdb=#  DELETE FROM num_test WHERE generate_series % 2 = 0;

5.	 Now we will reuse the pgstattuple module to examine the table bloat in the  
num_test table:
hrdb=# SELECT * FROM stats.pgstattuple('num_test');
-[ RECORD 1 ]------+-------
table_len          | 368640
tuple_count        | 5000
tuple_len          | 140000
tuple_percent      | 37.98
dead_tuple_count   | 5000
dead_tuple_len     | 140000
dead_tuple_percent | 37.98
free_space         | 7380
free_percent       | 2

In this output, you can see that the percentage of dead rows is approximately 38 
percent. So, we are now going to vacuum the table in order to remove the table bloat. 
Also, observe that the percentage of free storage space is around 2 percent, as seen 
in the free_percent column:
hrdb=# VACUUM num_test;

6.	 Now that the table has been vacuumed, we will reexamine the row-level statistics for 
the num_test table:
hrdb=# SELECT * FROM stats.pgstattuple('num_test');
-[ RECORD 1 ]------+-------
table_len          | 368640
tuple_count        | 5000

www.it-ebooks.info

http://www.it-ebooks.info/


Routine Maintenance Tasks

80

tuple_len          | 140000
tuple_percent      | 37.98
dead_tuple_count   | 0
dead_tuple_len     | 0
dead_tuple_percent | 0
free_space         | 167380
free_percent       | 45.4

In the preceding output, you can see that the dead_tuple_percent column value 
is zero, which means there are no dead rows. Also, the storage space has increased; 
we can now see that the free storage space is around 45 percent, which shows that 
more storage space has become available after vacuuming. Before vacuuming, 
the free space percent was around 2 percent. Thus, with vacuuming, we have 
successfully managed to remove the bloat that existed in the tables.

Now that we have spoken about bloating tables, let's move toward bloating indexes. The 
following query can help identify whether there are any bloating indexes for a particular table:

hrdb=# SELECT relname, pg_table_size(oid) as index_size,
  100-(stats.pgstatindex(relname)).avg_leaf_density AS bloat_ratio
FROM pg_class WHERE relname ~ 'casedemo' AND relkind = 'i';
                      relname                      | index_size | 
bloat_ratio
---------------------------------------------------+------------+----
---------
 casedemo_inventory_id_idx                         |     507904 |       
34.11
 casedemo_rental_date_inventory_id_customer_id_idx |     630784 |       
26.14
 casedemo_pkey                                     |     376832 |       
10.25
(3 rows)

In the preceding output, you can see the index bloat ratio for all of the indexes belonging to 
the casedemo table.

How it works...
PostgreSQL has a feature known as MVCC, that is Multi Version Concurrency Control that allows 
you to read data at the same time as writers make changes. Due to the MVCC feature being 
implemented, we often encounter situations where the UPDATE command can cause tables and 
indexes to grow in size because they leave behind dead row versions. Similarly, the DELETE and 
INSERT operations take up space that must be reclaimed by vacuuming. Also, some deletion 
patterns can cause large chunks of the index to be filled with empty entries, which creates 
a bloating-index scenario. To overcome the problem of a bloating index, you need to rebuild 
indexes. Rebuilding indexes is covered in the Routine reindexing recipe further on in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

81

Thus, it is important to examine the dead_tuple_len and dead_tuple_percent columns 
from the pgstattuple package for a given table, and if both of these columns have high 
values, then it it best to VACUUM these tables at a time when the transaction activity on the 
database is low so as not to impact database performance.

There's more...
If you want to identify the estimated amount of bloat in your tables and indexes, you can  
use the following query. This query is based on the check_postgres script available at 
http://bucardo.org/wiki/Check_postgres:

SELECT
  current_database(), schemaname, tablename, /*reltuples::bigint, 
relpages::bigint, otta,*/
  ROUND(CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages/otta::numeric 
END,1) AS tbloat,
  CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::bigint 
END AS wastedbytes,
  iname, /*ituples::bigint, ipages::bigint, iotta,*/
  ROUND(CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/
iotta::numeric END,1) AS ibloat,
  CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS 
wastedibytes
FROM (
  SELECT
    schemaname, tablename, cc.reltuples, cc.relpages, bs,
    CEIL((cc.reltuples*((datahdr+ma-
      (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma 
END))+nullhdr2+4))/(bs-20::float)) AS otta,
    COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS 
ituples, COALESCE(c2.relpages,0) AS ipages,
    COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS 
iotta -- very rough approximation, assumes all cols
  FROM (
    SELECT
      ma,bs,schemaname,tablename,
      (datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma 
END)))::numeric AS datahdr,
      (maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE 
nullhdr%ma END))) AS nullhdr2
    FROM (
      SELECT
        schemaname, tablename, hdr, ma, bs,
        SUM((1-null_frac)*avg_width) AS datawidth,
        MAX(null_frac) AS maxfracsum,

www.it-ebooks.info

http://bucardo.org/wiki/Check_postgres
http://www.it-ebooks.info/


Routine Maintenance Tasks

82

        hdr+(
          SELECT 1+count(*)/8
          FROM pg_stats s2
          WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND 
s2.tablename = s.tablename
        ) AS nullhdr
      FROM pg_stats s, (
        SELECT
          (SELECT current_setting('block_size')::numeric) AS bs,
          CASE WHEN substring(v,12,3) IN ('8.0','8.1','8.2') THEN 27 
ELSE 23 END AS hdr,
          CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma
        FROM (SELECT version() AS v) AS foo
      ) AS constants
      GROUP BY 1,2,3,4,5
    ) AS foo
  ) AS rs
  JOIN pg_class cc ON cc.relname = rs.tablename
  JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = 
rs.schemaname AND nn.nspname <> 'information_schema'
  LEFT JOIN pg_index i ON indrelid = cc.oid
  LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid
) AS sml
ORDER BY wastedbytes DESC;

Monitoring data and index pages
In the earlier recipes, you saw that frequent updates to data result in dead rows across 
both tables and indexes. These dead rows consume storage space; hence, it is important to 
monitor tables and indexes in order to identify the amount of bloat present in these objects.

Apart from bloating, there are other aspects of a table and index that need to be monitored. 
For instance, if there are any unused indexes, then they should be identified and removed. 
Hence, you need to monitor for unused indexes too.

How to do it...
A DBA usually requires some statistical information about the tables that is stored in the 
PostgreSQL database, as follows:

ff Information on the total count of the number of rows in the table and table length

ff Information on the number of dead rows and the dead row percentage on a  
given table

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

83

ff Information on the amount and percentage of free space available in the table

ff Information regarding the number of update, insert, and delete operations on  
the table

ff Information regarding the last time the table was vacuumed, manually or by the 
autovacuum daemon, and the last time the table was analyzed for statistics collection

The preceding statistical information can be obtained from the pgstattuple module, which 
provides row-level statistics for a given table and the pg_stat_all_tables view, which 
shows statistics about accesses to that specific table.

In the following output, from the pgstattuple module, you can see the number of rows,  
row length, number of dead rows, and the percentage and amount of free space available:

hrdb=# SELECT * FROM stats.pgstattuple('casedemo');
-[ RECORD 1 ]------+--------
table_len          | 1228800
tuple_count        | 16044
tuple_len          | 1152240
tuple_percent      | 93.77
dead_tuple_count   | 0
dead_tuple_len     | 0
dead_tuple_percent | 0
free_space         | 8184
free_percent       | 0.67

You can also use the pg_stat_all_tables table to pull up some interesting details, 
such as the number of rows updated, deleted, and inserted as well as the timestamp of 
the last time this table was autovacuumed, the timestamp of the last time the table was 
autoanalyzed, and so on:

hrdb=# SELECT schemaname,relname,n_tup_ins,n_tup_upd,n_tup_del,
  n_live_tup,n_dead_tup,last_autovacuum,last_analyze 
from pg_stat_all_tables where relname='casedemo';

-[ RECORD 1 ]---+------------------------------
schemaname      | public
relname         | casedemo
n_tup_ins       | 16044
n_tup_upd       | 0
n_tup_del       | 0
n_live_tup      | 16044
n_dead_tup      | 0
last_autovacuum |
last_analyze    | 2014-07-13 20:21:11.636+05:30

www.it-ebooks.info

http://www.it-ebooks.info/


Routine Maintenance Tasks

84

Statistical information regarding indexes includes the following:

ff Information regarding the space occupied by the indexes and whether there are any 
bloated indexes.

ff Information regarding the number of times the index was used by the query planner.

ff Information regarding the number of rows read by the index.

ff Information regarding the number of rows fetched by the index.

ff Information regarding the leaf fragmentation in the index. Leaf fragmentation occurs 
when rows are deleted, thus creating partially or completely empty blocks in the index 
binary tree. Because of row deletion, these leaf-level index pages have free space; 
as a result, the index uses more data pages to store data on disk and in memory, 
thereby affecting the performance of scan operations even when data pages are 
cached due to extra pages that need to be processed.

Statistics about indexes can be retrieved from the pg_stat_user_indexes and pg_index 
tables. You can use these two tables to find the unused indexes:

SELECT
    relid::regclass AS table, 
    indexrelid::regclass AS index, 
    pg_size_pretty(pg_relation_size(indexrelid::regclass))  
AS index_size, 
    idx_tup_read, 
    idx_tup_fetch, 
    idx_scan
FROM pg_stat_user_indexes 
  JOIN pg_index USING (indexrelid) 
 WHERE idx_scan = 0 
AND indisunique IS FALSE;

In the preceding query output, the idx_tup_read, idx_tup_fetch, and idx_scan 
columns indicate the usage of the index:

ff idx_tup_read: This column indicates the number of rows that have been read 
using the index

ff idx_tup_fetch: This column indicates the number of rows that have been fetched 
using the index

ff idx_scan: This column indicates the number of times the index was used by the 
query planner

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

85

Routine reindexing
In some scenarios, it is worth rebuilding indexes periodically with the REINDEX command. 
Indexes can become an issue in database applications that involve a high proportion of 
repeated inserts and deletes, and this might cause indexes to become bloated. The potential 
for bloat is not indefinite; that is, at worst there will be one key per page, but it might still be 
worthwhile to schedule periodic reindexing for indexes that have such usage patterns. With 
the help of the REINDEX command, index pages that have become completely empty are 
reclaimed for reuse.

How to do it...
Indexes can be rebuilt at various levels, as follows:

ff You can recreate the index at the individual index level, whereby a single index can  
be rebuilt. You can recreate a single index, as given here:
REINDEX INDEX customer_pkey;

ff You can recreate the indexes at the table level, whereby all of the indexes for a given 
table are rebuilt:

Here, in the following code, we are rebuiliding all of the indexes for a table customer:

REINDEX TABLE CUSTOMER;

ff You can recreate the indexes at the system level, whereby you can recreate all of the 
indexes on system catalogs within the current database. Here, we are rebuilding all of 
the indexes on the system catalog for the hrdb database:
REINDEX SYSTEM hrdb;

ff You can recreate the indexes at the database level, whereby you recreate all of the 
indexes within the current database, which is hrdb in the code:
REINDEX DATABASE hrdb;

How it works...
The REINDEX command is used to rebuild an index using the data stored in the index's table, 
thereby replacing the old copy of the index.

www.it-ebooks.info

http://www.it-ebooks.info/


Routine Maintenance Tasks

86

REINDEX is used in the following situations:

ff REINDEX is to be used when an index becomes corrupted and does not contain any 
valid data. Indexes can become corrupted due to software bugs or hardware failures. 
REINDEX provides a recovery method.

ff REINDEX is to be used when an index becomes bloated, that is, when it contains 
many empty pages. REINDEX reduces the space consumption of the index by writing 
a new version of the index without dead pages.

ff REINDEX needs to be used when a storage parameter for an index has been altered 
and you wish to ensure that the changes come into effect.

ff REINDEX locks out write operations on the index's parent table but does not block 
read operations on the table. REINDEX also acquires an exclusive lock on the specific 
index being processed, which will block reads that attempt to use the index.

There's more...
There is an option through which the REINDEX command can rebuild an index without locking 
out write operations on the index's parent table. For this, you can use the CREATE INDEX 
CONCURRENTLY command, which will build the index without taking any locks that prevent 
concurrent inserts, updates, and deletes on the table. So, instead of rebuilding the index, you 
have to perform the following three steps:

1.	 First, create an index identical to the one you wish to rebuild using the CREATE 
INDEX CONCURRENTLY option.

2.	 Next, drop the old index.

3.	 The final step is to rename the new index to the same name as the one that the old 
index had.

The following code demonstrates the preceding steps:

CREATE INDEX CONCURRENTLY card_index ON creditcard (cardno);
BEGIN;
DROP INDEX credit_card_idx;
ALTER INDEX card_index RENAME TO credit_card_idx;
COMMIT;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

87

Maintaining log files
The information stored in log files can prove invaluable when diagnosing or troubleshooting 
problems. With the help of the information stored in the log files, you can identify the sources 
of the problems in the underlying database. For this very reason, it is important to preserve 
log files rather than discarding them. However, the information in the log files tends to be 
voluminous, so it important that a rotation policy be implemented in order to preserve certain 
log files and to discard log files that are no longer required. Log files need to be rotated so that 
new log files are started and old ones are removed after a reasonable period of time.

How to do it...
There are various mechanisms through which logging information is maintained and 
preserved in log files. These are discussed as follows:

ff One way to deal with this is to send the server's stderr output to some kind of log 
rotation program. PostgreSQL has a built-in log rotation facility, which can be used 
by setting the logging_collector configuration parameter in the postgresql.
conf file:
logging_collector=true

ff Another approach is to use an external log rotation program that you might be using 
with some other server software. For instance, the Apache distribution includes a 
tool known as rotatelogs that can be used with PostgreSQL. This can be done by 
piping the stderr output of the server to the desired external program. If you are using 
the pg_ctl command to start the PostgreSQL server, then the stderr is already 
redirected to the output, so you just need a pipe command, as shown here:
pg_ctl start | rotatelogs /var/log/pgsql_log 86400

ff The third approach to managing the log file output is to send the log output to  
the syslog and letting syslog deal with file rotation. To do this, you need to set  
the log_destination parameter to syslog in the postgresql.conf file.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


5
Monitoring the System 

Using Unix Utilities

In this chapter, we will cover the following recipes:

ff Monitoring CPU usage

ff Monitoring paging and swapping

ff Finding the worst user on the system

ff Monitoring system load

ff Identifying CPU bottlenecks

ff Identifying disk I/O bottlenecks

ff Monitoring system performance

ff Examining historical CPU load

ff Examining historical memory load

ff Monitoring disk space usage

ff Monitoring network status

Introduction
In order to be able to solve performance problems, we should be able to effectively use 
operating system utilities. We should also be able to use the right operating system tools and 
commands to identify performance problems that may be due to CPU, memory or disk I/O 
issues. Many times, a DBA's duties often overlap with certain system administration related 
functions, and it is important for a DBA to be effective in using the related operating system 
utilities in order to correctly identify where the underlying issue on the server could be. In this 
chapter, we are going to discuss various Unix/Linux-related operating system utilities that can 
help the DBA in performance analysis and troubleshooting issues.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

90

Monitoring CPU usage
In this recipe, we are going to use the sar command to monitor CPU usage on the system.

Getting ready
The commands used in this recipe have been performed on an Oracle Solaris machine. 
Hence, the command output may vary on different Unix- and Linux-related systems.

How to do it...
We can use the sar command with the -u switch to monitor CPU utilization:

bash-3.2$ sar -u 10 8

SunOS usstlz-pinfsi09 5.10 Generic_150400-04 sun4u    08/06/2014

23:32:17    %usr    %sys    %wio   %idle

23:32:27      80      14       3      3

23:32:37      70      14      12      4

23:32:47      72      13      21      4

23:32:57      76      14       6      3

23:33:07      73      10      13      4

23:33:17      71       8      17      4

23:33:27      67       9      20      4

23:33:37      69      10      17      4

Average       73      11      13      4

In the preceding command, with the -u switch, two values are passed as the input. The first 
value, which is 10, displays the number of seconds between sar readings, and the second 
value, which is 8, indicates the number of times you want sar to run.

How it works...
The sar command provides a quick snapshot of how much of the CPU is bogged down or 
utilized. The sar output reports values in the following columns:

ff %usr: This indicates the percentage of CPU running in user mode

ff %sys: This indicates the percentage of CPU running in system mode

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

91

ff %wio: This indicates the percentage of CPU running idle, with a process waiting for 
block I/O

ff %idle: This indicates the percentage of CPU that is idle

Often, a low percentage of idle time points to a CPU-intensive job or an underpowered CPU. 
You could use the ps or prstat command in Solaris to find a CPU-intensive job.

The following are general indicators of performance problems:

ff If you see an abnormally high value in the %usr column, this would mean that 
applications are not tuned properly or are overutilizing the CPU

ff If you see a high value in the %sys column, it probably indicates a bottleneck that 
could be due to swapping or paging and needs to be investigated further

Monitoring paging and swapping
In this recipe, we are going to use the sar and vmstat commands with options to monitor 
paging and swapping operations.

Getting ready
It is necessary to monitor the amount of paging and swapping happening on the operating 
system. Paging occurs when a part of the operating system process gets transferred from the 
physical memory to the disk or is read back from the physical memory to the disk. Swapping 
occurs when an entire process gets transferred to the disk from the physical memory or is 
read back to the physical memory from the disk. Depending on the system, either paging or 
swapping could be an issue. If paging occurs normally and you see a trend of heavy swapping, 
then the issue could be related to insufficient memory, or sometimes the issue could be 
related to disk as well. If the system is heavily paging and not swapping, the issue could be 
related to either the CPU or the memory. The commands in this section are performed in an 
Oracle Solaris environment.

How to do it...
We could use the vmstat and sar commands with options in the following manner to 
monitor the paging and swapping operations:

1.	 The vmstat command can be used with the -S switch to monitor swapping and 
paging operations, as follows:
bash$ vmstat –S

 kthr      memory               page            disk          
faults      cpu

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

92

 r b w   swap      free      si so   pi  po  fr de sr s0 s2 s3 s4    
in     sy      cs     us   sy   id

 6 14 0  453537392 170151696 0  0   2444 186 183 0 0  1  1  1  1 
77696  687853  72596  13   4    83

In the aforementioned commands, the si and so columns represent swap-in and 
swap-out operations, respectively.

Similarly, pi and po represent page-in and page-out operations, respectively. 
However, the sar command provides more in-depth analysis of paging and  
swapping operations when used with options.

2.	 We can also use the sar command with the -p switch to report paging operations, 
as follows:
bash-3.2$  sar -p 5 4

SunOS usmtnz-sinfsi17 5.10 Generic_150400-04 sun4u    08/08/2014

05:45:18  atch/s  pgin/s ppgin/s  pflt/s  vflt/s slock/s

05:45:23 4391.18    0.80    2.20 12019.44 30956.92    0.60

05:45:28 2172.26    1.80    2.40 5417.76 15499.80    0.20

05:45:33 2765.60    0.20    0.20 9893.20 20556.60    0.00

05:45:38 2194.80    2.00    2.00 7494.80 19018.60    0.00

Average  2879.85    1.20    1.70 8703.00 21500.25    0.20

The preceding output reports the following columns:

�� atch/s: These are the page faults per second that are satisfied by 
reclaiming a page currently in memory.

�� pgin/s: The number of times per second that the filesystem receives page 
in requests.

�� ppgin/s: These are the pages paged in per second.

�� pflt/s: This is the number of page faults from protection errors.

�� vflt/s: This is the number that addresses translation page faults per 
second. This happens when a valid process table entry does not exist for a 
given virtual address.

�� slock/s: These are the faults per second caused by software lock requests 
requiring physical I/O.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

93

3.	 Similarly, we can use the sar command with the -w switch to report swapping 
activities and identify if there are any swap related issues:
bash-3.2$ sar -w 5 4

SunOS usmtnz-sinfsi17 5.10 Generic_150400-04 sun4u    08/08/2014

06:20:55 swpin/s bswin/s swpot/s bswot/s pswch/s

06:21:00    0.00     0.0    0.00     0.0   53143

06:21:05    0.00     0.0    0.00     0.0   60949

06:21:10    0.00     0.0    0.00     0.0   55149

06:21:15    0.00     0.0    0.00     0.0   64075

Average     0.00     0.0    0.00     0.0   58349

The aforementioned output reports the following columns:

�� swpin/s: This indicates the number of LWP transfers in the memory  
per second

�� bswin/s: This indicates the number of blocks transferred for swap-ins  
per second

�� swpot/s: This reports the average number of processes that are swapped 
out of the memory per second

�� bswot/s: This reports the number of blocks that are transferred for  
swap-outs per second

�� pswch/s: This indicates the number of kernel thread switches per second

How it works...
If the si and so columns of the vmstat -S output have nonzero values, then this serves as 
a good indicator of a possible performance issue related to swapping. This must be further 
investigated using the more detailed analysis provided by the sar command with the -p and 
-w switches respectively.

For paging, the key is to look for an inordinate amount of page faults of any kind. This would 
indicate a high degree of paging. The concern is not with paging but with swapping because 
as paging increases, it would be followed by swapping. We can look at the values in the 
atch/s, pflt/s, vflt/s, and slock/s columns of the sar -p command output to review 
the number of page faults of any type and see the paging statistics to observe whether the 
paging activity remains steady or increases during a specific timeframe.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

94

For the output of the sar -w command, the key column to observe is the swpot/s column. 
This column indicates the average number of processes that are swapped out of the memory 
per second. If the value in this column is greater than 1, it is an indicator of memory deficiency, 
and to correct this you would have to increase the memory.

Finding the worst user on the system
In this recipe, we are going to use the top command to find the worst performing user on the 
system at a given point in time.

Getting ready
The top command is a Linux-based utility that also works on Unix-based systems.  
The commands in this section have been performed on a CentOS Linux machine.

How to do it...
The usage of the top command is shown as follows:

bash-3.2$top

Cpu states: 0.0% idle, 82.0% user, 18.7% kernel, 0.8% wait, 0.5% swap

Memory: 795M real, 12M free, 318M swap, 1586M free swap

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND

23624 postgres -25 2 208M 4980K cpu 1:20 22.47% 94.43% postgres

15811 root -15 4 2372K 716K sleep 22:19 0.61% 3.81% java

20435 admin 33 0 207M 2340K sleep 2:47 0.23% 1.14% postgres

20440 admin 33 0 93M 2300K sleep 2:28 0.23% 1.14% postgres

23698 root 33 0 2052K 1584K cpu 0:00 0.23% 0.95% top

23621 admin 27 2 5080K 3420K sleep 0:17 1.59% 0.38% postgres

23544 root 27 2 2288K 1500K sleep 0:01 0.06% 0.38% br2.1.adm

15855 root 21 4 6160K 2416K sleep 2:05 0.04% 0.19% proctool

897 root 34 0 8140K 1620K sleep 55:46 0.00% 0.00% Xsun

20855 admin -9 2 7856K 2748K sleep 7:14 0.67% 0.00% PSRUN

208534 admin -8 2 208M 4664K sleep 4:21 0.52% 0.00% postgres

755 admin 23 0 3844K 1756K sleep 2:56 0.00% 0.00% postgres

2788 root 28 0 1512K 736K sleep 1:03 0.00% 0.00% lpNet

18598 root 14 10 2232K 1136K sleep 0:56 0.00% 0.00% xlock

1 root 33 0 412K 100K sleep 0:55 0.00% 0.00% ini

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

95

The first two lines in the preceding output give general system information, whereas the rest 
of the display is arranged in order of decreasing current CPU usage.

How it works...
The top command provides statistics on CPU activity. It displays a list of CPU-intensive tasks 
on the system and also provides an interface for manipulating processes.

In the preceding output, we can see the top user to be postgres with a process ID of 23624. 
We can see the CPU consumption of this user to be 94.43%, which is too high and needs 
to be investigated, or the corresponding operating system process needs to be killed if it is 
causing performance issues on the system.

Monitoring system load 
In this recipe, we are going to use the uptime command to monitor overall system load.

How to do it...
The uptime command gives us the following information:

ff Current system time

ff How long the system has been running

ff Number of currently logged-on users in the system

ff System load average for the past 1, 5, and 15 minutes

The uptime command can be used as follows:

bash-3.2$ uptime

11:44pm  up 20 day(s), 20 hr(s),  10 users,  load average: 27.80,  
30.46, 33.77

In the preceding output, we can see that the current system time is 11:44pm (GMT) and the 
system has been up and running for the last 20 days and 20 hours without requiring a reboot. 
The output also tells us that there are ten concurrently logged-on users in the system. Finally, 
we get the load average during the past 1, 5, and 15 minutes as 27.80, 30.46, and 33.77, 
respectively.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

96

How it works...
The basic purpose of running the uptime command is to take a quick look at the current  
CPU load on the system. This provides a peek at the current system performance. System  
load refers to the average number or processes that are either in a runnable or uninterruptable 
state. A process enters the runnable state when it starts to utilize the CPU resources or is 
waiting to acquire them. It enters the uninterruptable state when it spends time waiting for an 
I/O operation. Load average is categorized over the three time intervals, that is, the 1-, 5-, and 
15-minute periods. Load averages are not categorized for the number of CPUs on the system. 
So for a system with a single CPU, a load average of 1 indicates 100 percent busy time period 
with zero idle time, whereas for a system with 5 CPUs a load average of 1 would indicate an 
idle time of 80 percent and a busy time period of only 20 percent.

Identifying CPU bottlenecks
In this recipe, we are going to use the mpstat command to identify CPU bottlenecks.

Getting ready
The commands in this section have been performed on a Solaris server.

How to do it...
The mpstat command is used to report per processor statistics in a tabular format.

The usage of the mpstat command is shown as follows:

bash-3.2$ mpstat 1 1

CPU minf mjf xcal  intr ithr  csw icsw migr smtx  srw syscl  usr sys  wt 
idl

  0  672   0 2457   681   12  539   17   57  119    0  4303   18  10   0  
73

  1   90   0 1551   368   22  344    6   37  104    0  3775   17   4   0  
79

  2   68   0 1026   274   14  217    4   24   83    0  2393   11   3   0  
86

  3   50   0  568   218    9  128    3   17   56    0  1319    7   2   0  
92

  4   27   0  907   340   12  233    3   22   72    0  2034    9   2   0  
88

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

97

  5   75   0 1777   426   25  370    5   33  111    0  4820   22   4   0  
74

  6   69   0 1395   421   15  337    4   27   96    0  2948   14   3   0  
83

  7   29   0  888   394    9  273    3   23   74    0  1873    9   3   0  
89

  8   10   0  344   177    9   80    2   13   44    0  1007    5   1   0  
94

  9   63   0 1275   288   17  268    4   22   90    0  4337   20   3   0  
77

 10   72   0 1875   324   28  330    5   30  110    0  5514   25   4   0  
71

 11   17   0  438   183   10   94    2   17   50    0  1048    5   2   0  
93

 12   10   0  351   175    9   79    2   13   44    0  1047    5   1   0  
94

 13   60   0 1207   267   17  245    4   21   87    0  4243   19   3   0  
78

 14   72   0 1859   323   29  331    4   30  109    0  5347   24   4   0  
72

 15   16   0  434   184   10   94    2   17   50    0  1031    5   2   0  
94

 16   20   0  638   197   12  127    2   16   57    0  1810    9   2   0  
90

 17   16   0  621   215   12  141    2   16   59    0  2062    9   2   0  
89

 18   19   0  785   214   14  151    2   18   63    0  2384   11   2   0  
87

 19   66   0 1584   293   24  288    4   26   96    0  5681   25   3   0  
71

 20   23   0  826   207   14  142    2   17   64    0  2172   10   2   0  
88

 21   14   0  543   190   12  115    2   15   54    0  1896    9   2   0  
90

 22   19   0  772   210   14  147    2   18   62    0  2347   11   2   0  
88

 23   66   0 1591   294   24  293    4   26   96    0  5398   25   4   0  
72

 24   66   0 1820   305   27  311    4   27  100    0  4941   22   4   0  
74

 25   20   0  672   210   11  135    2   18   62    0  1783    8   2   0  
90

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

98

 26   16   0  645   192   12  116    2   15   59    0  2184   10   2   0  
89

 27   20   0  821   213   15  152    2   17   62    0  3016   13   2   0  
85

 28   66   0 1698   305   28  308    4   27   98    0  5106   23   4   0  
74

 29   20   0  641   194   13  121    2   17   59    0  1731    8   2   0  
90

 30   17   0  633   190   11  118    2   15   57    0  2164    9   2   0  
89

 31   22   0  798   215   15  161    2   17   61    0  3044   13   2   0  
85

 32  637   0 2183   507   21  672   17   61  114    0  4939   20   9   0  
70

 33   98   0 1998   383   24  431    7   39   94    0  4076   19   4   0  
77

 34   74   0 1217   273   14  265    4   25   73    0  2589   13   3   0  
85

 35   54   0  661   216    9  168    3   18   51    0  1624    8   2   0  
90

 36   17   0  925   311  117  144    2   18   49    0  1610    8   2   0  
90

 37   69   0 2146   302   23  312    4   28   86    0  4624   22   3   0  
75

 38   61   0 1856   910  665  254    3   22   71    0  2734   13   5   0  
82

 39   12   0 1006   848  661  138    2   15   40    0  1099    5   4   0  
91

 40    9   0  402   168    9   82    2   12   32    0   986    5   1   0  
94

 41   59   0 1490   288   16  285    4   21   73    0  4233   20   3   0  
77

 42   70   0 2486   329   26  356    5   29   91    0  5326   25   4   0  
71

 43   16   0  541   180   10   99    2   16   39    0  1052    5   1   0  
93

 44   10   0  438   169    8   83    2   13   34    0  1051    5   1   0  
94

 45   57   0 1436   264   16  257    3   20   69    0  4137   19   3   0  
78

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

99

How it works...
In the preceding output of the mpstat command, each row of the table represents the 
activity of one processor. The first table shows a summary of activity since the last boot time. 
The important value from a DBA's perspective is the value in the smtx column. The smtx 
measurement indicates the number of times the CPU failed to obtain the mutual exclusion 
lock (mutex). Mutex stalls waste CPU time and degrade multiprocessor scaling.

A general rule of thumb is that if the value in the smtx column is greater than 200, then it is a 
symptom and indication of CPU bottleneck issues, which need to be investigated.

Identifying disk I/O bottlenecks
In this recipe, we are going to use the iostat command to identify disk-related bottlenecks.

Getting ready
The commands in this section have been performed on a Solaris server.

How to do it...
There are various switches available with the iostat command. The following are the most 
important switches used along with iostat:

ff -d: This switch reports the number of kilobytes transferred per second for specific 
disks, the number of transfers per second, and the average service time in 
milliseconds. The following is the usage of the iostat -d command:
bash-3.2$iostat -d 5  5

sd0            sd2         sd3          sd4

Kps tps serv  Kps tps serv Kps tps serv Kps tps serv

1   0    53   57  5  145    19 1   89    0   0  14

140 14   16   0   0   0    785 31  21    0   0  0

8   1    15   0   0   0    814 36  18    0   0  0

11  1    82   0   0   26   818 36  19    0   0  0

0   0    0    1   0   22   856 37  20    0   0  0

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

100

ff -D: This switch lists the reads per second, writes per second, and percentage of  
disk utilization:
bash-3.2$ iostat -D 5 5

sd0            sd2         sd3           sd4

rps wps util rps wps util  rps wps util  rps wps util

0    0 0.3    4   0   6.2   1   1   1.8   0   0  0.0

0    0 0.0    0  35  90.6  237  0   97.8  0   0  0.0

0    0 0.0    0  34  84.7  218  0   98.2  0   0  0.0

0    0 0.0    0  34  88.3  230  0   98.2  0   0  0.0

0    2 4.4    0  37  91.3  225  0   97.7  0   0  0.0

ff -x: This switch will report extended disk statistics for all disks:
bash-3.2$ iostat -x

                  extended device statistics                   

device       r/s    w/s   kr/s   kw/s wait actv  svc_t  %w  %b 

fd0          0.0    0.0    0.0    0.0  0.0  0.0    0.0   0   0 

sd0          0.0    0.0    0.4    0.4  0.0  0.0   49.5   0   0 

sd2          0.0    0.0    0.0    0.0  0.0  0.0    0.0   0   0 

sd3          0.0    4.6    0.0  257.6  0.0  0.1   26.4   0   12

sd4         69.3    3.6  996.9  180.5  0.0  7.6  102.4   0  100 

nfs10        0.0    0.0    0.4    0.0  0.0  0.0   24.5   0   0 

nfs14        0.0    0.0    0.0    0.0  0.0  0.0    6.3   0   0 

nfs16        0.0    0.0    0.0    0.0  0.0  0.0    4.9   0   0 

How it works...
The iostat command reports statistics about disk input and output operations to produce 
measurements of throughput, utilization, queue lengths, transaction rate, and service time. 
The first line of the iostat output shows everything since booting the system, whereas each 
subsequent line shows only the prior interval specified.

If we observe the preceding output of the iostat -d command in the How to do it… 
section, we can clearly see that the sd3 disk drive is heavily overloaded. The values in the 
kps (short for kilobytes transferred per second), tps (short for the number of transfers per 
second), and serv (short for average service time in milliseconds) columns for the sd3 
disk drive are consistently high over the specified interval. This leads us to a conclusion that 
moving information from sd3 to any other drive might be a good idea if this information is 
representative of disk I/O on a consistent basis. This would reduce the load on sd3.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

101

Also, if you observe the output of the iostat -D command in the How to do it… section, you 
can conclude that sd3 has high read activity, which is indicated by the high values in the rps 
(short for reads per second) column. Similarly, we can see that the sd2 disk drive has a high 
write activity, which is indicated by the high values in the wps (short for writes per second) 
column. Both of the disk drives, sd2 and sd3, are at the peak level of utilization, which can 
be seen from the high percentage in the util (short for utilization) column. The high values 
in the util column are an indication of I/O problems, which should be investigated by the 
system administrator.

Similarly, if we take a look at the preceding output of the iostat -x command in the How to 
do it… section, we can easily come to the conclusion that the sd4 disk drive is experiencing 
I/O problems as seen from the %b column, which indicates the percentage of time the 
disk is busy. For sd4, the disk utilization is at 100 percent, which would need a system 
administrator's immediate attention.

Monitoring system performance
Many times, there are situations when the application users start complaining about the 
database performance being slow, and as a DBA, you need to determine whether there are 
system resource bottlenecks on the PostgreSQL server. Running the vmstat command can 
help us to quickly locate and identify any bottlenecks on the server.

Getting ready
The commands in this section have been performed on a CentOS Linux machine.

