

Contents

I Preface xi

About… xiii
1 About the Book . xiii
2 About the Author . xiv
3 Acknowledgements . xiv
4 About the organisation of the book xv

II Introduction 1

1 Structured Query Language 2
1.1 Some of the Code is Written in SQL 3
1.2 A First Use Case . 4
1.3 Loading the Data Set . 4
1.4 Application Code and SQL 5
1.5 AWord about SQL Injection 9
1.6 PostgreSQL protocol: server-side prepared statements 10
1.7 Back to Discovering SQL . 12
1.8 ComputingWeekly Changes 15

2 Software Architecture 18
2.1 Why PostgreSQL? . 20
2.2 The PostgreSQLDocumentation 22

3 Getting Ready to read this Book 23

Contents | iii

III Writing Sql Queries 25

4 Business Logic 27
4.1 Every SQL query embeds some business logic 27
4.2 Business Logic Applies to Use Cases 29
4.3 Correctness . 32
4.4 Eஸஹ஭ciency . 34
4.5 Stored Procedures — a Data Access API 36
4.6 Procedural Code and Stored Procedures 38
4.7 Where to Implement Business Logic? 39

5 A Small Application 41
5.1 Readme First Driven Development 41
5.2 Loading the Dataset . 42
5.3 Chinook Database . 43
5.4 Music Catalog . 45
5.5 Albums by Artist . 46
5.6 Top-N Artists by Genre . 46

6 The SQL REPL — An Interactive Setup 52
6.1 Intro to psql . 52
6.2 The psqlrc Setup . 53
6.3 Transactions and psql Behavior 54
6.4 A Reporting Tool . 56
6.5 Discovering a Schema . 57
6.6 Interactive Query Editor . 58

7 SQL is Code 60
7.1 SQL style guidelines . 60
7.2 Comments . 64
7.3 Unit Tests . 65
7.4 Regression Tests . 68
7.5 A Closer Look . 69

8 Indexing Strategy 71
8.1 Indexing for Constraints . 72
8.2 Indexing for Queries . 73
8.3 Cost of IndexMaintenance 74
8.4 Choosing Queries to Optimize 74

Contents | iv

8.5 PostgreSQL Index Access Methods 74
8.6 Advanced Indexing . 77
8.7 Adding Indexes . 77

9 An Interview with Yohann Gabory 81

IV SQL Toolbox 86

10 Get Some Data 88

11 Structured Query Language 89

12 Queries, DML, DDL, TCL, DCL 91

13 Select, From, Where 93
13.1 Anatomy of a Select Statement 93
13.2 Projection (output): Select . 93
13.3 Data sources: From . 100
13.4 Understanding Joins . 101
13.5 Restrictions: Where . 102

14 Order By, Limit, No Offset 105
14.1 Ordering with Order By . 105
14.2 kNNOrdering and GiST indexes 107
14.3 Top-N sorts: Limit . 109
14.4 No Oஸfset, and how to implement pagination 111

15 Group By, Having, With, Union All 114
15.1 Aggregates (aka Map/Reduce): Group By 114
15.2 Aggregates Without a Group By 117
15.3 Restrict Selected Groups: Having 118
15.4 Grouping Sets . 119
15.5 Common Table Expressions: With 122
15.6 Distinct On . 126
15.7 Result Sets Operations . 127

16 Understanding Nulls 131
16.1 Three-Valued Logic . 131

Contents | v

16.2 Not Null Constraints . 133
16.3 Outer Joins Introducing Nulls 134
16.4 Using Null in Applications 135

17 Understanding Window Functions 137
17.1 Windows and Frames . 137
17.2 Partitioning into Diஸferent Frames 139
17.3 Available Window Functions 140
17.4 When to UseWindow Functions 142

18 Understanding Relations and Joins 143
18.1 Relations . 143
18.2 SQL Join Types . 145

19 An Interview with Markus Winand 148

V Data Types 152

20 Serialization and Deserialization 154

21 Some Relational Theory 156
21.1 Attribute Values, Data Domains and Data Types 157
21.2 Consistency and Data Type Behavior 158

22 PostgreSQL Data Types 162
22.1 Boolean . 163
22.2 Character and Text . 165
22.3 Server Encoding and Client Encoding 169
22.4 Numbers . 172
22.5 Floating Point Numbers . 174
22.6 Sequences and the Serial Pseudo Data Type 174
22.7 Universally Unique Identiஹ஭er: UUID 175
22.8 Bytea and Bitstring . 177
22.9 Date/Time and Time Zones 177
22.10 Time Intervals . 181
22.11 Date/Time Processing and Querying 182
22.12 Network Address Types . 187
22.13 Ranges . 190

Contents | vi

23 Denormalized Data Types 193
23.1 Arrays . 193
23.2 Composite Types . 199
23.3 XML . 200
23.4 JSON . 202
23.5 Enum . 204

24 PostgreSQL Extensions 206

25 An interview with Grégoire Hubert 208

VI Data Modeling 211

26 Object Relational Mapping 213

27 Tooling for Database Modeling 215
27.1 How toWrite a Database Model 216
27.2 Generating RandomData . 219
27.3 Modeling Example . 221

28 Normalization 227
28.1 Data Structures and Algorithms 227
28.2 Normal Forms . 230
28.3 Database Anomalies . 231
28.4 Modeling an Address Field . 232
28.5 Primary Keys . 234
28.6 Surrogate Keys . 235
28.7 Foreign Keys Constraints . 237
28.8 Not Null Constraints . 238
28.9 Check Constraints and Domains 238
28.10 Exclusion Constraints . 239

29 Practical Use Case: Geonames 240
29.1 Features . 243
29.2 Countries . 244
29.3 Administrative Zoning . 248
29.4 Geolocation Data . 251
29.5 Geolocation GiST Indexing 254

Contents | vii

29.6 A Sampling of Countries . 256

30 Modelization Anti-Patterns 258
30.1 Entity Attribute Values . 258
30.2 Multiple Values per Column 261
30.3 UUIDs . 263

31 Denormalization 265
31.1 Premature Optimization . 266
31.2 Functional Dependency Trade-Oஸfs 266
31.3 Denormalization with PostgreSQL 267
31.4 Materialized Views . 268
31.5 History Tables and Audit Trails 270
31.6 Validity Period as a Range . 272
31.7 Pre-Computed Values . 273
31.8 Enumerated Types . 273
31.9 Multiple Values per Attribute 274
31.10 The Spare Matrix Model . 274
31.11 Partitioning . 275
31.12 Other Denormalization Tools 276
31.13 Denormalize wih Care . 276

32 Not Only SQL 278
32.1 Schemaless Design in PostgreSQL 279
32.2 Durability Trade-Oஸfs . 282
32.3 Scaling Out . 284

33 An interview with Álvaro Hernández Tortosa 286

VII Data Manipulation and Concurrency Control 291

34 Another Small Application 293

35 Insert, Update, Delete 297
35.1 Insert Into . 297
35.2 Insert Into … Select . 298
35.3 Update . 300
35.4 Inserting Some Tweets . 303

Contents | viii

35.5 Delete . 305
35.6 Tuples and Rows . 307
35.7 Deleting All the Rows: Truncate 307
35.8 Delete but Keep a Few Rows 308

36 Isolation and Locking 309
36.1 Transactions and Isolation . 310
36.2 About SSI . 311
36.3 Concurrent Updates and Isolation 312
36.4 Modeling for Concurrency . 314
36.5 Putting Concurrency to the Test 315

37 Computing and Caching in SQL 319
37.1 Views . 320
37.2 Materialized Views . 321

38 Triggers 324
38.1 Transactional Event Driven Processing 325
38.2 Trigger and Counters Anti-Pattern 327
38.3 Fixing the Behavior . 328
38.4 Event Triggers . 330

39 Listen and Notify 332
39.1 PostgreSQLNotiஹ஭cations . 332
39.2 PostgreSQL Event Publication System 333
39.3 Notiஹ஭cations and Cache Maintenance 335
39.4 Limitations of Listen and Notify 340
39.5 Listen and Notify Support in Drivers 340

40 Batch Update, MoMA Collection 342
40.1 Updating the Data . 343
40.2 Concurrency Patterns . 345
40.3 On Con஺ாict Do Nothing . 346

41 An Interview with Kris Jenkins 348

Contents | ix

VIII PostgreSQL Extensions 352

42 What’s a PostgreSQL Extension? 354
42.1 Inside PostgreSQL Extensions 356
42.2 Installing and Using PostgreSQL Extensions 357
42.3 Finding PostgreSQL Extensions 358
42.4 A Primer on Authoring PostgreSQL Extensions 359
42.5 A Short List of Noteworthy Extensions 359

43 Auditing Changes with hstore 365
43.1 Introduction to hstore . 365
43.2 Comparing hstores . 366
43.3 Auditing Changes with a Trigger 366
43.4 Testing the Audit Trigger . 368
43.5 From hstore Back to a Regular Record 370

44 Last.fm Million Song Dataset 372

45 Using Trigrams For Typos 378
45.1 The pg_trgm PostgreSQL Extension 378
45.2 Trigrams, Similarity and Searches 379
45.3 Complete and Suggest Song Titles 383
45.4 Trigram Indexing . 384

46 Denormalizing Tags with intarray 386
46.1 Advanced Tag Indexing . 386
46.2 Searches . 388
46.3 User-Deஹ஭ned Tags Made Easy 390

47 The Most Popular Pub Names 392
47.1 A Pub Names Database . 392
47.2 Normalizing the Data . 394
47.3 Geolocating the Nearest Pub (k-NN search) 395
47.4 Indexing kNN Search . 396

48 How far is the nearest pub? 398
48.1 The earthdistance PostgreSQL contrib 398
48.2 Pubs and Cities . 399
48.3 TheMost Popular Pub Names by City 402

Contents | x

49 Geolocation with PostgreSQL 405
49.1 Geolocation Data Loading . 405
49.2 Finding an IP Address in the Ranges 409
49.3 GeolocationMetadata . 410
49.4 Emergency Pub . 411

50 Counting Distinct Users with HyperLogLog 413
50.1 HyperLogLog . 413
50.2 Installing postgresql-hll . 414
50.3 Counting Unique Tweet Visitors 415
50.4 Lossy Unique Count with HLL 418
50.5 Getting the Visits into Unique Counts 419
50.6 Scheduling Estimates Computations 422
50.7 Combining Unique Visitors 424

51 An Interview with Craig Kerstiens 425

IX Closing Thoughts 428

X Index 430

Part I

Preface

| xii

As a developer, The Art of PostgreSQL is the book you need to read in order to
get to the next level of proஹ஭ciency.

Afிer all, a developer’s job encompasses more than just writing code. Our job is
to produce results, and for that we have many tools at our disposal. SQL is one
of them, and this book teaches you all about it.

PostgreSQL is used to manage data in a centralized fashion, and SQL is used to
get exactly the result set needed from the application code. An SQL result set is
generally used to ஹ஭ll in-memory data structures so that the application can then
process the data. So, let’s open this book with a quote about data structures and
application code:

Data dominatॽ. If you’ve chosen the right data structurॽ and orga-
nized things well, the algorithms will almost always be self-evident.
Data structurॽ, not algorithms, are central to programming.
— Rob Pike

About…

About the Book

This book is intended for developers working on applications that use a database
server. Thebook speciஹ஭cally addresses thePostgreSQLRDBMS: it actually is the
world’smost advancedOpen Source database, just like it says in the tagline on the
oஸஹ஭cial website. By the end of this book you’ll know why, and you’ll agree!

I wanted to write this book afிer having worked withmany customers who were
making use of only a fraction of what SQL and PostgreSQL are capable of deliv-
ering. Inmost cases, developers Imetwithdidn’t knowwhat’s possible to achieve
in SQL. As soon as they realized— or more exactly, as soon as they were shown
what’s possible to achieve—, replacinghundreds of lines of application codewith
a small and eஸஹ஭cient SQL query, then in some cases they would nonetheless not
know how to integrate a raw SQL query in their code base.

Integrating a SQL query and thinking about SQL as code means using the same
advanced tooling thatweusewhenusing other programming languages: version-
ing, automated testing, code reviewing, and deployment. Really, this is more
about the developer’s work஺ாow than the SQL code itself…

In this book, you will learn best practices that help with integrating SQL into
your own work஺ாow, and through the many examples provided, you’ll see all the
reasons why you might be interested in doing more in SQL. Primarily, it means
writing fewer lines of code. As Dijkstra said, we should count lines of code as
lines spent, so by learning how to use SQL you will be able to spend less to write
the same application!

The practice ॾ pervaded by the reassuring illusion that programs
are just devicॽ like any others, the only difference admitted being

https://www.postgresql.org
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

About… | xiv

that their manufacture might require a new type of craftsmen, viz.
programmers. From there it ॾ only a small step to measuring “pro-
grammer productivity” in terms of “number of linॽ of code pro-
duced per month”. Thॾ ॾ a very costly measuring unit because it
encouragॽ the writing of insipid code, but today I am less interested
in how foolish a unit it ॾ from even a pure business point of view.
My point today ॾ that, if we wish to count linॽ of code, we should
not regard them ॼ “linॽ produced” but ॼ “linॽ spent”: the current
conventional wisdom ॾ so foolish ॼ to book that count on the wrong
side of the ledger.
On the cruelty of really teaching computing science, Edsger Wybe
Dijkstra, EWD1036

About the Author

Dimitri Fontaine is a PostgreSQL Major Contributor, and has been using and
contributing toOpen Source Sofிware for the better part of the last twenty years.
Dimitri is also the author of the pgloader data loading utility, with fully auto-
mated support for database migration from MySQL to PostgreSQL, or from
SQLite, or MS SQL… and more.

Dimitri has taken on roles such as developer, maintainer, packager, release man-
ager, sofிware architect, database architect, and database administrator at diஸfer-
ent points in his career. In the same period of time, Dimitri also started several
companies (which are still thriving) with a strong Open Source business model,
and he has held management positions as well, including working at the execu-
tive level in large companies.

Dimitri runs a blog at http://tapoueh.org with in-depth articles showing
advanced use cases for SQL and PostgreSQL.

Acknowledgements

First of all, I’d like to thank all the contributors to the book. I know they all had
other priorities in life, yet they found enough time to contribute and help make

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html
http://pgloader.io
http://tapoueh.org

About… | xv

this book as good as I could ever hope for, maybe even better!

I’d like to give special thanks tomy friend Julien Danjouwho’s acted as amentor
over the course of writing of the book. His advice about every part of the process
has been of great value —maybe the one piece of advice that I most took to the
heart has been “write the book you wanted to read”.

I’d also like to extend my thanks to the people interviewed for this book.
In order of appearance, they are Yohann Gabory from the French book
“Django Avancé”, Markus Winand from http://use-the-index-luke.com and
http://modern-sql.com, Grégoire Hubert author of the PHP POMM project,
Álvaro Hernández Tortosa who created ToroDB, bringing MongoDB to SQL,
Kris Jenkins, functional programmer and author of the YeSQL library for
Clojure, and Craig Kerstiens, head of Could at Citus Data.

Having insights fromSQLusers frommanydiஸferent backgrounds has been valu-
able in achieving one of the major goals of this book: encouraging you, valued
readers, to extend your thinking to new horizons. Of course, the horizons I’m
referring to include SQL.

I also want to warmly thank the PostgreSQL community. If you’ve ever joined a
PostgreSQL community conference, or even asked questions on themailing list,
you know these people are both incredibly smart and extremely friendly. It’s no
wonder that PostgreSQL is such a great product as it’s produced by an excellent
group of well-meaning people who are highly skilled and deeply motivated to
solve actual users problems.

Finally, thank you dear reader for having picked this book to read. I hope that
you’ll have a good time as you read through themany pages, and that you’ll learn
a lot along the way!

About the organisation of the book

Each part of “The Art of PostgreSQL” can be read on its own, or you can read
this book from the ஹ஭rst to the last page in the order of the parts and chapters
therein. A great deal of thinking have been put in the ordering of the parts, so
that reading “TheArt of PostgreSQL” in a linear fashion should provide the best
experience.

http://use-the-index-luke.com
http://modern-sql.com
http://www.pomm-project.org
https://www.torodb.com
https://github.com/krisajenkins/yesql
https://www.citusdata.com

About… | xvi

The skill progression throughout the book is not linear. Each time a new SQL
concept is introduced, it is presented with simple enough queries, in order to
make it possible to focus on the new notion. Then, more queries are introduced
to answer more interesting business questions.

Complexity of the queries usually advances over the course of a given part, chap-
ter afிer chapter. Sometimes, when a new chapter introduces a new SQL con-
cept, complexity is reset to very simple queries again. That’s because for most
people, learning a new skill set does not happen in a linear way. Having this kind
of diஸஹ஭culty organisation also makes it easier to dive into a given chapter out-of-
order.

Here’s a quick breakdown of what each chapter contains:

Part 1, Preface

You’re reading it now, the preface is a presentationof the book andwhat to expect
from it.

Part 2, Introduction

The introduction of this book intends to convince application developers such
as you, dear reader, that there’s more to SQL than you might think. It begins
with a very simple data set and simple enough queries, that we compare to their
equivalent Python code. Thenwe expand from therewith a very important trick
that’s not well known, and a pretty advanced variation of it.

Part 3, Writting SQLQueries

The third part of the book covers how to write a SQL query as an application
developer. We answer several important questions here:

• Why using SQL rather than your usual programming language?
• How to integrate SQL in your application source code?
• How to work at the SQL prompt, the psqlREPL?
• What’s an indexing strategy and how to approach indexing?

About… | xvii

A simple Python application is introduced as a practical example illustrating the
diஸferent answers provided. In particular, this part insists on when to use SQL
to implement business logic.

Part 3 concludes with an interview with YohanGabory, author of a French book
that teaches how to write advanced web application with Python and Django.

Part 4, SQL Toolbox

The fourth part of “The Art of PostgreSQL” introduces most of the SQL con-
cepts that you need to master as an application developer. It begins with the
basics, because you need to build your knowledge and skill set on-top of those
foundations.

Advanced SQL concepts are introduced with practical examples: every query
refers to a data model that’s easy to understand, and is given in the context of a
“business case”, or “user story”.

This part covers SQL clauses and features such as ORDER BY and k-NN sorts,
the GROUP BY and HAVING clause and GROUPING SETS, along with clas-
sic and advanced aggregates, and then window functions. This part also covers
the infamous NULL, and what’s a relation and a join.

Part 5 concludeswith an interviewwithMarkusWinand, author of “SQLPerfor-
mance explained” and http://use-the-index-luke.com. Markus is a master of the
SQL standard and he is awizard on using SQL to enable fast application delivery
and solid run-time performances!

Part 5, Data Types

The ஹ஭fிh part of this book covers the main PostgreSQL data types you can use
and beneஹ஭t from as an application developer. PostgreSQL is an ORDBMS:
Object-Oriented Relation Database Manager. As a result, data types in Post-
greSQL are not just the classics numbers, dates, and text. There’s more to it,
and this part covers a lot of ground.

Part 5 concludes with an interviewwith GrégoireHubert, author of the POMM
project, which provides developers with unlimited access to SQL and database
features while proposing a high-level API over low-level drivers.

http://use-the-index-luke.com
http://www.pomm-project.org

About… | xviii

Part 6, Data Modeling

The sixth part of “The Art of PostgreSQL” covers the basics of relational data
modeling, which is themost important skill you need tomaster as an application
developer. Given a good databasemodel, every single SQLquery is easy towrite,
things are kep logical, and data is kept clean. With a bad design…well my guess is
that you’ve seen what happens with a not-great data model already, and inmany
cases that’s the root of developers’ disklike for the SQL language.

This part comes late in the book for a reason: without knowledge of some of the
advancedSQLfacilities, it’s hard to anticipate that a datamodel is going tobe easy
enough to work with, and developers then tend to apply early optimizations to
the model to try to simplify writing the code. Well, most of those optimizations
are detrimental to our ability to beneஹ஭t from SQL.

Part 6 concludes with an interview with Álvaro Hernández Tortosa, who built
the ToroDB project, a MongoDB replica solution based on PostgreSQL! His
take on relation database modeling when compared to NoSQL and document
based technologies and APIs is the perfect conclusion of the database modeling
part.

Part 7, Data Manipulation and Concurrency Control

The seventh part of this book covers DML and concurrency, the heart of any live
database. DML stands for “Data Modiஹ஭cation Language”: it’s the part of SQL
that includes INSERT, UPDATE, and DELETE statements.

Themain feature of anyRDBMS is how it dealswith concurrent access to a single
data set, in both reading and writing. This part covers isolation and locking,
computing and caching in SQL complete with cache invalidation techniques,
and more.

Part 7 concludes with an interview with Kris Jenkins, a functional programmer
and open-source enthusiast. He mostly works on building systems in Elm,
Haskell & Clojure, improving the world one project at a time, and he’s is the
author of the YeSQL library.

https://www.torodb.com
https://github.com/krisajenkins/yesql

About… | xix

Part 8, PostgreSQL Extensions

The eighthpart of “TheArt of PostgreSQL” covers a selectionof very useful Post-
greSQL Extensions and their impact on simplifying application development
when using PostgreSQL.

We cover auditing changes with hstore, the pg_trgm extension to implement
auto-suggestions and auto-correct in your application search forms, user-deஹ஭ned
tags and how to eஸஹ஭ciently use them in search queries, and then we use ip4r for
implementing geolocation oriented features. Finally, hyperlolog is introduced
to solve a classic problem with high cardinality estimates and how to combine
them.

Part 8 concludes with an interview with Craig Kerstiens who heads the Cloud
team at Citus Data, afிer having been involved in PostgreSQL support at
Heroku. Craig shares his opinion about using PostgreSQL extensions when
deploying your application using a cloud-based PostgreSQL solution.

Part II

Introduction

1
Structured Query Language

SQL stands for Structured Query Language; the term deஹ஭nes a declarative pro-
gramming language. As a user, we declare the result we want to obtain in terms
of a data processing pipeline that is executed against a known database model
and a dataset.

The databasemodel has to be statically declared so thatwe know the type of every
bit of data involved at the time the query is carried out. A query result set deஹ஭nes
a relation, of a type determined or inferred when parsing the query.

When working with SQL, as a developer we relatedly work with a type system
and a kind of relational algebra. We write code to retrieve and process the data
we are interested into, in the speciஹ஭c way we need.

RDBMS and SQL are forcing developers to think in terms of data structure,
and to declare both the data structure and the data set we want to obtain via our
queries.

Some might then say that SQL forces us to be good developers:

I will, in fact, claim that the difference between a bad programmer
and a good one ॾ whether he considers hॾ code or hॾ data structurॽ
more important. Bad programmers worry about the code. Good
programmers worry about data structurॽ and their relationships.
— Linॿ Torvalds

Chapter 1 Structured Query Language | 3

Some of the Code is Written in SQL

If you’re reading this book, then it’s easy to guess that you are alreadymaintaining
at least one application that uses SQL and embeds some SQL queries into its
code.

The SQLite project is another implementation of a SQL engine, and one might
wonder if it is the Most Widely Deployed Sofிware Module of Any Type?

SQLite ॾ deployed in every Android device, every iPhone and
iOS device, every Mac, every Windows10 machine, every Firefox,
Chrome, and Safari web browser, every installation of Skype, every
version of iTunॽ, every Dropbox client, every TurboTax and Quick-
Books, PHP and Python, most television sets and set-top cable boxॽ,
most automotive multimedia systems.

The page goes on to say that other libraries with similar reach include:

• The original zlib implementation by Jean-loup Gailly andMark Adler,
• The original reference implementation for libpng,
• Libjpeg from the Independent JPEGGroup.

I can’t help but mention that libjpeg was developed by Tom Lane, who then
contributed to developing the specs of PNG. Tom Lane is a Major Contributor
to the PostgreSQL project and has been for a long time now. Tom is simply one
of the most important contributors to the project.

Anyway, SQL is very popular and it is used in most applications written today.
Every developer has seen some select … from … where … SQL query string in
one form or another and knows some parts of the very basics from SQL’89.

The current SQL standard is SQL’2016 and it includes many advanced data pro-
cessing techniques. If your application is already using the SQL programming
language and SQL engine, then as a developer it’s important to fully understand
howmuch can be achieved in SQL, and what service is implemented by this run-
time dependency in your sofிware architecture.

Moreover, this service is state full and hosts all your application user data. In
most cases user data as managed by the Relational Database Management Sys-
tems that is at the heart of the application code we write, and our code means
nothing if we do not have the production data set that delivers value to users.

https://www.sqlite.org/mostdeployed.html
https://en.wikipedia.org/wiki/Tom_Lane_(computer_scientist)

Chapter 1 Structured Query Language | 4

SQL is a very powerful programming language, and it is a declarative one. It’s a
wonderful tool to master, and once used properly it allows one to reduce both
code size and the development time for new features. This book is written so
that you think of good SQL utilization as one of our greatest advantages when
writing an application, coding a new business case or implementing a user story!

A First Use Case

Intercontinental Exchange provides a chart with Daily NYSE Group Volume in
NYSE Listed, 2017. We can fetch the Excel ஹ஭le which is actually a CSV ஹ஭le using
tab as a separator, remove the headings and load it into a PostgreSQL table.

Loading the Data Set

Here’s what the data looks like with coma-separated thousands and dollar signs,
so we can’t readily process the ஹ஭gures as numbers:
2010 1/4/2010 1,425,504,460 4,628,115 $38,495,460,645
2010 1/5/2010 1,754,011,750 5,394,016 $43,932,043,406
2010 1/6/2010 1,655,507,953 5,494,460 $43,816,749,660
2010 1/7/2010 1,797,810,789 5,674,297 $44,104,237,184

Sowe create an ad-hoc table deஹ஭nition, and once the data is loadedwe then trans-
form it into a proper SQL data type, thanks to alter table commands.

1 begin;
2

3 create table factbook
4 (
5 year int,
6 date date,
7 shares text,
8 trades text,
9 dollars text
10);
11

12 \copy factbook from 'factbook.csv' with delimiter E'\t' null ''
13

14 alter table factbook
15 alter shares
16 type bigint

https://www.nyse.com/
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&key=3141&category=3
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&key=3141&category=3

Chapter 1 Structured Query Language | 5

17 using replace(shares, ',', '')::bigint,
18

19 alter trades
20 type bigint
21 using replace(trades, ',', '')::bigint,
22

23 alter dollars
24 type bigint
25 using substring(replace(dollars, ',', '') from 2)::numeric;
26

27 commit;

We use the PostgreSQL copy functionality to stream the data from the CSV
ஹ஭le into our table. The \copy variant is a psql speciஹ஭c command and initiates
client/server streaming of the data, reading a local ஹ஭le and sending its content
through any established PostgreSQL connection.

Application Code and SQL

Now a classic question is how to list the factbook entries for a given month, and
because the calendar is a complex beast, we naturally pick February 2017 as our
example month.

The following query lists all entries we have in the month of February 2017:
1 \set start '2017-02-01'
2

3 select date,
4 to_char(shares, '99G999G999G999') as shares,
5 to_char(trades, '99G999G999') as trades,
6 to_char(dollars, 'L99G999G999G999') as dollars
7 from factbook
8 where date >= date :'start'
9 and date < date :'start' + interval '1 month'
10 order by date;

We use the psql application to run this query, and psql supports the use of vari-
ables. The \set command sets the ‘2017-02-01’ value to the variable start, and
then we re-use the variable with the expression :‘start’.
The writing date :'start' is equivalent to date '2017-02-01' and is called a
decorated literal expression in PostgreSQL. This allows us to set the data type of
the literal value so that the PostgreSQL query parser won’t have to guess or infer
it from the context.

Chapter 1 Structured Query Language | 6

This ஹ஭rst SQL query of the book also uses the interval data type to compute the
end of the month. Of course, the example targets February because the end of
the month has to be computed. Adding an interval value of 1 month to the ஹ஭rst
day of the month gives us the ஹ஭rst day of the next month, and we use the less
than (<) strict operator to exclude this day from our result set.

The to_char() function is documented in the PostgreSQL section about Data
Type Formatting Functions and allows converting a number to its text represen-
tation with detailed control over the conversion. The format is composed of
template patterns. Here we use the following patterns:

• Value with the speciஹ஭ed number of digits
• L, currency symbol (uses locale)
• G, group separator (uses locale)

Other template patterns for numeric formatting are available — see the Post-
greSQL documentation for the complete reference.

Here’s the result of our query:
date │ shares │ trades │ dollars

════════════╪═════════════════╪═════════════╪══════════════════
2017-02-01 │ 1,161,001,502 │ 5,217,859 │ $ 44,660,060,305
2017-02-02 │ 1,128,144,760 │ 4,586,343 │ $ 43,276,102,903
2017-02-03 │ 1,084,735,476 │ 4,396,485 │ $ 42,801,562,275
2017-02-06 │ 954,533,086 │ 3,817,270 │ $ 37,300,908,120
2017-02-07 │ 1,037,660,897 │ 4,220,252 │ $ 39,754,062,721
2017-02-08 │ 1,100,076,176 │ 4,410,966 │ $ 40,491,648,732
2017-02-09 │ 1,081,638,761 │ 4,462,009 │ $ 40,169,585,511
2017-02-10 │ 1,021,379,481 │ 4,028,745 │ $ 38,347,515,768
2017-02-13 │ 1,020,482,007 │ 3,963,509 │ $ 38,745,317,913
2017-02-14 │ 1,041,009,698 │ 4,299,974 │ $ 40,737,106,101
2017-02-15 │ 1,120,119,333 │ 4,424,251 │ $ 43,802,653,477
2017-02-16 │ 1,091,339,672 │ 4,461,548 │ $ 41,956,691,405
2017-02-17 │ 1,160,693,221 │ 4,132,233 │ $ 48,862,504,551
2017-02-21 │ 1,103,777,644 │ 4,323,282 │ $ 44,416,927,777
2017-02-22 │ 1,064,236,648 │ 4,169,982 │ $ 41,137,731,714
2017-02-23 │ 1,192,772,644 │ 4,839,887 │ $ 44,254,446,593
2017-02-24 │ 1,187,320,171 │ 4,656,770 │ $ 45,229,398,830
2017-02-27 │ 1,132,693,382 │ 4,243,911 │ $ 43,613,734,358
2017-02-28 │ 1,455,597,403 │ 4,789,769 │ $ 57,874,495,227

(19 rows)

The dataset only has data for 19 days in February 2017. Our expectations might
be to display an entry for each calendar day and ஹ஭ll it inwith eithermatching data
or a zero ஹ஭gure for days without data in our factbook.

https://www.postgresql.org/docs/9.6/static/functions-formatting.html
https://www.postgresql.org/docs/9.6/static/functions-formatting.html

Chapter 1 Structured Query Language | 7

Here’s a typical implementation of that expectation, in Python:
1 #! /usr/bin/env python3
2

3 import sys
4 import psycopg2
5 import psycopg2.extras
6 from calendar import Calendar
7

8 CONNSTRING = "dbname=yesql application_name=factbook"
9

10

11 def fetch_month_data(year, month):
12 "Fetch a month of data from the database"
13 date = "%d-%02d-01" % (year, month)
14 sql = """
15 select date, shares, trades, dollars
16 from factbook
17 where date >= date %s
18 and date < date %s + interval '1 month'
19 order by date;
20 """
21 pgconn = psycopg2.connect(CONNSTRING)
22 curs = pgconn.cursor()
23 curs.execute(sql, (date, date))
24

25 res = {}
26 for (date, shares, trades, dollars) in curs.fetchall():
27 res[date] = (shares, trades, dollars)
28

29 return res
30

31

32 def list_book_for_month(year, month):
33 """List all days for given month, and for each
34 day list fact book entry.
35 """
36 data = fetch_month_data(year, month)
37

38 cal = Calendar()
39 print("%12s | %12s | %12s | %12s" %
40 ("day", "shares", "trades", "dollars"))
41 print("%12s-+-%12s-+-%12s-+-%12s" %
42 ("-" * 12, "-" * 12, "-" * 12, "-" * 12))
43

44 for day in cal.itermonthdates(year, month):
45 if day.month != month:
46 continue
47 if day in data:
48 shares, trades, dollars = data[day]
49 else:
50 shares, trades, dollars = 0, 0, 0

Chapter 1 Structured Query Language | 8

51

52 print("%12s | %12s | %12s | %12s" %
53 (day, shares, trades, dollars))
54

55

56 if __name__ == '__main__':
57 year = int(sys.argv[1])
58 month = int(sys.argv[2])
59

60 list_book_for_month(year, month)

In this implementation, we use the above SQL query to fetch our result set, and
moreover to store it in a dictionary. The dict’s key is the day of the month, so we
can then loop over a calendar’s list of days and retrieve matching data when we
have it and install a default result set (here, zeroes) whenwe don’t have anything.

Below is the output when running the program. As you can see, we opted for an
output similar to the psql output, making it easier to compare the eஸfort needed
to reach the same result.
$./factbook-month.py 2017 2

day | shares | trades | dollars
-------------+--------------+--------------+-------------

2017-02-01 | 1161001502 | 5217859 | 44660060305
2017-02-02 | 1128144760 | 4586343 | 43276102903
2017-02-03 | 1084735476 | 4396485 | 42801562275
2017-02-04 | 0 | 0 | 0
2017-02-05 | 0 | 0 | 0
2017-02-06 | 954533086 | 3817270 | 37300908120
2017-02-07 | 1037660897 | 4220252 | 39754062721
2017-02-08 | 1100076176 | 4410966 | 40491648732
2017-02-09 | 1081638761 | 4462009 | 40169585511
2017-02-10 | 1021379481 | 4028745 | 38347515768
2017-02-11 | 0 | 0 | 0
2017-02-12 | 0 | 0 | 0
2017-02-13 | 1020482007 | 3963509 | 38745317913
2017-02-14 | 1041009698 | 4299974 | 40737106101
2017-02-15 | 1120119333 | 4424251 | 43802653477
2017-02-16 | 1091339672 | 4461548 | 41956691405
2017-02-17 | 1160693221 | 4132233 | 48862504551
2017-02-18 | 0 | 0 | 0
2017-02-19 | 0 | 0 | 0
2017-02-20 | 0 | 0 | 0
2017-02-21 | 1103777644 | 4323282 | 44416927777
2017-02-22 | 1064236648 | 4169982 | 41137731714
2017-02-23 | 1192772644 | 4839887 | 44254446593
2017-02-24 | 1187320171 | 4656770 | 45229398830
2017-02-25 | 0 | 0 | 0
2017-02-26 | 0 | 0 | 0
2017-02-27 | 1132693382 | 4243911 | 43613734358
2017-02-28 | 1455597403 | 4789769 | 57874495227

Chapter 1 Structured Query Language | 9

A Word about SQL Injection

An SQL Injections is a security breach, one made famous by the Exploits of a
Mom xkcd comic episode in which we read about little Bobby Tablॽ.

Figure 1.1: Exploits of a Mom

PostgreSQL implements a protocol level facility to send the static SQL query
text separately from its dynamic arguments. An SQL injection happens when
the database server is mistakenly led to consider a dynamic argument of a query
as part of the query text. Sending those parts as separate entities over the protocol
means that SQL injection is no longer possible.

The PostgreSQL protocol is fully documented and you can read more about ex-
tended query support on the Message Flow documentation page. Also relevant
is the PQexecParams driver API, documented as part of the command execution
functions of the libpq PostgreSQL C driver.

A lot of PostgreSQL application drivers are based on the libpq C driver, which
implements the PostgreSQL protocol and is maintained alongside the main
server’s code. Some drivers variants also exist that don’t link to any C runtime,
in which case the PostgreSQL protocol has been implemented in another
programming language. That’s the case for variants of the JDBC driver, and the
pqGo driver too, among others.

It is advisable that you read the documentation of your current driver and under-
stand how to send SQL query parameters separately from the main SQL query
text; this is a reliable way to never have to worry about SQL injection problems
ever again.

In particular, never build a query string by concatenating your query arguments

https://xkcd.com/327/
https://xkcd.com/327/
https://www.postgresql.org/docs/current/static/protocol-flow.html
https://www.postgresql.org/docs/current/static/libpq-exec.html
https://www.postgresql.org/docs/current/static/libpq-exec.html

Chapter 1 Structured Query Language | 10

directly into your query strings, i.e. in the application client code. Never use any
library, ORMor another tooling thatwould do that. When building SQLquery
strings that way, you open your application code to serious security risk for no
reason.

We were using the psycopg Python driver in our example above, which is based
on libpq. The documentation of this driver addresses passing parameters to
SQL queries right from the beginning.

When using Psycopg the SQL query parameters are interpolated in the SQL
query string at the client level. It means you need to trust Psycopg to protect
you from any attempt at SQL injection, and we could be more secure than that.

PostgreSQL protocol: server-side prepared state-

ments

It is possible to send the query string and its arguments separately on the wire
by using server-side prepared statements. This is a pretty common way to do
it, mostly because PQexecParams isn’t well known, though it made its debut in
PostgreSQL 7.4, released November 17, 2003. To this day, a lot of PostgreSQL
drivers still don’t expose the PQexecParams facility, which is unfortunate.

Server-side Prepared Statements can be used in SQL thanks to the PREPARE
and EXECUTE commands syntax, as in the following example:

1 prepare foo as
2 select date, shares, trades, dollars
3 from factbook
4 where date >= $1::date
5 and date < $1::date + interval '1 month'
6 order by date;

And then you can execute the prepared statementwith a parameter that way, still
at the psql console:

1 execute foo('2010-02-01');

We then get the same result as before, when using our ஹ஭rst version of the Python
program.

Now, while it’s possible to use the prepare and execute SQL commands directly
in your application code, it is also possible to use it directly at the PostgreSQL

http://initd.org/psycopg/
http://initd.org/psycopg/docs/usage.html#passing-parameters-to-sql-queries
http://initd.org/psycopg/docs/usage.html#passing-parameters-to-sql-queries
https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/current/sql-execute.html

Chapter 1 Structured Query Language | 11

protocol level. This facility is named Extended Query and is well documented.

Reading the documentation about the protocol implementation, we see the fol-
lowing bits. First the PARSE message:

In the extended protocol, the frontend ஹ஭rst sends a Parse message,
which contains a textual query string, optionally some information
about data types of parameter placeholders, and the name of a des-
tination prepared-statement object […]

Then, the BINDmessage:

Once a prepared statement exists, it can be readied for execution us-
ing a Bind message. […] The supplied parameter set must match
those needed by the prepared statement.

Finally, to receive the result set the client needs to send a third message, the EXE-
CUTEmessage. The details of this part aren’t relevant now though.

It is very clear from the documentation excerpts above that the query string
parsed by PostgreSQL doesn’t contain the parameters. The query string is
sent in the BIND message. The query parameters are sent in the EXECUTE
message. When doing things that way, it is impossible to have SQL injections.

Remember: SQL injection happens when the SQL parser is fooled into believ-
ing that a parameter string is in fact a SQL query, and then the SQL engine goes
on and executes that SQL statement. When the SQL query string lives in your
application code, and the user-supplied parameters are sent separately on the net-
work, there’s no way that the SQL parsing engine might get confused.

The following example uses the asyncpg PostgreSQLdriver. It’s open source and
the sources are available at the MagicStack/asyncpg repository, where you can
browse the code and see that the driver implements the PostgreSQL protocol
itself, and uses server-side prepared statements.

This example is now safe from SQL injection by design, because the server-side
prepared statement protocol sends the query string and its arguments in separate
protocol messages:

1 import sys
2 import asyncio
3 import asyncpg
4 import datetime
5 from calendar import Calendar
6

https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY
https://magicstack.github.io/asyncpg/current/index.html
https://github.com/MagicStack/asyncpg

Chapter 1 Structured Query Language | 12

7 CONNSTRING = "postgresql://appdev@localhost/appdev?application_name=factbook"
8

9

10 async def fetch_month_data(year, month):
11 "Fetch a month of data from the database"
12 date = datetime.date(year, month, 1)
13 sql = """
14 select date, shares, trades, dollars
15 from factbook
16 where date >= $1::date
17 and date < $1::date + interval '1 month'
18 order by date;
19 """
20 pgconn = await asyncpg.connect(CONNSTRING)
21 stmt = await pgconn.prepare(sql)
22

23 res = {}
24 for (date, shares, trades, dollars) in await stmt.fetch(date):
25 res[date] = (shares, trades, dollars)
26

27 await pgconn.close()
28

29 return res

Then, the Python function call needs to be adjusted to take into ac-
count the coroutine usage we’re now making via asyncio. The function
list_book_for_month now begins with the following lines:

1 def list_book_for_month(year, month):
2 """List all days for given month, and for each
3 day list fact book entry.
4 """
5 data = asyncio.run(fetch_month_data(year, month))

The rest of it is as before.

Back to Discovering SQL

Nowof course it’s possible to implement the same expectationswith a single SQL
query, without any application code being spent on solving the problem:

1 select cast(calendar.entry as date) as date,
2 coalesce(shares, 0) as shares,
3 coalesce(trades, 0) as trades,
4 to_char(
5 coalesce(dollars, 0),
6 'L99G999G999G999'

Chapter 1 Structured Query Language | 13

7) as dollars
8 from /*
9 * Generate the target month's calendar then LEFT JOIN
10 * each day against the factbook dataset, so as to have
11 * every day in the result set, whether or not we have a
12 * book entry for the day.
13 */
14 generate_series(date :'start',
15 date :'start' + interval '1 month'
16 - interval '1 day',
17 interval '1 day'
18)
19 as calendar(entry)
20 left join factbook
21 on factbook.date = calendar.entry
22 order by date;

In this query, we use several basic SQL and PostgreSQL techniques that you
might be discovering for the ஹ஭rst time:

• SQL accepts comments written either in the -- comment style, running
from the opening to the end of the line, or C-style with a /* comment */
style.

As with any programming language, comments are best used to note our
intentions, which otherwise might be tricky to reverse engineer from the
code alone.

• generate_seriॽ() is a PostgreSQLset returning function, forwhich thedoc-
umentation reads:

Generate a series of values, from start to stop with a step size of
step

As PostgreSQL knows its calendar, it’s easy to generate all days from any
given month with the ஹ஭rst day of the month as a single parameter in the
query.

• generate_seriॽ() is inclusive much like the BETWEEN operator, so we
exclude the ஹ஭rst day of the next month with the expression - interval ‘1
day’.

• The cast(calendar.entry ॼ date) expression transforms the generated cal-
endar.entry, which is the result of the generate_seriॽ() function call into
the date data type.
We need to cast here because the generate_seriॽ()_ function returns a set

https://www.postgresql.org/docs/current/static/functions-srf.html

Chapter 1 Structured Query Language | 14

of timestamp* entries and we don’t care about the time parts of it.
• The left join in between our generated calendar table and the factbook ta-
ble will keep every calendar row and associate a factbook row with it only
when the date columns of both the tables have the same value.
When the calendar.date is not found in factbook, the factbook columns
(year, date, sharॽ, tradॽ, and dollars) are ஹ஭lled in withNULL values in-
stead.

• COALESCE returns the ஹ஭rst of its arguments that is not null.

So the expression coalesce(sharॽ, 0) ॼ sharॽ is either howmany shares we
found in the factbook table for this calendar.date row, or 0whenwe found
no entry for the calendar.date and the left join kept our result set row and
ஹ஭lled in the factbook columns withNULL values.

Finally, here’s the result of running this query:
date │ shares │ trades │ dollars

════════════╪════════════╪═════════╪══════════════════
2017-02-01 │ 1161001502 │ 5217859 │ $ 44,660,060,305
2017-02-02 │ 1128144760 │ 4586343 │ $ 43,276,102,903
2017-02-03 │ 1084735476 │ 4396485 │ $ 42,801,562,275
2017-02-04 │ 0 │ 0 │ $ 0
2017-02-05 │ 0 │ 0 │ $ 0
2017-02-06 │ 954533086 │ 3817270 │ $ 37,300,908,120
2017-02-07 │ 1037660897 │ 4220252 │ $ 39,754,062,721
2017-02-08 │ 1100076176 │ 4410966 │ $ 40,491,648,732
2017-02-09 │ 1081638761 │ 4462009 │ $ 40,169,585,511
2017-02-10 │ 1021379481 │ 4028745 │ $ 38,347,515,768
2017-02-11 │ 0 │ 0 │ $ 0
2017-02-12 │ 0 │ 0 │ $ 0
2017-02-13 │ 1020482007 │ 3963509 │ $ 38,745,317,913
2017-02-14 │ 1041009698 │ 4299974 │ $ 40,737,106,101
2017-02-15 │ 1120119333 │ 4424251 │ $ 43,802,653,477
2017-02-16 │ 1091339672 │ 4461548 │ $ 41,956,691,405
2017-02-17 │ 1160693221 │ 4132233 │ $ 48,862,504,551
2017-02-18 │ 0 │ 0 │ $ 0
2017-02-19 │ 0 │ 0 │ $ 0
2017-02-20 │ 0 │ 0 │ $ 0
2017-02-21 │ 1103777644 │ 4323282 │ $ 44,416,927,777
2017-02-22 │ 1064236648 │ 4169982 │ $ 41,137,731,714
2017-02-23 │ 1192772644 │ 4839887 │ $ 44,254,446,593
2017-02-24 │ 1187320171 │ 4656770 │ $ 45,229,398,830
2017-02-25 │ 0 │ 0 │ $ 0
2017-02-26 │ 0 │ 0 │ $ 0
2017-02-27 │ 1132693382 │ 4243911 │ $ 43,613,734,358
2017-02-28 │ 1455597403 │ 4789769 │ $ 57,874,495,227

https://www.postgresql.org/docs/9.5/static/functions-conditional.html#FUNCTIONS-COALESCE-NVL-IFNULL

Chapter 1 Structured Query Language | 15

(28 rows)

When ordering the book package that contains the code and the data set, you can
ஹ஭nd the SQL queries 02-intro/02-usecase/02.sql and 02-intro/02-usecase/04.sql,
and the Python script 02-intro/02-usecase/03_factbook-month.py, and run them
against the pre-loaded database yesql.
Note that we replaced 60 lines of Python codewith a simple enough SQLquery.
Down the road, that’s less code tomaintain and amore eஸஹ஭cient implementation
too. Here, the Python is doing an Hash Join Nested Loop where PostgreSQL
picks aMerge Left Join over two ordered relations. Later in this book, we see
how to get and read the PostgreSQL execution plan for a query.

Computing Weekly Changes

The analytics department now wants us to add a weekly diஸference for each day
of the result. More speciஹ஭cally, we want to add a column with the evolution as
a percentage of the dollars column in between the day of the value and the same
day of the previous week.

I’m taking the “week over week percentage diஸference” example because it’s both
a classic analytics need, though mostly in marketing circles maybe, and because
in my experience the ஹ஭rst reaction of a developer will rarely be to write a SQL
query doing all the math.

Also, computing weeks is another area in which the calendar we have isn’t very
helpful, but for PostgreSQL taking care of the task is as easy as spelling the word
week:

1 with computed_data as
2 (
3 select cast(date as date) as date,
4 to_char(date, 'Dy') as day,
5 coalesce(dollars, 0) as dollars,
6 lag(dollars, 1)
7 over(
8 partition by extract('isodow' from date)
9 order by date
10)
11 as last_week_dollars
12 from /*
13 * Generate the month calendar, plus a week before

Chapter 1 Structured Query Language | 16

14 * so that we have values to compare dollars against
15 * even for the first week of the month.
16 */
17 generate_series(date :'start' - interval '1 week',
18 date :'start' + interval '1 month'
19 - interval '1 day',
20 interval '1 day'
21)
22 as calendar(date)
23 left join factbook using(date)
24)
25 select date, day,
26 to_char(
27 coalesce(dollars, 0),
28 'L99G999G999G999'
29) as dollars,
30 case when dollars is not null
31 and dollars <> 0
32 then round(100.0
33 * (dollars - last_week_dollars)
34 / dollars
35 , 2)
36 end
37 as "WoW %"
38 from computed_data
39 where date >= date :'start'
40 order by date;

To implement this case in SQL, we need window functions that appeared in the
SQL standard in 1992 but are still ofிen skipped in SQL classes. The last thing
executed in a SQL statement are windows functions, well afிer join operations
and where clauses. So if we want to see a full week before the ஹ஭rst of February,
we need to extend our calendar selection aweek into the past and then once again
restrict the data that we issue to the caller.

That’s whywe use a common table expression—theWITH part of the query—
to fetch the extendeddata setweneed, including the last_week_dollars computed
column.

The expression extract(‘isodow’ from date) is a standard SQL feature that allows
computing the Day Of Week following the ISO rules. Used as a partition by
frame clause, it allows a row to be a peer to any other rowhaving the same isodow.
The lag() window function can then refer to the previous peerdollars valuewhen
ordered by date: that’s the number with which we want to compare the current
dollars value.
The computed_data result set is then used in the main part of the query as a rela-

Chapter 1 Structured Query Language | 17

tion we get data from and the computation is easier this time as we simply apply
a classic diஸference percentage formula to the dollars and the last_week_dollars
columns.

Here’s the result from running this query:
date │ day │ dollars │ WoW %

════════════╪═════╪══════════════════╪════════
2017-02-01 │ Wed │ $ 44,660,060,305 │ -2.21
2017-02-02 │ Thu │ $ 43,276,102,903 │ 1.71
2017-02-03 │ Fri │ $ 42,801,562,275 │ 10.86
2017-02-04 │ Sat │ $ 0 │ ¤
2017-02-05 │ Sun │ $ 0 │ ¤
2017-02-06 │ Mon │ $ 37,300,908,120 │ -9.64
2017-02-07 │ Tue │ $ 39,754,062,721 │ -37.41
2017-02-08 │ Wed │ $ 40,491,648,732 │ -10.29
2017-02-09 │ Thu │ $ 40,169,585,511 │ -7.73
2017-02-10 │ Fri │ $ 38,347,515,768 │ -11.61
2017-02-11 │ Sat │ $ 0 │ ¤
2017-02-12 │ Sun │ $ 0 │ ¤
2017-02-13 │ Mon │ $ 38,745,317,913 │ 3.73
2017-02-14 │ Tue │ $ 40,737,106,101 │ 2.41
2017-02-15 │ Wed │ $ 43,802,653,477 │ 7.56
2017-02-16 │ Thu │ $ 41,956,691,405 │ 4.26
2017-02-17 │ Fri │ $ 48,862,504,551 │ 21.52
2017-02-18 │ Sat │ $ 0 │ ¤
2017-02-19 │ Sun │ $ 0 │ ¤
2017-02-20 │ Mon │ $ 0 │ ¤
2017-02-21 │ Tue │ $ 44,416,927,777 │ 8.28
2017-02-22 │ Wed │ $ 41,137,731,714 │ -6.48
2017-02-23 │ Thu │ $ 44,254,446,593 │ 5.19
2017-02-24 │ Fri │ $ 45,229,398,830 │ -8.03
2017-02-25 │ Sat │ $ 0 │ ¤
2017-02-26 │ Sun │ $ 0 │ ¤
2017-02-27 │ Mon │ $ 43,613,734,358 │ ¤
2017-02-28 │ Tue │ $ 57,874,495,227 │ 23.25

(28 rows)

The rest of the book spends some time to explain the core concepts of common
table expressions and window functions and provides many other examples so
that you canmaster PostgreSQL and issue the SQL queries that fetch exactly the
result set your application needs to deal with!

We will also look at the performance and correctness characteristics of issuing
more complex queries rather than issuing more queries and doing more of the
processing in the application code… or in a Python script, as in the previous ex-
ample.

2
Software Architecture

Our ஹ஭rst use case in this book allowed us to compare implementing a simple
feature in Python and in SQL. Afிer all, once you know enough of SQL, lots of
data related processing and presentation can be done directly within your SQL
queries. The application code might then be a shell wrapper around a sofிware
architecture that is database centered.

In some simple cases, andwe’ll seemore about that in later chapters, it is required
for correctness that some processing happens in the SQL query. In many cases,
having SQL do the data-related heavy lifிing yields a net gain in performance
characteristics too,mostly because round-trip times and latency alongwithmem-
ory and bandwidth resources usage depend directly on the size of the result sets.

TheArtOf PostgreSQL, Volume 1 focuses on teaching SQL idioms, both the ba-
sics and some advanced techniques too. It also contains an approach to database
modeling, normalization, and denormalization. That said, it does not address
sofிware architecture. The goal of this book is to provide you, the application
developer, with new and powerful tools. Determining how and when to use
them has to be done in a case by case basis.

Still, a general approach is helpful in deciding how and where to implement ap-
plication features. The following concepts are important to keep in mind when
learning advanced SQL:

• Relational Database Management System

PostgreSQL is an RDBMS and as such its role in your sofிware architec-

Chapter 2 Sofிware Architecture | 19

ture is to handle concurrent access to live data that is manipulated by sev-
eral applications, or several parts of an application.

Typically we will ஹ஭nd the user-side parts of the application, a front-oஸஹ஭ce
and a user back-oஸஹ஭ce with a diஸferent set of features depending on the user
role, including some kinds of reporting (accounting, ஹ஭nance, analytics),
and ofிen some glue scripts here and there, crontabs or the like.

• Atomic, Consistent, Isolated, Durable

At the heart of the concurrent access semantics is the concept of a transac-
tion. A transaction should be atomic and isolated, the latter allowing for
online backups of the data.
Additionally, theRDBMS is taskedwithmaintaining a data set that is con-
sistent with the business rules at all times. That’s why database modeling
and normalization tasks are so important, and why PostgreSQL supports
an advanced set of constraints.
Durable means that whatever happens PostgreSQL guarantees that it
won’t lose any committed change. Your data is safe. Not even an OS crash
is allowed to risk your data. We’re lefி with disk corruption risks, and
that’s why being able to carry out online backups is so important.

• Data Access API and Service

Given the characteristics listed above, PostgreSQL allows one to imple-
ment a data access API. In a world of containers and micro-services, Post-
greSQL is the data access service, and its API is SQL.

If it looks a lot heavier than your typicalmicro-service, remember that Post-
greSQL implements a stateful service, on top of which you can build the
other parts. Those other parts will be scalable and highly available by de-
sign, because solving those problems for stateless services is somuch easier.

• Structured Query Language

The data access API oஸfered by PostgreSQL is based on the SQL program-
ming language. It’s a declarative language where your job as a developer is
to describe in detail the result set you are interested in.
PostgreSQL’s job is then to ஹ஭nd the most eஸஹ஭cient way to access only the
data needed to compute this result set, and execute the plan it comes up
with.

Chapter 2 Sofிware Architecture | 20

• Extensible (JSON, XML, Arrays, Ranges)

The SQL language is statically typed: every query deஹ஭nes a new relation
that must be fully understood by the system before executing it. That’s
why sometimes cast expressions are needed in your queries.
PostgreSQL’s unique approach to implementing SQLwas invented in the
80s with the stated goal of enabling extensibility. SQL operators and func-
tions are deஹ஭ned in a catalog and looked up at run-time. Functions and
operators in PostgreSQL support polymorphism and almost every part of
the system can be extended.

This unique approachhas allowedPostgreSQL tobe capable of improving
SQL; it oஸfers a deep coverage for composite data types and documents
processing right within the language, with clean semantics.

So when designing your sofிware architecture, think about PostgreSQL not as
storage layer, but rather as a concurrent data access service. This service is capable
of handling data processing. How much of the processing you want to imple-
ment in the SQL part of your architecture depends on many factors, including
team size, skill set, and operational constraints.

Why PostgreSQL?

While this book focuses on teaching SQL and how to make the best of this pro-
gramming language in modern application development, it only addresses the
PostgreSQL implementation of the SQL standard. That choice is down to sev-
eral factors, all consequences of PostgreSQL truly being the world’s most ad-
vanced open source database:

• PostgreSQL is open source, available under a BSD like licence named the
PostgreSQL licence.

• ThePostgreSQLproject is done completely in the open, using publicmail-
ing lists for all discussions, contributions, and decisions, and the project
goes as far as self-hosting all requirements in order to avoid being in஺ாu-
enced by a particular company.

• While being developed and maintained in the open by volunteers, most
PostgreSQL developers today are contributing in a professional capacity,

https://www.postgresql.org/about/licence/

Chapter 2 Sofிware Architecture | 21

both in the interest of their employer and to solve real customer problems.

• PostgreSQL releases a new major version about once a year, following a
when it’s ready release cycle.

• The PostgreSQL design, ever since its Berkeley days under the supervision
of Michael Stonebraker, allows enhancing SQL in very advanced ways, as
we see in the data types and indexing support parts of this book.

• The PostgreSQL documentation is one of the best reference manuals you
can ஹ஭nd, open source or not, and that’s because a patch in the code is only
acceptedwhen it also includes editing theparts of the documentations that
need editing.

• While newNoSQL systems are oஸfering diஸferent trade-oஸfs in terms of op-
erations, guarantees, query languages and APIs, I would argue that Post-
greSQL is YeSQL!

In particular, the extensibility of PostgreSQL allows this 20 years old system to
keep renewing itself. As a data point, this extensibility designmakes PostgreSQL
one of the best JSON processing platforms you can ஹ஭nd.

It makes it possible to improve SQL with advanced support for new data types
even from “userland code”, and to integrate processing functions and operators
and their indexing support.

We’ll see lots of examples of that kind of integration in the book. One of them
is a query used in the Schemaless Design in PostgreSQL section where we deal
with a Magic™The Gathering set of cards imported from a JSON data set:

1 select jsonb_pretty(data)
2 from magic.cards
3 where data @> '{
4 "type":"Enchantment",
5 "artist":"Jim Murray",
6 "colors":["White"]
7 }';

The @> operator reads contains and implements JSON searches, with support
from a specialized GIN index if one has been created. The jsonb_pretty() func-
tion does what we can expect from its name, and the query returnsmagic.cards
rows that match the JSON criteria for given type, artist and colors key, all as a
pretty printed JSON document.

PostgreSQL extensibility design is what allows one to enhance SQL in that way.

https://en.wikipedia.org/wiki/Michael_Stonebraker

Chapter 2 Sofிware Architecture | 22

The query still fully respects SQL rules, there are no tricks here. It is only func-
tions and operators, positionedwhere we expect them in thewhere clause for the
searching and in the select clause for the projection that builds the output format.

The PostgreSQL Documentation

This book is not an alternative to the PostgreSQLmanual, which in PDF for the
9.6 server weights in at 3376 pages if you choose the A4 format. The table of
contents alone in that document includes from pages iii to xxxiv, that’s 32 pages!
This book oஸfers a very diஸferent approach thanwhat is expected from a reference
manual, and it is in no way to be considered a replacement. Bits and pieces from
the PostgreSQL documentation are quotedwhen necessary, otherwise this book
contains lots of links to the reference pages of the functions and SQL commands
we utilize in our practical use cases. It’s a good idea to refer to the PostgreSQL
documentation and read it carefully.

Afிer having spent some time as a developer using PostgreSQL, then as a Post-
greSQL contributor and consultant, nowadays I can very easily ஹ஭nd my way
around the PostgreSQLdocumentation. Chapters are organized in a logical way,
and everything becomes easier when you get used to browsing the reference.

Finally, the psql application also includes online help with \h <sql command>.

This book does not aim to be a substitute for the PostgreSQL documentation,
andother forums andblogsmight oஸfer interestingpieces of advice and introduce
some concepts with examples. At the end of the day, if you’re curious about
anything related to PostgreSQL: read the ஹ஭ne manual. No really… this one is
ஹ஭ne.

https://www.postgresql.org/docs/manuals/

3
Getting Ready to read this Book

Be sure to use the documentation for the version of PostgreSQL you are using,
and if you’re not too sure about that just query for it:

1 show server_version;

server_version
════════════════
9.6.5

(1 row)

Ideally, you will have a database server to play along with.

• If you’re using MacOSX, check out Postgres App to install a PostgreSQL
server and the psql tool.

• For Windows check https://www.postgresql.org/download/windows/.

• If you’re mainly running Linux mainly you know what you’re doing al-
ready right? My experience is with Debian, so have a look at https://apt.
postgresql.org and install the most recent version of PostgreSQL on your
station so that you have something to play with locally. For RedHat pack-
aging based systems, check out https://yum.postgresql.org.

In this book, we will be using psql a lot and we will see how to conஹ஭gure it in a
friendly way.

You might prefer a more visual tool such as pgAdmin or OmniDB; the key here
is to be able to easily edit SQL queries, run them, edit them in order to ஹ஭x them,
see the explain plan for the query, etc.

https://postgresapp.com
https://www.postgresql.org/download/windows/
https://apt.postgresql.org
https://apt.postgresql.org
https://yum.postgresql.org
https://www.pgadmin.org
https://omnidb.org/en/

Chapter 3 Getting Ready to read this Book | 24

If you have opted for either the Full Edition or the Enterprise Edition of the
book, both include the SQL ஹ஭les. Check out the toc.txt ஹ஭le at the top of the
ஹ஭les tree, it contains a detailed table of contents and the list of ஹ஭les found in each
section, such as in the following example:

2 Introduction
2 Structured Query Language

2.1 Some of the Code is Written in SQL
2.2 A First Use Case
2.3 Loading the Data Set

02-intro/02-usecase/03_01_factbook.sql
2.4 Application Code and SQL

02-intro/02-usecase/04_01.sql
02-intro/02-usecase/04_02_factbook-month.py

2.5 A Word about SQL Injection
2.6 PostgreSQL protocol: server-side prepared statements

02-intro/02-usecase/06_01.sql
02-intro/02-usecase/06_02.sql

2.7 Back to Discovering SQL
02-intro/02-usecase/07_01.sql

2.8 Computing Weekly Changes
02-intro/02-usecase/08_01.sql

3 Software Architecture
3.1 Why PostgreSQL?

02-intro/03-postgresql/01_01.sql
3.2 The PostgreSQL Documentation

4 Getting Ready to read this Book
02-intro/04-postgresql/01.sql

To run the queries you also need the datasets, and the Full Edition includes in-
structions to fetch the data and load it into your local PostgreSQL instance. The
Enterprise Edition comes with a PostgreSQL instance containing all the data al-
ready loaded for you, and visual tools already setup so that you can click and run
the queries.

Part III

Writing Sql Queries

| 26

In this chapter, we are going to learn about how towrite SQL queries. There are
several ways to accomplish this this, both from the SQL syntax and semantics
point of view, and that is going to be covered later. Here, we want to address
how to write SQL queries as part of your application code.

Maybe you are currently using an ORM to write your queries and then have
never cared about learning how to format, indent and maintain SQL queries.
SQL is code, so you need to apply the same rules as when you maintain code
written in other languages: indentation, comments, version control, unit testing,
etc.

Also to be able to debug what happens in production you need to be able to
easily spot where the query comes from, be able to replay it, edit it, and update
your code with the new ஹ஭xed version of the query.

Before we go into details about the speciஹ஭cs of those concerns, it might be a good
idea to review how SQL actually helps youwrite sofிware, what parts of the code
you arewriting in the database layer andhowmuch you can or should bewriting.
The question is this: is SQL a good place to implement business logic?

Next, to get a more concrete example around The Right Way™ to implement
SQL queries in your code, we are going to have a detailed look at a very simple
application, so as to work with a speciஹ஭c code base.

Afிer that, we will be able to have a look at those tools and habits that will help
you in using SQL in your daily life as an application developer. In particular, this
chapter introduces the notion of indexing strategy and explains why this is one
of the tasks that the application developer should be doing.

To conclude this part of the book, Yohann Gabory shares his Django expertise
with us and covers why SQL is code, which you read earlier in this chapter.

4
Business Logic

Where to maintain the business logic can be a hard question to answer. Each
applicationmay be diஸferent, and every development teammight have a diஸferent
viewpoint here, fromone extreme (all in the application, usually in amiddleware
layer) to the other (all in the database server with the help of stored procedures).

My view is that every SQLquery embeds some parts of the business logic you are
implementing, thus the question changes from this:

• Should we have business logic in the database?

to this:

• Howmuch of our business logic should be maintained in the database?

Themain aspects to consider in terms ofwhere tomaintain the business logic are
the correctness and the efficiency aspects of your code architecture and organisa-
tion.

Every SQL query embeds some business logic

Before we dive into more speciஹ஭cs, we need to realize that as soon as you send
an SQL query to your RDBMS you are already sending business logic to the
database. My argument is that each and every and all SQL query contains some
levels of business logic. Let’s consider a few examples.

Chapter 4 Business Logic | 28

In the very simplest possible case, you are still expressing some logic in the query.
In the Chinook database case, we might want to fetch the list of tracks from a
given album:

1 select name
2 from track
3 where albumid = 193
4 order by trackid;

What business logic is embedded in that SQL statement?

• The select clause only mentions the name column, and that’s relevant to
your application. In the situation in which your application runs this
query, the business logic is only interested into the tracks names.

• The from clause onlymentions the track table, somehowwe decided that’s
all we need in this example, and that again is strongly tied to the logic being
implemented.

• Thewhere clause restricts the data output to the albumid 193, which again
is a direct translation of our business logic, with the added information
that the albumwe want now is the 193rd one and we’re lefி to wonder how
we know about that.

• Finally, the order by clause implements the idea that we want to display
the track names in the order they appear on the disk. Not only that, it also
incorporates the speciஹ஭c knowledge that the trackid column ordering is
the same as the original disk ordering of the tracks.

A variation on the query would be the following:
1 select track.name as track, genre.name as genre
2 from track
3 join genre using(genreid)
4 where albumid = 193
5 order by trackid;

This time we add a join clause to fetch the genre of each track and choose to
return the track name in a column named track and the genre name in a column
named genre. Again, there’s only one reason for us to be doing that here: it’s
because it makes sense with respect to the business logic being implemented in
our application.

Granted, those two examples are very simple queries. It is possible to argue that,
barring any computation being done to the data set, then we are not actually im-
plementing any business logic. It’s a fair argument of course. The idea here is that

Chapter 4 Business Logic | 29

those two very simplistic queries are already responsible for a part of the business
logic youwant to implement. Whenused as part of displaying, for example, a per
album listing page, then it actually is the whole logic.

Let’s have a look at another query now. It is still meant to be of the same level of
complexity (very low), but with some level of computations being done on-top
of the data, before returning it to the main application’s code:

1 select name,
2 milliseconds * interval '1 ms' as duration,
3 pg_size_pretty(bytes) as bytes
4 from track
5 where albumid = 193
6 order by trackid;

This variation looks more like some sort of business logic is being applied to the
query, because the columns we sent in the output contain derived values from
the server’s raw data set.

Business Logic Applies to Use Cases

Up to now,we have been approaching the question from thewrong angle. Look-
ing at a query and trying to decide if it’s implementing business logic rather than
something else (data access I would presume) is quite impossible to achieve with-
out a business case to solve, also known as a use case or maybe even a user story,
depending on which methodology you are following.

In the following example, we are going to ஹ஭rst deஹ஭ne a business case we want to
implement, and then we have a look at the SQL statement that we would use to
solve it.

Our case is a simple one again: display the list of albums from a given artist, each
with its total duration.

Let’s write a query for that:
1 select album.title as album,
2 sum(milliseconds) * interval '1 ms' as duration
3 from album
4 join artist using(artistid)
5 left join track using(albumid)
6 where artist.name = 'Red Hot Chili Peppers'

Chapter 4 Business Logic | 30

7 group by album
8 order by album;

The output is:
album │ duration

═══════════════════════╪══════════════════════════════
Blood Sugar Sex Magik │ @ 1 hour 13 mins 57.073 secs
By The Way │ @ 1 hour 8 mins 49.951 secs
Californication │ @ 56 mins 25.461 secs

(3 rows)

What we see here is a direct translation from the business case (or user story if
you prefer that term) into a SQL query. The SQL implementation uses joins
and computations that are speciஹ஭c to both the data model and the use case we
are solving.

Another implementation could be done with several queries and the computa-
tion in the application’s main code:

1. Fetch the list of albums for the selected artist
2. For each album, fetch the duration of every track in the album
3. In the application, sum up the durations per album

Here’s a very quick way to write such an application. It is important to include it
here because youmight recognize patterns to be found in your own applications,
and I want to explain why those patterns should be avoided:

1 #! /usr/bin/env python3
2 # -*- coding: utf-8 -*-
3

4 import psycopg2
5 import psycopg2.extras
6 import sys
7 from datetime import timedelta
8

9 DEBUGSQL = False
10 PGCONNSTRING = "user=cdstore dbname=appdev application_name=cdstore"
11

12

13 class Model(object):
14 tablename = None
15 columns = None
16

17 @classmethod
18 def buildsql(cls, pgconn, **kwargs):
19 if cls.tablename and kwargs:
20 cols = ", ".join(['"%s"' % c for c in cls.columns])
21 qtab = '"%s"' % cls.tablename

Chapter 4 Business Logic | 31

22 sql = "select %s from %s where " % (cols, qtab)
23 for key in kwargs.keys():
24 sql += "\"%s\" = '%s'" % (key, kwargs[key])
25 if DEBUGSQL:
26 print(sql)
27 return sql
28

29

30 @classmethod
31 def fetchone(cls, pgconn, **kwargs):
32 if cls.tablename and kwargs:
33 sql = cls.buildsql(pgconn, **kwargs)
34 curs = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor)
35 curs.execute(sql)
36 result = curs.fetchone()
37 if result is not None:
38 return cls(*result)
39

40 @classmethod
41 def fetchall(cls, pgconn, **kwargs):
42 if cls.tablename and kwargs:
43 sql = cls.buildsql(pgconn, **kwargs)
44 curs = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor)
45 curs.execute(sql)
46 resultset = curs.fetchall()
47 if resultset:
48 return [cls(*result) for result in resultset]
49

50

51 class Artist(Model):
52 tablename = "artist"
53 columns = ["artistid", "name"]
54

55 def __init__(self, id, name):
56 self.id = id
57 self.name = name
58

59

60 class Album(Model):
61 tablename = "album"
62 columns = ["albumid", "title"]
63

64 def __init__(self, id, title):
65 self.id = id
66 self.title = title
67 self.duration = None
68

69

70 class Track(Model):
71 tablename = "track"
72 columns = ["trackid", "name", "milliseconds", "bytes", "unitprice"]
73

Chapter 4 Business Logic | 32

74 def __init__(self, id, name, milliseconds, bytes, unitprice):
75 self.id = id
76 self.name = name
77 self.duration = milliseconds
78 self.bytes = bytes
79 self.unitprice = unitprice
80

81

82 if __name__ == '__main__':
83 if len(sys.argv) > 1:
84 pgconn = psycopg2.connect(PGCONNSTRING)
85 artist = Artist.fetchone(pgconn, name=sys.argv[1])
86

87 for album in Album.fetchall(pgconn, artistid=artist.id):
88 ms = 0
89 for track in Track.fetchall(pgconn, albumid=album.id):
90 ms += track.duration
91

92 duration = timedelta(milliseconds=ms)
93 print("%25s: %s" % (album.title, duration))
94 else:
95 print('albums.py <artist name>')

Now the result of this code is as following:
1 $./albums.py "Red Hot Chili Peppers"
2 Blood Sugar Sex Magik: 1:13:57.073000
3 By The Way: 1:08:49.951000
4 Californication: 0:56:25.461000

While you would possibly not write the code in exactly that way, you might be
using an application objectmodelwhichprovides a useful set ofAPI entry points
and youmight be calling objectmethods that will, in turn, execute the same kind
of series of SQL statements. Sometimes, adding insult to injury, your magic ob-
ject model will insist on hydrating the intermediate objects with as much infor-
mation as possible from the database, which translates into select *being used.
We’ll see more about why to avoid select * later.

There are several problems related to correctness and efficiency when this very
simple use case is done within several queries, and we’re going to dive into them.

Correctness

When using multiple statements, it is necessary to setup the isolation level cor-
rectly. Also, the connection and transaction semantics of your code should be

Chapter 4 Business Logic | 33

tightly controlled. Our code snippet here does neither, using a default isolation
level setting and not caring much about transactions.

The SQL standard deஹ஭nes four isolation levels and PostgreSQL implements
three of them, leaving out dirty reads. The isolation level determines which side
eஸfects from other transactions your transaction is sensitive to. The PostgreSQL
documentation section entitled Transaction Isolation) is quite the reference to
read here. If we try and simplify the matter, you can think of the isolation levels
like this:

• Read uncommitted

PostgreSQL accepts this setting and actually implements read committed
here, which is compliant with the SQL standard;

• Read committed

This is the default and it allows your transaction to see other transactions
changes as soon as they are committed; it means that if you run the follow-
ing query twice in your transaction but someone else added or removed
objects from the stock, you will have diஸferent counts at diஸferent points
in your transaction.

1 SELECT count(*) FROM stock;

• Repeatable read

In this isolation level, your transaction keeps the same snapshot of the
whole database for its entire duration, from BEGIN to COMMIT. It is
very useful to have that for online backups — a straightforward use case
for this feature.

• Serializable

This level guarantees that a one-transaction-at-a-time ordering of what
happens on the server exists with the exact same result as what you’re
obtaining with concurrent activity.

So by default, we are working in read committed isolation level. As most default
values, it’s a good one when you know how it works and what to expect from it,
and more importantly when you should change it.

Each running transaction in a PostgreSQL system can have a diஸferent isolation
level, so that the online backup toolingmay be using repeatable read while most

https://www.postgresql.org/docs/current/static/transaction-iso.html

Chapter 4 Business Logic | 34

of your application is using read committed, possibly apart from the stock man-
agement facilities which are meant to be serializable.
Now, what’s happening in our example? Our class fetch*methods are all seeing
a diஸferent database snapshot. So what happens to our code if a concurrent user
deletes an album from the database in between ourAlbum.fetchall call and our
Track.fetchall call? Or, to make it sound less dramatic, reassigns an album to a
diஸferent artist to ஹ஭x some user input error?

Whathappens is thatwe’d get a silent empty result setwith the impact of showing
a duration of 0 to the end-user. In other languages or other spellings of the code,
you might have a user-visible error.

Of course, the SQL based solution is immune to those problems: when using
PostgreSQL every query always runs within a single consistent snapshot. The
isolation level impacts reusing a snapshot from one query to the next.

Efficiency

Eஸஹ஭ciency can bemeasured in a number of ways, including a static and a dynamic
analysis of the code written.

The static analysis includes the time it takes a developer to come upwith the solu-
tion, the maintenance burden it then represents (like the likelihood of bug ஹ஭xes,
the complexity of ஹ஭xing those bugs), how easy it is to review the code, etc. The
dynamic analysis concerns what happens at runtime in terms of the resources
we need to run the code, basically revolving around the processor, memory, net-
work, and disk.

The correct solution here is eight lines of very basic SQL. We may consider that
writing this query takes a coupleminutes atmost and reviewing it is about as easy.
To run it from the application sideweneed to send the query text on the network
and we directly retrieve the information we need: for each album its name and
its duration. This exchange is done in a single round trip. From the application
side, we need to have the list of albums and their duration in memory, and we
don’t do any computing, so the CPU usage is limited to what needs to be done
to talk to the database server and organise the result set inmemory, thenwalk the
result it to display it. Wemust add to that the time it took the server to compute
the result for us, and computing the sum of the milliseconds is not free.

Chapter 4 Business Logic | 35

In the application’s code solution, here’s what happens under the hood:

• First, we fetch the artist from the database, so that’s one network round
trip and one SQL query that returns the artist id and its name

note that we don’t need the name of the artist in our use-case, so that’s a
useless amount of bytes sent on the network, and also in memory in the
application.

• Then we do another network round-trip to fetch a list of albums for the
artistid we just retrieved in the previous query, and store the result in the
application’s memory.

• Now for each album (here we only have three of them, the same collection
counts 21 albums for Iron Maiden) we send another SQL query via the
network to the database server and fetch the list of tracks and their prop-
erties, including the duration in milliseconds.

• In the same loop where we fetch the tracks durations in milliseconds, we
sum themup in the application’smemory—we can approximate theCPU
usage on the application side to be the same as the one in the PostgreSQL
server.

• Finally, the application can output the fetched data.

The thing aboutpicturing thenetwork as a resource is thatwenowmust consider
both the latency and the bandwidth characteristics and usage. That’s why in the
analysis above the round trips are mentioned. In between an application’s server
and its database, it is common to see latencies in the order of magnitude of 1ms
or 2ms.

So from SQL to application’s code, we switch from a single network round trips
to ஹ஭ve of them. That’s a lot of extra work for this simple a use case. Here, in
my tests, the whole SQL query is executed in less than 1ms on the server, and
the whole timing of the query averages around 3ms, including sending the query
string and receiving the result set.

With queries running in one millisecond on the server, the network round-trip
becomes the main runtime factor to consider. When doing very simple queries
against a primary key column (where id = :id) it’s quite common to see execu-
tion times around 0.1ms on the server. Which means you could do ten of them
in a millisecond… unless you have to wait for ten times for about 1ms for the
network transport layer to get the result back to your application’s code…

Chapter 4 Business Logic | 36

Again this example is a very simple one in terms of business logic, still, we can see
the cost of avoiding raw SQL both in terms of correctness and eஸஹ஭ciency.

Stored Procedures — a Data Access API

When using PostgreSQL it is also possible to create server-side functions. Those
SQL objects store code and then execute it when called. The naïve way to create
a server-side stored procedure fromour current examplewould be the following:

1 create or replace function get_all_albums
2 (
3 in name text,
4 out album text,
5 out duration interval
6)
7 returns setof record
8 language sql
9 as $$
10 select album.title as album,
11 sum(milliseconds) * interval '1 ms' as duration
12 from album
13 join artist using(artistid)
14 left join track using(albumid)
15 where artist.name = get_all_albums.name
16 group by album
17 order by album;
18 $$;

But having to give the name of the artist rather than its artistid means that the
function won’t be eஸஹ஭cient to use, and for no good reason. So, instead, we are
going to deஹ஭ne a better version that works with an artist id:

1 create or replace function get_all_albums
2 (
3 in artistid bigint,
4 out album text,
5 out duration interval
6)
7 returns setof record
8 language sql
9 as $$
10 select album.title as album,
11 sum(milliseconds) * interval '1 ms' as duration
12 from album
13 join artist using(artistid)
14 left join track using(albumid)

Chapter 4 Business Logic | 37

15 where artist.artistid = get_all_albums.artistid
16 group by album
17 order by album;
18 $$;

This function is written in PL/SQL, so it’s basically a SQL query that accepts
parameters. To run it, simply do as follows:

1 select * from get_all_albums(127);

album │ duration
═══════════════════════╪══════════════════════════════
Blood Sugar Sex Magik │ @ 1 hour 13 mins 57.073 secs
By The Way │ @ 1 hour 8 mins 49.951 secs
Californication │ @ 56 mins 25.461 secs

(3 rows)

Of course, if you only have the name of the artist you are interested in, you don’t
need to ஹ஭rst do another query. You can directly fetch the artistid from a sub-
query:

1 select *
2 from get_all_albums(
3 (select artistid
4 from artist
5 where name = 'Red Hot Chili Peppers')
6);

As you can see, the subquery needs its own set of parenthesis even as a function
call argument, so we end up with a double set of parenthesis here.

Since PostgreSQL 9.3 and the implementation of the lateral join technique, it is
also possible to use the function in a join clause:

1 select album, duration
2 from artist,
3 lateral get_all_albums(artistid)
4 where artist.name = 'Red Hot Chili Peppers';

album │ duration
═══════════════════════╪══════════════════════════════
Blood Sugar Sex Magik │ @ 1 hour 13 mins 57.073 secs
By The Way │ @ 1 hour 8 mins 49.951 secs
Californication │ @ 56 mins 25.461 secs

(3 rows)

Thanks to the lateral join, the query is still eஸஹ஭cient, and it is possible to reuse it in
more complex use cases. Just for the sake of it, say wewant to list the albumwith
durations of the artists who have exactly four albums registered in our database:

Chapter 4 Business Logic | 38

1 with four_albums as
2 (
3 select artistid
4 from album
5 group by artistid
6 having count(*) = 4
7)
8 select artist.name, album, duration
9 from four_albums
10 join artist using(artistid),
11 lateral get_all_albums(artistid)
12 order by artistid, duration desc;

Using stored procedure allows reusing SQL code in between use cases, on the
server side. Of course, there are beneஹ஭ts and drawbacks to doing so.

Procedural Code and Stored Procedures

The main drawback to using stored procedure is that you must know when to
use procedural code or plain SQL with parameters. The previous example can
be written in a very ugly way as server-side code:

1 create or replace function get_all_albums
2 (
3 in name text,
4 out album text,
5 out duration interval
6)
7 returns setof record
8 language plpgsql
9 as $$
10 declare
11 rec record;
12 begin
13 for rec in select albumid
14 from album
15 join artist using(artistid)
16 where album.name = get_all_albums.name
17 loop
18 select title, sum(milliseconds) * interval '1ms'
19 into album, duration
20 from album
21 left join track using(albumid)
22 where albumid = record.albumid
23 group by title
24 order by title;

Chapter 4 Business Logic | 39

25

26 return next;
27 end loop;
28 end;
29 $$;

What we see here is basically a re-enactment of everything we said was wrong to
do in our application code example. The main diஸference is that this time, we
avoid network round trips, as the loop runs on the database server.

If youwant to use stored procedures, please always write them in SQL, and only
switch to PLpgSQL when necessary. If you want to be eஸஹ஭cient, the default
should be SQL.

Where to Implement Business Logic?

We saw diஸferent ways to implement a very simple use case, with business logic
implemented either on the application side, in a SQL query that is part of the
application’s environment, or as a server-side stored procedure.

The ஹ஭rst solution is both incorrect and ineஸஹ஭cient, so it should be avoided. It’s
preferable to exercise PostgreSQL’s ability to execute joins rather than play with
your network latency. We had ஹ஭ve round-trips, with a ping of 2 ms, that’s 10 ms
lost before we do anything else, and we compare that to a query that executes in
less than 1 millisecond.

We also need to think in terms of concurrency and scalability. How many con-
current users browsing your album collection do you want to be able to serve?
When doing ஹ஭ve times as many queries for the same result set, we can imagine
that you take a hit of about that ratio in terms of scalability. So rather than in-
vest in an extra layer of caching architecture in front of your APIs, wouldn’t it
be better to write smarter and more eஸஹ஭cient SQL?

As for stored procedures, a lot has already been said. Using them allows the de-
velopers to build a data access API in the database server and to maintain it in
a transactional way with the database schema: PostgreSQL implements transac-
tions for theDDL too. TheDDL is thedata definition languagewhich contains
the create, alter and drop statements.
Another advantage of using stored procedures is that you send even less data over

Chapter 4 Business Logic | 40

the network, as the query text is stored on the database server.

5
A Small Application

Let’s write a very basic application where we’re going to compare using either
classic application code or SQL to solve some common problems. Our goal in
this section is to be confronted with managing SQL as part of a code base, and
show when to use classic application code or SQL.

Readme First Driven Development

Before writing any code or tests or anything, I like to write the readme ஹ஭rst.
That’s this little ஹ஭le explaining to the user why to care for about the application,
and maybe some details about how to use it. Let’s do that now.

The cdstore application is a very simple wrapper on top of the Chinook database.
The Chinook data model represents a digital media store, including tables for
artists, albums, media tracks, invoices, and customers.

The cdstore application allows listing useful information and reports on top of
the database, and also provides a way to generate some activity.

https://github.com/lerocha/chinook-database

Chapter 5 A Small Application | 42

Loading the Dataset

When I used the Chinook dataset ஹ஭rst, it didn’t support PostgreSQL, so I used
the SQLite data output,whichnicely ஹ஭ts into a small enoughdata ஹ஭le. Nowadays
you will ஹ஭nd a PostgreSQL backup ஹ஭le that you can use. It’s easier for me to just
use pgloader though, so I will just do that.

Another advantage of using pgloader in this book is that we have the following
summary output, which lists tables and how many rows we loaded for each of
them. This is the ஹ஭rst encounter with our dataset.