How to do it...
The vmstat command is used to report real-time performance statistics about processes, 
memory, paging, disk I/O, and CPU consumption. The following is the usage of the vmstat 
command:

$ vmstat

procs --------memory--------  --swap-- --io-- -system- ---cpu---

r  b  swpd  free  buff cache   si so   bi bo   in cs   us sy id wa

14 0  52340 25272 3068 1662704 0  0    63 76   9  31   15 1  84 0

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

102

In the preceding output, the first line divides the columns on the second line into six different 
categories, which are discussed as follows:

ff The first category is the process (procs) and it contains the following columns:

�� r: This column indicates the total number of processes waiting for runtime

�� b: This column reports the total number of processes in uninterruptible sleep

ff The second category is memory and it contains the following columns:

�� swpd: This column indicates the total amount of virtual memory in use

�� free: This column reports the amount of idle memory available for use

�� buff: This column indicates the amount of memory used for buffers

�� cache: This column indicates the amount of memory used as page cache

ff The third category is swap, which contains the following columns:

�� si: This column reports the amount of memory swapped in from the disk

�� so: This column indicates the amount of memory swapped out from the disk

ff The fourth category is I/O (io) and it contains the following columns:

�� bi: This column indicates the blocks that are read in from a block device

�� bo: This column reports the blocks that are written out to a block device

ff The fifth category is system, which contains the following columns:

�� in: This column reports the number of interrupts per second

�� cs: This column reports the number of context switches per second

ff The final category is the CPU (cpu) and it contains the following columns:

�� us: This column reports the percentage of the time the CPU ran  
user-level code

�� sy: This column reports the percentage of the time the CPU ran  
system-level code

�� id: This column reports the percentage of time the CPU was idle

�� wa: This column reports the amount of time spent waiting for I/O to complete

How it works...
The following are the general rules of thumb used while interpreting the vmstat  
command output.

ff If the value in the wa column is high, it is an indication that the storage system is 
probably overloaded and that action needs to be taken to address that issue

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

103

ff If the value in the b column is greater than zero consistently, then it is an indication 
that the system does not have enough processing power to service the currently 
running and scheduled jobs

ff If the values in the so and si columns are greater than zero when monitored for a 
period of time, then it is an indication and symptom of a memory bottleneck

Examining historical CPU load
In this recipe, we are going to show how to use the sar command in combination with various 
switches to analyze historical CPU load at some time in the past.

Getting ready
The commands used in this recipe have been performed on an Ubuntu Linux machine.

How to do it...
The sar command when used with the -u switch is used to display CPU statistics. When used 
this way, the sar command will report the current day's activities.

If we are looking to analyze the CPU statistics from some time in the past, we would need to 
use the -f switch in conjunction with the -u switch of the sar command. The -f option is 
followed by the files that sar uses to report statistics for different days of the month. These 
files are usually located in the /var/log/sa directory and they usually have a naming 
convention of sadd, where dd represents the numeric day of the month, whose values  
are in the range 01 to 31.

The following is the usage of the sar command to view CPU statistics for the eighth day of  
the month:

$ sar -u -f /var/log/sa/sa08

03:50:10 PM CPU %user %nice %system  %iowait  %idle

04:00:10 PM all 0.42   0.00    0.24    0.00   96.41

04:10:10 PM all 0.22   0.00    1.96    0.00   95.53

04:20:10 PM all 0.22   0.00    1.22    0.01   99.55

04:30:10 PM all 0.22   0.00    0.24    2.11   99.54

04:40:10 PM all 0.24   0.00    0.23    0.00   92.54

Average:    all 0.19   0.00    0.19    0.07   99.55

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

104

How it works...
Generally the rules of thumb are that if the %idle value is low, it serves as an indication that 
either the CPUs are underpowered or the application load is high. Similarly, if we see nonzero 
values in the iowait time column, it serves as a reminder that the I/O subsystem could be a 
potential bottleneck.

If we observe the preceding output of the sar command, we can see that the %idle time is 
high, which clearly indicates that the CPU is probably not overburdened, and we do not see 
many nonzero values in the %iowait column, which tells us that there is not much contention 
for disk I/O either.

There's more...
When the sysstat package is installed, a few cron jobs are scheduled to create files used 
by the sar utility to report historical server statistics. We can observe these cron jobs by 
taking a look at the /etc/cron.d/sysstat file.

Examining historical memory load
In this recipe, we are going to see how to analyze the memory load for a previous day of  
the month.

Getting ready
The commands used in this recipe have been performed on an Ubuntu Linux machine. The 
command output may vary in other Linux- and Unix-based operating systems.

How to do it...
When it comes to analyzing memory statistics, we need to check out both paging statistics 
and swapping statistics.

We can use the sar command in conjunction with the -B switch to report paging statistics 
along with the -f switch to report statistics for different days of the month. As mentioned in the 
previous recipe, the files that the sar command uses to report statistics for different days of the 
month are located in the /var/log/sa directory, and they have a naming convention of sadd, 
where dd represent the numeric date of the month, with values ranging from 01 to 31.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

105

For instance, to report the paging statistics for the fifth day of the month, we can use the sar 
command as follows:

$ sar -B -f /var/log/sa/sa05

06:10:05 AM pgpgin/s  pgpgout/s  fault/s   majflt/s

06:20:05 AM 0.02       18.17      19.37     0.00

06:30:05 AM 4.49       26.68      76.15     0.05

06:40:05 AM 4512.43   419.24     380.14     0.65

06:50:06 AM 4850.03  1055.79    4364.73     0.51

07:00:06 PM 4172.68  1096.96    6650.51     0.16

Similarly, to report the swapping statistics for different days of the month, we can use the sar 
command in conjunction with the -W switch and the -f switch.

For instance, to report on the swapping statistics for the fifth day of the month, we can use 
the sar command as follows:

$ sar -W -f /var/log/sa/sa05

06:10:05 AM  pswpin/s pswpout/s

06:20:05 AM   0.00     0.00

06:30:05 AM   0.02     0.00

06:40:05 AM   1.15     1.45

06:50:06 AM   0.94     2.99

07:00:06 PM   0.67     6.95

How it works...
In the preceding output of the sar -B -f /var/log/sa/sa05 command, we can 
clearly see that at about 6.40 AM, there was a substantial increase in paging from the disk 
(pgpgin/s), pages paged out to disk (pgpgout/s), and page faults per second (fault/s).

Similarly, when swapping statistics are being reported with the sar -W -f /var/log/sa/
sa05 command, we can clearly see that the swapping started at about 06.40 AM, which  
can be seen from the values in the pswpin/s column and the pswpout/s column. If we  
see high values in the pswpin/s (pages swapped into the memory per second) column and 
the pgpgout/s (pages swapped out per second) column, it means that the current memory 
is inadequate and needs to be either increased or, for certain application components, 
optimally resized.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

106

Monitoring disk space usage
In this recipe, we are going to show the commands that are used to monitor disk space.

Getting ready
The commands in this section have been performed on a Solaris server.

How to do it...
We can use the df command with various switches to monitor disk space. To make the output 
more understandable, we often use the -h switch with the df command:

bash-3.2$ df -h

Filesystem                                           size   used  avail 
capacity  Mounted on

                                                    132G    80G    50G    
62%     /

/devices                                             0K     0K     0K      
0%     /devices

ctfs                                                 0K     0K     0K      
0%    /system/contract

proc                                                 0K     0K     0K     
0%     /proc

mnttab                                               0K     0K     0K     
0%     /etc/mnttab

swap                                                418G   488K   418G     
1%    /etc/svc/volatile

swap                                                418G    38M   418G     
1%    /tmp

swap                                                418G   152K   418G     
1%    /var/run

/dev/dsk/c20t60000970000192602156533030374242d0s0   236G   240M   234G     
1%    /peterdata/cm_new

/dev/dsk/c20t60000970000192602156533032353441d0s0    30G    30M    29G     
1%    /peterdata/native

/dev/dsk/c20t60000970000192602156533033313441d0s0   236G    60G   174G    
26%    /peterdata/db_new

/dev/dsk/c20t60000970000195701036533032454646d0s0    30G   6.9G    22G    
24%    /peterdata/native

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

107

/dev/dsk/c20t60000970000195701036533032444137d0s0   236G   224G    12G    
95%    /peterdata/db

/dev/dsk/c20t60000970000192602156533032333232d0s2   709G   316G   386G    
45%    /peterdata/cm

usmtnnas4106-epmnfs.emrsn.org:/peterb1ap_2156   276G   239G    36G    87%    
/peterb1ap

usmtnnas4106-epmnfs.emrsn.org:/peterdata_data_2156    98G    53G    45G    
54%    /peterdata/data

usmtnnas4106-epmnfs.emrsn.org:/peterdata_uc4appmgr   9.8G   3.6G   6.3G    
37%    /peterdata/uc4/

How it works...
If we observe the preceding output, we can see that the /peterdata/db mount point is 
nearing its full capacity (it has reached a capacity of 95%) and only another 12 GB of free disk 
space is available on the device. This is an indication that the administrator needs to either 
clean up some old files on the existing mount point to release more free space, or allocate 
additional space to the given mount point before it reaches its full capacity.

Monitoring network status
In this recipe, we are going to show how to monitor the status of network interfaces.

Getting ready
The commands used in this recipe have been performed on a CentOS Linux machine.  
The command output may vary in other Linux- and Unix-based operating systems.

How to do it...
We are going to use the netstat command with the -i switch to display the status of the 
network interfaces that are configured on the system. Here is a screenshot that shows the 
usage of the netstat command:

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring the System Using Unix Utilities

108

How it works...
In the preceding output of the netstat -i command, we can determine the number of 
packets a system transmits and receives on each network interface. The Ipkts column 
determines the input packet count and the Okpts column determines the output packet 
count. If the input packet count remains steady over a period of time, it means that the 
machine is not receiving network packets at all, and the outcome suggests that it is possibly 
a hardware failure on the network interface. If the output packet count remains steady over a 
period of time, then it could possibly mean problems that may be caused due to an incorrect 
address entry in the host's or the ethers database.

www.it-ebooks.info

http://www.it-ebooks.info/


6
Monitoring 

Database Activity 
and Investigating 

Performance Issues

In this chapter, we will cover the following recipes:

ff Checking active sessions

ff Finding out what queries users are currently running

ff Getting the execution plan for a statement

ff Logging slow statements

ff Collecting statistics

ff Monitoring database load

ff Finding blocking sessions

ff Table access statistics

ff Finding unused indexes

ff Forcing a query to use an index

ff Determining disk usage

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

110

Introduction
Monitoring databases and troubleshooting performance issues is one of the major duties of 
a database administrator. Ensuring a healthy database with optimal performance is what a 
DBA is employed for. Database monitoring should be done regularly in a proactive manner to 
resolve any known issues before they reach a critical state and lead to performance issues. 
Troubleshooting performance issues is a reactive approach because it is only after an issue is 
reported that the DBA starts troubleshooting it. If proactive alerts are set in a timely manner, 
a DBA can ensure that the database is in a healthy state, and this can lead to a reduction in 
performance issues.

We have used the dvdrental sample database for all of the code in this chapter. The 
dvdrental sample is available in the code bundle. Details about the installation and  
working of the dvdrental database are also in the code bundle.

Checking active sessions
In this recipe, we are going to learn how to check for active sessions in a database.

Getting ready
We are going to query the pg_stat_activity table to check for active sessions in a 
database. The query used in this recipe works in PostgreSQL version 9.2 onwards.

How to do it...
We can use the following SQL query to find the active sessions in the hrdb database:

SELECT pid , usename, application_name, client_addr,
  client_hostname, query, state from pg_stat_activity
where datname='dvdrental';

How it works...
We use the preceding query to find all of the client connections made to the hrdb database. 
Here is an explanation of the columns in the pg_stat_activity table to find information 
regarding active sessions in the hrdb database:

ff The pid column: The value in this column indicates the process ID of the currently 
connected user to the database, the hrdb database in our case.

ff The datname column: The value in this column indicates the name of the database 
to which the user is currently connected.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

111

ff The application_name column: The value in this column provides the application 
name that is being used by the user currently connected to the database.

ff The client_addr column: The value in this column gives the IP address of the user 
that is currently connected to the database.

ff The client_hostname column: The value in this column gives the hostname of the 
connected client.

ff The query column: The value in this column provides the full text of the SQL query 
that is being executed by the client.

ff The preceding output also includes the state column, which indicates the status 
of the pid column of the currently connected user. The state column can have the 
following possible values:

�� active: This value indicates that the user session is currently executing a 
query at the backend.

�� idle: This value indicates that the backend is waiting for a new  
client command.

�� idle in transaction: This value indicates that the backend process is 
currently involved in a transaction but it is not executing a query.

�� fastpath function call: This value indicates that the backend process 
is executing a fast-path function.

�� disabled: This value is reported if the value of the track_activities 
configuration parameter is disabled for the currently connected backend. If 
the value of the state column is disabled, it means that information is 
not being collected on the currently executing command for each session.

There's more...
If you are using a PostgreSQL version earlier than 9.2, then you can use the following query to 
find the active sessions in a PostgreSQL database:

SELECT datname , procpid, usename,application_name,client_addr,
  client_hostname,current_query FROM pg_stat_activity;

Finding out what queries users are currently 
running

In this recipe, we are going to show the most recent, or currently executing, queries executed 
by users in a PostgreSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

112

Getting ready
Before finding out what queries the users are issuing against the database, the first thing 
we need to do is to enable the track_activities configuration parameter in the 
postgresql.conf configuration file, as follows:

track_activities =  on 

Once this parameter is enabled, we would need to reload the configuration file to ensure that 
the changes made come into effect:

pg_ctl -D $PGDATA reload

How to do it...
We can use the following query to view the text of the query that is being executed by the user 
currently connected to the database:

SELECT datname, pid, usename, query_start, state, query  
FROM pg_stat_activity

This query can also be used in the SQL editor of the pgAdmin tool.

How it works...
PostgreSQL will collect data about all of the running queries whenever the track_activities 
configuration parameter is enabled. We can see the most recent query executed by a user in a 
specific PostgreSQL database by referring to the SQL statement retrieved from the query column 
in the pg_stat_activity table. The query_start column indicates the time on the server 
that the client executed the query.

Getting the execution plan for a statement
In this recipe, we are going to see how to get the execution plan for a SQL statement.

Getting ready
The EXPLAIN command is used to get the execution plan for a SQL statement.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

113

How to do it...
Every query that is triggered in PostgreSQL has an execution plan. The EXPLAIN command 
can be run in any of the three given modes:

ff Generic Mode: In this mode, we just need to specify the EXPLAIN command followed 
by the SQL statement. The PostgreSQL planner will display the execution plan that 
it generated for the specified SQL statement. The execution plan will show the scan 
method used to access the table referenced in the query. Other details included 
could be the estimated execution cost of the SQL statement, which is the planner's 
estimation of how long it will take to execute the SQL statement. The EXPLAIN 
command can be invoked as follows:
dvdrental=# EXPLAIN  select * from payment where amount > 4.99;
                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on payment  (cost=0.00..290.45 rows=3616 width=26)
   Filter: (amount > 4.99)
(2 rows)

ff Analyze Mode: The SQL statement can also be executed in analyze mode. This 
provides the actual runtime statistics such as the total time it took to execute the 
query and the actual number of rows returned. With the help of this option we can 
determine whether the PostgreSQL planner's estimates are close to the actual 
numbers or not. We can run the EXPLAIN ANALYZE mode as follows:
dvdrental=# EXPLAIN ANALYZE select * from payment where amount > 
4.99;
                         QUERY PLAN
------------------------------------------------------------------
 Seq Scan on payment  (cost=0.00..290.45 rows=3616 width=26) 
(actual time=0.024.
.7.117 rows=3618 loops=1)
   Filter: (amount > 4.99)
   Rows Removed by Filter: 10978
 Total runtime: 7.457 ms
(4 rows)

Downloading the example code

You can download the example code files for all Packt 
books you have purchased from your account at 
http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

114

ff Verbose Mode: The benefit of running the EXPLAIN command in verbose mode is 
that the EXPLAIN plan output will also display the columns that are passed by the 
query. This information can be valuable when the underlying query is complicated. 
We can run the EXPLAIN command in verbose mode as follows:
dvdrental=# EXPLAIN VERBOSE select * from payment where amount > 
4.99;
                         QUERY PLAN
------------------------------------------------------------------
 Seq Scan on public.payment  (cost=0.00..290.45 rows=3616 
width=26)
   Output: payment_id, customer_id, staff_id, rental_id, amount, 
payment_date
   Filter: (payment.amount > 4.99)
(3 rows)

How it works...
The output of the EXPLAIN command is organized in a series of plan nodes. It is analyzed 
with a bottom-to-top approach. At the bottom, there are nodes that look at tables, scan them, 
or look at things through an index. Each line in the EXPLAIN command output is a plan node.

There are several numeric measurements that are associated with a node. For instance, if we 
look at the output of the EXPLAIN ANALYZE command, we can see the following details:

ff Seq Scan: The first thing that we observe is that the plan has one node, which is 
Sequential Scan node.

ff cost=0.00..290.45: The first cost is the start-up cost of this node. The value  
here determines how much work is estimated to be done before the node produces 
its first row of output. Here, the value is zero because a Seq Scan node instantly 
produces rows. The second estimated cost is the cost of running the entire node  
until it completes.

ff rows=3616: The number of rows to output if the node runs to completion.

ff width=26: This value provides an estimate of the average number of bytes each row 
output for the node will contain.

The points that were just discussed are related to the estimated values. The actual figures tell 
the response time details for the query. The actual time consists of the actual start-up cost 
and the cost of running the entire node. The rows column displays the actual number of rows 
returned by the query.

If the difference between estimated rows and actual rows is huge, it is an indication that the 
query optimizer has made a bad decision based on the current execution plan.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

115

For more detailed information, refer to http://www.postgresql.org/docs/9.2/
static/sql-explain.html, which describes execution plans in PostgreSQL.

Logging slow statements
In this recipe, we are going to cover how to log slow queries in the PostgreSQL server.

Getting ready
We would need to make changes to some of the configuration parameters in the 
postgresql.conf file that enable logging, and then restart the PostgreSQL server in  
order to ensure that the changes made to those configuration parameters come into effect.

How to do it...
Here is the sequence of steps that needs to be followed in order to log slow-running  
SQL statements:

1.	 The following parameters would need to be set in the postgresql.conf file:
logging_collector = on
log_directory = 'pg_log'
log_min_duration_statement = 100 

2.	 Once these parameters are set in the postgresql.conf file, we would need to 
restart the PostgreSQL server as follows:
pg_ctl  -D $PGDATA restart

How it works...
Here is the explanation of the sequence of steps done in the preceding section:

ff Setting log_min_duration_statement to 100, as seen in the preceding section, 
means that any SQL statements that run for 100 milliseconds or longer will be logged 
in the PostgreSQL server. This is a useful parameter to enable because it can help in 
tracking down unoptimized queries in client applications.

ff Setting the logging_collector parameter enables the logging collector, a 
background process whose function is to capture log messages sent to stderr and 
redirect them to logfiles. Setting this parameter is useful because log messages 
captured this way may contain more information than syslog.

ff Setting the log_directory parameter would determine the directory in which the 
log files will be created.

www.it-ebooks.info

http://www.postgresql.org/docs/9.2/static/sql-explain.html
http://www.postgresql.org/docs/9.2/static/sql-explain.html
http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

116

Collecting statistics
In this recipe, we are going to cover the parameters that need to be enabled in order to  
collect statistics.

Getting ready
The PostgreSQL server comes with set of predefined statistics access functions and a set 
of predefined statistics views. These views use the predefined statistics functions to collect 
statistics in PostgreSQL. By default, only a small number of statistics are collected. In the next 
section, we will cover the configuration parameters that control the collection of statistics.

How to do it...
This is the sequence of steps that needs to be followed in order to enable statistics collection 
in PostgreSQL:

1.	 The following configuration parameters would need to be set in the  
postgresql.conf file:
track_activities = on
track_counts = on
track_functions = all
track_io_timing = on

2.	 Once these configuration parameters have been set, we would need to reload the 
configuration file in order to ensure that parameter changes come into effect:
pg_ctl -D $PGDATA reload

How it works...
Here is the explanation for the steps done in the preceding section.

ff Setting track_activities enables monitoring of the command currently being 
executed by the server process, along with the time the command began execution.

ff Setting the track_counts configuration parameter enables collection of statistics 
on database activity, which includes statistics collection for table and index accesses.

ff Setting the value of the track_functions configuration parameter to all enables 
tracking of user-defined functions, which includes tracking procedural language 
functions along with SQL and C language functions.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

117

ff Setting the track_io_timing configuration parameter enables the timing 
of database I/O calls. Enabling this parameter may cause some performance 
overhead because when this parameter is enabled, PostgreSQL repeatedly probes 
the operating system for the current time. I/O timing is captured in the pg_stat_
database view. Major pieces of information that are captured are the number of 
disk blocks and the time spent on reading and writing the database blocks for the 
given PostgreSQL database.

For more details on this topic, please refer to http://www.postgresql.org/docs/9.3/
static/monitoring-stats.html

and http://www.postgresql.org/docs/9.3/static/runtime-config-
statistics.html#GUC-TRACK-ACTIVITIES.

Monitoring database load
In this recipe, we are going to use queries that can be used to monitor the database load.

Getting ready
We can use the pg_stat_database view to monitor the current database load.

How to do it...
In order to identify the existing database load, we would need to know the following:

ff information such as the number of active database connections

ff number of commits and rollbacks issued

ff total blocks read and the percentage of buffer hits for a given database

We can use the following query to identify the existing database load for the dvdrental 
database:

dvdrental=# SELECT numbackends as CONN, xact_commit as TX_COMM, 
xact_rollback as
TX_RLBCK, blks_read + blks_hit as READ_TOTAL, 
blks_hit * 100 / (blks_read + blks_hit) 
as BUFFER FROM pg_stat_database WHERE datname = 'dvdrental';

 conn | tx_comm | tx_rlbck | read_total | buffer
------+---------+----------+------------+--------
    9 |      45 |        1 |       1456 |     99
(1 row)

www.it-ebooks.info

 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
http://www.postgresql.org/docs/9.3/static/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

118

How it works...
The following columns are retrieved by the preceding query:

ff numbackends: This column represents the total number of active connections

ff xact_commit: This column represents the total number of commits

ff xact_rollback: This column represents the total number of rollbacks

ff blks_read: This column represents the total blocks read

ff blks_hit: This column represents the total number of buffer hits

Here is the sequence of steps that are required in order to determine the current database load:

1.	 First, we would need to reset the statistics by using the pg_stat_reset()function, 
like this:
dvdrental=# SELECT pg_stat_reset();
pg_stat_reset
---------------
(1 row)

2.	 The next step would be to wait for a period of time to ensure that sufficient statistics 
have been collected.

3.	 The final step would be to invoke the statistics query on the pg_stat_database 
view, as shown in the previous section.

Finding blocking sessions
In this recipe, we are going to see the queries that can help us to find out which user sessions 
are getting blocked and who is blocking them.

Getting ready
To run these queries, you will need to use the superuser account.

How to do it...
We can use the following query to find information regarding the blocking and blocked sessions:

SELECT bl.pid AS blocked_pid,
  a.usename AS blocked_user,
  ka.query AS blocking_statement,
  now() - ka.query_start AS blocking_duration,

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

119

  kl.pid AS blocking_pid,
  ka.usename AS blocking_user,
  a.query AS blocked_statement,
  now() - a.query_start AS blocked_duration
FROM  pg_catalog.pg_locks bl
JOIN pg_catalog.pg_stat_activity a  ON a.pid = bl.pid
JOIN pg_catalog.pg_locks kl ON kl.transactionid =  
  bl.transactionid AND kl.pid != bl.pid
JOIN pg_catalog.pg_stat_activity ka ON ka.pid = kl.pid
WHERE NOT bl.granted;

The aforementioned query works in PostgreSQL version 9.2 and subsequent versions.

How it works...
The query in the preceding section finds the process ID, the username, and the queries 
that are being run by the blocked and the blocking sessions. Here, we are using the JOIN 
condition on the pid column of the pg_locks and pg_stat_activity tables twice: once 
for the blocking sessions and then for the blocked sessions. We are also doing a join of the 
pg_lock table to itself, on the transactionid column, and the filter condition here is that 
the pid (process ID) column should be unique to each other when the same table pg_locks 
is joined to itself.

If you are using a version of PostgreSQL older than PostgreSQL version 9.2, then you may use 
this query to identify blocking sessions:

SELECT bl.pid AS blocked_pid,
  a.usename AS blocked_user,
  ka.current_query AS blocking_statement,
  now() - ka.query_start AS blocking_duration,
  kl.pid AS blocking_pid,
  ka.usename AS blocking_user,
  a.current_query AS blocked_statement,
  now() - a.query_start AS blocked_duration
FROM  pg_catalog.pg_locks bl
JOIN pg_catalog.pg_stat_activity a  ON a.procpid = bl.pid
JOIN pg_catalog.pg_locks kl ON kl.transactionid = bl.transactionid  
AND kl.pid != bl.pid
JOIN pg_catalog.pg_stat_activity ka ON ka.procpid = kl.pid
WHERE NOT bl.granted;

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

120

Table access statistics 
In this recipe, we are going to see the details of how the tables are being accessed.

Getting ready
Statistical values about user tables are available in the pg_stat_user_tables view. This 
table can be used to get details such as the estimated number of live and dead rows and the 
timestamps for the time when the table was last vacuumed or autovacuumed. Similarly, we 
can use the pg_stat_user_tables to find details about table's access.

How to do it...
We can use the following query to determine whether the tables are being accessed by 
sequential or index scans:

dvdrental=# SELECT schemaname,relname,seq_scan,idx_scan,cast(idx_scan
AS numeric) / (idx_scan + seq_scan) AS idx_scan_pct 
FROM pg_stat_user_tables WHERE (idx_scan + seq_scan)>0 
ORDER BY idx_scan_pct;
 schemaname |    relname    | seq_scan | idx_scan |       
idx_scan_pct
------------+---------------+----------+----------+-------------------
 public     | category      |        2 |        0 | 
0.00000000000000000000
 public     | actor         |        3 |        0 | 
0.00000000000000000000
 public     | customer      |        7 |        0 | 
0.00000000000000000000
 public     | country       |        2 |        0 | 
0.00000000000000000000
 public     | film_category |        3 |        0 | 
0.00000000000000000000
 public     | payment       |        7 |        0 | 
0.00000000000000000000
 public     | inventory     |        4 |        0 | 
0.00000000000000000000
 public     | language      |        2 |        0 | 
0.00000000000000000000
 public     | store         |        4 |        0 | 
0.00000000000000000000
 public     | film_actor    |        4 |        0 | 
0.00000000000000000000
 public     | city          |        4 |        0 | 
0.00000000000000000000

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

121

 public     | rental        |        7 |        0 | 
0.00000000000000000000
 public     | staff         |        5 |        0 | 
0.00000000000000000000
 public     | film          |        8 |        0 | 
0.00000000000000000000
 public     | address       |        4 |        4 | 
0.50000000000000000000
(15 rows)

How it works...
In the preceding output, we can see that for a majority of tables starting from the category 
table until the film table, access is done by sequential scans because all of the data fits into a 
single data page. For the table address, we can see that for some of the queries, access is done 
by sequential scans, and for some statements, PostgreSQL is using indexes to look up values.

Another interesting aspect is to find out how many rows were processed by these scans.  
We can use the following query to get this information:

dvdrental=# SELECT relname,seq_tup_read,idx_tup_fetch,cast(
idx_tup_fetch AS numeric) / (idx_tup_fetch + seq_tup_read) 
AS idx_tup_pct FROM pg_stat_user_tables WHERE (idx_tup_fetch + 
seq_tup_read)>0 ORDER BY idx_tup_pct;
    relname    | seq_tup_read | idx_tup_fetch |        idx_tup_pct
---------------+--------------+---------------+----------------------
------
 category      |           32 |             0 |     
0.00000000000000000000
 actor         |          600 |             0 |     
0.00000000000000000000
 customer      |         4193 |             0 |     
0.00000000000000000000
 country       |          218 |             0 |     
0.00000000000000000000
 film_category |         3000 |             0 |     
0.00000000000000000000
 payment       |       102172 |             0 | 
0.000000000000000000000000
 inventory     |        18324 |             0 | 
0.000000000000000000000000
 language      |           12 |             0 |     
0.00000000000000000000
 store         |            8 |             0 |     
0.00000000000000000000
 film_actor    |        21848 |             0 | 
0.000000000000000000000000

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

122

 city          |         2400 |             0 |     
0.00000000000000000000
 rental        |       112308 |             0 | 
0.000000000000000000000000
 staff         |           10 |             0 |     
0.00000000000000000000
 film          |         8000 |             0 |     
0.00000000000000000000
 address       |         2412 |             4 |     
0.00165562913907284768
(15 rows)

In the preceding output, we can see that for all of the tables, most of the rows were  
processed by sequential scan. Only for the addresses table, four rows were accessed  
using an index lookup.

Finding unused indexes
It becomes necessary to check for unused indexes because indexes end up consuming a 
significant chunk of disk space, and if not monitored closely, they can consume unnecessary 
CPU cycles, more so in the case of them becoming fragmented.

Getting ready
In order to be able to find unused indexes in PostgreSQL, we need to ensure that the 
track_activities and track_counts configuration parameters are enabled in the 
postgresql.conf file. It is only when statistics are collected that we will be able to identify 
the unused indexes.

How to do it...
We can use the following query to identify unused indexes in PostgreSQL:

SELECT
    relid::regclass AS table, 
    indexrelid::regclass AS index, 
    pg_size_pretty(pg_relation_size(indexrelid::regclass))  
AS index_size, 
    idx_tup_read, 
    idx_tup_fetch, 
    idx_scan
FROM pg_stat_user_indexes 
JOIN pg_index USING (indexrelid) 
WHERE idx_scan = 0 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

123

AND indisunique IS FALSE;

   table    |        index         | index_size | idx_tup_read | idx_
tup_fetch | idx_scan
------------+----------------------+------------+--------------+------
---------+----------
 film       | film_fulltext_idx    | 88 kB      |            0 |             
0 |        0
 actor      | idx_actor_last_name  | 16 kB      |            0 |             
0 |        0
 customer   | idx_fk_address_id    | 32 kB      |            0 |             
0 |        0
 address    | idx_fk_city_id       | 32 kB      |            0 |             
0 |        0
 city       | idx_fk_country_id    | 32 kB      |            0 |             
0 |        0
 payment    | idx_fk_customer_id   | 336 kB     |            0 |             
0 |        0
 film_actor | idx_fk_film_id       | 136 kB     |            0 |             
0 |        0
 rental     | idx_fk_inventory_id  | 368 kB     |            0 |             
0 |        0
 film       | idx_fk_language_id   | 40 kB      |            0 |             
0 |        0
 payment    | idx_fk_rental_id     | 336 kB     |            0 |             
0 |        0
 payment    | idx_fk_staff_id      | 336 kB     |            0 |             
0 |        0
 customer   | idx_fk_store_id      | 32 kB      |            0 |             
0 |        0
 customer   | idx_last_name        | 32 kB      |            0 |             
0 |        0
 inventory  | idx_store_id_film_id | 120 kB     |            0 |             
0 |        0
 film       | idx_title            | 56 kB      |            0 |             
0 |        0
(15 rows)

How it works...
If we take a look at the preceding output, we can conclude that wherever the entry for  
idx_scan is zero, it clearly means that either the given index has never been used or  
most likely not used since the time pg_stat_reset() function was run, which basically 
resets all of the statistics counters for the current database to zero. In the preceding  
section, we are doing a join on the pg_stat_user_indexes and pg_index tables,  
on the indexrelid column.

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

124

In the preceding query output, the idx_tup_read, idx_tup_fetch, and idx_scan 
columns indicate the usage of the index:

ff The idx_tup_read column indicates how many rows have been read using  
the index

ff The idx_tup_fetch column indicates the number of rows that have been fetched 
using the index

ff The idx_scan column indicates the number of times the index was used by the 
query planner

There's more…
Just as with unused indexes, we also need to find out whether there are any duplicate indexes 
because duplicate indexes also consume unnecessary space. Quite often, there are instances 
of indexes defined on a column of a table with a unique key and the same column is also 
defined as the primary key. This situation would result in a duplicate index since the primary 
key itself is unique, and in that situation, there is no need to define an additional index on the 
same column as a unique index. We can use the following query to identify duplicate indexes 
in PostgreSQL:

SELECT pg_size_pretty(sum(pg_relation_size(idx))::bigint) AS size,
  (array_agg(idx))[1] AS idx1, (array_agg(idx))[2] AS idx2,
  (array_agg(idx))[3] AS idx3, (array_agg(idx))[4] AS idx4
FROM (SELECT indexrelid::regclass AS idx, (indrelid::text ||E'\n'||
  indclass::text ||E'\n'|| indkey::text ||E'\n'||
  coalesce(indexprs::text,'')||E'\n' || coalesce(indpred::text,'')) 
AS KEY
FROM pg_index) sub
GROUP BY KEY HAVING count(*)>1
ORDER BY sum(pg_relation_size(idx)) DESC;

Once the duplicate indexes have been identified, they can then be dropped to reclaim lost space.

You can refer to https://gist.github.com/jberkus/6b1bcaf7724dfc2a54f3 and 
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.
html, which contain more information related to unused indexes.

Forcing a query to use an index
In this recipe, we show different methods that can be used to force the database to use  
an index.

www.it-ebooks.info

https://gist.github.com/jberkus/6b1bcaf7724dfc2a54f3
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.html
http://www.databasesoup.com/2014/05/new-finding-unused-indexes-query.html
http://www.it-ebooks.info/


Chapter 6

125

Getting ready
Usually, it is the job of the PostgreSQL optimizer to determine whether a sequential scan or an 
index lookup is going to be more efficient when the table is being accessed by a query to fetch 
results. However, if we decide that it is worth gambling on an index, then we must confirm 
our results by testing the query execution in the development environment before moving the 
results over to production.

How to do it...
There are two ways by which we can force the database to use an index:

ff The first is by setting enable_seqscan to false. This can be demonstrated by a 
scenario given as follows:
dvdrental=# create table test_no_index(id int);
CREATE TABLE
dvdrental=# set enable_seqscan to false;
SET
dvdrental=# explain select * from test_no_index where id > 12;
                         QUERY PLAN
------------------------------------------------------------------
 Seq Scan on test_no_index  (cost=10000000000.00..10000000040.00 
rows=800 width=
4)
   Filter: (id > 12)
(2 rows)

�� Next, we create an index on the given table so as to give the optimizer one or 
more access paths:
dvdrental=# create index new_idx_test_no_index on test_no_
index(id);
CREATE INDEX

�� If we now check the execution plan for the query, we will see that instead of  
a sequential scan, the query plan uses an index lookup to access the table  
to fetch the query result:
dvdrental=# explain select * from test_no_index where id > 
12;
                         QUERY PLAN
------------------------------------------------------------

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

126

 Bitmap Heap Scan on test_no_index  (cost=10.35..30.35 
rows=800 width=4)
   Recheck Cond: (id > 12)
   ->  Bitmap Index Scan on new_idx_test_no_index  
(cost=0.00..10.15 rows=800 wi
dth=0)
         Index Cond: (id > 12)
(4 rows)

ff Another way is to set the value of the random_page_cost configuration parameter 
to a lower or equivalent value to seq_page_cost. By doing this, PostgreSQL will 
prefer index scans for some of the SQL queries. This can be done as follows:
dvdrental=# set random_page_cost = 2;
SET

How it works...
In the preceding section, setting enable_seqscan to false will disable sequential scans 
and force the optimizer to try and use a different plan. In our scenario, we disabled sequential 
scans and created an index, new_idx_test_no_index, on the test_no_index table. By 
doing this, we are providing the optimizer with another access path for the test_no_index 
table.

Similarly, lowering the value of the random_page_cost configuration parameter will cause 
the system to prefer index scans. By default, the value of randon_page_cost is 4, which 
is higher than the default value of the seq_page_cost configuration parameter, which is 1, 
therefore causing a preference for sequential scans over index scans. Lowering the value of 
random_page_cost might help some queries whereby the optimizer might prefer to use  
an index lookup.

Determining disk usage
In this recipe, we are going to display the amount of disk usage for a specific database and its 
associated tables and indexes.

How to do it...
We can use the following SQL query to find the total size of an existing database, the 
dvdrental database in this case:

dvdrental=#  SELECT pg_size_pretty(pg_database_size('dvdrental')) As 
fulldbsize;
 fulldbsize

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

127

------------
 14 MB
(1 row)

In this query output, we can see that the total size of the dvdrental database is 
approximately 14 MB.

Similarly, to display the size of the existing tables and their associated indexes in the 
dvdrental database, we can use the following SQL query:

SELECT relname as "Table",
  pg_size_pretty(pg_relation_size(relid)) As " Table Size",
  pg_size_pretty(pg_total_relation_size(relid) - 
  pg_relation_size(relid)) as "Index Size"
FROM pg_catalog.pg_statio_user_tables ORDER BY 
pg_total_relation_size(relid) DESC;

        Table        |  Table Size | Index Size
---------------------+-------------+------------
 rental              | 1200 kB     | 1272 kB
 payment             | 864 kB      | 1368 kB
 film                | 432 kB      | 256 kB
 film_actor          | 240 kB      | 296 kB
 inventory           | 200 kB      | 264 kB
 customer            | 72 kB       | 152 kB
 keytbl              | 40 kB       | 144 kB
 address             | 64 kB       | 88 kB
 city                | 40 kB       | 88 kB
 film_category       | 48 kB       | 64 kB
 actor               | 16 kB       | 56 kB
 encdata             | 24 kB       | 32 kB
 store               | 8192 bytes  | 32 kB
 staff               | 8192 bytes  | 24 kB
 category            | 8192 bytes  | 16 kB
 country             | 8192 bytes  | 16 kB
 language            | 8192 bytes  | 16 kB
 test                | 0 bytes     | 8192 bytes
 test_no_index       | 0 bytes     | 8192 bytes
 table_with_no_index | 0 bytes     | 8192 bytes
(20 rows)

www.it-ebooks.info

http://www.it-ebooks.info/


Monitoring Database Activity and Investigating Performance Issues

128

How it works...
If we examine the preceding output, we can see the names of the tables along with the 
respective table and index sizes. In the preceding query, we used two functions, pg_relation_
size() and pg_total_relation_size(). The pg_relation_size() function reports the 
table size in kilobytes and the pg_total_relation_size() function reports the total size of 
the table used on the disk inclusive of the space used by TOAST data and indexes. So in order 
to get the correct index sizes for all of the indexes for a specific table, we subtracted the value 
of pg_relation_size() from pg_total_relation_size() using the relid column as a 
parameter in both of the functions.

If you need more information on determining disk usage, you can refer to http://wiki.
postgresql.org/wiki/Disk_Usage and https://wiki.postgresql.org/wiki/
Index_Maintenance.

There's more...
In this section, we will provide some links you can refer to to get advice on dealing with 
performance issues related to PostgreSQL.

You can check out the performance mailing list at http://archives.postgresql.org/
pgsql-performance/.

You can also refer to some of the PostgreSQL Wiki links that explain what to include in your 
performance problem report and some useful troubleshooting information, at http://
wiki.postgresql.org/wiki/Guide_to_reporting_problems and http://wiki.
postgresql.org/wiki/Performance_Optimization.

If you have purchased Premium support from vendors such as 2ndQuadrant and 
EnterpriseDB, you can log tickets with their support team concerning PostgreSQL issues.

www.it-ebooks.info

http://wiki.postgresql.org/wiki/Disk_Usage
http://wiki.postgresql.org/wiki/Disk_Usage
https://wiki.postgresql.org/wiki/Index_Maintenance
https://wiki.postgresql.org/wiki/Index_Maintenance
 http://archives.postgresql.org/pgsql-performance/
 http://archives.postgresql.org/pgsql-performance/
 http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
 http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
 http://wiki.postgresql.org/wiki/Performance_Optimization
 http://wiki.postgresql.org/wiki/Performance_Optimization
http://www.it-ebooks.info/


7
High Availability and 

Replication

In this chapter, we will cover the following recipes:

ff Setting up hot streaming replication

ff Replication using Slony-I

ff Replication using Londiste

ff Replication using Bucardo

ff Replication using DRBD

ff Setting up the Postgres-XC cluster

Introduction
The important components for any production database is to achieve fault tolerance, 24/7 
availability, and redundancy. It is for this purpose that we have different high availability and 
replication solutions available for PostgreSQL.

From a business perspective, it is important to ensure 24/7 data availability in the event of 
a disaster situation or a database crash due to disk or hardware failure. In such situations, it 
becomes critical to ensure that a duplicate copy of the data is available on a different server 
or a different database, so that seamless failover can be achieved even when the primary 
server/database is unavailable.

In this chapter, we will talk about various high availability and replication solutions, including 
some popular third-party replication tools such as Slony-I, Londiste, and Bucardo. We will also 
discuss block-level replication using DRBD, and finally, set up a PostgreSQL extensible cluster, 
that is, Postgres-XC.

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

130

Setting up hot streaming replication
In this recipe, we are going to set up a master-slave streaming replication.

Getting ready
For this exercise, you will need two Linux machines, each with the latest version of PostgreSQL 
installed. We will be using the following IP addresses for the master and slave servers:

ff Master IP address: 192.168.0.4

ff Slave IP address: 192.168.0.5

Before you start with the master-slave streaming setup, it is important that the SSH 
connectivity between the master and slave is setup.

How to do it...
Perform the following sequence of steps to set up a master-slave streaming replication:

1.	 First, we are going to create a user on the master, which will be used by the slave 
server to connect to the PostgreSQL database on the master server:
psql -c "CREATE USER repuser REPLICATION LOGIN ENCRYPTED  
PASSWORD 'charlie';"

2.	 Next, we will allow the replication user that was created in the previous step to allow 
access to the master PostgreSQL server.

This is done by making the necessary changes as mentioned in the pg_hba.conf file:
Vi pg_hba.conf

host    replication    repuser    192.168.0.5/32    md5

3.	 In the next step, we are going to configure parameters in the postgresql.conf file. 
These parameters need to be set in order to get the streaming replication working:
Vi /var/lib/pgsql/9.3/data/postgresql.conf

listen_addresses = '*'
wal_level = hot_standby
max_wal_senders = 3
wal_keep_segments = 8
archive_mode = on        

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

131

archive_command = 'cp %p /var/lib/pgsql/archive/%f && scp %p 
postgres@192.168.0.5:/var/lib/pgsql/archive/%f'  
 
checkpoint_segments = 8

4.	 Once the parameter changes have been made in the postgresql.conf file in the 
previous step, the next step will be to restart the PostgreSQL server on the master 
server, in order to let the changes take effect:
pg_ctl -D /var/lib/pgsql/9.3/data restart

5.	 Before the slave can replicate the master, we will need to give it the initial database 
to build off. For this purpose, we will make a base backup by copying the primary 
server's data directory to the standby. The rsync command needs to be run as a root 
user:
psql -U postgres -h 192.168.0.4 -c "SELECT pg_start_
backup('label', true)"

rsync -a /var/lib/pgsql/9.3/data/ 192.168.0.5:/var/lib/pgsql/9.3/
data/  --exclude postmaster.pid

psql -U postgres -h 192.168.0.4 -c "SELECT pg_stop_backup()"

6.	 Once the data directory, mentioned in the previous step, is populated, the next step is 
to enable the following parameter in the postgresql.conf file on the slave server:
hot_standby = on 

7.	 The next step will be to copy the recovery.conf.sample file in the $PGDATA 
location on the slave server and then configure the following parameters:
cp /usr/pgsql-9.3/share/recovery.conf.sample  
/var/lib/pgsql/9.3/data/recovery.conf

standby_mode = on
primary_conninfo = 'host=192.168.0.4 port=5432 user=repuser 
password=charlie'
trigger_file = '/tmp/trigger.replication′
restore_command = 'cp /var/lib/pgsql/archive/%f "%p"'  

8.	 The next step will be to start the slave server:
service postgresql-9.3 start

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

132

9.	 Now that the above mentioned replication steps are set up, we will test for 
replication. On the master server, log in and issue the following SQL commands:
psql -h 192.168.0.4  -d postgres -U postgres -W

postgres=# create database test;

postgres=# \c test;

test=# create table testtable ( testint int, testchar varchar(40) 
);

CREATE TABLE
test=# insert into testtable values ( 1, 'What A Sight.' );
INSERT 0 1

10.	 On the slave server, we will now check whether the newly created database and the 
corresponding table, created in the previous step, are replicated:
psql -h 192.168.0.5  -d test -U postgres -W

test=# select * from testtable;
testint | testchar
---------+---------------------------
1 | What  A Sight.
(1 row)

How it works...
The following is the explanation for the steps performed in the preceding section.

In the initial step of the preceding section, we create a user called repuser, which will be 
used by the slave server to make a connection to the primary server. In the second step of the 
preceding section, we make the necessary changes in the pg_hba.conf file to allow the master 
server to be accessed by the slave server using the repuser user ID that was created in step 
1. We then make the necessary parameter changes on the master in step 3 of the preceding 
section to configure a streaming replication. The following is a description of these parameters:

ff listen_addresses: This parameter is used to provide the IP address associated 
with the interface that you want to have PostgreSQL listen to. A value of * indicates 
all available IP addresses.

ff wal_level: This parameter determines the level of WAL logging done. Specify  
hot_standby for streaming replication.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

133

ff wal_keep_segments: This parameter specifies the number of 16 MB WAL files to 
be retained in the pg_xlog directory. The rule of thumb is that more such files might 
be required to handle a large checkpoint.

ff archive_mode: Setting this parameter enables completed WAL segments to be sent 
to the archive storage.

ff archive_command: This parameter is basically a shell command that is executed 
whenever a WAL segment is completed. In our case, we are basically copying the file 
to the local machine and then using the secure copy command to send it across to 
the slave.

ff max_wal_senders: This parameter specifies the total number of concurrent 
connections allowed from the slave servers.

ff checkpoint_segments: This parameter specifies the maximum number of logfile 
segments between automatic WAL checkpoints. Once the necessary configuration 
changes have been made on the master server, we then restart the PostgreSQL 
server on the master in order to let the new configuration changes take effect. This 
is done in step 4 of the preceding section. In step 5 of the preceding section, we are 
basically building the slave by copying the primary server's data directory to the slave.

Now, with the data directory available on the slave, the next step is to configure it. We will  
now make the necessary parameter replication related parameter changes on the slave in  
the postgresql.conf directory on the slave server. We set the following parameters on  
the slave:

ff hot_standby: This parameter determines whether you can connect and run queries 
when the server is in the archive recovery or standby mode. In the next step, we 
are configuring the recovery.conf file. This is required to be set up so that the 
slave can start receiving logs from the master. The parameters explained next are 
configured in the recovery.conf file on the slave.

ff standby_mode: This parameter, when enabled, causes PostgreSQL to work as a 
standby in a replication configuration.

ff primary_conninfo: This parameter specifies the connection information used 
by the slave to connect to the master. For our scenario, our master server is set as 
192.168.0.4 on port 5432 and we are using the repuser userid with the password 
charlie to make a connection to the master. Remember that repuser was the 
userid which was created in the initial step of the preceding section for this purpose, 
that is, connecting to the master from the slave.

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

134

ff trigger_file: When a slave is configured as a standby, it will continue to restore 
the XLOG records from the master. The trigger_file parameter specifies what is 
used to trigger a slave, in order to switch over its duties from standby and take over 
as master or primary server. At this stage, the slave is fully configured now and we 
can start the slave server; then, the replication process begins. This is shown in step 
8 of the preceding section. In steps 9 and 10 of the preceding section, we are simply 
testing our replication. We first begin by creating a test database, then we log in 
to the test database and create a table by the name testtable, and then we 
begin inserting some records into the testtable table. Now, our purpose is to see 
whether these changes are replicated across the slave. To test this, we log in to the 
slave on the test database and then query the records from the testtable table, 
as seen in step 10 of the preceding section. The final result that we see is that all the 
records that are changed/inserted on the primary server are visible on the slave. This 
completes our streaming replication's setup and configuration.

You can refer to the following links for more detailed information on streaming replication:

ff https://www.digitalocean.com/community/tutorials/how-to-set-up-
master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps

ff http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-
postgresql-streaming-replication-in-10-mins/

Replication using Slony-I
Here, we are going to set up replication using Slony-I. We will be setting up the replication of 
table data between two databases on the same server.

Getting ready
The steps performed in this recipe are carried out on a CentOS Version 6 machine. It is also 
important to remove the directives related to hot streaming replication prior to setting up 
replication using Slony-I.

We will first need to install Slony-I. The following steps need to be performed in order to  
install Slony-I:

1.	 First, go to http://slony.info/downloads/2.2/source/and download the 
given software.

www.it-ebooks.info

https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps
https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-on-postgresql-on-an-ubuntu-12-04-vps
http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-postgresql-streaming-replication-in-10-mins/
http://www.rassoc.com/gregr/weblog/2013/02/16/zero-to-postgresql-streaming-replication-in-10-mins/
http://slony.info/downloads/2.2/source/
http://www.it-ebooks.info/


Chapter 7

135

2.	 Once you have downloaded the Slony-I software, the next step is to unzip the .tar 
file and then go the newly created directory. Before doing this, please ensure that you 
have the postgresql-devel package for the corresponding PostgreSQL version 
installed before you install Slony-I:
tar xvfj slony1-2.2.3.tar.bz2

cd slony1-2.2.3

3.	 In the next step, we are going to configure, compile, and build the software:
./configure --with-pgconfigdir=/usr/pgsql-9.3/bin/

make

make install

How to do it...
You need to perform the following sequence of steps, in order to replicate data between two 
tables using Slony-I replication:

1.	 First, start the PostgreSQL server if you have not already started it:
pg_ctl -D $PGDATA start

2.	 In the next step, we will be creating two databases, test1 and test2, which will be 
used as the source and target databases respectively:
createdb test1

createdb test2

3.	 In the next step, we will create the t_test table on the source database, test1, and 
insert some records into it:
psql -d test1

test1=# create table t_test (id numeric primary key, name 
varchar);

test1=# insert into t_test values(1,'A'),(2,'B'), (3,'C');

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

136

4.	 We will now set up the target database by copying the table definitions from the 
test1 source database:
pg_dump -s -p 5432 -h localhost test1 | psql -h localhost -p 5432 
test2

5.	 We will now connect to the target database, test2, and verify that there is no data in 
the tables of the test2 database:
psql -d  test2

test2=# select * from t_test;

6.	 We will now set up a slonik script for the master-slave, that is source/target, setup. 
In this scenario, since we are replicating between two different databases on the 
same server, the only different connection string option will be the database name:
cd /usr/pgsql-9.3/bin

vi init_master.slonik

  #!/bin/sh

  cluster name = mycluster;

  node 1 admin conninfo = 'dbname=test1 host=localhost

port=5432 user=postgres password=postgres';

  node 2 admin conninfo = 'dbname=test2 host=localhost

port=5432 user=postgres password=postgres';

  init cluster ( id=1);

  create set (id=1, origin=1);

  set add table(set id=1, origin=1, id=1, fully qualified

name = 'public.t_test');

  store node (id=2, event node = 1);

  store path (server=1, client=2, conninfo='dbname=test1

host=localhost port=5432 user=postgres password=postgres');

  store path (server=2, client=1, conninfo='dbname=test2

host=localhost port=5432 user=postgres password=postgres');

  store listen (origin=1, provider = 1, receiver = 2);

  store listen (origin=2, provider = 2, receiver = 1);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

137

7.	 We will now create a slonik script for subscription to the slave, that is, target:
cd /usr/pgsql-9.3/bin

vi init_slave.slonik

 #!/bin/sh

 cluster name = mycluster;

 node 1 admin conninfo = 'dbname=test1 host=localhost

port=5432 user=postgres password=postgres';

 node 2 admin conninfo = 'dbname=test2 host=localhost

port=5432 user=postgres password=postgres';

 subscribe set ( id = 1, provider = 1, receiver = 2, forward

= no);

8.	 We will now run the init_master.slonik script created in step 6 and run this on 
the master, as follows:
cd /usr/pgsql-9.3/bin

slonik init_master.slonik

9.	 We will now run the init_slave.slonik script created in step 7 and run this on 
the slave, that is, target:
cd /usr/pgsql-9.3/bin

slonik init_slave.slonik

10.	 In the next step, we will start the master slon daemon:
nohup slon mycluster "dbname=test1 host=localhost port=5432  
user=postgres password=postgres" &

11.	 In the next step, we will start the slave slon daemon:
nohup slon mycluster "dbname=test2 host=localhost port=5432  
user=postgres password=postgres" &

12.	 Next, we will connect to the master, that is, the test1 source database, and insert 
some records in the t_test table:
psql -d test1

test1=# insert into t_test values (5,'E');

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

138

13.	 We will now test for the replication by logging on to the slave, that is, the test2 target 
database, and see whether the inserted records in the t_test table are visible:
psql -d test2

test2=# select * from t_test;
 id | name 
----+------
  1 | A
  2 | B
  3 | C
  5 | E
(4 rows)

How it works...
We will now discuss the steps performed in the preceding section:

ff In step 1, we first start the PostgreSQL server if it is not already started. In step 2, 
we create two databases, namely test1 and test2, that will serve as our source 
(master) and target (slave) databases.

ff In step 3, we log in to the test1 source database, create a t_test table, and insert 
some records into the table.

ff In step 4, we set up the target database, test2, by copying the table definitions 
present in the source database and loading them into test2 using the pg_dump utility.

ff In step 5, we log in to the target database, test2, and verify that there are no 
records present in the t_test table because in step 4, we only extracted the table 
definitions into the test2 database from the test1 database.

ff In step 6, we set up a slonik script for the master-slave replication setup. In the 
init_master.slonik file, we first define the cluster name as mycluster. We 
then define the nodes in the cluster. Each node will have a number associated with a 
connection string, which contains database connection information. The node entry is 
defined both for the source and target databases. The store_path commands are 
necessary, so that each node knows how to communicate with the other.

ff In step 7, we set up a slonik script for the subscription of the slave, that is, the 
test2 target database. Once again, the script contains information such as the 
cluster name and the node entries that are designated a unique number related  
to connection string information. It also contains a subscriber set.

ff In step 8, we run the init_master.slonik file on the master. Similarly, in step 9, 
we run the init_slave.slonik file on the slave.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

139

ff In step 10, we start the master slon daemon. In step 11, we start the slave  
slon daemon.

ff The subsequent steps, 12 and 13, are used to test for replication. For this purpose, 
in step 12 of the preceding section, we first log in to the test1 source database 
and insert some records into the t_test table. To check whether the newly inserted 
records have been replicated in the target database, test2, we log in to the test2 
database in step 13. The result set obtained from the output of the query confirms 
that the changed/inserted records on the t_test table in the test1 database are 
successfully replicated across the target database, test2.

For more information on Slony-I replication, go to http://slony.info/documentation/
tutorial.html.

There's more...
If you are using Slony-I for replication between two different servers, in addition to the 
steps mentioned in the How to do it… section, you will also have to enable authentication 
information in the pg_hba.conf file existing on both the source and target servers. For 
example, let's assume that the source server's IP is 192.168.16.44 and the target server's  
IP is 192.168.16.56 and we are using a user named super to replicate the data.

If this is the situation, then in the source server's pg_hba.conf file, we will have to enter the 
information, as follows:

host         postgres         super     192.168.16.44/32            md5

Similarly, in the target server's pg_hba.conf file, we will have to enter the authentication 
information, as follows:

host         postgres         super     192.168.16.56/32            md5

Also, in the shell scripts that were used for Slony-I, wherever the connection information  
for the host is localhost that entry will need to be replaced by the source and target  
server's IP addresses.

Replication using Londiste
In this recipe, we are going to show you how to replicate data using Londiste.

www.it-ebooks.info

http://slony.info/documentation/tutorial.html
http://slony.info/documentation/tutorial.html
http://www.it-ebooks.info/


High Availability and Replication

140

Getting ready
For this setup, we are using the same host CentOS Linux machine to replicate data between 
two databases. This can also be set up using two separate Linux machines running on 
VMware, VirtualBox, or any other virtualization software. It is assumed that the latest version 
of PostgreSQL, version 9.3, is installed. We used CentOS Version 6 as the Linux operating 
system for this exercise.

To set up Londiste replication on the Linux machine, perform the following steps:

1.	 Go to http://pgfoundry.org/projects/skytools/ and download the latest 
version of Skytools 3.2, that is, tarball skytools-3.2.tar.gz.

2.	 Extract the tarball file, as follows:
tar -xvzf skytools-3.2.tar.gz

3.	 Go to the new location and build and compile the software:
cd skytools-3.2

./configure  --prefix=/var/lib/pgsql/9.3/Sky –with-pgconfig=/usr/
pgsql-9.3/bin/pg_config

make

make install

4.	 Also, set the PYTHONPATH environment variable, as shown here. Alternatively, you 
can also set it in the .bash_profile script:
export PYTHONPATH=/opt/PostgreSQL/9.2/Sky/lib64/python2.6/site-
packages/

How to do it...
1.	 We are going to perform the following sequence of steps to set up replication 

between two different databases using Londiste. First, create the two databases 
between which replication has to occur:
 createdb node1
 createdb node2

2.	 Populate the node1 database with data using the pgbench utility:
pgbench -i -s 2 -F 80 node1

www.it-ebooks.info

http://pgfoundry.org/projects/skytools/
http://www.it-ebooks.info/


Chapter 7

141

3.	 Add any primary key and foreign keys to the tables in the node1 database that are 
needed for replication. Create the following .sql file and add the following lines to it:
Vi /tmp/prepare_pgbenchdb_for_londiste.sql -- add primary key to 
history table

ALTER TABLE pgbench_history ADD COLUMN hid SERIAL PRIMARY KEY;

-- add foreign keys
ALTER TABLE pgbench_tellers ADD CONSTRAINT pgbench_tellers_
branches_fk FOREIGN KEY(bid) REFERENCES pgbench_branches;
ALTER TABLE pgbench_accounts ADD CONSTRAINT pgbench_accounts_
branches_fk FOREIGN KEY(bid) REFERENCES pgbench_branches;
ALTER TABLE pgbench_history ADD CONSTRAINT pgbench_history_
branches_fk FOREIGN KEY(bid) REFERENCES pgbench_branches;
ALTER TABLE pgbench_history ADD CONSTRAINT pgbench_history_
tellers_fk FOREIGN KEY(tid) REFERENCES pgbench_tellers;
ALTER TABLE pgbench_history ADD CONSTRAINT pgbench_history_
accounts_fk FOREIGN KEY(aid) REFERENCES pgbench_accounts;

4.	 We will now load the .sql file created in the previous step and load it into  
the database:
psql node1 -f /tmp/prepare_pgbenchdb_for_londiste.sql

5.	 We will now populate the node2 database with table definitions from the tables in 
the node1 database:
pg_dump -s -t 'pgbench*' node1 > /tmp/tables.sql

psql  -f /tmp/tables.sql node2

6.	 Now starts the process of replication. We will first create the londiste.ini 
configuration file with the following parameters in order to set up the root node  
for the source database, node1:
Vi londiste.ini

[londiste3]

job_name = first_table

db = dbname=node1

queue_name = replication_queue

logfile = /home/postgres/log/londiste.log

pidfile = /home/postgres/pid/londiste.pid

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

142

7.	 In the next step, we are going to use the londiste.ini configuration file created in 
the previous step to set up the root node for the node1 database, as shown here:
[postgres@localhost bin]$ ./londiste3 londiste3.ini create-root 
node1 dbname=node1

2014-12-09 18:54:34,723 2335 WARNING No host= in public connect 
string, bad idea

2014-12-09 18:54:35,210 2335 INFO plpgsql is installed

2014-12-09 18:54:35,217 2335 INFO pgq is installed

2014-12-09 18:54:35,225 2335 INFO pgq.get_batch_cursor is 
installed

2014-12-09 18:54:35,227 2335 INFO pgq_ext is installed

2014-12-09 18:54:35,228 2335 INFO pgq_node is installed

2014-12-09 18:54:35,230 2335 INFO londiste is installed

2014-12-09 18:54:35,232 2335 INFO londiste.global_add_table is 
installed

2014-12-09 18:54:35,281 2335 INFO Initializing node

2014-12-09 18:54:35,285 2335 INFO Location registered

2014-12-09 18:54:35,447 2335 INFO Node "node1" initialized for 
queue "replication_queue" with type "root"

2014-12-09 18:54:35,465 2335 INFO Don

8.	 We will now run the worker daemon for the root node:
[postgres@localhost bin]$ ./londiste3 londiste3.ini worker

2014-12-09 18:55:17,008 2342 INFO Consumer uptodate = 1

9.	 In the next step, we will create a slave.ini configuration file in order to make a leaf 
node for the node2 target database:
Vi slave.ini

[londiste3]

job_name = first_table_slave

db = dbname=node2

queue_name = replication_queue

logfile = /home/postgres/log/londiste_slave.log

pidfile = /home/postgres/pid/londiste_slave.pid

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

143

10.	 We will now initialize the node in the target database:
 ./londiste3 slave.ini create-leaf node2 dbname=node2 –
provider=dbname=node1

2014-12-09 18:57:22,769 2408 WARNING No host= in public connect 
string, bad idea

2014-12-09 18:57:22,778 2408 INFO plpgsql is installed

2014-12-09 18:57:22,778 2408 INFO Installing pgq

2014-12-09 18:57:22,778 2408 INFO   Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq.sql

2014-12-09 18:57:23,211 2408 INFO pgq.get_batch_cursor is 
installed

2014-12-09 18:57:23,212 2408 INFO Installing pgq_ext

2014-12-09 18:57:23,213 2408 INFO   Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq_ext.sql

2014-12-09 18:57:23,454 2408 INFO Installing pgq_node

2014-12-09 18:57:23,455 2408 INFO   Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/pgq_node.sql

2014-12-09 18:57:23,729 2408 INFO Installing londiste

2014-12-09 18:57:23,730 2408 INFO   Reading from /var/lib/
pgsql/9.3/Sky/share/skytools3/londiste.sql

2014-12-09 18:57:24,391 2408 INFO londiste.global_add_table is 
installed

2014-12-09 18:57:24,575 2408 INFO Initializing node

2014-12-09 18:57:24,705 2408 INFO Location registered

2014-12-09 18:57:24,715 2408 INFO Location registered

2014-12-09 18:57:24,744 2408 INFO Subscriber registered: node2

2014-12-09 18:57:24,748 2408 INFO Location registered

2014-12-09 18:57:24,750 2408 INFO Location registered

2014-12-09 18:57:24,757 2408 INFO Node "node2" initialized for 
queue "replication_queue" with type "leaf"

2014-12-09 18:57:24,761 2408 INFO Done

11.	 We will now launch the worker daemon for the target database, that is, node2:
[postgres@localhost bin]$ ./londiste3 slave.ini worker

2014-12-09 18:58:53,411 2423 INFO Consumer uptodate = 1

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

144

12.	 We will now create the configuration file, that is pgqd.ini, for the ticker daemon:
vi pgqd.ini

[pgqd]

logfile = /home/postgres/log/pgqd.log

pidfile = /home/postgres/pid/pgqd.pid

13.	 Using the configuration file created in the previous step, we will launch the  
ticker daemon:
[postgres@localhost bin]$ ./pgqd pgqd.ini

2014-12-09 19:05:56.843 2542 LOG Starting pgqd 3.2

2014-12-09 19:05:56.844 2542 LOG auto-detecting dbs ...

2014-12-09 19:05:57.257 2542 LOG node1: pgq version ok: 3.2

2014-12-09 19:05:58.130 2542 LOG node2: pgq version ok: 3.2

14.	 We will now add all the tables to the replication on the root node:
[postgres@localhost bin]$ ./londiste3 londiste3.ini add-table 
--all

2014-12-09 19:07:26,064 2614 INFO Table added: public.pgbench_
accounts

2014-12-09 19:07:26,161 2614 INFO Table added: public.pgbench_
branches

2014-12-09 19:07:26,238 2614 INFO Table added: public.pgbench_
history

2014-12-09 19:07:26,287 2614 INFO Table added: public.pgbench_
tellers

15.	 Similarly, add all the tables to the replication on the leaf node:
[postgres@localhost bin]$ ./londiste3 slave.ini add-table –all

16.	 We will now generate some traffic on the node1 source database:
pgbench -T 10 -c 5 node1

17.	 We will now use the compare utility available with the londiste3 command  
to check the tables in both the nodes; that is, both the source database (node1)  
and destination database (node2) have the same amount of data:
[postgres@localhost bin]$ ./londiste3 slave.ini compare

2014-12-09 19:26:16,421 2982 INFO Checking if node1 can be used 
for copy

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

145

2014-12-09 19:26:16,424 2982 INFO Node node1 seems good source, 
using it

2014-12-09 19:26:16,425 2982 INFO public.pgbench_accounts: Using 
node node1 as provider

2014-12-09 19:26:16,441 2982 INFO Provider: node1 (root)

2014-12-09 19:26:16,446 2982 INFO Locking public.pgbench_accounts

2014-12-09 19:26:16,447 2982 INFO Syncing public.pgbench_accounts

2014-12-09 19:26:18,975 2982 INFO Counting public.pgbench_accounts

2014-12-09 19:26:19,401 2982 INFO srcdb: 200000 rows, 
checksum=167607238449

2014-12-09 19:26:19,706 2982 INFO dstdb: 200000 rows, 
checksum=167607238449

2014-12-09 19:26:19,715 2982 INFO Checking if node1 can be used 
for copy

2014-12-09 19:26:19,716 2982 INFO Node node1 seems good source, 
using it

2014-12-09 19:26:19,716 2982 INFO public.pgbench_branches: Using 
node node1 as provider

2014-12-09 19:26:19,730 2982 INFO Provider: node1 (root)

2014-12-09 19:26:19,734 2982 INFO Locking public.pgbench_branches

2014-12-09 19:26:19,734 2982 INFO Syncing public.pgbench_branches

2014-12-09 19:26:22,772 2982 INFO Counting public.pgbench_branches

2014-12-09 19:26:22,804 2982 INFO srcdb: 2 rows, 
checksum=-3078609798

2014-12-09 19:26:22,812 2982 INFO dstdb: 2 rows, 
checksum=-3078609798

2014-12-09 19:26:22,866 2982 INFO Checking if node1 can be used 
for copy

2014-12-09 19:26:22,877 2982 INFO Node node1 seems good source, 
using it

2014-12-09 19:26:22,878 2982 INFO public.pgbench_history: Using 
node node1 as provider

2014-12-09 19:26:22,919 2982 INFO Provider: node1 (root)

2014-12-09 19:26:22,931 2982 INFO Locking public.pgbench_history

2014-12-09 19:26:22,932 2982 INFO Syncing public.pgbench_history

2014-12-09 19:26:25,963 2982 INFO Counting public.pgbench_history

2014-12-09 19:26:26,008 2982 INFO srcdb: 715 rows, 
checksum=9467587272

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

146

2014-12-09 19:26:26,020 2982 INFO dstdb: 715 rows, 
checksum=9467587272

2014-12-09 19:26:26,056 2982 INFO Checking if node1 can be used 
for copy

2014-12-09 19:26:26,063 2982 INFO Node node1 seems good source, 
using it

2014-12-09 19:26:26,064 2982 INFO public.pgbench_tellers: Using 
node node1 as provider

2014-12-09 19:26:26,100 2982 INFO Provider: node1 (root)

2014-12-09 19:26:26,108 2982 INFO Locking public.pgbench_tellers

2014-12-09 19:26:26,109 2982 INFO Syncing public.pgbench_tellers

2014-12-09 19:26:29,144 2982 INFO Counting public.pgbench_tellers

2014-12-09 19:26:29,176 2982 INFO srcdb: 20 rows, 
checksum=4814381032

2014-12-09 19:26:29,182 2982 INFO dstdb: 20 rows, 
checksum=4814381032

How it works...
The following is an explanation of the steps performed in the preceding section:

ff Initially, in step 1, we create two databases, that is node1 and node2, that are used 
as the source and target databases, respectively, from a replication perspective.

ff In step 2, we populate the node1 database using the pgbench utility.

ff In step 3 of the preceding section, we add and define the respective primary key  
and foreign key relationships on different tables and put these DDL commands  
in a .sql file.

ff In step 4, we execute these DDL commands stated in step 3 on the node1 database; 
thus, in this way, we force the primary key and foreign key definitions on the tables in 
the pgbench schema in the node1 database.

ff In step 5, we extract the table definitions from the tables in the pgbench schema in 
the node1 database and load these definitions in the node2 database. We will now 
discuss steps 6 to 8 of the preceding section.

ff In step 6, we create the configuration file, which is then used in step 7 to create the 
root node for the node1 source database.

ff In step 8, we will launch the worker daemon for the root node. Regarding the entries 
mentioned in the configuration file in step 6, we first define a job that must have a 
name, so that distinguished processes can be easily identified. Then, we define a 
connect string with information to connect to the source database, that is node1, 
and then we define the name of the replication queue involved. Finally, we define the 
location of the log and pid files.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

147

ff We will now discuss steps 9 to 11 of the preceding section. In step 9, we define the 
configuration file, which is then used in step 10 to create the leaf node for the target 
database, that is node2.

ff In step 11, we launch the worker daemon for the leaf node. The entries in the 
configuration file in step 9 contain the job_name connect string in order to connect 
to the target database, that is node2, the name of the replication queue involved, 
and the location of log and pid involved. The key part in step 11 is played by the 
slave, that is the target database—to find the master or provider, that is source 
database node1.

ff We will now talk about steps 12 and 13 of the preceding section. In step 12, we 
define the ticker configuration, with the help of which we launch the ticker 
process mentioned in step 13. Once the ticker daemon has started successfully, 
we have all the components and processes setup and needed for replication; 
however, we have not yet defined what the system needs to replicate.

ff In step 14 and 15, we define the tables to the replication that is set on both the 
source and target databases, that is node1 and node2, respectively.

ff Finally, we will talk about steps 16 and 17 of the preceding section. Here, at this 
stage, we are testing the replication that was set up between the node1 source 
database and the node2 target database.

ff In step 16, we generate some traffic on the node1 source database by running 
pgbench with five parallel database connections and generating traffic for 10 seconds.

ff In step 17, we check whether the tables on both the source and target databases 
have the same data. For this purpose, we use the compare command on the 
provider and subscriber nodes and then count and checksum the rows on both 
sides. A partial output from the preceding section tells you that the data has been 
successfully replicated between all the tables that are part of the replication set up 
between the node1 source database and the node2 destination database, as the 
count and checksum of rows for all the tables on the source and target destination 
databases are matching:
2014-12-09 19:26:18,975 2982 INFO Counting public.pgbench_accounts

2014-12-09 19:26:19,401 2982 INFO srcdb: 200000 rows, 
checksum=167607238449

2014-12-09 19:26:19,706 2982 INFO dstdb: 200000 rows, 
checksum=167607238449

2014-12-09 19:26:22,772 2982 INFO Counting public.pgbench_branches

2014-12-09 19:26:22,804 2982 INFO srcdb: 2 rows, 
checksum=-3078609798

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

148

2014-12-09 19:26:22,812 2982 INFO dstdb: 2 rows, 
checksum=-3078609798

2014-12-09 19:26:25,963 2982 INFO Counting public.pgbench_history

2014-12-09 19:26:26,008 2982 INFO srcdb: 715 rows, 
checksum=9467587272

2014-12-09 19:26:26,020 2982 INFO dstdb: 715 rows, 
checksum=9467587272

2014-12-09 19:26:29,144 2982 INFO Counting public.pgbench_tellers

2014-12-09 19:26:29,176 2982 INFO srcdb: 20 rows, 
checksum=4814381032

2014-12-09 19:26:29,182 2982 INFO dstdb: 20 rows, 
checksum=4814381032

Check out the following links for more information on Londiste replication:

https://wiki.postgresql.org/wiki/Londiste_Tutorial_(Skytools_2)

http://manojadinesh.blogspot.in/2012/11/skytools-londiste-
replication.html

Replication using Bucardo
In this recipe, we are going to show you the replication between two databases using Bucardo.