Here’s a truncated output from the pgloader run (edited so that it can ஹ஭t in the
book page format):
$ createdb chinook
$ pgloader https://github.com/lerocha/chinook-database/raw/master ⏎

/ChinookDatabase/DataSources ⏎
/Chinook_Sqlite_AutoIncrementPKs.sqlite
pgsql:///chinook

...
table name errors rows bytes total time

----------------------- --------- --------- --------- --------------
fetch 0 0 1.611s

fetch meta data 0 33 0.050s
Create Schemas 0 0 0.002s

Create SQL Types 0 0 0.008s
Create tables 0 22 0.092s

Set Table OIDs 0 11 0.017s
----------------------- --------- --------- --------- --------------

artist 0 275 6.8 kB 0.026s
album 0 347 10.5 kB 0.090s

employee 0 8 1.4 kB 0.034s
invoice 0 412 31.0 kB 0.059s

mediatype 0 5 0.1 kB 0.083s
playlisttrack 0 8715 57.3 kB 0.179s

customer 0 59 6.7 kB 0.010s
genre 0 25 0.3 kB 0.019s

invoiceline 0 2240 43.6 kB 0.090s
playlist 0 18 0.3 kB 0.056s

track 0 3503 236.6 kB 0.192s
----------------------- --------- --------- --------- --------------
COPY Threads Completion 0 4 0.335s

Create Indexes 0 22 0.326s
Index Build Completion 0 22 0.088s

Reset Sequences 0 0 0.049s
Primary Keys 1 11 0.030s

Create Foreign Keys 0 11 0.065s
Create Triggers 0 0 0.000s

Install Comments 0 0 0.000s
----------------------- --------- --------- --------- --------------

Total import time ✓ 15607 394.5 kB 0.893s

http://pgloader.io

Chapter 5 A Small Application | 43

Now that the dataset is loaded, we have to ஹ஭x a badly deஹ஭ned primary key from
the SQLite side of things:
> \d track

Table "public.track"
Column │ Type │ Modifiers

══════════════╪═════════╪═══
trackid │ bigint │ not null default nextval('track_trackid_seq'::regclass)
name │ text │
albumid │ bigint │
mediatypeid │ bigint │
genreid │ bigint │
composer │ text │
milliseconds │ bigint │
bytes │ bigint │
unitprice │ numeric │

Indexes:
"idx_51519_ipk_track" UNIQUE, btree (trackid)
"idx_51519_ifk_trackalbumid" btree (albumid)
"idx_51519_ifk_trackgenreid" btree (genreid)
"idx_51519_ifk_trackmediatypeid" btree (mediatypeid)

... foreign keys ...

> alter table track add primary key using index idx_51519_ipk_track;
ALTER TABLE

Note that as PostgreSQL implements group by inference we need this primary
key to exists in order to be able to run some of the following queries. This means
that as soon as you’ve loaded the dataset, please ஹ஭x the primary key so that we are
ready to play with the dataset.

Chinook Database

TheChinook database includes basicmusic elements such as album, artist, track,
genre and mediatype for a music collection. Also, we ஹ஭nd the idea of a playlist
with an association table playlisttrack, because any track can take part of several
playlists and a single playlist is obviously made of several tracks.

Then there’s a model for a customer paying for some tracks with the tables staff,
customer, invoice and invoiceline.
pgloader# \dt chinook.

List of relations
Schema │ Name │ Type │ Owner

═════════╪═══════════════╪═══════╪═══════

Chapter 5 A Small Application | 44

chinook │ album │ table │ dim
chinook │ artist │ table │ dim
chinook │ customer │ table │ dim
chinook │ genre │ table │ dim
chinook │ invoice │ table │ dim
chinook │ invoiceline │ table │ dim
chinook │ mediatype │ table │ dim
chinook │ playlist │ table │ dim
chinook │ playlisttrack │ table │ dim
chinook │ staff │ table │ dim
chinook │ track │ table │ dim

(11 rows)

With that in mind we can begin to explore the dataset with a simple query:
1 select genre.name, count(*) as count
2 from genre
3 left join track using(genreid)
4 group by genre.name
5 order by count desc;

Which gives us:
name │ count

════════════════════╪═══════
Rock │ 1297
Latin │ 579
Metal │ 374
Alternative & Punk │ 332
Jazz │ 130
TV Shows │ 93
Blues │ 81
Classical │ 74
Drama │ 64
R&B/Soul │ 61
Reggae │ 58
Pop │ 48
Soundtrack │ 43
Alternative │ 40
Hip Hop/Rap │ 35
Electronica/Dance │ 30
Heavy Metal │ 28
World │ 28
Sci Fi & Fantasy │ 26
Easy Listening │ 24
Comedy │ 17
Bossa Nova │ 15
Science Fiction │ 13
Rock And Roll │ 12
Opera │ 1

(25 rows)

Chapter 5 A Small Application | 45

Music Catalog

Now, back to our application. We are going to write it in Python, tomake it easy
to browse the code within the book.

Using the anosql Python library it is very easy to embed SQL code in Python
and keep the SQL clean and tidy in .sql ஹ஭les. We will look at the Python side of
things in a moment.

The artist.sql ஹ஭le looks like this:
1 -- name: top-artists-by-album
2 -- Get the list of the N artists with the most albums
3 select artist.name, count(*) as albums
4 from artist
5 left join album using(artistid)
6 group by artist.name
7 order by albums desc
8 limit :n;

Having .sql ஹ஭les in our source tree allows us to version control them with git,
write comments when necessary, and also copy and paste the ஹ஭les between your
application’s directory and the interactive psql shell.

In the case of our artist.sql ஹ஭le, we see the use of the anosql facility to name
variables and we use limit :n. Here’s how to beneஹ஭t from that directly in the
PostgresQL shell:
> \set n 1
> \i artist.sql

name │ albums
═════════════╪════════
Iron Maiden │ 21

(1 row)

> \set n 3
> \i artist.sql

name │ albums
══════════════╪════════
Iron Maiden │ 21
Led Zeppelin │ 14
Deep Purple │ 11

(3 rows)

Of course, you can also set the variable’s value from the command line, in case
you want to integrate that into bash scripts or other calls:

1 psql --variable "n=10" -f artist.sql chinook

https://www.python.org
https://github.com/honza/anosql
https://git-scm.com

Chapter 5 A Small Application | 46

Albums by Artist

We might also want to include the query from the previous section and that’s
fairly easy to do now. Our album.sql ஹ஭le looks like the following:

1 -- name: list-albums-by-artist
2 -- List the album titles and duration of a given artist
3 select album.title as album,
4 sum(milliseconds) * interval '1 ms' as duration
5 from album
6 join artist using(artistid)
7 left join track using(albumid)
8 where artist.name = :name
9 group by album
10 order by album;

Later in this section, we look at the calling Python code.

Top-N Artists by Genre

Let’s implement some more queries, such as the Top-N artists per genre, where
we sort the artists by their number of appearances in our playlists. This ordering
seems fair, and we have a classic Top-N to solve in SQL.

The following extract is our application’s genre-topn.sql ஹ஭le. The best way to
implement a Top-N query in SQL is using a lateral join, and the query here is
using that technique. We will get back to this kind of join later in the book and
learn more details about it. For now, we can simplify the theory down to lateral
join allowing one to write explicit loops in SQL:

1 -- name: genre-top-n
2 -- Get the N top tracks by genre
3 select genre.name as genre,
4 case when length(ss.name) > 15
5 then substring(ss.name from 1 for 15) || '…'
6 else ss.name
7 end as track,
8 artist.name as artist
9 from genre
10 left join lateral
11 /*
12 * the lateral left join implements a nested loop over
13 * the genres and allows to fetch our Top-N tracks per

Chapter 5 A Small Application | 47

14 * genre, applying the order by desc limit n clause.
15 *
16 * here we choose to weight the tracks by how many
17 * times they appear in a playlist, so we join against
18 * the playlisttrack table and count appearances.
19 */
20 (
21 select track.name, track.albumid, count(playlistid)
22 from track
23 left join playlisttrack using (trackid)
24 where track.genreid = genre.genreid
25 group by track.trackid
26 order by count desc
27 limit :n
28)
29 /*
30 * the join happens in the subquery's where clause, so
31 * we don't need to add another one at the outer join
32 * level, hence the "on true" spelling.
33 */
34 ss(name, albumid, count) on true
35 join album using(albumid)
36 join artist using(artistid)
37 order by genre.name, ss.count desc;

Here, we loop through themusical genres we know about, and for each of them,
we fetch the n tracks with the highest number of appearances in our registered
playlists (thanks to the SQL clauses order by count desc limit :n). This
correlated subquery runs for each genre and is parameterized with the current
genreid thanks to the clause where track.genreid = genre.genreid. This
where clause implements the correlation in between the outer loop and the
inner one.

Once the inner loop is done in the lateral subquery named ss then we join again
with the album and artist tables in order to get the artist name, through the
album.

The query may look complex at this stage. The main goal of this book is to help
you to ஹ஭nd it easier to read and ஹ஭gure out the equivalent code we would have
had to write in Python. Themain reason whywritingmoderately complex SQL
for this listing is eஸஹ஭ciency.

To implement the same thing in application code you have to:

1. Fetch the list of genres (that’s one select name from genre query)

2. Then for each genre fetch theTop-N list of tracks, which is the ss subquery

Chapter 5 A Small Application | 48

before ran as many times as genres from the application

3. Then for each track selected in this way (that’s n times how many genres
you have), you can fetch the artist’s name.

That’s a lot of data to go back and forth in between your application and your
database server. It’s a lot of useless processing too. Sowe avoid all this extra work
by having the database compute exactly the result set we are interested in, and
then we have a very simple Python code that only cares about the user interface,
here parsing command line options and printing out the result of our queries.

Another common argument against the seemingly complex SQL query is that
you know another way to obtain the same result, in SQL, that doesn’t involve
a lateral subquery. Sure, it’s possible to solve this Top-N problem in other ways
in SQL, but they are all less eஸஹ஭cient than the lateral method. We will cover how
to read an explain plan in a later chapter, and that’s how to ஹ஭gure out the most
eஸஹ஭cient way to write a query.

For now, let’s suppose this is the best way to write the query. So of course that’s
the one we are going to include in the application’s code, and we need an easy
way to then maintain the query.

So here’s the whole of our application code:
#! /usr/bin/env python3
-*- coding: utf-8 -*-

import anosql
import psycopg2
import argparse
import sys

PGCONNSTRING = "user=cdstore dbname=appdev application_name=cdstore"

class chinook(object):
"""Our database model and queries"""
def __init__(self):

self.pgconn = psycopg2.connect(PGCONNSTRING)
self.queries = None

for sql in ['sql/genre-tracks.sql',
'sql/genre-topn.sql',
'sql/artist.sql',
'sql/album-by-artist.sql',
'sql/album-tracks.sql']:

queries = anosql.load_queries('postgres', sql)
if self.queries:

for qname in queries.available_queries:
self.queries.add_query(qname, getattr(queries, qname))

else:
self.queries = queries

Chapter 5 A Small Application | 49

def genre_list(self):
return self.queries.tracks_by_genre(self.pgconn)

def genre_top_n(self, n):
return self.queries.genre_top_n(self.pgconn, n=n)

def artist_by_albums(self, n):
return self.queries.top_artists_by_album(self.pgconn, n=n)

def album_details(self, albumid):
return self.queries.list_tracks_by_albumid(self.pgconn, id=albumid)

def album_by_artist(self, artist):
return self.queries.list_albums_by_artist(self.pgconn, name=artist)

class printer(object):
"print out query result data"

def __init__(self, columns, specs, prelude=True):
"""COLUMNS is a tuple of column titles,

Specs an tuple of python format strings
"""
self.columns = columns
self.specs = specs
self.fstr = " | ".join(str(i) for i in specs)

if prelude:
print(self.title())
print(self.sep())

def title(self):
return self.fstr % self.columns

def sep(self):
s = ""
for c in self.title():

s += "+" if c == "|" else "-"
return s

def fmt(self, data):
return self.fstr % data

class cdstore(object):
"""Our cdstore command line application. """

def __init__(self, argv):
self.db = chinook()

parser = argparse.ArgumentParser(
description='cdstore utility for a chinook database',
usage='cdstore <command> [<args>]')

subparsers = parser.add_subparsers(help='sub-command help')

genres = subparsers.add_parser('genres', help='list genres')
genres.add_argument('--topn', type=int)

Chapter 5 A Small Application | 50

genres.set_defaults(method=self.genres)

artists = subparsers.add_parser('artists', help='list artists')
artists.add_argument('--topn', type=int, default=5)
artists.set_defaults(method=self.artists)

albums = subparsers.add_parser('albums', help='list albums')
albums.add_argument('--id', type=int, default=None)
albums.add_argument('--artist', default=None)
albums.set_defaults(method=self.albums)

args = parser.parse_args(argv)
args.method(args)

def genres(self, args):
"List genres and number of tracks per genre"
if args.topn:

p = printer(("Genre", "Track", "Artist"),
("%20s", "%20s", "%20s"))

for (genre, track, artist) in self.db.genre_top_n(args.topn):
artist = artist if len(artist) < 20 else "%s…" % artist[0:18]
print(p.fmt((genre, track, artist)))

else:
p = printer(("Genre", "Count"), ("%20s", "%s"))
for row in self.db.genre_list():

print(p.fmt(row))

def artists(self, args):
"List genres and number of tracks per genre"
p = printer(("Artist", "Albums"), ("%20s", "%5s"))
for row in self.db.artist_by_albums(args.topn):

print(p.fmt(row))

def albums(self, args):
we decide to skip parts of the information here
if args.id:

p = printer(("Title", "Duration", "Pct"),
("%25s", "%15s", "%6s"))

for (title, ms, s, e, pct) in self.db.album_details(args.id):
title = title if len(title) < 25 else "%s…" % title[0:23]
print(p.fmt((title, ms, pct)))

elif args.artist:
p = printer(("Album", "Duration"), ("%25s", "%s"))
for row in self.db.album_by_artist(args.artist):

print(p.fmt(row))

if __name__ == '__main__':
cdstore(sys.argv[1:])

With this application code and the SQLwe saw before we can now run our Top-
N query and fetch the single most listed track of each known genre we have in
our Chinook database:
$./cdstore.py genres --topn 1 | head

Chapter 5 A Small Application | 51

Genre | Track | Artist
---------------------+----------------------+---------------------

Alternative | Hunger Strike | Temple of the Dog
Alternative & Punk | Infeliz Natal | Raimundos

Blues | Knockin On Heav… | Eric Clapton
Bossa Nova | Onde Anda Você | Toquinho & Vinícius
Classical | Fantasia On Gre… | Academy of St. Mar…

Comedy | The Negotiation | The Office
Drama | Homecoming | Heroes

Easy Listening | I've Got You Un… | Frank Sinatra

Of course, we can change our --topn parameter and have the top three tracks
per genre instead:
$./cdstore.py genres --topn 3 | head

Genre | Track | Artist
---------------------+----------------------+---------------------

Alternative | Hunger Strike | Temple of the Dog
Alternative | Times of Troubl… | Temple of the Dog
Alternative | Pushin Forward … | Temple of the Dog

Alternative & Punk | I Fought The La… | The Clash
Alternative & Punk | Infeliz Natal | Raimundos
Alternative & Punk | Redundant | Green Day

Blues | I Feel Free | Eric Clapton
Blues | Knockin On Heav… | Eric Clapton

Now if we want to change our SQL query, for example implementing another
way to weight tracks and select the top ones per genre, then it’s easy to play with
the query in psql and replace it once you’re done.

As we are going to cover in the next section of this book, writing a SQL query
happens interactively using a REPL tool.

6
The SQL REPL — An Interactive

Setup

PostgreSQLshipswith an interactive consolewith the command line tool named
psql. It can be used both for scripting and interactive usage and ismoreover quite
a powerful tool. Interactive features includes autocompletion, readline support
(history searches, modern keyboard movements, etc), input and output redirec-
tion, formatted output, and more.

New users of PostgreSQL ofிen want to ஹ஭nd an advanced visual query editing
tool and are confusedwhen psql is the answer. Most PostgreSQL advanced users
and experts don’t even think about it and use psql. In this chapter, you will learn
how to fully appreciate that little command line tool.

Intro to psql

psql implements a REPL: the famous read-eval-print loop. It’s one of the best
ways to interact with the computer when you’re just learning and trying things
out. In the case of PostgreSQL youmight be discovering a schema, a data set, or
just working on a query.

We ofிen see the SQL query when it’s fully formed, and rarely get to see the steps
that led us there. It’s the same with code, most ofிen what you get to see is its
ஹ஭nal form, not the intermediary steps where the author tries things and reஹ஭ne

https://www.postgresql.org/docs/current/static/app-psql.html

Chapter 6 The SQL REPL—An Interactive Setup | 53

their understanding of the problem at hand, or the environment in which to
solve it.

The process to follow to get to a complete and eஸஹ஭cient SQL query is the same as
when writing code: iterating from a very simple angle towards a full solution to
the problem at hand. Having a REPL environment oஸfers an easy way to build
up on what you just had before.

The psqlrc Setup

Herewe beginwith a full setup of psql and in the rest of the chapter, we are going
to get back to each important point separately. Doing so allows you to have a
fullyworking environment from the get-go andplay around in yourPostgreSQL
console while reading the book.
\set PROMPT1 '%~%x%# '
\x auto
\set ON_ERROR_STOP on
\set ON_ERROR_ROLLBACK interactive

\pset null '¤'
\pset linestyle 'unicode'
\pset unicode_border_linestyle single
\pset unicode_column_linestyle single
\pset unicode_header_linestyle double
set intervalstyle to 'postgres_verbose';

\setenv LESS '-iMFXSx4R'
\setenv EDITOR '/Applications/Emacs.app/Contents/MacOS/bin/emacsclient -nw'

Save that setup in the ~/.psqlrc ஹ஭le, which is read at startup by the psql applica-
tion. As you’ve already read in the PostgreSQL documentation for psql, we have
three diஸferent settings to play with here:

• \set [name [value [...]]]

This sets the psql variable name to value, or ifmore than one value is given,
to the concatenation of all of them. If only one argument is given, the
variable is set with an empty value. To unset a variable, use the \unset
command.

• \setenv name [value]

This sets the environment variable name to value, or if the value is not
supplied, unsets the environment variable.

Chapter 6 The SQL REPL—An Interactive Setup | 54

Here we use this facility to setup speciஹ஭c environment variables we need
from within psql, such as the LESS setup. It allows invoking the pager
for each result set but having it take the control of the screen only when
necessary.

• \pset [option [value]]

This command sets options aஸfecting the output of query result tables.
option indicates which option is to be set. The semantics of value vary de-
pending on the selected option. For some options, omitting value causes
the option to be toggled or unset, as described under the particular option.
If no such behavior is mentioned, then omitting value just results in the
current setting being displayed.

Transactions and psql Behavior

In our case we set several psql variables that change its behavior:

• \set ON_ERROR_STOP on

The name is quite a good description of the option. It allows psql to know
that it is not to continue trying to execute all your commands when a pre-
vious one is throwing an error. It’s primarily practical for scripts and can
be also set using the command line. As we’ll see later, we can easily invoke
scripts interactively within our session with the \i and \ir commands, so
the option is still useful to us now.

• \set ON_ERROR_ROLLBACK interactive

This setting changes how psql behaves with respect to transactions. It is a
very good interactive setup, and must be avoided in batch scripts.

From the documentation: When set to on, if a statement in a transaction
block generates an error, the error is ignored and the transaction continues.
When set to interactive, such errors are only ignored in interactive sessions,
and not when reading script ஹ஭les. When unset or set to oஸf, a statement in
a transaction block that generates an error aborts the entire transaction.
The error rollback mode works by issuing an implicit SAVEPOINT for
you, just before each command that is in a transaction block, and then
rolling back to the savepoint if the command fails.

Chapter 6 The SQL REPL—An Interactive Setup | 55

With the \set PROMPT1 '%~%x%# ' that we are using, psql displays a little star
in the prompt when there’s a transaction in ஺ாight, so you know you need to ஹ஭n-
ish the transaction. More importantly, when you want to type in anything that
will have a side eஸfect on your database (modifying the data set or the database
schema), then without the star you know you need to ஹ஭rst type in BEGIN.

Let’s see an example output withON_ERROR_ROLLBACK set to oஸf. Here’s
its default value:
f1db# begin;
BEGIN
f1db*# select 1/0;
ERROR: division by zero
f1db!# select 1+1;
ERROR: current transaction is aborted, commands ignored until end of transaction block
f1db!# rollback;
ROLLBACK

We have an error in our transaction, and we notice that the star prompt is now a
஺ாag. The SQL transaction ismarked invalid, and the only thing PostgreSQLwill
now accept fromus is to ஹ஭nish the transaction, with either a commit or a rollback
command. Both will result in the same result from the server: ROLLBACK.

Now, let’s do the sameSQLtransaction again, this timewithON_ERROR_ROLLBACK
being set to interactive. Now, before each command we send to the server,
psql sends a savepoint command, which allows it to then issue a rollback to
savepoint command in case of an error. This rollback to savepoint is also sent
automatically:
f1db# begin;
BEGIN
f1db*# select 1/0;
ERROR: division by zero
f1db*# select 1+1;
?column?

══════════
2

(1 row)

f1db*# commit;
COMMIT

Notice how this time not only do we get to send successful commands afிer the
error, while still being in a transaction — also we get to be able to COMMIT
our work to the server.

https://www.postgresql.org/docs/current/static/sql-savepoint.html
https://www.postgresql.org/docs/current/static/sql-rollback-to.html
https://www.postgresql.org/docs/current/static/sql-rollback-to.html

Chapter 6 The SQL REPL—An Interactive Setup | 56

A Reporting Tool

Getting familiar with psql is a very good productivity enhancer, so my advice is
to spend some quality time with the documentation of the tool and get used to
it. In this chapter, we are going to simplify things and help you to get started.

There are mainly two use cases for psql, either as an interactive tool or as a script-
ing and reporting tool. In the ஹ஭rst case, the idea is that you have plenty of com-
mands to help you get your work done, and you can type in SQL right in your
terminal and see the result of the query.

In the scripting and reporting use case, you have advanced formatting com-
mands: it is possible to run a query and fetch its result directly in either asciidoc
orHTML for example, given \pset format. Say we have a query that reports
the N bests known results for a given driver surname. We can use psql to set
dynamic variables, display tuples only and format the result in a convenient
HTML output:

1 ~ psql --tuples-only \
2 --set n=1 \
3 --set name=Alesi \
4 --no-psqlrc \
5 -P format=html \
6 -d f1db \
7 -f report.sql

1 <table border="1">
2 <tr valign="top">
3 <td align="left">Alesi</td>
4 <td align="left">Canadian Grand Prix</td>
5 <td align="right">1995</td>
6 <td align="right">1</td>
7 </tr>
8 </table>

It is also possible to set the connection parameters as environment variables, or to
use the same connection strings as in your application’s code, so you can test them
with copy/paste easily, there’s no need to transform them into the -d dbname -h
hostname -p port -U username syntax:

1 ~ psql -d postgresql://dim@localhost:5432/f1db
2 f1db#
3

4 ~ psql -d "user=dim host=localhost port=5432 dbname=f1db"
5 f1db#

Chapter 6 The SQL REPL—An Interactive Setup | 57

The query in the report.sql ஹ஭le uses the :'name' variable syntax. Using :name
would be missing the quotes around the literal value injected, and :'' allows
one to remedy this even with values containing spaces. psql also supports
:"variable" notation for double-quoting values, which is used for dynamic
SQL when identiஹ஭ers are a parameter (column name or table names).

1 select surname, races.name, races.year, results.position
2 from results
3 join drivers using(driverid)
4 join races using(raceid)
5 where drivers.surname = :'name'
6 and position between 1 and 3
7 order by position
8 limit :n;

When running psql for reports, it might be good to have a speciஹ஭c setup. In this
example, you can see I’ve been using the --no-psqlrc switch to be surewe’re not
loading my usual interactive setup all with all the UTF-8 bells and whistles, and
withON_ERROR_ROLLBACK. Usually, you don’t want to have that set for
a reporting or a batch script.

Youmight want to setON_ERROR_STOP though, andmaybe some other op-
tions.

Discovering a Schema

Let’s get back to the interactive features of psql. The tool’s main task is to send
SQL statements to the database server and display the result of the query, and
also server notiஹ஭cations and error messages. On top of that psql provides a set of
client-side commands all beginning with a backslash character.
Most of the provided commands are useful for discovering a database schema.
All of them are implemented by doing one or several catalog queriॽ against the
server. Again, it’s sending a SQL statement to the server, and it is possible for
you to learn how to query the PostgreSQL catalogs by reviewing those queries.

As an example, say you want to report the size of your databases but you don’t
knowwhere to look for that information. Reading the psql documentation you
ஹ஭nd that the \l+ command cando that, andnowyouwant to see the SQLbehind
it:
~# \set ECHO_HIDDEN true

https://www.postgresql.org/docs/current/static/app-psql.html

Chapter 6 The SQL REPL—An Interactive Setup | 58

~# \l+
********* QUERY **********
SELECT d.datname as "Name",

pg_catalog.pg_get_userbyid(d.datdba) as "Owner",
pg_catalog.pg_encoding_to_char(d.encoding) as "Encoding",
d.datcollate as "Collate",
d.datctype as "Ctype",
pg_catalog.array_to_string(d.datacl, E'\n') AS "Access privileges",
CASE WHEN pg_catalog.has_database_privilege(d.datname, 'CONNECT')

THEN pg_catalog.pg_size_pretty(pg_catalog.pg_database_size(d.datname))
ELSE 'No Access'

END as "Size",
t.spcname as "Tablespace",
pg_catalog.shobj_description(d.oid, 'pg_database') as "Description"

FROM pg_catalog.pg_database d
JOIN pg_catalog.pg_tablespace t on d.dattablespace = t.oid

ORDER BY 1;

List of databases
...
~# \set ECHO_HIDDEN false

So now if you only want to have the database name and its on-disk size in bytes,
it is as easy as running the following query:

1 SELECT datname,
2 pg_database_size(datname) as bytes
3 FROM pg_database
4 ORDER BY bytes desc;

There’s not much point in this book including the publicly available documen-
tation of all the commands available in psql, so go read the whole manual page
to ஹ஭nd gems you didn’t know about— there are plenty of them!

Interactive Query Editor

Youmight have noticed that we did set theEDITOR environment variable early
in this section. This is the commandused by psql each time youuse visual editing
commands such as \e. This command launches yourEDITORon the last edited
query (or an empty one) in a temporary ஹ஭le, and will execute the query once you
end the editing session.

If you’re using emacs or vim typingwith a full-blown editor fromwithin a termi-
nal, it is something you will be very happy to do. In other cases, it is, of course,
possible to set EDITOR to invoke your favorite IDE if your psql client runs lo-

Chapter 6 The SQL REPL—An Interactive Setup | 59

cally.

7
SQL is Code

The ஹ஭rst step here is realizing that your database engine actually is part of your
application logic. Any SQL statement youwrite, even the simplest possible, does
embed some logic: you are projecting a particular set of columns, ஹ஭ltering the
result to only a part of the available data set (thanks to the where clause), and
you want to receive the result in a known ordering. That is already is business
logic. Application code is written in SQL.

We compared a simple eight-line SQL query and the typical object model code
solving the same use case earlier and analyzed its correctness and eஸஹ஭ciency is-
sues. Then in the previous section, we approached a goodway to have your SQL
queries as .sql ஹ஭les in your code base.

Now that SQL is actually code in your application’s source tree, we need to ap-
ply the same methodology that you’re used to: set a minimum level of expected
quality thanks to common indentation rules, code comments, consistent nam-
ing, unit testing, and code revision systems.

SQL style guidelines

Code style is mainly about following the principle of least astonishment rule.
That’s why having a clear internal style guide that every developer follows is im-
portant in larger teams. We are going to cover several aspects of SQL code style
here, from indentation and to alias names.

Chapter 7 SQL is Code | 61

Indenting is a tool aimed atmaking it easy to read the code. Let’s face it: we spend
more time reading code than writing it, so we should always optimize for easy to
read the code. SQL is code, so it needs to be properly indented.

Let’s see a few examples of bad and good style so that you can decide about your
local guidelines.

1 SELECT title, name FROM album LEFT JOIN track USING(albumid) WHERE albumid = 1 ORDER BY 2;

Herewe have a run-away query all on the same line,making itmore diஸஹ஭cult than
it should for a reader to graspwhat the query is all about. Also, the query is using
the old habit of all-caps SQL keywords. While it’s true that SQL started out a
long time ago, we now have color screens and syntax highlighting and we don’t
write all-caps code anymore… not even in SQL.

My advice is to right align top-level SQL clauses and have them on new lines:
1 select title, name
2 from album left join track using(albumid)
3 where albumid = 1
4 order by 2;

Now it’s quite a bit easier to understand the structure of this query at a glance
and to realize that it is indeed a very basic SQL statement. Moreover, it’s easier
to spot a problem in thequery: order by 2. SQLallowsone touse output column
number as references in some of its clauses, which is very useful at the prompt
(because we are all lazy, right?). It makes refactoring harder than it should be
though. If we now decide we don’t want to output the album’s name with each
track’s row in the result set, as we are actually interested in the track’s title and
duration, as found in themilliseconds column:

1 select name, milliseconds
2 from album left join track using(albumid)
3 where albumid = 1
4 order by 2;

So now the ordering has changed, so you need also to change the order by clause,
obtaining the following diஸf:

1 @@ -1,4 +1,4 @@
2 - select title, name
3 + select name, milliseconds
4 from album left join track using(albumid)
5 where albumid = 1
6 -order by 2;
7 +order by 1;

Chapter 7 SQL is Code | 62

This is a very simple example, but nonetheless we can see that the review process
now has to take into account why the order by clause is modiஹ஭ed whenwhat you
want to achieve is changing the columns returned.

Now, the right ordering for this query might actually be to return the tracks in
the order they appear on the album, which seems to be handled in the Chinook
model by the trackid itself, so it’s better to use that:

1 select name, milliseconds
2 from album left join track using(albumid)
3 where albumid = 1
4 order by trackid;

This query is now about to be ready to be checked in into your application’s
code base, tested and reviewed. An alternative writing would require splitting
the from clause into one source relation per line, having the join appearingmore
clearly:

1 select name, milliseconds
2 from album
3 left join track using(albumid)
4 where albumid = 1
5 order by trackid;

In this style, we see that we indent the join clauses nested in the from clause,
because that’s the semantics of an SQL query. Also, we lefி align the table names
that take part of the join. An alternative style consists of also entering the join
clause (one of either on or using) in a separate line too:

1 select name, milliseconds
2 from album
3 left join track
4 using(albumid)
5 where albumid = 1
6 order by trackid;

This extended style is useful when using subqueries, so let’s fetch track informa-
tion from albums we get in a subquery:

1 select title, name, milliseconds
2 from (
3 select albumid, title
4 from album
5 join artist using(artistid)
6 where artist.name = 'AC/DC'
7)
8 as artist_albums
9 left join track

Chapter 7 SQL is Code | 63

10 using(albumid)
11 order by trackid;

One of the key things to think about in terms of the style you pick is being con-
sistent. That’s why in the previous example we also split the from clause in the
subquery, even though it’s a very simple clause that’s not surprising.

SQL requires using parens for subqueries, and we can put that requirement to
good use in the way we indent our queries, as shown above.

Another habit that is worth mentioning here consists of writing the join condi-
tions of inner joins in the where clause:

1 SELECT name, title
2 FROM artist, album
3 WHERE artist.artistid = album.artistid
4 AND artist.artistid = 1;

This style reminds us of the 70s and 80s before when the SQL standard did spec-
ify the join semantics and the join condition. It is extremely confusing to use
such a style and doing it is frowned upon. The modern SQL spelling looks like
the following:

1 select name, title
2 from artist
3 inner join album using(artistid)
4 where artist.artistid = 1;

Here I expanded the inner join to its full notation. The SQL standard introduces
noise words in the syntax, and both inner and outer are noise words: a left, right
or full join is always an outer join, and a straight join always is an inner join.
It is also possible to use the natural join here, which will automatically expand a
join condition over columns having the same name:

1 select name, title
2 from artist natural join album
3 where artist.artistid = 1;

General wisdom dictates that one should avoid natural joins: you can (and will)
change your query semantics by merely adding a column to or removing a col-
umn from a table! In the Chinook model, we have ஹ஭ve diஸferent tables with a
name column, none of those being part of the primary key. In most cases, you
don’t want to join tables on the name column…
Because it’s fun to do so, let’s write a query to ஹ஭nd out if the Chinook data set
includes cases of a trackbeingnamedafிer another artist’s, perhaps re஺ாecting their

Chapter 7 SQL is Code | 64

respect or inspiration.
1 select artist.name as artist,
2 inspired.name as inspired,
3 album.title as album,
4 track.name as track
5 from artist
6 join track on track.name = artist.name
7 join album on album.albumid = track.albumid
8 join artist inspired on inspired.artistid = album.artistid
9 where artist.artistid <> inspired.artistid;

This gives the following result where we can see two cases of a singer naming a
song afிer their former band’s name:

artist │ inspired │ album │ track
═══════════════╪═══════════════╪════════════════════╪═══════════════
Iron Maiden │ Paul D'Ianno │ The Beast Live │ Iron Maiden
Black Sabbath │ Ozzy Osbourne │ Speak of the Devil │ Black Sabbath

(2 rows)

About the query itself, we can see we use the same table twice in the join clause,
because in one case the artist we want to know about is the one issuing the track
in one of their album, and in the other case it’s the artist that had their name
picked as a track’s name. To be able to handle that without confusion, the query
uses the SQL standard’s relation aliases.

In most cases, you will see very short relation aliases being used. When I typed
that query in the psql console, I must admit I ஹ஭rst picked a1 and a2 for artist’s
relation aliases, because it made it short and easy to type. We can compare such
a choice with your variable naming policy. I don’t suppose you pass code review
when using variable names such as a1 and a2 in your code, so don’t use them in
your SQL query as aliases either.

Comments

The SQL standard comes with two kinds of comments, either per line with
the double-dash preஹ஭x or per-block delimited with C-style comments using
/* comment */ syntax. Note that contrary to C-style comments, SQL-style
comments accept nested comments.

Let’s add some comments to our previous query:

Chapter 7 SQL is Code | 65

1 -- artists names used as track names by other artists
2 select artist.name as artist,
3 -- "inspired" is the other artist
4 inspired.name as inspired,
5 album.title as album,
6 track.name as track
7 from artist
8 /*
9 * Here we join the artist name on the track name,
10 * which is not our usual kind of join and thus
11 * we don't use the using() syntax. For
12 * consistency and clarity of the query, we use
13 * the "on" join condition syntax through the
14 * whole query.
15 */
16 join track
17 on track.name = artist.name
18 join album
19 on album.albumid = track.albumid
20 join artist inspired
21 on inspired.artistid = album.artistid
22 where artist.artistid <> inspired.artistid;

Aswith code comments, it’s pretty useless to explainwhat is obvious in the query.
The general advice is to give details on what you though was unusual or diஸஹ஭cult
to write, so as to make the reader’s work as easy as possible. The goal of code
comments is to avoid ever having to second-guess the intentions of the author(s)
of it. SQL is code, so we pursue the same goal with SQL.

Comments could also be used to embed the source location where the query
comes from in order to make ஹ஭nding it easier when we have to debug it in pro-
duction, should we have to. Given the PostgreSQL’s application_name facility
and a proper use of SQL ஹ஭les in your source code, one can wonder how helpful
that technique is.

Unit Tests

SQL is code, so it needs to be tested. The general approach to unit testing code
applies beautifully to SQL: given a known input a query should always return
the same desired output. That allows you to change your query spelling at will
and still check that the alternative still passes your tests.

Examples of query rewriting would include inlining common table expressions as

Chapter 7 SQL is Code | 66

sub-queries, expanding or branches in a where clause as union all branches, or
maybe using window function rather than complex juggling with subqueries to
obtain the same result. What I mean here is that there are a lot of ways to rewrite
a query while keeping the same semantics and obtaining the same result.

Here’s an example of a query rewrite:
1 with artist_albums as
2 (
3 select albumid, title
4 from album
5 join artist using(artistid)
6 where artist.name = 'AC/DC'
7)
8 select title, name, milliseconds
9 from artist_albums
10 left join track
11 using(albumid)
12 order by trackid;

The same query may be rewritten with the exact same semantics (but diஸferent
run-time characteristics) like this:

1 select title, name, milliseconds
2 from (
3 select albumid, title
4 from album
5 join artist using(artistid)
6 where artist.name = 'AC/DC'
7)
8 as artist_albums
9 left join track
10 using(albumid)
11 order by trackid;

The PostgreSQL project includes many SQL tests to validate its query parser,
optimizer and executor. It uses a framework named the regression tests suite,
based on a very simple idea:

1. Run a SQL ஹ஭le containing your tests with psql
2. Capture its output to a text ஹ஭le that includes the queries and their results
3. Compare the outputwith the expected one that ismaintained in the repos-
itory with the standard diff utility

4. Report any diஸference as a failure

You can have a look at PostgreSQL repository to see how it’s done, as an example
we couldpick src/test/regress/sql/aggregates.sql and itsmatching expected result
ஹ஭le src/test/regress/expected/aggregates.out.

https://github.com/postgres/postgres/blob/master/src/test/regress/sql/aggregates.sql
https://github.com/postgres/postgres/blob/master/src/test/regress/expected/aggregates.out

Chapter 7 SQL is Code | 67

Implementing that kind of regression testing for your application is quite easy,
as the driver is only a thin wrapper around executing standard applications such
as psql and diff. The idea would be to always have a setup and a teardown step
in your SQL test ஹ஭les, wherein the setup step builds a database model and ஹ஭lls it
with the test data, and the teardown step removes all that test data.

To automate such a setup and go beyond the obvious, the tool pgTap is a suite
of database functions that make it easy to write TAP-emitting unit tests in psql
scripts or xUnit-style test functions. The TAP output is suitable for harvesting,
analysis, and reporting by a TAP harness, such as those used in Perl applications.

WhenusingpgTap, see the relation-testing functions for implementingunit tests
based on result sets. From the documentation, let’s pick a couple examples, test-
ing against static result sets as VALUES:

1 SELECT results_eq(
2 'SELECT * FROM active_users()',
3 $$
4 VALUES (42, 'Anna'),
5 (19, 'Strongrrl'),
6 (39, 'Theory')
7 $$,
8 'active_users() should return active users'
9);

andARRAYS:
1 SELECT results_eq(
2 'SELECT * FROM active_user_ids()',
3 ARRAY[2, 3, 4, 5]
4);

As you can see your unit tests are coded in SQL too. This means you have all
the SQL power to write tests at your ஹ஭ngertips, and also that you can also check
your schema integrity directly in SQL, using PostgreSQL catalog functions.

Straight from the pg_prove command-line tool for running and harnessing pg-
TAP tests, we can see how it looks:

1 % pg_prove -U postgres tests/
2 tests/coltap.....ok
3 tests/hastap.....ok
4 tests/moretap....ok
5 tests/pg73.......ok
6 tests/pktap......ok
7 All tests successful.
8 Files=5, Tests=216, 1 wallclock secs
9 (0.06 usr 0.02 sys + 0.08 cusr 0.07 csys = 0.23 CPU)

http://pgtap.org/
http://pgtap.org/documentation.html#canyourelate
http://pgtap.org/pg_prove.html

Chapter 7 SQL is Code | 68

10 Result: PASS

You might also ஹ஭nd it easy to integrate SQL testing in your current unit testing
solution. InDebian andderivatives operating systems, the pg_virtualenv is a tool
that creates a temporary PostgreSQL installation that will exist only while you’re
running your tests.

If you’re using Python, read the excellent article from Julien Danjou about
databases integration testing strategies with Python where you will learn more
tricks to integrate your database tests using the standard Python toolset.

Your application relies on SQL. You rely on tests to trust your ability to change
and evolve your application. You need your tests to cover the SQL parts of your
application!

Regression Tests

Regression testing protects against introducing bugs when refactoring code.
In SQL too we refactor queries, either because the calling application code is
changed and the query must change too, or because we are hitting problems
in production and a new optimized version of the query is being checked-in to
replace the previous erroneous version.

Theway regression testing protects you is by registering the expected results from
your queries, and then checking actual results against the expected results. Typi-
cally you would run the regression tests each time a query is changed.

The RegreSQL tool implements that idea. It ஹ஭nds SQL ஹ஭les in your code repos-
itory and allows registering plan tests against them, and then it compares the
results with what’s expected.

A typical output from usingRegreSQL against our cdstore application looks like
the following:

1 $ regresql test
2 Connecting to 'postgres:///chinook?sslmode=disable'… ✓
3 TAP version 13
4 ok 1 - src/sql/album-by-artist.1.out
5 ok 2 - src/sql/album-tracks.1.out
6 ok 3 - src/sql/artist.1.out
7 ok 4 - src/sql/genre-topn.top-3.out

http://manpages.ubuntu.com/manpages/trusty/man1/pg_virtualenv.1.html
https://julien.danjou.info/
https://julien.danjou.info/blog/2014/db-integration-testing-strategies-python
https://github.com/dimitri/regresql

Chapter 7 SQL is Code | 69

8 ok 5 - src/sql/genre-topn.top-1.out
9 ok 6 - src/sql/genre-tracks.out

In the following example we introduce a bug by changing the test plan without
changing the expected result, and here’s how it looks then:

1 $ regresql test
2 Connecting to 'postgres:///chinook?sslmode=disable'… ✓
3 TAP version 13
4 ok 1 - src/sql/album-by-artist.1.out
5 ok 2 - src/sql/album-tracks.1.out
6 # Query File: 'src/sql/artist.sql'
7 # Bindings File: 'regresql/plans/src/sql/artist.yaml'
8 # Bindings Name: '1'
9 # Query Parameters: 'map[n:2]'
10 # Expected Result File: 'regresql/expected/src/sql/artist.1.out'
11 # Actual Result File: 'regresql/out/src/sql/artist.1.out'
12 #
13 # --- regresql/expected/src/sql/artist.1.out
14 # +++ regresql/out/src/sql/artist.1.out
15 # @@ -1,4 +1,5 @@
16 # - name | albums
17 # -------------+-------
18 # -Iron Maiden | 21
19 # + name | albums
20 # +-------------+-------
21 # +Iron Maiden | 21
22 # +Led Zeppelin | 14
23 #
24 not ok 3 - src/sql/artist.1.out
25 ok 4 - src/sql/genre-topn.top-3.out
26 ok 5 - src/sql/genre-topn.top-1.out
27 ok 6 - src/sql/genre-tracks.out

The diagnostic output allows actions to be taken to ஹ஭x the problem: ei-
ther change the expected output (with regresql update) or ஹ஭x the re-
gresql/plans/src/sql/artist.yaml ஹ஭le.

A Closer Look

When something wrong happens in production and you want to understand it,
one of the important tasks we are confronted with is ஹ஭nding which part of the
code is sending a speciஹ஭c query we can see in themonitoring, in the logs or in the
interactive activity views.

Chapter 7 SQL is Code | 70

PostgreSQL implements the application_name parameter, which you can set in
the connection string andwith the SET commandwithin your session. It is then
possible to have it reported in the server’s logs, and it’s also part of the system
activity view pg_stat_activity.
It is a good idea to be quite granular with this setting, going as low as themodule
or package level, depending on your programming language of choice. It’s one
of those settings that themain application should have full control of, so usually
external (and internal) libs are not setting it.

8
Indexing Strategy

Coming upwith an Indexing Strateং is an important step in terms ofmastering
your PostgreSQL database. It means that you are in a position to make an in-
formed choice about which indexes you need, andmost importantly, which you
don’t need in your application.

A PostgreSQL index allows the system to have new options to ஹ஭nd the data
your queries need. In the absence of an index, the only option available to your
database is a sequential scan of your tables. The index access methods are meant
to be faster than a sequential scan, by fetching the data directly where it is.

Indexing is ofிen thought of as a data modeling activity. When using Post-
greSQL, some indexes are necessary to ensure data consistency (the C in ACID).
Constraints such as UNIQUE, PRIMARY KEY or EXCLUDE USING
are only possible to implement in PostgreSQL with a backing index. When an
index is used as an implementation detail to ensure data consistency, then the
indexing strateং is indeed a data modeling activity.

In all other cases, the indexing strateং is meant to enable methods for faster ac-
cessmethods todata. Thosemethods are only going tobe exercised in the context
of running a SQL query. As writing the SQL queries is the job of a developer,
then coming up with the right indexing strateং for an application is also the job
of the developer.

Chapter 8 Indexing Strategy | 72

Indexing for Constraints

When using PostgreSQL some SQL modeling constraints can only be handled
with the help of a backing index. That is the case for the primary key and unique
constraints, and also for the exclusion constraints created with the PostgreSQL
special syntax EXCLUDE USING.
In those three constraint cases, the reason why PostgreSQL needs an index is
because it allows the system to implement visibility tricks with its MVCC imple-
mentation. From the PostgreSQL documentation:

PostgreSQL provides a rich set of tools for developers to manage
concurrent access to data. Internally, data consistency is maintained
by using amultiversionmodel (MultiversionConcurrencyControl,
MVCC). This means that each SQL statement sees a snapshot of
data (a database version) as it was some time ago, regardless of the
current state of the underlying data. This prevents statements from
viewing inconsistent data produced by concurrent transactions per-
forming updates on the same data rows, providing transaction iso-
lation for each database session. MVCC, by eschewing the locking
methodologies of traditional database systems, minimizes lock con-
tention in order to allow for reasonable performance in multiuser
environments.

If we think about how to implement the unique constraint, we soon realize that
to be correct the implementationmust prevent two concurrent statements from
inserting duplicates. Let’s see an examplewith two transactions t1 and t2 happen-
ing in parallel:

1 t1> insert into test(id) values(1);
2 t2> insert into test(id) values(1);

Before the transactions start the table has no duplicate entry, it is empty. If we
consider each transaction, both t1 and t2 are correct and they are not creating
duplicate entries with the data currently known by PostgreSQL.

Still, we can’t accept both the transactions — one of them has to be refused —
because they are con஺ாictingwith the one another. PostgreSQL knows how to do
that, and the implementation relies on the internal code being able to access the
indexes in a non-MVCC compliant way: the internal code of PostgreSQL knows
what the in-஺ாight non-committed transactions are doing.

https://www.postgresql.org/docs/current/static/mvcc.html

Chapter 8 Indexing Strategy | 73

Theway the internals of PostgreSQL solve this problem is by relying on its index
data structure in a non-MVCC compliant way, and this capability is not visible
to SQL level users.

So when you declare a unique constraint, a primary key constraint or an exclu-
sion constraint PostgreSQL creates an index for you:

1 > create table test(id integer unique);
2 CREATE TABLE
3 Time: 68.775 ms
4

5 > \d test
6 Table "public.test"
7 Column | Type | Modifiers
8 --------+---------+-----------
9 id | integer |
10 Indexes:
11 "test_id_key" UNIQUE CONSTRAINT, btree (id)

Andwe can see that the index is registered in the system catalogs as being deஹ஭ned
in terms of a constraint.

Indexing for Queries

PostgreSQL automatically creates only those indexes that are needed for the sys-
tem to behave correctly. Any and all other indexes are to be deஹ஭ned by the appli-
cation developers when they need a faster access method to some tuples.

An index cannot alter the result of a query. An index only provides another access
method to the data, one that is faster than a sequential scan inmost cases. Query
semantics and result set don’t depend on indexes.

Implementing a user story (or a business case)with the help of SQLqueries is the
job of the developer. As the author of the SQL statements, the developer also
should be responsible for choosing which indexes are needed to support their
queries.

Chapter 8 Indexing Strategy | 74

Cost of Index Maintenance

An index duplicates data in a specialized format made to optimise a certain type
of searches. This duplicated data set is still ACID compliant: at COMMIT;
time, every change that is made it to the main tables of your schema must have
made it to the indexes too.

As a consequence, each index adds write costs to yourDML queries: insert, up-
date and delete nowhave tomaintain the indexes too, and in a transactional way.
That’s why we have to deஹ஭ne a global indexing strateং. Unless you have inஹ஭nite
IO bandwidth and storage capacity, it is not feasible to index everything in your
database.

Choosing Queries to Optimize

In every application, we have some user side parts that require the lowest latency
you can provide, and some reporting queries that can run for a little while longer
without users complaining.

So when youwant tomake a query faster and you see that its explain plan is lack-
ing index support, think about the query in terms of SLA in your application.
Does this query need to run as fast as possible, even when it means that you now
have to maintain more indexes?

PostgreSQL Index Access Methods

PostgreSQL implements several index Access Methods. An access method is a
generic algorithmwith a cleanAPI that can be implemented for compatible data
types. Each algorithm is well adapted to some use cases, which is why it’s inter-
esting to maintain several access methods.
The PostgreSQL documentation covers index types in the indexes chapter, and
tells us that

https://www.postgresql.org/docs/current/static/indexes-types.html
https://www.postgresql.org/docs/current/static/indexes.html

Chapter 8 Indexing Strategy | 75

PostgreSQL provides several index types: B-tree, Hash, GiST, SP-
GiST, GIN and BRIN. Each index type uses a diஸferent algorithm
that is best suited to diஸferent types of queries. By default, the CRE-
ATE INDEX command creates B-tree indexes, which ஹ஭t the most
common situations.

Each index access method has been designed to solve speciஹ஭c use case:

• B-Tree, or balanced tree
Balanced indexes are the most common used, by a long shot, because they
are very eஸஹ஭cient and provide an algorithm that applies tomost cases. Post-
greSQL implementation of the B஡Tree index support is best in class and
has been optimized to handle concurrent read and write operations.

You can readmore about the PostgreSQLB-tree algorithm and its theoret-
ical background in the source code ஹ஭le:

src/backend/access/nbtree/README.

• GiST, or generalized search tree
This access method implements an more general algorithm that again
comes from research activities. The GiST Indexing Project from the
University of California Berkeley is described in the following terms:

The GiST project studies the engineering andmathematics be-
hind content-based indexing for massive amounts of complex
content.

Its implementation in PostgreSQL allows support for 2-dimensional data
types such as the geometry point or the rangॽ data types. Those data types
don’t support a total order and as a consequence can’t be indexed properly
in a B-tree index.

• SP-GiST, or spaced partitioned gist
SP-GiST indexes are the only PostgreSQL index access method imple-
mentation that support non-balanced disk-based data structures, such as
quadtrees, k-d trees, and radix trees (tries). This is useful when you want
to index 2-dimensional data with very diஸferent densities.

• GIN, or generalized inverted index

https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree
http://gist.cs.berkeley.edu
https://en.wikipedia.org/wiki/Total_order

Chapter 8 Indexing Strategy | 76

GIN is designed for handling cases where the items to be indexed are com-
posite values, and the queries to be handled by the index need to search
for element values that appear within the composite items. For example,
the items could be documents, and the queries could be searches for docu-
ments containing speciஹ஭c words.

GIN indexes are “inverted indexes” which are appropriate for data values
that containmultiple component values, such as arrays. An inverted index
contains a separate entry for each component value. Such an index can
eஸஹ஭ciently handle queries that test for the presence of speciஹ஭c component
values.

The GIN access method is the foundation for the PostgreSQL Full Text
Search support.

• BRIN, or block range indexes
BRIN indexes (a shorthand for block range indexes) store summaries
about the values stored in consecutive physical block ranges of a table.
Like GiST, SP஡GiST and GIN, BRIN can support many diஸferent
indexing strategies, and the particular operators with which a BRIN index
can be used vary depending on the indexing strategy. For data types that
have a linear sort order, the indexed data corresponds to the minimum
and maximum values of the values in the column for each block range.

• Hash
Hash indexes can only handle simple equality comparisons. The query
planner will consider using a hash index whenever an indexed column is
involved in a comparison using the = operator.

Never use a hash index in PostgreSQL before version 10. In PostgreSQL
10 onward, hash index are crash-safe and may be used.

• Bloom ஹ஭lters

ABloom ஹ஭lter is a space-eஸஹ஭cient data structure that is used to test whether
an element is a member of a set. In the case of an index access method, it
allows fast exclusion of non-matching tuples via signatures whose size is
determined at index creation.

This type of index is most useful when a table has many attributes and
queries test arbitrary combinations of them. A traditional B-tree index is

https://www.postgresql.org/docs/current/static/textsearch-intro.html
https://www.postgresql.org/docs/current/static/textsearch-intro.html

Chapter 8 Indexing Strategy | 77

faster than a Bloom index, but it can require many B-tree indexes to sup-
port all possible queries where one needs only a single Bloom index. Note
however that Bloom indexes only support equality queries, whereas B-tree
indexes can also perform inequality and range searches.

The Bloom ஹ஭lter index is implemented as a PostgreSQL extension starting
in PostgreSQL 9.6, and so to be able to use this access method it’s necessary
to ஹ஭rst create extension bloom.

Both Bloom indexes and BRIN indexes are mostly useful when covering mut-
liple columns. In the case of Bloom indexes, they are useful when the queries
themselves are referencingmost or all of those columns in equality comparisons.

Advanced Indexing

The PostgreSQL documentation about indexes covers everything you need to
know, in details, including:

• Multicolumn indexes
• Indexes and ORDER BY
• Combining multiple indexes
• Unique indexes
• Indexes on expressions
• Partial indexes
• Partial unique indexes
• Index-only scans

There is of course even more, so consider reading this PostgreSQL chapter in its
entirety, as the content isn’t repeated in this book, but you will need it to make
informed decisions about your indexing strategy.

Adding Indexes

Deciding which indexes to add is central to your indexing strateং. Not every
query needs to be that fast, and the requirements are mostly user deஹ஭ned. That

https://www.postgresql.org/docs/10/static/indexes.html

Chapter 8 Indexing Strategy | 78

said, a general system-wide analysis can be achieved thanks to the PostgreSQL
extension pg_stat_statements.

Once this PostgreSQL extension is installed and deployed — this needs a Post-
greSQL restart, because it needs to be registered in shared_preload_libraries
— then it’s possible to have a list of the most common queries in terms of num-
ber of times the query is executed, and the cumulative time it took to execute the
query.

You can begin your indexing needs analysis by listing every query that averages
out tomore than 10milliseconds, or some other sensible threshold for your appli-
cation. The onlyway to understandwhere time is spent in a query is by using the
EXPLAIN command and reviewing the query plan. From the documentation
of the command:

PostgreSQL devises a query plan for each query it receives. Choos-
ing the right plan to match the query structure and the properties
of the data is absolutely critical for good performance, so the system
includes a complex planner that tries to choose good plans. You can
use the EXPLAIN command to see what query plan the planner
creates for any query. Plan-reading is an art that requires some expe-
rience to master, but this section attempts to cover the basics.

Here’s a very rough guide to using explain for ஹ஭xing query performances:
• use the spelling below when using explain to understand run time charac-
teristics of your queries:

1 explain (analyze, verbose, buffers)
2 <query here>;

• In particularwhen you’re new to reading query plans, use visual tools such
as https://explain.depesz.com and PostgreSQL Explain Visualizer, or the
one included in pgAdmin.

• First check for row count diஸferences in between the estimated and the ef-
fective numbers.
Good statistics are critical to the PostgreSQL query planner, and the col-
lected statistics need to be reasonnably up to date. When there’s a huge
diஸference in between estimated and eஸfective row counts (several orders
of magnitude, a thousand times oஸf or more), check to see if tables are ana-
lyzed frequently enough by the Autovacuum Daemon, then check if you

https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/using-explain.html
https://explain.depesz.com
http://tatiyants.com/pev/#/about
https://www.pgadmin.org
https://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM

Chapter 8 Indexing Strategy | 79

should adjust your statistics target.

• Finally, check for time spent doing sequential scans of your data, with a
filter step, as that’s the part that a proper index might be able to optimize.

Remember Amdahl’s law when optimizing any system: if some step takes 10%
of the run time, then the best optimization you can reach from dealing with this
step is 10% less, and usually that’s by removing the step entirely.

This very rough guide doesn’t take into account costly functions and expressions
whichmay be indexed thanks to indexॽ on expressions, nor ordering clauses that
might be derived directly from a supporting index.

Query optimisation is a large topic that is not covered in this book, and proper
indexing is only a part of it. What this book covers is all the SQL capabilities that
you can use to retrieve exactly the result set needed by your application.

The vast majority of slow queries found in the wild are still queries that return
way too many rows to the application, straining the network and the servers
memory. Returning millions of rows to an application that then displays a sum-
mary in a web browser is far too common.

The ஹ஭rst rule of optimization in SQL, as is true for code in general, is to answer
the following question:

Do I really need to do any of that?

The very best query optimization technique consists of not having to execute the
query at all. Which is why in the next chapter we learn all the SQL functionality
that will allow you to execute a single query rather than looping over the result
set of a ஹ஭rst query only to run an extra query for each row retrieved.

https://www.postgresql.org/docs/current/static/planner-stats.html
https://en.wikipedia.org/wiki/Amdahl%27s_law

Chapter 8 Indexing Strategy | 80

Figure 8.1: Advanced Django

9
An Interview with Yohann Gabory

Yohann Gabory, Python Django’s expert, has published an “Advanced Django”
book in France to share his deep understanding of the publication system with
Python developers. The book really is a reference on how to use Django to build
powerful applications.

As a web backend developer and Django expert, what do you expect from an
RDBMS in terms of features and behavior?

Consistency and conஹ஭dence

Data ॾ what a web application reliॽ on. You can manage bad
quality code but you cannot afford to have data loss or corruption.
Someone might say “Hey we do not work for financials, it doesn’t
matter if we lose some data sometime”. What I would answer to
thॾ ॾ: if you are ready to lose some data then your data hॼ no
value. If your data hॼ no value then there ॾ a big chance that your
app hॼ no value either.
So let’s say you care about your customers and so you care about
their data. The first thing you must guaranty ॾ confidence. Your
users must trust you when you say, “I have saved your data”. They
must trust you when you say, “Your data ॾ not corrupted”.
So what ॾ the feature I first expect?
Don’t mess up my database with invalid or corrupted data. Ensure

Chapter 9 An Interview with Yohann Gabory | 82

that when my database says something ॾ saved, it really ॾ.
Code in SQL

Of course, thॾ means that each time the coherence of my database
ॾ involved I do not rely on my framework or my Python code. I
rely on SQL code.
I need my database to be able to handle code within itself — proce-
dure, triঃers, check_constraints — those are the most basic featurॽ
I need from a database.
Flexible when I want, rigid when I ask

As a developer when first implementing a proof of concept or aMVC
you cannot ask me to know perfectly how I will handle my data in
the future. Some information that doॽ not seem very relevant will
be mandatory or something else I tough wॼ mandatory ॾ not after
all.
So I need my database to be flexible enough to let me easily change
what ॾ mandatory and what ॾ not.
Thॾ point ॾ the main reason some developers fly to NoSQL
databasॽ. Because they see the schemaless options ॼ a way to not
carefully specify their database schema.
At first sight thॾ can seem like a good idea. In fact, thॾ ॾ a ter-
rible one. Because tomorrow you will need consistency and non-
permissive schema. When it happens, you will be on your own, lost
in a world of inconsistency, corrupted data and “eventually consis-
tent” records.
I will not talk about writing consistency and relational checks in
code because it remindsme of nightmarॽ called race-conditions and
Heisenbugs.
What I really expect from my RDBMS ॾ to let me begin schema-
less and after some time, let me specify mandatory fields, relation
insurance and so on. If you think I’m asking too much, have a look
at jsonb or hstore.

What makes you want to use PostgreSQL rather than something else in
your Django projects? Are there any diஸஹ஭culties to be aware of when using

Chapter 9 An Interview with Yohann Gabory | 83

PostgreSQL?

Django lets you use a lot of different databasॽ. You can use SQLite,
MariaDB, PostgreSQL and some others. Of course, you can expect
from some databasॽ availability, consistency, isolation, and dura-
bility. Thॾ allows you to make decent applications. But there ॾ
always a time where you need more. Especially some database type
that could match Python type. Think about list, dictionary, rangॽ,
timestamp, timezone, date and datetime.
All of thॾ (and more) can be found in PostgreSQL. Thॾ ॾ so true
that there are now in Django some specific models fields (the Django
representation of a column) to handle those great PostgreSQL fields.
When it comॽ to choosing a database why someone wants to use
something other than the most full-featured?
But don’t think I choose PostgreSQL only for performance, easiness
of use and powerful featurॽ. It’s also a really warm place to code
with confidence.
Because Django hॼ a migration management system that can han-
dle pure SQL I can write advanced SQL functions and triঃers di-
rectly in my code. Those functions can use the most advanced fea-
turॽ of PostgreSQL and stay right in front of me, in my Git, easily
editable.
In fact version after version, Django let you use your database
more and more. You can now use SQL function like COALESCE,
NOW, aঃregation functions and more directly in your Django
code. And those function you write are plain SQL.
Thॾ also means that version after version your RDBMS choice ॾ
more and more important. Do you want to choose a tool that can
do half the work you expect from it?
Me neither.

Django comes with an internal ORM that maps an object model to a relational
table and allows it to handle “saving” objects and SQL query writing. Django
also supports raw SQL.What is your general advice around using the ORM?

Well thॾ ॾ a tough question. Some will say ORM sucks. Some
others says mixing SQL and Python code in your application ॾ ugly.

Chapter 9 An Interview with Yohann Gabory | 84

I think they are both right. Of course, an ORM limits you a lot.
Of course writing SQL everytime you need to talk to your database
ॾ not sustainable in the long run.
When your queriॽ are so simple you can express them with your
ORM why not use it? It will generate a SQL query ॼ good ॼ
anybody could write. It will hydrate a Django object you can use
right away, in a breeze.
Think about:

1 MyModel.objects.get(id=1)

Thॾ ॾ equivalent to:
1 select mymodel.id, mymodel.other_field, ...
2 from mymodel
3 where id=1;

Do you think you could write better SQL?
ORM can manage all of your SQL needs. There ॾ also some advice
to avoid the N+1 dilemma. The aঃregation system reliॽ on SQL
and ॾ fairly decent.
But if you don’t pay attention, it will bite you hard.
The rule of thumb for me ॾ to never forget what your ORM ॾ
meant for: translate SQL records into Python objects.
If you think it can handle anything more, like avoiding writing
SQL, managing indexॽ etc… you are wrong.
The main Django ORM philosophy ॾ to let you drive the car.

• First always be able to translate your ORM query into the
SQL counterpart, the following trick should help you with thॾ

1 MyModel.objects.filter(...).query.sql_with_params()

• Create SQL functions and use them with the Func object
• Use manager methods with meticulously crafted raw sql and
use those methods in your code.

So yॽ, use your ORM. Not the one from Django. Yours !
What do you think of supporting several RDMS solutions in your applications?

Chapter 9 An Interview with Yohann Gabory | 85

Sorry but I have to admit that back in the days I believed in such
a tale. Now ॼ a grown-up I know two things. Santa and RDBMS
agnosticism do not really exist.
What ॾ true ॾ that a framework like Django lets you choose a
database and then stick with it.
The idea of using SQLite in development and PostgreSQL in pro-
duction leads only to one thing: you will use the featurॽ of SQLite
everywhere and you will not be able to use the PostgreSQL specific
featurॽ.
The only way to be purely agnostic ॾ to use only the featurॽ all the
proposed RDMS providॽ. But think again. Do you want to drive
your race car like a tractor?

Part IV

SQL Toolbox

| 87

In this chapter, we are going to add to our proஹ஭ciency in writing SQL queries.
The structured query language doesn’t look like any other imperative, functional
or even object-oriented programming language.

This chapter contains a long list of SQL techniques from the most basic select
clause to advanced lateral joins, each time with practical examples working with
a free database that you can install at home.

It is highly recommended that you follow along with a local instance of the
database so that you can enter the queries from the book and play with them
yourself. A key aspect of this part is that SQL queries arent’ typically written in
a text editor with hard thinking, instead they are interactively tried out in pieces
and stitched together once the spelling is spot on.

The SQLwriting process is mainly about discovery. In SQL you need to explain
your problem, unlike in most programming languages where you need to focus
on a solution you think is going to solve your problem. That’s quite diஸferent
and requires looking at your problem in another way and understanding it well
enough to be able to express it in details in a single sentence.

Here’s some good advice I received years and years ago, and it still applies to this
day: when you’re struggling to write a SQL query, ஹ஭rst write down a single sen-
tence —in your native language— that perfectly describes what you’re trying to
achieve. As soon as you can do that, then writing the SQL is going to be easier.

One of the very eஸfective techniques inwriting such a sentence is talking out loud,
because apparently writing and speaking come from diஸferent parts of the brain.
So it’s the same as when debugging a complex program, as it helps a lot to talk
about it with a colleague… or a rubber duck.

Afிer having dealt with the basics of the language, where means basic really fun-
damentals, this chapter spends time on more advanced SQL concepts and Post-
greSQL along with how you can beneஹ஭t from them when writing your applica-
tions, making you a more eஸfective developer.

https://en.wikipedia.org/wiki/Rubber_duck_debugging

10
Get Some Data

To be able to play with SQL queries, we ஹ஭rst need some data. While it is possible
to create a synthetic set of data and playwith it, it is usually harder to think about
abstract numbers that you know nothing about.

In this chapter, we are going to use the historical record of motor racing data,
available publicly.

The database is available in a single download ஹ஭le for MySQL only. Once you
have a local copy, we use pgloader to get the data set in PostgreSQL:

1 $ createdb f1db
2 $ pgloader mysql://root@localhost/f1db pgsql:///f1db

Now that we have a real data set, we can get into more details about the window
function frames. To run the query as written in the following parts, you also
need to tweak PostgreSQL search_path to include the f1db schema in the f1db
database. Here’s the SQL command you need for that:

1 ALTER DATABASE f1db SET search_path TO f1db, public;

When using the Full Edition or the Enterprise Edition of the book, the appdev
database is already loaded with the dataset in the f1db schema.

http://ergast.com/mrd/
http://pgloader.io

11
Structured Query Language

SQL stands for structured query language and has been designed so that non-
programmer would be able to use it for their reporting needs. Ignoring this clear
attempt at gettingMarketing people to stay away from the developer’s desks, this
explainswhy the language doesn’t look like your normal programming language.

Apart from the aim to look like English sentences, the main aspect of the SQL
language to notice and learn to beneஹ஭t from is that it’s a declarative program-
ming language. This means that you get to declare or state the result you want
to obtain, thus you need to think in term of the problem you want to solve.

This diஸfers from most programming languages, where the developer’s job is to
transform his understanding of the solution into a step by step recipe for how
exactly to obtain it, which means thinking in terms of the solution you decided
would solve the problem at hand.

It is then quite fair to say that SQL is a very high-level programming language:
even as a developer you don’t need to come up with a detailed solution, rather
your job is to understand the problem well enough so that you are able to trans-
late it. Afிer that, the RDBMS of your choice is going to ஹ஭gure out a plan then
execute it, and hopefully return just the result set you wanted!

For some developers, not being in charge of every detail of the query plan is a
source of frustration, and they prefer hiding SQL under another layer of tech-
nology that makes them feel like they are still in control.

Unfortunately, any extra layer on top of SQL is only there to produce SQL for

Chapter 11 Structured Query Language | 90

you, which means you have even less control over what plan is going to be exe-
cuted.

In this section, we review important and basic parts of a SQL query. The goal
is for you to be comfortable enough with writing SQL that you don’t feel like
you’ve lost control over the details of its execution plan, but instead your can
rely on your RDBMS of choice for that. Of course, it’s much easier to reach
that level of trust when you use PostgreSQL, because it is fully open source, well
documented, supports a very detailed explain command, and its code is verywell
commented, making it easy enough to read and review.

12
Queries, DML, DDL, TCL, DCL

SQLmeans structured query language and is composed of several areas, and each
of them has a speciஹ஭c acronym and sub-language.

• DML stands for data manipulation language and it covers insert, update
and delete statements, which are used to input data into the system.

• DDL stands for data definition language and it covers create, alter and
drop statements, which are used to deஹ஭ne on-disk data structures where to
hold the data, and also their constraints and indexes— the things we refer
to with the terms of SQL objects.

• TCL stands for transaction control language and includes begin and com-
mit statements, and also rollback, start transaction and set transaction com-
mands. It also includes the less well-known savepoint, release savepoint,
and rollback to savepoint commands, and let’s not forget about the two-
phase commit protocol with prepare commit, commit prepared and roll-
back prepared commands.

• DCL stands for data control language and is covered with the statements
grant and revoke.

• Next we have PostgreSQL maintenance commands such as vacuum, ana-
lyze, cluster.

• There further commands that are provided byPostgreSQL such as prepare
and execute, explain, listen and notify, lock and set, and some more.

Chapter 12 Queries, DML, DDL, TCL, DCL | 92

The query part of the language, which covers statements beginning with select,
table, valuॽ and with keywords, is a tiny part of the available list of commands.
It’s also where the complexity lies and the part we are going to focus our eஸforts
in this section.

13
Select, From, Where

Anatomy of a Select Statement

The simplest select statement in PostgreSQL is the following:
1 SELECT 1;

In other systems, the from clause is required and sometimes a dummy table with
a single row is provided so that you can select from this table.

Projection (output): Select

The SQL select clause introduces the list of output columns. This is the list of
data that we are going to send back to the client application, so it’s quite impor-
tant: the only reason the server is executing any query is to return a result set
where each row presents the list of columns speciஹ஭ed in the select clause. This is
called a projection.
Adding a column to the select list might involve a lot of work, such as:

• Fetching data on-disk
• Possibly uncompressing data that is stored externally to the main table on-
disk structure, and loading those uncompressed bytes into the memory of

Chapter 13 Select, From,Where | 94

the database server
• Sending the data back over the network back to the client application.

Given that, it is usually frowned upon to use either the infamous select star nota-
tion or the classic I don’t know what I’m doing behavior of someobject relational
mappers when they insist on always fully hydrating the application objects, just
in case.

The following shortcut is nice to have in interactive mode only:
1 select * from races limit 1;

The actual standard syntax for limit is a little more complex:
1 select * from races fetch first 1 rows only;

It gives the following result:
─[RECORD 1]──
raceid │ 1
year │ 2009
round │ 1
circuitid │ 1
name │ Australian Grand Prix
date │ 2009-03-29
time │ 06:00:00
url │ http://en.wikipedia.org/wiki/2009_Australian_Grand_Prix

Note that rather than using this frowned upon notation, the SQL standard al-
lows us to use this alternative, which is even more practical:

1 table races limit 1;

Of course, it gives the same result as the one above.

Select Star

There’s another reason to refrain from using the select star notation in appli-
cation’s code: if you ever change the source relation deஹ஭nitions, then the same
query now has a diஸferent result set data structure, and you might have to re஺ாect
that change in the application’s in-memory data structures.

Let’s take a very simple Java example, and I will only show themeat of it, ஹ஭ltering
out the exception handling and resources disposal (we need to close the result
set, the statement and the connection objects):

Chapter 13 Select, From,Where | 95

1 try {
2 con = DriverManager.getConnection(url, user, password);
3 st = con.createStatement();
4 rs = st.executeQuery("SELECT * FROM races LIMIT 1;");
5

6 if (rs.next()) {
7 System.out.println(rs.getInt("raceid"));
8 System.out.println(rs.getInt("year"));
9 System.out.println(rs.getInt("round"));
10 System.out.println(rs.getInt("circuitid"));
11 System.out.println(rs.getString("name"));
12 System.out.println(rs.getString("date"));
13 System.out.println(rs.getString("time"));
14 System.out.println(rs.getString("url"));
15 }
16 } catch (SQLException ex) {
17 // logger code
18 } finally {
19 // closing code
20 }

We can use the ஹ஭le like this:
1 $ javac Select.java
2 $ java -cp .:path/to/postgresql-42.1.1.jar Select
3 1
4 2009
5 1
6 1
7 Australian Grand Prix
8 2009-03-29
9 06:00:00
10 http://en.wikipedia.org/wiki/2009_Australian_Grand_Prix

Even in this pretty quick example we can see that the code has to know the racॽ
table column list, each column name, and the data types. Of course, it’s still pos-
sible to write the following code:

1 if (rs.next()) {
2 for(int i=1; i<=8; i++)
3 System.out.println(rs.getString(i));
4 }

But this case is only relevant when we have no processing at all to do over the
data, and we still hard code the fact that the racॽ table has eight column.
Now pretend we had an extra column in our schema deஹ஭nition at some point,
and thus had the following line in our code to process it from the result set:

1 System.out.println(rs.getString("extra"));

Chapter 13 Select, From,Where | 96

Once the column is no longer here (presumably following a production rollout
of the schema change), then our code no longer runs:

1 Jun 29, 2017 1:17:41 PM Select main
2 SEVERE: The column name extra was not found in this ResultSet.
3 org.postgresql.util.PSQLException: The column name extra was not found in this ResultSet.
4 at org.postgresql.jdbc.PgResultSet.findColumn(PgResultSet.java:2610)
5 at org.postgresql.jdbc.PgResultSet.getString(PgResultSet.java:2484)
6 at Select.main(Select.java:35)

That’s because now our code is wrong, and code review can’t help us here, be-
cause the query in both cases is a plain select * We could have used the
following code instead:

1 try {
2 con = DriverManager.getConnection(url, user, password);
3 st = con.createStatement();
4 rs = st.executeQuery("SELECT name, date, url, extra FROM races LIMIT 1;");
5

6 if (rs.next()) {
7 System.out.println(" race: " + rs.getString("name"));
8 System.out.println(" date: " + rs.getString("date"));
9 System.out.println(" url: " + rs.getString("url"));
10 System.out.println("extra: " + rs.getString("url"));
11 System.out.println();
12 }
13

14 } catch (SQLException ex) {
15 // logger code
16 } finally {
17 // closing code
18 }

Now it’s quite clear that there’s a direct mapping between the column names in
the SQL query and what we fetch from the result set instance. We still don’t
know at review or compile time if the columns do currently exist in production,
but at least the error message is crystal clear this time:

1 Jun 29, 2017 1:31:04 PM Select main
2 SEVERE: ERROR: column "extra" does not exist
3 Position: 25
4 org.postgresql.util.PSQLException: ERROR: column "extra" does not exist

Again, when being explicit, the diff is pretty easy to review too:
1 @@ -21,18 +21,17 @@
2 try {
3 con = DriverManager.getConnection(url, user, password);
4 st = con.createStatement();
5 - rs = st.executeQuery("SELECT name, date, url, extra FROM races LIMIT 1;");

Chapter 13 Select, From,Where | 97

6 + rs = st.executeQuery("SELECT name, date, url FROM races LIMIT 1;");
7

8 if (rs.next()) {
9 System.out.println(" race: " + rs.getString("name"));
10 System.out.println(" date: " + rs.getString("date"));
11 System.out.println(" url: " + rs.getString("url"));
12 - System.out.println("extra: " + rs.getString("extra"));
13 System.out.println();
14 }

To summarize, here’s a review of my argument against select star:
• Using select * hides the intention of the code, while listing the columns
explicitly in the code allows for declaring our thinking as a developer.

• It makes code changes easier to review when the column list is explicit in
the code, and despite our previous example in Java using a string literal as
a SQLquery, it’s even better of course when the query is found in a proper
.sql ஹ஭le.

• It is not eஸஹ஭cient to retrieve all the bytes each time even if you don’t need
them, some bytes are quite expensive to fetch on the server side thanks
to theTOASTmechanism (TheOversized-Attribute StorageTechnique),
and then those bytes still need to ஹ஭nd their way in the network and your
application’s memory.

The main point is about being speciஹ஭c about what your code is doing. It helps
tremendously to never have to second guess what is happening, for example
in cases of production debugging, performances analysis and optimization,
onboarding of new team members, code review, and really just about anything
that has to do with maintaining the code base.

Select Computed Values and Aliases

In the SELECT clause it is possible to return computed values and to rename
columns. Here’s an example of that:

1 select code,
2 format('%s %s', forename, surname) as fullname,
3 forename,
4 surname
5 from drivers;

And here are the ஹ஭rst three drivers we get:

https://www.postgresql.org/docs/current/static/storage-toast.html

Chapter 13 Select, From,Where | 98

code │ fullname │ forename │ surname
══════╪════════════════╪══════════╪══════════
HAM │ Lewis Hamilton │ Lewis │ Hamilton
HEI │ Nick Heidfeld │ Nick │ Heidfeld
ROS │ Nico Rosberg │ Nico │ Rosberg

(3 rows)

Here we are using the format PostgreSQL function, which mimics what is usu-
ally available in programming languages such as Python’s print function or C’s
printf. The SQL standard gives us a concatenation operator named || and we
could achieve the same result with a standard conforming query:

1 select code,
2 forename || ' ' || surname as fullname,
3 forename,
4 surname
5 from drivers;

In this book, we are going to focus on PostgreSQL rather than standard com-
pliance, because PostgreSQL oஸfers a lot of useful functions and gems that are
nowhere to be found in the SQL standard, nor in most of the RDBMS compe-
tition.

The visibility of the SELECT alias is important to keep in mind. This is a topic
for later in this chapter, when we learn about the ORDER BY, GROUP BY,
HAVING andWINDOW clauses.

PostgreSQL Processing Functions

PostgreSQL embeds a very rich set of processing functions that can be used any-
where in thequeries, even ifmost of themaremoreuseful in theSELECT clause.
Because I see a lot of code fetching only the raw data from theRDBMS and then
doing all the processing in the application code, Iwant to show an example query
processing calendar related information with PostgreSQL.

The next query is a showcase for extract() and to_char() functions, and it also
uses theCASE construct. Read the documentation on date/time functions and
operators for more details and functions on the same topic.

1 select date::date,
2 extract('isodow' from date) as dow,
3 to_char(date, 'dy') as day,
4 extract('isoyear' from date) as "iso year",
5 extract('week' from date) as week,
6 extract('day' from

https://www.postgresql.org/docs/9.6/static/functions-datetime.html
https://www.postgresql.org/docs/9.6/static/functions-datetime.html

Chapter 13 Select, From,Where | 99

7 (date + interval '2 month - 1 day')
8)
9 as feb,
10 extract('year' from date) as year,
11 extract('day' from
12 (date + interval '2 month - 1 day')
13) = 29
14 as leap
15 from generate_series(date '2000-01-01',
16 date '2010-01-01',
17 interval '1 year')
18 as t(date);

The generate_seriॽ() function returns a set of items, here all the dates of the ஹ஭rst
day of the years from the 2000s. For each of them we then compute the day of
the week of this ஹ஭rst day of the year, both in numerical and textual forms, and
then the year number from the date, as deஹ஭ned by the ISO standard, and the
week number from the ISO year, then the last day of February and a Boolean
which is true for leap years.

Here’s an extract from the PostgreSQL documentation about ISO years and
week numbers:

By deஹ஭nition, ISO weeks start on Mondays and the ஹ஭rst week of a
year contains January 4 of that year. In other words, the ஹ஭rst Thurs-
day of a year is in week 1 of that year.

So here’s what we get:
date │ dow │ day │ iso year │ week │ feb │ year │ leap

════════════╪═════╪═════╪══════════╪══════╪═════╪══════╪══════
2000-01-01 │ 6 │ sat │ 1999 │ 52 │ 29 │ 2000 │ t
2001-01-01 │ 1 │ mon │ 2001 │ 1 │ 28 │ 2001 │ f
2002-01-01 │ 2 │ tue │ 2002 │ 1 │ 28 │ 2002 │ f
2003-01-01 │ 3 │ wed │ 2003 │ 1 │ 28 │ 2003 │ f
2004-01-01 │ 4 │ thu │ 2004 │ 1 │ 29 │ 2004 │ t
2005-01-01 │ 6 │ sat │ 2004 │ 53 │ 28 │ 2005 │ f
2006-01-01 │ 7 │ sun │ 2005 │ 52 │ 28 │ 2006 │ f
2007-01-01 │ 1 │ mon │ 2007 │ 1 │ 28 │ 2007 │ f
2008-01-01 │ 2 │ tue │ 2008 │ 1 │ 29 │ 2008 │ t
2009-01-01 │ 4 │ thu │ 2009 │ 1 │ 28 │ 2009 │ f
2010-01-01 │ 5 │ fri │ 2009 │ 53 │ 28 │ 2010 │ f

(11 rows)

It is very easy to do complex computations on dates in PostgreSQL, and that
includes taking care of time zones too. Don’t even think about coding such pro-
cessing yourself, as it’s full of oddities.

Chapter 13 Select, From,Where | 100

Data sources: From

The SQL from clause introduces the data sources used in the query, and supports
declaring how those diஸferent sources relate to each other. In themost basic form,
our query is reading a data set from a single table:

1 select code, driverref, forename, surname
2 from drivers;

In this querydrivers is the name of a table, so it’s pretty easy to understandwhat’s
going on.

Now saywewant to get the all-time top three drivers in terms of howmany times
they won a race. This time we need information from the drivers table and from
the results table, which alongwith other information contains a position column.
The winner’s position is 1.

To ஹ஭nd the all-time top three drivers, we fetch how many times each driver had
position = 1 in the results table:

1 select code, forename, surname,
2 count(*) as wins
3 from drivers
4 join results using(driverid)
5 where position = 1
6 group by driverid
7 order by wins desc
8 limit 3;

This time the result is more interesting. let’s have a look at our all time top three
winners in the Formula One database:
code │ forename │ surname │ wins

══════╪══════════╪════════════╪══════
MSC │ Michael │ Schumacher │ 91
HAM │ Lewis │ Hamilton │ 56
¤ │ Alain │ Prost │ 51

(3 rows)

The query uses an inner join in between the drivers and the results table. In both
those tables, there is a driverid column that we can use as a lookup reference to
associate data in between the two tables.

Chapter 13 Select, From,Where | 101

Understanding Joins

I could spend time here and ஹ஭ll in the book with detailed explanations of every
kind of join operation: inner join, left and right outer joins, cross joins, full outer
join, lateral join and more. It just so happens that the PostgreSQL documen-
tation covering the FROM clause does that very well, so please read it carefully
along with this book so that we can instead focus on more interesting and ad-
vanced examples.

Now that we know how to easily fetch the winner of a race, it is possible to also
to display all the races from a quarter with their winner:

1 \set beginning '2017-04-01'
2 \set months 3
3

4 select date, name, drivers.surname as winner
5 from races
6 left join results
7 on results.raceid = races.raceid
8 and results.position = 1
9 left join drivers using(driverid)
10 where date >= date :'beginning'
11 and date < date :'beginning'
12 + :months * interval '1 month';

And we get the following result, where we lack data for the most recent race but
still display it:

date │ name │ winner
════════════╪═══════════════════════╪══════════
2017-04-09 │ Chinese Grand Prix │ Hamilton
2017-04-16 │ Bahrain Grand Prix │ Vettel
2017-04-30 │ Russian Grand Prix │ Bottas
2017-05-14 │ Spanish Grand Prix │ Hamilton
2017-05-28 │ Monaco Grand Prix │ Vettel
2017-06-11 │ Canadian Grand Prix │ Hamilton
2017-06-25 │ Azerbaijan Grand Prix │ ¤

(7 rows)

The reason why we are using a left join this time is so that we keep every race
from the quarter’s and display extra information only when we have it. Left join
semantics are to keep the whole result set of the table lexically on the lefி of the
operator, and to ஹ஭ll-in the columns for the table on the right of the left join op-
erator when some data is found that matches the join condition, otherwise using
NULL as the column’s value.

https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-FROM

Chapter 13 Select, From,Where | 102

In the example above, the winner information comes from the results table,
which is lexically found at the right of the left join operator. The Azerbaijan
Grand Prix has no results in the local copy of the f1db database used locally,
so the winner information doesn’t exists and the SQL query returns a NULL
entry.