Getting ready
This exercise is carried out on a Red Hat Linux machine.

Install the EPEL package for your Red Hat platform from https://fedoraproject.org/
wiki/EPEL.

Then, install these RPMs with the following yum command:

yum install perl-DBI perl-DBD-Pg perl-DBIx-Safe

If it is not already installed, download the PostgreSQL repository from http://yum.pgrpms.
org/repopackages.php.

www.it-ebooks.info

https://wiki.postgresql.org/wiki/Londiste_Tutorial_(Skytools_2)
http://manojadinesh.blogspot.in/2012/11/skytools-londiste-replication.html
http://manojadinesh.blogspot.in/2012/11/skytools-londiste-replication.html
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
http://yum.pgrpms.org/repopackages.php
http://yum.pgrpms.org/repopackages.php
http://www.it-ebooks.info/


Chapter 7

149

After this, install the following package; this is required because Bucardo is written in Perl:

yum install postgresql93-plperl

ff To install Bucardo, download the latest version of Bucardo, which is Bucardo Version 
5.2.0, from http://bucardo.org/wiki/Bucardo.

ff Extract from the tarball file, go to the newly downloaded location, and compile and 
build the software:
  tar xvfz Bucardo-5.2.0.tar.gz

  cd Bucardo-5.2.0

  perl Makefile.PL

  make

 

  make install

How to do it...
The following is the complete sequence of steps that are used to configure replication 
between two databases using Bucardo:

1.	 The first step is to install bucardo; that is, create the main bucardo database 
containing the information that the Bucardo daemon will need:
[postgres@localhost ~]$ bucardo install --batch --quiet

2.	 Create the bucardo superuser. In the next step, we create the source and target 
databases, that is, gamma1 and gamma2 respectively, between which the replication 
needs to be set up:
[postgres@localhost ~]$ psql -qc 'create database gamma1'

psql -d gamma1-qc 'create table t1 (id serial primary key, email 
text)'

[postgres@localhost ~]$ psql -qc 'create database gamma2 template 
gamma1'

www.it-ebooks.info

http://bucardo.org/wiki/Bucardo
http://www.it-ebooks.info/


High Availability and Replication

150

3.	 In the next step, we inform Bucardo about the databases that will be involved in  
the replication:
postgres@localhost ~]$ bucardo add db db1 dbname=gamma1

Added database "db1"

[postgres@localhost ~]$ bucardo add db db2 dbname=gamma2

Added database "db2"

4.	 Next, we create a herd myherd and include those tables from the source databases 
that will be part of the replication setup:
[postgres@localhost ~]$ bucardo add herd myherd t1

Created relgroup "myherd"

Added the following tables or sequences:

  public.t1 (DB: db1)

The following tables or sequences are now part of the relgroup 
"myherd":

  public.t1

5.	 In the next step, we create a source sync:
[postgres@localhost ~]$ bucardo add sync beta herd=myherd 
dbs=db1:source

Added sync "beta"

Created a new dbgroup named "beta"

6.	 Then, we create a target sync:
[postgres@localhost ~]$ bucardo add sync charlie herd=myherd 
dbs=db1:source,db2:target

Added sync "charlie"

Created a new dbgroup named "charlie"

7.	 At this stage, we have the replication procedure set up, so the next step is to start the 
Bucardo service:
[postgres@localhost ~]$ bucardo start

Checking for existing processes

Removing file "pid/fullstopbucardo"

Starting Bucardo

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

151

8.	 The next step is to test the replication setup. For this purpose, we are going to insert 
some records in the t1 table on the gamma1 source database:
psql  -d  gamma1 

gamma1=# insert into t1 values (1,'wallsingh@gmail.com');
INSERT 0 1
gamma1=# insert into t1 values (2,'neha.verma@gmail.com');
INSERT 0 1

9.	 Now that we have inserted some records in the source database in the previous step, 
we need to check whether these changes have been replicated in the gamma2 target 
database:
psql  -d  gamma2

gamma2=# select * from t1;
 id |        email         
----+----------------------
  1 | wallsingh@gmail.com
  2 | neha.verma@gmail.com
(2 rows)

How it works...
The following is a description of the steps mentioned in the preceding section:

ff In step 1 of the preceding section, we first create the bucardo database that will 
contain information about the bucardo daemon and will also create a superuser by 
the name bucardo.

ff In step 2, we create our source and target databases for replication, that is, gamma1 
and gamma2, respectively. We also create the t1 table on the gamma1 database that 
will be used for replication.

ff In step 3, we tell Bucardo about the source and target databases, that is, gamma1 
and gamma2, respectively that will be involved in the replication.

ff In step 4, we create a herd by the name myherd and include the t1 table from the 
gamma1 source database that will be part of the the replication setup. Any changes 
made to this table should be replicated from the source to the target databases.

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

152

ff In steps 5 and 6 of the preceding section, we basically create a source and a target 
sync, which will replicate the t1 table in the myherd herd and replicate it from the 
source database db1, that is gamma1, to the target database db2, that is gamma2. 
With the replication set up configured, we then start the Bucardo service in step 7 of 
the preceding section.

ff We test the replication setup in steps 8 and 9 of the preceding section. In step 8, 
we insert some records in the t1 table on the gamma1 database and in step 9, we 
login to the gamma2 database and check whether the newly inserted records in the 
t1 table on the gamma1 database are replicated across the gamma2 database. The 
result set of the SELECT query from the t1 table in the gamma2 database confirms 
that the inserted records in the gamma1 database have been successfully replicated 
in the gamma2 database.

You can refer to the following links for information on Bucardo replication:

ff http://blog.pscs.co.uk/postgresql-replication-and-bucardo/

ff http://blog.endpoint.com/2014/06/bucardo-5-multimaster-
postgres-released.html

Replication using DRBD
In this recipe, we are going to cover block-level replication using DRBD for PostgreSQL.

Getting ready
A working Linux machine is required for this setup. This setup requires network interfaces and 
a cluster IP. These steps are carried out in a CentOS Version 6 machine. Having covered the 
PostgreSQL setup in the previous chapters, it is assumed that the necessary packages and 
prerequisites are already installed.

We will be using the following setup in our hierarchy:

ff Node1.example.org uses the LAN's IP address 10.0.0.181 and uses 172.16.0.1 
for crossovers

ff Node2.example.org uses the LAN's IP address 10.0.0.182 and the IP address 
172.16.0.2 for crossovers

ff dbip.example.org uses the cluster IP address 10.0.0.180

www.it-ebooks.info

http://blog.pscs.co.uk/postgresql-replication-and-bucardo/
http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html
http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html
http://www.it-ebooks.info/


Chapter 7

153

How to do it...
Perform the following sequence of steps for block-level replication using DRBD:

1.	 First, temporarily disable SELINUX, set SELINUX to disabled, and then save  
the file:
vi /etc/selinux/config

SELINUX=disabled

2.	 In this step, change the hostname and gateway for both the nodes, that is,  
network interfaces:
vi /etc/sysconfig/network

# For node  1

NETWORKING=yes

NETWORKING_IPV6=no

HOSTNAME=node1.example.org

GATEWAY=10.0.0.2

#For node 2

NETWORKING=yes

NETWORKING_IPV6=no

HOSTNAME=node2.example.org

GATEWAY=10.0.0.2

3.	 In this step, we need to configure the network interfaces for the first node,  
that is, node1:

�� We first configure the first node1 database:
vi /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

BOOTPROTO=static

IPADDR=10.0.0.181

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=a2:4e:7f:64:61:24 

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

154

�� We then configure the crossover/DRBD interface for node1:
vi /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

BOOTPROTO=static

IPADDR=172.16.0.1

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=ee:df:ff:4a:5f:68

4.	 In this step, we configure the network interfaces for the second node, that is, node2:
vi /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

BOOTPROTO=static

IPADDR=10.0.0.182

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=22:42:b1:5a:42:6f

�� We then configure the crossover/DRBD interface for node2:
vi /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

BOOTPROTO=static

IPADDR=172.16.0.2

NETMASK=255.255.255.0

ONBOOT=yes

HWADDR=6a:48:d2:70:26:5e

5.	 In this step, we will configure DNS:
vi /etc/resolv.conf

search example.org

nameserver 10.0.0.2

�� Also, configure a basic hostname resolution:
vi /etc/hosts

127.0.0.1               localhost.localdomain localhost

10.0.0.181              node1.example.org     node1

10.0.0.182              node2.example.org     node2

10.0.0.180              dbip.example.org      node2

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

155

6.	 In this step, we will check the network connectivity between the nodes:

�� First, we will ping node2 from node1, first through the LAN interface and 
then through the crossover IP:
root@node1 ~]# ping -c 2 node2

PING node2 (10.0.0.182) 56(84) bytes of data.

64 bytes from node2 (10.0.0.182): icmp_seq=1 ttl=64 
time=0.089 ms

64 bytes from node2 (10.0.0.182): icmp_seq=2 ttl=64 
time=0.082 ms

--- node2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 
999ms

rtt min/avg/max/mdev = 0.082/0.085/0.089/0.009 ms 

[root@node1 ~]# ping -c 2 172.16.0.2

PING 172.16.0.2 (172.16.0.2) 56(84) bytes of data.

64 bytes from 172.16.0.2: icmp_seq=1 ttl=64 time=0.083 ms

64 bytes from 172.16.0.2: icmp_seq=2 ttl=64 time=0.083 ms

--- 172.16.0.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 
999ms

rtt min/avg/max/mdev = 0.083/0.083/0.083/0.000 ms 

�� Now, we will ping node1 from node2, first via the LAN interfaces and then 
through the crossover IP:
[root@node2 ~]# ping -c 2 node1

PING node1 (10.0.0.181) 56(84) bytes of data.

64 bytes from node1 (10.0.0.181): icmp_seq=1 ttl=64 
time=0.068 ms

64 bytes from node1 (10.0.0.181): icmp_seq=2 ttl=64 
time=0.063 ms

--- node1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 
999ms

rtt min/avg/max/mdev = 0.063/0.065/0.068/0.008 ms

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

156

�� Next, we will ping node1 through the crossover interface:
[root@node2 ~]# ping -c 2 172.16.0.1

PING 172.16.0.1 (172.16.0.1) 56(84) bytes of data.

64 bytes from 172.16.0.1: icmp_seq=1 ttl=64 time=1.36 ms

64 bytes from 172.16.0.1: icmp_seq=2 ttl=64 time=0.075 ms

--- 172.16.0.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 
1001ms

rtt min/avg/max/mdev = 0.075/0.722/1.369/0.647 ms

7.	 Install the necessary packages:
yum install -y  drbd83 kmod-drbd83 

8.	 In this step, configure DRBD on both the nodes:
vi /etc/drbd.conf

global {
    usage-count no;
}
common {
    syncer { rate 100M; }
    protocol      C;
}
resource postgres {
    startup {
       wfc-timeout 0;
       degr-wfc-timeout
       120;
    }
    disk { on-io-error detach; }
    on node1.example.org {
       device      /dev/drbd0;
       disk        /dev/sda5;
       address     172.16.0.1:7791;
       meta-disk   internal;
    }
    on node2.example.org {
       device      /dev/drbd0;
       disk        /dev/sda5;
       address     172.16.0.2:7791;
       meta-disk   internal;
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

157

9.	 Once the drbd.conf file is set up for both the nodes, we then write metadata on the 
postgres resource. Execute the following step on both the nodes:
[root@node1 ~]# drbdadm create-md postgres

Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created. 

root@node2 ~]# drbdadm create-md postgres

Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created. 

10.	 In this step, we will bring up the resource. Execute the following command on both 
the nodes:
drbdadm up postgres

11.	 In this step, we can make the initial sync between the nodes. This step can be 
performed on the primary node, and we set node1 as the primary node:
drbdadm -- --overwrite-data-of-peer primary postgres

12.	 To monitor the progress of the sync and the status of the DRBD resource, take a look 
at the /proc/drbd file:
[root@node1 ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

GIT-hash: d78846e52224fd00562f7c225bcc25b2d422321d build by 
mockbuild@builder10.centos.org, 2014-10-04 14:04:09

0: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C 
r----

ns:48128 nr:0 dw:0 dr:48128 al:0 bm:2 lo:0 pe:0 ua:0 ap:0 ep:1 
wo:b oos:8340188

[>....................] sync'ed:  0.6% (8144/8188)M delay_probe: 7

finish: 0:11:29 speed: 12,032 (12,032) K/sec 

13.	 Once the sync process is complete, we can take a look at both the statuses of the 
postgres resource on both the nodes:
[root@node1 ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

158

GIT-hash: d78846e52224fd00562f7c225bcc25b2d422321d build by 
mockbuild@builder10.centos.org, 2014-10-04 14:04:09

0: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r----

ns:8388316 nr:0 dw:0 dr:8388316 al:0 bm:512 lo:0 pe:0 ua:0 ap:0 
ep:1 wo:b oos:0   

[root@node2 ~]# cat /proc/drbd

version: 8.3.8 (api:88/proto:86-94)

GIT-hash: d78846e52224fd00562f7c225bcc25b2d422321d build by 
mockbuild@builder10.centos.org, 2014-10-04 14:04:09

0: cs:Connected ro:Secondary/Primary ds:UpToDate/UpToDate C r----

ns:0 nr:8388316 dw:8388316 dr:0 al:0 bm:512 lo:0 pe:0 ua:0 ap:0 
ep:1 wo:b oos:0  

14.	 In this step, we are going to initiate DRBD services. On both the nodes, issue the 
following command:
/etc/init.d/drbd start

15.	 In order to initialize the data directory and set up using DRBD, we will have to format 
and mount the DRBD device. Then, we initialize the data directory:

�� Issue the following commands on node1:
mkfs.ext4 /dev/drbd0 

mount -t ext4 /dev/drbd0 /var/lib/pgsql/9.3

chown postgres.postgres /var/lib/pgsql/9.3

�� Next, log in as the postgres user on node1 and initialize the database:
su - postgres 

initdb /var/lib/pgsql/9.3/data

exit 

16.	 In this step, we enable trusted authentication, and we will configure the parameters 
required to set up PostgreSQL in the postgresql.conf file. 

�� On node1, execute the following steps:
echo "host  all   all   10.0.0.181/32   trust" >> /var/lib/
pgsql/9.3/data/pg_hba.conf

echo "host  all   all   10.0.0.182/32   trust" >> /var/lib/
pgsql/9.3/data/pg_hba.conf

echo "host  all   all   10.0.0.180/32   trust" >> /var/lib/
pgsql/9.3/data/pg_hba.conf 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

159

�� Then, we configure the necessary parameters in the postgresql.conf file.

vi /var/lib/pgsql/9.3/data/postgresql.conf

listen_addresses = '*' 

17.	 Once the previously mentioned parameters have been changed in the postgresql.
conf file, the next step will be to start PostgreSQL. Execute the following command 
on node1:
service postgresql-9.3 start 

18.	 We will then create an admin user to manage PostgreSQL. On node1, execute 
the following command and when prompted for a password, you can choose any. 
However, for the sake of clarity of this exercise, we will use the admin keyword itself 
as the password:
su - postgres

createuser --superuser admin  --pwprompt

19.	 In this step, we will create a database and populate it with data. On node1, execute 
the following steps and then access the database:
su – postgres

createdb test

pgbench -test

pgbench -i test

psql -U admin -d test 

test=# select * from pgbench_tellers;

tid | bid | tbalance | filler
-----+-----+----------+--------
  1 |   1 |        0 |
  2 |   1 |        0 |
  3 |   1 |        0 |
  4 |   1 |        0 |
  5 |   1 |        0 |
  6 |   1 |        0 |
  7 |   1 |        0 |

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

160

  8 |   1 |        0 |
  9 |   1 |        0 |
 10 |   1 |        0 |
(10 registros) 

20.	 In this step, we will test the block-level replication and see whether PostgreSQL works 
on node2. On node1, execute the following commands:

�� We will first stop PostgreSQL on node1:
service postgresql-9.3 stop

�� Then, we will unmount the DRBD device on node1:
umount /dev/drbd0

�� Now, we will set up node1 as the secondary node:
drbdadm secondary postgres

�� Next, we will configure node2 as the primary node:
drbdadm primary postgres

�� In this step, mount the DRBD device:
mount -t ext3 /dev/drbd0 /var/lib/pgsql/9.3

�� Then, we start the postgresql service on node2:
service postgresql-9.3 start

�� Now, we will see whether we are able to access the test database  
on node2:
psql -u admin -d test

test=# select * from pgbench_tellers;

tid | bid | tbalance | filler
-----+-----+----------+--------
  1 |   1 |        0 |
  2 |   1 |        0 |
  3 |   1 |        0 |
  4 |   1 |        0 |
  5 |   1 |        0 |
  6 |   1 |        0 |
  7 |   1 |        0 |
  8 |   1 |        0 |
  9 |   1 |        0 |
 10 |   1 |        0 |
(10 registros)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

161

How it works...
In the initial steps, from steps 1 to 6, we configure the nodes, that is node1 and node2, set 
up the network connectivity, and configure DNS. In step 6, we do the network connectivity 
test between node1 and node2 on the LAN interface as well on the crossover interface. We 
receive successful echo response messages after doing the ping request tests. This shows 
that the network connectivity is successfully configured.

In step 8, we set up the drbd.conf file on both the nodes. Here is an extract from the  
drbd.conf file:

global {
    usage-count no;
}
common {
    syncer { rate 100M; }
    protocol      C;
}
resource postgres {
    startup {
       wfc-timeout 0;
       degr-wfc-timeout
       120;
    }
    disk { on-io-error detach; }
    on node1.example.org {
       device      /dev/drbd0;
       disk        /dev/sdb;
       address     172.16.0.1:7791;
       meta-disk   internal;
    }
    on node2.example.org {
       device      /dev/drbd0;
       disk        /dev/sdb;
       address     172.16.0.2:7791;
       meta-disk   internal;
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

162

Basically, using the previously mentioned configuration, we are setting up a postgres 
resource and configuring a DRBD interface, /dev/drbd0, which is set up on two nodes, 
node1 and node2. This is basically what causes the block-level replication to be successful. 
In step 11 of the preceding section, you can see that we have initially set up node1 as 
the primary node and node2 serves as the secondary node at this stage. Then, we set up 
PostgreSQL on node1 from step 15 onwards. From step 20 onwards, we perform failover 
testing. We first reset node1 as the secondary node, unmount the filesystem, and then set up 
node2 as the primary node; then, mount the file system and bring up the PostgreSQL server. 
After this, we are testing for record visibility in node2. The database test that was created in 
step 19 of the preceding section is accessible in node2 and so are the tables in the pgbench 
schema in step 20. Thus, DRBD provides block-level replication, and if one of the nodes is 
not available, we can then configure and continue to run PostgreSQL on the secondary node, 
where it is going to take the role of the primary server.

Setting up the Postgres-XC cluster
In this recipe, we are going to set up a Postgres-XC cluster.

Getting ready
Here, we need to install and set up Postgres-XC. These steps are carried out on a CentOS 
Version 6 Linux machine.

Perform the following set of steps:

1.	 First, go to http://sourceforge.net/projects/postgres-xc/ in order to 
download the Postgres-XC software.

2.	 In this step, extract from the tarball file and go to the newly created directory:
tar -zxvf pgxc-v1.0.4.tar.gz 

cd   pgxc-v1.0.4

3.	 Before you build and compile the software, the next step will be to install the following 
prerequisite packages:
yum -y install readline*

yum -y install bison*

yum -y install flex*

www.it-ebooks.info

http://sourceforge.net/projects/postgres-xc/
http://www.it-ebooks.info/


Chapter 7

163

4.	 Now, we are going to build and compile the software. We will also define a location to 
be used as the prefix:
mkdir -p /opt/Postgres-xc

chown -R postgres:postgres /opt/Postgres-xc/

./configure --prefix=/opt/Postgres-xc/

make

make install

How to do it...
Now, with the installation completed, we need to configure the Postgres-XC setup.

Perform the following steps:

1.	 We will now set up GTM (short for global transaction manager). For this purpose, we 
will first create a directory for GTM, set permissions, and then initialize the GTM:
mkdir -p /usr/local/pgsql/data_gtm 

chmod -R 700 /usr/local/pgsql/data_gtm 

/opt/Postgres-xc/bin/initgtm -Z gtm -D /usr/local/pgsql/data_gtm 

2.	 We will now configure the parameters in the gtm.conf file, which was created as a 
part of the previous step where GTM was initialized, and start the GTM:
nodename = 'GTM_Node' 
listen_addresses = '*' 
port = 7777 

Once these parameters have been changed, we can then set up the GTM:
/opt/Postgres-xc/bin/gtm_ctl -Z gtm start -D /opt/Postgres-xc/
data_gtm

Server Started

3.	 With the GTM set up and started, we will now set up the coordinator node. For this 
purpose, we will first create a directory for the coordinator, assign permissions, and 
then initialize the coordinator:
mkdir -p /opt/Postgres-xc/data_coord1 

chmod  -R 700 /opt/Postgres-xc/data_coord1 

/opt/Postgres-xc/bin/pg_ctl -D /opt/Postgres-xc/data_coord1/ -o 
'--nodename coord1' initdb

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

164

4.	 In the next step, we will configure the necessary parameters in the postgresql.
conf file. This will be set up in such a way that the coordinator is used as a node to 
connect to the GTM. Also, once the necessary parameters have been configured, we 
will start the coordinator:
listen_addresses = '*'
port = 2345
gtm_host = 'localhost'
gtm_port = 7777     
pgxc_node_name = 'coord1'   
pooler_port = 2344 
min_pool_size = 1                       
max_pool_size = 100                     
persistent_datanode_
connections = on                                            
max_coordinators = 16                   
max_datanodes = 16        

Once these parameters have been changed, we can start the coordinator, as follows:
/opt/Postgres-xc/bin/pg_ctl start -D /opt/Postgres-xc/data_coord1/ 
-Z coordinator -l /tmp/coord

5.	 We will now set up the first data node. For this purpose, we are going to create a 
directory, assign the respective permissions to it, and then initialize it:
mkdir -p /opt/Postgres-xc/data_node1 

chmod -R 700  /opt/Postgres-xc/data_node1 

/opt/Postgres-xc/bin/pg_ctl -D /opt/Postgres-xc/data_node1/ -o 
'--nodename datanode1' initdb 

6.	 In the next step, we will configure the necessary parameters for the first data 
node and then start the data node. These parameter changes are made in the 
postgresql.conf file:
vi postgresql.conf

listen_addresses = '*'
port = 1234
gtm_host = 'localhost'                  
gtm_port = 7777                 
pgxc_node_name = 'datanode1' 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

165

Once these changes have been made, we can launch the first data node:
/opt/Postgres-xc/bin/pg_ctl start -D /opt/Postgres-xc/data_node1 
-Z datanode -l /tmp/datanode1_log 

7.	 In this step, we will set up the second data node. For this purpose, we will configure 
the directory for the second data node, assign permissions, and then initialize it:
mkdir -p /opt/Postgres-xc/data_node2/

chmod -R  700  /opt/Postgres-xc/data_node2/ 

/opt/Postgres-xc/bin/pg_ctl -D /opt/Postgres-xc/data_node2/ -o 
'--nodename datanode2' initdb

8.	 In this step, we will configure the respective parameters for the second data node, 
and once we are done, we will start the second data node:
vi postgresql.conf

listen_addresses = '*'
port = 1233
gtm_host = 'localhost'                  
gtm_port = 7777                 
pgxc_node_name = 'datanode2'

Once these necessary parameter changes have been made, we will start the second 
data node:
/opt/Postgres-xc/bin/pg_ctl start -D /opt/Postgres-xc/data_node2 
-Z datanode -l /tmp/datanode2_log

9.	 In this step, we are going to register the first and second data nodes on the 
coordinator node:
cd /opt/Postgres-xc/bin/

psql -p 2345

postgres=# CREATE NODE datanode1 WITH ( TYPE = DATANODE , HOST = 
LOCALHOST , PORT = 1234 );

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

166

CREATE NODE

postgres=# CREATE NODE datanode2 WITH ( TYPE = DATANODE , HOST = 
LOCALHOST , PORT = 1233 );
CREATE NODE

10.	 Now, with the Postgres-XC architecture setup complete, we will start distributing the 
data by replication:
psql -p 2345

postgres=# CREATE TABLE DIST (T INT) DISTRIBUTE BY REPLICATION TO 
NODE datanode1,datanode2;
CREATE TABLE

postgres=#INSERT INTO DIST SELECT * FROM generate_series(1, 100);
INSERT 0 100 

postgres=# EXPLAIN ANALYZE SELECT * FROM DIST;

                           QUERY PLAN               
------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 
width=0) (act
ual time=0.880..1.010 rows=100 loops=1)
   Node/s: datanode1
 Total runtime: 1.076 ms
(3 rows)

We will now log in to datanode1  and datanode2, to see whether these records 
have been replicated on the DIST table:
psql -p 1234

postgres=# select count(*) from DIST;
 count 
-------
   100
(1 row)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

167

psql -p 1233

postgres=# select count(*) from DIST;
 count 
-------
   100
(1 row)

11.	 Now, we will test for distribution by hash:

Log in to the coordinator node:
psql -p 2345

CREATE TABLE t_test (id int4) DISTRIBUTE BY HASH (id);

INSERT INTO t_test SELECT * FROM generate_series(1, 1000);

We will now log in to  datanode1 and datanode2 and see how many records are 
replicated there:
psql -p 1233

postgres=# select count(*) from t_test;
 count 
-------
   508
(1 row)

psql -p 1234

postgres=# select count(*) from t_test;
 count 
-------
   492
(1 row)

www.it-ebooks.info

http://www.it-ebooks.info/


High Availability and Replication

168

How it works...
In the entire Postgres-XC architecture, we have used the following setup. We are using a GTM, 
a coordinator, and two data nodes. We will discuss the functionality for each one of them:

ff GTM: GTM is used to provide a consistent view of the data. A consistent view is 
basically provided through a cluster-wide snapshot. GTM is also responsible for 
creating global transaction IDs, which are necessary because transactions need  
to be coordinated cluster wide.

ff Coordinator: This serves as an entry point for applications and is used by the 
application to connect to the coordinator. A coordinator is responsible for SQL 
analysis, the creation of a global SQL execution plan, and global SQL execution.

ff Data node: A data node is used to hold data for a PostgreSQL cluster. One or more 
data nodes hold all or a part of the data inside the cluster.

We will now discuss the various steps performed in the preceding section:

ff Here, we will discuss steps 1 and 2 of the preceding section. This setup is all about 
GTM configuration. We initially configure a directory for GTM, set permissions, 
initialize the directory, and then start GTM later.

ff Steps 3 and 4 of the preceding section are all about the coordinator node's 
configuration. We initially configure a directory for the coordinator, set permissions, 
initialize the directory, and then start the coordinator.

ff Next, we will discuss steps 5 and 6 of the preceding section. This setup is all about 
the first data node's configuration. We initially configure a directory for datanode1, 
set permissions, initialize the directory, and then start the first data node.

ff Steps 7 and 8 of the preceding section discuss the second data node's configuration. 
We initially configure a directory for datanode2, set permissions, initialize the 
directory, and then start the second data node.

ff In step 9, we first log in to the coordinator node, and then we register the datanode1 
and datanode2 nodes with the coordinator node.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

169

ff In steps 10 and 11, we basically test the Postgres-XC cluster. In step 10, we log 
in to the coordinator node, create a DIST table, and then distribute this table by 
replication to datanode1 and datanode2. We then generate a series and insert 
about 100 records in the DIST table. Distribution by replication to the data nodes 
means that the data should be replicated in both the nodes for the DIST table. We 
then log in to the datanode1 node and then count the number of records from the 
DIST table; the count is 100. The same observation is obtained for the DIST table 
when we log in to the datanode2 node. This is effectively demonstrated in step 
10 of the preceding section; thus, all the records of the DIST table are replicated 
across both the data nodes. In step 11, we log in to the coordinator node and create 
a t_test table; then, we distribute the table by hash and insert 1000 records into 
the table. We then log in to the first data node, and we can see 508 records here. 
We then log in to the second data node, and we can see 492 records in the t_test 
table in the datanode2 node. What we see is an even distribution and splitting of 
the storage of records of the t_test table between data nodes 1 and 2.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


8
Connection Pooling

In this chapter, we will cover the following recipes:

ff Installing pgpool

ff Configuring pgpool and testing the setup

ff Starting and stopping pgpool

ff Setting up pgbouncer

ff Connection pooling using pgbouncer

ff Managing pgbouncer

Introduction
The pgpool-II utility is basically a middleware solution that works as an interface between a 
PostgreSQL server and a PostgreSQL client application. The pgpool-II utility serves as a proxy 
between PostgreSQL's backend and frontend protocols and relays a connection between the 
two. The pgpool-II utility caches connections to PostgreSQL servers and reuses them whenever 
a new connection with the same properties comes in, thereby reducing connection negotiation 
overhead such as authentication and encryption, and improving overall throughput.

In fact, the pgpool-II utility offers a lot more features than just connection pooling. It offers 
load balancing and replication modes along with the parallel query feature.

The pgbouncer utility is a lightweight connection pooler for PostgreSQL. Applications connect 
to the pgbouncer port just as they would connect to a PostgreSQL database on the database 
port. Using the pgbouncer utility, we can lower the connection overload impact on PostgreSQL 
server. The pgbouncer utility provides connection pooling by reusing existing connections.

www.it-ebooks.info

http://www.it-ebooks.info/


Connection Pooling

172

The difference between pgbouncer and pgpool-II is that pgbouncer is lightweight and is  
dedicated to the purpose of connection pooling, whereas pgpool-II offers more features such 
as replication, load balancing, and the parallel query feature in addition to connection pooling.

In this chapter, we will be referring to pgpool-II as pgpool for the purpose of simplicity.

Installing pgpool
Here is the recipe to install pgpool and configure it.

Getting ready
Installing pgpool from source requires gcc 2.9 or higher and GNU make. Since the pgpool  
links with the libpq library, the libpq library and its development headers must also be 
installed prior to installing pgpool. Also, the OpenSSL library must be present in order  
to enable OpenSSL support in pgpool.

If you are building from source, then follow these steps:

1.	 Download the latest tarball of pgpool from the following website:

http://www.pgpool.net/mediawiki/index.php/Downloads

2.	 The next step would be to extract the pgpool tarball and enter the source directory:
tar -xzf pgpool-II-3.4.0.tar.gz

cd pgpool-II-3.4.0

3.	 Build, compile, and install the pgpool software:
./configure –prefix=/usr/local --sysconfdir=/etc/pgpool/

make

make install

How to do it...
To install pgpool in a Debian or Ubuntu-based distribution, we can execute this command:

apt-get install pgpool2

On Red Hat, Fedora, CentOS, or any other RHEL-based Linux distributions use the following 
command. It should be noted that the package name used is what is existing now for pgpool, 
that is, the 93 keyword used at the end relates to a minor release of PostgreSQL. It may 
change later as updates are released:

yum install pgpool-II-93 

www.it-ebooks.info

http://www.pgpool.net/mediawiki/index.php/Downloads
http://www.it-ebooks.info/


Chapter 8

173

The following steps are applicable to when you use the operating system package manager 
such as yum to install pgpool, and when you are downloading and compiling from source. 
Basically, in the following steps, we are creating a directory for pgpool where it can maintain 
the activity logs and its service lock files:

1.	 In this step, we will create the location where pgpool can maintain activity logs:
mkdir /var/log/pgpool

chown –R postgres:postgres /var/log/pgpool

2.	 The next step will be to create a directory where pgpool can store its service  
lock files:
 mkdir /var/run/pgpool 

 chown –R postgres:postgres  /var/run/pgpool

How it works...
If you are using an operating-system-specific package manager to install pgpool, then the 
respective configuration files and logfiles required are automatically created. However, if you are 
proceeding with a full source-based pgpool installation, then there are some additional steps 
required. The first step is to run the configure script and then build and compile pgpool. After 
pgpool is installed, you will be required to create the directories where pgpool can maintain 
activity logs and service lock files. All of these steps need to be performed manually as can be 
seen in steps 1, 2, and 3, respectively, in the Getting ready section.

Configuring pgpool and testing the setup
In this recipe, we are going to configure pgpool and show how to make connections.

Getting ready
Before running pgpool, if you are downloading the source tarball, then the pgpool software 
needs to be built and compiled. These steps are shown in the first recipe of this chapter.

Also, we will be testing for replication using pgpool. For this purpose, we are setting up two 
data directories on the same server. They will act as two nodes.

Assuming that the default data directory, /var/lib/pgsql/9.3/data, which will serve as 
node 0, has already been set up, we will now set up another data directory that will serve as 
node 1:

initdb -D /var/lib/pgsql/9.3/data1

www.it-ebooks.info

http://www.it-ebooks.info/


Connection Pooling

174

Once the data directory has been set up, the next step is to change the port number for the 
new data directory. This is being done because two data directories cannot have the same 
port number. Since port number 5432 has already been used for the initial data directory, we 
will set the port number as 5433 in the postgresql.conf file for the new data directory and 
then start the server using this setup:

cd  /var/lib/pgsql/9.3/data1

vi postgresql.conf

port=5433

Once the file is saved, then start the new server:

pg_ctl -D  /var/lib/pgsql/9.3/data1  start

How to do it...
We are going to follow this sequence of steps to configure pgpool and run the setup:

1.	 After pgpool is installed as shown in the first recipe of the chapter, the next step 
would be to copy the configuration files from the sample directory with the default 
settings. They will be later edited according to our requirements:
cd /etc/pgpool-II-93

cp pgpool.conf.sample /etc/pgpool.conf

cp pcp.conf.sample /etc/pcp.conf

2.	 The next step is to define a username and password in the pcp.conf file, which is an 
authentication file for pgpool. Basically, to use PCP commands, user authentication 
is required. This mechanism is different from PostgreSQL's user authentication. 
Passwords are encrypted in the MD5 hash format. To obtain the MD5 hash for a user, 
we have to use the pg_md5 utility as shown in the following command. Once the MD5 
hash is generated, it can be used to store the MD5 password in the pcp.conf file:
pg_md5 postgres

e8a48653851e28c69d0506508fb27fc5

vi /etc/pcp.conf

 postgres:e8a48653851e28c69d0506508fb27fc5

3.	 Now we edit the pgpool.conf configuration file to configure our pgpool settings:
listen_addresses = 'localhost'
port = 9999
socket_dir = '/tmp'
pcp_port = 9898
pcp_socket_dir = '/tmp'
backend_hostname0 = 'localhost'

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

175

backend_port0 = 5432
backend_weight0 = 1
backend_data_directory0 = '/var/lig/pgsql/9.3/data'
backend_flag0 = 'ALLOW_TO_FAILOVER'
backend_hostname1 = 'localhost'
backend_port1 = 5433
backend_weight1 = 1
backend_data_directory1 = '/var/lib/pgsql/9.3/data1'
backend_flag1 = 'ALLOW_TO_FAILOVER'
enable_pool_hba = off
pool_passwd = 'pool_passwd'
authentication_timeout = 60
ssl = off
num_init_children = 32

max_pool = 4
child_life_time = 300
child_max_connections = 0
connection_life_time = 0
client_idle_limit = 0
connection_cache = on
reset_query_list = 'ABORT; DISCARD ALL'
replication_mode = on
master_slave_mode = off
replicate_select = off
insert_lock = on
load_balance_mode = on
ignore_leading_white_space = on
white_function_list = ''
black_function_list = 'nextval,setval'

4.	 Once the preceding parameters have been configured and saved in the pgpool.
conf file, the next step is to launch pgpool and start accepting connections to the 
PostgreSQL cluster using pgpool:
pgpool -f  /etc/pgpool.conf -F /etc/pcp.conf

psql -p 9999 postgres postgres

5.	 Now that pgpool has been started, we should see a handful of processes:
-bash-4.1$ ps ax |grep pool

28778 ?        Ss     0:00 pgpool -f /etc/pgpool.conf -F /etc/pcp.
conf

28779 ?        S      0:00 pgpool: wait for connection request

28780 ?        S      0:00 pgpool: wait for connection request

www.it-ebooks.info

http://www.it-ebooks.info/


Connection Pooling

176

28781 ?        S      0:00 pgpool: wait for connection request

28782 ?        S      0:00 pgpool: wait for connection request

28783 ?        S      0:00 pgpool: wait for connection request

28784 ?        S      0:00 pgpool: wait for connection request

28785 ?        S      0:00 pgpool: wait for connection request

28786 ?        S      0:00 pgpool: wait for connection request

28787 ?        S      0:00 pgpool: wait for connection request

28788 ?        S      0:00 pgpool: wait for connection request

28789 ?        S      0:00 pgpool: wait for connection request

28790 ?        S      0:00 pgpool: wait for connection request

28811 ?        S      0:00 pgpool: PCP: wait for connection 
request   

28812 ?        S      0:00 pgpool: worker process 

28849 pts/2    S+     0:00 grep pool

6.	 Before we connect to pgpool and start executing queries, we should check the status 
of the nodes participating in the cluster. For this purpose we will use a tool called  
pcp_node_info. Since we are using the same server for setup, node 0 and  
node 1 are more specifically data directories located at /var/lib/pgsql/9.3/
data and /var/lib/pgsql/9.3/data1:
-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 0

localhost 5432 1 0.500000

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 1

localhost 5433 1 0.500000

7.	 Now that both nodes are participating in the cluster, the next step is to connect to 
pgpool, create a table, and insert some records into that table:
psql -p 9999

postgres=# create table emp(age int);
CREATE TABLE
postgres=# insert into emp values (1);
INSERT 0 1
postgres=# insert into emp values (2);
INSERT 0 1
postgres=# insert into emp values (3);
INSERT 0 1
postgres=# insert into emp values (4);
INSERT 0 1

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

177

postgres=# insert into emp values (5);
INSERT 0 1
postgres=# insert into emp values (6);
INSERT 0 1
postgres=# \dt
        List of relations
 Schema | Name | Type  |  Owner   
--------+------+-------+----------
 public | emp  | table | postgres
(1 row)

postgres=# select * from emp;
 age
-----
   1
   2
   3
   4
   5
   6
(6 rows)

8.	 Now we will test for replication by connecting to ports 5432 and 5433, and see the 
table and the corresponding records that were inserted into it while being connected 
to pgpool:
psql -p 5433

postgres=# \dt
        List of relations
 Schema | Name | Type  |  Owner   
--------+------+-------+----------
 public | emp  | table | postgres
(1 row)

postgres=# select * from emp;
 age
-----

www.it-ebooks.info

http://www.it-ebooks.info/


Connection Pooling

178

   1
   2
   3
   4
   5
   6
(6 rows)

-bash-4.1$ psql -p 5432

postgres=# \dt
        List of relations
 Schema | Name | Type  |  Owner   
--------+------+-------+----------
 public | emp  | table | postgres
(1 row)

postgres=# select * from emp;
 age
-----
   1
   2
   3
   4
   5
   6
(6 rows)

How it works...
Let's now discuss some of the parameters that were configured in the earlier section:

ff listen_addresses: We configure listen_addresses to * because we want to 
listen to all IP addresses and not a particular IP address.

ff port: This defines the pgpool port that the system will listen to when accepting 
database connections.

ff backend_hostname0: This refers to the hostname of the first database in our setup. 
Similarly, we set up backend_hostname1 for the second node.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

179

ff backend_port0: This is the TCP port of the system, that is, the system identified by 
the backend_hostname0 value on which the database is hosted. Similarly, we set 
backend_port1 for the the second node.

ff backend_weight0: This is the weight assigned to the node identified by the 
hostname obtained from backend_hostname0. Basically in pgpool, weights are 
assigned to individual nodes. More requests will be dispatched to the node with a 
higher weight value. Similarly, we set up backend_weight1 for the second node.

ff backend_data_directory0: This represents the data directory, that is, PGDATA 
for the host identified by the backend_hostname0 value. Similarly, we set up the 
backend_data_directory1 value for the second node.

ff connection_cache: To enable the connection pool mode, we need to turn on 
connection_cache.

ff max_pool: This value determines the maximum size of the pool per child.  
The number of connections from pgpool to the backends may reach a limit  
at num_init_children*max_pool.

In our case, we configured max_pool to 4 and num_init_children to 32, both being 
the default value. So when multiplied, the total number of connections from pgpool to the 
backend may reach a limit of 128. Remember that the max_pool * num_init_children value 
should always be less than the max_connections parameter value.

The other parameters that were discussed in the preceding steps are as follows:

ff replication_mode: This parameter turns replication explicitly on. By default, it is 
set to off.

ff load_balance_on: Enabling this parameter ensures that pgpool splits the load to 
all of the hosts or nodes attached to the system.

ff master_slave_mode: This parameter enables the master/slave mode. This 
parameter must be set to off when the replication_mode is set to on.

The other parameters take default values, and you may refer to the following pgpool links 
follows for more information regarding them:

http://www.pgpool.net/docs/latest/pgpool-en.html#config

http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/
pgpool.conf

Finally, once the parameters are configured, it is time to launch pgpool and make connections 
on the pgpool port 9999.

Once pgpool is launched, we can see that some processes in the background have already 
started, as seen in step 5 of the preceding section.

www.it-ebooks.info

http://www.pgpool.net/docs/latest/pgpool-en.html#config
http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/pgpool.conf
http://www.pgpool.net/pgpool-web/contrib_docs/simple_sr_setting_3.1/pgpool.conf
http://www.it-ebooks.info/


Connection Pooling

180

Before we make connections using pgpool, we are basically utilizing a tool called pcp_node_
info to check the status of the nodes, as seen in step 6 of the preceding section.

The pcp_node_info command has the following syntax:

pcp_node_info  <timeout>  <hostname>  <port>  <username> <password>  
<nodeid>.

Here is the excerpt from step 6 of the preceding section:

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 0

localhost 5432 1 0.500000

-bash-4.1$ pcp_node_info 5 localhost 9898 postgres postgres 1

localhost 5433 1 0.500000

As per step 6 of the preceding section, we are specifying the connection timeout value to be 
5 .The hostname refers to the localhost, followed by port number 5432 and the username/
password combination, which is set to the postgres user along with password as postgres. 
The final parameter is nodeid, which is set to 0 for the first node. Node 0 in our case refers 
to the /var/lib/pgsql/9.3/data data directory. Similarly, we use pcp_node_info to 
specify the port 5433 and the nodeid value as 1 for the /var/lib/pgsql/9.3/data1 
data directory.

Whenever the pcp_node_info command is triggered, the system will respond with the 
following output: the hostname, port number, status, and weight of the node.

Among all of these values, the third column, which refers to the status of the node, is the most 
important. If the value of the status column is 1, it means that the node is up but connections 
are yet to be made. If the value of the status column is 2, it means that the node is up and 
connections are pooled. If the value of the status column is 3, it means that the node is down 
and some action needs to be taken.

In our scenario, the value of the status column is 1 for both the nodes, which means we are 
good to go and we can start making connections to pgpool. If the value of the status column 
is 3, then you need to enable the node using the pcp_attach_node tool. The pcp_attach_
node command has the same syntax as the pcp_node_info command and can be used as 
shown in the following line, assuming that the value of the status column of a node is 3. Let 
us assume this value for the status column of node 1:

pcp_attach_node 5  localhost 5433 postgres postgres 1

In step 7 of the preceding section, we are connecting to pgpool on port 9999, creating a table 
named emp and inserting some records into it.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

181

In step 8, we are testing for replication. We can clearly see that the emp table and the 
corresponding records are available there when making connections to port 5433 and port 
5432. This confirms successful replication using pgpool.

Refer to the following web links for more details on pgpool:
ff http://www.pgpool.net/mediawiki/index.php/

Relationship_between_max_pool,_num_init_
children,_and_max_connections

ff http://www.pgpool.net/docs/latest/pgpool-en.
html#connection_pool_mode

Starting and stopping pgpool
In this recipe, we are going to show the commands that can be used to start and stop pgpool.

Getting ready
Before pgpool can be started, we need to configure the pgpool settings in the pgpool.conf 
configuration. This is covered in the previous recipe.

How to do it...
The pgpool utility can be started in two ways:

ff By starting the pgpool service at the command line as the root user:
service pgpool start

ff By executing the pgpool command on the terminal:
pgpool

Similarly, pgpool can be stopped in two ways:

ff By stopping the pgpool service at the command line as the root user:
service pgpool stop

ff By executing the pgpool command with the stop option:
pgpool stop

www.it-ebooks.info

http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/mediawiki/index.php/Relationship_between_max_pool,_num_init_children,_and_max_connections
http://www.pgpool.net/docs/latest/pgpool-en.html#connection_pool_mode
http://www.pgpool.net/docs/latest/pgpool-en.html#connection_pool_mode
http://www.it-ebooks.info/


Connection Pooling

182

How it works...
Starting and stopping pgpool is relatively simple, as was seen in the preceding section. 
However, pgpool comes with a lot of options, and the following is the most commonly  
used syntax to start pgpool:

pgpool [-c][-f config_file][-a hba_file][-F pcp_config_file]

These options are discussed as follows:

ff -c: The -c switch is used to clear the query cache

ff -f config_file: This option specifies the pgpool.conf configuration file, and pgpool 
obtains its configuration from this file when starting itself

ff -a hba_file: This option specifies the authentication file that is used when  
starting pgpool

ff -F pcp_config_file: This option specifies the password file, pcp.conf, to be used 
when starting pgpool

For the full syntax of pgpool, refer to the following web link:
http://www.pgpool.net/docs/latest/pgpool-en.html#start

To stop pgpool, the same options that were used earlier to start pgpool can be used.  
However, along with these switches, we can also specify the mode that needs to be  
used while stopping pgpool.

There are two modes in which pgpool can be stopped:

ff Smart mode: This option is specified using the -m s (smart) option. In this mode, we 
first wait for the clients to disconnect and then shut down pgpool.

ff Fast mode: This mode can be set by specifying the –m f (fast) option. In this mode, 
pgpool does not wait for clients to disconnect and shuts down pgpool immediately.

The complete syntax of the pgpool stop command is as follows:

pgpool [-f config_file][-F pcp_config_file] [-m {s[mart]|f[ast]|]}] 
stop

Usually, if there are any clients connected, pgpool waits for them to disconnect and will then 
terminate itself. However, if you want to shutdown pgpool forcibly without waiting for clients to 
disconnect, you can use the following command:

pgpool -m fast stop

www.it-ebooks.info

http://www.pgpool.net/docs/latest/pgpool-en.html#start
http://www.it-ebooks.info/


Chapter 8

183

Setting up pgbouncer
In this recipe, we are going to show the steps that are required to install pgbouncer.

Getting ready
We can either do a full source-based installation or use the operating-system-specific package 
manager to install pgbouncer.

How to do it...
On an Ubuntu or Debian-based system, we need to execute the following command to  
install pgbouncer:

apt-get install pgbouncer.

On CentOS, Fedora, or Red Hat-based Linux distributions we can execute the following command:

yum install pgbouncer

If you are doing a full source-based installation, then the sequence of commands is as follows:

1.	 Download the archive installation file from the following link:

http://pgfoundry.org/projects/pgbouncer

2.	 Extract the downloaded archive and enter the source directory:
tar -xzf pgbouncer-1.5.4.tar.gz

cd pgbouncer-1.5.4

3.	 The next step is to build and proceed with the software installation:
./configure –prefix=/usr/local 

make & make install

4.	 Now create a configuration directory to hold a pgbouncer configuration file. This file 
can be used later on to make parameter changes:
mkdir /etc/pgbouncer

chown -R postgres:postgres /etc/pgbouncer

www.it-ebooks.info

http://pgfoundry.org/projects/pgbouncer
http://www.it-ebooks.info/


Connection Pooling

184

How it works...
If you are using an operating-system-specific package manager to install pgbouncer, then the 
respective configuration files and logfiles required by pgbouncer are automatically created. 
However, if you are proceeding with a full source-based pgbouncer installation, then there are 
some additional steps required. You will be required to create the directories where pgbouncer 
can maintain activity logs and service lock files. You will also be required to create the 
configuration directory where the configuration file for pgbouncer will be stored. All of these 
steps need to be performed manually as shown in steps 2, 3, and 4 in the prior section.

Connection pooling using pgbouncer
In this recipe, we are going to implement pgbouncer and benchmark the results for database 
connections made to the database via pgbouncer against normal database connections.

Getting ready
Before we configure and implement connection pooling, the pgbouncer utility must be 
installed. Installing pgbouncer is covered in the previous recipe.

How to do it...
1.	 First, we are going to tweak some of the configuration settings in the pgbouncer.

ini configuration file, as follows. The first two entries are for the databases that will 
be passed through pgbouncer. Next, we configure the listen_addr parameter to 
*, which means that it is going to listen to all IP addresses. Finally, we set the last 
two parameters, which are auth_file, the location of the authentication file and 
auth_type, which indicates the type of authentication used. We use plain as 
the authentication type, which indicates that the we are using the password-based 
mechanism here for authentication:
vi  /etc/pgbouncer/pgbouncer.ini

postgres = host=localhost dbname=postgres
pgtest = host=localhost dbname=pgtest
listen_addr = *
auth_file = /etc/pgbouncer/userlist.txt
auth_type = md5

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

185

2.	 The next step is to create a user list that contains the users who will be allowed 
to access the databases through pgbouncer. The format of the entries in the user 
list would be supplied as username followed by the user's password as shown in 
the following command, where the first entry is for the username, whose value is 
author, and the second entry is for the password, whose value is password. Since 
we have set the authentication type as MD5, we have to use the MD5 password entry 
in the user list. Had we set the authentication type as plain, then the actual password 
would have been supplied in the user list:
postgres=# CREATE role author LOGIN PASSWORD 'author' SUPERUSER;
CREATE ROLE

postgres=# select rolname ,rolpassword from pg_authid where 
rolname='author';
 rolname |             rolpassword             
---------+-------------------------------------
 author  | md5d50afb6ec7b2501164b80a0480596ded
(1 row)

The MD5 password obtained can then be defined in the userlist file for the 
corresponding user:

vi /etc/pgbouncer/userlist.txt

"author" "md5d50afb6ec7b2501164b80a0480596ded"

3.	 Once we have configured the pgbouncer.ini configuration file and created the 
userlist file, the next step would be to start the pgbouncer service:
service pgbouncer start

4.	 Once the pgbouncer service is up and running, the next step will be to make 
connections to it. By default, the pgbouncer service runs on port 6432, so any 
connections made to the pgbouncer service need to be made on port 6432:
psql -h localhost -p 6432 -d postgres -U author  -W

5.	 Now that we have made connections using pgbouncer, the next logical step is  
to find out whether there are any performance improvements using pgbouncer.  
For this purpose, we are going to create a temporary database—the one that was 
initially defined in the pgbouncer.ini file—and insert records into it, and then 
benchmark connections made against this database:
createdb pgtest

pgbench -i -s 10 pgtest

www.it-ebooks.info

http://www.it-ebooks.info/


Connection Pooling

186

6.	 Then we benchmark the results against the pgtest database:
-bash-3.2$ pgbench -t 1000 -c 20 -C -S  pgtest

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps = 217.374571 (including connections establishing)

tps = 1235.875488 (excluding connections establishing)

7.	 The final step would be to benchmark the results against the pgtest database on 
pgbouncer port 6432:
-bash-3.2$ pgbench -t 1000 -c 20 -C -S pgtest -p 6432 -U author

Password:

starting vacuum...end.

transaction type: SELECT only

scaling factor: 10

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps = 2033.768075 (including connections establishing)

tps = 53124.095230 (excluding connections establishing)

How it works...
Here we can see a couple of things. Initially, we have to configure the pgbouncer.ini 
configuration file along with the userlist file, which will be used for accessing databases 
via pgbouncer. The effectiveness of pgbouncer can be seen in steps 6 and 7 in the preceding 
section. We can see that the throughput increases to 2033.768 transactions per second 
when pgbouncer is used, whereas when pgbouncer is not used, the throughput decreases to 
a mere 217.37 transactions per second. In effect, using pgbouncer increases throughput by 
approximately 10 times.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

187

There's more...
In the How it works... section, we configured a couple of parameters in the pgbouncer.ini 
configuration file. However, there are many more parameters that can be configured, and 
if not configured, they will take the default settings. Refer to the following link to get more 
details on pgbouncer parameters:

http://pgbouncer.projects.pgfoundry.org/doc/config.html

Managing pgbouncer
The pgbouncer utility provides an administrative console to view pool status and client 
connections. In this recipe, we are going to view information regarding pgbouncer connections 
(client connections), view pool status, and obtain connection pooling statistics.

Getting ready
Before we issue any commands, we first need to connect to the pgbouncer's administrative 
console. For this purpose, we need to set the admin_users parameter in the pgbouncer.
ini configuration file:

vi /etc/pgbouncer/pgbouncer.ini

admin_users = author

Once the preceding changes are saved in the pgbouncer.ini configuration file, the 
pgbouncer service needs to be restarted in order to ensure that the parameter changes  
come into effect:

service pgbouncer restart

Once this is done, we can make connections to the pgbouncer administration console with the 
following command:

psql -p 6432 -U author pgbouncer

www.it-ebooks.info

http://pgbouncer.projects.pgfoundry.org/doc/config.html
http://www.it-ebooks.info/


Connection Pooling

188

How to do it...
With the help of the pgbouncer administration console, we can get information regarding the 
clients, servers, and pool health:

1.	 To get information regarding the clients, issue the SHOW CLIENTS command, as 
shown in the following screenshot, on the pgbouncer admin interface:

2.	 To get information regarding server connections, issue the SHOW SERVERS command, 
as shown in the following screenshot, on the pgbouncer administrative console:

3.	 Similarly, you can issue the SHOW POOLS and SHOW STATS commands to get 
information regarding pool status and pool statistics respectively, as shown in  
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

189

How it works...
As we saw in the preceding section, we can get information regarding the clients, servers, and 
pool health and statistics. When you issue the SHOW CLIENTS command on the pgbouncer 
administrative console, pgbouncer provides you with a list of clients that have been either 
using a PostgreSQL connection or waiting for it. Some of the important columns displayed in 
the output of the SHOW CLIENTS command are discussed here:

ff user: The value in this column displays the user that is connected to the database.

ff database: The value in this column displays the database name to which the client 
is connected.

ff state: The value here displays the session state of the currently connected user. The 
client connection can be in active, used, waiting, or idle state.

ff connect_time: The value in this column indicates the time at which pgbouncer 
initiated the client connection to PostgreSQL.

ff request_time: This column's value shows the timestamp of the latest client request.

ff port: The value in this column indicates the port to which the client is connected.

We have the SHOW SERVERS command, which is used to display information about every 
connection that is being used to fulfill client requests. The SHOW SERVERS output contains 
similar columns, which were discussed for SHOW CLIENTS. The only difference is for the 
type column. If the value for the type column is S, it means that it is a server entry. If the 
value for the type column is C, it means that it is a client entry. Some of the other important 
columns for the SHOW SERVERS output are discussed as follows:

ff user: The value in this column displays the user that is connected to the database.

ff database: The value in this column displays the name of the database to which the 
connection is attached.

ff state: The value here displays the state of the pgbouncer server connection. The 
server state could be active, used, or idle.

ff connect_time: The value in this column indicates the time at which the connection 
was made.

ff request_time: This column's value shows the timestamp for when the most recent 
request was issued.

ff port: The value in this column indicates the port number of the PostgreSQL server.

www.it-ebooks.info

http://www.it-ebooks.info/


Connection Pooling

190

The SHOW POOLS command displays a row for every database for which pgbouncer acts as a 
proxy. Some of the important columns in the SHOW POOLS output are as follows:

ff cl_active: The value in this column displays the number of clients that are 
currently active and assigned a server connection.

ff cl_waiting: The value in this column displays the number of clients waiting for a 
server connection.

ff sl_active: The value in this column displays the number of server connections that 
are assigned to pgbouncer clients.

ff sl_idle: The value here displays the number of idle server connections, including 
the ones that are not in use.

ff sl_used: The value in this column displays the number of used server connections. 
In effect, these connections are actually idle but they have not been marked by 
pgbouncer for reuse yet.

The SHOW STATS command displays the relevant connection pool statistics related  
to pgbouncer for the databases for which pgbouncer is acting as a proxy. Some of the 
important columns in the SHOW STATS output are as follows:

ff total_requests: The value in this column displays the total number of SQL 
requests pooled by pgbouncer

ff total_received: The value in this column displays the total volume of network 
traffic (measured in bytes) that has been received by pgbouncer

ff total_sent: This column's value displays the total volume of network traffic 
(measured in bytes) that has been sent by pgbouncer

ff total_query_time: The value in this column displays the amount of time in 
microseconds that pgbouncer spent communicating with a client in this pool

www.it-ebooks.info

http://www.it-ebooks.info/


9
Table Partitioning

In this chapter, we will cover the following recipes:

ff Implementing partitioning

ff Managing partitions

ff Partition and constraint exclusion

ff Alternate partitioning methods

ff Installing PL/Proxy

ff Partitioning with PL/Proxy

Introduction
Partitioning is defined as splitting up a large table into smaller chunks. PostgreSQL supports 
basic table partitioning. Partitioning is entirely transparent to the applications if it is 
implemented correctly. Partitioning has a lot of benefits, which are discussed, as follows:

ff The query performance can be improved significantly for certain types of queries.

ff Partitioning can lead to an improved update performance. Whenever queries update 
a big chunk of a single partition, performance can be improved by performing a 
sequential scan for that partition, instead of using random reads and writes that are 
dispersed across the entire table.

ff Bulk loads and deletes can be accomplished by adding or removing partitions if 
the requirement is incorporated in the partition design. The ALTER TABLE NO 
INHERIT and DROP TABLE operations perform faster than a bulk operation. Also, 
these commands avoid the VACUUM overhead caused by a bulk delete.

ff Infrequently used data can be shipped to cheaper and slower media.

www.it-ebooks.info

http://www.it-ebooks.info/


Table Partitioning

192

Implementing partitioning
Here, we are going to cover table partitioning and show the steps that need to be performed 
in order to partition a table.

Getting ready
Exposure to database design and normalization is the only requirement.

How to do it...
The following series of steps need to be carried out in order to set up table partitioning:

1.	 First, create a master table with all the fields. A master table is the table that will 
be used as a base to partition data into other tables, that is, partitions. An index is 
optional for a master table; however, since there are performance benefits of using 
an index, we will create an index from a performance perspective here:
CREATE TABLE country_log (
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    country_code char(2),
    content text
);

CREATE INDEX country_code_idx ON country_log USING btree  
(country_code);

2.	 The next step is to create child tables that will inherit from the master table:
CREATE TABLE country_log_ru ( CHECK ( country_code = 'ru') ) 
INHERITS (country_log);
CREATE TABLE country_log_sa ( CHECK ( country_code = 'sa' ) ) 
INHERITS (country_log);

3.	 Next, create an index for each child table:
CREATE INDEX country_code_ru_idx ON country_log_ru USING btree 
(country_code);
CREATE INDEX country_code_sa_idx ON country_log_sa USING btree 
(country_code);

4.	 Then, create a trigger function with the help of which data will be redirected to the 
appropriate partition table, as follows:
CREATE OR REPLACE FUNCTION country_insert_trig() RETURNS TRIGGER 
AS $$
BEGIN
    IF ( NEW.country_code = 'ru' ) THEN

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

193

        INSERT INTO country_log_ru VALUES (NEW.*);
    ELSIF ( NEW.country_code = 'sa' ) THEN
        INSERT INTO country_log_sa VALUES (NEW.*);
    ELSE
        RAISE EXCEPTION 'Country unknown';
    END IF;

    RETURN NULL;
END;
$$ LANGUAGE plpgsql;

5.	 Now, create a trigger and attach the trigger function to the master table:
CREATE TRIGGER country_insert
BEFORE INSERT ON country_log
FOR EACH ROW EXECUTE PROCEDURE country_insert_trig();

6.	 Next, insert data into the master table, as shown here:
postgres=# INSERT INTO country_log (country_code, content) VALUES 
('ru', 'content-ru');
postgres=# INSERT INTO country_log (country_code, content) VALUES 
('sa', 'content-sa');

7.	 The final step is to select the data from both the master and child tables to confirm 
the partitioning of data in the child tables, as follows:
postgres=# SELECT * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 12:10:06.123189-08 | ru           | content-ru
 2014-11-30 12:10:14.22666-08  | sa           | content-sa
(2 rows)

postgres=# select * from country_log_ru;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 12:10:06.123189-08 | ru           | content-ru
(1 row)

postgres=# select * from country_log_sa;
          created_at          | country_code |  content   
------------------------------+--------------+------------
 2014-11-30 12:10:14.22666-08 | sa           | content-sa
(1 row)

www.it-ebooks.info

http://www.it-ebooks.info/


Table Partitioning

194

How it works...
The following is a detailed explanation of the steps carried out in the preceding section:

ff PostgreSQL basically supports partitioning via table inheritance. Hence, partitioning 
is set up in such a way that every child table inherits from the parent table. For this 
purpose, we create two child tables, that is, country_log_ru and country_log_
sa, in step 2 of the previous section. These child tables inherit from the parent or  
the master table, country_log, using the INHERITS keyword against the master 
table for the CREATE TABLE DDL statement for both the child tables. This was the 
initial setup.

ff The next step, from our scenario, is to build partitioning in such a way that the logs by 
country are stored in a country-specific table. The case that we used in the previous 
section was to ensure that all the logs for Russia go in the country_log_ru table 
and all the logs for South Africa go in the country_log_sa table. To achieve 
this objective, we define a country_insert_trig trigger function, which helps 
partition the data into a country-specific table whenever an INSERT statement is 
triggered on the country_log master table. The moment the INSERT statement 
gets triggered on country_log master table, the country_log trigger gets fired 
upon which it calls country_insert_trig(). The country_insert_trig() 
trigger function checks the inserted records, and if it finds records for Russia 
(checked by the NEW.country_code = 'ru' condition) in the country_log 
table, then it inserts the said record in the country_log_ru child table. If the 
inserted record in the country_log master table is for South Africa (NEW.
country_code = 'sa'), then it logs the same record in the country_log_sa 
child table. The trigger function partitions the data in this way. The following section 
of code, in the country_insert_trig() trigger function, uses the logic defined in 
the IF condition to partition the data into the child tables:
IF ( NEW.country_code = 'ru' ) THEN
  INSERT INTO country_log_ru VALUES (NEW.*);
ELSIF ( NEW.country_code = 'sa' ) THEN
  INSERT INTO country_log_sa VALUES (NEW.*);
ELSE
  RAISE EXCEPTION 'Country unknown';
END IF;

ff Finally, once the data has been partitioned into the child tables, the final step is to 
verify the same by comparing the records from the child tables and the master table, 
as shown in step 7.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

195

Initially, two records were inserted in the country_log master table. This can be confirmed 
by running the SELECT query against the country_log table. Here, we can see two log 
records in the country_log table, one for Russia, identified by the country code ru, and one 
for South Africa, identified by the country code sa:

postgres=# SELECT * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 12:10:06.123189-08 | ru           | content-ru
 2014-11-30 12:10:14.22666-08  | sa           | content-sa
(2 rows)

The next step is to run the SELECT queries against the respective child tables,  
country_log_ru and country_log_sa:

postgres=# select * from country_log_ru;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 12:10:06.123189-08 | ru           | content-ru
(1 row)

postgres=# select * from country_log_sa;
          created_at          | country_code |  content   
------------------------------+--------------+------------
 2014-11-30 12:10:14.22666-08 | sa           | content-sa
(1 row)

From the preceding output, you can see that there is only one record in each child table 
country_log_ru and country_log_sa. In effect, the country_insert_trig() trigger 
function has partitioned the log data in country-specific tables. Entries for the country_code 
column with the ru value, that is, for Russia, go into the country_log_ru table, and entries 
for the country_code column with the value sa, that is, South Africa, go into the country_
log_sa child table.

There's more
You can refer to the following links for more detailed explanation on how to  
implement partitioning:

ff https://blog.engineyard.com/2013/scaling-postgresql-
performance-table-partitioning

ff http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html

www.it-ebooks.info

https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.it-ebooks.info/


Table Partitioning

196

Managing partitions
Here, we are going to show you how the partitioning scheme remains intact when an existing 
partition is dropped or a new partition is added.

Getting ready
Please refer to the first recipe, Implementing partitioning, before you read the steps outlined 
in this recipe.

How to do it...
There are two scenarios here. One scenario shows what happens when you delete an existing 
partition, and another shows what happens when a new partition is added. Let's discuss both 
the cases.

ff In the first scenario, we will drop an existing partition table. Here, the country_
code_sa table will be dropped, as follows:

1.	 Before dropping the country_log_sa child table, see the records in the 
country_log master table:
postgres=# SELECT * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 12:10:06.123189-08 | ru           | content-ru
 2014-11-30 12:10:14.22666-08  | sa           | content-sa
(2 rows)

2.	 Next, drop the country_log_sa child table, as shown here:
postgres=# drop table country_log_sa;
DROP TABLE

3.	 Again, as a final step, recheck the data in the master table, country_log, 
once country_log_sa is dropped:
postgres=# select * from country_log;
          created_at         | country_code |  content   
-----------------------------+--------------+------------

      2014-11-30 14:41:40.742878-08 | ru           | content-ru

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

197

ff In the second scenario, we will add a partition. Let's add a new partition, country_
log_default. The idea of creating this partition is that if there are tables for which 
the trigger function does not define any country codes, those records should go into a 
default table partition, as follows:

1.	 Before we create the child table, let's see the existing records in the 
country_log master table:
postgres=# select * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 14:41:40.742878-08 | ru           | content-ru

2.	 Next, create a country_log_sa child table and create an index on the 
child table, as shown here:
postgres=# CREATE TABLE country_log_default ( ) INHERITS 
(country_log);
CREATE TABLE
postgres=# CREATE INDEX country_code_default_idx ON  
country_log_default USING btree (country_code);
CREATE INDEX;

3.	 Modify your existing trigger function in order to define a condition to insert 
log records for those countries whose country codes are not explicitly defined 
in order to go into a country code specific log table:
CREATE OR REPLACE FUNCTION country_insert_trig() RETURNS 
TRIGGER AS $$
BEGIN
    IF ( NEW.country_code = 'ru' ) THEN
        INSERT INTO country_log_ru VALUES (NEW.*);
    ELSIF ( NEW.country_code = 'sa' ) THEN
        INSERT INTO country_log_sa VALUES (NEW.*);
    
    ELSE
        INSERT INTO country_log_default VALUES (NEW.*);
    END IF;

    RETURN NULL;
END;
$$ LANGUAGE plpgsql;

www.it-ebooks.info

http://www.it-ebooks.info/


Table Partitioning

198

4.	 Now, insert records into the master table:
postgres=# INSERT INTO country_log (country_code, content) 
VALUES ('dk', 'content-dk');
INSERT 0 0
postgres=# INSERT INTO country_log (country_code, content) 
VALUES ('us', 'content-us');
INSERT 0 0

5.	 Let's check the newly created records in the country_log master table and 
see if these records have been partitioned into the country_log_default 
child table:
postgres=# select * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 14:41:40.742878-08 | ru           | content-ru
 2014-11-30 15:10:28.921124-08 | dk           | content-dk
 2014-11-30 15:10:42.97714-08  | us           | content-us

postgres=# select * from country_log_default;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 15:10:28.921124-08 | dk           | content-dk
 2014-11-30 15:10:42.97714-08  | us           | content-us
(2 rows)

How it works...
First, let's discuss the first scenario where we drop the child partition table,  
country_log_sa. Here's the code snippet that was shown in the previous section:

postgres=# SELECT * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 12:10:06.123189-08 | ru           | content-ru
 2014-11-30 12:10:14.22666-08  | sa           | content-sa
(2 rows)

postgres=# drop table country_log_sa;
DROP TABLE

postgres=# select * from country_log;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 14:41:40.742878-08 | ru           | content-ru

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

199

If you refer to the sequence of events in the preceding output, you can clearly see that once 
the child table, country_log_sa, got dropped, its corresponding entry from the country_
log master table also got removed. This technique really helps if there are a large number 
of records to be pruned from the master table once the corresponding child table is dropped. 
This procedure is automatic and does not require DBA intervention. This way, the partition 
structure and data can be easily managed and handled if any existing partition is dropped.