You can also see that the results.position = 1 restriction has been moved directly
into the join condition, rather than being kept in the where clause. Should the
condition be in the where clause, it would ஹ஭lter out races from which we don’t
have a result yet, and we are still interested in those.

Another way to write the query would be using an explicit subquery to build
an intermediate results table containing only the winners, and then join against
that:

1 select date, name, drivers.surname as winner
2 from races
3 left join
4 (select raceid, driverid
5 from results
6 where position = 1
7)
8 as winners using(raceid)
9 left join drivers using(driverid)
10 where date >= date :'beginning'
11 and date < date :'beginning'
12 + :months * interval '1 month';

PostgreSQL is smart enough to actually implement both SQL queries the same
way, but it might be thanks to the data set being very small in the f1db database.

Restrictions: Where

Inmost of the queries we saw, we already had somewhere clause. This clause acts
as a ஹ஭lter for the query: when the ஹ஭lter evaluates to true then we keep the row in
the result set and when the ஹ஭lter evaluates to false we skip that row.

Real-world SQL may have quite complex where clauses to deal with, and it is
allowed to use CASE and other logic statements. That said, we usually try to
keep the where clauses as simple as possible for PostgreSQL in order to be able
to use our indexes to solve the data ஹ஭ltering expressions of our queries.

Chapter 13 Select, From,Where | 103

Some simple rules to remember here:

• In a where clause we can combine ஹ஭lters, and generally we combine them
with the and operator, which allows short-circuit evaluations because as
soon as one of the anded conditions evaluates to false, we know for sure
we can skip the current row.

• Where also supports the or operator, which is more complex to optimize
for, in particular with respect to indexes.

• We have support for both not and not in, which are completely diஸferent
beasts.

Be careful about not in semantics with NULL: the following query re-
turns no rows…

1 select x
2 from generate_series(1, 100) as t(x)
3 where x not in (1, 2, 3, null);

Finally, as is the case just about anywhere else in a SQL query, it is possible in
the where clause to use a subquery, and that’s quite common to use when imple-
menting the anti-join pattern thanks to the special feature not exists.
An anti-join is meant to keep only the rows that fail a test. If we want to list
the drivers that where unlucky enough to not ஹ஭nish a single race in which they
participated, then we can ஹ஭lter out those who did ஹ஭nish. We know that a driver
ஹ஭nished because their position is ஹ஭lled in the results table: it ॾ not null.
If we translate the previous sentence into the SQL language, here’s whatwe have:

1 \set season 'date ''1978-01-01'''
2

3 select forename,
4 surname,
5 constructors.name as constructor,
6 count(*) as races,
7 count(distinct status) as reasons
8

9 from drivers
10 join results using(driverid)
11 join races using(raceid)
12 join status using(statusid)
13 join constructors using(constructorid)
14

15 where date >= :season
16 and date < :season + interval '1 year'
17 and not exists

Chapter 13 Select, From,Where | 104

18 (
19 select 1
20 from results r
21 where position is not null
22 and r.driverid = drivers.driverid
23 and r.resultid = results.resultid
24)
25 group by constructors.name, driverid
26 order by count(*) desc;

The interesting part of this query lies in the where not exists clause, which might
look somewhat special on a ஹ஭rst read: what is that select 1 doing there?
Remember that awhere clause is a ஹ஭lter. The not exists clause is ஹ஭ltering based on
rows that are returned by the subquery. To pass the ஹ஭lter, just return anything,
PostgreSQL will not even look at what is selected in the subquery, it will only
take into account the fact that a row was returned.

It alsomeans that the join condition in between themain query and thenot exists
subquery is done in the where clause of the subquery, where you can reference
the outer query as we did in r.driverid = drivers.driverid and r.resultid = re-
sults.resultid.
It turns out that 1978 was not a very good season based on the number of drivers
who never got the chance to ஹ஭nish a race so we are going to show only the ten
ஹ஭rst results of the query:

forename │ surname │ constructor │ races │ reasons
══════════════╪═══════════╪═════════════╪═══════╪═════════
Arturo │ Merzario │ Merzario │ 16 │ 8
Hans-Joachim │ Stuck │ Shadow │ 12 │ 6
Rupert │ Keegan │ Surtees │ 12 │ 6
Hector │ Rebaque │ Team Lotus │ 12 │ 7
Jean-Pierre │ Jabouille │ Renault │ 10 │ 4
Clay │ Regazzoni │ Shadow │ 10 │ 5
James │ Hunt │ McLaren │ 10 │ 6
Brett │ Lunger │ McLaren │ 9 │ 5
Niki │ Lauda │ Brabham │ 9 │ 4
Rolf │ Stommelen │ Arrows │ 8 │ 5

(10 rows)

The reasons not to ஹ஭nish a race might be did not qualify or gearbox, or any one
of the 133 diஸferent statuses found in the f1db database.

14
Order By, Limit, No Offset

Ordering with Order By

The SQL ORDER BY clause is pretty well-known because SQL doesn’t guar-
antee any ordering of the result set of any query except when you use the order
by clause.
In its simplest form the order byworks with one column or several columns that
are part of our data model, and in some cases, it might even allow PostgreSQL
to return the data in the right order by following an existing index.

1 select year, url
2 from seasons
3 order by year desc
4 limit 3;

This gives an expected and not that interesting result set:
year │ url

══════╪═══
2017 │ https://en.wikipedia.org/wiki/2017_Formula_One_season
2016 │ https://en.wikipedia.org/wiki/2016_Formula_One_season
2015 │ http://en.wikipedia.org/wiki/2015_Formula_One_season

(3 rows)

What is more interesting about it is the explain plan of the query, where we see
PostgreSQL follows the primary key index of the table in a backward direction
in order to return our three most recent entries. We obtain the plan with the

Chapter 14 Order By, Limit, No Oஸfset | 106

following query:
1 explain (costs off)
2 select year, url
3 from seasons
4 order by year desc
5 limit 3;

Well, this one is pretty easy to read and understand:
QUERY PLAN

══
Limit

-> Index Scan Backward using idx_57708_primary on seasons
(2 rows)

The order by clause can also refer to query aliases and computed values, as we
noted earlier in previous queries. More complex use cases are possible: in Post-
greSQL, the clause also accepts complex expression and subqueries.

As an example of a complex expression, we may use the CASE conditional in
order to control the ordering of a race’s results over the status information. Say
thatwe order the results by position then number of laps and then by statuswith
a special rule: the Power Unit failure condition is considered ஹ஭rst, and only then
the other ones.

Yes, this rule makes no sense at all, it’s totally arbitrary. It could be that you’re
workingwith a constructor and he’smaking a study about some failing hardware
and that’s part of the inquiry.

1 select drivers.code, drivers.surname,
2 position,
3 laps,
4 status
5 from results
6 join drivers using(driverid)
7 join status using(statusid)
8 where raceid = 972
9 order by position nulls last,
10 laps desc,
11 case when status = 'Power Unit'
12 then 1
13 else 2
14 end;

We can almost feel we’ve seen the race with that result set:
code │ surname │ position │ laps │ status

══════╪════════════╪══════════╪══════╪════════════
BOT │ Bottas │ 1 │ 52 │ Finished

Chapter 14 Order By, Limit, No Oஸfset | 107

VET │ Vettel │ 2 │ 52 │ Finished
RAI │ Räikkönen │ 3 │ 52 │ Finished
HAM │ Hamilton │ 4 │ 52 │ Finished
VER │ Verstappen │ 5 │ 52 │ Finished
PER │ Pérez │ 6 │ 52 │ Finished
OCO │ Ocon │ 7 │ 52 │ Finished
HUL │ Hülkenberg │ 8 │ 52 │ Finished
MAS │ Massa │ 9 │ 51 │ +1 Lap
SAI │ Sainz │ 10 │ 51 │ +1 Lap
STR │ Stroll │ 11 │ 51 │ +1 Lap
KVY │ Kvyat │ 12 │ 51 │ +1 Lap
MAG │ Magnussen │ 13 │ 51 │ +1 Lap
VAN │ Vandoorne │ 14 │ 51 │ +1 Lap
ERI │ Ericsson │ 15 │ 51 │ +1 Lap
WEH │ Wehrlein │ 16 │ 50 │ +2 Laps
RIC │ Ricciardo │ ¤ │ 5 │ Brakes
ALO │ Alonso │ ¤ │ 0 │ Power Unit
PAL │ Palmer │ ¤ │ 0 │ Collision
GRO │ Grosjean │ ¤ │ 0 │ Collision

(20 rows)

kNN Ordering and GiST indexes

Another use case for order by is to implement k nearest neighbours. The kNN
searches are pretty well covered in the literature and is easy to implement in Post-
greSQL. Let’s ஹ஭nd out the ten nearest circuits to Paris, France, which is at longi-
tude 2.349014 and latitude 48.864716. That’s a kNN search with k = 10:

1 select name, location, country
2 from circuits
3 order by point(lng,lat) <-> point(2.349014, 48.864716)
4 limit 10;

Alongwith the following list of circuits spread around inFrance,we also get some
tracks from Belgium and the United Kingdom:

name │ location │ country
═══════════════════════════════╪══════════════════╪═════════
Rouen-Les-Essarts │ Rouen │ France
Reims-Gueux │ Reims │ France
Circuit de Nevers Magny-Cours │ Magny Cours │ France
Le Mans │ Le Mans │ France
Nivelles-Baulers │ Brussels │ Belgium
Dijon-Prenois │ Dijon │ France
Charade Circuit │ Clermont-Ferrand │ France
Brands Hatch │ Kent │ UK

Chapter 14 Order By, Limit, No Oஸfset | 108

Zolder │ Heusden-Zolder │ Belgium
Circuit de Spa-Francorchamps │ Spa │ Belgium

(10 rows)

The point datatype is a very useful PostgreSQL addition. In our query here, the
points have been computed from the raw data in the database. For a proper Post-
greSQL experience, we can have a location column of point type in our circuits
table and index it using GiST:
begin;

alter table f1db.circuits add column position point;
update f1db.circuits set position = point(lng,lat);
create index on f1db.circuits using gist(position);

commit;

Now the previous query can be written using the new column. We get the same
result set, of course: indexes are not allowed to change the result of a query they
apply to… under no circumstances. When they do, we call that a bug, or maybe
it is due to data corruption. Anyway, let’s have a look at the query plan now that
we have aGiST index deஹ஭ned:

1 explain (costs off, buffers, analyze)
2 select name, location, country
3 from circuits
4 order by position <-> point(2.349014, 48.864716)
5 limit 10;

The (costs off) option is used here mainly so that the output of the command ஹ஭ts
in the book’s page format, so try without the option at home:

QUERY PLAN
══
Limit (actual time=0.039..0.061 rows=10 loops=1)

Buffers: shared hit=7
-> Index Scan using circuits_position_idx on circuits

(actual time=0.038..0.058 rows=10 loops=1)
Order By: ("position" <-> '(2.349014,48.864716)'::point)
Buffers: shared hit=7

Planning time: 0.129 ms
Execution time: 0.105 ms

(7 rows)

Wecan see that PostgreSQL is happy to be using ourGiST index and even goes so
far as to implement our whole kNN search query all within the index. For refer-
ence the query plan of the previous spelling of the query, the dynamic expression
point(lng,lat) looks like this:

1 explain (costs off, buffers, analyze)
2 select name, location, country

Chapter 14 Order By, Limit, No Oஸfset | 109

3 from circuits
4 order by point(lng,lat) <-> point(2.349014, 48.864716)
5 limit 10;

And here’s the query plan when not using the index:
QUERY PLAN

══
Limit (actual time=0.246..0.256 rows=10 loops=1)

Buffers: shared hit=5
-> Sort (actual time=0.244..0.249 rows=10 loops=1)

Sort Key: ((point(lng, lat) <-> '(2.349014,48.864716)'::point))
Sort Method: top-N heapsort Memory: 25kB
Buffers: shared hit=5
-> Seq Scan on circuits

(actual time=0.024..0.133 rows=73 loops=1)
Buffers: shared hit=5

Planning time: 0.189 ms
Execution time: 0.344 ms

(10 rows)

By default, the distance operator <-> is deஹ஭ned only for geometric data types in
PostgreSQL. Some extensions such as pg_trgm add to that list so that you may
beneஹ஭t from a kNN index lookup in other situations, such as in queries using
the like operator, or even the regular expression operator ~. You’ll ஹ஭nd more on
regular expressions in PostgreSQL later in this book.

Top-N sorts: Limit

It would be pretty interesting to get the list of the top three drivers in terms of
races won, by decade. It is possible to do so thanks to advanced PostgreSQL date
functions manipulation together with implementation of lateral joins.

The followingquery is a classic top-N implementation. It reports for each decade
the top three drivers in terms of race wins. It is both a classic top-N because it is
done thanks to a lateral subquery, and at the same time it’s not so classic because
we are joining against computed data. The decade information is not part of our
data model, and we need to extract it from the racॽ.date column.

1 with decades as
2 (
3 select extract('year' from date_trunc('decade', date)) as decade
4 from races
5 group by decade
6)
7 select decade,

https://www.postgresql.org/docs/9.6/static/pgtrgm.html

Chapter 14 Order By, Limit, No Oஸfset | 110

8 rank() over(partition by decade
9 order by wins desc)
10 as rank,
11 forename, surname, wins
12

13 from decades
14 left join lateral
15 (
16 select code, forename, surname, count(*) as wins
17 from drivers
18

19 join results
20 on results.driverid = drivers.driverid
21 and results.position = 1
22

23 join races using(raceid)
24

25 where extract('year' from date_trunc('decade', races.date))
26 = decades.decade
27

28 group by decades.decade, drivers.driverid
29 order by wins desc
30 limit 3
31)
32 as winners on true
33

34 order by decade asc, wins desc;

Thequery extracts the decade ஹ஭rst, in a common table expression introducedwith
the with keyword. This CTE is then reused as a data source in the from clause.
The from clause is about relations, which might be hosting a dynamically com-
puted dataset, as is the case in this example.

Once we have our list of decades from the dataset, we can fetch for each decade
the list of the top three winners for each decade from the results table. The best
way to do that in SQL is using a lateral join. This formof join allows one towrite
a subquery that runs in a loop over a data set. Here we loop over the decades and
for each decade our lateral subquery ஹ஭nds the top three winners.
Focusing now on the winners subquery, we want to count how many times a
driver made it to the ஹ஭rst position in a race. As we are only interested in win-
ning results, the query pushes that restriction in the join condition of the left
join results part. The subquery should also only count victories that happened
in the current decade fromour loop, and that’s implemented in thewhere clause,
because that’s how lateral subqueries work. Another interesting implication of
using a left join lateral subquery is how the join clause is then written: on true.
That’s because we inject the join condition right into the subquery as a where

Chapter 14 Order By, Limit, No Oஸfset | 111

clause. This trick allows us to only see the results from the current decade in the
subquery, which then uses a limit clause on top of the order by wins desc to
report the top three with the most wins.

And here’s the result of our query:
decade │ rank │ forename │ surname │ wins

════════╪══════╪═══════════╪════════════╪══════
1950 │ 1 │ Juan │ Fangio │ 24
1950 │ 2 │ Alberto │ Ascari │ 13
1950 │ 3 │ Stirling │ Moss │ 12
1960 │ 1 │ Jim │ Clark │ 25
1960 │ 2 │ Graham │ Hill │ 14
1960 │ 3 │ Jack │ Brabham │ 11
1970 │ 1 │ Niki │ Lauda │ 17
1970 │ 2 │ Jackie │ Stewart │ 16
1970 │ 3 │ Emerson │ Fittipaldi │ 14
1980 │ 1 │ Alain │ Prost │ 39
1980 │ 2 │ Nelson │ Piquet │ 20
1980 │ 2 │ Ayrton │ Senna │ 20
1990 │ 1 │ Michael │ Schumacher │ 35
1990 │ 2 │ Damon │ Hill │ 22
1990 │ 3 │ Ayrton │ Senna │ 21
2000 │ 1 │ Michael │ Schumacher │ 56
2000 │ 2 │ Fernando │ Alonso │ 21
2000 │ 3 │ Kimi │ Räikkönen │ 18
2010 │ 1 │ Lewis │ Hamilton │ 45
2010 │ 2 │ Sebastian │ Vettel │ 40
2010 │ 3 │ Nico │ Rosberg │ 23

(21 rows)

No Offset, and how to implement pagination

The SQL standard oஸfers a fetch command instead of the limit and offset variant
that we have in PostgreSQL. In any case, using the offset clause is very bad for
your query performances, so we advise against it:

Please take the time to readMarkusWinand’s PagingThroughResults, as Iwon’t
explain it better than he does. Also, never use offset again!
As easy as it is to task you to read another article online, and as good as it is, it still
seems fair to give you the main take away in this book’s pages. The offset clause
is going to cause your SQL query plan to read all the result anyway and then
discard most of it until reaching the offset count. When paging through lots of

http://use-the-index-luke.com/
http://use-the-index-luke.com/sql/partial-results/fetch-next-page

Chapter 14 Order By, Limit, No Oஸfset | 112

Figure 14.1: No Oஸfset

results, it’s less and less eஸஹ஭cient with each additional page you fetch that way.

The proper way to implement pagination is to use index lookups, and if you
have multiple columns in your ordering clause, you can do that with the row()
construct.

To show an example of the method, we are going to paginate through the lap-
timॽ table, which contains every lap time for every driver in any race. For the
raceid 972 that we were having a look at earlier, that’s a result with 828 lines. Of
course, we’re going to need to paginate through it.

Here’s how to do it properly, given pages of three rows at a time, to save space in
this book for more interesting text. The ஹ஭rst query is as expected:

1 select lap, drivers.code, position,
2 milliseconds * interval '1ms' as laptime
3 from laptimes
4 join drivers using(driverid)
5 where raceid = 972
6 order by lap, position
7 fetch first 3 rows only;

We are using the SQL standard spelling of the limit clause here, and we get the
ஹ஭rst page of lap timings for the race:
lap │ code │ position │ laptime

═════╪══════╪══════════╪═════════════════════
1 │ BOT │ 1 │ @ 2 mins 5.192 secs
1 │ VET │ 2 │ @ 2 mins 7.101 secs
1 │ RAI │ 3 │ @ 2 mins 10.53 secs

(3 rows)

The result set is important because your application needs tomake an eஸfort here
and remember that it did show you the results up until lap = 1 and position = 3.
We are going to use that so that our next query shows the next page of results:

1 select lap, drivers.code, position,

Chapter 14 Order By, Limit, No Oஸfset | 113

2 milliseconds * interval '1ms' as laptime
3 from laptimes
4 join drivers using(driverid)
5 where raceid = 972
6 and row(lap, position) > (1, 3)
7 order by lap, position
8 fetch first 3 rows only;

And here’s our second page of query results. Afிer a ஹ஭rst page ஹ஭nishing at lap 1,
position 3 we are happy to ஹ஭nd out a new page beginning at lap 1, position 4:
lap │ code │ position │ laptime

═════╪══════╪══════════╪══════════════════════
1 │ HAM │ 4 │ @ 2 mins 11.18 secs
1 │ VER │ 5 │ @ 2 mins 12.202 secs
1 │ MAS │ 6 │ @ 2 mins 13.501 secs

(3 rows)

So please, never use offset again if you care at all about your query time!

15
Group By, Having, With, Union All

Now that we have some of the basics of SQL queries, we can move on to more
advanced topics. Up to now, queries would return as many rows as we select
thanks to thewhere ஹ஭ltering. This ஹ஭lter applies against a data set that is produced
by the from clause and its joins in between relations.
The outer joins might produce more rows than you have in your reference data
set, in particular, cross join is a Cartesian product.
In this section, we’ll have a look at aggregates. They work by computing a digest
value for several input rows at a time. With aggregates, we can return a summary
containing many fewer rows than passed the where ஹ஭lter.

Aggregates (aka Map/Reduce): Group By

The group by clause introduces aggregates in SQL, and allows implementing
much the same thing as map/reduce in other systems: map your data into dif-
ferent groups, and in each group reduce the data set to a single value.

As a ஹ஭rst example we can count howmany races have been run in each decade:
1 select extract('year'
2 from
3 date_trunc('decade', date))
4 as decade,
5 count(*)

Chapter 15 Group By, Having, With, Union All | 115

6 from races
7 group by decade
8 order by decade;

PostgreSQL oஸfers a rich set of date and times functions:
decade │ count

════════╪═══════
1950 │ 84
1960 │ 100
1970 │ 144
1980 │ 156
1990 │ 162
2000 │ 174
2010 │ 156

(7 rows)

The diஸference between each decade is easy to compute thanks to window func-
tion, seen later in this chapter. Let’s have a preview:

1 with races_per_decade
2 as (
3 select extract('year'
4 from
5 date_trunc('decade', date))
6 as decade,
7 count(*) as nbraces
8 from races
9 group by decade
10 order by decade
11)
12 select decade, nbraces,
13 case
14 when lag(nbraces, 1)
15 over(order by decade) is null
16 then ''
17

18 when nbraces - lag(nbraces, 1)
19 over(order by decade)
20 < 0
21 then format('-%3s',
22 lag(nbraces, 1)
23 over(order by decade)
24 - nbraces)
25

26 else format('+%3s',
27 nbraces
28 - lag(nbraces, 1)
29 over(order by decade))
30

31 end as evolution

Chapter 15 Group By, Having, With, Union All | 116

32 from races_per_decade;

We use a pretty complex CASE statement to elaborate on the exact output we
want from the query. Other than that it’s using the lag() over(order by decade)
expression that allows seeing the previous row, and moreover allows us to com-
pute the diஸference in between the current row and the previous one.

Here’s what we get from the previous query:
decade │ nbraces │ evolution

════════╪═════════╪═══════════
1950 │ 84 │
1960 │ 100 │ + 16
1970 │ 144 │ + 44
1980 │ 156 │ + 12
1990 │ 162 │ + 6
2000 │ 174 │ + 12
2010 │ 156 │ - 18

(7 rows)

Now, we can also prepare the data set in a separate query that is run ஹ஭rst, called a
common table expression and introduced by the with clause. We will expand on
that idea in the upcoming pages.

PostgreSQL comes with the usual aggregates you would expect such as sum,
count, and avg, and alsowith somemore interesting ones such as bool_and. As its
name suggests the bool_and aggregate starts true and remains true only if every
row it sees evaluates to true.

With that aggregate, it’s then possible to search for all drivers who failed to ஹ஭nish
any single race they participated in over their whole career:

1 with counts as
2 (
3 select driverid, forename, surname,
4 count(*) as races,
5 bool_and(position is null) as never_finished
6 from drivers
7 join results using(driverid)
8 join races using(raceid)
9 group by driverid
10)
11 select driverid, forename, surname, races
12 from counts
13 where never_finished
14 order by races desc;

Well, it turns out that we have a great number of cases in which it happens. The

Chapter 15 Group By, Having, With, Union All | 117

previous query gives us 202 driverswhonever ஹ஭nished a single race they took part
in, 117 of them had only participated in a single race that said.

Not picking on anyone in particular, we can ஹ஭nd out if some seasons were less
lucky than others on that basis and search for drivers who didn’t ஹ஭nish a single
race they participated into, per season:

1 with counts as
2 (
3 select date_trunc('year', date) as year,
4 count(*) filter(where position is null) as outs,
5 bool_and(position is null) as never_finished
6 from drivers
7 join results using(driverid)
8 join races using(raceid)
9 group by date_trunc('year', date), driverid
10)
11 select extract(year from year) as season,
12 sum(outs) as "#times any driver didn't finish a race"
13 from counts
14 where never_finished
15 group by season
16 order by sum(outs) desc
17 limit 5;

In this query, you can see the aggregate filter(where …) syntax that allows us to
update our computation only for those rows that pass the ஹ஭lter. Here we choose
to count all race results where the position is null, whichmeans the driver didn’t
make it to the ஹ஭nish line for some reason…
season │ #times any driver didn't finish a race

════════╪══
1989 │ 139
1953 │ 51
1955 │ 48
1990 │ 48
1956 │ 46

(5 rows)

It turns out that overall, 1989 was a pretty bad season.

Aggregates Without a Group By

It is possible to compute aggregates over a data set without using the group by
clause in SQL. What it then means is that we are operating over a single group

Chapter 15 Group By, Having, With, Union All | 118

that contains the whole result set:
1 select count(*)
2 from races;

This very simple query computes the count of all the races. It has built an implicit
group of rows, containing everything.

Restrict Selected Groups: Having

Are you curious about the reasons why those drivers couldn’t make it to the end
of the race? I am too, so let’s inquire about that!

1 \set season 'date ''1978-01-01'''
2

3 select status, count(*)
4 from results
5 join races using(raceid)
6 join status using(statusid)
7 where date >= :season
8 and date < :season + interval '1 year'
9 and position is null
10 group by status
11 having count(*) >= 10
12 order by count(*) desc;

The query introduces the having clause. Its purpose is to ஹ஭lter the result set to
only those groups that meet the having ஹ஭ltering condition, much as the where
clause works for the individual rows selected for the result set.

Note that to avoid any ambiguity, the having clause is not allowed to reference
select output aliases.

status │ count
════════════════════╪═══════
Did not qualify │ 55
Accident │ 46
Engine │ 37
Did not prequalify │ 25
Gearbox │ 13
Spun off │ 12
Transmission │ 12

(7 rows)

We can see that drivers mostly do not ஹ஭nish a race because they didn’t qualify to
take part in it. Another quite common reason for not ஹ஭nishing is that the driver

Chapter 15 Group By, Having, With, Union All | 119

had an accident.

Grouping Sets

A restriction with classic aggregates is that you can only run them through a sin-
gle group deஹ஭nition at a time. In some cases, you want to be able to compute
aggregates for several groups in parallel. For those cases, SQL provides the group-
ing sets feature.
In the Formula One competition, points are given to drivers and then used to
compute both the driver’s champion and the constructor’s champion points.
Can we compute those two sums over the same points in a single query? Yes,
of course, we can:

1 \set season 'date ''1978-01-01'''
2

3 select drivers.surname as driver,
4 constructors.name as constructor,
5 sum(points) as points
6

7 from results
8 join races using(raceid)
9 join drivers using(driverid)
10 join constructors using(constructorid)
11

12 where date >= :season
13 and date < :season + interval '1 year'
14

15 group by grouping sets((drivers.surname),
16 (constructors.name))
17 having sum(points) > 20
18

19 order by constructors.name is not null,
20 drivers.surname is not null,
21 points desc;

And we get the following result:
driver │ constructor │ points

═══════════╪═════════════╪════════
Andretti │ ¤ │ 64
Peterson │ ¤ │ 51
Reutemann │ ¤ │ 48
Lauda │ ¤ │ 44
Depailler │ ¤ │ 34
Watson │ ¤ │ 25

Chapter 15 Group By, Having, With, Union All | 120

Scheckter │ ¤ │ 24
¤ │ Team Lotus │ 116
¤ │ Brabham │ 69
¤ │ Ferrari │ 65
¤ │ Tyrrell │ 41
¤ │ Wolf │ 24

(12 rows)

We see that we get null entries for drivers when the aggregate has been computed
for a constructor’s group and null entries for constructors when the aggregate
has been computed for a driver’s group.

Twoother kinds of grouping sets are included in order to simplifywritingqueries.
They are only syntactic sugarcoating on top of the previous capabilities.

The rollup clause generates permutations for each column of the grouping sets,
one afிer the other. That’s useful mainly for hierarchical data sets, and it is still
useful in our FormulaOneworld of champions. In the 80s Prost and Sennawere
all the rage, so let’s dive into their results and points:

1 select drivers.surname as driver,
2 constructors.name as constructor,
3 sum(points) as points
4

5 from results
6 join races using(raceid)
7 join drivers using(driverid)
8 join constructors using(constructorid)
9

10 where drivers.surname in ('Prost', 'Senna')
11

12 group by rollup(drivers.surname, constructors.name);

Given this query, in a single round-trip we fetch the cumulative points for Prost
for eachof the constructor’s championshiphe raced for, so a total combined798.5
points where the constructor is null. Then we do the same thing for Senna of
course. And ஹ஭nally, the last line is the total amount of points for everybody in-
volved in the result set.
driver │ constructor │ points

════════╪═════════════╪════════
Prost │ Ferrari │ 107
Prost │ McLaren │ 458.5
Prost │ Renault │ 134
Prost │ Williams │ 99
Prost │ ¤ │ 798.5
Senna │ HRT │ 0
Senna │ McLaren │ 451

Chapter 15 Group By, Having, With, Union All | 121

Senna │ Renault │ 2
Senna │ Team Lotus │ 150
Senna │ Toleman │ 13
Senna │ Williams │ 31
Senna │ ¤ │ 647
¤ │ ¤ │ 1445.5

(13 rows)

Another kind of grouping sets clause shortcut is named cube, which extends to all
permutations available, including partial ones:

1 select drivers.surname as driver,
2 constructors.name as constructor,
3 sum(points) as points
4

5 from results
6 join races using(raceid)
7 join drivers using(driverid)
8 join constructors using(constructorid)
9

10 where drivers.surname in ('Prost', 'Senna')
11

12 group by cube(drivers.surname, constructors.name);

Thanks to the cube here we can see both the total amount of points racked up by
to those exceptional drivers over their entire careers. We have each driver’s points
by constructor, and when constructor is NULL we have the total amount of
points for the driver. That’s 798.5 points for Prost and 647 for Senna.

Also in the same query, we can see the points per constructor, independent of
the driver, as both Prost and Senna raced forMcLaren, Renault, andWilliams at
diஸferent times. And for two seasons, Prost and Senna both raced for McLaren,
too.
driver │ constructor │ points

════════╪═════════════╪════════
Prost │ Ferrari │ 107
Prost │ McLaren │ 458.5
Prost │ Renault │ 134
Prost │ Williams │ 99
Prost │ ¤ │ 798.5
Senna │ HRT │ 0
Senna │ McLaren │ 451
Senna │ Renault │ 2
Senna │ Team Lotus │ 150
Senna │ Toleman │ 13
Senna │ Williams │ 31
Senna │ ¤ │ 647
¤ │ ¤ │ 1445.5

Chapter 15 Group By, Having, With, Union All | 122

¤ │ Ferrari │ 107
¤ │ HRT │ 0
¤ │ McLaren │ 909.5
¤ │ Renault │ 136
¤ │ Team Lotus │ 150
¤ │ Toleman │ 13
¤ │ Williams │ 130

(20 rows)

Common Table Expressions: With

Earlier we saw many drivers who didn’t ஹ஭nish the race because of accidents, and
that was even the second reason listed just afிer did not qualify. This brings into
question the level of danger in those Formula One races. How frequent is an
accident in a Formula One competition? First we can have a look at the most
dangerous seasons in terms of accidents.

1 select extract(year from races.date) as season,
2 count(*)
3 filter(where status = 'Accident') as accidents
4

5 from results
6 join status using(statusid)
7 join races using(raceid)
8

9 group by season
10 order by accidents desc
11 limit 5;

So the ஹ஭ve seasons with the most accidents in the history of Formula One are:
season │ accidents

════════╪═══════════
1977 │ 60
1975 │ 54
1978 │ 48
1976 │ 48
1985 │ 36

(5 rows)

It seems themost dangerous seasons of all time are clustered at the end of the 70s
and the beginning of the 80s, so we are going to zoom in on this period with the
following console friendly histogram query:

1 with accidents as
2 (

Chapter 15 Group By, Having, With, Union All | 123

3 select extract(year from races.date) as season,
4 count(*) as participants,
5 count(*) filter(where status = 'Accident') as accidents
6 from results
7 join status using(statusid)
8 join races using(raceid)
9 group by season
10)
11 select season,
12 round(100.0 * accidents / participants, 2) as pct,
13 repeat(text '■',
14 ceil(100*accidents/participants)::int
15)
16 as bar
17 from accidents
18 where season between 1974 and 1990
19 order by season;

Common table expression is the full name of thewith clause that you see in eஸfect
in the query. It allows us to run a subquery as a prologue, and then refer to its
result set like any other relation in the from clause of themain query. In our case,
you can see that the main query is doing from accidents, and the CTE has been
given that name.

In the accidents CTE we compute basic information such as how many partici-
pantswe had overall in all the races of each season (we know this is the number of
lines in the result table for the races that happened in the selected year, so that’s
the count(*) column— and we also compute how many of those participants
had an accident, thanks to the filter clause that we introduced before.
Given theaccident relation from theCTE, it is then easy to compute a percentage
of accidents over race participants, and we can even get fancy and display the
percentage in the form of a horizontal bar diagram by repeating a unicode black
square character so that we have a fancy display:
season │ pct │ bar

════════╪═══════╪════════════════
1974 │ 3.67 │ ■■■
1975 │ 14.88 │ ■■■■■■■■■■■■■■
1976 │ 11.06 │ ■■■■■■■■■■■
1977 │ 12.58 │ ■■■■■■■■■■■■
1978 │ 10.19 │ ■■■■■■■■■■
1979 │ 7.20 │ ■■■■■■■
1980 │ 7.83 │ ■■■■■■■
1981 │ 3.56 │ ■■■
1982 │ 0.86 │
1983 │ 0.00 │
1984 │ 5.58 │ ■■■■■

http://www.fileformat.info/info/unicode/char/25a0/index.htm
http://www.fileformat.info/info/unicode/char/25a0/index.htm

Chapter 15 Group By, Having, With, Union All | 124

1985 │ 8.87 │ ■■■■■■■■
1986 │ 6.07 │ ■■■■■■
1987 │ 5.97 │ ■■■■■
1988 │ 0.61 │
1989 │ 0.81 │
1990 │ 1.29 │ ■

(17 rows)

TheFormulaOne racing seems tobe interesting enoughoutside ofwhatwe cover
in this book and the respective database: Wikipedia is full of information about
this sport. In the list of Formula One seasons, we can see a table of all seasons
and their champion driver and champion constructor: the driver/constructor
who won the most points in total in the races that year.

To compute that in SQL we need to ஹ஭rst add up the points for each driver and
constructor and then we can select those who won the most each season:

1 with points as
2 (
3 select year as season, driverid, constructorid,
4 sum(points) as points
5 from results join races using(raceid)
6 group by grouping sets((year, driverid),
7 (year, constructorid))
8 having sum(points) > 0
9 order by season, points desc
10),
11 tops as
12 (
13 select season,
14 max(points) filter(where driverid is null) as ctops,
15 max(points) filter(where constructorid is null) as dtops
16 from points
17 group by season
18 order by season, dtops, ctops
19),
20 champs as
21 (
22 select tops.season,
23 champ_driver.driverid,
24 champ_driver.points,
25 champ_constructor.constructorid,
26 champ_constructor.points
27

28 from tops
29 join points as champ_driver
30 on champ_driver.season = tops.season
31 and champ_driver.constructorid is null
32 and champ_driver.points = tops.dtops
33

https://en.wikipedia.org/wiki/List_of_Formula_One_seasons

Chapter 15 Group By, Having, With, Union All | 125

34 join points as champ_constructor
35 on champ_constructor.season = tops.season
36 and champ_constructor.driverid is null
37 and champ_constructor.points = tops.ctops
38)
39 select season,
40 format('%s %s', drivers.forename, drivers.surname)
41 as "Driver's Champion",
42 constructors.name
43 as "Constructor's champion"
44 from champs
45 join drivers using(driverid)
46 join constructors using(constructorid)
47 order by season;

This time we get about a full page SQL query, and yes it’s getting complex. The
main thing to see is that we are daisy chaining the CTEs:

1. The points CTE is computing the sum of points for both the drivers and
the constructors for each season.

We can do that in a single SQL query thanks to the grouping sets feature
that is covered in more details later in this book. It allows us to run aggre-
gates over more than one group at a time within a single query scan.

2. The topsCTE is using the points one in its from clause and it computes the
maximum points any driver and constructor had in any given season,

We do that in a separate step because in SQL it’s not possible to compute
an aggregate over an aggregate:

ERROR: aggregate function calls cannot be nested

Thus the way to have the sum of points and the maximum value for the
sum of points in the same query is by using a two-stages pipeline, which is
what we are doing.

3. The champs CTE uses the tops and the points data to restrict our result
set to the champions, that is those drivers and constructors who made as
many points as the maximum.

Additionnaly, in the champs CTE we can see that we use the points data
twice for diஸferent purposes, aliasing the relation to champ_driver when
looking for the champion driver, and to champ_constructor when looking
for the champion constructor.

4. Finally we have the outer query that uses the champs dataset and formats

Chapter 15 Group By, Having, With, Union All | 126

it for the application, which is close to what our Wikipedia example page
is showing.

Here’s a cut-down version of the 68 rows in the ஹ஭nal result set:
season │ Driver's Champion │ Constructor's champion

════════╪════════════════════╪════════════════════════
1950 │ Nino Farina │ Alfa Romeo
1951 │ Juan Fangio │ Ferrari
1952 │ Alberto Ascari │ Ferrari
1953 │ Alberto Ascari │ Ferrari
1954 │ Juan Fangio │ Ferrari
1955 │ Juan Fangio │ Mercedes
1956 │ Juan Fangio │ Ferrari
1957 │ Juan Fangio │ Maserati

...
1985 │ Alain Prost │ McLaren
1986 │ Alain Prost │ Williams
1987 │ Nelson Piquet │ Williams
1988 │ Alain Prost │ McLaren
1989 │ Alain Prost │ McLaren
1990 │ Ayrton Senna │ McLaren
1991 │ Ayrton Senna │ McLaren
1992 │ Nigel Mansell │ Williams
1993 │ Alain Prost │ Williams

...
2013 │ Sebastian Vettel │ Red Bull
2014 │ Lewis Hamilton │ Mercedes
2015 │ Lewis Hamilton │ Mercedes
2016 │ Nico Rosberg │ Mercedes

Distinct On

Another useful PostgreSQL extension is the distinct on SQL form, and here’s
what the PostgreSQL distinct clause documentation has to say about it:

SELECT DISTINCT ON (expression [, …]) keeps only the ஹ஭rst
row of each set of rows where the given expressions evaluate to
equal. The DISTINCT ON expressions are interpreted using the
same rules as for ORDER BY (see above). Note that the “ஹ஭rst row”
of each set is unpredictable unless ORDER BY is used to ensure
that the desired row appears ஹ஭rst.

So it is possible to return the list of drivers who ever won a race in the whole
Formula One history with the following query:

https://www.postgresql.org/docs/current/static/sql-select.html#SQL-DISTINCT

Chapter 15 Group By, Having, With, Union All | 127

1 select distinct on (driverid)
2 forename, surname
3 from results
4 join drivers using(driverid)
5 where position = 1;

There 107 of them, as we can check with the following query:
1 select count(distinct(driverid))
2 from results
3 join drivers using(driverid)
4 where position = 1;

The classic way to have a single result per driver in SQL would be to aggregate
over them, creating a group per driver:

1 select forename, surname
2 from results join drivers using(driverid)
3 where position = 1
4 group by drivers.driverid;

Note that we are using the group by clause without aggregates. That’s a valid use
case for this clause, allowing us to force unique entries per group in the result set.

Result Sets Operations

SQL also includes set operations for combining queries results sets into a single
one.

In our data model we have a driverstandings and a constructorstandings— they
contain data that come from the results table that we’ve been using a lot, so that
you can query a smaller data set… or I guess so that you can write simple SQL
queries.

The set operations are union, intersect and except. As expected with union you
can assemble a result set from the result of several queries:

1 (
2 select raceid,
3 'driver' as type,
4 format('%s %s',
5 drivers.forename,
6 drivers.surname)
7 as name,
8 driverstandings.points

https://www.postgresql.org/docs/current/static/queries-union.html

Chapter 15 Group By, Having, With, Union All | 128

9

10 from driverstandings
11 join drivers using(driverid)
12

13 where raceid = 972
14 and points > 0
15)
16 union all
17 (
18 select raceid,
19 'constructor' as type,
20 constructors.name as name,
21 constructorstandings.points
22

23 from constructorstandings
24 join constructors using(constructorid)
25

26 where raceid = 972
27 and points > 0
28)
29 order by points desc;

Here, in a single query, we get the list of points from race 972 for drivers and con-
structors, well anyway all of themwho got points. It is a classic of using union, as
we are adding static column values in each branch of the query, so that we know
where each line of the result set comes from:
raceid │ type │ name │ points

════════╪═════════════╪══════════════════╪════════
972 │ constructor │ Mercedes │ 136
972 │ constructor │ Ferrari │ 135
972 │ driver │ Sebastian Vettel │ 86
972 │ driver │ Lewis Hamilton │ 73
972 │ driver │ Valtteri Bottas │ 63
972 │ constructor │ Red Bull │ 57
972 │ driver │ Kimi Räikkönen │ 49
972 │ driver │ Max Verstappen │ 35
972 │ constructor │ Force India │ 31
972 │ driver │ Daniel Ricciardo │ 22
972 │ driver │ Sergio Pérez │ 22
972 │ constructor │ Williams │ 18
972 │ driver │ Felipe Massa │ 18
972 │ constructor │ Toro Rosso │ 13
972 │ driver │ Carlos Sainz │ 11
972 │ driver │ Esteban Ocon │ 9
972 │ constructor │ Haas F1 Team │ 8
972 │ driver │ Nico Hülkenberg │ 6
972 │ constructor │ Renault │ 6
972 │ driver │ Romain Grosjean │ 4
972 │ driver │ Kevin Magnussen │ 4

Chapter 15 Group By, Having, With, Union All | 129

972 │ driver │ Daniil Kvyat │ 2
(22 rows)

In ourwriting of the query, youmaynotice thatwedidparenthesize the branches
of the union. It’s not required that we do so, but it improves the readability of
the query and makes it obvious as to what data set the order by clause is applied
for.

Finally, we’ve been using union all in this query. That’s because the way the
queries are built is known to never yield duplicates in the result set. It may hap-
pen that you need to use a union query and thenwant to remove duplicates from
the result set, that’s what union (with no all) does.
The next query is a little convoluted and lists the drivers who received no points
in race 972 (Russian Grand Prix of 2017-04-30) despite having gotten some
points in the previous race (id 971, Bahrain Grand Prix of 2017-04-16):

1 (
2 select driverid,
3 format('%s %s',
4 drivers.forename,
5 drivers.surname)
6 as name
7

8 from results
9 join drivers using(driverid)
10

11 where raceid = 972
12 and points = 0
13)
14 except
15 (
16 select driverid,
17 format('%s %s',
18 drivers.forename,
19 drivers.surname)
20 as name
21

22 from results
23 join drivers using(driverid)
24

25 where raceid = 971
26 and points = 0
27)
28 ;

Which gives us:
driverid │ name

Chapter 15 Group By, Having, With, Union All | 130

══════════╪══════════════════
154 │ Romain Grosjean
817 │ Daniel Ricciardo

(2 rows)

Here it’s also possible to work with the intersect operator in between result sets.
With our previous query, we would get the list of drivers who had no points in
either race.

The except operator is very useful forwriting test cases, as it allows us to compute
a diஸference in between two result sets. One way to use it is to store the result of
running a query against a known fixture or database content in an expected ஹ஭le.
Then when you change a query, it’s easy to load your expected data set into the
database and compare it with the result of running the new query.

We said earlier that the following two queries are supposed to return the same
dataset, so let’s check that out:

1 (
2 select name, location, country
3 from circuits
4 order by position <-> point(2.349014, 48.864716)
5)
6 except
7 (
8 select name, location, country
9 from circuits
10 order by point(lng,lat) <-> point(2.349014, 48.864716)
11)
12 ;

This returns 0 rows, so the index is reliable and the location column is ஹ஭lled with
the same data as found in the lng and lat columns.
You can implement some regression testing pretty easily thanks to the except op-
erator!

16
Understanding Nulls

Given its relational theory background, SQL comes with a special value that has
no counterpart in a common programming language: null. In Python, we have
None, in PHP we have null, in C we have nil, and about every other program-
ming language has something that looks like a null.

Three-Valued Logic

The diஸference in SQL is that null introduces three-valued logic. Where that’s
very diஸferent from other languages None or Null is when comparing values.
Let’s have a look at the SQL null truth table:

1 select a::text, b::text,
2 (a=b)::text as "a=b",
3 format('%s = %s',
4 coalesce(a::text, 'null'),
5 coalesce(b::text, 'null')) as op,
6 format('is %s',
7 coalesce((a=b)::text, 'null')) as result
8 from (values(true), (false), (null)) v1(a)
9 cross join
10 (values(true), (false), (null)) v2(b);

As you can see cross join is very useful for producing a truth table. It implements
a Cartesian product over our columns, here listing the ஹ஭rst value of a (true) with
every value of b in order (true, then false, then null), then again with the second

Chapter 16 Understanding Nulls | 132

value of a (false) and then again with the third value of a (null).
We are using format and coalesce to produce an easier to read results table here.
The coalesce function returns the ஹ஭rst of its argument which is not null, with
the restriction that all of its arguments must be of the same data type, here text.
Here’s the nice truth table we get:

a │ b │ a=b │ op │ result
═══════╪═══════╪═══════╪═══════════════╪══════════
true │ true │ true │ true = true │ is true
true │ false │ false │ true = false │ is false
true │ ¤ │ ¤ │ true = null │ is null
false │ true │ false │ false = true │ is false
false │ false │ true │ false = false │ is true
false │ ¤ │ ¤ │ false = null │ is null
¤ │ true │ ¤ │ null = true │ is null
¤ │ false │ ¤ │ null = false │ is null
¤ │ ¤ │ ¤ │ null = null │ is null

(9 rows)

We can think of null as meaning I don’t know what thॾ ॾ rather than no value
here. Say you have in A (lefி hand) something (hidden) that you don’t know
what it is and in B (right hand) something (hidden) that you don’t know what
it is. You’re asked if A and B are the same thing. Well, you can’t know that, can
you?

So in SQL null = null returns null, which is the proper answer to the question,
but not always the one you expect, or the one that allows you towrite your query
and have the expected result set.

That’s why we have other SQL operators to work with data that might be null:
they are ॾ distinct from and ॾ not distinct from. Those two operators not only
have a very long name, they also pretend that null is the same thing as null.
So if you want to pretend that SQL doesn’t implement three-valued logic you
can use those operators and forget about Boolean comparisons returning null.
We can even easily obtain the truth table from a SQL query directly:

1 select a::text as left, b::text as right,
2 (a = b)::text as "=",
3 (a <> b)::text as "<>",
4 (a is distinct from b)::text as "is distinct",
5 (a is not distinct from b)::text as "is not distinct from"
6 from (values(true),(false),(null)) t1(a)
7 cross join (values(true),(false),(null)) t2(b);

With this complete result this time:

Chapter 16 Understanding Nulls | 133

left │ right │ = │ <> │ is distinct │ is not distinct from
═══════╪═══════╪═══════╪═══════╪═════════════╪══════════════════════
true │ true │ true │ false │ false │ true
true │ false │ false │ true │ true │ false
true │ ¤ │ ¤ │ ¤ │ true │ false
false │ true │ false │ true │ true │ false
false │ false │ true │ false │ false │ true
false │ ¤ │ ¤ │ ¤ │ true │ false
¤ │ true │ ¤ │ ¤ │ true │ false
¤ │ false │ ¤ │ ¤ │ true │ false
¤ │ ¤ │ ¤ │ ¤ │ false │ true

(9 rows)

You can see that we have not a single null in the last two columns.

Not Null Constraints

In some cases, in your data model you want the strong guarantee that a column
cannot be null. Usually that’s because it makes no sense for your application to
deal with some unknowns, or in other words, you are dealing with a required
value.

The default value for any column, unless you specify something else, is always
null. It’s only a default value though, it’s not a constraint on your data model, so
your application may insert a null value in a column with a non null default:

1 create table test(id serial, f1 text default 'unknown');
2 insert into test(f1) values(DEFAULT),(NULL),('foo');
3 table test;

This script gives the following output:
id │ f1

════╪═════════
1 │ unknown
2 │ ¤
3 │ foo

Aswe can see, we have a null value in our test table, despite having implemented
a speciஹ஭c default value. The way to avoid that is using a not null constraint:

1 drop table test;
2 create table test(id serial, f1 text not null default 'unknown');
3 insert into test(f1) values(DEFAULT),(NULL),('foo');
4 ERROR: null value in column "f1" violates not-null constraint
5 DETAIL: Failing row contains (2, null).

Chapter 16 Understanding Nulls | 134

This time the insert command fails: accepting the data would violate the con-
straint we speciஹ஭ed at table creation, i.e. no null allowed.

Outer Joins Introducing Nulls

Aswe saw earlier in this chapter, outer joins aremeant to preserve rows fromyour
reference relation and add to it columns from the outer relation when the join
condition is satisஹ஭ed. When the join condition is not satisஹ஭ed, the outer joins
then ஹ஭ll the columns from the outer relation with null values.
A typical examplewould bewith calendar dateswhenwehave not registered data
at given dates yet. In ourmotor racing database example, we can ask for the name
of the pole position’s driver and the ஹ஭nal position. As the model registers the
races early, some of them won’t have run yet and so the results are not available
in the database:

1 select races.date,
2 races.name,
3 drivers.surname as pole_position,
4 results.position
5 from races
6 /*
7 * We want only the pole position from the races
8 * know the result of and still list the race when
9 * we don't know the results.
10 */
11 left join results
12 on races.raceid = results.raceid
13 and results.grid = 1
14 left join drivers using(driverid)
15 where date >= '2017-05-01'
16 and date < '2017-08-01'
17 order by races.date;

So we can see that we only have data from races before the 25 June in the version
that was used to prepare this book:

date │ name │ pole_position │ position
════════════╪═══════════════════════╪═══════════════╪══════════
2017-05-14 │ Spanish Grand Prix │ Hamilton │ 1
2017-05-28 │ Monaco Grand Prix │ Räikkönen │ 2
2017-06-11 │ Canadian Grand Prix │ Hamilton │ 1
2017-06-25 │ Azerbaijan Grand Prix │ ¤ │ ¤
2017-07-09 │ Austrian Grand Prix │ ¤ │ ¤
2017-07-16 │ British Grand Prix │ ¤ │ ¤

Chapter 16 Understanding Nulls | 135

2017-07-30 │ Hungarian Grand Prix │ ¤ │ ¤
(7 rows)

With grid having a not null constraints in your database model for the results
table, we see that sometimes we don’t have the data at all. Another way to say
that we don’t have the data is to say that we don’t know the answer to the query.
In this case, SQL uses null in its answer.
So null values can be created by the queries themselves. There’s basically no way
to escape from having to deal with null values, so your application must be pre-
pared for them and moreover understand what to do with them.

Using Null in Applications

Most programming languages come with a representation of the unknown or
not yet initialized state, be itNone in Python, null in Java and C and PHP and
others, with varying semantics, or even the Ocaml option type or the Haskell
maybe type.

Depending on your tools of choice the null SQL value maps quite directly to
those concepts. The main thing is then to remember that you might get null
in your results set, and you should write your code accordingly. The next main
thing to keep in mind is the three-valued logic semantics when you write SQL,
and remember to use where foo is null if that’s what you mean, rather than
the erroneous where foo = null, because null = null is null and then it
won’t be selected in your resultset:

1 select a, b
2 from (values(true), (false), (null)) v1(a)
3 cross join
4 (values(true), (false), (null)) v2(b)
5 where a = null;

That gives nothing, as we saw before, as there’s no such row where anything
equals null:
a │ b

═══╪═══
(0 rows)

Now if you remember your logic, then you can instead ask the right question:

http://ocaml-lib.sourceforge.net/doc/Option.html
https://wiki.haskell.org/Maybe
https://wiki.haskell.org/Maybe

Chapter 16 Understanding Nulls | 136

1 select a, b
2 from (values(true), (false), (null)) v1(a)
3 cross join
4 (values(true), (false), (null)) v2(b)
5 where a is null;

You then obtain those rows for which a ॾ null:
a │ b

═══╪═══
¤ │ t
¤ │ f
¤ │ ¤

(3 rows)

17
Understanding Window Functions

There was SQL before window functions and there is SQL afிer window func-
tions: that’s how powerful this tool is!
Thewhole idea behindwindow functions is to allow you to process several values
of the result set at a time: you see through the window some peer rows and you
are able to compute a single output value from them, much like when using an
aঃregate function.

Windows and Frames

PostgreSQL comes with plenty of features, and one of themwill be of great help
when it comes to getting a better grasp of what’s happening with window func-
tions. The ஹ஭rst step we are going through here is understanding what data the
function has access to. For each input row, you have access to a frame of the data,
and the ஹ஭rst thing to understand here is that frame.
The array_agg() function is an aঃregate function that builds an array. Let’s use
this tool to understand window framॽ:

1 select x, array_agg(x) over (order by x)
2 from generate_series(1, 3) as t(x);

The array_aঃ() aggregates every value in the current frame, and here outputs
the full exact content of the windowing we’re going to process.

http://www.postgresql.org/docs/current/static/tutorial-window.html
http://www.postgresql.org/

Chapter 17 UnderstandingWindow Functions | 138

x | array_agg
---+-----------
1 | {1}
2 | {1,2}
3 | {1,2,3}

(3 rows)

The window deஹ஭nition over (order by x) actually means over (order by x
rows between unbounded preceding and current row):

1 select x,
2 array_agg(x) over (order by x
3 rows between unbounded preceding
4 and current row)
5 from generate_series(1, 3) as t(x);

And of course we get the same result set as before:
x | array_agg

---+-----------
1 | {1}
2 | {1,2}
3 | {1,2,3}

(3 rows)

It’s possible to work with other kinds of frame specifications too, as in the follow-
ing examples:

1 select x,
2 array_agg(x) over (rows between current row
3 and unbounded following)
4 from generate_series(1, 3) as t(x);

x | array_agg
---+-----------
1 | {1,2,3}
2 | {2,3}
3 | {3}

(3 rows)

If no frame clause is used at all, then the default is to see the whole set of rows
in each of them, which can be really useful if you want to compute sums and
percentages for example:

1 select x,
2 array_agg(x) over () as frame,
3 sum(x) over () as sum,
4 x::float/sum(x) over () as part
5 from generate_series(1, 3) as t(x);

x | frame | sum | part
---+---------+-----+-------------------
1 | {1,2,3} | 6 | 0.166666666666667
2 | {1,2,3} | 6 | 0.333333333333333

Chapter 17 UnderstandingWindow Functions | 139

3 | {1,2,3} | 6 | 0.5
(3 rows)

Did you know you could compute both the total sum of a column and the ratio
of the current value compared to the total within a single SQL query? That’s the
breakthrough we’re talking about now with window functions.

Partitioning into Different Frames

Other frames are possible to deஹ஭ne when using the clause PARTITION BY. It al-
lows deஹ஭ning as peer rows those rows that share a common property with the
current row, and the property is deஹ஭ned as a partition.
So in the Formula One database we have a results table with results from all the
known races. Let’s pick a race:
-[RECORD 1]---
raceid | 890
year | 2013
round | 10
circuitid | 11
name | Hungarian Grand Prix
date | 2013-07-28
time | 12:00:00
url | http://en.wikipedia.org/wiki/2013_Hungarian_Grand_Prix

Within that race, we can now fetch the list of competing drivers in their position
order (winner ஹ஭rst), and also their ranking compared to other drivers from the
same constructor in the race:

1 select surname,
2 constructors.name,
3 position,
4 format('%s / %s',
5 row_number()
6 over(partition by constructorid
7 order by position nulls last),
8

9 count(*) over(partition by constructorid)
10)
11 as "pos same constr"
12 from results
13 join drivers using(driverid)
14 join constructors using(constructorid)
15 where raceid = 890
16 order by position;

Chapter 17 UnderstandingWindow Functions | 140

Thepartition by frame allowsus to seepeer rows, here the rows from resultswhere
the constructorid is the same as the current row. Weuse that partition twice in the
previous SQL query, in the format() call. The ஹ஭rst time with the row_number()
window function gives us the position in the race with respect to other drivers
from the same constructor, and the second time with count(*) gives us how
many drivers from the same constructor participated in the race:

surname │ name │ position │ pos same constr
═══════════════╪═════════════╪══════════╪═════════════════
Hamilton │ Mercedes │ 1 │ 1 / 2
Räikkönen │ Lotus F1 │ 2 │ 1 / 2
Vettel │ Red Bull │ 3 │ 1 / 2
Webber │ Red Bull │ 4 │ 2 / 2
Alonso │ Ferrari │ 5 │ 1 / 2
Grosjean │ Lotus F1 │ 6 │ 2 / 2
Button │ McLaren │ 7 │ 1 / 2
Massa │ Ferrari │ 8 │ 2 / 2
Pérez │ McLaren │ 9 │ 2 / 2
Maldonado │ Williams │ 10 │ 1 / 2
Hülkenberg │ Sauber │ 11 │ 1 / 2
Vergne │ Toro Rosso │ 12 │ 1 / 2
Ricciardo │ Toro Rosso │ 13 │ 2 / 2
van der Garde │ Caterham │ 14 │ 1 / 2
Pic │ Caterham │ 15 │ 2 / 2
Bianchi │ Marussia │ 16 │ 1 / 2
Chilton │ Marussia │ 17 │ 2 / 2
di Resta │ Force India │ 18 │ 1 / 2
Rosberg │ Mercedes │ 19 │ 2 / 2
Bottas │ Williams │ ¤ │ 2 / 2
Sutil │ Force India │ ¤ │ 2 / 2
Gutiérrez │ Sauber │ ¤ │ 2 / 2

(22 rows)

In a single SQL query, we can obtain information about each driver in the race
and add to that other information from the race as a whole. Remember that the
window functions only happens afிer thewhere clause, so you only get to see rows
from the available result set of the query.

Available Window Functions

Any and all aঃregate function you already know can be used against a window
frame rather than a grouping clause, so you can already start to use sum, min,
max, count, avg, and the other that you’re already used to using.

Chapter 17 UnderstandingWindow Functions | 141

You might already know that with PostgreSQL it’s possible to use the CREATE
AGGREGATE command to register your own custom aঃregate. Any such cus-
tom aggregate can also be given a window frame definition to work on.
PostgreSQL of course is included with built-in aggregate functions and a num-
ber of built-in window functions.

1 select surname,
2 position as pos,
3 row_number()
4 over(order by fastestlapspeed::numeric)
5 as fast,
6 ntile(3) over w as "group",
7 lag(code, 1) over w as "prev",
8 lead(code, 1) over w as "next"
9 from results
10 join drivers using(driverid)
11 where raceid = 890
12 window w as (order by position)
13 order by position;

In this example you can see thatwe are reusing the samewindow definition several
times, so we’re giving it a name to simplify the SQL. In this query for each driver
we are fetchinghis position in the results, his position in terms of fastest lap speed,
a group number if we divide the drivers into a set of four groups thanks to the
ntile function, the name of the previous driver whomade it, and the name of the
driver immediately next to the current one, thanks to the lag an lead functions:

surname │ pos │ fast │ group │ prev │ next
═══════════════╪═════╪══════╪═══════╪══════╪══════
Hamilton │ 1 │ 20 │ 1 │ ¤ │ RAI
Räikkönen │ 2 │ 17 │ 1 │ HAM │ VET
Vettel │ 3 │ 21 │ 1 │ RAI │ WEB
Webber │ 4 │ 22 │ 1 │ VET │ ALO
Alonso │ 5 │ 15 │ 1 │ WEB │ GRO
Grosjean │ 6 │ 16 │ 1 │ ALO │ BUT
Button │ 7 │ 12 │ 1 │ GRO │ MAS
Massa │ 8 │ 18 │ 1 │ BUT │ PER
Pérez │ 9 │ 13 │ 2 │ MAS │ MAL
Maldonado │ 10 │ 14 │ 2 │ PER │ HUL
Hülkenberg │ 11 │ 9 │ 2 │ MAL │ VER
Vergne │ 12 │ 11 │ 2 │ HUL │ RIC
Ricciardo │ 13 │ 8 │ 2 │ VER │ VDG
van der Garde │ 14 │ 6 │ 2 │ RIC │ PIC
Pic │ 15 │ 5 │ 2 │ VDG │ BIA
Bianchi │ 16 │ 3 │ 3 │ PIC │ CHI
Chilton │ 17 │ 4 │ 3 │ BIA │ DIR
di Resta │ 18 │ 10 │ 3 │ CHI │ ROS
Rosberg │ 19 │ 19 │ 3 │ DIR │ BOT

http://www.postgresql.org/docs/current/static/sql-createaggregate.html
http://www.postgresql.org/docs/current/static/sql-createaggregate.html
http://www.postgresql.org/docs/9.2/static/functions-aggregate.html
http://www.postgresql.org/docs/9.2/static/functions-window.html

Chapter 17 UnderstandingWindow Functions | 142

Sutil │ ¤ │ 2 │ 3 │ GUT │ ¤
Gutiérrez │ ¤ │ 1 │ 3 │ BOT │ SUT
Bottas │ ¤ │ 7 │ 3 │ ROS │ GUT

(22 rows)

And we can see that the fastest lap speed is not as important as one might think,
as both the two fastest drivers didn’t even ஹ஭nish the race. In SQL terms we also
see that we can have two diஸferent sequences returned from the same query, and
again we can reference other rows.

When to Use Window Functions

The real magic of what are called window functions is actually the frame of data
they can see when using the OVER () clause. This frame is speciஹ஭ed thanks to the
PARTITION BY and ORDER BY clauses.

You need to remember that the windowing clauses are always considered last in
the query, meaning afிer the where clause. In any frame you can only see rows
that have been selected for output: e.g. it’s not directly possible to compute a
percentage of values that you don’t want to display. You would need to use a
subquery in that case.

Usewindow functionswhenever youwant to compute values for each row of the
result set and those computations depend on other rows within the same result
set. A classic example is a marketing analysis of weekly results: you typically out-
put both each day’s gross sales and the variationwith the same day in comparison
to the previous week.

18
Understanding Relations and

Joins

In the previous section, we saw some bits about data sources in SQLwhen intro-
ducing the from clause and some join operations. In this section we are going to
expand this on this part and look speciஹ஭cally at what a relation is.

As usual, the PostgreSQL documentation provides us with some enlightenment
(here in its section entitled the FROMClause:

A table reference can be a table name (possibly schema-qualiஹ஭ed),
or a derived table such as a subquery, a JOIN construct, or complex
combinations of these. If more than one table reference is listed
in the FROM clause, the tables are cross-joined (that is, the Carte-
sian product of their rows is formed; see below). The result of the
FROM list is an intermediate virtual table that can then be subject
to transformations by the WHERE, GROUP BY, and HAVING
clauses and is ஹ஭nally the result of the overall table expression.

Relations

We already know that a relation is a set of data all having a common set of prop-
erties, that is to say a set of elements all from the same composite data type. The
SQL standard didn’t go as far as deஹ஭ning relations in terms of being a set in the

https://www.postgresql.org/docs/9.6/static/queries-table-expressions.html#QUERIES-FROM

Chapter 18 Understanding Relations and Joins | 144

mathematical way of looking at it, and that would imply that no duplicates are
allowed. We can then talk about a bag rather than a set, because duplicates are
allowed in SQL relations.

The data types are deஹ஭ned either by the create type statement or by the more
common create table statement:

1 ~# create table relation(id integer, f1 text, f2 date, f3 point);
2 CREATE TABLE
3

4 ~# insert into relation
5 values(1,
6 'one',
7 current_date,
8 point(2.349014, 48.864716)
9);
10 INSERT 0 1
11

12 ~# select relation from relation;
13 relation
14 ═══
15 (1,one,2017-07-04,"(2.349014,48.864716)")
16 (1 row)

Here we created a table named relation. What happens in the background is
that PostgreSQL created a type with the same name that you canmanipulate, or
reference. So the select statement here is returning tuples of the composite type
relation.
SQL is a strongly typed programming language: at query planning time the data
type of every column of the result setmust be known. Any result set is deஹ஭ned in
terms of being a relation of a known composite data type, where each and every
row in the result set shares the common properties implied by this data type.

The relations can be deஹ஭ned in advance in create table or create type statements,
or deஹ஭ned on the ஺ாy by the query planner when it makes sense for your query.
Other statements can also create data types too, such as create view—more on
that later.

When you use a subquery in your main query, either in the form of a common
table expressionordirectly inlined in your from clause, you are eஸfectively deஹ஭ning
a relation data type. At query run time, this relation is ஹ஭lled with a dataset, thus
you have a full-blown relation to use.

Relational algebra is thereby a formalismofwhat you candowith such things. In
short, this means joins. The result of a join in between two relations is a relation,

https://en.wikipedia.org/wiki/Relational_algebra

Chapter 18 Understanding Relations and Joins | 145

of course, and that relation can in-turn participates into other join operations.
The result of a from clause is a relation, withwhich the query planner is executing
the rest of your query: the where clause to restrict the relation dataset to what’s
interesting for the query, and other clauses, up until the window functions and
the select projection are computed so that we can ஹ஭nally construct the result set,
i.e. a relation.

The PostgreSQL optimizer will then re-arrange the computations needed so
they’re as eஸஹ஭cient as possible, rather than doing things in the way they are
written. This is much like when gcc is doing its magic and you can’t even
recognize your intentions when reading the assembly outcome, except that with
PostgreSQL you can actually make sense of the explain plan for your query,
and relate it to the query text you wrote.

SQL Join Types

Joins are the basic operations you do with relations. The nature of a join is to
build a new relation from a pair of existing ones. The most basic join is a cross
join or Cartesian product, as we saw in the Boolean truth table, where we built a
result set of all possible combinations of all entries.

Other kinds of join associate data between the two relations that participate in
the operation. The association is speciஹ஭ed precisely in the join condition and is
usually based on some equality operator, but it is not limited to that.

We might want to count how many drivers made it to the ஹ஭nish behind the cur-
rent one in any single race, as that’s a good illustration of a non-equality join
condition:

1 select results.positionorder as position,
2 drivers.code,
3 count(behind.*) as behind
4

5 from results
6 join drivers using(driverid)
7

8 left join results behind
9 on results.raceid = behind.raceid
10 and results.positionorder < behind.positionorder
11

12 where results.raceid = 972

Chapter 18 Understanding Relations and Joins | 146

13 and results.positionorder <= 3
14

15 group by results.positionorder, drivers.code
16 order by results.positionorder;

Here are our top three, with how many drivers found behind. We are using the
positionorder column here because it attributes a position to drivers who didn’t
ஹ஭nish the race, which is useful for us in this very query:
position │ code │ behind

══════════╪══════╪════════
1 │ BOT │ 19
2 │ VET │ 18
3 │ RAI │ 17

(3 rows)

In this example query, we can also see that we are using the same relation twice
in the same FROM query, thus giving the relation diஸferent aliases. It would be
tempting to name those aliases r1 and r2, but much as you would not do that in
your code when naming variables, it’s best to give meaningful names to your the
SQL objects in your queries.

Relational algebra includes set-based operations, and what we have in SQL are
inner and outer joins, cross joins and lateral joins. We saw all of them in this
chapter’s example queries, and here’s a quick summary:

• Inner joins are useful when you want to only keep rows that satisfy the
join condition for both involved relation.

• Outer joins are useful when youwant to keep a reference relation’s dataset
nomatterwhat and enrich itwith the dataset from the other relationwhen
the join condition is satisஹ஭ed.
The relation of which you want to keep all the rows is pointed to in the
name of the outer join, so it’s written on the lefி-hand side in a left join
and on the right-hand side in a right join.
When the join condition is not satisஹ஭ed, it means you keep some known
data andmust ஹ஭ll in the result relationwith data that doesn’t exist, so that’s
when null is very useful, and also why null is a member of every SQL data
type (including the Boolean data type),

• Full outer joins is a special case of an outer join where you want to keep all
the rows in the dataset, whether they satisfy the join condition or not.

• Lateral joins introduce the capability for the join condition to be pushed

Chapter 18 Understanding Relations and Joins | 147

down into the relation on the right, allowing for new semantics such as
top-N queries, thanks to being able to use limit in a lateral subquery.

The key here is to remember that a join takes two relations and a join condition
as input and it returns another relation. A relation here is a bag of rows that all
share a common relation data type deஹ஭nition, known at query planning time.

19
An Interview with Markus Winand

Markus Winand is the author of the very famous book “SQL Performance ex-
plained” and he also provides both http://use-the-index-luke.com and http://
modern-sql.com. Markus is a master of the SQL standard and he is a wizard in
terms of how to use SQL to enable fast application delivery and solid run-time
performances!

Figure 19.1: Use The Index, Luke!

Developers ofிen say that SQL is hard to master. Do you agree? What would be
your recommendations for them to improve their SQL skills?

I think the reason many people find SQL hard to learn ॾ that it ॾ
a declarative programming language.
Most people first learn imperative programming: they put a number
of instructions into a particular order so that their execution delivers
the desired result. An SQL statement ॾ different because it simply
definॽ the result. Thॾ becomॽ most obvioॿ in the select clause,
which literally definॽ the columns of the result. Most of the other

http://use-the-index-luke.com
http://modern-sql.com
http://modern-sql.com

Chapter 19 An Interview withMarkus Winand | 149

main clausॽ describe which rows should be present in the result. It
ॾ important to understand that the author of an SQL statement
doॽ not instruct the database how to run the query. That’s up to
the database to figure out.
So I think the most important step in mastering SQL ॾ to stop
thinking in imperative terms. One recurring example I’ve seen in
the field ॾ how people imagine that joins work and more specifi-
cally, which indexॽ can help in improving join performance. Peo-
ple constantly try to apply their knowledge about algorithms to SQL
statements, without knowing which algorithm the database actually
usॽ. Thॾ causॽ a lot of problems, confusion and frustration.
First, always focॿ on writing a clear statement to describe each col-
umn and row of the desired result. If needed, you can take care of
performance afterwards. Thॾ however, requirॽ some understand-
ing of database internals.

What would you say is the ideal SQL wizardry level a developer should reach to
be able to do their job correctly?

Knowing everything would be best, I guess ;)
In reality, hardly any programmer ॾ just an SQL programmer.
Most are Java, C#, PHP, or whatever programmers who — more
or less frequently— use SQL to interact with a database. Obviously,
not all of them need to be SQL experts.
Today’s programming often boils down to choosing the right tool for
each problem. To do thॾ job correctly, ॼ you properly phrased it,
programmers should at least know what their SQL database could
do. Once you remember that SQL can do aঃregations without
group by—e.g. for running totals, moving averagॽ, etc.—it’s easy
to search the Internet for the syntax. So I’d say every programmer
(and even more so architects) should have a good overview of what
SQL can do nowadays in order to recognize situations in which SQL
offers the best solution.
Quite often, a few linॽ of SQL can replace dozens of linॽ of an
imperative program. Most of the time, the SQL solution ॾ more
correct and even faster. In the vein of an old saying about shell
scripts, I’d say: “Watch out or I’ll replace a day’s worth of your

Chapter 19 An Interview withMarkus Winand | 150

imperative programming with a very small SQL statement”.
You know the detailed behavior of many diஸferent RDBMS engines and you are
used toworkingwith them. Would youwrite portable SQL code in applications
or pick one engine and then use it to its full capacity, writing tailored SQL (both
schema and queries)?

I first aim to use standard SQL. Thॾ ॾ just because I know standard
SQL best and I believe that the semantics of standard SQL have
the most rigid definitions. That means standard SQL definॽ a
meaningful behavior, even for the most obscure corner casॽ. Vendor
extensions have a tendency to focॿ on the main casॽ. For corner
casॽ, they might behave in surprising and inconsistent ways — just
because nobody thought about that during specification.
Sometimॽ, I cannot solve a problem with standard SQL — at least
not in a sufficiently elegant and efficient way. That ॾ more often
because the database at hand doesn’t support the standard featurॽ
that I’d like to use for thॾ problem. However, sometimॽ the stan-
dard just doesn’t provide the required functionality. In either case
I’m also happy to use a vendor extension. For me, thॾ ॾ really just
my personal order of preference for solving a problem — it ॾ not a
limitation in any way.
When it comॽ to the benefits of writing portable SQL, there seems
to be a commonmisconception in the field. Quite often, people argue
that they don’t need portability because they will never use another
database. And I actually agree with that argument in the sense
that aiming for full portability doॽ not make any sense if you don’t
need to run the software on different database right now.
On the other hand, I believe that portability ॾ not only about the
code — it ॾ also about the people. I’d say it ॾ even more about
the people. If you use standard SQL by default and only revert
to proprietary syntax if needed, the SQL statements will be easier
for other people to understand, especially people used to another
database. On the scale of the whole industry it means that bringing
new personnel on board involvॽ less friction. Even from the personal
viewpoint of a single developer, it hॼ a big benefit: if you are used to
writing standard SQL then the chancॽ increase that you can write
SQL that works on many databasॽ. Thॾ makॽ you more valuable

Chapter 19 An Interview withMarkus Winand | 151

in the job market.
However, there ॾ one big exception and that’s DDL – i.e. create
statements. For DDL, I don’t even aim for portability in the first
place. Thॾ ॾ pointless and too restricting. If you need to create
tablॽ, views, indexॽ, and the like for different databasॽ, it ॾ better
to just maintain a separate schema definition for each of them.

How do you see PostgreSQL in the RDBMS oஸfering?

PostgreSQL ॾ in a very strong position. I keep on saying that from
a developer’s perspective, PostgreSQL’s feature set ॾ closer to that of
a commercial database than to that of the open-source competitors
such ॼ MySQL/MariaDB.
I particularly like the rich standard SQL support PostgreSQL hॼ:
that means simple things like the fully featured valuॽ clause, but
also with [recursive], over, lateral and arrays.

Part V

Data Types

| 153

Reading the Wikipedia article on relations in databases article, we ஹ஭nd the fol-
lowing:

In relational database theory, a relation, as originally deஹ஭ned by E.
F. Codd,[1] is a set of tuples (d1, d2, …, dn), where each element dj is
a member of Dj, a data domain. Codd’s original deஹ஭nition notwith-
standing, and contrary to the usual deஹ஭nition inmathematics, there
is no ordering to the elements of the tuples of a relation.[2][3] In-
stead, each element is termed an attribute value. An attribute is a
name paired with a domain (nowadays more commonly referred to
as a type or data type). An attribute value is an attribute namepaired
with an element of that attribute’s domain, and a tuple is a set of
attribute values in which no two distinct elements have the same
name. Thus, in some accounts, a tuple is described as a function,
mapping names to values.

In a relational database, we deal with relations. The main property of a relation
is that all the tuples that belong to a relation share a common data deஹ஭nition:
they have the same list of attributes, and each attribute is of a speciஹ஭c data type.
Then we might also might have some more constraints.

In this chapter, we are going to see what data types PostgreSQLmakes available
to us as application developers, and how to use them to enhance our application
correctness, succinctness and performance.

https://en.wikipedia.org/wiki/Relation_(database)

20
Serialization and Deserialization

It’s all too common to see RDBMS mentioned as a solution to marshaling and
unmarshaling in-memory objects, and even distributed computed systems tend
to talk about the storage parts for databases. Inmyopinion, we should talk about
transactional systems rather than storage when we want to talk about RDBMS
and other transaction technologies. That said, storage is a good name for dis-
tributed ஹ஭le systems.

On this topic, it might be interesting to realize how Lisp introduced print read-
ably. In Lisp rather thanworkingwith a compiler and then running static binary
ஹ஭les, you work with an interactive REPL where the reader and the printer are
fully speciஹ஭ed parts of the system. Those pieces are meant to be used by Lisp
users. Here’s what the common Lisp standard documentation has to say about
printing readably:

If *print-readably* is true, some special rules for printing objects go
into eஸfect. Speciஹ஭cally, printing any object O1 produces a printed
representation that, when seenby theLisp readerwhile the standard
readtable is in eஸfect, will produce an object O2 that is similar to O1.

In the following example code, we deஹ஭ne a structure with slots of diஸferent types:
string, ஺ாoat, and integer. Then we create an instance of that structure, with spe-
ciஹ஭c values for the three slots, and serialize this instance to string, only to read it
back from the string:

1 (defpackage #:readably
2 (:use #:cl))
3

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_rda.htm#STprint-readablyST

Chapter 20 Serialization and Deserialization | 155

4 (in-package #:readably)
5

6 (defstruct foo
7 (name nil :type (or nil string))
8 (x 0.0 :type float)
9 (n 0 :type fixnum))
10

11 (defun print-and-read ()
12 (let ((instance (make-foo :name "bar" :x 1.0 :n 2)))
13 (values instance
14 (read-from-string
15 (write-to-string instance :escape t :readably t)))))

The result is, as expected, a couple of very similar instances:
1 CL-USER> (readably::print-and-read)
2 #S(READABLY::FOO :NAME "bar" :X 1.0 :N 2)
3 #S(READABLY::FOO :NAME "bar" :X 1.0 :N 2)

The ஹ஭rst instance is created in the application code from literal strings and num-
bers, and the second instance has been created by the reader from a string, which
could have been read from a ஹ஭le or a network service somewhere.

The discovery of Lisp predates the invention of the relational model by a long
shot, and Lisp wasn’t unique in its capacity to read data structure in-memory
from external storage.
It is important to understandwhich problem can be solvedwith using a database
service, and to insist that storing and retrieving values out of and back intomem-
ory isn’t a problem for which you need a database system.

http://www.paulgraham.com/rootsoflisp.html

21
Some Relational Theory

Back to relational database management systems and what they can provide to
your application is:

• A service to access your data and run transactions
• A common API to guarantee consistency in between several application
bases

• A transport mechanism to exchange data with the database service.

In this chapter, the focus is the C of ACID, i.e. data consistency. When your
application grows, it’s going to be composed of several parts: the administration
panel, the customer back-oஸஹ஭ce application, the public front of the application,
the accounting reports, ஹ஭nancial reporting, and maybe some more parts such as
salespeople back-oஸஹ஭ce and the like. Maybe some of those elements are going to
be implemented using a third-party solution. Even if it’s all in-house, it’s ofிen
the case that diஸferent technical stacks are going to be used for diஸferent parts: a
backend in Go or in Java, a frontend in Python (Django) or Ruby (on Rails),
maybe PHP or Node.js, etc.

For this host of applications to work well together and respect the same set of
business rules, we need a core system that enables to guaranteeing overall consis-
tency. That is the main problem that a relational database management system
is meant to solve, and that’s why the relational model is so generic.

In the next chapter — Data Modeling — we are going to compare schemaless
with the relational modeling and go more deeply into this topic. In order to be
able to compare those very diஸferent approaches, we need a better understand-

Chapter 21 Some Relational Theory | 157

ing of how the consistency is guaranteed by our favorite database system, Post-
greSQL.

Attribute Values, Data Domains and Data Types

The Wikipedia deஹ஭nition for relationmentions attribute valuॽ that are part of
data domains. A domain here is much like in mathematics, a set of values that
are given a common name to. There’s the data domain of natural numbers, and
the data domain of rational numbers, in mathematics.

In relational theory, we can compose basic data domains into a tuple. Allow me
to quote Wikipedia again, this time the tuple deஹ஭nition page:

The term originated ॼ an abstraction of the sequence: single, dou-
ble, triple, quadruple, quintuple, sextuple, septuple, octuple, …,
n‑tuple, …, where the prefixॽ are taken from the Latin namॽ of
the numerals.

So by deஹ஭nition, a tuple is a list of T attributes, and a relation is a list of tuples
that all share the same list of attributes domains: names and data type.

So the basics of the relational model is to establish consistency within your data
set: we structure the data in a way that we know what we are dealing with, and
in a way allowing us to enforce business constraints.

The ஹ஭rst business constraint enforced here is dealing with proper data. For in-
stance, the timestamp data type in PostgreSQL implements the Gregorian Cal-
endar, in which there’s no year zero, or month zero, or day zero. While other sys-
temsmight accept “timestamp formatted” text as an attribute value, PostgreSQL
actually checks that the value makes sense within the Gregorian Calendar:

1 select date '2010-02-29';

ERROR: date/time field value out of range: "2010-02-29"
LINE 1: select date '2010-02-29';

^

The year 2010 isn’t a leap year in the Gregorian Calendar, thus the 29th of Febru-
ary 2010 is not a proper date, and PostgreSQL knows that. By the way, this input
syntax is named a decorated literal: we decorate the literal with its data type so
that PostgreSQL doesn’t have to guess what it is.

https://en.wikipedia.org/wiki/Tuple

Chapter 21 Some Relational Theory | 158

Let’s try the infamous zero-timestamp:
1 select timestamp '0000-00-00 00:00:00';

ERROR: date/time field value out of range: "0000-00-00 00:00:00"

No luck, because the Gregorian Calendar doesn’t have a year zero. The year 1 BC
is followed by 1 AD, as we can see here:

1 select date(date '0001-01-01' + x * interval '1 day')
2 from generate_series (-2, 1) as t(x);

date
═══════════════
0001-12-30 BC
0001-12-31 BC
0001-01-01
0001-01-02

(4 rows)

We can see in the previous example that implementing the Gregorian calendar
is not a restriction to live with, rather it’s a powerful choice that we can put to
good use. PostgreSQL knows all about leap years and time zones, and its time
and date data types also implement nice support for meaningful values:

1 select date 'today' + time 'allballs' as midnight;

midnight
═════════════════════
2017-08-14 00:00:00

(1 row)

The allballs time literal sounds like an Easter egg— its history is explained in this
pgsql-docs thread.

Consistency and Data Type Behavior

A key aspect of PostgreSQL data types lies in their behavior. Comparable to
an object-oriented system, PostgreSQL implements functions and operator poly-
morphism, allowing for the dispatching of code at run-time depending on the
types of arguments.

If we have a closer look at a very simple SQL query, we can see lots happening
under the hood:

1 select code from drivers where driverid = 1;

https://www.postgresql.org/message-id/flat/6EE64EF3AB31D5448D0007DD34EEB3412A75D9%40Herge.rcsinc.local#6EE64EF3AB31D5448D0007DD34EEB3412A75D9@Herge.rcsinc.local
https://www.postgresql.org/message-id/flat/6EE64EF3AB31D5448D0007DD34EEB3412A75D9%40Herge.rcsinc.local#6EE64EF3AB31D5448D0007DD34EEB3412A75D9@Herge.rcsinc.local

Chapter 21 Some Relational Theory | 159

In this query, the expression driverid = 1 uses the = operator in between a col-
umn name and a literal value. PostgreSQL knows from its catalogs that the
driverid column is a bigint and parses the literal 1 as an integer. We can check
that with the following query:

1 select pg_typeof(driverid), pg_typeof(1) from drivers limit 1;

pg_typeof │ pg_typeof
═══════════╪═══════════
bigint │ integer

(1 row)

Now, how does PostgreSQL implements = in between an 8 bytes integer and a
4 bytes integer? Well it turns out that this decision is dynamic: the operator =
dispatches to an established function depending on the types of its lefி and right
operands. We can even have a look at the PostgreSQL catalogs to get a better
grasp of this notion:

1 select oprname, oprleft::regtype, oprcode::regproc
2 from pg_operator
3 where oprname = '='
4 and oprleft::regtype::text ~ 'int|time|text|circle|ip'
5 order by oprleft;

This gives us a list of the following instances of the = operator:
oprname │ oprleft │ oprcode

═════════╪═════════════════════════════╪══════════════════════════
= │ bigint │ int84eq
= │ bigint │ int8eq
= │ bigint │ int82eq
= │ smallint │ int28eq
= │ smallint │ int2eq
= │ smallint │ int24eq
= │ int2vector │ int2vectoreq
= │ integer │ int48eq
= │ integer │ int42eq
= │ integer │ int4eq
= │ text │ texteq
= │ abstime │ abstimeeq
= │ reltime │ reltimeeq
= │ tinterval │ tintervaleq
= │ circle │ circle_eq
= │ time without time zone │ time_eq
= │ timestamp without time zone │ timestamp_eq
= │ timestamp without time zone │ timestamp_eq_date
= │ timestamp without time zone │ timestamp_eq_timestamptz
= │ timestamp with time zone │ timestamptz_eq_timestamp
= │ timestamp with time zone │ timestamptz_eq

Chapter 21 Some Relational Theory | 160

= │ timestamp with time zone │ timestamptz_eq_date
= │ interval │ interval_eq
= │ time with time zone │ timetz_eq

(24 rows)

The previous query limits its output to the datatype expected on the left of the
operator. Of course, the catalogs also store the datatype expected on the right of
it, and the result type too, which is Boolean in the case of equality. The oprcode
column in the output is the name of the PostgreSQL function that is run when
the operator is used.