Similarly, data can be easily managed when a new partition is added. If you refer to step 2 
of the second scenario in the How to do it... section, you can see that we create a new child 
table, country_log_default, which inherits from the country_log master table. Once 
the existing trigger function, country_insert_trig(), is modified to include the condition-
based insert for partitioning the data into the newly created partition, country_log_
default, an INSERT statement is triggered on the country_log master table, and if the 
prevalent condition to insert records into the country_log_default child table is fulfilled, 
then the records are inserted into the country_log_default child table. This can be seen 
from steps 2 to 5 of the second scenario in the How to do it... section when we add a partition.

There's more
For a more detailed explanation on partitioning, go to http://www.postgresql.org/
docs/9.3/static/ddl-partitioning.html.

Partitioning and constraint exclusion
In this recipe, we are going to talk about constraint exclusion and how it helps to  
improve performance.

Getting ready
Familiarity with table partitioning is required for this recipe.

How to do it...
Constraint exclusion can be enabled with the following command:

SET constraint_exclusion = ON ;

How it works...
Now, let's discuss constraint exclusion.

Constraint exclusion is basically a query optimization technique that helps to improve the 
performance of partitioned tables.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.postgresql.org/docs/9.3/static/ddl-partitioning.html
http://www.it-ebooks.info/


Table Partitioning

200

Let's just analyze the query plan for the following query:

postgres=# EXPLAIN ANALYZE SELECT * FROM country_log WHERE  
country_code = 'ru';
                            QUERY PLAN
---------------------------------------------------------------------
 Result  (cost=0.00..38.29 rows=16 width=52) (actual 
time=26.442..27.298 rows=1 loops=1)
   ->  Append  (cost=0.00..38.29 rows=16 width=52) (actual 
time=26.437..27.289 rows=1 loops=1)
         ->  Seq Scan on country_log  (cost=0.00..0.00 rows=1 
width=52) (actual time=0.002..0.002 rows=0 loops=1)
               Filter: (country_code = 'ru'::bpchar)
         ->  Bitmap Heap Scan on country_log_ru country_log  
(cost=4.29..12.76 rows=5 width=52) (actual time=26.431..26.433 rows=1 
loops=1)
               Recheck Cond: (country_code = 'ru'::bpchar)
               ->  Bitmap Index Scan on country_code_ru_idx  
(cost=0.00..4.29 rows=5 width=0) (actual time=26.413..26.413 rows=1 
loops=1)
                     Index Cond: (country_code = 'ru'::bpchar)
         ->  Bitmap Heap Scan on country_log_au country_log  
(cost=4.29..12.76 rows=5 width=52) (actual time=0.822..0.822 rows=0 
loops=1)
               Recheck Cond: (country_code = 'ru'::bpchar)
               ->  Bitmap Index Scan on country_code_au_idx  
(cost=0.00..4.29 rows=5 width=0) (actual time=0.817..0.817 rows=0 
loops=1)
                     Index Cond: (country_code = 'ru'::bpchar)
         ->  Bitmap Heap Scan on country_log_default country_log  
(cost=4.29..12.76 rows=5 width=52) (actual time=0.023..0.023 rows=0 
loops=1)
               Recheck Cond: (country_code = 'ru'::bpchar)
               ->  Bitmap Index Scan on country_code_default_idx  
(cost=0.00..4.29 rows=5 width=0) (actual time=0.013..0.013 rows=0 
loops=1)
                     Index Cond: (country_code = 'ru'::bpchar)
 Total runtime: 27.442 ms
(17 rows)

If you analyze the preceding query plan for the preceding SELECT query, you will find that the 
query scans each of the partitions of the country_log table. This behavior is suboptimal 
from a query-performance perspective.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

201

To deal with this scenario, we can enable constraint exclusion. By doing so, the query 
planner will examine the contents of each partition; however, the planner will try to prove that 
scanning is not required for the partitions that do not meet the query's criteria defined in the 
WHERE clause. When the planner can prove this, it excludes such partitions from the query 
plan. This can be seen in the query plan generated for the query after the constraint exclusion 
is enabled, as shown here:

postgres=# SET constraint_exclusion = ON;
SET

postgres=# EXPLAIN ANALYZE SELECT * FROM country_log WHERE  
country_code = 'ru';
                           QUERY PLAN
---------------------------------------------------------------------
 Result  (cost=0.00..25.52 rows=11 width=52) (actual time=0.036..0.147 
rows=1 loops=1)
   ->  Append  (cost=0.00..25.52 rows=11 width=52) (actual 
time=0.031..0.138 rows=1 loops=1)
         ->  Seq Scan on country_log  (cost=0.00..0.00 rows=1 
width=52) (actual time=0.003..0.003 rows=0 loops=1)
               Filter: (country_code = 'ru'::bpchar)
         ->  Bitmap Heap Scan on country_log_ru country_log  
(cost=4.29..12.76 rows=5 width=52) (actual time=0.025..0.027 rows=1 
loops=1)
               Recheck Cond: (country_code = 'ru'::bpchar)
               ->  Bitmap Index Scan on country_code_ru_idx  
(cost=0.00..4.29 rows=5 width=0) (actual time=0.017..0.017 rows=1 
loops=1)
                     Index Cond: (country_code = 'ru'::bpchar)
         ->  Bitmap Heap Scan on country_log_default country_log  
(cost=4.29..12.76 rows=5 width=52) (actual time=0.102..0.102 rows=0 
loops=1)
               Recheck Cond: (country_code = 'ru'::bpchar)
               ->  Bitmap Index Scan on country_code_default_idx  
(cost=0.00..4.29 rows=5 width=0) (actual time=0.096..0.096 rows=0 
loops=1)
                     Index Cond: (country_code = 'ru'::bpchar)
 Total runtime: 0.230 ms
(13 rows)

We can see an improved performance in the query plan, as this one shows a total runtime 
of 0.230 milliseconds, whereas the preceding query plan shows a total runtime of 27.442 
milliseconds. Thus, you can see the performance benefits by enabling constraint exclusion.

www.it-ebooks.info

http://www.it-ebooks.info/


Table Partitioning

202

Alternate partitioning methods
In this recipe, we are going to talk about another mechanism that can be used to  
redirect INSERTS into the appropriate partitions. Here, we are going to talk about  
using the rule-based approach instead of the trigger-based approach, in order to  
redirect INSERTS into the appropriate partitions.

Getting ready
Familiarity with table partitioning is required for this recipe.

How to do it...
What we are going to do now is to use a rule-based approach. To do this, perform the  
following steps:

1.	 To avoid any conflicts with the previously used trigger-based approach, proceed by 
dropping the existing trigger function, using the following command:
postgres=# drop function country_insert_trig() cascade;

2.	 The next step will be to subsequently create rules for each of the child tables, so that 
whenever a new record is inserted in the master table (country_log), the rules  
get invoked to redirect the INSERT commands to the appropriate partition table,  
as shown here:
CREATE RULE country_code_check_ru AS
ON INSERT TO country_log WHERE
    ( NEW.country_code = 'ru' )
DO INSTEAD
    INSERT INTO country_log_ru VALUES (NEW.*);

CREATE RULE country_code_check_sa AS
ON INSERT TO country_log WHERE
    ( NEW.country_code = 'sa' )
DO INSTEAD
    INSERT INTO country_log_sa VALUES (NEW.*);

CREATE RULE country_code_check_default AS

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

203

ON INSERT TO country_log WHERE
    ( NEW.country_code != 'ru' OR NEW.country_code != 'sa' )
DO INSTEAD
    INSERT INTO country_log_default VALUES (NEW.*);

3.	 Next, insert the record into the master table, that is, country_log:
INSERT INTO country_log (country_code, content) VALUES ('ca', 
'content-ca');

4.	 Finally, use the SELECT query against the respective partition table to check whether 
the INSERT commands used in the previous step are redirected to the appropriate 
partition table using the rule-based approach, as follows:
postgres=# select * from country_log_default;
          created_at           | country_code |  content   
-------------------------------+--------------+------------
 2014-11-30 15:10:28.921124-08 | dk           | content-dk
 2014-11-30 15:10:42.97714-08  | us           | content-us
 2014-12-01 14:36:27.746601-08 | ca           | content-ca
(3 rows)

How it works...
What we are basically doing here is to create rules for all the partitions. The condition  
defined in the rules is the same as the one defined in the trigger function, country_
insert_trig(). Let's show the trigger function's code from which the conditions  
defined for the rules were derived:

CREATE OR REPLACE FUNCTION country_insert_trig() RETURNS TRIGGER AS $$
BEGIN
    IF ( NEW.country_code = 'ru' ) THEN
        INSERT INTO country_log_ru VALUES (NEW.*);
    ELSIF ( NEW.country_code = 'sa' ) THEN
        INSERT INTO country_log_sa VALUES (NEW.*);
    
    ELSE
        INSERT INTO country_log_default VALUES (NEW.*);
    END IF;

    RETURN NULL;
END;
$$ LANGUAGE plpgsql;

www.it-ebooks.info

http://www.it-ebooks.info/


Table Partitioning

204

If you take a look at the preceding trigger function, it is clear that when the inserted data into 
the country_log master table has the values for the country_code column as ru or sa, 
then the corresponding inserted row will either go to the country_log_ru or country_
log_sa table, depending on what the inserted country_code entry is. If the value for 
the country_code column inserted is anything else other than these two values, then the 
corresponding row entry is directed to the country_log_default table. Based on these 
conditions, we define the rules for all the child tables, as follows:

CREATE RULE country_code_check_ru AS
ON INSERT TO country_log WHERE
    ( NEW.country_code = 'ru' )
DO INSTEAD
    INSERT INTO country_log_ru VALUES (NEW.*);

CREATE RULE country_code_check_sa AS
ON INSERT TO country_log WHERE
    ( NEW.country_code = 'sa' )
DO INSTEAD
    INSERT INTO country_log_sa VALUES (NEW.*);

CREATE RULE country_code_check_default AS
ON INSERT TO country_log WHERE
    ( NEW.country_code != 'ru' OR NEW.country_code != 'sa' )
DO INSTEAD
    INSERT INTO country_log_default VALUES (NEW.*);

Once the rules are defined for the child tables, the next step is to remove the previously used 
trigger function in order to avoid any conflict with the trigger- and rule-based approaches. 
Finally, we add the data to the master table, and we can see in step 4 of the How to do 
it... section, that based on the rule-based approach, the corresponding entry goes to the 
country_log_default partition.

Installing PL/Proxy
PL/Proxy is a database partitioning system that is implemented as a PL language. PL/Proxy 
makes it straightforward to split large independent tables among multiple nodes in a way 
that almost allows unbounded scalability. PL/Proxy scaling works on both read and write 
workloads. The main idea is that the proxy function will be set up with the same signature as 
the remote function to be called, so only the destination information needs to be specified 
inside the proxy function's body.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

205

Getting Ready
Here, we are going to show the steps required to install PL/Proxy.

How to do it...
Perform the following steps to install PL/Proxy:

1.	 Go to http://pgfoundry.org/projects/plproxy/ and download the latest 
tarball of PL/Proxy.

2.	 Once the latest version of PL/Proxy is downloaded, the next step is to unpack the  
tar archive:
tar xvfz plproxy-2.5.tar.gz

3.	 Once the tar archive has been unpacked, the next step is to enter the newly created 
directory and start the compilation process:
cd   plproxy-2.5

make  &&  make install

How it works...
Installing PL/Proxy is an easy task. Here, we download the source code from the website 
provided in step 1 of the preceding section. The latest version of PL/Proxy at this stage is 
2.5. We need to download the tarball file containing version 2.5 of PL/Proxy, and once it is 
downloaded, we need to compile and build it. This completes the installation of PL/Proxy.

You can also install PL/Proxy from binary packages, if prebuilt packages are available for your 
operating system.

Partitioning with PL/Proxy
In this recipe, we are going to cover horizontal partitioning with PL/Proxy.

Getting ready
PL/Proxy needs to be installed on the host machine. Refer to the previous recipe for more 
details on how to install PL/Proxy.

www.it-ebooks.info

http://pgfoundry.org/projects/plproxy/
http://pgfoundry.org/projects/plproxy/
http://www.it-ebooks.info/


Table Partitioning

206

How to do it...
Perform the following sequence of steps to perform horizontal partitioning using PL/Proxy:

1.	 Create three new databases, that is one proxy database named nodes and two 
partitioned databases named nodes_0000 and nodes_0001, respectively:
postgres=# create database nodes;
postgres=# create database nodes_0000;
postgres=# create database nodes_0001;

2.	 Once you've created these databases, the next step is to create a plproxy extension:
psql  -d  nodes

nodes=# create extension plproxy;

3.	 The next step is to create the plproxy schema in the proxy database's nodes:
nodes=# create schema plproxy;

4.	 Next, execute the following file, plproxy--2.5.0.sql, on the proxy database nodes:
cd  /usr/pgsql-9.3/share/extension

 psql -f plproxy--2.5.0.sql  nodes

CREATE FUNCTION

CREATE LANGUAGE

CREATE FUNCTION

CREATE FOREIGN DATA WRAPPER

5.	 Then, configure PL/Proxy using the configuration functions on the proxy  
database nodes:
psql -d   nodes

CREATE OR REPLACE FUNCTION plproxy.get_cluster_version 
(cluster_name text) RETURNS int AS $$
BEGIN
    IF cluster_name = 'nodes' THEN
        RETURN 1;
    END IF;
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION plproxy.get_cluster_partitions 
(cluster_name text) RETURNS SETOF text AS $$

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

207

BEGIN
    IF cluster_name = 'nodes' THEN
        RETURN NEXT 'host=127.0.0.1 dbname=nodes_0000';
        RETURN NEXT 'host=127.0.0.1 dbname=nodes_0001';
        RETURN;
    END IF;
    RAISE EXCEPTION 'no such cluster: %', cluster_name;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE OR REPLACE FUNCTION plproxy.get_cluster_config  
(cluster_name text, out key text, out val text)
RETURNS SETOF record AS $$
BEGIN
    RETURN;
END;
$$ LANGUAGE plpgsql;

6.	 Next, log in to the partitioned databases and create the users table in both of these:
psql -d nodes_0000

nodes_0000=# CREATE TABLE users (username text PRIMARY KEY);

psql -d  nodes_0001

nodes_0001=# CREATE TABLE users (username text PRIMARY KEY);

7.	 Now, create the following function, insert_user(), which will be used to insert 
usernames in the users table:
psql -d   nodes_0000

CREATE OR REPLACE FUNCTION insert_user(i_username text) RETURNS 
text AS $$
BEGIN
    PERFORM 1 FROM users WHERE username = i_username;
    IF NOT FOUND THEN
        INSERT INTO users (username) VALUES (i_username);
        RETURN 'user created';
    ELSE
        RETURN 'user already exists';
    END IF;
END;

www.it-ebooks.info

http://www.it-ebooks.info/


Table Partitioning

208

$$ LANGUAGE plpgsql SECURITY DEFINER;

psql  -d  nodes_0001

CREATE OR REPLACE FUNCTION insert_user(i_username text) RETURNS 
text AS $$
BEGIN
    PERFORM 1 FROM users WHERE username = i_username;
    IF NOT FOUND THEN
        INSERT INTO users (username) VALUES (i_username);
        RETURN 'user created';
    ELSE
        RETURN 'user already exists';
    END IF;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

8.	 Next, create a proxy function called insert_user() on the proxy database nodes:
psql -d nodes

CREATE OR REPLACE FUNCTION insert_user(i_username text) RETURNS 
TEXT AS $$
    CLUSTER 'nodes'; RUN ON hashtext(i_username);
$$ LANGUAGE plproxy;

9.	 Check the pg_hba.conf file; you will need to set the authentication to trust,  
as shown here, and then restart the postgresql service:
host    all             all             127.0.0.1/32            
trust

10.	 The next step will be to fill the partitions by executing the following query on the proxy 
database nodes:
nodes=#SELECT insert_user('user_number_'||generate_series::text) 
FROM generate_series(1,10000);

11.	 Once the data is inserted, verify the corresponding records in the partitioned 
databases, nodes_0000 and nodes_0001, as follows:
nodes_0000=# select count(*) from users;
 count 
-------
  5106
(1 row)

nodes_0001=# select count(*) from users;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

209

 count 
-------
  4894
(1 row)

How it works...
The following is an explanation of the preceding code output:

ff Initially, we create three databases—one as a proxy database named nodes and two 
other databases named nodes_0000 and nodes_0001—across which the data will 
be partitioned.

ff Once the preceding step is performed, the next step will be to create the  
plproxy extension.

ff As can be seen in step 5 of the preceding section, we are configuring PL/Proxy 
using the configuration functions on the proxy database nodes. The plproxy.get_
cluster_partitions() function is invoked when a query needs to be forwarded 
to a remote database, and it is used by PL/Proxy to obtain the connection string to 
be used for each partition. We also use the plproxy.get_cluster_version() 
function, which is called upon each request, and it is used to determine whether the 
output from a cached result from plproxy.get_cluster_partitions can be 
reused. We also use the the plproxy.get_cluster_config() function, which 
enables us to configure the behavior of PL/Proxy.

ff Once we are done with defining the configuration functions on the proxy database 
nodes, the next step is to create the table users in both the partitioned databases, 
across which the data will be partitioned.

ff Then, we created an insert_user() function that will be used to insert  
usernames into the users table. The insert_user()function will be defined  
on both the partitioned databases, nodes_0000 and nodes_0001. This is  
shown in step 7 of the preceding section.

ff In the next step, we create a proxy function, insert_user(), inside the proxy 
database nodes. The proxy function will be used to send the INSERT result to the 
appropriate partition. This is shown in step 8 of the preceding section.

ff Finally, we will be filling the partitions with random data by executing the insert_
user() proxy function in the proxy database named nodes. This is seen in step 10  
of the preceding section.

There's more
For more details on how to use PL/Proxy in order to proxy queries across a set of remote 
databases, check out http://plproxy.projects.pgfoundry.org/doc/tutorial.
html.

www.it-ebooks.info

http://plproxy.projects.pgfoundry.org/doc/tutorial.html
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


10
Accessing PostgreSQL 

from Perl

In this chapter, we will cover the following recipes:

ff Making a connection to a PostgreSQL database using Perl

ff Creating tables using Perl

ff Inserting records using Perl

ff Accessing data using Perl

ff Updating records using Perl

ff Deleting records using Perl

Introduction
Perl is a general-purpose, high-level, interpreted, and dynamic programming language. 
Generally, communicating with PostgreSQL involves a lot of string manipulation, and this is 
where Perl excels as a language. In Perl, database interfaces are implemented by Perl DBI 
modules. A DBI module presents a database-independent interface to Perl applications. On the 
other hand, the database driver module handles the details of accessing different databases.

There are three ways to access PostgreSQL from Perl, stated as follows:

ff Low-level access, which is done by the Perl mapping of the libpq C interface

ff High-level access, with the help of a database-independent layer

ff Access by embedding a Perl interpreter

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

212

Making a connection to a PostgreSQL 
database using Perl

Here, we are going to make connections to a PostgreSQL database using Perl.

Getting ready
The following instructions are performed on a CentOS Linux machine, and it is assumed that 
the Perl language is already installed.

A PostgreSQL database can be accessed by using the Perl DBI module, which is a database 
access module for the Perl programming language. The Perl DBI module defines a set of 
methods, variables, and conventions that provide a standard database interface.

The DBI module, by itself, does not have the ability to communicate with PostgreSQL. For 
the DBI module to communicate with PostgreSQL, it is necessary to install the appropriate 
backend module, which in this case is DBD::Pg.

On Red Hat, CentOS, Scientific Linux, as well as other Red Hat based Linux distributions, the 
package that provides this module is perl-DBD-Pg and it can be installed as follows:

yum install perl-DBD-Pg

On Debian-based systems, the package that provides this module is libdbd-pg-perl, and 
it can be installed as follows on Ubuntu- or Debian-based distributions:

apt-get install libdbd-pg-perl

Before we start using the Perl PostgreSQL interface, we will need to enter the following 
authentication and access control mechanism entry in the pg_hba.conf file:

# IPv4 local connections:

host    all         all         127.0.0.1/32          md5

Once these changes are done, we will need to restart the PostgreSQL server:

$ pg_ctl -D  $PGDATA  restart

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

213

How to do it...
We can use the following Perl code to make a connection to an existing PostgreSQL database, 
that is, the dvdrental database, which resides on the same machine and uses port 5432.

1.	 First, the following Perl code can be saved in a file called connect.pl:
#!/usr/bin/perl

use DBI;
use strict;
   my $driver   = "Pg"; 
my $database = "dvdrental";
my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";
my $userid = "postgres";
my $password = "postgres";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 
}) 
                      or die $DBI::errstr;

print "CONNECTION TO THE  DVDRENTAL DATABASE MADE SUCCESSFULLY\n";

2.	 The next step will be to change permissions, as follows:
chmod 755 connect.pl

3.	 The Perl program can then be executed at the command line, as follows:
bash-3.2$ perl connect.pl

CONNECTION MADE TO THE  DVDRENTAL DATABASE MADE SUCCESSFULLY

As can be seen from the preceding output, while the program is being executed, the 
output message indicates that the connection to the dvdrental database has been 
made successfully.

How it works...
The connection to the database is made using the connect function. It returns a connection 
handle that is needed when calls are made to the DBI module. The connect function 
requires the following argument:

connect($data_source, "userid", "password", \%attr);

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

214

The first argument to the connect function is the data source name, which is a single entity 
that comprises of the database name and the host name or IP address and optionally, a port 
number. The data source also comprises of the prefix Pg, which is the PostgreSQL database 
driver for the DBI module.

The second argument is userid or the username by which a connection to the PostgreSQL 
database is made.

The third argument is the password, which is the password of the user who initiates the 
database connection. If an empty string is provided for the password, Perl will then look  
for a password value in the environment variables, DBI_USER and DBI_PASS, which could 
possibly cause the code to fail while it is being executed. So, we need to exercise caution in 
such scenarios.

The final argument is optional, and it refers to any attributes that might be used.

In the preceding code, in the How to do it... section, we used the connect function,  
as follows:

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

The first argument used here is the dsn variable, which was initially defined, as follows:

my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";

Here, we can see that the dsn value is a single entity, which comprises of a driver, the Pg 
driver; dbname, which is defined in the variable database and its value is dvdrental; and 
further consists of the hostname and port number being explicitly defined here.

The second argument is the userid variable, which uses the value postgres defined 
previously in the code.

The third argument is the password variable, whose value is postgres.

The final argument used is the RaiseError attribute, which causes the DBI module to call 
the HandleError condition or to die if the HandleError condition is not defined when a 
database error is detected.

If you need more information on the connect function, you can use the 
following links for a more detailed explanation:

ff http://oreilly.com/catalog/perldbi/chapter/
ch04.html

ff http://search.cpan.org/~rudy/DBD-Pg-1.32/Pg.pm

www.it-ebooks.info

http://oreilly.com/catalog/perldbi/chapter/ch04.html
http://oreilly.com/catalog/perldbi/chapter/ch04.html
http://search.cpan.org/~rudy/DBD-Pg-1.32/Pg.pm
http://www.it-ebooks.info/


Chapter 10

215

Creating tables using Perl
In this recipe, we are going to show you how to create tables in the PostgreSQL database 
using Perl.

Getting ready
We will be the using the qq operator, and the parameter passed to the operator will contain 
the CREATE TABLE SQL statement. The qq operator is used to return a double-quoted 
string. Before creating the table, we must first use the connect function to connect to the 
PostgreSQL database.

How to do it...
We can use the following code to create a table by the name EMPLOYEES. This table will be 
stored in the dvdrental database because the connection made by the PostgreSQL adapter 
is to the dvdrental database. The following code is saved in a file called createtable.pl, 
which will be executed later:

#!/usr/bin/perl

use DBI;
use strict;

my $driver   = "Pg"; 
my $database = "dvdrental";
my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";
my $userid = "postgres";
my $password = "postgres";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
                      or die $DBI::errstr;
print "Dvdrental database opened \n";

my $stmt = qq(CREATE TABLE EMPLOYEES
      (ID INT PRIMARY KEY     NOT NULL,
       NAME           TEXT    NOT NULL,
       AGE            INT     NOT NULL,
       ADDRESS        CHAR(60),
       SALARY         REAL););
my $rv = $dbh->do($stmt);  

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

216

 print "EMPLOYEES table created successfully\n\n";

$dbh->disconnect();

bash-3.2$ perl createtable.pl

Dvdrental database opened 
EMPLOYEES table created successfully

In the preceding output, you can see that when the file containing the preceding code is 
executed, a connection to the dvdrental database is made and an EMPLOYEES table is 
created. This can be seen from the command-line console message, EMPLOYEES table 
created successfully.

How it works...
From the point of view of table creation, it is the following part of the preceding code that 
needs an explanation:

my $rv = $dbh->do($stmt);

Here, we are using the handler returned by the connect function in conjunction with the do 
function to execute the CREATE TABLE statement passed in the $stmt variable, as follows:

my $stmt = qq(CREATE TABLE EMPLOYEES
      (ID INT PRIMARY KEY     NOT NULL,
       NAME           TEXT    NOT NULL,
       AGE            INT     NOT NULL,
       ADDRESS        CHAR(60),

       SALARY         REAL););

The do() method is a fusion of prepare() and execute(). It can only be used for  
non-SELECT statements, where you don't need the statement handle to access the  
results of the query. do() returns the number of affected rows.

The disconnect() method, in the preceding section, is used to terminate the existing 
database session and disconnect from the database.

For more details on tables in Perl, check out http://www.postgresql.
org/docs/9.3/interactive/plperl-builtins.html.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/interactive/plperl-builtins.html
http://www.postgresql.org/docs/9.3/interactive/plperl-builtins.html
http://www.it-ebooks.info/


Chapter 10

217

Inserting records using Perl
In this recipe, we are going to insert new records in the EMPLOYEES table in the  
dvdrental database.

Getting ready
Before inserting records in the table, we first need to use the connect function, in order to 
connect to the database. The connect function was discussed in the first recipe of the chapter.

How to do it...
We are going to use the following code to insert new records in the EMPLOYEES table:

#!/usr/bin/perl

use DBI;
use strict;

my $driver   = "Pg"; 
my $database = "dvdrental";
my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";
my $userid = "postgres";
my $password = "postgres";
my $irows = 0;
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
                      or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)
      VALUES (5, 'SandeepSingh', 37, 'Saharanpur', 90000.00 ));
my $rv = $dbh->do($stmt);

$irows = $rv + $irows;

$stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)
      VALUES (6, 'AmitGovil', 37, 'Aligarh', 85000.00 ));

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

218

$rv = $dbh->do($stmt);

$irows = $rv + $irows;

$stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)
      VALUES (7, 'NeerajKumar', 38, 'Rohtak', 90000.00 ));
$rv = $dbh->do($stmt);

$irows = $rv + $irows;

$stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)
      VALUES (8, 'SandeepSharma', 36, 'Gurgaon ', 75000.00 ););
$rv = $dbh->do($stmt); 

$irows = $rv + $irows;

print "Number of rows inserted : $irows\n";
print "New Records created successfully\n";
$dbh->disconnect();

The preceding code is saved in a file called insert.pl, and we get the following command-
line output once the new records are inserted successfully:

bash-3.2$ perl  insert.pl

Opened database successfully

New Records created successfully

How it works...
For an explanation of the preceding code, we are taking an excerpt of the code that will 
demonstrate how the records are getting inserted into the EMPLOYEES table:

my $stmt = qq(INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY)
      VALUES (5, 'SandeepSingh', 37, 'Saharanpur', 90000.00 ));
my $rv = $dbh->do($stmt);

If you take a look at the preceding code, you can see that first, we used the INSERT statement, 
defined records, and passed the INSERT SQL statement to a variable. After this is done, we 
used the do() function to return the result of the INSERT statement into the table. The same 
steps are performed sequentially for the other INSERT statements used in the code.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

219

In the preceding section, we are also using the irows variable to track the number of rows 
that were inserted into the table. Every time we insert a record into the table, we set the 
condition as shown in the following line of code. Initially, the value of the irows variable is 
set to zero, and whenever we insert a record into the EMPLOYEES table, the value of the rv 
variable is set to 1. So, as per the following condition, every time there is a change or a record 
is inserted, the irows variable's value will increment by 1 and so on, until all the records are 
inserted and eventually it stops at 4 to indicate that four records were inserted in total:

$irows = $rv + $irows;

Accessing table data using Perl
In this recipe, we are going to see how to access the table data from a PostgreSQL database 
using Perl.

Getting ready
A database connection is mandatory before we can select data. Hence, for this reason, the 
connect() function is the first one that should be invoked to make a database connection 
before accessing data.

How to do it...
We can use the following code to access data from the EMPLOYEES table present in the 
dvdrental database. The following code is saved in a file called select.pl, which will  
be later executed from the command line:

#!/usr/bin/perl

use DBI;
use strict;

my $driver   = "Pg"; 
my $database = "dvdrental;";
my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";
my $userid = "postgres";
my $password = "postgres";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })
                      or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(SELECT id, name, address, salary  from EMPLOYEES;);

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

220

my $sth = $dbh->prepare($stmt) or die "Cannot prepare: " . $dbh-
>errstr();

my $rv = $sth->execute() or die "Cannot execute: " . $sth->errstr();

while(my @row = $sth->fetchrow_array()) {
      print "ID = ". $row[0] . "\n";
      print "NAME = ". $row[1] ."\n";
      print "ADDRESS = ". $row[2] ."\n";
      print "SALARY =  ". $row[3] ."\n\n";
}
$sth->finish();
print "select Operation done successfully\n";
$dbh->disconnect();

The following is the output of the preceding code:

bash-3.2$ perl select.pl

Opened database successfully

ID = 5

NAME = SandeepSingh

ADDRESS = Saharanpur                                                  

SALARY =  90000

ID = 6

NAME = AmitGovil

ADDRESS = Aligarh                                                     

SALARY =  85000

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak                                                      

SALARY =  90000

ID = 8

NAME = SandeepSharma

ADDRESS = Gurgaon                                                     

SALARY =  75000

select Operation done successfully

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

221

How it works...
The following is the subpart of the code that mainly deals with selecting records from a table:

my $stmt = qq(SELECT id, name, address, salary  from EMPLOYEES;);
my $sth = $dbh->prepare( $stmt ) or die "Cannot prepare: " . $dbh-
>errstr();

my $rv = $sth->execute() or die "Cannot prepare: " . $dbh->errstr();

while(my @row = $sth->fetchrow_array()) {
      print "ID = ". $row[0] . "\n";
      print "NAME = ". $row[1] ."\n";
      print "ADDRESS = ". $row[2] ."\n";
      print "SALARY =  ". $row[3] ."\n\n";
}
 $sth->finish();

In the preceding code, the first thing that we do is write down our SELECT query and pass it to 
the $stmt variable.

The next step is to use the prepare() function in order to prepare the SQL statement, 
which can be executed at a later time by the database engine and returns a reference to the 
statement handle object.

The next step is to use the execute() function in order to execute the prepared statement.

Finally, in order to fetch the results of the SELECT command, we use the fetchrow_array() 
function. The fetchrow_array() function gets the next row and returns it as a list of field 
values. We use the while loop to iterate through each of the field values in a given row across 
the array named row and then move on to the next row. The same sequence of events are 
repeated until we have iterated through the last field value in the final row returned.

Updating records using Perl
Here, we are going to see how to update existing records in a table in the PostgreSQL 
database using Perl.

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

222

Getting ready
In this recipe, first we are going to show the number of existing records in the table. Then, 
we are going to update some records, see the number of records updated, and then see the 
changed records being made visible in the table when the table records are accessed again.

How to do it...
In this section we will update the existing records of the EMPLOYEES table.

1.	 First, we check the existing records in the EMPLOYEES table, as follows:
dvdrental=# select * from EMPLOYEES;

 id |     name      | age | address       | salary 
----+---------------+-----+---------------+--------
  5 | SandeepSingh  |  37 | Saharanpur    |  90000
  6 | AmitGovil     |  37 | Aligarh       |  85000
  7 | NeerajKumar   |  38 | Rohtak        |  90000
  8 | SandeepSharma |  36 | Gurgaon       |  75000

2.	 Next, we use the following Perl code to update some of the existing records in the 
EMPLOYEES table and save the following code in a file called update.pl:
#!/usr/bin/perl

use DBI;
use strict;

my $driver   = "Pg"; 
my $database = "dvdrental";
my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";
my $userid = "postgres";
my $password = "postgres";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 
})
                      or die $DBI::errstr;
print "Opened database successfully\n";

my $stmt = qq(UPDATE EMPLOYEES set SALARY = 55000.00 where ID=5;);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

223

my $rv = $dbh->do($stmt);

  

   print "Number of rows updated : $rv\n";

$stmt = qq(SELECT id, name, address, salary  from EMPLOYEES;);
my $sth = $dbh->prepare( $stmt ) or die "Check again: " . $dbh-
>errstr();

$rv = $sth->execute() or die "Cannot execute: " . $sth->errstr();

while(my @row = $sth->fetchrow_array()) {
      print "ID = ". $row[0] . "\n";
      print "NAME = ". $row[1] ."\n";
      print "ADDRESS = ". $row[2] ."\n";
      print "SALARY =  ". $row[3] ."\n\n";
}
$sth->finish();
print "Operation Completed successfully\n";
$dbh->disconnect();

In the preceding code, we use the UPDATE statement to set the SALARY value to 
55000, where the value of the ID column is 5. 

3.	 Next, we are going to see the updated records and see the changed records being 
made visible in the EMPLOYEES table, as shown in the following code output:
bash-3.2$ perl update.pl

Opened database successfully

Number of rows updated : 1

ID = 6

NAME = AmitGovil

ADDRESS = Aligarh                                                     

SALARY =  85000

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

224

SALARY =  90000

ID = 8

NAME = SandeepSharma

ADDRESS = Gurgaon                                                     

SALARY =  75000

ID = 5

NAME = SandeepSingh

ADDRESS = Saharanpur                                                  

SALARY =  55000

Operation Completed successfully 

How it works...
The following is an excerpt of the code that was used to update existing records using Perl into 
the EMPLOYEES table:

my $stmt = qq(UPDATE EMPLOYEES set SALARY = 55000.00 where ID=5;);
my $rv = $dbh->do($stmt);
print "Number of rows updated : $rv\n";

The first initial requirement is to connect to the database using the connect() function, 
which was explained in the first recipe of the chapter.

Once the connection to the dvdrental database is made, we use the UPDATE statement 
and pass the UPDATE SQL statement in a $stmt variable. After this is done, the next step 
is to use the do() function to return the result of the UPDATE statement contained in the 
$stmt variable. We also use a variable called $rv, which is used to track the number of 
records updated, if any. Once this is done, the next step is to fetch the records from the  
table in order to validate the changes done as part of using the UPDATE statement.

Deleting records using Perl
In this recipe, we are going to show you how to delete records in a table using Perl.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

225

Getting ready
In this recipe, we will first display the number of existing records in the table. Then, we  
will delete some records, see the number of records deleted, and then see the number  
of available records present in the table after deletion.

How to do it...
In this section we will delete the existing records of the EMPLOYEES table.

1.	 First, we are going to check the existing records in the EMPLOYEES table,  
as shown here:
dvdrental=# select * from EMPLOYEES;
 id |     name      | age | address          | salary 
----+---------------+-----+------------------+--------
  6 | AmitGovil     |  37 | Aligarh          |  85000
  7 | NeerajKumar   |  38 | Rohtak           |  90000
  8 | SandeepSharma |  36 | Gurgaon          |  75000
  5 | SandeepSingh  |  37 | Saharanpur       |  55000
(4 rows)

2.	 Next, we are going to use the following Perl code to delete some records from the 
EMPLOYEES table and save the code in a file called delete.pl, which we are  
going to execute from the command line:
#!/usr/bin/perl

use DBI;
use strict;

my $driver   = "Pg"; 
my $database = "dvdrental";
my $dsn = "DBI:$driver:dbname=$database;host=127.0.0.1;port=5432";
my $userid = "postgres";
my $password = "postgres";
my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 
})
                      or die $DBI::errstr;

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Perl

226

print "Opened database successfully\n";

my $stmt = qq(DELETE from EMPLOYEES where ID=6;);
my $rv = $dbh->do($stmt);

   print "Number of rows deleted : $rv\n";

$stmt = qq(SELECT id, name, address, salary  from EMPLOYEES;);
my $sth = $dbh->prepare( $stmt ) or die "Cannot prepare: " . $dbh-
>errstr();

$rv = $sth->execute() or die "Cannot execute: " . $sth->errstr();

while(my @row = $sth->fetchrow_array()) {
      print "ID = ". $row[0] . "\n";
      print "NAME = ". $row[1] ."\n";
      print "ADDRESS = ". $row[2] ."\n";
      print "SALARY =  ". $row[3] ."\n\n";
}
$sth->finish();
print "Operation done successfully\n";
$dbh->disconnect();

Here, in the preceding code, the DELETE statement that we issue is used to delete a 
record from the table where the value of the ID column is 6.

3.	 Next we check the command-line output of the preceding code:
bash-3.2$ perl delete.pl

Opened database successfully

Total number of rows deleted : 1

ID = 7

NAME = NeerajKumar

ADDRESS = Rohtak                                                      

SALARY =  90000

ID = 8

NAME = SandeepSharma

ADDRESS = Gurgaon                                                     

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10

227

SALARY =  75000

ID = 5

NAME = SandeepSingh

ADDRESS = Saharanpur                                                  

SALARY =  55000

Operation done successfully

How it works...
The following is an excerpt from the code that was used to delete records from the 
EMPLOYEES table:

my $stmt = qq(DELETE from EMPLOYEES where ID=6;);
my $rv = $dbh->do($stmt);
print "Number of rows deleted : $rv\n";

The first initial requirement is to connect to the database using the connect() function, 
which was explained in the first recipe of the chapter.

Once the connection to the dvdrental database is made, we use the DELETE statement 
and pass the DELETE SQL statement in a $stmt variable. After this is done, the next step is 
to use the do() function in order to return the result of the DELETE statement contained in 
the $stmt variable. We also use a variable called $rv, which is used to track the number of 
rows deleted from the table. Once this is done, the next step is to fetch the records from the 
table to see the list of available records in the EMPLOYEES table.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


11
Accessing PostgreSQL 

from Python

In this chapter, we will cover the following recipes:

ff Making connections to a PostgreSQL database using Python

ff Creating tables using Python

ff Inserting records using Python

ff Accessing data using Python

ff Updating records using Python

ff Deleting records using Python

Introduction
Python is a general purpose, dynamic object oriented and a high level programming language. 
Python is an open source, well designed, robust and portable programming language. Python 
has an easy to learn syntax and with its advanced programming features it is widely used by 
developers and administrators worldwide. Python provides an easy way for database access 
via the DB API which provides a minimal standard for working with databases using Python 
syntax and semantics.

The steps involved in using the Python API are given as follows:

ff Importing the API module

ff Establishing a database session

ff Executing SQL statements

ff Closing the database session

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Python

230

Making connections to a PostgreSQL 
database using Python

Here, in this recipe, we are going to make connections to a PostgreSQL database using  
Python language.

Getting ready
The following instructions are performed on a CentOS Linux machine and it is assumed that 
python language is already installed.

PostgreSQL database can be accessed using psycopg2 module which is a database adapter 
for Python language. This can be installed, as follows, on a CentOS machine:

sudo yum install python-psycopg2

How to do it...
We can use the following Python code to make connections to an existing PostgreSQL 
database, that is the dvdrental database which resides on the same machine and  
uses port 5432.

The following Python code can be saved in a file called connect.py:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")

print "Opened DVD Rental Database Successfully Using Python"

The preceding Python code can then be executed at the command line, as follows:

-bash-3.2$ python connect.py

The following is the output of the preceding code:

Opened DVD Rental Database Successfully Using Python

As can be seen from the preceding output, while the program is being executed the  
output message indicates that the connection to the database dvdrental has been  
made successfully.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

231

How it works...
The connection to the database is made using the connect function which returns a 
connection object. The connect function, used here in the preceding code, consists  
of the following parameters:

connect("db", "userid", "password", host,port);

The first argument to the connect function, is the database to which the connection is to be 
made to.

The second argument is the userid or the username by which a connection to the 
PostgreSQL database is made.

The third argument is the password which is the password of the user who initiates the 
database connection.

The fourth argument refers to the hostname or the IP address of the server hosting  
the database.

The next argument refers to the port number of the database on which the client can initiate 
the database connection.

In the preceding code, in the How to do it... section, we used the connect function, as follows:

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")

Here, we are connecting to the dvdrental database using the postgres user and password 
postgres. The machine to which we are connecting is the localhost and the database server 
listens on port 5432 for connections.

If you need more information on the connect function you can use the following links for a 
more detailed explanation:

ff http://blogs.wrox.com/article/using-the-python-database-apis/

ff http://initd.org/psycopg/docs/module.html#psycopg2.connect

Creating tables using Python
Here, in this recipe, we are going to show how to create tables in the PostgreSQL database 
using Python language.

www.it-ebooks.info

http://blogs.wrox.com/article/using-the-python-database-apis/
http://initd.org/psycopg/docs/module.html#psycopg2.connect
http://www.it-ebooks.info/


Accessing PostgreSQL from Python

232

Getting ready
Before creating a table, we first need to make a connection to the PostgreSQL database using 
the connect function, and once the database is opened then we can use DDL statements to 
create the table.

How to do it...
We can use the following code to create a table by the name EMPLOYEES. This table will be 
stored in the dvdrental database because the connection made by the PostgreSQL adapter 
is to the dvdrental database. The following code is saved in a file called createtable.py 
which will be executed later:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")
print "Opened DVD Rental Database Successfully"

cur = conn.cursor()
cur.execute('''CREATE TABLE EMPLOYEES
       (ID INT PRIMARY KEY     NOT NULL,
       NAME           TEXT    NOT NULL,
       AGE            INT     NOT NULL,
       ADDRESS        CHAR(50),
       SALARY         REAL);''')
print "Table created successfully"

conn.commit()
conn.close()

In the following output, we can see that when the createtable.py file, which contains 
the preceding code is executed, a connection to the dvdrental database is made and the 
EMPLOYEES table is created. This can be seen from the command line console message 
Table created successfully:

bash-3.2$ python createtable.py

Opened DVD Rental Database Successfully

Table created successfully

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

233

How it works...
From the point of view of table creation, it is the following part of the preceding code that 
needs explanation:

cur = conn.cursor()
cur.execute('''CREATE TABLE EMPLOYEES
       (ID INT PRIMARY KEY     NOT NULL,
       NAME           TEXT    NOT NULL,
       AGE            INT     NOT NULL,
       ADDRESS        CHAR(50),
       SALARY         REAL);''')
print "Table created successfully"
conn.commit()
conn.close()

First we create a cursor object by invoking the connection object's cursor() function. Once 
this is done, we use the cursor object's execute() function to execute the CREATE TABLE 
DDL statement to create a table. Then, we call the connection object's commit function to 
save the changes and finally we call the connection object's close() function to close the 
database connection.

Inserting records using Python
In this recipe we are going to insert new records in the EMPLOYEES table in the  
dvdrental database.

Getting ready
Before inserting records in the table, we first need to use the connect function to connect to 
the database first. The connect function was discussed in the first recipe of the chapter.

How to do it...
We are going to use the following code to insert new records in the EMPLOYEES table:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Python

234

print "Opened database successfully"

cur = conn.cursor()

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
      VALUES (1, 'SandeepSingh', 39, 'Saharanpur', 90000.00 )");

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
      VALUES (2, 'NeerajKumar', 42, 'Rohtak', 90000.00 )");

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
      VALUES (3, 'AmitGovil', 37, 'Aligarh', 88000.00 )");

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
      VALUES (4, 'SandeepSharma', 36, 'Haridwar ', 75000.00 )");

conn.commit()
print "Records created successfully in EMPLOYEES Table";
conn.close()

The preceding code is saved in a file called insert.py and the following is the command line 
output that we get once the new records are inserted successfully:

bash-3.2$ python insert.py

Opened database successfully

Records created successfully in Employees Table

How it works...
For the explanation of the preceding code, we are taking an excerpt of the code that will 
demonstrate how the records are getting inserted into the EMPLOYEES table.

cur = conn.cursor()

cur.execute("INSERT INTO EMPLOYEES (ID,NAME,AGE,ADDRESS,SALARY) \
      VALUES (1, 'SandeepSingh', 39, 'Saharanpur', 90000.00 )");

If we see the preceding code first, then we can see that once the connection is made to the 
database, we use the underlying connection object's cursor() function which creates the 
cursor object which we are going to utilize in executing the respective SQL statements. Here, 
in the preceding code, we can see that the cursor object is stored in the cur variable and 
then we call the cursor object's execute() function to execute the INSERT statements and 
so for other SQL statements. Eventually we call the commit() to ensure that the changes 
made / records inserted are saved in the database.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

235

Accessing table data using Python
In this recipe, we are going to see how to access table data from a PostgreSQL database  
using Python.

Getting ready
Database connection is mandatory before we can select data. Henceforth for this reason 
the connect() function is the first one that should be invoked to first make a database 
connection before accessing data.

How to do it...
We can use the following code to access data from the EMPLOYEES table present in the 
dvdrental database. The following code is saved in a file called select.py, which will  
be later executed from the command line:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")
print "Opened database successfully"

cur = conn.cursor()

cur.execute("SELECT id, name, address, salary  from EMPLOYEES")
rows = cur.fetchall()
for row in rows:
   print "ID = ", row[0]
   print "NAME = ", row[1]
   print "ADDRESS = ", row[2]
   print "SALARY = ", row[3], "\n"

print "Select Operation done successfully";
conn.close()

The following is the output of the preceding code:

bash-3.2$ python select.py

Opened database successfully

ID =  1

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Python

236

NAME =  SandeepSingh

ADDRESS =  Saharanpur                                        

SALARY =  90000.0 

ID =  2

NAME =  NeerajKumar

ADDRESS =  Rohtak                                            

SALARY =  90000.0 

ID =  3

NAME =  AmitGovil

ADDRESS =  Aligarh                                           

SALARY =  88000.0 

ID =  4

NAME =  SandeepSharma

ADDRESS =  Haridwar                                          

SALARY =  75000.0 

Select Operation done successfully

How it works...
The following is the sub part of the code that mainly deals with selecting records from a table:

cur.execute("SELECT id, name, address, salary  from EMPLOYEES")
rows = cur.fetchall()
for row in rows:
   print "ID = ", row[0]
   print "NAME = ", row[1]
   print "ADDRESS = ", row[2]
   print "SALARY = ", row[3], "\n"

print "Select Operation done successfully";
conn.close()

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

237

In the preceding code, we first call the cursor object's execute() function to execute the 
SELECT statement. However, here the situation is that a given table may consist of multiple 
records and our objective is to fetch those multiple rows by integrating through each row, that 
is one record at a time. To achieve the target of fetching multiple rows from a table we use 
the cursor object's fetchall() function which returns all the rows of a resultset, thereby 
returning a list of rows from a table. To iterate through each row we use the for loop to iterate 
through the rows of a table printing each row of the table on the console during each iteration.

You may refer to the following web link for more information:

https://wiki.postgresql.org/wiki/Psycopg2_Tutorial

Updating records using Python
Here, in this recipe we are to update existing records in a table in the PostgreSQL database 
using Python language.

Getting ready
In this recipe, first we are going to show the number of existing records in the table, then 
we are going to update some records, see the number of records updated and then see the 
changed records being made visible in the table when the table records are accessed again.

How to do it...
First we check the existing records in the EMPLOYEES table.

dvdrental=# select * from employees;

 id |     name      | age | address                       | salary 

----+---------------+-----+-------------------------------+--------

  1 | SandeepSingh  |  39 | Saharanpur                    |  90000

  2 | NeerajKumar   |  42 | Rohtak                        |  90000

  3 | AmitGovil     |  37 | Aligarh                       |  88000

  4 | SandeepSharma |  36 | Haridwar                      |  75000

www.it-ebooks.info

https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
http://www.it-ebooks.info/


Accessing PostgreSQL from Python

238

Next we use the following Python code to update some of the existing records in the 
EMPLOYEES table and save the following code in a file called update.py:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")
print "Opened database successfully"

cur = conn.cursor()

cur.execute("UPDATE EMPLOYEES SET  SALARY = 105000.00 WHERE ID=1")
conn.commit()
print "Total number of rows updated :", cur.rowcount

cur.execute("SELECT id, name, address, salary  FROM  EMPLOYEES")
rows = cur.fetchall()
for row in rows:
   print "ID = ", row[0]
   print "NAME = ", row[1]
   print "ADDRESS = ", row[2]
   print "SALARY = ", row[3], "\n"

print "Update Operation done successfully";
conn.close()

In the preceding code, we are using the UPDATE statement to set the salary to 55000 
where the value of id column is 1. Next we are going to see the updated records and see the 
changed records being visible in the EMPLOYEES table, as shown in the following code output:

--bash-3.2$ python update.py
Opened database successfully
Total number of rows updated : 1
ID =  2
NAME =  NeerajKumar
ADDRESS =  Rohtak                                            
SALARY =  90000.0 

ID =  3
NAME =  AmitGovil
ADDRESS =  Aligarh                                           

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

239

SALARY =  88000.0 

ID =  4
NAME =  SandeepSharma
ADDRESS =  Haridwar                                          
SALARY =  75000.0 

ID =  1
NAME =  SandeepSingh
ADDRESS =  Saharanpur                                        
SALARY =  105000.0 

Update Operation done successfully

How it works...
The following is an excerpt of the code that was used to update existing records using Python 
language into EMPLOYEES table:

cur = conn.cursor()

cur.execute("UPDATE EMPLOYEES set SALARY = 105000.00 where ID=1")
conn.commit()
print "Total number of rows updated :", cur.rowcount

If we take a look at the preceding code, we are familiar with the connection object's 
cursor() function and subsequently with the cursor object 's execute() function and 
these have been discussed in the previous recipes. However, for updating records in a table 
the first change that happens here is that the UPDATE statement is used as a part of the 
execute() function to update an underlying record in the table. However, we need to make 
sure that the changes that we made in the table are visible across the database. Henceforth, 
we use the connection object's commit() function to save the changes that were made 
by the UPDATE statement. Once this is done, the changes that were made by the UPDATE 
statement are visible to anyone who selects the data from the table. We also use the cursor 
object's rowcount read only attribute to find out the number of records that were modified by 
the last executed statement. The rowcount attribute could be used either with the UPDATE, 
DELETE or INSERT statements.

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Python

240

Deleting records using Python
Here in this recipe we are going to show how to delete records in a table using Python language.

Getting ready
In this recipe, first we are going to show the number of existing records in the table, then 
we are going to delete some records, see the number of records deleted and then see the 
available number of records present in the table after deletion.

How to do it...
The following are the steps to delete records in a table:

1.	 First we are going to check the existing records in the EMPLOYEES table.
dvdrental=# select * from employees;

 id |     name      | age | address             | salary 

----+---------------+-----+---------------------+--------

  1 | SandeepSingh  |  39 | Saharanpur          |  90000

  2 | NeerajKumar   |  42 | Rohtak              |  90000

  3 | AmitGovil     |  37 | Aligarh             |  88000

  4 | SandeepSharma |  36 | Haridwar            |  75000

2.	 Next we are going to use the following Python code to delete some records from the 
EMPLOYEES table and save the code in a file called delete.py, which we are going 
to execute from the command line:
#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="dvdrental", user="postgres", 
password="postgres", host="127.0.0.1", port="5432")

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11

241

print "Opened database successfully"

cur = conn.cursor()

cur.execute("DELETE from EMPLOYEES where ID=2;")
conn.commit()
print "Total number of rows deleted :", cur.rowcount

cur.execute("SELECT id, name, address, salary  from EMPLOYEES")
rows = cur.fetchall()
for row in rows:
   print "ID = ", row[0]
   print "NAME = ", row[1]
   print "ADDRESS = ", row[2]
   print "SALARY = ", row[3], "\n"

print "DELETE Operation done successfully";
conn.close()

Here, the preceding DELETE statement that we are issuing, is used to delete a record 
from the table where the value of ID column is 2.

3.	 Next we see the command line output of the preceding code:
bash-3.2$ python delete.py

Opened database successfully

Total number of rows deleted : 1

ID =  1

NAME =  SandeepSingh

ADDRESS =  Saharanpur                                        

SALARY =  90000.0 

ID =  3

NAME =  AmitGovil

ADDRESS =  Aligarh                                           

SALARY =  88000.0 

ID =  4

NAME =  SandeepSharma

ADDRESS =  Haridwar                                          

SALARY =  75000.0 

DELETE Operation done successfully

www.it-ebooks.info

http://www.it-ebooks.info/


Accessing PostgreSQL from Python

242

How it works...
The following is an excerpt from the code that was used to delete records from the  
EMPLOYEES table:

cur = conn.cursor()

cur.execute("DELETE from EMPLOYEES where ID=2;")
conn.commit()
print "Total number of rows deleted :", cur.rowcount

In the preceding code snippet, we use the cursor object's execute function to execute  
the DELETE statement. We then use the connection object's commit method to commit 
or save the changes made by the DELETE statement. Finally, we use the cursor object's 
rowcount attribute to find the number of records that were deleted by the last executed 
DELETE statement.

www.it-ebooks.info

http://www.it-ebooks.info/


12
Data Migration from 

Other Databases  
and Upgrading the 

PostgreSQL Cluster

In this chapter, we will cover the following recipes:

ff Using pg_dump to upgrade data

ff Using the pg_upgrade utility for a version upgrade

ff Replicating data from other databases to PostgreSQL using GoldenGate

Introduction
Often in the career of a database administrator, he/she is required to do major version 
upgrades of the PostgreSQL server. Over a period of time new terminologies and features 
get added to PostgreSQL and this results in a major version release. To implement the new 
features of the new version, the existing PostgreSQL setup needs to be upgraded to the 
new version. Database upgrades require proper planning, careful execution and planned 
downtime. PostgreSQL offers two major ways to do a version upgrade.

ff With the help of pg_dump utility

ff With the help of pg_upgrade script

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

244

Also in this chapter we cover the Oracle GoldenGate tool. GoldenGate is a heterogeneous 
replication software that can be used to replicate data between different databases.

In this chapter we are going to cover heterogeneous replication between Oracle and PostgreSQL.

Using pg_dump to upgrade data
Here, in this recipe, we are going to upgrade PostgreSQL cluster from version 9.2 to 9.3 and 
we will utilize pg_dump utility for this purpose.

Getting ready
The only prerequisites here are that an existing PostgreSQL cluster must be set up and running. 
The required version here is PostgreSQL version 9.2. These steps are carried out on a 64 bit 
CentOS machine.

How to do it...
Below are the series of steps that need to be carried out for upgrading PostgreSQL from 
version 9.2 to 9.3 using pg_dump:

1.	 Backup your database using the pg_dumpall command.
pg_dumpall >  db.backup

2.	 The next step would be to shutdown to the current PostgreSQL server.
pg_ctl -D /var/lib/pgsql/9.2/data  stop

3.	 The next step would be to rename the old PostgreSQL installation directory.
mv /var/lib/pgsql  /var/lib/pgsql.old

4.	 The next step would be to install the new version of PostgreSQL which is PostgreSQL 
version 9.3. Prior to doing that, we will check for existing packages before installing the 
new ones with the following command and then we will install the new version package:
   rpm –qa |grep postgresql

wget http://yum.postgresql.org/9.3/redhat/rhel-6.4-x86_64/pgdg-
centos93-9.3-1.noarch.rpm

rpm -Uvh ./pgdg- centos93-9.3-1.noarch.rpm

yum install postgresql93-server.x86_64 postgresql93-contrib.x86_64 
postgresql93-libs.x86_64 postgresql93.x86_64 postgresql93-devel.
x86_64

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

245

5.	 The next step would be to initialize the PostgreSQL version 9.3 server.
/usr/pgsql-9.3/bin/initdb -D  /var/lib/pgsql/9.3/data

6.	 Once the database cluster is initialized, then the next step is to restore the 
configuration files from the previous version 9.2 data directory to the current  
version 9.3 data directory location.
cd /var/lib/pgsql.old/9.2/data

cp  pg_hba.conf postgresql.conf  /var/lib/pgsql/9.3/data

7.	 The next step would be to start the PostgreSQL 9.3 database server.
pg_ctl -D /var/lib/pgsql/9.3/data  start

8.	 Finally, as a last step, restore your data from the backup that was created in step 1.
/usr/pgsql-9.3/bin/psql  -d postgres  -f  db.backup

9.	 As a next step, we can either remove the old version data directory or else we can 
continue working alongside both the server versions.

10.	 If we choose to remove the old version, as mentioned in step 9, we can then remove 
the respective old version packages, as follows:
yum remove postgresql92-server-9.2.3-2PGDG.rhel6.x86_64 
postgresql92-contrib-9.2.3-2PGDG.rhel6.x86_64 postgresql92-libs-
9.2.3-2PGDG.rhel6.x86_64 postgresql92-9.2.3-2PGDG.rhel6.x86_64 
postgresql92-devel-9.2.3-2PGDG.rhel6.x86_64

How it works...
Here, initially we take a dump of all the databases in the existing PostgreSQL 9.2 version 
cluster. We then initiate a clean shutdown of current PostgreSQL server and rename the 
existing PostgreSQL installation directory to avoid any conflicts with the new version of 
PostgreSQL, that is version 9.3 that is being installed. Once the respective packages of 
the new version are installed we then proceed with initializing a database directory for 
PostgreSQL 9.3 server. To ensure that the desired configuration settings come into effect, 
we will need to copy the configuration files from the old version's data directory to the new 
version's data directory and then start the new version PostgreSQL server service using the 
configuration settings that were defined for the existing environment in the old server. Once 
the PostgreSQL server version 9.3 has been started we can connect to the databases on this 
server. Eventually we restore all the tables and databases from the old PostgreSQL server 9.2 
to the new PostgreSQL server version 9.3 by using the backup that was made in step 1 in the 
preceding section.

You may refer to the following links for a more detailed explanation on upgrading a PostgreSQL 
cluster using pg_dump:

http://www.postgresql.org/docs/9.3/static/upgrading.html

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/upgrading.html
http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

246

Using the pg_upgrade utility for a version 
upgrade

Here, in this recipe, we are going to talk about upgrading a PostgreSQL cluster using pg_upgrade 
utility. We will be covering a PostgreSQL version upgrade from version 9.2 to version 9.3.

Getting ready
The only prerequisites here, are that an existing PostgreSQL cluster must be set up and 
running. The required version here is PostgreSQL version 9.2. These steps are carried  
out on a 64 bit CentOS machine.

How to do it...
The following are the steps to upgrade a PostgreSQL cluster from version 9.2 to version 9.3 
using the pg_upgrade utility:

1.	 Take a full backup of the data directory using a filesystem dump or use pg_dumpall 
to backup data. Before taking a backup stop the running PostgreSQL server.
pg_ctl  -D $PGDATA stop

 

cd /var/lib/pgsql/9.2/

tar -cvf data.tar data

2.	 The next step would to be install the new version of PostgreSQL.
 wget http://yum.postgresql.org/9.3/redhat/rhel-6.4-x86_64/pgdg-
centos93-9.3-1.noarch.rpm

   rpm -ivh ./pgdg- centos93-9.3-1.noarch.rpm 

3.	 As the repository is now installed, the next step is to determine which packages need 
to be installed. For this purpose, check the packages that are installed for the current 
version and then get the list of packages that are needed to be installed for the new 
PostgreSQL version 9.3.
 rpm -qa | grep postgre | grep 92

postgresql92-server-9.2.3-2PGDG.rhel6.x86_64

postgresql92-contrib-9.2.3-2PGDG.rhel6.x86_64

postgresql92-libs-9.2.3-2PGDG.rhel6.x86_64

postgresql92-9.2.3-2PGDG.rhel6.x86_64

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

247

postgresql92-devel-9.2.3-2PGDG.rhel6.x86_64

 yum list postgres* | grep 93

postgresql93.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-contrib.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-debuginfo.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-devel.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-docs.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-jdbc.x86_64 9.3.1100-1PGDG.rhel6 pgdg93

postgresql93-jdbc-debuginfo.x86_64 9.3.1100-1PGDG.rhel6 pgdg93

postgresql93-libs.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-odbc.x86_64 09.02.0100-1PGDG.rhel6 pgdg93

postgresql93-odbc-debuginfo.x86_64 09.02.0100-1PGDG.rhel6 pgdg93

postgresql93-plperl.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-plpython.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-pltcl.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-server.x86_64 9.3.4-1PGDG.rhel6 pgdg93

postgresql93-test.x86_64 9.3.4-1PGDG.rhel6 pgdg93

The packages that will be installed for the new version will match the packages that 
are currently installed for the old version.
 yum install postgresql93-server.x86_64 postgresql93-contrib.
x86_64 postgresql93-libs.x86_64 postgresql93.x86_64 postgresql93-
devel.x86_64

4.	 Now that the new version of PostgreSQL is installed, the next step is to initialize the 
data directory for the new PostgreSQL version 9.3 database.
/etc/init.d/postgresql-9.3 initdb

5.	 Once the data directory has been initialized for the new PostgreSQL version 9.3,  
the next step is to run the pg_upgrade utility.
cd  /usr/pgsql-9.3/bin

./pg_upgrade -v -b /usr/pgsql-9.2/bin/ -B /usr/pgsql-9.3/bin/ -d /
var/lib/pgsql/9.2/data/ -D /var/lib/pgsql/9.3/data/

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

248

Once the upgrade completes , it will then generate two files analyze_new_
cluster.sh and delete_old_cluster.sh files respectively. These files are 
basically used to generate optimizer statistics and delete the old PostgreSQL cluster 
version's data files.

6.	 Post the upgrade step we would need to copy the configuration files and the 
authentication files present in the old version to the new setup, as follows:
cd /var/lib/pgsql/9.2/data

cp  -p pg_hba.conf postgresql.conf  /var/lib/pgsql/9.3/data/

7.	 The next step would be to start the PostgreSQL server version 9.3 service.
service postgresql-9.3 start

8.	 The next step would be to run the analyze_new_cluster.sh shell script that 
was generated at the end of step 5. This script is used to collect minimal optimizer 
statistics in order to get a working and a usable PostgreSQL system.
./analyze_new_cluster.sh

9.	 The next step would be to remove the old PostgreSQL directory by running the  
following script:
./delete_old_cluster.sh 

10.	 Finally, as a last step, we will remove the old PostgreSQL version 9.2 installed packages.
yum remove postgresql92

How it works...
After installing the packages for the PostgreSQL server version 9.3, what we are doing here 
is changing the location of data directory in the startup script, as shown in step 4. After this 
is done, we initialize the data directory for the new PostgreSQL server. The difference in 
steps here, and the previous recipe, is that here we are changing the location of the data 
directory, the log path, and port number of the new PostgreSQL server version, whereas in 
the earlier recipe we renamed the existing PostgreSQL server version data directory. Once the 
data directory is initialized, we then we stop the current PostgreSQL server and then launch 
the pg_upgrade script to upgrade the existing setup to the new version. The pg_upgrade 
script requires specifying the path of old and new data directories and binaries. Once the 
upgrade completes it generates two shell scripts analyze_new_cluster.sh and delete_
old_cluster.sh to generate statistics and delete the old version PostgreSQL directory. To 
preserve the existing configuration, we would need the pg_hba.conf and postgresql.
conf files from the old version's data directory to the new version's data directory, as shown 
in step 6 in the preceding section and then we can start the upgraded PostgreSQL server. 
Once the server has started, we can then proceed to generate statistics via the analyze_
new_cluster.sh script and then remove the old version directory via the delete_old_
cluster.sh script, as shown in steps 8 and 9 respectively.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

249

You can refer to the following web link for more information regarding the upgrade process:

http://www.postgresql.org/docs/9.3/static/pgupgrade.html

http://no0p.github.io/postgresql/2014/03/29/upgrading-pg-ubuntu.html

Replicating data from other databases to 
PostgreSQL using GoldenGate

In this recipe, we are going to cover heterogeneous replication using the Oracle GoldenGate 
software. We are going to migrate table data from Oracle to PostgreSQL.

Getting ready
Since this recipe talks about replicating data from Oracle to PostgreSQL, it is important to 
cover Oracle installation. Also, since GoldenGate is the primary tool used, we will also cover  
the GoldenGate installation for both Oracle and PostgreSQL.

To install the Oracle 11g software on the Linux platform, you may refer to any of the following 
web links:

ff http://oracle-base.com/articles/11g/oracle-db-11gr2-
installation-on-oracle-linux-5.php

ff http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-
linux-7/

To install GoldenGate for the Oracle database, refer to the following web link:

http://docs.oracle.com/cd/E35209_01/doc.1121/e35957.pdf

Here are the high level installation steps given for the ease of the reader. Please refer to the 
preceding web link for more detailed information:

ff Login to edelivery.oracle.com.

ff Select Oracle Fusion Middleware from the Select a Product Pack dropdown menu 
and select the Linux x86-64 option from the Platform dropdown menu and click on 
the Go button.

www.it-ebooks.info

http://www.postgresql.org/docs/9.3/static/pgupgrade.html
http://no0p.github.io/postgresql/2014/03/29/upgrading-pg-ubuntu.html
http://oracle-base.com/articles/11g/oracle-db-11gr2-installation-on-oracle-linux-5.php
http://oracle-base.com/articles/11g/oracle-db-11gr2-installation-on-oracle-linux-5.php
http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-linux-7/
http://dbaora.com/install-oracle-11g-release-2-11-2-on-centos-linux-7/
http://docs.oracle.com/cd/E35209_01/doc.1121/e35957.pdf
edelivery.oracle.com
http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

250

ff Choose the option whose description says Oracle GoldenGate on Oracle v11.2.1 
Media Pack for Linux x86-64, click on the Continue button and it will open a web 
link. Then download the file with the name Oracle GoldenGate V11.2.1.0.3 for 
Oracle 11g on Linux x86-64.

ff As a next step, extract the downloaded file and change the directory to the new 
location and then launch the GoldenGate command-line interface using ggsci 
command. Before launching the GoldenGate command-line interface set the 
GoldenGate installation directory and library path in PATH and LD_LIBRARY_PATH 
environment variables respectively.

To install GoldenGate for PostgreSQL, refer to the following web link:

https://docs.oracle.com/cd/E35209_01/doc.1121/e29642.pdf

Here are the high level installation steps given for the ease of the reader. Please refer to the 
preceding web link for more detailed information and instructions:

ff Login to edelivery.oracle.com

ff Select Oracle Fusion Middleware from the Select a Product Pack dropdown menu 
and select the Linux x86-64 option from the Platform dropdown menu and click on 
the Go button.

ff Choose the option whose description says Oracle GoldenGate for Non Oracle 
Database v11.2.1 Media Pack for Linux x86-64, click on the Continue button 
and you will directed to a web link where you need to click on the Download button 
against the file whose name says Oracle GoldenGate V11.2.1.0.2 for PostgreSQL  
on Linux x86-64.

ff Once the file is downloaded, then extract the zip file and change the directory to the 
newly created location and then launch the GoldenGate command-line interface 
using the ggsci command. Before launching the GoldenGate command-line 
interface set the GoldenGate installation directory and library path in PATH and  
LD_LIBRARY_PATH environment variables respectively.

Here, in this section, we will first cover a brief overview of the procedure used for table data 
replication from the source database, that is Oracle to target database, that is PostgreSQL.

1.	 From the source database, that is Oracle here first, we will have to create various 
subdirectories for GoldenGate and for various database definition files.

2.	 The next step is to create a parameter file which contains a port number for the 
manager process for GoldenGate on the source database and then start the manager.

3.	 Similar to this on the target database, that is PostgreSQL, we will have to create 
various subdirectories for GoldenGate and for various database definition files.

4.	 The next step is to create a parameter file which contains a port number for the 
manager process for GoldenGate on the target database and then start the manager.

www.it-ebooks.info

https://docs.oracle.com/cd/E35209_01/doc.1121/e29642.pdf 
http://www.it-ebooks.info/


Chapter 12

251

5.	 The next step would be to create two tables with the same structure on both the 
source, that is Oracle and target database, that is PostgreSQL.

6.	 Now that we have the tables created on both the source and target database, we will 
log in to source database from the GoldenGate tool and capture the table definitions 
for the tables that needs to be replicated.

7.	 Similar to the preceding step we will log in into the target database using the 
GoldenGate command-line interface and capture the table definitions for the  
table which was created in step 5.

8.	 In the next step, we start the extract process on the source. We first create a 
parameter file for the extract process, which contains the information about the 
remote host and consists of a trail file which is used to capture any changes made on 
the table in the source database and transport these changes to the target database. 
We then start the extract process and it will capture any changes on the table in the 
source database, that is Oracle.

9.	 The next step, is to start the replicat process on the target database. For this we 
set up a replicat parameter file. Once the replicat process is started, it will read 
the changes from the trail file which was used in the previous step at the source to 
capture changes made to the table in the source database. The replicat process 
will read these changes and dump them into the target database, that is PostgreSQL.