In our case with driverid = 1 PostgreSQL is going to use the int84eq function to
implement our query. This is true unless there’s an index on driverid of course,
in which case PostgreSQL will walk the index to ஹ஭nd matching rows without
comparing the literal with the table’s content, only with the index content.

When using PostgreSQL, data types provide the following:

• Input data representation, expected in input literal values
• Output data representation
• A set of functions working with the data type
• Speciஹ஭c implementations of existing functions for the new data type
• Operator speciஹ஭c implementations for the data type
• Indexing support for the data type

The indexing support for PostgreSQL covers several kinds of indexes: B-tree,
GiST, GIN, SP-GiST, hash and brin. This book doesn’t go further and cover
the details of each of those index types. As an example of data type support for
some indexes and the relationship in between a data type, a support function,
an operator and an index, we can have a look at the GiST support for the ip4r
extension data type:

1 select amopopr::regoperator
2 from pg_opclass c
3 join pg_am am on am.oid = c.opcmethod
4 join pg_amop amop on amop.amopfamily = c.opcfamily
5 where opcintype = 'ip4r'::regtype
6 and am.amname = 'gist';

The pg_opclass catalog is a list of operator class, each of them belongs to an oper-
ator family as found in the pg_opfamily catalog. Each index type implements an
access method represented in the pg_am catalog. Finally, each operator that may
be used in relation to an index access method is listed in the pg_amop catalog.
Knowing that we can access the PostgreSQL catalogs at run-time and discover

Chapter 21 Some Relational Theory | 161

the ip4r supported operators for aGiST indexed lookup:
amopopr

════════════════
>>=(ip4r,ip4r)
<<=(ip4r,ip4r)
>>(ip4r,ip4r)
<<(ip4r,ip4r)
&&(ip4r,ip4r)
=(ip4r,ip4r)

(6 rows)

Those catalog queries are pretty advanced material that you don’t need in your
daily life as an application developer. That said, it’s good to have some under-
standing of how things work in PostgreSQL as it allows a smarter usage of the
system you are already relying on for your data.

What we’ve seen here is that PostgreSQL implementation of data types is a com-
pletely dynamic system with function and operator dispatch, and PostgreSQL
extension authors have APIs they can use to register new indexing support at
run time (when you type in create extension).
The goal of understanding that is for you, as an application developer, to under-
stand how much can be done in PostgreSQL thanks to the integral concept of
data type.

22
PostgreSQL Data Types

PostgreSQL comes with a long list of data types. The following query limits the
types to the ones directly interesting to someonewho is an application developer,
and still it lists 72 data types:

1 select nspname, typname
2 from pg_type t
3 join pg_namespace n
4 on n.oid = t.typnamespace
5 where nspname = 'pg_catalog'
6 and typname !~ '(^_|^pg_|^reg|_handler$)'
7 order by nspname, typname;

Let’s take only a sample of those with the help of theTABLESAMPLE feature
of PostgreSQL, documented in the select SQL frompage of the documentation:

1 select nspname, typname
2 from pg_type t TABLESAMPLE bernoulli(20)
3 join pg_namespace n
4 on n.oid = t.typnamespace
5 where nspname = 'pg_catalog'
6 and typname !~ '(^_|^pg_|^reg|_handler$)'
7 order by nspname, typname;

In this run here’s what I get as a random sample of about 20% of the available
PostgreSQL types. If you run the same query again, you will have a diஸferent
result set:

nspname │ typname
════════════╪═══════════════
pg_catalog │ abstime
pg_catalog │ anyelement

https://www.postgresql.org/docs/current/static/sql-select.html#SQL-FROM

Chapter 22 PostgreSQLData Types | 163

pg_catalog │ bool
pg_catalog │ cid
pg_catalog │ circle
pg_catalog │ date
pg_catalog │ event_trigger
pg_catalog │ line
pg_catalog │ macaddr
pg_catalog │ oidvector
pg_catalog │ polygon
pg_catalog │ record
pg_catalog │ timestamptz

(13 rows)

Our pick for the data types in this book isn’t based on a table sample query,
though. Yes, it would be some kind of fun to do it like this, but maybe not the
kind you’re expecting from the pages of this book…

Boolean

The Boolean data type has been the topic of the three valued logic section earlier
in this book, with the SQLboolean truth table that includes the values true, false
and null, and it’s important enough to warrant another inclusion here:

a │ b │ a=b │ op │ result
═══════╪═══════╪═══════╪═══════════════╪══════════
true │ true │ true │ true = true │ is true
true │ false │ false │ true = false │ is false
true │ ¤ │ ¤ │ true = null │ is null
false │ true │ false │ false = true │ is false
false │ false │ true │ false = false │ is true
false │ ¤ │ ¤ │ false = null │ is null
¤ │ true │ ¤ │ null = true │ is null
¤ │ false │ ¤ │ null = false │ is null
¤ │ ¤ │ ¤ │ null = null │ is null

(9 rows)

You can have tuple attributes as Booleans too, and PostgreSQL includes speciஹ஭c
aggregates for them:

1 select year,
2 format('%s %s', forename, surname) as name,
3 count(*) as ran,
4 count(*) filter(where position = 1) as won,
5 count(*) filter(where position is not null) as finished,
6 sum(points) as points
7 from races

Chapter 22 PostgreSQLData Types | 164

8 join results using(raceid)
9 join drivers using(driverid)
10 group by year, drivers.driverid
11 having bool_and(position = 1) is true
12 order by year, points desc;

In this query, we show the bool_and() aggregates that returns true when all the
Boolean input values are true. Like every aঃregate it silently bypasses null by
default, so in our expression of bool_and(position = 1) we will ஹ஭lter F1 drivers
who won all the races they ஹ஭nished in a speciஹ஭c season:
year │ name │ ran │ won │ finished │ points

══════╪═════════════════════╪═════╪═════╪══════════╪════════
1950 │ Juan Fangio │ 7 │ 3 │ 3 │ 27
1950 │ Johnnie Parsons │ 1 │ 1 │ 1 │ 9
1951 │ Lee Wallard │ 1 │ 1 │ 1 │ 9
1952 │ Alberto Ascari │ 7 │ 6 │ 6 │ 53.5
1952 │ Troy Ruttman │ 1 │ 1 │ 1 │ 8
1953 │ Bill Vukovich │ 1 │ 1 │ 1 │ 9
1954 │ Bill Vukovich │ 1 │ 1 │ 1 │ 8
1955 │ Bob Sweikert │ 1 │ 1 │ 1 │ 8
1956 │ Pat Flaherty │ 1 │ 1 │ 1 │ 8
1956 │ Luigi Musso │ 4 │ 1 │ 1 │ 5
1957 │ Sam Hanks │ 1 │ 1 │ 1 │ 8
1958 │ Jimmy Bryan │ 1 │ 1 │ 1 │ 8
1959 │ Rodger Ward │ 2 │ 1 │ 1 │ 8
1960 │ Jim Rathmann │ 1 │ 1 │ 1 │ 8
1961 │ Giancarlo Baghetti │ 3 │ 1 │ 1 │ 9
1966 │ Ludovico Scarfiotti │ 2 │ 1 │ 1 │ 9
1968 │ Jim Clark │ 1 │ 1 │ 1 │ 9

(17 rows)

If we want to restrict the results to drivers who ஹ஭nished and won every race they
entered in a seasonwe need to thenwrite having bool_and(position ॾ not distinct
from 1) ॾ true, and then the result set only contains those drivers who partici-
pated in a single race in the season.

The main thing about Booleans is the set of operators to use with them:

• The = doesn’t work as you think it would
• Use ॾ to test against literal true, false or null rather than =
• Remember to use the ॾ distinct from and ॾ not distinct from operators
when you need them,

• Booleans can be aggregated thanks to bool_and and bool_or.
The main thing about Booleans in SQL is that they have three possible values:
true, false and null. Moreover the behavior with null is entirely ad-hoc, so ei-

Chapter 22 PostgreSQLData Types | 165

ther you remember it or you remember to check your assumptions. For more
about this topic, you can readWhat is the deal with NULLs? from PostgreSQL
Contributor Jeஸf Davis.

Character and Text

PostgreSQL knows how to deal with characters and text, and it implements sev-
eral data types for that, all documented in the character types chapter of the doc-
umentation.

About the data type itself, it must be noted that text and varchar are the same
thing as far as PostgreSQL is concerned, and character varying is an alias for var-
char. When using varchar(15) you’re basically telling PostgreSQL to manage a
text column with a check constraint of 15 characters.
Yes PostgreSQL knows how to count characters even with Unicode encoding,
more on that later.

There’s a very rich set of PostgreSQL functions to process text — you can ஹ஭nd
them all in the string functions and operators documentation chapter — with
functions such as overlay(), substring(), position() or trim(). Or aggregates such
as string_aঃ(). There are also regular expression functions, including the very
powerful regexp_split_to_table().
For more about PostgreSQL regular expressions, read the main documentation
about them in the pattern matching chapter.

Additionnaly to the classic like and ilike patterns and to the SQL standard simi-
lar to operators, PostgreSQL embeds support for a full-blown regular expression
matching engine. The main operator implementing regexp is ~, and then you
ஹ஭nd the derivatives for not matching and match either case. In total, we have
four operators: ~, !~, ~* and !~*.

Note that PostgreSQL also supports indexing for regular expressions thanks to
its trigram extension: pg_trgm.

The regular expression split functions are powerful inmany use cases. In particu-
lar, they are very helpful when you have to work with a messy schema, in which
a single column represents several bits of information in a pseudo speciஹ஭ed way.

http://thoughts.davisjeff.com/2009/08/02/what-is-the-deal-with-nulls/
http://thoughts.davisjeff.com/
https://www.postgresql.org/docs/current/static/datatype-character.html
https://www.postgresql.org/docs/current/static/functions-string.html
https://www.postgresql.org/docs/current/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP
https://www.postgresql.org/docs/current/static/pgtrgm.html

Chapter 22 PostgreSQLData Types | 166

An example of such a dataset is available in open data: the Archives de la Planète
or “planet archives”. The data is available as CSV and once loaded looks like this:

1 \pset format wrapped
2 \pset columns 70
3 table opendata.archives_planete limit 1;

And we get the following sample data, all in French (but it doesn’t matter very
much for our purposes here):
─[RECORD 1]──
id │ IF39599
inventory │ A 2 037
orig_legend │ Serbie, Monastir Bitolj, Un Turc
legend │ Un Turc
location │ Monastir (actuelle Bitola), Macédoine
date │ mai 1913
operator │ Auguste Léon
...
themes │ Habillement > Habillement traditionnel,Etres …

│…humains > Homme,Etres humains > Portrait,Rela…
│…tions internationales > Présence étrangère

...
collection │ Archives de la Planète
...

You can see that the themॽ column contains several categories for a single en-
try, separated with a comma. Within that comma separated list, we ஹ஭nd another
classiஹ஭cation, this time separated with a greater than sign, which looks like a hi-
erarchical categorization of the themes.

So this picture id IF39599 actually is relevant to that series of themes:
id │ cat1 │ cat2

═════════╪═══════════════════════════╪══════════════════════════
IF39599 │ Habillement │ Habillement traditionnel
IF39599 │ Etres humains │ Homme
IF39599 │ Etres humains │ Portrait
IF39599 │ Relations internationales │ Présence étrangère

(4 rows)

The question is, how do we get that information? Also, is it possible to have an
idea of the distribution of the whole data set in relation to the categories embed-
ded in the themॽ column?
With PostgreSQL, this is easy enough to achieve. First, we are going to split the
themॽ column using a regular expression:

1 select id, regexp_split_to_table(themes, ',')
2 from opendata.archives_planete

https://opendata.hauts-de-seine.fr/explore/dataset/archives-de-la-planete/table/?disjunctive.operateur&sort=identifiant_fakir

Chapter 22 PostgreSQLData Types | 167

3 where id = 'IF39599';

We get the following table:
id │ regexp_split_to_table

═════════╪══
IF39599 │ Habillement > Habillement traditionnel
IF39599 │ Etres humains > Homme
IF39599 │ Etres humains > Portrait
IF39599 │ Relations internationales > Présence étrangère

(4 rows)

Now that we have a table with an entry per theme for the same document, we
can further split each entry into the two-levels category that it looks like. We do
that this time with regexp_split_to_array() so as to keep the categories together:

1 select id,
2 regexp_split_to_array(
3 regexp_split_to_table(themes, ','),
4 ' > ')
5 as categories
6 from opendata.archives_planete
7 where id = 'IF39599';

And now we have:
id │ categories

═════════╪══
IF39599 │ {Habillement,"Habillement traditionnel"}
IF39599 │ {"Etres humains",Homme}
IF39599 │ {"Etres humains",Portrait}
IF39599 │ {"Relations internationales","Présence étrangère"}

(4 rows)

We’re almost there. For the content to be normalized we want to have the cate-
gories in their own separate columns, say category and subcategory:

1 with categories(id, categories) as
2 (
3 select id,
4 regexp_split_to_array(
5 regexp_split_to_table(themes, ','),
6 ' > ')
7 as categories
8 from opendata.archives_planete
9)
10 select id,
11 categories[1] as category,
12 categories[2] as subcategory
13 from categories
14 where id = 'IF39599';

Chapter 22 PostgreSQLData Types | 168

And now we make sense of the open data:
id │ category │ subcategory

═════════╪═══════════════════════════╪══════════════════════════
IF39599 │ Habillement │ Habillement traditionnel
IF39599 │ Etres humains │ Homme
IF39599 │ Etres humains │ Portrait
IF39599 │ Relations internationales │ Présence étrangère

(4 rows)

As a side note, cleaning up a data set afிer you’ve imported it into PostgreSQL
makes the diஸference clear between the classicETL jobs (extract, transform, load)
and the powerful ELT jobs (extract, load, transform) where you can transform
your data using a data processing language: SQL.

So, now that we know how to have a clear view of the dataset, let’s inquire about
the categories used in our dataset:

1 with categories(id, categories) as
2 (
3 select id,
4 regexp_split_to_array(
5 regexp_split_to_table(themes, ','),
6 ' > ')
7 as categories
8 from opendata.archives_planete
9)
10 select categories[1] as category,
11 categories[2] as subcategory,
12 count(*)
13 from categories
14 group by rollup(category, subcategory);

That query returns 175 rows, so here’s an extract only:
category │ subcategory │ count

════════════════════════╪══════════════════════════════╪═══════
Activite économique │ Agriculture / élevage │ 138
Activite économique │ Artisanat │ 81
Activite économique │ Banque / finances │ 2
Activite économique │ Boutique / magasin │ 39
Activite économique │ Commerce ambulant │ 5
Activite économique │ Commerce extérieur │ 1
Activite économique │ Cueillette / chasse │ 9

...
Art │ Peinture │ 15
Art │ Renaissance │ 52
Art │ Sculpture │ 87
Art │ Théâtre │ 7
Art │ ¤ │ 333

...

Chapter 22 PostgreSQLData Types | 169

Habillement │ Uniforme scolaire │ 1
Habillement │ Vêtement de travail │ 3
Habillement │ ¤ │ 163
Habitat / Architecture │ Architecture civile publique │ 37
Habitat / Architecture │ Architecture commerciale │ 24
Habitat / Architecture │ Architecture de jardin │ 31

...
Vie quotidienne │ Vie domestique │ 8
Vie quotidienne │ Vie rurale │ 5
Vie quotidienne │ ¤ │ 64
¤ │ ¤ │ 4449

(175 rows)

Each subcategory appears onlywithin the same category each time, andwe’ve cho-
sen to do a roll up analysis of our data set here. Other grouping sets are available,
such as the cube, or manually editing the dimensions you’re interested into.
In an ELT assignment, we would create a new categoriॽ table containing each
entry we saw in the rollup query only once, as a catalog, and an association table
in between the main opendata.archivॽ_planete table and this categories catalog,
where each archive entrymight have several categories and subcategories assigned
and each category, of course, might have several archive entries assigned.

Here, the topic is about text function processing in PostgreSQL, so we just run
the query against the base data set.

Finally, when mentioning advanced string matching and the regular expression,
we must also mention PostgreSQL’s implementation of a full text search with
support for documents, advanced text search queriॽ, ranking, highlighting, plug-
gable parsers, dictionariॽ and stemmers, synonyms, and thesaurॿ. Additionally,
it’s possible to conஹ஭gure all those pieces. This is material for another book, so
if you need advanced searches of documents that you manage in PostgreSQL
please read the documentation about it. There are also many online resources
on the topic too.

Server Encoding and Client Encoding

When addressing the text datatype wemust mention encoding settings, and pos-
sibly also issues. An encoding is a particular representation of characters in bits
and bytes. In the ASCII encoding the letter A is encoded as the 7-bits byte
1000001, or 65 in decimal, or 41 in hexadecimal. All those numbers are going

https://www.postgresql.org/docs/current/static/textsearch.html

Chapter 22 PostgreSQLData Types | 170

to be written the same way on-disk, and the letter A too.

The SQL_ASCII encoding is a trap you need to avoid falling into. To know
which encoding your database is using, run the psql command \l:

List of databases
Name │ Owner │ Encoding │ Collate │ Ctype │ …

═══════════╪══════════╪══════════╪═════════════╪═════════════╪═
chinook │ dim │ UTF8 │ en_US.UTF-8 │ en_US.UTF-8 │ …
f1db │ dim │ UTF8 │ en_US.UTF-8 │ en_US.UTF-8 │ …
pgloader │ dim │ UTF8 │ en_US.UTF-8 │ en_US.UTF-8 │ …
template0 │ postgres │ UTF8 │ en_US.UTF-8 │ en_US.UTF-8 │ …
template1 │ postgres │ UTF8 │ en_US.UTF-8 │ en_US.UTF-8 │ …
yesql │ dim │ UTF8 │ en_US.UTF-8 │ en_US.UTF-8 │ …

(6 rows)

In this output, I’ve stripped down the last column of output for better integra-
tion for the page size here, so you don’t get to see theAccess privilegॽ for those
databases.

The encoding here isUTF8 which is the best choice these days, and you can see
that the collation and ctype are English based in the UTF-8 encoding, which is
good for my installation. You might, of course, pick something else.

The non-encoding SQL_ASCII accepts any data you throw at it, whereas
the UTF8 encoding (and some others) do check for valid input. Never use
SQL_ASCII, as you will not be able to retrieve data in any encoding and
will lose data because of that! Migrating away from SQL_ASCII to a proper
encoding such asUTF8 is possible but lossy and complex.
You can also have an UTF8 encoded database and use a legacy application (or
programming language) that doesn’t know how to handle Unicode properly.
In that case, you can ask PostgreSQL to convert all and any data on the ஺ாy be-
tween the server-side encoding and your favorite client-side encoding, thanks to
the client_encoding setting.

1 show client_encoding;

Here again, we use UTF8 client side, which allows handling French accentuated
characters we saw previously.
client_encoding

═════════════════
UTF8

(1 row)

Be aware that not all combinations of server encoding and client encoding make
sense. While it is possible for PostgreSQL to communicatewith your application

Chapter 22 PostgreSQLData Types | 171

using the latin1 encoding on the client side if the server side dataset includes texts
in incompatible encodings, PostgreSQL will issue an error. Such texts might
be written using non-Latin scripts such as Cyrillic, Chinese, Japanese, Arabic or
other languages.

From the Emacs facility M-x view-hello-file, here’s a table with spelling of
hello in plenty of diஸferent languages and scripts, all encoded inUTF8:

language │ hello
════════════════════════════╪═════════════════════════════
Czech (čeština) │ Dobrý den
Danish (dansk) │ Hej / Goddag / Halløj
Dutch (Nederlands) │ Hallo / Dag
English /ˈɪŋɡlɪʃ/ │ Hello
Esperanto │ Saluton (Eĥoŝanĝo ĉiuĵaŭde)
Estonian (eesti keel) │ Tere päevast / Tere õhtust
Finnish (suomi) │ Hei / Hyvää päivää
French (français) │ Bonjour / Salut
Georgian (ქართველი) │ გამარჯობა
German (Deutsch) │ Guten Tag / Grüß Gott
Greek (ελληνικά) │ Γειά σας
Greek, ancient (ἑλληνική) │ Οὖλέ τε καὶ μέγα χαῖρε
Hungarian (magyar) │ Szép jó napot!
Italian (italiano) │ Ciao / Buon giorno
Maltese (il-Malti) │ Bonġu / Saħħa
Mathematics │ ∀ p ∈ world • hello p □
Mongolian (монгол хэл) │ Сайн байна уу?
Norwegian (norsk) │ Hei / God dag
Polish (język polski) │ Dzień dobry! / Cześć!
Russian (русский) │ Здра́вствуйте!
Slovak (slovenčina) │ Dobrý deň
Slovenian (slovenščina) │ Pozdravljeni!
Spanish (español) │ ¡Hola!
Swedish (svenska) │ Hej / Goddag / Hallå
Turkish (Türkçe) │ Merhaba
Ukrainian (українська) │ Вітаю
Vietnamese (ti� ng Việt) │ Chào bạn
Japanese (⽇本語) │ こんにちは / �����
Chinese (中⽂,普通话,汉语) │ 你好
Cantonese (粵語,廣東話) │ 早晨, 你好

Now, of course, I can’t have that data sent to me in latin1:
yesql# set client_encoding to latin1;
SET
yesql# select * from hello where language ~ 'Georgian';
ERROR: character with byte sequence 0xe1 0x83 0xa5 in encoding "UTF8" ⏎
has no equivalent in encoding "LATIN1"
yesql# reset client_encoding ;
RESET

Chapter 22 PostgreSQLData Types | 172

So if it’s possible for you, use UTF-8 encoding and you’ll have a much simpler
life. It must be noted that Unicode encoding makes comparing and sorting text
a rather costly operation. That said being fast and wrong is not an option, so we
are going to still use unicode text!

Numbers

PostgreSQL implement multiple data types to handle numbers, as seen in the
documentation chapter about numeric types:

• integer, 32 bits signed numbers
• bigint, 64 bits signed numbers
• smallint, 16 bits signed numbers
• numeric, arbitrary precision numbers
• real, 32 bits ஺ாoating point numbers with 6 decimal digits precision
• double precision, 64 bits ஺ாoating point numbers with 15 decimal digits pre-
cision

We mentioned before that the SQL query system is statically typed, and Post-
greSQLmust establish the data type of every column of a query input and result-
set before being able to plan and execute it. For numbers, it means that the type
of every number literal must be derived at query parsing time.

In the following query, we count how many times a driver won a race when he
started in pole position, per season, and return the ten drivers having done that
themost in all the records or FormulaOne results. The query uses integer expres-
sions grid = 1 and position = 1 and PostgreSQL is lefி to ஹ஭gure out which data
type does that literal value 1 belong to.

It could be an smallint, an integer or a bigint. It could also be a numeric value.
Of course knowing that the grid and position columns are of type bigint might
have an impact on the parsing choice here.

1 select year,
2 drivers.code,
3 format('%s %s', forename, surname) as name,
4 count(*)
5 from results
6 join races using(raceid)
7 join drivers using(driverid)
8 where grid = 1

https://www.postgresql.org/docs/current/static/datatype-numeric.html

Chapter 22 PostgreSQLData Types | 173

9 and position = 1
10 group by year, drivers.driverid
11 order by count desc
12 limit 10;

Which by the way gives:
year │ code │ name │ count

══════╪══════╪════════════════════╪═══════
1992 │ ¤ │ Nigel Mansell │ 9
2011 │ VET │ Sebastian Vettel │ 9
2013 │ VET │ Sebastian Vettel │ 8
2004 │ MSC │ Michael Schumacher │ 8
2016 │ HAM │ Lewis Hamilton │ 7
2015 │ HAM │ Lewis Hamilton │ 7
1988 │ ¤ │ Ayrton Senna │ 7
1991 │ ¤ │ Ayrton Senna │ 7
2001 │ MSC │ Michael Schumacher │ 6
2014 │ HAM │ Lewis Hamilton │ 6

(10 rows)

Also impacting on the PostgreSQL parsing choice of a data type for the 1 literal
is the = operator, which exists in three diஸferent variants when its lefி operand is
a bigint value:

1 select oprname,
2 oprcode::regproc,
3 oprleft::regtype,
4 oprright::regtype,
5 oprresult::regtype
6 from pg_operator
7 where oprname = '='
8 and oprleft::regtype = 'bigint'::regtype;

We can see that PostgreSQLmust support the= operator for every possible com-
bination of its integer data types:
oprname │ oprcode │ oprleft │ oprright │ oprresult

═════════╪═════════╪═════════╪══════════╪═══════════
= │ int8eq │ bigint │ bigint │ boolean
= │ int84eq │ bigint │ integer │ boolean
= │ int82eq │ bigint │ smallint │ boolean

(3 rows)

Short of that, we would have to use decorated literals for numbers in all our
queries, writing:

1 where grid = bigint '1' and position = bigint '1'

The combinatorial explosion of internal operators and support functions for

Chapter 22 PostgreSQLData Types | 174

comparingnumbers is the reasonwhy thePostgreSQLproject has chosen tohave
a minimum number of numeric data types: the impacts of adding another one
is huge in terms of query planning time and internal data structure sizing. That’s
why there are no unsigned numeric data types in PostgreSQL.

Floating Point Numbers

Adding to integer data type support, PostgreSQL also has support for ஺ாoating
point numbers. Please take some time to read What Every Programmer Should
Know About Floating-Point Arithmetic before considering any serious use of
஺ாoating point numbers. In short, there are some numbers that can’t be repre-
sented in base 10, such as 1/3. In base 2 also, some numbers are not possible to
represent, and it’s a diஸferent set than in base 10. So in base 2, you can’t possibly
represent 1/5 or 1/10, for example.

In short, understandwhat you’re doing when using real or double precision data
types, and never use them to deal with money. Use either numeric which pro-
vides arbitrary precision or an integer based representation of the money.

Sequences and the Serial Pseudo Data Type

Other kinds of numeric data types in PostgreSQL are the smallserial, serial and
bigserial data types. They actually are pseudo typॽ: the parser recognize their
syntax, but then transforms them into something else entirely. Straight from the
excellent PostgreSQL documentation again:

1 CREATE TABLE tablename (
2 colname SERIAL
3);

This is equivalent to specifying:
1 CREATE SEQUENCE tablename_colname_seq;
2 CREATE TABLE tablename (
3 colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')
4);
5 ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

http://floating-point-gui.de/
http://floating-point-gui.de/

Chapter 22 PostgreSQLData Types | 175

The sequence SQL object is covered by the SQL standard and documented in
the create sequence manual entry for PostgreSQL. This object is the only one
in SQL with a non-transactional behavior. Of course, that’s on purpose, so that
multiple sessions can get the next number from the sequence concurrently, with-
out having to then wait until commit; to decide if they can keep their sequence
number.

From the docs:

Sequences are based on bigint arithmetic, so the range cannot ex-
ceed the range of an eight-byte integer (-9223372036854775808 to
9223372036854775807).

So if you have a serial column, its real type is going to be integer, and as soon as
the sequence generates a number that doesn’t ஹ஭t into signed 4-byte representa-
tion, you’re going to have errors.

In the following example, we construct the situation in which we exhaust the id
column (an integer) and still use the sequence to generate the next entry:

1 create table seq(id serial);
2 CREATE TABLE
3

4 select setval('public.seq_id_seq'::regclass, 2147483647);
5 setval
6 ════════════
7 2147483647
8 (1 row)
9

10 yesql# insert into public.seq values (default);
11 ERROR: integer out of range

That could happen to your application while in production if you use serial
rather than bigserial. If you need a sequence and need to restrict your column
to 4-byte integers, then you need to implement amaintenance policy around the
fact that the sequence is 8 bytes and the hosting column only 4.

Universally Unique Identifier: UUID

A universally unique identiஹ஭er (UUID) is a 128-bit number used to identify in-
formation in computer systems. The term globally unique identiஹ஭er (GUID)

https://www.postgresql.org/docs/current/static/sql-createsequence.html

Chapter 22 PostgreSQLData Types | 176

is also used. PostgreSQL implements support for UUID, both for storing and
processing them, and also with the uuid-ossp extension, for generating them.
If you need to generate UUIDs fromPostgreSQL, whichwe do in order to cover
the topic in this book, then install the extension. The extension is part of the
PostgreSQL contribs, so you need to have that OS package installed.

1 create extension "uuid-ossp";

Nowwe can have a look at those UUIDs:
1 select uuid_generate_v4()
2 from generate_series(1, 10) as t(x);

Here’s a list of locally generated UUID v4:
uuid_generate_v4

══════════════════════════════════════
fbb850cc-dd26-4904-96ef-15ad8dfaff07
0ab19b19-c407-410d-8684-1c3c7f978f49
5f401a04-2c58-4cb1-b203-ae2b2a1a4a5e
d5043405-7c03-40b1-bc71-aa1e15e1bbf4
33c98c8a-a24b-4a04-807f-33803faa5f0a
c68b46eb-b94f-4b74-aecf-2719516994b7
5bf5ec69-cdbf-4bd1-a533-7e0eb266f709
77660621-7a9b-4e59-a93a-2b33977e84a7
881dc4f4-b587-4592-a720-81d9c7e15c63
1e879ef4-6f1f-4835-878a-8800d5e9d4e0

(10 rows)

Even if you generate UUIDs from your application, managing them as a proper
UUID in PostgreSQL is a good idea, as PostgreSQL actually stores the binary
value of the UUID on 128 bits (or 16 bytes) rather than way more when storing
the text representation of an UUID:

1 select pg_column_size(uuid 'fbb850cc-dd26-4904-96ef-15ad8dfaff07')
2 as uuid_bytes,
3

4 pg_column_size('fbb850cc-dd26-4904-96ef-15ad8dfaff07')
5 as uuid_string_bytes;

uuid_bytes │ uuid_string_bytes
════════════╪═══════════════════

16 │ 37
(1 row)

Shouldwe useUUIDs as identiஹ஭ers in our database schemas? We get back to that
question in the next chapter.

Chapter 22 PostgreSQLData Types | 177

Bytea and Bitstring

PostgreSQL can store and process raw binary values, which is sometimes useful.
Binary columns are limited to about 1 GB in size (8 bytes of this are used in the
header out of this). Those types are documented in the PostgreSQL chapter en-
titled Binary Data Types.

While it’s possible to store large binary data that way, PostgreSQL doesn’t imple-
ment a chunk API and will systematically fetch the whole content when the col-
umn is included in your queries output. That means loading the content from
disk to memory, pushing it through the network and handling it as a whole in-
memory on the client-side, so it’s not always the best solution around.

That said, when storing binary content in PostgreSQL it is then automatically
part of your online backups and recovery solution, and the online backups are
transactional. So if you need to have binary content with transactional proper-
ties, byteamight be exactly what you need.

Date/Time and Time Zones

Handling dates and time and time zones is a very complex matter, and on this
topic, you can read Erik Naggum’s piece The Long, Painful History of Time.

The PostgreSQL documentation chapters with the titles Date/Time Types,
Data Type Formatting Functions, and Date/Time Functions and Operators
cover all you need to know about date, time, timestamps, and time zones with
PostgreSQL.

The ஹ஭rst question we need to answer here is about using timestamps with or
without time zonॽ from our applications. The answer is simple: always use
timestamps WITH time zonॽ.
A commonmyth is that storing time zones will certainly add to your storage and
memory footprint. It’s actually not the case:

1 select pg_column_size(timestamp without time zone 'now'),
2 pg_column_size(timestamp with time zone 'now');

pg_column_size │ pg_column_size
════════════════╪════════════════

https://www.postgresql.org/docs/current/static/datatype-binary.html
http://naggum.no/lugm-time.html
https://www.postgresql.org/docs/current/static/datatype-datetime.html
https://www.postgresql.org/docs/current/static/functions-formatting.html
https://www.postgresql.org/docs/current/static/functions-datetime.html

Chapter 22 PostgreSQLData Types | 178

8 │ 8
(1 row)

PostgreSQL defaults to using bigint internally to store timestamps, and the
on-disk and in-memory format are the same with or without time zone sup-
port. Here’s their whole type deஹ஭nition in the PostgreSQL source code (in
src/include/datatype/timestamp.h):

1 typedef int64 Timestamp;
2 typedef int64 TimestampTz;

From the PostgreSQL documentation for timestamps, here’s how it works:

For timestamp with time zone, the internally stored value is always
in UTC (Universal Coordinated Time, traditionally known as
GreenwichMean Time, GMT). An input value that has an explicit
time zone speciஹ஭ed is converted to UTC using the appropriate
oஸfset for that time zone. If no time zone is stated in the input
string, then it is assumed to be in the time zone indicated by the
system’s TimeZone parameter, and is converted to UTC using the
oஸfset for the timezone zone.

PostgreSQL doesn’t store the time zone they come from with your timestamp.
Instead it converts to and from the input and output timezone much like we’ve
seen for text with client_encoding.

1 begin;
2

3 drop table if exists tstz;
4

5 create table tstz(ts timestamp, tstz timestamptz);
6

7 set timezone to 'Europe/Paris';
8 select now();
9 insert into tstz values(now(), now());
10

11 set timezone to 'Pacific/Tahiti';
12 select now();
13 insert into tstz values(now(), now());
14

15 set timezone to 'Europe/Paris';
16 table tstz;
17

18 set timezone to 'Pacific/Tahiti';
19 table tstz;
20

21 commit;

Chapter 22 PostgreSQLData Types | 179

In this script, we playwith the client’s setting timezone and change from a French
value to another French value, as Tahiti is an island in the Paciஹ஭c that is part of
France. Here’s the full output as seen when running this script, when launched
with psql -a -f tz.sql:
BEGIN
...
set timezone to 'Europe/Paris';
SET
select now();

now
═══════════════════════════════
2017-08-19 14:22:11.802755+02

(1 row)

insert into tstz values(now(), now());
INSERT 0 1
set timezone to 'Pacific/Tahiti';
SET
select now();

now
═══════════════════════════════
2017-08-19 02:22:11.802755-10

(1 row)

insert into tstz values(now(), now());
INSERT 0 1
set timezone to 'Europe/Paris';
SET
table tstz;

ts │ tstz
════════════════════════════╪═══════════════════════════════
2017-08-19 14:22:11.802755 │ 2017-08-19 14:22:11.802755+02
2017-08-19 02:22:11.802755 │ 2017-08-19 14:22:11.802755+02

(2 rows)

set timezone to 'Pacific/Tahiti';
SET
table tstz;

ts │ tstz
════════════════════════════╪═══════════════════════════════
2017-08-19 14:22:11.802755 │ 2017-08-19 02:22:11.802755-10
2017-08-19 02:22:11.802755 │ 2017-08-19 02:22:11.802755-10

(2 rows)

commit;
COMMIT

First, we see that the now() function always returns the same timestamp within
a single transaction. If you want to see the clock running while in a transaction,
use the clock_timestamp() function instead.
Then, we see that when we change the timezone client setting, PostgreSQL out-
puts timestamps as expected, in the selected timezone. If youmanage an applica-

Chapter 22 PostgreSQLData Types | 180

tion with users in diஸferent time zones and youwant to display time in their own
local preferred time zone, then you can set timezone in your application code
before doing any timestamp related processing, and have PostgreSQL do all the
hard work for you.

Finally, when selecting back from the tstz table, we see that the column tstz re-
alizes that both the inserted values actually are the same point in time, but seen
from diஸferent places in the world, whereas the ts columnmakes it impossible to
compare the entries and realize they actually happened at exactly the same time.

As said before, even when using timestamps with time zone, PostgreSQL will
not store the time zone in use at input time, so there’s no way from our tstz table
to know that the entries are at the same time but just from diஸferent places.

The opening of this section links to The Long, Painful History of Time, and if
you didn’t read it yet, maybe now is a good time. Allow me to quote a relevant
part of the article here:

The basic problemwith time ॾ that we need to express both time and
place whenever we want to place some event in time and space, yet we
tend to assume spatial coordinatॽ even more than we assume tempo-
ral coordinatॽ, and in the case of time in ordinary communication,
it ॾ simply left out entirely. Despite the existence of time zonॽ and
strange daylight saving time regimॽ around the world, most people
are blithely unaware of their own time zone and certainly of how
it relatॽ to standard referencॽ. Most people are equally unaware
that by choosing a notation that ॾ close to the spoken or written ex-
pression of datॽ, they make it meaningless to people who may not
share the culture, but can still read the language. It ॾ unlikely that
people will change enough to put these issuॽ to rest, so responsible
computer people need to address the issuॽ and resist the otherwise
overpowering urge to abbreviate and drop context.

Several options are available to input timestamp values in PostgreSQL. The eas-
iest is to use the ISO format, so if your application’s code allows that you’re all
set. In the following example we leave the time zone out, as usually, it’s handled
by the timezone session parameter, as seen above. If you need to, of course, you
can input the time zone in the timestamp values directly:

1 select timestamptz '2017-01-08 04:05:06',
2 timestamptz '2017-01-08 04:05:06+02';

http://naggum.no/lugm-time.html

Chapter 22 PostgreSQLData Types | 181

At insert or update time, use the same literal strings without the type decoration:
PostgreSQLalready knows the type of the target column, and it uses that to parse
the values literal in the DML statement.

Some application use-cases only need the date. Then use the date data type in
PostgreSQL. It is of course then possible to compare adate and a timestamp with
time zone in your SQL queries, and even to append a time oஸfset on top of your
date to construct a timestamp.

Time Intervals

PostgreSQL implements an interval data type along with the time, date and
timestamptz data types. An interval describes a duration, like a month or two
weeks, or even a millisecond:

1 set intervalstyle to postgres;
2

3 select interval '1 month',
4 interval '2 weeks',
5 2 * interval '1 week',
6 78389 * interval '1 ms';

The default PostgreSQL output looks like this:
interval │ interval │ ?column? │ ?column?

══════════╪══════════╪══════════╪══════════════
1 mon │ 14 days │ 14 days │ 00:01:18.389

(1 row)

Several intervalstyle values are possible, and the setting postgrॽ_verbose is quite
nice for interactive psql sessions:

1 set intervalstyle to postgres_verbose;
2

3 select interval '1 month',
4 interval '2 weeks',
5 2 * interval '1 week',
6 78389 * interval '1 ms';

This time we get a user-friendly output:
interval │ interval │ ?column? │ ?column?

══════════╪═══════════╪═══════════╪═════════════════════
@ 1 mon │ @ 14 days │ @ 14 days │ @ 1 min 18.389 secs

(1 row)

Chapter 22 PostgreSQLData Types | 182

How long is amonth? Well, it depends onwhichmonth, andPostgreSQLknows
that:

1 select d::date as month,
2

3 (d + interval '1 month' - interval '1 day')::date as month_end,
4

5 (d + interval '1 month')::date as next_month,
6

7 (d + interval '1 month')::date - d::date as days
8

9 from generate_series(
10 date '2017-01-01',
11 date '2017-12-01',
12 interval '1 month'
13)
14 as t(d);

Whenyouattach an interval to adate or timestamp inPostgreSQLthen thenum-
ber of days in that interval adjusts to the speciஹ஭c calendar entry you’ve picked.
Otherwise, an interval of a month is considered to be 30 days. Here we see that
computing the last day of February is very easy:

month │ month_end │ next_month │ days
════════════╪════════════╪════════════╪══════
2017-01-01 │ 2017-01-31 │ 2017-02-01 │ 31
2017-02-01 │ 2017-02-28 │ 2017-03-01 │ 28
2017-03-01 │ 2017-03-31 │ 2017-04-01 │ 31
2017-04-01 │ 2017-04-30 │ 2017-05-01 │ 30
2017-05-01 │ 2017-05-31 │ 2017-06-01 │ 31
2017-06-01 │ 2017-06-30 │ 2017-07-01 │ 30
2017-07-01 │ 2017-07-31 │ 2017-08-01 │ 31
2017-08-01 │ 2017-08-31 │ 2017-09-01 │ 31
2017-09-01 │ 2017-09-30 │ 2017-10-01 │ 30
2017-10-01 │ 2017-10-31 │ 2017-11-01 │ 31
2017-11-01 │ 2017-11-30 │ 2017-12-01 │ 30
2017-12-01 │ 2017-12-31 │ 2018-01-01 │ 31

(12 rows)

PostgreSQL’s implementation of the calendar is very good, so use it!

Date/Time Processing and Querying

Once the application’s data, or rather the user data is properly stored as times-
tamp with time zone, PostgreSQL allows implementing all the processing you
need to.

Chapter 22 PostgreSQLData Types | 183

As an example data set this time we’re playing with git history. The PostgreSQL
and pgloader project history have been loaded into the commitlog table thanks
to the git log command, with a custom format, and some post-processing —
properly splitting up the commit’s subjects and escaping its content. Here’s for
example the most recent commit registered in our local commitlog table:

1 select project, hash, author, ats, committer, cts, subject
2 from commitlog
3 where project = 'postgresql'
4 order by ats desc
5 limit 1;

The column names ats and cts respectively stand for author commit timestamp
and committer commit timestamp, and the subject is the ஹ஭rst line of the commit
message, as per the git log format%s.
To get the most recent entry from a table we order by dates in descending order
then limit the result set to a single entry, and we get a single line of output:
─[RECORD 1]──
project │ postgresql
hash │ b1c2d76a2fcef812af0be3343082414d401909c8
author │ Tom Lane
ats │ 2017-08-19 19:39:37+02
committer │ Tom Lane
cts │ 2017-08-19 19:39:51+02
subject │ Fix possible core dump in parallel restore when using a TOC list.

With timestamps, we can compute time-based reporting, such as howmany com-
mits each project received each year in their whole history:

1 select extract(year from ats) as year,
2 count(*) filter(where project = 'postgresql') as postgresql,
3 count(*) filter(where project = 'pgloader') as pgloader
4 from commitlog
5 group by year
6 order by year;

As we have only loaded two projects in our commitlog table, the output is better
with a pivot query. We can see more than 20 years of sustained activity for the
PostgreSQL project, and a less active project for pgloader:
year │ postgresql │ pgloader

══════╪════════════╪══════════
1996 │ 876 │ 0
1997 │ 1698 │ 0
1998 │ 1744 │ 0
1999 │ 1788 │ 0
2000 │ 2535 │ 0

Chapter 22 PostgreSQLData Types | 184

2001 │ 3061 │ 0
2002 │ 2654 │ 0
2003 │ 2416 │ 0
2004 │ 2548 │ 0
2005 │ 2418 │ 3
2006 │ 2153 │ 3
2007 │ 2188 │ 42
2008 │ 1651 │ 63
2009 │ 1389 │ 3
2010 │ 1800 │ 29
2011 │ 2030 │ 2
2012 │ 1605 │ 2
2013 │ 1368 │ 385
2014 │ 1745 │ 367
2015 │ 1815 │ 202
2016 │ 2086 │ 136
2017 │ 1721 │ 142

(22 rows)

We can also build a reporting on the repartition of commits by weekday from
the beginning of the project, in order to guess if contributors are working on the
project on the job only, or mostly during their free time (weekend).

1 select extract(isodow from ats) as dow,
2 to_char(ats, 'Day') as day,
3 count(*) as commits,
4 round(100.0*count(*)/sum(count(*)) over(), 2) as pct,
5 repeat('■', (100*count(*)/sum(count(*)) over())::int) as hist
6 from commitlog
7 where project = 'postgresql'
8 group by dow, day
9 order by dow;

It seems that our PostgreSQL committers tend to work whenever they feel like
it, but less so on the weekend. The project’s lucky enough to have a solid team
of committers being paid to work on PostgreSQL:
dow │ day │ commits │ pct │ hist

═════╪═══════════╪═════════╪═══════╪═══════════════════
1 │ Monday │ 6552 │ 15.14 │ ■■■■■■■■■■■■■■■
2 │ Tuesday │ 7164 │ 16.55 │ ■■■■■■■■■■■■■■■■■
3 │ Wednesday │ 6477 │ 14.96 │ ■■■■■■■■■■■■■■■
4 │ Thursday │ 7061 │ 16.31 │ ■■■■■■■■■■■■■■■■
5 │ Friday │ 7008 │ 16.19 │ ■■■■■■■■■■■■■■■■
6 │ Saturday │ 4690 │ 10.83 │ ■■■■■■■■■■■
7 │ Sunday │ 4337 │ 10.02 │ ■■■■■■■■■■

(7 rows)

Another report we can build compares the author commit timestamp with the
committer commit timestamp. Those are diஸferent, but by howmuch?

Chapter 22 PostgreSQLData Types | 185

1 with perc_arrays as
2 (
3 select project,
4 avg(cts-ats) as average,
5 percentile_cont(array[0.5, 0.9, 0.95, 0.99])
6 within group(order by cts-ats) as parr
7 from commitlog
8 where ats <> cts
9 group by project
10)
11 select project, average,
12 parr[1] as median,
13 parr[2] as "%90th",
14 parr[3] as "%95th",
15 parr[4] as "%99th"
16 from perc_arrays;

Here’s a detailed output of the time diஸference statistics, per project:
─[RECORD 1]───────────────────────────────────
project │ pgloader
average │ @ 4 days 22 hours 7 mins 41.18 secs
median │ @ 5 mins 21.5 secs
%90th │ @ 1 day 20 hours 49 mins 49.2 secs
%95th │ @ 25 days 15 hours 53 mins 48.15 secs
%99th │ @ 169 days 24 hours 33 mins 26.18 secs
═[RECORD 2]═══════════════════════════════════
project │ postgres
average │ @ 1 day 10 hours 15 mins 9.706809 secs
median │ @ 2 mins 4 secs
%90th │ @ 1 hour 46 mins 13.5 secs
%95th │ @ 1 day 17 hours 58 mins 7.5 secs
%99th │ @ 40 days 20 hours 36 mins 43.1 secs

Reporting is a strong use case for SQL. Application will also send more classic
queries. We can show the commits for the PostgreSQL project for the 1st of June
2017:

1 \set day '2017-06-01'
2

3 select ats::time,
4 substring(hash from 1 for 8) as hash,
5 substring(subject from 1 for 40) || '…' as subject
6 from commitlog
7 where project = 'postgresql'
8 and ats >= date :'day'
9 and ats < date :'day' + interval '1 day'
10 order by ats;

It’s tempting to use the between SQL operator, but we would then have to re-
member that between includes both its lower and upper bound and we would

Chapter 22 PostgreSQLData Types | 186

then have to compute the upper bound as the very last instant of the day. Using
explicit greater than or equal and less than operators makes it possible to always
compute the very ஹ஭rst time of the day, which is easier, and well supported by
PostgreSQL.

Also, using explicit bound checks allows us to use a single date literal in the query,
so that’s a single parameter to send from the application.

ats │ hash │ subject
══════════╪══════════╪═══
01:39:27 │ 3d79013b │ Make ALTER SEQUENCE, including RESTART, …
02:03:10 │ 66510455 │ Modify sequence catalog tuple before inv…
04:35:33 │ de492c17 │ doc: Add note that DROP SUBSCRIPTION dro…
19:32:55 │ e9a3c047 │ Always use -fPIC, not -fpic, when buildi…
23:45:53 │ f112f175 │ Fix typo…

(5 rows)

Many data type formatting functions are available in PostgreSQL. In the
previous query, although we chose to cast our timestamp with time zone entry
down to a time value, we could have chosen another representation thanks to
the to_char function:

1 set lc_time to 'fr_FR';
2

3 select to_char(ats, 'TMDay TMDD TMMonth, HHam') as time,
4 substring(hash from 1 for 8) as hash,
5 substring(subject from 1 for 40) || '…' as subject
6 from commitlog
7 where project = 'postgresql'
8 and ats >= date :'day'
9 and ats < date :'day' + interval '1 day'
10 order by ats;

And this time we have a French localized output for the time value:
time │ hash │ subject

═════════════════════╪══════════╪═══
Jeudi 01 Juin, 01am │ 3d79013b │ Make ALTER SEQUENCE, including RESTART, …
Jeudi 01 Juin, 02am │ 66510455 │ Modify sequence catalog tuple before inv…
Jeudi 01 Juin, 04am │ de492c17 │ doc: Add note that DROP SUBSCRIPTION dro…
Jeudi 01 Juin, 07pm │ e9a3c047 │ Always use -fPIC, not -fpic, when buildi…
Jeudi 01 Juin, 11pm │ f112f175 │ Fix typo…

(5 rows)

Take some time to familiarize yourself with the time and date support that
PostgreSQL comes with out of the box. Some very useful functions such as
date_trunc() are not shown here, and you also will ஹ஭nd more gems.
While most programming languages nowadays include the same kind of feature

https://www.postgresql.org/docs/current/static/functions-formatting.html

Chapter 22 PostgreSQLData Types | 187

set, having this processing feature set right in PostgreSQLmakes sense in several
use cases:

• It makes sense when the SQL logic or ஹ஭ltering you want to implement
depends on the result of the processing (e.g. grouping by week).

• When you have several applications using the same logic, it’s ofிen easier
to share a SQL query than to set up a distributed service API oஸfering the
same result in XML or JSON (a data format you then have to parse).

• When you want to reduce your run-time dependencies, it’s a good idea to
understand how much each architecture layer is able to support in your
implementation.

Network Address Types

PostgreSQL includes support for both cidr, inet, and macaddr data types.
Again, those types are bundled with indexing support and advanced functions
and operator support.

The PostgreSQL documentation chapters entitled Network Address Types and
Network Address Functions and Operators cover network address types.

Web servers logs are a classic source of data to process where we ஹ஭nd network
address types and The Honeynet Project has some free samples for us to play
with. This time we’re using the Scan 34 entry. Here’s how to load the sample
data set, once cleaned into a proper CSV ஹ஭le:

1 begin;
2

3 drop table if exists access_log;
4

5 create table access_log
6 (
7 ip inet,
8 ts timestamptz,
9 request text,
10 status integer
11);
12

13 \copy access_log from 'access.csv' with csv delimiter ';'
14

15 commit;

https://www.postgresql.org/docs/current/static/datatype-net-types.html
https://www.postgresql.org/docs/current/static/functions-net.html
http://old.honeynet.org/scans/scan34/

Chapter 22 PostgreSQLData Types | 188

The script used to cleanse the original data into a CSV that PostgreSQL is happy
about implements a pretty simple transformation from
211.141.115.145 - - [13/Mar/2005:04:10:18 -0500] "GET / HTTP/1.1" 403 2898 "-" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

into
"211.141.115.145";"2005-05-13 04:10:18 -0500";"GET / HTTP/1.1";"403"

Beingmostly interested into network address types, the transformation from the
Apache access log format to CSV is lossy here, we keep only some of the ஹ஭elds we
might be interested into.

One of the things that’s possible to implement thanks to the PostgreSQL inet
data type is an analysis of /24 networks that are to be found in the logs.
To enable that analysis, we can use the set_masklen() function which allows us
to transforms an IP address into an arbitrary CIDR network address:

1 select distinct on (ip)
2 ip,
3 set_masklen(ip, 24) as inet_24,
4 set_masklen(ip::cidr, 24) as cidr_24
5 from access_log
6 limit 10;

Andwe can see that if we keep the data type as inet, we still get the full IP address
with the /24 network notation added. To have the .0/24 notation we need to be
using cidr:

ip │ inet_24 │ cidr_24
═══════════════╪══════════════════╪═════════════════
4.35.221.243 │ 4.35.221.243/24 │ 4.35.221.0/24
4.152.207.126 │ 4.152.207.126/24 │ 4.152.207.0/24
4.152.207.238 │ 4.152.207.238/24 │ 4.152.207.0/24
4.249.111.162 │ 4.249.111.162/24 │ 4.249.111.0/24
12.1.223.132 │ 12.1.223.132/24 │ 12.1.223.0/24
12.8.192.60 │ 12.8.192.60/24 │ 12.8.192.0/24
12.33.114.7 │ 12.33.114.7/24 │ 12.33.114.0/24
12.47.120.130 │ 12.47.120.130/24 │ 12.47.120.0/24
12.172.137.4 │ 12.172.137.4/24 │ 12.172.137.0/24
18.194.1.122 │ 18.194.1.122/24 │ 18.194.1.0/24

(10 rows)

Of course, note that you could be analyzing other networks than /24:
1 select distinct on (ip)
2 ip,
3 set_masklen(ip::cidr, 27) as cidr_27,
4 set_masklen(ip::cidr, 28) as cidr_28

Chapter 22 PostgreSQLData Types | 189

5 from access_log
6 limit 10;

This computes for us the proper starting ip addresses for our CIDR notation
for us, of course. Afிer all, what’s the point of using proper data types if not for
advanced processing?

ip │ cidr_27 │ cidr_28
═══════════════╪══════════════════╪══════════════════
4.35.221.243 │ 4.35.221.224/27 │ 4.35.221.240/28
4.152.207.126 │ 4.152.207.96/27 │ 4.152.207.112/28
4.152.207.238 │ 4.152.207.224/27 │ 4.152.207.224/28
4.249.111.162 │ 4.249.111.160/27 │ 4.249.111.160/28
12.1.223.132 │ 12.1.223.128/27 │ 12.1.223.128/28
12.8.192.60 │ 12.8.192.32/27 │ 12.8.192.48/28
12.33.114.7 │ 12.33.114.0/27 │ 12.33.114.0/28
12.47.120.130 │ 12.47.120.128/27 │ 12.47.120.128/28
12.172.137.4 │ 12.172.137.0/27 │ 12.172.137.0/28
18.194.1.122 │ 18.194.1.96/27 │ 18.194.1.112/28

(10 rows)

Equipped with this set_masklen() function, it’s now easy to analyze our access
logs using arbitrary CIDR network deஹ஭nitions.

1 select set_masklen(ip::cidr, 24) as network,
2 count(*) as requests,
3 array_length(array_agg(distinct ip), 1) as ipcount
4 from access_log
5 group by network
6 having array_length(array_agg(distinct ip), 1) > 1
7 order by requests desc, ipcount desc;

In our case, we get the following result:
network │ requests │ ipcount

══════════════════╪══════════╪═════════
4.152.207.0/24 │ 140 │ 2
222.95.35.0/24 │ 59 │ 2
211.59.0.0/24 │ 32 │ 2
61.10.7.0/24 │ 25 │ 25
222.166.160.0/24 │ 25 │ 24
219.153.10.0/24 │ 7 │ 3
218.78.209.0/24 │ 6 │ 4
193.109.122.0/24 │ 5 │ 5
204.102.106.0/24 │ 3 │ 3
66.134.74.0/24 │ 2 │ 2
219.133.137.0/24 │ 2 │ 2
61.180.25.0/24 │ 2 │ 2

(12 rows)

Chapter 22 PostgreSQLData Types | 190

Ranges

Range types are a unique feature of PostgreSQL, managing two dimensions of
data in a single column, and allowing advanced processing. The main example
is the daterange data type, which stores as a single value a lower and an upper
bound of the range as a single value. This allows PostgreSQL to implement a
concurrent safe check against overlapping ranges, as we’re going to see in the next
example.

As usual, read the PostgreSQL documentation chapters with the titles Range
Types and Range Functions and Operators for complete information.

The International Monetary Fund publishes exchange rate archives by month
for lots of currencies. An exchange rate is relevant from its publication until the
next rate is published, which makes a very good use case for our PostgreSQL
range types.

The following SQL script is the main part of the ELT script that has been used
for this book. Only missing from this book’s pages is the transformation script
that pivots the available tsv ஹ஭le into the more interesting format we use here:

1 begin;
2

3 create schema if not exists raw;
4

5 -- Must be run as a Super User in your database instance
6 -- create extension if not exists btree_gist;
7

8 drop table if exists raw.rates, rates;
9

10 create table raw.rates
11 (
12 currency text,
13 date date,
14 rate numeric
15);
16

17 \copy raw.rates from 'rates.csv' with csv delimiter ';'
18

19 create table rates
20 (
21 currency text,
22 validity daterange,
23 rate numeric,
24

25 exclude using gist (currency with =,

https://www.postgresql.org/docs/current/static/rangetypes.html
https://www.postgresql.org/docs/current/static/rangetypes.html
https://www.postgresql.org/docs/current/static/functions-range.html
http://www.imf.org/external/index.htm
https://www.imf.org/external/np/fin/data/param_rms_mth.aspx

Chapter 22 PostgreSQLData Types | 191

26 validity with &&)
27);
28

29 insert into rates(currency, validity, rate)
30 select currency,
31 daterange(date,
32 lead(date) over(partition by currency
33 order by date),
34 '[)'
35)
36 as validity,
37 rate
38 from raw.rates
39 order by date;
40

41 commit;

In this SQL script, we ஹ஭rst create a target table for loading the CSV ஹ஭le. The ஹ஭le
contains lineswith a currency name, a date of publication, and a rate as anumeric
value. Once the data is loaded into this table, we can transform it into something
more interesting to work with from an application, the ratॽ table.
The ratॽ table registers the rate value for a currency and a validity period, and
uses an exclusion constraint that guarantees non-overlapping validityperiods for
any given currency:

1 exclude using gist (currency with =, validity with &&)

This expression reads: exclude any tuple where the currency is = to an existing
currency in our table AND where the validity is overlapping with (&&) any
existing validity in our table. This exclusion constraint is implemented in Post-
greSQL using aGiST index.

By default, GiST in PostgreSQL doesn’t support one-dimensional data types
that are meant to be covered by B-tree indexes. With exclusion constraints
though, it’s very interesting to extend GiST support for one-dimensional data
types, and sowe install the btree_gist extension, provided in PostgreSQL contrib
package.

The script then ஹ஭lls in the ratॽ table from the raw.ratॽ we’d been importing in
the previous step. The query uses the lead() window function to implement the
speciஹ஭cation spelled out in English earlier: an exchange rate ॾ relevant from its
publication until the next rate ॾ published.
Here’s how the data looks, with the following query targeting Euro rates:

1 select currency, validity, rate

https://www.postgresql.org/docs/current/static/sql-createtable.html#SQL-CREATETABLE-EXCLUDE

Chapter 22 PostgreSQLData Types | 192

2 from rates
3 where currency = 'Euro'
4 order by validity
5 limit 10;

We can see that the validity is a range of dates, and the standard output for this
type is a closed range which includes the ஹ஭rst entry and excludes the second one:
currency │ validity │ rate

══════════╪═════════════════════════╪══════════
Euro │ [2017-05-02,2017-05-03) │ 1.254600
Euro │ [2017-05-03,2017-05-04) │ 1.254030
Euro │ [2017-05-04,2017-05-05) │ 1.252780
Euro │ [2017-05-05,2017-05-08) │ 1.250510
Euro │ [2017-05-08,2017-05-09) │ 1.252880
Euro │ [2017-05-09,2017-05-10) │ 1.255280
Euro │ [2017-05-10,2017-05-11) │ 1.255300
Euro │ [2017-05-11,2017-05-12) │ 1.257320
Euro │ [2017-05-12,2017-05-15) │ 1.255530
Euro │ [2017-05-15,2017-05-16) │ 1.248960

(10 rows)

Having this data set with the exclusion constraint means that we know we have
at most a single rate available at any point in time, which allows an application
needing the rate for a speciஹ஭c time to write the following query:

\index{Operators!@}
1 select rate
2 from rates
3 where currency = 'Euro'
4 and validity @> date '2017-05-18';

The operator@> reads contains, and PostgreSQLuses the exclusion constraint’s
index to solve that query eஸஹ஭ciently:

rate
══════════
1.240740

(1 row)

23
Denormalized Data Types

The main idea behind the PostgreSQL project from Michael Stonebraker has
been extensibility. As a result of that design choice, some data types supported
by PostgreSQL allow bypassing relational constraint. For instance, PostgreSQL
supports arrays, which store several values in the same attribute value. In stan-
dard SQL, the content of the array would be completely opaque, so the array
would be considered only as a whole.

The extensible design of PostgreSQL makes it possible to enrich the SQL lan-
guage with new capabilities. Speciஹ஭c operators are built for denormalized data
types and allow addressing values contained into an array or a json attribute
value, integrating perfectly with SQL.

The following data types are built-in to PostgreSQL and extend its processing
capabilities to another level.

Arrays

PostgreSQL has built-in support for arrays, which are documented in the Arrays
and the Array Functions and Operators chapters. As introduced above, what’s
interesting with PostgreSQL is its ability to process array elements from SQL
directly. This capability includes indexing facilities thanks to GIN indexing.

Arrays can be used to denormalize data and avoid lookup tables. A good rule of

https://fr.wikipedia.org/wiki/Michael_Stonebraker
https://www.postgresql.org/docs/current/static/arrays.html
https://www.postgresql.org/docs/current/static/functions-array.html
https://www.postgresql.org/docs/current/static/gin-intro.html

Chapter 23 Denormalized Data Types | 194

thumb for using them that way is that you mostly use the array as a whole, even
if youmight at times search for elements in the array. Heavier processing is going
to be more complex than a lookup table.

A classic example of a good use case for PostgreSQL arrays is user-deஹ஭ned tags.
For the next example, 200,000 USA geolocated tweets have been loaded into
PostgreSQL thanks to the following script:

1 begin;
2

3 create table tweet
4 (
5 id bigint primary key,
6 date date,
7 hour time,
8 uname text,
9 nickname text,
10 bio text,
11 message text,
12 favs bigint,
13 rts bigint,
14 latitude double precision,
15 longitude double precision,
16 country text,
17 place text,
18 picture text,
19 followers bigint,
20 following bigint,
21 listed bigint,
22 lang text,
23 url text
24);
25

26 \copy tweet from 'tweets.csv' with csv header delimiter ';'
27

28 commit;

Once the data is loaded we can have a look at it:
1 \pset format wrapped
2 \pset columns 70
3 table tweet limit 1;

Here’s what it looks like:
─[RECORD 1]──
id │ 721318437075685382
date │ 2016-04-16
hour │ 12:44:00
uname │ Bill Schulhoff
nickname │ BillSchulhoff

http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/

Chapter 23 Denormalized Data Types | 195

bio │ Husband,Dad,GrandDad,Ordained Minister, Umpire, Poker Pla…
│…yer, Mets, Jets, Rangers, LI Ducks, Sons of Anarchy, Surv…
│…ivor, Apprentice, O&A, & a good cigar

message │ Wind 3.2 mph NNE. Barometer 30.20 in, Rising slowly. Temp…
│…erature 49.3 °F. Rain today 0.00 in. Humidity 32%

favs │ ¤
rts │ ¤
latitude │ 40.76027778
longitude │ -72.95472222
country │ US
place │ East Patchogue, NY
picture │ http://pbs.twimg.com/profile_images/378800000718469152/53…

│…5032cf772ca04524e0fe075d3b4767_normal.jpeg
followers │ 386
following │ 705
listed │ 24
lang │ en
url │ http://www.twitter.com/BillSchulhoff/status/7213184370756…

│…85382

We can see that the raw import schema is not a good ஹ஭t for PostgreSQL capabili-
ties. The date and hour ஹ஭elds are separated for no good reason, and it makes pro-
cessing them less easy thanwhen they form a timestamptz together. PostgreSQL
does know how to handle longitude and latitude as a single point entry, allow-
ing much more interesting processing again. We can create a simpler relation to
manage and process a subset of the data we’re interested in for this chapter.

As we are interested in the tags used in the messages, the next query also extracts
all the tags from the Twitter messages as an array of text.

1 begin;
2

3 create table hashtag
4 (
5 id bigint primary key,
6 date timestamptz,
7 uname text,
8 message text,
9 location point,
10 hashtags text[]
11);
12

13 with matches as (
14 select id,
15 regexp_matches(message, '(#[^ ,]+)', 'g') as match
16 from tweet
17),
18 hashtags as (
19 select id,

Chapter 23 Denormalized Data Types | 196

20 array_agg(match[1] order by match[1]) as hashtags
21 from matches
22 group by id
23)
24 insert into hashtag(id, date, uname, message, location, hashtags)
25 select id,
26 date + hour as date,
27 uname,
28 message,
29 point(longitude, latitude),
30 hashtags
31 from hashtags
32 join tweet using(id);
33

34 commit;

ThePostgreSQLmatching function regexp_matchॽ() implementswhatweneed
here, with the g ஺ாag to return every match found and not just the ஹ஭rst tag in a
message. Those multiple matches are returned one per row, so we then group by
tweet id and array_aঃ over them, building our array of tags. Here’s what the
computed data looks like:

1 select id, hashtags
2 from hashtag
3 limit 10;

In the following data output, you can see that we kept the # signs in front of the
hashtags, making it easier to recognize what this data is:

id │ hashtags
════════════════════╪═══
720553447402160128 │ {#CriminalMischief,#ocso,#orlpol}
720553457015324672 │ {#txwx}
720553458596757504 │ {#DrugViolation,#opd,#orlpol}
720553466804989952 │ {#Philadelphia,#quiz}
720553475923271680 │ {#Retail,#hiring!,#job}
720553508190052352 │ {#downtown,#early…,#ghosttown,#longisland,#morn…

│…ing,#portjeff,#portjefferson}
720553522966581248 │ {"#CapitolHeights,",#Retail,#hiring!,#job}
720553530088669185 │ {#NY17}
720553531665682434 │ {#Endomondo,#endorphins}
720553532273795072 │ {#Job,#Nursing,"#Omaha,",#hiring!}

(10 rows)

Before processing the tags, we create a specializedGIN index. This index access
method allows PostgreSQL to index the contents of the arrays, the tags them-
selves, rather than each array as an opaque value.

1 create index on hashtag using gin (hashtags);

Chapter 23 Denormalized Data Types | 197

A popular tag in the dataset is #job, and we can easily see how many times it’s
been used, and conஹ஭rm that our previous index makes sense for looking inside
the hashtags array:

1 explain (analyze, verbose, costs off, buffers)
2 select count(*)
3 from hashtag
4 where hashtags @> array['#job'];
5 QUERY PLAN
6 ══
7 Aggregate (actual time=27.227..27.227 rows=1 loops=1)
8 Output: count(*)
9 Buffers: shared hit=3715
10 -> Bitmap Heap Scan on public.hashtag (actual time=13.023..23.453…
11 … rows=17763 loops=1)
12 Output: id, date, uname, message, location, hashtags
13 Recheck Cond: (hashtag.hashtags @> '{#job}'::text[])
14 Heap Blocks: exact=3707
15 Buffers: shared hit=3715
16 -> Bitmap Index Scan on hashtag_hashtags_idx (actual time=1…
17 …1.030..11.030 rows=17763 loops=1)
18 Index Cond: (hashtag.hashtags @> '{#job}'::text[])
19 Buffers: shared hit=8
20 Planning time: 0.596 ms
21 Execution time: 27.313 ms
22 (13 rows)

That was done supposing we already know one of the popular tags. How do we
get to discover that information, given our data model and data set? We do it
with the following query:

1 select tag, count(*)
2 from hashtag, unnest(hashtags) as t(tag)
3 group by tag
4 order by count desc
5 limit 10;

This time, as the query must scan all the hashtags in the table, it won’t use the
previous index of course. The unnest() function is a must-have when dealing
with arrays in PostgreSQL, as it allows processing the array’s content as if it were
just another relation. And SQL comes with all the tooling to process relations,
as we’ve already seen in this book.

So we can see the most popular hashtags in our dataset:
tag │ count

══════════════╪═══════
#Hiring │ 37964
#Jobs │ 24776

Chapter 23 Denormalized Data Types | 198

#CareerArc │ 21845
#Job │ 21368
#job │ 17763
#Retail │ 7867
#Hospitality │ 7664
#job? │ 7569
#hiring! │ 6860
#Job: │ 5953

(10 rows)

The hiring theme is huge in this dataset. We could then search for mentions of
job opportunities in the #Retail sector (another popular hashtag we just discov-
ered into the data set), and have a look at the locations where they are saying
they’re hiring:

1 select name,
2 substring(timezone, '/(.*)') as tz,
3 count(*)
4 from hashtag
5

6 left join lateral
7 (
8 select *
9 from geonames
10 order by location <-> hashtag.location
11 limit 1
12)
13 as geoname
14 on true
15

16 where hashtags @> array['#Hiring', '#Retail']
17

18 group by name, tz
19 order by count desc
20 limit 10;

For this query a dataset of geonamॽ has been imported. The left join lateral
allows picking the nearest location to the tweet location from our geoname refer-
ence table. Thewhere clause onlymatches the hashtag arrays containing both the
#Hiring and the #Retail tags. Finally, we order the data set by most promising
opportunities:

name │ tz │ count
══╪═════════════╪═══════
San Jose City Hall │ Los_Angeles │ 31
Sleep Inn & Suites Intercontinental Airport East │ Chicago │ 19
Los Angeles │ Los_Angeles │ 14
Dallas City Hall Plaza │ Chicago │ 12
New York City Hall │ New_York │ 11

Chapter 23 Denormalized Data Types | 199

Jw Marriott Miami Downtown │ New_York │ 11
Gold Spike Hotel & Casino │ Los_Angeles │ 10
San Antonio │ Chicago │ 10
Shoppes at 104 │ New_York │ 9
Fruitville Elementary School │ New_York │ 8

(10 rows)

PostgreSQL arrays are very powerful, andGIN indexing support makes them ef-
ஹ஭cient to workwith. Nonetheless, it’s still not so eஸஹ஭cient that youwould replace
a lookup table with an array in situations where you do a lot of lookups, though.

Also, some PostgreSQL array functions show a quadratic behavior: looping over
arrays elements really is ineஸஹ஭cient, so learn to use unnest() instead, and ஹ஭lter ele-
ments with awhere clause. If you see yourself doing that a lot, it might be a good
sign that you really needed a lookup table!

Composite Types

PostgreSQL tables aremade of tupleswith a known type. It is possible tomanage
that type separately from the main table, as in the following script:

1 begin;
2

3 create type rate_t as
4 (
5 currency text,
6 validity daterange,
7 value numeric
8);
9

10 create table rate of rate_t
11 (
12 exclude using gist (currency with =,
13 validity with &&)
14);
15

16 insert into rate(currency, validity, value)
17 select currency, validity, rate
18 from rates;
19

20 commit;

The rate table works exactly like the ratॽ one that we deஹ஭ned earlier in this chap-
ter.

https://www.postgresql.org/docs/current/static/gin-intro.html

Chapter 23 Denormalized Data Types | 200

1 table rate limit 10;

We get the kind of result we expect:
currency │ validity │ value

═════════════════════╪═════════════════════════╪══════════════
New Zealand Dollar │ [2017-05-01,2017-05-02) │ 1.997140
Colombian Peso │ [2017-05-01,2017-05-02) │ 4036.910000
Japanese Yen │ [2017-05-01,2017-05-02) │ 152.624000
Saudi Arabian Riyal │ [2017-05-01,2017-05-02) │ 5.135420
Qatar Riyal │ [2017-05-01,2017-05-02) │ 4.984770
Chilean Peso │ [2017-05-01,2017-05-02) │ 911.245000
Rial Omani │ [2017-05-01,2017-05-02) │ 0.526551
Iranian Rial │ [2017-05-01,2017-05-02) │ 44426.100000
Bahrain Dinar │ [2017-05-01,2017-05-02) │ 0.514909
Kuwaiti Dinar │ [2017-05-01,2017-05-02) │ 0.416722

(10 rows)

It is interesting to build composite types in advanced cases, which are not covered
in this book, such as:

• Management of Stored ProcedurॽAPI
• Advanced use cases of array of composite types

XML

The SQL standard includes a SQL/XML which introducॽ the predefined data
type XML together with constructors, several routinॽ, functions, and XML-to-
SQL data type mappings to support manipulation and storage of XML in a
SQL database, as per the Wikipedia page.

PostgreSQL implements the XML data type, which is documented in the chap-
ters on XML type and XML functions chapters.

The best optionwhen you need to process XMLdocumentsmight be the XSLT
transformation language for XML. It should be no surprise that a PostgreSQL
extension allows writing stored procedurॽ in this language. If you have to deal
with XML documents in your database, check out PL/XSLT.

An example of a PL/XSLT function follows:
1 create extension plxslt;
2

3 CREATE OR REPLACE FUNCTION striptags(xml) RETURNS text

https://en.wikipedia.org/wiki/SQL/XML
https://www.postgresql.org/docs/current/static/datatype-xml.html
https://www.postgresql.org/docs/current/static/functions-xml.html
https://en.wikipedia.org/wiki/XSLT
https://github.com/petere/plxslt

Chapter 23 Denormalized Data Types | 201

4 LANGUAGE xslt
5 AS $$<?xml version="1.0"?>
6 <xsl:stylesheet version="1.0"
7 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
8 xmlns="http://www.w3.org/1999/xhtml"
9 >
10

11 <xsl:output method="text" omit-xml-declaration="yes"/>
12

13 <xsl:template match="/">
14 <xsl:apply-templates/>
15 </xsl:template>
16

17 </xsl:stylesheet>
18 $$;

It can be used like this:
1 create table docs
2 (
3 id serial primary key,
4 content xml
5);
6

7 insert into docs(content)
8 values ('<?xml version="1.0"?>
9 <html xmlns="http://www.w3.org/1999/xhtml">
10 <body>hello</body>
11 </html>');
12

13 select id, striptags(content)
14 from docs;

As expected, here’s the result:
id │ striptags

════╪═══════════
1 │ ↵

│ hello ↵
│

(1 row)

The XML support in PostgreSQL might be handy in cases. It’s mainly been
added for standard compliance, though, and is not found a lot in the ஹ஭eld. XML
processing function and XML indexing is pretty limited in PostgreSQL.

Chapter 23 Denormalized Data Types | 202

JSON

PostgreSQLhas built-in support for JSONwith a great range of processing func-
tions and operators, and complete indexing support. The documentation covers
all the details in the chapters entitled JSONTypes and JSON Functions and Op-
erators.

PostgreSQL implemented a very simple JSON datatype back in the 9.2 release.
At that time the community pushed for providing a solution for JSON users,
in contrast to the usual careful pace, though still speedy. The JSON datatype
is actually text under the hood, with a veriஹ஭cation that the format is valid json
input… much likeXML.
Later, the community realized that the amount of JSON processing and ad-
vanced searching required in PostgreSQL would not be easy or reasonable to
implement over a text datatype, and implemented a binary version of the JSON
datatype, this time with a full set of operators and functions to work with.

There are some incompatibilities in between the text-based json datatype and the
newer jsonb version of it, where it’s been argued that b stands for better:

• The json datatype, being a text datatype, stores the data presentation ex-
actly as it is sent to PostgreSQL, including whitespace and indentation,
and also multiple-keys when present (no processing at all is done on the
content, only form validation).

• The jsonb datatype is an advanced binary storage format with full pro-
cessing, indexing and searching capabilities, and as such pre-processes the
JSONdata to an internal format, which does include a single value per key;
and also isn’t sensible to extra whitespace or indentation.

The data type you probably need andwant to use is jsonb, not the json early drafி
that is still available for backward compatibility reasons only. Here’s a very quick
example showing some diஸferences between those two datatypes:

1 create table js(id serial primary key, extra json);
2 insert into js(extra)
3 values ('[1, 2, 3, 4]'),
4 ('[2, 3, 5, 8]'),
5 ('{"key": "value"}');

The js table only has a primary key and a json column for extra information. It’s
not a good design, but we want a very simple example here and won’t be coding

https://www.postgresql.org/docs/current/static/datatype-json.html
https://www.postgresql.org/docs/current/static/functions-json.html
https://www.postgresql.org/docs/current/static/functions-json.html

Chapter 23 Denormalized Data Types | 203

any application on top of it, so it will do for the following couple SQL queries:
1 select * from js where extra @> '2';

When we want to search for entries where the extra column contains a number
in its array, we get the following error:
ERROR: operator does not exist: json @> unknown
LINE 1: select * from js where extra @> '2';

^
HINT: No operator matches the given name and argument type(s). ⏎
You might need to add explicit type casts.

Right. json is only text and not very powerful, and it doesn’t oஸfer an implemen-
tation for the contains operator. Switching the content to jsonb then:

1 alter table js alter column extra type jsonb;

Nowwe can run the same query again:
1 select * from js where extra @> '2';

And we ஹ஭nd out that of course our sample data set of two rows contains the
number 2 in the extra jsonb ஹ஭eld, which here only contains arrays of numbers:
id │ extra

════╪══════════════
1 │ [1, 2, 3, 4]
2 │ [2, 3, 5, 8]

(2 rows)

We can also search for JSON arrays containing another JSON array:
1 select * from js where extra @> '[2,4]';

This time a single row is found, as expected:
id │ extra

════╪══════════════
1 │ [1, 2, 3, 4]

(1 row)

Two use cases for JSON in PostgreSQL are very commonly found:

• The application needs to manage a set of documents that happen to be
formatted in JSON.

• Application designers and developers aren’t too sure about the exact set of
ஹ஭elds needed for a part of the data model, and want this data model to be
very easily extensible.

Chapter 23 Denormalized Data Types | 204

In the ஹ஭rst case, using jsonb is a great enabler in terms of your application’s ca-
pabilities to process the documents it manages, including searching and ஹ஭ltering
using the content of the document. See jsonb Indexing in the PostgreSQL docu-
mentation for more information about the jsonb_path_ops which can be used
as in the following example and provides a very good general purpose index for
the @> operator as used in the previous query:

1 create index on js using gin (extra jsonb_path_ops);

Now, it is possible to use jsonb as a ஺ாexible way to maintain your data model.
It is possible to then think of PostgreSQL like a schemaless service and have a
heterogeneous set of documents all in a single relation.

This trade-oஸf sounds interesting from amodel design andmaintenance perspec-
tive, but is very costly when it comes to daily queries and application develop-
ment: you never really knowwhat you’re going to ஹ஭nd out in the jsonb columns,
so you need to be very careful about your SQL statements as you might easily
miss rows you wanted to target, for example.

A good trade-oஸf is to design a model with some static columns are created and
managed traditionally, and an extra column of jsonb type is added for those
things you didn’t know yet, and that would be used only sometimes, maybe for
debugging reasons or special cases.

This works well until the application’s code is querying the extra column in ev-
ery situation because some important data is found only there. At this point,
it’s worth promoting parts of the extra ஹ஭eld content into proper PostgreSQL at-
tributes in your relational schema.

Enum

This data typehas been added toPostgreSQL inorder tomake it easier to support
migrations from MySQL. Proper relational design would use a reference table
and a foreign key instead:

1 create table color(id serial primary key, name text);
2

3 create table cars
4 (
5 brand text,
6 model text,

https://www.postgresql.org/docs/current/static/datatype-json.html#JSON-INDEXING

Chapter 23 Denormalized Data Types | 205

7 color integer references color(id)
8);
9

10 insert into color(name)
11 values ('blue'), ('red'),
12 ('gray'), ('black');
13

14 insert into cars(brand, model, color)
15 select brand, model, color.id
16 from (
17 values('ferari', 'testarosa', 'red'),
18 ('aston martin', 'db2', 'blue'),
19 ('bentley', 'mulsanne', 'gray'),
20 ('ford', 'T', 'black')
21)
22 as data(brand, model, color)
23 join color on color.name = data.color;

In this setup the table color lists available colors to choose from, and the cars
table registers availability of a model from a brand in a given color. It’s possible
to make an enum type instead:

1 create type color_t as enum('blue', 'red', 'gray', 'black');
2

3 drop table if exists cars;
4 create table cars
5 (
6 brand text,
7 model text,
8 color color_t
9);
10

11 insert into cars(brand, model, color)
12 values ('ferari', 'testarosa', 'red'),
13 ('aston martin', 'db2', 'blue'),
14 ('bentley', 'mulsanne', 'gray'),
15 ('ford', 'T', 'black');

Be aware that inMySQL there’s no create type statement for enum types, so each
column using an enum is assigned its own data type. As you now have a separate
anonymous data type per column, good luck maintaining a globally consistent
state if you need it.

Using the enum PostgreSQL facility is mostly a matter of taste. Afிer all, join
operations against small reference tables are well supported by the PostgreSQL
SQL engine.

24
PostgreSQL Extensions

The PostgreSQL contribmodules are a collection of additional features for your
favoriteRDBMS. In particular, youwill ஹ஭nd there extra data types such ashstore,
ltree, earthdistance, intarray or trigrams. You should deஹ஭nitely check out the
contribs out and have them available in your production environment.

Someof the extensionsprovided in the contrib sections are productiondiagnostic
tools, and you will be happy to have them on hand the day you need them, with-
out having to convince your production engineering team that they can trust the
package: they can, and it’s easier for them to include it from the get-go. Make it
so that postgresql-contribs is deployed for your development and production en-
vironments from day one.

PostgreSQL extensions are now covered in this second edition of the book.

https://www.postgresql.org/docs/9.6/static/contrib.html

Chapter 24 PostgreSQL Extensions | 207

Figure 24.1: The Postgresql object model manager for PHP

25
An interview with Grégoire Hubert

Grégoire Hubert has been a web developer for about as long as we have had web
applications, and his favorite web tooling is found in the PHP ecosystem. He
wrote POMM to help integrate PostgreSQL and PHP better. POMMprovides
developers with unlimited access to SQL and database features while proposing
a high-level API over low-level drivers.

Considering that you have diஸferent layers of code in a web application, for exam-
ple client-side JavaScript, backend-side PHPand SQL,what do you think should
be the role of each layer?

Web applications are historically built on a pile of layers that can be
seen ॼ an information chain. At one end there ॾ the client that can
run a local application in JavaScript, at the other end, there ॾ the
database. The client calls an application server either synchronously
or asynchronously through an HTTP web service most of the time.
Thॾ data exchange ॾ interesting because data are highly denormal-
ized and shaped to fit business needs in the browser. The application
server hॼ the tricky job to store the data and shape them ॼ needed
by the client. There are several patterns to do that, the most com-
mon ॾ the Model/View/Controller also known ॼ MVC. In thॾ
architecture, the task of dealing with the database ॾ handed to the
model layer.

In terms of business logic, having a full-blown programming language both on
the client side and on the server-side makes it complex to decide where to imple-

http://www.pomm-project.org

Chapter 25 An interview with Grégoire Hubert | 209

ment what, at times. And there’s also this SQL programming language on the
database side. Howmuch of your business logic would you typically hand oஸf to
PostgreSQL?

I am essentially dealing with SQL& PHP on a server side. PHP ॾ
an object-oriented imperative programming language which means
it ॾ good at execution control logic. SQL ॾ a set-oriented declarative
programming language and ॾ perfect for data computing. Knowing
thॾ, it ॾ easily understandable that business workflow and data
shaping must be made each in its layer. The tricky question ॾ not
which part of the business logic should be handled by what but how
to mix efficiently these two paradigms (the famoॿ impedance mis-
match known to ORM users) and thॾ ॾ what the Pomm Model
Manager ॾ good at. Separating business control from data com-
putation also explains why I am reluctant to use database vendor
procedural languagॽ.

At the database layer we have to consider both the data model and the queries.
How do you deal with relational constraints? What are the beneஹ஭ts and draw-
backs of those constraints when compared to a “schemaless” approach?