10.	 Now that we have the extract process configured on the source database to capture 
changes and the replicat process set up on the target database to read those 
changes. We will now begin to add/change some records on the source. With the 
extract process capturing these changes and recording them in the trail file and the 
trail file being shipped to the server hosting the target database, the replicat 
process residing on the target reads those changes from the trail file and applies 
them to the target database.

We are assuming that a username nkumar with password nkumar has already been 
setup on both Oracle and PostgreSQL. We will be using the tables created in nkumar 
schema for replication between Oracle and PostgreSQL.

For instance, on Oracle, we can create the schema user nkumar, as follows, after 
logging in as the sys user:
SQL > CREATE USER nkumar identified by nkumar ;
SQL> GRANT CREATE ANY TABLE to nkumar;

For creating nkumar user in PostgreSQL, you may refer to Chapter 1, Managing 
Databases and the PostgreSQL Server for more details on how to create a user in 
PostgreSQL and accordingly create this user in PostgreSQL.

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

252

How to do it...
The following are the complete sequence of steps required to migrate table data/changes 
from Oracle to PostgreSQL using GoldenGate:

1.	 First connect as the superuser SYS using the operating system authentication on the 
machine hosting the Oracle database using the sqlplus utility. The utility uses OS 
authentication by default, so the password is not required to be specified. At the time 
of Oracle installation, it will usually ask the user to change the password, however if 
no password is specified you can use the default password change_on_install.
 sqlplus / as sysdba

2.	 Once logged in to the Oracle database make the following parameter changes:
SQL> alter system set log_archive_dest_1='LOCATION=/home/abcd/
oracle/oradata/arch';

3.	 To make the above mentioned parameter changes come into effect, shutdown and 
restart the Oracle database.
SQL> shutdown immediate

SQL> startup mount

4.	 Configure archiving on the Oracle database to ensure that changes made by 
transactions are captured and logged in the archivelog files.
SQL> alter database archivelog;

SQL> alter database open;

5.	 The next step would be to enable minimum supplemental logging.
SQL> alter database add supplemental log data;

SQL> alter database force logging;

SQL> SELECT force_logging, supplemental_log_data_min FROM 
v$database;

FOR SUPPLEME

--- --------

YES      YES

6.	 The next step would be to add the GoldenGate directory path to PATH and library path 
to the LD_LIBRARY_PATH environment variables respectively.
export PATH=$ORACLE_HOME/bin:$ORACLE_HOME/OPatch:$HOME/ggs:$PATH

export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$HOME/ggs/lib

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

253

7.	 The next step would be to launch the GoldenGate command-line interface for Oracle.
./ggsci

8.	 The next step would to be create various subdirectories for GoldenGate such as 
directories for report files, database definition etc.
GGSCI> create subdirs

Creating subdirectories under current directory /home/abcd/oracle/
ggs

Parameter files                /home/abcd/oracle/ggs/dirprm: 
already exists

Report files                   /home/abcd/oracle/ggs/dirrpt: 
created

Checkpoint files               /home/abcd/oracle/ggs/dirchk: 
created

Process status files           /home/abcd/oracle/ggs/dirpcs: 
created

SQL script files               /home/abcd/oracle/ggs/dirsql: 
created

Database definitions files     /home/abcd/oracle/ggs/dirdef: 
created

Extract data files             /home/abcd/oracle/ggs/dirdat: 
created

Temporary files                /home/abcd/oracle/ggs/dirtmp: 
created

Stdout files                   /home/abcd/oracle/ggs/dirout: 
created

9.	 The next step is to create a parameter file for the manager which contains a port 
number for the manager. Here, we enter port 7809 as the port number.
GGSCI > edit param mgr

GGSCI > view param mgr  

PORT 7809

10.	 The next step would be to exit from the manager, start the manager and then verify if 
it is running.
GGSCI > startw mgr

GGSCI > info all

Program     Status      Group       Lag at Chkpt  Time Since Chkpt

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

254

MANAGER     RUNNING                        

GGSCI > info mgr

Manager is running (IP port 7809).

11.	 The next step would be to log in to the server hosting the PostgreSQL server and 
make the GoldenGate configuration steps there. First add the GoldenGate directory  
to LD_LIBRARY_PATH and PATH environment variables.
export LD_LIBRARY_PATH=/usr/pgsql/lib:/usr/pgsql/ggs/lib

export PATH=/usr/pgsql/bin:/usr/pgsql/ggs:$PATH                

12.	 GoldenGate uses an ODBC connection to connect to the postgres database.  
The next step is to create the ODBC file. The ODBC driver is shipped along with  
the installation on Linux/Unix, you just have to create just the configuration file.  
If the ODBC driver is not available, you may refer to the following web link to  
download the respective PostgreSQL driver:
http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-
driver-on-linux/

 view odbc.ini

[ODBC Data Sources]
GG_Postgres=DataDirect 6.1 PostgreSQL Wire Protocol
[ODBC]
IANAAppCodePage=106
InstallDir=/usr/pgsql/ggs
[GG_Postgres]
Driver=/usr/pgsql/ggs/lib/GGpsql25.so
Description=DataDirect 6.1 PostgreSQL Wire Protocol
Database=test
HostName=dbtest
PortNumber=5432
LogonID=nkumar	
Password=nkumar

13.	 The next step would be to export the ODBC environment variable, that is ODBCINI 
which should point to the odbc.ini file that we have created in the previous step. 
This variable can be set in the .profile file, as well.
export ODBCINI=/usr/pgsql/ggs/odbc.ini

www.it-ebooks.info

http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-driver-on-linux/
http://www.uptimemadeeasy.com/linux/install-postgresql-odbc-driver-on-linux/
http://www.it-ebooks.info/


Chapter 12

255

14.	 Now that we have the ODBC setup completed, the next step would be to start with the 
GoldenGate setup for PostgreSQL.

We will first launch the  GoldenGate command-line interpreter for PostgreSQL.
./ggsci

15.	 We will now create various subdirectories for the GoldenGate report, definition files, 
and so on.
GGSCI > create subdirs

Creating subdirectories under current directory /usr/pgsql/ggs

Parameter files                /usr/pgsql/ggs/dirprm: already 
exists

Report files                   /usr/pgsql/ggs/dirrpt: created

Checkpoint files               /usr/pgsql/ggs/dirchk: created

Process status files           /usr/pgsql/ggs/dirpcs: created

SQL script files               /usr/pgsql/ggs/dirsql: created

Database definitions files     /usr/pgsql/ggs/dirdef: created

Extract data files             /usr/pgsql/ggs/dirdat: created

Temporary files                /usr/pgsql/ggs/dirtmp: created

Stdout files                   /usr/pgsql/ggs/dirout: created

16.	 The next step would be to create the manager parameter file with port number.  
Here we enter port number 7809 in the manager parameter file and then start  
the manager.
GGSCI > edit param mgr

GGSCI > view param mgr   

PORT 7809

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

256

17.	 Once we created the parameter file we can start the manager and check its status.
GGSCI > start mgr

Manager started.

GGSCI > info all

Program     Status      Group       Lag at Chkpt  Time Since Chkpt

MANAGER     RUNNING                                           

GGSCI > info mgr

Manager is running (IP port 7809).

18.	 We will now create a table both in Oracle and PostgreSQL databases and replicate 
the data between the two. Log in to the Oracle database and create the table.
sqlplus nkumar 

SQL> create table abcd(col1 number,col2 varchar2(50));

Table created.

SQL> alter table abcd add primary key(col1);

Table altered.

19.	 The next step would be to log in to the PostgreSQL database and create a  
similar table.
 psql -U nkumar -d test -h dbtest

test=> create table "public"."abcd" ( "col1" integer NOT NULL, 
"col2" varchar(20),CONSTRAINT "PK_Col111" PRIMARY KEY ("col1"));

20.	 The next step would be log in to Oracle database using the GoldenGate command-line 
interface, list the tables and capture and check their data types.
GGSCI > dblogin userid nkumar, password nkumar

Successfully logged into database.

GGSCI > list tables *

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

257

NKUMAR.ABCD

Found 1 tables matching list criteria.

GGSCI > capture tabledef nkumar.abcd

Table definitions for NKUMAR.ABCD:

COL1                           NUMBER NOT NULL PK

COL2                           VARCHAR (50)

21.	 In the next step we will check our ODBC connection to the PostgreSQL database and 
use the GoldenGate CLI (command-line interface) for listing the tables and capturing 
the table definitions.
GGSCI > dblogin sourcedb gg_postgres userid nkumar

Password: 

2014-11-04 17:56:35  INFO    OGG-03036  Database character set 
identified as UTF-8. Locale: en_US.

2014-11-04 17:56:35 INFO    OGG-03037  Session character set 
identified as UTF-8.

Successfully logged into database.

GGSCI > list tables *   

public.abcd

Found  1 table matching list criteria

GGSCI > capture tabledef "public"."abcd"

Table definitions for public.abcd:

col1       NUMBER (10) NOT NULL PK

col2      VARCHAR (20)

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

258

22.	 In the next step we will start the GoldenGate extract process on the Oracle database. 
First we will create the extract process that captures the changes for the ABCD table in 
the Oracle database and copy these changes directly to the PostgreSQL machine. Every 
process needs the configuration file, so we will create one for the extract process.
GGSCI > edit param epos

The parameters created are shown below when viewing the parameter file, as follows:
GGSCI > view param epos

EXTRACT epos

SETENV (NLS_LANG="AMERICAN_AMERICA.ZHS16GBK")

SETENV (ORACLE_HOME="/home/abcd/oracle/product/11.2.0/dbhome_1")

SETENV (ORACLE_SID="orapd")

USERID nkumar, PASSWORD nkumar

RMTHOST dbtest, MGRPORT 7809

RMTTRAIL /usr/pgsql/ggs/dirdat/ep

TABLE nkumar.abcd;

23.	 The extract process is called epos and it connects as user nkumar using the 
password nkumar to the Oracle database. Changes made on the Oracle table  
abcd will be extracted and this information will be put in a trail file in the PostgreSQL 
machine. Now that the parameter file has been created, we can then add the extract 
process and start it.
GGSCI > add extract epos, tranlog, begin now

EXTRACT added.

GGSCI > add exttrail /usr/pgsql/ggs/dirdat/ep, extract epos, 
megabytes 5

EXTTRAIL added.

GGSCI > start epos

Sending START request to MANAGER ...

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

259

EXTRACT EPOS starting

GGSCI > info all

Program     Status      Group       Lag at Chkpt  Time Since Chkpt

MANAGER     RUNNING                                           

EXTRACT     RUNNING     EPOS        00:00:00      00:00:00    

GGSCI > info extract epos

24.	 Since we are replicating the data in the heterogeneous environment, that is data 
replication is happening from Oracle to PostgreSQL, the process doing the loading in 
the PostgreSQL would need to provide more details about the data in the extract file. 
This is done by creating a definition file using defgen utility.
GGSCI > view param defgen

DEFSFILE /home/abcd/oracle/ggs/dirdef/ABCD.def

USERID nkumar, password nkumar

TABLE NKUMAR.ABCD;

25.	 We can now exit from the GoldenGate CLI and call the defgen utility on the 
command line to create the definition file and add the reference to the defgen 
parameter file.
 ./defgen paramfile ./dirprm/defgen.prm

Definitions generated for 1 table in /home/abcd/oracle/ggs/dirdef/
ABCD.def

26.	 The next step would be to copy the defgen file to the machine where PostgreSQL 
database is hosted.
       cd /home/abcd /oracle/ggs/dirdef

 scp dirdef/ABCD.def postgres@dbtest:/usr/pgsql/ggs/dirdef

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

260

27.	 The next step would be to start the PostgreSQL replicat process and we are going 
to set up the parameter file for this and include the definition file that was copied 
from the server hosting the Oracle database to the server hosting PostgreSQL.
GGSCI > edit param rpos

The parameters created when viewing the parameter file are as shown below:
GGSCI > view param rpos

REPLICAT rpos

SOURCEDEFS /usr/pgsql/ggs/dirdef/ABCD.def

SETENV ( PGCLIENTENCODING = "UTF8" )

SETENV (ODBCINI="/usr/pgsql/ggs/odbc.ini" )

SETENV (NLS_LANG="AMERICAN_AMERICA.AL32UTF8")

TARGETDB GG_Postgres, USERID nkumar, PASSWORD nkumar

DISCARDFILE /usr/pgsql/ggs/dirrpt/diskg.dsc, purge

MAP NKUMAR.ABCD, TARGET public.abcd, COLMAP (COL1=col1,COL2=col2);

28.	 In the next step we create the replicat process, start it and verify if it is running.
GGSCI > add replicat rpos, NODBCHECKPOINT, exttrail /usr/pgsql/
ggs/dirdat/ep

REPLICAT added.

GGSCI > start rpos

Sending START request to MANAGER ...

REPLICAT RPOS starting

GGSCI > info all

Program     Status      Group       Lag at Chkpt  Time Since Chkpt

MANAGER     RUNNING                                           

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

261

REPLICAT    RUNNING     RPOS        00:00:00      00:00:00    

GGSCI > info all

Program     Status      Group       Lag at Chkpt  Time Since Chkpt

MANAGER     RUNNING                                           

REPLICAT    RUNNING     RPOS        00:00:00      00:00:02    

GGSCI > view report rpos

29.	 Now that the extract and replicat processes have been set up on Oracle and 
PostgreSQL GoldenGate interfaces the next step is to test the configuration. We first 
begin by logging into the Oracle database and inserting records into the ABCD table.
 sqlplus nkumar

SQL> insert into abcd values(101,'Neeraj Kumar');

1 row created.

SQL> commit;

Commit complete.

SQL> select * from abcd;

col1 | col2

-----+-------------------

101  | Neeraj Kumar

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

262

30.	 Now we will check if the corresponding changes / new records inserted into the  
ABCD table in the Oracle database are visible in the corresponding ABCD table  
in the PostgreSQL database.
 psql -U nkumar -d test

test=> select * from abcd;

 col1 |       col2        

------+-------------------

  101 |  Neeraj Kumar

(1 row)

This setup completes the heterogeneous testing scenario for replicating data /changes from 
Oracle to PostgreSQL.

How it works...
For the steps mentioned in the preceding section, we are going to discuss the steps 1 to 27 of 
the preceding section in chunks.

ff We will first talk about steps 1 to 6 of the preceding section: Initially we make 
a superuser connection in Oracle with the sysdba privilege and make certain 
configuration changes. We first enable a destination for holding the archived logs, 
that is logs that contain information about transactional changes are kept here in the 
location specified by the log_archive_dest_1 initialization parameter, as seen in 
step 2 of the previous section. We then shutdown the database in order to ensure the 
changes made in step 2 come into effect. Once the database is restarted, we then 
configure archiving in the database and enable supplemental logging, as seen in step 
4 and 5 of the preceding section. In step 6 we configure and include the GoldenGate 
directory path and library path in PATH and LD_LIBRARY_PATH environment variables.

ff We will now talk about steps 7 and 8 of the preceding section: After GoldenGate is 
installed on the server hosting the Oracle database, we then launch the GoldenGate 
CLI and then create various GoldenGate subdirectories for holding parameter files, 
checkpoint files, database definition files, extract data files, and so on.

ff We will now talk about steps 9 and 10 of the preceding section: The GoldenGate 
manager performs a number of functions like starting the GoldenGate process, trail 
log file management, and reporting. The manager process needs to be configured 
both on source and target systems and configuration is carried out with the help of 
the parameter file, as shown in step 9. We configure the parameter PORT to define 
the port on which the manager is running. Once the parameter file for the manager 
is setup on the source machine, we then start the manager and verify if it is running. 
This is shown in step 10 of the preceding section.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12

263

ff We will now talk about steps 11 to 15 of the preceding section: Once GoldenGate 
is installed on the machine where the PostgreSQL server is hosted, we then 
add the GoldenGate directory and library path to PATH and LD_LIBRARY_PATH 
environment variables. GoldenGate basically uses an ODBC connection to connect 
to the PostgreSQL database. For this purpose the we set up an ODBC configuration 
file called odbc.ini which contains connection information to connect to the 
PostgreSQL server. This is shown in step 12. In the next step, we export the ODBCINI 
environment variable and include the path of the configuration file. Then from step 14 
onwards we launch the GoldenGate command-line interface for PostgreSQL and then 
we create various subdirectories for holding parameter files, database definition files, 
and so on.

ff We will now talk about steps 16 and 17 of the preceding section: Similar to what 
was performed in steps 9 and 10 on the source system for the manager process 
in GoldenGate for Oracle, in a similar style we configure the parameter file for the 
manager process in GoldenGate for the target system, that is PostgreSQL and then 
start the manager and then verify it, as shown in step 17. The only parameter that 
has been configured in step 16 is the PORT parameter which identified the port on 
which the manager will listen to.

ff We will now talk about steps 18 and 19 in the preceding section: Here we are 
creating two tables of the same names, having the same structure. One table will 
be created in the Oracle database and one will be created in PostgreSQL. The 
tables are created in this manner because the idea of this exercise is that any data 
changes that happen on the table created in Oracle will be replicated/propagated in 
PostgreSQL. This is the heterogeneous replication concept.

ff Here we will talk about steps 20 and 21 from the preceding section: Basically, in 
step 20 what we are doing is logging in to the Oracle database using the GoldenGate 
interface and we capture the table definition for the table that was created in step 18 
of the preceding section. Similarly, in step 21, we are checking the ODBC connectivity 
to the PostgreSQL database from the GoldenGate CLI and once the connection is 
made we capture the table definitions for the table created in step 19.

ff Here we are going to talk about steps 22 and 23 from the preceding section: In step 
22 we are creating a parameter file for the extract process on the machine hosting 
the Oracle database since it is used as the source. The extract process happens 
on the source database. The extract process parameter file contains information 
regarding the Oracle environment, the target remote host, the manager port, the 
trail file, and the table for which the changes needs to be captured. In step 23, we 
start the extraction process on the source Oracle database and we add the trail file. 
The extract process will extract any changes made to the Oracle table ABCD and 
will put this information on the trail file which resides on the machine hosting the 
PostgreSQL server.

www.it-ebooks.info

http://www.it-ebooks.info/


Data Migration from Other Databases and Upgrading the PostgreSQL Cluster

264

ff Here we are going to talk about steps 24 and 25 from the preceding section: As 
the replication is happening in a heterogeneous environment, that is from Oracle to 
PostgreSQL in this scenario, it is important to get as much detail as possible about 
the data in the extract file to make things clear for the process loading the data into 
the PostgreSQL database. For this to happen, we need to create a definition file which 
will be created on the GoldenGate interface of the Oracle database and will then be 
shipped to the machine hosting the PostgreSQL server. In step 24, we are basically 
creating a parameter file for the defgen utility. In step 25, we call the defgen utility 
to create the definition file and we also add a reference to the parameter file created 
in step 24 of the preceding section.

ff In step 26 of the preceding section, we copy the definition file created in step 25 from 
the Oracle machine to the machine hosting the PostgreSQL server.

ff Here we are going to talk about steps 27 and 28 of the preceding section. Here we 
start the replicat process. The replicat process basically reads the changes from 
the trail file and distributes them to the PostgreSQL database. In step 27, basically 
we configure the parameter file for the replicat process and in step 28, we start 
the replicat process, add the trail file to the replicat process so that it can read 
changes from the trail file and dump those changes to the PostgreSQL database.

ff Here we are going to talk about steps 29 and 30. Basically we are going to test  
our configuration here. In step 29, we log in to the Oracle database, insert a  
record in the ABCD table and save the changes. Now with GoldenGate extract and 
replicat process running the newly inserted record in the Oracle table should be 
replicated to the corresponding table in the PostgreSQL database. We confirm this 
by logging in to the PostgreSQL database and then by selecting the records from the 
ABCD table in step 30. We can see in step 30 that the records inserted in step 29  
in the Oracle table are visible in the PostgreSQL database table ABCD. This confirms 
the successful implementation of heterogeneous replication from the Oracle 
database to the PostgreSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/


Index
Symbols
-F switch  52
-U switch  52

A
access

controlling, via configuration files  31-33
controlling, via firewalls  29-31

ACID (Atomicity, Consistency, Isolation, 
Durability)  8

active sessions
application_name column  111
client_addr column  111
client_hostname column  111
creating  110, 111
datname column  110
pid column  110
query column  111
state column  111

archive_command parameter  133
archive_mode parameter  133
asymmetric encryption  43
auto freeze

preventing  74, 75
autovacuum  72
autovacuum launcher  73
autovacuum, parameters

autovacuum_analyze_scale_factor  73
autovacuum_analyze_threshold  73
autovacuum_freeze_max_age  74
autovacuum_max_workers  73
autovacuum_vacuum_cost_delay  74
autovacuum_vacuum_scale_factor  73

autovacuum_vacuum_threshold  73
log_autovacuum_min_duration  73

B
backend connections

terminating, URL  25
backend_data_directory0 parameter  179
backend_hostname0 parameter  178
backend_port0 parameter  179
backend_weight0 parameter  179
base backup

taking  63, 64
bloating tables  78-81
blocking sessions

finding  118, 119
Bucardo

URL  152
used, for setting up replication  148-152
version 5.2.0, URL  149

C
checkpoint_segments parameter  133
check_postgres script

URL  81
confidential data

encrypting  42-48
configuration files

used, for controlling access  31-33
connect function

URL  214, 231
connection

making to PostgreSQL database,  
Perl used  212-214

www.it-ebooks.info

http://www.it-ebooks.info/


266

making to PostgreSQL database,  
Python used  230, 231

pooling, pgbouncer used  184-187
terminating  24, 25

connection_cache parameter  179
constraint exclusion  199, 201
CPU 

bottlenecks, identifying  96-99
usage, monitoring  90, 91

D
data

monitoring  82-84
upgrading, pg_dump used  244, 245

database
about  27, 28
changes, auditing  34-37
creating  8-10
destroying  14, 15
load, monitoring  117, 118
monitoring  110
objects, securing  28, 29
restoring  69, 70

database cluster
initializing  18, 19
initializing, URL  19

data node  168
data, replicating

from other databases to PostgreSQL, 
GoldenGate used  249-264

dead rows  74
dearmor function  44
disk

usage, determining  126-128
disk I/O bottlenecks

identifying  99-101
disk space usage

monitoring  106, 107
disk usage

URL  128
DRBD

used, for setting up replication  152-162

E
EnterpriseDB

URL  9
EXPLAIN command

analyze mode  113
generic mode  113
verbose mode  114

explain plan
obtaining, for SQL statement  112-114

F
file system level backup  62, 63
firewalls

used, for controlling access  29-31
frozen rows  74
F switch  52

G
global transaction manager (GTM)  168
GoldenGate

about  244
used for Oracle database, URL  249
used, for replicating data from other 

databases to PostgreSQL  249-264
groups

creating  13, 14

H
historical CPU load

examining  103, 104
historical memory load

examining  104, 105
hot physical backup  64-66
hot_standby parameter  133
hot streaming replication

archive_command parameter  133
archive_mode parameter  133
checkpoint_segments parameter  133
hot_standby parameter  133
listen_addresses parameter  132

www.it-ebooks.info

http://www.it-ebooks.info/


267

max_wal_senders parameter  133
primary_conninfo parameter  133
setting up  130-132
standby_mode parameter  133
trigger_file parameter  134
wal_keep_segments parameter  133
wal_level parameter  132

I
indexes  78-81
index pages  82-84
initdb command  18

L
leaf fragmentation  84
listen_addresses parameter  132, 178
load average  96
load_balance_on parameter  179
log_autovacuum_min_duration parameter  73
log files

maintaining  87
logical backup

about  51
of all PostgreSQL databases  56-59
of single PostgreSQL database  52-56
of specific objects  60, 61

Londiste
URL  148
used, for setting up replication  139-147

LVM (logical volume manager)  62

M
mailing list

performance, URL  128
master_slave_mode parameter  179
master-slave streaming replication

setting up  130-132
max_pool parameter  179
max_wal_senders parameter  133
mpstat command  96
multi version concurrency control (MVCC)  8
mutual exclusion lock (mutex)  99

N
network status

monitoring  107, 108

O
objects

moving, between tablespaces  17, 18
Oracle 11g software

used for reinstalling on Linux platform,  
URL  249

P
paging

monitoring  91-94
partitioning

about  191
alternate methods  202-204
and constraint exclusion  199-201
implementing  192-195
managing  196-199
URL  195, 199
with PL/Proxy  205-209

passwords, PostgreSQL
brute force method  50
cracking  48-50
dictionary attack method  50

Perl
about  211
PostgreSQL, accessing from  211
used, for accessing table data  219-221
used, for creating tables  215, 216
used, for deleting records  225-227
used, for inserting tables  217, 218
used, for updating records  221-224

pgbouncer
managing  187-190
setting  183, 184
SHOW CLIENTS command  189
SHOW POOLS command  190
SHOW SERVERS command  189
SHOW STATS command  190
URL  187

www.it-ebooks.info

http://www.it-ebooks.info/


268

used, for connection pooling  184-186
pgbouncer utility  171
pg_dump

used, for upgrading data  244, 245
pgp_key_id function  44
pgpool

backend_data_directory0 parameter  179
backend_hostname0 parameter  178
backend_port0 parameter  179
backend_weight0 parameter  179
configuring  173-180
connection_cache parameter  179
installing  172, 173
listen_addresses parameter  178
load_balance_on parameter  179
master_slave_mode parameter  179
max_pool parameter  179
port parameter  178
replication_mode parameter  179
setup, testing  173-178
starting  181, 182
stopping  182
URL  172, 179, 181, 182

pgpool-II utility  171
pgpool, stopping modes

fast mode  182
smart mode  182

pgp_pub_decrypt function  44
pgp_pub_encrypt function  44
pg_restore utility  70
pg_upgrade utility

used, for upgrading version  246-249
physical backups  51
planner statistics

updating  77, 78
PL/Proxy

installing  204, 205
installing, steps  205
partitioning with  205-209
URL  209

point-in-time recovery  66-68
port parameter  178
PostgreSQL

about  8
cluster upgrading, URL  245

driver, URL  254
installing on CentOS, URL  8
installing on Ubuntu platform, URL  8
passwords, cracking  48-50
repository, URL  148
SSL, enabling  38-41
URL  115
wiki links  128

PostgreSQL database
all PostgreSQL database,  

logical backup  56-59
single PostgreSQL database,  

logical backup  52-56
Postgres-XC cluster

coordinator  168
data node  168
GTM  168
setting up  162-169
URL  162

Pretty Good Privacy (PGP) compatible 
encryption  44

primary_conninfo parameter  133
Python

about  229
used, for accessing table data  235, 236
used, for creating tables  231-233
used, for deleting records  240-242
used, for inserting records  233, 234
used, for making connections to PostgreSQL 

database  230, 231
used, for updating records  237-239

Q
queries

about  111, 112
forcing, to use index  124-126

R
records

deleting, Perl used  224-227
deleting, Python used  240-242
inserting, Perl used  217-219
updating, Perl used  221-224
updating, Python used  233-239

www.it-ebooks.info

http://www.it-ebooks.info/


269

REINDEX command  85
remote connectivity

testing  34
replication

setting up, Bucardo used  148-152
setting up, DRBD used  152-162
setting up, Londiste used  139-148
setting up, Slony-I used  134-139

replication_mode parameter  179
routine

reindexing  85, 86

S
sar command  90
sar output  90
schemas

creating  10
Secure Sockets Layer (SSL)  38
server

configuration files, reloading  23
starting  19, 20
status, displaying  22
stopping  20-22

server firewall  29
SHOW CLIENTS command

about  189
connect_time  189
database  189
port  189
request_time  189
state  189
user  189

SHOW POOLS command
cl_active  190
cl_waiting  190
sl_active  190
sl_idle  190
sl_used  190

SHOW SERVERS output
connect_time  189
database  189
port  189
request_time  189
state  189

user  189
SHOW STATS command

total_query_time  190
total_received  190
total_requests  190
total_sent  190

Skytools 3.2
URL  140

Slony-I
URL  134, 139
used, for setting up replication  134-139

slow statements
log_directory parameter  115
logging  115
logging_collector parameter  115

SSL
enabling, in PostgreSQL  38-41
encryption, testing  42

standby_mode parameter  133
statement

explain plan, getting  112-114
statistics

collecting  116, 117
streaming replication

URL  134
swapping

monitoring  91-94
symmetric encryption  43
sysid  11
system

load, monitoring  95, 96
performance. monitoring  101-103
worst user, finding  94, 95

T
table

accessing  120-122
creating, Perl used  215, 216
creating, Python used  231, 232
URL  216

table data
accessing, Perl used  219-221
accessing, Python used  235-237

www.it-ebooks.info

http://www.it-ebooks.info/


270

tablespaces
creating  15-17
dropping  15, 16
objects, moving between  17, 18

transaction ID wraparound failures
preventing  75-77

trigger_file parameter  134

U
unused indexes

finding  122-124
URL  124

users
creating  11-13

U switch  52

V
version

upgrading, pg_upgrade utility used  246-249
vmstat command  101

W
wal_keep_segments parameter  133
wal_level parameter  132
web link

URL  237
write-ahead log (WAL)  65
W switch  52

www.it-ebooks.info

http://www.it-ebooks.info/


 
Thank you for buying  

PostgreSQL Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL 
Management, in April 2004, and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution-based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge 
books for communities of developers, administrators, and newbies alike. For more information, 
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt open source brand, home 
to books published on software built around open source licenses, and offering information to 
anybody from advanced developers to budding web designers. The Open Source brand also runs 
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project 
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


PostgreSQL Administration 
Essentials
ISBN: 978-1-78398-898-3             Paperback: 142 pages

Discover efficient ways to administer, monitor, replicate, 
and handle your PostgreSQL databases

1.	 Learn how to detect bottlenecks and make 
sure your database systems offer superior 
performance to your end users.

2.	 Replicate your databases to achieve full 
redundancy and create backups quickly  
and easily.

3.	 Optimize PostgreSQL configuration parameters and 
turn your database server into a high-performance 
machine capable of fulfilling your needs.

PostgreSQL 9 High 
Availability Cookbook
ISBN: 978-1-84951-696-9            Paperback: 398 pages

Over 100 recipes to design and implement a highly 
available server with the advanced features of 
PostgreSQL

1.	 Create a PostgreSQL cluster that stays online even 
when disaster strikes.

2.	 Avoid costly downtime and data loss that can ruin 
your business.

3.	 Perform data replication and monitor your data 
with hands-on industry-driven recipes and detailed 
step-by-step explanations.

 

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


PostGIS Cookbook
ISBN: 978-1-84951-866-6             Paperback: 484 pages

Over 80 task-based recipes to store, organize, 
manipulate, and analyze spatial data in a PostGIS 
database

1.	 Integrate PostGIS with web frameworks and 
implement OGC standards such as WMS and  
WFS using MapServer and GeoServer.

2.	 Convert 2D and 3D vector data, raster data, and 
routing data into usable forms.

3.	 Visualize data from the PostGIS database  
using a desktop GIS program such as QGIS  
and OpenJUMP.

PostgreSQL Replication
ISBN: 978-1-84951-672-3            Paperback: 250 pages

Understand basic replication concepts and efficiently 
replicate PostgreSQL using high-end techniques 
to protect your data and run your server without 
interruptions 

1.	 Explains the new replication features introduced 
in PostgreSQL 9.

2.	 Contains easy to understand explanations and 
lots of screenshots that simplify an advanced 
topic like replication.

3.	 Teaches PostgreSQL administrators how to 
maintain consistency between redundant 
resources and to improve reliability,  
fault-tolerance, and accessibility.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Managing Databases and the PostgreSQL Server
	Introduction
	Creating databases
	Creating schemas
	Creating users
	Creating groups
	Destroying databases
	Creating and dropping tablespaces
	Moving objects between tablespaces
	Initializing a database cluster
	Starting the server
	Stopping the server
	Displaying the server status
	Reloading the server configuration files
	Terminating connections

	Chapter 2: Controlling Security
	Introduction
	Securing database objects
	Controlling access via firewalls
	Controlling access via configuration files
	Testing remote connectivity
	Auditing database changes
	Enabling SSL in PostgreSQL
	Testing SSL encryption
	Encrypting confidential data
	Cracking PostgreSQL passwords

	Chapter 3: Backup and Recovery
	Introduction
	A logical backup of a single PostgreSQL database
	A logical backup of all PostgreSQL databases
	A Logical backup of specific objects
	File system level backup
	Taking a base backup
	Hot physical backup and continuous archiving
	Point-in-time recovery
	Restoring databases and specific database objects

	Chapter 4: Routine Maintenance Tasks
	Introduction
	Controlling automatic database maintenance
	Preventing auto freeze and page corruption
	Preventing transaction ID wraparound failures
	Updating planner statistics
	Dealing with bloating tables and indexes
	Monitoring data and index pages
	Routine reindexing
	Maintaining log files

	Chapter 5: Monitoring the System Using Unix Utilities
	Introduction
	Monitoring CPU usage
	Monitoring paging and swapping
	Finding the worst user on the system
	Monitoring system load 
	Identifying CPU bottlenecks
	Identifying disk I/O bottlenecks
	Monitoring system performance
	Examining historical CPU load
	Examining historical memory load
	Monitoring disk space usage
	Monitoring network status

	Chapter 6: Monitoring Database Activity and Investigating Performance Issues
	Introduction
	Checking active sessions
	Finding out what queries users are currently running
	Getting the execution plan for a statement
	Logging slow statements
	Collecting statistics
	Monitoring database load
	Finding blocking sessions
	Table access statistics 
	Finding unused indexes
	Forcing a query to use an index
	Determining disk usage

	Chapter 7: High Availability and Replication
	Introduction
	Setting up hot streaming replication
	Replication using Slony-I
	Replication using Londiste
	Replication using Bucardo
	Replication using DRBD
	Setting up the Postgres-XC cluster

	Chapter 8: Connection Pooling
	Introduction
	Installing pgpool
	Configuring pgpool and testing the setup
	Starting and stopping pgpool
	Setting up pgbouncer
	Connection pooling using pgbouncer
	Managing pgbouncer

	Chapter 9: Table Partitioning
	Introduction
	Implementing partitioning
	Managing partitions
	Partitioning and constraint exclusion
	Alternate partitioning methods
	Installing PL/Proxy
	Partitioning with PL/Proxy

	Chapter 10: Accessing PostgreSQL from Perl
	Introduction
	Making a connection to a PostgreSQL database using Perl
	Creating tables using Perl
	Inserting records using Perl
	Accessing table data using Perl
	Updating records using Perl
	Deleting records using Perl

	Chapter 11: Accessing PostgreSQL from Python
	Introduction
	Making connections to a PostgreSQL database using Python
	Creating tables using Python
	Inserting Records Using Python
	Accessing table data using Python
	Updating records using Python
	Deleting records using Python

	Chapter 12: Data Migration from Other Databases 
and Upgrading PostgreSQL Cluster
	Introduction
	Using pg_dump to upgrade data
	Using the pg_upgrade utility for version upgrade
	Replicating data from other databases to PostgreSQL using GoldenGate

	Index