The normal form guarantiॽ consistency over time. Thॾ ॾ critical
for business-oriented applications. Surprisingly, only a few people
know how to use the normal form, most of the time, it ends up
in a bunch of tablॽ with one primary key per relation. It ॾ like
tablॽ were spreadsheets because people focॿ on valuॽ. Relational
databasॽ are by far more powerful than that ॼ they emphasize
typॽ. Tablॽ are type definitions. With that approach in mind, in-
teractions between tuplॽ can easily be addressed. All typॽ life cyclॽ
can be modeled thॾ way. Modern relational databasॽ offer a lot of
tools to achieve that, the most powerful being ACID transactions.
Somehow, for a long time, the normal form wॼ a pain when it
wॼ to represent extensible data. Most of the time, thॾ data had
no computation on them but they still had to be searchable and
at least … here. The support of unstructured typॽ like XML or
JSON in relational databasॽ ॾ a huge step forward in focusing on
what’s really important. Now, in one field there can be labels with
translation, multiple postal addressॽ, media definitions, etc. that
were creating a lot of noise in the database schemॼ before. These
are application-oriented structurॽ. It means the database doॽ not

Chapter 25 An interview with Grégoire Hubert | 210

have to care about their consistency and they are complex business
structure for the application layer.

Integrating SQL in your application’s source code can be quite tricky. How do
you typically approach that?

It all started from here. Pomm’s approach wॼ about finding a way
to mix SQL & PHP in order to leverage Postgrॽ featurॽ in appli-
cations. Marrying application object oriented with relational ॾ not
easy, the most significant step ॾ to understand that since SQL usॽ a
projection (the list of fields in a SELECT) to transform the returned
type, entitiॽ had to be flexible objects. They had to be database ig-
norants. Thॾ ॾ the complete opposite of the Active Record design
pattern. Since it ॾ not possible to perform SQL queriॽ from entitiॽ
it becomॽ difficult to have nested loops. The philosophy ॾ really sim-
ple: call the method that performs the most efficient query for your
needs, it will return an iterator on results that will pop flexible (yet
typed) entitiॽ. Each entity hॼ one or more model classॽ that de-
fine custom queriॽ and a default projection shared by thesॽ queriॽ.
Furthermore, it ॾ very convenient to write SQL queriॽ and use a
placeholder in place of the list of fields of the main SELECT.

Part VI

Data Modeling

| 212

As a developer using PostgreSQL one of the most important tasks you have to
deal with is modeling the database schema for your application. In order to
achieve a solid design, it’s important to understand how the schema is then going
to be used as well as the trade-oஸfs it involves.

Show me your flowcharts and conceal your tablॽ, and I shall con-
tinue to be mystified. Show me your tablॽ, and I won’t usually
need your flowcharts; they’ll be obvioॿ.
Fred Brooks

Depending on the schema you choose for your application, some business cases
are going to be easier to solve than others, and given the wrong set of trade-
oஸfs, some SQL queries turn out to be really diஸஹ஭cult to write… or impossible
to achieve in a single query with an acceptable level of performances.

Aswith application code design, the databasemodel should bemeant for the nor-
mal business it serves. As Alan Kay put it simple things should be simple, com-
plex things should be possible. You know your database schema is good when all
the very simple business cases turn out to be implemented as rather simple SQL
queries, yet it’s still possible to address very speciஹ஭c advanced needs in reporting
or fraud detection, or accounting oddities.

In this book, the data modeling chapter comes quite late for this reason: the
testing of a databasemodel is done bywriting SQLqueries for it, with real-world
application and business use cases to answer at the psql prompt. Now that we’ve
seen what can be done in SQL with basic, standard and advanced features of
PostgreSQL, it makes sense to dive into database modeling.

https://en.wikiquote.org/wiki/Alan_Kay

26
Object Relational Mapping

Designing a database model reminds one of designing an application’s object
model, to some degree. This is so much the case that sometimes youmight won-
der ifmaintaining both is a case of violating theDon’tRepeat Yourself (orDRY)
principle.

There’s a fundamental diஸference between the application’s design of its internal
state (object-oriented or not) and the database model, though:

• The application implements work஺ாows, user stories, ways to interact with
the system with presentation layers, input systems, event collection APIs
and other dynamic and user-oriented activities.

• The database model ensures a consistent view of the whole world at all
times, allowing every actor to mind their own business and protecting
them from each other so that the world you are working with continues
to make sense as a whole.

As a consequence, the object model of the application is best when it’s speciஹ஭c to
a set of user storiॽmaking up a solid part of the whole product.
For example, in a marketplace application, the user publication system is dedi-
cated to getting information from the user andmaking it available to other users.
Theobjectmodel for this part of the applicationmight needpricing information,
but it knows nothing about the customer’s invoicing system.

The database model must ensure that every user action being paid for is
accounted for correctly, and invoiced appropriately to the right party, either

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Chapter 26 Object Relational Mapping | 214

via internal booking or sent to customers. Invoicing usually implements rules
for VAT by country, depending on the kind of goods as well as if the buyer is a
company or an individual.

Maintaining a single object model for the whole application tends to lead to
monolith application design and to reducedmodularity, which then slows down
the development and accelerates technical debt.

Best practice application design separates user work஺ாow from systemic consis-
tency, and transactions have been invented as a mechanism to implement the
latter. Your relational database management system is meant to be part of your
application design, ensuring a consistent world at all times.

Database modeling is very diஸferent from object modeling. There are reliable
snapshots of a constantly evolving world on the one side, and transient in-஺ாights
work஺ாows on the other side.

https://en.wikipedia.org/wiki/Monolithic_application

27
Tooling for Database Modeling

The psql tool implements the SQL REPL for PostgreSQL and supports the
whole set of SQL languages, including data definition language. It’s then possi-
ble to have immediate feedback on some design choices or to check out possibil-
ities and behaviors right from the console.

Visual display of a databasemodel tends to be helpful too, in particular to under-
stand the model when ஹ஭rst exposed to it.

The database schema is living with your application and business and as such
it needs versioning and maintenance. New tables are going to be implemented
to support new products, and existing relations are going to evolve in order to
support new product features, too.

As with code that is deployed and used, adding features while retaining compat-
ibility to existing use cases is much harder and time consuming than writing the
ஹ஭rst version. And the ஹ஭rst version usually is anMVP of sorts, much simpler than
the Real Thing™ anyway.

To cater to needs associated with long-term maintenance we need versioning.
Here, it is schema versioning in production, and also versioning of the source
code of your database schema. Naturally, this is easily achieved when using SQL
ஹ஭les to handle your schema, of course.

Some visual tools allow one to connect to an existing database schema and pre-
pare the visual documentation from the tables and constraints (primary keys,
foreign keys, etc) found in the PostgreSQL catalogs. Those tools allow for both

https://en.wikipedia.org/wiki/Minimum_viable_product

Chapter 27 Tooling for Database Modeling | 216

production ready schema versioning and visual documentation.

In this book, we focus on the schema itself rather than its visual representation,
so this chapter contains SQL code that you can version control together with
your application’s code.

How to Write a Database Model

In the writing SQL queries chapter we saw how towrite SQL queries as separate
.sql ஹ஭les, and we learnt about using query parameters with the psql syntax for
that (:variable, :'variable', and :"identifier"). For writing our database
model, the same tooling is all we need. An important aspect of using psql is its
capacity toprovide immediate feedback, andwe can also have thatwithmodeling
too.

1 create database sandbox;

Now you have a place where to try things out without disturbing existing appli-
cation code. If you need to interact with existing SQL objects, it might be better
to use a schema rather than a full-blown separate database:

1 create schema sandbox;
2 set search_path to sandbox;

In PostgreSQL, each database is an isolated environment. A connection string
must pick a target database, and it’s not possible for one database to interact with
objects from another one, because catalogs are kept separated. This is great for
isolation purposes. If you want to be able to join data in between your sandbox
and your application models, use a schema instead.
When trying a new schema, it’s nice to be able to reஹ஭ne it as you go, trying things
out. Here’s a simple and eஸfective trick to enable that: write your schema as a SQL
scriptwith explicit transaction control, and ஹ஭nish itwith your testing queries and
a rollback.
In the following example, we iterate over the deஹ஭nition of a schema for a kind of
forum application about the news. Articles are written and tagged with a single
category, which is selected from a curated list that is maintained by the editors.
Users can read the articles, of course, and comment on them. In thisMVP, it’s
not possible to comment on a comment.

Chapter 27 Tooling for Database Modeling | 217

Wewould like to have a schema and a data set to play with, with some categories,
an interesting number of articles and a random number of comments for each
article.

Here’s a SQL script that creates the ஹ஭rst version of our schema and populates
it with random data following the speciஹ஭cations above, which are intentionally
pretty loose. Notice how the script is contained within a single transaction and
ends with a rollback statement: PostgreSQL even implements transaction for
DDL statements.

1 begin;
2

3 create schema if not exists sandbox;
4

5 create table sandbox.category
6 (
7 id serial primary key,
8 name text not null
9);
10

11 insert into sandbox.category(name)
12 values ('sport'),('news'),('box office'),('music');
13

14 create table sandbox.article
15 (
16 id bigserial primary key,
17 category integer references sandbox.category(id),
18 title text not null,
19 content text
20);
21

22 create table sandbox.comment
23 (
24 id bigserial primary key,
25 article integer references sandbox.article(id),
26 content text
27);
28

29 insert into sandbox.article(category, title, content)
30 select random(1, 4) as category,
31 initcap(sandbox.lorem(5)) as title,
32 sandbox.lorem(100) as content
33 from generate_series(1, 1000) as t(x);
34

35 insert into sandbox.comment(article, content)
36 select random(1, 1000) as article,
37 sandbox.lorem(150) as content
38 from generate_series(1, 50000) as t(x);
39

40 select article.id, category.name, title

Chapter 27 Tooling for Database Modeling | 218

41 from sandbox.article
42 join sandbox.category
43 on category.id = article.category
44 limit 3;
45

46 select count(*),
47 avg(length(title))::int as avg_title_length,
48 avg(length(content))::int as avg_content_length
49 from sandbox.article;
50

51 select article.id, article.title, count(*)
52 from sandbox.article
53 join sandbox.comment
54 on article.id = comment.article
55 group by article.id
56 order by count desc
57 limit 5;
58

59 select category.name,
60 count(distinct article.id) as articles,
61 count(*) as comments
62 from sandbox.category
63 left join sandbox.article on article.category = category.id
64 left join sandbox.comment on comment.article = article.id
65 group by category.name
66 order by category.name;
67

68 rollback;

This SQL script references ad-hoc functions creating a random data set. This
time for the book I’ve been using a source of Lorem Ipsum texts and some varia-
tions on the random() function. Typical usage of the script would be at the psql
prompt thanks to the \i command:
yesql# \i .../path/to/schema.sql
BEGIN
...
CREATE TABLE
INSERT 0 4
CREATE TABLE
CREATE TABLE
INSERT 0 1000
INSERT 0 50000
id │ name │ title

════╪════════════╪═══
1 │ sport │ Debitis Sed Aperiam Id Ea
2 │ sport │ Aspernatur Elit Cumque Sapiente Eiusmod
3 │ box office │ Tempor Accusamus Quo Molestiae Adipisci

(3 rows)

count │ avg_title_length │ avg_content_length
═══════╪══════════════════╪════════════════════

Chapter 27 Tooling for Database Modeling | 219

1000 │ 35 │ 738
(1 row)

id │ title │ count
═════╪═══╪═══════
187 │ Quos Quaerat Ducimus Pariatur Consequatur │ 73
494 │ Inventore Eligendi Natus Iusto Suscipit │ 73
746 │ Harum Saepe Hic Tempor Alias │ 70
223 │ Fugiat Sed Dolorum Expedita Sapiente │ 69
353 │ Dignissimos Tenetur Magnam Quaerat Suscipit │ 69

(5 rows)

name │ articles │ comments
════════════╪══════════╪══════════
box office │ 322 │ 16113
music │ 169 │ 8370
news │ 340 │ 17049
sport │ 169 │ 8468

(4 rows)

ROLLBACK

As the script ends with a ROLLBACK command, you can now edit your
schema and do it again, at will, without having to ஹ஭rst clean up the previous
run.

Generating Random Data

In the previous script, you might have noticed calls to functions that don’t
exist in the distribution of PostgreSQL, such as random(int, int) or sand-
box.lorem(int). Here’s a complete ad-hoc deஹ஭nition for them:

1 begin;
2

3 create schema if not exists sandbox;
4

5 drop table if exists sandbox.lorem;
6

7 create table sandbox.lorem
8 (
9 word text
10);
11

12 with w(word) as
13 (
14 select regexp_split_to_table('Lorem ipsum dolor sit amet, consectetur
15 adipiscing elit, sed do eiusmod tempor incididunt ut labore et

Chapter 27 Tooling for Database Modeling | 220

16 dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
17 exercitation ullamco laboris nisi ut aliquip ex ea commodo
18 consequat. Duis aute irure dolor in reprehenderit in voluptate velit
19 esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
20 cupidatat non proident, sunt in culpa qui officia deserunt mollit
21 anim id est laborum.'
22 , '[\s.,]')
23 union
24 select regexp_split_to_table('Sed ut perspiciatis unde omnis iste natus
25 error sit voluptatem accusantium doloremque laudantium, totam rem
26 aperiam, eaque ipsa quae ab illo inventore veritatis et quasi
27 architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam
28 voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia
29 consequuntur magni dolores eos qui ratione voluptatem sequi
30 nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit
31 amet, consectetur, adipisci velit, sed quia non numquam eius modi
32 tempora incidunt ut labore et dolore magnam aliquam quaerat
33 voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem
34 ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi
35 consequatur? Quis autem vel eum iure reprehenderit qui in ea
36 voluptate velit esse quam nihil molestiae consequatur, vel illum qui
37 dolorem eum fugiat quo voluptas nulla pariatur?'
38 , '[\s.,]')
39 union
40 select regexp_split_to_table('At vero eos et accusamus et iusto odio
41 dignissimos ducimus qui blanditiis praesentium voluptatum deleniti
42 atque corrupti quos dolores et quas molestias excepturi sint
43 occaecati cupiditate non provident, similique sunt in culpa qui
44 officia deserunt mollitia animi, id est laborum et dolorum fuga. Et
45 harum quidem rerum facilis est et expedita distinctio. Nam libero
46 tempore, cum soluta nobis est eligendi optio cumque nihil impedit
47 quo minus id quod maxime placeat facere possimus, omnis voluptas
48 assumenda est, omnis dolor repellendus. Temporibus autem quibusdam
49 et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et
50 voluptates repudiandae sint et molestiae non recusandae. Itaque
51 earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
52 voluptatibus maiores alias consequatur aut perferendis doloribus
53 asperiores repellat.'
54 , '[\s.,]')
55)
56 insert into sandbox.lorem(word)
57 select word
58 from w
59 where word is not null
60 and word <> '';
61

62 create or replace function random(a int, b int)
63 returns int
64 volatile
65 language sql
66 as $$
67 select a + ((b-a) * random())::int;

Chapter 27 Tooling for Database Modeling | 221

68 $$;
69

70 create or replace function sandbox.lorem(len int)
71 returns text
72 volatile
73 language sql
74 as $$
75 with words(w) as (
76 select word
77 from sandbox.lorem
78 order by random()
79 limit len
80)
81 select string_agg(w, ' ')
82 from words;
83 $$;
84

85 commit;

The not-so-random Latin text comes from Lorem Ipsum and is a pretty good
base for generating random content. We go even further by separating words
from their context and then aggregating them together completely at random in
the sandbox.lorem(int) function.
The method we use to get N words at random is known to be rather ineஸஹ஭cient
given large data sources. If you have this use case to solve with a big enough
table, thenhave a look at selecting randomrows froma table article fromAndrew
Gierth, now a PostgreSQL committer.

Modeling Example

Now that we have some data to play with, we can test some application queries
for known user stories in theMVP, like maybe listing the most recent articles
per category with the ஹ஭rst three comments on each article.

That’s when we realize our previous schema design misses publication times-
tamps for articles and comments. We need to add this information to our drafி
model. As it is all a drafி with random data, the easiest way around this you
already committed the data previously (by editing the script) is to simply drop
schema cascade as shown here:
yesql# drop schema sandbox cascade;

NOTICE: drop cascades to 5 other objects

http://lipsum.com/
http://blog.rhodiumtoad.org.uk/2009/03/08/selecting-random-rows-from-a-table/
http://blog.rhodiumtoad.org.uk/
http://blog.rhodiumtoad.org.uk/

Chapter 27 Tooling for Database Modeling | 222

DETAIL: drop cascades to table sandbox.lorem
drop cascades to function sandbox.lorem(integer)
drop cascades to table sandbox.category
drop cascades to table sandbox.article
drop cascades to table sandbox.comment
DROP SCHEMA

The next version of our schema then looks like this:
1 begin;
2

3 create schema if not exists sandbox;
4

5 create table sandbox.category
6 (
7 id serial primary key,
8 name text not null
9);
10

11 insert into sandbox.category(name)
12 values ('sport'),('news'),('box office'),('music');
13

14 create table sandbox.article
15 (
16 id bigserial primary key,
17 category integer references sandbox.category(id),
18 pubdate timestamptz,
19 title text not null,
20 content text
21);
22

23 create table sandbox.comment
24 (
25 id bigserial primary key,
26 article integer references sandbox.article(id),
27 pubdate timestamptz,
28 content text
29);
30

31 insert into sandbox.article(category, title, pubdate, content)
32 select random(1, 4) as category,
33 initcap(sandbox.lorem(5)) as title,
34 random(now() - interval '3 months',
35 now() + interval '1 months') as pubdate,
36 sandbox.lorem(100) as content
37 from generate_series(1, 1000) as t(x);
38

39 insert into sandbox.comment(article, pubdate, content)
40 select random(1, 1000) as article,
41 random(now() - interval '3 months',
42 now() + interval '1 months') as pubdate,
43 sandbox.lorem(150) as content

Chapter 27 Tooling for Database Modeling | 223

44 from generate_series(1, 50000) as t(x);
45

46 select article.id, category.name, title
47 from sandbox.article
48 join sandbox.category
49 on category.id = article.category
50 limit 3;
51

52 select count(*),
53 avg(length(title))::int as avg_title_length,
54 avg(length(content))::int as avg_content_length
55 from sandbox.article;
56

57 select article.id, article.title, count(*)
58 from sandbox.article
59 join sandbox.comment
60 on article.id = comment.article
61 group by article.id
62 order by count desc
63 limit 5;
64

65 select category.name,
66 count(distinct article.id) as articles,
67 count(*) as comments
68 from sandbox.category
69 left join sandbox.article on article.category = category.id
70 left join sandbox.comment on comment.article = article.id
71 group by category.name
72 order by category.name;
73

74 commit;

To be able to generate random timestamp entries, the script uses another func-
tion that’s not provided by default in PostgreSQL, and here’s its deஹ஭nition:

1 create or replace function random
2 (
3 a timestamptz,
4 b timestamptz
5)
6 returns timestamptz
7 volatile
8 language sql
9 as $$
10 select a
11 + random(0, extract(epoch from (b-a))::int)
12 * interval '1 sec';
13 $$;

Nowwe canhave a go at solving the ஹ஭rst query of the product’sMVP, as speciஹ஭ed
before, on this schema drafி version. That should provide a taste of the schema

Chapter 27 Tooling for Database Modeling | 224

and how well it implements the business rules.

The following query lists themost recent articles per category with the ஹ஭rst three
comments on each article:

1 \set comments 3
2 \set articles 1
3

4 select category.name as category,
5 article.pubdate,
6 title,
7 jsonb_pretty(comments) as comments
8

9 from sandbox.category
10 /*
11 * Classic implementation of a Top-N query
12 * to fetch 3 most articles per category
13 */
14 left join lateral
15 (
16 select id,
17 title,
18 article.pubdate,
19 jsonb_agg(comment) as comments
20 from sandbox.article
21 /*
22 * Classic implementation of a Top-N query
23 * to fetch 3 most recent comments per article
24 */
25 left join lateral
26 (
27 select comment.pubdate,
28 substring(comment.content from 1 for 25) || '…'
29 as content
30 from sandbox.comment
31 where comment.article = article.id
32 order by comment.pubdate desc
33 limit :comments
34)
35 as comment
36 on true -- required with a lateral join
37

38 where category = category.id
39

40 group by article.id
41 order by article.pubdate desc
42 limit :articles
43)
44 as article
45 on true -- required with a lateral join
46

47 order by category.name, article.pubdate desc;

Chapter 27 Tooling for Database Modeling | 225

The ஹ஭rst thing we notice when running this query is the lack of indexing for
it. This chapter contains a more detailed guide on indexing, so for now in the
introductory material we just issue these statements:

1 create index on sandbox.article(pubdate);
2 create index on sandbox.comment(article);
3 create index on sandbox.comment(pubdate);

Here’s the query result set, with some content removed. The query has been
edited for a nice result text which ஹ஭ts in the book pages, using jsonb_pretty() and
substring(). When embedding it in application’s code, this extra processing ougth
to be removed from the query. Here’s the result, with a single article per category
and the three most recent comments per article, as a JSONB document:
─[RECORD 1]───
category │ box office
pubdate │ 2017-09-30 07:06:49.681844+02
title │ Tenetur Quis Consectetur Anim Voluptatem
comments │ [↵

│ { ↵
│ "content": "adipisci minima ducimus r…", ↵
│ "pubdate": "2017-09-27T09:43:24.681844+02:00"↵
│ }, ↵
│ { ↵
│ "content": "maxime autem modi ex even…", ↵
│ "pubdate": "2017-09-26T00:34:51.681844+02:00"↵
│ }, ↵
│ { ↵
│ "content": "ullam dolorem velit quasi…", ↵
│ "pubdate": "2017-09-25T00:34:57.681844+02:00"↵
│ } ↵
│]

═[RECORD 2]═══
category │ music
pubdate │ 2017-09-28 14:51:13.681844+02
title │ Aliqua Suscipit Beatae A Dolor
...
═[RECORD 3]═══
category │ news
pubdate │ 2017-09-30 05:05:51.681844+02
title │ Mollit Omnis Quaerat Do Odit
...
═[RECORD 4]═══
category │ sport
pubdate │ 2017-09-29 17:08:13.681844+02
title │ Placeat Eu At Consequuntur Explicabo
...

We get this result in about 500ms to 600ms on a laptop, and the timing is down
to about 150ms when the substring(comment.content from 1 for 25) || ‘…’ part

Chapter 27 Tooling for Database Modeling | 226

is replaced with just comment.content. It’s fair to use it in production, with the
proper caching strategy in place, i.e. we expect more article reads than writes.
You’ll ஹ஭nd more on caching later in this chapter.

Our schema is a good ஹ஭rst version for answering theMVP:
• It follows normalization rules as seen in the next parts of this chapter.

• It allowswriting themain use case as a single query, and even if the query is
on the complex side it runs fast enoughwith a sample of tens of thousands
of articles and ஹ஭fிy thousands of comments.

• The schema allows an easy implementation of work஺ாows for editing cate-
gories, articles, and comments.

This drafி schema is a SQL ஹ஭le, so it’s easy to check it into your versioning sys-
tem, share it with your colleagues and deploy it to development, integration and
continuous testing environments.

For visual schema needs, tools are available that connect to a PostgreSQL
database and help in designing a proper set of diagrams from the live schema.

28
Normalization

Your databasemodel is there to support all your business cases and continuously
provide a consistent view of your world as a whole. For that to be possible,
some rules have been built up and improved upon over the years. Themain goal
of those design rules is an overall consistency for all the data managed in your
schema.

Database normalization ॾ the process of organizing the columns
(attributॽ) and tablॽ (relations) of a relational database to reduce
data redundancy and improve data integrity. Normalization ॾ
also the process of simplifying the design of a database so that it
achievॽ the optimal structure. It wॼ first proposed by Edgar F.
Codd, ॼ an integral part of a relational model.

Data Structures and Algorithms

Afிer having done all those SQL queries and reviewed join operations, grouping
operations, ஹ஭ltering in thewhere clause and othermore sophisticated processing,
it should come as no surprise that SQL is declarative, and as such we are not
writing the algorithms to execute in order to retrieve the data we need, but rather
expressing what is the result set that we are interested into.

Still, PostgreSQL transforms our declarative query into an execution plan. This
plan makes use of classical algorithms such as nested loops,merge joins, and hash

https://en.wikipedia.org/wiki/Database_normalization#Normal_forms

Chapter 28 Normalization | 228

joins, and also in-memory quicksort or a tape sort when data doesn’t ஹ஭t in mem-
ory and PostgreSQL has to spill to disk. The planner and optimiser in Post-
greSQL also knowhow to divide up a single query’s work into several concurrent
workers for obtaining a result in less time.

When implementing the algorithms ourselves, we know that themost important
thing to get right is the data structure onto which we implement computations.
As Rob Pike says it in Notes on Programming in C:

Rule 5. Data dominatॽ. If you’ve chosen the right data structurॽ
and organized things well, the algorithms will almost always be self-
evident. Data structurॽ, not algorithms, are central to program-
ming. (See Brooks p. 102.)

In Basics of the Unix Philosophy we read some design principles of the Unix
operating system that apply almost verbatim to the problem space of database
modeling:

1. Rule of Modularity
Write simple parts connected by clean interfacॽ.

2. Rule of Clarity
Clarity ॾ better than cleverness.

3. Rule of Composition
Design programs to be connected to other programs.

4. Rule of Separation
Separate policy from mechanism; separate interfacॽ from enginॽ.

5. Rule of Simplicity
Design for simplicity; add complexity only where you must.

6. Rule of Parsimony
Write a big program only when it ॾ clear by demonstration that nothing
else will do.

7. Rule of Transparency
Design for visibility to make inspection and debuঃing easier.

https://en.wikipedia.org/wiki/Rob_Pike
http://www.lysator.liu.se/c/pikestyle.html
http://www.faqs.org/docs/artu/ch01s06.html

Chapter 28 Normalization | 229

8. Rule of Robustness
Robustness ॾ the child of transparency and simplicity.

9. Rule of Representation
Fold knowledge into data so program logic can be stupid and robust.

10. Rule of Least Surprise
In interface design, always do the least surprising thing.

11. Rule of Silence
When a program hॼ nothing surprising to say, it should say nothing.

12. Rule of Repair
When you must fail, fail noisily and ॼ soon ॼ possible.

13. Rule of Economy
Programmer time ॾ expensive; conserve it in preference to machine time.

14. Rule of Generation
Avoid hand-hacking; write programs to write programs when you can.

15. Rule of Optimization
Prototype before polishing. Get it working before you optimize it.

16. Rule of Diversity
Distrust all claims for “one true way”.

17. Rule of Extensibility
Design for the future, because it will be here sooner than you think.

While some of those (such as rule of silence) can’t really apply to databasemodel-
ing, most of them do so in a very direct way. Normal forms oஸfer a practical way
to enforce respect for those rules. SQL provides a clean interface to connect our
data structures: the join operations.

As we’re going to see later, a database model with fewer tables isn’t a better or
simpler datamodel. TheRule of Separationmight be themost important in that
list. Also, the Rule of Representaion in database modeling is re஺ாected directly in

Chapter 28 Normalization | 230

the choice of correct data types with advanced behavior and processing function
availability.

To summarize all those rules and the diஸferent levels for normal forms, I believe
that you need to express your intentions ஹ஭rst. Anyone reading your database
schema should instantly understand your business model.

Normal Forms

There are several levels of normalization and the web site dbnormalization.com
oஸfers a practical guide to them. In this quick introduction to database normal-
ization, we include the deஹ஭nition of the normal forms:

• 1st Normal Form (1NF)
A table (relation) is in 1NF if:
1. There are no duplicated rows in the table.
2. Each cell is single-valued (no repeating groups or arrays).
3. Entries in a column (ஹ஭eld) are of the same kind.

• 2nd Normal Form (2NF)
A table is in 2NF if it is in 1NF and if all non-key attributes are depen-
dent on all of the key. Since a partial dependency occurs when a non-key
attribute is dependent on only a part of the composite key, the deஹ஭nition
of 2NF is sometimes phrased as: “A table is in 2NF if it is in 1NF and if
it has no partial dependencies.”

• 3rd Normal Form (3NF)
A table is in 3NF if it is in 2NF and if it has no transitive dependencies.

• Boyce-Codd Normal Form (BCNF)
A table is in BCNF if it is in 3NF and if every determinant is a candidate
key.

• 4th Normal Form (4NF)
A table is in 4NF if it is in BCNF and if it has nomulti-valued dependen-
cies.

http://www.dbnormalization.com/

Chapter 28 Normalization | 231

• 5th Normal Form (5NF)
A table is in 5NF, also called “Projection-join Normal Form” (PJNF), if
it is in 4NF and if every join dependency in the table is a consequence of
the candidate keys of the table.

• Domain-Key Normal Form (DKNF)
A table is inDKNF if every constraint on the table is a logical consequence
of the deஹ஭nition of keys and domains.

What all of this say is that if youwant to be able to process data in your database,
using the relational model and SQL as your main tooling, then it’s best not to
make a total mess of the information and keep it logically structured.

In practice database models ofிen reach for BCNF or 4NF ; going all the way to
theDKNF design is only seen in speciஹ஭c cases.

Database Anomalies

Failure to normalize your model may cause database anomaliॽ. Quoting the
wikipedia article again:

When an attempt ॾ made to modify (update, insert into, or delete from) a
relation, the following undesirable side-effects may arise in relations that have
not been sufficiently normalized:

• Update anomaly
The same information can be expressed onmultiple rows; therefore updatॽ
to the relation may result in logical inconsistenciॽ. For example, each
record in an “Employeॽ’ Skills” relation might contain an Employee ID,
Employee Address, and Skill; thॿ a change of address for a particular
employee may need to be applied to multiple records (one for each skill). If
the update ॾ only partially successful — the employee’s address ॾ updated
on some records but not others — then the relation ॾ left in an inconsistent
state. Specifically, the relation providॽ conflicting answers to the question
of what thॾ particular employee’s address ॾ. Thॾ phenomenon ॾ known
ॼ an update anomaly.

• Insertion anomaly

Chapter 28 Normalization | 232

There are circumstancॽ in which certain facts cannot be recorded at all.
For example, each record in a “Faculty and Their Coursॽ” relation might
contain a Faculty ID, Faculty Name, Faculty Hire Date, and Course
Code. Therefore we can record the details of any faculty member who
teachॽ at least one course, but we cannot record a newly hired faculty
member who hॼ not yet been assigned to teach any coursॽ, except by
setting the Course Code to null. Thॾ phenomenon ॾ knownॼ an insertion
anomaly.

• Deletion anomaly
Under certain circumstancॽ, deletion of data representing certain facts
necessitatॽ deletion of data representing completely different facts. The
“Faculty and Their Coursॽ” relation described in the previoॿ example
suffers from thॾ type of anomaly, for if a facultymember temporarily ceasॽ
to be assigned to any coursॽ, we must delete the last of the records on which
that faculty member appears, effectively also deleting the faculty member,
unless we set the Course Code to null. Thॾ phenomenon ॾ known ॼ a
deletion anomaly.

A database model that implements normal forms avoids those anomalies, and
that’s why BCNF or 4NF are recommended. Sometimes though some trade-
oஸfs are possible with the normalization process, as in the following example.

Modeling an Address Field

Modeling an address ஹ஭eld is a practical use case for normalization, where if you
want to respect all the rules you end up with a very complex schema. That said,
the answer depends on your application domain; it’s not the same if you are con-
necting people to your telecom network, shipping goods, or just invoicing at the
given address.

For invoicing, all we need is a text column where to store whatever our user is
entering. Our only use for that information is going to be for printing invoices,
and we will be sending the invoice in PDF over e-mail anyway.

Now if you’re in the delivery business, you need to ensure the address physically
exists, is reachable by your agents, andyoumightneed tooptimize delivery routes
by packing together goods in the same truck and ஹ஭nding the most eஸஹ஭cient route

Chapter 28 Normalization | 233

in termsof fuel consumption, time spent andhowmanypackages you candeliver
in a single shifி.

Then an address ஹ஭eld looks quite diஸferent than a single text entry:
• We need to have a — possibly geolocalized — list of cities as a reference,
andwe know that the same city name can be found in several regions, such
as Portland which is a very common name apparently.

• So for our cities, we need a reference table of districts and regions within
each country (regions would be states in the USA, Länder in Germany,
etc), and then it’s possible to reference a city without ambiguity.

• Each city is composed of a list of streets, and of course, those names are
reused a lot within cities of regions using the same language, so we need a
reference table of street names and then an association table of street names
found in cities.

• We then need a number for the street, and depending on the city the same
street namewill not host the same numbers, so that’s information relevant
for the association of a city and a street.

• Each number on the street might have to be geo-localized with precision,
depending on the speciஹ஭cs of your business.

• Also, if we run a business that delivers to the door (and for example as-
sembles furniture, or connects electricity or internet to people homes), we
need per house and per-apartment information for each number in a spe-
ciஹ஭c street.

• Finally, our users might want to refer to their place by zip code, although a
postal code might cover a district or an area within a city, or group several
cities, usually small rural communities.

A database model that is still simple to enable delivery to known places would
then involve at least the ஹ஭ve following tables, written in pseudo SQL (meaning
that this code won’t actually run):

1 create table country(code, name);
2 create table region(country, name);
3 create table city(country, region, name, zipcode);
4 create table street(name);
5 create table city_street_numbers
6 (country, region, city, street, number, location);

https://en.wikipedia.org/wiki/Portland

Chapter 28 Normalization | 234

Then it’s possible to implement an advanced input form with normalization of
the delivery address and to compute routes. Again, if all you’re doingwith the ad-
dress is printing it on PDF documents (contracts, invoices, etc.) and sometimes
to an envelope label, you might not need to be this sophisticated.

In the case of the addresses, it’s important to then implement amaintenance pro-
cess for all those countries, regions and cities where your business operates. Bor-
ders are evolving in the world, and you might need to react to those changes.
Postal codes usually change depending on population counts, so there again you
need to react to such changes. Moreover streets get renamed, and new streets are
constructed. New buildings are built and sometimes given new numbers such as
2 bॾ or 4 ter. So even the number information isn’t an integer ஹ஭eld…
The point of a proper data model is tomake it easy for the application to process
the information it needs, and to ensure global consistency for the information.
The address exercise doesn’t allow for understanding of those points, and we’ve
reached its limits already.

Primary Keys

Primary keys are a database constraint allowing us to implement the ஹ஭rst and
second normal forms. The ஹ஭rst rule to follow to reach ஹ஭rst normal form says
“There are no duplicated rows in the table”.
A primary key ensures two things:

• The attributes that are part of the primary key constraint deஹ஭nition are
not allowed to be null.

• The attributes that are part of the primary key are unique in the table’s
content.

To ensure that there is no duplicated row, we need the two guarantees. Compar-
ing null values in SQL is a complexmatter— as seen inThree-Valued Logic, and
rather than argue if the no-duplicate rule applies to null = null (which is null) or
to null ॾ not null (which is false), a primary key constraint disallow null values
entirely.

Chapter 28 Normalization | 235

Surrogate Keys

The reason why we have primary key is to avoid duplicate entries in the data set.
As soon as a primary key is deஹ஭nedon an automatically generated column,which
is arguably not really part of the data set, then we open the gates for violation of
the ஹ஭rst normal form.

Earlier in this chapter, we drafிed a database model with the following table:
1 create table sandbox.article
2 (
3 id bigserial primary key,
4 category integer references sandbox.category(id),
5 pubdate timestamptz,
6 title text not null,
7 content text
8);

This model isn’t even compliant with 1NF :
1 insert into sandbox.article (category, pubdate, title)
2 values (2, now(), 'Hot from the Press'),
3 (2, now(), 'Hot from the Press')
4 returning *;

PostgreSQL is happy to insert duplicate entries here:
─[RECORD 1]───────────────────────────
id │ 1001
category │ 2
pubdate │ 2017-08-30 18:09:46.997924+02
title │ Hot from the Press
content │ ¤
═[RECORD 2]═══════════════════════════
id │ 1002
category │ 2
pubdate │ 2017-08-30 18:09:46.997924+02
title │ Hot from the Press
content │ ¤

INSERT 0 2

Of course, it’s possible to argue that those entries are not duplicates: they each
have their own id value, which is diஸferent — and it is an artiஹ஭cial value derived
automatically for us by the system.

Actually, we now have to deal with two article entries in our publication system
with the same category (category 2 is news), the same title, and the same publica-

Chapter 28 Normalization | 236

tion date. I don’t suppose this is an acceptable situation for the business rules.

In term of database modeling, the artiஹ஭cially generated key is named a surrogate
key because it is a substitute for a natural key. A natural key would allow pre-
venting duplicate entries in our data set.

We can ஹ஭x our schema to prevent duplicate entries:
1 create table sandbox.article
2 (
3 category integer references sandbox.category(id),
4 pubdate timestamptz,
5 title text not null,
6 content text,
7

8 primary key(category, title);
9);

Now, you can share the same article’s title in diஸferent categories, but you can
only publish with a title once in the whole history of our publication system.
Given this alternative design, we allow publications with the same title at diஸfer-
ent publication dates. It might be needed, afிer all, as we know that history ofிen
repeats itself.

1 create table sandboxpk.article
2 (
3 category integer references sandbox.category(id),
4 pubdate timestamptz,
5 title text not null,
6 content text,
7

8 primary key(category, pubdate, title)
9);

Say we go with the solution allowing reusing the same title at a later date. We
now have to change the model of our comment table, which references the sand-
box.article table:

1 create table sandboxpk.comment
2 (
3 a_category integer not null,
4 a_pubdate timestamptz not null,
5 a_title text not null,
6 pubdate timestamptz,
7 content text,
8

9 primary key(a_category, a_pubdate, a_title, pubdate, content),
10

11 foreign key(a_category, a_pubdate, a_title)

Chapter 28 Normalization | 237

12 references sandboxpk.article(category, pubdate, title)
13);

As you can see each entry in the comment table must have enough information
to be able to reference a single entry in the article table, with a guarantee that
there are no duplicates.

We then have quite a big table for the data wewant tomanage in there. So there’s
yet another solution to this surrogate key approach, a trade-oஸf where you have
the generated summary key beneஹ஭ts and still the natural primary key guarantees
needed for the 1NF :

1 create table sandboxpk.article
2 (
3 id bigserial primary key,
4 category integer not null references sandbox.category(id),
5 pubdate timestamptz not null,
6 title text not null,
7 content text,
8

9 unique(category, pubdate, title)
10);

Now the category, pubdate and title have a not null constraint and a unique con-
straint, which is the same level of guarantee as when declaring them a primary
key. So we both have a surrogate key that’s easy to reference from other tables in
our model, and also a strong 1NF guarantee about our data set.

Foreign Keys Constraints

Proper primary keys allow implementing 1NF. Better normalization forms are
achieved when your data model is clean: any information is managed in a sin-
gle place, which is a single source of truth. Then, your data has to be split into
separate tables, and that’s when other constraints are needed.

To ensure that the information still makes sense when found in diஸferent tables,
we need to be able to reference information and ensure that our reference keeps
being valid. That’s implemented with a foreign key constraint.
A foreign key constraint must reference a set of keys known to be unique in the
target table, so PostgreSQL enforces the presence of either a unique or a pri-
mary key constraint on the target table. Such a constraint is always implemented

https://en.wikipedia.org/wiki/Single_source_of_truth

Chapter 28 Normalization | 238

in PostgreSQL with a unique index. PostgreSQL doesn’t create indexes at the
source side of the foreign key constraint, though. If you need such an index, you
have to explicitly create it.

Not Null Constraints

The not null constraint disallows unspeciஹ஭ed entries in attributes, and the data
type of the attribute forces its value to make sense, so the data type can also be
considered to be kind of constraint.

Check Constraints and Domains

When the data type allowsmore values than your application or business model,
SQL allows you to restrict the values using either a domain deஹ஭nition or a check
constraint. The domain deஹ஭nition applies a check constraint to a data type deஹ஭-
nition. Here’s the example from the PostgreSQL documentation chapter about
check constraints:

1 CREATE TABLE products (
2 product_no integer,
3 name text,
4 price numeric CHECK (price > 0)
5);

The check constraint can also reference several columns of the same table at once,
if that’s required:

1 CREATE TABLE products (
2 product_no integer,
3 name text,
4 price numeric CHECK (price > 0),
5 discounted_price numeric,
6 CHECK (discounted_price > 0 AND price > discounted_price)
7);

And here’s how to deஹ஭ne a new data domain as per the PostgreSQL documenta-
tion for the CREATEDOMAIN SQL command:

1 CREATE DOMAIN us_postal_code AS TEXT
2 CHECK

https://www.postgresql.org/docs/current/static/ddl-constraints.html
https://www.postgresql.org/docs/current/static/sql-createdomain.html

Chapter 28 Normalization | 239

3 (
4 VALUE ~ '^\d{5}$'
5 OR
6 VALUE ~ '^\d{5}-\d{4}$'
7);

It is now possible to use this domain deஹ஭nition as a data type, as in the following
example from the same documentation page:

1 CREATE TABLE us_snail_addy (
2 address_id SERIAL PRIMARY KEY,
3 street1 TEXT NOT NULL,
4 street2 TEXT,
5 street3 TEXT,
6 city TEXT NOT NULL,
7 postal us_postal_code NOT NULL
8);

Exclusion Constraints

As seen in the presentation of Ranges in the previous chapter, it’s also possible
to deஹ஭ne exclusion constraints with PostgreSQL. Those work like a generalized
unique constraint, with a custom operator choice. The example we used is the
following, where an exchange rate is valid for a period of time and we do not
allow overlapping periods of validity for a given rate:

1 create table rates
2 (
3 currency text,
4 validity daterange,
5 rate numeric,
6

7 exclude using gist (currency with =,
8 validity with &&)
9);

29
Practical Use Case: Geonames

The GeoNamॽ geographical database covers all countriॽ and con-
tains over eleven million place namॽ that are available for down-
load free of charge.

Thewebsite oஸfers online querying and all the data ismade available to download
and use. As is ofிen the case, it comes in an ad-hoc format and requires some
processing and normalization before it’s usable in a PostgreSQL database.

1 begin;
2

3 create schema if not exists raw;
4

5 create table raw.geonames
6 (
7 geonameid bigint,
8 name text,
9 asciiname text,
10 alternatenames text,
11 latitude double precision,
12 longitude double precision,
13 feature_class text,
14 feature_code text,
15 country_code text,
16 cc2 text,
17 admin1_code text,
18 admin2_code text,
19 admin3_code text,
20 admin4_code text,
21 population bigint,
22 elevation bigint,
23 dem bigint,

http://www.geonames.org

Chapter 29 Practical Use Case: Geonames | 241

24 timezone text,
25 modification date
26);
27

28 create table raw.country
29 (
30 iso text,
31 iso3 text,
32 isocode integer,
33 fips text,
34 name text,
35 capital text,
36 area double precision,
37 population bigint,
38 continent text,
39 tld text,
40 currency_code text,
41 currency_name text,
42 phone text,
43 postal_code_format text,
44 postal_code_regex text,
45 languages text,
46 geonameid bigint,
47 neighbours text,
48 fips_equiv text
49);
50

51 \copy raw.country from 'countryInfoData.txt' with csv delimiter E'\t'
52

53 create table raw.feature
54 (
55 code text,
56 description text,
57 comment text
58);
59

60 \copy raw.feature from 'featureCodes_en.txt' with csv delimiter E'\t'
61

62 create table raw.admin1
63 (
64 code text,
65 name text,
66 ascii_name text,
67 geonameid bigint
68);
69

70 \copy raw.admin1 from 'admin1CodesASCII.txt' with csv delimiter E'\t'
71

72 create table raw.admin2
73 (
74 code text,
75 name text,

Chapter 29 Practical Use Case: Geonames | 242

76 ascii_name text,
77 geonameid bigint
78);
79

80 \copy raw.admin2 from 'admin2Codes.txt' with csv delimiter E'\t'
81

82 commit;

Once we have loaded the raw data from the published ஹ஭les at http://download.
geonames.org/export/dump/, we can normalize the content and begin to use
the data.

You might notice that the SQL ஹ஭le above is missing the \copy command for the
raw.geonamॽ table. That’s because copy failed to load the ஹ஭le properly: some
location names include single and double quotes, and those are not properly
quoted… and not properly escaped. So we resorted to pgloader to load the ஹ஭le,
with the following command:
load csv

from /tmp/geonames/allCountries.txt
into pgsql://appdev@/appdev
target table raw.geonames

with fields terminated by '\t',
fields optionally enclosed by '§',
fields escaped by '%',
truncate;

Here’s the summary obtained when loading the dataset on the laptop used to
prepare this book:

table name errors rows bytes total time
----------------------- --------- --------- --------- --------------

fetch 0 0 0.009s
----------------------- --------- --------- --------- --------------

raw.geonames 0 11540466 1.5 GB 6m43.218s
----------------------- --------- --------- --------- --------------

Files Processed 0 1 0.026s
COPY Threads Completion 0 2 6m43.319s
----------------------- --------- --------- --------- --------------

Total import time ✓ 3 1.5 GB 6m43.345s

To normalize the schema, we apply the rules from the deஹ஭nition of the normal
forms as seen previously. Basically, we want to avoid any dependency in between
the attributes of our models. Any dependency means that we need to create a
separate table where to manage a set of data that makes sense in isolation is man-
aged.

The raw.geonamॽ table uses several reference data that GeoNamॽ provide as
separate downloads. We then need to begin with ஹ஭xing the reference data used

http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/

Chapter 29 Practical Use Case: Geonames | 243

in the model.

Features

TheGeoNamॽmodel tags all of its geolocation datawith a feature class and a fea-
ture. The description for those codes are detailed on the GeoNames codes page
and available for download in the featureCodॽ_en.txt ஹ஭le. Some of the informa-
tion we need is only available in a text form and has to be reported manually.

1 begin;
2

3 create schema if not exists geoname;
4

5 create table geoname.class
6 (
7 class char(1) not null primary key,
8 description text
9);
10

11 insert into geoname.class (class, description)
12 values ('A', 'country, state, region,...'),
13 ('H', 'stream, lake, ...'),
14 ('L', 'parks,area, ...'),
15 ('P', 'city, village,...'),
16 ('R', 'road, railroad '),
17 ('S', 'spot, building, farm'),
18 ('T', 'mountain,hill,rock,... '),
19 ('U', 'undersea'),
20 ('V', 'forest,heath,...');
21

22 create table geoname.feature
23 (
24 class char(1) not null references geoname.class(class),
25 feature text not null,
26 description text,
27 comment text,
28

29 primary key(class, feature)
30);
31

32 insert into geoname.feature
33 select substring(code from 1 for 1) as class,
34 substring(code from 3) as feature,
35 description,
36 comment
37 from raw.feature

http://www.geonames.org/export/codes.html

Chapter 29 Practical Use Case: Geonames | 244

38 where feature.code <> 'null';
39

40 commit;

As we see in this ஹ஭le we have to deal with an explicit ‘null’ entry: there’s a text
that is four letters long in the last line (and reads null) and that we don’t want
to load.

Also, the provided ஹ஭le uses the notation A.ADM1 for an entry of class A and
featureADM1, which we split into proper attributes in our normalization pro-
cess. The natural key for the geoname.feature table is the combination of the class
and the feature.
Once all the data is loaded and normalized, we can get some nice statistics:

1 select class, feature, description, count(*)
2 from feature
3 left join geoname using(class,feature)
4 group by class, feature
5 order by count desc
6 limit 10;

This is a very simple top-10 query, per feature:
class │ feature │ description │ count

═══════╪═════════╪═════════════════╪═════════
P │ PPL │ populated place │ 1711458
H │ STM │ stream │ 300283
S │ CH │ church │ 236394
S │ FRM │ farm │ 234536
S │ SCH │ school │ 223402
T │ HLL │ hill │ 212659
T │ MT │ mountain │ 192454
S │ HTL │ hotel │ 170896
H │ LK │ lake │ 162922
S │ BLDG │ building(s) │ 143742

(10 rows)

Countries

The raw.country table has several normalization issues. Before we list them, hav-
ing a look at some data will help us:
─[RECORD 1]──────┬─────────────────────────
iso │ FR
iso3 │ FRA

Chapter 29 Practical Use Case: Geonames | 245

isocode │ 250
fips │ FR
name │ France
capital │ Paris
area │ 547030
population │ 64768389
continent │ EU
tld │ .fr
currency_code │ EUR
currency_name │ Euro
phone │ 33
postal_code_format │ #####
postal_code_regex │ ^(\d{5})$
languages │ fr-FR,frp,br,co,ca,eu,oc
geonameid │ 3017382
neighbours │ CH,DE,BE,LU,IT,AD,MC,ES
fips_equiv │ ¤

The main normalization failures we see are:

• Nothing guarantees the absence of duplicate rows in the table, so we need
to add a primary key constraint.
Here the isocode attribute looks like the best choice, as it’s both unique and
an integer.

• The languagॽ and neighbours attributes both contain multiple-valued
content, a comma-separated list of either languages or country codes.

• To reach 2NF then, all non-key attributes should be dependent on the
entire of the key, and the currencies and postal code formats are not de-
pendent on the country.

A goodway to check for dependencies on the key attributes is with the following
type of query:

1 select currency_code, currency_name, count(*)
2 from raw.country
3 group by currency_code, currency_name
4 order by count desc
5 limit 5;

In our dataset, we have the following result, showing 34 countries using the Euro
currency:
currency_code │ currency_name │ count

═══════════════╪═══════════════╪═══════
EUR │ Euro │ 34
USD │ Dollar │ 16

Chapter 29 Practical Use Case: Geonames | 246

AUD │ Dollar │ 8
XOF │ Franc │ 8
XCD │ Dollar │ 8

(5 rows)

In this book, we’re going to pass on the currency, language, and postal code for-
mats of countries and focus on some information only. That gives us the follow-
ing normalization process:

1 begin;
2

3 create schema if not exists geoname;
4

5 create table geoname.continent
6 (
7 code char(2) primary key,
8 name text
9);
10

11 insert into geoname.continent(code, name)
12 values ('AF', 'Africa'),
13 ('NA', 'North America'),
14 ('OC', 'Oceania'),
15 ('AN', 'Antarctica'),
16 ('AS', 'Asia'),
17 ('EU', 'Europe'),
18 ('SA', 'South America');
19

20 create table geoname.country
21 (
22 isocode integer primary key,
23 iso char(2) not null,
24 iso3 char(3) not null,
25 fips text,
26 name text,
27 capital text,
28 continent char(2) references geoname.continent(code),
29 tld text,
30 geonameid bigint
31);
32

33 insert into geoname.country
34 select isocode, iso, iso3, fips, name,
35 capital, continent, tld, geonameid
36 from raw.country;
37

38 create table geoname.neighbour
39 (
40 isocode integer not null references geoname.country(isocode),
41 neighbour integer not null references geoname.country(isocode),
42

Chapter 29 Practical Use Case: Geonames | 247

43 primary key(isocode, neighbour)
44);
45

46 insert into geoname.neighbour
47 with n as(
48 select isocode,
49 regexp_split_to_table(neighbours, ',') as neighbour
50 from raw.country
51)
52 select n.isocode,
53 country.isocode
54 from n
55 join geoname.country
56 on country.iso = n.neighbour;
57

58 commit;

Note that we add the continent list (for completeness in the region drill down)
and then introduce the geoname.neighbour part of the model. Having an associ-
ation table that links every country with its neighbours on themap (a neighbour
has a common border) allows us to easily query for the information:

1 select neighbour.iso,
2 neighbour.name,
3 neighbour.capital,
4 neighbour.tld
5

6 from geoname.neighbour as border
7

8 join geoname.country as country
9 on border.isocode = country.isocode
10

11 join geoname.country as neighbour
12 on border.neighbour = neighbour.isocode
13

14 where country.iso = 'FR';

So we get the following list of neighbor countries for France:
iso │ name │ capital │ tld

═════╪═════════════╪══════════════════╪═════
CH │ Switzerland │ Bern │ .ch
DE │ Germany │ Berlin │ .de
BE │ Belgium │ Brussels │ .be
LU │ Luxembourg │ Luxembourg │ .lu
IT │ Italy │ Rome │ .it
AD │ Andorra │ Andorra la Vella │ .ad
MC │ Monaco │ Monaco │ .mc
ES │ Spain │ Madrid │ .es

(8 rows)

Chapter 29 Practical Use Case: Geonames | 248

Administrative Zoning

The rawdata from theGeoNamॽwebsite then oஸfers an interesting geographical
breakdown in the country_code, admin1_code and admin2_code.

1 select geonameid, name, admin1_code, admin2_code
2 from raw.geonames
3 where country_code = 'FR'
4 limit 5
5 offset 50;

To get an interesting result set, we select randomly from the data for France,
where the code has to be expanded to be meaningful. With a USA based data
set, we get states codes as admin1_code (e.g. IL for Illinois), and the necessity for
normalized data might then be less visible.

Of course, never use offset in your application queries, as seen previously. Here,
we are doing interactive discovery of the data, so it is found acceptable, to some
extent, to play with the offset facility.
Here’s the data set we get:
geonameid │ name │ admin1_code │ admin2_code

═══════════╪═════════════════════╪═════════════╪═════════════
2967132 │ Zintzel du Nord │ 44 │ 67
2967133 │ Zinswiller │ 44 │ 67
2967134 │ Ruisseau de Zingajo │ 94 │ 2B
2967135 │ Zincourt │ 44 │ 88
2967136 │ Zimming │ 44 │ 57

(5 rows)

The GeoNamॽ website provides ஹ஭les admin1CodॽASCII.txt and ad-
min2Codॽ.txt for us to use to normalize our data. Those ஹ஭les again use admin
codes spelled as AD.06 and AF.01.1125426 where the raw.geonamॽ table uses
them as separate ஹ஭elds. That’s a good reason to split them now.

Here’s the SQL to normalize the admin breakdowns, splitting the codes and
adding necessary constraints, to ensure data quality:

1 begin;
2

3 create schema if not exists geoname;
4

5 create table geoname.region
6 (
7 isocode integer not null references geoname.country(isocode),

Chapter 29 Practical Use Case: Geonames | 249

8 regcode text not null,
9 name text,
10 geonameid bigint,
11

12 primary key(isocode, regcode)
13);
14

15 insert into geoname.region
16 with admin as
17 (
18 select regexp_split_to_array(code, '[.]') as code,
19 name,
20 geonameid
21 from raw.admin1
22)
23 select country.isocode as isocode,
24 code[2] as regcode,
25 admin.name,
26 admin.geonameid
27 from admin
28 join geoname.country
29 on country.iso = code[1];
30

31 create table geoname.district
32 (
33 isocode integer not null,
34 regcode text not null,
35 discode text not null,
36 name text,
37 geonameid bigint,
38

39 primary key(isocode, regcode, discode),
40 foreign key(isocode, regcode)
41 references geoname.region(isocode, regcode)
42);
43

44 insert into geoname.district
45 with admin as
46 (
47 select regexp_split_to_array(code, '[.]') as code,
48 name,
49 geonameid
50 from raw.admin2
51)
52 select region.isocode,
53 region.regcode,
54 code[3],
55 admin.name,
56 admin.geonameid
57 from admin
58

59 join geoname.country

Chapter 29 Practical Use Case: Geonames | 250

60 on country.iso = code[1]
61

62 join geoname.region
63 on region.isocode = country.isocode
64 and region.regcode = code[2];
65

66 commit;

The previous query can now be rewritten, showing region and district names
rather than admin1_code and admin2_code, whichwe still have internally in case
we need them of course.

1 select r.name, reg.name as region, d.name as district
2 from raw.geonames r
3

4 left join geoname.country
5 on country.iso = r.country_code
6

7 left join geoname.region reg
8 on reg.isocode = country.isocode
9 and reg.regcode = r.admin1_code
10

11 left join geoname.district d
12 on d.isocode = country.isocode
13 and d.regcode = r.admin1_code
14 and d.discode = r.admin2_code
15 where country_code = 'FR'
16 limit 5
17 offset 50;

The query uses left join operations because we have geo-location data without
the admin1 or admin2 levels of details—more on that later. Here’s the same list
of French areas, this time with proper names:

name │ region │ district
═════════════════════╪═══════════╪═══════════════════════════════
Zintzel du Nord │ Grand Est │ Département du Bas-Rhin
Zinswiller │ Grand Est │ Département du Bas-Rhin
Ruisseau de Zingajo │ Corsica │ Département de la Haute-Corse
Zincourt │ Grand Est │ Département des Vosges
Zimming │ Grand Est │ Département de la Moselle

(5 rows)

Chapter 29 Practical Use Case: Geonames | 251

Geolocation Data

Now that we have loaded the reference data, we can load the main geolocation
data with the following script. Note that we skip parts of the data we don’t need
for this book, but that youmight want to load in your application’s background
data.

Before loading the raw data into a normalized version of the table, which will
make heavy use of the references we normalized before, we have to study and
understand how the breakdown works:

1 select count(*) as all,
2 count(*) filter(where country_code is null) as no_country,
3 count(*) filter(where admin1_code is null) as no_region,
4 count(*) filter(where admin2_code is null) as no_district,
5 count(*) filter(where feature_class is null) as no_class,
6 count(*) filter(where feature_code is null) as no_feat
7 from raw.geonames ;

We have lots of entries without reference for a country, and even more without
detailed breakdown (admin1_code and admin2_code are not always part of the
data). Moreover we also have points without any reference feature and class,
some of them in the Artic.

all │ no_country │ no_region │ no_district │ no_class │ no_feat
══════════╪════════════╪═══════════╪═════════════╪══════════╪═════════
11540466 │ 5821 │ 45819 │ 5528455 │ 5074 │ 95368

(1 row)

Given that, our normalization query must be careful to use left join operations,
so as to allow for ஹ஭elds to be null when the foreign key reference doesn’t exist.
Be careful to drill down properly to the country, then the region, and only then
the district, as the data set contains points of several layers of precision as seen in
the query above.

1 begin;
2

3 create table geoname.geoname
4 (
5 geonameid bigint primary key,
6 name text,
7 location point,
8 isocode integer,
9 regcode text,
10 discode text,
11 class char(1),

Chapter 29 Practical Use Case: Geonames | 252

12 feature text,
13 population bigint,
14 elevation bigint,
15 timezone text,
16

17 foreign key(isocode)
18 references geoname.country(isocode),
19

20 foreign key(isocode, regcode)
21 references geoname.region(isocode, regcode),
22

23 foreign key(isocode, regcode, discode)
24 references geoname.district(isocode, regcode, discode),
25

26 foreign key(class)
27 references geoname.class(class),
28

29 foreign key(class, feature)
30 references geoname.feature(class, feature)
31);
32

33 insert into geoname.geoname
34 with geo as
35 (
36 select geonameid,
37 name,
38 point(longitude, latitude) as location,
39 country_code,
40 admin1_code,
41 admin2_code,
42 feature_class,
43 feature_code,
44 population,
45 elevation,
46 timezone
47 from raw.geonames
48)
49 select geo.geonameid,
50 geo.name,
51 geo.location,
52 country.isocode,
53 region.regcode,
54 district.discode,
55 feature.class,
56 feature.feature,
57 population,
58 elevation,
59 timezone
60 from geo
61 left join geoname.country
62 on country.iso = geo.country_code
63

Chapter 29 Practical Use Case: Geonames | 253

64 left join geoname.region
65 on region.isocode = country.isocode
66 and region.regcode = geo.admin1_code
67

68 left join geoname.district
69 on district.isocode = country.isocode
70 and district.regcode = geo.admin1_code
71 and district.discode = geo.admin2_code
72

73 left join geoname.feature
74 on feature.class = geo.feature_class
75 and feature.feature = geo.feature_code;
76

77 create index on geoname.geoname using gist(location);
78

79 commit;

Now that we have a proper data set loaded, it’s easier tomake sense of the admin-
istrative breakdowns and the geo-location data.

The real use case for this data comes later: thanks to the GiST index over the
geoname.location columnwe are now fully equipped to do a names lookup from
the geo-localized information.

1 select continent.name,
2 count(*),
3 round(100.0 * count(*) / sum(count(*)) over(), 2) as pct,
4 repeat('■', (100 * count(*) / sum(count(*)) over())::int) as hist
5 from geoname.geoname
6 join geoname.country using(isocode)
7 join geoname.continent
8 on continent.code = country.continent
9 group by continent.name
10 order by continent.name;

We can see that theGeoNamॽ data is highly skewed towards Asia, North Amer-
ica, and then Europe. Of course, the Antartica data is not very dense.

name │ count │ pct │ hist
═══════════════╪═════════╪═══════╪═══════════════════════════════════
Africa │ 1170043 │ 10.14 │ ■■■■■■■■■■
Antarctica │ 21125 │ 0.18 │
Asia │ 3772195 │ 32.70 │ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
Europe │ 2488807 │ 21.58 │ ■■■■■■■■■■■■■■■■■■■■■■
North America │ 3210802 │ 27.84 │ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■
Oceania │ 354325 │ 3.07 │ ■■■
South America │ 517347 │ 4.49 │ ■■■■

(7 rows)

Chapter 29 Practical Use Case: Geonames | 254

Geolocation GiST Indexing

The previous geoname table creation script contains the following index deஹ஭ni-
tion:

1 create index on geoname.geoname using gist(location);

Such an index is useful when searching for a speciஹ஭c location within our table,
which contains about 11.5million entries. PostgreSQL supports index scanbased
lookups in several situations, including the kNN lookup, also known as the
nearest neighbor lookup.
In the arrays non-relational data type example we loaded a data set of 200,000
geo-localized tweets in the hashtag table. Here’s an extract of this table’s content:
─[RECORD 1]──
id │ 720553458596757504
date │ 2016-04-14 10:05:00+02
uname │ Police Calls 32801
message │ #DrugViolation at 335 N Magnolia Ave. #orlpol #opd
location │ (-81.3769794,28.5469591)
hashtags │ {#DrugViolation,#opd,#orlpol}

It’s possible to retrievemore information from theGeoNamॽ data thanks to the
following lateral left join lookup in which we implement a kNN search with
order by ... <-> ... limit k clause:

1 select id,
2 round((hashtag.location <-> geoname.location)::numeric, 3) as dist,
3 country.iso,
4 region.name as region,
5 district.name as district
6 from hashtag
7 left join lateral
8 (
9 select geonameid, isocode, regcode, discode, location
10 from geoname.geoname
11 order by location <-> hashtag.location
12 limit 1
13)
14 as geoname
15 on true
16 left join geoname.country using(isocode)
17 left join geoname.region using(isocode, regcode)
18 left join geoname.district using(isocode, regcode, discode)
19 order by id
20 limit 5;

Chapter 29 Practical Use Case: Geonames | 255

The <-> operator computes the distance in between its argument, and by using
the limit 1 clausewe select the nearest known entry in the geoname.geoname table
for each entry in the hashtag table.
Then it’s easy to add our normalized GeoNamॽ information from the country,
region and district tables. Here’s the result we get here:

id │ dist │ iso │ region │ district
════════════════════╪═══════╪═════╪══════════════╪═════════════════════
720553447402160128 │ 0.004 │ US │ Florida │ Orange County
720553457015324672 │ 0.004 │ US │ Texas │ Smith County
720553458596757504 │ 0.001 │ US │ Florida │ Orange County
720553466804989952 │ 0.001 │ US │ Pennsylvania │ Philadelphia County
720553475923271680 │ 0.000 │ US │ New York │ Nassau County

(5 rows)

To check that our GiST index is actually used, we use the explain command
of PostgreSQL, with the spelling explain (costs off) followed by the whole
query as above, and we get the following query plan:
\pset format wrapped
\pset columns 70

QUERY PLAN
══
Limit

-> Nested Loop Left Join
-> Nested Loop Left Join

-> Nested Loop Left Join
Join Filter: (geoname.isocode = country.isocode)
-> Nested Loop Left Join

-> Index Scan using hashtag_pkey on hasht…
…ag

-> Limit
-> Index Scan using geoname_locatio…

…n_idx on geoname
Order By: (location <-> hashta…

…g.location)
-> Materialize

-> Seq Scan on country
-> Index Scan using region_pkey on region

Index Cond: ((geoname.isocode = isocode) AND (ge…
…oname.regcode = regcode))

-> Index Scan using district_pkey on district
Index Cond: ((geoname.isocode = isocode) AND (geoname.…

…regcode = regcode) AND (geoname.discode = discode))
(16 rows)

The index scan using geoname_location_idx on geoname is clear: the index has
been used. On the laptop on which this book has been written, we get the result
in about 13 milliseconds.

Chapter 29 Practical Use Case: Geonames | 256

A Sampling of Countries

This dataset of more than 11 million rows is not practical to include in the book’s
material for the Full Edition andEnterprise Edition, where you have a database
dump or Docker image to play with. We instead take a random sample of 1% of
the table’s content, and here’s how the magic is done:

1 begin;
2

3 create schema if not exists sample;
4

5 drop table if exists sample.geonames;
6

7 create table sample.geonames
8 as select /*
9 * We restrict the “export” to some columns only, so as to
10 * further reduce the size of the exported file available to
11 * download with the book.
12 */
13 geonameid,
14 name,
15 longitude,
16 latitude,
17 feature_class,
18 feature_code,
19 country_code,
20 admin1_code,
21 admin2_code,
22 population,
23 elevation,
24 timezone
25 /*
26 * We only keep 1% of the 11 millions rows here.
27 */
28 from raw.geonames TABLESAMPLE bernoulli(1);
29

30 \copy sample.geonames to 'allCountries.sample.copy'
31

32 commit;

In this script, we use the tablesample feature of PostgreSQL to only keep a ran-
dom selection of 1% of the rows in the table. The tablesample accepts several
methods, and you can see the PostgreSQL documentation entitled Writing A
Table Sampling Method yourself if you need to.

Here’s what the from clause documentation of the select statement has to say
about the choice of bernouilli and system, included by default in PostgreSQL:

https://www.postgresql.org/docs/current/static/tablesample-method.html
https://www.postgresql.org/docs/current/static/tablesample-method.html
https://www.postgresql.org/docs/current/static/sql-select.html#SQL-FROM

Chapter 29 Practical Use Case: Geonames | 257

The BERNOULLI and SYSTEM sampling methods each accept
a single argument which is the fraction of the table to sample,
expressed as a percentage between 0 and 100. This argument can
be any real-valued expression. (Other sampling methods might
accept more or diஸferent arguments.) These two methods each
return a randomly-chosen sample of the table that will contain
approximately the speciஹ஭ed percentage of the table’s rows. The
BERNOULLI method scans the whole table and selects or ignores
individual rows independently with the speciஹ஭ed probability. The
SYSTEMmethod does block-level samplingwith each block having
the speciஹ஭ed chance of being selected; all rows in each selected block
are returned. The SYSTEM method is signiஹ஭cantly faster than
the BERNOULLI method when small sampling percentages are
speciஹ஭ed, but it may return a less-random sample of the table as a
result of clustering eஸfects.

Running the script, here’s what we get:
yesql# \i geonames.sample.sql
BEGIN
CREATE SCHEMA
DROP TABLE
SELECT 115904
COPY 115904
COMMIT

Our sample.geonamॽ table only contains 115,904 rows. Another run of the same
query yielded 115,071 instead. Afிer all the sampling is made following a random-
based algorithm.

30
Modelization Anti-Patterns

Failures to follownormalization forms opens the door to anomalies as seen previ-
ously. Some failuremodes are so common in thewild thatwe can talk about anti-
patterns. One of the worst possible design choices would be the EAV model.

Entity Attribute Values

The entity attribue values or EAV is a design that tries to accommodate with a
lack of speciஹ஭cations. In our application, we have to deal with parameters and
new parameters may be added at each release. It’s not clear which parameters
we need, we just want a place to manage them easily, and we are already using a
database server afிer all. So there we go:

1 begin;
2

3 create schema if not exists eav;
4

5 create table eav.params
6 (
7 entity text not null,
8 parameter text not null,
9 value text not null,
10

11 primary key(entity, parameter)
12);
13

14 commit;

https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

Chapter 30 Modelization Anti-Patterns | 259

Youmight have already seen thismodel or a variation of it in the ஹ஭eld. Themodel
makes it very easy to add things to it, and very diஸஹ஭cult to make sense of the accu-
mulated data, or to use them eஸfectively in SQL, making it an anti-pattern.

1 insert into eav.params(entity, parameter, value)
2 values ('backend', 'log_level', 'notice'),
3 ('backend', 'loglevel', 'info'),
4 ('api', 'timeout', '30'),
5 ('api', 'timout', '40'),
6 ('gold', 'response time', '60'),
7 ('gold', 'escalation time', '90'),
8 ('platinum', 'response time', '15'),
9 ('platinum', 'escalation time', '30');

In this example wemade some typos on purpose, to show the limits of theEAV
model. It’s impossible to catch those errors, and you might have parts of your
code that query one spelling or a diஸferent one.

Main problems of this EAV anti-pattern are:

• The value attribute is of type text so as to be able to host about anything,
where some parameters are going to be integer, interval, inet or boolean
values.

• The entity and parameter ஹ஭elds are likewise free-text, meaning that any
typo will actually create new entries, which might not even be used any-
where in the application.

• When fetching all the parameters of an entity to set up your application’s
object, the parameter names are a value in each row rather than the name
of the column where to ஹ஭nd them, meaning extra work and loops.

• When you need to process parameter in SQL queries, you need to add a
join to the params table for each parameter you are interested in.

As an example of the last point, here’s a query that fetches the response time and
the escalated time for support customers when using the previous params setup.
First, we need a quick design for a customer and a support contract table:

1 begin;
2

3 create table eav.support_contract_type
4 (
5 id serial primary key,
6 name text not null
7);
8

Chapter 30 Modelization Anti-Patterns | 260

9 insert into eav.support_contract_type(name)
10 values ('gold'), ('platinum');
11

12 create table eav.support_contract
13 (
14 id serial primary key,
15 type integer not null references eav.support_contract_type(id),
16 validity daterange not null,
17 contract text,
18

19 exclude using gist(type with =, validity with &&)
20);
21

22 create table eav.customer
23 (
24 id serial primary key,
25 name text not null,
26 address text
27);
28

29 create table eav.support
30 (
31 customer integer not null,
32 contract integer not null references eav.support_contract(id),
33 instances integer not null,
34

35 primary key(customer, contract),
36 check(instances > 0)
37);
38

39 commit;

And now it’s possible to get customer support contract parameters such as re-
sponse time and escalation time, each with its own join:

1 select customer.id,
2 customer.name,
3 ctype.name,
4 rtime.value::interval as "resp. time",
5 etime.value::interval as "esc. time"
6 from eav.customer
7 join eav.support
8 on support.customer = customer.id
9

10 join eav.support_contract as contract
11 on support.contract = contract.id
12

13 join eav.support_contract_type as ctype
14 on ctype.id = contract.type
15

16 join eav.params as rtime

Chapter 30 Modelization Anti-Patterns | 261

17 on rtime.entity = ctype.name
18 and rtime.parameter = 'response time'
19

20 join eav.params as etime
21 on etime.entity = ctype.name
22 and etime.parameter = 'escalation time';

Each parameter you add has to be added as an extra join operation in the previous
query. Also, if someone enters a value for response time that isn’t compatiblewith
the interval data type representation, then the query fails.
Never implement anEAV model, this anti-patternmakes everythingmore com-
plex than it should for a very small gain at modeling time.

It might be that the business case your application is solving actually has an at-
tribute volatility problem to solve. In that case, consider having as solid a model
as possible and use jsonb columns as extension points.

Multiple Values per Column

As seen earlier, a table (relation) is in 1NF if:
1. There are no duplicated rows in the table.
2. Each cell is single-valued (no repeating groups or arrays).
3. Entries in a column (ஹ஭eld) are of the same kind.

An anti-pattern that fails to complywith those rulesmeans having amulti-valued
ஹ஭eld in a database schema:

1 create table tweet
2 (
3 id bigint primary key,
4 date timestamptz,
5 message text,
6 tags text
7);

Data would then be added with a semicolon separator, for instance, or maybe a
pipe | char, or in some cases with a fancy Unicode separator char such as §, ¶ or
¦. Here we ஹ஭nd a classic semicolon:

id │ date │ message │ tags
════════════════════╪══════╪═════════╪════════════════════════
720553530088669185 │ ... │ ... │ #NY17

Chapter 30 Modelization Anti-Patterns | 262

720553531665682434 │ ... │ ... │ #Endomondo;#endorphins
(2 rows)

Using PostgreSQL makes it possible to use the regexp_split_to_array() and reg-
exp_split_to_table() functions we saw earlier, and then to process the data in a
relatively sane way. The problem with going against 1NF is that it’s nearly im-
possible to maintain the data set as the model oஸfers all the database anomalies
listed previously.

Several things are very hard to do when you have several tags hidden in a text
column using a separator:

• Tag Search

To implement searching for a list ofmessages containing a single given tag,
this model forces a substring search which is much less eஸஹ஭cient than direct
search.

A normalized model would have a separate tags table and an association
table in between the tweet and the tags reference table that we could name
tweet_tags. Then search for tweets using a given tag is easy, as it’s a simple
join operation with a restriction that can be expressed either as a where
clause or in the join condition directly.
It is even possible to implement more complex searches of tweets contain-
ing several tags, or at least one tag in a list. Doing that on top of the CSV
inspired anti-pattern is much more complex, if even possible at all.

Rather than trying, we would ஹ஭x the model!

• Usage Statistics per Tag

For the same reasons that implementing search is diஸஹ஭cult, thisCSV model
anti-pattern makes it hard to compute per-tag statistics, because the tags
column is considered as a whole.

• Normalization of Tags

Peoplemake typos or use diஸferent spellings for the tags, so wemight want
to normalize them in our database. As we keep the message unaltered in a
diஸferent column, we would not lose any data doing so.

While normalizing the tags at input time is trivial when using a tags refer-
ence table, it is now an intense computation, as it requires looping over all
messages and splitting the tags each time.

Chapter 30 Modelization Anti-Patterns | 263

This example looks a lot like a case of premature optimization, which perDonald
Knuth is the root of all evil… in most cases. The exact quote reads:

Programmers waste enormoॿ amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs,
and these attempts at efficiency actually have a strong negative im-
pact when debuঃing and maintenance are considered. We should
forget about small efficienciॽ, say about 97% of the time: premature
optimization ॾ the root of all evil. Yet we should not pass up our
opportunitiॽ in that critical 3%.
“Structured Programming with Goto Statements”. Computing
Surveys 6:4 (December 1974), pp. 261–301, §1.

Databasemodeling has a non-trivial impact on query performance and as such is
part of making attempts at upping eஸஹ஭ciency. Using a CSV formatted attribute
rather than two additional tables looks like optimization, but actually it will
make just about everything worse: debugging, maintenance, search, statistics,
normalization, and other use cases.

UUIDs

The PostgreSQL data type UUID allows for 128 bits synthetic keys rather than
32 bits with serial or 64 bits with bigserial.
The serial family of data types is built on a sequence with a standard deஹ஭ned be-
havior for collision. A sequence is non-transactional to allow several concurrent
transactions to each get their own number, and each transactionmight then com-
mit or fail to commit with a rollback. It means that sequence numbers are deliv-
ered in a monotonous way, always incrementally, and will be assigned and used
without any ordering known in advance, and with holes in between delivered
values.

Still, sequencॽ and their usage as a default value for synthetic keys oஸfer a guaran-
tee against collisions.

UUIDs on the other hand rely on a way to produce random numbers in a 128
bits space that oஸfers a strong theoretical guarantee against collision. You might
have to retry producing a number, though very rarely.

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Donald_Knuth

Chapter 30 Modelization Anti-Patterns | 264

UUIDs are useful in distributed computing where you can’t synchronize every
concurrent and distributed transaction against a common centralized sequence,
which would then act as a Single Point Of Failure, or SPOF.
That said, neither sequences norUUID provides a natural primary key for your
data, as seen in the Primary Keys section.

31
Denormalization

Whenmodeling a database schema for your application or business case, the very
ஹ஭rst step should always consist of a thorough normalization of the schema. This
step takes time, and it’s time well spent as it allows us to understand in depth the
system being designed.

When reaching 3NF then Boyce-Codd Normal Form, and even 4NF, then the
next step is naturally generating content and writing queries. Write queries that
implement work஺ாow oriented queries, ofிen named CRUD for create, read, up-
date, delete where the application mainly deals with a single record at a time.
Also, write queries that implement a reporting work஺ாow and have a broad view
of your system,maybe for weeklymarketing analysis, invoicing, user suggestions
for upselling, or other activities that are interesting in your business ஹ஭eld.

Once all of that is done, some diஸஹ஭culties may appear, either because the fully
normalized schema is too heavy to deal with at the application level without any
beneஹ஭ts, or because having a highly normalized schema involves performances
penalties that you’ve measured and cannot tolerate.

Fully normalized schemas ofிen have a high number of tables and references in
between them. That means lots of foreign key constraints and lots of join opera-
tions in all your application queries. That said, PostgreSQL has been coded with
the SQL standard and the normalization rules in mind and is very good at join
operations in general. Also, PostgreSQL implements row-level locking for most
of its operations, so the cost of constraints isn’t a show stopper in a great many
cases.

Chapter 31 Denormalization | 266

That said if some part of your application’s workloadmakes it diஸஹ஭cult to sustain
a fully normalized schema, then it might be time to ஹ஭nd trade-oஸfs. The process
of denormalization consists of relaxing the normalization rules to reach an ac-
ceptable trade-oஸf in terms of data quality and data maintenance.

As in any trade-oஸf game, the techniques to apply depend on your goal: you
might want to speed up reporting activities at the expense of data maintenance,
or the other way around.

Premature Optimization

As seen in the previous section with the CSVmodel anti-pattern, database mod-
eling makes it easy to fall into the trap of premature optimization. Only use
denormalization techniques when you’ve made a strong case for needing them.

A strong case means you have benchmarked your application code against your
real production data or a data set that has the same distribution and is as real
as possible, and on a range of diஸferent server setups. A strong case also means
that you’ve spent time rewriting SQL queries to have them pass your acceptance
tests. A strong casemeans you know howmuch time a query is allowed to spend
and how much time it’s actually spending — in average, median, and 95 and 99
percentiles.

When there’s no way to speed-up your application another way, then it is time
to denormalize the schema, i.e. make a decision to put your data quality at risk
in order to be able to serve your users and business.

In short, performance is a feature. More ofிen than not, performance isn’t the
most important feature for your business. Afிer a certain threshold, poor per-
formance is a killer, and it must be dealt with. That’s when we denormalize a
database schema, and not before.

Functional Dependency Trade-Offs

The main way to denormalize a schema consists of breaking the functional de-
pendency rules and repeat data at diஸferent places so that you don’t have to fetch

Chapter 31 Denormalization | 267

it again. When done properly, breaking the functional dependency rule is the
same thing as implementing a cache in your database.
How do you know it’s been done properly? When done The Right Way™, the
application code has an integrated cache invalidationmechanism. Inmany cases,
the cache invalidation is automated, either in bulk or triggered by some events.

The Computing and Caching in SQL section in this book addresses some mech-
anisms meant to cache data and invalidate a cache, which may be used when de-
normalizing.

Denormalization with PostgreSQL

When using PostgreSQL denormalization may happen by choosing to use de-
normalized data types rather than an external reference table.

Many other techniques are possible to use, and some of them are listed later in
this chapter. While some techniques are widespread and well known in other
database management systems, some of them are unique to PostgreSQL.

When implementing any of the following denormalization techniques, please
keep in mind the following rules:

• Choose and document a single source of truth for any and all data you are
managing,

Denormalization introduces divergence, so youwill have to deal withmul-
tiple copies of the same data with diஸferences between the copies. It needs
to be clear for everybody involved and every piece of code where the truth
is handled.

• Always implement cache invalidationmechanisms.
In those timeswhen you absolutely need to reset your cache and distribute
the known correct version of your data, it should be as simple as running
a well-known, documented, tested and maintained procedure.

• Check about concurrency behavior in terms of data maintenance.

Implementing denormalization means more complex data maintenance
operations, which can be a source of reduced write-scalability for most

Chapter 31 Denormalization | 268

applications. The next chapter — Data Manipulation and Concurrency
Control — dives into this topic.

To summarize, denormalization techniques are meant to optimize a database
model. As it’s impossible to optimize something you didn’t measure, ஹ஭rst nor-
malize your model, benchmark it, and then see about optimizing.

Materialized Views

Back to the f1db databasemodel, we now compute constructor and driver points
per season. In the following query, we compute points for the ongoing season
and the data set available at the time of this book’s writing:

1 \set season 2017
2

3 select drivers.surname as driver,
4 constructors.name as constructor,
5 sum(points) as points
6

7 from results
8 join races using(raceid)
9 join drivers using(driverid)
10 join constructors using(constructorid)
11

12 where races.year = :season
13

14 group by grouping sets(drivers.surname, constructors.name)
15 having sum(points) > 150
16 order by drivers.surname is not null, points desc;

Here’s the result, which we know is wrong because the seasonwas not over yet at
the time of the computation. The having clause has been used only to reduce the
number of lines to display in the book; in a real application we would certainly
get all the results at once. Anyway, here’s our result set:

driver │ constructor │ points
══════════╪═════════════╪════════
¤ │ Mercedes │ 357
¤ │ Ferrari │ 318
¤ │ Red Bull │ 184
Vettel │ ¤ │ 202
Hamilton │ ¤ │ 188
Bottas │ ¤ │ 169

(6 rows)

Chapter 31 Denormalization | 269

Now, your applicationmight need to display that information ofிen. Maybe the
main dashboard is a summary of the points for constructors and drivers in the
current season, and then you want that information to be readily available.

When some information is neededwaymore ofிen than it changes, having a cache
is a good idea. An easy way to build such a cache in PostgreSQL is to use ama-
terialized view. This time, we might want to compute the results for all seasons
and index per season:

1 begin;
2

3 create schema if not exists v;
4 create schema if not exists cache;
5

6 create view v.season_points as
7 select year as season, driver, constructor, points
8 from seasons
9 left join lateral
10 /*
11 * For each season, compute points by driver and by constructor.
12 * As we're not interested into points per season for everybody
13 * involved, we don't add the year into the grouping sets.
14 */
15 (
16 select drivers.surname as driver,
17 constructors.name as constructor,
18 sum(points) as points
19

20 from results
21 join races using(raceid)
22 join drivers using(driverid)
23 join constructors using(constructorid)
24

25 where races.year = seasons.year
26

27 group by grouping sets(drivers.surname, constructors.name)
28 order by drivers.surname is not null, points desc
29)
30 as points
31 on true
32 order by year, driver is null, points desc;
33

34 create materialized view cache.season_points as
35 select * from v.season_points;
36

37 create index on cache.season_points(season);
38

39 commit;

We ஹ஭rst create a classic view that computes the points every time it’s referenced

Chapter 31 Denormalization | 270

in queries and join operations and then build a materialized view on top of it.
This makes it easy to see how much the materialized view has drifிed from the
authoritative version of the content with a simple except query. It also helps to
disable the cache provided by the materialized view in your application: only
change the name of the relation and have the same result set, only known to be
current.

This cache now is to be invalidated afிer every race and implementing cache in-
validation is as easy as running the following refresh materialized view query:

1 refresh materialized view cache.season_points;

The cache.season_points relation is locked out from even select activity while its
content is being computed again. For very simplematerialized view deஹ஭nitions
it is possible to refresh concurrently and avoid locking out concurrent readers.
Now that we have a cache, the application query to retrieve the same result set as
before is the following:

1 select driver, constructor, points
2 from cache.season_points
3 where season = 2017
4 and points > 150;

History Tables and Audit Trails

Some business cases require having a full history of changes available for audit
trails. What’s usually done is to maintain live data into the main table, modeled
with the rules we already saw, andmodel a speciஹ஭c history table convering where
to maintain previous versions of the rows, or an archive.

A history table itself isn’t a denormalized version of the main table but rather
another version of themodel entirely, with a diஸferent primary key to beginwith.

What parts that might require denormalization for history tables are?
• Foreign key references to other tables won’t be possible when those refer-
ence changes and you want to keep a history that, by deஹ஭nition, doesn’t
change.

• The schema of your main table evolves and the history table shouldn’t
rewrite the history for rows already written.

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

Chapter 31 Denormalization | 271

The second point depends on your business needs. It might be possible to add
new columns to both the main table and its history table when the processing
done on the historical records is pretty light, i.e. mainly listing and comparing.

An alternative to classic history tables, when using PostgreSQL, takes advantage
of the advanced data type JSONB.

1 create schema if not exists archive;
2

3 create type archive.action_t
4 as enum('insert', 'update', 'delete');
5

6 create table archive.older_versions
7 (
8 table_name text,
9 date timestamptz default now(),
10 action archive.action_t,
11 data jsonb
12);

Then it’s possible to ஹ஭ll in the archive older_versions tablewith data fromanother
table:

1 insert into archive.older_versions(table_name, action, data)
2 select 'hashtag', 'delete', row_to_json(hashtag)
3 from hashtag
4 where id = 720554371822432256
5 returning table_name, date, action, jsonb_pretty(data) as data;

This returns:
─[RECORD 1]──
table_name │ hashtag
date │ 2017-09-12 23:04:56.100749+02
action │ delete
data │ { ↵

│ "id": 720554371822432256, ↵
│ "date": "2016-04-14T10:08:00+02:00", ↵
│ "uname": "Brand 1LIVESTEW", ↵
│ "message": "#FB @ Atlanta, Georgia https://t.co/mUJdxaTbyC",↵
│ "hashtags": [↵
│ "#FB" ↵
│], ↵
│ "location": "(-84.3881,33.7489)" ↵
│ }

INSERT 0 1

When using the PostgreSQL extension hstore it is also possible to compute the
diff between versions thanks to the support for the - operator on this data type.

https://www.postgresql.org/docs/current/static/hstore.html

Chapter 31 Denormalization | 272

Recording the data as jsonb or hstore in the history table allows for having a sin-
gle table for a whole application. More importantly, it means that dealing with
an application life cycle where the database model evolves is allowed as well as
dealing with diஸferent versions of objects into the same archive.

As seen in the previous sections though, dealing with jsonb in PostgreSQL is
quite powerful, but not as powerful as dealing with the full power of a struc-
tured data model with an advanced SQL engine. That said, ofிen enough the
application and business needs surrounding the history entries are relaxed com-
pared to live data processing.

Validity Period as a Range

As we already covered in the rates example already, a variant of the historic table
requirement is when your application even needs to process the data even afிer
its date of validity. When doing ஹ஭nancial analysis or accounting, it is crucial to
relate an invoice in a foreign currency to the valid exchange rate at the time of the
invoice rather than the most current value of the currency.

1 create table rates
2 (
3 currency text,
4 validity daterange,
5 rate numeric,
6

7 exclude using gist (currency with =,
8 validity with &&)
9);

An example of using this model follows:
1 select currency, validity, rate
2 from rates
3 where currency = 'Euro'
4 and validity @> date '2017-05-18';

And here’s what the application would receive, a single line of data of course,
thanks to the exclude using constraint:
currency │ validity │ rate

══════════╪═════════════════════════╪══════════
Euro │ [2017-05-18,2017-05-19) │ 1.240740

(1 row)

Chapter 31 Denormalization | 273

This query is kept fast thanks to the special GiST indexing, as we can see in the
query plan:

1 \pset format wrapped
2 \pset columns 57
3

4 explain
5 select currency, validity, rate
6 from rates
7 where currency = 'Euro'
8 and validity @> date '2017-05-18';

QUERY PLAN
═══
Index Scan using rates_currency_validity_excl on rates …
… (cost=0.15..8.17 rows=1 width=34)

Index Cond: ((currency = 'Euro'::text) AND (validity …
…@> '2017-05-18'::date))
(2 rows)

So when you need to keep around values that are only valid for a period of time,
consider using the PostgreSQL range data types and the exclusion constraint that
guarantees no overlapping of values in your data set. This is a powerful tech-
nique.

Pre-Computed Values

In some cases, the applicationkeeps computing the samederived values each time
it accesses to the data. It’s easy to pre-compute the value with PostgreSQL:

• As a default value for the column if the computation rules only include
information available in the same tuple

• With a before triঃer that computes the value and stores it into a column
right in your table

Triggers are addressed later in this book with an example to solve this use case.

Enumerated Types

It is possible to use ENUM rather than a reference table.

Chapter 31 Denormalization | 274

When dealing with a short list of items, the normalized way to do that is to han-
dle the catalog of accepted values in a dedicated table and reference this table
everywhere your schema uses that catalog of values.
When using more than join_collapse_limit or from_collapse_limit relations in
SQL queries, the PostgreSQL optimizer might be defeated… so in some schema
using an ENUM data type rather than a reference table can be beneஹ஭cial.

Multiple Values per Attribute

In the CSV anti-pattern database model, we saw all the disadvantages of using
multiple values per attribute in general, with a text-based schema and a separator
used in the attribute values.

Managing several values per attribute, in the same row, can help reduce how
many rows your applicationmustmanage. The normalized alternative has a side
table for the entries, with a reference to the main table’s primary key.

Given PostgreSQL array support for searching and indexing, it is more eஸஹ஭cient
at times to manage the list of entries as an array attribute in our main table. This
is particularly eஸfective when the application ofிen has to delete entries and all
referenced data.

In some cases, multiple attributes each containing multiple values are needed.
PostgreSQL arrays of composite type instances might then be considered. Cases
when that model beats the normalized schema are rare, though, and managing
this complexity isn’t free.

The Spare Matrix Model

In caseswhere your applicationmanages lots of optional attributes per row,most
of them never being used, they can be denormalized to a JSONB extra column
with those attributes, all managed into a single document.

When restricting this extra jonsb attribute to values never referenced anywhere
else in the schema, andwhen the application only needs this extra data as awhole,
then jsonb is a very good trade-oஸf for a normalized schema.

Chapter 31 Denormalization | 275

Partitioning

Partitioning refers to splitting a table with too many rows into a set of tables
each containing a part of those rows. Several kinds of partitioning are available,
such as list or range partitioning. Starting in PostgreSQL 10, table partitioning
is supported directly.

While partitioning isn’t denormalization as such, the limits of the PostgreSQL
implementationmakes it valuable to include the technique in this section. Quot-
ing the PostgreSQL documentation:

• There is no facility available to create the matching indexes on all parti-
tions automatically. Indexes must be added to each partition with sepa-
rate commands. This also means that there is no way to create a primary
key, unique constraint, or exclusion constraint spanning all partitions; it
is only possible to constrain each leaf partition individually.

• Since primary keys are not supported on partitioned tables, foreign keys
referencing partitioned tables are not supported, nor are foreign key refer-
ences from a partitioned table to some other table.

• Using the ON CONFLICT clause with partitioned tables will cause an
error, because unique or exclusion constraints can only be created on in-
dividual partitions. There is no support for enforcing uniqueness (or an
exclusion constraint) across an entire partitioning hierarchy.

• An UPDATE that causes a row to move from one partition to another
fails, because the new value of the row fails to satisfy the implicit partition
constraint of the original partition.

• Row triggers, if necessary, must be deஹ஭ned on individual partitions, not
the partitioned table.

So when using partitioning in PostgreSQL 10, we lose the ability to reach even
the ஹ஭rstnormal formby the lack of covering primary key. Thenwe lose the ability
to maintain a reference to the partitioned table with a foreign key.
Before partitioning any table in PostgreSQL, including PostgreSQL 10, as with
any other denormalization technique (coveredhere or not), please do your home-
work: check that it’s really not possible to sustain the application’sworkloadwith
a normalized model.

https://www.postgresql.org/docs/10/static/ddl-partitioning.html

Chapter 31 Denormalization | 276

Other Denormalization Tools

PostgreSQL extensions such as hstore, ltree, intarray or pg_trgm oஸfer another set
of interesting trade-oஸfs to implement speciஹ஭c use cases.

For example ltree can be used to implement nested category catalogs and refer-
ence articles precisely in this catalog.

Denormalize wih Care

It’s been mentioned already, and it is worth saying it again. Only denormalize
your application’s schema when you know what you’re doing, and when you’ve
double-checked that there’s no other possibility for implementing your applica-
tion and business cases with the required level of performance.

First, query optimization techniques — mainly rewriting until it’s obvious for
PostgreSQL how to best execute a query— can go a long way. Production exam-
ples of query rewrite improving durations fromminutes tomilliseconds are com-
monly achieved, in particular against queries written by ORMs or other naive
toolings.

Second, denormalization is an optimization technique meant to leverage trade-
oஸfs. Allow me to quote Rob Pike again, as he establishes his ஹ஭rst rule of pro-
gramming in Notes on Programming in C as the following:

Rule 1. You can’t tell where a program ॾ going to spend its time. Bot-
tlenecks occur in surprising placॽ, so don’t try to second guess and
put in a speed hack until you’ve proven that’s where the bottleneck
ॾ.

The rule works as well for a database model as it does for a program. Maybe the
database model is even more tricky because we only measure time spent by ran
queries, usually, and not the time it takes to:

• Understand the database model
• Understand how to use the database model to solve a new business case
• Write the SQL queries necessary to the application code
• Validate data quality

https://www.postgresql.org/docs/current/static/ltree.html
https://en.wikipedia.org/wiki/Rob_Pike
http://www.lysator.liu.se/c/pikestyle.html

Chapter 31 Denormalization | 277

So again, only put all those nice properties at riskwith denormalizing the schema
when there’s no other choice.

32
Not Only SQL

PostgreSQL is a solid ACID relational database management system and uses
the SQL language to process, manage and query the data. Its main purpose is to
guarantee a consistent view of a business as a whole, at all times, while applica-
tions are concurrently active in read and write modes of operation.

To achieve a strong level of consistency, PostgreSQL needs the application de-
signers to also design a solid datamodel, and at times to think about concurrency
issues. We deal with those in the next chapter: Data Manipulation and Concur-
rency Control.

In recent years, big players in the industry faced a new scale of business, never
before seen. Nowadays, a big player may have tens or hundreds of millions of
concurrent users. Each user produces new data, and some business models need
to react quickly to the newly inserted data and make it available to customers—
mostly advertising networks…

Solving that scale of an activity introduced new challenges and the necessity to
work in a distributed fashion. A single instance would never be able to address
hundreds of millions of concurrent users, all actively producing data.

In order to be able to address such a scale, new systems have been designed that
relax one or several of theACID guarantees. Those systems are grouped under
theNoSQL ஺ாagship term and are very diverse in their capabilities and behavior.
Under theNoSQL term, we ஹ஭nd solutions with characteristics including:

• No support for transactions

Chapter 32 Not Only SQL | 279

• Lacking atomic operations, for which transactions are needed
• Lacking isolation, which means no support for online backups
• No query language, instead using an API
• No consistency rules, not even data types
• A reduced set of operations, ofிen only key/value support
• Lacking support for join or analytics operations
• Lacking support for business constraints
• No support for durability

Relaxing the very strong guarantees oஸfered by traditional database systems al-
lows some of theNoSQL solution to handle more concurrent activity, ofிen us-
ing distributed nodes of computing with a distributed data set: each node only
has access to a partial set of the data.

Some of those systems then added a query language, with similarities to the well-
known and established SQL. The NoSQL movement has inspired a NewSQL
movement.

PostgreSQL oஸfers several ways to relax itsACID guarantees and it can be com-
pared favorably to most of theNoSQL andNewSQL oஸferings, at least until the
concurrency levels can’t be sustained by a single instance.

Solutions to scale-out PostgreSQL are readily available, either as extensions or as
forks, and these are not covered by this book. In this chapter, we focus on using
PostgreSQL as aNoSQL solution with batteries included, for those cases when
you need them, such as reporting, analytics, data consistency and quality, and
other business needs.

Schemaless Design in PostgreSQL

An area where the NoSQL systems have been prominent is in breaking with
the normalization rules and the hard step of modeling a database schema. In-
stead, mostNoSQL system will happily manage any data the application sends
through. This is called the schemaless approach.
In truth, there’s no such thing as a schemaless design actually. What it means is
that the name and type of the document properties, or ஹ஭elds, are hard-coded into
the application code.

Chapter 32 Not Only SQL | 280

A readily available JSON data set is provided at https://mtgjson.com that Pro-
vidॽ Magic: the Gathering card data in JSON format, using the CC0 license.
We can load it easily given this table deஹ஭nition:

1 begin;
2

3 create schema if not exists magic;
4

5 create table magic.allsets(data jsonb);
6

7 commit;

Then we use a small Python script:
1 #! /usr/bin/env python3
2

3 import psycopg2
4

5 PGCONNSTRING = "user=appdev dbname=appdev"
6

7 if __name__ == '__main__':
8 pgconn = psycopg2.connect(PGCONNSTRING)
9 curs = pgconn.cursor()
10

11 allset = open('MagicAllSets.json').read()
12 allset = allset.replace("'", "''")
13 sql = "insert into magic.allsets(data) values('%s')" % allset
14

15 curs.execute(sql)
16 pgconn.commit()
17 pgconn.close()

Now, the giant JSON document in a single table isn’t representative of the kind
of schemaless design addressed in this chapter. It goes a little too far to push a 27
MB document containing collections of cards into a single table. We can ஹ஭x this
easily, though, given that we’re using PostgreSQL:

1 begin;
2

3 drop table if exists magic.sets, magic.cards;
4

5 create table magic.sets
6 as
7 select key as name, value - 'cards' as data
8 from magic.allsets, jsonb_each(data);
9

10 create table magic.cards
11 as
12 with collection as
13 (

https://mtgjson.com
https://creativecommons.org/publicdomain/zero/1.0/

Chapter 32 Not Only SQL | 281

14 select key as set,
15 value->'cards' as data
16 from magic.allsets,
17 lateral jsonb_each(data)
18)
19 select set, jsonb_array_elements(data) as data
20 from collection;
21

22 commit;

Here’s how to query such a table and get data you are interested into. Note that
we use the generic contains operator, spelled @>, which ஹ஭nds a JSON document
inside another JSON document. Our GIN index deஹ஭nition above has support
for exactly this operator.

1 select jsonb_pretty(data)
2 from magic.cards
3 where data @> '{"type":"Enchantment",
4 "artist":"Jim Murray",
5 "colors":["White"]
6 }';

Andwe get the following card, which has been found using aGIN index lookup
over our collection of 34207 cards, in about 1.5ms on my laptop:

jsonb_pretty
══
{ ↵

"id": "34b67f8cf8651964995bfec268498082710d4c6a", ↵
"cmc": 5, ↵
"name": "Angelic Chorus", ↵
"text": "Whenever a creature enters the battlefield under your c…

…ontrol, you gain life equal to its toughness.", ↵
"type": "Enchantment", ↵
"types": [↵

"Enchantment" ↵
], ↵
"artist": "Jim Murray", ↵
"colors": [↵

"White" ↵
], ↵
"flavor": "The harmony of the glorious is a dirge to the wicked.…

…", ↵
"layout": "normal", ↵
"number": "4", ↵
"rarity": "Rare", ↵
"manaCost": "{3}{W}{W}", ↵
"imageName": "angelic chorus", ↵
"mciNumber": "4", ↵
"multiverseid": 129710, ↵
"colorIdentity": [↵

"W" ↵
] ↵

}

Chapter 32 Not Only SQL | 282

(1 row)

The thing with this schemaless design is that documents still have a structure,
with ஹ஭elds and data types. It’s just opaque to the database system andmaintained
in the application’s code anyway.

Of course, schemaless means that you reach none of the normal forms, which
have been designed as a helper to guarantee data quality in the long term.

So while PostgreSQL allows handling schemaless data thanks to its support for
the JSON, XML, arrays and composite data types, only use this approach when
you have zero data quality requirements.

Durability Trade-Offs

Durability is the D of the ACID guarantees, and it refers to the property that
your databasemanagement system is not allowed tomiss any committed transac-
tion afிer a restart or a crash… any crash. It’s a very strong guarantee, and it can
impact performances behavior a lot.

Of course, by default, PostgreSQL applies a strong durability guarantee to every
transaction. As you can read in thedocumentation about asynchronous commit,
it’s possible to relax that guarantee for enhanced write capacity.

PostgreSQL allows synchronoॿ_commit to be set diஸferently for each concurrent
transaction of the system, and to be changed in-஺ாight within a transaction. Afிer
all, this setting controls the behavior of the server at transaction commit time.

Reducing the write guarantees is helpful for sustaining some really heavy write
workloads, and that’s easy to do with PostgreSQL. One way to implement dif-
ferent durability policies in the same application would be to assign a diஸferent
level of guarantee to diஸferent users:

1 create role dbowner with login;
2 create role app with login;
3

4 create role critical with login in role app inherit;
5 create role notsomuch with login in role app inherit;
6 create role dontcare with login in role app inherit;
7

8 alter user critical set synchronous_commit to remote_apply;

https://www.postgresql.org/docs/current/static/wal-async-commit.html

Chapter 32 Not Only SQL | 283

9 alter user notsomuch set synchronous_commit to local;
10 alter user dontcare set synchronous_commit to off;

Use the dbowner role for handling your database model and all your DDL
scripts, and create your database with this role as the owner of it. Give enough
privileges to the app role so that your application can use it to implement all
the necessary work஺ாows. Then the critical, notsomuch and dontcare roles will
have the same set of privileges as the app role, and maybe host a diஸferent set of
settings.

Now your application can pick the right connection string or user and obtain a
stronger guarantee for any data changes made, with the critical user, or no dura-
bility guarantee with the dontcare user.
If you need to change the synchronoॿ_commit setting in-஺ாight, your application
can use the SET LOCAL command.

It’s also possible to implement such a policy entirely in the database side of things
thanks to the following example trigger:

1 SET demo.threshold TO 1000;
2 CREATE OR REPLACE FUNCTION public.syncrep_important_delta()
3 RETURNS TRIGGER
4 LANGUAGE PLpgSQL
5 AS
6 $$ DECLARE
7 threshold integer := current_setting('demo.threshold')::int;
8 delta integer := NEW.abalance - OLD.abalance;
9 BEGIN
10 IF delta > threshold
11 THEN
12 SET LOCAL synchronous_commit TO on;
13 END IF;
14 RETURN NEW;
15 END;
16 $$;

Such a trigger would have a look at the delta from your balance at commit time
and depending on the amount would upgrade your synchronoॿ_commit set-
ting.

Sometimes though, even with relaxing the durability guarantees, business re-
quirements can’t be met with a single server handling all the write traஸஹ஭c. Then,
it is time to scale out.

https://www.postgresql.org/docs/current/static/sql-set.html

Chapter 32 Not Only SQL | 284

Scaling Out

A very interesting area in which the NoSQL solutions made progress is in the
ability to natively scale-out a production setup, without extra eஸforts. Thanks to
their design choice of a reduced set of operations supported— in particular the
lack of join operations—and a relaxed consistency requirement set— such as the
lack of transaction support and the lack of integrity constraints — theNoSQL
systems have been able to be innovative in terms of distributed computing.

Native scale out is achieved when it’s easy to add computing nodॽ or servers into
a production setup, at run-time, and then improve both the read and write ca-
pacity of the whole production setup.

High availability and load balancing are something separate from scale out, and
canbedonebothby theNoSQLsystems andbyPostgreSQLbased architectures,
as covered in the PostgreSQL documentation entitled High Availability, Load
Balancing, and Replication.

PostgreSQL native scale-out does not exist yet. Commercial and open-source—
both at the same time—extensions and forks are available that solve this problem
such as Postgres-BDR from 2ndQuadrant or Citus from citusdata.
PostgreSQL 10 ships with logical replication support included, and this allows
for a certain level of scaling-out solutions.

If your business manages data from separated areas, say geographically indepen-
dent units, then it’s possible to have each geographical unit served by a separate
PostgreSQL server. Then use logical replication to combine the data set into a
single global server for a classic setup, or to local copies in each region you operate
into.

The application still needs to know where is the data is that it needs to access
to, so the solution isn’t transparent yet. That said, in many business cases write
latency is a bigger problem than write scalibility, so a federated central server is
still possible to maintain, and now the reporting applications can use that Post-
greSQL instance.

When considering a scaling out solution, always ஹ஭rst consider the question of
online backups: do you still need them, and if so, are they possible to implement?
Most of the native scale-out systems oஸfer no global transactions, which means
no isolation from concurrent activity and as a result there is no possibility to

https://www.postgresql.org/docs/9.6/static/high-availability.html
https://www.postgresql.org/docs/9.6/static/high-availability.html
https://www.2ndquadrant.com/en/resources/bdr/
https://www.citusdata.com
https://www.postgresql.org/docs/devel/static/logical-replication.html

Chapter 32 Not Only SQL | 285

implement a consistent online backup.

33
An interview with Álvaro

Hernández Tortosa

IT entrepreneur, founder of two sofிware development companies (8Kdata,Wiz-
zbill). Sofிware architect and developer. Open source consultant and supporter.
Ávaro Hernández Tortosa leads the ToroDB project, a MongoDB replica solu-
tion based on PostgreSQL!

In particular, check out the Stampede product, which bringsMongoDB to Post-
greSQL. Stampede automagically ஹ஭nds the schema of your MongoDB data and
presents it as relational tables and columns. Stampede is just a hidden secondary
node of your MongoDB replica set. No need to design any DDL. Plug&Play!

From your experience building the ToroDB bridge in between relational and
“schemaless” worlds, do you still see any advantage in the relational data model
with business constraints?

I absolutely do. Let me really quantify it, in two very clear scenar-
ios.
One ॾmy own experience with dynamic schema (please let me avoid
the schema-less term, which I think it ॾ completely flawed. I prefer
dynamic schema or schema-attached). Since ToroDB replicatॽ data
that previously exists on a MongoDB instance, we needed to find
applications that created data on MongoDB. Or write them. We
did, of course, both. And on writing applications for MongoDB,
we experience the dynamic schema on MongoDB for ourselvॽ.

https://www.8kdata.com
https://www.torodb.com
https://www.torodb.com/stampede/

Chapter 33 An interview with Álvaro Hernández Tortosa | 287

It looks appealing at first. I can throw anything at it, and it works.
You don’t need to design the schema! So you start prototyping very
quickly. But data almost always hॼ “relations”. For instance, we
set-up an IoT device with an antenna (yeah, on our office’s roof) to
receive live flight data (ADSB receiver). And we stored the flight
data in a collection. But soon you download a “database” of car-
riers, and you want to relate them to the flight data. And then
airports. And then plane models. And then…. and how do you
store all that data in MongoDB? In different collections? Embed-
ded into the flight data documents? Otherwise? These questions
typically come up very early, and pose schema design considera-
tions. Wasn’t “schema-less” something that avoided you designing
the schema? Not at all. Indeed, even MongoDB recommends de-
signing the schema ॼ a best-practice, and they even offer full coursॽ
on schema design onMongoDB!And once you understand thॾ and
need to design the schema, you realize you are basically limited to
the following options:
a. Embed 1:1 relationships inside the documents (thॾ ॾ fine).
b. Embed 1:N relationships (de-normalization: may lead to

data duplication)
c. Simulate N:M relationships either by embedding (you choose
only one side of the join, forget about the other, and also leads
to data duplication) or you embed ids, and you do the join at
the application level (reinvent the wheel).

So in any case you need to carefully design the data structure and
your options are much more limited than in the relational world.
That’s not saying there are use casॽ for dynamic schema, like very
flat data structurॽ, or ॼ a temporary store for data of very dynamic
propertiॽ, which you may normalize later. But it’s not the unicorn
we have been told to believe it ॾ.
The second scenario ॾ related to analytics performance. Basically,
NoSQL ॾ not designed for analytics purposॽ and perform very
poorly. We found 1-2 orders of magnitude speedup when performing
the same queriॽ on relational-structured data vs. NoSQL.
Thॾ may sound counterintuitive: after all NoSQL ॾ for “Big
Data”, isn’t it? Well, it could also be explained in a very intuitive

Chapter 33 An interview with Álvaro Hernández Tortosa | 288

manner: NoSQL data ॾ unstructured data. And unstructured
data, ॼ it name impliॽ, ॾ unstructured, that ॾ, doesn’t have
an a priori structure. It ॾ a bit “chaotic”, unorganized. Data
may be present, absent, or located anywhere. And what ॾ
analytics? Obtaining valuable information from data. But if data
ॾ unstructured, every analytic query needs to parse and analyze
every single document present and infer its structure, check if the
query predicate matchॽ the document (or even if the keys that
are looking for even exist on thॾ document!) and so forth. Thॾ
represents a significant extra effort that ॾ completely not required
in relational datastorॽ. And hence they are able to perform even
orders of magnitude faster. Queriॽ that take hours in NoSQL
may take just a few seconds in relational. It’s thॾ dramatic. For
more information, feel free to read our blog post and benchmarks
on thॾ topic: https://www.8kdata.com/blog/announcing-torodb-
stampede-1-0-beta/.

With ToroDB Stampede it’s now possible to have both MongoDB and Post-
greSQL feature sets on top of the same live data set. How would you compare
the query languages for MongoDB and PostgreSQL?

MongoDB query language hॼ been growing, adding new operators
and functionality and I expect thॾ trend to continue with every re-
lease. However, if you compare it feature-wise with SQL, especially
with PostgreSQL’s very rich feature SQL implementation, it ॾ al-
most night and day. To name a couple of examplॽ, joins are only
limited in a very limited fashion, and there are no window func-
tions. What ॾ worse ॾ that some query patterns in MongoDB are
not optimized and performance variॽ dramatically from feature to
feature. I expect MongoDB query language to take a long time to
catch up, if that’s possible, with PostgreSQL’s SQL language.
Syntax ॾ another issue. MongoDB’s query language ॾ a JSON
document, and it soon becomॽ awkward to understand and follow.
Take a moderately complex query in MongoDB and its equivalent
in SQL and present them to the average developer, not specially
trained in either. You will see the difference.
But the main problem I see in MongoDB, regarding its user-facing
language it’s the compatibility. SQL ॾ a standard, and even if
there are some minor differencॽ between implementations and the

https://www.8kdata.com/blog/announcing-torodb-stampede-1-0-beta/
https://www.8kdata.com/blog/announcing-torodb-stampede-1-0-beta/

Chapter 33 An interview with Álvaro Hernández Tortosa | 289

standard itself (by the way, PostgreSQL here doॽ a very good job,
following the standard very closely), it hॼ led to the development,
for many years, of a huge ecosystem of tools and applications that
you can use with the database. There ॾ simply no such ecosystem
for MongoDB, it’s just a minor fraction in comparison.
Note: sure, MongoDB hॼ the proprietary BI Connector, which
theoretically allows you to connect MongoDB to any SQL tool. The
true story ॾ that BI Connector performance ॾ very poor when com-
pared to a SQL database, and its SQL compatibility support ॾ also
very small. So it just works on some limited number of casॽ.

Howwould you compare a pure JSON“schemaless” database such asMongoDB
against PostgreSQL denormalization options such as arrays, composite types,
JSONB embedded documents, etc?

PostgreSQL data typॽ are really rich and flexible. You can very
easily create your own or extend others. JSONB, in particular,
emulatॽ a whole document, and also supports quite advanced in-
dexing (B-tree indexॽ on an expression of the JSON document, or
specialized json indexॽ that index either the whole document or
paths within it). One very obvioॿ question ॾ whether jsonb data
type can compete withMongoDB on its own field, dynamic schema.
One the one hand, MongoDB ॾ not only chosen because of
the dynamic schema, but other capabilitiॽ such ॼ built-in
high-availability (with its own gotchॼ, but after all integrated
into core) and distributed query. On the former, PostgreSQL
cannot compete directly, there ॾ no HA solution in-core, even
though there are several external solutions. As for distributed
queriॽ, more related to the topic being discussed, there ॾ also not
support per se in PostgreSQL (however you may use Citॿ Data’s
PostgreSQL extension for a distributed data store or Greenplum
for data warehousing capabilitiॽ). But in combination, we cannot
clearly say that PostgreSQL here offers a complete alternative to
MongoDB.
On the other hand, if we’re just talking about data and not database
infrastructure, JSONB pretty much fulfills the purposॽ of a docu-
ment store, and it’s probably better in some areॼ. Probably the
query language (JSONB’s query functions and operators, that go

Chapter 33 An interview with Álvaro Hernández Tortosa | 290

beyond SQL) are less advanced than MongoDB’s query language
(even with all the internal issuॽ that MongoDB query language
hॼ). But it offers the best of both worlds: you can freely combine
unstructured with structured data. And thॾ ॾ, indeed, a very com-
pelling use-case: the benefits of a normalized, relational schema de-
sign for the core parts of the data, and those that are obvioॿ and
clear from the beginning; and add ॼ needed jsonb columns for
less structured, more dynamic, changing data, until you can under-
stand its shape and finally migrate to a relational schema. Thॾ ॾ
really the best of both worlds and my best recommendation.

Part VII

Data Manipulation and
Concurrency Control

| 292

In the previous chapters, we saw diஸferent ways to fetch exactly the data you’re
interested into from the database server. This data that we’ve been querying us-
ing SQL must get there, and that’s the role of the DML parts of the standard:
data manipulation language.
The most important aspects of this language for maintaining data are its concur-
rency properties with theACID guarantees, and its capability to process batches
of rows at a time.

TheCRUD capabilities are essential to any application: create, read, update and
delete one entry at a time is at the foundation of our applications, or at least their
admin panels.

34
Another Small Application

In a previous chapterwhen introducing arrayswe used a dataset of 200,000USA
geolocated tweets with a very simple data model. The data model is a direct port
of the Excel sheet format, allowing a straightforward loading process: we used
the \copy command from psql.

1 begin;
2

3 create table tweet
4 (
5 id bigint primary key,
6 date date,
7 hour time,
8 uname text,
9 nickname text,
10 bio text,
11 message text,
12 favs bigint,
13 rts bigint,
14 latitude double precision,
15 longitude double precision,
16 country text,
17 place text,
18 picture text,
19 followers bigint,
20 following bigint,
21 listed bigint,
22 lang text,
23 url text
24);
25

26 \copy tweet from 'tweets.csv' with csv header delimiter ';'

http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/
http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/

Chapter 34 Another Small Application | 294

27

28 commit;

This database model is all wrong per the normal forms introduced earlier:
• There’s neither a unique constraint nor primary key, so there is nothing
preventing insertion of duplicates entries, violating 1NF.

• Some non-key attributes are not dependent on the key because we mix
data from the Twitter account posting the message and the message itself,
violating 2NF.
This is the case with all the user’s attributes, such as the nickname, bio,
picture, followers, following, and listed attributes.

• We have transitive dependencies in the model, which violates 3NF this
time.

– The country and place attributes depend on the location attribute
and as such should be on a separate table, such as the geonamॽ data
as used in the Denormalized Data Types chapter.

– The hour attributes depend on the date attribute, as the hour alone
can’t represent when the tweet was transmitted.

• The longitude and latitude should really be a single location column, given
PostgreSQL’s ability to deal with geometric data types, here a point.

It is interesting to note that failing to respect the normal forms has a negative
impact on application’s performance. Here, each time a user changes his or her
bio, we will have to go edit the user’s bio in every tweet ever posted. Or we could
decide to only give new tweets the new bio, but then at query timewhen showing
an old tweet, it gets costly to fetch the current bio from the user.

From a concurrency standpoint, a normalized schema helps to avoid concurrent
update activity on the same rows from occuring ofிen in production.

It’s now time to rewrite our schema, and here’s a ஹ஭rst step:
1 begin;
2

3 create schema if not exists tweet;
4

5 create table tweet.users
6 (
7 userid bigserial primary key,
8 uname text not null,

Chapter 34 Another Small Application | 295

9 nickname text not null,
10 bio text,
11 picture text,
12 followers bigint,
13 following bigint,
14 listed bigint,
15

16 unique(uname)
17);
18

19 create table tweet.message
20 (
21 id bigint primary key,
22 userid bigint references tweet.users(userid),
23 datetime timestamptz not null,
24 message text,
25 favs bigint,
26 rts bigint,
27 location point,
28 lang text,
29 url text
30);
31

32 commit;

This model cleanly separates users and their messages and removes the attributes
country and place, whichwemaintain separately in the geonames schema, as seen
earlier.

That said, followers and following and listed ஹ஭elds are a summary of other infor-
mation that we should have but don’t. The fact that the extract we worked with
had a simpler statistics oriented schema shouldn’t blind us here. There’s a better
way to register relationships between users in terms ofwho followswho andwho
lists who, as in the following model:

1 begin;
2

3 create schema if not exists tweet;
4

5 create table tweet.users
6 (
7 userid bigserial primary key,
8 uname text not null,
9 nickname text,
10 bio text,
11 picture text,
12

13 unique(uname)
14);
15

Chapter 34 Another Small Application | 296

16 create table tweet.follower
17 (
18 follower bigint not null references tweet.users(userid),
19 following bigint not null references tweet.users(userid),
20

21 primary key(follower, following)
22);
23

24 create table tweet.list
25 (
26 listid bigserial primary key,
27 owner bigint not null references tweet.users(userid),
28 name text not null,
29

30 unique(owner, name)
31);
32

33 create table tweet.membership
34 (
35 listid bigint not null references tweet.list(listid),
36 member bigint not null references tweet.users(userid),
37 datetime timestamptz not null,
38

39 primary key(listid, member)
40);
41

42 create table tweet.message
43 (
44 messageid bigserial primary key,
45 userid bigint not null references tweet.users(userid),
46 datetime timestamptz not null default now(),
47 message text not null,
48 favs bigint,
49 rts bigint,
50 location point,
51 lang text,
52 url text
53);
54

55 commit;

Nowwe can begin to work with this model.

35
Insert, Update, Delete

The three commands insert, update, and delete have something in common:
they accept a returning clause. This allows the DML command to return a re-
sult set to the application with the same protocol as the select clause, both are a
projection.
This is a PostgreSQL addition to the SQL standard and it comes with clean and
general semantics. Also, it avoids a network roundtrip when your application
needs to know which default value has been chosen for its own bookkeeping.

Another thing the three commands have in common is a way to do joins. It is
spelled diஸferently in each statement though, and it is included in the SQL stan-
dard too.

Insert Into

Given ourmodel of tweets, the ஹ஭rst thingwe need are users. Here’s how to create
our ஹ஭rst users:

1 insert into tweet.users (userid, uname, nickname, bio)
2 values (default, 'Theseus', 'Duke Theseus', 'Duke of Athens.');

The SQL standard valuॽ clause is usable anywhere select is expected, as we saw
already in our truth tables earlier. Also, values accepts several rows at a time.

https://www.postgresql.org/docs/current/static/sql-values.html

Chapter 35 Insert, Update, Delete | 298

1 insert into tweet.users (uname, bio)
2 values ('Egeus', 'father to #Hermia.'),
3 ('Lysander', 'in love with #Hermia.'),
4 ('Demetrius', 'in love with #Hermia.'),
5 ('Philostrate', 'master of the revels to Theseus.'),
6 ('Peter Quince', 'a carpenter.'),
7 ('Snug', 'a joiner.'),
8 ('Nick Bottom', 'a weaver.'),
9 ('Francis Flute', 'a bellows-mender.'),
10 ('Tom Snout', 'a tinker.'),
11 ('Robin Starveling', 'a tailor.'),
12 ('Hippolyta', 'queen of the Amazons, betrothed to Theseus.'),
13 ('Hermia', 'daughter to Egeus, in love with Lysander.'),
14 ('Helena', 'in love with Demetrius.'),
15 ('Oberon', 'king of the fairies.'),
16 ('Titania', 'queen of the fairies.'),
17 ('Puck', 'or Robin Goodfellow.'),
18 ('Peaseblossom', 'Team #Fairies'),
19 ('Cobweb', 'Team #Fairies'),
20 ('Moth', 'Team #Fairies'),
21 ('Mustardseed', 'Team #Fairies'),
22 ('All', 'Everyone speaking at the same time'),
23 ('Fairy', 'One of them #Fairies'),
24 ('Prologue', 'a play within a play'),
25 ('Wall', 'a play within a play'),
26 ('Pyramus', 'a play within a play'),
27 ('Thisbe', 'a play within a play'),
28 ('Lion', 'a play within a play'),
29 ('Moonshine', 'a play within a play');

If you have lots of rows to insert into your database, consider using the copy
command instead of doing a series of inserts. If for some reason you can’t use
copy, for performance reasons, consider using a single transaction doing several
insert statements each with many valuॽ.

Insert Into … Select

The insert statement can also use a query as a data source. We could, for instance,
ஹ஭ll in our tweet.follower tablewith people that are known to love each other from
their bio ஹ஭eld; and also we should have the fairies follow their queen and king,
maybe.

First, we need to take this data apart from the previously inserted ஹ஭elds, which is
our data source here.

https://www.postgresql.org/docs/current/static/sql-copy.html

Chapter 35 Insert, Update, Delete | 299

1 select users.userid as follower,
2 users.uname,
3 f.userid as following,
4 f.uname
5 from tweet.users
6 join tweet.users f
7 on f.uname = substring(users.bio from 'in love with #?(.*).')
8 where users.bio ~ 'in love with';

The substring expression here returns only the regular expression matching
group, which happens to be the name of who our user loves. The query then
gives us the following result, which looks about right:
follower │ uname │ following │ uname

══════════╪═══════════╪═══════════╪═══════════
3 │ Lysander │ 13 │ Hermia
4 │ Demetrius │ 13 │ Hermia

13 │ Hermia │ 3 │ Lysander
14 │ Helena │ 4 │ Demetrius

(4 rows)

Now, we want to insert the follower and following data into the tweet.follower
table of course. As the insert into command knows how to read its input from
the result of a select statement, it’s pretty easy to do:

1 insert into tweet.follower
2 select users.userid as follower,
3 f.userid as following
4 from tweet.users
5 join tweet.users f
6 on f.uname = substring(users.bio from 'in love with #?(.*).')
7 where users.bio ~ 'in love with';

Now about those fairies following their queen and king:
1 with fairies as
2 (
3 select userid
4 from tweet.users
5 where bio ~ '#Fairies'
6)
7 insert into tweet.follower(follower, following)
8 select fairies.userid as follower,
9 users.userid as following
10 from fairies cross join tweet.users
11 where users.bio ~ 'of the fairies';

This time we even have the opportunity to use a cross join as we want to produce
all the diஸferent combinations of a fairywith their royal subjects.

Chapter 35 Insert, Update, Delete | 300

Here’s what we have set-up in terms of followers now:
1 select follower.uname as follower,
2 follower.bio as "follower's bio",
3 following.uname as following
4

5 from tweet.follower as follows
6

7 join tweet.users as follower
8 on follows.follower = follower.userid
9

10 join tweet.users as following
11 on follows.following = following.userid;

And here’s what we’ve setup:
follower │ follower's bio │ following

══════════════╪═══╪═══════════
Hermia │ daughter to Egeus, in love with Lysander. │ Lysander
Helena │ in love with Demetrius. │ Demetrius
Demetrius │ in love with #Hermia. │ Hermia
Lysander │ in love with #Hermia. │ Hermia
Peaseblossom │ Team #Fairies │ Oberon
Cobweb │ Team #Fairies │ Oberon
Moth │ Team #Fairies │ Oberon
Mustardseed │ Team #Fairies │ Oberon
Peaseblossom │ Team #Fairies │ Titania
Cobweb │ Team #Fairies │ Titania
Moth │ Team #Fairies │ Titania
Mustardseed │ Team #Fairies │ Titania

(12 rows)

The support for select as a source of data for the insert statement is the way to
implement joins for this command.
The insert into clause also accepts a con஺ாict resolution clause with the on conflict
syntax, which is very powerful, and that we address in the isolation and locking
part of this chapter.

Update

The SQL update statement is used to replace existing values in the database. Its
most important aspect lies in its concurrency behavior, as it allows replacing ex-
isting values while other users are concurrently working with the database.

Chapter 35 Insert, Update, Delete | 301

In PostgreSQL, all the concurrency feature are based onMVCC, and in the case
of the update statement it means that internally PostgreSQL is doing both an
insert of the new data and a delete of the old one. PostgreSQL system columns
xmin and xmax allow visibility tracking of the rows so that concurrent statement
have a consistent snapshot of the server’s data set at all times.

As row locking is done per-tuple in PostgreSQL, an update statement only ever
blocks another update, delete or select for update statement that targets the same
row(s).

We created some userswithout anickname before, andmaybe it’s time to remedy
that, by assigning them their uname as a nickname for now.

1 begin;
2

3 update tweet.users
4 set nickname = 'Robin Goodfellow'
5 where userid = 17 and uname = 'Puck'
6 returning users.*;
7

8 commit;

Here we pick the id 17 from the table afிer a manual lookup. The idea is to show
how toupdate ஹ஭elds in a single tuple froma primary key lookup. In a lot of cases,
our application’s code has fetched the id previously and injects it in the update
query in much the same way as this.

And thanks to the returning clause, we get to see what we’ve done:
1 userid │ uname │ nickname │ bio │ picture
2 ════════╪═══════╪══════════════════╪══════════════════════╪═════════
3 17 │ Puck │ Robin Goodfellow │ or Robin Goodfellow. │ ¤
4 (1 row)

As you can see in the previous query not only we used the primary key ஹ஭eld, but
as it is a synthetic key, we also added the real value we are interested into. Should
we have pasted the informationwrong, the updatewould ஹ஭nd nomatching rows
and aஸfect zero tuples.

Now there’s another use case for that double check: concurrency. We know that
the Robin Goodfellow nickname applies to Puck. What if someone did update
the uname of Puck while we were running our update statement? With that
double check, we know exactly one of the following is true:

• Either the other statement came in ஹ஭rst and the name is no longear Puck
and we updated no rows.

https://www.postgresql.org/docs/current/static/mvcc.html

Chapter 35 Insert, Update, Delete | 302

• The other statementwill come later andwedid update a row thatwe know
is userid 17 and named Puck.

Think about that trick when dealing with concurrency in your application’s
code, and even more when you’re ஹ஭xing up some data from the console for a
one-oஸf ஹ஭x. Then always use an explicit transaction block so that you can check
what happened and issue a rollback; when it’s not what you thought.
We can also update several rows at the same time. Say we want to add a default
nickname to all those characters:

1 update tweet.users
2 set nickname = case when uname ~ ' '
3 then substring(uname from '[^]* (.*)')
4 else uname
5 end
6 where nickname is null
7 returning users.*;

And now everyone is assigned a proper nickname, computed from their user-
name with the easy and practical trick you can see in the query. The main thing
to remember in that query is that you can use existing data in your UPDATE
statement.

Now, who are our Twitter users?
1 select uname, nickname, bio
2 from tweet.users
3 order by userid;

It’s a bunch of folks you might have heard about before. I’ve taken the names
and biographies from the AMidsummerNight’s Dream play from Shakespeare,
for which there’s a full XML transcript available at Shakespeare 2.00 thanks to
Jon Bosak.

uname │ nickname │ bio
══════════════════╪══════════════════╪═══
Theseus │ Duke Theseus │ Duke of Athens.
Egeus │ Egeus │ father to #Hermia.
Lysander │ Lysander │ in love with #Hermia.
Demetrius │ Demetrius │ in love with #Hermia.
Philostrate │ Philostrate │ master of the revels to Theseus.
Peter Quince │ Quince │ a carpenter.
Snug │ Snug │ a joiner.
Nick Bottom │ Bottom │ a weaver.
Francis Flute │ Flute │ a bellows-mender.
Tom Snout │ Snout │ a tinker.
Robin Starveling │ Starveling │ a tailor.

https://en.wikipedia.org/wiki/A_Midsummer_Night%27s_Dream#Characters
http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm

Chapter 35 Insert, Update, Delete | 303

Hippolyta │ Hippolyta │ queen of the Amazons, betrothed to Theseus.
Hermia │ Hermia │ daughter to Egeus, in love with Lysander.
Helena │ Helena │ in love with Demetrius.
Oberon │ Oberon │ king of the fairies.
Titania │ Titania │ queen of the fairies.
Puck │ Robin Goodfellow │ or Robin Goodfellow.
Peaseblossom │ Peaseblossom │ Team #Fairies
Cobweb │ Cobweb │ Team #Fairies
Moth │ Moth │ Team #Fairies
Mustardseed │ Mustardseed │ Team #Fairies
All │ All │ Everyone speaking at the same time
Fairy │ Fairy │ One of them #Fairies
Prologue │ Prologue │ a play within a play
Wall │ Wall │ a play within a play
Pyramus │ Pyramus │ a play within a play
Thisbe │ Thisbe │ a play within a play
Lion │ Lion │ a play within a play
Moonshine │ Moonshine │ a play within a play

(29 rows)

Inserting Some Tweets

Nowthatwehave created a bunchof users fromAMidsummerNight’s Dream,
it is time to have them tweet. The full XML transcript available at Shakespeare
2.00 contains not only the list of persona but also the full text of the play. They
are all speakers and they all have lines. That’s a good content for tweets!

Here’s what the transcript looks like:
1 <PLAYSUBT>A MIDSUMMER NIGHT'S DREAM</PLAYSUBT>
2

3 <ACT><TITLE>ACT I</TITLE>
4

5 <SCENE><TITLE>SCENE I. Athens. The palace of THESEUS.</TITLE>
6 <STAGEDIR>Enter THESEUS, HIPPOLYTA, PHILOSTRATE, and
7 Attendants</STAGEDIR>
8

9 <SPEECH>
10 <SPEAKER>THESEUS</SPEAKER>
11 <LINE>Now, fair Hippolyta, our nuptial hour</LINE>
12 <LINE>Draws on apace; four happy days bring in</LINE>
13 <LINE>Another moon: but, O, methinks, how slow</LINE>
14 <LINE>This old moon wanes! she lingers my desires,</LINE>
15 <LINE>Like to a step-dame or a dowager</LINE>
16 <LINE>Long withering out a young man revenue.</LINE>
17 </SPEECH>

http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm
http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm

Chapter 35 Insert, Update, Delete | 304

18

19 <SPEECH>
20 <SPEAKER>HIPPOLYTA</SPEAKER>
21 <LINE>Four days will quickly steep themselves in night;</LINE>
22 <LINE>Four nights will quickly dream away the time;</LINE>
23 <LINE>And then the moon, like to a silver bow</LINE>
24 <LINE>New-bent in heaven, shall behold the night</LINE>
25 <LINE>Of our solemnities.</LINE>
26 </SPEECH>

Tohave the characters of the play tweet their lines, wewrite a simpleXMLparser
for the format and use the insert SQL command. Extracted from the code used
to insert the data, here’s the insert query:

1 insert into tweet.message(userid, message)
2 select userid, $2
3 from tweet.users
4 where users.uname = $1 or users.nickname = $1

As the play’s text uses names such as <SPEAKER>QUINCE</SPEAKER> and we in-
serted the real name into our database, wematch the play’s XML content against
either the uname or the nickname ஹ஭eld.
Now that the data is loaded, we can have a look at the beginning of the play in
SQL.

1 select uname, message
2 from tweet.message
3 left join tweet.users using(userid)
4 order by messageid limit 4;

And yes, we can now see Shakespeare tweeting:
uname │ message

═══════════╪═══
Theseus │ Now, fair Hippolyta, our nuptial hour ↵

│ Draws on apace; four happy days bring in ↵
│ Another moon: but, O, methinks, how slow ↵
│ This old moon wanes! she lingers my desires, ↵
│ Like to a step-dame or a dowager ↵
│ Long withering out a young man revenue.

Hippolyta │ Four days will quickly steep themselves in night;↵
│ Four nights will quickly dream away the time; ↵
│ And then the moon, like to a silver bow ↵
│ New-bent in heaven, shall behold the night ↵
│ Of our solemnities.

Theseus │ Go, Philostrate, ↵
│ Stir up the Athenian youth to merriments; ↵
│ Awake the pert and nimble spirit of mirth; ↵
│ Turn melancholy forth to funerals; ↵

Chapter 35 Insert, Update, Delete | 305

│ The pale companion is not for our pomp. ↵
│ Hippolyta, I woo'd thee with my sword, ↵
│ And won thy love, doing thee injuries; ↵
│ But I will wed thee in another key, ↵
│ With pomp, with triumph and with revelling.

Egeus │ Happy be Theseus, our renowned duke!
(4 rows)

Delete

The delete statement allows marking tuples for removal. Given PostgreSQL’s
implementation of MVCC, it would not be wise to remove the tuple from disk
at the time of the delete:

• First, the transaction might rollback and we don’t know that yet.
• Second, other concurrent transactions only get to see the delete afிer com-
mit, not as soon as the statement is done.

As with the update statement the most important part of the delete statement
has to do with concurrency. Again, the main reason why we use a RDBMS is so
that we don’t have to solve the concurrency problems in our application’s code,
where instead we can focus on delivering an improved user experience.

The actual removal of on-disk tuples happens with vacuum, which the system
runs in the background for you automatically thanks to its autovacuumdaemon.
PostgreSQL might also re-use the on-disk space for an insert statement as soon
as the tuple isn’t visible for any transaction anymore.

Say we mistakenly added characters from another play, and we don’t want to
have to deal with them. First, inserting them:

1 insert into tweet.users (uname, bio)
2 values ('CLAUDIUS', 'king of Denmark.'),
3 ('HAMLET', 'son to the late, and nephew to the present king'),
4 ('POLONIUS', 'lord chamberlain.'),
5 ('HORATIO', 'friend to Hamlet'),
6 ('LAERTES', 'son to Polonius'),
7 ('LUCIANUS', 'nephew to the king');

The delete syntax is quite simple:
1 begin;
2

3 delete

https://www.postgresql.org/docs/current/static/mvcc.html
https://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM

Chapter 35 Insert, Update, Delete | 306

4 from tweet.users
5 where userid = 22 and uname = 'CLAUDIUS'
6 returning *;
7

8 commit;

And as usual thanks to the returning clause, we know exactly what we just
marked for deletion:
userid │ uname │ nickname │ bio │ picture

════════╪══════════╪══════════╪══════════════════╪═════════
22 │ CLAUDIUS │ ¤ │ king of Denmark. │ ¤

(1 row)

Now we can also delete more than one row with the same command — it all
depends on what we match. As the new characters inserted by mistake didn’t
have a part in the play we inserted our messages from, then we can use an anti-
join to delete them based on that information:

1 begin;
2

3 with deleted_rows as
4 (
5 delete
6 from tweet.users
7 where not exists
8 (
9 select 1
10 from tweet.message
11 where userid = users.userid
12)
13 returning *
14)
15 select min(userid), max(userid),
16 count(*),
17 array_agg(uname)
18 from deleted_rows;
19

20 commit;

And as expected we get a nice summary output of exactly what we did. This
should now be your default syntax for any delete you have to run interactively in
any database, right?
min │ max │ count │ array_agg

═════╪═════╪═══════╪══
41 │ 45 │ 5 │ {HAMLET,POLONIUS,HORATIO,LAERTES,LUCIANUS}

(1 row)

It is also possible to use a join condition when deleting rows. It is written using

Chapter 35 Insert, Update, Delete | 307

and covered in the PostgreSQL documentation about the delete command.

Tuples and Rows

In this chapter, we’ve beenmentioning tuplॽ and rows at diஸferent times. There’s
a diஸference between the two: a single rowmight exist on-disk as more than one
tuple at any time, with only one of them visible to any single transaction.

The transaction doing an update now sees the new version of the row, the new
tuple just inserted on-disk. As long as this transaction has yet to commit then the
rest of the world still sees the previous version of the row, which is another tuple
on-disk.

While in some contexts tuplॽ and rows are equivalent, in this chapter aboutDML
we must be careful to use them in the right context.

Deleting All the Rows: Truncate

PostgreSQL adds to theDML statements the truncate command. Internally, it
is considered to be aDDL rather than aDML. It is a very eஸஹ஭cientway to purge a
table of all of its content at once, as it doesn’t follow the per-tupleMVCC system
and will simply remove the data ஹ஭les on disk.

Note that the truncate command is still MVCC compliant:
1 select count(*) from foo;
2

3 begin;
4 truncate foo;
5 rollback;
6

7 select count(*) from foo;

Assuming there’s no concurrent activity on your system when running the com-
mands, both the counting queries naturally return the same number.

https://www.postgresql.org/docs/9.6/static/sql-delete.html

Chapter 35 Insert, Update, Delete | 308

Delete but Keep a Few Rows

When cleaning up a data set, it may happen that you want to remove most of
the content of a table. It could be a logs table, an audit trail that has expired or
something like that. As we saw earlier when using PostgreSQL, deletemarks the
tuples as not being visible anymore and then vacuum does the heavy lifிing in the
background. It is then more eஸஹ஭cient to create a table containing only the new
rows and swap it with the old table:

1 begin;
2

3 create table new_name (like name including all);
4

5 insert into new_name
6 select <column list>
7 from name
8 where <restrictions>;
9

10 drop table name;
11 alter table new_name rename to name;
12

13 commit;

In the general case, as soon as you remove most entries from your table, this
method is going to be more eஸஹ஭cient. The trouble with that method is the level
of locking required to run the drop table and the alter table statements.
Those DDL require an access exclusive lock and will block any read and write
traஸஹ஭c to both tables while they run. If you don’t have slow hours or even oஸf-
hours, then it might not be feasible for you to use this trick.

The good thing about delete and vacuum is that they can run in the middle of
about any concurrent traஸஹ஭c of course.

36
Isolation and Locking

The main feature of any database system is its implementation of concurrency
and full respect of the system’s constraints and properties when multiple trans-
actions are modifying the state of the system at the same time.

PostgreSQL is fullyACID compliant and implements transactions isolation so
that your application’s concurrency canbedealtwith gracefully. Concurrency is a
tricky and complex problem, and concurrency issues are ofிen hard to reproduce.
That’s why it’s best to rely on existing solutions for handling concurrency rather
than rolling your own.

Dealing with concurrency issues in programming languages usually involves
proper declaration and use of lock,mutex, and semaphore facilities which make
a clever use of atomic operations as supported by your CPU, and sometimes
provided by the operating system. Some programming languages such as Java
oஸfer synchronized blocks that in turn make use of previously listed low-level
features. Other programming languages such as Erlang only implementmessage
passing facilities, and handle concurrency internally (in a mailbox system) so
that you don’t have to.

SQL is a declarative programming language, where our role as developers is to de-
clare our intention: the result we want to achieve. The implementation is then
tasked with implementing our command and making it right in every detail, in-
cluding concurrency behavior.

PostgreSQL implementation of the concurrency behavior is dependable and al-
lows some user control in terms of locking aspects of your queries.

Chapter 36 Isolation and Locking | 310

Transactions and Isolation

Given theACID properties, a transaction must be Isolated from other concur-
rent transactions running in the system. It is possible to choose the level of isola-
tion from the concurrent activity, depending on your use case.

A simple use case for isolation is online backups. The backup application for
PostgreSQL is pg_dump, and the role of this application is to take a snapshot of
your whole database and export it to a backup ஹ஭le. This requires that pg_dump
reads are completely isolated from any concurrent write activity in the system,
and this is obtained with the isolation level repeatable read or serializable as de-
scribed next.

From PostgreSQL version 9.1 onward, pg_dump uses the isolation level serial-
izable. It used to be repeatable read until SSI implementation… more on that
later.

Transaction isolation is deஹ஭ned by the SQL standard and implemented in Post-
greSQL:

The SQL standard deஹ஭nes four levels of transaction isolation. The
most strict is Serializable, which is deஹ஭ned by the standard in a para-
graph which says that any concurrent execution of a set of Serial-
izable transactions is guaranteed to produce the same eஸfect as run-
ning them one at a time in some order. The other three levels are de-
ஹ஭ned in terms of phenomena, resulting from interaction between
concurrent transactions, which must not occur at each level. The
standard notes that due to the deஹ஭nition of Serializable, none of
these phenomena are possible at that level. (This is hardly surpris-
ing – if the eஸfect of the transactionsmust be consistent with having
been run one at a time, how could you see any phenomena caused
by interactions?)

Still quoting thePostgreSQLdocumentation, here are the phenomenawhich are
prohibited at various levels are:

• Dirty read

A transaction reads data written by a concurrent uncommitted transac-
tion.

https://www.postgresql.org/docs/current/static/transaction-iso.html

Chapter 36 Isolation and Locking | 311

• Nonrepeatable read

A transaction re-reads data it has previously read and ஹ஭nds that data has
been modiஹ஭ed by another transaction (that committed since the initial
read).

• Phantom read

A transaction re-executes a query returning a set of rows that satisfy a
search condition and ஹ஭nds that the set of rows satisfying the condition
has changed due to another recently committed transaction.

• Serialization anomaly

The result of successfully committing a group of transactions is inconsis-
tentwith all possible orderings of running those transactions one at a time.

There are four isolation levels deஹ஭ned by the standard: read uncommitted, read
committed, repeatable read, and serializable. PostgreSQL doesn’t implement
read uncommitted, which allows dirty reads, and instead defaults to read com-
mitted.
The deஹ஭nition of those isolation levels says that read committed disallows dirty
read anomalies, repeatable read disallows dirty read and nonrepeatable read,
and serializable disallows all anomalies.
PostgreSQL also disallows phantom read from repeatable read isolation level.

About SSI

PostgreSQL’s implementation of serializable is an amazing work. It is described
in details at the PostgreSQLwiki page entitled Serializable, and thewiki page SSI
contains more details about how to use it.

It took about 20 years for the research community to come up with a satisfy-
ing mathematical model for implementing serializable snapshot isolation in an
eஸஹ஭cient way, and then a single year for that major progress to be included in
PostgreSQL!

https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/SSI

Chapter 36 Isolation and Locking | 312

Concurrent Updates and Isolation

In our tweet model of an application, we can have a look at handling retweets,
which is a counter ஹ஭eld in the tweet.message table. Here’s how to make a retweet
in our model:

1 update tweet.message
2 set rts = rts + 1
3 where messageid = 1;

Now, what happens if two users are doing that at the same time?

To better understand what at the same timemeans here, we can write the query
extended with manual transaction control, as PostgreSQL will do when sent a
single command without an explicit transaction:

1 begin;
2

3 update tweet.message
4 set rts = rts + 1
5 where messageid = 1;
6 returning messageid, rts;
7

8 commit;

Now, rather than doing this query, we open a psql prompt and send in:
1 begin;
2

3 update tweet.message
4 set rts = rts + 1
5 where messageid = 1
6 returning messageid, rts;

We get the following result now:
messageid │ rts

═══════════╪═════
1 │ 2

(1 row)

The transaction remains open (it’s idle in transaction) and waits for us to do
something else, or maybe commit or rollback the transaction.
Now, open a second psql prompt and send in the exact same query. This time the
update doesn’t return. There’s no way it could: the ஹ஭rst transaction is not done
yet and is working on the row wheremessageid = 1. Until the ஹ஭rst transaction is

Chapter 36 Isolation and Locking | 313

done, no concurrent activity can take place on this speciஹ஭c row.

So we go back to the ஹ஭rst prompt and commit.
Then what happens depends on the isolation level required. Here we have the
default isolation level read committed, and at the secondprompt theupdate com-
mand is unlocked and proceeds to immediately return:
messageid │ rts

═══════════╪═════
1 │ 3

(1 row)

Now for the following examples, we need to review our psql setting for the
ON_ERROR_ROLLBACK feature. When set to true or interactive, then psql
issues savepoints to protect each outer transaction state, and that will hide what
we’re showing next. Type the following command to momentarily disable this
helpful setting, so that we can see what really happens:
\set ON_ERROR_ROLLBACK off

If we pick the isolation level repeatable read, with the following syntax:
1 start transaction isolation level repeatable read;
2

3 update tweet.message
4 set rts = rts + 1
5 where messageid = 1
6 returning messageid, rts;

Again, we leave the transaction open, switch to a second prompt and do the same
thing, and only then — while the second update is waiting for the ஹ஭rst transac-
tion to ஹ஭nish— commit the ஹ஭rst transactions. What we get this time is this:
ERROR: could not serialize access due to concurrent update

yesql!# commit;
ROLLBACK

Also notice that even if we ask for a COMMIT, what we get is a ROLLBACK.
Once an error occurs in a transaction, in PostgreSQL, the transaction can’t com-
mit anymore.

When using the isolation level serializable, the same behavior as for repeatable
read is observed, with exactly the same error message exactly.

https://www.postgresql.org/docs/current/static/sql-rollback-to.html

Chapter 36 Isolation and Locking | 314

Modeling for Concurrency

We should have another modeling pass on the tweet.message table now. With
what we learned about concurrency in PostgreSQL, it’s easy to see that we won’t
get anywhere with the current model. Remember when Donald Knuth said

We should forget about small efficienciॽ, say about 97% of the time:
premature optimization ॾ the root of all evil. Yet we should not pass
up our opportunitiॽ in that critical 3%.

Database systems have been designed to handle concurrency so that your appli-
cation’s code doesn’t have to. One part for the critical 3% is then related to con-
current operations, and the one that is impossible to implement in a both fast
and correct way is a concurrent update on the same target row.
In ourmodel here, given how the application works, we know thatmessages will
get concurrentupdate activity for the favs and rts counters. Sowhile the previous
model looks correct with respect to normal forms—the counters are dependent
on the message’s key — we know that concurrent activity is going to be hard to
handle in production.

So here’s a smarter version of the activity parts of the database model:
1 begin;
2

3 create type tweet.action_t
4 as enum('rt', 'fav', 'de-rt', 'de-fav');
5

6 create table tweet.activity
7 (
8 id bigserial primary key,
9 messageid bigint not null references tweet.message(messageid),
10 datetime timestamptz not null default now(),
11 action tweet.action_t not null,
12

13 unique(messageid, datetime, action)
14);
15

16 commit;

In this version, the counters have disappeared, replaced by a full record of the
base information needed to compute them. We now have an activity list with a
denormalized ENUM for possible actions.

To get the rts and favs counters back from this schema, we count lines in the

https://en.wikipedia.org/wiki/Donald_Knuth

Chapter 36 Isolation and Locking | 315

activity records associated with a givenmessageid:
1 select count(*) filter(where action = 'rt')
2 - count(*) filter(where action = 'de-rt')
3 as rts,
4 count(*) filter(where action = 'fav')
5 - count(*) filter(where action = 'de-fav')
6 as favs
7 from tweet.activity
8 join tweet.message using(messageid)
9 where messageid = :id;

Reading the current counter value has become quite complexwhen compared to
just adding a column to your query output list. On the other hand, when adding
a rt or a fav action to a message, we transform the SQL:

1 update tweet.message set rts = rts +1 where messageid = :id;

This is what we use instead:
1 insert into tweet.activity(messageid, action) values(:id, 'rt');

The reason why replacing an update with an insert is interesting is concurrency
behavior and locking. In the ஹ஭rst version, retweeting has to wait until all concur-
rent retweets are done, and the business model wants to sustain as many concur-
rent activities on the same small set ofmessages as possible (read about influencer
accounts).

The insert has no concurrency because it targets a row that doesn’t exist yet. We
register each action into its own tuple and require no locking to do that, allowing
our production setup of PostgreSQL to sustain a much larger load.

Now, computing the counters each time we want to display them is costly. And
the counters are displayed on every tweet message. We need a way to cache that
information, and we’ll see about that in the Computing and Caching in SQL
section.

Putting Concurrency to the Test

When we benchmark the concurrency properties of the two statements above,
we quickly realize that the activity table is badly designed. The unique constraint
includes a timestamptz ஹ஭eld, which in PostgreSQL is only precise down to the
microsecond.

Chapter 36 Isolation and Locking | 316

This kind of made-up unique constraint means we now have these errors to deal
with:
Error: Database error 23505: duplicate key value violates unique ⏎

constraint "activity_messageid_datetime_action_key"
DETAIL: Key (messageid, datetime, action) ⏎

=(2, 2017-09-19 18:00:03.831818+02, rt) already exists.

The best course of action here is to do this:
1 alter table tweet.activity
2 drop constraint activity_messageid_datetime_action_key;

Now we can properly compare the concurrency scaling of the insert and the up-
date based version. In case youmight be curious about it, here’s the testing code
that’s been used:

1 (defpackage #:concurrency
2 (:use #:cl #:appdev)
3 (:import-from #:lparallel
4 #:*kernel*
5 #:make-kernel #:make-channel
6 #:submit-task #:receive-result
7 #:kernel-worker-index)
8 (:import-from #:cl-postgres-error
9 #:database-error)
10 (:export #:*connspec*
11 #:concurrency-test))
12

13 (in-package #:concurrency)
14

15 (defparameter *connspec* '("appdev" "dim" nil "localhost"))
16

17 (defparameter *insert-rt*
18 "insert into tweet.activity(messageid, action) values($1, 'rt')")
19

20 (defparameter *update-rt*
21 "update tweet.message set rts = coalesce(rts, 0) + 1 where messageid = $1")
22

23 (defun concurrency-test (workers retweets messageid
24 &optional (connspec *connspec*))
25 (format t "Starting benchmark for updates~%")
26 (with-timing (rts seconds)
27 (run-workers workers retweets messageid *update-rt* connspec)
28 (format t "Updating took ~f seconds, did ~d rts~%" seconds rts))
29

30 (format t "~%")
31

32 (format t "Starting benchmark for inserts~%")
33 (with-timing (rts seconds)
34 (run-workers workers retweets messageid *insert-rt* connspec)
35 (format t "Inserting took ~f seconds, did ~d rts~%" seconds rts)))

Chapter 36 Isolation and Locking | 317

36

37 (defun run-workers (workers retweets messageid sql
38 &optional (connspec *connspec*))
39 (let* ((*kernel* (lparallel:make-kernel workers))
40 (channel (lparallel:make-channel)))
41 (loop repeat workers
42 do (lparallel:submit-task channel #'retweet-many-times
43 retweets messageid sql connspec))
44

45 (loop repeat workers sum (lparallel:receive-result channel))))
46

47 (defun retweet-many-times (times messageid sql
48 &optional (connspec *connspec*))
49 (pomo:with-connection connspec
50 (pomo:query
51 (format nil "set application_name to 'worker ~a'"
52 (lparallel:kernel-worker-index)))
53 (loop repeat times sum (retweet messageid sql))))
54

55 (defun retweet (messageid sql)
56 (handler-case
57 (progn
58 (pomo:query sql messageid)
59 1)
60 (database-error (c)
61 (format t "Error: ~a~%" c)
62 0)))

Here’s a typical result with a concurrency of 100 workers all wanting to do 10
retweet in a loop using amessageid, here message 3. While it’s not representative
to have them loop 10 times to retweet the same message, it should help create
the concurrency eஸfect we want to produce, which is having several concurrent
transactions waiting in turn in order to have a lock access to the same row.

The theory says that those concurrent users will have to wait in line, and thus
spend time waiting for a lock on the PostgreSQL server. We should see that in
the timing reports as a time diஸference:

1 CL-USER> (concurrency::concurrency-test 100 10 3)
2 Starting benchmark for updates
3 Updating took 3.099873 seconds, did 1000 rts
4

5 Starting benchmark for inserts
6 Inserting took 2.132164 seconds, did 1000 rts

The update variant of the test took almost 50% as much time to complete than
the insert variant, with this level of concurrency. Given thatwehave really simple
SQL statements, we can attribute the timing diஸference to having had to wait in
line. Basically, the update version spent almost 1 second out of 3 seconds waiting

Chapter 36 Isolation and Locking | 318

for a free slot.

In another test with even more concurrency pressure at 50 retweets per worker,
we can show that the results are repeatable:

1 CL-USER> (concurrency::concurrency-test 100 50 6)
2 Starting benchmark for updates
3 Updating took 5.070135 seconds, did 5000 rts
4

5 Starting benchmark for inserts
6 Inserting took 3.739505 seconds, did 5000 rts

If you know that your application has to scale, think about how to avoid con-
current activity that competes against a single shared resource. Here, this shared
resource is the rts ஹ஭eld of the tweet.message row that you target, and the concur-
rency behavior is going to be ஹ஭ne if the retweet activity is well distributed. As
soon as many users want to retweet the same message, then the update solution
has a non-trivial scalability impact.

Now, we’re going to implement the tweet.activity based model. In this model,
the number of retweets needs to be computed each time we display it, and it’s
part of the visible data. Also, in the general case, it’s impossible for our users to
know for sure how many retweets have been made so that we can implement a
cache with eventual consistency properties.

37
Computing and Caching in SQL

There’s a pretty common saying:

There are only two hard things in computer science: cache invalida-
tion and naming things.
—Phil Karlton

More about that saying can be read at the TwoHard Things page fromMartin
Fowler, who tries to track it back to its origins.
It is time thatwe see about how to address the cache problems in SQL.Creating a
set of values for caching is of course really easy as it usually boils down to writing
a SQL query. Any SQL query executed by PostgreSQL uses a snapshot of the
whole database system. To create a cache from that snapshot, the simplest way is
to use the create table ॼ command.

1 create table tweet.counters as
2 select count(*) filter(where action = 'rt')
3 - count(*) filter(where action = 'de-rt')
4 as rts,
5 count(*) filter(where action = 'fav')
6 - count(*) filter(where action = 'de-fav')
7 as favs
8 from tweet.activity
9 join tweet.message using(messageid);

Now we have a tweet.counters table that we can use whenever we need the num-
bers of rts or favs from a tweet message. How dowe update the counters? That’s
the cache invalidation problem quoted above, and we’ll come to the answer by

https://martinfowler.com/bliki/TwoHardThings.html

Chapter 37 Computing and Caching in SQL | 320

the end of this chapter!

Views

Views allow integrating server-side computations in the deஹ஭nition of a relation.
The computing still happens dynamically at query time and is made transparent
to the client. When using a view, there’s no problem with cache invalidation,
because nothing gets cached away.

1 create view tweet.message_with_counters
2 as
3 select messageid,
4 message.userid,
5 message.datetime,
6 message.message,
7 count(*) filter(where action = 'rt')
8 - count(*) filter(where action = 'de-rt')
9 as rts,
10 count(*) filter(where action = 'fav')
11 - count(*) filter(where action = 'de-fav')
12 as favs,
13 message.location,
14 message.lang,
15 message.url
16 from tweet.activity
17 join tweet.message using(messageid)
18 group by message.messageid, activity.messageid;

Given this view, the application code canquery tweet.message_with_counters and
process the same relation as in the ஹ஭rst normalized version of our schema. The
view hides the complexity of how to obtain the counters from the schema.

1 select messageid,
2 rts,
3 nickname
4 from tweet.message_with_counters
5 join tweet.users using(userid)
6 where messageid between 1 and 6
7 order by messageid;

We can see that I played with the generating some retweets in my local testing,
done mainly over the six ஹ஭rst messages:
messageid │ rts │ nickname

═══════════╪════════╪══════════════
1 │ 20844 │ Duke Theseus

Chapter 37 Computing and Caching in SQL | 321

2 │ 111345 │ Hippolyta
3 │ 11000 │ Duke Theseus
5 │ 3500 │ Duke Theseus
6 │ 15000 │ Egeus

(5 rows)

That view now embeds the computation details and abstracts them away from
the application code. It allows having several parts of the application deal with
the sameway of counting retweets and favs, whichmight come to be quite impor-
tant if you have diஸferent backends for reporting, data analysis, and user analytics
products that you’re selling, or using it to sell advertising, maybe. It might even
be that those parts are written in diஸferent programming languages, yet they all
want to deal with the same numbers, a shared truth.
The view embeds the computation details, and still it computes the result each
time it’s referenced in a query.

Materialized Views

It is easy enough to cache a snapshot of the database into a permanent relation
for later querying thanks to PostgreSQL implementation ofmaterialized views:

1 create schema if not exists twcache;
2

3 create materialized view twcache.message
4 as select messageid, userid, datetime, message,
5 rts, favs,
6 location, lang, url
7 from tweet.message_with_counters;
8

9 create unique index on twcache.message(messageid);

As usual, read the PostgreSQL documentation about the command CREATE
MATERIALIZED VIEW for complete details about the command and its op-
tions.

The application code can now query twcache.message instead of tw.message and
get the extra pre-computed columns for rts and favs counter. The information
in thematerialized view is static: it is only updated with a speciஹ஭c command. We
have eஸfectively implemented a cache in SQL, and nowwe have to solve the cache
invalidation problem: as soon as a new action (retweet or favorite) happens on
a message, our cache is wrong.

https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html
https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html

Chapter 37 Computing and Caching in SQL | 322

Now that we have created the cache, we run another benchmark with 100 work-
ers doing each 100 retweets onmessageid 3:

1 CL-USER> (concurrency::concurrency-test 100 100 3)
2 Starting benchmark for updates
3 Updating took 8.132917 seconds, did 10000 rts
4

5 Starting benchmark for inserts
6 Inserting took 6.684597 seconds, did 10000 rts

Then we query our cache again:
1 select messageid,
2 rts,
3 nickname,
4 substring(message from E'[^\n]+') as first_line
5 from twcache.message
6 join tweet.users using(userid)
7 where messageid = 3
8 order by messageid;

Wecan see that thematerialized view is indeed a cache, as it knowsnothing about
the last round of retweets that just happened:
messageid │ rts │ nickname │ first_line

═══════════╪══════╪══════════════╪══════════════════
3 │ 1000 │ Duke Theseus │ Go, Philostrate,

(1 row)

Of course, as every PostgreSQL query uses a database snapshot, the situation
when the counter is already missing actions already happens with a table and a
view already. If some insert are committed on the tweet.activity table while the
rts and favs count query is running, the result of the query is not counting the
new row, which didn’tmake it yet at the timewhen the query snapshot had been
taken.Materialized view only extends the cache time to live, if you will, making
the problemmore obvious.

To invalidate the cache and compute the data again, PostgreSQL implements the
refresh materialized view command:

1 refresh materialized view concurrently twcache.message;

This command makes it possible to implement a cache invalidation policy. In
some cases, a business only analyses data up to the day before, in which case you
can refresh your materialized views every night: that’s your cache invalidation
policy.

Once the refresh materialized view command has been processed, we can query

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

Chapter 37 Computing and Caching in SQL | 323

the cache again. This time, we get the expected answer:
messageid │ rts │ nickname │ first_line

═══════════╪═══════╪══════════════╪══════════════════
3 │ 11000 │ Duke Theseus │ Go, Philostrate,

(1 row)

In the case of instant messaging such as Twitter, maybe the policy would require
rts and favs counters tobe as fresh asfiveminutॽ ago rather than yesterday. When
the refresh materialized view command runs in less than ஹ஭ve minutes then im-
plementing the policy is a matter of scheduling that command to be executed
every ஹ஭ve minutes, using for example the cronUnix task scheduler.

38
Triggers

When a cache refresh policy of minutes isn’t advisable, a common approach is to
implement event-based processing. Most SQL systems, including PostgreSQL,
implement an event-based facility called a triঃer.
A triঃer allows registering a procedure to be executed at a speciஹ஭ed timingwhen
an event is produced. The timing can be before, after or instead of, and the event
can be insert, update, delete or truncate. As usual, the PostgreSQL documenta-
tion covers the topic in full details and is available online, in our case now at the
manual page for the commandCREATE TRIGGER.

Many triggers in PostgreSQL are written in the PL/pgSQL— SQL Procedural
Language, so we also need to read the PLpgSQL trigger procedures documenta-
tion for completeness.

Note that with PostgreSQL, it is possible to write procedures and triggers in
other programming languages. Default PostgreSQL builds include support for
PL/Tcl, PL/Perl, PL/Python and of course C-language functions.

PostgreSQLextensions for other programming languages are available too,main-
tained separately from the PostgreSQL core. You can ஹ஭nd PL/Java, PL/v8 for
Javascript powered by the V8 engine, or PL/XSLT as we saw in this book al-
ready. For even more programming language support, see the PL Matrix in the
PostgreSQL wiki.

Unfortunately, it is not possible to write triggers in plain SQL language, so we
have to write stored procedures to beneஹ஭t from the PostgreSQL trigger capabili-

https://www.postgresql.org/docs/current/static/sql-createtrigger.html
https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/plpgsql-trigger.html
https://www.postgresql.org/docs/current/static/pltcl.html
https://www.postgresql.org/docs/current/static/plperl.html
https://www.postgresql.org/docs/current/static/plpython.html
https://www.postgresql.org/docs/current/static/xfunc-c.html
https://github.com/tada/pljava/wiki
https://github.com/plv8/plv8
https://github.com/petere/plxslt
https://wiki.postgresql.org/wiki/PL_Matrix

Chapter 38 Triggers | 325

ties.

Transactional Event Driven Processing

PostgreSQL triggers call a registered procedure each time one of the supported
events is committed. The execution of the procedure is always taken as a part
of the transaction, so if your procedure fails at runtime then the transaction is
aborted.

A classic example of an event driven processing with a trigger in our context is
to update the counters of rts and favs each time there’s a related insert in the
tweet.activity table.

1 begin;
2

3 create table twcache.daily_counters
4 (
5 day date not null primary key,
6 rts bigint,
7 de_rts bigint,
8 favs bigint,
9 de_favs bigint
10);
11

12 create or replace function twcache.tg_update_daily_counters ()
13 returns trigger
14 language plpgsql
15 as $$
16 declare
17 begin
18 update twcache.daily_counters
19 set rts = case when NEW.action = 'rt'
20 then rts + 1
21 else rts
22 end,
23 de_rts = case when NEW.action = 'de-rt'
24 then de_rts + 1
25 else de_rts
26 end,
27 favs = case when NEW.action = 'fav'
28 then favs + 1
29 else favs
30 end,
31 de_favs = case when NEW.action = 'de-fav'
32 then de_favs + 1
33 else de_favs

Chapter 38 Triggers | 326

34 end
35 where daily_counters.day = current_date;
36

37 if NOT FOUND
38 then
39 insert into twcache.daily_counters(day, rts, de_rts, favs, de_favs)
40 select current_date,
41 case when NEW.action = 'rt'
42 then 1 else 0
43 end,
44 case when NEW.action = 'de-rt'
45 then 1 else 0
46 end,
47 case when NEW.action = 'fav'
48 then 1 else 0
49 end,
50 case when NEW.action = 'de-fav'
51 then 1 else 0
52 end;
53 end if;
54

55 RETURN NULL;
56 end;
57 $$;
58

59 CREATE TRIGGER update_daily_counters
60 AFTER INSERT
61 ON tweet.activity
62 FOR EACH ROW
63 EXECUTE PROCEDURE twcache.tg_update_daily_counters();
64

65 insert into tweet.activity(messageid, action)
66 values (7, 'rt'),
67 (7, 'fav'),
68 (7, 'de-fav'),
69 (8, 'rt'),
70 (8, 'rt'),
71 (8, 'rt'),
72 (8, 'de-rt'),
73 (8, 'rt');
74

75 select day, rts, de_rts, favs, de_favs
76 from twcache.daily_counters;
77

78 rollback;

Again, we don’t really want to have that trigger in our setup, so the transaction
ends with a ROLLBACK. It’s also a good way to try in-progress development
in psql in an interactive fashion, and ஹ஭x all the bugs and syntax errors until it all
works.

Chapter 38 Triggers | 327

Without this trick, then parts of the script pass and others fail, and you then have
to copy and paste your way around until it’s all okay, but then you’re never sure
that the whole script will pass from the start again, because the conditions in
which you want to apply have been altered on the partially successful runs.

Here’s the result of running our trigger test script:
BEGIN
CREATE TABLE
CREATE FUNCTION
CREATE TRIGGER
INSERT 0 8

day │ rts │ de_rts │ favs │ de_favs
════════════╪═════╪════════╪══════╪═════════
2017-09-21 │ 5 │ 1 │ 1 │ 1

(1 row)

ROLLBACK

The thing is, each time there’s a tweet.activity inserted this trigger will transform
the insert into an update against a single row, and the same target row for awhole
day.

This implementation is totally killing any ambitions we might have had about
concurrency and scalability properties of our model, in a single trigger. Yet it’s
easy to write such a trigger, so it’s seen a lot in the wild.

Trigger and Counters Anti-Pattern

You might also notice that this triggers is very wrong in its behavior, as coded.
The implementation of the insert or update—a.k.a. upsert— is coded in a way
to leave the door open to concurrency issues. To understand those issues, we
need to consider what happens when we start a new day:

1. The ஹ஭rst transaction of the day attempts to update the daily counters table
for this day, but ஹ஭nds no records because it’s the ஹ஭rst one.

2. The ஹ஭rst transaction of the day then inserts the ஹ஭rst value for the day with
ones and zeroes for the counters.

3. The second transaction of the day then executes the update to the daily
counter, ஹ஭nds the existing row, and skips the insert part of the trigger.

Chapter 38 Triggers | 328

That’s the happy scenario where no problem occurs. Now, in the real life, here’s
what will sometimes happen. It’s not always, mind you, but not never either.
Concurrency bugs— they like to hide in plain sight.

1. The ஹ஭rst transaction of the day attempts to update the daily counters table
for this day but ஹ஭nds no records because it’s the ஹ஭rst one.

2. The second transaction of the day attempts to update the daily counters
table for this day, but ஹ஭nds no records, because the ஹ஭rst one isn’t there yet.

3. The second transaction of the day now proceeds to insert the ஹ஭rst value
for the day, because the job wasn’t done yet.

4. The ஹ஭rst transaction of the day then inserts the ஹ஭rst value… and fails with a
primary key con஺ாict error because that insert has already been done. Sorry
about that!

There are several ways to address this issue, and the classic one is documented at
A PL/pgSQLTrigger Procedure ForMaintaining A Summary Table example in
the PostgreSQL documentation.

The solution there is to loop over attempts at update then insert until one of
those works, ignoring the UNIQUE_VIOLATION exceptions in the process. That
allows implementing a fall back when another transaction did insert a value con-
currently, i.e. in the middle of the NOT FOUND test and the consequent insert.
Starting in PostgreSQL 9.5 with support for the on conflict clause of the insert
into command, there’s a much better way to address this problem.

Fixing the Behavior

While it’s easy to maintain a cache in an event driven fashion thanks to Post-
greSQLand its trigger support, turning an insert into anupdatewith contention
on a single row is never a good idea. It’s even a classic anti-pattern.

Here’s a modern way to ஹ஭x the problem with the previous trigger implementa-
tion, this time applied to a per-message counter of retweet and favorite actions:

1 begin;
2

3 create table twcache.counters
4 (

https://www.postgresql.org/docs/current/static/plpgsql-trigger.html#PLPGSQL-TRIGGER-SUMMARY-EXAMPLE

Chapter 38 Triggers | 329

5 messageid bigint not null references tweet.message(messageid),
6 rts bigint,
7 favs bigint,
8

9 unique(messageid)
10);
11

12 create or replace function twcache.tg_update_counters ()
13 returns trigger
14 language plpgsql
15 as $$
16 declare
17 begin
18 insert into twcache.counters(messageid, rts, favs)
19 select NEW.messageid,
20 case when NEW.action = 'rt' then 1 else 0 end,
21 case when NEW.action = 'fav' then 1 else 0 end
22 on conflict (messageid)
23 do update
24 set rts = case when NEW.action = 'rt'
25 then counters.rts + 1
26

27 when NEW.action = 'de-rt'
28 then counters.rts - 1
29

30 else counters.rts
31 end,
32

33 favs = case when NEW.action = 'fav'
34 then counters.favs + 1
35

36 when NEW.action = 'de-fav'
37 then counters.favs - 1
38

39 else counters.favs
40 end
41 where counters.messageid = NEW.messageid;
42

43 RETURN NULL;
44 end;
45 $$;
46

47 CREATE TRIGGER update_counters
48 AFTER INSERT
49 ON tweet.activity
50 FOR EACH ROW
51 EXECUTE PROCEDURE twcache.tg_update_counters();
52

53 insert into tweet.activity(messageid, action)
54 values (7, 'rt'),
55 (7, 'fav'),
56 (7, 'de-fav'),

Chapter 38 Triggers | 330

57 (8, 'rt'),
58 (8, 'rt'),
59 (8, 'rt'),
60 (8, 'de-rt'),
61 (8, 'rt');
62

63 select messageid, rts, favs
64 from twcache.counters;
65

66 rollback;

And here’s the result of running that ஹ஭le in psql, either from the command line
with psql -f or with the interactive \i <path/to/file.sql command:
BEGIN
CREATE TABLE
CREATE FUNCTION
CREATE TRIGGER
INSERT 0 8
messageid │ rts │ favs

═══════════╪═════╪══════
7 │ 1 │ 0
8 │ 3 │ 0

(2 rows)

ROLLBACK

Youmight have noticed that the ஹ஭le endswith aROLLBACK statement. That’s
because we don’t really want to install such a trigger, it’s meant as an example
only.

The reason why we don’t actually want to install it is that it would cancel all
our previous eஸforts to model for tweet activity scalability by transforming every
insert into tweet.activity into an update twcache.counters on the samemessageid.
We looked into that exact thing in the previous section and we saw that it would
never scale to our requirements.

Event Triggers

Event triggers are another kind of triggers that only PostgreSQL supports, and
they allowone to implement triggers on any event that the source code integrates.
Currently event triggers are mainly provided for DDL commands.

Have a look at “ATableRewrite Event Trigger Example” in the PostgreSQLdoc-
umentation for more information about event triggers, as they are not covered

https://www.postgresql.org/docs/9.6/static/event-trigger-definition.html
https://www.postgresql.org/docs/9.6/static/event-trigger-table-rewrite-example.html

Chapter 38 Triggers | 331

in this book.

39
Listen and Notify

The PostgreSQL protocol includes a streaming protocol with COPY and also
implements asynchronous messages and notiஹ஭cations. This means that as soon
as a connection is established with PostgreSQL, the server can send messages to
the client even when the client is idle.

PostgreSQL Notifications

Messages that ஺ாow from the server to the connected client shouldbeprocessedby
the client. It could be that the server is being restarted, or an applicationmessage
is being delivered.

Here’s an example of doing this:
1 yesql# listen channel;
2 LISTEN
3

4 yesql# notify channel, 'foo';
5 NOTIFY
6 Asynchronous notification "channel" with payload "foo" ⏎
7 received from server process with PID 40430.

Note that the message could be sent from another connection, so try it and see
with several psql instances. The payload from the message can be any text, up
to 8kB in length. This allows for rich messages to ஺ாow, such as JSON encoded
values.

Chapter 39 Listen and Notify | 333

PostgreSQL Event Publication System

In the Triggers section we saw that in order to maintain a cache of the action
counters either by day or by messageid, we can write a trigger. This implements
event driven processing but kills our concurrency and scalability properties.

It’s possible for our trigger to notify an external client. This client must be a
daemon program, which uses listen to register our messages. Each time a notiஹ஭-
cation is sent, the daemon program processes it as necessary, possibly updating
our twcache.counters table. As we have a single daemon program listening to no-
tiஹ஭cations and updating the cache, we now bypass the concurrency issues.

Before implementing the client application, we can implement the trigger for
notiஹ஭cation, and use psql as a testing client:

1 begin;
2

3 create or replace function twcache.tg_notify_counters ()
4 returns trigger
5 language plpgsql
6 as $$
7 declare
8 channel text := TG_ARGV[0];
9 begin
10 PERFORM (
11 with payload(messageid, rts, favs) as
12 (
13 select NEW.messageid,
14 coalesce(
15 case NEW.action
16 when 'rt' then 1
17 when 'de-rt' then -1
18 end,
19 0
20) as rts,
21 coalesce(
22 case NEW.action
23 when 'fav' then 1
24 when 'de-fav' then -1
25 end,
26 0
27) as favs
28)
29 select pg_notify(channel, row_to_json(payload)::text)
30 from payload
31);
32 RETURN NULL;

Chapter 39 Listen and Notify | 334

33 end;
34 $$;
35

36 CREATE TRIGGER notify_counters
37 AFTER INSERT
38 ON tweet.activity
39 FOR EACH ROW
40 EXECUTE PROCEDURE twcache.tg_notify_counters('tweet.activity');
41

42 commit;

Then to test the trigger, we can issue the following statements at a psql prompt:
listen "tweet.activity";

insert into tweet.activity(messageid, action)
values (33, 'rt'),

(33, 'rt'),
(33, 'de-rt'),
(33, 'fav'),
(33, 'de-fav'),
(33, 'rt'),
(33, 'fav');

We get then the following output from the console:
INSERT 0 7
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":1,"favs":0}" received from ⏎
server process with PID 73216.
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":-1,"favs":0}" received from ⏎
server process with PID 73216.
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":0,"favs":1}" received from ⏎
server process with PID 73216.
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":0,"favs":-1}" received from ⏎
server process with PID 73216.

So we made seven inserts, and we have four notiஹ஭cations. This behavior might
be surprising, yet it is fully documented on the PostgreSQLmanual page for the
NOTIFY command:

If the same channel name is signaled multiple times from the same
transaction with identical payload strings, the database server can
decide to deliver a single notiஹ஭cation only. On the other hand, no-
tiஹ஭cations with distinct payload strings will always be delivered as
distinct notiஹ஭cations. Similarly, notiஹ஭cations from diஸferent trans-
actions will never get folded into one notiஹ஭cation. Except for drop-
ping later instances of duplicate notiஹ஭cations, NOTIFY guarantees
that notiஹ஭cations from the same transaction get delivered in the or-

https://www.postgresql.org/docs/current/static/sql-notify.html

Chapter 39 Listen and Notify | 335

der they were sent. It is also guaranteed that messages from diஸfer-
ent transactions are delivered in the order in which the transactions
committed.

Our test case isn’t very good, so let’s write another one, and keep in mind that
our implementationof the cache serverwithnotify canonly be correct if themain
application issues only distinct tweet.activity actions in a single transaction. For
our usage, this is not a deal-breaker, so we can ஹ஭x our tests.

1 insert into tweet.activity(messageid, action) values (33, 'rt');
2 insert into tweet.activity(messageid, action) values (33, 'de-rt');
3 insert into tweet.activity(messageid, action) values (33, 'fav');
4 insert into tweet.activity(messageid, action) values (33, 'de-rt');

And this time we get the expected notiஹ஭cations:
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":1,"favs":0}" received from ⏎
server process with PID 73216.
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":-1,"favs":0}" received from ⏎
server process with PID 73216.
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":0,"favs":1}" received from ⏎
server process with PID 73216.
Asynchronous notification "tweet.activity" with payload ⏎
"{"messageid":33,"rts":-1,"favs":0}" received from ⏎
server process with PID 73216.

Notifications and Cache Maintenance

Nowthatwehave the basic server-side infrastructure inplace, where PostgreSQL
is the server and a backend application the client, we can look into about main-
taining our twcache.counters cache in an event driven fashion.
PostgreSQL LISTEN and NOTIFY support is perfect for maintaining a cache.
Because notiஹ஭cations are only delivered to client connections that are listening at
the moment of the notify call, our cache maintenance service must implement
the following behavior, in this exact order:

1. Connect to the PostgreSQL database we expect notiஹ஭cations from and is-
sue the listen command.

2. Fetch the current values from their single source of truth and reset the cache
with those computed values.

Chapter 39 Listen and Notify | 336

3. Process notiஹ஭cations as they come and update the in-memory cache, and
once in a while synchronize the in-memory cache to its materialized loca-
tion, as per the cache invalidation policy.

The cache service can be implemented within the cache maintenance service. As
an example, a cache server applicationmight both process notiஹ஭cations and serve
the current cache frommemoryover anHTTPAPI.The cache servicemight also
be one of the popular cache solutions such as Memcached or Redis.

In our example, we implement a cache maintenance service in Go and the cache
itself is maintained as a PostgreSQL table:

1 begin;
2

3 create schema if not exists twcache;
4

5 create table twcache.counters
6 (
7 messageid bigint not null primary key,
8 rts bigint,
9 favs bigint
10);
11

12 commit;

With this table, implementing a NOTIFY client service that maintains the cache
is easy enough to do, and here’s what happens when the service runs and we do
some testing:
2017/09/21 22:00:36 Connecting to postgres:///yesql?sslmode=disable…
2017/09/21 22:00:36 Listening to notifications on channel "tweet.activity"
2017/09/21 22:00:37 Cache initialized with 6 entries.
2017/09/21 22:00:37 Start processing notifications, waiting for events…
2017/09/21 22:00:42 Received event: {"messageid":33,"rts":1,"favs":0}
2017/09/21 22:00:42 Received event: {"messageid":33,"rts":-1,"favs":0}
2017/09/21 22:00:42 Received event: {"messageid":33,"rts":0,"favs":1}
2017/09/21 22:00:42 Received event: {"messageid":33,"rts":-1,"favs":0}
2017/09/21 22:00:47 Materializing 6 events from memory

As it iswritten inGo, the client code is quite verbose and at 212 lineswon’t ஹ஭t into
thesepages. Wemighthave a look at thematerialize function though, because it’s
an interesting implementation of pushing the in-memory cache data structure
down to our PostgreSQL table twcache.counters.
The in-memory cache structure looks like the following:

1 type Counter struct {
2 MessageId int `json:"messageid"`
3 Rts int `json:"rts"`

https://memcached.org
https://redis.io

Chapter 39 Listen and Notify | 337

4 Favs int `json:"favs"`
5 }
6

7 type Cache map[int]*Counter

Andgiven such a data structure, we use the eஸஹ஭cientGodefault JSONmarshaling
facility to transform the cache elements and pass them all down to PostgreSQL
as a single JSON object.

1 func materialize(db *sql.DB, cache Cache) error {
2 ...
3

4 js, err := json.Marshal(cache)
5

6 if err != nil {
7 log.Printf("Error while materializing cache: %s", err)
8 return err
9 }
10

11 _, err = db.Query(q, js)
12

13 ...
14 return nil
15 }

The JSON object is then processed in a SQL query, that we ஹ஭nd embedded in
the Go code — it’s the q string variable that is used in the snippet above in the
expression db.Query(q, js), where js is the JSON representation of the entirety of
the cache data.

Here’s the SQL query we use:
1 with rec as
2 (
3 select rec.*
4 from json_each($1) as t,
5 json_populate_record(null::twcache.counters, value) as rec
6)
7 insert into twcache.counters(messageid, rts, favs)
8 select messageid, rts, favs
9 from rec
10 on conflict (messageid)
11 do update
12 set rts = counters.rts + excluded.rts,
13 favs = counters.favs + excluded.favs
14 where counters.messageid = excluded.messageid

In this query, we use the PostgreSQL json_populate_record function. This func-
tion is almost magical and it is described as such in the documentation:

https://www.postgresql.org/docs/9.6/static/functions-json.html#FUNCTIONS-JSON-PROCESSING-TABLE

Chapter 39 Listen and Notify | 338

Expands the object in from_json to a rowwhose columnsmatch the
record type deஹ஭ned by base (see note below).

Note: In json_populate_record, json_populate_recordset,
json_to_record and json_to_recordset, type coercion from the
JSON is “best eஸfort” and may not result in desired values for some
types. JSON keys are matched to identical column names in the
target row type. JSON ஹ஭elds that do not appear in the target row
type will be omitted from the output, and target columns that do
not match any JSON ஹ஭eld will simply be NULL.

The function allows transforming a JSON document into a full-blown rela-
tional tuple to process as usual in PostgreSQL. Here we use an implicit lateral
construct that feeds the json_populate_record() function from the output of
the json_each() function. We could have used the recordset variant, but we’re
discarding the Go cache key that repeats theMessageId here.
Then our SQL query uses the insert into … select … on conflict do update variant
that we’re used to by now.

Baring JSONtricks, the classicway to serialize a complex data structure targetting
multiple rows is shown in the batch update example that follows this section.

It’s important to note that coded as such, we can use the function to both ma-
terialize a full cache as fetched at startup, and to materialize the cache we build
in-memory while receiving notiஹ஭cations.

The query used to fetch the initial value of the cache and set it again at startup is
the following:

1 select messageid, rts, favs
2 from tweet.message_with_counters;

Weuse the view deஹ஭nition that we saw earlier to do the computations for us, and
ஹ஭ll in our in-memory cache data structure from the result of the query.

The trigger processing has a cost of course, as we can see in the following test:
1 CL-USER> (concurrency::concurrency-test 100 100 35)
2 Starting benchmark for updates
3 Updating took 8.428939 seconds, did 10000 rts
4

5 Starting benchmark for inserts
6 Inserting took 10.351908 seconds, did 10000 rts

Chapter 39 Listen and Notify | 339

Remember when reading those numbers that we can’t compare them mean-
ingfully anymore. We installed our trigger afிer insert on tweet.activity, which
means that the update benchmark isn’t calling any trigger whereas the insert
benchmark is calling our trigger function 10,000 times in this test.

About the concurrency, notiஹ஭cations are serialized at commit time in the same
way that the PostgreSQL commit log is serialized, so there’s no extra work for
PostgreSQL here.

Our cachemaintenance server received 10,000notiஹ஭cationswith a JSONpayload
and then reported the cumulated ஹ஭gures to our cache table only once, as we can
see from the logs:
2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}
2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}
2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}
2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}
2017/09/21 22:24:09 Materializing 1 events from memory

Having a look at the cache, here’s what we have:
1 table twcache.counters;

messageid │ rts │ favs
═══════════╪════════╪══════

1 │ 41688 │ 0
2 │ 222690 │ 0
3 │ 22000 │ 0

33 │ -4 │ 8
5 │ 7000 │ 0
6 │ 30000 │ 0

35 │ 10000 │ 0
(7 rows)

Wecan see the results of our tests, and inparticular, themessagewith ids from 1 to
6 are in the cache as expected. Remember the rules we introduced earlier where
the ஹ஭rst thing we do when starting our cache maintenance service is to reset the
cache from the real values in the database. That’s how we got those values in the
cache; alter all, the cache service wasn’t written when we ran our previous series
of tests.

Chapter 39 Listen and Notify | 340

Limitations of Listen and Notify

It is crucial that an application using the PostgreSQL notiஹ஭cation capabilities
are capable of missing events. Notiஹ஭cations are only sent to connected client
connections.

Any queueing mechanism requires that event accumulated when there’s no
worker connected are kept available until next connection, and replication
is a special case of event queueing. It is not possible to implement queueing
correctly with PostgreSQL listen/notify feature.
A cache maintenance service really is the perfect use case for this functionality,
because it’s easy to reset the cache at service start or restart.

Listen and Notify Support in Drivers

Support for listen and notify PostgreSQL functionality depends on the driver
you’re using. For instance, the Java JDBC driver documents the support at Post-
greSQL™Extensions to the JDBC API, and quoting their page:

A key limitation of the JDBC driver is that it cannot receive asyn-
chronous notiஹ஭cations and must poll the backend to check if any
notiஹ஭cations were issued. A timeout can be given to the poll func-
tion, but then the execution of statements from other threads will
block.

There’s still a full-length class implementation sample, so if you’re using Java
check it out.

For Python, the Psycopg driver is the most popular, and Python asynchronous
notiஹ஭cations supports advanced techniques for avoiding busy looping:

A simple application could poll the connection from time to time to
check if something new has arrived. A better strategy is to use some
I/O completion function such as select() to sleep until awakened
by the kernel when there is some data to read on the connection,
thereby using no CPU unless there is something to read.

https://jdbc.postgresql.org/documentation/head/listennotify.html
https://jdbc.postgresql.org/documentation/head/listennotify.html
http://initd.org/psycopg/
http://initd.org/psycopg/docs/advanced.html#asynchronous-notifications
http://initd.org/psycopg/docs/advanced.html#asynchronous-notifications

Chapter 39 Listen and Notify | 341

The Golang driver pq also supports notiஹ஭cations and doesn’t require polling.
That’s the one we’ve been using this driver in our example here.

For other languages, please check the documentation of your driver of choice.

https://godoc.org/github.com/lib/pq
https://godoc.org/github.com/lib/pq#hdr-Notifications

40
Batch Update, MoMA Collection

The Museum of Modern Art (MoMA) Collection hosts a database of the mu-
seum’s collection, with monthly updates. The project is best described in their
own words:

MoMA is committed to helping everyone understand, enjoy, and
use our collection. The Museum’s website features 75,112 artworks
from21,218 artists. This researchdataset contains 131,585 records, rep-
resenting all of the works that have been accessioned into MoMA’s
collection and cataloged in our database. It includes basic metadata
for each work, including title, artist, date made, medium, dimen-
sions, and date acquired by the Museum. Some of these records
have incomplete information and are noted as “not Curator Ap-
proved.”

Using git and git lfs commands, it’s possible to retrieve versions of the artist col-
lection for the lastmonths. Fromonemonth to the next, lots of the data remains
unchanged, and some is updated.

1 begin;
2

3 create schema if not exists moma;
4

5 create table moma.artist
6 (
7 constituentid integer not null primary key,
8 name text not null,
9 bio text,
10 nationality text,

https://github.com/MuseumofModernArt/collection

Chapter 40 Batch Update, MoMACollection | 343

11 gender text,
12 begin integer,
13 "end" integer,
14 wiki_qid text,
15 ulan text
16);
17

18 \copy moma.artist from 'artists/artists.2017-05-01.csv' with csv header delimiter ','
19

20 commit;

Now that we have loaded some data, let’s have a look at what we have:
1 select name, bio, nationality, gender
2 from moma.artist
3 limit 6;

Here are some of the artists being presented at the MoMA:
name │ bio │ nationality │ gender

═════════════════╪═════════════════════╪═════════════╪════════
Robert Arneson │ American, 1930–1992 │ American │ Male
Doroteo Arnaiz │ Spanish, born 1936 │ Spanish │ Male
Bill Arnold │ American, born 1941 │ American │ Male
Charles Arnoldi │ American, born 1946 │ American │ Male
Per Arnoldi │ Danish, born 1941 │ Danish │ Male
Danilo Aroldi │ Italian, born 1925 │ Italian │ Male

(6 rows)

Updating the Data

Afிer having successfully loaded the data fromMay, let’s say thatwe have received
anupdate for June. Asusualwithupdates of this kind,wedon’t have adiff, rather
we have a whole new ஹ஭le with a new content.

A batch update operation is typically implemented that way:
• Load the new version of the data from ஹ஭le to a PostgreSQL table or a tem-
porary table.

• Use the update command ability to use join operations to update existing
data with the new values.

• Use the insert command ability to use join operations to insert new data
from the batch into our target table.

Chapter 40 Batch Update, MoMACollection | 344

Here’s how to write that in SQL in our case:
1 begin;
2

3 create temp table batch
4 (
5 like moma.artist
6 including all
7)
8 on commit drop;
9

10 \copy batch from 'artists/artists.2017-06-01.csv' with csv header delimiter ','
11

12 with upd as
13 (
14 update moma.artist
15 set (name, bio, nationality, gender, begin, "end", wiki_qid, ulan)
16

17 = (batch.name, batch.bio, batch.nationality,
18 batch.gender, batch.begin, batch."end",
19 batch.wiki_qid, batch.ulan)
20

21 from batch
22

23 where batch.constituentid = artist.constituentid
24

25 and (artist.name, artist.bio, artist.nationality,
26 artist.gender, artist.begin, artist."end",
27 artist.wiki_qid, artist.ulan)
28 <> (batch.name, batch.bio, batch.nationality,
29 batch.gender, batch.begin, batch."end",
30 batch.wiki_qid, batch.ulan)
31

32 returning artist.constituentid
33),
34 ins as
35 (
36 insert into moma.artist
37 select constituentid, name, bio, nationality,
38 gender, begin, "end", wiki_qid, ulan
39 from batch
40 where not exists
41 (
42 select 1
43 from moma.artist
44 where artist.constituentid = batch.constituentid
45)
46 returning artist.constituentid
47)
48 select (select count(*) from upd) as updates,
49 (select count(*) from ins) as inserts;
50

Chapter 40 Batch Update, MoMACollection | 345

51 commit;

Our batch update implementation follows the speciஹ஭cations very closely. The
ability for theupdate and insert SQL commands to use join operations are put to
good use, and the returning clause allows to display some statistics about what’s
been done.

Also, the script is careful enough to only update those rows that actually have
changed thanks to using a row comparator in the update part of the CTE.
Finally, note the usage of an anti-join in the insert part of the CTE in order to
only insert data we didn’t have already.

Here’s the result of running this batch update script:
BEGIN
CREATE TABLE
COPY 15186
updates │ inserts

═════════╪═════════
35 │ 21

(1 row)

COMMIT

An implicit assumption has been made in the creation of this script. Indeed,
it considers the constituentid from MoMA to be a reliable primary key for our
data set. This assumption should, of course, be checked before deploying such
an update script to production.

Concurrency Patterns

While in this solution the update or insert happens in a single query, which
means using a single snapshot of the database and a within a transaction, it is still
not prevented from being used concurrently. The tricky case happens if your
application were to run the query above twice at the same time.

What happens is that as soon as the concurrent sources contain some data for
the same primary key, you get a duplicate key error on the insert. As both the
transactions are concurrent, they are seeing the same target table where the new
data does not exists, and bothwill conclude that they need to insert the new data
into the target table.

Chapter 40 Batch Update, MoMACollection | 346

There are two things that you can do to avoid the problem. The ஹ஭rst thing is to
make it so that you’re doing only one batch update at any time, by building your
application around that constraint.

A good way to implement that idea is with amanual lock command as explain in
the explicit locking documentation part of PostgreSQL:

1 LOCK TABLE target IN SHARE ROW EXCLUSIVE MODE;

That lock level is not automatically acquired by any PostgreSQL command, so
the only way it helps you is when you’re doing that for every transaction you
want to serialize. When you know you’re not at risk (that is, when not playing
the insert or update dance), you can omit that lock.
Another solution is using the new in PostgreSQL 9.5 on conflict clause for the
insert statement.

On Conflict Do Nothing

When using PostgreSQL version 9.5 and later, it is possible to use the on conflict
clause of the insert statement to handle concurrency issues, as in the following
variant of the script we already saw. Here’s a diff of the ஹ஭rst update script and
the second one, that handles concurrency con஺ாicts:

1 --- artists.update.sql 2017-09-07 23:54:07.000000000 +0200
2 +++ artists.update.conflict.sql 2017-09-08 12:49:44.000000000 +0200
3 @@ -5,11 +5,11 @@
4 like moma.artist
5 including all
6)
7 on commit drop;
8

9 -\copy batch from 'artists/artists.2017-06-01.csv' with csv header delimiter ','
10 +\copy batch from 'artists/artists.2017-07-01.csv' with csv header delimiter ','
11

12 with upd as
13 (
14 update moma.artist
15 set (name, bio, nationality, gender, begin, "end", wiki_qid, ulan)
16 @@ -41,10 +41,11 @@
17 (
18 select 1
19 from moma.artist
20 where artist.constituentid = batch.constituentid

http://www.postgresql.org/docs/9.2/static/explicit-locking.html

Chapter 40 Batch Update, MoMACollection | 347

21)
22 + on conflict (constituentid) do nothing
23 returning artist.constituentid
24)
25 select (select count(*) from upd) as updates,
26 (select count(*) from ins) as inserts;
27

Notice the new line on conflict (constituentid) do nothing. It basically imple-
ments what it says: if inserting a new row causes a con஺ாict, then the operation
for this row is skipped.

The con஺ாict here is a primary key or a unique violation, which means that the
row already exists in the target table. In our case, this may only happen because
a concurrent query just inserted that rowwhile our query is in ஺ாight, in between
its lookup done in the update part of the query and the insert part of the query.

41
An Interview with Kris Jenkins

Kris Jenkins is a successful startup cofounder turned freelance functional pro-
grammer, and open-source enthusiast. He mostly works on building systems in
Elm, Haskell & Clojure, improving the world one project at a time.

Kris Jenkins is the author of the YeSQL library, and approach that we’ve seen in
this book in the chapter Writing SQL queries.

As a full stack developer, how do you typically approach concurrency behavior
in your code? Is it a design-time task or more a scaling and optimizing aspect of
your delivery?

I try to design for correctness & clarity, rather than performance.
You’ll never really know what your performance and scaling hotspots
will be until you’ve got some real load on the system, but you’ll al-
ways want correctness and clarity. That mindset dictatॽ how I ap-
proach concurrency problems. I worry about things like transaction
boundariॽ up-front, before I write a line of code because I know
that if I get that wrong, it’s going to bite me at some point down
the line. But for performance, I’ll tend to wait and see. Real world
performance issuॽ rarely crop up where you predict — it’s better to
observe what’s really happening. Same with scaling issuॽ — you
might think you know which parts of the system will be in high
demand, but reality will often surprise you. But if you focॿ on get-
ting the system clear — readable and maintainable — it’s easier to
adapt the design for version two.

http://blog.jenkster.com
https://github.com/krisajenkins/yesql

Chapter 41 An Interview with Kris Jenkins | 349

Of course, there are exceptions to that. If I knew a certain system
would have a million users on day one, obviously that would change
things. But even then, I’d code up a naive-but-correct prototype.
The point being, concurrency hॼ two sidॽ — “ॾ it right?” and “ॾ
it fast?” — and I worry about the first one first. As Paul Phillips
rightly said, performance ॾ tail, correctness ॾ dog. You don’t let the
tail wag the dog.

How much impact would the choice of a stack would have on your approach
to concurrency behavior? You’ve been doing lots of Clojure and Haskell, and
those are pretty diஸferent from the more classic PHP or Python. Do they help to
implement concurrency correct code?

Definitely. They’re a huge help. The reason Clojure exists ॾ to
bring some clarity to how we deal with the effect of time in program-
ming. Clojure’s key insight ॾ that time doesn’t just complicate con-
current database transactions, but nearly every aspect of program-
ming. Concurrency ॾ, “what happens if someone else stomps over
my data at the same time?” Mutability ॾ, “what happens if some-
one else stomps over my data, or if I stomp on it myself?” Languagॽ
with immutable data structurॽ, like Clojure, ask, “Why don’t we
just eliminate that whole problem?”
So Clojure ॾ designed from the ground up to eliminate the effect of
time from programming completely, and then only bring it back in
when you really need it. By default there ॾ no concurrency, there
are no competing timelinॽ, and then if you really need to bring it
back you get great support for doing so. You opt-in to concurrency
problems, carefully and with great support. That both freॽ you up
from worrying about concurrency and makॽ you very mindful of
it.
Haskell I’d say takॽ that even further. It doesn’t just make you
suspicioॿ of the side-effects time ॾ having on your code, but just
about all side effects. Haskell’s been ferocioॿ about side effects for…
I guess twenty years now… and it’s still an active area of research to
beat them down even harder.
So both languagॽ beat out side effects and then gradually bring
them back in, with controls. And what controls do we see for concur-
rency? For the most part, it’s not the low-level locks and semaphorॽ

Chapter 41 An Interview with Kris Jenkins | 350

of C and Java, but the higher-level ideॼ we love from databasॽ, like
repeatable reads (immutability) and ACID transactions (software
transactional memory).

When using PostgreSQL in your application stacks, which role do you assign to
it? Is it more of a library, framework, storage engine, processing workhouse, or
something else entirely?

It hॼ two key rolॽ for me. First, ॼ the storage engine. It’s the
golden record of what our system knows. Every important fact
should be there. That probably makॽ the database the most
precioॿ part of the system, but that’s okay. Data ॾ precioॿ.
The other role ॾ much more abstract. I use the database a design
tool. There’s something great about the relational mindset that en-
couragॽ you to think about data in itself, separate from how it’s
used. You model the data so it takॽ its own real shape, rather than
the shape today’s task wants it to have.
By way of contrast, I think one of the downsidॽ of test-driven-
development ॾ in some corners it’s encouraged people to think of
their data ॼ a kind of black box, where only the way it’s used to-
day gets to drive the data implementation. Too often I’ve seen that
lead to big painful rewritॽ when the data outgrows the featurॽ.
The mindset of making data primary, and today’s use-case sec-
ondary, ॾ invaluable if you want a system to grow well. And that’s
something Codd figured out decadॽ ago.
I wॼ lucky enough early in my career to get a job with a financial
database company that really only existed because they had a better
data model than all their competitors. The whole product fell out of
the fact that they figured out a better schema than everyone else, so
they could do many things their competitors struঃled with, without
breaking a sweat. They taught me early on that if you get your data
model right, every feature ॾ easier. You can get things right without
trying while you competitors firefight their mistakॽ.

When using PostgreSQL, do you pick the default isolation level or do you have a
speciஹ஭c approach to picking the right isolation level depending on the task you’re
implementing?

Ha, boring answer here — I stick to the default! I don’t think I’ve

Chapter 41 An Interview with Kris Jenkins | 351

changed it more than a couple of timॽ, for a couple of extremely
specific casॽ.

Part VIII

PostgreSQL Extensions

| 353

PostgreSQL is unique in its approach to data types. The initial design of Postgres
can be read about in the document entitled The Design Of Postgres, authored
byMichael Stonebraker and Lawrence A. Rowe.

Quoting this foundation paper, we can read:

Thॾ paper presents the preliminary design of a new database man-
agement system, called POSTGRES, that ॾ the successor to the IN-
GRES relational database system. The main design goals of the
new system are to:
1. Provide better support for complex objects,
2. Provide user extendibility for data typॽ, operators and access
methods,

3. Provide facilitiॽ for active databasॽ (i.e. alerters and triঃers)
and inferencing including forward- and backward-chaining,

4. Simplify the DBMS code for crash recovery,
5. Produce a design that can take advantage of optical disks,
workstations composed of multiple tightly-coupled processors,
and custom designed VLSI chips, and

6. Make ॼ few changॽ ॼ possible (preferably none) to the rela-
tional model.

The paper describॽ the query language, programming language in-
terface, system architecture, query processing strateং, and storage
system for the new system.

Current modern version of PostgreSQL still follow several of the same design
rules. The development teammanaged to improve themany facets of the system,
including adding a full implementation of the SQL standard, without having to
change the extensibility foundations of Postgres.

In this chapter, we are going to learn about some advanced extensions for Post-
greSQL, distributed as part of the contrib distribution or by developers other
than PostgreSQL itself.

http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf

42
What’s a PostgreSQL Extension?

APostgreSQL extension is a set of SQL objects that you can add to PostgreSQL
catalogs. Installing and enabling an extension can be done at run-time, making
deploying extensions as simple as typing a single SQL command.

PostgreSQL extensions are available to cover diஸferent needs, such as the follow-
ing non-exhaustive list:

• Extensions for application developers

These extensions typically introduce an augmented feature set to
PostgreSQL,making new specialized tricks available to your SQL queries.

Examples of such extensions include PostGIS, a spatial database extender
for the PostgreSQL object-relational database that adds support for geo-
graphic objects allowing location queries to be run in SQL.

• Extensions for PostgreSQL service administrators (ops, dba)

These extensions typically introdude new introspection facilities or useful
tooling to administer your PostgreSQL production instances.

Examples of such extensions include pageinspect, which provides func-
tions that allow you to inspect the contents of database pages at a low level,
which is useful for debugging purposes.

• Extensions for pluggable languages

These extensions typically implement support for a programming

https://postgis.net
https://www.postgresql.org/docs/current/static/pageinspect.html

Chapter 42 What’s a PostgreSQL Extension? | 355

language to be used for writing stored procedures and functions.
PostgreSQLmaintains several procedural languages in-core:

– PL/C of course
– PL/SQL, which allows it to use a SQL query with parameters: it is
not really procedural because it’s plain SQL wrapped in a function
deஹ஭nition

– PL/pgSQL, a procedural language that implements SQL as a ஹ஭rst-
class citizen and provides procedural control structures around SQL
statements

– PL/TCL which allows using the TCL programming language to
write stored procedures and functions

– PL/Perl
– PL/Python

Adding to that list, we can ஹ஭nd other programming languages support in
external projects — i.e. they’re not maintained by the PostgreSQL com-
mitters team. For instance Plv8 embeds server-side Javascript code right
into your database server, then there’s PL/Java, PL/Lua and many others.

• Extensions for foreign data wrappers

These extensions typically implement support for a accessing data man-
aged externally to PostgreSQL, following the SQL/MED design, which is
part of the SQL standard. In SQL/MED, MED stands formanagement
of external data.
PostgreSQL ships with some Foreign Data Wrappers that allow it to read
data from ஹ஭les with ஹ஭le_fdw or from a remote PostgreSQL server with
postgres_fdw.

Other FDWs can be found that are not maintained by the PostgreSQL
committers team, such as oracle_fdw or ldap_fdw. The list is incredibly
long and diverse, so be sure to check out the foreign data wrappers page
on the PostgreSQL wiki.

As you can see from this rough categorization attempt, PostgreSQL extensions
can implement a very wide variety of tools and enhancements.

https://www.postgresql.org/docs/current/static/xplang.html
https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/pltcl.html
https://www.postgresql.org/docs/current/static/plperl.html
https://www.postgresql.org/docs/current/static/plpython.html
https://github.com/plv8/plv8
https://github.com/tada/pljava
https://github.com/pllua/pllua
https://en.wikipedia.org/wiki/SQL/MED
https://www.postgresql.org/docs/current/static/file-fdw.html
https://www.postgresql.org/docs/9.5/static/postgres-fdw.html
https://laurenz.github.io/oracle_fdw/
https://github.com/guedes/ldap_fdw
https://wiki.postgresql.org/wiki/Foreign_data_wrappers

Chapter 42 What’s a PostgreSQL Extension? | 356

Inside PostgreSQL Extensions

Any SQL object can be part of an extension, and here’s a short list of common
objects found in popular extensions:

• Stored procedures
• Data type
• Operator, operator class, operator family
• Index access method

As an example, we install the pg_trgm contrib extension and have a look at what
it contains:

1 create extension pg_trgm;

Now the extension is enabled in my database, and it’s possible to list the object
contained in the pg_trgm extension thanks to the psql command \dx+ pg_trgm.
Here’s the output of the command:

Objects in extension "pg_trgm"
Object description

══
function gin_extract_query_trgm(text,internal,smallint,internal,internal,internal,internal)
function gin_extract_value_trgm(text,internal)
function gin_trgm_consistent(internal,smallint,text,integer,internal,internal,internal,internal)
function gin_trgm_triconsistent(internal,smallint,text,integer,internal,internal,internal)
function gtrgm_compress(internal)
function gtrgm_consistent(internal,text,smallint,oid,internal)
function gtrgm_decompress(internal)
function gtrgm_distance(internal,text,smallint,oid,internal)
function gtrgm_in(cstring)
function gtrgm_out(gtrgm)
function gtrgm_penalty(internal,internal,internal)
function gtrgm_picksplit(internal,internal)
function gtrgm_same(gtrgm,gtrgm,internal)
function gtrgm_union(internal,internal)
function set_limit(real)
function show_limit()
function show_trgm(text)
function similarity(text,text)
function similarity_dist(text,text)
function similarity_op(text,text)
function word_similarity(text,text)
function word_similarity_commutator_op(text,text)
function word_similarity_dist_commutator_op(text,text)
function word_similarity_dist_op(text,text)
function word_similarity_op(text,text)
operator %(text,text)
operator %>(text,text)
operator <%(text,text)
operator <->(text,text)

http://www.postgresql.org/docs/current/static/pgtrgm.html

Chapter 42 What’s a PostgreSQL Extension? | 357

operator <->>(text,text)
operator <<->(text,text)
operator class gin_trgm_ops for access method gin
operator class gist_trgm_ops for access method gist
operator family gin_trgm_ops for access method gin
operator family gist_trgm_ops for access method gist
type gtrgm

(36 rows)

The functions listed here are stored procedure, and in this extension they hap-
pen to be written in C. Then we see several new operators such as %, which im-
plements a similarity test. We’re going to cover that in detail later in this chapter.

The operator class and operator family entries can be considered as glue objects.
They register index access methods covering the operators provided in the Post-
greSQL catalogs, so that the planner is capable of deciding to use a new index.

Finally, the extension implements a new datatype that is also implemented in C
and installed at run-time, without having to recompile the PostgreSQL server or
even restart it, in this case.

Installing and Using PostgreSQL Extensions

PostgreSQL extensions live in a given database, even when their deployment in-
cludes shared object libraries that are usually system wide. Depending on your
operating system, a shared object might be a .so ஹ஭le, or a .dll ஹ஭le, or even a
.dylib ஹ஭le.

Once the support ஹ஭les for an extension are deployed at the right place on your
operating system,we can type the followingSQLcommand to enable the trigram
extension in the current database we are connected to:

1 create extension pg_trgm ;

Installing the support ஹ஭les for an extension is done via installing the proper pack-
age for your operating system. When using Debian make sure to check out the
PostgreSQLDebian distribution at http://apt.postgresql.org.

To make pg_trm installable in PostgreSQL we have to install the proper contrib
package, which is easily done in Debian, as in the following example where we
are targeting PostgreSQL version 10:

1 $ sudo apt-get install postgresql-contrib-10

https://www.debian.org
http://apt.postgresql.org

Chapter 42 What’s a PostgreSQL Extension? | 358

It is possible to check whether an extension has already been made available to
your PostgreSQL instance with the following SQL query:

1 table pg_available_extensions;

Here’s an example list:
name │ default_version │ installed_version │ comment

═════════════════╪═════════════════╪═══════════════════╪════════════════════════════════════
pg_prewarm │ 1.1 │ ¤ │ prewarm relation data
pgcrypto │ 1.3 │ ¤ │ cryptographic functions
lo │ 1.1 │ ¤ │ Large Object maintenance
plperl │ 1.0 │ ¤ │ PL/Perl procedural language
pgstattuple │ 1.5 │ ¤ │ show tuple-level statistics
plpgsql │ 1.0 │ 1.0 │ PL/pgSQL procedural language
tcn │ 1.0 │ ¤ │ Triggered change notifications
pg_buffercache │ 1.3 │ ¤ │ examine the shared buffer cache
pg_freespacemap │ 1.2 │ ¤ │ examine the free space map (FSM)
sslinfo │ 1.2 │ ¤ │ information about SSL certificates

(10 rows)

Finding PostgreSQL Extensions

The ஹ஭rst set of interesting extensions that should be available on anyPostgreSQL
installation is the contribs themselves. Make sure the operating system package
for contribs is always deployed everywhere you’re using PostgreSQL, so that you
can then put those wonderful extensions to good use.

Some of the contrib extensions are meant to debug hairy situations, and you’ll
be happy that diagnostics are only a create extension command away when
you need to ஹ஭nd out if a table or an index is corrupted, for instance.

Another source of PostgreSQLextensions is thePostgreSQLExtensionNetwork
where extension authors can register their project themselves, and update the in-
formation when they release new versions.

In both cases, there’s no guarantee of the quality of any of the extensions listed, so
you will have to test them yourself. In this book we’re going to cover extensions
that have been known to be of production quality, i.e. the ones that you can rely
on. We’re also going to add a list of trustworthy extensions even if we don’t cover
them in details. The list is not exhaustive though, so if you ஹ஭nd an extension not
listed on these pages, it’s most certainly worth a try!

https://pgxn.org

Chapter 42 What’s a PostgreSQL Extension? | 359

A Primer on Authoring PostgreSQL Extensions

PostgreSQL makes it easy to author an extension. While most extensions need
to be written in C in order to have access to low-level PostgreSQL facilities, it’s
not always the case and some extensions can be written in other higher order
programming languages such as PL/Perl, PL/Python or even PL/pgSQL.

If your application already maintains parts of its logic in stored procedures,
you might ஹ஭nd it useful to rely on the PostgreSQL extension facility. The
PostgreSQL documentation section titled Extension Building Infrastructure
details the steps to follow in order to cook your own extension.

You will need to prepare the following ஹ஭les:

• Makeஹ஭le, if you need to “build” your ஹ஭les, which is mostly necessary when
writing an extension in C

• Control ஹ஭le, to describe the extension properties
• SQL script that is played to install the extension objects, such as tables,
views, functions, stored procedures, operators, data types, etc.

• SQL upgrade scripts to go from one version to the next

If you’re already managing stored procedures, have a look at how to ship them
to PostgreSQL as extensions. Remember that there was only one reason why ex-
tensions were added to PostgreSQL in 9.1: being able to seamlessly pg_dump and
pg_restore your database when it’s using an external module. I know because I
wrote the PostgreSQL extension feature and got this patch committed.

A Short List of Noteworthy Extensions

Here’s a list of noteworthy PostgreSQL extensions for application developers.
The following extensions addnew features to yourRDBMS so that you can solve
more use cases right inside the database.

Having more data processing tools in the database server is a good thing when
you have complex problems to solve and want to have a solution that is both
correct (from a transactional standpoint) and eஸஹ஭cient (from a data ஺ாow stand-
point). We’ll see several detailed examples of these points in the following sec-
tions of this chapter.

https://www.postgresql.org/docs/current/static/extend-pgxs.html

Chapter 42 What’s a PostgreSQL Extension? | 360

Here’s a list of PostgreSQL contrib extensions for application developers:

• Bloom Index Filters

Bloom provides an index access method based on bloom ஹ஭lters.

From the PostgreSQL documentation about this contrib extension:

ABloom filter ॾ a space-efficient data structure that ॾ used to test whether
an element ॾ a member of a set. In the case of an index access method,
it allows fast exclusion of non-matching tuplॽ via signaturॽ whose size ॾ
determined at index creation.
A signature ॾ a lossy representation of the indexed attribute(s), and ॼ
such ॾ prone to reporting false positivॽ; that ॾ, it may be reported that an
element ॾ in the set, when it ॾ not. So index search results must always be
rechecked using the actual attribute valuॽ from the heap entry. Larger
signaturॽ reduce the odds of a false positive and thॿ reduce the number
of useless heap visits, but of course also make the index larger and hence
slower to scan.
Thॾ type of index ॾ most useful when a table hॼ many attributॽ and
queriॽ test arbitrary combinations of them. A traditional btree index
ॾ faster than a bloom index, but it can require many btree indexॽ to
support all possible queriॽ where one needs only a single bloom index.
Note however that bloom indexॽ only support equality queriॽ, whereॼ
btree indexॽ can also perform inequality and range searchॽ.

• earthdistance

The earthdistance module providॽ two different approachॽ to calculating
great circle distancॽ on the surface of the Earth. The one described first
depends on the cube module (which must be installed before earthdistance
can be installed). The second one ॾ based on the built-in point data type,
using longitude and latitude for the coordinatॽ.
In thॾ module, the Earth ॾ assumed to be perfectly spherical. (If that’s
too inaccurate for you, you might want to look at the PostGIS project.)

• hstore

Thॾ module implements the hstore data type for storing sets of key/value
pairs within a single PostgreSQL value. Thॾ can be useful in varioॿ

https://www.postgresql.org/docs/current/static/bloom.html
https://www.postgresql.org/docs/current/static/earthdistance.html
https://www.postgresql.org/docs/current/static/hstore.html

Chapter 42 What’s a PostgreSQL Extension? | 361

scenarios, such ॼ rows with many attributॽ that are rarely examined, or
semi-structured data. Keys and valuॽ are simply text strings.

• ltree

Thॾ module implements a data type ltree for representing labels of data
stored in a hierarchical tree-like structure. Extensive facilitiॽ for searching
through label treॽ are provided.
And here’s an example that comes straight from the documentation too,
so that you can decide if you want to have a closer look at it:

1 ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@';
2 path
3 ------------------------------------
4 Top.Science.Astronomy
5 Top.Science.Astronomy.Astrophysics
6 Top.Science.Astronomy.Cosmology
7 (3 rows)

• pg_trgm

Thॾ module providॽ functions and operators for determining the simi-
larity of alphanumeric text based on trigram matching, ॼ well ॼ index
operator classॽ that support fast searching for similar strings.

Now, the next part of the list includes extensions to PostgreSQL that are main-
tained separately from themain project. That means the projects have their own
team and organization, and more importantly, their own release cycle.

• PostGIS

PostGIS ॾ a spatial database extender for PostgreSQL object-relational
database. It adds support for geographic objects allowing location queriॽ
to be run in SQL.

1 SELECT superhero.name
2 FROM city, superhero
3 WHERE ST_Contains(city.geom, superhero.geom)
4 AND city.name = 'Gotham';

In addition to basic location awareness, PostGIS offers many featurॽ rarely
found in other competing spatial databasॽ such ॼ Oracle Locator/Spatial
and SQL Server. Refer to PostGIS Feature List for more details.

• ip4r

IPv4/v6 and IPv4/v6 range index type for PostgreSQL

https://www.postgresql.org/docs/current/static/ltree.html
https://www.postgresql.org/docs/current/static/pgtrgm.html
https://postgis.net
https://postgis.net/features/
https://github.com/RhodiumToad/ip4r

Chapter 42 What’s a PostgreSQL Extension? | 362

While PostgreSQL already hॼ builtin typॽ ‘inet’ and ‘cidr’, the authors
of thॾ module found that they had a number of requirements that were
not addressed by the builtin type.
Firstly and most importantly, the builtin typॽ do not have good support
for index lookups of the form (column >>= parameter), i.e. where you
have a table of IP address rangॽ and wish to find which onॽ include a
given IP address. Thॾ requirॽ an rtree or gist index to do efficiently, and
also requirॽ a way to represent IP address rangॽ that do not fall precisely
on CIDR boundariॽ.
Secondly, the builtin inet/cidr are somewhat overloaded with semantics,
with inet combining two distinct concepts (a netblock, and a specific IP
within that netblock). Furthermore, they are variable length typॽ (to
support ipv6) with non-trivial overheads, and the authors (whose applica-
tions mainly deal in large volumॽ of single IPv4 addressॽ) wanted a more
lightweight representation.

• citus

Citॿ horizontally scalॽ PostgreSQL across commodity servers using shard-
ing and replication. Its query engine parallelizॽ incoming SQL queriॽ
across these servers to enable real-time responsॽ on large datasets.

• pgpartman

pg_partman ॾ an extension to create and manage both time-based and
serial-based table partition sets. Native partitioning in PostgreSQL 10 ॾ
supported ॼ of pg_partman v3.0.1. Note that all the featurॽ of triঃer-
based partitioning are not yet supported in native, but performance in
both reads and writॽ ॾ significantly better.
Child table creation ॾ all managed by the extension itself. For non-native,
triঃer function maintenance ॾ also handled. For non-native partition-
ing, tablॽ with existing data can have their data partitioned in easily
managed smaller batchॽ. For native partitioning, the creation of a new
partitioned set ॾ required and data will have to be migrated over sepa-
rately.

• postgres-hll

Thॾ Postgrॽ module introducॽ a new data type hll, which ॾ a Hyper-
LogLog data structure. HyperLogLog ॾ a fixed-size, set-like structure used

https://www.citusdata.com
https://github.com/pgpartman/pg_partman
https://github.com/citusdata/postgresql-hll

Chapter 42 What’s a PostgreSQL Extension? | 363

for distinct value counting with tunable precision. For example, in 1280
bytॽ hll can estimate the count of tens of billions of distinct valuॽ with
only a few percent error.

• preஹ஭x

Prefix matching ॾ both very common and important in telephony applica-
tions, where call routing and costs depend on matching caller/callee phone
numbers to an operator prefix.
Let’s say the prefixॽ table ॾ called prefixॽ, a typical query will try to
match a phone number to the longest prefix in the table:

1 SELECT *
2 FROM prefixes
3 WHERE prefix @> '0123456789'
4 ORDER BY length(prefix) DESC
5 LIMIT 1;

• madlib

ApacheMADlib ॾ an open-source library for scalable in-database analyt-
ics. It providॽ data-parallel implementations of mathematical, statistical
and machine learning methods for structured and unstructured data.
The MADlib mission: to foster widespread development of scalable an-
alytic skills, by harnessing efforts from commercial practice, academic re-
search, and open-source development.

• RUM

The RUM module providॽ an access method to work with RUM index.
It ॾ based on the GIN access methods code. RUM solvॽ the GIN rank-
ing, phrase search, and ordering by timestamps performance problems of
GIN by storing additional information in a posting tree. Positional infor-
mation of lexemॽ or timestamps are examplॽ.
If you’re using full text search with PostgreSQL, then have a look at the
RUM extension.

From this list it’s quite clear how powerful the PostgreSQL extensibility charac-
teristics are. We have extensions that provide a new data type and its operators,
moreover with indexing support. Other extensions implement their own SQL
planner and optimizer, like in the case ofCitus, which uses that capability to then
route query executions over a network of distributed PostgreSQL instances.

https://github.com/dimitri/prefix
http://madlib.apache.org/index.html
https://github.com/postgrespro/rum

Chapter 42 What’s a PostgreSQL Extension? | 364

All those PostgreSQL extension can rely on PostgreSQL industry strenghs:

• Correctness via transaction semantics
• Durability and crash safety
• Performance thanks to an advanced planner and cost-based optimizer
• Open source project and protocol

43
Auditing Changes with hstore

The PostgreSQL extension hstore implements a data type for storing sets
of key/value pairs within a single PostgreSQL value. This can be useful in
various scenarios, such as rows with many attributes that are rarely examined, or
semi-structured data. Keys and values are simply text strings.

We could go so far as to say that hstore is a precursor to JSON support in Post-
greSQL, as it supports some of the same use cases. The main diஸference between
hstore and JSON is that in hstore, there’s only one data type supported and
that’s text. Also, an hstore composite value is a ஺ாat dictionnary, so nesting isn’t
supported.

Still hstore is very useful in some cases, andwe’re going to see how to put hstore
into practice to audit changes in a generic way.

Introduction to hstore

Of course the ஹ஭rst thing we have to do is to enable the hstore extension in our
database with the following SQL command:

1 create extension hstore;

Now, equiped with the extension, we can create hstore values and use the arrow
operator -> to access the values associated with a given key.

https://www.postgresql.org/docs/current/static/hstore.html

Chapter 43 Auditing Changes with hstore | 366

1 select kv,
2 kv->'a' as "kv -> a",
3 kv-> array['a', 'c'] as "kv -> [a, c]"
4 from (
5 values ('a=>1,a=>2'::hstore),
6 ('a=>5,c=>10')
7)
8 as t(kv);

Here, we fetch the value from the key 'a' as a scalar value, and then we fetch the
values frommultiple keys at once, with the notation array ['a', 'c']:

kv │ kv -> a │ kv -> [a, c]
═════════════════════╪═════════╪══════════════
"a"=>"1" │ 1 │ {1,NULL}
"a"=>"5", "c"=>"10" │ 5 │ {5,10}

(2 rows)

As you can see, all we have in hstore keys and values are text values.

Comparing hstores

The hstore extension implements a - operator: its documentation says that it will
delete matching pairs from left operand.

1 select 'f1 => a, f2 => x'::hstore
2 - 'f1 => b, f2 => x'::hstore
3 as diff;

This gives the following result:
diff

═══════════
"f1"=>"a"

(1 row)

That’s what we’re going to use in our changॽ auditing triঃer now, because it’s
a pretty useful format to understand what did change.

Auditing Changes with a Trigger

First we need some setup:

Chapter 43 Auditing Changes with hstore | 367

• We are going to track changes made when we update the MoMA collec-
tion, which we processed in the previous chapter. The table we are audit-
ing is moma.artist.

• The changes are recorded in a table named moma.audit, deஹ஭ned in a pretty
generic way as we can see below.

• Then we install PostgreSQL triggers on the moma.artist table to capture
any change made to it and populate the moma.audit table with the before
and after versions of updated rows.
The representation of the row is recorded using the hstore format, which
is very ஺ாexible and could be used to track more than one table deஹ஭nition.
Either several tables, or just the same table even in the case of schema
changes done with ALTER TABLE.

The idea is to add a row in the audit table each time the moma.artist table is
updated, with the hstore representation of the data in ஺ாight before and afிer the
change:

1 begin;
2

3 create table moma.audit
4 (
5 change_date timestamptz default now(),
6 before hstore,
7 after hstore
8);
9

10 commit;

In the previous chapter we had an introduction to triggers. Here’s an hstore
auditing one:

1 begin;
2

3 create function moma.audit()
4 returns trigger
5 language plpgsql
6 as $$
7 begin
8 INSERT INTO audit(before, after)
9 SELECT hstore(old), hstore(new);
10 return new;
11 end;
12 $$;
13

14 create trigger audit

Chapter 43 Auditing Changes with hstore | 368

15 after update on moma.artist
16 for each row
17 execute procedure audit();
18

19 commit;

Note that we could attach the same trigger to any other table, as the details of the
audit table contain nothing speciஹ஭c about the moma.artist table. When doing
so, it then becomes necessary to also track the origin of the changes with both a
table_name column and a schema_name column:

1 begin;
2

3 create table moma.audit
4 (
5 change_date timestamptz default now(),
6 schema_name name,
7 table_name name,
8 before hstore,
9 after hstore
10);
11

12 commit;

Within the trigger procedude, the information we want is available as the
TG_TABLE_SCHEMA and TG_TABLE_NAME variables. To enhance the trigger proce-
dure code thatwe’re using in this examples, read the PostgreSQLdocumentation
chapter entitled PL/pgSQL Trigger Procedures.

Testing the Audit Trigger

With that in place, let’s try it out:
1 begin;
2

3 create temp table batch
4 (
5 like moma.artist
6 including all
7)
8 on commit drop;
9

10 \copy batch from 'artists/artists.2017-07-01.csv' with csv header delimiter ','
11

12 with upd as
13 (

http://www.postgresql.org/docs/current/interactive/plpgsql-trigger.html

Chapter 43 Auditing Changes with hstore | 369

14 update moma.artist
15 set (name, bio, nationality, gender, begin, "end", wiki_qid, ulan)
16

17 = (batch.name, batch.bio, batch.nationality,
18 batch.gender, batch.begin, batch."end",
19 batch.wiki_qid, batch.ulan)
20

21 from batch
22

23 where batch.constituentid = artist.constituentid
24

25 and (artist.name, artist.bio, artist.nationality,
26 artist.gender, artist.begin, artist."end",
27 artist.wiki_qid, artist.ulan)
28 <> (batch.name, batch.bio, batch.nationality,
29 batch.gender, batch.begin, batch."end",
30 batch.wiki_qid, batch.ulan)
31

32 returning artist.constituentid
33),
34 ins as
35 (
36 insert into moma.artist
37 select constituentid, name, bio, nationality,
38 gender, begin, "end", wiki_qid, ulan
39 from batch
40 where not exists
41 (
42 select 1
43 from moma.artist
44 where artist.constituentid = batch.constituentid
45)
46 on conflict (constituentid) do nothing
47 returning artist.constituentid
48)
49 select (select count(*) from upd) as updates,
50 (select count(*) from ins) as inserts;
51

52 commit;

This SQL statement outputs the following information:
BEGIN
CREATE TABLE
COPY 15226
updates │ inserts

═════════╪═════════
52 │ 61

(1 row)

COMMIT

And thanks to our audit trigger, we can have a look at what has changed:

Chapter 43 Auditing Changes with hstore | 370

1 select (before -> 'constituentid')::integer as id,
2 after - before as diff
3 from moma.audit
4 limit 15;

So here are the ஹ஭rst 15 changes out of the 52 updates we made:
id │ diff

══════╪═══
546 │ "bio"=>"American, born England. 1906–1994"
570 │ "bio"=>"American, 1946–2016"
920 │ "bio"=>"American, born Switzerland. 1907–1988", "end"=>"1988"
957 │ "bio"=>"Italian, 1906–1996", "end"=>"1996"

1260 │ "bio"=>"American, 1923–2017", "end"=>"2017", "begin"=>"1923"
1372 │ "bio"=>"Belgian, 1901–1986", "end"=>"1986", "name"=>"Suzanne va…

│…n Damme", "begin"=>"1901", "nationality"=>"Belgian"
1540 │ "bio"=>"American, 1900–1979", "end"=>"1979", "begin"=>"1900", "…

│…nationality"=>"American"
1669 │ "name"=>"Dušan Džamonja"
1754 │ "name"=>"Erró (Gudmundur Gudmundsson)"
1855 │ "bio"=>"Mexican, 1904–1972", "end"=>"1972"
1975 │ "bio"=>"American, born Uruguay. 1919–2013"
2134 │ "bio"=>"Israeli, 1936–2017"
2679 │ "bio"=>"British, 1932–2017"
3005 │ "bio"=>"French, 1906–1971"
3230 │ "bio"=>"Greek, 1936–2017"

(15 rows)

From hstore Back to a Regular Record

The hstore extension is able to cast data from a record to an hstore with the
hstore() function, and back again with the populate_record() function.

Here’s an example using that very powerful function, where we ஹ஭nd out if any
artist name has been changed and display when the change occurred, what the
old name was and what the new name is:

1 select audit.change_date::date,
2 artist.name as "current name",
3 before.name as "previous name"
4

5 from moma.artist
6 join moma.audit
7 on (audit.before->'constituentid')::integer
8 = artist.constituentid,
9 populate_record(NULL::moma.artist, before) as before

Chapter 43 Auditing Changes with hstore | 371

10

11 where artist.name <> before.name;

In this query, we extract the constituentid from the audit table in order to join
it with artist table, and then build the following result set:
change_date │ current name │ previous name

═════════════╪══════════════════════════════╪══════════════════════════════
2018-08-25 │ Suzanne van Damme │ Elisabeth van Damme
2018-08-25 │ Dušan Džamonja │ Dusan Dzamonja
2018-08-25 │ Erró (Gudmundur Gudmundsson) │ Erro (Gudmundur Gudmundsson)
2018-08-25 │ Nikos Hadjikyriakos-Ghika │ Nikos HadjiKyriakos-Ghika
2018-08-25 │ Sam Mendes │ Same Mendes
2018-08-25 │ Tim Berresheim │ Tim Berrescheim
2018-08-25 │ Kestutis Nakas │ Kęstutis Nakas
2018-08-25 │ Jennifer T. Ley │ Jennifer Ley

(8 rows)

The hstore extension is very useful, evenwith JSON support in current versions
of PostgreSQL. The ability to cast from and to a record is unique to this exten-
sion, and its diஸference operator has no equivalent in the JSON feature set.

44
Last.fm Million Song Dataset

In the next two study cases, we’re going to play with the LastFm dataset, the
oஸஹ஭cial song tag and song similarity dataset of the Million Song Dataset:

The MSD team is proud to partner with Last.fm in order to bring
you the largest research collection of song-level tags and precom-
puted song-level similarity. All the data is associated with MSD
tracks, which makes it easy to link it to other MSD resources: au-
dio features, artist data, lyrics, etc.

First, we need to import this dataset into a PostgreSQL database. The data set
is oஸfered both as an SQLite database and a JSON ஹ஭le. Loading the SQLite
database is easy thanks to pgloader:

1 $ curl -L -o /tmp/lastfm_tags.db
2 http://labrosa.ee.columbia.edu/ \
3 millionsong/sites/default/files/lastfm/lastfm_tags.db
4

5 $ pgloader /tmp/lastfm_tags.db pgsql://appdev@localhost/appdev

We get the following output, meaning the data is now available in our
PostgreSQL database for further indexing:

table name errors read imported bytes total time
----------------------- --------- --------- --------- --------- --------------

fetch 0 0 0 0.000s
fetch meta data 0 8 8 0.028s
Create Schemas 0 0 0 0.000s

Create SQL Types 0 0 0 0.006s
Create tables 0 6 6 0.031s

Set Table OIDs 0 3 3 0.009s
----------------------- --------- --------- --------- --------- --------------

https://labrosa.ee.columbia.edu/millionsong/lastfm
https://pgloader.io

Chapter 44 Last.fmMillion Song Dataset | 373

tids 0 505216 505216 9.2 MB 1.893s
tags 0 522366 522366 8.6 MB 1.781s

tid_tag 0 8598630 8598630 135.7 MB 32.614s
----------------------- --------- --------- --------- --------- --------------
COPY Threads Completion 0 4 4 34.366s

Create Indexes 0 5 5 2m14.346s
Index Build Completion 0 5 5 36.976s

Reset Sequences 0 0 0 0.054s
Primary Keys 0 0 0 0.000s

Create Foreign Keys 0 0 0 0.000s
Create Triggers 0 0 0 0.001s

Install Comments 0 0 0 0.000s
----------------------- --------- --------- --------- --------- --------------

Total import time ✓ 9626212 9626212 153.4 MB 3m25.743s

Here, pgloader extracted the table and index deஹ஭nitions from the SQLite
database using the sqlite_master catalog and the PRAGMA table_info()
commands, and it migrated the data in a streaming fashion to PostgreSQL,
using the COPY protocol.
Having a look at the demo_tags.py script from the Last.fm project, we can see
how to use the relations here, and we realize they are using the 64-bit signed inte-
ger ROWID system column. We need something comparable to be able tomake
sense of the data:

1 begin;
2

3 alter table tags add column rowid serial;
4 alter table tids add column rowid serial;
5

6 commit;

With the new columns in place, we can have a ஹ஭rst look at the provided data. To
get started, we can search for Brian Setzer in the user-deஹ஭ned tags:

1 select tags.tag, count(tid_tag.tid)
2 from tid_tag, tags
3 where tid_tag.tag=tags.rowid and tags.tag ~* 'setzer'
4 group by tags.tag;

Sure enough, some fans have been using Last.fm services:
tag │ count

═════════════════════════════╪═══════
Brian Setzer │ 1
Setzer │ 13
brain setzer orchestra │ 2
brian setzer is GOD │ 1
brian setzer orchestra │ 3
rockabilly Setzer style │ 4
setzer is a true guitarhero │ 9

http://www.sqlite.org/autoinc.html
http://www.sqlite.org/autoinc.html

Chapter 44 Last.fmMillion Song Dataset | 374

the brian setzer orchestra │ 1
(8 rows)

Time: 394.927 ms

Here the query is mainly doing a join in between the tid table (containing track
ids) and the tid_tag table (containing the association between tracks and tags),
ஹ஭ltering on the case insensitive regular expression 'setzer'. As we can imagine
from reading the query execution time, there’s no index to implement the ஹ஭lter-
ing here.

Now the million song project is also releasing the data as a set of JSON-encoded
text ஹ஭les, and in the JSON ஹ஭le we ஹ஭nd additional information such as titles and
artist that we could add to the current track table containing only the track id
information. A track id looks like TRVBGMW12903CBB920 — this is not the
best way to refer a song for us human beings.

So this time we download the JSON resource and process it with the help of a
small parser script:

1 curl -L -o /tmp/lastfm_subset.zip
2 http://labrosa.ee.columbia.edu/ \
3 millionsong/sites/default/files/lastfm/lastfm_subset.zip

Then we can load this new content into the new table deஹ஭nition:
1 begin;
2

3 create table lastfm.track
4 (
5 tid text,
6 artist text,
7 title text
8);
9

10 commit;

Because my favorite programming environment involves Common Lisp, the fol-
lowing source of the script is written in this language. I’ve been using it to parse
the JSON ஹ஭les from the zip archive and load them all from a COPY command.
Using COPY here means that we can stream the parsed data as we go, and inject
all the content in a single PostgreSQL command:

1 (defpackage #:lastfm
2 (:use #:cl #:zip)
3 (:import-from #:cl-postgres
4 #:open-db-writer
5 #:close-db-writer

Chapter 44 Last.fmMillion Song Dataset | 375

6 #:db-write-row))
7

8 (in-package #:lastfm)
9

10 (defvar *db* '("appdev" "appdev" nil "localhost" :port 5432))
11 (defvar *tablename* "lastfm.track")
12 (defvar *colnames* '("tid" "artist" "title"))
13

14 (defun process-zipfile (filename)
15 "Process a zipfile by sending its content down to a PostgreSQL table."
16

17 (pomo:with-connection *db*
18

19 (let ((count 0)
20 (copier (open-db-writer pomo:*database* *tablename* *colnames*)))
21

22 (unwind-protect
23 (with-zipfile (zip filename)
24 (do-zipfile-entries (name entry zip)
25 (let ((pathname (uiop:parse-native-namestring name)))
26 (when (string= (pathname-type pathname) "json")
27 (let* ((bytes (zipfile-entry-contents entry))
28 (content
29 (babel:octets-to-string bytes :encoding :utf-8)))
30 (db-write-row copier (parse-json-entry content))
31 (incf count))))))
32 (close-db-writer copier))
33

34 ;; Return how many rows we did COPY in PostgreSQL
35 count)))
36

37 (defun parse-json-entry (json-data)
38 (let ((json (yason:parse json-data :object-as :alist)))
39 (list (cdr (assoc "track_id" json :test #'string=))
40 (cdr (assoc "artist" json :test #'string=))
41 (cdr (assoc "title" json :test #'string=)))))

Of course it’s possible to implement the same technique in any programming
language. All you need is for your PostgreSQL driver of choice to expose the
PostgreSQLCOPY protocol. Make sure it does, and then learn how to properly
load data using it.

With the Postmodern driver for Common Lisp that I’m using, the COPY API
involves the three functions below:

• open-db-writer to open the COPY streaming protocol,
• db-write-row to push a single row to PostgreSQL,
• close-db-writer to signal we’re done and close the COPY streaming.

https://github.com/marijnh/Postmodern

Chapter 44 Last.fmMillion Song Dataset | 376

So if you read the script carefully you’ll see that it is using those API calls to
push one row per JSON ஹ஭le that is parsed. One trick the script is using is that it’s
reading directly from the zip ஹ஭le, uncompressing it inmemory andparsing JSON
ஹ஭les from there, withoutwriting the JSON ஹ஭les extracted from the zip archive on
disk on the client side. PostgreSQLof coursewill have to serialize the data to disk
when it appears in the server side of the COPY protocol.
Time to discover the datamodel and the data itselfwith a ஹ஭rst batch of interactive
queries, with the sole aim of fulஹ஭lling our curiosity:

1 select artist, count(*)
2 from lastfm.track
3 group by artist
4 order by count desc
5 limit 10;

We can see that one of the most popular artists in the data set is Aerosmith:
artist │ count

═════════════════════════════╪═══════
Mario Rosenstock │ 13
Aerosmith │ 12
Snow Patrol │ 12
Phil Collins │ 12
Sugar Minott │ 11
Bill & Gloria Gaither │ 11
Line Renaud │ 11
Shakira │ 11
Radiohead │ 11
Nick Cave and the Bad Seeds │ 11

(10 rows)

Now, let’s have a look at the kind of tags this artist would have had attached to
by Last.fm users:

1 select track.artist, tags.tag, count(*)
2 from tags
3 join tid_tag tt on tags.rowid = tt.tag
4 join tids on tids.rowid = tt.tid
5 join lastfm.track on track.tid = tids.tid
6 where track.artist = 'Aerosmith'
7 group by artist, tags.tag
8 order by count desc
9 limit 10;

With this very simple and classic query, we can see how the data model ஹ஭ts to-
gether, using the tags, tid_tag, tids, and track tables. Themodel comes from
the SQLite database used by the project, towhichwehave been adding the track
table, where we did COPY data from the zipஹ஭le full of JSON ஹ஭les.

Chapter 44 Last.fmMillion Song Dataset | 377

Anyway, here are some tags for Aerosmith:
artist │ tag │ count

═══════════╪════════════════╪═══════
Aerosmith │ Radio4You │ 12
Aerosmith │ hard rock │ 12
Aerosmith │ rock │ 11
Aerosmith │ classic rock │ 11
Aerosmith │ 70s │ 10
Aerosmith │ 80s │ 9
Aerosmith │ mi metal1 │ 8
Aerosmith │ favorites │ 8
Aerosmith │ male vocalists │ 8
Aerosmith │ pop │ 8

(10 rows)

We limited it to ten rows here. The dataset we are playing with actually contains
464 unique tags just for the Aerosmith band. One of them from the list above is
spelled favorites, so what titles have been ஺ாagged as a favorite of Last.fm users,
using one spelling or another?

1 select track.tid, track.title, tags.tag
2 from tags
3 join tid_tag tt on tags.rowid = tt.tag
4 join tids on tids.rowid = tt.tid
5 join lastfm.track on track.tid = tids.tid
6 where track.artist = 'Aerosmith'
7 and tags.tag ~* 'favourite'
8 order by tid, tag;

We can see the 12 all-time favorite songs fromAerosmith… in this dataset at least:
tid │ title │ tag

════════════════════╪═════════════════════════╪════════════════════════════════
TRAQPKV128E078EE32 │ Livin' On The Edge │ Favourites
TRAVUAJ128E078EDA2 │ What It Takes │ favourite
TRAYKOC128F930D2B8 │ Cryin' │ Favourites
TRAYKOC128F930D2B8 │ Cryin' │ favourite
TRAZDPO128E078ECE6 │ Crazy │ Favourites
TRAZDPO128E078ECE6 │ Crazy │ all- time favourite
TRAZDPO128E078ECE6 │ Crazy │ favourite
TRAZISI128E078EE2F │ Same Old Song and Dance │ first favourite metalcore song
TRBARHH128E078EDE9 │ Janie's Got A Gun │ favourite
TRBARHH128E078EDE9 │ Janie's Got A Gun │ my favourite songs
TRBGPJP128E078ED20 │ Crazy │ Favourites
TRBGPJP128E078ED20 │ Crazy │ favourite

(12 rows)

Now that we have an idea about the dataset, it’s time to solve more interesting
use cases with it.

45
Using Trigrams For Typos

Some popular search engines are capable of adding helpful bits of information
that depend directly on your search phrase. Both autocorrect and did you mean?
are part of the basics of a search engine user experience nowadays.

PostgreSQL implements several fuzzy string matching approaches, and one of
them in particular is suitable for implementing suggestions to search strings, pro-
vided that you are searching in a known catalog of items.

The pg_trgm PostgreSQL Extension

The PostgreSQL extension pg_trgm provides functions and operators for deter-
mining the similarity of alphanumeric text based on trigrammatching, as well as
index operator classes that support fast searching for similar strings.

Before we see how to beneஹ஭t from the pg_trgm extension, it must be said that
PostgreSQL comes with a complete full text search implementation. For full
஺ாexibility and advanced processing, consider using text search parsers and one
of the PostgreSQL dictionnaries with support for stemming, thesaurॿ or syno-
myms support. The facility comes with a full text query language and tools for
ranking search result. So if what you need really is full text search then go check
the docs.

The use of trigrams is ofிen complementary to full text search. With trigramswe

http://www.postgresql.org/docs/current/static/pgtrgm.html
http://www.postgresql.org/docs/current/static/textsearch-parsers.html
http://www.postgresql.org/docs/current/static/textsearch-dictionaries.html
http://www.postgresql.org/docs/current/static/textsearch-controls.html#TEXTSEARCH-PARSING-QUERIES
http://www.postgresql.org/docs/current/static/textsearch-controls.html#TEXTSEARCH-RANKING

Chapter 45 Using Trigrams For Typos | 379

can implement typing correction suggestions or index like and POSIXRegular
Expressions searches.

Whatever the use case, it all begins as usual by enabling the extensionwithin your
database server. If you’re running from PostgreSQL packages be sure to always
install the contrib package— it really is important. A time will come when you
need it and you will then be happy to only have to type create extension to
get started.

1 create extension pg_trgm;

Trigrams, Similarity and Searches

The idea behind trigrams is simple and very eஸfective. Split your text into a con-
secutive series of three-letters. That’s it. Then you can compare two texts based
on howmany consecutives three-letters series (trigrams) are common, and that’s
the notion of similarity. It works surprisingly well, and doesn’t depend on the
language used.

In the following query we show trigrams extracted from several attempts
at spelling the name Tommy and then the similarity value obtained when
comparing tomy and dim to tom.

1 select show_trgm('tomy') as tomy,
2 show_trgm('Tomy') as "Tomy",
3 show_trgm('tom torn') as "tom torn",
4 similarity('tomy', 'tom'),
5 similarity('dim', 'tom');

Note that when using small units of text the similarity might look more like a
guess than anything. Also before we read the result of the query, here’s what the
pg_trgm documentation says about the similarity function:

Returns a number that indicates how similar the two arguments
are. The range of the result is zero (indicating that the two strings
are completely dissimilar) to one (indicating that the two strings are
identical).

-[RECORD 1]-------------------------------------
tomy | {" t"," to","my ",omy,tom}
Tomy | {" t"," to","my ",omy,tom}
tom torn | {" t"," to","om ",orn,"rn ",tom,tor}
similarity | 0.5

http://www.postgresql.org/docs/current/static/functions-matching.html
http://www.postgresql.org/docs/current/static/functions-matching.html
http://www.postgresql.org/download/

Chapter 45 Using Trigrams For Typos | 380

similarity | 0

As you can read in the PostgreSQL trigram extension documentation, the de-
fault similarity threshold is 0.3 and you can tweak it by using the GUC setting
pg_trgm.similarity_threshold.

Nowwe can search for songs about love in our collection ofmusic, thanks to the
following query:

\index{Operators!%}
1 select artist, title
2 from lastfm.track
3 where title % 'love'
4 group by artist, title
5 order by title <-> 'love'
6 limit 10;

This query introduces several new operators from the pg_trgm extension:

• The operator % reads similar to and involves comparing trigrams of both
its lefி and right arguments

• Theoperator<-> computes the “distance”between the arguments, i.e. one
minus the similarity() value.

Here’s a list of ten songs with a title similar to love:
artist │ title

════════════════════════════╪═══════════
The Opals │ Love
YZ │ Love
Jars Of Clay │ Love Me
Angelo Badalamenti │ Love Me
Barry Goldberg │ Lost Love
The Irish Tenors │ My Love
Jeanne Pruett │ Love Me
Spade Cooley │ Lover
Sugar Minott │ Try Love
David Rose & His Orchestra │ One Love

(10 rows)

This trigram similarity concept is quite diஸferent to a regexp match:
1 select artist, title
2 from lastfm.track
3 where title ~ 'peace';

The query above returns no rows at all, because peace is never found written
exactly that way in the song titles. What about searching in a case insensitive way

http://www.postgresql.org/docs/current/static/pgtrgm.html

Chapter 45 Using Trigrams For Typos | 381

then?
1 select artist, title
2 from lastfm.track
3 where title ~* 'peace';

Then we ஹ஭nd the following 11 titles, all embedding a variation of lower case and
upper case letters in the same order as in the expression peace:

artist │ title
═══════════════════╪════════════════════════════
Bow Wow Wow │ Love, Peace and Harmony
Billy Higgins │ Peace
John Mellencamp │ Peaceful World
Terry Riley │ Peace Dance
Steinski │ Silent Partner (Peace Out)
Nestor Torres │ Peace With Myself
Dino │ Wonderful Peace
Uman │ The Way To Peace
Dhamika │ Peace Prayer
Gonzalo Rubalcaba │ Peace and Quiet Time
Twila Paris │ Perfect Peace

(11 rows)

Now that we have had a look at what a regexp query ஹ஭nds for us, we can compare
it with a trigram search.

\index{Operators!%}
1 select artist, title
2 from lastfm.track
3 where title % 'peace';

This query when using the ~ operator didn’t ஹ஭nd any titles, because peace is
always spelledwith a capital letter in our catalogue. Whenusing trigrams though,
the outcome is not so similar:

artist │ title
═════════════════╪═══════════════════
Billy Higgins │ Peace
John Mellencamp │ Peaceful World
Terry Riley │ Peace Dance
Nestor Torres │ Peace With Myself
Dino │ Wonderful Peace
Uman │ The Way To Peace
Dhamika │ Peace Prayer
Twila Paris │ Perfect Peace

(8 rows)

Indeed, trigrams are computed in a case insensitive way:

Chapter 45 Using Trigrams For Typos | 382

1 select show_trgm('peace') as "peace",
2 show_trgm('Peace') as "Peace";

─[RECORD 1]──────────────────────────
peace │ {" p"," pe",ace,"ce ",eac,pea}
Peace │ {" p"," pe",ace,"ce ",eac,pea}

There’s yet another way to search for similarity, called word_similarity. As per
the documentation:

This function returns a value that can be approximately understood
as the greatest similarity between the ஹ஭rst string and any substring
of the second string. However, this function does not add padding
to the boundaries of the extent. Thus, the number of additional
characters present in the second string is not considered, except for
the mismatched word boundry.

In other words, this function is better at ஹ஭ndingwords in a longer text. It sounds
like it’s well adapted to searching our title strings, so we can try it now:

1 select artist, title
2 from lastfm.track
3 where title %> 'peace';

We now use a new operator: %>. This operator uses the word_similarity func-
tion introduced above, and takes into account that its lefி operand is a longer
string, and its right operand is a single word to search. We could use the <% op-
erator, where lefி and right operands are used the other way round: word <%
phrase.
Here’s what we ஹ஭nd this time:

artist │ title
═══════════════════╪═════════════════════════════════
Bow Wow Wow │ Love, Peace and Harmony
Billy Higgins │ Peace
John Mellencamp │ Peaceful World
Terry Riley │ Peace Dance
Steinski │ Silent Partner (Peace Out)
Nestor Torres │ Peace With Myself
Dino │ Wonderful Peace
Uman │ The Way To Peace
Dhamika │ Peace Prayer
Gonzalo Rubalcaba │ Peace and Quiet Time
Twila Paris │ Perfect Peace
Dub Pistols │ Peaches - Fear of Theydon remix

(12 rows)

Is there any diஸference in what we found? Let’s write a query to ஹ஭nd out:

Chapter 45 Using Trigrams For Typos | 383

1 select artist, title
2 from lastfm.track
3 where title %> 'peace'
4

5 except
6

7 select artist, title
8 from lastfm.track
9 where title ~* 'peace';

PostgreSQLcomputes thediஸferencebetween the two result sets for us, reporting
this line:

artist │ title
═════════════╪═════════════════════════════════
Dub Pistols │ Peaches - Fear of Theydon remix

(1 row)

It seams like Peaches is similar enough to peace to be selected here.

Complete and Suggest Song Titles

Now, what if the search string is being mistyped? We all make typos, and our
users will too. Let’s try it with a small typo: peas.

1 select artist, title
2 from lastfm.track
3 where title ~* 'peas';

This query returns no rows! It seems our Last.fm selection of titles doesn’t in-
clude the famous Pass The Peॼ byMaceo Parker. Anyway, our users will not
be very happy with no result, and I’m sure they would like to see suggestions of
results.

So instead we could use the following similarity query:
1 select artist, title
2 from lastfm.track
3 where title %> 'peas';

Andnowhere’s a list of song titles having trigrams that are similar to the trigrams
of our search string:

artist │ title
════════════════════════════╪═════════════════════════════════
Bow Wow Wow │ Love, Peace and Harmony

Chapter 45 Using Trigrams For Typos | 384

The Balustrade Ensemble │ Crushed Pears
Little Joe & The Thrillers │ Peanuts
Billy Higgins │ Peace
John Mellencamp │ Peaceful World
Terry Riley │ Peace Dance
Joe Heaney │ Peigin is Peadar
Steinski │ Silent Partner (Peace Out)
Nestor Torres │ Peace With Myself
Dino │ Wonderful Peace
Uman │ The Way To Peace
Fania All-Stars │ Peanuts (The Peanut Vendor)
Dhamika │ Peace Prayer
Tin Hat Trio │ Rubies, Pearls and Emeralds
Gonzalo Rubalcaba │ Peace and Quiet Time
Twila Paris │ Perfect Peace
Dub Pistols │ Peaches - Fear of Theydon remix

(17 rows)

That’s 17 rows, so maybe too many for a suggestion as you type input box. We
would like to limit it to the top ஹ஭ve elements, ordered by how close the titles are
to the search term:

1 select artist, title
2 from lastfm.track
3 where title %> 'peas'
4 order by title <-> 'peas'
5 limit 5;

Here we use the <-> distance operator again in order to get this short selection:
artist │ title

════════════════════════════╪═══════════════
Billy Higgins │ Peace
Little Joe & The Thrillers │ Peanuts
Terry Riley │ Peace Dance
Dhamika │ Peace Prayer
Twila Paris │ Perfect Peace

(5 rows)

Trigram Indexing

Of course if we want to be able to use those suggestions directly from our nice
user input facility, it needs to be as fast as possible. The usual answer to speed up
speciஹ஭c SQL queries is indexing.

The pg_trgm extension comes with speciஹ஭c indexing algorithms to take care of

Chapter 45 Using Trigrams For Typos | 385

searching for similarity. Moreover, it covers searching for regular expressions too.
Here’s how to build our index:

1 create index on lastfm.track using gist(title gist_trgm_ops);

We can explain our previous queries and see that they now use our new index:
1 explain (analyze, costs off)
2 select artist, title
3 from lastfm.track
4 where title ~* 'peace';

Here’s the query plan:
QUERY PLAN

══
Index Scan using track_title_idx on track (actual time=0.552..3.832 rows=11 loops=1)

Index Cond: (title ~* 'peace'::text)
Planning time: 0.293 ms
Execution time: 3.868 ms

(4 rows)

What about this more complex query ordering by distance?
1 explain (analyze, costs off)
2 select artist, title
3 from lastfm.track
4 where title %> 'peas'
5 order by title <-> 'peas'
6 limit 5;

As you can see below, PostgreSQL is still able to implement it with a single index
scan. Of course the limit part of the query is done with its own query plan on
top of the index. This plan step is able to stop the index scan as soon as it has sent
the ஹ஭rst ஹ஭ve rows, because the index scan is known to return them in order:

QUERY PLAN
═══
Limit (actual time=6.730..6.773 rows=5 loops=1)

-> Index Scan using track_title_idx on track (actual time=6.728..6.770 rows=5 loops=1)
Index Cond: (title %> 'peas'::text)
Order By: (title <-> 'peas'::text)

Planning time: 0.090 ms
Execution time: 6.809 ms

(6 rows)

Finally, we can see that the query execution times obtained on my laptop are
encouraging, and we are going to be able to use those queries to serve users live.

46
Denormalizing Tags with intarray

Handling user-deஹ஭ned tags can be challenging in SQL when it comes to allow-
ing advanced user queries. To illustrate the point here, we’re going to index and
search for Last.fm tracks that are tagged as bluॽ and rhythm and bluॽ.
Using teh Last.fm dataset from theMillion SongDataset project provides a data
set that we can reuse that is full of tracks and their user tags.

Advanced Tag Indexing

PostgreSQL comes with plenty of interesting datatypes, and one of them is
known as the arrays type. PostgreSQL also provides a very rich set of extensions,
some of them found under the contrib package; one of them is intarray. Let me
quote the most interesting part of the documentation for that extension:

The @@ and ~~ operators test whether an array satisஹ஭es a query,
which is expressed as a value of a specialized data type query_int.
A query consists of integer values that are checked against the
elements of the array, possibly combined using the operators &
(AND), | (OR), and ! (NOT). Parentheses can be used as needed.
For example, the query 1&(2|3) matches arrays that contain 1 and
also contain either 2 or 3.

1 create extension intarray;

http://www.lastfm.fr/
http://labrosa.ee.columbia.edu/millionsong/lastfm
http://www.postgresql.org/docs/9.3/interactive/arrays.html
http://www.postgresql.org/docs/9.3/interactive/intarray.html

Chapter 46 Denormalizing Tags with intarray | 387

Theway the intarray extensionworks, we need to build a new table that contains
the list of tags it’s been associatedwith for each track as an array of integers. We’re
going to use our rowid identiஹ஭er for that purpose, as in the following query:

1 select tt.tid, array_agg(tags.rowid) as tags
2 from tags
3 join tid_tag tt
4 on tags.rowid = tt.tag
5 group by tt.tid
6 limit 3;

And here are our ஹ஭rst three songs with tags as numbers rather than strings:
tid │ tags

═════╪═══════════
1 │ {1,2}
2 │ {3,4}
3 │ {5,6,7,8}

(3 rows)

We might not want to do this computation of tags text to an array of numbers
for every title we have, so we can cache the result in a materialized view instead:

1 begin;
2

3 create view lastfm.v_track_tags as
4 select tt.tid, array_agg(tags.rowid) as tags
5 from tags join tid_tag tt on tags.rowid = tt.tag
6 group by tt.tid;
7

8 create materialized view lastfm.track_tags as
9 select tid, tags
10 from v_track_tags;
11

12 create index on track_tags using gin(tags gin__int_ops);
13

14 commit;

Given thismaterialized view,we are going to be able to do advanced indexing and
searching of the user provided tags. As you can see in the previous SQL script, we
have been indexing ourmaterialized viewwith a special index operator, allowing
us to beneஹ஭t from the intarray advanced querying.

http://www.postgresql.org/docs/current/interactive/intarray.html

Chapter 46 Denormalizing Tags with intarray | 388

Searches

Now we are ready for the real magic. Let’s ஹ஭nd all the tracks we have that have
been tagged as both bluॽ and rhythm and bluॽ:

1 select array_agg(rowid)
2 from tags
3 where tag = 'blues' or tag = 'rhythm and blues';

That query gives the following result, which might not seem very interesting at
ஹ஭rst:
array_agg

═══════════
{3,739}

(1 row)

The intarray PostgreSQL extension implements a special kind of query string,
named query_int. It looks like '(1880&179879)' and it supports the three logic
operators not, and, and or, that you can combine in your queries.
As we want our tag search queries to be dynamically provided by our users, we
are going to build the query_int string from the tags table itself:

1 select format('(%s)',
2 string_agg(rowid::text, '&')
3)::query_int as query
4 from tags
5 where tag = 'blues' or tag = 'rhythm and blues';

This query uses the format PostgreSQL function to build a string for us, here
puting our intermediate result inside parentheses. The intermediate result is ob-
tained with string_aggwhich aggregates text values together, using a separator
in between them. Usually the separator would be a comma or a semicolon. Here
we are preparing a query_int string, and we’re going to search for all the tracks
that have been tagged both bluॽ and rhythm and bluॽ, so we’re using the and
operator, written &:

query
═════════
3 & 739

(1 row)

That query here allows us to easily inject as many tags as we want to, so that it’s
easy to use it as a template from within an application where the user is going
to provide the tags list. The intarray extension’s query format also accepts other

Chapter 46 Denormalizing Tags with intarray | 389

operators (or and not) as we saw before, so if you want to oஸfer those to your
users you would need to tweak the query_int building part of the SQL.

Now, howmany tracks have been taggedwith both the bluॽ and the rhythm and
bluॽ tags, you might be asking:

1 with t(query) as (
2 select format('(%s)',
3 array_to_string(array_agg(rowid), '&')
4)::query_int as query
5 from tags
6 where tag = 'blues' or tag = 'rhythm and blues'
7)
8 select count(*)
9 from track_tags join t on tags @@ query;

As you can see we use the query template from above in a common table expres-
sion and then inject it in the ஹ஭nal SQLquery as join restrictionover the track_tags
table.
count

═══════
2278

(1 row)

We have 2278 tracks tagged with both the bluॽ and rhythm and bluॽ tags.
Now of course youmight want to fetch some track meta-data, but here the only
one we have is the track hash id:

1 with t(query) as (
2 select format('(%s)',
3 array_to_string(array_agg(rowid), '&')
4)::query_int as query
5 from tags
6 where tag = 'blues' or tag = 'rhythm and blues'
7)
8 select track.tid,
9 left(track.artist, 26)
10 || case when length(track.artist) > 26 then '…' else '' end
11 as artist,
12 left(track.title, 26)
13 || case when length(track.title) > 26 then '…' else '' end
14 as title
15 from track_tags tt
16 join tids on tt.tid = tids.rowid
17 join t on tt.tags @@ t.query
18 join lastfm.track on tids.tid = track.tid
19 order by artist;

That gives us the following result:

Chapter 46 Denormalizing Tags with intarray | 390

tid │ artist │ title
════════════════════╪═════════════════════════════╪═════════════════════════════
TRANZKG128F429068A │ Albert King │ Watermelon Man
TRASBVS12903CF4537 │ Alicia Keys │ If I Ain't Got You
TRAXPEN128F933F4DC │ B.B. King │ Please Love Me
TRBFNLX128F4249752 │ B.B. King │ Please Love Me
TRAUHJH128F92CA20E │ Big Joe Turner │ Nobody In Mind
TRAOAVZ128F9306038 │ Big Joe Turner │ Chains Of Love
TRAPRRP12903CD97E9 │ Big Mama Thornton │ Hound Dog
TRBBMLR128F1466822 │ Captain Beefheart & His Ma… │ On Tomorrow
TRACTQD128F14B0F9D │ Donny Hathaway │ I Love You More Than You'l…
TRAXULE128F9320132 │ Fontella Bass │ Rescue Me
TRBAFBU128F427EFCE │ Free │ Woman
TRAOMMU128F933878B │ Guitar Slim │ The Things That I Used To …
TRAGVWF128F4230C95 │ Irma Thomas │ The Same Love That Made Me…
TRACRBQ128F4263964 │ J.J. Cale │ Midnight In Memphis
TRALIVO128F4279262 │ Janis Joplin │ Down On Me
TRAPKJT128F9311D9E │ John Mayall & The Bluesbre… │ I'm Your Witchdoctor
TRADJGU128F42A6C00 │ Jr. Walker & The All Stars │ Shake And Fingerpop
TRARSZV12903CDB2DE │ Junior Kimbrough │ Meet Me In The City
TRAZANO128F429A795 │ Little Milton │ Little Bluebird
TRBIGUJ128F92D674F │ Little Willie John │ Leave My Kitten Alone
TRAVEOQ128F931C8F4 │ Percy Mayfield │ Please Send Me Someone To …
TRBCGHP128F933878A │ Professor Longhair │ Bald Head
TRALWNE12903C95228 │ Ray Charles │ Heartbreaker
TRAGIJM12903D11E62 │ Roy Brown │ Love Don't Love Nobody
TRBBRTY128F4260973 │ Screamin' Jay Hawkins │ Talk About Me
TRAHSYA128F428143A │ Screamin' Jay Hawkins │ I Put A Spell On You
TRAYTDZ128F93146E3 │ Stevie Ray Vaughan And Dou… │ Mary Had A Little Lamb
TRAIJLI128F92FC94A │ Stevie Ray Vaughan And Dou… │ Mary Had A Little Lamb
TRACHTO12903CBE58B │ The Animals │ The Story of Bo Diddley
TRBFMTO128F9322AE7 │ The Rolling Stones │ Start Me Up
TRAERPT128F931103E │ The Rolling Stones │ Time Is On My Side
TRAKBON128F9311039 │ The Rolling Stones │ Around And Around
TRAHBWE128F9349247 │ The Shirelles │ Dedicated To the One I Lov…

(33 rows)

The timing is key here, in terms of its order of magnitude. Using 10ms to search
your tags database leaves youwith enough time on the frontend parts of your ap-
plication to keep your users happy, even when implementing advanced searches.

User-Defined Tags Made Easy

The usual way to handle a set of user-deஹ஭ned tags and query against it involves
join against a reference table of tags, but then it’s quite complicated to express the

Chapter 46 Denormalizing Tags with intarray | 391

full search query: we want tracks tagged with both bluॽ and rhythm and bluॽ,
and might then want to exclude finger picking.
The intarray extension provides a powerful query specialized language with di-
rect index support, so that you can build dynamic indexes searches directly from
your application.

http://www.postgresql.org/docs/9.3/interactive/intarray.html

47
The Most Popular Pub Names

PostgreSQL implements the point data type. Using this datatype, it’s possible
to register locations of points of interest on Earth, by using the point values as
coordinates for the longitude and latitude. The open source project Open Street
Map publishes geographic data that we can use, such as pubs in the UK.

A Pub Names Database

Using theOverpass API services and aURL like the following, we can download
an XML ஹ஭le containing geolocated pubs in the UK:
http://www.overpass-api.de/api/xapi?*[amenity=pub][bbox=-10.5,49.78,1.78,59]

The data itself is available from OSM in some kind of XML format where they
managed to handle the data in an EAVmodel:

1 <node id="262706" lat="51.0350300" lon="-0.7251785">
2 <tag k="amenity" v="pub"/>
3 <tag k="created_by" v="Potlatch 0.10f"/>
4 <tag k="name" v="Kings Arms"/>
5 </node>

In our context in this chapter, we only need a very simple database schema for
where to load this dataset, and the following is going to be ஹ஭ne for this purpose:

1 create table if not exists pubnames
2 (

http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

Chapter 47 TheMost Popular Pub Names | 393

3 id bigint,
4 pos point,
5 name text
6);

So as to be able to load the data in a streaming fashion with the COPY protocol,
we are going to use a SAXAPI to read the XML.Here’s a slightly edited portion
of the code I’ve been using to parse and load the data, available as the pubnames
project onGitHub. Once more, the script is written in Common Lisp:

1 (defun parse-osm-end-element (source stream)
2 "When we're done with a <node>, send the data over to the stream"
3 (when (and (eq 'node (current-qname-as-symbol source))
4 *current-osm*)
5 ;; don't send data if we don't have a pub name
6 (when (osm-name *current-osm*)
7 (cl-postgres:db-write-row stream (osm-to-pgsql *current-osm*)))
8

9 ;; reset *current-osm* for parsing the next <node>
10 (setf *current-osm* nil)))
11

12 (defmethod osm-to-pgsql ((o osm))
13 "Convert an OSM struct to a list that we can send over to PostgreSQL"
14 (list (osm-id o)
15 (format nil "(~a,~a)" (osm-lon o) (osm-lat o))
16 (osm-name o)))
17

18 (defun import-osm-file (&key
19 table-name sql pathname
20 (truncate t)
21 (drop nil))
22 "Parse the given PATHNAME file, formated as OSM XML."
23

24 (maybe-create-postgresql-table :table-name table-name
25 :sql sql
26 :drop drop
27 :truncate truncate)
28

29 (klacks:with-open-source (s (cxml:make-source pathname))
30 (loop
31 with stream =
32 (cl-postgres:open-db-writer (remove :port *pgconn*) table-name nil)
33 for key = (klacks:peek s)
34 while key
35 do
36 (case key
37 (:start-element (parse-osm-start-element s))
38 (:end-element (parse-osm-end-element s stream)))
39 (klacks:consume s)
40

41 finally (return (cl-postgres:close-db-writer stream)))))

http://common-lisp.net/project/cxml/klacks.html
https://github.com/dimitri/pubnames

Chapter 47 TheMost Popular Pub Names | 394

Given that code, we can parse the data in the XML ஹ஭le and load it into our Post-
greSQL table in a streaming fashion, using the PostgreSQLCOPY protocol. We
use a SAX parser for the XML content, to which tag handler functions are regis-
tered:

• The parse-osm-start-element and parse-osm-end-element extract the
informationwe need from the node and tagXMLelements, and ஹ஭ll in our
OSM internal data structure.

• Once the node and tag XML elements are parsed into an OSM in-
memory structure, we serialize this record to PostgreSQL using the
cl-postgres:open-db-writer and osm-to-pgsql functions.

TheCommonLisp driver for PostgreSQL that is used here is namedPostmodern
and implements the COPY protocol with the three functions open-db-writer,
db-write-row, and close-db-writer, as we already saw earlier. Again, we’re
using the COPY support from our PostgreSQL driver to stream the data as we
parse it.

It is of course possible to implement this approach in any programming lan-
guage.

Normalizing the Data

Aswe are interested in themost popular pub names in the United Kingdom, we
need to do some light data normalization. Of course, it’s easy and eஸஹ஭cient to do
that directly in SQL once the data has been loaded.

Here we’re using the technique coined ELT rather than the more common ETL,
so extract, load, and only then transform the data:

select array_to_string(array_agg(distinct(name) order by name), ', '),
count(*)

from pubnames
group by replace(replace(name, 'The ', ''), 'And', '&')
order by count desc

limit 5;

In this query we group pub names that look alike. Here are then our most pop-
ular pub names, with their spelling alternatives, coma separated:

array_to_string │ count
══════════════════════════════╪═══════

Chapter 47 TheMost Popular Pub Names | 395

Red Lion, The Red Lion │ 350
Royal Oak, The Royal Oak │ 287
Crown, The Crown │ 204
The White Hart, White Hart │ 180
The White Horse, White Horse │ 163

(5 rows)

The array_to_string function allows us to tweak the output at our conve-
nience, as the array_agg(distinct(name) order by name) aggregate is doing
all the work for us here in grouping all namॽ together and keeping an ordered
set of a unique entry per variant.

Which namॽ do we group together you might ask? Well, those having the same
name apart from some spelling variants: we don’t want to consider The to be a
diஸference sowe replace it with an empty string, andwe dowant to consider both
and and & as the same thing too.

Geolocating the Nearest Pub (k-NN search)

To implement a k-NN search in PostgreSQL, we need to order the result set
with a distance operator, written <->. Here’s the full SQL for searching the pubs
nearby a known position:

1 select id, name, pos
2 from pubnames
3 order by pos <-> point(-0.12,51.516)
4 limit 3;

With this geolocation, we obtain the following nearby pubs:
id │ name │ pos

═══════════╪════════════════════════╪═════════════════════════
21593238 │ All Bar One │ (-0.1192746,51.5163499)
26848690 │ The Shakespeare's Head │ (-0.1194731,51.5167871)

371049718 │ The Newton Arms │ (-0.1209811,51.5163032)
(3 rows)

The PostgreSQL point datatype data type implement abstract coordinates in
a two dimensional system, and it isn’t bound to any speciஹ஭c projection of the
Earth. As a result, the distance operator is the Euclidian distance, and the point
data type doesn’t implement Earth distance in meters or miles itself. There’s
more about that in the next example though, using the earthdistance exten-
sion.

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.postgresql.org/
http://www.postgresql.org/docs/current/interactive/datatype-geometric.html#AEN6473

Chapter 47 TheMost Popular Pub Names | 396

Indexing kNN Search

The previous query ran in about 20ms. With a dataset of 27878 rows having an
answer in about 20ms is not a great achievement. Indeed, we didn’t create any
indexing whatsoever on the table yet, so the query planner has no other choice
but to scan the whole content on disk and ஹ஭lter it as it goes.

It would be much better for performance if we could instead evaluate our query
constraints (here, the ORDER BY and LIMIT clauses) using some index search in-
stead.

That’s exactly the kind of situation that GiST and SP஡GiST indexes have been
designed to be able to solve for you in PostgreSQL, and in particular the kNN
GiST support. Let’s give it a try:

1 create index on pubnames using gist(pos);

With that index, we can now run the same query again, and of course we get the
same result:

1 \pset format wrapped
2 \pset columns 72
3

4 explain (analyze, verbose, buffers, costs off)
5 select id, name, pos
6 from pubnames
7 order by pos <-> point(51.516,-0.12)
8 limit 3;

Here’s the query explain plan:
QUERY PLAN

══
Limit (actual time=0.071..0.077 rows=3 loops=1)

Output: id, name, pos, ((pos <-> '(51.516,-0.12)'::point))
Buffers: shared hit=6
-> Index Scan using pubnames_pos_idx on public.pubnames (actual tim…

…e=0.070..0.076 rows=3 loops=1)
Output: id, name, pos, (pos <-> '(51.516,-0.12)'::point)
Order By: (pubnames.pos <-> '(51.516,-0.12)'::point)
Buffers: shared hit=6

Planning time: 0.095 ms
Execution time: 0.125 ms

There we go! With a dataset of 27878 rows in total, ஹ஭nding the three nearest
pubs in less than a millisecond is something we can actually be happy with, and
we can use this directly in a web application. I would expect this performance to

http://www.postgresql.org/docs/9.2/interactive/gist.html
http://www.postgresql.org/docs/9.2/interactive/spgist.html

Chapter 47 TheMost Popular Pub Names | 397

remain in the right ballpark even for a much larger dataset, and I’ll leave it as an
exercise for you to ஹ஭nd that dataset and test the kNNGiST indexes on it!

48
How far is the nearest pub?

Computing the distance between two given positions on the Earth expressed as
longitude and latitude is not that easy. It involves knowing how to process the
Earth as a sphere, and some knowledge of the projection system in which the
coordinates are valid. PostgreSQL makes it easy to solve though, thanks to the
earthdistance extension, included in contribs.

The earthdistance PostgreSQL contrib

As the mathematics are complex enough to easily make mistakes when imple-
menting them again, we want to ஹ஭nd an existing implementation that’s already
been tested. PostgreSQL provides several contrib extensions: one of them is
named earthdistance and it is made to solve our problem. Time to try it!

1 create extension cube;
2 create extension earthdistance;

Equipped with that extension we can now use its <@> operator and compute a
distance inmiles on the surface of the Earth, given points as (longitude, latitude):

1 select id, name, pos,
2 round((pos <@> point(-0.12,51.516))::numeric, 3) as miles
3 from pubnames
4 order by pos <-> point(-0.12,51.516)
5 limit 10;

http://www.postgresql.org/docs/9.2/static/contrib.html
http://www.postgresql.org/docs/9.2/static/earthdistance.html

Chapter 48 How far is the nearest pub? | 399

We now have our ten closests pubs, and the distance to get there in miles!
id │ name │ pos │ miles

════════════╪════════════════════════╪═════════════════════════╪═══════
21593238 │ All Bar One │ (-0.1192746,51.5163499) │ 0.039
26848690 │ The Shakespeare's Head │ (-0.1194731,51.5167871) │ 0.059

371049718 │ The Newton Arms │ (-0.1209811,51.5163032) │ 0.047
438488621 │ Marquis Cornwallis │ (-0.1199612,51.5146691) │ 0.092
21593236 │ Ship Tavern │ (-0.1192378,51.5172525) │ 0.093

312156665 │ The Prince of Wales │ (-0.121732,51.5145794) │ 0.123
312156722 │ O'Neills │ (-0.1220195,51.5149538) │ 0.113
25508632 │ Friend at Hand │ (-0.1224717,51.5148694) │ 0.132

338507304 │ The Square Pig │ (-0.1191744,51.5187089) │ 0.191
1975855516 │ Holborn Whippet │ (-0.1216925,51.5185189) │ 0.189

(10 rows)

So the nearest pub isAll Bar One, 0.039 miles away, or apparently 68.64 yards.
Also, adding the computation to get the distance inmilॽ didn’t add that much
to the query timing, which remains well under a millisecond ona laptop when
data is available in memory.

Pubs and Cities

Just as easily as we found the nearest pubs we can also of course query for the
pubs that are farthest away from any location.

1 select name, round((pos <@> point(-0.12,51.516))::numeric, 3) as miles
2 from pubnames
3 order by pos <-> point(-0.12,51.516) desc
4 limit 5;

I’m not sure how useful that particular query would be. That said, it shows that
the kNN search supports the ORDER BYDESC variant:

name │ miles
═════════════════╪═════════
Tig Bhric │ 440.194
TP's │ 439.779
Begley's │ 439.752
Ventry Inn │ 438.962
Fisherman's Bar │ 439.153

(5 rows)

Now we want to know what city those pubs are in, right? With the following
URL and using the Open Street Map APIs, I’ve been able to download a list of

http://www.openstreetmap.org/

Chapter 48 How far is the nearest pub? | 400

cities in the same area as where the pub names were fetched:
http://www.overpass-api.de/api/xapi?*[place=city][bbox=-10.5,49.78,1.78,59]

Tweaking the parser and import code at https://github.com/dimitri/pubnames
was easy, and allowed to import those city names and locations in 0.087 seconds
of real time, with the following schema:

1 create table if not exists cities
2 (
3 id bigint,
4 pos point,
5 name text
6);
7

8 create index on cities using gist(pos);

Now let’s see where those far away pubs are:
1 select name,
2 (select name from cities c order by c.pos <-> p.pos limit 1) as city,
3 round((pos <@> point(-0.12,51.516))::numeric, 3) as miles
4 from pubnames p
5 order by pos <-> point(-0.12,51.516) desc
6 limit 5;

This time, we get the name of the closest known city to the pub:
name │ city │ miles

═════════════════╪════════╪═════════
Tig Bhric │ Galway │ 440.194
TP's │ Galway │ 439.779
Begley's │ Galway │ 439.752
Ventry Inn │ Galway │ 438.962
Fisherman's Bar │ Cork │ 439.153

(5 rows)

As you can see we are fetching the pubs at a distance from our given point and
then the nearest city to the location of the pub. The way it’s implemented here
is called a correlated subquery.
It’s also possible to write such a query as a LATERAL join construct, as in the
following example:

1 select c.name as city, p.name,
2 round((pos <@> point(-0.12,51.516))::numeric, 3) as miles
3 from pubnames p,
4 lateral (select name
5 from cities c
6 order by c.pos <-> p.pos
7 limit 1) c

https://github.com/dimitri/pubnames
http://www.postgresql.org/docs/devel/static/queries-table-expressions.html#QUERIES-LATERAL

Chapter 48 How far is the nearest pub? | 401

8 order by pos <-> point(-0.12,51.516) desc
9 limit 5;

It provides the same result of course:
city │ name │ miles

════════╪═════════════════╪═════════
Galway │ Tig Bhric │ 440.194
Galway │ TP's │ 439.779
Galway │ Begley's │ 439.752
Galway │ Ventry Inn │ 438.962
Cork │ Fisherman's Bar │ 439.153

(5 rows)

So apparently thebounded box thatwe’vebeengiven ([bbox=-10.5,49.78,1.78,59])
includes Ireland too… and more importantly the query execution penalty is
quite important.

That’s because the planner only know how to solve that query by scanning the
position index of the cities 27878 times in a loop (once per pubnames entry), as
we can see in this explain (analyze, costs off) output:

QUERY PLAN
══
Limit (actual time=1323.517..1323.518 rows=5 loops=1)

-> Sort (actual time=1323.515..1323.515 rows=5 loops=1)
Sort Key: ((p.pos <-> '(-0.12,51.516)'::point)) DESC
Sort Method: top-N heapsort Memory: 25kB
-> Nested Loop (actual time=0.116..1310.214 rows=27878 loops=…

…1)
-> Seq Scan on pubnames p (actual time=0.015..4.465 row…

…s=27878 loops=1)
-> Limit (actual time=0.044..0.044 rows=1 loops=27878)

-> Sort (actual time=0.043..0.043 rows=1 loops=27…
…878)

Sort Key: ((c.pos <-> p.pos))
Sort Method: top-N heapsort Memory: 25kB
-> Seq Scan on cities c (actual time=0.003.…

….0.019 rows=73 loops=27878)
Planning time: 0.236 ms
Execution time: 1323.592 ms

(13 rows)

It’s possible to force the planner into doing it the obvious way though:
1 with pubs as (
2 select name, pos,
3 round((pos <@> point(-0.12,51.516))::numeric, 3) as miles
4 from pubnames
5 order by pos <-> point(-0.12,51.516) desc
6 limit 5
7)
8 select c.name as city, p.name, p.miles

Chapter 48 How far is the nearest pub? | 402

9 from pubs p, lateral (select name
10 from cities c
11 order by c.pos <-> p.pos
12 limit 1) c;

We still get the same result of course, this time in about 60ms rather than more
than a second as happened before:

city │ name │ miles
════════╪═════════════════╪═════════
Galway │ Tig Bhric │ 440.194
Galway │ TP's │ 439.779
Galway │ Begley's │ 439.752
Galway │ Ventry Inn │ 438.962
Cork │ Fisherman's Bar │ 439.153

(5 rows)

The Most Popular Pub Names by City

Let’s now ஹ஭nd out which cities have the highest count of pubs, considering that
a pub is aஸஹ஭liated with a city if it’s within ஹ஭ve miles of the single point we have as
city location in our data set.

1 select c.name, count(cp)
2 from cities c, lateral (select name
3 from pubnames p
4 where (p.pos <@> c.pos) < 5) as cp
5 group by c.name
6 order by count(cp) desc
7 limit 10;

We use that method of associating pubs and cities because within the data we
exported from Open Street Map, the only information we have is a single point
to represent a city. So our method amounts to drawing a 5-mile circle around
that point, and then consider that anything that’s inside the circle to be part of
the town.

name │ count
═════════════╪═══════
London │ 1388
Westminster │ 1383
Dublin │ 402
Manchester │ 306
Bristol │ 292
Leeds │ 292

Chapter 48 How far is the nearest pub? | 403

Edinburgh │ 286
Liverpool │ 258
Nottingham │ 218
Glasgow │ 217

(10 rows)

If we look at a map we see thatWestminster is in fact within London given our
arbitrary rule of within 5 milॽ, so in the next query we will simply ஹ஭lter it out.

Exercise lefி to the reader: write a query allowing to remove from
London’s count the pubs that are actually in Westminster (when
within 1mile of the locationwe have for it). Then extend that query
to address any other situation like that in the whole data set.

It’s a good time to hint towards using PostGIS here if your appli-
cation needs to consider the real world shapes of cities rather than
playing guestimatॽ as we are doing here.

And now what about the most popular pub names per city? Of course we want
to normalize our pub names again here but only for counting: we still display all
the names we did count.

1 select c.name,
2 array_to_string(array_agg(distinct(cp.name) order by cp.name), ', '),
3 count(*)
4 from cities c,
5 lateral (select name
6 from pubnames p
7 where (p.pos <@> c.pos) < 5) as cp
8 where c.name <> 'Westminster'
9 group by c.name, replace(replace(cp.name, 'The ', ''), 'And', '&')
10 order by count(*) desc
11 limit 10;

This query uses all the previous tricks:

• A lateral subquery

• Data normalization done within the query

• Distance computations thanks to the <@> point operator provided by the
earthdistance extension

• We add an ordered aggregate that removes duplicates

In case you might be curious, here’s the result we get:
name │ array_to_string │ count

══════════╪══╪═══════

https://postgis.net

Chapter 48 How far is the nearest pub? | 404

London │ Prince of Wales, The Prince of Wales │ 15
London │ All Bar One │ 12
London │ The Beehive │ 8
London │ O'Neills │ 7
London │ The Crown │ 7
London │ The Windmill │ 7
London │ Coach and Horses, The Coach and Horses │ 6
London │ The Ship │ 6
Bradford │ New Inn, The New Inn │ 6
London │ Red Lion, The Red Lion │ 6

(10 rows)

49
Geolocation with PostgreSQL

We have loaded Open Street Map points of interests in the previous section: a
localized set of pubs from the UK. In this section, we are going to have a look at
how to geolocalize an IP address and locate the nearest pub, all within a single
SQL query!

For that, we are going to use the awesome ip4r extension from RhodiumToad.

Geolocation Data Loading

The ஹ஭rst step is to ஹ஭nd an geolocation database, and several providers oஸfer that.
The one I ended up choosing for the example is the http://www.maxmind.com
free database available at GeoLite Free Downloadable Databases.

Afிer having had a look at the ஹ஭les there, we deஹ஭ne the table schemawewant and
load the archive using pgloader. So, ஹ஭rst, the target schema is created using the
following script:

1 create extension if not exists ip4r;
2 create schema if not exists geolite;
3

4 create table if not exists geolite.location
5 (
6 locid integer primary key,
7 country text,
8 region text,

https://github.com/RhodiumToad/ip4r
http://blog.rhodiumtoad.org.uk/
http://www.maxmind.com
http://dev.maxmind.com/geoip/legacy/geolite/

Chapter 49 Geolocation with PostgreSQL | 406

9 city text,
10 postalcode text,
11 location point,
12 metrocode text,
13 areacode text
14);
15

16 create table if not exists geolite.blocks
17 (
18 iprange ip4r,
19 locid integer
20);
21

22 create index blocks_ip4r_idx on geolite.blocks using gist(iprange);

The data can now be imported to those target tables thanks to the following
pgloader command, which is quite involved:
/*
* Loading from a ZIP archive containing CSV files.
*/

LOAD ARCHIVE
FROM http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/GeoLiteCity-latest.zip
INTO postgresql://appdev@/appdev

BEFORE LOAD EXECUTE 'geolite.sql'

LOAD CSV
FROM FILENAME MATCHING ~/GeoLiteCity-Location.csv/

WITH ENCODING iso-8859-1
(

locId,
country,
region [null if blanks],
city [null if blanks],
postalCode [null if blanks],
latitude,
longitude,
metroCode [null if blanks],
areaCode [null if blanks]

)
INTO postgresql://appdev@/appdev
TARGET TABLE geolite.location

(
locid,country,region,city,postalCode,
location point using (format nil "(~a,~a)" longitude latitude),
metroCode,areaCode

)
WITH skip header = 2,

drop indexes,
fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ','

AND LOAD CSV

Chapter 49 Geolocation with PostgreSQL | 407

FROM FILENAME MATCHING ~/GeoLiteCity-Blocks.csv/
WITH ENCODING iso-8859-1
(

startIpNum, endIpNum, locId
)

INTO postgresql://appdev@/appdev
TARGET TABLE geolite.blocks

(
iprange ip4r using (ip-range startIpNum endIpNum),
locId

)
WITH skip header = 2,

drop indexes,
fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ',';

The pgloader command describe the ஹ஭le format so that pgloader can parse the
data from the CSV ஹ஭le and transform it in memory to the format we expect in
PostgreSQL.The location in the CSV ஹ஭le is given as two separate ஹ஭elds latitude
and longitude, which we use to form a single point column.

In the same vein, the pgloader command also describes how to transform an IP
address range from a couple of integers to a more classic representation of the
same data:

1 CL-USER> (pgloader.transforms::ip-range "16777216" "16777471")
2 "1.0.0.0-1.0.0.255"

The pgloader command also ஹ஭nds the ஹ஭les we want to load independently from
the real name of the directory, here GeoLiteCity_20180327. So when there’s a
new release of the Geolite ஹ஭les, you can run the pgloader once again and expect
it to load the new data.

Here’s what the output of the pgloader command looks like. Note that I have
stripped the timestamps from the logs output, in order for the line to ஹ஭t in those
pages:

1 $ pgloader --verbose geolite.load
2 NOTICE Starting pgloader, log system is ready.
3 LOG Data errors in '/private/tmp/pgloader/'
4 LOG Parsing commands from file #P"/Users/dim/dev/yesql/src/1-application-development/data/geolite/geolite.load"
5 LOG Fetching 'http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/GeoLiteCity-latest.zip'
6 LOG Extracting files from archive '/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest.zip'
7 NOTICE unzip -o "/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest.zip" -d "/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest/"
8 NOTICE Executing SQL block for before load
9 NOTICE ALTER TABLE "geolite"."location" DROP CONSTRAINT IF EXISTS "location_pkey";
10 NOTICE COPY "geolite"."location"
11 NOTICE Opening #P"/private/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest/GeoLiteCity_20180327/GeoLiteCity-Location.csv"
12 NOTICE copy "geolite"."location": 234105 rows done, 11.5 MB, 2.1 MBps

Chapter 49 Geolocation with PostgreSQL | 408

13 NOTICE copy "geolite"."location": 495453 rows done, 24.3 MB, 2.2 MBps
14 NOTICE copy "geolite"."location": 747550 rows done, 37.1 MB, 2.2 MBps
15 NOTICE CREATE UNIQUE INDEX location_pkey ON geolite.location USING btree (locid)
16 NOTICE ALTER TABLE "geolite"."location" ADD PRIMARY KEY USING INDEX "location_pkey";
17 NOTICE DROP INDEX IF EXISTS "geolite"."blocks_ip4r_idx";
18 NOTICE COPY "geolite"."blocks"
19 NOTICE Opening #P"/private/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest/GeoLiteCity_20180327/GeoLiteCity-Blocks.csv"
20 NOTICE copy "geolite"."blocks": 227502 rows done, 7.0 MB, 1.8 MBps
21 NOTICE copy "geolite"."blocks": 492894 rows done, 15.2 MB, 1.9 MBps
22 NOTICE copy "geolite"."blocks": 738483 rows done, 22.9 MB, 2.0 MBps
23 NOTICE copy "geolite"."blocks": 986719 rows done, 30.7 MB, 2.1 MBps
24 NOTICE copy "geolite"."blocks": 1246450 rows done, 38.9 MB, 2.2 MBps
25 NOTICE copy "geolite"."blocks": 1489726 rows done, 47.1 MB, 2.2 MBps
26 NOTICE copy "geolite"."blocks": 1733633 rows done, 55.1 MB, 2.2 MBps
27 NOTICE copy "geolite"."blocks": 1985222 rows done, 63.3 MB, 2.2 MBps
28 NOTICE CREATE INDEX blocks_ip4r_idx ON geolite.blocks USING gist (iprange)
29 LOG report summary reset
30 table name errors read imported bytes total time
31 ----------------------- --------- --------- --------- --------- --------------
32 download 0 0 0 0.793s
33 extract 0 0 0 0.855s
34 before load 0 5 5 0.033s
35 fetch 0 0 0 0.005s
36 ----------------------- --------- --------- --------- --------- --------------
37 "geolite"."location" 0 928138 928138 46.4 MB 20.983s
38 "geolite"."blocks" 0 2108310 2108310 67.4 MB 30.695s
39 ----------------------- --------- --------- --------- --------- --------------
40 Files Processed 0 2 2 0.024s
41 COPY Threads Completion 0 4 4 51.690s
42 Index Build Completion 0 0 0 49.363s
43 Create Indexes 0 2 2 49.265s
44 Constraints 0 1 1 0.002s
45 ----------------------- --------- --------- --------- --------- --------------
46 Total import time ✓ 3036448 3036448 113.8 MB 2m30.344s

We can see that pgloader has dropped the indexes before loading the data, and
created them again once the data is loaded, in parallel to loading data from the
next table. This parallel processing can be a huge beneஹ஭t on beefy servers.

So we now have the following tables to play with:
List of relations

Schema │ Name │ Type │ Owner │ Size │ Description
═════════╪══════════╪═══════╪════════╪═══════╪═════════════
geolite │ blocks │ table │ appdev │ 89 MB │
geolite │ location │ table │ appdev │ 64 MB │

(2 rows)

Chapter 49 Geolocation with PostgreSQL | 409

Finding an IP Address in the Ranges

Here’s what the main data looks like:
1 table geolite.blocks limit 10;

The TABLE command is SQL standard, so we might as well use it:
iprange │ locid

═════════════════════╪════════
1.0.0.0/24 │ 617943
1.0.1.0-1.0.3.255 │ 104084
1.0.4.0/22 │ 17
1.0.8.0/21 │ 47667
1.0.16.0/20 │ 879228
1.0.32.0/19 │ 47667
1.0.64.0-1.0.81.255 │ 885221
1.0.82.0/24 │ 902132
1.0.83.0-1.0.86.255 │ 885221
1.0.87.0/24 │ 873145

(10 rows)

What we have here is an ip range column. We can see that the output function
for ip4r is smart enough to display ranges either in their CIDR notation or in
the more general start-end notation when no CIDR applies.

The ip4r extension provides several operators to work with the dataset we have,
and some of those operators are supported by the index we just created. Just for
the fun of it here’s a catalog query to inquire about them:

1 select amopopr::regoperator
2 from pg_opclass c
3 join pg_am am on am.oid = c.opcmethod
4 join pg_amop amop on amop.amopfamily = c.opcfamily
5 where opcintype = 'ip4r'::regtype and am.amname = 'gist';

The catalog query above joins the PostgreSQL catalogs for operator classes, and
uses index access methods according to the notion of an operator family in order
to retrieve the list of operators associated with the ip4r data type and the GiST
access method:

amopopr
════════════════
>>=(ip4r,ip4r)
<<=(ip4r,ip4r)
>>(ip4r,ip4r)
<<(ip4r,ip4r)
&&(ip4r,ip4r)
=(ip4r,ip4r)

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Chapter 49 Geolocation with PostgreSQL | 410

(6 rows)

Note that we clearly could have been using the psql \dx+ ip4r command in-
stead, but that query directly list operators that the GiST index knows how to
solve. The operator >>= reads as contains and is the one we’re going to use here.

1 select iprange, locid
2 from geolite.blocks
3 where iprange >>= '91.121.37.122';

So here’s the range in which we ஹ஭nd the IP address 91.121.37.122, and the location
it’s associated with:

iprange │ locid
══════════════════════════╪═══════
91.121.0.0-91.121.71.255 │ 75

This lookup is fast, thanks to our specialized GiST index. Its timing is under a
millisecond.

Geolocation Metadata

Now with theMaxMind schema that we are using in that example, the inter-
esting data is actually to be found in the other table, i.e. geolite.location.
Let’s use another IP address now — I’m told by the unix command host that
google.us has address 74.125.195.147 and we can inquire where that IP is
from:

1 select *
2 from geolite.blocks
3 join geolite.location using(locid)
4 where iprange >>= '74.125.195.147';

Our data locates the Google IP address in Mountain View, which is credible:
─[RECORD 1]───────────────────────────
locid │ 2703
iprange │ 74.125.191.0-74.125.223.255
country │ US
region │ CA
city │ Mountain View
postalcode │ 94043
location │ (-122.0574,37.4192)
metrocode │ 807
areacode │ 650

Chapter 49 Geolocation with PostgreSQL | 411

Now you can actually draw that on a map as you have the location information
as a point datatype containing both the longitude and latitude.

Emergency Pub

What if you want to make an application to help lost souls ஹ஭nd the nearest pub
from where they are currently? Now that you know their location from the IP
address they are using in their browser, it should be easy enough right?
As we downloaded a list of pubs from the UK, we are going to use an IP address
that should be in the UK too:

1 $ host www.ox.ac.uk
2 www.ox.ac.uk has address 129.67.242.154
3 www.ox.ac.uk has address 129.67.242.155

Knowing that, we can search the geolocation of this IP address:
1 select *
2 from geolite.location l
3 join geolite.blocks using(locid)
4 where iprange >>= '129.67.242.154';

And the Oxford University is actually hosted in Oxford, it seems:
─[RECORD 1]─────────────
locid │ 375290
country │ GB
region │ K2
city │ Oxford
postalcode │ OX1
location │ (-1.25,51.75)
metrocode │ ¤
areacode │ ¤
iprange │ 129.67.0.0/16

What are the ten nearest pubs around you if you’re just stepping out of the Ox-
ford University? Well, let’s ஹ஭gure that out before we get too thirsty!

1 select pubs.name,
2 round((pubs.pos <@> l.location)::numeric, 3) as miles,
3 ceil(1609.34 * (pubs.pos <@> l.location)::numeric) as meters
4

5 from geolite.location l
6 join geolite.blocks using(locid)
7 left join lateral

Chapter 49 Geolocation with PostgreSQL | 412

8 (
9 select name, pos
10 from pubnames
11 order by pos <-> l.location
12 limit 10
13) as pubs on true
14

15 where blocks.iprange >>= '129.67.242.154'
16 order by meters;

Here’s the list, obtained in around about a millisecond on my laptop:
name │ miles │ meters

════════════════════╪═══════╪════════
The Bear │ 0.268 │ 431
The Half Moon │ 0.280 │ 451
The Wheatsheaf │ 0.295 │ 475
The Chequers │ 0.314 │ 506
The Old Tom │ 0.315 │ 507
Turl Bar │ 0.321 │ 518
St Aldate's Tavern │ 0.329 │ 530
The Mad Hatter │ 0.337 │ 542
King's Arms │ 0.397 │ 639
White Horse │ 0.402 │ 647

(10 rows)

Sowith PostgreSQL and some easily available extensions, we are actually capable
of performing advanced geolocation lookups in a single SQLquery. In addition,
with query timing between 1ms and 6ms, it is possible to use this technique in
production, serving users requests directly from the live query!

50
Counting Distinct Users with

HyperLogLog

If you’ve been following along at home and keeping up with the newer statistics
developments, you might have heard about this new state of the art cardinality
estimation algorithm called HyperLogLog.

This technique is now available for PostgreSQL in the extension postgresql-hll
available at https://github.com/citusdata/postgresql-hll and is packaged for
multiple operating systems such asDebian andRHEL, through the PostgreSQL
community packaging eஸforts and resources.

HyperLogLog

HyperLogLog is a very special hash value. It aggregates enough information into
a single scalar value to compute a distinct value with some precision loss.

Say we are counting unique visitors. With HyperLogLog we can maintain a sin-
gle value per day, and then union those values together to obtain unique weekly
or monthly visitor counts!

Here’s an example in SQL of the magic provided by the hll extension:
1 select to_char(date, 'YYYY/MM') as month,
2 round(#hll_union_agg(users)) as monthly

http://research.google.com/pubs/pub40671.html
http://research.google.com/pubs/pub40671.html
http://metamarkets.com/2012/fast-cheap-and-98-right-cardinality-estimation-for-big-data/
http://blog.aggregateknowledge.com/2013/02/04/open-source-release-postgresql-hll/
https://github.com/citusdata/postgresql-hll

Chapter 50 Counting Distinct Users with HyperLogLog | 414

3 from daily_uniques
4 group by month;

While we are keeping daily aggregates on disk, we can use the HyperLogLog
maths to union them together and compute an approximation of the monthly
unique count from the same dataset!

month | monthly
---------+---------
2013/02 | 1960380

(1 row)

So by keeping only a small amount of data per day, typically 1280 bytes, it is then
possible to compute monthly unique counts from that, without having to scan
a whole month of records again.

Installing postgresql-hll

It’s as simple as create extension hll;, once the OS package is installed on
your system. The extension provides a new datatype named hll and we can use
\dx+ hll to discover what kind of support comes with it. Here’s an edited ver-
sion of the output of the \dx+ hll command, where some lines have been ஹ஭l-
tered out of the 71 SQL objects:

Objects in extension "hll"
Object description

══
cast from bigint to hll_hashval
cast from bytea to hll
cast from hll to hll
cast from integer to hll_hashval
function hll(hll,integer,boolean)
function hll_add(hll,hll_hashval)
function hll_add_agg(hll_hashval)
function hll_add_agg(hll_hashval,integer)
function hll_add_agg(hll_hashval,integer,integer)
function hll_add_agg(hll_hashval,integer,integer,bigint)
function hll_add_agg(hll_hashval,integer,integer,bigint,integer)
function hll_add_rev(hll_hashval,hll)
...
function hll_cardinality(hll)
function hll_empty()
function hll_eq(hll,hll)
...
function hll_hash_any(anyelement,integer)
function hll_hash_bigint(bigint,integer)
function hll_hash_boolean(boolean,integer)
function hll_hash_bytea(bytea,integer)

Chapter 50 Counting Distinct Users with HyperLogLog | 415

function hll_hash_integer(integer,integer)
function hll_hash_smallint(smallint,integer)
function hll_hash_text(text,integer)
...
operator #(NONE,hll)
operator <>(hll,hll)
operator <>(hll_hashval,hll_hashval)
operator =(hll,hll)
operator =(hll_hashval,hll_hashval)
operator ||(hll,hll)
operator ||(hll,hll_hashval)
operator ||(hll_hashval,hll)
type hll
type hll_hashval

From that output we learn the list of hll operators, such as the interesting #
operator, a unary operator that works on an hll value. More about this one
later…

Counting Unique Tweet Visitors

As an example use case for the HyperLogLog data type, we are going to count
unique visitors to our tweets, using the application we introduced in Data Ma-
nipulation and Concurrency Control.

The two main operations around an hll data type consists of the following:

• Build a hash from an input value, such as an IP address.
• Update the already known hll value with the hash.

The main idea behind hll is to keep a single hll value per granularity, here per
tweet message and per day. This means that each time we have a new visit on a
tweet, we want to UPDATE our hll set to count that visitor.

As we have seen in the previous chapter, concurrency is a deal breaker for UP-
DATE heavy scenarios where the same row is solicited over and over again. So
we are going towork in two steps again here, ஹ஭rst doing an INSERTper visit and
then arranging a background process to transform those visits into an UPDATE
to the single hll aggregate per tweet and date.

Here’s the visitor table where we can insert every single visit:
1 create table tweet.visitor
2 (
3 id bigserial primary key,

Chapter 50 Counting Distinct Users with HyperLogLog | 416

4 messageid bigint not null references tweet.message(messageid),
5 datetime timestamptz not null default now(),
6 ipaddr ipaddress,
7

8 unique(messageid, datetime, ipaddr)
9);

It’s a pretty simple structure, and is meant to register our online activity.

We can generate some tweet visits easily with a program such as the following.
Again, I’m using Common Lisp to implement a very simple COPY-based load-
ing program.

1 (defparameter *connspec* '("appdev" "dim" nil "localhost"))
2 (defparameter *visitor-table* "tweet.visitor")
3 (defparameter *visitor-columns* '("messageid" "ipaddr" "datetime"))
4

5 (defun insert-visistors (messageid n &optional (connspec *connspec*))
6 (pomo:with-connection connspec
7 (let ((count 0)
8 (copier (open-db-writer connspec *visitor-table* *visitor-columns*)))
9 (unwind-protect
10 (loop :for i :below n
11 :do (let ((ipaddr (generate-ipaddress))
12 (datetime (format nil "~a" (generate-timestamp))))
13 (db-write-row copier (list messageid ipaddr datetime))
14 (incf count)))
15 (close-db-writer copier))
16

17 ;; and return the number of rows copied
18 count)))

The script is written so as to target a smallish range of IP addresses and range of
dates in order to generate collisions and see our unique visitors count as being
more than one.

1 ;;;
2 ;;; select '192.168.0.0'::ip4::bigint; == 3232235520
3 ;;;
4 (defparameter *ip-range-start* 3232235520)
5 (defparameter *ip-range-size* (expt 2 16))
6

7 (defun generate-ipaddress (&optional
8 (range-size *ip-range-size*)
9 (range-start *ip-range-start*))
10 "Generate N random IP addresses, as strings."
11 (int-to-ip (+ range-start (random range-size))))
12

13 (defun generate-timestamp ()
14 "Generate a random timestamp between now and a month ago."
15 (local-time:timestamp- (local-time:now) (random #. (* 24 60 31)) :minute))

Chapter 50 Counting Distinct Users with HyperLogLog | 417

Whengeneratingdatawith those function,wepick the subnet in192.168.0.0/16
and a span of a month of data. Here’s how to interactively generate 100 000
visits from the Common Lisp REPL, measuring the time that takes:

1 CL-USER> (time (shakes::insert-visistors 3 100000))
2 (SHAKES::INSERT-VISISTORS 3 100000)
3 took 7,513,209 microseconds (7.513209 seconds) to run.
4 244,590 microseconds (0.244590 seconds, 3.26%) of which was spent in GC.
5 During that period, and with 4 available CPU cores,
6 5,242,334 microseconds (5.242334 seconds) were spent in user mode
7 314,728 microseconds (0.314728 seconds) were spent in system mode
8 691,153,296 bytes of memory allocated.
9 770 minor page faults, 0 major page faults, 0 swaps.
10 100000

Thanks to using the COPY streaming protocol, we can mix generating the num-
bers and communicating with the PostgreSQL server, and have our hundred
thousand visits be generated in the database in less than 8s on my laptop. That’s
certainly fast enough for interactive discovery of a datamodel. It’s quite easywith
PostgreSQL to just try it and see.
We can check the result of inserting 100000 visits to the messageid 3 with the
following query:

1 select messageid,
2 datetime::date as date,
3 count(*) as count,
4 count(distinct ipaddr) as uniques,
5 count(*) - count(distinct ipaddr) as duplicates
6 from tweet.visitor
7 where messageid = 3
8 group by messageid, date
9 order by messageid, date
10 limit 10;

Wehave a precise count of all the visitors to themessage, andwe can see that even
with a 16-bits range of IP addresses we already have several visits from the same
IP addresses.
messageid │ date │ count │ uniques │ duplicates

═══════════╪════════════╪═══════╪═════════╪════════════
3 │ 2018-08-07 │ 746 │ 742 │ 4
3 │ 2018-08-08 │ 3298 │ 3211 │ 87
3 │ 2018-08-09 │ 3260 │ 3191 │ 69
3 │ 2018-08-10 │ 3156 │ 3077 │ 79
3 │ 2018-08-11 │ 3241 │ 3161 │ 80
3 │ 2018-08-12 │ 3270 │ 3197 │ 73
3 │ 2018-08-13 │ 3182 │ 3106 │ 76
3 │ 2018-08-14 │ 3199 │ 3124 │ 75

Chapter 50 Counting Distinct Users with HyperLogLog | 418

3 │ 2018-08-15 │ 3308 │ 3227 │ 81
3 │ 2018-08-16 │ 3261 │ 3184 │ 77

(10 rows)

Lossy Unique Count with HLL

We can rewrite the previous query using our HLL data type now, even though
at this stage it’s not going to be very useful, because we still have the full logs of
every visit and we can aஸford to compute precise counts.

Nonetheless, our goal is to dispose of the daily entries, that we anticipate will be
just too large a data set. So, the hll-based query looks like this:

1 select messageid,
2 datetime::date as date,
3 # hll_add_agg(hll_hash_text(ipaddr::text)) as hll
4 from tweet.visitor
5 where messageid = 3
6 group by grouping sets((messageid),
7 (messageid, date))
8 order by messageid, date nulls first
9 limit 10;

In this query we use several new functions and operators related to the hll data
type:

• The # operator takes a single argument: it’s a unary operator, like factorial
(written !) for example. This unary operator when applied to a value of
type hll computes the estimated number of distinct entries stored in the
hyperloglog set.

• The hll_add_agg() aggregate function accumulates new hashes into a
given hyperloglog set.

• The hll_hash_text function computes the hyperloglog hash of a text
value, here used with the IP address as a text form. We could also use
the IP address as a 32-bit integer with the hll_hash_integer function
instead, but then this wouldn’t support IPv6 addresses, which only ஹ஭t in
a 128-bit number.

The notation # hll shows the level of ஺ாexibility that PostgreSQL brings to the
table with its extensibility support. Not only can you deஹ஭ne new operators at
runtime from an extension, but those operators can also be unary or binary.

Chapter 50 Counting Distinct Users with HyperLogLog | 419

The lossy distinct count result looks like this:
messageid │ date │ hll

═══════════╪════════════╪══════════════════
3 │ 2018-08-07 │ 739.920627061887
3 │ 2018-08-08 │ 3284.16386418662
3 │ 2018-08-09 │ 3196.58757626223
3 │ 2018-08-10 │ 3036.32707701154
3 │ 2018-08-11 │ 3140.21704515932
3 │ 2018-08-12 │ 3191.83031512197
3 │ 2018-08-13 │ 3045.15467688584
3 │ 2018-08-14 │ 3031.92750496513
3 │ 2018-08-15 │ 3135.58879460201
3 │ 2018-08-16 │ 3230.20146096767

(10 rows)

When used that way, the hll feature set doesn’t make much sense. We still have
to process as many rows as before, but we lose some precision in the result. The
reason why we’ve done that query here is to show the following:

1. Demonstrate how to use the hll operators and functions in a query
2. Show that the estimates from the hll data structures are pretty good, even
at this low cardinality

Getting the Visits into Unique Counts

In a production setup we would have the following context and constraints:

• Tweets are published and users from the Internet are visiting our tweets.

• Our application inserts a new row in tweet.visitor with the visitor’s IP
address each time there is a new visit to one of our tweet. It also registers
the precise timestamp of the visit.

• As we anticipate quite some success on our little application idea, we also
anticipate not being able to keep all the visitor logs, and not being able to
respect our quality of service terms when computing the unique visitors
on the ஺ாy each time someone needs them.

• Finally, as the numbers being used in a marketing context rather than in
an invoicing context, we are in a position to lose some precision over the
number, and we would actually like to implement a system that is lossy if
it allows us to relax our storage and processing requirements.

Chapter 50 Counting Distinct Users with HyperLogLog | 420

The previous sections present a great tool for achieving the last point above, and
now is the time to put hll to good use. From the tweet.visitor table we are
now going to compute a single hyperloglog value per message and per day:

1 begin;
2

3 with new_visitors as
4 (
5 delete from tweet.visitor
6 where id = any (
7 select id
8 from tweet.visitor
9 order by datetime, messageid
10 for update
11 skip locked
12 limit 1000
13)
14 returning messageid,
15 cast(datetime as date) as date,
16 hll_hash_text(ipaddr::text) as visitors
17),
18 new_visitor_groups as
19 (
20 select messageid, date, hll_add_agg(visitors) as visitors
21 from new_visitors
22 group by messageid, date
23)
24 insert into tweet.uniques
25 select messageid, date, visitors
26 from new_visitor_groups
27 on conflict (messageid, date)
28 do update set visitors = hll_union(uniques.visitors, excluded.visitors)
29 where uniques.messageid = excluded.messageid
30 and uniques.date = excluded.date
31 returning messageid, date, # visitors as uniques;
32

33 rollback;

This query is implemented in several stages thanks to the PostgreSQL support
for writable common table expressions:

1. Compute new_visitors by deleting from the buffer table tweet.visitor
a thousand rows at a time, and using the skip locked facility that is new
in PostgreSQL 9.5.

By default, when attempting to delete a row that is already in use by an-
other transaction doing either an update or a delete, PostgreSQL would
have to block until the other transaction released its lock. With the skip
locked clause, PostgreSQL can omit the row from the current transaction

Chapter 50 Counting Distinct Users with HyperLogLog | 421

without incurring any locking or waiting.

Rows skipped that way may appear in the next batch, or they may already
be concurrently processed in another batch.

This construct allows the query to be run in more than one transaction at
the same time, which might in turn be useful if we ever have some serious
lag in our processing.

2. This ஹ஭rst CTE of our query then also computes the date from the times-
tamp with a CAST expression, and the hll hash from the IP address,
preparing for the next stage of processing.

3. Compute the new_visitor_groups by aggregating the just computed hll
individual hashes into a single hll set per messageid and per date.

4. Finally, insert those messages daily unique visitors hll sets into our sum-
mary table tweet.uniques. Of course, if we did compute a set for the
same message and the same day before, we then update and hll_union the
existing and the new set together.

5. Because PostgreSQL is such a powerful system, of course we return the
result of processing the given batch at the end of the query, using the
returning clause of the insert command.

The do update set clause requires that any single row in the target table be
updated only once per command, in order to ensure that the con஺ாict handling
mechanism is deterministic. That’s the reasonwhywe prepare the hll sets in the
new_visitor_groups CTE part of the query.

When running this query, we obtain the following result:
BEGIN
messageid │ date │ uniques

═══════════╪════════════╪══════════════════
3 │ 2018-08-07 │ 739.920627061887
3 │ 2018-08-08 │ 257.534468469694

(2 rows)

INSERT 0 2
ROLLBACK

Notice that we ஹ஭nish our script with a rollback command. That allows us to
debug and reஹ஭ne the query until we’re happy. This 5-stage, 29-line SQL query
isn’t going to be too complex to maintain thanks to its actions being well sepa-
rated using CTE, it still doesn’t get written in a single session in a text ஹ஭le. It gets

Chapter 50 Counting Distinct Users with HyperLogLog | 422

brewed at your favorite SQL prompt and reஹ஭ned until satisfactory, and it being
a DML query, we prefer to rollback and try again rather than impact the data
set and have to clean it up for the next iteration.

Scheduling Estimates Computations

Now that we know how to compute unique visitors approximations from the
insert heavy table, weneed tohave a backgroundprocess that runs this processing
every once in a while.

The easiest way to do that here would be to create a new API endpoint on your
backend server and set up a cron-like utility to use that endpoint for your speci-
ஹ஭ed schedule. In case of emergency though, it’s nice to be able to run this updat-
ing process interactively. A solution to have both the backend API integration
and the interactive approaches available consist of packaging your SQL query as
a stored procedure.

While stored procedures aren’t covered in this book, it’s easy enough to write a
SQL function around the statement we have already:

1 begin;
2

3 create function tweet.update_unique_visitors
4 (
5 in batch_size bigint default 1000,
6 out messageid bigint,
7 out date date,
8 out uniques bigint
9)
10 returns setof record
11 language SQL
12 as $$
13 with new_visitors as
14 (
15 delete from tweet.visitor
16 where id = any (
17 select id
18 from tweet.visitor
19 order by datetime, messageid
20 for update
21 skip locked
22 limit update_unique_visitors.batch_size
23)
24 returning messageid,

Chapter 50 Counting Distinct Users with HyperLogLog | 423

25 cast(datetime as date) as date,
26 hll_hash_text(ipaddr::text) as visitors
27),
28 new_visitor_groups as
29 (
30 select messageid, date, hll_add_agg(visitors) as visitors
31 from new_visitors
32 group by messageid, date
33)
34 insert into tweet.uniques
35 select messageid, date, visitors
36 from new_visitor_groups
37 on conflict (messageid, date)
38 do update set visitors = hll_union(uniques.visitors, excluded.visitors)
39 where uniques.messageid = excluded.messageid
40 and uniques.date = excluded.date
41 returning messageid, date, cast(# visitors as bigint) as uniques;
42 $$;
43

44 commit;

And here’s an interactive session where we use the newly deஹ஭ned stored proce-
dure to update our unique visitors hll table. Again, because we are testingmod-
iஹ஭cations to a data set, we make sure to ROLLBACK our transaction:
appdev> begin;
BEGIN
appdev>* select * from tweet.update_unique_visitors();
messageid │ date │ uniques

═══════════╪════════════╪═════════
3 │ 2018-08-07 │ 740
3 │ 2018-08-08 │ 258

(2 rows)

appdev>* rollback;
ROLLBACK

We can see that it works as we wanted it to, and so we can interactively use this
procedure without having to implement the backend API yet. Our next move
is the following, where we set the daily unique counts for the whole data set we
produced:
select * from tweet.update_unique_visitors(100000);

The function returns 32 rows, as expected, one per messageid and per day. We
have generated visitors over that period, all on the messageid 3. Note also that
once this command has run, we don’t have any rows in the tweet.visitor table,
as we can check with the following query:

1 select count(*)

Chapter 50 Counting Distinct Users with HyperLogLog | 424

2 from tweet.visitor;

This returns zero, of course. In this implementation, the tweet.visitor table is
a buஸfer of the current activity, and we summarize it in the tweet.uniques table
when calling the tweet.update_unique_visitors() function.

Combining Unique Visitors

Now, we can beneஹ஭t from the nice hyperlolog set properties:
1 select to_char(date, 'YYYY/MM') as month,
2 to_char(date, 'YYYY IW') as week,
3 round(# hll_union_agg(visitors)) as unique,
4 sum(# visitors)::bigint as sum
5 from tweet.uniques
6 group by grouping sets((month), (month, week))
7 order by month nulls first, week nulls first;

The new function hll_union_agg is an aggregate that knows how to compute
the union of two hyperloglog sets and recognize howmany visitors were globally
uniquewhen combining two sets of unique visitors. That’s prettymagical, if you
ask me:

month │ week │ unique │ sum
═════════╪═════════╪════════╪═══════
2018/08 │ ¤ │ 45300 │ 75699
2018/08 │ 2018 32 │ 15119 │ 16589
2018/08 │ 2018 33 │ 18967 │ 21461
2018/08 │ 2018 34 │ 19226 │ 22104
2018/08 │ 2018 35 │ 14046 │ 15545
2018/09 │ ¤ │ 18640 │ 21415
2018/09 │ 2018 35 │ 6143 │ 6299
2018/09 │ 2018 36 │ 13510 │ 15116

(8 rows)

By using the grouping sets feature here we can make it more obvious how ad-
vanced hyperloglog set support works for unique counting works with the sup-
port of a union operator from multiple sets. In particular, we can see that the
sum of the number of unique visitors would be double-counting a large portion
of the population, which the hyperloglog technique knows how to avoid!

51
An Interview with Craig Kerstiens

Craig heads up the Cloud team at @citusdata. Citus extends Postgres to be a
horizontally scalable distributed database. If you have a database, especially Post-
gres, that needs to scale beyond a single node (typically at 100GB and up) Craig
is always happy to chat and see if Citus can help.

Previously Craig has spent a number of years @heroku, a platform-as-a-service,
which takesmuchof the overheadout of IT and lets developers focus onbuilding
features and adding value. The bulk ofCraig’s time atHerokuwas spent running
product and marketing for Heroku Data.

In your opinion, how important are extensions for the PostgreSQL open source
project and ecosystem?

To me the extension APIs and growing ecosystem of extensions are
the biঃest advancement to Postgrॽ in probably the last 10 years.
Extensions have allowed Postgrॽ to extend beyond a traditional re-
lational database to much more of a data platform. Whether it’s
the initial NoSQL datatypॽ (if we exclude XML that ॾ) in hstore,
to the rich feature set in geospatial with GIS, or approximation al-
gorithms such ॼ HyperLogLog or TopN you have extensions that
now by themselvॽ take Postgrॽ into a new frontier.
Extensions allow the core to move at a slower pace, which makॽ
sense. Each new feature in core means it hॼ to be thoroughly tested
and safe. That’s not to say that extensions don’t, but extensions
that can exist outside core, then become part of the contrib provide

Chapter 51 An Interview with Craig Kerstiens | 426

a great on ramp for things to move much faster.
What are your favorite PostgreSQL extensions, and why?

My favorite three extensions are:
1. pg_stat_statements
2. Citॿ
3. HyperLogLog

pg_stat_statements ॾ easily the most powerful extension for
an application developer without having to understand deep
database internals to get insights to optimize their database.
For many application developers the database ॾ a black box,
but pg_stat_statements ॾ a great foundation for AI for your
database that I only expect to be improved upon in time.
Citus: I’m of course biased because I work there, but I followed Ci-
tॿ and pg_shard for 3 years prior to joining. Citॿ turns Postgrॽ
into a horizontally scalable database. Under the covers it’s sharded,
but application developers don’t have to think or know about that
complexity. With Citॿ Postgrॽ ॾ equipped to tackle larger work-
loads than ever before ॼ previously Postgrॽ wॼ constrained to a
single box or overly complicated architecturॽ.
HyperLogLog: I have a confession to make. In part I just love
saying it, but it also makॽ you seem uber-intelligent when you
read about the algorithm itself. “K minimum value, bit observable
patterns, stochastic averaging, harmonic averaging.” I mean who
doesn’t want to use something with all those things in it? In simpler
terms, it’s close enough approximate uniquॽ that are compose-able
with a really small footprint on storage. If you’re building something
like a web analytics tool HyperLogLog ॾ an obvioॿ go to.

How do you typically ஹ஭nd any extension you might need? Well, how do you
know you might need a PostgreSQL extension in the ஹ஭rst place?

pgxn.org and github are my two go-tos. Though Google also tends
to work pretty well. And of course I stay up to date on new onॽ via
PostgrॽWeekly.com.
Though in reality I often don’t always realize I need one. I search
for the problem I’m trying to solve and discover it. I would likely

https://pgxn.org
https://postgresweekly.com

Chapter 51 An Interview with Craig Kerstiens | 427

never search for HyperLogLog, but a search for Postgrॽ approxi-
mate count or approximate distincts would yield it pretty quickly.

Is there any downside you could think of when your application code base now
relies on some PostgreSQL extension to run? I could think of extension’s avail-
ability in cloud and SaaS oஸferings, for instance.

It really depends. There are extensions that are much more bleed-
ing edge, and onॽ that are more mature. Many of the major cloud
providers support a range of extensions, but they won’t support any
extension. If they do support it there isn’t a big downside to lever-
aging it. If they don’t you need to weigh the cost of running and
managing Postgrॽ yourself vs. how much value that particular ex-
tension would provide. As with all things managed vs. not, there ॾ
a trade-off there and you need to decide which one ॾ right for you.
Though if something ॾ supported and easy to leverage wherever you
run, by all means, go for it.

Part IX

Closing Thoughts

I have written The Art Of PostgreSQL so that as a developer, you may think of
SQL as a full-blown programming language. Some of the problems that we have
to solve as developers are best addressed using SQL.

Not just any SQL will do: PostgreSQL ॾ the world’s most advanced open
source database. I like to say that PostgreSQL ॾ YeSQL as a pun, which com-
pares it favorably to many NoSQL solutions out there. PostgreSQL delivers
the whole SQL experience with advanced data processing functionality and
document-based approaches.

We have seenmany SQL features— I hope many you didn’t know before. Now
you can follow the one resultset, one query mantra, and maintain your queries
over the entirety of their life cycles: from speciஹ஭cation to testing, including code
review and rewrite.

Of course your journey into The Art Of PostgreSQL is only starting. Writing
code is fun. Have fun writing SQL!

Knowledge ॾ of no value unless you put it into practice.
—Anton Chekhov

Part X

Index

Index

ACID, 18, 156, 309
Aggregate

array_agg, 195
bool_and, 116, 117, 163
count, 103, 116, 117, 122, 145, 163,

319
count disctinct, 417
distinct, 103
ஹ஭lter, 117, 163, 183, 319
median, 184
order by, 195
percentile, 184
sum, 117
within group, 184

Amdahl’s law, 79
Anomalies, 231

deletion anomaly, 232
insertion anomaly, 231
update anomaly, 231

anosql, 45
Anti-Patterns, 258

EAV, 258
Multiple Values, 261
Triggers, 327
UUID, 263

array_agg, 195
array_length, 189
array_to_string, 394
Attribute Value, 157

Author
Dimitri Fontaine, xiv

bernouilli, 162, 256
between, 320
bool_and, 116, 117

Cache Invalidation, 319
calendar, 157
case, 15, 106, 115
Cast, 417
cast, 12, 15
catalog, 159

pg_am, 160, 409
pg_amop, 160, 409
pg_catalog, 162
pg_opclass, 160, 409
pg_operator, 159, 173
pg_pgnamespace, 162
pg_type, 162
regoperator, 160
regproc, 159
regtype, 159

ceil, 411
Citus, 284, 425
clock_timestamp, 179
Clojure, 348
coalesce, 12, 15
comments, 64
CommonLisp, 154, 316, 374, 393, 416

Index | 432

consistency, 156
Constraints

Check, 238
Exclusion, 239
Foreign Keys, 237
Not Null, 238
Primary Key, 234
Surrogate Key, 235
Unique, 237

contrib, 357
COPY, 4, 187, 194, 374, 393, 416
count, 100, 103, 116, 117, 122, 145
create table, 144
cube, 121
current_setting, 283

Dat Type
JSON, 374

Data Domain, 157
Data Set

A Midsummer Night’s Dream,
302

Access Log, 187
cdstore, 41
Chinook, 43
commilog, 183
f1db, 88
Geonames, 240
IMF, 190
International Monetary Fund,

190
Last.fm, 372
Lorem Ipsum, 219
Maxmind Geolite, 405
MoMA, 342, 367
Open Street Map, 392
Pub Names, 392
Rates, 190
sandbox, 217

Scan34, 187
The Museum of Modern Art

Collection, 342
Tweets, 194

Data Type, 157, 162
Array, 193
arrays, 386
bigint, 172
bigserial, 174
boolean, 163
Bytea, 177
character, 165
cidr, 187
composite, 199
date, 157
double precision, 172
inet, 187
integer, 172
interval, 158, 181
ip4r, 160
ipaddr, 418
JSON, 21, 202, 286
JSONB, 21, 202, 280
macaddr, 187
Network Address Types, 187
number, 172
numeric, 172
point, 395
query_int, 388
range, 190, 272
real, 172
sequence, 174
serial, 174
smallint, 172
text, 165
Time Zones, 177
timestamp, 158, 178
timestamptz, 178
UUID, 176, 263

Index | 433

varchar, 165
XML, 200

Database Anomalies, 231
Date

allballs, 158
clock_timestamp, 179
date_trunc, 117
day, 98
extract, 109
generate_series, 182
interval, 98
isodow, 98, 184
isoyear, 98
Time Zones, 177
to_char, 184
week, 98
year, 98

DCL, 91
DDL, 91

alter table, 308, 373
alter user set, 282
cascade, 221
check, 238
create database, 216
create domain, 238
create extension, 357, 365, 379,

386, 398
create function, 283, 422
create index, 196, 204, 225, 254,

269, 385, 387, 396, 400
create materialized view, 269,

321, 387
create or replace function, 325,

328
create role, 282
create schema, 216
create schema if not exists, 271
create table, 144, 175, 202, 204,

217, 233, 240, 271, 280

create table like, 308
create trigger, 325, 328, 333, 367
create type, 205, 271, 314
create unique index, 321
create view, 320, 387
drop schema, 221
drop table, 280
drop table if exists, 205
exclude using, 239, 272
foreign key, 236
primary key, 236
references, 236
refresh materialized view

concurrently, 322
trigger, 283
truncate, 307
unique, 237

default, 175
desc, 103
diஸf, 96, 346, 366
distance, 254
distinct, 103
distinct on, 126, 188
Django, 81
DML, 91

delete, 305
delete returning, 305, 420
insert into, 297
insert on con஺ாict doupdate, 337,

420
insert returning, 344, 420
insert select, 195, 204, 298
on con஺ாict do nothing, 346
truncate, 307
update, 300, 312
update returning, 301, 313, 344

DRY, 213

encoding, 170

Index | 434

client_encoding, 170
server encoding, 170

enum, 205
except, 129, 382
Exclusion Constraints, 239
explain, 106, 108, 197, 255, 385, 396,

401
extensibility, 193
Extension, 206, 353

contrib, 357
cube, 398
earthdistance, 398
hll, 413
hstore, 271, 365
hyperloglog, 413
intarray, 276, 386
ip4r, 405
ltree, 276
pg_trgm, 276, 356, 378
PL/XSLT, 200

extract, 98, 122

fetch ஹ஭rst rows only, 112
ஹ஭lter, 117, 163
format, 97, 388
from, 93, 100

generate_series, 12, 15, 98, 217
Geolocation, 240
Geonames, 240
Go, 336

listen, 341
notify, 341

group by, 37, 44, 100, 103, 109, 114,
163, 253

cube, 121
grouping sets, 119, 268, 269, 418,

424
rollup, 120, 168

grouping sets, 119

having, 37, 118, 163, 189
sum, 268

histogram, 122, 184, 253
hll_add_agg, 418
hll_hash_text, 418
hll_union_agg, 424

Index
B஡Tree, 75, 225
bloom, 75
BRIN, 75
GIN, 75, 204, 387
gin, 196
gin__int_ops, 387
GiST, 75, 254, 385, 396
gist, 160
gist_trgm_ops, 385
Hash, 75
jsonb_path_ops, 204
SP஡GiST, 75

interval, 98
Interview

Alvaro Hernandez Tortosa, 286
Craig Kerstiens, 425
Gregoire Hubert, 208
Kris Jenkins, 348
Markus Winand, 148
Yohann Gabory, 81

is false, 163
is null, 163
is true, 163
Isolation, 309

Dirty Read, 310
Non-Repeatable Read, 310
Phantom Read, 310
Serializable, 311
Serialization, 310

Index | 435

SSI, 311
Isolation Levels, 33

Java, 94, 96
listen, 340
notify, 340

join, 37, 100, 101, 103, 109, 122, 146,
253, 370, 376, 411

cross join, 131, 135
full outer, 146
inner, 146
insert, 204
lateral, 109, 146, 280, 400
lateral join, 197
lefி, 146
lefி join, 15, 44, 66, 102, 134, 145,

217, 250, 254, 304
lefி join lateral, 109, 198, 224,

254, 269, 411
on true, 198, 254, 269, 411
outer, 146
outer join, 134
subquery, 102, 198, 254, 269,

400, 411
using, 254, 304

JSON, 21, 202, 374
json_each, 337
json_populate_record, 337
JSONB, 21, 202
jsonb_array_elements, 280
jsonb_each, 280
jsonb_pretty, 21, 224

kNN, 107, 130, 395

lag, 15, 141
lateral, 37
lc_time, 186
lead, 141
leap year, 99

lefி join, 12
limit, 100, 105, 248
Lisp, 316
Listen, 332
Little Bobby Tables, 9
lock table, 346
Lorem Ipsum, 219

Modelisation
Anti-Patterns, 258
Audit Trails, 270
Check Constraints, 238
Database Anomalies, 231
Denormalization, 265
Exclusion Constraints, 239
Foreign Keys, 217, 237
History Tables, 270
Indexing, 225
JSON, 279
Lorem Ipsum, 219
Materialized Views, 268
Normal Forms, 230
Normalization, 227
Not Only SQL, 278
Nul Null Constraints, 238
Partitioning, 275
Primary Keys, 217, 234
Schemaless, 279
Surrogate Keys, 235

Music
AC/DC, 62
Aerosmith, 376
Black Sabbath, 64
IronMaiden, 64
Maceo Parker, 383
Red Hot Chili Peppers, 30

MVCC, 72
MVP, 215

no oஸfset, 111

Index | 436

Normal Forms, 230
1NF, 230, 261, 294
2NF, 230, 245, 294
3NF, 230, 294
4NF, 230
5NF, 230
BCNF, 230
DKNF, 230

NoSQL, 21, 278
not exists, 103
not found, 328
not null, 133
Not Only SQL, 278
Notify, 332
now, 178
ntile, 141
null, 131, 134

oஸfset, 111, 248
Open Street Map, 392
Operators

->, 369
::, 417
>, 398
<->, 254, 380, 395, 398
<>, 344
»=, 410
>, 21, 197, 198, 203
, 380
*, 373, 381
between, 320

order by, 12, 15, 44, 100, 103, 105–107,
109, 163, 253

is not null, 268
nulls ஹ஭rst, 418
nulls last, 139
order by case, 106
order by distance, 107, 130, 395,

398, 400

order by sum, 117
window function, 138

over, 15, 138, 141

partition by, 15
Partitioning, 275
People

Alan Kay, 212
Alvaro Hernandez Tortosa, 286
Amdahl, 79
Andrew Gierth, 221, 405
Anton Chekhov, 429
Craig Kerstiens, 425
Dimitri Fontaine, xiv
Donald Knuth, 263, 314
Edsger Wybe Dijkstra, xiii
Fred Brooks, 212
Gregoire Hubert, 208
Julien Danjou, xv
Kris Jenkins, 348
Lawrence A. Rowe, 353
Linus Torvalds, 2
Markus Winand, 111, 148
Martin Fowler, 319
Michael Stonebraker, 193, 353
Phil Karlton, 319
Rob Pike, xii, 228, 276
Shakespeare, 302
Tom Lane, 3
Yohann Gabory, 81

percentile_cont, 184
pg_column_size, 177
pg_database_size, 58
pg_stat_statements, 425
pg_typeof, 159
pgloader, 42, 88, 242, 372, 406
PHP, 208
PLpgSQL, 38
populate_record, 370

Index | 437

PostGIS, 403
Programming Language

Common Lisp, 154, 316, 374,
393, 416

Go, 336
Java, 94, 96
Lisp, 316
PHP, 208
Python, 7, 30, 48, 280

psql, 43, 52
columns, 166, 255
ECHO_HIDDEN, 57
EDITOR, 53
format, 166, 255
include, 218
intervalstyle, 53
LESS, 53
ON_ERROR_ROLLBACK,

53, 313
ON_ERROR_STOP, 53
PROMPT1, 53
pset, 53
psqlrc, 53
REPL, 215
set, 53, 268
setenv, 53

psqlrc, 57
Python, 7, 30, 48, 280

anosql, 45
listen, 340
notify, 340

Queries, 91
query_int, 388

random, 223
RDBMS, 18, 156
references, 217
regex, 166

regexp_matches, 195
regexp_split_to_array, 167
regexp_split_to_table, 166, 167
regresql, 68
Regular Expression, 166
relation, 143, 156
relational, 156
Relational algebra, 144
REPL, 215
replace, 394
rollup, 120
round, 15, 254, 398
row_number, 141
rows between, 138

sample, 162
sampling, 256
Scale Out, 284
Schemaless, 279
search_path, 216
select, 93
select star, 94
self join, 124
server_version, 23
set local, 283
set_masken, 188
setval, 175
share row exclusive, 346
show_trgm, 379
similarity, 379
SQL, 24–427
SRF, 197, 280
Stored Procedure, 38, 422
subquery, 62, 102
subselect, 400
substring, 185, 198
sum, 117
Surrogate Keys, 235
synchronous_commit, 283

Index | 438

table, 166, 199, 409
table of truth, 131
tablesample, 162, 256
Tahiti, 178
TCL, 91

begin, 423
commit, 55
isolation level, 313
repeatable read, 313
rollback, 55, 328, 420, 423
start transaction, 313

three-valued logic, 131
timezone, 178
to_char, 5, 12, 15, 424
TOAST, 97
top-N, 109, 224
ToroDB, 286
transaction, 156
Transaction Isolation, 309
Trigger, 325, 328, 333, 367
triggers, 324
Trigrams, 378
Tuple, 157

union, 127
union all, 127
unique violation, 328
Unix

Basics of the Unix Philosophy,
228

Notes on Programming in C,
228

unnest, 197
using, 66
UUID, 263
uuid_generate_v4, 176

values, 205

where, 93, 102

wikipedia, 124
window function, 15, 137

array_agg, 137
lag, 15, 141
lead, 141
ntile, 141
order by, 15, 138, 139
over, 15
partition by, 15, 139
row_number, 139, 141
sum, 138

winners, 124
with, 15, 37, 66, 109, 115, 116, 122, 124,

168, 195, 401, 420
delete insert, 420
delete returning, 420
insert returning, 344
update returning, 344

with delete, 306
within group, 184

XKCD, 9
XML, 303, 392

YeSQL, 21, 348

	I Preface
	About…
	About the Book
	About the Author
	Acknowledgements
	About the organisation of the book

	II Introduction
	Structured Query Language
	Some of the Code is Written in SQL
	A First Use Case
	Loading the Data Set
	Application Code and SQL
	A Word about SQL Injection
	PostgreSQL protocol: server-side prepared statements
	Back to Discovering SQL
	Computing Weekly Changes

	Software Architecture
	Why PostgreSQL?
	The PostgreSQL Documentation

	Getting Ready to read this Book

	III Writing Sql Queries
	Business Logic
	Every SQL query embeds some business logic
	Business Logic Applies to Use Cases
	Correctness
	Efficiency
	Stored Procedures — a Data Access API
	Procedural Code and Stored Procedures
	Where to Implement Business Logic?

	A Small Application
	Readme First Driven Development
	Loading the Dataset
	Chinook Database
	Music Catalog
	Albums by Artist
	Top-N Artists by Genre

	The SQL REPL — An Interactive Setup
	Intro to psql
	The psqlrc Setup
	Transactions and psql Behavior
	A Reporting Tool
	Discovering a Schema
	Interactive Query Editor

	SQL is Code
	SQL style guidelines
	Comments
	Unit Tests
	Regression Tests
	A Closer Look

	Indexing Strategy
	Indexing for Constraints
	Indexing for Queries
	Cost of Index Maintenance
	Choosing Queries to Optimize
	PostgreSQL Index Access Methods
	Advanced Indexing
	Adding Indexes

	An Interview with Yohann Gabory

	IV SQL Toolbox
	Get Some Data
	Structured Query Language
	Queries, DML, DDL, TCL, DCL
	Select, From, Where
	Anatomy of a Select Statement
	Projection (output): Select
	Data sources: From
	Understanding Joins
	Restrictions: Where

	Order By, Limit, No Offset
	Ordering with Order By
	kNN Ordering and GiST indexes
	Top-N sorts: Limit
	No Offset, and how to implement pagination

	Group By, Having, With, Union All
	Aggregates (aka Map/Reduce): Group By
	Aggregates Without a Group By
	Restrict Selected Groups: Having
	Grouping Sets
	Common Table Expressions: With
	Distinct On
	Result Sets Operations

	Understanding Nulls
	Three-Valued Logic
	Not Null Constraints
	Outer Joins Introducing Nulls
	Using Null in Applications

	Understanding Window Functions
	Windows and Frames
	Partitioning into Different Frames
	Available Window Functions
	When to Use Window Functions

	Understanding Relations and Joins
	Relations
	SQL Join Types

	An Interview with Markus Winand

	V Data Types
	Serialization and Deserialization
	Some Relational Theory
	Attribute Values, Data Domains and Data Types
	Consistency and Data Type Behavior

	PostgreSQL Data Types
	Boolean
	Character and Text
	Server Encoding and Client Encoding
	Numbers
	Floating Point Numbers
	Sequences and the Serial Pseudo Data Type
	Universally Unique Identifier: UUID
	Bytea and Bitstring
	Date/Time and Time Zones
	Time Intervals
	Date/Time Processing and Querying
	Network Address Types
	Ranges

	Denormalized Data Types
	Arrays
	Composite Types
	XML
	JSON
	Enum

	PostgreSQL Extensions
	An interview with Grégoire Hubert

	VI Data Modeling
	Object Relational Mapping
	Tooling for Database Modeling
	How to Write a Database Model
	Generating Random Data
	Modeling Example

	Normalization
	Data Structures and Algorithms
	Normal Forms
	Database Anomalies
	Modeling an Address Field
	Primary Keys
	Surrogate Keys
	Foreign Keys Constraints
	Not Null Constraints
	Check Constraints and Domains
	Exclusion Constraints

	Practical Use Case: Geonames
	Features
	Countries
	Administrative Zoning
	Geolocation Data
	Geolocation GiST Indexing
	A Sampling of Countries

	Modelization Anti-Patterns
	Entity Attribute Values
	Multiple Values per Column
	UUIDs

	Denormalization
	Premature Optimization
	Functional Dependency Trade-Offs
	Denormalization with PostgreSQL
	Materialized Views
	History Tables and Audit Trails
	Validity Period as a Range
	Pre-Computed Values
	Enumerated Types
	Multiple Values per Attribute
	The Spare Matrix Model
	Partitioning
	Other Denormalization Tools
	Denormalize wih Care

	Not Only SQL
	Schemaless Design in PostgreSQL
	Durability Trade-Offs
	Scaling Out

	An interview with Álvaro Hernández Tortosa

	VII Data Manipulation and Concurrency Control
	Another Small Application
	Insert, Update, Delete
	Insert Into
	Insert Into … Select
	Update
	Inserting Some Tweets
	Delete
	Tuples and Rows
	Deleting All the Rows: Truncate
	Delete but Keep a Few Rows

	Isolation and Locking
	Transactions and Isolation
	About SSI
	Concurrent Updates and Isolation
	Modeling for Concurrency
	Putting Concurrency to the Test

	Computing and Caching in SQL
	Views
	Materialized Views

	Triggers
	Transactional Event Driven Processing
	Trigger and Counters Anti-Pattern
	Fixing the Behavior
	Event Triggers

	Listen and Notify
	PostgreSQL Notifications
	PostgreSQL Event Publication System
	Notifications and Cache Maintenance
	Limitations of Listen and Notify
	Listen and Notify Support in Drivers

	Batch Update, MoMA Collection
	Updating the Data
	Concurrency Patterns
	On Conflict Do Nothing

	An Interview with Kris Jenkins

	VIII PostgreSQL Extensions
	What's a PostgreSQL Extension?
	Inside PostgreSQL Extensions
	Installing and Using PostgreSQL Extensions
	Finding PostgreSQL Extensions
	A Primer on Authoring PostgreSQL Extensions
	A Short List of Noteworthy Extensions

	Auditing Changes with hstore
	Introduction to hstore
	Comparing hstores
	Auditing Changes with a Trigger
	Testing the Audit Trigger
	From hstore Back to a Regular Record

	Last.fm Million Song Dataset
	Using Trigrams For Typos
	The pg_trgm PostgreSQL Extension
	Trigrams, Similarity and Searches
	Complete and Suggest Song Titles
	Trigram Indexing

	Denormalizing Tags with intarray
	Advanced Tag Indexing
	Searches
	User-Defined Tags Made Easy

	The Most Popular Pub Names
	A Pub Names Database
	Normalizing the Data
	Geolocating the Nearest Pub (k-NN search)
	Indexing kNN Search

	How far is the nearest pub?
	The earthdistance PostgreSQL contrib
	Pubs and Cities
	The Most Popular Pub Names by City

	Geolocation with PostgreSQL
	Geolocation Data Loading
	Finding an IP Address in the Ranges
	Geolocation Metadata
	Emergency Pub

	Counting Distinct Users with HyperLogLog
	HyperLogLog
	Installing postgresql-hll
	Counting Unique Tweet Visitors
	Lossy Unique Count with HLL
	Getting the Visits into Unique Counts
	Scheduling Estimates Computations
	Combining Unique Visitors

	An Interview with Craig Kerstiens

	IX Closing Thoughts
	X Index

